aws

User Guide

Amazon ECR

API Version 2015-09-21

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon ECR User Guide

Amazon ECR: User Guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

This documentation is a draft for private preview for regions in the AWS European Sovereign
Cloud. Documentation content will continue to evolve. Published: January 10, 2026.

Amazon ECR User Guide

Table of Contents

What is AMQAzZON ECReueeeeeeeeneennemmeneneeeemeemeemeistnmeiiieiiiieieesesse 1
CoNCepPts ANA COMPONENTES ...coviviiiririeirerertee ettt ettt e s te st e e s e ste st s e sseste s ssasse st esassassesassassensensans 1
COMIMION USE CASES ..eeruviuteuiereeiensteiteeteeseestestessesssesstesstessesstessessasstassessesstessesasesstessesssesstsssesstesstessesssessesas 3
Features Of AMAzon ECR ...ttt st ste st et sseste st s e sse st e e s e s b et s e ssassesassassessesanssessesasss 5
How to get started with AmMazon ECR ...ttt sve e e se e e eesa et saessanaens 6
Pricing fOr AMAzZon ECR ...ttt steste e e e e e e s e stesaesaestesse e e s e e s e e et e stesbessesaassaeseensensansans 6

Moving an image through its LfecyCle ...riiiiiiiiiiiiiinneennnniiiiiieniiiinnseessnsisiisceesssssssssssssses 7
PrEIEGQUISITES ..ottt ettt ettt e st s s e e s e e e st e s b e s st e s ae e st e s aesssaesssaessaasssesassesssessstesssesssaessseessaens 7

INSEALL TE AWS CLI ottt ettt ettt sa ettt e s e s s et et ssase st e e ssansensens 7

INSEALL DOCKET ..ottt ettt sttt b et e s b st et s e a et s s be st et e e ae st esassassenassanes 7
Step 1: Create @ DOCKEN IMAGE ...ttt ettt e st e st e s e e e e e e s e e e s e ae st e sesaanes 9
StEP 2: Create @ rEPOSITONY ittt ettt s sre e st e s st es e e s sae e saessaeessaesssaesssassssasssessssassaessseanns 11
Step 3: Authenticate to your default regiStry ... 11
Step 4: Push an image to AMAazon ECR ...ttt ste st ste e e saesaa e 12
Step 5: Pull an image from Amazon ECR ...ttt saestesaesae e s e e ennens 13
Step 6: DElete AN IMAGE ...ttt te et e e s et et et e s be st e s s e e raean e e e e ennan 14
StEP 7: DELELE @ rEPOSITONY ...ocueeeieietee ettt te e a et st e s besae s e s seese e e e e e s e s assasaansansans 14

Optimizing PerforMAanCEceeeeeciiiiiiiiiiiiiineeensniiiiiieceeietsses 15

MaKiNg FEQUESLEScceeeeiiiiiiiiiiiiiiieeetntiiiiieseeteetesssnne 17
Getting StaArted WIth TPV ...ttt ettt st e e sa et e b e s aesae s ae s e s e e nennanes 17
Testing IP address comMPatibilitycc.coeoeeeeeeeeeee ettt 18
Making requests using dual-stack eNAPOiINtS ..ot 19
Using Amazon ECR endpoints from the docker CLI ...t 19
Using IPV6 addresses in IAM POLICIESccuecueeuieirieecietetetete ettt ae e s e e e s e e sae st sae s nns 20

Private r@GISTIY .cicieeeeeeeiiiiiiiiiiiiiiinennnnniiiiieeceieiiesssne 22
REGISTIY CONCEPTES ettt ettt st et e e et e st e s s ae e s e e s sae e s saesssaesbesssaesssesssaesssassseesssessseennees 22
REGIStry QUNENTICATION ..ottt st te et e e aesae st et e aessesseesnennennans 22

Using the Amazon ECR credential RELPer ... 23
Using an authorization tOKEN ...ttt sttt aas 23
Using HTTP APl QUthentiCation ...ttt st sa e n et ae e 24
REGISTIY SETLINGS ..ottt et e et s e s s e e s e e s sae s s b e s aa e s b e s sae e saessaesssassseesssesssennees 25
REGISTIY PEIMUSSIONS ..cueviiiiieiiicteeteecteete st ee e est e s stessre e s sae e st e s saesssaessessssesssesssaesssessseesssesssaesssessseesssesnes 26
REQIStry POLICY EXAMPLES ..ottt te st e st e s te e e e e e e e s et e sbestesaessassessaesnensansans 27
Switching to the extended registry PoliCy SCOPEooeeieiiciecieeeeeec e 30

API Version 2015-09-21 iii

Amazon ECR User Guide

Granting permissions for cross account replicationccccceeeeeeeieceecieceececece e 32
Granting permissions for pull through cache ... 33
Private rePOSItOries ... iiiiiiiiiiiiiieeeniiiiiiieiiiiitisscssssesssssssessns 35
REPOSITONY CONCEPLES ooeviiieieeeteecteeterct ettt st e s e s st e s stessaeesae s s st e s saesssaesssesssaesssesssaesssessseesssessseessnens 35
Creating a reposSitory t0 STOre iMAgES ...ttt et e tesssa e saessaesssnesnas 36
NEXE SEEPS eeeeiieicteetrctee ettt e st e st s e e e st e e st e s s ae s e sa e s aa e s e e e besssaessaesstesssasssaesssaesseasssesssaessseesseenns 38
Viewing repoSitory dETAIlS ...ttt sttt s a et aan 38
DELEtiNg @ MEPOSITONY ..ooeieeeceeeetcteec ettt e e e et et e st e sa s b e s e e e e e et esaestestessassesseennesaanes 39
REPOSITOIY POLICIES ..uvieveteeieeieeeetetectectee ettt et e s teste st e e e e et et e s ae st e st e s se e e esa e s e st esansassassaesasseensansanes 40
Repository policies VS IAM POLICIESccccveeeeereeeeeetetetetete ettt ste st e s e e e e aesa e s saeaan 40
REPOSITOrY POLICY EXAMPLES ...ttt ettt e s e s e e s e e e e s e s e st e st e saessassessnennennans 42
Setting a repository policy StatemMENt ... 48
TAGGING Q FEPOSITONY oottt te et s e e s s e e st e s sae s st e s sse e st essseesssessaessaesssassssessseesssessseasssennns 50
TAG DASICS ettt ettt ettt et s b e a e e s e e aa e e et e ae b e tanteeseereenneneantan 50
Tagging your resources for DillING ...ttt eens 50

iV [[g T I =T L3OO OO U ST 51
DELEEING TAGS ettt ettt et e st e et e e e et et et e s be st e et e e aeeae e e e e et et e tateeseeraenean 52
Private iMAges ...ccciiiiiiiiiieeeennnniiiiiieiiiiiniesesssssssssssseess 54
PUSRING QN IMAQGE .ttt te e e e e st e st e st e st e st e s s e et e e e e s et et e bastassasseeseennanean 55
REQUITrEd [AM PEIMMISSIONSoicviieeiecteeeeeetetectertestestestesseeessaesaessessessessassessessasssessassessessassansassessssnnans 55
PUShING @ DOCKEI IMAQGE ...ttt ettt e st esaeste st e e e s et e b et et e ssassessesnnennan 57
Pushing a multi-archit@Cture iMage ...ttt ettt aean 59
PUSHING @ HELM ChAIt ...ttt ra e sttt e s ae s e e ae e e et e b e e e s e aanns 60
DELEtiNG @rtifaCts cueeeeeeeeeeee ettt st a et sttt et e e reea e e tentenaan 62
VieWing iMage dELAILSc..cveieieececeeeeeeee ettt et ste st e et s e s e e s et et et e be st e s sessaesnenaenaenean 65
PULLING @N MG ettt ettt e et e st st e st e st e s s s e e sa s e et et et e tasbassaeseeseeneenaansansansanes 66
Pulling the Amazon Linux cONtaiNer iMAgEccccuiieieeeeeeeeeeeeceecee e ste e e e e e s saesae e ssesse s e e s ennan 68
DELEtiNG QN IMAGE ettt e e e et e st e st e e b e e e e e e e et et e ae st estesseeseeraenaanes 68
ArChiVING QN IMAGE ittt e te s e s e s e s e e e et et e st et e st e sta st e s sesseesaesaessessesansansassassassnenaaneans 70
What is the ECR archival Storage Class? ...ttt steste e ae e s enennens 70
ArChiVING @N IMAGE ettt st e s e e e e e e et e st e st e s b e st e ssaesa e e et ebestesassassessessaensansans 71
RESTOFING QN IMAGE ..ueeiiiiteeeteeteeteeteest ettt e s rte s st e s ee s ae e s sae e s st essaesssaesssassseesssesssaesssessseesssesssaesnsens 73
REtagQing QN IMAGE ...ttt ettt et e st e s sae e s sae s se e st e s saessssesssaesssasssaasssessaesssessseesssennns 75
Preventing image tags from being OVerwrittenccoeeecececececeeeeee e 77
Setting image tag mutability (AWS Management Console)coeeeeeeeecieceeceneneceeeeeeee s 77
Setting image tag Mutability (AWS CLI) ..ottt sn e 78

API Version 2015-09-21 iv

Amazon ECR User Guide

Container image mManifest fOrmMats ... sa e e e 80
Amazon ECR image manifest CONVEISION ..ottt stesae e re e e saennan 80
Using Amazon ECR images With AmMAazon ECS ...ttt sve e ve e e ss s s eas 81
REQUITEd [AM PEIMNISSIONSoiviieeiecieceeeeietectertestestessesseeseeaesaesaestessessassessessasssessessessansassassassessasnnens 82
Specifying an Amazon ECR image in a task definition ..., 83
Using Amazon ECR Images wWith AmMazon EKS ...ttt ste e ve e nenens 84
REQUIrEd [AM PEIMMISSIONSoivicieeiecieeeeeetetectestestestessessessesaesessessessessassessassasssessessessassansassassessesnnans 84
Installing a Helm chart on an Amazon EKS clUSter ... 85
SiGN IMAGES «uieiiiiiiiiieeennniiiiiiieeetttteeesss 87
Choose a SigNiNG MELNOA ...ttt et e ae s s e se e e e nennan 87
CONSIAEIALIONS ..ttt ettt st et e sae st e e st et e e s e s s e st et s sa st e st esasbassesassassansenessensensesasan 87
MANAGEA SIGNING weeuviiieiiiieictetecteeeete ettt et et e rte st et e s tesse e e e e e s esseaesaetessassassassaesaassessansansensansassassassassaans 87
PrErEQUISITES .eenveiieeieeteececcterte ettt sttt st s st e st e s sae s sae e s b e s saa e s saesssaessbesssaesssasssaesssessssenssessseenseensses 88
GELEING SLAMTEA ..ttt e et et e st e b e s e st e e e e e e e e s et et esanbassassaesaennannan 89
CONSIAEIALIONSevireieiietetreret ettt et st st ettt s s be st e e s s et et ssessesaesassessestesassansensesensansasans 92
SIGNAtUIE VEITICATION ettt te e s et e st e st e s ae s e e se s e e s e e e saataneans 92
Managed verification With AMAzon EKS ...ttt e e e saesaessaneens 92
Lambda admission controller for AmMAazon ECScc.oiriineneninineneesenesteesessesesessesseessens 92
Manual verification With NOTAtion CLIcccviviriiiirineieineetreetccrestee et sa et sa e aes 93
Configure authentication for the Notation client ..., 93
MANUAL SIGNING ittt te e te st e st e et e e e e e et et e testesbasbassassaesaeseesaensassassansassassessessaessanes 93
PrErEQUISITES .eeeeeiieeieeteece ettt ettt s sttt s e e st e s sae s sae e s b e s sse e s saesssaesssesssaesssasssaesssessssenssessseesssesnses 93
Scan images for vULNErabilitiesccccuiiiieeruciiiiiiiiiiininnnennnnniiiiiiiiiiiiieeesssssssisiieeeessssssssssssssssses 95
FIlters fOr rEPOSITOIIES ...ocueeieeetee ettt ettt e e e e e e et et e s ae st e s s e basseesnea e aestansanes 96
FILEEr WILACArAS ...oveeeeieieereer ettt sttt et et s s e b s b et e e ssesae e ssesaassenne 96
ENNQNCEA SCANNING ..ottt et et e st e s e e s e e et et e be st e basseesessnenaansansansanes 97
Considerations for enhanced SCANNING ..ot ns 97
Changing the enhanced scanning dUuration ... 98
REQUITEd [AM PEIMMISSIONSoiiiieeiecieeeeeeteiestertestestessessesseeaessessessessessassesssesasssessessessansassassessessesnaens 99
Configuring enNhanced SCANNINGcovoiiieieeeceeeeee et e e e e e s sa et estesaesse s e e s esnannens 100
EVENTBIrIAQE EVENTS ...ttt et ettt s b e s ae s s e e e e e e e et e tetassassessnennan 102
RELFIEVING FINAINGS ...ttt te e e e e e e saeste st e b e e e s e e e e a e s e nanaansans 107
BASIC SCANNING ..ceeiiiiiieteecteetecrteete ettt s e s st e s ste s se e st e s sseessaesssa e sbesssaesssessessssasssaesssessseasssesssensseens 108
(@][l D T=T o] =T Lo o [OOSR 109
Operating system support for basic scanning and improved basic scanning 110
Configuring basiC SCANNING ..ottt s s e et et e st e s ae s s e s e e snennens 113

API Version 2015-09-21 v

Amazon ECR User Guide

Switching to the improved basic SCANNINGcciiiiieeeeeeeeeeeeeeee e 114
Manually SCANNING @N IMAQGE ...ttt ettt e e e et et esaestesse s e s e e aea et e seaanes 115
RELFIEVING FINAINGS ...ttt et e e e e e saeste st e b e e e s e e e e a e s e sansansans 117
Troubleshooting IMAgEe SCANNINGccueeieuieieeeeeeeeceeeee ettt ste e e e e e e e e saestessessessessnesnaneans 118
Understanding scan status SCAN_ELIGIBILITY_EXPIRED ..ooooioievenenieneeeeeceeeeeeeenenne 119
SYNC anN UPStream FEGISTIY .ccccieeeeeeeeecsieicceiiiinneessasee 120
Repository creation tEMPLAtES ...ttt a e e a et reaan 121
Considerations for using pull through cache rules ... 121
ReQUIred IAM PEIMMISSIONSc.vecuieieeeeeiiieitetertesteseseee e e stesaessestessessessaesee e essessessessessassassasssessensensensansans 123
USING regiStry PEIIMISSIONScccvireieriiereieeiteeeteerieestessseesseesssessseesssessssesssesssessssessssesssesssessssesssssssees 123
NEXE SEEPS ettt ettt ettt e s sae e st e e sae e st e s st esssesssa e s st e s saesssesssaesssasssesssesssessssesssessssennses 125
Setting up permissions for cross-account ECR t0 ECR PTCuoiiiiieiecieieieieceeese e 126
IAM policies required for cross-account ECR to ECR pull through cache..............ccueeuenn.e. 126
Creating a pull through CaChe FULE ...ttt s 128
PrErEQUISITES .ottt ettt s st e s ae s sae e s sae s s e e s se s saesssa s st asssessssessseesssesssessssesssennees 128
Using the AWS Management CONSOLEoiviiiicieeienieeeeeceetete et e e sesaesaesaesaesae e e eneens 129
USING the AWS CLI ettt ste e te e e e et e e e st e saesaesse e s e e s e s et et e sassessassasssensansanes 136
NEXE SEEPS ettt ettt et rte s st e st e e sae e s e e s st esssesssa e s st e s se s st esssaesssasssessssesssessssesssessseennses 139
Validating pull through CaChe FULE ...ttt saesrasaens 140
Pulling an image with a pull through cache rule ... 141
Storing your upstream repository credentials ... cciceciiienereeeceeeee e 143
CustomMizZiNg rePOSItOrY PrEfiXES ..ucciivecieieieeetceeesee ettt te st e s e et e e e saestesaessessessnesaennans 150
Troubleshooting pull through cach@ ISSUES ... 151
REPLICAtE IMAQGES wuuuiiiiiiiiiiiiiieennniiiiiiieiiiitnnssesssssssssssseessnsssssses 153
Replication policy reqQUIFEMENTS ..ottt e e e a e ae st et e ae s e s se s e e e s e e s e saesaenean 153
Policy configuration OVEIVIEW ...ttt ettt st sre s s e e e s sa et a e e s 153
Destination registry policy reqQUIrEMENTLScccccieiiieiieececec ettt sae e re e e s e s e saeeens 153
Source acCoUNt rEQUIFEIMENTSiiciieiieecieeieerterrreeseesteeseessteesseesssessseesssessseesssasssessssessssesssesssesnes 154
COMMON MISCONCEPTIONS ...oeueiieiiieterreerteereeete st e ste et ssaessseesstesssesssaesssessssasssessssesssassssesssesssaessens 155
Troubleshooting replication fAIlUIES ... sae s 155
Considerations for private image replication ... 155
REPLICATION EXAMPLES ...ttt ettt te st e s e e e e et e s et e st e st e sbessa s e ssaesaenaansensansansans 157
Example: Configuring cross-Region replication to a single destination Region 157
Example: Configuring cross-Region replication using a repository filterccccoceeveeveviennnnens 158
Example: Configuring cross-Region replication to multiple destination Regions 158
Example: Configuring cross-account replicationccoeeereeeeeneeieccicceceeses e 159

API Version 2015-09-21 vi

Amazon ECR User Guide

Example: Specifying multiple rules in @ configuration ... 159
Example: Removing all replication SEttiNGSccceveeieiecieceeceee e 160
ConfigUIING FEPLICALION ...ttt st e e st e e e s et et e aessessaeseenaenaennan 161
REMOVING FEPLICALION ...ttt e st st e e et et st e e s e se e e e e e e e s eaasaeas 162
Repository creation temMPLlatesccceeeecciiiiiiiiiiiiinieeesssiiiiiieceienissass 164
HOW Tt WOTKS .ttt sttt ettt ettt st et s e st et e s b et e e saassenssnnns 164
Creating a repository creation tEMPLAte ... 167
IAM permissions for creating repository creation templatescceeeeeeenenenveevcceeceeceenee. 168
Create @ CUSEOM POLICY ittt e e e e et e st esae st e s be s e sseesne s esaenaenbensans 169
CrEate AN TAM TOLE ettt ettt ettt ettt a et e s b et et e b et e e s b e s et snasansenaen 170
Create a repository creation temMPLAte ... et 171
Updating repository creation teMPLAtes ...ttt 176
Deleting a repository creation tEMPLAte ...ttt 177
Automate the cleanup Of IMAGES ...ccccueeeeeeeiiiiiiiiiiiiiiienennniiiiiiieeiiiteseesssssssssssssesssssssssssssssssssssses 179
HOW LifecyCle POLICIES WOTKcoueeuieeeeeeee ettt e e e sa e saesaesbesbessa e e e e e aennanaans 179
Lifecycle policy evaluation FULES ...ttt 180
Creating a lifecycle POLICY PrEVIEW ...ttt sae st a s sa b ae s 182
Creating @ LIfECYCLE POLICY .ottt ettt a e s b s e e e e e e e e aa s 183
PrErEQUISITE ..ottt re et e s ae s sre e s b e s s e e s b e s s sa e s sseessaessbesssaesssasssaesssessssesseesseens 184
Examples Of LIfeCyCle POLICIES ...oueeiieeeeeeeee ettt ettt e te e s e s s e e n e aenens 186
Lifecycle policy tEMPLAte ... ettt st a e et es 186
FIltering ON IMAQgE G0 ettt ettt e te s se s e s e e e et e b e s aeste b e e e e seesaenaantansansanes 186
Filtering 0N iMAge@ COUNTcueiiieeececeeete et ettt st e st eese e e se s s e s et e saessessassassnennanaans 187
Filtering 0N MULLIPLE TULESeeeeeeeee ettt st ae s e e e e e s e e e aesaanaans 188
Filtering on multiple tags in @ SINGLE FULEeoveveeeeeeeee e 190
Filtering 0N Qll iIMQAGES ..uoeeeeeeeeeeeee ettt e et et estesae s b e s s e e sa e e e s e aenentannan 192
ATCRIVE EXAMIPLES ..ttt ettt e st e e s ae e s e e e e e e e et et e stesbasbeeseesaeseensessansansansanes 195
LifECyCle POLICY PrOPEITIEScveeeeeeeeeeeeetete ettt ettt e te s te s e e e e s et e st e st e basbassesseesesnnenaanes 197
RULE PrIOTILY eveteieeieeececeetetete ettt et e st et e s te st e s te e e e e e e e s e st e st e sbassassessaessensesaentansansansassasssansansans 198
DESCIIPTION ettt s et e st e e st essae s sae e s ae e saeessae s saesssessseesssesssaesssassseesssessseessaesssnanns 198
TAG STATUS ottt ettt st s e e st e s ae s sre e s e e s s st e s b e s sa e s b e e saa e s b e s saesssee st esssesssaesseeesseanns 198
TAG PALLEIN LIST ot a et e st e st e st e s e e e e et et e st e stessasseesaennenaanes 199
TAG PrEfiX LISt ettt e st st e st e s te s b e s e s e e e e s et e st e aasassaesessaennansantans 199
SEOFAGE CLASS ..ottt te e e e et et et e b e st e e s e e seesa e s et et e benteesaeseereenaentetensentan 199
COUNT LY PO ettt ettt st e s ae s st e s b e s s sa e st e e s sa e s b e e s st e s sae e saassseessaessaesssessseesssessseensaens 200
COUNT UNIE oottt sttt et e e s s st st s st e b e st e st s b e et e sneebe st essesasasnnen 200

API Version 2015-09-21 vii

Amazon ECR User Guide

COUNT NUMIBDET .ttt ettt sttt st et s b e st b e st et e s b et e e ssassenaesessassenassans 201
ACTION ettt sttt sb e et a e st s bt e s b e et e e st s b e st e e st e b e et e st sbe st esntebeentaneens 201
Pull-time update eXCLUSIONScceeeiiiiiiiiiiiiiiineeeneniiiiiiiiceiisessasssns 202
Managing pull-time update eXCLUSIONScc.ccueieeieeeeeeceeeee et ns 202
Considerations for pull-time update eXClUSIONScocoiiiiieiieeeeeeeee e 205
SECUNITY ceiiiiiiiieennniiiiiiiiniiiinnsesssssssssssessssssssssssssssssssssssess 206
Identity and Access ManNAgEMENTcceceeiieiieietetececte e e sa et e stestesaeste s e e s e e e s e aesaessensessanes 206
AUAIENCE ..ttt sttt et et s b et s s b et et e e b et e e s s et et s sa b et enassassestesassassesessansensenanns 207
Authenticating With ide@ntities ...ttt nnens 207
Managing access USING POLICIES ...cceeeeiecieiecieeececeeee ettt se e e s e e e e saestestesse s e sse e e e saennennan 208

How Amazon Elastic Container Registry works With [AM ..., 210
Identity-based POliCYy EXAMPLES ..ottt e e e e et aesaanaens 214
Using Tag-Based ACCESS CONLIOLceeiiieieieeceeeeestetetete et steete e ss et aesaesaessesae s e s snenennens 218

AWS managed policies for AmMazon ECR ...ttt steste e sae e s e ssesaessessassessens 220
USING SEIrVICE-LINKEA FOLES ...ttt st re e aesae st e saesaesaassesanesnannens 227
TrOUBLESNOOTING .ottt sttt et et e st esae s be e e e sa e e e e e s e b entanean 236

DAta PrOTECLION ...ttt re et e st s s e e s sae e s e e s aesssaessaaessnesssassssasssaesssasssaanns 238
ENCIYPLION @t FOST ..ttt e s e s re e s e s s ae e s b e s sa e s aeesaeesnessnnannnas 239
ComPLiANCE VAlIAAtiONeoeeeeeeee ettt e e e st e st esae s aesbe s s e s e e e e e e aenanaans 246
INFrAaStrUCTUIE SECUIILY ..ottt ettt et e st e st e s e e e e e e e s e sbestesaassessesnnesaanaans 247
Interface VPC Endpoints (AWS PrivateLink)cccceceeeneeieeeeeeeeeteceesectese e ee s saesaessesaens 247
Cross-service confused deputy Prevention ...ttt e e e e nean 255
MONIEOKFING ceveiiiiiiiiiiiiiiiennnnniiiiiiceeiiiienseasssssssssssssessass 257
Visualizing Your Service Quotas and Setting Alarmsocoieeeeeeceeeeeeeee e 258
USQGE MELIICS ittt ettt st e sae e st e s e e s sse e s b e s s st e s besssaesae s saesssessseasssesssaesssessseesssessseesseenseans 259
USQGE REPOIES ..ttt sttt te s vt s sae s s e e s b e s sa e s ae s st e s sae s saeesaa e seasssasssaesssassssesssessseennsens 260
REPOSITONY MELIICS «.eveiieiiieeieecteeteccteete st ettt s st s s see e sae e s sae s sa e s b e s saeesssessseesssassstesssesssaesssasssnesssannn 261
Enabling CloudWatch MELIICS ...ttt ettt st et e st s snennan 261
Available metrics and diMENSIONScoevviviiireriireeee ettt sttt srenes 261
Viewing metrics With CLoUdWaAtChcooeieee et 262
EVENtS and EVENTBIIAGE ..ottt te e a ettt e st e st et e s e e e e e s e e a e e e aestanes 262
Sample events from AMAzZon ECR ...ttt a et steste s e e e esaesae e s 263
Logging Actions With AWS CLOUATIAIL c.ccueeieieiiieeeeceeeeeetetee ettt sae e ns 270
Amazon ECR information in CloudTrail ...ttt ees 270
Understanding Amazon ECR L0g file @NtHIESueoeeeeieeeeeeeeeee ettt 272
WOrking With AWS SDKSccciiiiiiiieeemnneiiiioiecieiinnseeess 289

API Version 2015-09-21 viii

Amazon ECR User Guide

COdE EXAMPLESceeeereeniiiiieiiiiiieeeesesseessssseeeeeneesssnses 290
BaSICS ittt st a e s b et et e b s s be et e e Rt et e et e s e e sbe s e e neeneeaee 291
HELLO AMAZON ECR ..ottt sttt e ettt s et et s s e s e e s e sae st esasaessenssnassessenenn 291
LEAIN the DASICS ittt ettt et ettt et a s ae s 295
ACTIONS ettt sttt et e s s s ae s b st a e st et e bt st e et e s st et e et e st s beeatesaeebeeneene s 351
SEIVICE QUOLAS ..cceeeeneniiiieieeiiineneeessssessssssesessns 402
TrouDBLESHOOTING ..cciiiiiieeeiiiiiiiciiiiiiiiteeneniiiiiieeettttesassssssssssssssesesssanns 408
TroubLleSNOOtING DOCKETccueeieeeeeeeceeeete ettt st e sae st e s te s e e e e s e s e s e stesaessassessassnesaansans 408
Docker logs do not contain expected error MESSAGEScceveeeeeeeeieecieneneeeeeeeeeeseesaessensens 408
Error: "Filesystem Verification Failed" or "404: Image Not Found" when pulling an image
from an AmMazon ECR r@POSITONYcecieieieeeieietectecee ettt te e e se e e e saesaesaessassessn e e ens 409
Error: "Filesystem Layer Verification Failed" when pulling images from Amazon ECR 409
HTTP 403 Errors or "no basic auth credentials" error when pushing to repository 410
Troubleshooting AmMazon ECR €rror MESSAGESc.ccveveeeierierieneneeeeeeeeseessessessessessessessssssessessessassenes 411
HTTP 429: Too Many Requests or ThrottleEXceptioncceiieeiecececeeceeeeeeeeteve e, 411
HTTP 403: "User [arn] is not authorized to perform [operation]"cccceeeeeeenieeieecieieciee 412
HTTP 404: "Repository D0oes NOt EXIST" @rTOriiiiiviinieetertecctestesce et sressve e seessneesaesnns 412
Error: Cannot perform an interactive login from a non TTY devicecceeeeeeeeceecreceeceecnenen, 412
Using Podman with AmMazon ECReeiiiiiiiiiiiiinnneenseniiisisceeiisss 414
Using Podman to authenticate with Amazon ECR ...t 414
Using the Amazon ECR credential helper with Podman ..., 414
Pulling images from Amazon ECR with POdmancccooirieieceeceeeceeeetete et 415
Running containers for Amazon ECR with POAmMan ...t 415
Pushing images to Amazon ECR with POAMAN ... 415
DOCUMENT NISTOIY auuueiiiiiiiiiiiiiiieennniiiiiiieieeiiieensssssssssssssseseesssnee 417

API Version 2015-09-21 ix

Amazon ECR User Guide

What is Amazon Elastic Container Registry?

Amazon Elastic Container Registry (Amazon ECR) is an AWS managed container image registry
service that is secure, scalable, and reliable. Amazon ECR supports private repositories with
resource-based permissions using AWS IAM. This is so that specified users or Amazon EC2 instances
can access your container repositories and images. You can use your preferred CLI to push, pull, and
manage Docker images, Open Container Initiative (OCl) images, and OCI compatible artifacts.

(® Note

Amazon ECR supports public container image repositories as well. For more information,
see What is Amazon ECR Public in the Amazon ECR Public User Guide.

The AWS container services team maintains a public roadmap on GitHub. It contains information
about what the teams are working on and allows all AWS customers the ability to give direct
feedback. For more information, see AWS Containers Roadmap.

Concepts and components of Amazon ECR

Amazon ECR is a fully managed Docker container registry service provided by AWS. It allows
you to store, manage, and deploy Docker container images securely and reliably. These concepts
and components work together to provide a secure, scalable, and reliable Docker container

registry service within the AWS, enabling you to efficiently manage and deploy your containerized
applications.

Here are some key concepts and components of Amazon ECR:
Registry

An Amazon ECR registry is a private repository provided to each AWS account, where you can
create one or more repositories. These repositories allow you to store and distribute Docker
images, Open Container Initiative (OCl) images, and other OCl-compatible artifacts within your
AWS environment. For more information, see Amazon ECR private registry.

Authorization token

Your client must authenticate to an Amazon ECR private registry as an AWS user before it can
push and pull images. For more information, see Private registry authentication in Amazon ECR.

Concepts and components API Version 2015-09-21 1

https://docs.aws.eu/AmazonECR/latest/public/what-is-ecr.html
https://github.com/aws/containers-roadmap

Amazon ECR User Guide

Repository

A repository in Amazon ECR is a logical collection where you can store your Docker images,
Open Container Initiative (OCIl) images, and other OCl-compatible artifacts. Within a single
Amazon ECR registry, you can have multiple repositories to organize your container images. For
more information, see Amazon ECR private repositories.

Repository policy

You can control access to your repositories and the contents within them with repository
policies. For more information, see Private repository policies in Amazon ECR.

Image

You can push and pull container images to your repositories. You can use these images locally
on your development system, or you can use them in Amazon ECS task definitions and Amazon
EKS pod specifications. For more information, see Using Amazon ECR images with Amazon ECS

and Using Amazon ECR Images with Amazon EKS.

Lifecycle Policy

Amazon ECR lifecycle policies allow you to manage the lifecycle of your images by defining
rules for pruning and expiring old or unused images. For more information, see Automate the

cleanup of images by using lifecycle policies in Amazon ECR.

Image Scanning

Amazon ECR provides an integrated image scanning capability that helps identify software
vulnerabilities in your container images. For more information, see Scan images for software

vulnerabilities in Amazon ECR.

Access Control

Amazon ECR uses IAM to control access to your repositories. You can create IAM users, groups,
and roles with specific permissions to push, pull, or manage Amazon ECR repositories. For more
information, see Security in Amazon Elastic Container Registry.

Cross-account and Cross-region Replication

Amazon ECR supports replicating images across multiple AWS accounts and regions for
increased availability and reduced latency. For more information, see Private image replication

in Amazon ECR.

Concepts and components API Version 2015-09-21 2

Amazon ECR User Guide

Encryption

Amazon ECR supports server-side encryption of your Docker images at rest using AWS KMS. For
more information, see Data protection in Amazon ECR.

AWS Command Line Interface Integration

The AWS CLI provides commands to interact with Amazon ECR repositories, such as creating,
listing, pushing, and pulling images.

AWS Management Console

Amazon ECR can also be managed through the AWS Management Console, providing a user-
friendly web interface for working with your repositories and images.

AWS CloudTrail

Amazon ECR integrates with AWS CloudTrail, allowing you to log and audit API calls made to
Amazon ECR for security and compliance purposes. For more information, see Logging Amazon
ECR actions with AWS CloudTrail.

Amazon CloudWatch

Amazon ECR provides metrics and logs that can be monitored using Amazon CloudWatch,
enabling you to track the performance and usage of your Amazon ECR repositories. For more
information, see Amazon ECR repository metrics.

Managed signing

Managed signing automatically generates cryptographic signatures when images are pushed to
Amazon ECR, simplifying container image signing. For more information, see Managed signing.

Common use cases in Amazon ECR

Amazon ECR is a fully-managed Docker container registry service offered by AWS. It provides a
secure and scalable repository for storing and distributing Docker container images, making it an
essential component in containerized application deployments. Amazon ECR simplifies the process
of building, distributing, and running containerized applications across various AWS services and
on-premises environments.

Here are some key use cases for Amazon ECR:

Common use cases API Version 2015-09-21 3

Amazon ECR User Guide

Container Image Storage and Distribution

Amazon ECR serves as a centralized repository for storing and distributing Docker container
images within an organization or for public consumption. Developers can push their container
images to Amazon ECR and then pull them from any compute environment within AWS, such
as Amazon EC2, AWS Fargate, or Amazon EKS. For more information, see Amazon ECR private
repositories.

Continuous Integration and Continuous Deployment (Cl/CD)

Amazon ECR integrates seamlessly with AWS CodeBuild, AWS CodePipeline, and other CI/CD
tools, enabling automated building, testing, and deployment of containerized applications.
Container images can be automatically pushed to Amazon ECR as part of the CI/CD pipeline,
ensuring consistent and reliable deployment across different environments.

Microservices Architecture

Amazon ECR is well suited for microservices architectures, where applications are broken down
into smaller, decoupled services packaged as containers. Each microservice can have its own
container image stored in Amazon ECR, enabling independent development, deployment, and
scaling of individual services.

Hybrid and Multi-Cloud Deployments

Amazon ECR supports the ability to pull container images from other container registries,

such as Docker Hub or third party registries. This allows organizations to maintain a consistent
deployment model across hybrid or multi-cloud environments, using Amazon ECR as the central
repository for container images.

Access Control and Security

Amazon ECR provides fine-grained access control mechanisms, allowing organizations to
control who can push or pull container images from the registry. It also integrates with AWS
Identity and Access Management for authentication and authorization, ensuring secure access
to container images. For more information, see Security in Amazon Elastic Container Registry.

Image Vulnerability Scanning

Amazon ECR offers automatic scanning of container images for software vulnerabilities and
potential misconfiguration, helping to maintain a secure and compliant container environment.
For more information, see Scan images for software vulnerabilities in Amazon ECR.

Common use cases API Version 2015-09-21 4

Amazon ECR User Guide

Private Container Registry

For organizations with strict security or compliance requirements, Amazon ECR can be used
as a private container registry, ensuring that sensitive container images are not exposed to
public registries and are accessible only within the organization's AWS environment. For more
information, see Amazon ECR private registry.

Globally Distributed Application Deployment with Amazon ECR Replication

Leveraging Amazon ECR replication capability, you can centralize your containerized web
application images in a primary repository, enabling automated distribution across multiple
AWS regions, ensuring consistent global deployments with low latency worldwide and reducing
operational burden. For more information, see Private image replication in Amazon ECR

Automated Cleanup of Stale Container Images

Amazon ECR lifecycle policies enable automated cleanup of stale container images based on
defined rules such as age, count, or tags, optimizing storage costs, maintaining an organized
registry, enhancing security and compliance, and streamlining development workflows through
automation. For more information, see Automate the cleanup of images by using lifecycle

policies in Amazon ECR

Features of Amazon ECR

Amazon ECR provides the following features:

« Lifecycle policies help with managing the lifecycle of the images in your repositories. You define
rules that result in the cleaning up of unused images. You can test rules before applying them
to your repository. For more information, see Automate the cleanup of images by using lifecycle

policies in Amazon ECR.

 Image scanning helps in identifying software vulnerabilities in your container images. Each
repository can be configured to scan on push. This ensures that each new image pushed to the
repository is scanned. You can then retrieve the results of the image scan. For more information,
see Scan images for software vulnerabilities in Amazon ECR.

» Cross-Region and cross-account replication makes it easier for you to have your images where
you need them. This is configured as a registry setting and is on a per-Region basis. For more
information, see Private registry settings in Amazon ECR.

» Pull through cache rules provide a way to cache repositories in an upstream registry in your
private Amazon ECR registry. Using a pull through cache rule, Amazon ECR will periodically reach

Features of Amazon ECR API Version 2015-09-21 5

Amazon ECR User Guide

out to the upstream registry to ensure the cached image in your Amazon ECR private registry
is up to date. For more information, see Sync an upstream registry with an Amazon ECR private

registry.
» Repository creation templates allow you to define the settings for repositories created by

Amazon ECR on your behalf during pull through cache, create on push, or replication actions.
You can specify tag immutability, encryption configuration, repository policies, lifecycle policies,
and resource tags for automatically created repositories. For more information, see Templates to
control repositories created during a pull through cache, create on push, or replication action.

« Managed signing automatically generates cryptographic signatures when images are pushed to
Amazon ECR, simplifying container image signing. For more information, see Managed signing.

How to get started with Amazon ECR

If you are using Amazon Elastic Container Service (Amazon ECS) or Amazon Elastic Kubernetes
Service (Amazon EKS), note that the setup for those two services is similar to the setup for Amazon
ECR because Amazon ECR is an extension of both services.

When using the AWS Command Line Interface with Amazon ECR, use a version of the AWS CLI that
supports the latest Amazon ECR features. If you don't see support for an Amazon ECR feature in
the AWS CLI, upgrade to the latest version of the AWS CLI. For information about installing the
latest version of the AWS CLI, see Install or update to the latest version of the AWS CLI in the AWS
Command Line Interface User Guide.

To learn how to push a container image to a private Amazon ECR repository using the AWS CLI and
Docker, see Moving an image through its lifecycle in Amazon ECR.

Pricing for Amazon ECR

With Amazon ECR, you pay for the amount of data you store in your repositories, data transfer
from your image pushes and pulls, and image actions that you opt in to such as image signing and
replication. For more information, see Amazon ECR pricing.

How to get started with Amazon ECR API Version 2015-09-21 6

https://docs.aws.eu/cli/latest/userguide/getting-started-install.html
https://aws.eu/ecr/pricing/

Amazon ECR User Guide

Moving an image through its lifecycle in Amazon ECR

If you are using Amazon ECR for the first time, use the following steps with the Docker CLI and
the AWS CLI to create a sample image, authenticate to the default registry, and create a private
repository. Then push an image to and pull an image from the private repository. When you are
finished with the sample image, delete the sample image and the repository.

To use the AWS Management Console instead of the AWS CLI, see the section called “Creating a

repository to store images”.

For more information on the other tools available for managing your AWS resources, including the
different AWS SDKs, IDE toolkits, and the Windows PowerShell command line tools, see http://
aws.amazon.com/tools/.

Prerequisites

If you do not have the latest AWS CLI and Docker installed and ready to use, use the following
steps to install both of these tools.

Install the AWS CLI

To use the AWS CLI with Amazon ECR, install the latest AWS CLI version. For information, see
Installing the AWS Command Line Interface in the AWS Command Line Interface User Guide.

Install Docker

Docker is available on many different operating systems, including most modern Linux
distributions, like Ubuntu, and even macOS and Windows. For more information about how to
install Docker on your particular operating system, go to the Docker installation guide.

You do not need a local development system to use Docker. If you are using Amazon EC2 already,
you can launch an Amazon Linux 2023 instance and install Docker to get started.

If you already have Docker installed, skip to Step 1: Create a Docker image.

To install Docker on an Amazon EC2 instance using an Amazon Linux 2023 AMI

1. Launch an instance with the latest Amazon Linux 2023 AMI. For more information, see
Launching an instance in the Amazon EC2 User Guide.

Prerequisites API Version 2015-09-21 7

http://aws.amazon.com/tools/
http://aws.amazon.com/tools/
https://docs.aws.eu/cli/latest/userguide/install-cliv2.html
https://docs.docker.com/engine/installation/#installation
https://docs.aws.eu/AWSEC2/latest/UserGuide/launching-instance.html

Amazon ECR User Guide

2.

Connect to your instance. For more information, see Connect to Your Linux Instance in the
Amazon EC2 User Guide.

Update the installed packages and package cache on your instance.

sudo yum update -y

Install the most recent Docker Community Edition package.

sudo yum install docker

Start the Docker service.

sudo service docker start

Add the ec2-user to the docker group so you can execute Docker commands without using
sudo.

sudo usermod -a -G docker ec2-user

Log out and log back in again to pick up the new docker group permissions. You can
accomplish this by closing your current SSH terminal window and reconnecting to your
instance in a new one. Your new SSH session will have the appropriate docker group
permissions.

Verify that the ec2-user can run Docker commands without sudo.

docker info

(® Note

In some cases, you may need to reboot your instance to provide permissions for the
ec2-user to access the Docker daemon. Try rebooting your instance if you see the
following error:

Cannot connect to the Docker daemon. Is the docker daemon running on this
host?

Install Docker API Version 2015-09-21 8

https://docs.aws.eu/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon ECR User Guide

Step 1: Create a Docker image

In this step, you create a Docker image of a simple web application, and test it on your local system
or Amazon EC2 instance.

To create a Docker image of a simple web application

1. Create a file called Dockerfile. A Dockerfile is a manifest that describes the base image
to use for your Docker image and what you want installed and running on it. For more
information about Dockerfiles, go to the Dockerfile Reference.

touch Dockerfile

2. Edit the Dockerfile you just created and add the following content.

FROM public.ecr.aws/amazonlinux/amazonlinux:latest

Install dependencies
RUN yum update -y && \
yum install -y httpd

Install apache and write hello world message
RUN echo 'Hello World!' > /var/www/html/index.html

Configure apache

RUN echo 'mkdir -p /var/run/httpd' >> /root/run_apache.sh && \
echo 'mkdir -p /var/lock/httpd' >> /root/run_apache.sh && \

echo '/usr/sbin/httpd -D FOREGROUND' >> /root/run_apache.sh && \
chmod 755 /root/run_apache.sh

EXPOSE 80

CMD /root/run_apache.sh

This Dockerfile uses the public Amazon Linux 2 image hosted on Amazon ECR Public. The RUN
instructions update the package caches, installs some software packages for the web server,
and then write the "Hello World!" content to the web servers document root. The EXPOSE
instruction exposes port 80 on the container, and the CMD instruction starts the web server.

3. Build the Docker image from your Dockerfile.

Step 1: Create a Docker image API Version 2015-09-21 9

https://docs.docker.com/engine/reference/builder/

Amazon ECR User Guide

® Note

Some versions of Docker may require the full path to your Dockerfile in the following
command, instead of the relative path shown below.

docker build -t hello-world .

4. List your container image.

dockexr images --filter reference=hello-world

Output:
REPOSITORY TAG IMAGE ID CREATED
SIZE
hello-world latest e9ffedc8c286 4 minutes ago
194MB

5. Run the newly built image. The -p 80:80 option maps the exposed port 80 on the container
to port 80 on the host system. For more information about docker run, go to the Docker run

reference.

dockexr run -t -i -p 80:80 hello-world

(® Note

Output from the Apache web server is displayed in the terminal window. You can
ignore the "Could not reliably determine the fully qualified domain
name" message.

6. Open a browser and point to the server that is running Docker and hosting your container.

« If you are using an EC2 instance, this is the Public DNS value for the server, which is the
same address you use to connect to the instance with SSH. Make sure that the security group
for your instance allows inbound traffic on port 80.

« If you are running Docker locally, point your browser to http://localhost/.

Step 1: Create a Docker image API Version 2015-09-21 10

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
http://localhost/

Amazon ECR User Guide

« If you are using docker-machine on a Windows or Mac computer, find the IP address of the
VirtualBox VM that is hosting Docker with the docker-machine ip command, substituting
machine-name with the name of the docker machine you are using.

docker-machine ip machine-name

You should see a web page with your "Hello World!" statement.

7. Stop the Docker container by typing Ctrl + c.

Step 2: Create a repository

Now that you have an image to push to Amazon ECR, you must create a repository to hold it. In this
example, you create a repository called hello-repository to which you later push the hello-
world:latest image. To create a repository, run the following command:

aws ecr create-repository \
--repository-name hello-repository \
--region region

Step 3: Authenticate to your default registry

After you have installed and configured the AWS CLI, authenticate the Docker CLI to your default
registry. That way, the docker command can push and pull images with Amazon ECR. The AWS CLI
provides a get-login-password command to simplify the authentication process.

To authenticate Docker to an Amazon ECR registry with get-login-password, run the aws ecr
get-login-password command. When passing the authentication token to the docker login
command, use the value AWS for the username and specify the Amazon ECR registry URI you want
to authenticate to. If authenticating to multiple registries, you must repeat the command for each
registry.

/A Important

If you receive an error, install or upgrade to the latest version of the AWS CLI. For more
information, see Installing the AWS Command Line Interface in the AWS Command Line

Interface User Guide.

Step 2: Create a repository API Version 2015-09-21 11

https://docs.aws.eu/cli/latest/userguide/install-cliv2.html

Amazon ECR User Guide

» get-login-password (AWS CLI)

aws ecr get-login-password --region region | dockexr login --username AWS --password-
stdin aws_account_id.dkr.ecr.region.amazonaws.com

o Get-ECRLoginCommand (AWS Tools for Windows PowerShell)

(Get-ECRLoginCommand).Password | docker login --username AWS --password-
stdin aws_account_id.dkr.ecr.region.amazonaws.com

Step 4: Push an image to Amazon ECR

Now you can push your image to the Amazon ECR repository you created in the previous section.
Use the docker CLI to push images after the following prerequisites are met:

o The minimum version of docker is installed: 1.7.
« The Amazon ECR authorization token was configured with docker login.

« The Amazon ECR repository exists and the user has access to push to the repository.

After those prerequisites are met, you can push your image to your newly created repository in the
default registry for your account.

To tag and push an image to Amazon ECR

1. List the images you have stored locally to identify the image to tag and push.

dockex images

Output:
REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE
hello-world latest e9ffedc8c286 4 minutes ago
241MB

2. Tag the image to push to your repository.

Step 4: Push an image to Amazon ECR API Version 2015-09-21 12

https://docs.aws.eu/cli/latest/reference/ecr/get-login-password.html
https://docs.aws.eu/powershell/latest/reference/items/Get-ECRLoginCommand.html

Amazon ECR User Guide

dockex tag hello-world:latest aws_account_id.dkr.ecr.region.amazonaws.com/hello-
repository

3. Push the image.

dockex push aws_account_id.dkx.ecx.region.amazonaws.com/hello-repository:latest

Output:

The push refers to a repository [aws_account_id.dkr.ecr.region.amazonaws.com/hello-
repository] (len: 1)

e9ae3c220b23: Pushed

a6785352b25c: Pushed

0998bf8fb9e9: Pushed

0a85502c06c9: Pushed

latest: digest: sha256:215d7e4121b30157d8839e81c4e@912606fcal@5775bb0636EXAMPLE

size: 6774

Step 5: Pull an image from Amazon ECR

After your image is pushed to your Amazon ECR repository, you can pull it from other locations.
Use the docker CLI to pull images after the following prerequisites are met:

o The minimum version of docker is installed: 1.7.
« The Amazon ECR authorization token was configured with docker login.

« The Amazon ECR repository exists and the user has access to pull from the repository.

After those prerequisites are met, you can pull your image. To pull your example image from
Amazon ECR, run the following command:

dockexr pull aws_account_id.dkx.ecx.region.amazonaws.com/hello-repository:latest

Output:

latest: Pulling from hello-repository
0a85502c06c9: Pull complete
0998bf8fb9e9: Pull complete

Step 5: Pull an image from Amazon ECR API Version 2015-09-21 13

Amazon ECR User Guide

a6785352b25c: Pull complete

e9ae3c220b23: Pull complete

Digest: sha256:215d7e4121b30157d8839e81c4e0912606fcal@5775bb0636EXAMPLE

Status: Downloaded newer image for aws_account_id.dkr.region.amazonaws.com/hello-

repository:latest

Step 6: Delete an image

If you no longer need an image in one of your repositories, you can delete the image. To delete
an image, specify the repository that it's in and either an imageTag or imageDigest value for
the image. The following example deletes an image in the hello-repository repository with
the image tag latest. To delete your example image from the repository, run the following

command:

aws ecr batch-delete-image \
--repository-name hello-repository \
--image-ids imageTag=latest \
--region region

Step 7: Delete a repository

If you no longer need an entire repository of images, you can delete the repository. The following
example uses the - -force flag to delete a repository that contains images. To delete a repository
that contains images (and all the images within it), run the following command:

aws ecr delete-repository \
--repository-name hello-repository \
--force \
--region region

Step 6: Delete an image API Version 2015-09-21 14

Amazon ECR User Guide

Optimizing performance for Amazon ECR

You can use the following recommendations about settings and strategies to optimize
performance when using Amazon ECR.

Use Docker 1.10 and above to take advantage of simultaneous layer uploads

Docker images are composed of layers, which are intermediate build stages of the image. Each

line in a Dockerfile results in the creation of a new layer. When you use Docker 1.10 and above,

Docker defaults to pushing as many layers as possible as simultaneous uploads to Amazon ECR,
resulting in faster upload times.

Use a smaller base image

The default images available through Docker Hub may contain many dependencies that your
application doesn't require. Consider using a smaller image created and maintained by others in
the Docker community, or build your own base image using Docker's minimal scratch image. For
more information, see Create a base image in the Docker documentation.

Place the dependencies that change the least earlier in your Dockerfile

Docker caches layers, and that speeds up build times. If nothing on a layer has changed since
the last build, Docker uses the cached version instead of rebuilding the layer. However, each
layer is dependent on the layers that came before it. If a layer changes, Docker recompiles not
only that layer, but any layers that come after that layer as well.

To minimize the time required to rebuild a Dockerfile and to re-upload layers, consider placing
the dependencies that change the least frequently earlier in your Dockerfile. Place rapidly
changing dependencies (such as your application's source code) later in the stack.

Chain commands to avoid unnecessary file storage

Intermediate files created on a layer remain a part of that layer even if they are deleted in a
subsequent layer. Consider the following example:

WORKDIR /tmp

RUN wget http://example.com/software.tar.gz
RUN wget tar -xvf software.tar.gz

RUN mv software/binary /opt/bin/myapp

RUN rm software.tar.gz

API Version 2015-09-21 15

https://docs.docker.com/engine/userguide/eng-image/baseimages/

Amazon ECR User Guide

In this example, the layers created by the first and second RUN commands contain the

original .tar.gz file and all of its unzipped contents. This is even though the .tar.gz file is deleted
by the fourth RUN command. These commands can be chained together into a single RUN
statement to ensure that these unnecessary files aren't part of the final Docker image:

WORKDIR /tmp

RUN wget http://example.com/software.tar.gz &&\
wget tar -xvf software.tar.gz &&\
mv software/binary /opt/bin/myapp &&\
rm software.tar.gz

Use the closest regional endpoint

You can reduce latency in pulling images from Amazon ECR by ensuring that you are using the
regional endpoint closest to where your application is running. If your application is running
on an Amazon EC2 instance, you can use the following shell code to obtain the region from the
Availability Zone of the instance:

REGION=$(curl -s http://169.254.169.254/1latest/meta-data/placement/availability-zone
I\
sed -n 's/\(\d*\)[a-zA-Z]*$/\1/p")

The region can be passed to AWS CLI commands using the --region parameter, or set as the
default region for a profile using the aws configure command. You can also set the region when
making calls using the AWS SDK. For more information, see the documentation for the SDK for
your specific programming language.

API Version 2015-09-21 16

Amazon ECR User Guide

Making requests to Amazon ECR registries

You can push, pull, delete, view, and manage OCl images, Docker images, and OCI-compatible
artifacts in Amazon ECR private registries using either IPv4-only endpoints or dual-stack (IPv4
and IPv6) endpoints. For making requests from IPv4 networks, you can use either dual-stack or
IPv4 endpoints. For making requests from an IPv6 network, use a dual-stack endpoint. For more
information about making requests to Amazon ECR Public registries using IPv4 and dual-stack
endpoints, see Making requests to Amazon ECR Public registries. There are no additional charges

for accessing Amazon ECR over IPv6. For more information about pricing, see Amazon Elastic

Container Registry pricing.

Amazon ECR endpoints are designated by attributes beyond IPv4-only endpoint or dual-stack
endpoints support. These attributes can include:

« Region - Each endpoint is specific to a Region.

» Type - Endpoint selection depends on whether you're using the AWS SDK or OCI-compatible and
Docker command line interfaces.

» Security - In select Regions Amazon ECR offers FIPS-compliant endpoints. For more information
about a list of FIPS-compliant Amazon ECR endpoints, see Federal Information Processing
Standard (FIPS) 140-3.

For more information about service endpoints supported by IPv4, dual-stack, Docker, and OCI
client, which handles Amazon ECR API calls from AWS CLI and AWS SDKs see, Service endpoints.

Getting started with making requests over IPv6

To make a request to an Amazon ECR registry over IPv6, you need to use a dual-stack endpoint.
Before accessing an Amazon ECR registry over IPv6, verify the following requirements:

» Your client and network must support IPv6.

« Amazon ECR supports the following request types over IPv6:

« OCI and Docker client requests:

<registry-id>.dkr-ecr.<aws-region>.on.aws

o AWS API requests:

Getting started with IPv6 API Version 2015-09-21 17

https://docs.aws.eu/AmazonECR/latest/public/public-ecr-requests.html
https://aws.eu/ecr/pricing/
https://aws.eu/ecr/pricing/
https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/compliance/fips/
https://docs.aws.eu//general/latest/gr/ecr.html#ecr_region

Amazon ECR User Guide

ecr.<aws-region>.api.aws

» You must update any AWS Identity and Access Management (IAM) or registry policies that use
source IP address filtering to include IPv6 address ranges. For more information, see Using IPv6
addresses in IAM policies.

« When you use IPv6, server access logs display Remote IP addresses in IPv6 format. Update your
existing tools, scripts, and software to parse these IPv6-formatted IP addresses.

(@ Note

If you experience issues related to the presence of IPv6 addresses in log files, contact
AWS Support.

Testing IP address compatibility

If you are using use Linux/Unix or Mac OS X, you can test whether you can access a dual-stack
endpoint over IPv6 by using the curl command as shown in the following example:

Example

curl --verbose https://ecr.us-west-2.api.aws

You get back information similar to the following example. If you are connected over IPv6 the
connected IP address will be an IPv6 address.

* About to connect() to ecr.us-west-2.api.aws port 443 (#0)

* Trying IPv6 address... connected

* Connected to ecr.us-west-2.api.aws (IPv6 address) port 443 (#0)
> Host: ecr.us-west-2.api.aws

* Request completely sent off

If you are using Microsoft Windows 7 or Windows 10, you can test whether you can access a dual-
stack endpoint over IPv4 or IPv6 by using the ping command as shown in the following example.

ping ecr.us-west-2.api.aws

Testing IP address compatibility API Version 2015-09-21 18

https://aws.amazon.com/premiumsupport/

Amazon ECR User Guide

Making requests over IPv6 by using dual-stack endpoints

You can make Amazon ECR API calls over IPv6 using dual-stack endpoints. The functionality and
performance of Amazon ECR API operations remain consistent whether you use IPv4 or IPv6.

When you use the AWS Command Line Interface (AWS CLI) and AWS SDKs, you can enable IPv6
either by using a parameter or flag to switch to a dual-stack endpoint, or by directly specifying the
dual-stack endpoint in your config file to override the default Amazon ECR endpoint. You can also
make configuration changes by using a command, which sets use_dualstack_endpoint to true
in the default profile. For more information about use_dualstack_endpoint, see Dual-stack
and FIPS endpoints.

Example Making configuration changes by using a command

aws configure set default.ecr.use_dualstack_endpoint true

Example Making requests over IPv6 using AWS CLI

aws ecr describe-repositories --region us-west-2 --endpoint-url https://

ecr.us-west-2.api.aws

Using Amazon ECR endpoints from the docker CLI

After you sign in to your Amazon ECR repository and tag your image, you can push and pull
OCl images and Docker images to and from Amazon ECR registries. The following examples
demonstrate docker push and docker pull commands with both dual-stack endpoints.

Example Pushing docker images using IPv4 endpoint

docker push <registry-id>.dkr.ecr.us-west-1.amazonaws.com/my-repository:tag
Example Pushing docker images using dual-stack endpoint

docker push <registry-id>.dkr-ecr.us-west-1.on.aws/my-repository:tag
Example Pulling docker images using IPv4 endpoint

docker pull <registry-id>.dkr.ecr.us-west-1.amazonaws.com/my-repository:tag
Example Pulling docker images using dual-stack endpoint

docker pull <registry-id>.dkr-ecr.us-west-1.on.aws/my-repository:tag

Making requests using dual-stack endpoints API Version 2015-09-21 19

https://docs.aws.eu//sdkref/latest/guide/feature-endpoints.html
https://docs.aws.eu//sdkref/latest/guide/feature-endpoints.html

Amazon ECR User Guide

Using IPv6 addresses in IAM policies

Before you access a registry using IPv6, ensure that your IAM user and Amazon ECR registry policies
that use IP address filtering include IPv6 address ranges. If IP address filtering policies aren't
updated to handle IPv6 addresses, clients might incorrectly lose or gain access to the registry when
they start using IPv6. For more information about managing access permissions with 1AM, see
Identity and Access Management for Amazon Elastic Container Registry.

IAM policies that filter IP addresses use IP Address Condition Operators. The following registry

policy example shows how to identify the 54.240.143. * range of allowed IPv4 addresses by
using IP address condition operators. Any IP addresses outside of this range are denied access to
the registry (exampleregistry). Because all IPv6 addresses are outside of the allowed range, this
policy prevents IPv6 addresses from accessing exampleregistry.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "IPAllow",
"Effect": "Allow",
"Principal": "*",
"Action": "ecr:*",
"Resource": "arn:aws:ecr:*:*:repository/exampleregistry/*",
"Condition": {
"IpAddress": {"aws:Sourcelp": "54.240.143.0/24"}
}
}
]
}

To allow both IPv4 (54.240.143.0/24) and IPv6 (2001 :DB8:1234:5678: : /64) address ranges,
modify the registry policy's Condition element as shown in the following example. You can use this
Condition block format to update both your IAM user and registry policies.

"Condition": {
"IpAddress": {
"aws:Sourcelp": [

Using IPv6 addresses in IAM policies API Version 2015-09-21 20

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress

Amazon ECR User Guide

"54.240.143.0/24",
"2001:DB8:1234:5678::/64"

/A Important

Before using IPv6 you must update all relevant IAM user and registry policies that use IP
address filtering. We don't recommend using IP address filtering in registry policies.

You can review your IAM user policies using the IAM console at https://eusc-de-

east-1.console.amazonaws-eusc.eu/iam/. For more information about 1AM, see the IAM User Guide.

Using IPv6 addresses in IAM policies API Version 2015-09-21 21

https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/
https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/
https://docs.aws.eu/IAM/latest/UserGuide/

Amazon ECR User Guide

Amazon ECR private registry

An Amazon ECR private registry hosts your container images in a highly available and scalable
architecture. You can use your private registry to manage private image repositories consisting of
Docker and Open Container Initiative (OCl) images and artifacts. Each AWS account is provided
with a default private Amazon ECR registry. For more information about Amazon ECR public
registries, see Public registries in the Amazon Elastic Container Registry Public User Guide.

Private registry concepts

» The URL for your default private registry is .

» By default, your account has read and write access to the repositories in your private registry.
However, users require permissions to make calls to the Amazon ECR APIs and to push or pull
images to and from your private repositories. Amazon ECR provides several managed policies
to control user access at varying levels. For more information, see Amazon Elastic Container

Registry Identity-based policy examples.

« You must authenticate your Docker client to your private registry so that you can use the docker
push and docker pull commands to push and pull images to and from the repositories in that
registry. For more information, see Private registry authentication in Amazon ECR.

» Private repositories can be controlled with both user access policies and repository policies. For
more information about repository policies, see Private repository policies in Amazon ECR.

» The repositories in your private registry can be replicated across AWS Regions in your own
private registry and across separate accounts by configuring replication for your private registry.
For more information, see Private image replication in Amazon ECR.

Private registry authentication in Amazon ECR

You can use the AWS Management Console, the AWS CLI, or the AWS SDKs to create and manage
private repositories. You can also use those methods to perform some actions on images, such as
listing or deleting them. These clients use standard AWS authentication methods. Even though you
can use the Amazon ECR API to push and pull images, you're more likely to use the Docker CLI or a
language-specific Docker library.

The Docker CLI doesn't support native IAM authentication methods. Additional steps must be taken
so that Amazon ECR can authenticate and authorize Docker push and pull requests.

Registry concepts API Version 2015-09-21 22

https://docs.aws.eu/AmazonECR/latest/public/public-registries.html

Amazon ECR User Guide

The registry authentication methods that are detailed in the following sections are available.

Using the Amazon ECR credential helper

Amazon ECR provides a Docker credential helper which makes it easier to store and use Docker
credentials when pushing and pulling images to Amazon ECR. For installation and configuration
steps, see Amazon ECR Docker Credential Helper.

® Note

The Amazon ECR Docker credential helper doesn't support multi-factor authentication
(MFA) currently.

Using an authorization token

An authorization token's permission scope matches that of the IAM principal used to retrieve the
authentication token. An authentication token is used to access any Amazon ECR registry that your
IAM principal has access to and is valid for 12 hours. To obtain an authorization token, you must
use the GetAuthorizationToken APl operation to retrieve a base64-encoded authorization token
containing the username AWS and an encoded password. The AWS CLI get-login-password
command simplifies this by retrieving and decoding the authorization token which you can then
pipe into a docker login command to authenticate.

To authenticate Docker to an Amazon ECR private registry with get-login

« To authenticate Docker to an Amazon ECR registry with get-login-password, run the aws ecr
get-login-password command. When passing the authentication token to the docker login
command, use the value AWS for the username and specify the Amazon ECR registry URI you
want to authenticate to. If authenticating to multiple registries, you must repeat the command
for each registry.

/A Important

If you receive an error, install or upgrade to the latest version of the AWS CLI. For more
information, see Installing the AWS Command Line Interface in the AWS Command Line

Interface User Guide.

Using the Amazon ECR credential helper API Version 2015-09-21 23

https://github.com/awslabs/amazon-ecr-credential-helper
https://docs.aws.eu/AmazonECR/latest/APIReference/API_GetAuthorizationToken.html
https://docs.aws.eu/cli/latest/userguide/install-cliv2.html

Amazon ECR User Guide

» get-login-password (AWS CLI)

aws ecr get-login-password --region region | docker login --username AWS --
password-stdin aws_account_id.dkr.ecx.region.amazonaws.com

o Get-ECRLoginCommand (AWS Tools for Windows PowerShell)

(Get-ECRLoginCommand).Passwoxrd | docker login --username AWS --password-
stdin aws_account_id.dkr.ecr.region.amazonaws.com

Using HTTP API authentication

Amazon ECR supports the Docker Registry HTTP API. However, because Amazon ECR is a private
registry, you must provide an authorization token with every HTTP request. You can add an HTTP
authorization header using the -H option for curl and pass the authorization token provided by the
get-authorization-token AWS CLI command.

To authenticate with the Amazon ECR HTTP API

1. Retrieve an authorization token with the AWS CLI and set it to an environment variable.

TOKEN=$(aws ecr get-authorization-token --output text --query
'authorizationData[].authorizationToken"')

2. To authenticate to the API, pass the $TOKEN variable to the -H option of curl. For example,
the following command lists the image tags in an Amazon ECR repository. For more
information, see the Docker Registry HTTP API reference documentation.

curl -i -H "Authorization: Basic $TOKEN"
https://aws_account_id.dkr.ecx.region.amazonaws.com/v2/amazonlinux/tags/list

The output is as follows:

HTTP/1.1 200 OK

Content-Type: text/plain; charset=utf-8

Date: Thu, 04 Jan 2018 16:06:59 GMT
Docker-Distribution-Api-Version: registry/2.0
Content-Length: 50

Using HTTP API authentication API Version 2015-09-21 24

https://docs.aws.eu/cli/latest/reference/ecr/get-login-password.html
https://docs.aws.eu/powershell/latest/reference/items/Get-ECRLoginCommand.html
https://docs.docker.com/registry/spec/api/
https://docs.docker.com/registry/spec/api/

Amazon ECR User Guide

Connection: keep-alive

{"name":"amazonlinux", "tags":["2017.09","latest"]}

Private registry settings in Amazon ECR

Amazon ECR uses private registry settings to configure features at the registry level. The private
registry settings are configured separately for each Region. You can use private registry settings to
configure the following features.

« Registry permissions — A registry permissions policy provides control over the replication
and pull through cache permissions. For more information, see Private registry permissions in
Amazon ECR.

 Pull through cache rules - A pull through cache rule is used to cache images from an upstream
registry in your Amazon ECR private registry. For more information, see Sync an upstream
registry with an Amazon ECR private registry.

» Replication configuration — The replication configuration is used to control whether your
repositories are copied across AWS Regions or AWS accounts. For more information, see Private
image replication in Amazon ECR

» Repository creation templates — A repository creation template is used to define the standard
settings to apply when new repositories are created by Amazon ECR on your behalf. For example,
repositories created by a pull through cache action, create on push, or replication. For more
information, see Templates to control repositories created during a pull through cache, create on
push, or replication action.

» Scanning configuration — By default, your registry is enabled for basic scanning. You may enable
enhanced scanning which provides an automated, continuous scanning mode that scans for both
operating system and programming language package vulnerabilities. For more information, see
Scan images for software vulnerabilities in Amazon ECR.

 Pull-time update exclusion — You can configure pull-time update exclusions to prevent the last
pull time from being updated for specific images when they are pulled. This is useful for images
that are used for testing or CI/CD purposes where you don't want the pull time to affect lifecycle
policy decisions. For more information, see Pull-time update exclusions.

Registry settings API Version 2015-09-21 25

Amazon ECR User Guide

Private registry permissions in Amazon ECR

Amazon ECR uses a registry policy to grant permissions to an AWS principal at the private registry
level.

The scope is set by choosing the registry policy version. There are two versions with different
registry policy scope: version 1 (V1) and version 2 (V2). V2 is the expanded registry policy scope
that includes all ECR permissions. For the full list of APl actions, see the Amazon ECR API Guide .
The V2 version is the default registry policy scope. For more information about viewing or setting

your registry policy scope, see Switching to the extended registry policy scope. For information

about general settings for your Amazon ECR private registry, see Private registry settings in
Amazon ECR.

The versions are detailed as follows.

« V1 -For version 1, Amazon ECR only enforces the following permissions at the private registry
level.

« ecr:ReplicatelImage - Grants permission to another account, referred to as the source
registry, to replicate its images to your registry. This is only used for cross-account replication.

« ecr:BatchImportUpstreamImage — Grants permission to retrieve the external image and
import it to your private registry.

« ecr:CreateRepository - Grants permission to create a repository in a private registry. This
permission is required if the repository storing either the replicated or cached images doesn't
already exist in the private registry.

» V2 - For version 2, Amazon ECR allows all ECR actions in the policy and enforces the registry
policy in all ECR requests.

You can use the console or the CLI to view or change your registry policy scope.

(® Note

While it is possible to add the ecxr: * action to a private registry policy, it is considered best
practice to only add the specific actions required based on the feature you're using rather
than use a wildcard.

Topics

Registry permissions API Version 2015-09-21 26

https://docs.aws.eu/AmazonECR/latest/APIReference/Welcome.html

Amazon ECR User Guide

Private registry policy examples for Amazon ECR

Switching to the extended registry policy scope

Granting registry permissions for cross account replication in Amazon ECR

Granting registry permissions for pull through cache in Amazon ECR

Private registry policy examples for Amazon ECR

The following examples show registry permissions policy statements that you could use to control
the permissions that users have to your Amazon ECR registry.

® Note

In each example, if the ecr:CreateRepository action is removed from your registry
policy, replication can still occur. However, for successful replication, you need to create
repositories with the same name within your account.

Example: Allow all IAM principals in a source account to replicate all repositories

The following registry permissions policy allows all IAM principals (users and roles) in a source
account to replicate all repositories.

Note the following:

« Important: When you specify an AWS account ID as a principal in a policy, you grant access to all
IAM users and roles within that account, not just the root user. This provides broad access across
the entire account.

» Security Consideration: Account-level permissions grant access to all IAM entities in the
specified account. For more restrictive access, specify individual IAM users, roles, or use condition
statements to limit access further.

JSON

"Version":"2012-10-17",
"Statement":[

Registry policy examples API Version 2015-09-21 27

Amazon ECR

User Guide

"Sid":"ReplicationAccessCrossAccount"”,
"Effect":"Allow",
"Principal":{
"AWS" :"arn:aws:iam::111122223333:root"
}I
"Action":[
"ecr:CreateRepository”,
"ecr:ReplicateImage"
]I
"Resource": [
"arn:aws:ecr:us-west-2:444455556666:repository/*"

Example: Allow IAM principals from multiple accounts

The following registry permissions policy has two statements. Each statement allows all IAM

principals (users and roles) in a source account to replicate all repositories.

JSON

"Version":"2012-10-17",
"Statement": [

{

3,

"Sid":"ReplicationAccessCrossAccountl"”,
"Effect":"Allow",
"Principal":{

"AWS" :"arn:aws:iam::111122223333:root"

}I

"Action":[
"ecr:CreateRepository”,
"ecr:ReplicateImage"

]I

"Resource": [
"arn:aws:ecr:us-west-2:123456789012:xepositoxry/*"

Registry policy examples

API Version 2015-09-21 28

Amazon ECR

User Guide

"Sid":"ReplicationAccessCrossAccount2",
"Effect":"Allow",
"Principal":{
"AWS" :"arn:aws:iam: : 444455556666 :root"
}I
"Action":[
"ecr:CreateRepository”,
"ecr:ReplicateImage"
]I
"Resouxce": [
"arn:aws:ecr:us-west-2:123456789012:xepository/*"

Example: Allow all IAM principals in a source account to replicate all repositories

with prefix prod-.

The following registry permissions policy allows all IAM principals (users and roles) in a source

account to replicate all repositories that start with prod-.

JSON

"Version":"2012-10-17",
"Statement":[

{

"Sid":"ReplicationAccessCrossAccount"”,
"Effect":"Allow",
"Principal":{

"AWS" :"arn:aws:iam::111122223333:root"

}I

"Action":[
"ecr:CreateRepository”,
"ecr:ReplicateImage"

]I

"Resource": [
"arn:aws:ecr:us-west-2:444455556666:repository/prod-*"

Registry policy examples

API Version 2015-09-21 29

Amazon ECR User Guide

Switching to the extended registry policy scope

A

Important

For new users, your registries are automatically configured to use the V2 registry policy
upon creation. There is no action for you to take. Amazon ECR doesn't recommend
reverting to the previous registry policy V1 .

You can use the console or the CLI to view or change your registry policy scope.

AWS Management Console

Use the following steps to view your account settings. To view or update the registry policy
scope, see the CLI procedure on this page.

Turn on the enhanced registry policy for your private registry

1.

Open the Amazon ECR console at https://console.aws.amazon.com/ecr/private-registry/

repositories
From the navigation bar, choose the Region.

In the navigation pane, choose Private registry, Feature & Settings, and then choose
Permissions .

On the Permissions page, for Registry policy view your policy JSON. If you have the V1
policy, a banner displays with instructions to update to V2. Choose Enable.

A banner displays indicating that the registry policy scope has been updated to V2.

You can also optionally configure permissions with the CLI. For more information, see
Private registry settings in Amazon ECR.

(® Note

To view or update the registry policy scope, see the CLI procedure on this page.

Switching to the extended registry policy scope API Version 2015-09-21 30

https://console.aws.amazon.com/ecr/private-registry/repositories
https://console.aws.amazon.com/ecr/private-registry/repositories

Amazon ECR User Guide

AWS CLI

Amazon ECR generates the V2 registry policy. Use the following steps to view or update the
registry policy scope. You cannot view or change the registry policy scope in the console

» To retrieve the registry policy you are currently using.

aws ecr get-account-setting --name REGISTRY_POLICY_SCOPE

The parameter name is a required field. If you don't provide the name you will receive the
following error:

aws: error: the following arguments are required: --name

View the output for your registry policy command. In the following example output, the
registry policy version is V1.

"name": "REGISTRY_POLICY_SCOPE",
Ilvaluell: Ilvlll

You can change your registry policy version from V1 to V2. V1 is not the recommended
registry policy scope.

aws ecr put-account-setting --name REGISTRY_POLICY_SCOPE --value value
For example, use the following command to update to V2.

aws ecr put-account-setting --name REGISTRY_POLICY_SCOPE --value V2

View the output for your registry policy command. In the following example output, the
registry policy version was updated to V2.

"name": "REGISTRY_POLICY_SCOPE",
Ilvaluell: IIV2II

}

Switching to the extended registry policy scope API Version 2015-09-21 31

Amazon ECR User Guide

Granting registry permissions for cross account replication in Amazon
ECR

The cross account policy type is used to grant permissions to an AWS principal, allowing the
replication of the repositories from a source registry to your registry. By default, you have
permission to configure cross-Region replication within your own registry. You only need to
configure the registry policy if you're granting another account permission to replicate contents to
your registry.

A registry policy must grant permission for the ecr:ReplicateImage API action. This

APl is an internal Amazon ECR API that can replicate images between Regions or accounts.

You can also grant permission for the ecr:CreateRepository permission, which

allows Amazon ECR to create repositories in your registry if they don't exist already. If the
ecr:CreateRepository permission isn't provided, a repository with the same name as the
source repository must be created manually in your registry. If neither is done, replication fails. Any
failed CreateRepository or ReplicateImage API actions show up in CloudTrail.

To configure a permissions policy for replication (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

2. From the navigation bar, choose the Region to configure your registry policy in.

3. In the navigation pane, choose Private registry, choose Features & Settings, and then choose
Permissions .

4. On the Registry permissions page, choose Generate statement.

5. Complete the following steps to define your policy statement using the policy generator.

a. For Policy type, choose Replication - cross account.

b. For Statement id, enter a unique statement ID. This field is used as the Sid on the registry
policy.

c. For Accounts, enter the account IDs for each account you want to grant permissions to.
When specifying multiple account IDs, separate them with a comma.

6. Choose Save.

To configure a permissions policy for replication (AWS CLI)

1. Create a file named registry_policy. json and populate it with a registry policy.

Granting permissions for cross account replication API Version 2015-09-21 32

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid":"ReplicationAccessCrossAccount"”,
"Effect":"Allow",
"Principal":{
"AWS":"arn:aws:iam::111122223333:root"
}I
"Action":[
"ecxr:CreateRepository"”,
"ecr:ReplicateImage"
]I
"Resource": [
"arn:aws:ecr:us-west-2:444455556666:repository/*"
]
}
]
}

2. Create the registry policy using the policy file.

aws ecr put-registry-policy \
--policy-text file://registry policy.json \
--region us-west-2

3. Retrieve the policy for your registry to confirm.

aws ecr get-registry-policy \
--region us-west-2

Granting registry permissions for pull through cache in Amazon ECR

Amazon ECR private registry permissions may be used to scope the permissions of individual IAM
entities to use pull through cache. If an IAM entity has more permissions granted by an IAM policy
than the registry permissions policy is granting, the IAM policy takes precedence.

Granting permissions for pull through cache API Version 2015-09-21 33

Amazon ECR User Guide

To create a private registry permissions policy (AWS Management Console)

1.
2.

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region to configure your private registry permissions
statement in.

In the navigation pane, choose Private registry, choose Features & Settings, and then choose
Permissions.

On the Registry permissions page, choose Generate statement.

For each pull through cache permissions policy statement you want to create, do the
following.

a. For Policy type, choose Pull through cache policy.
b. For Statement id, provide a name for the pull through cache statement policy.

For IAM entities, specify the users, groups, or roles to include in the policy.

n

d. For Cache namespace, select the pull through cache rule to associate the policy with.

e. For Repository names, specify the repository base name to apply the rule for. For
example, if you want to specify the Amazon Linux repository on Amazon ECR Public, the
repository name would be amazonlinux.

Granting permissions for pull through cache API Version 2015-09-21 34

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

Amazon ECR private repositories

An Amazon ECR private repository contains your Docker images, Open Container Initiative (OCI)
images, and OCl compatible artifacts. You can create, monitor, and delete image repositories and
set permissions that control who can access them by using Amazon ECR API operations or the
Repositories section of the Amazon ECR console. Amazon ECR also integrates with the Docker CLI,
so that you can push and pull images from your development environments to your repositories.

Topics

« Private repository concepts

« Creating an Amazon ECR private repository to store images

» Viewing the contents and details of a private repository in Amazon ECR

» Deleting a private repository in Amazon ECR

 Private repository policies in Amazon ECR

» Tagging a private repository in Amazon ECR

Private repository concepts

» By default, your account has read and write access to the repositories in your default registry
(aws_account_id.dkr.ecr.region.amazonaws.com). However, users require permissions
to make calls to the Amazon ECR APIs and to push or pull images to and from your repositories.
Amazon ECR provides several managed policies to control user access at varying levels. For more
information, see Amazon Elastic Container Registry Identity-based policy examples.

» Repositories can be controlled with both user access policies and individual repository policies.
For more information, see Private repository policies in Amazon ECR.

» Repository names can support namespaces, which you can use to group similar repositories.
For example, if there are several teams using the same registry, Team A can use the team-a
namespace, and Team B can use the team-b namespace. By doing this, each team has their own
image called web-app with each image prefaced with the team namespace. This configuration
allows these images on each team to be used simultaneously without interference. Team A's
image is team-a/web-app, and Team B's image is team-b/web-app.

« Your images can be replicated to other repositories across Regions in your own registry and
across accounts. You can do this by specifying a replication configuration in your registry
settings. For more information, see Private registry settings in Amazon ECR.

Repository concepts API Version 2015-09-21 35

Amazon ECR User Guide

Creating an Amazon ECR private repository to store images

/A Important

Dual-layer server-side encryption with AWS KMS (DSSE-KMS) is only available in the AWS
GovCloud (US) Regions.

Create an Amazon ECR private repository, and then use the repository to store your container
images. Use the following steps to create a private repository using the AWS Management Console.

To create a repository (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
repositories.

2. From the navigation bar, choose the Region to create your repository in.

3. Choose Private repositories, and then choose Create repository.

4. For Repository name, enter a unique name for your repository. The repository name can be
specified on its own (for example nginx-web-app). Alternatively, it can be prepended with
a namespace to group the repository into a category (for example project-a/nginx-web-

app).

® Note

The repository name may container a maximum of 256 characters. The name

must start with a letter and can only contain lowercase letters, numbers, hyphens,
underscores, periods and forward slashes. Using a double hyphen, double underscore,
or double forward slash isn't supported.

5. For Image tag immutability, choose one of the following tag mutability settings for the
repository.

« Mutable - Choose this option if you want image tags to be overwritten. Recommended for
repositories using pull through cache actions to ensure Amazon ECR can update cached
images. Additionally, to disable tag updates for a few mutable tags, enter tag names or use
wildcards (*) to match multiple similar tags in the Mutable tag exclusion text box.

Creating a repository to store images API Version 2015-09-21 36

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

o Immutable - Choose this option if you want to prevent image tags from being overwritten,
and it applies to all tags and exclusions in the repository when pushing an image with
existing tag. Amazon ECR returns an ImageTagAlreadyExistsException if you attempt
to push an image with an existing tag. Additionally, to enable tag updates for a few
immutable tags, enter tag names or use wildcards (*) to match multiple similar tags in the
Immutable tag exclusion text box.

(@ Note
Individual tag mutability settings aren't supported.

6. For Encryption configuration, choose between AES-256 or AWS KMS. For more information,
see Encryption at rest.

a. If AWS KMS is chosen, choose between Single-layer encryption and Dual-layer encryption.
There are additional charges for using AWS KMS or Dual-layer encryption. For more
information, see Amazon ECR Service Pricing.

b. By default, AWS managed key with the alias aws/ecr is chosen. This key is created in your
account the first time that you create a repository with AWS KMS encryption enabled.
Select Customer managed key (advanced) to choose your own AWS KMS key. The AWS
KMS key must be in the same Region as the cluster. Select Create an AWS KMS key to
navigate to the AWS KMS console to create your own key.

7. For Image scanning settings, while you can specify the scan settings at the repository level
for basic scanning, it is a best practice to specify the scan configuration at the private registry
level. Configuring the scanning settings at the private registry level enables you to choose
between enhanced scanning or basic scanning, and also allows you to define filters to specify
which repositories should be scanned.

8. Choose Create.

To create a repository (AWS CLI)

1. You can create a repository using the AWS CLI with the aws ecr create-repository command.

aws ecr create-repository \
--repository-name hello-repository \
--region region

Creating a repository to store images API Version 2015-09-21 37

https://aws.eu/ecr/pricing/

Amazon ECR User Guide

2. If you have a repository creation template defined, you can create a repository by pushing
your image using familiar Amazon ECR push commands with your desired repository name.
Amazon ECR will automatically create the repository for you using the predefined settings of
your repository creation template. If you do not have a repository creation template defined
yet, your request to your nonexistent image repository will fail.

docker push aws_account_id.dkr.ecr.region.amazonaws.com/prefix/my-new-
repository:tag

Next steps

To view the steps to push an image to your repository, select the repository and choose View push
commands. For more information about pushing an image to your repository, see Pushing an
image to an Amazon ECR private repository.

Viewing the contents and details of a private repository in
Amazon ECR

After you created a private repository, you can view details about the repository in the AWS
Management Console:

« Which images are stored in a repository

« Details about each image stored in the repository, including the size and SHA digest for each
image

» The scan frequency specified for the contents of the repository

« Whether the repository has an active pull through cache rule associated with it

« The encryption setting for the repository

(® Note

Starting with Docker version 1.9, the Docker client compresses image layers before pushing
them to a V2 Docker registry. The output of the docker images command shows the
uncompressed image size. Therefore, keep in mind that Docker might return a larger image
than the image shown in the AWS Management Console.

Next steps API Version 2015-09-21 38

Amazon ECR User Guide

To view repository information (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
repositories.

From the navigation bar, choose the Region that contains the repository to view.

In the navigation pane, choose Repositories.

On the Repositories page, choose the Private tab and then the repository to view.

Lok W

On the repository detail page, the console defaults to the Images view. Use the navigation
menu to view other information about the repository.

o Choose Summary to view the repository details and pull count data for the repository.

o Choose Images to view information about the image tags in the repository. To view more
information about the image, select the image tag. For more information, see Viewing
image details in Amazon ECR.

If there are untagged images that you want to delete, you can select the box to the left of
the repositories to delete and choose Delete. For more information, see Deleting an image

in Amazon ECR.

o Choose Permissions to view the repository policies that are applied to the repository. For
more information, see Private repository policies in Amazon ECR.

o Choose Lifecycle Policy to view the lifecycle policy rules that are applied to the
repository. The lifecycle events history is also viewed here. For more information, see
Automate the cleanup of images by using lifecycle policies in Amazon ECR.

« Choose Tags to view the metadata tags that are applied to the repository.

Deleting a private repository in Amazon ECR

If you're finished using a repository, you can delete it. When you delete a repository in the AWS
Management Console, all of the images contained in the repository are also deleted; this cannot be
undone.

/A Important

Images in the deleted repositories are also deleted. You cannot undo this operation.

Deleting a repository API Version 2015-09-21 39

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

To delete a repository (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

repositories.
2. From the navigation bar, choose the Region that contains the repository to delete.

In the navigation pane, choose Repositories.

4. On the Repositories page, choose the Private tab and then select the repository to delete and
choose Delete.

5. Inthe Delete repository_name window, verify that the selected repositories should be
deleted and choose Delete.

Private repository policies in Amazon ECR

Amazon ECR uses resource-based permissions to control access to repositories. Resource-based
permissions let you specify which users or roles have access to a repository and what actions they
can perform on the repository. By default, only the AWS account that created the repository has
access to the repository. You can apply a repository policy that allows additional access to your
repository.

Topics

» Repository policies vs IAM policies

» Private repository policy examples in Amazon ECR

» Setting a private repository policy statement in Amazon ECR

Repository policies vs IAM policies

Amazon ECR repository policies are a subset of IAM policies that are scoped for, and specifically
used for, controlling access to individual Amazon ECR repositories. IAM policies are generally used
to apply permissions for the entire Amazon ECR service but can also be used to control access to
specific resources as well.

Both Amazon ECR repository policies and IAM policies are used when determining which actions a
specific user or role may perform on a repository. If a user or role is allowed to perform an action
through a repository policy but is denied permission through an IAM policy (or vice versa) then
the action will be denied. A user or role only needs to be allowed permission for an action through
either a repository policy or an IAM policy but not both for the action to be allowed.

Repository policies API Version 2015-09-21 40

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

/A Important

Amazon ECR requires that users have permission to make calls to the
ecr:GetAuthorizationToken API through an IAM policy before they can authenticate
to a registry and push or pull any images from any Amazon ECR repository. Amazon ECR
provides several managed IAM policies to control user access at varying levels. For more
information, see Amazon Elastic Container Registry Identity-based policy examples.

You can use either of these policy types to control access to your repositories, as shown in the
following examples.

This example shows an Amazon ECR repository policy, which allows for a specific user to describe
the repository and the images within the repository.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "ECRRepositoryPolicy",
"Effect": "Allow",
"Principal": {"AWS": "arn:aws:iam::111122223333:user/username"},
"Action": [
"ecr:DescribelImages",
"ecr:DescribeRepositories"
]I
"Resource": "*"
}
]
}

This example shows an IAM policy that achieves the same goal as above, by scoping the policy to
a repository (specified by the full ARN of the repository) using the resource parameter. For more
information about Amazon Resource Name (ARN) format, see Resources.

Repository policies vs IAM policies API Version 2015-09-21 41

Amazon ECR User Guide

JSON

"Version":"2012-10-17",
"Statement": [
{

"Sid": "AllowDescribeRepolImage",

"Effect": "Allow",

"Action": [
"ecr:DescribelImages",
"ecr:DescribeRepositories"

1,
"Resource": ["arn:aws:ecr:us-
east-1:111122223333:repository/repository-name"]

}
1

Private repository policy examples in Amazon ECR

/A Important

The repository policy examples on this page are meant to be applied to Amazon ECR
private repositories. They will not work properly if used with an IAM principal directly
unless modified to specify the Amazon ECR repository as the resource. For more
information on setting repository policies, see Setting a private repository policy statement
in Amazon ECR.

Amazon ECR repository policies are a subset of IAM policies that are scoped for, and specifically
used for, controlling access to individual Amazon ECR repositories. IAM policies are generally used
to apply permissions for the entire Amazon ECR service but can also be used to control access to
specific resources as well. For more information, see Repository policies vs IAM policies.

The following repository policy examples show permission statements that you could use to
control access to your Amazon ECR private repositories.

Repository policy examples API Version 2015-09-21 42

Amazon ECR User Guide

/A Important

Amazon ECR requires that users have permission to make calls to the
ecr:GetAuthorizationToken API through an IAM policy before they can authenticate
to a registry and push or pull any images from any Amazon ECR repository. Amazon ECR
provides several managed IAM policies to control user access at varying levels. For more
information, see Amazon Elastic Container Registry Identity-based policy examples.

Example: Allow one or more users

The following repository policy allows one or more users to push and pull images to and from a
repository.

JSON

"Version":"2012-10-17",
"Statement": [

{
"Sid": "AllowPushPull",
"Effect": "Allow",
"Principal": {

"AWS": [
"arn:aws:iam::111122223333:user/push-pull-user-1",
"arn:aws:iam::111122223333:usex/push-pull-user-2"

]

}I
"Action": [

"ecxr:BatchGetImage",

"ecr:BatchCheckLayerAvailability",

"ecxr:CompletelLayerUpload",

"ecr:GetDownloadUrlForLayer",

"ecr:InitiatelLayerUpload",

"ecr:PutImage",

"ecr:UploadLayexPart"

]I
"Resource": "*"
}

Repository policy examples API Version 2015-09-21 43

Amazon ECR User Guide

}

Example: Allow another account

The following repository policy allows a specific account to push images.

/A Important

The account you are granting permissions to must have the Region you are creating the
repository policy in enabled, otherwise an error will occur.

JSON

"Version":"2012-10-17",
"Statement": [
{
"Sid": "AllowCrossAccountPush",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111122223333:root"
}I
"Action": [
"ecr:BatchCheckLayerAvailability",
"ecxr:CompletelLayerUpload",
"ecr:InitiatelLayerUpload",
"ecr:PutImage",
"ecr:UploadLayexPart"
]I

"Resource": "*"

The following repository policy allows some users to pull images (pull-user-1and pull-
user-2) while providing full access to another (admin-user).

Repository policy examples API Version 2015-09-21 44

Amazon ECR User Guide

® Note

For more complicated repository policies that are not currently supported in the AWS
Management Console, you can apply the policy with the set-repository-policy AWS CLI

command.

JSON

"Version":"2012-10-17",
"Statement": [
{
"Sid": "AllowPull",
"Effect": "Allow",
"Principal": {
"AWS": [
"arn:aws:iam::111122223333:usex/pull-user-1",
"arn:aws:iam::111122223333:user/pull-user-2"

},

"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

1,

"Resource": "*"

"Sid": "AllowAll",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111122223333:usexr/admin-user"
},
"Action": [
"ecr:*"

1,

"Resource": "*"

Repository policy examples API Version 2015-09-21 45

https://docs.aws.eu/cli/latest/reference/ecr/set-repository-policy.html

Amazon ECR User Guide

Example: Deny all

The following repository policy denies all users in all accounts the ability to pull images.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "DenyPull",
"Effect": "Deny",
"Principal": "*",
"Action": [
"ecxr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"
]I
"Resource": "*"
}
]
}

Example: Restricting access to specific IP addresses

The following example denies permissions to any user to perform any Amazon ECR operations
when applied to a repository from a specific range of addresses.

The condition in this statement identifies the 54.240.143. * range of allowed Internet Protocol
version 4 (IPv4) IP addresses.

The Condition block uses the NotIpAddress conditions and the aws : SourceIp condition key,
which is an AWS-wide condition key. For more information about these condition keys, see AWS
Global Condition Context Keys. The aws : sourceIp IPv4 values use the standard CIDR notation.

For more information, see IP Address Condition Operators in the IAM User Guide.

JSON

"Version'":"2012-10-17",

Repository policy examples API Version 2015-09-21 46

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_IPAddress

Amazon ECR User Guide

"Id": "ECRPolicyIdi",
"Statement": [

{
"Sid": "IPAllow",

"Effect": "Deny",
"Principal": "*",
"Action": "ecr:*",
"Resource": "*",
"Condition": {
"NotIpAddress": {
"aws:Sourcelp": "54.240.143.0/24"

Example: Allow an AWS service

The following repository policy allows AWS CodeBuild access to the Amazon ECR API actions
necessary for integration with that service. When using the following example, you should use
the aws:SourceArn and aws: SourceAccount condition keys to scope which resources can
assume these permissions. For more information, see Amazon ECR sample for CodeBuild in the
AWS CodeBuild User Guide.

JSON

"Version":"2012-10-17",
"Statement": [
{
"Sid":"CodeBuildAccess",
"Effect":"Allow",
"Principal":{
"Service":"codebuild.amazonaws.com"
}I
"Action":[
"ecxr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

1,

"Resource": "*",

Repository policy examples API Version 2015-09-21 47

https://docs.aws.eu/codebuild/latest/userguide/sample-ecr.html

Amazon ECR User Guide

"Condition":{
"ArnLike": {
"aws:SourceArn":"arn:aws:codebuild:us-
east-1:123456789012:project/project-name"

3},
"StringEquals": {

"aws :SourceAccount":"123456789012"
}

Setting a private repository policy statement in Amazon ECR

You can add an access policy statement to a repository in the AWS Management Console by
following the steps below. You can add multiple policy statements per repository. For example
policies, see Private repository policy examples in Amazon ECR.

/A Important

Amazon ECR requires that users have permission to make calls to the
ecr:GetAuthorizationToken API through an IAM policy before they can authenticate
to a registry and push or pull any images from any Amazon ECR repository. Amazon ECR
provides several managed IAM policies to control user access at varying levels. For more
information, see Amazon Elastic Container Registry Identity-based policy examples.

To set a repository policy statement

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

repositories.

2. From the navigation bar, choose the Region that contains the repository to set a policy
statement on.

In the navigation pane, choose Repositories.

4. On the Repositories page, choose the repository to set a policy statement on to view the
contents of the repository.

5. From the repository image list view, in the navigation pane, choose Permissions, Edit.

Setting a repository policy statement API Version 2015-09-21 48

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

® Note

If you don't see the Permissions option in the navigation pane, ensure that you are in
the repository image list view.

On the Edit permissions page, choose Add statement.
For Statement name, enter a name for the statement.

For Effect, choose whether the policy statement will result in an allow or an explicit deny.

© o N o

For Principal, choose the scope to apply the policy statement to. For more information, see
AWS JSON Policy Elements: Principal in the JAM User Guide.

» You can apply the statement to all authenticated AWS users by selecting the Everyone (*)
check box.

» For Service principal, specify the service principal name (for example,
ecs.amazonaws . com) to apply the statement to a specific service.

» For AWS Account IDs, specify an AWS account number (for example, 111122223333) to
apply the statement to all users under a specific AWS account. Multiple accounts can be
specified by using a comma delimited list.

/A Important

The account you are granting permissions to must have the Region you are creating
the repository policy in enabled, otherwise an error will occur.

« For IAM Entities, select the roles or users under your AWS account to apply the statement
to.

(® Note

For more complicated repository policies that are not currently supported in the
AWS Management Console, you can apply the policy with the set-repository-policy
AWS CLI command.

10. For Actions, choose the scope of the Amazon ECR API operations that the policy statement
should apply to from the list of individual API operations.

11. When you are finished, choose Save to set the policy.

Setting a repository policy statement API Version 2015-09-21 49

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.eu/cli/latest/reference/ecr/set-repository-policy.html

Amazon ECR User Guide

12. Repeat the previous step for each repository policy to add.

Tagging a private repository in Amazon ECR

To help you manage your Amazon ECR repositories, you can assign your own metadata to new
or existing Amazon ECR repositories by using AWS resource tags. For example, you could define
a set of tags for your account's Amazon ECR repositories that helps you track the owner of each
repository.

Tag basics

Tags don't have any semantic meaning to Amazon ECR and are interpreted strictly as a string of
characters. Tags are not automatically assigned to your resources. You can edit tag keys and values,
and you can remove tags from a resource at any time. You can set the value of a tag to an empty
string, but you can't set the value of a tag to null. If you add a tag that has the same key as an
existing tag on that resource, the new value overwrites the old value. If you delete a resource, any
tags for the resource are also deleted.

You can work with tags using the Amazon ECR console, the AWS CLI, and the Amazon ECR API.

Using AWS ldentity and Access Management (IAM), you can control which users in your AWS
account have permission to create, edit, or delete tags. For information about tags in IAM policies,
see the section called “Using Tag-Based Access Control".

Tagging your resources for billing

The tags you add to your Amazon ECR repositories are helpful when reviewing cost allocation after
enabling them in your Cost & Usage Report. For more information, see Amazon ECR usage reports.

To see the cost of your combined resources, you can organize your billing information based on
resources that have the same tag key values. For example, you can tag several resources with a
specific application name, and then organize your billing information to see the total cost of that
application across several services. For more information about setting up a cost allocation report
with tags, see The Monthly Cost Allocation Report in the AWS Billing User Guide.

(® Note

If you've just enabled reporting, data for the current month is available for viewing after 24
hours.

Tagging a repository API Version 2015-09-21 50

https://docs.aws.eu/awsaccountbilling/latest/aboutv2/configurecostallocreport.html

Amazon ECR User Guide

Adding tags to a private repository in Amazon ECR

You can add tags to a private repository.

For information about names and best practices for tags, see Tag naming limits and requirements
and Best practices in the Tagging AWS Resources User Guide.

Adding tags to a repository (AWS Management Console)

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, select the region to use.

In the navigation pane, choose Repositories.

On the Repositories page, select the check box next to the repository you want to tag.
From the Action menu, select Repository tags.

On the Repository tags page, select Add tags, Add tag.

No v kA wWwDnh =

On the Edit repository tags page, specify the key and value for each tag, and then choose
Save.
Adding tags to a repository (AWS CLI or API)

You can add or overwrite one or more tags by using the AWS CLI or an API.

e AWS CLI - tag-resource

 API action - TagResource

The following examples show how to add tags using the AWS CLI.
Example 1: Tag a repository

The following command tags a repository.

aws ecr tag-resource \
--resource-arn arn:aws:ecxr:region:account_id:xepositoxy/repository_name \
--tags Key=stack,Value=dev

Example 2: Tag a repository with multiple tags

The following command adds three tags to a repository.

Adding tags API Version 2015-09-21 51

https://docs.aws.eu//tag-editor/latest/userguide/tagging.html#tag-conventions
https://docs.aws.eu//tag-editor/latest/userguide/tagging.html#tag-best-practices
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
https://docs.aws.eu/cli/latest/reference/ecr/tag-resource.html
https://docs.aws.eu/AmazonECR/latest/APIReference/API_TagResource.html

Amazon ECR User Guide

aws ecr tag-resource \
--resource-arn arn:aws:ecr:region:account_id:xrepository/repository_name \
--tags Key=keyl,Value=valuel Key=key2,Value=value2 Key=key3,Value=value3

Example 3: List tags for a repository

The following command lists the tags associated with a repository.

aws ecr list-tags-for-resource \
--resource-arn arn:aws:ecr:region:account_id:repository/repository_name

Example 4: Create a repository and add a tag

The following command creates a repository named test-repo and adds a tag with key team and
value devs.

aws ecr create-repository \
--repository-name test-repo \
--tags Key=team,Value=devs

Deleting tags from a private repository in Amazon ECR
You can delete tags from a private repository.
To delete a tag from a private repository (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

2. From the navigation bar, select the region to use.

3. On the Repositories page, select the check box next to the repository you want to remove a
tag from.

4. From the Action menu, select Repository tags.
On the Repository tags page, select Edit.

6. On the Edit repository tags page, select Remove for each tag you want to delete, and choose
Save.

To delete a tag from a private repository (AWS CLI)

You can delete one or more tags by using the AWS CLI or an API.

Deleting tags API Version 2015-09-21 52

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

o AWS CLI - untag-resource

« API action - UntagResource

The following example shows how to delete a tag from a repository using the AWS CLI.

aws ecr untag-resource \

--resource-arn arn:aws:ecx:region:account_id:xepositoxy/repository_name \
--tag-keys tag_key

Deleting tags API Version 2015-09-21 53

https://docs.aws.eu/cli/latest/reference/ecr/untag-resource.html
https://docs.aws.eu/AmazonECR/latest/APIReference/API_UntagResource.html

Amazon ECR User Guide

Private images in Amazon ECR

Amazon ECR stores Docker images, Open Container Initiative (OCI) images, and OCl compatible
artifacts in private repositories. You can use the Docker CLI, or your preferred client, to push and
pull images to and from your repositories.

With Amazon ECR support for OCl v1.1, you can store and manage reference artifacts that are
defined by the OCI Referrers API. Artifacts include signatures, Software Bill of Materials (SBoMs),
Helm charts, scan results, and attestations. A set of artifacts for a container image is transferred
with that container and stored as a separate image that counts as an image consumed for your
repository.

The Sign images in Amazon ECR and Deleting signatures and other artifacts from an Amazon ECR

private repository pages provide examples of how to use signature-related artifacts. For more

information on signing container images, see Signing container images in the AWS Signer Developer
Guide.

Topics

« Pushing an image to an Amazon ECR private repository

» Deleting signatures and other artifacts from an Amazon ECR private repository

« Viewing image details in Amazon ECR

« Pulling an image to your local environment from an Amazon ECR private repository

» Pulling the Amazon Linux container image

» Deleting an image in Amazon ECR

» Archiving an image in Amazon ECR

« Retagging an image in Amazon ECR

» Preventing image tags from being overwritten in Amazon ECR

» Container image manifest format support in Amazon ECR

» Using Amazon ECR images with Amazon ECS

» Using Amazon ECR Images with Amazon EKS

APl Version 2015-09-21 54

https://github.com/opencontainers/distribution-spec/blob/main/spec.md#enabling-the-referrers-api
https://docs.aws.eu/signer/latest/developerguide/container-workflow.html

Amazon ECR User Guide

Pushing an image to an Amazon ECR private repository

You can push your Docker images, manifest lists, and Open Container Initiative (OCl) images and
compatible artifacts to your private repositories.

Amazon ECR also provides a way to replicate your images to other repositories. By specifying a
replication configuration in your private registry settings, you can replicate across Regions in your
own registry and across different accounts. For more information, see Private registry settings in
Amazon ECR.

(® Note

If you push an image that is currently archived, that image will be automatically restored
and removed from the archive. For more information about archiving and restoring images,
see Archiving an image in Amazon ECR.

Topics

IAM permissions for pushing an image to an Amazon ECR private repository

Pushing a Docker image to an Amazon ECR private repository

Pushing a multi-architecture image to an Amazon ECR private repository

Pushing a Helm chart to an Amazon ECR private repository

IAM permissions for pushing an image to an Amazon ECR private
repository

Users need IAM permissions to push images to Amazon ECR private repositories. Following the best
practice of granting least privilege, you can grant access to a specific repository. You can also grant
access to all repositories.

A user must authenticate to each Amazon ECR registry they want to push images to by requesting
an authorization token. Amazon ECR provides several AWS managed policies to control user access
at varying levels. For more information, see AWS managed policies for Amazon Elastic Container

Registry.

Pushing an image API Version 2015-09-21 55

Amazon ECR User Guide

You can also create a your own IAM policies. The following IAM policy grants the required
permissions for pushing an image to a specific repository. To limit the permissions for a specific
repository, use the full Amazon Resource Name (ARN) of the repository.

JSON
{
"Version":"2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"ecxr:CompletelLayerUpload",
"ecr:UploadLayexPart",
"ecr:InitiatelLayerUpload",
"ecr:BatchCheckLayerAvailability",
"ecr:PutImage",
"ecxr:BatchGetImage"

]I

"Resource": "arn:aws:ecr:us-

east-1:111122223333:repository/repository-name"
},
{

"Effect": "Allow",

"Action": "ecr:GetAuthorizationToken",

"Resource": "*"

}
]
}

The following IAM policy grants the required permissions for pushing an image to all repositories.

JSON

"Version'":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

Required IAM permissions API Version 2015-09-21 56

Amazon ECR

User Guide

"ecr:
"ecr:
"ecr:
"ecr:
"ecr:
"ecr:

1,

CompletelLayerUpload",
GetAuthorizationToken",
UploadLayerPart",
InitiatelLayerUpload"”,
BatchCheckLayexrAvailability",
PutImage"

"Resource": "arn:aws:ecr:us-west-2:111122223333:xrepository/*"

Pushing a Docker image to an Amazon ECR private repository

You can push your container images to an Amazon ECR repository with the docker push command.

Amazon ECR also supports creating and pushing Docker manifest lists that are used for multi-
architecture images. For information, see Pushing a multi-architecture image to an Amazon ECR

private repository.

To push a Docker image to an Amazon ECR repository

The Amazon ECR repository must exist before you push the image, or you must have a repository

creation template defined. For more information, see Creating an Amazon ECR private repository

to store images and Templates to control repositories created during a pull through cache, create

on push, or replication action.

1. Authenticate your Docker client to the Amazon ECR registry to which you intend to push your
image. Authentication tokens must be obtained for each registry used, and the tokens are valid
for 12 hours. For more information, see Private registry authentication in Amazon ECR.

To authenticate Docker to an Amazon ECR registry, run the aws ecr get-login-password
command. When passing the authentication token to the docker login command, use the
value AWS for the username and specify the Amazon ECR registry URI you want to authenticate
to. If authenticating to multiple registries, you must repeat the command for each registry.

Pushing a Docker image

API Version 2015-09-21 57

Amazon ECR User Guide

/A Important

If you receive an error, install or upgrade to the latest version of the AWS CLI. For more
information, see Installing the AWS Command Line Interface in the AWS Command Line

Interface User Guide.

aws ecr get-login-password --region <region> | docker login --username AWS --
password-stdin <aws_account_id>.dkx.ecx.<region>.amazonaws.com

2. If your image repository doesn't exist in the registry you intend to push to yet, and you
have a repository creation template defined, you can push your image using your repository
creation template's prefix and your desired repository name. ECR will automatically create the
repository for you using the predefined settings of your repository creation template.

If you do not have a matching repository creation template defined, you will need to create
a repository. For more information, see Templates to control repositories created during a

pull through cache, create on push, or replication action or Creating an Amazon ECR private

repository to store images.

3. ldentify the local image to push. Run the docker images command to list the container images
on your system.

dockex images

You can identify an image with the repository:tag value or the image ID in the resulting
command output.

4. Tag your image with the Amazon ECR registry, repository, and optional image tag name
combination to use. The registry format is . The repository name should match the repository
that you created for your image. If you omit the image tag, we assume that the tag is latest.

5. Push the image using the docker push command:

6. (Optional) Apply any additional tags to your image and push those tags to Amazon ECR by
repeating Step 4 and Step 5.

Pushing a Docker image API Version 2015-09-21 58

https://docs.aws.eu/cli/latest/userguide/install-cliv2.html

Amazon ECR User Guide

Pushing a multi-architecture image to an Amazon ECR private
repository

You can push multi-architecture images to an Amazon ECR repository by creating and pushing
Docker manifest lists. A manifest list is a list of images that is created by specifying one or more
image names. In most cases, the manifest list is created from images that serve the same function
but are for different operating systems or architectures. The manifest list isn't required. For more
information, see docker manifest.

A manifest list can be pulled or referenced in an Amazon ECS task definition or Amazon EKS pod
spec like other Amazon ECR images.

Prerequisites

 In your Docker CLI, turn on experimental features. For information about experimental features,
see Experimental features in the Docker documentation.

« The Amazon ECR repository must exist before you push the image. For more information, see the
section called “Creating a repository to store images”.

« Images must be pushed to your repository before you create the Docker manifest. For
information about how to push an image, see Pushing a Docker image to an Amazon ECR private

repository.

To push a multi-architecture Docker image to an Amazon ECR repository

1. Authenticate your Docker client to the Amazon ECR registry to which you intend to push your
image. Authentication tokens must be obtained for each registry used, and the tokens are valid
for 12 hours. For more information, see Private registry authentication in Amazon ECR.

To authenticate Docker to an Amazon ECR registry, run the aws ecr get-login-password
command. When passing the authentication token to the docker login command, use the
value AWS for the username and specify the Amazon ECR registry URI you want to authenticate
to. If authenticating to multiple registries, you must repeat the command for each registry.

Pushing a multi-architecture image API Version 2015-09-21 59

https://docs.docker.com/engine/reference/commandline/manifest/
https://docs.docker.com/engine/reference/commandline/cli/#experimental-features

Amazon ECR User Guide

/A Important

If you receive an error, install or upgrade to the latest version of the AWS CLI. For more
information, see Installing the AWS Command Line Interface in the AWS Command Line

Interface User Guide.

aws ecr get-login-password --region <region> | docker login --username AWS --
password-stdin <aws_account_id>.dkx.ecx.<region>.amazonaws.com

List the images in your repository, confirming the image tags.

aws ecr describe-images --repository-name my-repository

Create the Docker manifest list. The manifest create command verifies that the referenced
images are already in your repository and creates the manifest locally.

(Optional) Inspect the Docker manifest list. This enables you to confirm the size and digest for
each image manifest referenced in the manifest list.

Push the Docker manifest list to your Amazon ECR repository.

Pushing a Helm chart to an Amazon ECR private repository

You can push Open Container Initiative (OCI) artifacts to an Amazon ECR repository. To see an
example of this functionality, use the following steps to push a Helm chart to Amazon ECR.

For information about using your Amazon ECR hosted Helm charts with Amazon EKS, see Installing
a Helm chart on an Amazon EKS cluster.

To push a Helm chart to an Amazon ECR repository

1.

Install the latest version of the Helm client. These steps were written using Helm version
3.18.6. For compatibility with Amazon EKS supported Kubernetes versions, use Helm version
3.9 or later. For more information, see Installing Helm.

Use the following steps to create a test Helm chart. For more information, see Helm Docs -
Getting Started.

Pushing a Helm chart API Version 2015-09-21 60

https://docs.aws.eu/cli/latest/userguide/install-cliv2.html
https://helm.sh/docs/intro/install/
https://helm.sh/docs/chart_template_guide/getting_started/
https://helm.sh/docs/chart_template_guide/getting_started/

Amazon ECR User Guide

a. Create a Helm chart named helm-test-chart and clear the contents of the templates
directory.

helm create helm-test-chart
rm -xf ./helm-test-chart/templates/*

b. Create a ConfigMap in the templates folder.

cd helm-test-chart/templates
cat <<EOF > configmap.yaml
apiVersion: vl
kind: ConfigMap
metadata:
name: helm-test-chart-configmap
data:
myvalue: "Hello Woxrld"
EOF

3. Package the chart. The output will contain the filename of the packaged chart which you use
when pushing the Helm chart.

cd ../..
helm package helm-test-chart

Output

Successfully packaged chart and saved it to: /Users/username/helm-test-
chart-0.1.0.tgz

4. Create a repository to store your Helm chart. The name of your repository should match the
name you used when creating the Helm chart in step 2. For more information, see Creating an
Amazon ECR private repository to store images.

aws ecr create-repository \
--repository-name helm-test-chart \
--region us-west-2

5. Authenticate your Helm client to the Amazon ECR registry to which you intend to push your
Helm chart. Authentication tokens must be obtained for each registry used, and the tokens are
valid for 12 hours. For more information, see Private registry authentication in Amazon ECR.

Pushing a Helm chart API Version 2015-09-21 61

Amazon ECR User Guide

6. Push the Helm chart using the helm push command. The output should include the Amazon
ECR repository URI and SHA digest.

7. Describe your Helm chart.

aws ecr describe-images \
--repository-name helm-test-chart \
--region us-west-2

In the output, verify that the artifactMediaType parameter indicates the proper artifact
type.

{
"imageDetails": [
{
"registryId": "aws_account_id",
"repositoryName": "helm-test-chart",
"imageDigest":

"sha256:dd8aebdda7df991a0ffe@b3d6c@cf315fd582cd26f9755a347a52adEXAMPLE",
"imageTags": [
"9.1.0"

1,

"imageSizeInBytes": 1620,

"imagePushedAt": "2021-09-23T11:39:30-05:00",

"imageManifestMediaType": "application/vnd.oci.image.manifest.vl+json",
"artifactMediaType": "application/vnd.cncf.helm.config.vl+json"

8. (Optional) For additional steps, install the Helm ConfigMap and get started with Amazon EKS.
For more information, see Installing a Helm chart on an Amazon EKS cluster.

Deleting signatures and other artifacts from an Amazon ECR
private repository
You can use the ORAS client to list and delete signatures and other reference type artifacts from an

Amazon ECR private repository. Deleting signatures and other reference artifacts is similar to how
an image is deleted (see Deleting an image in Amazon ECR). Here is how to list artifacts and delete

signatures:

Deleting artifacts API Version 2015-09-21 62

Amazon ECR User Guide

To manage image artifacts using the ORAS CLI

1. Install and configure the ORAS client.

For information about installing and configuring the ORAS client, see Installation in the ORAS
documentation.

2. To list available artifacts for an Amazon ECR image, use oras discover, followed by an
image name:

oras discover 111222333444 .dkr.ecr.us-east-1.amazonaws.com/oci:helloworld

The output should look similar to this:

111222333444 .dkr.ecr.us-east-1.amazonaws.com/
0ci@sha256:88c0c54329bfdc1d94d6f58cd3fcb1226d46F58670f44a8c689cb3c9b37b6925
application/vnd.cncf.notary.signature
sha256:387c10c1598ee18aae81dcfc86d0d06d1l16e46461d1c3cda8927e69¢c48108c42
sha256:6527bcec87adf1d55460666183b9d0968b3cd4e4bc34602d485206a219851171

3. To delete a signature using the ORAS CLI, given the previous example, run the following
command:

oras manifest delete 111222333444 .dkr.ecr.us-east-1.amazonaws.com/
oci@sha256:387c10c1598ee18aae81dcfc86d0d06dl116e46461d1c3cda8927e69¢c48108c42

The output should look similar to this:

Are you sure you want to delete the manifest "111222333444.dkr.ecr.us-

east-1.amazonaws.com/
oci@sha256:387c10c1598ee18aae81dcfc86d0d06d116e46461d1c3cda8927e69c48108c42" and
all tags associated with it? [y/N] vy

4. Pressy. The artifact should be deleted.

Deleting artifacts API Version 2015-09-21 63

https://oras.land/docs/installation

Amazon ECR User Guide

To troubleshoot artifact deletion

If a signature deletion, such as the one just shown, should fail, output similar to the following
appears.

Error response from registry: failed to delete 111222333444 .dkr.ecr.us-
east-1.amazonaws.com/
0ci@sha256:387c10c1598ee18aae8ldcfc86d0d06d1l16e46461d1c3cda8927e69¢c48108c42:
unsupported: Requested image referenced by manifest list:
[sha256:005e2c97a6373e483799fa4ff29ac64a42dd10f08efccl66d6775F9b74943b5b]

This failure can happen when deleting an image pushed before the OCI 1.1 launch. As noted in
the error, you must delete the manifest referencing the image before you can delete the image as
follows:

1. To delete the manifest associated with the signature you want to delete, type:

oras manifest delete 111222333444 .dkr.ecr.us-east-1.amazonaws.com/
oci@sha256:005e2c97a6373e483799fa4ff29ac64a42dd10f08efccl166d6775f9b74943b5b

The output should look similar to this:

Are you sure you want to delete the manifest
"sha256:005e2c97a6373e483799fa4ff29ac64a42dd10f08efccl66d6775F9b74943b5b" and all
tags associated with it? [y/N] vy

2. Pressy. The manifest should be deleted.

3. With the manifest gone, you can delete the signature:

oras manifest delete 111222333444 .dkr.ecr.us-east-1.amazonaws.com/
oci@Esha256:387c10c1598eel18aae81dcfc86d0d06d116e46461d1c3cda8927e69c48108c42

The output should look similar to this. Press y.

Deleting artifacts API Version 2015-09-21 64

Amazon ECR User Guide

Are you sure you want to delete the manifest
"sha256:387c10c1598ee18aae81dcfc86d0d06d116e46461d1c3cda8927e69c48108c42" and all
tags associated with it? [y/N] vy

Deleted [registry] 111222333444 .dkr.ecr.us-east-1.amazonaws.com/

0ciesha256:387c10c1598eel8aae81ldcfc86d0d06d116e46461d1c3cda8927e69c48108c42

4. To see that the signature was deleted, type:

oras discover 111222333444 .dkr.ecr.us-east-1.amazonaws.com/oci:helloworld

The output should look similar to this:

111222333444 .dkr.ecr.us-east-1.amazonaws.com/
ociesha256:88c0c54329bfdc1d94d6f58cd3fcb1226d46F58670f44a8c689cb3c9b37b6925
application/vnd.cncf.notary.signature

sha256:6527bcec87adf1d55460666183b9d0968b3cd4esbc34602d485206a219851171

Viewing image details in Amazon ECR

After you push an image to your repository, you can view information about it. The details included
are as follows:

» Image URI

« Image tags

« Artifact media type

« Image manifest type

« Scanning status

« The size of the image in MB

« When the image was pushed to the repository

« The replication status

To view image details (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
repositories.

Viewing image details API Version 2015-09-21 65

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

2. From the navigation bar, choose the Region that contains the repository containing your
image.

3. Inthe navigation pane, choose Repositories.
4. On the Repositories page, choose the repository to view.

5. On the Repositories : repository_name page, choose the image to view the details of.

Pulling an image to your local environment from an Amazon
ECR private repository

If you want to run a Docker image that is available in Amazon ECR, you can pull it to your local
environment with the docker pull command. You can do this from either your default registry or
from a registry associated with another AWS account.

To use an Amazon ECR image in an Amazon ECS task definition, see Using Amazon ECR images
with Amazon ECS.

/A Important

You cannot pull an archived image. Archived images must be restored before they can be
pulled. For more information about archiving and restoring images, see Archiving an image
in Amazon ECR.

/A Important

Amazon ECR requires that users have permission to make calls to the
ecr:GetAuthorizationToken API through an IAM policy before they can authenticate
to a registry and push or pull any images from any Amazon ECR repository. Amazon

ECR provides several AWS managed policies to control user access at varying levels. For
information about the AWS managed policies for Amazon ECR, see AWS managed policies

for Amazon Elastic Container Registry.

Pulling an image API Version 2015-09-21 66

Amazon ECR User Guide

To pull a Docker image from an Amazon ECR repository

1. Authenticate your Docker client to the Amazon ECR registry that you intend to pull your image
from. Authentication tokens must be obtained for each registry used, and the tokens are valid
for 12 hours. For more information, see Private registry authentication in Amazon ECR.

2. (Optional) Identify the image to pull.

e You can list the repositories in a registry with the aws ecr describe-repositories
command:

aws ecr describe-repositories

The example registry above has a repository called amazonlinux.

« You can describe the images within a repository with the aws ecr describe-images
command:

aws ecr describe-images --repository-name amazonlinux

The example repository above has an image tagged as latest and 2016. 09, with the
image digest
sha256:f1d4ae3f7261a72e98c6ebefe9985cf10alea5bd762585a43e0700ed99863807.

3. Pull the image using the docker pull command. The image name format should be
registry/repository [:tag] topullbytag, orregistry /repository[@digest] to
pull by digest.

dockex pull aws_account_id.dkx.ecx.us-west-2.amazonaws.com/amazonlinux:latest

/A Important

If you receive a repository-url not found: does not exist or no pull
access error, you might need to authenticate your Docker client with Amazon ECR.
For more information, see Private registry authentication in Amazon ECR.

Pulling an image API Version 2015-09-21 67

Amazon ECR User Guide

Pulling the Amazon Linux container image

The Amazon Linux container image is built from the same software components that are
included in the Amazon Linux AMI. The Amazon Linux container image is available for use in
any environment as a base image for Docker workloads. If you use the Amazon Linux AMI for
applications in Amazon EC2, you can containerize your applications with the Amazon Linux
container image.

You can use the Amazon Linux container image in your local development environment and then
push your application to AWS using Amazon ECS. For more information, see Using Amazon ECR
images with Amazon ECS.

The Amazon Linux container image is available on Docker Hub. For support for the Amazon Linux
container image, go to the AWS developer forums.

To pull the Amazon Linux container image from Docker Hub

1. Pull the Amazon Linux container image using the docker pull command.

docker pull amazonlinux

2. (Optional) Run the container locally.

docker run -it amazonlinux:latest /bin/bash

Deleting an image in Amazon ECR

If you're finished using an image, you can delete it from your repository. If you're finished with
a repository, you can delete the entire repository and all of the images within it. For more
information, see Deleting a private repository in Amazon ECR.

As an alternative to deleting images manually, you can create repository lifecycle policies which
provide more control over the lifecycle management of images in your repositories. Lifecycle
policies automate this process for you. For more information, see Automate the cleanup of images

by using lifecycle policies in Amazon ECR.

Pulling the Amazon Linux container image API Version 2015-09-21 68

https://hub.docker.com/_/amazonlinux/
https://forums.aws.amazon.com/forum.jspa?forumID=228

Amazon ECR User Guide

® Note

If your repository has a mix of images, some of which were pushed before Amazon ECR
supported OCI v1.1, some signatures will have image indexes or manifest lists pointing
to them. As a result, when you delete a pre-OCl v1.1 image, you might need to manually
delete the manifest list that references the image in order to delete the artifact.

To delete an image (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

repositories.
From the navigation bar, choose the Region that contains the image to delete.
In the navigation pane, choose Repositories.

On the Repositories page, choose the repository that contains the image to delete.

ok W

On the Repositories: repository_name page, select the box to the left of the image to
delete and choose Delete.

6. Inthe Delete image(s) dialog box, verify that the selected images should be deleted and
choose Delete.

To delete an image (AWS CLI)

1. List the images in your repository. Tagged images will have both an image digest as well as a
list of associated tags. Untagged images will only have an image digest.

aws ecr list-images \
--repository-name my-repo

2. (Optional) Delete any unwanted tags for the image by specifying the tag associated with
the image you want to delete. When the last tag is deleted from an image, the image is also
deleted.

aws ecr batch-delete-image \
--repository-name my-repo \
--image-ids imageTag=tagl imageTag=tag2

Deleting an image API Version 2015-09-21 69

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

3. Delete a tagged or untagged image by specifying the image digest. When you delete an image
by referencing its digest, the image and all of its tags are deleted.

aws ecxr batch-delete-image \
--repository-name my-repo \
--image-ids imageDigest=sha256:4f70ef7a4d29e8c0c302b13e25962d8f7a0bd304EXAMPLE

To delete multiple images, you can specify multiple image tags or image digests in the request.

aws ecr batch-delete-image \

--repository-name my-repo \

--image-ids imageDigest=sha256:4f70ef7a4d29e8c0c302b13e25962d8f7a0bd304EXAMPLE
imageDigest=sha256:f5t0e245ssffc302b13e25962d8f7a0bd304EXAMPLE

Archiving an image in Amazon ECR

What is the ECR archival storage class?

Amazon ECR archival storage class is a new storage class that provides low-cost, long-term storage
for container images. Amazon ECR offers two storage classes:

« ECR standard storage class — The default storage class for active images that are regularly
accessed.

» ECR archival storage class — A low-cost storage class for images that are rarely accessed but
need to be retained for compliance or long-term reference. The archival storage class provides
cost savings for large amount of images compared to the Standard storage class for long-term
image retention. For detailed pricing information, see Amazon ECR pricing.

To archive images, you have two options. First, you can configure lifecycle rules to automatically
archive images based on:

« Time since the image was pushed

« Time since the image was last pulled

« Number of images in the repository

Archiving an image API Version 2015-09-21 70

https://aws.eu/ecr/pricing/

Amazon ECR User Guide

You can also configure settings to permanently delete images after they've been archived for a
specified period. Refer to Automate the cleanup of images by using lifecycle policies in Amazon
ECR for more information.

You can also archive images using the Amazon ECR console or AWS CLI. Refer to Archiving an
image for more information.

When you need to use an archived image again, you can restore it back to the ECR Standard
storage class. You can expect ECR to restore the image within 20 minutes. Restored images behave
like newly pushed images and are immediately available for use when the restore is complete.
Restored images are subject to scanning, replication, and repository lifecycle policies. Refer to
Restoring an image for more information.

Archiving an image

You can archive images manually using the Amazon ECR console or AWS CLI, or automatically using
lifecycle policies. When an image is archived:

« The image is moved to the archival storage class.

» Archived images cannot be pulled. Requests to pull the archived image will fail with a 404 error.

« While the image cannot be pulled, it can still be described using the describe-images command,
or listed using the list-images command. The image status will be shown as ARCHIVED.

« Archived images have a minimum storage duration of 90 days. You cannot configure lifecycle
policies that delete images that have been in archive for less than 90 days. If you must delete
images that have been archived for less than 90 days, you need to use the batch-delete-image
API, but you will be charged for the 90-day minimum storage duration.

« The image appears in an Archived images tab in the repository view (this tab will appear only if
at least one image is archived in the repository).

« The image can be restored as an active image by manually selecting it to be restored or by re-
pushing the image to the repository.

« The image will be deleted if the repository has lifecycle policies that delete the image with
criteria such as time in archive.

Archiving an image API Version 2015-09-21 71

Amazon ECR User Guide

AWS Management Console

To archive an image

1.

o v oA~ W

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

repositories.
From the navigation bar, choose the Region that contains the repository with the image

you want to archive.

In the navigation pane, choose Repositories.

On the Repositories page, choose the repository containing the image you want to archive.
Select the image you want to archive. You will see Image Details.

To archive the image, select the Archive button and select Confirm when you are
prompted.

If this is the first archived image in the repository, a new Archived images tab appears with
the newly archived image. If there are other archived images, this image will be added to
that tab.

AWS CLI

To archive an image

Use the update-image-storage-class command to archive an image by updating its storage
class to ARCHIVE:

aws ecr update-image-storage-class \
--repository-name my-repository \
--image-id
imageDigest=sha256:4f70ef7a4d29e8c0c302b13e25962d8f7a0bd304EXAMPLE \
--target-storage-class ARCHIVE

To archive an image using lifecycle policies

« You can configure archive rules for your repositories using lifecycle policies to automatically

archive images. Lifecycle policies allow you to automatically archive images based on criteria

such as:

« Time since the image was pushed

Archiving an image API Version 2015-09-21 72

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

« Time since the image was last pulled

o Maximum number of images to keep active

You can also configure lifecycle policies to permanently delete images after they've been
archived for a specified period. For more information and examples of lifecycle policies with
archive actions, see Automate the cleanup of images by using lifecycle policies in Amazon ECR.

@ Note
Archived images have a minimum storage duration of 90 days. You cannot configure
lifecycle policies that delete images that have been in archive for less than 90 days. If
you must delete images that have been archived for less than 90 days, you need to use
the batch-delete-image API, but you will be charged for the 90-day minimum storage
duration.

When you describe images using the describe-images command, archived images have an image-
status of ARCHIVED. You can filter images by image-status to view only archived images or
only active images.

Restoring an image

When you restore an archived image, it is moved from the ECR Archive storage class back to the
ECR Standard storage class. Restored images are charged at the standard storage rates. The restore
process performs similar actions that occur when a new image is created:

« The image becomes available for pulling when the restore is complete. Restore typically takes up
to 20 minutes, though it may complete faster.

« If scan on push is enabled for the repository, the restored image will be scanned. Note that
previous scan results from before the image was archived will not be available.

« If replication is configured for the repository, the restored image will be replicated if replication
was enabled at the time of restore.

» The restored image appears in the active images list.

Restoring an image API Version 2015-09-21 73

Amazon ECR User Guide

Restoring an image typically takes up to 20 minutes, though it may complete faster. During the
restore process, the image remains in the archived state and cannot be pulled until the restore
completes.

AWS Management Console
To restore an archived image

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
repositories.

2. From the navigation bar, choose the Region that contains the repository with the archived

image you want to restore.

In the navigation pane, choose Repositories.

On the Repositories page, choose the repository containing the archived image.
Choose the Archived images tab.

Select the archived image you want to restore.

Choose Restore and confirm the restore action.

© N O U A~ W

Wait for the restore to complete. The image will appear in the active images list once
restoration is complete.

AWS CLI
To restore an archived image

« Use the update-image-storage-class command to restore an archived image by updating
its storage class to STANDARD:

aws ecr update-image-storage-class \
--repository-name my-repository \
--image-id
imageDigest=sha256:4f70ef7a4d29e8c0c302b13e25962d8f7a0bd304EXAMPLE \
--target-storage-class STANDARD

When you describe images using the describe-images command, images that are being restored
have an image-status of ACTIVATING. You can filter images by image-status with the value
ACTIVATING to view images that are currently being restored.

Restoring an image API Version 2015-09-21 74

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

An alternative method to restore an archived image is to re-push the image to the repository.
When you push an image that is currently archived, that image will be immediately restored and
removed from the archive.

Retagging an image in Amazon ECR

With Docker Image Manifest V2 Schema 2 images, you can use the --image-tag option of
the put-image command to retag an existing image. You can retag without pulling or pushing
the image with Docker. For larger images, this process saves a considerable amount of network
bandwidth and time required to retag an image.

To retag an image (AWS CLI)
To retag an image with the AWS CLI

1. Use the batch-get-image command to get the image manifest for the image to retag and
write it to a file. In this example, the manifest for an image with the tag, Latest, in the
repository, amazonlinux, is written to an environment variable named MANIFEST.

MANIFEST=$(aws ecr batch-get-image --repository-name amazonlinux --image-ids
imageTag=latest --output text --query 'images[].imageManifest')

2. Use the --image-tag option of the put-image command to put the image manifest to
Amazon ECR with a new tag. In this example, the image is tagged as 2017. 03.

(® Note

If the - -image-tag option isn't available in your version of the AWS CLI, upgrade
to the latest version. For more information, see Installing the AWS Command Line
Interface in the AWS Command Line Interface User Guide.

aws ecr put-image --repository-name amazonlinux --image-tag 2017.03 --image-
manifest "$MANIFEST"

3. Verify that your new image tag is attached to your image. In the following output, the image
has the tags 1latest and 2017.03.

Retagging an image API Version 2015-09-21 75

https://docs.aws.eu/cli/latest/userguide/install-cliv2.html
https://docs.aws.eu/cli/latest/userguide/install-cliv2.html

Amazon ECR User Guide

aws ecr describe-images --repository-name amazonlinux

The output is as follows:

"imageDetails": [
{
"imageSizeInBytes": 98755613,
"imageDigest":
"sha256:8d00af8f076eb15a33019c2a3e7f1f655375681c4e5bel57a26EXAMPLE",
"imageTags": [

"latest",

"2017.03"
1,
"registryId": "aws_account_id",
"repositoryName": "amazonlinux",

"imagePushedAt": 1499287667.0

To retag an image (AWS Tools for Windows PowerShell)
To retag an image with the AWS Tools for Windows PowerShell

1. Use the Get-ECRImageBatch cmdlet to obtain the description of the image to retag and
write it to an environment variable. In this example, an image with the tag, latest, in the
repository, amazonlinux, is written to the environment variable, $Image .

(® Note
If you don't have the Get-ECRImageBatch cmdlet available on your system, see
Setting up the AWS Tools for Windows PowerShell in the AWS Tools for PowerShell User
Guide.

$Image = Get-ECRImageBatch -Imageld @{ imageTag="latest"™ } -
RepositoryName amazonlinux

Retagging an image API Version 2015-09-21 76

https://docs.aws.eu/powershell/latest/userguide/pstools-getting-set-up.html

Amazon ECR User Guide

2. Write the manifest of the image to the $Manifest environment variable.

$Manifest = $Image.Images[0].ImageManifest

3. Use the -ImageTag option of the Write-ECRImage cmdlet to put the image manifest to
Amazon ECR with a new tag. In this example, the image is tagged as 2017. 29.

Write-ECRImage -RepositoryName amazonlinux -ImageManifest $Manifest -
ImageTag 2017.09

4. Verify that your new image tag is attached to your image. In the following output, the image
has the tags latest and 2017.09.

Get-ECRImage -RepositoryName amazonlinux

The output is as follows:

ImageDigest ImageTag

sha256:359b948ea8866817e94765822787cd482279eed@c17bc674a7707f4256d5d497 latest
sha256:359b948ea8866817e94765822787cd482279%9eed@cl17bc674a7707f4256d5d497 2017.09

Preventing image tags from being overwritten in Amazon ECR

You can prevent image tags from being overwritten by turning on tag immutability in a repository.
After tag immutability is turned on, the ImageTagAlreadyExistsException erroris returned
if you push an image with a tag that is already in the repository. Tag immutability affects all tags.
You cannot make some tags immutable while others aren't.

You can use the AWS Management Console and AWS CLI tools to set image tag mutability for
a new repository or for an existing repository. To create a repository using console steps, see
Creating an Amazon ECR private repository to store images.

Setting image tag mutability (AWS Management Console)
To set image tag mutability

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
repositories.

Preventing image tags from being overwritten API Version 2015-09-21 77

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

2. From the navigation bar, choose the Region that contains the repository to edit.

3. In the navigation pane, choose Repositories under Private registry.

If you don't see Repositories, choose Private registry to expand the menu and then choose
Repositories.

4. On the Private repositories page, choose the radio button before the repository name for
which you want to set the image tag mutability settings.

5. Choose Actions and then choose Repository under Edit.

6. For Image tag immutability, choose one of the following tag mutability settings for the
repository.

« Mutable - Choose this option if you want image tags to be overwritten. Recommended for
repositories using pull through cache actions to ensure Amazon ECR can update cached
images. Additionally, to disable tag updates for a few mutable tags, enter tag names or use
wildcards (*) to match multiple similar tags in the Mutable tag exclusion text box.

« Immutable - Choose this option if you want to prevent image tags from being overwritten,
and it applies to all tags and exclusions in the repository when pushing an image with
existing tag. Amazon ECR returns an ImageTagAlreadyExistsException if you attempt
to push an image with an existing tag. Additionally, to enable tag updates for a few
immutable tags, enter tag names or use wildcards (*) to match multiple similar tags in the
Immutable tag exclusion text box.

7. For Image scan settings, while you can specify the scan settings at the repository level for
basic scanning, it is best practice to specify the scan configuration at the private registry level.
Specify the scanning settings at the private registry allow you to enable either enhanced
scanning or basic scanning as well as define filters to specify which repositories are scanned.
For more information, see Scan images for software vulnerabilities in Amazon ECR.

8. For Encryption settings, this is a view only field as the encryption settings for a repository
can't be changed once the repository is created.

9. Choose Save to update the repository settings.

Setting image tag mutability (AWS CLI)

To create a repository with immutable tags configured

Use one of the following commands to create a new image repository with immutable tags
configured.

Setting image tag mutability (AWS CLI) API Version 2015-09-21 78

Amazon ECR User Guide

create-repository (AWS CLI) with image tag mutability

aws ecr create-repository --repository-name name --image-tag-mutability IMMUTABLE --
region us-east-2

create-repository (AWS CLI) with image tag mutability exclusion filters

aws ecr create-repository --repository-name name --image-tag-
mutability IMMUTABLE_WITH_EXCLUSION --image-tag-mutability-exclusion-filters
filtexType=WILDCARD,filter=filter-text --region us-east-2

New-ECRRepository (AWS Tools for Windows PowerShell) with image tag mutability

New-ECRRepository -RepositoryName name -ImageTagMutability IMMUTABLE -Region us-
east-2 -Force

New-ECRRepository (AWS Tools for Windows PowerShell) with image tag mutability exclusion
filters

New-ECRRepository -RepositoryName name -ImageTagMutability IMMUTABLE_WITH_EXCLUSION
-ImageTagMutabilityExclusionFilter @{FiltexType=WILDCARD Filter=filter-text} -
Region us-east-2 -Foxce

To update the image tag mutability settings for a repository

Use one of the following commands to update the image tag mutability settings for an existing
repository.

» put-image-tag-mutability (AWS CLI) with image tag mutability

aws ecr put-image-tag-mutability --repository-name name --image-tag-
mutability IMMUTABLE --region us-east-2

» put-image-tag-mutability (AWS CLI) with image tag mutability exclusion filters

aws ecr put-image-tag-mutability --repository-name name --image-tag-
mutability IMMUTABLE_WITH_EXCLUSION --image-tag-mutability-exclusion-filters
filtexType=WILDCARD,filter=1latest --region us-east-2

Setting image tag mutability (AWS CLI) API Version 2015-09-21 79

https://docs.aws.eu/cli/latest/reference/ecr/create-repository.html
https://docs.aws.eu/cli/latest/reference/ecr/create-repository.html
https://docs.aws.eu/powershell/latest/reference/items/New-ECRRepository.html
https://docs.aws.eu/powershell/latest/reference/items/New-ECRRepository.html
https://docs.aws.eu/cli/latest/reference/ecr/put-image-tag-mutability.html
https://docs.aws.eu/cli/latest/reference/ecr/put-image-tag-mutability.html

Amazon ECR User Guide

» Write-ECRImageTagMutability (AWS Tools for Windows PowerShell) with image tag mutability

Write-ECRImageTagMutability -RepositoryName name -ImageTagMutability IMMUTABLE -
Region us-east-2 -Forxce

» Write-ECRImageTagMutability (AWS Tools for Windows PowerShell) with image tag mutability
exclusion filters

Write-ECRImageTagMutability -RepositoryName name -
ImageTagMutability IMMUTABLE_WITH_EXCLUSION -ImageTagMutabilityExclusionFilter
@{FiltexType=WILDCARD Filtex=latest}

Container image manifest format support in Amazon ECR

Amazon ECR supports the following container image manifest formats:

» Docker Image Manifest V2 Schema 1 (used with Docker version 1.9 and older)
« Docker Image Manifest V2 Schema 2 (used with Docker version 1.10 and newer)

« Open Container Initiative (OCI) Specifications (v1.0 and v1.1)

Support for Docker Image Manifest V2 Schema 2 provides the following functionality:

« The ability to use multiple tags for a singular image.

» Support for storing Windows container images.

Amazon ECR image manifest conversion

When you push and pull images to and from Amazon ECR, your container engine client (for
example, Docker) communicates with the registry to agree on a manifest format that is understood
by the client and the registry to use for the image.

When you push an image to Amazon ECR with Docker version 1.9 or earlier, the image manifest
format is stored as Docker Image Manifest V2 Schema 1. When you push an image to Amazon ECR
with Docker version 1.10 or later, the image manifest format is stored as Docker Image Manifest V2
Schema 2.

Container image manifest formats API Version 2015-09-21 80

https://docs.aws.eu/powershell/latest/reference/items/Write-ECRImageTagMutability.html
https://docs.aws.eu/powershell/latest/reference/items/Write-ECRImageTagMutability.html

Amazon ECR User Guide

When you pull an image from Amazon ECR by tag, Amazon ECR returns the image manifest format
that is stored in the repository. The format is returned only if that format is understood by the
client. If the stored image manifest format isn't understood by the client, Amazon ECR converts
the image manifest into a format that is understood. For example, if a Docker 1.9 client requests
an image manifest that is stored as Docker Image Manifest V2 Schema 2, Amazon ECR returns the
manifest in the Docker Image Manifest V2 Schema 1 format. The following table describes the
available conversions supported by Amazon ECR when an image is pulled by tag:

Schema requested Pushed to ECRas V2, Pushedto ECRasV2, PushedtoECR as

by client schema 1 schema 2 o]

V2, schema 1 No translation Translated to V2, No translation
required schema 1 available

V2, schema 2 No translation No translation Translated to V2,
available, client falls required schema 2

back to V2, schema 1

(o]d] No translation Translated to OCI No translation
available required

/A Important

If you pull an image by digest, there is no translation available. Your client must understand
the image manifest format that is stored in Amazon ECR. If you request a Docker Image
Manifest V2 Schema 2 image by digest on a Docker 1.9 or older client, the image pull fails.
For more information, see Registry compatibility in the Docker documentation.

In this example, if you request the same image by tag, Amazon ECR translates the image
manifest into a format that the client can understand. The image pull succeeds.

Using Amazon ECR images with Amazon ECS

You can use your Amazon ECR private repositories to host container images and artifacts that your
Amazon ECS tasks may pull from. For this to work, the Amazon ECS, or Fargate, container agent
must have permissions to make the ecr:BatchGetImage, ecr:GetDownloadUrlForLayer, and
ecr:GetAuthorizationToken APIs.

Using Amazon ECR images with Amazon ECS API Version 2015-09-21 81

https://docs.docker.com/registry/compatibility/

Amazon ECR

User Guide

Required IAM permissions

The following table shows the IAM role to use, for each launch type, that provides the required

permissions for your tasks to pull from an Amazon ECR private repository. Amazon ECS provides

managed IAM policies that include the required permissions.

Launch type

Amazon ECS on Amazon EC2
instances

Amazon ECS on Fargate

Amazon ECS on external
instances

IAM role

Use the container instance
IAM role, which is associate

d with the Amazon EC2
instance registered to your
Amazon ECS cluster. For more
information, see Container
instance IAM role in the

Amazon Elastic Container
Service Developer Guide.

Use the task execution IAM
role that you reference

in your Amazon ECS task
definition. For more informati
on, see Task execution IAM

role in the Amazon Elastic
Container Service Developer
Guide.

Use the container instance
IAM role, which is associate

d with the on-premises
server or virtual machine
(VM) registered to your
Amazon ECS cluster. For more
information, see Container
instance Amazon ECS role in

the Amazon Elastic Container
Service Developer Guide.

AWS managed IAM policy

AmazonEC2Container
ServiceforEC2Role

For more information,
see AmazonEC2Container
ServiceforEC2Role in the
Amazon Elastic Container

Service Developer Guide

AmazonECSTaskExecu
tionRolePolicy

For more information, see
AmazonECSTaskExecu

tionRolePolicy in the Amazon

Elastic Container Service
Developer Guide.

AmazonEC2Container
ServiceforEC2Role

For more information,
see AmazonEC2Container
ServiceforEC2Role in the
Amazon Elastic Container

Service Developer Guide.

Required IAM permissions

API Version 2015-09-21 82

https://docs.aws.eu/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.eu/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.eu/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceforEC2Role
https://docs.aws.eu/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceforEC2Role
https://docs.aws.eu/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.eu/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.eu/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSTaskExecutionRolePolicy
https://docs.aws.eu/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonECSTaskExecutionRolePolicy
https://docs.aws.eu/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.eu/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.eu/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceforEC2Role
https://docs.aws.eu/AmazonECS/latest/developerguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerServiceforEC2Role

Amazon ECR User Guide

/A Important

The AWS managed IAM policies contain additional permissions that you may not require for
your use. In this case, these are the minimum required permissions to pull from an Amazon
ECR private repository.

JSON

{
"Version":"2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"ecx:BatchGetImage",
"ecr:GetDownloadUrlForLayer",
"ecr:GetAuthorizationToken"

1,

"Resource": "*"

}
]
}

Specifying an Amazon ECR image in an Amazon ECS task definition

When creating an Amazon ECS task definition, you can specify a container image hosted
in an Amazon ECR private repository. In the task definition, ensure that you use the

full registry/repository:tag naming for your Amazon ECR images. For example,
aws_account_id.dkr.ecr.region.amazonaws.com/my-repository:latest.

The following task definition snippet shows the syntax you would use to specify a container image
hosted in Amazon ECR in your Amazon ECS task definition.

"family": "task-definition-name",

"containerDefinitions": [
{

"name": "container-name",

Specifying an Amazon ECR image in a task definition API Version 2015-09-21 83

Amazon ECR User Guide

"image": "aws_account_id.dkr.ecr.region.amazonaws.com/my-
repository:latest",

}
]I

Using Amazon ECR Images with Amazon EKS

You can use your Amazon ECR images with Amazon EKS.

When referencing an image from Amazon ECR, you must use the full
registry/repository:tag naming for the image. For example,
aws_account_id.dkr.ecr.region.amazonaws.com/my-repository:latest.

Required IAM permissions

If you have Amazon EKS workloads hosted on managed nodes, self-managed nodes, or AWS
Fargate, review the following:

« Amazon EKS workloads hosted on managed or self-managed nodes: The Amazon EKS worker
node IAM role (NodeInstanceRole) is required. The Amazon EKS worker node IAM role must
contain the following IAM policy permissions for Amazon ECR.

JSON

"Version":"2012-10-17",
"Statement": [

{

"Effect": "Allow",

"Action": [
"ecr:BatchCheckLayerAvailability",
"ecxr:BatchGetImage",
"ecr:GetDownloadUrlForLayer",
"ecr:GetAuthorizationToken"

]I

"Resource": "*"

}

Using Amazon ECR Images with Amazon EKS API Version 2015-09-21 84

Amazon ECR User Guide

(@ Note

If you used eksctl or the CloudFormation templates in Getting Started with Amazon
EKS to create your cluster and worker node groups, these IAM permissions are applied to
your worker node IAM role by default.

« Amazon EKS workloads hosted on AWS Fargate: Use the Fargate pod execution role, which
provides your pods permission to pull images from private Amazon ECR repositories. For more
information, see Create a Fargate pod execution role.

Installing a Helm chart on an Amazon EKS cluster

Helm charts hosted in Amazon ECR can be installed on your Amazon EKS clusters.

Prerequisites

« Install the latest version of the Helm client. These steps were written using Helm version 3.9.0.
For more information, see Installing Helm.

« You have at least version 1.23.9 or 2.6. 3 of the AWS CLI installed on your computer. For more
information, see Installing or updating the latest version of the AWS CLI.

» You have pushed a Helm chart to your Amazon ECR repository. For more information, see
Pushing a Helm chart to an Amazon ECR private repository.

« You have configured kubectl to work with Amazon EKS. For more information, see Create
a kubeconfig for Amazon EKS in the Amazon EKS User Guide. If the following commands

succeeds for your cluster, you're properly configured.

kubectl get svc

To install a Helm chart on an Amazon EKS cluster

1. Authenticate your Helm client to the Amazon ECR registry that your Helm chart is hosted.
Authentication tokens must be obtained for each registry used, and the tokens are valid for 12
hours. For more information, see Private registry authentication in Amazon ECR.

Installing a Helm chart on an Amazon EKS cluster API Version 2015-09-21 85

https://docs.aws.eu/eks/latest/userguide/getting-started.html
https://docs.aws.eu/eks/latest/userguide/getting-started.html
https://docs.aws.eu/eks/latest/userguide/fargate-getting-started.html#fargate-sg-pod-execution-role
https://helm.sh/docs/intro/install/
https://docs.aws.eu/cli/latest/userguide/getting-started-install.html
https://docs.aws.eu/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.eu/eks/latest/userguide/create-kubeconfig.html

Amazon ECR User Guide

aws ecr get-login-password \
--region us-west-2 | helm registry login \
--username AWS \
--password-stdin aws_account_id.dkr.ecr.region.amazonaws.com

2. Install the chart. Replace helm-test-chart with your repository and @. 1. @ with your Helm
chart's tag.

helm install ecr-chart-demo oci://aws_account_id.dkr.ecxr.region.amazonaws.com/helm-
test-chart --version 0.1.0

The output should look similar to this:

NAME: ecr-chart-demo

LAST DEPLOYED: Tue May 31 17:38:56 2022
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

3. Verify the chart installation.

helm list -n default

Example output:

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION
ecr-chart-demo default 1 2022-06-01 15:56:40.128669157 +0000
UTC deployed helm-test-chart-0.1.0 1.16.0

4. (Optional) See the installed Helm chart ConfigMap.

kubectl describe configmap helm-test-chart-configmap

5. When you are finished, you can remove the chart release from your cluster.

helm uninstall ecr-chart-demo

Installing a Helm chart on an Amazon EKS cluster API Version 2015-09-21 86

Amazon ECR User Guide

Sign images in Amazon ECR

Amazon ECR integrates with AWS Signer to provide two ways for you to sign your container
images: managed signing (automatic, recommended) and manual signing (client-side). You can
store both your container images and the signatures in your private repositories.

Choose a signing method

Amazon ECR supports two methods for signing container images:
Managed signing (recommended)

Managed signing automatically generates cryptographic signatures when images are pushed to
Amazon ECR. This method simplifies setup. Managed signing is the recommended approach for
most users. For more information, see Managed signing.

Manual signing

Manual signing uses the Notation CLI and AWS Signer plugin to sign images before pushing
them to Amazon ECR. This method provides more control over the signing process and is useful
when you need to sign images outside of the push workflow or require fine-grained control over
signing operations. For more information, see Manual signing.

Considerations

The following should be considered when using Amazon ECR image signing:

« Signatures stored in your repository count against the service quota for the maximum number
of images per repository. Each signature counts as 1 artifact against the images per repository
quota. For more information, see Amazon ECR service quotas.

« When reference artifacts are present in a repository, Amazon ECR lifecycle policies will
automatically clean up those artifacts within 24 hours of the deletion of the subject image.

Managed signing

Amazon ECR managed signing automatically signs your container images by generating
cryptographic signatures using AWS Signer when images are pushed to Amazon ECR. This

Choose a signing method API Version 2015-09-21 87

https://docs.aws.eu/signer/latest/developerguide/Welcome.html

Amazon ECR User Guide

eliminates the need to install and configure client-side tools and allows you to centrally govern
signing as a registry configuration.

Prerequisites

To configure managed signing, you create a signing configuration with Amazon ECR that
references one or more Signer signing profiles and, optionally, repository filters that restrict which
repositories should have their images signed. Once configured, Amazon ECR managed signing
automatically signs images as they are pushed using the identity of the entity pushing the image.

Before you can configure managed signing, you must have the following:

« A Signer signing profile — Create at least one Signer signing profile. A signing profile is a
unique AWS Signer resource that you can use to perform signing operations in Amazon ECR.
Signing profiles enable you to sign and verify code artifacts, such as container images and AWS
Lambda deployment bundles. Each signing profile designates the signing platform to sign for, a
platform ID, and other platform-specific information. For example, a signing profile ARN looks
like this: arn:partition:signer:region:account-id:/signing-profiles/profile-

name.

« IAM permissions — The IAM principal that pushes the image must have the necessary IAM
permissions to access the relevant Signer signing profile and the relevant ECR repository. You
need to modify the identity-based policy for the IAM principal to include permissions for both
ECR repository operations and Signer signing operations. The following example policy shows
the required permissions:

"Version": "2012-10-17",
"Statement": [
{

"Sid":"UploadSignaturePermissions",

"Effect":"Allow",

"Action":[
"ecr:CompletelLayerUpload",
"ecr:UploadLayerPart",
"ecr:InitiatelLayerUpload",
"ecr:BatchChecklLayerAvailability",
"ecr:PutImage"

1,

"Resource":"arn:aws:ecr:region:account-id:repository/repository-name"

Prerequisites API Version 2015-09-21 88

https://docs.aws.eu/signer/latest/developerguide/signing-profiles.html

Amazon ECR User Guide

1,
{
"Sid": "SignPermissions",
"Effect": "Allow",
"Action": [
"signer:SignPayload"
1,
"Resource'": "arn:aws:signer:region:account-id:/signing-profiles/signing-profile-
name"
}
]

With Amazon ECR managed signing, you can create multiple signing rules (up to 10 per registry)
to create stronger security boundaries. For example, you might run multiple build pipelines and
want to limit which repositories each pipeline can sign. Within each rule, you configure a signing
profile and specify repository name filters. When a new image is pushed, Amazon ECR matches
which signing rule and signing profile can sign the image. If there are multiple matches, Amazon
ECR generates multiple signatures.

(® Note

If you verify signatures manually, you still need to install the Notation CLI.

(® Note

Amazon ECR managed signing is available in all AWS Regions where container image
signing with AWS Signer is available.

Getting started

Follow these steps to configure managed signing. You provide Amazon ECR with a reference to
a Signer signing profile and, optionally, filters that restrict which repositories should have their
images signed.

AWS Management Console

Use the following steps to configure managed signing using the AWS Management Console.

Getting started API Version 2015-09-21 89

Amazon ECR User Guide

1. Openthe Amazon ECR console. In the left navigation pane, select Private registry,
Features & settings, Managed signing.

2. On the Signing rules page, select Create rule.

3. On the Signing profile page, under Select a AWS signer profile, choose Create new AWS
signer profile, enter a Profile name, and, optionally, change the Signature validity period.
Then select Next.

4. On the Filters page, under Select repositories, enter a Repository name filter. Then select
Next.

5. On the Review and create page, verify the AWS Signer profile and Repository name
filters you have entered. If everything looks correct, select Save.

AWS CLI

Use the following AWS CLI commands to configure managed signing.

Create a signing rule

Create a signing configuration with your signing profile ARN. Create a JSON file with the
following contents:

"rules": [
{
"signingProfileArn": "arn:aws:signer:region:account-id:/signing-
profiles/profile-name",
"repositoryFilters": [
{

"filter": "test*",
"filterType": "WILDCARD_MATCH"

Then run the following command:

aws ecr --region region \
put-signing-configuration \

Getting started API Version 2015-09-21 90

https://console.aws.amazon.com/ecr/private-registry/repositories

Amazon ECR User Guide

--signing-configuration file://signing-config.json
You should see the API response containing the signing configuration.
» View your signing configuration

Retrieve your signing configuration:

aws ecr --region region \
get-signing-configuration

You should see the API response containing the signing configuration.
« Check image signing status

Push an image to your repository. For example:

docker pull ubuntu

IMAGE_NAME="account-id.dkr.ecr.region.amazonaws.com/repository-name"
IMAGE_TAG="${IMAGE_NAME}:test-1"

docker tag ubuntu $IMAGE_TAG
docker push $IMAGE_TAG

After pushing, use your image tag to check the signing status:

aws ecr --region region \
describe-image-signing-status \
--repository-name repository-name \
--image-id imageTag=test-1

If the repository name matches your repository filter defined in the signing configuration,
you should see signing status in the API response. If the status is successful, you should see a
signature pushed to your repository.

 Delete your signing configuration

Delete your signing configuration:

aws ecr --region region \
delete-signing-configuration

Getting started API Version 2015-09-21 91

Amazon ECR User Guide

You should see the API response containing the deleted signing configuration.

Considerations

The following limitations and capabilities apply to managed signing:

» Cross-region signing is not supported — Signing profiles must be in the same region as your
Amazon ECR registry. You cannot use a signing profile from one region to sign images in a
registry located in a different region.

« Cross-account signing is supported — Signing profiles can be in different accounts than your
Amazon ECR registry. This enables organizations to centrally manage signing profiles while
allowing developers in other accounts to use them. For more information, see Set up cross-
account signing for Signer in the AWS Signer Developer Guide.

« Signatures cannot be signed — You cannot sign signatures themselves. Only container images
can be signed.

Signature verification

After you sign your container images, you can verify the signatures to ensure that images have not
been tampered with and come from a trusted source. Amazon ECR supports several methods for
verifying signatures:

Managed verification with Amazon EKS

Amazon EKS provides native integration for automatic signature verification. When you configure
signature verification in your Amazon EKS clusters, the service automatically verifies image
signatures before allowing containers to run. For more information about configuring signature
verification, see Validate container image signatures during deployment in the Amazon EKS User
Guide.

Lambda admission controller for Amazon ECS

Amazon ECS provides service lifecycle hooks that allow you to run custom logic during service
deployments. These hooks can trigger AWS Lambda functions at specific points in the deployment
process, enabling you to validate container image signatures before allowing services to start.

Considerations API Version 2015-09-21 92

https://docs.aws.eu/signer/latest/developerguide/signing-profile-cross-account.html
https://docs.aws.eu/signer/latest/developerguide/signing-profile-cross-account.html
https://docs.aws.eu/eks/latest/userguide/image-verification.html

Amazon ECR User Guide

For more information, see Verify container image signatures for Amazon ECS in the AWS Signer
Developer Guide.

Manual verification with Notation CLI

You can verify signatures manually using the Notation CLI. This method requires you to install and
configure the Notation CLI on your local machine or in your verification environment. For detailed
instructions about verifying an image using Notation CLI, see Verify an image locally after signing
in the AWS Signer Developer Guide.

Configure authentication for the Notation client

If you use manual signing or verify signatures manually using the Notation CLI, you must configure
the Notation client so it can authenticate to Amazon ECR. If you have Docker installed on the
same host where you install the Notation client, then Notation will reuse the same authentication
method you use for the Docker client. The Docker 1ogin and 1logout commands will allow

the Notation sign and verify commands to use those same credentials, and you don't have

to separately authenticate Notation. For more information on configuring your Notation

client for authentication, see Authenticate with OCl-compliant registries in the Notary Project
documentation.

If you are not using Docker or another tool that uses Docker credentials, then we recommend using
the Amazon ECR Docker Credential Helper as your credential store. For more information on how
to install and configure the Amazon ECR Credential Helper, see Amazon ECR Docker Credential

Helper.

Manual signing

Manual signing uses the Notation CLI and AWS Signer plugin to sign images before pushing them
to Amazon ECR. This method provides more control over the signing process and is useful when
you need to sign images outside of the push workflow or require fine-grained control over signing
operations.

For detailed instructions about signing container images using the Notation CLI and AWS Signer,
see Sign container images in Signer and the related topics in the AWS Signer Developer Guide.

Prerequisites

Before you begin, The following prerequisites must be met.

Manual verification with Notation CLI API Version 2015-09-21 93

https://docs.aws.eu/signer/latest/developerguide/ecs-verification.html
https://docs.aws.eu/signer/latest/developerguide/image-verification.html
https://notaryproject.dev/docs/user-guides/how-to/registry-authentication/
https://github.com/awslabs/amazon-ecr-credential-helper
https://github.com/awslabs/amazon-ecr-credential-helper
https://docs.aws.eu/signer/latest/developerguide/container-workflow.html

Amazon ECR User Guide

« Install and configure the latest version of the AWS CLI. For more information, see Installing or
updating the latest version of the AWS CLI in the AWS Command Line Interface User Guide.

« Install the Notation CLI and the AWS Signer plugin for Notation. For more information, see
Prerequisites for signing container images in the AWS Signer Developer Guide.

« Have a container image stored in an Amazon ECR private repository to sign. For more
information, see Pushing an image to an Amazon ECR private repository.

Prerequisites API Version 2015-09-21 94

https://docs.aws.eu/cli/latest/userguide/getting-started-install.html
https://docs.aws.eu/cli/latest/userguide/getting-started-install.html
https://docs.aws.eu/signer/latest/developerguide/image-signing-prerequisites.html

Amazon ECR User Guide

Scan images for software vulnerabilities in Amazon ECR

Amazon ECR image scanning helps to identify software vulnerabilities in your container images.
The following scanning types are offered.

/A Important

Switching between the Enhanced scanning, Basic scanning, and the Improved basic
scanning versions will cause previously established scans to no longer be available. You
will have to set up your scans again. However, if you switch back to your previous scanning
version the established scans will be available.

(® Note

Archived images cannot be scanned. Archived images must be restored before they can
be scanned. For more information about archiving and restoring images, see Archiving an
image in Amazon ECR.

« Enhanced scanning — Amazon ECR integrates with Amazon Inspector to provide automated,
continuous scanning of your repositories. Your container images are scanned for both operating
systems and programming language package vulnerabilities. As new vulnerabilities appear, the
scan results are updated and Amazon Inspector emits an event to EventBridge to notify you.
Enhanced scanning provides the following:

« OS and programming languages package vulnerabilities
« Two scanning frequencies: Scan on push and continuous scan

« Basic scanning — Amazon ECR provides two versions of basic scanning which use the Common
Vulnerabilities and Exposures (CVEs) database:.

« AWS native basic scanning — Uses AWS native technology, which is now GA and
recommended. All new customer registries are opted into this improved version by default.

« Clair basic scanning — Uses the open source Clair project. Clair is now deprecated. See Clair
Deprecation for details.

With basic scanning, you configure your repositories to scan on push or you can perform manual
scans and Amazon ECR provides a list of scan findings. Basic scanning provides the following:

API Version 2015-09-21 95

Amazon ECR User Guide

e OS scans

« Two scanning frequencies: Manual and scan on push

/A Important

The new version of Amazon ECR Basic Scanning doesn't use the
imageScanFindingsSummary and imageScanStatus attributes
from the DescribeImages API response to return scan results. Use the
DescribeImageScanFindings API instead. For more information, see
DescribeImageScanFindings.

Filters to choose which repositories are scanned in Amazon ECR

When you configure image scanning for your private registry, you can use filters to choose which
repositories are scanned.

When basic scanning is used, you may specify scan on push filters to specify which repositories
are set to do an image scan when new images are pushed. Any repositories not matching a basic
scanning scan on push filter will be set to the manual scan frequency which means to perform a
scan, you must manually trigger the scan.

When enhanced scanning is used, you may specify separate filters for scan on push and continuous
scanning. Any repositories not matching an enhanced scanning filter will have scanning disabled.

If you are using enhanced scanning and specify separate filters for scan on push and continuous
scanning where multiple filters match the same repository, then Amazon ECR enforces the
continuous scanning filter over the scan on push filter for that repository.

Filter wildcards

When a filter is specified, a filter with no wildcard will match all repository names that contain the
filter. A filter with a wildcard (*) matches on any repository name where the wildcard replaces zero
or more characters in the repository name.

The following table provides examples where repository names are expressed on the horizontal
axis and example filters are specified on the vertical axis.

Filters for repositories API Version 2015-09-21 96

https://docs.aws.eu/AmazonECR/latest/APIReference/API_DescribeImageScanFindings.html

Amazon ECR User Guide

prod repo-prod prod-repo repo-prod- prodrepo
repo
prod Yes Yes Yes Yes Yes
*prod Yes Yes No No No
prod* Yes No Yes No Yes
prod Yes Yes Yes Yes Yes
prod*repo No No Yes No Yes

Scan images for OS and programming language package
vulnerabilities in Amazon ECR

Amazon ECR enhanced scanning is an integration with Amazon Inspector which provides
vulnerability scanning for your container images. Your container images are scanned for both
operating systems and programming language package vulnerabilities. You can view the scan
findings with both Amazon ECR and with Amazon Inspector directly. For more information about
Amazon Inspector, see Scanning container images with Amazon Inspector in the Amazon Inspector
User Guide.

With enhanced scanning, you can choose which repositories are configured for automatic,
continuous scanning and which are configured for scan on push. This is done by setting scan filters.

Considerations for enhanced scanning

Consider the following before enabling Amazon ECR enhanced scanning.

« There is no additional cost from Amazon ECR to use this feature, however there is a cost from
Amazon Inspector to scan your images. This feature is available in Regions where Amazon
Inspector is supported. For more information, see:

« Amazon Inspector pricing — Amazon Inspector pricing.

« Amazon Inspector supported Regions — Regions and endpoints.

« Amazon ECR enhanced scanning shows how images are used on Amazon EKS and Amazon
ECS. You can see when images were last used and identify how many clusters use each image.

Enhanced scanning API Version 2015-09-21 97

https://docs.aws.eu/inspector/latest/user/enable-disable-scanning-ecr.html
https://aws.eu/inspector/pricing/
https://docs.aws.eu//inspector/latest/user/inspector_regions.html

Amazon ECR User Guide

This information helps you prioritize vulnerability remediation for actively used images. You
can quickly determine which clusters might be affected by newly discovered vulnerabilities.
For more information about how to request these information and view the response, see
DescribelImageScanFindings.

« Amazon Inspector supports scanning for specific operating systems. For a full list, see Supported
operating systems - Amazon ECR scanning in the Amazon Inspector User Guide.

« Amazon Inspector uses a service-linked IAM role, which provides the permissions needed
to provide enhanced scanning for your repositories. The service-linked IAM role is created
automatically by Amazon Inspector when enhanced scanning is turned on for your private
registry. For more information, see Using service-linked roles for Amazon Inspector in the

Amazon Inspector User Guide.

« When you initially turn on enhanced scanning for your private registry, Amazon Inspector
only recognizes images pushed to Amazon ECR in the last 14 days, based on the image push
timestamp. Older images will have the SCAN_ELIGIBILITY_EXPIRED scan status. If you'd like
these images to be scanned by Amazon Inspector you should push them again to your repository.

« When enhanced scanning is turned on for your Amazon ECR private registry, repositories
matching the scan filters are scanned using enhanced scanning only. Any repositories that
don't match a filter will have an Off scan frequency and won't be scanned. Manual scans
using enhanced scanning aren't supported. For more information, see Filters to choose which

repositories are scanned in Amazon ECR.

« If you specify separate filters for scan on push and continuous scanning where multiple filters
match the same repository, then Amazon ECR enforces the continuous scanning filter over the
scan on push filter for that repository.

« When enhanced scanning is turned on, Amazon ECR sends an event to EventBridge when the
scan frequency for a repository is changed. Amazon Inspector emits events to EventBridge when
an initial scan is completed and when an image scan finding is created, updated, or closed.

Changing the enhanced scanning duration for images in Amazon
Inspector

After enabling enhanced scanning, Amazon ECR continually scans newly pushed images

for the configured duration. By default, Amazon Inspector monitors your repositories until
images are deleted or enhanced scanning is disabled. You can configure both push date
duration (up to Lifetime) and re-scan duration in the Amazon Inspector console to suit your
environment's needs. When the scan duration for a repository elapses, the scan status shows as

Changing the enhanced scanning duration API Version 2015-09-21 98

https://docs.aws.eu//AmazonECR/latest/APIReference/API_DescribeImageScanFindings.html
https://docs.aws.eu/inspector/latest/user/supported.html#supported-os
https://docs.aws.eu/inspector/latest/user/supported.html#supported-os
https://docs.aws.eu/inspector/latest/user/using-service-linked-roles.html

Amazon ECR User Guide

SCAN_ELIGIBILITY_EXPIRED. For more information about configuring re-scan duration settings
for Amazon ECR in Amazon Inspector, see Configuring the Amazon ECR re-scan duration in the

Amazon Inspector User Guide.

IAM permissions required for enhanced scanning in Amazon ECR

Amazon ECR enhanced scanning requires an Amazon Inspector service-linked 1AM role and that the
IAM principal enabling and using enhanced scanning has permissions to call the Amazon Inspector
APIs needed for scanning. The Amazon Inspector service-linked 1AM role is created automatically
by Amazon Inspector when enhanced scanning is turned on for your private registry. For more
information, see Using service-linked roles for Amazon Inspector in the Amazon Inspector User
Guide.

The following IAM policy grants the required permissions for enabling and using enhanced
scanning. It includes the permission needed for Amazon Inspector to create the service-linked
IAM role as well as the Amazon Inspector API permissions needed to turned on and off enhanced
scanning and retrieve the scan findings.

JSON

"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"inspector2:Enable"”,
"inspector2:Disable",
"inspector2:ListFindings",
"inspector2:ListAccountPermissions",
"inspector2:ListCoverage"

1,

"Resource": "*"

"Effect": "Allow",
"Action": "iam:CreateServicelLinkedRole",
"Resource": "*",
"Condition": {
"StringEquals": {
"jam:AWSServiceName": [

Required IAM permissions API Version 2015-09-21 99

https://docs.aws.eu/inspector/latest/user/enable-disable-scanning-ecr.html#scan-duration-setting
https://docs.aws.eu/inspector/latest/user/using-service-linked-roles.html

Amazon ECR User Guide

"inspector2.amazonaws.com"

Configuring enhanced scanning for images in Amazon ECR

Configure enhanced scanning per Region for your private registry.

Verify that you have the proper IAM permissions to configure enhanced scanning. For information,
see |IAM permissions required for enhanced scanning in Amazon ECR.

AWS Management Console
To turn on enhanced scanning for your private registry

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
repositories.

2. From the navigation bar, choose the Region to set the scanning configuration for.

3. In the navigation pane, choose Private registry, and then choose Settings .

4. On the Scanning configuration page, for Scan type choose Enhanced scanning.

By default, when Enhanced scanning is selected, all of your repositories are continuously
scanned.

5. To choose specific repositories to continuously scan, clear the Continuously scan all
repositories box, and then define your filters:

/A Important

Filters with no wildcard will match all repository names that contain the filter.
Filters with wildcards (*) match on a repository name where the wildcard replaces
zero or more characters in the repository name. To see examples of how filters
behave, see the section called “Filter wildcards".

Configuring enhanced scanning API Version 2015-09-21 100

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

a. Enter a filter based on repository names, and then choose Add filter.

b. Decide which repositories to scan when an image is pushed:

» To scan all repositories on push, select Scan on push all repositories.

» To choose specific repositories to scan on push, enter a filter based on repository
names, and then choose Add filter.

6. Choose Save.

7. Repeat these steps in each Region in which you want to turn on enhanced scanning.

AWS CLI

Use the following AWS CLI command to turn on enhanced scanning for your private registry
using the AWS CLI. You can specify scan filters using the rules object.

» put-registry-scanning-configuration (AWS CLI)

The following example turns on enhanced scanning for your private registry. By default, when
no rules are specified, Amazon ECR sets the scanning configuration to continuous scanning
for all repositories.

aws ecr put-registry-scanning-configuration \
--scan-type ENHANCED \
--region us-east-2

The following example turns on enhanced scanning for your private registry and specifies
a scan filter. The scan filter in the example turns on continuous scanning for all repositories

with prod in its name.

aws ecr put-registry-scanning-configuration \
--scan-type ENHANCED \
--rules '[{"repositoryFiltexrs" : [{"filtexr":"prod","filtexType" :
"WILDCARD"}],"scanFrequency" : "CONTINUOUS_SCAN"}]1' \
--region us-east-2

Configuring enhanced scanning API Version 2015-09-21 101

https://docs.aws.eu/cli/latest/reference/ecr/put-registry-scanning-configuration.html

Amazon ECR User Guide

The following example turns on enhanced scanning for your private registry and specifies
multiple scan filters. The scan filters in the example turns on continuous scanning for all
repositories with prod in its name and turns on scan on push only for all other repositories.

aws ecr put-registry-scanning-configuration \

--scan-type ENHANCED \

--rules '[{"repositoryFiltexs" : [{"filtexr":"prod","filtexrType" :
"WILDCARD"}], "scanFrequency" : "CONTINUOUS_SCAN"},{"repositoryFilters" :
[{"filtex":"*","filtexType" : "WILDCARD"}],"scanFrequency" : "SCAN_ON_PUSH"}]1' \

--region us-west-2

EventBridge events sent for enhanced scanning in Amazon ECR

When enhanced scanning is turned on, Amazon ECR sends an event to EventBridge when the scan
frequency for a repository is changed. Amazon Inspector sends events to EventBridge when an
initial scan is completed and when an image scan finding is created, updated, or closed.

Event for a repository scan frequency change

When enhanced scanning is turned on for your registry, the following event is sent by Amazon ECR
when there is a change with a resource that has enhanced scanning turned on. This includes new
repositories being created, the scan frequency for a repository being changed, or when images are
created or deleted in repositories with enhanced scanning turned on. For more information, see
Scan images for software vulnerabilities in Amazon ECR.

"version": "Q",

"id": "@cl1l8352a-a4d4-6853-ef53-0abEXAMPLE",
"detail-type": "ECR Scan Resource Change",
"source": "aws.ecr",

"account": "123456789012",

"time": "2021-10-14T20:53:467Z",

"region": "us-east-1",
"resources": [],
"detail": {

"action-type": "SCAN_FREQUENCY_CHANGE",

"repositories": [{
"repository-name": "repository-1",
"repository-arn": "arn:aws:ecr:us-east-1:123456789012:repository/repository-1",
"scan-frequency": "SCAN_ON_PUSH",

EventBridge events API Version 2015-09-21 102

Amazon ECR User Guide

"previous-scan-frequency": "MANUAL"
},
{
"repository-name": "repository-2",
"repository-arn": "arn:aws:ecr:us-east-1:123456789012:repository/repository-2",

"scan-frequency": "CONTINUOUS_SCAN",
"previous-scan-frequency": "SCAN_ON_PUSH"
1,
{
"repository-name": "repository-3",
"repository-arn": "arn:aws:ecr:us-east-1:123456789012:repository/repository-3",
"scan-frequency": "CONTINUOUS_SCAN",
"previous-scan-frequency": "SCAN_ON_PUSH"

}
1,
"resource-type": "REPOSITORY",

"scan-type": "ENHANCED"

}
}

Event for an initial image scan (enhanced scanning)

When enhanced scanning is turned on for your registry, the following event is sent by Amazon
Inspector when the initial image scan is completed. The finding-severity-counts parameter
will only return a value for a severity level if one exists. For example, if the image contains no
findings at CRITICAL level, then no critical count is returned. For more information, see Scan
images for OS and programming language package vulnerabilities in Amazon ECR.

Event pattern:

"source": ["aws.inspector2"],
"detail-type": ["Inspector2 Scan"]

Example output:

"version": "Q",

"id": "739c@d3c-4f02-85c7-5a88-94a9EXAMPLE",
"detail-type": "Inspector2 Scan",

"source": "aws.inspector2",

EventBridge events API Version 2015-09-21 103

Amazon ECR User Guide

"account": "123456789012",

"time": "2021-12-03T18:03:16Z",

"region": "us-east-2",

"resources": [
"arn:aws:ecr:us-east-2:123456789012:repository/amazon/amazon-ecs-sample"

1,
"detail": {
"scan-status": "INITIAL_SCAN_COMPLETE",
"repository-name": "arn:aws:ecr:us-east-2:123456789012:repository/amazon/

amazon-ecs-sample",
"finding-severity-counts": {
"CRITICAL": 7,

"HIGH": 61,
"MEDIUM": 62,
"TOTAL": 158

},
"image-digest":
"sha256:36c7b282abd0186e01419f2e58743e1bf635808231049bbc9d77e5EXAMPLE",
"image-tags": [
"latest"

Event for an image scan finding update (enhanced scanning)

When enhanced scanning is turned on for your registry, the following event is sent by Amazon
Inspector when the image scan finding is created, updated, or closed. For more information, see
Scan images for OS and programming language package vulnerabilities in Amazon ECR.

Event pattern:

"source": ["aws.inspector2"],
"detail-type": ["Inspector2 Finding"]

Example output:

"version": "0Q",
"id": "42dbea55-45ad-b2b4-87a8-afaEXAMPLE",
"detail-type": "Inspector2 Finding",

EventBridge events API Version 2015-09-21 104

Amazon ECR User Guide

"source": "aws.inspector2",

"account": "123456789012",

"time": "2021-12-03T18:02:30Z",

"region": "us-east-2",

"resources": [

"arn:aws:ecr:us-east-2:123456789012:repository/amazon/amazon-ecs-sample/

sha256:36c7b282abd0186e01419f2e58743e1bf635808231049bbc9d77eEXAMPLE"

1,

"detail": {

"awsAccountId": "123456789012",

"description": "In libssh2 v1.9.0 and earlier versions, the SSH_MSG_DISCONNECT
logic in packet.c has an integer overflow in a bounds check, enabling an attacker to
specify an arbitrary (out-of-bounds) offset for a subsequent memory read. A crafted
SSH server may be able to disclose sensitive information or cause a denial of service
condition on the client system when a user connects to the server.",

"findingArn": "arn:aws:inspector2:us-east-2:123456789012:finding/

be674aaddd0f75ac632055EXAMPLE",

"firstObservedAt": "Dec 3, 2021, 6:02:30 PM",

"inspectorScore": 6.5,

"inspectorScoreDetails": {

"adjustedCvss": {
"adjustments": [],
"cvssSource": "REDHAT_CVE",
"score": 6.5,
"scoreSource": "REDHAT_CVE",
"scoringVector": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N",
"version": "3.0"

},

"lastObservedAt": "Dec 3, 2021, 6:02:30 PM",

"packageVulnerabilityDetails": {

"cvss": [
{

"baseScore": 6.5,
"scoringVector": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N",
"source": "REDHAT_CVE",

"version": "3.0"
.
{
"baseScore": 5.8,
"scoringVector": "AV:N/AC:M/Au:N/C:P/I:N/A:P",
"source": "NVD",
"version": "2.0"
.

EventBridge events API Version 2015-09-21 105

Amazon ECR User Guide

{
"baseScore": 8.1,
"scoringVector": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:H",
"source": "NVD",
"version": "3.1"
}

1,
"referenceUrls": [
"https://access.redhat.com/errata/RHSA-2020:3915"
1,
"source": "REDHAT_CVE",
"sourceUrl": "https://access.redhat.com/security/cve/CVE-2019-17498",
"vendorCreatedAt": "Oct 16, 2019, 12:00:00 AM",
"vendorSeverity": "Moderate",
"vulnerabilityId": "CVE-2019-17498",
"vulnerablePackages": [
{
"arch": "X86_64",
"epoch": 0,
"name": "libssh2",
"packageManager": "0S",
"release": "12.amzn2.2",
"sourcelLayerHash":
"sha256:72d97abdfae3b3c933ff41e39779cc72853d7bd9dc1e4800c5294dEXAMPLE",
"version": "1.4.3"

iy

"remediation": {
"recommendation": {
"text": "Update all packages in the vulnerable packages section to
their latest versions."
}
I
"resources": [
{
"details": {
"awsEcrContainerImage": {
"architecture": "amd64",
"imageHash":
"sha256:36c7b282abd0186e01419f2e58743e1bf635808231049bbc9d77e5EXAMPLE",
"imageTags": [
"latest"
1,

EventBridge events API Version 2015-09-21 106

Amazon ECR User Guide

"platform": "AMAZON_LINUX_2",

"pushedAt": "Dec 3, 2021, 6:02:13 PM",
"lastInUseAt": "Dec 3, 2021, 6:02:13 PM",
"inUseCount": 1,

"registry": "123456789012",
"repositoryName": '"amazon/amazon-ecs-sample"

iy

"id": "arn:aws:ecr:us-east-2:123456789012:repository/amazon/amazon-ecs-
sample/sha256:36c7b282abd0186e01419f2e58743e1bf635808231049bbc9d77EXAMPLE",

"partition": "N/A",

"region": "N/A",

"type": "AWS_ECR_CONTAINER_IMAGE"

1,

"severity": "MEDIUM",

"status": "ACTIVE",

"title": "CVE-2019-17498 - libssh2",
"type": "PACKAGE_VULNERABILITY",
"updatedAt": "Dec 3, 2021, 6:02:30 PM"

Retrieving the findings for enhanced scans in Amazon ECR

You can retrieve the scan findings for the last completed enhanced image scan, and then open the
findings in Amazon Inspector to see more detail. The software vulnerabilities that were discovered
are listed by severity based on the Common Vulnerabilities and Exposures (CVEs) database.

For troubleshooting details for some common issues when scanning images, see Troubleshooting

image scanning in Amazon ECR.

AWS Management Console
Use the following steps to retrieve image scan findings using the AWS Management Console.
To retrieve image scan findings

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

2. From the navigation bar, choose the Region where your repository exists.

3. In the navigation pane, choose Repositories .

Retrieving findings API Version 2015-09-21 107

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR

User Guide

4. On the Repositories page, choose the repository that contains the image to retrieve the

scan findings for.

5. On the Images page, under the Image tag column, select the image tag to retrieve the scan

findings.

6. To view more details in the Amazon Inspector console, choose the vulnerability name in the

Name column.

AWS CLI

Use the following AWS CLI command to retrieve image scan findings using the AWS CLI. You can
specify an image using the imageTag or imageDigest, both of which can be obtained using

the list-images CLI command.

 describe-image-scan-findings (AWS CLI)

The following example uses an image tag.

aws ecr describe-image-scan-findings \
--repository-name name \
--image-id imageTag=tag_name \
--region us-east-2

The following example uses an image digest.

aws ecr describe-image-scan-findings \
--repository-name name \
--image-id imageDigest=sha256_hash \
--region us-east-2

Scan images for OS vulnerabilities in Amazon ECR

(® Note

Neither AWS native nor Clair basic scanning is supported in this region.

Basic scanning

API Version 2015-09-21 108

https://docs.aws.eu/cli/latest/reference/ecr/list-images.html
https://docs.aws.eu/cli/latest/reference/ecr/describe-image-scan-findings.html

Amazon ECR User Guide

Amazon ECR provides two versions of basic scanning that use the Common Vulnerabilities and
Exposures (CVEs) database:

« AWS native basic scanning — Uses AWS native technology, which is now GA and recommended.
This improved basic scanning is designed to provide customers with better scanning results and
vulnerability detection across a broad set of popular operating systems. This allows customers to
further strengthen the security of their container images. All new customer registries are opted
into this improved version by default.

« Clair basic scanning — The previous basic scanning version, which uses the open source Clair
project (see Clair on GitHub). Clair is now deprecated and will no longer be supported as of
February 2, 2026.

Both AWS native and Clair basic scanning are supported in all regions listed in AWS Services by
Region, except that Clair is not supported for those that were added after September, 2024. See
Clair Deprecation for more information.

Amazon ECR uses the severity for a CVE from the upstream distribution source if available.
Otherwise, the Common Vulnerability Scoring System (CVSS) score is used. The CVSS score can be
used to obtain the NVD vulnerability severity rating. For more information, see NVD Vulnerability
Severity Ratings.

Both versions of Amazon ECR basic scanning support filters to specify which repositories to scan on
push. Any repositories that don't match a scan on push filter are set to the manual scan frequency
which means you must manually start the scan. An image can be scanned once per 24 hours.

The 24 hours includes the initial scan on push, if configured, and any manual scans. With basic
scanning, you can scan up to 100,000 images per 24 hours in a given registry. The 100,000 limit
includes both initial scan on push and manual scans, across both Clair and improved version of
basic scanning.

The last completed image scan findings can be retrieved for each image. When an image scan
is completed, Amazon ECR sends an event to Amazon EventBridge. For more information, see
Amazon ECR events and EventBridge.

Clair Deprecation

Clair in Amazon ECR is deprecated. Clair will still be available for use until February 2, 2026.
However, we strongly recommend that you transition your Clair use to AWS native basic scanning
as soon as possible. Here is what you should know about Clair Deprecation:

Clair Deprecation API Version 2015-09-21 109

https://github.com/quay/clair
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss

Amazon ECR User Guide

 Clair will not be supported in new regions as they are added and will no longer be supported in
any regions as of February 2, 2026.

« You will not be able to do any Clair scans starting February 2, 2026, and any scans you did before
then will not be available after that date. You will have to trigger a new scan of your images to
regenerate the scan findings after you switch to the new version.

» Before February 2, 2026 you can switch back and forth between Clair and native basic scanning.

« If you have Clair set up currently, you will automatically be switched to native basic scanning
starting February 2, 2026 if you don't do so before.

AWS Native basic scanning offers the following additional features over Clair scanning:

« When native basic scanning scans resources, it sources more than 50 data feeds to generate
findings for common vulnerabilities and exposures (CVEs). Examples of these sources include
vendor security advisories, data feeds, and threat intelligence feeds, as well as the National
Vulnerability Database (NVD) and MITRE.

« Native basic scanning updates vulnerability data from source feeds at least once daily.

« Scanning results and vulnerability detection are available across a broad set of popular operating
systems (see below).

To switch to the improved basic scanning, see instruction at Switching to the improved basic
scanning for images in Amazon ECR.

Operating system support for basic scanning and improved basic
scanning

As a security best practice and for continued coverage, we recommend that you continue to

use supported versions of an operating system. In accordance with vendor policy, discontinued
operating systems are no longer updated with patches and, in many cases, new security advisories
are no longer released for them. In addition, some vendors remove existing security advisories
and detections from their feeds when an affected operating system reaches the end of standard
support. After a distribution loses support from its vendor, Amazon ECR may no longer support
scanning it for vulnerabilities. Any findings that Amazon ECR does generate for a discontinued
operating system should be used for informational purposes only. Listed below are the current
supported operating systems and versions.

Operating system support for basic scanning and improved basic scanning API Version 2015-09-21 110

Amazon ECR User Guide

Operating System Version AWS native basic Clair basic

Alpine Linux (Alpine) 3.19

Yes Yes
Alpine Linux (Alpine) 3.20

Yes Yes
Alpine Linux (Alpine) 3.21

Yes No
Alpine Linux (Alpine) 3.22

Yes No
Alpine Linux (Alpine) 3.23

Yes No
AlmaLinux 8

Yes No
AlmaLinux 9

Yes No
AlmaLinux 10

Yes No
Amazon Linux 2 (AL2) AL2

Yes Yes
Amazon Linux AL2023
2023(AL2023) Yes Yes
Debian Server 11
(Bullseye) Yes Yes
Debian Server 12
(Bookworm) Yes Yes

Operating system support for basic scanning and improved basic scanning API Version 2015-09-21 111

Amazon ECR

User Guide

Operating System

Debian Server (Trixie)

Fedora

OpenSUSE Leap

Oracle Linux (Oracle)

Oracle Linux (Oracle)

Photon OS

Photon OS

Red Hat Enterprise

Linux (RHEL)

Red Hat Enterprise
Linux (RHEL)

Red Hat Enterprise
Linux (RHEL)

Rocky Linux

Rocky Linux

SUSE Linux Enterpris
e Server (SLES)

Version

13

41

15.6

10

15.6

AWS native basic

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Clair basic

No

No

No

Yes

Yes

No

No

Yes

Yes

No

No

No

No

Operating system support for basic scanning and improved basic scanning

API Version 2015-09-21 112

Amazon ECR User Guide

Operating System Version AWS native basic Clair basic
Ubuntu (Xenial) 16.04 (ESM)

Yes Yes
Ubuntu (Bionic) 18.04 (ESM)

Yes Yes
Ubuntu (Focal) 20.04 (LTS)

Yes Yes
Ubuntu (Jammy) 22.04 (LTS)

Yes Yes
Ubuntu (Noble 24.04
Numbat) Yes No
Ubuntu (Oracular 24.10
Oriole)) Yes No

Configuring basic scanning for images in Amazon ECR

By default, Amazon ECR turns on basic scanning for all private registries. As a result, unless you've

changed the scanning settings on your private registry there is no need to turn on basic scanning.

B

asic scanning uses the open source Clair project.

You can use the following steps to define one or more scan on push filters.

To turn on basic scanning for your private registry

1.

ik W

Open the Amazon ECR console at https://console.aws.amazon.com/ecr/private-registry/
repositories

From the navigation bar, choose the Region to set the scanning configuration for.

In the navigation pane, choose Private registry, Scanning.
On the Scanning configuration page, For Scan type choose Basic scanning.

By default all of your repositories are set for Manual scanning. You can optionally configure
scan on push by specifying Scan on push filters. You can set scan on push for all repositories

Configuring basic scanning API Version 2015-09-21 113

https://console.aws.amazon.com/ecr/private-registry/repositories
https://console.aws.amazon.com/ecr/private-registry/repositories

Amazon ECR User Guide

or individual repositories. For more information, see Filters to choose which repositories are

scanned in Amazon ECR.

@ Note

If scan on push is enabled for a repository, scans are also done on images that are
restored after being archived. No old scans will be available from the restored image.

Switching to the improved basic scanning for images in Amazon ECR

Amazon ECR provides enhanced container image scanning capabilities through improved version
of basic scanning that uses AWS native technology. This feature helps you identify software
vulnerabilities in your container images. The following procedure helps you to switch to this
improved version of basic scanning if you are using previous version of basic scanning that uses
CLAIR technology.

/A Important

For new users, your registries are automatically configured to use the AWS_NATIVE
scanning technology upon creation. There is no action for you to take. Amazon ECR
doesn't recommend reverting to the previous scanning technology CLAIR,which has been
deprecates. See Clair Deprecation for details

AWS Management Console
To turn on improved basic scanning for your private registry

1. Open the Amazon ECR console at https://console.aws.amazon.com/ecr/private-registry/

repositories
2. From the navigation bar, choose the Region to set the scanning configuration for.

In the navigation pane, choose Private registry, Features & Settings, Scanning.

4. On the Scanning configuration page, choose Opt in (recommended) to select improved
version of basic scanning.

5. By default all of your repositories are set for Manual scanning. You can optionally
configure scan on push by specifying Scan on push filters. You can set scan on push for all

Switching to the improved basic scanning API Version 2015-09-21 114

https://console.aws.amazon.com/ecr/private-registry/repositories
https://console.aws.amazon.com/ecr/private-registry/repositories

Amazon ECR User Guide

repositories or individual repositories. For more information, see Filters to choose which

repositories are scanned in Amazon ECR.

AWS CLI

Amazon ECR has basic scanning enabled for all private registries. Use the following commands
below to view your current basic scan type and to change your basic scan type.

« To retrieve the basic scan type version you are currently using.

aws ecr get-account-setting --name BASIC_SCAN_TYPE_VERSION

The parameter name is a required field. If you don't provide the name you will receive the
following error:

aws: error: the following arguments are required: --name

To change your basic scan type version from CLAIR to AWS_NATIVE. Once you change your
basic scan type version from CLAIR to AWS_NATIVE it's not recommended that you revert
back to CLAIR.

aws ecxr put-account-setting --name BASIC_SCAN_TYPE_VERSION --value value

Manually scanning an image for OS vulnerabilities in Amazon ECR

If your repositories aren't configured to scan on push, you can manually start image scans.
An image can be scanned once per 24 hours. The 24 hours includes the initial scan on push, if
configured, and any manual scans.

For troubleshooting details for some common issues when scanning images, see Troubleshooting

image scanning in Amazon ECR.

AWS Management Console
Use the following steps to start a manual image scan using the AWS Management Console.

1. Open the Amazon ECR console at https://console.aws.amazon.com/ecr/private-registry/
repositories

Manually scanning an image API Version 2015-09-21 115

https://console.aws.amazon.com/ecr/private-registry/repositories
https://console.aws.amazon.com/ecr/private-registry/repositories

Amazon ECR User Guide

2. From the navigation bar, choose the Region to create your repository in.

3. In the navigation pane, choose Repositories .
4. On the Repositories page, choose the repository that contains the image to scan.
5. On the Images page, select the image to scan and then choose Scan.

AWS CLI

 start-image-scan (AWS CLI)

The following example uses an image tag.

aws ecr start-image-scan --repository-name name --image-id imageTag=tag_name --
region us-east-2

The following example uses an image digest.

aws ecr start-image-scan --repository-name name --image-id imageDigest=sha256_hash
--region us-east-2

AWS Tools for Windows PowerShell

o Get-ECRImageScanFinding (AWS Tools for Windows PowerShell)

The following example uses an image tag.

Start-ECRImageScan -RepositoryName name -ImageId_ImageTag tag_name -Region us-
east-2 -Foxce

The following example uses an image digest.

Start-ECRImageScan -RepositoryName name -ImageId_ImageDigest sha256_hash -
Region us-east-2 -Foxce

Manually scanning an image API Version 2015-09-21 116

https://docs.aws.eu/cli/latest/reference/ecr/start-image-scan.html
https://docs.aws.eu/powershell/latest/reference/items/Start-ECRImageScan.html

Amazon ECR User Guide

Retrieving the findings for basic scans in Amazon ECR

You can retrieve the scan findings for the last completed basic image scan. The software

vulnerabilities that were discovered are listed by severity based on the Common Vulnerabilities and
Exposures (CVEs) database.

For troubleshooting details for some common issues when scanning images, see Troubleshooting

image scanning in Amazon ECR.

AWS

Management Console

Use the following steps to retrieve image scan findings using the AWS Management Console.

To retrieve image scan findings

1. Open the Amazon ECR console at https://console.aws.amazon.com/ecr/private-registry/
repositories

2. From the navigation bar, choose the Region to create your repository in.

3. Inthe navigation pane, choose Repositories .

4. On the Repositories page, choose the repository that contains the image to retrieve the
scan findings for.

5. On the Images page, under the Image tag column, select the image tag to retrieve the scan
findings.

AWS CLI

Use the following AWS CLI command to retrieve image scan findings using the AWS CLI. You can

specify an image using the imageTag or imageDigest, both of which can be obtained using

the list-images CLI command.

describe-image-scan-findings (AWS CLI)

The following example uses an image tag.

aws ecr describe-image-scan-findings --repository-name name --image-id
imageTag=tag_name --region us-east-2

The following example uses an image digest.

Retrieving findings API Version 2015-09-21 117

https://console.aws.amazon.com/ecr/private-registry/repositories
https://console.aws.amazon.com/ecr/private-registry/repositories
https://docs.aws.eu/cli/latest/reference/ecr/list-images.html
https://docs.aws.eu/cli/latest/reference/ecr/describe-image-scan-findings.html

Amazon ECR User Guide

aws ecr describe-image-scan-findings --repository-name name --image-id
imageDigest=sha256_hash --region us-east-2

AWS Tools for Windows PowerShell

o Get-ECRImageScanFinding (AWS Tools for Windows PowerShell)

The following example uses an image tag.

Get-ECRImageScanFinding -RepositoryName name -Imageld_ImageTag tag_name -
Region us-east-2

The following example uses an image digest.

Get-ECRImageScanFinding -RepositoxryName name -Imageld_ImageDigest sha256_hash -
Region us-east-2

Troubleshooting image scanning in Amazon ECR

The following are common image scan failures. You can view errors like this in the Amazon
ECR console by displaying the image details or through the APl or AWS CLI by using the
DescribeImageScanFindings API.

UnsupportedimageError

You may get an UnsupportedImageError error when attempting to perform a basic scan

on an image that was built using an operating system that Amazon ECR doesn't support basic
image scanning for. Amazon ECR supports package vulnerability scanning for major versions of
Amazon Linux, Amazon Linux 2, Debian, Ubuntu, CentOS, Oracle Linux, Alpine, and RHEL Linux
distributions. Once a distribution loses support from its vendor, Amazon ECR may no longer
support scanning it for vulnerabilities. Amazon ECR does not support scanning images built
from the Docker scratch image.

Troubleshooting image scanning API Version 2015-09-21 118

https://docs.aws.eu/powershell/latest/reference/items/Get-ECRImageScanFinding.html
https://hub.docker.com/_/scratch

Amazon ECR User Guide

/A Important

When using enhanced scanning, Amazon Inspector supports scanning for specific
operating systems and media types. For a full list, see Supported operating systems and
media types in the Amazon Inspector User Guide.

An UNDEFINED severity level is returned

You may receive a scan finding that has a severity level of UNDEFINED. The following are the
common causes for this:

» The vulnerability was not assigned a priority by the CVE source.

» The vulnerability was assigned a priority that Amazon ECR did not recognize.

To determine the severity and description of a vulnerability, you can view the CVE directly from
the source.

Understanding scan status SCAN_ELIGIBILITY_EXPIRED

When enhanced scanning using Amazon Inspector is enabled for your private registry and you are
viewing your scan vulnerabilities, you may see a scan status of SCAN_ELIGIBILITY_EXPIRED.
The following are the most common causes of this.

« When you initially turn on enhanced scanning for your private registry, Amazon Inspector
only recognizes images pushed to Amazon ECR in the last 30 days, based on the image push
timestamp. Older images will have the SCAN_ELIGIBILITY_EXPIRED scan status. If you'd like
these images to be scanned by Amazon Inspector you should push them again to your repository.

« If the ECR re-scan duration is changed in the Amazon Inspector console and that time elapses,
the scan status of the image is changed to inactive with a reason code of expired, and all
associated findings for the image are scheduled to be closed. This results in the Amazon ECR
console listing the scan status as SCAN_ELIGIBILITY_EXPIRED.

Understanding scan status SCAN_ELIGIBILITY_EXPIRED API Version 2015-09-21 119

https://docs.aws.eu/inspector/latest/user/enable-disable-scanning-ecr.html#ecr-supported-media
https://docs.aws.eu/inspector/latest/user/enable-disable-scanning-ecr.html#ecr-supported-media

Amazon ECR User Guide

Sync an upstream registry with an Amazon ECR private
registry

Using pull through cache rules, you can sync the contents of an upstream registry with your
Amazon ECR private registry.

Amazon ECR currently supports creating pull through cache rules for the following upstream
registries:

« Amazon ECR Public, Kubernetes container image registry, and Quay (doesn't require
authentication)

» Docker Hub, Microsoft Azure Container Registry, GitHub Container Registry, and GitLab Container
Registry (requires authentication with AWS Secrets Manager secret)

« Amazon ECR (requires authentication with AWS IAM role)

For GitLab Container Registry, Amazon ECR supports pull through cache only with GitLab's
Software as a Service (SaaS) offering. For more information about using GitLab's SaaS offering, see
GitLab.com.

For upstream registries that require authentication with secrets (such as Docker Hub), you must
store your credentials in an AWS Secrets Manager secret. You can use the Amazon ECR console to
create Secrets Manager secrets for each authenticated upstream registry. For more information
about creating a Secrets Manager secret using the Secrets Manager console, see Storing your
upstream repository credentials in an AWS Secrets Manager secret.

For Amazon ECR, you must create an IAM role if the upstream and downstream Amazon ECR
registries belong to different AWS account. For more information about creating an IAM role, see
IAM policies required for cross-account ECR to ECR pull through cache.

After you've created a pull through cache rule for the upstream registry, pull an image from

that upstream registry using your Amazon ECR private registry URI. Amazon ECR then creates

a repository and caches that image in your private registry. For subsequent pull requests of the
cached image with a given tag, Amazon ECR checks the upstream registry for a new version of the
image with that specific tag and attempts to update the image in your private registry at least once
every 24 hours.

API Version 2015-09-21 120

https://docs.gitlab.com/17.5/subscriptions/choosing_subscription/

Amazon ECR User Guide

Repository creation templates

Amazon ECR has added support for repository creation templates, which gives you the control to
specify initial configurations for new repositories created by Amazon ECR on your behalf using
pull through cache rules. Each template contains a repository namespace prefix which is used

to match new repositories to a specific template. Templates can specify the configuration for all
repository settings including resource-based access policies, tag immutability, encryption, and
lifecycle policies. The settings in a repository creation template are only applied during repository
creation and don't have any effect on existing repositories or repositories created using any other
method. For more information, see Templates to control repositories created during a pull through

cache, create on push, or replication action.

Considerations for using pull through cache rules

Consider the following when using Amazon ECR pull through cache rules.

» Creating pull through cache rules isn't supported in the following Regions.
« China (Beijing) (cn-north-1)
« China (Ningxia) (cn-northwest-1)
« AWS GovCloud (US-East) (us-gov-east-1)
« AWS GovCloud (US-West) (us-gov-west-1)

« AWS Lambda doesn't support pulling container images from Amazon ECR using a pull through
cache rule.

« When pulling images using pull through cache, the Amazon ECR FIPS service endpoints aren't
supported the first time an image is pulled. Using the Amazon ECR FIPS service endpoints work
on subsequent pulls though.

« When a cached image is pulled through the Amazon ECR private registry URI, the image pulls are
initiated by AWS IP addresses. This ensures that the image pull doesn't count against any pull
rate quotas implemented by the upstream registry.

« When a cached image is pulled through the Amazon ECR private registry URI, Amazon ECR
checks the upstream repository at least once every 24 hours to verify whether the cached image
is the latest version. If there is a newer image in the upstream registry, Amazon ECR attempts to
update the cached image. This timer is based off the last pull of the cached image.

 If Amazon ECR is unable to update the image from the upstream registry for any reason and the
image is pulled, the last cached image will still be pulled.

Repository creation templates API Version 2015-09-21 121

Amazon ECR User Guide

When creating the Secrets Manager secret that contains the upstream registry credentials, the
secret name must use the ecr-pullthroughcache/ prefix. The secret must also be in the same
account and Region that the pull through cache rule is created in.

When a multi-architecture image is pulled using a pull through cache rule, the manifest list
and each image referenced in the manifest list are pulled to the Amazon ECR repository. If you
only want to pull a specific architecture, you can pull the image using the image digest or tag
associated with the architecture rather than the tag associated with the manifest list.

Amazon ECR uses a service-linked IAM role, which provides the permissions needed for Amazon
ECR to create the repository, retrieve the Secrets Manager secret value for authentication, and
push the cached image on your behalf. The service-linked IAM role is created automatically when
a pull through cache rule is created. For more information, see Amazon ECR service-linked role
for pull through cache.

By default, the IAM principal pulling the cached image has the permissions granted to them
through their IAM policy. You may use the Amazon ECR private registry permissions policy
to further scope the permissions of an IAM entity. For more information, see Using registry
permissions.

Amazon ECR repositories created using the pull through cache workflow are treated like any

other Amazon ECR repository. All repository features, such as replication and image scanning are
supported.

When Amazon ECR creates a new repository on your behalf using a pull through cache action,
the following default settings are applied to the repository unless there is a matching repository
creation template. You can use a repository creation template to define the settings applied to
repositories created by Amazon ECR on your behalf. For more information, see Templates to
control repositories created during a pull through cache, create on push, or replication action.

« Tag immutability — Tag immutability specifies whether image tags can be overwritten.
By default, image tags are mutable (can be overwritten). You can modify tag behavior by
configuring tag exclusion filters in either the Mutable tag exclusion text box when Mutable is
selected, or the Immutable tag exclusion text box when Immutable is selected.

« Encryption — The default AES256 encryption is used.

» Repository permissions — Omitted, no repository permissions policy is applied.
« Lifecycle policy — Omitted, no lifecycle policy is applied.

» Resource tags — Omitted, no resource tags are applied.

Turning on image tag immutability for repositories using a pull through cache rule will prevent
Amazon ECR from updating images using the same tag.

Considerations for using pull through cache rules API Version 2015-09-21 122

Amazon ECR User Guide

o When an image is pulled using the pull through cache rule for the first time a route to the
internet may be required. There are certain circumstances in which a route to the internet is
required so it's best to set up a route to avoid any failures. Thus, if you've configured Amazon ECR
to use an interface VPC endpoint using AWS PrivateLink then you need to ensure the first pull
has a route to the internet. One way to do this is to create a public subnet in the same VPC, with
an internet gateway, and then route all outbound traffic to the internet from their private subnet
to the public subnet. Subsequent image pulls using the pull through cache rule don't require
this. For more information, see Example routing options in the Amazon Virtual Private Cloud User
Guide.

IAM permissions required to sync an upstream registry with an
Amazon ECR private registry

In addition to the Amazon ECR API permissions needed to authenticate to a private registry and to
push and pull images, the following additional permissions are needed to use pull through cache
rules effectively.

« ecr:CreatePullThroughCacheRule - Grants permission to create a pull through cache rule.
This permission must be granted via an identity-based IAM policy.

« ecr:BatchImportUpstreamImage — Grants permission to retrieve the external image and
import it to your private registry. This permission can be granted by using the private registry
permissions policy, an identity-based IAM policy, or by using the resource-based repository
permissions policy. For more information about using repository permissions, see Private
repository policies in Amazon ECR.

« ecr:CreateRepository - Grants permission to create a repository in a private registry.
This permission is required if the repository storing the cached images doesn't already exist.
This permission can be granted by either an identity-based IAM policy or the private registry
permissions policy.

Using registry permissions

Amazon ECR private registry permissions may be used to scope the permissions of individual IAM
entities to use pull through cache. If an IAM entity has more permissions granted by an IAM policy
than the registry permissions policy is granting, the IAM policy takes precedence. For example, if
user has ecr: * permissions granted, no additional permissions are needed at the registry level.

Required IAM permissions API Version 2015-09-21 123

https://docs.aws.eu/vpc/latest/userguide/route-table-options.html

Amazon ECR User Guide

To create a private registry permissions policy (AWS Management Console)

1.
2.

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region to configure your private registry permissions
statement in.

In the navigation pane, choose Private registry, Registry permissions.
On the Registry permissions page, choose Generate statement.

For each pull through cache permissions policy statement you want to create, do the
following.

a. For Policy type, choose Pull through cache policy.

b. For Statement id, provide a name for the pull through cache statement policy.

c. For IAM entities, specify the users, groups, or roles to include in the policy.

d. For Repository namespace, select the pull through cache rule to associate the policy with.

e. For Repository names, specify the repository base name to apply the rule for. For
example, if you want to specify the Amazon Linux repository on Amazon ECR Public, the
repository name would be amazonlinux.

To create a private registry permissions policy (AWS CLI)

Use the following AWS CLI command to specify the private registry permissions using the AWS CLI.

1.

Create a local file named ptc-registry-policy. json with the contents of your registry
policy. The following example grants the ecr-pull-through-cache-user permission to
create a repository and pull an image from Amazon ECR Public, which is the upstream source
associated with the previously created pull through cache rule.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "PullThroughCacheFromReadOnlyRole",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111122223333:user/ecr-pull-through-cache-user"

Using registry permissions API Version 2015-09-21 124

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

},

"Action": [
"ecxr:CreateRepository",
"ecxr:BatchImportUpstreamImage"

1,

"Resource": "arn:aws:ecr:us-east-1:111122223333:repository/ecr-public/

/A Important

The ecr-CreateRepository permission is only required if the repository storing
the cached images doesn't already exist. For example, if the repository creation action
and the image pull actions are being done by separate IAM principals such as an
administrator and a developer.

2. Use the put-registry-policy command to set the registry policy.

aws ecr put-registry-policy \
--policy-text file://ptc-registry.policy.json

Next steps

Once you are ready to start using pull through cache rules, the following are the next steps.

» Create a pull through cache rule. For more information, see Creating a pull through cache rule in
Amazon ECR.

» Create a repository creation template. A repository creation template gives you control to define
the settings to use for new repositories created by Amazon ECR on your behalf during a pull
through cache action. For more information, see Templates to control repositories created during

a pull through cache, create on push, or replication action.

Next steps API Version 2015-09-21 125

https://docs.aws.eu/cli/latest/reference/ecr/put-registry-policy.html

Amazon ECR User Guide

Setting up permissions for cross-account ECR to ECR PTC

The Amazon ECR to Amazon ECR (ECR to ECR) pull through cache feature enables automatic
synchronization of images between Regions, AWS accounts, or both. With ECR to ECR PTC, you can
push images to your primary Amazon ECR registry and configure a pull through cache rule to cache
images in downstream Amazon ECR registries.

IAM policies required for cross-account ECR to ECR pull through cache

To cache images between Amazon ECR registries across different AWS accounts, create an IAM
role in the downstream account and configure the policies in this section to provide the following
permissions:

« Amazon ECR needs permissions to pull images from the upstream Amazon ECR registry on your
behalf. You can grant these permissions by creating an IAM role and then specifying it in your
pull through cache rule.

» The upstream registry owner must also grant the cache registry owner with the required
permissions to pull the images in to the resource policies.

Policies

» Creating an IAM role to define the pull through cache permissions

» Creating a Trust policy for the IAM role

» Creating a resource policy in the upstream Amazon ECR registry

Creating an IAM role to define the pull through cache permissions

The following example shows a permissions policy that grants an IAM role permission to pull
images from the upstream Amazon ECR registry on your behalf. When Amazon ECR assumes the
role, it receives the permissions specified in this policy.

JSON

"Version'":"2012-10-17",
"Statement": [
{

Setting up permissions for cross-account ECR to ECR PTC API Version 2015-09-21 126

Amazon ECR User Guide

"Sid": "VisualEditox0",

"Effect": "Allow",

"Action": [
"ecr:GetDownloadUrlForLayer",
"ecr:GetAuthorizationToken",
"ecx:BatchImportUpstreamImage",
"ecr:BatchGetImage",
"ecr:GetImageCopyStatus",
"ecr:InitiatelLayerUpload",
"ecr:UploadLayexPart",
"ecxr:CompletelLayerUpload",
"ecr:PutImage"

1,

"Resource": "*"

Creating a Trust policy for the IAM role

The following example shows a trust policy that identifies Amazon ECR pull through cache as the
AWS service principal that can assume the role.

JSON
{
"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "pullthroughcache.ecr.amazonaws.com"
}I
"Action": "sts:AssumeRole"
}
]
}

IAM policies required for cross-account ECR to ECR pull through cache API Version 2015-09-21 127

Amazon ECR User Guide

Creating a resource policy in the upstream Amazon ECR registry

The upstream Amazon ECR registry owner must also add a registry policy or a repository policy to
grant the downstream registry owner the required permissions to perform the following actions.

{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam: :444455556666:ro0t"
I
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer",
"ecr:BatchImportUpstreamImage",
"ecr:GetImageCopyStatus"”
1,
"Resource": "arn:aws:ecr:region:111122223333:repository/*"
}

Creating a pull through cache rule in Amazon ECR

For each upstream registry containing images that you want to cache in your Amazon ECR private
registry, you must create a pull through cache rule.

For upstream registries that require authentication with secrets, you must store the credentials
in a Secrets Manager secret. You can use an existing secret or create a new secret. You can create
the Secrets Manager secret in either the Amazon ECR console or the Secrets Manager console. To
create a Secrets Manager secret using the Secrets Manager console instead of the Amazon ECR
console, see Storing your upstream repository credentials in an AWS Secrets Manager secret.

Prerequisites

 Verify that you have the proper IAM permissions to create pull through cache rules. For
information, see IAM permissions required to sync an upstream registry with an Amazon ECR

private registry.

» For upstream registries that require authentication with secrets: If you want to use an existing
secret, verify that the Secrets Manager secret meets the following requirements:

« The name of the secret begins with ecr-pullthroughcache/. The AWS Management
Console only displays Secrets Manager secrets with the ecr-pullthroughcache/ prefix.

Creating a pull through cache rule API Version 2015-09-21 128

Amazon ECR User Guide

« The account and Region that the secret is in must match the account and Region that the pull
through cache rule is in.

To create a pull through cache rule (AWS Management Console)

The following steps show how to create a pull through cache rule and a Secrets Manager secret
using the Amazon ECR console. To create a secret using the Secrets Manager console, see Storing
your upstream repository credentials in an AWS Secrets Manager secret.

For Amazon ECR Public, Kubernetes container registry, or Quay

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region to configure your private registry settings in.
In the navigation pane, choose Private registry, Pull through cache.

On the Pull through cache configuration page, choose Add rule.

Lok W

On the Step 1: Specify a source page, for Registry, choose either Amazon ECR Public,
Kubernetes, or Quay from the list of upstream registries and then choose Next.

6. On the Step 2: Specify a destination page, for Amazon ECR repository prefix, specify the
repository namespace prefix to use when caching images pulled from the source public
registry and then choose Next. By default, a namespace is populated but a custom namespace
can be specified as well.

7. On the Step 3: Review and create page, review the pull through cache rule configuration and
then choose Create.

8. Repeat the previous step for each pull through cache you want to create. The pull through
cache rules are created separately for each Region.

For Docker Hub

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region to configure your private registry settings in.
In the navigation pane, choose Private registry, Pull through cache.

On the Pull through cache configuration page, choose Add rule.

Lok W

On the Step 1: Specify a source page, for Registry, choose Docker Hub, Next.

Using the AWS Management Console API Version 2015-09-21 129

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

6. On the Step 2: Configure authentication page, for Upstream credentials, you must store your
authentication credentials for Docker Hub in an AWS Secrets Manager secret. You can specify
an existing secret or use the Amazon ECR console to create a new secret.

a. To use an existing secret, choose Use an existing AWS secret. For Secret name use the
drop down to select your existing secret, and then choose Next.

® Note

The AWS Management Console only displays Secrets Manager secrets with names
using the ecr-pullthroughcache/ prefix. The secret must also be in the same
account and Region that the pull through cache rule is created in.

b. To create a new secret, choose Create an AWS secret, do the following, then choose Next.
i. For Secret name, specify a descriptive name for the secret. Secret names must
contain 1-512 Unicode characters.
ii. For Docker Hub email, specify your Docker Hub email.

iii. For Docker Hub access token, specify your Docker Hub access token. For more
information on creating a Docker Hub access token, see Create and manage access

tokens in the Docker documentation.

7. On the Step 3: Specify a destination page, for Amazon ECR repository prefix, specify the
repository namespace to use when caching images pulled from the source public registry and
then choose Next.

By default, a namespace is populated but a custom namespace can be specified as well.

8. On the Step 4: Review and create page, review the pull through cache rule configuration and
then choose Create.

9. Repeat the previous step for each pull through cache you want to create. The pull through
cache rules are created separately for each Region.

For GitHub Container Registry

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

2. From the navigation bar, choose the Region to configure your private registry settings in.

3. In the navigation pane, choose Private registry, Pull through cache.

Using the AWS Management Console API Version 2015-09-21 130

https://docs.docker.com/security/for-developers/access-tokens/
https://docs.docker.com/security/for-developers/access-tokens/
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

4. On the Pull through cache configuration page, choose Add rule.
5. Onthe Step 1: Specify a source page, for Registry, choose GitHub Container Registry, Next.

6. On the Step 2: Configure authentication page, for Upstream credentials, you must store your
authentication credentials for GitHub Container Registry in an AWS Secrets Manager secret.
You can specify an existing secret or use the Amazon ECR console to create a new secret.

a. To use an existing secret, choose Use an existing AWS secret. For Secret name use the
drop down to select your existing secret, and then choose Next.

(@ Note

The AWS Management Console only displays Secrets Manager secrets with names
using the ecr-pullthroughcache/ prefix. The secret must also be in the same
account and Region that the pull through cache rule is created in.

b. To create a new secret, choose Create an AWS secret, do the following, then choose Next.

i. For Secret name, specify a descriptive name for the secret. Secret names must
contain 1-512 Unicode characters.

ii. For GitHub Container Registry username, specify your GitHub Container Registry
username.

iii. For GitHub Container Registry access token, specify your GitHub Container Registry

access token. For more information on creating a GitHub access token, see Managing
your personal access tokens in the GitHub documentation.

7. On the Step 3: Specify a destination page, for Amazon ECR repository prefix, specify the
repository namespace to use when caching images pulled from the source public registry and
then choose Next.

By default, a namespace is populated but a custom namespace can be specified as well.

8. On the Step 4: Review and create page, review the pull through cache rule configuration and
then choose Create.

9. Repeat the previous step for each pull through cache you want to create. The pull through
cache rules are created separately for each Region.

For Microsoft Azure Container Registry

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

Using the AWS Management Console API Version 2015-09-21 131

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

LA

From the navigation bar, choose the Region to configure your private registry settings in.
In the navigation pane, choose Private registry, Pull through cache.
On the Pull through cache configuration page, choose Add rule.

On the Step 1: Specify a source page, do the following.

a. For Registry, choose Microsoft Azure Container Registry

b. For Source registry URL, specify the name of your Microsoft Azure container registry and
then choose Next.

/A Important

You only need to specify the prefix, as the .azurecr. io suffix is populated on
your behalf.

On the Step 2: Configure authentication page, for Upstream credentials, you must store
your authentication credentials for Microsoft Azure Container Registry in an AWS Secrets
Manager secret. You can specify an existing secret or use the Amazon ECR console to create a
new secret.

a. To use an existing secret, choose Use an existing AWS secret. For Secret name use the
drop down to select your existing secret, and then choose Next.

(@ Note

The AWS Management Console only displays Secrets Manager secrets with names
using the ecr-pullthroughcache/ prefix. The secret must also be in the same
account and Region that the pull through cache rule is created in.

b. To create a new secret, choose Create an AWS secret, do the following, then choose Next.
i. For Secret name, specify a descriptive name for the secret. Secret names must
contain 1-512 Unicode characters.

ii. For Microsoft Azure Container Registry username, specify your Microsoft Azure
Container Registry username.

iii. For Microsoft Azure Container Registry access token, specify your Microsoft Azure
Container Registry access token. For more information on creating an Microsoft Azure

Using the AWS Management Console API Version 2015-09-21 132

Amazon ECR User Guide

Container Registry access token, see Create token - portal in the Microsoft Azure
documentation.

On the Step 3: Specify a destination page, for Amazon ECR repository prefix, specify the
repository namespace to use when caching images pulled from the source public registry and
then choose Next.

By default, a namespace is populated but a custom namespace can be specified as well.

On the Step 4: Review and create page, review the pull through cache rule configuration and
then choose Create.

Repeat the previous step for each pull through cache you want to create. The pull through
cache rules are created separately for each Region.

For GitLab Container Registry

A

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region to configure your private registry settings in.
In the navigation pane, choose Private registry, Pull through cache.

On the Pull through cache configuration page, choose Add rule.

On the Step 1: Specify a source page, for Registry, choose GitLab Container Registry, Next.

On the Step 2: Configure authentication page, for Upstream credentials, you must store your
authentication credentials for GitLab Container Registry in an AWS Secrets Manager secret.
You can specify an existing secret or use the Amazon ECR console to create a new secret.

a. To use an existing secret, choose Use an existing AWS secret. For Secret name use the
drop down to select your existing secret, and then choose Next. For more information on
creating a Secrets Manager secret using the Secrets Manager console, see Storing your
upstream repository credentials in an AWS Secrets Manager secret.

® Note

The AWS Management Console only displays Secrets Manager secrets with names
using the ecr-pullthroughcache/ prefix. The secret must also be in the same
account and Region that the pull through cache rule is created in.

b. To create a new secret, choose Create an AWS secret, do the following, then choose Next.

Using the AWS Management Console API Version 2015-09-21 133

https://learn.microsoft.com/en-us/azure/container-registry/container-registry-repository-scoped-permissions#create-token---portal
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

i. For Secret name, specify a descriptive name for the secret. Secret names must
contain 1-512 Unicode characters.

ii. For GitLab Container Registry username, specify your GitLab Container Registry
username.

iii. For GitLab Container Registry access token, specify your GitLab Container Registry
access token. For more information on creating a GitLab Container Registry access
token, see Personal access tokens, Group access tokens, or Project access tokens, in

the GitLab documentation.

7. On the Step 3: Specify a destination page, for Amazon ECR repository prefix, specify the
repository namespace to use when caching images pulled from the source public registry and
then choose Next.

By default, a namespace is populated but a custom namespace can be specified as well.

8. On the Step 4: Review and create page, review the pull through cache rule configuration and
then choose Create.

9. Repeat the previous step for each pull through cache you want to create. The pull through
cache rules are created separately for each Region.

For Amazon ECR private registry within your AWS account

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

2. From the navigation bar, choose the Region in which you want to configure your private
registry settings.

3. Inthe navigation pane, choose Private registry, Pull through cache.
4. On the Pull through cache configuration page, choose Add rule.

5. On the Step 1: Specify upstream page, for Registry, choose Amazon ECR Private and This
account. For Region, select the Region for the upstream Amazon ECR registry, and then
choose Next.

6. On the Step 2: Specify namespaces page, for Cache namespace, choose whether to create
pull through cache repositories with A specific prefix or no prefix. If you select A specific
prefix, you must specify a prefix name to be used as part of the namespace for caching images
from the upstream registry.

Using the AWS Management Console API Version 2015-09-21 134

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.gitlab.com/ee/user/group/settings/group_access_tokens.html
https://docs.gitlab.com/ee/user/project/settings/project_access_tokens.html
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

7. For Upstream namespace, choose whether to pull from A specific prefix that exists in the
upstream registry. If you select no prefix, you can pull from any repository in the upstream
registry. Specify the upstream repository prefix if prompted, and then choose Next.

® Note

To learn more about customizing cache and upstream namespaces, see Customizing
repository prefixes for ECR to ECR pull through cache.

8. On the Step 3: Review and create page, review the pull through cache rule configuration and
then choose Create.

9. Repeat these steps for each pull through cache you want to create. The pull through cache
rules are created separately for each Region.

For Amazon ECR private registry from another AWS account

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region to configure your private registry settings in.
In the navigation pane, choose Private registry, Pull through cache.

On the Pull through cache configuration page, choose Add rule.

ok W

On the Step 1: Specify upstream page, for Registry, choose Amazon ECR Private and Cross
account. For Region, select the Region for the upstream Amazon ECR registry. For Account,
specify the AWS account ID for the upstream Amazon ECR registry, and then choose Next.

6. On the Step 2: Specify permissions page, for IAM role, select a role to be used for cross
account pull through cache access and then choose Create.

® Note

Make sure that you select the IAM role which uses the permissions created in IAM
policies required for cross-account ECR to ECR pull through cache.

7. On the Step 3: Specify namespaces page, for Cache namespace, choose whether to create
pull through cache repositories with A specific prefix or no prefix. If you select A specific
prefix, you must specify a prefix name to be used as part of the namespace for caching images
from the upstream registry.

Using the AWS Management Console API Version 2015-09-21 135

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

8. For Upstream namespace, choose whether to pull from A specific prefix that exists in the
upstream registry. If you select no prefix, you can pull from any repository in the upstream
registry. Specify the upstream repository prefix if prompted, and then choose Next.

® Note

To learn more about customizing cache and upstream namespaces, see Customizing
repository prefixes for ECR to ECR pull through cache.

9. On the Step 4: Review and create page, review the pull through cache rule configuration and
then choose Create.

10. Repeat these steps for each pull through cache you want to create. The pull through cache
rules are created separately for each Region.

To create a pull through cache rule (AWS CLI)

Use the create-pull-through-cache-rule AWS CLI command to create a pull through cache rule for

an Amazon ECR private registry. For upstream registries that require authentication with secrets,
you must store the credentials in an Secrets Manager secret. To create a secret using the Secrets
Manager console, see Storing your upstream repository credentials in an AWS Secrets Manager

secret.
The following examples are provided for each supported upstream registry.
For Amazon ECR Public

The following example creates a pull through cache rule for the Amazon ECR Public registry. It
specifies a repository prefix of ecr-public, which results in each repository created using the pull
through cache rule to have the naming scheme of ecr-public/upstream-repository-name.

aws ecr create-pull-through-cache-rule \
--ecr-repository-prefix ecr-public \
--upstream-registry-url public.ecr.aws \
--region us-east-2

Using the AWS CLI API Version 2015-09-21 136

https://docs.aws.eu/cli/latest/reference/ecr/create-pull-through-cache-rule.html

Amazon ECR User Guide

For Kubernetes Container Registry

The following example creates a pull through cache rule for the Kubernetes public registry. It
specifies a repository prefix of kubernetes, which results in each repository created using the pull
through cache rule to have the naming scheme of kubernetes/upstream-repository-name.

aws ecr create-pull-through-cache-rule \
--ecr-repository-prefix kubernetes \
--upstream-registry-url registry.k8s.io \
--region us-east-2

For Quay

The following example creates a pull through cache rule for the Quay public registry. It specifies
a repository prefix of quay, which results in each repository created using the pull through cache
rule to have the naming scheme of quay/upstream-repository-name.

aws ecr create-pull-through-cache-rule \
--ecr-repository-prefix quay \
--upstream-registry-url quay.io \
--region us-east-2

For Docker Hub

The following example creates a pull through cache rule for the Docker Hub registry. It specifies a
repository prefix of docker-hub, which results in each repository created using the pull through
cache rule to have the naming scheme of docker-hub/upstream-repository-name. You
must specify the full Amazon Resource Name (ARN) of the secret containing your Docker Hub
credentials.

aws ecr create-pull-through-cache-rule \

--ecr-repository-prefix docker-hub \

--upstream-registry-url registry-1.docker.io \

--credential-arn arn:aws:secretsmanager:us-east-2:111122223333:secret:ecr-
pullthroughcache/examplel234 \

--region us-east-2

For GitHub Container Registry

The following example creates a pull through cache rule for the GitHub Container Registry. It
specifies a repository prefix of github, which results in each repository created using the pull

Using the AWS CLI API Version 2015-09-21 137

Amazon ECR User Guide

through cache rule to have the naming scheme of github/upstream-repository-name. You
must specify the full Amazon Resource Name (ARN) of the secret containing your GitHub Container
Registry credentials.

aws ecr create-pull-through-cache-rule \

--ecr-repository-prefix github \

--upstream-registry-url ghcr.io \

--credential-arn arn:aws:secretsmanager:us-east-2:111122223333:secret:ecr-
pullthroughcache/examplel234 \

--region us-east-2

For Microsoft Azure Container Registry

The following example creates a pull through cache rule for the Microsoft Azure Container Registry.
It specifies a repository prefix of azure, which results in each repository created using the pull
through cache rule to have the naming scheme of azure/upstream-repository-name. You
must specify the full Amazon Resource Name (ARN) of the secret containing your Microsoft Azure
Container Registry credentials.

aws ecr create-pull-through-cache-xrule \

--ecr-repository-prefix azure \

--upstream-registry-url myregistry.azurecr.io \

--credential-arn arn:aws:secretsmanager:us-east-2:111122223333:secret:ecr-
pullthroughcache/examplel234 \

--region us-east-2

For GitLab Container Registry

The following example creates a pull through cache rule for the GitLab Container Registry. It
specifies a repository prefix of gitlab, which results in each repository created using the pull
through cache rule to have the naming scheme of gitlab/upstream-repository-name. You
must specify the full Amazon Resource Name (ARN) of the secret containing your GitLab Container
Registry credentials.

aws ecr create-pull-through-cache-rule \

--ecr-repository-prefix gitlab \

--upstream-registry-url registry.gitlab.com \

--credential-arn arn:aws:secretsmanager:us-east-2:111122223333:secret:ecr-
pullthroughcache/examplel234 \

--region us-east-2

Using the AWS CLI API Version 2015-09-21 138

Amazon ECR User Guide

For Amazon ECR private registry within your AWS account

The following example creates a pull through cache rule for the Amazon ECR private registry

for cross-Region within the same AWS account. It specifies a repository prefix of ecr, which
results in each repository created using the pull through cache rule to have the naming scheme of
ecr/upstream-repository-name.

aws ecr create-pull-through-cache-xule \
--ecr-repository-prefix ecr \
--upstream-registry-uxrl aws_account_id.dkx.ecx.region.amazonaws.com \
--region us-east-2

For Amazon ECR private registry from another AWS account

The following example creates a pull through cache rule for the Amazon ECR private registry

for cross-Region within the same AWS account. It specifies a repository prefix of ecr, which
results in each repository created using the pull through cache rule to have the naming scheme of
ecr/upstream-repository-name. You must specify the full Amazon Resource Name (ARN) of
the 1AM role with the permissions created in Creating a pull through cache rule in Amazon ECR.

aws ecr create-pull-through-cache-rule \
--ecr-repository-prefix ecr \
--upstream-registry-url aws_account_id.dkr.ecr.region.amazonaws.com \
--custom-xrole-arn arn:aws:iam::aws_account_id:xrole/example-role \
--region us-east-2

Next steps

After you create your pull through cache rules, the following are the next steps:

» Create a repository creation template. A repository creation template gives you control to define
the settings to use for new repositories created by Amazon ECR on your behalf during a pull
through cache action. For more information, see Templates to control repositories created during

a pull through cache, create on push, or replication action.

« Validate your pull through cache rules. When validating a pull through cache rule, Amazon ECR
makes a network connection with the upstream registry, verifies that it can access the Secrets
Manager secret containing the credentials for the upstream registry, and that authentication was
successful. For more information, see Validating pull through cache rules in Amazon ECR.

Next steps API Version 2015-09-21 139

Amazon ECR User Guide

« Start using your pull through cache rules. For more information, see Pulling an image with a pull

through cache rule in Amazon ECR.

Validating pull through cache rules in Amazon ECR

After you create a pull through cache rule, for upstream registries that require authentication
you can validate that the rule works properly. When validating a pull through cache rule, Amazon
ECR makes a network connection with the upstream registry, verifies that it can access the
Secrets Manager secret containing the credentials for the upstream registry, and verifies that
authentication was successful.

Before you start working with your pull through cache rules, verify that you have the proper IAM
permissions. For more information, see IAM permissions required to sync an upstream registry with

an Amazon ECR private registry.

To validate a pull through cache rule (AWS Management Console)

The following steps show how to validate a pull through cache rule using the Amazon ECR console.

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

2. From the navigation bar, choose the Region containing the pull through cache rule to validate.
3. Inthe navigation pane, choose Private registry, Pull through cache.
4

On the Pull through cache configuration page, select the pull through cache rule to validate.
Then, use the Actions drop down menu and choose View details.

5. On the pull through cache rule detail page, use the Actions drop down menu and choose
Verify authentication. Amazon ECR will display a banner with the result.

6. Repeat these steps for each pull through cache rule you want to validate.

To validate a pull through cache rule (AWS CLI)

The validate-pull-through-cache-rule AWS CLI command is used to validate a pull through cache
rule for an Amazon ECR private registry. The following example uses the ecr-public namespace

prefix. Replace that value with the prefix value for the pull through cache rule to validate.

aws ecr validate-pull-through-cache-rule \
--ecr-repository-prefix ecr-public \

Validating pull through cache rule API Version 2015-09-21 140

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
https://docs.aws.eu/cli/latest/reference/ecr/validate-pull-through-cache-rule.html

Amazon ECR User Guide

--region us-east-2

In the response, the isValid parameter indicates whether the validation was successful or not. If
true, Amazon ECR was able to reach the upstream registry and authentication was successful. If
false, there was an issue and validation failed. The failure parameter indicates the cause.

Pulling an image with a pull through cache rule in Amazon ECR

The following examples show the command syntax to use when pulling an image using a pull
through cache rule. If you receive an error pulling an upstream image using a pull through cache
rule, see Troubleshooting pull through cache issues in Amazon ECR for the most common errors

and how to resolve them.

Before you start working with your pull through cache rules, verify that you have the proper IAM
permissions. For more information, see IAM permissions required to sync an upstream registry with
an Amazon ECR private registry.

(@ Note

The following examples use the default Amazon ECR repository namespace values that the
AWS Management Console uses. Ensure that you use the Amazon ECR private repository
URI that you've configured.

For Amazon ECR Public

docker pull aws_account_id.dkr.ecr.region.amazonaws.com/ecr-public/repository_name/
image_name:tag

Kubernetes container registry

docker pull aws_account_id.dkr.ecr.region.amazonaws.com/kubernetes/repository_name/
image_name:tag

Quay

docker pull aws_account_id.dkr.ecr.region.amazonaws.com/quay/repository_name/
image_name:tag

Pulling an image with a pull through cache rule API Version 2015-09-21 141

Amazon ECR User Guide

Docker Hub

For Docker Hub official images:

docker pull aws_account_id.dkr.ecr.region.amazonaws.com/docker-hub/
library/image_name:tag

(® Note

For Docker Hub official images, the /1ibrary prefix must be included. For all other Docker
Hub repositories, you should omit the /library prefix.

For all other Docker Hub images:

docker pull aws_account_id.dkr.ecr.region.amazonaws.com/docker-hub/repository_name/
image_name:tag

GitHub Container Registry

docker pull aws_account_id.dkr.ecr.region.amazonaws.com/github/repository_name/
image_name:tag

Microsoft Azure Container Registry

docker pull aws_account_id.dkr.ecr.region.amazonaws.com/azure/repository_name/
image_name:tag

GitLab Container Registry

docker pull aws_account_id.dkr.ecr.region.amazonaws.com/gitlab/repository_name/
image_name:tag

Pulling an image with a pull through cache rule API Version 2015-09-21 142

Amazon ECR User Guide

Storing your upstream repository credentials in an AWS Secrets
Manager secret
When creating a pull through cache rule for an upstream repository that requires authentication,

you must store the credentials in a Secrets Manager secret. There may be a cost for using an
Secrets Manager secret. For more information, see AWS Secrets Manager pricing.

The following procedures walk you through how to create an Secrets Manager secret for each
supported upstream repository. You can optionally use the create pull through cache rule workflow
in the Amazon ECR console to create the secret instead of creating the secret using the Secrets
Manager console. For more information, see Creating a pull through cache rule in Amazon ECR.

Docker Hub

To create a Secrets Manager secret for your Docker Hub credentials (AWS Management
Console)

1. Open the Secrets Manager console at https://eusc-de-east-1.console.amazonaws-eusc.eu/
secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following.

a. For Secret type, choose Other type of secret.

b. In Key/value pairs, create two rows for your Docker Hub credentials. You can store up
to 65536 bytes in the secret.

i. For the first key/value pair, specify username as the key and your Docker Hub
username as the value.

ii. For the second key/value pair, specify accessToken as the key and your Docker
Hub access token as the value. For more information on creating a Docker Hub
access token, see Create and manage access tokens in the Docker documentation.

c. For Encryption key, keep the default aws/secretsmanager AWS KMS key value and
then choose Next. There is no cost for using this key. For more information, see Secret
encryption and decryption in Secrets Manager in the AWS Secrets Manager User Guide.

Storing your upstream repository credentials API Version 2015-09-21 143

https://aws.eu/secrets-manager/pricing/
https://eusc-de-east-1.console.amazonaws-eusc.eu/secretsmanager/
https://eusc-de-east-1.console.amazonaws-eusc.eu/secretsmanager/
https://docs.docker.com/security/for-developers/access-tokens/
https://docs.aws.eu/secretsmanager/latest/userguide/security-encryption.html
https://docs.aws.eu/secretsmanager/latest/userguide/security-encryption.html

Amazon ECR User Guide

/A Important

You must use the default aws/secretsmanager encryption key to encrypt
your secret. Amazon ECR doesn't support using a customer managed key (CMK)
for this.

4. On the Configure secret page, do the following.

a. Enter a descriptive Secret name and Description. Secret names must contain 1-512
Unicode characters and be prefixed with ecr-pullthroughcache/.

/A Important

The Amazon ECR AWS Management Console only displays Secrets Manager
secrets with names using the ecr-pullthroughcache/ prefix.

b. (Optional) In the Tags section, add tags to your secret. For tagging strategies, see Tag
Secrets Manager secrets in the AWS Secrets Manager User Guide. Don't store sensitive
information in tags because they aren't encrypted.

c. (Optional) In Resource permissions, to add a resource policy to your secret, choose
Edit permissions. For more information, see Attach a permissions policy to an Secrets
Manager secret in the AWS Secrets Manager User Guide.

d. (Optional) In Replicate secret, to replicate your secret to another AWS Region, choose
Replicate secret. You can replicate your secret now or come back and replicate it
later. For more information, see Replicate a secret to other Regions in the AWS Secrets
Manager User Guide.

e. Choose Next.

5. (Optional) On the Configure rotation page, you can turn on automatic rotation. You can
also keep rotation off for now and then turn it on later. For more information, see Rotate
Secrets Manager secrets in the AWS Secrets Manager User Guide. Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Secrets Manager returns to the list of secrets. If your new secret doesn't appear, choose the
refresh button.

Storing your upstream repository credentials API Version 2015-09-21 144

https://docs.aws.eu/secretsmanager/latest/userguide/managing-secrets_tagging.html
https://docs.aws.eu/secretsmanager/latest/userguide/managing-secrets_tagging.html
https://docs.aws.eu/secretsmanager/latest/userguide/auth-and-access_resource-policies.html
https://docs.aws.eu/secretsmanager/latest/userguide/auth-and-access_resource-policies.html
https://docs.aws.eu/secretsmanager/latest/userguide/create-manage-multi-region-secrets.html
https://docs.aws.eu/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.eu/secretsmanager/latest/userguide/rotating-secrets.html

Amazon ECR User Guide

GitHub Container Registry

To create an Secrets Manager secret for your GitHub Container Registry credentials (AWS
Management Console)

1. Open the Secrets Manager console at https://eusc-de-east-1.console.amazonaws-eusc.eu/

secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following.

a. For Secret type, choose Other type of secret.

b. In Key/value pairs, create two rows for your GitHub credentials. You can store up to
65536 bytes in the secret.

i. For the first key/value pair, specify username as the key and your GitHub
username as the value.

ii. For the second key/value pair, specify accessToken as the key and your GitHub
access token as the value. For more information on creating a GitHub access token,
see Managing your personal access tokens in the GitHub documentation.

c. For Encryption key, keep the default aws/secretsmanager AWS KMS key value and
then choose Next. There is no cost for using this key. For more information, see Secret
encryption and decryption in Secrets Manager in the AWS Secrets Manager User Guide.

/A Important

You must use the default aws/secretsmanager encryption key to encrypt
your secret. Amazon ECR doesn't support using a customer managed key (CMK)
for this.

4. On the Configure secret page, do the following:

a. Enter a descriptive Secret name and Description. Secret names must contain 1-512
Unicode characters and be prefixed with ecr-pullthroughcache/.

Storing your upstream repository credentials API Version 2015-09-21 145

https://eusc-de-east-1.console.amazonaws-eusc.eu/secretsmanager/
https://eusc-de-east-1.console.amazonaws-eusc.eu/secretsmanager/
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.aws.eu/secretsmanager/latest/userguide/security-encryption.html
https://docs.aws.eu/secretsmanager/latest/userguide/security-encryption.html

Amazon ECR

User Guide

e.

/A Important

The Amazon ECR AWS Management Console only displays Secrets Manager
secrets with names using the ecr-pullthroughcache/ prefix.

(Optional) In the Tags section, add tags to your secret. For tagging strategies, see Tag
Secrets Manager secrets in the AWS Secrets Manager User Guide. Don't store sensitive
information in tags because they aren't encrypted.

(Optional) In Resource permissions, to add a resource policy to your secret, choose
Edit permissions. For more information, see Attach a permissions policy to an Secrets
Manager secret in the AWS Secrets Manager User Guide.

(Optional) In Replicate secret, to replicate your secret to another AWS Region, choose
Replicate secret. You can replicate your secret now or come back and replicate it
later. For more information, see Replicate a secret to other Regions in the AWS Secrets
Manager User Guide.

Choose Next.

5. (Optional) On the Configure rotation page, you can turn on automatic rotation. You can
also keep rotation off for now and then turn it on later. For more information, see Rotate
Secrets Manager secrets in the AWS Secrets Manager User Guide. Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Secrets Manager returns to the list of secrets. If your new secret doesn't appear, choose the
refresh button.

Microsoft Azure Container Registry

To create an Secrets Manager secret for your Microsoft Azure Container Registry credentials
(AWS Management Console)

1. Open the Secrets Manager console at https://eusc-de-east-1.console.amazonaws-eusc.eu/
secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following.

a.

For Secret type, choose Other type of secret.

Storing your upstream repository credentials API Version 2015-09-21 146

https://docs.aws.eu/secretsmanager/latest/userguide/managing-secrets_tagging.html
https://docs.aws.eu/secretsmanager/latest/userguide/managing-secrets_tagging.html
https://docs.aws.eu/secretsmanager/latest/userguide/auth-and-access_resource-policies.html
https://docs.aws.eu/secretsmanager/latest/userguide/auth-and-access_resource-policies.html
https://docs.aws.eu/secretsmanager/latest/userguide/create-manage-multi-region-secrets.html
https://docs.aws.eu/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.eu/secretsmanager/latest/userguide/rotating-secrets.html
https://eusc-de-east-1.console.amazonaws-eusc.eu/secretsmanager/
https://eusc-de-east-1.console.amazonaws-eusc.eu/secretsmanager/

Amazon ECR User Guide

b. In Key/value pairs, create two rows for your Microsoft Azure credentials. You can store
up to 65536 bytes in the secret.

i. For the first key/value pair, specify username as the key and your Microsoft Azure
Container Registry username as the value.

ii. For the second key/value pair, specify accessToken as the key and your Microsoft
Azure Container Registry access token as the value. For more information
on creating an Microsoft Azure access token, see Create token - portal in the
Microsoft Azure documentation.

c. For Encryption key, keep the default aws/secretsmanager AWS KMS key value and
then choose Next. There is no cost for using this key. For more information, see Secret
encryption and decryption in Secrets Manager in the AWS Secrets Manager User Guide.

/A Important

You must use the default aws/secretsmanager encryption key to encrypt
your secret. Amazon ECR doesn't support using a customer managed key (CMK)
for this.

4. On the Configure secret page, do the following:

a. Enter a descriptive Secret name and Description. Secret names must contain 1-512
Unicode characters and be prefixed with ecr-pullthroughcache/.

/A Important

The Amazon ECR AWS Management Console only displays Secrets Manager
secrets with names using the ecr-pullthroughcache/ prefix.

b. (Optional) In the Tags section, add tags to your secret. For tagging strategies, see Tag
Secrets Manager secrets in the AWS Secrets Manager User Guide. Don't store sensitive
information in tags because they aren't encrypted.

c. (Optional) In Resource permissions, to add a resource policy to your secret, choose
Edit permissions. For more information, see Attach a permissions policy to an Secrets

Manager secret in the AWS Secrets Manager User Guide.

d. (Optional) In Replicate secret, to replicate your secret to another AWS Region, choose
Replicate secret. You can replicate your secret now or come back and replicate it

Storing your upstream repository credentials API Version 2015-09-21 147

https://learn.microsoft.com/en-us/azure/container-registry/container-registry-repository-scoped-permissions#create-token---portal
https://docs.aws.eu/secretsmanager/latest/userguide/security-encryption.html
https://docs.aws.eu/secretsmanager/latest/userguide/security-encryption.html
https://docs.aws.eu/secretsmanager/latest/userguide/managing-secrets_tagging.html
https://docs.aws.eu/secretsmanager/latest/userguide/managing-secrets_tagging.html
https://docs.aws.eu/secretsmanager/latest/userguide/auth-and-access_resource-policies.html
https://docs.aws.eu/secretsmanager/latest/userguide/auth-and-access_resource-policies.html

Amazon ECR User Guide

later. For more information, see Replicate a secret to other Regions in the AWS Secrets

Manager User Guide.
e. Choose Next.

5. (Optional) On the Configure rotation page, you can turn on automatic rotation. You can
also keep rotation off for now and then turn it on later. For more information, see Rotate
Secrets Manager secrets in the AWS Secrets Manager User Guide. Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Secrets Manager returns to the list of secrets. If your new secret doesn't appear, choose the
refresh button.
GitLab Container Registry

To create an Secrets Manager secret for your GitLab Container Registry credentials (AWS
Management Console)

1. Open the Secrets Manager console at https://eusc-de-east-1.console.amazonaws-eusc.eu/

secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following.

a. For Secret type, choose Other type of secret.

b. In Key/value pairs, create two rows for your GitLab credentials. You can store up to
65536 bytes in the secret.

i. For the first key/value pair, specify username as the key and your GitLab
Container Registry username as the value.

ii. For the second key/value pair, specify accessToken as the key and your GitLab
Container Registry access token as the value. For more information on creating a
GitLab Container Registry access token, see Personal access tokens, Group access
tokens, or Project access tokens, in the GitLab documentation.

c. For Encryption key, keep the default aws/secretsmanager AWS KMS key value and
then choose Next. There is no cost for using this key. For more information, see Secret

encryption and decryption in Secrets Manager in the AWS Secrets Manager User Guide.

Storing your upstream repository credentials API Version 2015-09-21 148

https://docs.aws.eu/secretsmanager/latest/userguide/create-manage-multi-region-secrets.html
https://docs.aws.eu/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.eu/secretsmanager/latest/userguide/rotating-secrets.html
https://eusc-de-east-1.console.amazonaws-eusc.eu/secretsmanager/
https://eusc-de-east-1.console.amazonaws-eusc.eu/secretsmanager/
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.gitlab.com/ee/user/group/settings/group_access_tokens.html
https://docs.gitlab.com/ee/user/group/settings/group_access_tokens.html
https://docs.gitlab.com/ee/user/project/settings/project_access_tokens.html
https://docs.aws.eu/secretsmanager/latest/userguide/security-encryption.html
https://docs.aws.eu/secretsmanager/latest/userguide/security-encryption.html

Amazon ECR User Guide

/A Important

You must use the default aws/secretsmanager encryption key to encrypt
your secret. Amazon ECR doesn't support using a customer managed key (CMK)
for this.

4. On the Configure secret page, do the following:

a. Enter a descriptive Secret name and Description. Secret names must contain 1-512
Unicode characters and be prefixed with ecr-pullthroughcache/.

/A Important

The Amazon ECR AWS Management Console only displays Secrets Manager
secrets with names using the ecr-pullthroughcache/ prefix.

b. (Optional) In the Tags section, add tags to your secret. For tagging strategies, see Tag
Secrets Manager secrets in the AWS Secrets Manager User Guide. Don't store sensitive
information in tags because they aren't encrypted.

c. (Optional) In Resource permissions, to add a resource policy to your secret, choose
Edit permissions. For more information, see Attach a permissions policy to an Secrets
Manager secret in the AWS Secrets Manager User Guide.

d. (Optional) In Replicate secret, to replicate your secret to another AWS Region, choose
Replicate secret. You can replicate your secret now or come back and replicate it
later. For more information, see Replicate a secret to other Regions in the AWS Secrets
Manager User Guide.

e. Choose Next.

5. (Optional) On the Configure rotation page, you can turn on automatic rotation. You can
also keep rotation off for now and then turn it on later. For more information, see Rotate
Secrets Manager secrets in the AWS Secrets Manager User Guide. Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Secrets Manager returns to the list of secrets. If your new secret doesn't appear, choose the
refresh button.

Storing your upstream repository credentials API Version 2015-09-21 149

https://docs.aws.eu/secretsmanager/latest/userguide/managing-secrets_tagging.html
https://docs.aws.eu/secretsmanager/latest/userguide/managing-secrets_tagging.html
https://docs.aws.eu/secretsmanager/latest/userguide/auth-and-access_resource-policies.html
https://docs.aws.eu/secretsmanager/latest/userguide/auth-and-access_resource-policies.html
https://docs.aws.eu/secretsmanager/latest/userguide/create-manage-multi-region-secrets.html
https://docs.aws.eu/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.eu/secretsmanager/latest/userguide/rotating-secrets.html

Amazon ECR User Guide

Customizing repository prefixes for ECR to ECR pull through
cache

Pull through cache rules support both the ecr repository prefix and the upstream repository
prefix. The ecr repository prefix is the repository namespace prefix in Amazon ECR cache registry
that's associated with the rule. All repositories using this prefix become pull through cache-enabled
repositories for the upstream registry defined in the rule. For example, a prefix of prod applies to
all repositories beginning with prod/. To apply a template to all repositories in your registry that
don't have an associated pull through cache rule, use ROOT as the prefix.

/A Important

There is always an assumed / applied to the end of the prefix. If you specify ecr-public
as the prefix, Amazon ECR treats that as ecr-public/.

The upstream repository prefix matches the upstream repository name. By default, it's set to
ROOT, which allows matching with any upstream repository. You can set the upstream repository
prefix only when the Amazon ECR repository prefix has a non-RO0T value.

The following table shows the mapping between cache repository names and upstream repository
names based on their prefix configurations in pull through cache rules.

Cache namespace Upstream namespace Mapping relationship (cache
repository — upstream
repository)

ecr-public ROOT (default) ecr-public/my-app/
imagel - my-app/im
agel

ecr-public/my-app/
image2 - my-app/im
age2

ROOT ROOT my-app/imagel - my-
app/imagel

Customizing repository prefixes API Version 2015-09-21 150

Amazon ECR User Guide

Cache namespace Upstream namespace Mapping relationship (cache
repository — upstream
repository)

team-a team-a team-a/myapp/imagel -
team-a/myapp/imagel

my-app upstream-app my-app/imagel -
upstream-app/imagel

Troubleshooting pull through cache issues in Amazon ECR

When pulling an upstream image using a pull through cache rule, the following are the most
COMMOonN errors you may receive.

Repository does not exist

An error indicating that the repository doesn't exist is most often caused by either the
repository not existing in your Amazon ECR private registry or the ecr:CreateRepository
permission not being granted to the IAM principal pulling the upstream image. To resolve this
error, you should verify that the repository URI in your pull command is correct, the required
IAM permissions are granted to the IAM principal pulling the upstream image, or that the
repository for the upstream image to be pushed to is created in your Amazon ECR private
registry before doing the upstream image pull. For more information about the required IAM
permissions, see IAM permissions required to sync an upstream registry with an Amazon ECR
private registry

The following is an example of this error.

Error response from daemon: repository 111122223333.dkr.ecr.us-east-1.amazonaws.com/
ecr-public/amazonlinux/amazonlinux not found: name unknown: The repository with
name 'ecr-public/amazonlinux/amazonlinux' does not exist in the registry with id
'111122223333"

Requested image not found

An error indicating that the image can't be found is most often caused by either the image
not existing in the upstream registry or the ecr:BatchImportUpstreamImage permission

Troubleshooting pull through cache issues API Version 2015-09-21 151

Amazon ECR User Guide

not being granted to the IAM principal pulling the upstream image but the repository already
being created in your Amazon ECR private registry. To resolve this error, you should verify

the upstream image and image tag name is correct and that it exists and the required IAM
permissions are granted to the IAM principal pulling the upstream image. For more information
about the required IAM permissions, see IAM permissions required to sync an upstream registry

with an Amazon ECR private registry.

The following is an example of this error.

Error response from daemon: manifest for 111122223333.dkr.ecr.us-
east-1.amazonaws.com/ecr-public/amazonlinux/amazonlinux:latest not found: manifest
unknown: Requested image not found

403 Forbidden when pulling from a Docker Hub repository

When pulling from a Docker Hub repository that is tagged as a Docker Official

Image, you must include the /1ibrary/ in the URI you use. For example,
aws_account_id.dkr.ecr.region.amazonaws.com/docker-hub/
library/image_name:tag. If you omit the /library/ for Docker Hub Official images,

a 403 Forbidden error will be returned when you attempt to pull the image using a pull
through cache rule. For more information, see Pulling an image with a pull through cache rule

in Amazon ECR.

The following is an example of this error.

Error response from daemon: failed to resolve reference "111122223333.dkr.ecr.us-
west-2.amazonaws.com/docker-hub/amazonlinux:2023": pulling from host
111122223333 .dkr.ecr.us-west-2.amazonaws.com failed with status code [manifests
2023]: 403 Forbidden

Troubleshooting pull through cache issues API Version 2015-09-21 152

Amazon ECR User Guide

Private image replication in Amazon ECR

You can configure your Amazon ECR private registry to support the replication of your repositories.
Amazon ECR supports both cross-Region and cross-account replication. For cross-account
replication to occur, the destination account must configure a registry permissions policy to allow
replication from the source registry to occur. For more information, see Private registry permissions
in Amazon ECR.

Topics

» Cross-account replication policy requirements

» Considerations for private image replication

» Private image replication examples for Amazon ECR

» Configuring private image replication in Amazon ECR

« Removing private image replication settings in Amazon ECR

Cross-account replication policy requirements

For cross-account ECR replication to work properly, you must understand which account needs
which policies configured. This section clarifies the policy requirements for both source and
destination accounts.

Policy configuration overview

Cross-account ECR replication requires policy configuration on the destination account only. The
source account does not require any special repository or registry policies.

» Source Account: Configure replication rules in the registry settings. No additional policies
required on source repositories.

« Destination Account: Configure a registry permissions policy to allow the source account to
replicate images.

Destination registry policy requirements

The destination account must configure a registry permissions policy that grants the source
account permission to perform the following actions:

Replication policy requirements API Version 2015-09-21 153

Amazon ECR User Guide

« ecr:ReplicateImage - Allows the source account to replicate images to the destination
registry

» ecr:CreateRepository - Allows ECR to automatically create repositories in the destination
registry if they don't already exist

/A Important

If you do not grant the ecr:CreateRepository permission, you must manually create
repositories with the same names in the destination account before replication can succeed.

Example destination registry policy:

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "AllowCrossAccountReplication",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111122223333:root"
}I
"Action": [
"ecr:ReplicateImage",
"ecr:CreateRepository"
]I
"Resource": "*"
}
]
}

Source account requirements

The source account only needs to:

» Configure replication rules in the registry settings to specify the destination account and regions

Source account requirements API Version 2015-09-21 154

Amazon ECR User Guide

» Ensure the IAM principal configuring replication has the necessary ECR permissions

No additional policies are required on source repositories. The source repositories do not need
repository policies that grant replication permissions.

Common misconceptions

The following are common misconceptions about ECR cross-account replication policies:

» Misconception: The source repository needs a policy allowing the destination account to
replicate images.

Reality: Source repositories do not need any special policies for replication.

» Misconception: Both source and destination accounts need registry policies.

Reality: Only the destination account needs a registry permissions policy.

» Misconception: Repository policies and registry policies are the same thing.

Reality: Repository policies control access to individual repositories, while registry policies
control registry-level operations like replication.

Troubleshooting replication failures

If cross-account replication is failing, check the following:

 Verify the destination account has a registry permissions policy configured

» Ensure the registry policy includes both ecr:ReplicateImage and ecr:CreateRepository
actions

» Confirm the source account ID is correctly specified in the destination registry policy
» Check that the destination repositories exist (if ecr: CreateRepository is not granted)

» Review CloudTrail logs for failed CreateRepository or ReplicateImage API calls

Considerations for private image replication

The following should be considered when using private image replication.

Common misconceptions API Version 2015-09-21 155

Amazon ECR User Guide

Only repository content pushed or restored to a repository after replication is configured is
replicated. Any preexisting content in a repository isn't replicated. If an image is restored after
replication is turned on, it will be replicated. If it is restored before replication is turned on, it
won't be replicated.

The repository name will remain the same across Regions and accounts when replication has
occurred. Amazon ECR doesn't support changing the repository name during replication.

The first time you configure your private registry for replication, Amazon ECR creates a service-
linked 1AM role on your behalf. The service-linked IAM role grants the Amazon ECR replication
service the permission it needs to create repositories and replicate images in your registry. For
more information, see Using service-linked roles for Amazon ECR.

For cross-account replication to occur, the private registry destination must grant permission
to allow the source registry to replicate its images. This is done by setting a private registry
permissions policy. For more information, see Private registry permissions in Amazon ECR.

If the permission policy for a private registry are changed to remove a permission, any in-
progress replications previously granted may complete.

For cross-Region replication to occur, both the source and destination accounts must be opted-
in to the Region prior to any replication actions occurring within or to that Region. For more
information, see Managing AWS Regions in the Amazon Web Services General Reference.

Cross-Region replication is not supported between AWS partitions. For example, a repository in
us-west-2 can't be replicated to cn-north-1. For more information about AWS partitions,
see ARN format in the AWS General Reference.

The replication configuration for a private registry may contain up to 25 unique destinations
across all rules, with a maximum of 10 rules total. Each rule may contain up to 100 filters. This
allows for specifying separate rules for repositories containing images used for production and
testing, for example.

The replication configuration supports filtering which repositories in a private registry are
replicated by specifying a repository prefix. For an example, see Example: Configuring cross-

Region replication using a repository filter.

A replication action only occurs once per image push or image restore. For example, if you

configured cross-Region replication from us-west-2to us-east-1andfromus-east-1to
us-east-2, an image pushed to us-west-2 replicates to only us-east-1, it doesn't replicate
again to us-east-2. This behavior applies to both cross-Region and cross-account replication.

The majority of images replicate in less than 30 minutes, but in rare cases the replication might
take longer.

Considerations for private image replication API Version 2015-09-21 156

https://docs.aws.eu/general/latest/gr/rande-manage.html
https://docs.aws.eu/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

Amazon ECR User Guide

» Registry replication doesn't perform any delete actions or archive actions. Replicated images and
repositories can be deleted or archived when they are no longer being used.

« If the image to be replicated is archived in the destination, then it will be restored in the
destination.

« When an image is archived in a source region, it will not be archived in a destination region
specified by the replication configuration.

» Repository policies, including IAM policies, and lifecycle policies aren't replicated and don't have
any effect other than on the repository they are defined for.

» Repository settings aren't replicated by default, you can replicate the repository settings using
repository creation templates. These settings include tag mutability, encryption, repository
permissions, and lifecycle policies. For more information about repository creation templates,
see Templates to control repositories created during a pull through cache, create on push, or

replication action.

« If tag immutability is enabled on a repository and an image is replicated that uses the same tag
as an existing image, the image is replicated but won't contain the duplicated tag. This might
result in the image being untagged.

Private image replication examples for Amazon ECR

The following examples show common use cases for private image replication. If you configure
replication by using the AWS CLI, you can use the JSON examples as a starting point when you
create your JSON file. If you configure replication by using the AWS Management Console, you will
see similar JSON when you review your replication rule on the Review and submit page.

Example: Configuring cross-Region replication to a single destination
Region

The following shows an example for configuring cross-Region replication within a single registry.
This example assumes that your account ID is 111122223333 and that you're specifying this
replication configuration in a Region other than us-west-2.

"rules": [

{

"destinations": [

{

Replication examples API Version 2015-09-21 157

Amazon ECR User Guide

"region": "us-west-2",
"registryId": "111122223333"

Example: Configuring cross-Region replication using a repository filter

The following shows an example for configuring cross-Region replication for repositories that
match a prefix name value. This example assumes your account ID is 111122223333 and that
you're specifying this replication configuration in a Region other than us-west-1 and have

repositories with a prefix of prod.

{
"rules": [{

"destinations": [{

"region": "us-west-1",
"registryId": "111122223333"

1,

"repositoryFilters": [{
"filter": "prod",
"filterType": "PREFIX_MATCH"

1]

1]
}

Example: Configuring cross-Region replication to multiple destination
Regions

The following shows an example for configuring cross-Region replication within a single registry.
This example assumes your account ID is 111122223333 and that you're specifying this
replication configuration in a Region other than us-west-1 or us-west-2.

"rules": [

{

"destinations": [

{

"region": "us-west-1",

Example: Configuring cross-Region replication using a repository filter API Version 2015-09-21 158

Amazon ECR User Guide

"registryId": "111122223333"

1,
{
"region": "us-west-2",
"registryId": "111122223333"
}

Example: Configuring cross-account replication

The following shows an example for configuring cross-account replication for your registry. This
example configures replication to the 444455556666 account and to the us-west-2 Region.

/A Important

For cross-account replication to occur, the destination account must configure a registry
permissions policy to allow replication to occur. For more information, see Private registry

permissions in Amazon ECR.

{
"rules": [
{
"destinations": [
{
"region": "us-west-2",
"registryId": "444455556666"
}
]
}
]
}

Example: Specifying multiple rules in a configuration

The following shows an example for configuring multiple replication rules for your registry. This
example configures replication for the 111122223333 account with one rule that replicates
repositories with a prefix of prod to the us-west-2 Region and repositories with a prefix of test

Example: Configuring cross-account replication API Version 2015-09-21 159

Amazon ECR User Guide

to the us-east-2 Region. A replication configuration may contain up to 10 rules, with each rule
specifying up to 25 destinations.

{
"rules": [{

"destinations": [{

"region": "us-west-2",
"registryId": "111122223333"

1,

"repositoryFilters": [{
"filter": "prod",
"filterType": "PREFIX_MATCH"

1]

.
{

"destinations": [{

"region": "us-east-2",
"registryId": "111122223333"

1,

"repositoryFilters": [{
"filter": "test",
"filterType": "PREFIX_MATCH"

1]

}
]
}

Example: Removing all replication settings
The following shows an example for removing all replication settings from your registry. To remove

replication settings, you must configure an empty rules array.

"rules": []

/A Important

Removing replication settings does not delete any previously replicated repositories or
images. You must manually delete replicated content if it is no longer needed.

Example: Removing all replication settings API Version 2015-09-21 160

Amazon ECR User Guide

Configuring private image replication in Amazon ECR

Configure replication per Region for your private registry. You can configure cross-Region
replication or cross-account replication.

For examples of how replication is commonly used, see Private image replication examples for
Amazon ECR.

To configure registry replication settings (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

repositories.
2. From the navigation bar, choose the Region to configure your registry replication settings for.

3. In the navigation pane, choose Private registry.

4. On the Private registry page, choose Settings and then choose Edit under Replication
configuration.

5. On the Replication page, choose Add replication rule.

6. On the Destination types page, choose whether to enable cross-Region replication, cross-
account replication, or both and then choose Next.

7. If cross-Region replication is enabled, then for Configure destination regions, choose one or
more Destination regions and then choose Next.

8. If cross-account replication is enabled, then for Cross-account replication, choose the cross-
account replication setting for the registry. For Destination account, enter the account ID
for the destination account and one or more Destination regions to replicate to. Choose
Destination account + to configure additional accounts as replication destinations.

/A Important

For cross-account replication to occur, the destination account must configure a
registry permissions policy to allow replication to occur. For more information, see
Private registry permissions in Amazon ECR.

9. (Optional) On the Add filters page, specify one or more filters for the replication rule and then
choose Add. Repeat this step for each filter you want to associate with the replication action.
A filter must be specified as a repository name prefix. If no filters are added, the contents of all
repositories are replicated. Choose Next once all filters have been added.

Configuring replication API Version 2015-09-21 161

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR

User Guide

10. On the Review and submit page, review the replication rule configuration and then choose

To configure registry replication settings (AWS CLI)

1.

Submit rule.

Create a JSON file containing the replication rules to define for your registry. A replication

configuration may contain up to 10 rules, with up to 25 unique destinations across all rules

and 100 filters per each rule. To configure cross-Region replication within your own account,

you specify your own account ID. For more examples, see Private image replication examples

for Amazon ECR.

{
"rules": [{
"destinations": [{
"region": "destination_region",
"registryId": "destination_accountId"
1,
"repositoryFilters": [{
"filter": "repository_ prefix_name",
"filterType": "PREFIX_MATCH"
1]
1]
}

Create a replication configuration for your registry.

aws ecr put-replication-configuration \

--replication-configuration file://replication-settings.json \

--region us-west-2

Confirm your registry settings.

aws ecr describe-registry \
--region us-west-2

Removing private image replication settings in Amazon ECR

To remove or disable replication settings for your private registry, you need to configure an empty

replication configuration. There is no dedicated removal command in the AWS CLI.

Removing replication

API Version 2015-09-21 162

Amazon ECR User Guide

To remove registry replication settings (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
repositories.
2. From the navigation bar, choose the Region to remove your registry replication settings from.

In the navigation pane, choose Private registry.

4. On the Private registry page, choose Settings and then choose Edit under Replication
configuration.

5. Remove all existing replication rules by choosing the delete option for each rule.

6. Choose Save to apply the empty replication configuration.

To remove registry replication settings (AWS CLI)

1. Create a JSON file with an empty rules array to remove all replication settings.

"rules": []

}

2. Apply the empty replication configuration to your registry.

aws ecr put-replication-configuration \
--replication-configuration file://empty-replication-settings.json \
--region us-west-2

3. Confirm that replication settings have been removed.

aws ecr describe-registry \
--region us-west-2

The output should show an empty replicationConfiguration with no rules.

/A Important

Removing replication settings does not delete any previously replicated repositories or
images. You must manually delete replicated content if it is no longer needed.

Removing replication API Version 2015-09-21 163

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

Templates to control repositories created during a pull
through cache, create on push, or replication action

Use Amazon ECR repository creation templates to define the settings for repositories created by
Amazon ECR on your behalf. The settings in a repository creation template are only applied during
repository creation and don't have any effect on existing repositories or repositories created using
any other method. Currently, repository creation templates can be used to apply settings during
repository creation for these features:

 Pull through cache
o Create on push

» Replication

How repository creation templates work

There are times when Amazon ECR needs to create a new private repository on your behalf. For
example:

« The first time you use a pull through cache rule to retrieve the contents of an upstream
repository and store it in your Amazon ECR private registry.

« When you push an image to a repository that does not yet exist.

« When you want Amazon ECR to replicate a repository to another region or account.

When there isn't a repository creation template that matches your pull through cache rule or
replicated repository, Amazon ECR uses the default settings for the new repository. These default
settings include turning off tag immutability, using AES-256 encryption, and not applying any
repository or lifecycle policies.

When there isn't a repository creation template that matches the target repository for an image
push, Amazon ECR will not create a repository with default settings.

Using a repository creation template gives you the ability to define the settings Amazon ECR
applies to new repositories created through the pull through cache, create on push, and replication
actions. You can define the tag immutability, encryption configuration, repository permissions,
lifecycle policy, and resource tags for the new repositories.

How it works API Version 2015-09-21 164

Amazon ECR User Guide

The following diagram shows the workflow that Amazon ECR uses when a repository creation
template is used.

>
Repository created by Template applied :E
Amazon ECR to matching repository v—
Create on push, D Repository
Pull through cache, or Y S
Replication v —

Repository creation template

The following describes each parameter in a repository creation template in detail.

Prefix

The Prefix is the repository namespace prefix to associate with the template. All repositories
created using this prefix will have the settings applied that are defined in this template. For
example, a prefix of prod would apply to all repositories beginning with prod/. Similarly, a
prefix of prod/team would apply to all repositories beginning with prod/team/. In a registry
containing two templates, if one template has the prefix "prod" and the other has the prefix
"prod/team", the template with the prefix "prod/team" will be applied to all repositories whose
names start with "prod/team/".

To apply a template to all repositories in your registry that don't have an associated creation
template, you can use ROOT as the prefix.

/A Important

There is always an assumed / applied to the end of the prefix. If you specify ecr -
public as the prefix, Amazon ECR treats that as ecr-public/. When using a pull
through cache rule, the repository prefix you specify during rule creation is what you
should specify as your repository creation template prefix as well.

Description

This template description is optional and is used to describe the purpose for the repository
creation template.

How it works API Version 2015-09-21 165

Amazon ECR User Guide

Applied For

The applied for setting determines which Amazon ECR-created repositories will be created
with this template. The valid values are PULL_THROUGH_CACHE, CREATE_ON_PUSH, and
REPLICATION. For example, the first time you use a pull through cache rule to retrieve the
contents of an upstream repository and store it in your Amazon ECR private registry. When
there isn't a repository creation template that matches your pull through cache rule, Amazon
ECR uses the default settings for the new repository.

Repository creation role

The repository creation role is an IAM role ARN that will be assumed by Amazon ECR when
creating and configuring repositories via repository creation templates. This role must be
provided when using repository tags and/or KMS in the template, otherwise the repository
creation will fail.

Image tag mutability

The tag mutability setting to use for repositories created using the template. If this parameter
is omitted, the default setting of MUTABLE will be used which will allow image tags to be
overwritten. This is the recommended setting to use for templates used for repositories created
by pull through cache actions. This ensures that Amazon ECR can update the cached images
when the tags are the same.

If IMMUTABLE is specified, all image tags within the repository will be immutable which will
prevent them from being overwritten.

Encryption configuration

/A Important

Dual-layer server-side encryption with AWS KMS (DSSE-KMS) is only available in the
AWS GovCloud (US) Regions.

The encryption configuration to use for repositories created using the template.

If you use the KMS encryption type, the contents of the repository will be encrypted using
server-side encryption with an AWS Key Management Service key stored in AWS KMS. When
you use AWS KMS to encrypt your data, you can either use the default AWS managed AWS
KMS key for Amazon ECR, or specify your own AWS KMS key, which you already created. You

How it works API Version 2015-09-21 166

Amazon ECR User Guide

can further choose to use Single-layer or Dual-layer encryption with AWS KMS. For more
information, see Encryption at rest . If you're using the KMS encryption type and using it with
cross region replication, you may need additional permissions. For more information, see
Creating a KMS key policy for replication.

If you use the AES256 encryption type, Amazon ECR uses server-side encryption with Amazon
S3-managed encryption keys which encrypts the images in the repository using an AES-256
encryption algorithm. For more information, see Protecting data using server-side encryption
with Amazon S3-managed encryption keys (SSE-S3) in the Amazon Simple Storage Service User
Guide.

Repository permissions

The repository policy to apply to repositories created using the template. A repository policy
uses resource-based permissions to control access to a repository. Resource-based permissions
let you specify which IAM users or roles have access to a repository and what actions they can
perform on it. By default, only the AWS account that created the repository has access to a
repository. You can apply a policy document to grant or deny additional permissions to your
repository. For more information, see Private repository policies in Amazon ECR.

Repository lifecycle policy

The lifecycle policy to use for repositories created using the template. A lifecycle policy
provides more control over the lifecycle management of images in a private repository. A
lifecycle policy contains one or more rules, where each rule defines an action for Amazon ECR.
This provides a way to automate the cleaning up of your container images by expiring images
based on age or count. For more information, see Automate the cleanup of images by using
lifecycle policies in Amazon ECR.

Resource tags

The resource tags are metadata to apply to the repository to help you categorize and organize
them. Each tag consists of a key and an optional value, both of which you define. This
permission needs to be applied on the destination registry policy if you are using repository
creation templates with cross region replication.

Creating a repository creation template in Amazon ECR

You can create a repository creation template to define the settings to use for repositories created
by Amazon ECR on your behalf during pull through cache, create on push, or replication actions.

Creating a repository creation template API Version 2015-09-21 167

https://docs.aws.eu/AmazonECR/latest/userguide/registry-permissions-create.html
https://docs.aws.eu/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.eu/AmazonS3/latest/dev/UsingServerSideEncryption.html

Amazon ECR User Guide

Once the repository creation template is created, all new repositories created will have the settings
applied. This doesn't have any effect on any previously created repositories.

When setting up a repository with templates, you have the option to specify KMS keys and
resource tags. If you intend to use KMS keys, resource tags, or a combination of both in one or
more templates, you need to:

» Create a custom policy for repository creation templates.

« Create an IAM role for repository creation templates.

Once configured, you can attach the custom role to specific templates in your registry.

IAM permissions for creating repository creation templates

The following permissions are needed for an IAM principal to manage repository creation
templates. These permission must be granted using an identity-based IAM policy.

o ecr:CreateRepositoryCreationTemplate — Grants permission to create a repository
creation template.

« ecr:UpdateRepositoryCreationTemplate — Grants permission to update a repository
creation template.

» ecr:DescribeRepositoryCreationTemplates — Grants permission to list repository
creation templates in a registry.

o ecr:DeleteRepositoryCreationTemplate — Grants permission to delete a repository
creation template.

» ecr:CreateRepository - Grants permission to create an Amazon ECR repository.

e ecr:PutLifecyclePolicy - Grants permission to create a lifecycle policy and apply it to a
repository. This permission is only required if the repository creation template includes a lifecycle

policy.

« ecr:SetRepositoryPolicy - Grants permission to create a permissions policy for a
repository. This permission is only required if the repository creation template includes a
repository policy.

« iam:PassRole - Grants permission to allow an entity to pass a role to a service or application.
This permission is necessary for services and applications that need to assume a role to perform
actions on your behalf.

IAM permissions for creating repository creation templates API Version 2015-09-21 168

Amazon ECR User Guide

Create a custom policy for repository creation templates

You can use the AWS Management Console to define a policy that will be subsequently associated
with an IAM role. This IAM role can then be utilized as a repository creation role when configuring a
repository creation template.

AWS Management Console
To use the JSON policy editor to create a custom policy for repository creation templates.

1. Signin to the AWS Management Console and open the IAM console at https://eusc-de-
east-1.console.amazonaws-eusc.eu/iam/.

In the navigation pane on the left, choose Policies.
Choose Create policy.

In the Policy editor section, choose the JSON option.

ok W

Enter the following policy in the JSON field.

JSON

"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"ecr:CreateRepository",
"ecr:ReplicateImage",
"ecr:TagResource"
]I

"Resource": "*"

"Effect": "Allow",
"Action": [
"kms :CreateGrant",
"kms :RetireGrant",
"kms :DescribeKey"

1,

"Resource": "*"

Create a custom policy API Version 2015-09-21 169

https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/
https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/

Amazon ECR User Guide

10.

}

Resolve any security warnings, errors, or general warnings generated during policy
validation, and then choose Next.

When you are finished adding permissions to the policy, choose Next.

On the Review and create page, type a Policy Name and a Description (optional) for
the policy that you are creating. Review Permissions defined in this policy to see the
permissions that are granted by your policy.

Choose Create policy to save your new policy.

Create a role to assign this policy for the creation template, see Create an IAM role for
repository creation templates.

Create an IAM role for repository creation templates

You can use the AWS Management Console to create a role that can be used by Amazon ECR when

you specify the repository creation role in a repository creation template that is using repository
tags or KMS in a template.

AWS Management Console

To create a role.

Sign in to the AWS Management Console and open the IAM console at https://eusc-de-

east-1.console.amazonaws-eusc.eu/iam/.

In the navigation pane of the console, choose Roles and then choose Create role.
Choose Custom trust policy role type.

In the Custom trust policy section, paste the custom trust policy listed below:

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {

Create an IAM role API Version 2015-09-21 170

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_policy-validator.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_policy-validator.html
https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/
https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/

Amazon ECR User Guide

"Service": "ecr.amazonaws.com"

3,

"Action": "sts:AssumeRole"

Choose Next.

From the Add permissions page, select the check box next to the custom policy you
created earlier from the list of Permissions policies and choose Next.

For Role name, enter a name for your role. Role names must be unique within your AWS
account. When a role name is used in a policy or as part of an ARN, the role name is case
sensitive. When a role name appears to customers in the console, such as during the sign-in
process, the role name is case insensitive. Because various entities might reference the role,
you can't edit the name of the role after it is created.

(Optional) For Description, enter a description for the new role.

Review the role and then choose Create role.

Create a repository creation template

Once you've completed the necessary prerequisites for your templates, you can proceed to create
the repository creation templates.

AWS Management Console

To create a repository creation template (AWS Management Console)

1.

ok W

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region to create the repository creation template in.
In the navigation pane, choose Private registry, Repository creation templates.
On the Repository creation templates page, choose Create template.

On the Step 1: Define template page, for Template details, choose A specific prefix to
apply the template to a specific repository namespace prefix or choose Any prefix in your
ECR registry to apply the template to all repositories that don't match any other template
in the Region.

Create a repository creation template API Version 2015-09-21 171

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

a. If you choose A specific prefix, for Prefix specify the repository namespace prefix to
apply the template to. There is always an assumed / applied to the end of the prefix.
For example, a prefix of prod would apply to all repositories beginning with prod/.
Similarly, a prefix of prod/team would apply to all repositories beginning with prod/
team/.

b. If you choose Any prefix in your ECR registry, the Prefix will be set to ROOT.

6. For Applied for, specify which Amazon ECR workflows this template will apply to. The
options are PULL_THROUGH_CACHE, CREATE_ON_PUSH, and REPLICATION.

7. For Template description, specify an optional description for the template and then
choose Next.

8. On the Step 2: Add repository creation configuration page, specify the repository setting

configuration to apply to repositories created using the template.

a. For Image tag mutability, choose the tag mutability setting to use. For more
information, see Preventing image tags from being overwritten in Amazon ECR.

« Mutable - Choose this option if you want image tags to be overwritten.
Recommended for repositories using pull through cache actions to ensure Amazon
ECR can update cached images. Additionally, to disable tag updates for a few
mutable tags, enter tag names or use wildcards (*) to match multiple similar tags in
the Mutable tag exclusion text box.

« Immutable - Choose this option if you want to prevent image tags
from being overwritten, and it applies to all tags and exclusions in the
repository when pushing an image with existing tag. Amazon ECR returns an
ImageTagAlreadyExistsException if you attempt to push an image with an
existing tag. Additionally, to enable tag updates for a few immutable tags, enter
tag names or use wildcards (*) to match multiple similar tags in the Immutable tag
exclusion text box.

b. For Encryption configuration, choose the encryption setting to use. For more
information, see Encryption at rest.

When AES-256 is selected, Amazon ECR uses server-side encryption with Amazon
Simple Storage Service-managed encryption keys which encrypts your data at rest
using an industry standard AES-256 encryption algorithm. This is offered at no
additional cost.

Create a repository creation template API Version 2015-09-21 172

Amazon ECR User Guide

When AWS KMS is selected, Amazon ECR uses server-side encryption with keys stored
in AWS Key Management Service (AWS KMS). When you use AWS KMS to encrypt your
data, you can either use the default AWS managed key, which is managed by Amazon
ECR, or specify your own AWS KMS key, which is referred to as a customer managed
key.

® Note

The encryption settings for a repository can't be changed once the repository is
created.

c. For Repository permissions, specify the repository permissions policy to apply to
repositories created using this template. You can optionally use the drop down to
select one of the JSON samples for the most common use cases. For more information,
see Private repository policies in Amazon ECR.

d. For Repository lifecycle policy, specify the repository lifecycle policy to apply to
repositories created using this template. You can optionally use the drop down to
select one of the JSON samples for the most common use cases. For more information,
see Automate the cleanup of images by using lifecycle policies in Amazon ECR.

e. For Repository AWS tags, specify the metadata, in the form of key-value pairs, to
associate with the repositories created using this template and then choose Next. For
more information, see Tagging a private repository in Amazon ECR.

f. For Repository creation role, select a custom IAM role from the drop-down menu to
be used for repository creation templates when using repository tags or KMS in the
template (see Create an IAM role for repository creation templates for details).Then
choose Next.

9. On the Step 3: Review and create page, review the settings you specified for the repository
creation template. Choose the Edit option to make changes. Choose Create once you're
done.

AWS CLI

The create-repository-creation-template AWS CLI command is used to create a repository
creation template for your private registry.

Create a repository creation template API Version 2015-09-21 173

https://docs.aws.eu/cli/latest/reference/ecr/create-repository-creation-template.html

Amazon ECR User Guide

To create a repository creation template (AWS CLI)

1. Use the AWS CLI to generate a skeleton for the create-repository-creation-template
command.

aws ecr create-repository-creation-template \
--generate-cli-skeleton

The output of the command displays the full syntax of the repository creation template.

{
"appliedFor":[""], // string array, but valid are PULL_THROUGH_CACHE,
CREATE_ON_PUSH, and REPLICATION
"prefix": "string",
"description": "string",
"imageTagMutability":
"MUTABLE" | "IMMUTABLE" | "IMMUTABLE_WITH_EXCLUSION" |"MUTABLE_WITH_EXCLUSION",
"imageTagMutabilityExclusionFilters": [
"filterType": "WILDCARD",
"filter": "string"
1,
"repositoryPolicy": "string",
"lifecyclePolicy": "string"
"encryptionConfiguration": {
"encryptionType": "AES256"|"KMS",
"kmsKey": "string"
1,
"resourceTags": [
{
"Key": "string",
"Value": "string"

1,
"customRoleArn": "string", // must be a valid IAM Role ARN

2. Create afile named repository-creation-template. json with the output of the
previous step. This template sets a KMS encryption key for any repository created under
prod/* with a repository policy that enables pushing and pulling images to future
repositories, sets a lifecycle policy that will expire images older than two weeks and sets a

Create a repository creation template API Version 2015-09-21 174

https://docs.aws.eu/cli/latest/reference/ecr/create-repository-creation-template.html

Amazon ECR User Guide

custom role that will let ECR access the KMS key and assign the resource tag examplekey
to future repositories.

{
"prefix": "prod",

"description": "For repositories cached from my PTC rule and in my
replication configuration that start with 'prod/'",

"appliedFor": ["PULL_THROUGH_CACHE", "CREATE_ON_PUSH", "REPLICATION"],

"encryptionConfiguration": {
"encryptionType": "KMS",

"kmsKey": "arn:aws:kms:us-west-2:111122223333:key/alb2c3d4-5678-90ab-

cdef-examplel1111"

},
"resourceTags": [
{
"Key": "examplekey",
"Value": "examplevalue"
}
1,

"imageTagMutability": "IMMUTABLE_WITH_EXCLUSION",
"imageTagMutabilityExclusionFilters": [

{

"filterType": "WILDCARD",

"filter": "latest"

},

{

"filterType": "WILDCARD",

"filter": "beta*"

}

]

"repositoryPolicy": "{\"Version\":\"2012-10-17\", \"Statement\":
[{\"Sid\":\"AllowPushPullIAMRole\",\"Effect\":\"Allow\",\"Principal\":{\"AWS\":
\"arn:aws:iam::111122223333:user\/IAMusername\"},\"Action\":[\"ecr:BatchGetImage
\",\"ecr:BatchCheckLayerAvailability\",\"ecr:CompletelLayerUpload\",
\"ecr:GetDownloadUrlForLayer\",\"ecr:InitiateLayerUpload\",\"ecr:PutImage\",
\"ecr:UploadLayerPart\"]1}1}",

"lifecyclePolicy": "{\"rules\":[{\"rulePriority\":1,\"description\":\"Expire

images older than 14 days\",\"selection\":{\"tagStatus\":\"any\",\"countType
\":\"sinceImagePushed\",\"countUnit\":\"days\",\"countNumber\":14},\"action\":
{\"type\":\"expire\"}}1}",
"customRoleArn": "arn:aws:iam::111122223333:role/myRole"

Create a repository creation template API Version 2015-09-21 175

Amazon ECR User Guide

3.

Use the following command to create a repository creation template. Ensure that you
specify the name of the configuration file created in the previous step in place of the
repository-creation-template. json in the following example.

aws ecr create-repository-creation-template \
--cli-input-json file://repository-creation-template.json

Updating a repository creation template

You can edit a repository creation template if you need to change its configurations. Once the

repository creation template is edited, the new configurations will apply to the existing template.

/A Important

This doesn't have any effect on any previously created repositories.

AWS Management Console

To edit a repository creation template (AWS Management Console)

1.

ok W

o

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region the repository creation template to edit is in.
In the navigation pane, choose Private registry, then choose Settings.
From the navigation bar, choose the Repository creation templates.

On the Repository creation templates page, select the repository creation template to
edit.

From the Actions dropdown menu, choose Edit.
Review and update the configuration settings.

Choose update to apply the new creation template configurations.

Updating repository creation templates API Version 2015-09-21 176

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

AWS CLI

To edit a repository creation template (AWS CLI)

Use the update-repository-creation-template command to update an existing repository
creation template. You must specify the prefix value of the template. The following
example updates a repository creation template with the prod prefix.

aws ecr update-repository-creation-template \
--prefix prod \
--image-tag-mutability="IMMUTABLE_WITH_EXCLUSION" \
--image-tag-mutability-exclusion-filters filterType=WILDCARD, filtex=latest

The output of the command displays the details of the updated repository creation
template.

Deleting a repository creation template in Amazon ECR

You can delete a repository creation template if you are finished using it. Once a repository
creation template is deleted, any newly created repositories under the associated prefix during a

pull through cache or replication action will inherit the default settings, unless another matching

template is found, see How repository creation templates work.

/A Important

This doesn't have any effect on any previously created repositories.

AWS Management Console

To delete a repository creation template (AWS Management Console)

]
2
3.
4

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region the repository creation template to delete is in.
In the navigation pane, choose Private registry, Repository creation templates.

On the Repository creation templates page, select the repository creation template to
delete.

From the Actions dropdown menu, choose Delete.

Deleting a repository creation template API Version 2015-09-21 177

https://docs.aws.eu/cli/latest/reference/ecr/update-repository-creation-template.html
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

AWS CLI
To delete a repository creation template (AWS CLI)

o Use the delete-repository-creation-template.html command to delete an existing
repository creation template. You must specify the prefix value of the template. The
following example deletes a repository creation template with the prod prefix.

aws ecr delete-repository-creation-template \
--prefix prod

The output of the command displays the details of the deleted repository creation
template.

Deleting a repository creation template API Version 2015-09-21 178

https://docs.aws.eu/cli/latest/reference/ecr/delete-repository-creation-template.html

Amazon ECR User Guide

Automate the cleanup of images by using lifecycle
policies in Amazon ECR

Amazon ECR lifecycle policies provide more control over the lifecycle management of images in
a private repository. A lifecycle policy contains one or more rules, and each rule defines an action
for Amazon ECR. Based on the expiration criteria in the lifecycle policy, images can be archived
or expired based on the criteria specified in the lifecycle policy within 24 hours. When Amazon
ECR performs an action based on a lifecycle policy, this action is captured as an event in AWS
CloudTrail. For more information, see Logging Amazon ECR actions with AWS CloudTrail.

How lifecycle policies work

A lifecycle policy consists of one or more rules that determine which images in a repository should
be expired. When considering the use of lifecycle policies, it's important to use the lifecycle policy
preview to confirm which images the lifecycle policy expires before applying it to a repository.
Once a lifecycle policy is applied to a repository, you should expect that images become expired
within 24 hours after they meet the expiration criteria. When Amazon ECR performs an action
based on a lifecycle policy, this is captured as an event in AWS CloudTrail. For more information,
see Logging Amazon ECR actions with AWS CloudTrail.

The following diagram shows the lifecycle policy workflow.

All rules are
Create lifecycle . |Save and run test .| evaluated and » a TTiz J"tﬁss eigenn .| Review the |Apply the rules as
policy test rules 7| lifecycle policy "l images are " pprule priority 7| results of the test | ™| a lifecycle policy
marked

1. Create one or more test rules.
2. Save the test rules and run the preview.

3. The lifecycle policy evaluator goes through all of the rules and marks the images that each rule
affects.

4. The lifecycle policy evaluator then applies the rules, based on rule priority, and displays which
images in the repository are set to be expired or archived. A lower rule priority number means
higher priority. For example, a rule with priority 1 takes precedence over a rule with priority 2.

How lifecycle policies work API Version 2015-09-21 179

Amazon ECR User Guide

5. Review the results of the test, ensuring that the images that are marked to be expired or
archived are what you intended.

6. Apply the test rules as the lifecycle policy for the repository.

7. Once the lifecycle policy is created, you should expect that images are expired or archived
within 24 hours after they meet the expiration criteria.

Lifecycle policy evaluation rules

The lifecycle policy evaluator is responsible for parsing the plaintext JSON of the lifecycle policy,
evaluating all rules, and then applying those rules based on rule priority to the images in the
repository. The following explains the logic of the lifecycle policy evaluator in more detail. For
examples, see Examples of lifecycle policies in Amazon ECR.

« When reference artifacts are present in a repository, Amazon ECR lifecycle policies automatically
expire or archive those artifacts within 24 hours of the deletion or archival of the subject image.

o All rules are evaluated at the same time, regardless of rule priority. After all rules are evaluated,
they are then applied based on rule priority.

« Animage is expired or archived by exactly one or zero rules.

« Animage that matches the tagging requirements of a rule cannot be expired or archived by a
rule with a lower priority.

« Rules can never mark images that are marked by higher priority rules, but can still identify them
as if they haven't been expired or archived.

» The set of all rules selecting a specific storage class must contain a unique set of prefixes.
« Only one rule selecting a specific storage class is allowed to select untagged images.

« If animage is referenced by a manifest list, it cannot be expired or archived without the manifest
list being deleted or archived first.

« Expiration is always ordered by pushed_at_time or transitioned_at_time and always
expires older images before newer ones. If an image was archived and then restored at any point
in the past, the image's last_activated_at is used instead of pushed_at_time.

A lifecycle policy rule may specify either tagPatternList or tagPrefixList, but not both.
However, a lifecycle policy may contain multiple rules where different rules use both pattern
and prefix lists. An image is successfully matched if all of the tags in the tagPatternList or
tagPrefixList value are matched against any of the image's tags.

Lifecycle policy evaluation rules API Version 2015-09-21 180

Amazon ECR User Guide

The tagPatternList or tagPrefixList parameters may only used if the tagStatus is
tagged.

When using tagPatternList, an image is successfully matched if it matches the wildcard filter.
For example, if a filter of prod* is applied, it would match image-tags whose name begins with
prod such as prod, prodl, or production-teaml. Similarly, if a filter of *prod* is applied, it
would match image-tags whose name contains prod such as repo-production or prod-team.

/A Important

There is a maximum limit of four wildcards (*) per string. For example,
["*test*1*2*3", "test*1*2*3*"] isvalid but ["test*1*2*3*4*5*6"] is invalid.

When using tagPrefixList, an image is successfully matched if all of the wildcard filters in
the tagPrefixList value are matched against any of the image's tags.

The countUnit parameter is only used if countType is sinceImagePushed,
sinceImagePulled, or sinceImageTransitioned.

With countType = imageCountMoreThan, images are sorted from youngest to oldest based
on pushed_at_time and then all images greater than the specified count are expired or
archived.

With countType = sincelImagePushed, all images whose pushed_at_time is older than the
specified number of days based on countNumber are expired or archived.

With countType = sinceImagePulled, all images whose last_recorded_pulltime is
older than the specified number of days based on countNumber are archived. If an image was
never pulled, the image's pushed_at_time is used instead of the 1last_recorded_pulltime.
If an image was archived and then restored at any point in the past, but never pulled

since the image was restored, the image's last_activated_at is used instead of the
last_recorded_pulltime.

With countType = sincelmageTransitioned, all archived images whose
last_archived_at is older than the specified number of days based on countNumber are
expired.

Expiration is always ordered by pushed_at_time and always expires older images before newer
ones.

Lifecycle policy evaluation rules API Version 2015-09-21 181

Amazon ECR User Guide

Creating a lifecycle policy preview in Amazon ECR

You can use a lifecycle policy preview to see the impact of a lifecycle policy on an image repository

before you apply it. It is considered best practice to do a preview before applying a lifecycle policy

to a repository.

(® Note

If you are using Amazon ECR replication to make copies of a repository across different
Regions or accounts, note that a lifecycle policy can only take an action on repositories in
the Region it was created in. Therefore, if you have replication turned on you may want to
create a lifecycle policy in each Region and account you are replicating your repositories to.

To create a lifecycle policy preview (AWS Management Console)

1.

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

repositories.
From the navigation bar, choose the Region that contains the repository on which to perform a
lifecycle policy preview.

In the navigation pane, under Private registry, choose Repositories.

On the Private repositories page, select a repository and that use the Actions drop down to
choose Lifecycle policies.

On the lifecycle policy rules page for the repository, choose Edit test rules, Create rule.

Specify the following details for each test lifecycle policy rule.

a. For Rule priority, type a number for the rule priority. The rule priority determines in what
order the lifecycle policy rules are applied. A lower number means higher priority. For
example, a rule with priority 1 takes precedence over a rule with priority 2.

b. For Rule description, type a description for the lifecycle policy rule.

c. For Image status, choose Tagged (wildcard matching), Tagged (prefix matching),
Untagged, or Any.

/A Important

If you specify multiple tags, only the images with all specified tags are selected.

Creating a lifecycle policy preview API Version 2015-09-21 182

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

d. If you chose Tagged (wildcard matching) for Image status, then for Specify tags for
wildcard matching, you can specify a list of image tags with a wildcard (*) on which to
take action with your lifecycle policy. For example, if your images are tagged as prod,
prodl, prod2, and so on, you would specify prod* to take action on all of them. If you
specify multiple tags, only the images with all specified tags are selected.

/A Important

There is a maximum limit of four wildcards (*) per string. For example,
["*test*1*2*3", "test*1*2*3*"]isvalid but ["test*1*2*3*4*5*6"] is
invalid.

e. If you chose Tagged (prefix matching) for Image status, then for Specify tags for prefix
matching, you can specify a list of image tags on which to take action with your lifecycle

policy.

f. For Match criteria, choose Days since image created, Days since last recorded pull time,
Days since image archived, or Image count and then specify a value.

g. For Rule action, choose either Expire or Archive.

h. Choose Save.
7. Create additional test lifecycle policy rules by repeating steps 5-7.
8. To run the lifecycle policy preview, choose Save and run test.

9. Under Image matches for test lifecycle rules, review the impact of your lifecycle policy
preview.

10. If you are satisfied with the preview results, choose Apply as lifecycle policy to create a
lifecycle policy with the specified rules. You should expect that after applying a lifecycle policy,
the affected images are expired or archived within 24 hours.

11. If you aren't satisfied with the preview results, you may delete one or more test lifecycle rules
and create one or more rules to replace them and then repeat the test.

Creating a lifecycle policy for a repository in Amazon ECR

Use a lifecycle policy to create a set of rules that expire or archive unused repository images. After
creating a lifecycle policy, the affected images are expired or archived within 24 hours.

Creating a lifecycle policy API Version 2015-09-21 183

Amazon ECR User Guide

® Note

If you are using Amazon ECR replication to make copies of a repository across different
Regions or accounts, note that a lifecycle policy can only take an action on repositories in
the Region it was created in. Therefore, if you have replication turned on you may want to
create a lifecycle policy in each Region and account you are replicating your repositories to.

Prerequisite

Best practice: Create a lifecycle policy preview to verify that the images expired or archived by your
lifecycle policy rules are what you intend. For instructions, see Creating a lifecycle policy preview in
Amazon ECR.

To create a lifecycle policy (AWS Management Console)

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

repositories.
2. From the navigation bar, choose the Region that contains the repository for which to create a
lifecycle policy.

In the navigation pane, under Private registry, choose Repositories.

4. On the Private repositories page, select a repository and that use the Actions drop down to
choose Lifecycle policies.

5. On the lifecycle policy rules page for the repository, choose Create rule.

6. Enter the following details for your lifecycle policy rule.

a. For Rule priority, type a number for the rule priority. The rule priority determines in what
order the lifecycle policy rules are applied. A lower rule priority number means higher
priority. For example, a rule with priority 1 takes precedence over a rule with priority 2.

b. For Rule description, type a description for the lifecycle policy rule.

c. For Image status, choose Tagged (wildcard matching), Tagged (prefix matching),
Untagged, or Any.

/A Important

If you specify multiple tags, only the images with all specified tags are selected.

Prerequisite API Version 2015-09-21 184

https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/repositories

Amazon ECR User Guide

d. If you chose Tagged (wildcard matching) for Image status, then for Specify tags for
wildcard matching, you can specify a list of image tags with a wildcard (*) on which to
take action with your lifecycle policy. For example, if your images are tagged as prod,
prodl, prod2, and so on, you would specify prod* to take action on all of them. If you
specify multiple tags, only the images with all specified tags are selected.

/A Important

There is a maximum limit of four wildcards (*) per string. For example,
["*test*1*2*3", "test*1*2*3*"]isvalid but ["test*1*2*3*4*5*6"] is
invalid.

e. If you chose Tagged (prefix matching)for Image status, then for Specify tags for prefix
matching, you can specify a list of image tags on which to take action with your lifecycle

policy.
f. For Match criteria, choose Days since image created, Days since last recorded pull time,
Days since image archived, or Image count and then specify a value.

g. For Rule action, choose either Expire or Archive.
h. Choose Save.

7. Create additional lifecycle policy rules by repeating steps 5-7.

To create a lifecycle policy (AWS CLI)

1. Obtain the name of the repository for which to create the lifecycle policy.

aws ecr describe-repositories

2. Create a local file named policy. json with the contents of the lifecycle policy. For lifecycle
policy examples, see Examples of lifecycle policies in Amazon ECR.

3. Create a lifecycle policy by specifying the repository name and reference the lifecycle policy
JSON file you created.

aws ecr put-lifecycle-policy \
--repository-name repository-name \
--lifecycle-policy-text file://policy.json

Prerequisite API Version 2015-09-21 185

Amazon ECR User Guide

Examples of lifecycle policies in Amazon ECR

The following are example lifecycle policies showing the syntax.

To see more information about policy properties, see Lifecycle policy properties in Amazon ECR.
For instructions about creating a lifecycle policy by using the AWS CLI, see To create a lifecycle
policy (AWS CLI).

Lifecycle policy template

The contents of your lifecycle policy are evaluated before being associated with a repository. The
following is the JSON syntax template for the lifecycle policy.

"rules": [
{

"rulePriority": integer,

"description": "string",

"selection": {
"tagStatus": "tagged"|"untagged"|"any",
"tagPatternlList": list<string>,
"tagPrefixList": list<string>,

"storageClass": "standard"|"archive",
"countType":
"imageCountMoreThan"|"sinceImagePushed" |"sinceImagePulled" |"sinceImageTransitioned",
"countUnit": "string",
"countNumber": integer
3,
"action": {
"type": "expire"|"transition",
"targetStorageClass": "archive"
}

Filtering on image age

The following example shows the lifecycle policy syntax for a policy that expires images with a tag
starting with prod by using a tagPatternlList of prod* that are also older than 14 days.

Examples of lifecycle policies API Version 2015-09-21 186

Amazon ECR User Guide

"rules": [
{
"rulePriority": 1,
"description": "Expire images older than 14 days",
"selection": {
"tagStatus": "tagged",
"tagPatternList": ["prod*"],

"countType": "sinceImagePushed",
"countUnit": "days",
"countNumber": 14

},

"action": {
"type": "expire"

}

Filtering on image count

The following example shows the lifecycle policy syntax for a policy that keeps only one untagged
image and expires all others.

{
"rules": [
{
"rulePriority": 1,
"description": "Keep only one untagged image, expire all others",
"selection": {
"tagStatus": "untagged",
"countType": "imageCountMoreThan",
"countNumber": 1
},
"action": {
"type": "expire"
}
}
]
}

Filtering on image count API Version 2015-09-21 187

Amazon ECR User Guide

Filtering on multiple rules

The following examples use multiple rules in a lifecycle policy. An example repository and lifecycle
policy are given along with an explanation of the outcome.

Example A

Repository contents:

« Image A, Taglist: ["beta-1", "prod-1"], Pushed: 10 days ago
« Image B, Taglist: ["beta-2", "prod-2"], Pushed: 9 days ago
« Image C, Taglist: ["beta-3"], Pushed: 8 days ago

Lifecycle policy text:

"rules": [

"rulePriority": 1,

"description": "Rule 1",

"selection": {
"tagStatus": "tagged",
"tagPatternList": ["prod*"],
"countType": "imageCountMoreThan",
"countNumber": 1

.

"action": {
"type": "expire"

"rulePriority": 2,

"description": "Rule 2",

"selection": {
"tagStatus": "tagged",
"tagPatternList": ["beta*"],
"countType": "imageCountMoreThan",
"countNumber": 1

1,

"action": {
"type": "expire"

Filtering on multiple rules API Version 2015-09-21 188

Amazon ECR User Guide

The logic of this lifecycle policy would be:

« Rule 1 identifies images tagged with prefix prod. It should mark images, starting with the oldest,
until there is one or fewer images remaining that match. It marks Image A for expiration.

» Rule 2 identifies images tagged with prefix beta. It should mark images, starting with the oldest,
until there is one or fewer images remaining that match. It marks both Image A and Image B
for expiration. However, Image A has already been seen by Rule 1 and if Image B were expired it
would violate Rule 1 and thus is skipped.

« Result: Image A is expired.

Example B

This is the same repository as the previous example but the rule priority order is changed to
illustrate the outcome.

Repository contents:

« Image A, Taglist: ["beta-1", "prod-1"], Pushed: 10 days ago
« Image B, Taglist: ["beta-2", "prod-2"], Pushed: 9 days ago
« Image C, Taglist: ["beta-3"], Pushed: 8 days ago

Lifecycle policy text:

"rules": [
{

"rulePriority": 1,

"description": "Rule 1",

"selection": {
"tagStatus": "tagged",
"tagPatternList": ["beta*"],
"countType": "imageCountMoreThan",
"countNumber": 1

Filtering on multiple rules API Version 2015-09-21 189

Amazon ECR User Guide
iy
"action": {
Iltypell: "eXpiIe"

"rulePriority": 2,

"description": "Rule 2",

"selection": {
"tagStatus": "tagged",
"tagPatternList": ["prod*"],
"countType": "imageCountMoreThan",
"countNumber": 1

1,
"action": {
"type": "expire"

The logic of this lifecycle policy would be:

« Rule 1 identifies images tagged with prefix beta. It should mark images, starting with the oldest,
until there is one or fewer images remaining that match. It sees all three images and would mark
Image A and Image B for expiration.

« Rule 2 identifies images tagged with prefix prod. It should mark images, starting with the oldest,
until there is one or fewer images remaining that match. It would see no images because all
available images were already seen by Rule 1 and thus would mark no additional images.

« Result: Images A and B are expired.

Filtering on multiple tags in a single rule

The following examples specify the lifecycle policy syntax for multiple tag patterns in a single rule.
An example repository and lifecycle policy are given along with an explanation of the outcome.

Example A

When multiple tag patterns are specified on a single rule, images must match all listed tag
patterns.

Filtering on multiple tags in a single rule API Version 2015-09-21 190

Amazon ECR User Guide

Repository contents:

» Image A, Taglist: ["alpha-1"], Pushed: 12 days ago

« Image B, Taglist: ["beta-1"], Pushed: 11 days ago

« Image C, Taglist: ["alpha-2", "beta-2"], Pushed: 10 days ago
« Image D, Taglist: ["alpha-3"], Pushed: 4 days ago

« Image E, Taglist: ["beta-3"], Pushed: 3 days ago

« Image F, Taglist: ["alpha-4", "beta-4"], Pushed: 2 days ago

{
"rules": [
{
"rulePriority": 1,
"description": "Rule 1",
"selection": {
"tagStatus": "tagged",
"tagPatternList": ["alpha*", "beta*"],
"countType": "sinceImagePushed",
"countNumber": 5,
"countUnit": "days"
1,
"action": {
"type": "expire"
}
}
]
}

The logic of this lifecycle policy would be:

« Rule 1 identifies images tagged with prefix alpha and beta. It sees images C and F. It should
mark images that are older than five days, which would be Image C.

« Result: Image Cis expired.

Example B
The following example illustrates that tags are not exclusive.

Repository contents:

Filtering on multiple tags in a single rule API Version 2015-09-21 191

Amazon ECR

User Guide

« Image A, Taglist: ["alpha-1", "beta-1", "gamma-1"], Pushed: 10 days ago

« Image B, Taglist: ["alpha-2", "beta-2"], Pushed: 9 days ago

« Image C, Taglist: ["alpha-3", "beta-3", "gamma-2"], Pushed: 8 days ago

{
"rules":
{
}
]
}

L

"rulePriority": 1,

"description": "Rule 1",

"selection": {
"tagStatus": "tagged",
"tagPatternList": ["alpha*", "beta*"],
"countType": "imageCountMoreThan",
"countNumber": 1

1,

"action": {
"type": "expire"

The logic of this lifecycle policy would be:

« Rule 1 identifies images tagged with prefix alpha and beta. It sees all images. It should mark
images, starting with the oldest, until there is one or fewer images remaining that match. It
marks image A and B for expiration.

« Result: Images A and B are expired.

Filtering on all images

The following lifecycle policy examples specify all images with different filters. An example
repository and lifecycle policy are given along with an explanation of the outcome.

Example A

The following shows the lifecycle policy syntax for a policy that applies to all rules but keeps only

one image and expires all others.

Filtering on all images

API Version 2015-09-21 192

Amazon ECR User Guide

Repository contents:

Image A, Taglist: ["alpha-1"], Pushed: 4 days ago

Image B, Taglist: ["beta-1"], Pushed: 3 days ago

Image C, Taglist: [], Pushed: 2 days ago

Image D, Taglist: ["alpha-2"], Pushed: 1 day ago

{
"rules": [
{
"rulePriority": 1,
"description": "Rule 1",
"selection": {
"tagStatus": "any",
"countType": "imageCountMoreThan",
"countNumber": 1
1,
"action": {
"type": "expire"
}
}
]
}

The logic of this lifecycle policy would be:

» Rule 1 identifies all images. It sees images A, B, C, and D. It should expire all images other than
the newest one. It marks images A, B, and C for expiration.

» Result: Images A, B, and C are expired.

Example B

The following example illustrates a lifecycle policy that combines all the rule types in a single
policy.

Repository contents:

« Image A, Taglist: ["alpha-1", "beta-1"], Pushed: 4 days ago
» Image B, Taglist: [], Pushed: 3 days ago

Filtering on all images API Version 2015-09-21 193

Amazon ECR

User Guide

» Image C, Taglist: ["alpha-2"], Pushed: 2 days ago

« Image D, Taglist: ["git hash"], Pushed: 1 day ago

» Image E, Taglist: [], Pushed: 1 day ago

"rules":

L

"rulePriority": 1,
"description": "Rule 1",
"selection": {
"tagStatus": "tagged",
"tagPatternList": ["alpha*"],

"countType": "imageCountMoreThan",
"countNumber": 1

.

"action": {
"type": "expire"

}

"rulePriority": 2,
"description": "Rule 2",
"selection": {

"tagStatus": "untagged",

"countType": "sincelImagePushed",
"countUnit": "days",
"countNumber": 1

},

"action": {
"type": "expire"

}

"rulePriority": 3,

"description": "Rule 3",

"selection": {
"tagStatus": "any",

"countType": "imageCountMoreThan",
"countNumber": 1

1,

"action": {

"type": "expire"

Filtering on all images

API Version 2015-09-21 194

Amazon ECR User Guide

The logic of this lifecycle policy would be:

« Rule 1 identifies images tagged with prefix alpha. It identifies images A and C. It should keep
the newest image and mark the rest for expiration. It marks image A for expiration.

 Rule 2 identifies untagged images. It identifies images B and E. It should mark all images older
than one day for expiration. It marks image B for expiration.

» Rule 3 identifies all images. It identifies images A, B, C, D, and E. It should keep the newest image
and mark the rest for expiration. However, it can't mark images A, B, C, or E because they were
identified by higher priority rules. It marks image D for expiration.

» Result: Images A, B, and D are expired.

Archive examples
The following examples show lifecycle policies that archive images instead of deleting them.
Archiving images older than a specified number of days

The following example shows a lifecycle policy that archives images with tags starting with prod
that are older than 30 days:

"rules": [

"rulePriority": 1,
"description": "Archive production images older than 30 days",
"selection": {

"tagStatus": "tagged",

"tagPatternList": ["prod*"],

"countType": "sinceImagePushed",
"countUnit": "days",
"countNumber": 30

},

"action": {
"type": "transition",
"targetStorageClass": "archive"

Archive examples API Version 2015-09-21 195

Amazon ECR User Guide

Archiving images not pulled in a specified number of days

The following example shows a lifecycle policy that archives images that haven't been pulled in 90

days:
{
"rules": [
{
"rulePriority": 1,
"description": "Archive images not pulled in 90 days",
"selection": {
"tagStatus": "any",
"countType": "sinceImagePulled",
"countUnit": "days",
"countNumber": 90
1,
"action": {
"type": "transition",
"targetStorageClass": "archive"
}
}
]
}

Combining archive and delete rules

The following example shows a lifecycle policy that archives images older than 30 days and then
permanently deletes images that have been archived for more than 365 days:

(® Note

Archived images have a minimum storage duration of 90 days. You cannot configure
lifecycle policies that delete images that have been in archive for less than 90 days. If
you must delete images that have been archived for less than 90 days, you need to use
the batch-delete-image API, but you will be charged for the 90-day minimum storage
duration.

Archive examples API Version 2015-09-21 196

Amazon ECR User Guide

{
"rules": [
{
"rulePriority": 1,
"description": "Archive images older than 3@ days",
"selection": {
"tagStatus": "any",
"countType": "sincelmagePushed",
"countUnit": "days",
"countNumber": 30
.
"action": {
"type": "transition",
"targetStorageClass": "archive"
}
1,
{
"rulePriority": 2,
"description": "Delete images archived for more than 365 days",
"selection": {
"tagStatus": "any",
"storageClass": "archive",
"countType": "sinceImageTransitioned",
"countUnit": "days",
"countNumber": 365
1,
"action": {
"type": "expire"
}
}
]
}

Lifecycle policy properties in Amazon ECR

Lifecycle policies have the following properties.

To see examples of lifecycle policies, see Examples of lifecycle policies in Amazon ECR. For
instructions about creating a lifecycle policy by using the AWS CLI, see To create a lifecycle policy
(AWS CLI).

Lifecycle policy properties API Version 2015-09-21 197

Amazon ECR User Guide

Rule priority

rulePriority
Type: integer
Required: yes

Sets the order in which rules are applied, lowest to highest. A lifecycle policy rule with a priority
of 1 is applied first, a rule with priority of 2 is next, and so on. When you add rules to a lifecycle
policy, you must give them each a unique value for rulePriority. Values don't need to be
sequential across rules in a policy. A rule with a tagStatus value of any must have the highest
value for rulePriority and be evaluated last.

Description
description
Type: string

Required: no

(Optional) Describes the purpose of a rule within a lifecycle policy.

Tag status

tagStatus
Type: string
Required: yes

Determines whether the lifecycle policy rule that you are adding specifies a tag for an image.
Acceptable options are tagged, untagged, or any. If you specify any, then all images

have the rule evaluated against them. If you specify tagged, then you must also specify a
tagPrefixList value ora tagPatternList value. If you specify untagged, then you must
omit both tagPrefixList and tagPatternList.

Rule priority API Version 2015-09-21 198

Amazon ECR User Guide

Tag pattern list

tagPatternList
Type: list[string]
Required: yes, if tagStatus is set to tagged and tagPrefixList isn't specified

When creating a lifecycle policy for tagged images, it's best practice to use a tagPatternList
to specify the tags to expire. You specify a comma-separated list of image tag patterns that
may contain wildcards (*) on which to take action with your lifecycle policy. For example, if your
images are tagged as prod, prodl, prod2, and so on, you would use the tag pattern list prod*
to specify all of them. If you specify multiple tags, only the images with all specified tags are
selected.

/A Important

There is a maximum limit of four wildcards (*) per string. For example,
["*test*1*2*3", "test*1*2*3*"]isvalid but ["test*1*2*3*4*5%6"] is invalid.

Tag prefix list

tagPrefixList
Type: list[string]
Required: yes, if tagStatus is set to tagged and tagPatternlList isn't specified

Only used if you specified "tagStatus": "tagged" and you aren't specifying a
tagPatternList. You must specify a comma-separated list of image tag prefixes on which to
take action with your lifecycle policy. For example, if your images are tagged as prod, prodl,
prod2, and so on, you would use the tag prefix prod to specify all of them. If you specify
multiple tags, only the images with all specified tags are selected.

Storage class

storageClass

Type: string

Tag pattern list API Version 2015-09-21 199

Amazon ECR User Guide

Required: yes, if countType is sinceImageTransitioned

The rule will only select images of this storage class. When using a countType of
imageCountMoreThan, sinceImagePushed, or sinceImagePulled, the only supported
value is standard. When using a count type of sinceImageTransitioned, this is required,
and the only supported value is archive. If you omit this, the value of standard will be used.

Count type
countType
Type: string
Required: yes
Specify a count type to apply to the images.

If countType is set to imageCountMoreThan, you also specify countNumber to create a
rule that sets a limit on the number of images that exist in your repository. If countType is
set to sinceImagePushed, sinceImagePulled, or sinceImageTransitioned, you also
specify countUnit and countNumber to specify a time limit on the images that exist in your
repository.

Count unit
countUnit

Type: string

Required: yes, only if countType is set to sinceImagePushed, sinceImagePulled, or
sinceImageTransitioned

Specify a count unit of days to indicate that as the unit of time, in addition to countNumber,
which is the number of days.

This should only be specified when countType is sinceImagePushed, sinceImagePulled,
or sinceImageTransitioned; an error will occur if you specify a count unit when countType
is any other value.

Count type API Version 2015-09-21 200

Amazon ECR User Guide

Count number

countNumber
Type: integer
Required: yes
Specify a count number. Acceptable values are positive integers (@ is not an accepted value).

If the countType used is imageCountMoreThan, then the value is the maximum

number of images that you want to retain in your repository. If the countType used is
sinceImagePushed, then the value is the maximum age limit for your images. If the
countType used is sinceImagePulled, then the value is the maximum number of days since
the image was last pulled. If the countType used is sinceImageTransitioned, then the
value is the maximum number of days since the image was archived.

Action

type
Type: string
Required: yes

Specify an action type. The supported values are expire (to delete images) and transition
(to move images to archive storage).

targetStorageClass
Type: string
Required: yes, if typeis transition

The storage class you want the lifecycle policy to transition the image to. archive is the only

supported value.

Count number API Version 2015-09-21 201

Amazon ECR User Guide

Pull-time update exclusions

Amazon ECR updates the LastRecordedPullTime timestamp on every pull except for pulls by
AWS Inspector. Pull-time update exclusions allow you to specify IAM role ARNs that should not
update image pull times when they pull images, such as pulls by third-party scanners (such as
Crowdstrike, Snyk, and Trivy). This is useful for images that are used for testing or Cl/CD purposes
where you don't want the pull time to affect lifecycle policy decisions.

When a role in the exclusion list pulls an image, the pull time remains unchanged. Any other
role continues to update pull time (current behavior). You can configure up to 100 exclusions per
account.

Managing pull-time update exclusions

To manage pull-time update exclusions, you need the following IAM permissions:
o ecr:CreatePullTimeUpdateExclusion - Grants permission to add a role ARN to the
exclusion list.

e ecr:DeletePullTimeUpdateExclusion - Grants permission to remove a role ARN from the
exclusion list.

e ecr:ListPullTimeUpdateExclusions — Grants permission to list all role ARNs in the
exclusion list.

® Note

You don't need iam:PassRole permission. Amazon ECR doesn't assume the role to
perform an action; it only uses the exclusion configuration ARNs to determine if the pull
time of the image should be updated.

You can manage pull-time update exclusions using the Amazon ECR console or the AWS CLI.

Managing pull-time update exclusions API Version 2015-09-21 202

Amazon ECR User Guide

AWS Management Console
To manage pull-time update exclusions (AWS Management Console)

1. Open the Amazon ECR console at https://console.aws.amazon.com/ecr/private-registry/

repositories
2. From the navigation bar, choose the Region.

3. In the navigation pane, choose Private registry, Features & Settings, and then choose
Pull-time update exclusions.

4. To add an exclusion, choose Add exclusion, enter the role ARN, and then choose Add.
5. To remove an exclusion, select the role ARN from the list and choose Delete.

6. To view all exclusions, the list displays all configured role ARNs.

AWS CLI
To create a pull-time update exclusion

« Use the create-pull-time-update-exclusion command to add a role ARN to the exclusion
list:

aws ecr create-pull-time-update-exclusion \
--role-arn arn:aws:iam::123456789012:role/scanner-role

The command returns the role ARN and creation timestamp:

"roleArn": "arn:aws:iam::123456789012:role/scanner-role",
"createdAt": 1745531331.0

To delete a pull-time update exclusion

o Use the delete-pull-time-update-exclusion command to remove a role ARN from the
exclusion list:

aws ecr delete-pull-time-update-exclusion \
--role-axrn arn:aws:iam::123456789012:role/scanner-role

Managing pull-time update exclusions API Version 2015-09-21 203

https://console.aws.amazon.com/ecr/private-registry/repositories
https://console.aws.amazon.com/ecr/private-registry/repositories

Amazon ECR User Guide

The command returns the role ARN that was deleted:

"roleArn": "arn:aws:iam::123456789012:role/scanner-role"

To list pull-time update exclusions

1. Use the list-pull-time-update-exclusions command to list all role ARNs in the exclusion
list:

aws ecr list-pull-time-update-exclusions

If no exclusions are configured, the command returns an empty list:

"pullTimeUpdateExclusions": []

If exclusions are configured, the command returns the list of role ARNSs:

"pullTimeUpdateExclusions": [
"arn:aws:iam::123456789012:role/security-role"

2. To paginate results, use the --max-results and --next-token parameters:

aws ecr list-pull-time-update-exclusions \
--max-results 4

The command returns up to the specified number of results and a nextToken if more
results are available:

"pullTimeUpdateExclusions": [
"arn:aws:iam::123456789012:role/security-rolel",

Managing pull-time update exclusions API Version 2015-09-21 204

Amazon ECR User Guide

"arn:aws:iam::123456789012:role/security-role2",
"arn:aws:iam::123456789012:ro0le/security-role3",
"arn:aws:iam::123456789012:role/security-role4"

1,

"nextToken": "ukD72mdD/mC8b5xV3susmJzzaTgp3hKwR9nRUW1lyZZ79..."

To retrieve the next page of results, use the nextToken from the previous response:

aws ecr list-pull-time-update-exclusions \
--max-results 4 \
--next-token ukD72mdD/mC8b5xV3susmIzzaTgp3hKwR9nRUW1yZZ79. ..

Considerations for pull-time update exclusions

Consider the following when using pull-time update exclusions:

« The default page size for listing exclusions is 100. You can use pagination with maxResults and
nextToken parameters.

« Only valid IAM role ARNs in the correct ARN format are accepted.

« If you try to create an exclusion that already exists, you'll receive an
ExclusionAlreadyExistsException error. If you try to delete an exclusion that doesn't
exist, you'll receive an ExclusionNotFoundException error.

Considerations for pull-time update exclusions API Version 2015-09-21 205

Amazon ECR User Guide

Security in Amazon Elastic Container Registry

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes

this as security of the cloud and security in the cloud:

» Security of the cloud — AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to Amazon ECR, see

AWS Services in Scope by Compliance Program.

 Security in the cloud - Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company'’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon ECR. The following topics show you how to configure Amazon ECR to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your Amazon ECR resources.

Topics

« Identity and Access Management for Amazon Elastic Container Registry

« Data protection in Amazon ECR

» Compliance validation for Amazon Elastic Container Registry

o Infrastructure Security in Amazon Elastic Container Registry

» Cross-service confused deputy prevention

Identity and Access Management for Amazon Elastic Container
Registry

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)

Identity and Access Management API Version 2015-09-21 206

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon ECR User Guide

and authorized (have permissions) to use Amazon ECR resources. IAM is an AWS service that you
can use with no additional charge.

Topics
« Audience

« Authenticating with identities

« Managing access using policies

« How Amazon Elastic Container Registry works with IAM

« Amazon Elastic Container Registry Identity-based policy examples

» Using Tag-Based Access Control

« AWS managed policies for Amazon Elastic Container Registry

» Using service-linked roles for Amazon ECR

« Troubleshooting Amazon Elastic Container Registry Identity and Access

Audience

How you use AWS Identity and Access Management (IAM) differs based on your role:

« Service user - request permissions from your administrator if you cannot access features (see
Troubleshooting Amazon Elastic Container Registry Identity and Access)

« Service administrator - determine user access and submit permission requests (see How Amazon
Elastic Container Registry works with IAM)

« IAM administrator - write policies to manage access (see Amazon Elastic Container Registry
Identity-based policy examples)

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated as the AWS account root user, an IAM user, or by assuming an 1AM role.

You can sign in as a federated identity using credentials from an identity source like AWS

IAM Identity Center (IAM Identity Center), single sign-on authentication, or Google/Facebook
credentials. For more information about signing in, see How to sign in to your AWS account in the
AWS Sign-In User Guide.

Audience API Version 2015-09-21 207

https://docs.aws.eu/signin/latest/userguide/how-to-sign-in.html

Amazon ECR User Guide

For programmatic access, AWS provides an SDK and CLI to cryptographically sign requests. For
more information, see AWS Signature Version 4 for APl requests in the IAM User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity called the AWS account root
user that has complete access to all AWS services and resources. We strongly recommend that you
don't use the root user for everyday tasks. For tasks that require root user credentials, see Tasks
that require root user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity with specific permissions for a single person or application. We
recommend using temporary credentials instead of IAM users with long-term credentials. For more
information, see Require human users to use federation with an identity provider to access AWS

using temporary credentials in the IAM User Guide.

An |AM group specifies a collection of IAM users and makes permissions easier to manage for large
sets of users. For more information, see Use cases for IAM users in the IAM User Guide.

IAM roles

An IAM role is an identity with specific permissions that provides temporary credentials. You can
assume a role by switching from a user to an IAM role (console) or by calling an AWS CLI or AWS
API operation. For more information, see Methods to assume a role in the IAM User Guide.

IAM roles are useful for federated user access, temporary IAM user permissions, cross-account
access, cross-service access, and applications running on Amazon EC2. For more information, see
Cross account resource access in IAM in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy defines permissions when associated with an identity or resource. AWS evaluates these
policies when a principal makes a request. Most policies are stored in AWS as JSON documents. For
more information about JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Using policies, administrators specify who has access to what by defining which principal can
perform actions on what resources, and under what conditions.

Managing access using policies API Version 2015-09-21 208

https://docs.aws.eu/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.eu/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.eu/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.eu/IAM/latest/UserGuide/id_users.html
https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.eu/IAM/latest/UserGuide/id_groups.html
https://docs.aws.eu/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon ECR User Guide

By default, users and roles have no permissions. An IAM administrator creates IAM policies and
adds them to roles, which users can then assume. IAM policies define permissions regardless of the
method used to perform the operation.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you attach to an identity (user,
group, or role). These policies control what actions identities can perform, on which resources, and
under what conditions. To learn how to create an identity-based policy, see Define custom IAM
permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be inline policies (embedded directly into a single identity) or managed
policies (standalone policies attached to multiple identities). To learn how to choose between
managed and inline policies, see Choose between managed policies and inline policies in the IAM
User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples
include IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. You
must specify a principal in a resource-based policy.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Other policy types

AWS supports additional policy types that can set the maximum permissions granted by more
common policy types:

« Permissions boundaries — Set the maximum permissions that an identity-based policy can grant
to an IAM entity. For more information, see Permissions boundaries for IAM entities in the IAM
User Guide.

» Service control policies (SCPs) — Specify the maximum permissions for an organization or
organizational unit in AWS Organizations. For more information, see Service control policies in
the AWS Organizations User Guide.

» Resource control policies (RCPs) — Set the maximum available permissions for resources in your
accounts. For more information, see Resource control policies (RCPs) in the AWS Organizations
User Guide.

Managing access using policies API Version 2015-09-21 209

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.eu/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.eu/organizations/latest/userguide/orgs_manage_policies_rcps.html

Amazon ECR User Guide

» Session policies — Advanced policies passed as a parameter when creating a temporary session
for a role or federated user. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Elastic Container Registry works with IAM

Before you use IAM to manage access to Amazon ECR, you should understand what 1AM features
are available to use with Amazon ECR. To get a high-level view of how Amazon ECR and other AWS
services work with 1AM, see AWS Services That Work with IAM in the IAM User Guide.

Topics

« Amazon ECR Identity-based policies

« Amazon ECR resource-based policies

o Authorization based on Amazon ECR tags

+« Amazon ECR IAM roles

Amazon ECR Identity-based policies

With 1AM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. Amazon ECR supports specific actions,
resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see
IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Include actions in a policy to grant permissions to perform the associated
operation.

How Amazon Elastic Container Registry works with IAM API Version 2015-09-21 210

https://docs.aws.eu/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements.html

Amazon ECR User Guide

Policy actions in Amazon ECR use the following prefix before the action: ecr:. For example,
to grant someone permission to create an Amazon ECR repository with the Amazon ECR
CreateRepository API operation, you include the ecr:CreateRepository action in their
policy. Policy statements must include either an Action or NotAction element. Amazon ECR
defines its own set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:
"Action": [

"ecr:actionl",
"ecr:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "ecr:Describe*"

To see a list of Amazon ECR actions, see Actions, Resources, and Condition Keys for Amazon Elastic
Container Registry in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. As
a best practice, specify a resource using its Amazon Resource Name (ARN). For actions that don't
support resource-level permissions, use a wildcard (*) to indicate that the statement applies to all
resources.

"Resource'": "*"

An Amazon ECR repository resource has the following ARN:
arn:${Partition}:ecr:${Region}:${Account}:repository/${Repository-name}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS

Service Namespaces.

How Amazon Elastic Container Registry works with IAM API Version 2015-09-21 211

https://docs.aws.eu/IAM/latest/UserGuide/list_amazonelasticcontainerregistry.html
https://docs.aws.eu/IAM/latest/UserGuide/list_amazonelasticcontainerregistry.html
https://docs.aws.eu/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon ECR User Guide

For example, to specify the my-repo repository in the us-east-1 Region in your statement, use
the following ARN:

"Resource": "arn:aws:ecr:us-east-1:123456789012:repository/my-repo"

To specify all repositories that belong to a specific account, use the wildcard (*):
"Resource": "arn:aws:ecr:us-east-1:123456789012:repository/*"

To specify multiple resources in a single statement, separate the ARNs with commas.

"Resource": [
"resourcel",
"resource2"

To see a list of Amazon ECR resource types and their ARNs, see Resources Defined by Amazon

Elastic Container Registry in the JAM User Guide. To learn with which actions you can specify the

ARN of each resource, see Actions Defined by Amazon Elastic Container Registry.

Condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element specifies when statements execute based on defined criteria. You can
create conditional expressions that use condition operators, such as equals or less than, to match

the condition in the policy with values in the request. To see all AWS global condition keys, see
AWS global condition context keys in the IAM User Guide.

Amazon ECR defines its own set of condition keys and also supports using some global condition
keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User
Guide.

Most Amazon ECR actions support the aws :ResourceTag and ecr:ResourceTag condition keys.
For more information, see Using Tag-Based Access Control.

To see a list of Amazon ECR condition keys, see Condition Keys Defined by Amazon Elastic

Container Registry in the IAM User Guide. To learn with which actions and resources you can use a

condition key, see Actions Defined by Amazon Elastic Container Registry.

How Amazon Elastic Container Registry works with IAM API Version 2015-09-21 212

https://docs.aws.eu/IAM/latest/UserGuide/list_amazonelasticcontainerregistry.html#amazonelasticcontainerregistry-resources-for-iam-policies
https://docs.aws.eu/IAM/latest/UserGuide/list_amazonelasticcontainerregistry.html#amazonelasticcontainerregistry-resources-for-iam-policies
https://docs.aws.eu/IAM/latest/UserGuide/list_amazonelasticcontainerregistry.html#amazonelasticcontainerregistry-actions-as-permissions
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.eu/IAM/latest/UserGuide/list_amazonelasticcontainerregistry.html#amazonelasticcontainerregistry-policy-keys
https://docs.aws.eu/IAM/latest/UserGuide/list_amazonelasticcontainerregistry.html#amazonelasticcontainerregistry-policy-keys
https://docs.aws.eu/IAM/latest/UserGuide/list_amazonelasticcontainerregistry.html#amazonelasticcontainerregistry-actions-as-permissions

Amazon ECR User Guide

Examples

To view examples of Amazon ECR identity-based policies, see Amazon Elastic Container Registry
Identity-based policy examples.

Amazon ECR resource-based policies

Resource-based policies are JSON policy documents that specify what actions a specified principal
can perform on an Amazon ECR resource and under what conditions. Amazon ECR supports
resource-based permissions policies for Amazon ECR repositories. Resource-based policies let you
grant usage permission to other accounts on a per-resource basis. You can also use a resource-
based policy to allow an AWS service to access your Amazon ECR repositories.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, you must also grant the principal entity permission to access the

resource. Grant permission by attaching an identity-based policy to the entity. However, if a
resource-based policy grants access to a principal in the same account, you don't need additional
Amazon ECR repository permissions in the identity-based policy. For more information, see How
IAM Roles Differ from Resource-based Policies in the IAM User Guide.

The Amazon ECR service supports only one type of resource-based policy called a repository policy,
which is attached to a repository. This policy defines which principal entities (accounts, users, roles,
and federated users) can perform actions on the repository. To learn how to attach a resource-
based policy to a repository, see Private repository policies in Amazon ECR.

(@ Note

In an Amazon ECR repository policy, the policy element Sid supports additional characters
and spacing not supported in IAM policies.

Examples

To view examples of Amazon ECR resource-based policies, see Private repository policy examples in
Amazon ECR,

How Amazon Elastic Container Registry works with IAM API Version 2015-09-21 213

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon ECR User Guide

Authorization based on Amazon ECR tags

You can attach tags to Amazon ECR resources or pass tags in a request to Amazon ECR. To control
access based on tags, you provide tag information in the condition element of a policy using the

ecr:ResourceTag/key-name, aws :RequestTag/key-name, or aws : TagKeys condition keys.
For more information about tagging Amazon ECR resources, see Tagging a private repository in
Amazon ECR.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Using Tag-Based Access Control.

Amazon ECR IAM roles

An IAM role is an entity within your AWS account that has specific permissions.
Using Temporary Credentials with Amazon ECR

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

Amazon ECR supports using temporary credentials.
Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action

on your behalf. Service-linked roles appear in your IAM account and are owned by the service. An
IAM administrator can view but not edit the permissions for service-linked roles.

Amazon ECR supports service-linked roles. For more information, see Using service-linked roles for
Amazon ECR.

Amazon Elastic Container Registry Identity-based policy examples

By default, users and roles don't have permission to create or modify Amazon ECR resources. To
grant users permission to perform actions on the resources that they need, an IAM administrator
can create IAM policies.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

Identity-based policy examples API Version 2015-09-21 214

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html
https://docs.aws.eu/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.eu/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create-console.html

Amazon ECR User Guide

For details about actions and resource types defined by Amazon ECR, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon Elastic

Container Registry in the Service Authorization Reference.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

Policy Best Practices

Using the Amazon ECR console

Allow Users to View Their Own Permissions

Accessing One Amazon ECR Repository

Policy Best Practices

Identity-based policies determine whether someone can create, access, or delete Amazon ECR
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

» Get started with AWS managed policies and move toward least-privilege permissions — To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

« Apply least-privilege permissions — When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

» Use conditions in IAM policies to further restrict access — You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as CloudFormation. For more
information, see 1AM JSON policy elements: Condition in the IAM User Guide.

Identity-based policy examples API Version 2015-09-21 215

https://docs.aws.eu/service-authorization/latest/reference/ecr.html
https://docs.aws.eu/service-authorization/latest/reference/ecr.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon ECR User Guide

« Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions — IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

» Require multi-factor authentication (MFA) - If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Amazon ECR console

To access the Amazon Elastic Container Registry console, you must have a minimum set of
permissions. These permissions must allow you to list and view details about the Amazon ECR
resources in your AWS account. If you create an identity-based policy that is more restrictive than
the minimum required permissions, the console won't function as intended for entities (users or
roles) with that policy.

To ensure that those entities can still use the Amazon ECR console, add the
AmazonEC2ContainerRegistryReadOnly AWS managed policy to the entities. For more
information, see Adding Permissions to a User in the IAM User Guide:

To view the permissions for this policy, see AmazonElasticContainerRegistryPublicReadOnly in the
AWS Managed Policy Reference.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

Allow Users to View Their Own Permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

Identity-based policy examples API Version 2015-09-21 216

https://docs.aws.eu/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.eu/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.eu/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html
https://docs.aws.eu/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.eu/aws-managed-policy/latest/reference/AmazonElasticContainerRegistryPublicReadOnly.html

Amazon ECR User Guide

{
"Version": "2012-10-17",
"Statement": [
{

"Sid": "ViewOwnUserInfo",

"Effect": "Allow",

"Action": [
"iam:GetUserPolicy",
"iam:ListGroupsForUser",
"iam:ListAttachedUserPolicies",
"iam:ListUserPolicies",
"iam:GetUser"

1,

"Resource": ["arn:aws:iam::*:user/${aws:usernamel}"]

.
{

"Sid": "NavigateInConsole",

"Effect": "Allow",

"Action": [
"iam:GetGroupPolicy",
"iam:GetPolicyVersion",
"iam:GetPolicy",
"iam:ListAttachedGroupPolicies",
"iam:ListGroupPolicies",
"iam:ListPolicyVersions",
"iam:ListPolicies",
"iam:ListUsers"

1,

"Resource": "*"

}
]
}

Accessing One Amazon ECR Repository

In this example, you want to grant a user in your AWS account access to one of your Amazon ECR
repositories, my-repo. You also want to allow the user to push, pull, and list images.

JSON

"Version":"2012-10-17",

Identity-based policy examples API Version 2015-09-21 217

Amazon ECR User Guide

"Statement":[

{

"Sid":"GetAuthorizationToken",

"Effect":"Allow",

"Action":[

"ecr:GetAuthorizationToken"

1,

"Resource":"*"

},
{

"Sid":"ManageRepositoryContents",

"Effect":"Allow",

"Action":[
"ecr:BatchCheckLayerAvailability",
"ecr:GetDownloadUrlForLayer",
"ecr:GetRepositoryPolicy",
"ecr:DescribeRepositories"”,
"ecr:ListImages",
"ecr:DescribelImages",
"ecx:BatchGetImage",
"ecr:InitiatelLayerUpload",
"ecr:UploadLayexPart",
"ecxr:CompletelLayerUpload",
"ecr:PutImage"

1,

"Resource":"arn:aws:ecr:us-east-1:123456789012:xepositoxy/my-repo"

}

Using Tag-Based Access Control

The Amazon ECR CreateRepository API action enables you to specify tags when you create the
repository. For more information, see Tagging a private repository in Amazon ECR.

To enable users to tag repositories on creation, they must have permissions to use the action that
creates the resource (for example, ecr:CreateRepository). If tags are specified in the resource-
creating action, Amazon performs additional authorization on the ecr:CreateRepository
action to verify if users have permissions to create tags.

You can use tag-based access control through IAM policies. The following are examples.

Using Tag-Based Access Control API Version 2015-09-21 218

Amazon ECR User Guide

The following policy would only allow a user to create or tag a repository as
key=environment, value=dev.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "AllowCreateTaggedRepository",
"Effect": "Allow",
"Action": [
"ecr:CreateRepository"
]I
"Resource": "*",
"Condition": {
"StringEquals": {
"aws:RequestTag/environment": "dev"
}
}
}I
{
"Sid": "AllowTagRepository",
"Effect": "Allow",
"Action": [
"ecr:TagResource"
]I
"Resource": "*",
"Condition": {
"StringEquals": {
"aws:RequestTag/environment": "dev"
}
}
}
]
}

The following policy would allow a user to pull images from all repositories unless they were
tagged as key=environment, value=prod.

Using Tag-Based Access Control API Version 2015-09-21 219

Amazon ECR User Guide

JSON

"Version":"2012-10-17",
"Statement": [{
"Effect": "Allow",
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

1,

"Resource": "*"

"Effect": "Deny",

"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

1,

"Resource": "*",

"Condition": {
"StringEquals": {

"ecr:ResourceTag/environment": "prod"

AWS managed policies for Amazon Elastic Container Registry

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

AWS managed policies for Amazon ECR API Version 2015-09-21 220

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

Amazon ECR User Guide

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

Amazon ECR provides several managed policies that you can attach to IAM identities or to Amazon
EC2 instances. These managed policies allow differing levels of control over access to Amazon ECR
resources and APl operations. For more information about each API operation mentioned in these

policies, see Actions in the Amazon Elastic Container Registry APl Reference.

Topics

o AmazonEC2ContainerRegistryFullAccess

« AmazonEC2ContainerRegistryPowerUser

o AmazonEC2ContainerRegistryPullOnly

o AmazonEC2ContainerRegistryReadOnly

o AWSECRPullThroughCache_ServiceRolePolicy

» ECRReplicationServiceRolePolicy

» ECRTemplateServiceRolePolicy

« Amazon ECR updates to AWS managed policies

AmazonEC2ContainerRegistryFullAccess

You can attach the AmazonEC2ContainerRegistryFullAccess policy to your IAM identities.
This policy grants administrative access to Amazon ECR resources and grants an IAM identity (such
as a user, group, or role) access to the AWS services that Amazon ECR is integrated with to use all
of Amazon ECR features. Using this policy allows access to all of Amazon ECR features that are
available in the AWS Management Console.

To view the permissions for this policy, see AmazonEC2ContainerRegistryFullAccess in the AWS
Managed Policy Reference.

AWS managed policies for Amazon ECR API Version 2015-09-21 221

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.eu/AmazonECR/latest/APIReference/API_Operations.html
https://docs.aws.eu/aws-managed-policy/latest/reference/AmazonEC2ContainerRegistryFullAccess.html

Amazon ECR User Guide

AmazonEC2ContainerRegistryPowerUser

You can attach the AmazonEC2ContainerRegistryPowerUser policy to your IAM identities.
This policy grants administrative permissions that allow IAM users to read and write to repositories,
but doesn't allow them to delete repositories or change the policy documents that are applied to
them.

To view the permissions for this policy, see AmazonEC2ContainerRegistryPowerUser in the AWS

Managed Policy Reference.
AmazonEC2ContainerRegistryPullOnly

You can attach the AmazonEC2ContainerRegistryPullOnly policy to your IAM identities. This
policy grants permission to pull container images from Amazon ECR. If the registry is enabled for
pull-through cache, it will also allow pulls to import an image from an upstream registry.

To view the permissions for this policy, see AmazonEC2ContainerRegistryPullOnly in the AWS
Managed Policy Reference.

AmazonEC2ContainerRegistryReadOnly

You can attach the AmazonEC2ContainerRegistryReadOnly policy to your IAM identities. This
policy grants read-only permissions to Amazon ECR. This includes the ability to list repositories and
images within the repositories. It also includes the ability to pull images from Amazon ECR with the
Docker CLI.

To view the permissions for this policy, see AmazonEC2ContainerRegistryReadOnly in the AWS

Managed Policy Reference.

AWSECRPullThroughCache_ServiceRolePolicy

You can't attach the AWSECRPullThroughCache_ServiceRolePolicy managed IAM policy to
your IAM entities. This policy is attached to a service-linked role that allows Amazon ECR to push
images to your repositories through the pull through cache workflow. For more information, see
Amazon ECR service-linked role for pull through cache.

ECRReplicationServiceRolePolicy

You can't attach the ECRReplicationServiceRolePolicy managed IAM policy to your IAM
entities. This policy is attached to a service-linked role that allows Amazon ECR to perform actions
on your behalf. For more information, see Using service-linked roles for Amazon ECR.

AWS managed policies for Amazon ECR API Version 2015-09-21 222

https://docs.aws.eu/aws-managed-policy/latest/reference/AmazonEC2ContainerRegistryPowerUser.html
https://docs.aws.eu/aws-managed-policy/latest/reference/AmazonEC2ContainerRegistryPullOnly.html
https://docs.aws.eu/aws-managed-policy/latest/reference/AmazonEC2ContainerRegistryReadOnly.html

Amazon ECR

User Guide

ECRTemplateServiceRolePolicy

You can't attach the ECRTemplateServiceRolePolicy managed IAM policy to your IAM entities.

This policy is attached to a service-linked role that allows Amazon ECR to perform actions on your

behalf. For more information, see Using service-linked roles for Amazon ECR.

Amazon ECR updates to AWS managed policies

View details about updates to AWS managed policies for Amazon ECR since the time that this
service began tracking these changes. For automatic alerts about changes to this page, subscribe to
the RSS feed on the Amazon ECR Document history page.

Change

Amazon ECR service-linked

role for pull through cache -
Update to an existing policy

AmazonEC2Container

RegistryPullOnly — New policy

ECRTemplateServiceRolePolic

y — New policy

Description

Amazon ECR added

new permissions to the
AWSECRPullThroughC
ache_ServiceRolePo
licy policy. These permissio
ns allow Amazon ECR to pull
images from ECR private
registry. This is required when
using a pull through cache
rule to cache images from
another Amazon ECR private
registry.

Amazon ECR added a new
policy which grants pull-only
permissions to Amazon ECR.

Amazon ECR added a new
policy. This policy is associate
d with the ECRTempla
teServiceRolePolic

y service-linked role for the

Date

March 12, 2025

October 10, 2024

June 20, 2024

AWS managed policies for Amazon ECR

API Version 2015-09-21 223

Amazon ECR User Guide
Change Description Date
repository creation template
feature.
AWSECRPullThroughC Amazon ECR added November 15, 2023

ache_ServiceRolePolicy -

Update to an existing policy

AWSECRPullThroughC
ache_ServiceRolePolicy — New

policy

ECRReplicationServiceRolePo

licy — New policy

new permissions to the
AWSECRPullThroughC
ache_ServiceRolePo
licy policy. These permissio
ns allow Amazon ECR to
retrieve the encrypted
contents of a Secrets Manager
secret. This is required when
using a pull through cache
rule to cache images from

an upstream registry that
requires authentication.

Amazon ECR added a new
policy. This policy is associate
d with the AWSServic
eRoleForECRPullThr
oughCache service-linked
role for the pull through

cache feature.

Amazon ECR added a new
policy. This policy is associate
d with the AWSServic
eRoleForECRReplica
tion service-linked role for
the replication feature.

November 29, 2021

December 4, 2020

AWS managed policies for Amazon ECR

API Version 2015-09-21 224

Amazon ECR

User Guide

Change

AmazonEC2Container

RegistryFullAccess — Update

to an existing policy

AmazonEC2Container
RegistryReadOnly — Update to
an existing policy

AmazonEC2Container
RegistryPowerUser — Update
to an existing policy

Description

Amazon ECR added
new permissions to the
AmazonEC2Container
RegistryFullAccess
policy. These permissions
allow principals to create the
Amazon ECR service-linked
role.

Amazon ECR added

new permissions to the
AmazonEC2Container
RegistryReadOnly

policy which allow principals
to read lifecycle policies, list
tags, and describe the scan
findings for images.

Amazon ECR added

new permissions to the
AmazonEC2Container
RegistryPowerUser
policy. They allow principals
to read lifecycle policies, list
tags, and describe the scan
findings for images.

Date

December 4, 2020

December 10, 2019

December 10, 2019

AWS managed policies for Amazon ECR

API Version 2015-09-21 225

Amazon ECR

User Guide

Change

AmazonEC2Container

RegistryFullAccess — Update

to an existing policy

AmazonEC2Container
RegistryReadOnly — Update to
an existing policy

AmazonEC2Container

RegistryPowerUser — Update
to an existing policy

Description

Amazon ECR added

new permissions to the
AmazonEC2Container
RegistryFullAccess
policy. They allow principal
s to look up managemen

t events or AWS CloudTrai
L Insights events that are
captured by CloudTrail.

Amazon ECR added

new permissions to the
AmazonEC2Container
RegistryReadOnly
policy. They allow principal
s to describe Amazon ECR
images.

Amazon ECR added

new permissions to the
AmazonEC2Container
RegistryPowerUser
policy. They allow principal
s to describe Amazon ECR
images.

Date

November 10, 2017

October 11, 2016

October 11, 2016

AWS managed policies for Amazon ECR

API Version 2015-09-21 226

Amazon ECR

User Guide

Change

AmazonEC2Container

RegistryReadOnly — New
policy

AmazonEC2Container

RegistryPowerUser — New
policy

AmazonEC2Container

RegistryFullAccess — New
policy

Amazon ECR started tracking
changes

Description

Amazon ECR added a new
policy which grants read-only
permissions to Amazon ECR.
These permissions include the
ability to list repositories and
images within the repositor
ies. They also include the
ability to pull images from
Amazon ECR with the Docker
CLI.

Amazon ECR added a new
policy which grants administr
ative permissions that allow
users to read and write to
repositories but doesn't allow
them to delete repositories or
change the policy documents
that are applied to them.

Amazon ECR added a new
policy. This policy grants full
access to Amazon ECR.

Amazon ECR started tracking
changes for AWS managed
policies.

Using service-linked roles for Amazon ECR

Date

December 21, 2015

December 21, 2015

December 21, 2015

June 24, 2021

Amazon Elastic Container Registry (Amazon ECR) uses AWS Identity and Access Management (IAM)
service-linked roles to provide the permissions necessary to use the replication and pull through

cache features. A service-linked role is a unique type of IAM role that is linked directly to Amazon
ECR. The service-linked role is predefined by Amazon ECR. It includes all of the permissions that
the service requires to support the replication and pull through cache features for your private

Using service-linked roles

API Version 2015-09-21 227

https://docs.aws.eu/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon ECR User Guide

registry. After you configure replication or pull through cache for your registry, a service-linked
role is created automatically on your behalf. For more information, see Private registry settings in
Amazon ECR.

A service-linked role makes setting up replication and pull through cache with Amazon ECR easier.
This is because, by using it, you don't have to manually add all the necessary permissions. Amazon
ECR defines the permissions of its service-linked roles, and unless defined otherwise, only Amazon
ECR can assume its roles. The defined permissions include the trust policy and the permissions
policy. The permissions policy can't be attached to any other IAM entity.

You can delete the corresponding service-linked role only after disabling either replication or pull
through cache on your registry. This ensures that you don't inadvertently remove the permissions
Amazon ECR requires for these features.

For information about other services that support service-linked roles, see AWS services that work
with IAM. On this linked-to page, look for the services that have Yes in the Service-linked role
column. Choose a Yes with a link to view the relevant service-linked role documentation for that

service.

Topics

Supported Regions for Amazon ECR service-linked roles

Amazon ECR service-linked role for replication

Amazon ECR service-linked role for pull through cache

Amazon ECR service-linked role for repository creation templates

Supported Regions for Amazon ECR service-linked roles

Amazon ECR supports using service-linked roles in all of the Regions where the Amazon ECR
service is available. For more information about Amazon ECR Region availability, see AWS Regions
and Endpoints.

Amazon ECR service-linked role for replication

Amazon ECR uses a service-linked role named AWSServiceRoleForECRReplication that allows
Amazon ECR to replicate images across multiple accounts.

Using service-linked roles API Version 2015-09-21 228

https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.eu/general/latest/gr/rande.html
https://docs.aws.eu/general/latest/gr/rande.html

Amazon ECR User Guide

Service-linked role permissions for Amazon ECR

The AWSServiceRoleForECRReplication service-linked role trusts the following services to assume
the role:

o« replication.ecr.amazonaws.com

The following ECRReplicationServiceRolePolicy role permissions policy allows Amazon ECR
to use the following actions on resources:

JSON
{
"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"ecr:CreateRepository",
"ecr:ReplicateImage"
1,
"Resource": "*"
}
]
}
® Note

The ReplicateImage is an internal APl that Amazon ECR uses for replication and can't be
called directly.

You must configure permissions to allow an IAM entity (for example a user, group, or role)
to create, edit, or delete a service-linked role. For more information, see Service-Linked Role
Permissions in the IAM User Guide.

Using service-linked roles API Version 2015-09-21 229

https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon ECR User Guide

Creating a service-linked role for Amazon ECR

You don't need to manually create the Amazon ECR service-linked role. When you configure
replication settings for your registry in the AWS Management Console, the AWS CLI, or the AWS
API, Amazon ECR creates the service-linked role for you.

If you delete this service-linked role and need to create it again, you can use the same process to
recreate the role in your account. When you configure replication settings for your registry, Amazon
ECR creates the service-linked role for you again.

Editing a service-linked role for Amazon ECR

Amazon ECR doesn't allow manually editing the AWSServiceRoleForECRReplication service-linked
role. After you create a service-linked role, you can't change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Editing a service-linked role in the IAM User Guide.

Deleting the service-linked role for Amazon ECR

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way, you don’t have an unused entity that isn't actively monitored
or maintained. However, you must remove the replication configuration for your registry in every
Region before you can manually delete the service-linked role.

® Note

If you try to delete resources while the Amazon ECR service is still using the roles, your
delete action might fail. If that happens, wait for a few minutes and try again.

To delete Amazon ECR resources used by the AWSServiceRoleForECRReplication

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region your replication configuration is set on.
In the navigation pane, choose Private registry.

On the Private registry page, on the Replication configuration section, choose Edit.

i A W=

To delete all of your replication rules, choose Delete all. This step requires confirmation.

To manually delete the service-linked role using IAM

Using service-linked roles API Version 2015-09-21 230

https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

Use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForECRReplication service-linked role. For more information, see Deleting a
Service-Linked Role in the IAM User Guide.

Amazon ECR service-linked role for pull through cache

Amazon ECR uses a service-linked role named AWSServiceRoleForECRPullThroughCache
which gives permission for Amazon ECR to perform actions on your behalf to complete pull
through cache actions. For more information about pull through cache, see Templates to control

repositories created during a pull through cache, create on push, or replication action.

Service-linked role permissions for Amazon ECR

The AWSServiceRoleForECRPullThroughCache service-linked role trusts the following service to
assume the role.

e pullthroughcache.ecr.amazonaws.com

Permissions details

The AWSECRPullThroughCache_ServiceRolePolicy permissions policy is attached to the
service-linked role. This managed policy grants Amazon ECR permission to perform the following
actions. For more information, see AWSECRPullThroughCache_ServiceRolePolicy.

» ecr - Allows the Amazon ECR service to pull and push images to a private repository.

» secretsmanager:GetSecretValue - Allows the Amazon ECR service to retrieve the
encrypted contents of an AWS Secrets Manager secret. This is required when using a pull through
cache rule to cache images from an upstream registry that requires authentication in your private
registry. This permission applies only to secrets with the ecr-pullthroughcache/ name
prefix.

The AWSECRPullThroughCache_ServiceRolePolicy policy contains the following JSON.

JSON

"Version":"2012-10-17",
"Statement": [
{

Using service-linked roles API Version 2015-09-21 231

https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon ECR User Guide

llsidll : IIECR",
"Effect": "Allow",
"Action": [

"ecr:GetAuthorizationToken",
"ecr:BatchCheckLayerAvailability",
"ecr:InitiatelLayerUpload",
"ecr:UploadLayexPart",
"ecxr:CompletelLayerUpload",
"ecr:PutImage",
"ecxr:BatchGetImage",
"ecx:BatchImportUpstreamImage",
"ecr:GetDownloadUrlForLayer",
"ecr:GetImageCopyStatus"

]I

"Resource": "*"

"Sid": "SecretsManager",

"Effect": "Allow",

"Action": [
"secretsmanager:GetSecretValue"

1,

"Resource": "arn:aws:secretsmanager:*:*:secret:ecr-pullthroughcache/

"Condition": {
"StringEquals": {
"aws :ResourceAccount": "${aws:PrincipalAccount}"

You must configure permissions to allow an IAM entity (for example a user, group, or role)
to create, edit, or delete a service-linked role. For more information, see Service-linked role
permissions in the IAM User Guide.

Creating a service-linked role for Amazon ECR

You don't need to manually create the Amazon ECR service-linked role for pull through cache.
When you create a pull through cache rule for your private registry in the AWS Management
Console, the AWS CLI, or the AWS API, Amazon ECR creates the service-linked role for you.

Using service-linked roles API Version 2015-09-21 232

https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon ECR User Guide

If you delete this service-linked role and need to create it again, you can use the same process
to recreate the role in your account. When you create a pull through cache rule for your private
registry, Amazon ECR creates the service-linked role for you again if it doesn't already exist.

Editing a service-linked role for Amazon ECR

Amazon ECR doesn't allow manually editing the AWSServiceRoleForECRPullThroughCache
service-linked role. After the service-linked role is created, you can't change the name of the role
because various entities might reference the role. However, you can edit the description of the role
using IAM. For more information, see Editing a service-linked role in the /AM User Guide.

Deleting the service-linked role for Amazon ECR

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way, you don’t have an unused entity that isn't actively monitored
or maintained. However, you must delete the pull through cache rules for your registry in every
Region before you can manually delete the service-linked role.

(® Note

If you try to delete resources while the Amazon ECR service is still using the role, your
delete action might fail. If that happens, wait for a few minutes and try again.

To delete Amazon ECR resources used by the AWSServiceRoleForECRPullThroughCache service-
linked role

Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region where your pull through cache rules are created.
In the navigation pane, choose Private registry.

On the Private registry page, on the Pull through cache configuration section, choose Edit.

A A

For each pull through cache rule you have created, select the rule and then choose Delete rule.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForECRPullThroughCache service-linked role. For more information, see Deleting
a Service-Linked Role in the IAM User Guide.

Using service-linked roles API Version 2015-09-21 233

https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/
https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon ECR User Guide

Amazon ECR service-linked role for repository creation templates

Amazon ECR uses a service-linked role named AWSServiceRoleForECRTemplate which gives
permission for Amazon ECR to perform actions on your behalf to complete repository creation
template actions.

Service-linked role permissions for Amazon ECR

The AWSServiceRoleForECRTemplate service-linked role trusts the following service to assume
the role.

e €CIr.amazonaws.com

Permissions details

The ECRTemplateServiceRolePolicy permissions policy is attached to the service-linked role.

This managed policy grants Amazon ECR permission to perform repository creation actions on your
behalf.

The ECRTemplateServiceRolePolicy policy contains the following JSON.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "CreateRepositoryWithTemplate",
"Effect": "Allow",
"Action": [
"ecr:CreateRepository"
]I
"Resource": "*"
}
]
}

You must configure permissions to allow an IAM entity (for example a user, group, or role)
to create, edit, or delete a service-linked role. For more information, see Service-linked role
permissions in the IAM User Guide.

Using service-linked roles API Version 2015-09-21 234

https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon ECR User Guide

Creating a service-linked role for Amazon ECR

You don't need to manually create the Amazon ECR service-linked role for repository creation
template. When you create a repository creation template rule for your private registry in the AWS
Management Console, the AWS CLI, or the AWS API, Amazon ECR creates the service-linked role for
you.

If you delete this service-linked role and need to create it again, you can use the same process
to recreate the role in your account. When you create a repository creation rule for your private
registry, Amazon ECR creates the service-linked role for you again if it doesn't already exist.

Editing a service-linked role for Amazon ECR

Amazon ECR doesn't allow manually editing the AWSServiceRoleForECRTemplate service-linked
role. After the service-linked role is created, you can't change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Editing a service-linked role in the IAM User Guide.

Deleting the service-linked role for Amazon ECR

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way, you don’t have an unused entity that isn't actively monitored
or maintained. However, you must delete the repository creation rules for your registry in every
Region before you can manually delete the service-linked role.

(® Note

If you try to delete resources while the Amazon ECR service is still using the role, your
delete action might fail. If that happens, wait for a few minutes and try again.

To delete Amazon ECR resources used by the AWSServiceRoleForECRTemplate service-linked
role

1. Open the Amazon ECR console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/.

From the navigation bar, choose the Region where your repository creation rules are created.

In the navigation pane, choose Private registry.

P WD

On the Private registry page, on the Repository creation templates section, choose Edit.

Using service-linked roles API Version 2015-09-21 235

https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://eusc-de-east-1.console.amazonaws-eusc.eu/ecr/

Amazon ECR User Guide

5. For each repository creation rule you have created, select the rule and then choose Delete rule.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForECRTemplate
service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Troubleshooting Amazon Elastic Container Registry Identity and Access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon ECR and IAM.

Topics

« | Am Not Authorized to Perform an Action in Amazon ECR

+ | Am Not Authorized to Perform iam:PassRole

« | want to allow people outside of my AWS account to access my Amazon ECR resources

| Am Not Authorized to Perform an Action in Amazon ECR

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
ecr:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
ecr:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my -
example-widget resource by using the ecr:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

| Am Not Authorized to Perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon ECR.

Troubleshooting API Version 2015-09-21 236

https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon ECR User Guide

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon ECR. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon ECR
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

« To learn whether Amazon ECR supports these features, see How Amazon Elastic Container

Registry works with IAM.

» To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

 To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

» To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

» To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Troubleshooting API Version 2015-09-21 237

https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon ECR User Guide

Data protection in Amazon ECR

The AWS applies to data protection in Amazon Elastic Container Service. As described in this
model, AWS is responsible for protecting the global infrastructure that runs all of the AWS Cloud.
You are responsible for maintaining control over your content that is hosted on this infrastructure.
You are also responsible for the security configuration and management tasks for the AWS services
that you use. For more information about data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

« Use multi-factor authentication (MFA) with each account.

o Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

« Set up APl and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

« Use AWS encryption solutions, along with all default security controls within AWS services.

» Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

« If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon ECS or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Topics

» Encryption at rest

Data protection API Version 2015-09-21 238

https://aws.amazon.com/compliance/data-privacy-faq/
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

Amazon ECR User Guide

Encryption at rest

/A Important

Dual-layer server-side encryption with AWS KMS (DSSE-KMS) is only available in the AWS
GovCloud (US) Regions.

Amazon ECR stores images in Amazon S3 buckets that Amazon ECR manages. By default, Amazon
ECR uses server-side encryption with Amazon S3-managed encryption keys which encrypts your
data at rest using an AES-256 encryption algorithm. This does not require any action on your part
and is offered at no additional charge. For more information, see Protecting Data Using Server-
Side Encryption with Amazon S3-Managed Encryption Keys (SSE-S3) in the Amazon Simple Storage
Service User Guide.

For more control over the encryption for your Amazon ECR repositories, you can use server-side
encryption with KMS keys stored in AWS Key Management Service (AWS KMS). When you use AWS
KMS to encrypt your data, you can either use the default AWS managed key, which is managed

by Amazon ECR, or specify your own KMS key (referred to as a customer managed key). For more
information, see Protecting Data Using Server-Side Encryption with KMS keys Stored in AWS KMS
(SSE-KMS) in the Amazon Simple Storage Service User Guide.

You can choose to apply two layers of encryption to your Amazon ECR images using dual-layer
server-side encryption with AWS KMS (DSSE-KMS). DSSE-KMS option is similar to SSE-KMS, but
applies two individual layers of encryption instead of one layer. For more information, see Using
dual-layer server-side encryption with AWS KMS keys (DSSE-KMS).

Each Amazon ECR repository has an encryption configuration, which is set when the repository is
created. You can use different encryption configurations on each repository. For more information,
see Creating an Amazon ECR private repository to store images.

When a repository is created with AWS KMS encryption enabled, a KMS key is used to encrypt the
contents of the repository. Moreover, Amazon ECR adds an AWS KMS grant to the KMS key with the
Amazon ECR repository as the grantee principal.

The following provides a high-level understanding of how Amazon ECR is integrated with AWS
KMS to encrypt and decrypt your repositories:

Encryption at rest API Version 2015-09-21 239

https://docs.aws.eu/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.eu/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.eu/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.eu/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.eu/AmazonS3/latest/userguide/UsingDSSEncryption.html
https://docs.aws.eu/AmazonS3/latest/userguide/UsingDSSEncryption.html

Amazon ECR User Guide

1.

When creating a repository, Amazon ECR sends a DescribeKey call to AWS KMS to validate
and retrieve the Amazon Resource Name (ARN) of the KMS key specified in the encryption
configuration.

. Amazon ECR sends two CreateGrant requests to AWS KMS to create grants on the KMS key to

allow Amazon ECR to encrypt and decrypt data using the data key.

. When pushing an image, a GenerateDataKey request is made to AWS KMS that specifies the KMS

key to use for encrypting the image layer and manifest.

. AWS KMS generates a new data key, encrypts it under the specified KMS key, and sends the

encrypted data key to be stored with the image layer metadata and the image manifest.

. When pulling an image, a Decrypt request is made to AWS KMS, specifying the encrypted data

key.

. AWS KMS decrypts the encrypted data key and sends the decrypted data key to Amazon S3.

7. The data key is used to decrypt the image layer before the image layer being pulled.

. When a repository is deleted, Amazon ECR sends two RetireGrant requests to AWS KMS to retire

the grants created for the repository.

Considerations

The following points should be considered when using AWS KMS based encryption (SSE-KMS or
DSSE-KMS) with Amazon ECR.

If you create your Amazon ECR repository with KMS encryption and you do not specify a KMS
key, Amazon ECR uses an AWS managed key with the alias aws/ecr by default. This KMS key is
created in your account the first time that you create a repository with KMS encryption enabled.

Repository Encryption Configuration can't be changed after a repository is created.

When you use KMS encryption with your own KMS key, the key must exist in the same Region as
your repository.

The grants that Amazon ECR creates on your behalf should not be revoked. If you revoke the
grant that gives Amazon ECR permission to use the AWS KMS keys in your account, Amazon ECR
cannot access this data, encrypt new images pushed to the repository, or decrypt them when
they are pulled. When you revoke a grant for Amazon ECR, the change occurs immediately. To
revoke access rights, you should delete the repository rather than revoking the grant. When a
repository is deleted, Amazon ECR retires the grants on your behalf.

There is a cost associated with using AWS KMS keys. For more information, see AWS Key
Management Service pricing.

Encryption at rest API Version 2015-09-21 240

https://docs.aws.eu/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.eu/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.eu/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.eu/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.eu/kms/latest/APIReference/API_RetireGrant.html
https://aws.eu/kms/pricing/
https://aws.eu/kms/pricing/

Amazon ECR User Guide

» There is a cost associated with using dual-layer server-side encryption. For more information, see
Amazon ECR pricing

Required IAM permissions

When creating or deleting an Amazon ECR repository with server-side encryption using AWS KMS,
the permissions required depend on the specific KMS key you are using.

Required IAM permissions when using the AWS managed key for Amazon ECR

By default, when AWS KMS encryption is enabled for an Amazon ECR repository but no KMS key

is specified, the AWS managed key for Amazon ECR is used. When the AWS-managed KMS key

for Amazon ECR is used to encrypt a repository, any principal that has permission to create a
repository can also enable AWS KMS encryption on the repository. However, the IAM principal that
deletes the repository must have the kms :RetireGrant permission. This enables the retirement
of the grants that were added to the AWS KMS key when the repository was created.

The following example IAM policy can be added as an inline policy to a user to ensure they have
the minimum permissions needed to delete a repository that has encryption enabled. The KMS key
used to encrypt the repository can be specified using the resource parameter.

JSON

{
"Version":"2012-10-17",
"Id": "ecr-kms-permissions",
"Statement": [
{
"Sid": "AllowAccessToRetireTheGrantsAssociatedWithTheKey",
"Effect": "Allow",
"Action": [
"kms :RetireGrant"
]I
"Resource": "arn:aws:kms:us-
west-2:111122223333:key/b8d9ae76-080c-4043-92EXAMPLE"
}
]
}

Encryption at rest API Version 2015-09-21 241

https://aws.eu/ecr/pricing/

Amazon ECR User Guide

Required IAM permissions when using a customer managed key

When creating a repository with AWS KMS encryption enabled using a customer managed key,
there are required permissions for both the KMS key policy and the IAM policy for the user or role
creating the repository.

When creating your own KMS key, you can either use the default key policy AWS KMS creates or
you can specify your own. To ensure that the customer managed key remains manageable by the
account owner, the key policy for the KMS key should allow all AWS KMS actions for the root user
of the account. Additional scoped permissions may be added to the key policy but at minimum the
root user should be given permissions to manage the KMS key. To allow the KMS key to be used
only for requests that originate in Amazon ECR, you can use the kms:ViaService condition key with

the ecr.<region>.amazonaws.com value.

The following example key policy gives the AWS account (root user) that owns the KMS key full
access to the KMS key. For more information about this example key policy, see Allows access to
the AWS account and enables IAM policies in the AWS Key Management Service Developer Guide.

JSON

{
"Version":"2012-10-17",
"Id": "ecr-key-policy",
"Statement": [
{
"Sid": "EnableIAMUserPermissions",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::111122223333:root"
}I
"Action": "kms:*",
"Resource': "*"
}
]
}

The IAM user, IAM role, or AWS account creating your repositories must have the
kms:CreateGrant, kms:RetireGrant, and kms:DescribeKey permission in addition to the
necessary Amazon ECR permissions.

Encryption at rest API Version 2015-09-21 242

https://docs.aws.eu/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.eu/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam
https://docs.aws.eu/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam

Amazon ECR User Guide

® Note

The kms :RetireGrant permission must be added to the IAM policy of the user or role
creating the repository. The kms:CreateGrant and kms : DescribeKey permissions can
be added to either the key policy for the KMS key or the IAM policy of user or role creating
the repository. For more information on how AWS KMS permissions work, see AWS KMS API

permissions: Actions and resources reference in the AWS Key Management Service Developer
Guide.

The following example IAM policy can be added as an inline policy to a user to ensure they have
the minimum permissions needed to create a repository with encryption enabled and delete the
repository when they are finished with it. The AWS KMS key used to encrypt the repository can be
specified using the resource parameter.

JSON

"Version":"2012-10-17",
"Id": "ecr-kms-permissions",
"Statement": [
{
"Sid":
"AllowAccessToCreateAndRetireTheGrantsAssociatedWithTheKeyAsWellAsDescribeTheKey",
"Effect": "Allow",
"Action": [
"kms :CreateGrant",
"kms :RetireGrant",
"kms :DescribeKey"

1,
"Resource": "arn:aws:kms:us-
west-2:111122223333:key/b8d9ae76-080c-4043-92EXAMPLE"

}

Encryption at rest API Version 2015-09-21 243

https://docs.aws.eu/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.eu/kms/latest/developerguide/kms-api-permissions-reference.html

Amazon ECR User Guide

Allow a user to list KMS keys in the console when creating a repository

When using the Amazon ECR console to create a repository, you can grant permissions to enable
a user to list the customer managed KMS keys in the Region when enabling encryption for the
repository. The following IAM policy example shows the permissions needed to list your KMS keys
and aliases when using the console.

JSON

{
"Version":"2012-10-17",

"Statement": {
"Effect": "Allow",
"Action": [

"kms:ListKeys",
"kms:ListAliases",
"kms :DescribeKey"

1,

"Resource": "*"

Monitoring Amazon ECR interaction with AWS KMS

You can use AWS CloudTrail to track the requests that Amazon ECR sends to AWS KMS on your
behalf. The log entries in the CloudTrail log contain an encryption context key to make them more
easily identifiable.

Amazon ECR encryption context

An encryption context is a set of key—value pairs that contains arbitrary nonsecret data. When you
include an encryption context in a request to encrypt data, AWS KMS cryptographically binds
the encryption context to the encrypted data. To decrypt the data, you must pass in the same
encryption context.

In its GenerateDataKey and Decrypt requests to AWS KMS, Amazon ECR uses an encryption context
with two name-value pairs that identify the repository and Amazon S3 bucket being used. This is
shown in the following example. The names do not vary, but combined encryption context values
will be different for each value.

Encryption at rest API Version 2015-09-21 244

https://docs.aws.eu/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.eu/kms/latest/APIReference/API_Decrypt.html

Amazon ECR User Guide

"encryptionContext": {

"aws:s3:arn": "arn:aws:s3:::us-west-2-starport-manifest-bucket/EXAMPLE1-90ab-cdef-
fedc-ba987BUCKET1/
sha256:a7766145a775d39e53a713c75b6fd6d318740e70327aaa3ed5d09e@ef33fc3df",

"aws:ecr:arn": "arn:aws:ecr:us-west-2:111122223333:repository/repository-name"

You can use the encryption context to identify these cryptographic operation in audit records and
logs, such as AWS CloudTrail and Amazon CloudWatch Logs, and as a condition for authorization in
policies and grants.

The Amazon ECR encryption context consists of two name-value pairs.

« aws:s3:arn — The first name-value pair identifies the bucket. The key is aws:s3:arn. The value
is the Amazon Resource Name (ARN) of the Amazon S3 bucket.

"aws:s3:arn": "ARN of an Amazon S3 bucket"

For example, if the ARN of the bucket is arn:aws:s3:::us-west-2-
starport-manifest-bucket/EXAMPLE1-90ab-cdef-fedc-ba987BUCKET1/
sha256:a7766145a775d39e53a713c75b6fd6d318740e70327aaa3ed5d09e0ef33fc3df,
the encryption context would include the following pair.

"arn:aws:s3:::us-west-2-starport-manifest-bucket/EXAMPLE1-90ab-cdef-fedc-
ba987BUCKET1/sha256:a7766145a775d39e53a713¢c75b6fd6d318740e70327aaa3ed5d09e0ef33fc3df"

« aws:ecr:arn — The second name-value pair identifies the Amazon Resource Name (ARN) of the
repository. The key is aws : ecxr :arn. The value is the ARN of the repository.

"aws:ecr:arn": "ARN of an Amazon ECR repository"

For example, if the ARN of the repository is arn:aws:ecr:us-
west-2:111122223333:repository/repository-name, the encryption context would
include the following pair.

"aws:ecr:arn'": "arn:aws:ecr:us-west-2:111122223333:repository/repository-name"

Encryption at rest API Version 2015-09-21 245

https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Amazon ECR User Guide

Troubleshooting

When deleting an Amazon ECR repository with the console, if the repository is successfully deleted
but Amazon ECR is unable to retire the grants added to your KMS key for your repository, you will
receive the following error.

The repository [{repository-name}] has been deleted successfully but the grants created
by the kmsKey [{kms_key}] failed to be retired

When this occurs, you can retire the AWS KMS grants for the repository yourself.
To retire AWS KMS grants for a repository manually

1. List the grants for the AWS KMS key used for the repository. The key-id value is included in
the error you receive from the console. You can also use the 1ist-keys command to list both
the AWS managed keys and customer managed KMS keys in a specific Region in your account.

aws kms list-grants \
--key-id b8d9ae76-080c-4043-9237-c815bfc21dfc
--region us-west-2

The output include an EncryptionContextSubset with the Amazon Resource Name (ARN)
of your repository. This can be used to determine which grant added to the key is the one you
want to retire. The GrantId value will be used when retiring the grant in the next step.

2. Retire each grant for the AWS KMS key added for the repository. Replace the value for
GrantId with the ID of the grant from the output of the previous step.

aws kms retire-grant \
--key-id b8d9ae76-080c-4043-9237-c815bfc21dfc \
--grant-id GrantId \
--region us-west-2

Compliance validation for Amazon Elastic Container Registry

To learn whether an AWS service is within the scope of specific compliance programs, see and
choose the compliance program that you are interested in. For general information, see .

Compliance validation API Version 2015-09-21 246

Amazon ECR User Guide

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. For more
information about your compliance responsibility when using AWS services, see AWS Security
Documentation.

Infrastructure Security in Amazon Elastic Container Registry

As a managed service, Amazon Elastic Container Registry is protected by AWS global network
security. For information about AWS security services and how AWS protects infrastructure, see
AWS Cloud Security. To design your AWS environment using the best practices for infrastructure
security, see Infrastructure Protection in Security Pillar AWS Well-Architected Framework.

You use AWS published API calls to access Amazon ECR through the network. Clients must support
the following:

» Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

 Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

You can call these APl operations from any network location, but Amazon ECR does support
resource-based access policies, which can include restrictions based on the source IP address. You
can also use Amazon ECR policies to control access from specific Amazon Virtual Private Cloud
(Amazon VPC) endpoints or specific VPCs. Effectively, this isolates network access to a given
Amazon ECR resource from only the specific VPC within the AWS network. For more information,
see Amazon ECR interface VPC endpoints (AWS PrivateLink).

Amazon ECR interface VPC endpoints (AWS PrivateLink)

You can improve the security posture of your VPC by configuring Amazon ECR to use an interface
VPC endpoint. VPC endpoints are powered by AWS PrivateLink, a technology that enables you

to privately access Amazon ECR APIs through private IP addresses (both IPv4 and IPv6). AWS
PrivateLink restricts all network traffic between your VPC and Amazon ECR to the Amazon
network. You don't need an internet gateway, a NAT device, or a virtual private gateway.

For more information about AWS PrivateLink and VPC endpoints, see VPC Endpoints in the
Amazon VPC User Guide.

Infrastructure Security API Version 2015-09-21 247

https://docs.aws.eu/security/
https://docs.aws.eu/security/
https://aws.amazon.com/security/
https://docs.aws.eu/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.eu/vpc/latest/userguide/vpc-endpoints.html

Amazon ECR User Guide

Considerations for Amazon ECR VPC endpoints

Before you configure VPC endpoints for Amazon ECR, be aware of the following considerations.

» To allow your Amazon ECS tasks hosted on Amazon EC2 instances to pull private images from
Amazon ECR, create the interface VPC endpoints for Amazon ECS. For more information, see
Interface VPC Endpoints (AWS PrivateLink) in the Amazon Elastic Container Service Developer
Guide.

« Amazon ECS tasks hosted on Fargate that pull container images from Amazon ECR can restrict
access to the specific VPC their tasks use and to the VPC endpoint the service uses by adding
condition keys to the task execution IAM role for the task. For more information, see Optional
IAM Permissions for Fargate Tasks Pulling Amazon ECR Images over Interface Endpoints in the

Amazon Elastic Container Service Developer Guide.

» The security group attached to the VPC endpoint must allow incoming connections on port 443
from the private subnet of the VPC.

« Amazon ECR VPC endpoints support dual-stack (IPv4 and IPv6) connectivity. When you create a
dual-stack VPC endpoint, it can handle traffic over both IPv4 and IPv6 private IP addresses.

« VPC endpoints support Amazon ECR Public repositories through the AWS API SDK endpoint in
US East (N. Virginia).

» VPC endpoints only support AWS provided DNS through Amazon Route 53. If you want to
use your own DNS, you can use conditional DNS forwarding. For more information, see DHCP
Options Sets in the Amazon VPC User Guide.

« If your containers have existing connections to Amazon S3, their connections might be
briefly interrupted when you add the Amazon S3 gateway endpoint. If you want to avoid this
interruption, create a new VPC that uses the Amazon S3 gateway endpoint and then migrate
your Amazon ECS cluster and its containers into the new VPC.

« When an image is pulled using a pull through cache rule for the first time, if you've configured
Amazon ECR to use an interface VPC endpoint using AWS PrivateLink then you need to create a
public subnet in the same VPC, with a NAT gateway, and then route all outbound traffic to the
internet from their private subnet to the NAT gateway in order for the pull to work. Subsequent
image pulls don't require this. For more information, see Scenario: Access the internet from a

private subnet in the Amazon Virtual Private Cloud User Guide.

» For workloads requiring FIPS 140-3 validated cryptographic modules, Amazon ECR supports FIPS
endpoints for VPC endpoints.

Interface VPC Endpoints (AWS PrivateLink) API Version 2015-09-21 248

https://docs.aws.eu/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.eu/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.eu/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.eu/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.eu/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.eu/vpc/latest/userguide/vpc-nat-gateway.html#public-nat-internet-access
https://docs.aws.eu/vpc/latest/userguide/vpc-nat-gateway.html#public-nat-internet-access

Amazon ECR User Guide

Considerations for Windows images

Images based on the Windows operating system include artifacts that are restricted by license
from being distributed. By default, when you push Windows images to an Amazon ECR repository,
the layers that include these artifacts are not pushed as they are considered foreign layers. When
the artifacts are provided by Microsoft, the foreign layers are retrieved from Microsoft Azure
infrastructure. For this reason, to enable your containers to pull these foreign layers from Azure
additional steps are needed beyond creating the VPC endpoints.

It is possible to override this behavior when pushing Windows images to Amazon ECR by using the
--allow-nondistributable-artifacts flag in the Docker daemon. When enabled, this flag
will push the licensed layers to Amazon ECR which enables these images to be pulled from Amazon
ECR via the VPC endpoint without additional access to Azure being required.

/A Important

Using the --allow-nondistributable-artifacts flag does not preclude your
obligation to comply with the terms of the Windows container base image license; you
cannot post Windows content for public or third-party redistribution. Usage within your
own environment is allowed.

To enable the use of this flag for your Docker installation, you must modify the Docker daemon
configuration file which, depending on your Docker installation, can typically be configured in
settings or preferences menu under the Docker Engine section or by editing the C:\ProgramData
\docker\config\daemon. json file directly.

The following is an example of the required configuration. Replace the value with the repository
URI you are pushing images to.

"allow-nondistributable-artifacts": [
"111122223333.dkr.ecr.us-west-2.amazonaws.com"

After modifying the Docker daemon configuration file, you must restart the Docker daemon before
attempting to push your image. Confirm the push worked by verifying that the base layer was
pushed to your repository.

Interface VPC Endpoints (AWS PrivateLink) API Version 2015-09-21 249

Amazon ECR User Guide

® Note

The base layers for Windows images are large. The layer size will result in a longer time

to push and additional storage costs in Amazon ECR for these images. For these reasons,
we recommend only using this option when it is strictly required to reduce build times and
ongoing storage costs. For example, the mcr.microsoft.com/windows/servercore
image is approximately 1.7 GiB in size when compressed in Amazon ECR.

Create the VPC endpoints for Amazon ECR

To create the VPC endpoints for the Amazon ECR service, use the Creating an Interface Endpoint
procedure in the Amazon VPC User Guide.

Amazon ECR VPC endpoints support dual-stack (IPv4 and IPv6) connectivity. When you create

a dual-stack VPC endpoint, it automatically handles traffic over both IPv4 and IPv6 private IP
addresses. The endpoint will route traffic using the appropriate IP version based on your client's
network configuration and the endpoint's capabilities.

If you have existing IPv4-only VPC endpoints and want to migrate to dual-stack endpoints, you
can modify your existing endpoints to support dual-stack connectivity, or create new dual-stack
endpoints. When creating or modifying endpoints, ensure that your VPC and subnets support the
IP version you want to use. After creating dual-stack endpoints, the endpoints will support both
IPv4 and IPv6.

Amazon ECS tasks hosted on Amazon EC2 instances require both Amazon ECR endpoints and the
Amazon S3 gateway endpoint.

Amazon ECS tasks hosted on Fargate using platform version 1. 4.0 or later require both Amazon
ECR VPC endpoints and the Amazon S3 gateway endpoints.

(® Note

The order that the endpoints are created in doesn't matter.

Create the Amazon S3 gateway endpoint

For your Amazon ECS tasks to pull private images from Amazon ECR, you must create a gateway
endpoint for Amazon S3. The gateway endpoint is required because Amazon ECR uses Amazon S3

Interface VPC Endpoints (AWS PrivateLink) API Version 2015-09-21 250

https://docs.aws.eu/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

Amazon ECR User Guide

to store your image layers. When your containers download images from Amazon ECR, they must
access Amazon ECR to get the image manifest and then Amazon S3 to download the actual image
layers. The following is the Amazon Resource Name (ARN) of the Amazon S3 bucket containing the
layers for each Docker image.

arn:aws:s3:::prod-region-starport-layer-bucket/*

(® Note

If creating a dual-stack VPC endpoint for Amazon ECR, then you also need to create a dual-
stack Amazon S3 Gateway or Interface endpoint. Refer to S3 documentation for details.

Use the Creating a gateway endpoint procedure in the Amazon VPC User Guide to create the

following Amazon S3 gateway endpoint for Amazon ECR. When creating the endpoint, be sure to
select the route tables for your VPC.

com.amazonaws.region.s3

The Amazon S3 gateway endpoint uses an IAM policy document to limit access to the service.
The Full Access policy can be used because any restrictions that you have put in your task IAM
roles or other IAM user policies still apply on top of this policy. If you want to limit Amazon

S3 bucket access to the minimum required permissions for using Amazon ECR, see Minimum
Amazon S3 Bucket Permissions for Amazon ECR.

Minimum Amazon S3 Bucket Permissions for Amazon ECR

The Amazon S3 gateway endpoint uses an IAM policy document to limit access to the service.
To allow only the minimum Amazon S3 bucket permissions for Amazon ECR, restrict access to
the Amazon S3 bucket that Amazon ECR uses when you create the IAM policy document for the
endpoint.

The following table describes the Amazon S3 bucket policy permissions needed by Amazon ECR.

Permission Description

arn:aws:s3:::prod- region-starport Provides accesstothe Amazon S3 bucket
-layer-bucket/* containing the layers for each Docker image.

Interface VPC Endpoints (AWS PrivateLink) API Version 2015-09-21 251

https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html#privatelink-ip-address-types
https://docs.aws.eu/vpc/latest/userguide/vpce-gateway.html#create-gateway-endpoint

Amazon ECR User Guide

Permission Description

Represents the Region identifier for an AWS
Region supported by Amazon ECR, such as
us-east-2 for the US East (Ohio) Region.

Example

The following example illustrates how to provide access to the Amazon S3 buckets required for
Amazon ECR operations.

{
"Statement": [
{
"Sid": "Access-to-specific-bucket-only",
"Principal": "*",
"Action": [
"s3:GetObject"
1,
"Effect": "Allow",
"Resource": ["arn:aws:s3:::prod-region-starport-layer-bucket/*"]
}
]
}

Create the CloudWatch Logs endpoint

Amazon ECS tasks using the Fargate launch type that use a VPC without an internet gateway that
also use the awslogs log driver to send log information to CloudWatch Logs require that you
create the com.amazonaws.region.logs interface VPC endpoint for CloudWatch Logs. For more
information, see Using CloudWatch Logs with interface VPC endpoints in the Amazon CloudWatch

Logs User Guide.
Create an endpoint policy for your Amazon ECR VPC endpoints

A VPC endpoint policy is an IAM resource policy that you attach to an endpoint when you create
or modify the endpoint. If you don't attach a policy when you create an endpoint, AWS attaches
a default policy for you that allows full access to the service. An endpoint policy doesn't override
or replace user policies or service-specific policies. It's a separate policy for controlling access from

Interface VPC Endpoints (AWS PrivateLink) API Version 2015-09-21 252

https://docs.aws.eu/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html

Amazon ECR User Guide

the endpoint to the specified service. Endpoint policies must be written in JSON format. For more
information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC User Guide.

We recommend creating a single IAM resource policy and attaching it to both of the Amazon ECR
VPC endpoints.

The following is an example of an endpoint policy for Amazon ECR. This policy enables a specific
IAM role to pull images from Amazon ECR.

{
"Statement": [{
"Sid": "AllowPull",
"Principal": {
"AWS": "arn:aws:iam::1234567890:role/role_name"
.
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer",
"ecr:GetAuthorizationToken"
1,
"Effect": "Allow",
"Resource": "*"
1]
}

The following endpoint policy example prevents a specified repository from being deleted.

{
"Statement": [{
"Sid": "AllowAll",

"Principal": "*",
"Action": "*",
"Effect": "Allow",
"Resource": "*"
1,
{
"Sid": "PreventDelete",
"Principal": "*",
"Action": "ecr:DeleteRepository",
"Effect": "Deny",
"Resource": "arn:aws:ecr:region:1234567890:repository/repository_name"
}

Interface VPC Endpoints (AWS PrivateLink) API Version 2015-09-21 253

https://docs.aws.eu/vpc/latest/userguide/vpc-endpoints-access.html

Amazon ECR User Guide

]
}

The following endpoint policy example combines the two previous examples into a single policy.

{
"Statement": [{
"Sid": "AllowAll",
"Effect": "Allow",

"Principal": "*",

"Action": "*",

"Resource": "*"
b

{
"Sid": "PreventDelete",
"Effect": "Deny",

"Principal": "*",

"Action": "ecr:DeleteRepository",

"Resource": "arn:aws:ecr:region:1234567890:repository/repository_name"
1,

{
"Sid": "AllowPull",

"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::1234567890:role/role_name"

3,
"Action": [
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer",
"ecr:GetAuthorizationToken"
1,
"Resource": "*"
}
]
}

To modify the VPC endpoint policy for Amazon ECR

1. Open the Amazon VPC console at https://eusc-de-east-1.console.amazonaws-eusc.eu/vpc/.

2. In the navigation pane, choose Endpoints.

3. If you have not already created the VPC endpoints for Amazon ECR, see Create the VPC
endpoints for Amazon ECR.

Interface VPC Endpoints (AWS PrivateLink) API Version 2015-09-21 254

https://eusc-de-east-1.console.amazonaws-eusc.eu/vpc/

Amazon ECR User Guide

4. Select the Amazon ECR VPC endpoint to add a policy to, and choose the Policy tab in the
lower half of the screen.

5. Choose Edit Policy and make the changes to the policy.

6. Choose Save to save the policy.

Shared subnets

You can't create, describe, modify, or delete VPC endpoints in subnets that are shared with you.
However, you can use the VPC endpoints in subnets that are shared with you.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws : SourceArn or aws : SourceAccount global condition context keys

in resource policies to limit the permissions that Amazon ECR gives another service to the resource.
Use aws: SourceArn if you want only one resource to be associated with the cross-service access.
Use aws : SourceAccount if you want to allow any resource in that account to be associated with
the cross-service use.

The most effective way to protect against the confused deputy problem is to use the

aws : SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws : SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:servicename:region:123456789012: *.

If the aws : SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN,
you must use both global condition context keys to limit permissions.

The value of aws : SourceArn must be ResourceDescription.

Cross-service confused deputy prevention API Version 2015-09-21 255

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon ECR User Guide

The following example shows how you can use the aws : SourceArn and aws : SourceAccount
global condition context keys in an Amazon ECR repository policy to allow AWS CodeBuild access
to the Amazon ECR API actions necessary for integration with that service while also preventing
the confused deputy problem.

JSON

"Version":"2012-10-17",
"Statement":[
{
"Sid":"CodeBuildAccess",
"Effect":"Allow",
"Principal":{
"Sexvice":"codebuild.amazonaws.com"
},
"Action":[
"ecxr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"
1,
"Resource": "*",
"Condition":{
"ArnLike": {
"aws:SourceArn":"arn:aws:codebuild:us-
east-1:123456789012:pxoject/project-name"
},
"StringEquals": {
""aws :SourceAccount'":"123456789012"

Cross-service confused deputy prevention API Version 2015-09-21 256

Amazon ECR User Guide

Amazon ECR monitoring

You can monitor your Amazon ECR API usage with Amazon CloudWatch, which collects and
processes raw data from Amazon ECR into readable, near real-time metrics. These statistics

are recorded for a period of two weeks so that you can access historical information and gain
perspective on your APl usage. Amazon ECR metric data is automatically sent to CloudWatch in
one-minute periods. For more information about CloudWatch, see the Amazon CloudWatch User
Guide.

Amazon ECR provides metrics based on your APl usage for authorization, image push, and image
pull actions.

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon ECR and your AWS solutions. We recommend that you collect monitoring data from the
resources that make up your AWS solution so that you can more easily debug a multi-point failure
if one occurs. Before you start monitoring Amazon ECR, however, you should create a monitoring
plan that includes answers to the following questions:

« What are your monitoring goals?

« What resources will you monitor?

» How often will you monitor these resources?
« What monitoring tools will you use?

« Who will perform the monitoring tasks?

« Who should be notified when something goes wrong?

The next step is to establish a baseline for normal Amazon ECR performance in your environment
by measuring performance at various times and under different load conditions. As you monitor
Amazon ECR, store historical monitoring data so that you can compare it with new performance
data, identify normal performance patterns and performance anomalies, and devise methods to
address issues.

Topics

« Visualizing your service quotas and setting alarms

o Amazon ECR usage metrics

 Amazon ECR usage reports

API Version 2015-09-21 257

https://docs.aws.eu/AmazonCloudWatch/latest/monitoring/
https://docs.aws.eu/AmazonCloudWatch/latest/monitoring/

Amazon ECR User Guide

« Amazon ECR repository metrics

« Amazon ECR events and EventBridge

» Logging Amazon ECR actions with AWS CloudTrail

Visualizing your service quotas and setting alarms

You can use the CloudWatch console to visualize your service quotas and see how your current
usage compares to service quotas. You can also set alarms so that you will be notified when you
approach a quota.

To visualize a service quota and optionally set an alarm

1. Open the CloudWatch console at https://eusc-de-east-1.console.amazonaws-eusc.eu/
cloudwatch/.

2. In the navigation pane, choose Metrics.

3. On the All metrics tab, choose Usage, then choose By AWS Resource.

The list of service quota usage metrics appears.

4. Select the check box next to one of the metrics.

The graph displays your current usage of that AWS resource.
5. To add your service quota to the graph, do the following:

a. Choose the Graphed metrics tab.

b. Choose Math expression, Start with an empty expression. Then in the new row, under
Details, enter SERVICE_QUOTA(m1).

A new line is added to the graph, displaying the service quota for the resource represented
in the metric.

6. To see your current usage as a percentage of the quota, add a new expression or
change the current SERVICE_QUOTA expression. For the new expression, use m1/60/
SERVICE_QUOTA(m1)*100.

7. (Optional) To set an alarm that notifies you if you approach the service quota, do the
following:

a. Ontheml/60/SERVICE_QUOTA(m1)*100 row, under Actions, choose the alarm icon. It
looks like a bell.

Visualizing Your Service Quotas and Setting Alarms API Version 2015-09-21 258

https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudwatch/
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudwatch/

Amazon ECR User Guide

The alarm creation page appears.

b. Under Conditions, ensure that Threshold type is Static and Whenever Expression1 is is
set to Greater. Under than, enter 80. This creates an alarm that goes into ALARM state
when your usage exceeds 80 percent of the quota.

c. Choose Next.

d. On the next page, select an Amazon SNS topic or create a new one. This topic is notified
when the alarm goes to ALARM state. Then choose Next.

e. On the next page, enter a name and description for the alarm, and then choose Next.

f. Choose Create alarm.

Amazon ECR usage metrics

You can use CloudWatch usage metrics to provide visibility into your account's usage of resources.
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

Amazon ECR usage metrics correspond to AWS service quotas. You can configure alarms that alert
you when your usage approaches a service quota. For more information about Amazon ECR service
quotas, see Amazon ECR service quotas.

Amazon ECR publishes the following metrics in the AWS/Usage namespace.

Metric Description

CallCount The number of API action calls from your account. The
resources are defined by the dimensions associated with the
metric.

The most useful statistic for this metric is SUM, which represent
s the sum of the values from all contributors during the period
defined.

The following dimensions are used to refine the usage metrics that are published by Amazon ECR.

Usage Metrics API Version 2015-09-21 259

Amazon ECR User Guide

Dimension Description

Service The name of the AWS service containing the resource. For
Amazon ECR usage metrics, the value for this dimension is ECR.

Type The type of entity that is being reported. Currently, the only
valid value for Amazon ECR usage metrics is API.

Resource The type of resource that is running. Currently, Amazon ECR
returns information on your APl usage for the following API
actions.

+ GetAuthorizationToken
 BatchCheckLayerAvailability
o« InitiatelayerUpload

o UploadLayerPart

o CompletelLayerUpload
 PutImage

» BatchGetImage

e GetDownloadUrlForlLayer

Class The class of resource being tracked. Currently, Amazon ECR
does not use the class dimension.

Amazon ECR usage reports

AWS provides a free reporting tool called Cost Explorer that enables you to analyze the cost and
usage of your Amazon ECR resources.

Use Cost Explorer to view charts of your usage and costs. You can view data from the previous 13
months and forecast how much you are likely to spend for the next three months. You can use Cost
Explorer to see patterns in how much you spend on AWS resources over time, identify areas that
need further inquiry, and see trends that you can use to understand your costs. You also can specify
time ranges for the data and view time data by day or by month.

Usage Reports API Version 2015-09-21 260

Amazon ECR User Guide

The metering data in your Cost and Usage Reports shows usage across all of your Amazon ECR
repositories. For more information, see Tagging your resources for billing.

For more information about creating an AWS Cost and Usage Report, see AWS Cost and Usage

Report in the AWS Billing User Guide.

Amazon ECR repository metrics

Amazon ECR sends repository pull count metrics to Amazon CloudWatch. Amazon ECR metric data
is automatically sent to CloudWatch in 1-minute periods. For more information about CloudWatch,
see the Amazon CloudWatch User Guide.

Topics

« Enabling CloudWatch metrics

« Available metrics and dimensions

» Viewing Amazon ECR metrics using the CloudWatch console

Enabling CloudWatch metrics

Amazon ECR sends repository metrics automatically for all repositories. There is no need to take
any manual steps.

Available metrics and dimensions

The following sections list the metrics and dimensions that Amazon ECR sends to Amazon
CloudWatch.

Amazon ECR metrics
Amazon ECR provides metrics for you to monitor your repositories. You can measure the pull count.
The AWS/ECR namespace includes the following metrics.
RepositoryPullCount
The total number of pulls for the images in the repository.

Valid dimensions: RepositoryName.

Repository metrics API Version 2015-09-21 261

https://docs.aws.eu/awsaccountbilling/latest/aboutv2/billing-reports-costusage.html
https://docs.aws.eu/awsaccountbilling/latest/aboutv2/billing-reports-costusage.html
https://docs.aws.eu/AmazonCloudWatch/latest/monitoring/

Amazon ECR User Guide

Valid statistics: Average, Minimum, Maximum, Sum, Sample Count. The most useful statistic is
Sum.

Unit: Integer.

Dimensions for Amazon ECR metrics

Amazon ECR metrics use the AWS/ECR namespace and provide metrics for the following
dimensions.

RepositoryName
This dimension filters the data that you request for all container images in a specified

repository.

Viewing Amazon ECR metrics using the CloudWatch console

You can view Amazon ECR repository metrics on the CloudWatch console. The CloudWatch console
provides a fine-grained and customizable display of your resources. For more information, see the
Amazon CloudWatch User Guide.

Amazon ECR events and EventBridge

Amazon EventBridge enables you to automate your AWS services and to respond automatically to
system events such as application availability issues or resource changes. Events from AWS services
are delivered to EventBridge in near real time. You can write simple rules to indicate which events
are of interest to you and include automated actions to take when an event matches a rule. The
actions that can be automatically triggered include the following:

« Adding events to log groups in CloudWatch Logs

 Invoking an AWS Lambda function

 Invoking Amazon EC2 Run Command

« Relaying the event to Amazon Kinesis Data Streams

« Activating an AWS Step Functions state machine

» Notifying an Amazon SNS topic or an Amazon SQS queue

Viewing metrics with CloudWatch API Version 2015-09-21 262

https://docs.aws.eu/AmazonCloudWatch/latest/monitoring/

Amazon ECR User Guide

For more information, see Getting Started with Amazon EventBridge in the Amazon EventBridge
User Guide.

Sample events from Amazon ECR
The following are example events from Amazon ECR. Events are emitted on a best effort basis.
Event for a completed image push

The following event is sent when each image push is completed. For more information, see Pushing
a Docker image to an Amazon ECR private repository.

"version": "Q",
"id": "13cde686-328b-6117-af20-0e5566167482",
"detail-type": "ECR Image Action",
"source": "aws.ecr",
"account": "123456789012",
"time": "2019-11-16T0Q1:54:347Z",
"region": "us-west-2",
"resources": [],
"detail": {
"result": "SUCCESS",
"repository-name": "my-repository-name",
"image-digest":
"sha256:7f5b2640fe6fb4146592dfd3410c4a79dac4f89e4782432e0378abcd1234",
"action-type": "PUSH",
"image-tag": "latest"

Event for a pull through cache action

The following event is sent when a pull through cache action is attempted. For more information,
see Sync an upstream registry with an Amazon ECR private registry.

"version": "Q",

"id": "85fc3613-e913-7fc4-a80c-a3753e4aa%ae",
"detail-type": "ECR Pull Through Cache Action",
"source": "aws.ecr",

"account": "123456789012",

"time": "2023-02-29T02:36:48Z",

Sample events from Amazon ECR API Version 2015-09-21 263

https://docs.aws.eu/eventbridge/latest/userguide/eventbridge-getting-set-up.html

Amazon ECR User Guide

"region": "us-west-2",
"resources": [
"arn:aws:ecr:us-west-2:123456789012:repository/docker-hub/alpine"

1,

"detail": {
"rule-version": "1",
"sync-status": "SUCCESS",
"ecr-repository-prefix": "docker-hub",
"repository-name": "docker-hub/alpine",
"upstream-registry-url": "public.ecr.aws",

"image-tag": "3.17.2",
"image-digest":
"sha256:4aa08ef415aecc80814cb42fa41b658480779d80c77abl15EXAMPLE",
}

Event for a completed image scan (basic scanning)

When basic scanning is enabled for your registry, the following event is sent when each image scan
is completed. The finding-severity-counts parameter will only return a value for a severity
level if one exists. For example, if the image contains no findings at CRITICAL level, then no
critical count is returned. For more information, see Scan images for OS vulnerabilities in Amazon
ECR.

(@ Note

For details about events that Amazon Inspector emits when enhanced scanning is enabled,
see EventBridge events sent for enhanced scanning in Amazon ECR.

"version": "Q",

"id": "85fc3613-e913-7fc4-a80c-a3753e4aa%ae",

"detail-type": "ECR Image Scan",

"source": "aws.ecr",

"account": "123456789012",

"time": "2019-10-29T02:36:487",

"region": "us-east-1",

"resources": [
"arn:aws:ecr:us-east-1:123456789012:repository/my-repository-name"

]I

Sample events from Amazon ECR API Version 2015-09-21 264

Amazon ECR User Guide

"detail": {
"scan-status": "COMPLETE",
"repository-name": "my-repository-name",

"finding-severity-counts": {
"CRITICAL": 10,
"MEDIUM": 9

iy
"image-digest":
"sha256:7f5b2640fe6fb4146592dfd3410c4a79dac4f89e4782432e0378abcd1234",
"image-tags": []

Event for a change notification on a resource with enhanced scanning enabled (enhanced
scanning)

When enhanced scanning is enabled for your registry, the following event is sent by Amazon ECR
when there is a change with a resource that has enhanced scanning enabled. This includes new
repositories being created, the scan frequency for a repository being changed, or when images are
created or deleted in repositories with enhanced scanning enabled. For more information, see Scan
images for software vulnerabilities in Amazon ECR.

"version": "Q",

"id": "@cl1l8352a-a4d4-6853-ef53-0ab8638973bf",
"detail-type": "ECR Scan Resource Change",
"source": "aws.ecr",

"account": "123456789012",

"time": "2021-10-14T20:53:46Z",

"region": "us-east-1",
"resources": [],
"detail": {

"action-type": "SCAN_FREQUENCY_CHANGE",
"repositories": [{

"repository-name": "repository-1",
"repository-arn": "arn:aws:ecr:us-east-1:123456789012:repository/repository-1",
"scan-frequency": "SCAN_ON_PUSH",
"previous-scan-frequency": "MANUAL"
},
{
"repository-name": "repository-2",
"repository-arn": "arn:aws:ecr:us-east-1:123456789012:repository/repository-2",

"scan-frequency": "CONTINUOUS_SCAN",

Sample events from Amazon ECR API Version 2015-09-21 265

Amazon ECR User Guide

"previous-scan-frequency": "SCAN_ON_PUSH"

},
{
"repository-name": "repository-3",
"repository-arn": "arn:aws:ecr:us-east-1:123456789012:repository/repository-3",
"scan-frequency": "CONTINUOUS_SCAN",
"previous-scan-frequency": "SCAN_ON_PUSH"
}
1,

"resource-type": "REPOSITORY",
"scan-type": "ENHANCED"

}
}

Event for an image deletion

The following event is sent when an image is deleted. For more information, see Deleting an image

in Amazon ECR.

"version": "Q",
"id": "dd3b46cb-2c74-f49e-393b-28286b67279d",
"detail-type": "ECR Image Action",
"source": "aws.ecr",
"account": "123456789012",
"time": "2019-11-16T02:01:052",
"region": "us-west-2",
"resources": [],
"detail": {
"result": "SUCCESS",
"repository-name": "my-repository-name",
"image-digest":
"sha256:7f5b2640fe6fb4146592dfd3410c4a79dac4f89e4782432e0378abcd1234",
"action-type": "DELETE",
"image-tag": "latest"

Event for an image archival action

The following event is sent when an image is archived. The target-storage-class field will be
set to ARCHIVE. The event includes the manifest and artifact media types to identify the type of
content being archived.

Sample events from Amazon ECR API Version 2015-09-21 266

Amazon ECR User Guide

{

"version": "Q",

"id": "4fS5ec4d5-4desd-7aad-a046-EXAMPLE",

"detail-type": "ECR Image Action",

"source": "aws.ecr",

"account": "123456789012",

"time": "2019-08-06T00:58:092",

"region": "us-east-1",

"resources": [],

"detail": {
"action-type": "UPDATE_STORAGE_CLASS",
"target-storage-class": "ARCHIVE",
"image-digest":

"sha256:1f98d67af8e53a536502bfc600de3266556b06ed635a32d60aa’a5fe6d7e609d7",

"repository-name": "ubuntu",
"result": "SUCCESS",
"manifest-media-type": "application/vnd.oci.image.manifest.vl+json",
"artifact-media-type": "application/vnd.oci.image.config.vl+json"

}

}

Event for an image restore action

The following event is sent when an archived image is restored. The target-storage-class
field will be set to STANDARD. The event includes a last-activated-at field showing when the
image was last restored.

"version": "Q",

"id": "7b8fc5e6-5ef5-8bbe-b157-EXAMPLE",
"detail-type": "ECR Image Action",
"source": "aws.ecr",

"account": "123456789012",

"time": "2019-08-06T01:15:227",

"region": "us-east-1",
"resources": [],
"detail": {

"action-type": "UPDATE_STORAGE_CLASS",

"target-storage-class": "STANDARD",

"image-digest":
"sha256:1f98d67af8e53a536502bfc600de3266556b06ed635a32d60aa’a5fe6d7e609d7",

"repository-name": "ubuntu",

"result": "SUCCESS",

Sample events from Amazon ECR API Version 2015-09-21 267

Amazon ECR User Guide

"manifest-media-type": "application/vnd.oci.image.manifest.vl+json",
"artifact-media-type": "application/vnd.oci.image.config.vl+json",
"last-activated-at": "2025-10-10T19:13:02.742"

Event for a referrer restore action

The following event is sent when an archived referrer (reference artifact such as an SBOM,
signature, or attestation) is restored. Note that the detail-type is ECR Referrer Actionto
distinguish it from regular image actions. The manifest-media-type and artifact-media-
type fields identify the specific type of referrer being restored. In this example, an SBOM artifact is
being restored.

{

"version": "Q",

"id": "8c9gd6f7-6fg6-9ccf-c268-EXAMPLE",

"detail-type": "ECR Referrer Action",

"source": "aws.ecr",

"account": "123456789012",

"time": "2019-08-06T0Q1:20:45Z2",

"region": "us-east-1",

"resources": [],

"detail": {
"action-type": "UPDATE_STORAGE_CLASS",
"target-storage-class": "STANDARD",
"image-digest":

"sha256:f98d67af8e53a536502bfc600de3266556b06ed635a32d60aa’7a5fe6d7e609d7",

"repository-name": "sbom",
"result": "SUCCESS",
"manifest-media-type": "application/vnd.cncf.oras.artifact.manifest.vl+json",
"artifact-media-type": "text/sbom+json",
"last-activated-at": "2025-10-10T19:13:02.74Z"

}

}

Event for a completed image replication

The following event is sent when each image replication is completed. For more information, see
Private image replication in Amazon ECR.

Sample events from Amazon ECR API Version 2015-09-21 268

Amazon ECR User Guide

"version": "Q",

"id": "c8b1l33b1-6029-ee73-e2al-4f466b8ba999",

"detail-type": "ECR Replication Action",

"source": "aws.ecr",

"account": "123456789012",

"time": "2024-05-08T20:44:547",

"region": "us-east-1",

"resources": [
"arn:aws:ecr:us-east-1:123456789012:repository/docker-hub/alpine"

15
"detail": {
"result": "SUCCESS",
"repository-name": "docker-hub/alpine",

"image-digest":
"sha256:7f5b2640fe6fb4146592dfd3410c4a79dac4f89e4782432e0378abcd1234",

"source-account": "123456789012",

"action-type": "REPLICATE",

"source-region": "us-west-2",

"image-tag": "3.17.2"

Event for a failed image replication

The following event is sent when an image replication fails. The result field will contain FAILED
and additional error information may be included in the event details.

{
"version": "Q",
"id": "d9c244c2-7130-ff84-f3b2-59577c9ch000",
"detail-type": "ECR Replication Action",
"source": "aws.ecr",
"account": "123456789012",
"time": "2024-05-08T20:45:127",
"region": "us-east-1",
"resources": [
"arn:aws:ecr:us-east-1:123456789012:repository/my-app"
1,
"detail": {
"result": "FAILED",
"repository-name": "my-app",

"image-digest":
"sha256:8g6¢c3751gf7gc5g47603ege4511d5a80ead5g90158935431f1489bde2345",

Sample events from Amazon ECR API Version 2015-09-21 269

Amazon ECR User Guide

"source-account": "123456789012",
"action-type": "REPLICATE",
"source-region": "us-west-2",
"image-tag": "latest"

Logging Amazon ECR actions with AWS CloudTrail

Amazon ECR is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, a role, or an AWS service in Amazon ECR. CloudTrail captures the following Amazon ECR
actions as events:

« All API calls, including calls from the Amazon ECR console
« All actions taken due to the encryption settings on your repositories

« All actions taken due to lifecycle policy rules, including both successful and unsuccessful actions

/A Important

Due to the size limitations of individual CloudTrail events, for lifecycle policy actions
where 10 or more images are expired Amazon ECR sends multiple events to CloudTrail.
Additionally, Amazon ECR includes a maximum of 100 tags per image.

When a trail is created, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for Amazon ECR. If you don't configure a trail, you can still view the most
recent events in the CloudTrail console in Event history. Using this information, you can determine
the request that was made to Amazon ECR, the originating IP address, who made the request,
when it was made, and additional details.

For more information, see the AWS CloudTrail User Guide.

Amazon ECR information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Amazon ECR, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

Logging Actions with AWS CloudTrail API Version 2015-09-21 270

https://docs.aws.eu/awscloudtrail/latest/userguide/
https://docs.aws.eu/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon ECR User Guide

For an ongoing record of events in your AWS account, including events for Amazon ECR, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. When you create

a trail in the console, you can apply the trail to a single Region or to all Regions. The trail logs
events in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to analyze and act upon the event data
collected in CloudTrail logs. For more information, see:

» Creating a trail for your AWS account

o AWS service integrations with CloudTrail logs

» Configuring Amazon SNS notifications for CloudTrail

» Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from

multiple accounts

All Amazon ECR API actions are logged by CloudTrail and are documented in the Amazon Elastic
Container Registry APl Reference. When you perform common tasks, sections are generated in
the CloudTrail log files for each API action that is part of that task. For example, when you create
a repository, GetAuthorizationToken, CreateRepository and SetRepositoryPolicy
sections are generated in the CloudTrail log files. When you push an image to a repository,
InitiatelLayerUpload, UploadLayerPart, CompletelLayerUpload, and PutImage sections
are generated. When you pull an image, GetDownloadUrlForLayer and BatchGetImage
sections are generated. When you archive or restore an image UpdateImageStorageClass
section is generated. When OCI clients that support the OCI 1.1 specification fetch the list of
referrers, or reference artifacts, for an image using the Referrers APl, a ListImageReferrers

CloudTrail event is emitted. For examples of these common tasks, see CloudTrail log entry
examples.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

» Whether the request was made with root or user credentials
» Whether the request was made with temporary security credentials for a role or federated user

o Whether the request was made by another AWS service

For more information, see the CloudTrail userIdentity Element.

Amazon ECR information in CloudTrail API Version 2015-09-21 271

https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.eu/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.eu/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.eu/AmazonECR/latest/APIReference/
https://docs.aws.eu/AmazonECR/latest/APIReference/
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon ECR User Guide

Understanding Amazon ECR log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and other information. CloudTrail log files are not an ordered stack
trace of the public API calls, so they do not appear in any specific order.

CloudTrail log entry examples
The following are CloudTrail log entry examples for a few common Amazon ECR tasks.

These examples have been formatted for improved readability. In a CloudTrail log file, all entries
and events are concatenated into a single line. In addition, this example has been limited to a
single Amazon ECR entry. In a real CloudTrail log file, you see entries and events from multiple
AWS services.

/A Important

The sourcelPAddress is the IP address that the request was made from. For actions that
originate from the service console, the address reported is for your underlying resource,
not the console web server. For services in AWS, only the DNS name is displayed. We still
evaluate the auth with the client source IP even if it's redacted to AWS service DNS name.

Topics

« Example: Create repository action

o Example: AWS KMSCreateGrant APl action when creating an Amazon ECR repository

o Example: Image push action

« Example: Image pull action

« Example: Image lifecycle policy action

« Example: Image archival action

« Example: Image restore action

« Example: Image referrers action

Understanding Amazon ECR log file entries API Version 2015-09-21 272

Amazon ECR User Guide

Example: Create repository action

The following example shows a CloudTrail log entry that demonstrates the CreateRepository
action.

"eventVersion": "1.04",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AIDACKCEVSQ6C2EXAMPLE:account_name",
"arn": "arn:aws:sts::123456789012:user/Mary_Major",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2018-07-11T21:54:07Z"
},
"sessionIssuer": {
"type": "Role",
"principalId": "AIDACKCEVSQ6C2EXAMPLE",
"arn": "arn:aws:iam::123456789012:role/Admin",
"accountId": "123456789012",

"userName": "Admin"
}
}

I
"eventTime": "2018-07-11T22:17:437",
"eventSource": "ecr.amazonaws.com",
"eventName": "CreateRepository",
"awsRegion": "us-east-2",
"sourceIPAddress": "203.0.113.12",
"userAgent": "console.amazonaws.com",

"requestParameters": {
"repositoryName": "testrepo"

},

"responseElements": {
"repository": {

"repositoryArn": "arn:aws:ecr:us-east-2:123456789012:repository/testrepo”,
"repositoryName": "testrepo",
"repositoryUri": "123456789012.dkr.ecr.us-east-2.amazonaws.com/testrepo",

"createdAt": "Jul 11, 2018 10:17:44 PM",
"registryId": "123456789012"

Understanding Amazon ECR log file entries API Version 2015-09-21 273

Amazon ECR User Guide

+
"requestID": "cb8cl67e-EXAMPLE",

"eventID": "e3c6f4ce-EXAMPLE",
"resources": [

{

"ARN": "arn:aws:ecr:us-east-2:123456789012:repository/testrepo",
"accountId": "123456789012"

1,
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: AWS KMSCreateGrant API action when creating an Amazon ECR repository

The following example shows a CloudTrail log entry that demonstrates the AWS KMS
CreateGrant action when creating an Amazon ECR repository with KMS encryption enabled. For
each repository that is created with KMS encryption is enabled, you should see two CreateGrant
log entries in CloudTrail.

"eventVersion": "1.05",
"userIdentity": {
"type": "IAMUser",
"principalId": "AIDAIEP6W46J43IG7LXAQ",
"arn": "arn:aws:iam::123456789012:user/Mary_Major",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "Mary_Major",
"sessionContext": {
"sessionIssuer": {

I
"webIdFederationData": {

1,

"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2020-06-10T19:22:10Z"

3,
"invokedBy": "AWS Internal"

}I

Understanding Amazon ECR log file entries API Version 2015-09-21 274

Amazon ECR User Guide

"eventTime": "2020-06-10T19:22:10Z2",

"eventSource": "kms.amazonaws.com",
"eventName": "CreateGrant",
"awsRegion": "us-west-2",
"sourceIPAddress": "203.0.113.12",
"userAgent": "console.amazonaws.com",

"requestParameters": {

"keyId": "4b55e5bf-39c8-41ad-b589-18464af7758a",
"granteePrincipal": "ecr.us-west-2.amazonaws.com",
"operations": [

"GenerateDataKey",

"Decrypt"
1,
"retiringPrincipal": "ecr.us-west-2.amazonaws.com",
"constraints": {

"encryptionContextSubset": {

"aws:ecr:arn": "arn:aws:ecr:us-west-2:123456789012:repository/testrepo"

.
"responseElements": {
"grantId": "3636af9adfeelaccb67b83941087dcd45e7fadcse74ff0103bb338422b5055F3"
},
"requestID": "@47b7dea-b56b-4013-87e9-a089f0f6602b",
"eventID": "af4c9573-c56a-4886-baca-a77526544469",
"readOnly": false,
"resources": [
{
"accountId": "123456789012",
"type": "AWS::KMS::Key",
"ARN": "arn:aws:kms:us-west-2:123456789012:key/4b55e5bf-39c8-41ad-
b589-18464af7758a"
}

1,
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: Image push action

The following example shows a CloudTrail log entry that demonstrates an image push which uses
the PutImage action.

Understanding Amazon ECR log file entries API Version 2015-09-21 275

Amazon ECR User Guide

® Note

When pushing an image, you will also see InitiatelLayerUpload, UploadLayerPart,
and CompletelayerUpload references in the CloudTrail logs.

"eventVersion": "1.04",
"userIdentity": {
"type": "IAMUser",
"principalId": "AIDACKCEVSQ6C2EXAMPLE:account_name",
"arn": "arn:aws:sts::123456789012:user/Mary_Major",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "Mary_Major",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-04-15T16:42:14Z"

}

}
.
"eventTime": "2019-04-15T16:45:00Z2",
"eventSource": "ecr.amazonaws.com",
"eventName": "PutImage",
"awsRegion": "us-east-2",

"sourceIPAddress": "AWS Internal",
"userAgent": "AWS Internal",
"requestParameters": {
"repositoryName": "testrepo",
"imageTag": "latest",
"registryId": "123456789012",
"imageManifest": "{\n \"schemaVersion\": 2,\n \"mediaType\": \"application/
vnd.docker.distribution.manifest.v2+json\",\n \"config\": {\n \"mediaType\":
\"application/vnd.docker.container.image.vl+json\",\n \"size\": 5543,\n
\"digest\": \"sha256:000b9b805af1cdb60628898c9f411996301alcl3afd3dbefld8al6ac6dbf503a
\"\n },\n \"layers\": [\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 43252507,\n
\"digest\": \"sha256:3b37166ec61459e76e33282dda08f2a9cd698ca7e3dbbc44eb6ab6e7580cdeff8e
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 846,\n \"digest
\": \"sha256:504facff238fde83f1ca8f9f54520b4219c5b8f80be9616ddc52d31448a044bd

Understanding Amazon ECR log file entries API Version 2015-09-21 276

Amazon ECR User Guide

\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 615,\n \'"digest
\": \"sha256:ebbcacd28e101968415b0c812b2d2dc60f969e36b@b0@8c@73bf796e12blbb449\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 850,\n \"digest
\": \"sha256:c7fb3351ecad291a88b92b600037e2435c84a347683d540042086Fe72c902b8a
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 168,\n \"digest\":
\"sha256:2e3debadcbf7e542e2aefbcelb64a358b1931fb403b3e4aeca27cb4d809d56c2\"\n 3},
\n {\n \"mediaType\": \"application/vnd.docker.image.rootfs.diff.tar.gzip
\",\n \"size\": 37720774,\n \"digest\":
\"sha256:f8c9f51ad524d8ae9bf4db69cd3e720ba92373ec265f5c390ffb21bb0c277941\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 30432107,\n
\"digest\": \"sha256:813a50b13f61cf1f8d25f19fa96ad3aa5b552896c83e86ce413b48b091d7f01b
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 197,\n \"digest
\": \"sha256:7ab043301a6187ea3293d80b30bad6c7bfladc3cd4c43d10353b31bc@cecfe7d
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 154,\n \'"digest
\": \"sha256:67012cca8f31dc3b8ee2305e7762fee20c250513effdedb38alc37784a5a2e71\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 176,\n \"digest
\": \"sha256:3bc892145603fffc9b1c97c94e2985b4ch19ca508750b15845a5d97becbhdlae
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 183,\n \"digest
\": \"sha256:6f1c79518f18251d35977e7e46bfabc6b9cf50df2a79d4194941d95c54258d18\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 212,\n \"digest
\": \"sha256:b7bcfbc2e2888afebede4ddlcd5eebf029bb6315feeat@b56e425el11a50ates42\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 212,\n \"digest\":
\"sha256:2b220f8b0f32b7c2ed8eaatelc802633bbd94849b9%ab73926f0bas6cdae91629\"\n \n
I\n}"
},
"responseElements": {
"image": {
"repositoryName": "testrepo",
"imageManifest": "{\n \"schemaVersion\": 2,\n \"mediaType\": \"application/
vnd.docker.distribution.manifest.v2+json\",\n \"config\": {\n \"mediaType\":
\"application/vnd.docker.container.image.vl+json\",\n \"size\": 5543,\n
\"digest\": \"sha256:000b9b805af1cdb60628898c9f411996301alcl3afd3dbefld8al6ac6dbf503a
\"\n },\n \"layers\": [\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 43252507,\n

Understanding Amazon ECR log file entries API Version 2015-09-21 277

Amazon ECR User Guide

\"digest\": \"sha256:3b37166ec61459e76e33282dda08f2a9cd698ca7e3dbbc44eb6abe7580cdeff8e

\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 846,\n \"digest
\": \"sha256:504facff238fde83f1ca8f9f54520b4219c5b8f80be9616ddc52d31448a044bd
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 615,\n \"digest
\": \"sha256:ebbcacd28e101968415b0c812b2d2dc60f969e36b@b0@8c@73bf796e12blbb449\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 850,\n \"digest
\": \"sha256:c7fb3351ecad291a88b92b600037e2435c84a347683d540042086Fe72c902b8a
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 168,\n \"digest\":
\"sha256:2e3debadcbf7e542e2aefbcelb64a358b1931fb403b3e4aeca27cb4d809d56c2\"\n 3},
\n {\n \"mediaType\": \"application/vnd.docker.image.rootfs.diff.tar.gzip
\",\n \"size\": 37720774,\n \"digest\":
\"sha256:f8c9f51ad524d8ae9bf4db69cd3e720ba92373ec265f5c390ffb21bb0c277941\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 30432107,\n
\"digest\": \"sha256:813a50b13f61cf1f8d25f19fa96ad3aa5b552896c83e86ce413b48b091d7f01b
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 197,\n \"digest
\": \"sha256:7ab043301a6187ea3293d80b30bad6c7bfladc3cd4c43d10353b31bc@cecfe7d
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 154,\n \"digest
\": \"sha256:67012cca8f31dc3b8ee2305e7762fee20c250513effdedb38alc37784a5a2e71\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 176,\n \"digest
\": \"sha256:3bc892145603fffc9b1c97c94e2985b4ch19ca508750b15845a5d97becbhdlade
\"\n },\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 183,\n \"digest
\": \"sha256:6f1c79518f18251d35977e7e46bfabc6b9cf50df2a79d4194941d95c54258d18\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 212,\n \"digest
\": \'"sha256:b7bcfbc2e2888afebede4ddlcd5eebf029bb6315feeat@b56e425el1l1a50ates42\"\n
},\n {\n \"mediaType\": \"application/
vnd.docker.image.rootfs.diff.tar.gzip\",\n \"size\": 212,\n \"digest\":
\"sha256:2b220f8b0f32b7c2ed8eaatelc802633bbd94849b9ab73926f0bas6cdae91629\"\n \n
I\n}",
"registryId": "123456789012",
"imageId": {
"imageDigest":

"sha256:98c8b060c21d9adbb6b8c41b916e95e6307102786973ab93a41e8b86d1fc6d3e",
"imageTag": "latest"

}

Understanding Amazon ECR log file entries API Version 2015-09-21 278

Amazon ECR

}
.
"requestID": "cf@44b7d-5f9d-11e9-9b2a-95983139cc57",
"eventID": "2bfd4ee2-2178-4a82-a27d-b12939923f0f",
"resources": [{

"ARN": "arn:aws:ecr:us-east-2:123456789012:repository/testrepo",
"accountId": "123456789012"

1,
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

User Guide

Example: Image pull action

The following example shows a CloudTrail log entry that demonstrates an image pull which uses
the BatchGetImage action.

(® Note

When pulling an image, if you don't already have the image locally, you will also see
GetDownloadUrlForLayer references in the CloudTrail logs.

"eventVersion": "1.04",
"userIdentity": {
"type": "IAMUser",
"principalId": "AIDACKCEVSQ6C2EXAMPLE:account_name",
"arn": "arn:aws:sts::123456789012:user/Mary_Major",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "Mary_Major",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-04-15T16:42:14Z"
}
}
.
"eventTime": "2019-04-15T17:23:20Z2",
"eventSource": "ecr.amazonaws.com",
"eventName": "BatchGetImage",

Understanding Amazon ECR log file entries API Version 2015-09-21 279

Amazon ECR User Guide

"awsRegion": "us-east-2",
"sourceIPAddress": "ecr.amazonaws.com'",
"userAgent": "ecr.amazonaws.com",

"requestParameters": {

"imageIds": [{
"imageTag": "latest"

1,

"acceptedMediaTypes": [
"application/json",
"application/vnd.oci.image.manifest.vl+json",
"application/vnd.oci.image.index.v1l+json",
"application/vnd.docker.distribution.manifest.v2+json",
"application/vnd.docker.distribution.manifest.list.v2+json",
"application/vnd.docker.distribution.manifest.vl+prettyjws"

1,

"repositoryName": "testrepo",

"registryId": "123456789012"
1,

"responseElements": null,

"requestID": "2alb97ee-5fa3-11e9-a8cd-cd2391aeda93",

"eventID": "c84f5880-c2f9-4585-9757-28fa5c1065df",

"resources": [{

"ARN": "arn:aws:ecr:us-east-2:123456789012:repository/testrepo",
"accountId": "123456789012"

3,
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: Image lifecycle policy action

The following example shows a CloudTrail log entry that demonstrates when an image
is expired due to a lifecycle policy rule. This event type can be located by filtering for
PolicyExecutionEvent for the event name field.

When you test a lifecycle policy preview, Amazon ECR generates a CloudTrail log entry

with the event name field of DryRunEvent, with the exact same structure as the
PolicyExecutionEvent. By changing the event name to DryRunEvent, you can filter on dry run
events instead.

Understanding Amazon ECR log file entries API Version 2015-09-21 280

Amazon ECR User Guide

/A Important

Due to the size limitations of individual CloudTrail events, for lifecycle policy actions
where 10 or more images are expired Amazon ECR sends multiple events to CloudTrail.
Additionally, Amazon ECR includes a maximum of 100 tags per image.

"eventVersion": "1.05",
"userIdentity": {
"accountId": "123456789012",
"invokedBy": "AWS Internal"

1,

"eventTime": "2020-03-12T20:22:12Z",
"eventSource": "ecr.amazonaws.com",

"eventName": "PolicyExecutionEvent",
"awsRegion": "us-west-2",

"sourceIPAddress": "AWS Internal",

"userAgent": "AWS Internal",

"requestParameters": null,

"responseElements": null,

"eventID": "9354dd7f-9aac-4e9d-956d-12561a4923a3a",
"readOnly": true,

"resources": [

{
"ARN": "arn:aws:ecr:us-west-2:123456789012:repository/testrepo",
"accountId": "123456789012",
"type": "AWS::ECR::Repository"
}
1,
"eventType": "AwsServiceEvent",

"recipientAccountId": "123456789012",
"serviceEventDetails": {
"repositoryName": "testrepo",
"lifecycleEventPolicy": {
"lifecycleEventRules": [
{
"rulePriority": 1,
"description": "remove all images > 2",
"lifecycleEventSelection": {
"tagStatus": "Any",
"tagPrefixList": [],

Understanding Amazon ECR log file entries API Version 2015-09-21 281

Amazon ECR User Guide

"countType": "Image count more than",
"countNumber": 2

3,

"action": "expire"

15
"lastEvaluatedAt": 0,

"policyVersion": 1,
"policyId": "ceb86829-58e7-9498-920c-aa042e33037b"
1,
"lifecycleEventImageActions": [
{
"lifecycleEventImage": {
"digest":
"sha256:ddba4d27a7ffc3f86dd6c2f92041af252a1f23a8e742¢c90e6e1297bfalbc@c45”,
"tagStatus": "Tagged",

"tagList": [
"alpine"
1,
"pushedAt": 1584042813000
1,
"rulePriority": 1
1,
{

"lifecycleEventImage": {
"digest":
"sha256:6ab380c5a5acf71c1b6660d645d2cd79cc8ce91b38e@352cbf9561e050427baf",
"tagStatus": "Tagged",

"tagList": [
"centos"
1,
"pushedAt": 1584042842000
},
"rulePriority": 1
}
1,
"lifecycleEventFailureDetails": [
{

"lifecycleEventImage": {
"digest":
"sha256:9117el1bc28cd20751e584b4ccd19b1178d14cf02d134b0@4cebbe@cc51bff762a",
"tagStatus": "Untagged",
"tagList": [],
"pushedAt": 1584042844000

Understanding Amazon ECR log file entries API Version 2015-09-21 282

Amazon ECR User Guide

1,

"rulePriority": 1,

"failureCode": "ImageReferencedByManifestList",

"failureReason": "Requested image referenced by manifest list:
[sha256:4b27c83d44a18c31543039d9e8b2786043ec6c8d00804d5800c5148d6b6f65bc]"

}

Example: Image archival action

The following example shows a CloudTrail log entry that demonstrates an image being archived
using the UpdateImageStorageClass action with targetStorageClass set to ARCHIVE.

"eventVersion": "1.11",
"userIdentity": {
"type": "IAMUser",
"principalId": "AIDACKCEVSQ6C2EXAMPLE:account_name",
"arn": "arn:aws:sts::123456789012:user/Mary_Major",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "Mary_Major",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-04-15T16:42:142Z"
}
}
},
"eventTime": "2019-04-15T16:45:00Z",
"eventSource": "ecr.amazonaws.com",
"eventName": "UpdateImageStorageClass",
"awsRegion": "us-east-2",
"sourceIPAddress": "AWS Internal",
"userAgent": "AWS Internal",
"requestParameters": {
"repositoryName": "testrepo",
"imageId": {
"imageDigest":
"sha256:98c8b060c21d9adbb6b8c41b916e95e6307102786973ab93a41e8b86d1fc6d3e™
},

Understanding Amazon ECR log file entries API Version 2015-09-21 283

Amazon ECR User Guide

"targetStorageClass": "ARCHIVE",
"registryId": "123456789012"

1,
"responseElements": {
"image": {
"registryId": "123456789012",
"repositoryName": "testrepo",
"imageId": {
"imageDigest":
"sha256:98c8b060c21d9adbb6b8c41b916€95e6307102786973ab93a41e8b86d1fc6d3e"
1,
"imageStatus": "ARCHIVED"
}
I

"requestID": "cf@44b7d-EXAMPLE",

"eventID": "2bfd4ee2-EXAMPLE",

"readOnly": false,

"resources": [{

"ARN": "arn:aws:ecr:us-east-2:123456789012:repository/testrepo",
"accountId": "123456789012"

3,

"eventType": "AwsApiCall",
"managementEvent": true,
"recipientAccountId": "123456789012",
"eventCategory": "Management"

Example: Image restore action

The following examples show CloudTrail log entries that demonstrate an image being restored.
When you restore an archived image, two events are generated:

1. An API call event when the restore is initiated

2. A service event when the asynchronous restore operation completes

API call event (restore initiation)

The following example shows the initial API call to restore an image using the
UpdateImageStorageClass action with targetStorageClass set to STANDARD. The response
shows the image status as ACTIVATING.

Understanding Amazon ECR log file entries API Version 2015-09-21 284

Amazon ECR User Guide

"eventVersion": "1.11",
"userIdentity": {
"type": "IAMUser",
"principalId": "AIDACKCEVSQ6C2EXAMPLE:account_name",
"arn": "arn:aws:sts::123456789012:user/Mary_Major",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"userName": "Mary_Major",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-04-15T16:42:14Z"

}

}
},
"eventTime": "2019-04-15T16:45:00Z2",
"eventSource": "ecr.amazonaws.com",
"eventName": "UpdateImageStorageClass",
"awsRegion": "us-east-2",

"sourceIPAddress": "AWS Internal",
"userAgent": "AWS Internal",
"requestParameters": {

"repositoryName": "testrepo",

"imageId": {

"imageDigest":
"sha256:98c8b060c21d9adbb6b8c41b916€95e6307102786973ab93a41e8b86d1fc6d3e”
1,

"targetStorageClass": "STANDARD",
"registryId": "123456789012"

I
"responseElements": {
"image": {
"registryId": "123456789012",
"repositoryName": "testrepo",
"imageId": {
"imageDigest":
"sha256:98c8b060c21d9adbb6b8c41b916e95e6307102786973ab93a41e8b86d1fc6d3e™
I
"imageStatus": "ACTIVATING"
}
},

"requestID": "cf@44b7d-EXAMPLE",
"eventID": "2bfd4ee2-EXAMPLE",
"readOnly": false,

Understanding Amazon ECR log file entries API Version 2015-09-21 285

Amazon ECR User Guide

"resources": [{
"ARN": "arn:aws:ecr:us-east-2:123456789012:repository/testrepo",
"accountId": "123456789012"

1,
"eventType": "AwsApiCall",

"managementEvent": true,
"recipientAccountId": "123456789012",
"eventCategory": "Management"

Service event (restore completion)

The following example shows the service event generated when the asynchronous restore
operation completes. This event type can be located by filtering for ImageActivationEvent for
the event name field. The serviceEventDetails section contains the restore result and final
image status.

"eventVersion": "1.11",
"userIdentity": {
"accountId": "123456789012",
"invokedBy": "AWS Internal"

},

"eventTime": "2020-03-12T20:22:127",
"eventSource": "ecr.amazonaws.com",
"eventName": "ImageActivationEvent",
"awsRegion": "us-west-2",

"sourceIPAddress": "AWS Internal",
"userAgent": "AWS Internal",
"requestParameters": null,
"responseElements": null,
"eventID": "9354dd7f-EXAMPLE",
"readOnly": true,

"resources": [

{
"ARN": "arn:aws:ecr:us-west-2:123456789012:repository/testrepo",
"accountId": "123456789012",
"type": "AWS::ECR::Repository"
}
1,
"eventType": "AwsServiceEvent",

"managementEvent": true,
"recipientAccountId": "123456789012",

Understanding Amazon ECR log file entries API Version 2015-09-21 286

Amazon ECR User Guide

"serviceEventDetails": {
"repositoryName": "testrepo",
"imageDigest":
"sha256:98c8b060c21d9adbb6b8c41b916e95e6307102786973ab93a41e8b86d1fcb6d3e",
"targetStorageClass": "STANDARD",
"result": "SUCCESS",
"imageStatus": "ACTIVE"
1,

"eventCategory": '"Management"

Example: Image referrers action

The following example shows a AWS CloudTrail log entry that demonstrates when an OCI 1.1
compliant client fetches a list of referrers, or reference artifacts, for an image using the Referrers
API.

"eventVersion": "1.08",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AIDACKCEVSQ6C2EXAMPLE:account_name",
"arn": "arn:aws:sts::123456789012:user/Mary_Major",
"accountId": "123456789012",
"accessKeyId": "AKIAIOSFODNN7EXAMPLE",
"sessionContext": {
"sessionIssuer": {
"type": "Role",
"principalId": "AIDACKCEVSQ6C2EXAMPLE",
"arn": "arn:aws:iam::123456789012:role/Admin",
"accountId": "123456789012",
"userName": "Admin"
},
"webIdFederationData": {3},
"attributes": {
"creationDate": "2024-10-08T16:38:39Z7",
"mfaAuthenticated": "false"

1,
"ec2RoleDelivery": "2.0"
1,
"invokedBy": "ecr.amazonaws.com"

iy
"eventTime": "2024-10-08T17:22:517",

Understanding Amazon ECR log file entries API Version 2015-09-21 287

Amazon ECR User Guide

"eventSource": "ecr.amazonaws.com",
"eventName": "ListImageReferrers",
"awsRegion": "us-east-2",
"sourceIPAddress": "ecr.amazonaws.com'",
"userAgent": "ecr.amazonaws.com",

"requestParameters": {
"registryId": "123456789012",

"repositoryName": "testrepo",
"subjectId": {
"imageDigest":
"sha256:000b9b805af1cdb60628898c9f411996301alcl3afd3dbefld8al6ac6dbf503a™
I

"nextToken": "urD72mdD/mC8b5-EXAMPLE"
I
"responseElements": null,
"requestID": "cb8cl67e-EXAMPLE",
"eventID": "e3c6f4ce-EXAMPLE",
"readOnly": true,
"resources": [
{
"accountId": "123456789012",
"ARN": "arn:aws:ecr:us-east-2:123456789012:repository/testrepo"

1,

"eventType": "AwsApiCall",
"managementEvent": true,
"recipientAccountId": "123456789012",
"eventCategory": "Management"

Understanding Amazon ECR log file entries API Version 2015-09-21 288

Amazon ECR User Guide

Using Amazon ECR with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

For examples specific to Amazon ECR, see Code examples for Amazon ECR using AWS SDKs.

API Version 2015-09-21 289

Amazon ECR User Guide

Code examples for Amazon ECR using AWS SDKs

The following code examples show how to use Amazon ECR with an AWS software development kit
(SDK).

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Code examples

» Basic examples for Amazon ECR using AWS SDKs

+ Hello Amazon ECR

e Learn the basics of Amazon ECR with an AWS SDK

» Actions for Amazon ECR using AWS SDKs

o Use CreateRepository with an AWS SDK or CLI

» Use DeleteRepository with an AWS SDK or CLI

» Use Describelmages with an AWS SDK or CLI

» Use DescribeRepositories with an AWS SDK or CLI

¢ Use GetAuthorizationToken with an AWS SDK or CLI

» Use GetRepositoryPolicy with an AWS SDK or CLI

» Use Listimages with an AWS SDK or CLI

o Use PushimageCmd with an AWS SDK

o Use PutLifeCyclePolicy with an AWS SDK or CLI

o Use SetRepositoryPolicy with an AWS SDK or CLI

» Use StartLifecyclePolicyPreview with an AWS SDK or CLI

API Version 2015-09-21 290

Amazon ECR User Guide

Basic examples for Amazon ECR using AWS SDKs

The following code examples show how to use the basics of Amazon Elastic Container Registry with
AWS SDKs.

Examples

+ Hello Amazon ECR

e Learn the basics of Amazon ECR with an AWS SDK

« Actions for Amazon ECR using AWS SDKs

o Use CreateRepository with an AWS SDK or CLI

» Use DeleteRepository with an AWS SDK or CLI

o Use Describelmages with an AWS SDK or CLI

o Use DescribeRepositories with an AWS SDK or CLI

+ Use GetAuthorizationToken with an AWS SDK or CLI

» Use GetRepositoryPolicy with an AWS SDK or CLI

» Use Listimages with an AWS SDK or CLI

o Use PushimageCmd with an AWS SDK

» Use PutLifeCyclePolicy with an AWS SDK or CLI

o Use SetRepositoryPolicy with an AWS SDK or CLI

» Use StartLifecyclePolicyPreview with an AWS SDK or CLI

Hello Amazon ECR

The following code examples show how to get started using Amazon ECR.
Java

SDK for Java 2.x

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Basics API Version 2015-09-21 291

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR

User Guide

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.ecr.EcrClient;

import software.amazon.awssdk.services.ecr.model.EcrException;

import software.amazon.awssdk.services.ecr.model.ListImagesRequest;
import software.amazon.awssdk.services.ecr.paginators.ListImagesIterable;

public class HelloECR {

public static void main(String[] args) {
final String usage = """
Usage: <repositoryName>

Where:
repositoryName - The name of the Amazon ECR repository.

mwon .,
4

if (args.length != 1) {
System.out.println(usage);
System.exit(1l);

String repoName = args[0];

EcrClient ecrClient = EcrClient.builder()
.region(Region.US_EAST_1)
.build();

listImageTags(ecrClient, repoName);

}

public static void listImageTags(EcrClient ecrClient, String repoName){
ListImagesRequest listImagesPaginator = ListImagesRequest.builder()

.repositoryName(repoName)
.build();

ListImagesIterable imagesIterable =
ecrClient.listImagesPaginator(listImagesPaginator);
imagesIterable.stream()
.flatMap(r -> r.imageIds().stream())

.forEach(image -> System.out.println("The docker image tag is:

+image.imageTag()));

}

Hello Amazon ECR API Version 2015-09-21 292

Amazon ECR User Guide

« For API details, see listimages in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import aws.sdk.kotlin.services.ecr.EcrClient
import aws.sdk.kotlin.services.ecr.model.ListImagesRequest
import kotlin.system.exitProcess

suspend fun main(args: Array<String>) {
val usage = """
Usage: <repositoryName>

Where:
repositoryName - The name of the Amazon ECR repository.

"t trimIndent()

if (args.size != 1) {
println(usage)
exitProcess(1)

val repoName = args[0]
listImageTags(repoName)

suspend fun listImageTags(repoName: String?) {
val listImages =
ListImagesRequest {
repositoryName = repoName

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val imageResponse = ecrClient.listImages(listImages)

Hello Amazon ECR API Version 2015-09-21 293

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/listImages
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

imageResponse.imagelds?.forEach { imageld ->
println("Image tag: ${imageId.imageTagl}")

« For API details, see listimages in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import boto3
import argparse
from boto3 import client

def hello_ecr(ecr_client: client, repository_name: str) -> None:
Use the AWS SDK for Python (Boto3) to create an Amazon Elastic Container
Registry (Amazon ECR)
client and list the images in a repository.
This example uses the default settings specified in your shared credentials
and config files.

:param ecr_client: A Boto3 Amazon ECR Client object. This object wraps
the low-level Amazon ECR service API.
:param repository_name: The name of an Amazon ECR repository in your account.
print(
f"Hello, Amazon ECR! Let's list some images in the repository
'{repository_name}':\n"
)
paginator = ecr_client.get_paginator("list_images")
page_iterator = paginator.paginate(

Hello Amazon ECR API Version 2015-09-21 294

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR

User Guide

if __name__ == "__main__":

repositoryName=repository_name, PaginationConfig={"MaxItems": 10}

image_names: [str] = []
for page in page_iterator:
for schedule in page["imageIds"]:
image_names.append(schedule["imageTag"])

print(f"{len(image_names)} image(s) retrieved.")
for schedule_name in image_names:
print(f"\t{schedule_name}")

parser = argparse.ArgumentParser(description="Run hello Amazon ECR.")
parser.add_argument(
"--repository-name",
type=str,
help="the name of an Amazon ECR repository in your account.",
required=True,
)

args = parser.parse_args()

hello_ecr(boto3.client("ecr"), args.repository_name)

« For API details, see listimages in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Learn the basics of Amazon ECR with an AWS SDK

The following code examples show how to:

Create an Amazon ECR repository.

Set repository policies.

Retrieve repository URIs.

Get Amazon ECR authorization tokens.

Set lifecycle policies for Amazon ECR repositories.

Learn the basics

API Version 2015-09-21 295

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/listImages

Amazon ECR User Guide

Push a Docker image to an Amazon ECR repository.

Verify the existence of an image in an Amazon ECR repository.

List Amazon ECR repositories for your account and get details about them.

Delete Amazon ECR repositories.

Java

SDK for Java 2.x

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario demonstrating Amazon ECR features.

import software.amazon.awssdk.services.ecr.model.EcrException;
import
software.amazon.awssdk.services.ecr.model.RepositoryPolicyNotFoundException;

import java.util.Scanner;

/**
* Before running this Java V2 code example, set up your development
* environment, including your credentials.

*

* For more information, see the following documentation topic:

*

* https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html

*

* This Java code example requires an IAM Role that has permissions to interact
with the Amazon ECR service.

*

* To create an IAM role, see:
*

* https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

*

* This Java scenario example requires a local docker image named echo-text.
Without a local image,

Learn the basics API Version 2015-09-21 296

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR

User Guide

* this Java program will not successfully run. For more information including
how to create the local
* image, see:

*

* /scenarios/basics/ecr/README

*

*/

public class ECRScenario {
public static final String DASHES = new String(new char[80]).replace("\0",

Il_ll);

public static void main(String[] args) {

final String usage = """
Usage: <iamRoleARN> <accountId>

Where:

iamRoleARN - The IAM role ARN that has the necessary permissions
to access and manage the Amazon ECR repository.

accountId - Your AWS account number.

[TRTRIEN
’

if (args.length != 2) {
System.out.println(usage);
retuzrn;

ECRActions ecrActions = new ECRActions();
String iamRole = args[0];

String accountId = args[1l];

String localImageName;

SEREE SEEnST = nal SeEnu(Syetein. A
System.out.println("""

The Amazon Elastic Container Registry (ECR) is a fully-managed
Docker container registry
service provided by AWS. It allows developers and organizations to

securely

store, manage, and deploy Docker container images.

ECR provides a simple and scalable way to manage container images
throughout their lifecycle,
from building and testing to production deployment.\s

The “EcrAsyncClient’ interface in the AWS SDK for Java 2.x provides
a set of methods to

Learn the basics

API Version 2015-09-21 297

Amazon ECR

User Guide

programmatically interact with the Amazon ECR service. This allows
developers to

automate the storage, retrieval, and management of container images
as part of their application

deployment pipelines. With ECR, teams can focus on building and
deploying their

applications without having to worry about the underlying
infrastructure required to

host and manage a container registry.

This scenario walks you through how to perform key operations for
this service.
Let's get started...

You have two choices:

1 - Run the entire program.

2 - Delete an existing Amazon ECR repository named echo-text (created
from a previous execution of

this program that did not complete).

")

while (true) {

String input = scanner.nextLine();

if (input.trim().equalsIgnoreCase("1")) {
System.out.println("Continuing with the program...");
System.out.println("");
break;

} else if (input.trim().equalsIgnoreCase("2")) {
String repoName = "echo-text";
ecrActions.deleteECRRepository(repoName);
retuzrn;

} else {
// Handle invalid input.
System.out.println("Invalid input. Please try again.");

waitForInputToContinue(scanner);
System.out.println(DASHES);

System.out.println("""
1. Create an ECR repository.

Learn the basics API Version 2015-09-21 298

Amazon ECR User Guide

The first task is to ensure we have a local Docker image named echo-

text.
If this image exists, then an Amazon ECR repository is created.
An ECR repository is a private Docker container repository provided
by Amazon Web Services (AWS). It is a managed service that makes it
easy
to store, manage, and deploy Docker container images.\s
mEt);
// Ensure that a local docker image named echo-text exists.
boolean doesExist = ecrActions.isEchoTextImagePresent();
String repoName;
if (!doesExist){
System.out.println("The local image named echo-text does not exist");
return;
} else {
localImageName = "echo-text";
repoName = "echo-text";
}
try {
String repoArn = ecrActions.createECRRepository(repoName);
System.out.println("The ARN of the ECR repository is " + repoArn);
} catch (IllegalArgumentException e) {
System.err.println("Invalid repository name: " + e.getMessage());
return;
} catch (RuntimeException e) {
System.err.println("An error occurred while creating the ECR
repository: " + e.getMessage());
e.printStackTrace();
retuzrn;

}

waitForInputToContinue(scanner);

System.out.println(DASHES);
System.out.println("""
2. Set an ECR repository policy.

Setting an ECR repository policy using the “setRepositoryPolicy’ function
is crucial for maintaining

the security and integrity of your container images. The repository
policy allows you to

Learn the basics API Version 2015-09-21 299

Amazon ECR User Guide

define specific rules and restrictions for accessing and managing the
images stored within your ECR

repository.

IIIIII);

waitForInputToContinue(scanner);

try {
ecrActions.setRepoPolicy(repoName, iamRole);

} catch (RepositoryPolicyNotFoundException e) {

System.err.println("Invalid repository name: " + e.getMessage());
retuzrn;

} catch (EcrException e) {
System.err.println("An ECR exception occurred: " + e.getMessage());
return;

} catch (RuntimeException e) {
System.err.println("An error occurred while creating the ECR
repository: " + e.getMessage());
return;

}

waitForInputToContinue(scanner);

System.out.println(DASHES);
System.out.println("""
3. Display ECR repository policy.

Now we will retrieve the ECR policy to ensure it was successfully set.

mut);

waitForInputToContinue(scanner);

try {
String policyText = ecrActions.getRepoPolicy(repoName);
System.out.println("Policy Text:");
System.out.println(policyText);

} catch (EcrException e) {
System.err.println("An ECR exception occurred: " + e.getMessage());
return;
} catch (RuntimeException e) {
System.err.println("An error occurred while creating the ECR
repository: " + e.getMessage());
return;

waitForInputToContinue(scanner);

Learn the basics API Version 2015-09-21 300

Amazon ECR User Guide

System.out.println(DASHES);
System.out.println("""
4. Retrieve an ECR authorization token.

You need an authorization token to securely access and interact with the
Amazon ECR registry.

The ‘getAuthorizationToken™ method of the “EcrAsyncClient” is responsible
for securely accessing

and interacting with an Amazon ECR repository. This operation is
responsible for obtaining a

valid authorization token, which is required to authenticate your
requests to the ECR service.

Without a valid authorization token, you would not be able to perform any
operations on the
ECR repository, such as pushing, pulling, or managing your Docker images.

IIIIII);
waitForInputToContinue(scanner);
try {

ecrActions.getAuthToken();

} catch (EcrException e) {
System.err.println("An ECR exception occurred: " + e.getMessage());
retuzrn;
} catch (RuntimeException e) {
System.err.println("An error occurred while retrieving the
authorization token: " + e.getMessage());
retuzrn;

}

waitForInputToContinue(scanner);

System.out.println(DASHES);
System.out.println("""
5. Get the ECR Repository URI.

The URI of an Amazon ECR repository is important. When you want to
deploy a container image to
a container orchestration platform like Amazon Elastic Kubernetes Service

(EKS)

or Amazon Elastic Container Service (ECS), you need to specify the full
image URI,

which includes the ECR repository URI. This allows the container runtime
to pull the

Learn the basics API Version 2015-09-21 301

Amazon ECR User Guide

correct container image from the ECR repository.

Illlll);

waitForInputToContinue(scanner);

try {
ecrActions.getRepositoryURI(repoName);

} catch (EcrException e) {
System.err.println("An ECR exception occurred: " + e.getMessage());
return;

} catch (RuntimeException e) {
System.err.println("An error occurred while retrieving the URI: " +
e.getMessage());
retuzrn;

}

waitForInputToContinue(scanner);

System.out.println(DASHES);
System.out.println("""
6. Set an ECR Lifecycle Policy.

An ECR Lifecycle Policy is used to manage the lifecycle of Docker
images stored in your ECR repositories.

These policies allow you to automatically remove old or unused Docker
images from your repositories,

freeing up storage space and reducing costs.

This example policy helps to maintain the size and efficiency of the
container registry
by automatically removing older and potentially unused images,
ensuring that the
storage is optimized and the registry remains up-to-date.
")
waitForInputToContinue(scanner);
try {
ecrActions.setLifeCyclePolicy(repoName);

} catch (RuntimeException e) {
System.err.println("An error occurred while setting the lifecycle
policy: " + e.getMessage());
e.printStackTrace();
retuzrn;

Learn the basics API Version 2015-09-21 302

Amazon ECR User Guide

waitForInputToContinue(scanner);

System.out.println(DASHES);
System.out.println("""
7. Push a docker image to the Amazon ECR Repository.

The “pushImageCmd() ™ method pushes a local Docker image to an Amazon ECR
repository.

It sets up the Docker client by connecting to the local Docker host using
the default port.

It then retrieves the authorization token for the ECR repository by
making a call to the AWS SDK.

The method uses the authorization token to create an ‘AuthConfig® object,
which is used to authenticate

the Docker client when pushing the image. Finally, the method tags the
Docker image with the specified

repository name and image tag, and then pushes the image to the ECR
repository using the Docker client.

If the push operation is successful, the method prints a message
indicating that the image was pushed to ECR.

")

waitForInputToContinue(scanner);

try {
ecrActions.pushDockerImage(repoName, localImageName);

} catch (RuntimeException e) {
System.err.println("An error occurred while pushing a local Docker

image to Amazon ECR: " + e.getMessage());
e.printStackTrace();
retuzrn;
}

waitForInputToContinue(scanner);

System.out.println(DASHES);
System.out.println("8. Verify if the image is in the ECR Repository.");
waitForInputToContinue(scanner);
try {
ecrActions.verifyImage(repoName, localImageName);

} catch (EcrException e) {
System.err.println("An ECR exception occurred: " + e.getMessage());
return;

Learn the basics API Version 2015-09-21 303

Amazon ECR User Guide

} catch (RuntimeException e) {
System.err.println("An error occurred " + e.getMessage());
e.printStackTrace();
return;

}

waitForInputToContinue(scanner);

System.out.println(DASHES);
System.out.println("9. As an optional step, you can interact with the
image in Amazon ECR by using the CLI.");
System.out.println("Would you like to view instructions on how to use the
CLI to run the image? (y/n)");
String ans = scanner.nextLine().trim();
if (ans.equalsIgnoreCase("y")) {
String instructions = """
1. Authenticate with ECR - Before you can pull the image from Amazon
ECR, you need to authenticate with the registry. You can do this using the AWS
CLI:

aws ecr get-login-password --region us-east-1 | docker login --
username AWS --password-stdin %s.dkr.ecr.us-east-1.amazonaws.com

2. Describe the image using this command:

aws ecr describe-images --repository-name %s --image-ids imageTag=

o\
n

3. Run the Docker container and view the output using this command:

docker run --rm %s.dkr.ecr.us-east-1.amazonaws.com/%s:%s

[TRTRIEN
’

instructions = String.format(instructions, accountId, repoName,
localImageName, accountId, repoName, localImageName);
System.out.println(instructions);

}

waitForInputToContinue(scanner);

System.out.println(DASHES);
System.out.println("10. Delete the ECR Repository.");
System.out.println(

If the repository isn't empty, you must either delete the contents of the
repository

Learn the basics API Version 2015-09-21 304

Amazon ECR User Guide

or use the force option (used in this scenario) to delete the repository
and have Amazon ECR delete all of its contents

on your behalf.

")

System.out.println("Would you like to delete the Amazon ECR Repository?
(y/m)");

String delAns = scanner.nextlLine().trim();

if (delAns.equalsIgnoreCase("y")) {

System.out.println("You selected to delete the AWS ECR resources.");

try {
ecrActions.deleteECRRepository(repoName);

} catch (EcrException e) {
System.err.println("An ECR exception occurred: " +
e.getMessage());
retuzrn;
} catch (RuntimeException e) {
System.err.println("An error occurred while deleting the Docker

image: " + e.getMessage());
e.printStackTrace();
return;
}
}

System.out.println(DASHES);
System.out.println("This concludes the Amazon ECR SDK scenario");
System.out.println(DASHES);

private static void waitForInputToContinue(Scanner scanner) {
while (true) {
System.out.println("");
System.out.println("Enter 'c' followed by <ENTER> to continue:");
String input = scanner.nextlLine();

if (input.trim().equalsIgnoreCase("c")) {

System.out.println("Continuing with the program...");
System.out.println("");
break;

} else {

// Handle invalid input.
System.out.println("Invalid input. Please try again.");

Learn the basics API Version 2015-09-21 305

Amazon ECR

User Guide

A wrapper class for Amazon ECR SDK methods.

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

software.amazon.awssdk.services.ecr.model.
import software.amazon.awssdk.services.ecr.
import software.amazon.awssdk.services.ecr.

import

software.amazon.awssdk.services.ecr.model.

import

com.github.dockerjava.
com.github.dockerjava.
com.github.dockerjava.
com.github.dockerjava.
com.github.dockerjava.
org.slf4j.Logger;

org.slf4j.LoggerFactory;

software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.
software.

amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.

awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.

api.DockerClient;

api.exception

.DockerClientException;

api.model.AuthConfig;
api.model.Image;
core.DockerClientBuilder;

services.ecr

software.amazon.awssdk.services.ecr.model
import com.github.dockerjava.api.command.DockerCmdExecFactory;

services.ecr.
services.ecr.
services.ecr.
services.ecr.
services.ecr.
services.ecr.
services.ecr.
services.ecr.

services.ecr.
services.ecr.
services.ecr.
services.ecr.
services.ecr.
services.ecr.
services.ecr.

core.client.config.ClientOverrideConfiguration;
http.async.SdkAsyncHttpClient;
http.nio.netty.NettyNioAsyncHttpClient;
regions.Region;

EcrAsyncClient;
model.AuthorizationData;
model.CreateRepositoryRequest;
model.CreateRepositoryResponse;
model .DeleteRepositoryRequest;
model.DeleteRepositoryResponse;
model .DescribeImagesRequest;

model .DescribeImagesResponse;
.model.DescribeRepositoriesRequest;
model.DescribeRepositoriesResponse;
model.EcrException;
model.GetAuthorizationTokenResponse;
model .GetRepositoryPolicyRequest;
model.GetRepositoryPolicyResponse;
model.Imageldentifier;
model.Repository;

RepositoryPolicyNotFoundException;
model.SetRepositoryPolicyRequest;
model.SetRepositoryPolicyResponse;

StartLifecyclePolicyPreviewRequest;

.StartlLifecyclePolicyPreviewResponse;

Learn the basics

API Version 2015-09-21

306

Amazon ECR User Guide

import com.github.dockerjava.netty.NettyDockerCmdExecFactory;
import java.time.Duration;

import java.util.Baseb4;

import java.util.list;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionException;

public class ECRActions {
private static EcrAsyncClient ecrClient;

private static DockerClient dockerClient;
private static Logger logger = LoggerFactory.getLogger(ECRActions.class);

/**
* Creates an Amazon Elastic Container Registry (Amazon ECR) repository.
*
* @param repoName the name of the repository to create.
* @return the Amazon Resource Name (ARN) of the created repository, or an
empty string if the operation failed.

* @throws IllegalArgumentException If repository name is invalid.

* @throws RuntimeException if an error occurs while creating the
repository.

*/

public String createECRRepository(String repoName) {
if (repoName == null || repoName.isEmpty()) {
throw new IllegalArgumentException("Repository name cannot be null or
empty");
}

CreateRepositoryRequest request = CreateRepositoryRequest.builder()
.repositoryName(repoName)
.build();

CompletableFuture<CreateRepositoryResponse> response =
getAsyncClient().createRepository(request);
try {
CreateRepositoryResponse result = response.join();
if (result !'= null) {
System.out.println("The " + repoName + " repository was created
successfully.");
return result.repository().repositoryArn();
} else {
throw new RuntimeException("Unexpected response type");

Learn the basics API Version 2015-09-21 307

Amazon ECR User Guide

}
} catch (CompletionException e) {
Throwable cause = e.getCause();
if (cause instanceof EcrException ex) {
if
("RepositoryAlreadyExistsException".equals(ex.awsErrorDetails().errorCode())) {
System.out.println("The Amazon ECR repository already exists,

moving on...");
DescribeRepositoriesRequest describeRequest =
DescribeRepositoriesRequest.builder()
.repositoryNames(repoName)
.build();
DescribeRepositoriesResponse describeResponse =
getAsyncClient().describeRepositories(describeRequest).join();

return
describeResponse.repositories().get(@).repositoryArn();
} else {
throw new RuntimeException(ex);
}
} else {
throw new RuntimeException(e);
}
}
}
/**

* Deletes an ECR (Elastic Container Registry) repository.
*
* @param repoName the name of the repository to delete.
* @throws IllegalArgumentException if the repository name is null or empty.
* @throws EcrException if there is an error deleting the repository.
* @throws RuntimeException if an unexpected error occurs during the deletion
process.
*/
public void deleteECRRepository(String repoName) {
if (repoName == null || repoName.isEmpty()) {
throw new IllegalArgumentException('"Repository name cannot be null or
empty");
}

DeleteRepositoryRequest repositoryRequest =
DeleteRepositoryRequest.builder()
.force(true)
.repositoryName(repoName)

Learn the basics API Version 2015-09-21 308

Amazon ECR User Guide

.build();

CompletableFuture<DeleteRepositoryResponse> response =
getAsyncClient().deleteRepository(repositoryRequest);
response.whenComplete((deleteRepositoryResponse, ex) -> {
if (deleteRepositoryResponse != null) {
System.out.println("You have successfully deleted the " +
repoName + " repository");
} else {
Throwable cause = ex.getCause();
if (cause instanceof EcrException) {
throw (EcrException) cause;
} else {
throw new RuntimeException("Unexpected error: " +
cause.getMessage(), cause);

}

1)

// Wait for the CompletableFuture to complete
response.join();

private static DockerClient getDockerClient() {
String osName = System.getProperty("os.name");
if (osName.startsWith("Windows")) {
// Make sure Docker Desktop is running.
String dockerHost = "tcp://localhost:2375"; // Use the Docker Desktop
default port.
DockerCmdExecFactory dockerCmdExecFactory = new
NettyDockerCmdExecFactory().withReadTimeout(20000).withConnectTimeout(20000);
dockerClient =
DockerClientBuilder.getInstance(dockerHost).withDockerCmdExecFactory(dockerCmdExecFactoz
} else {
dockerClient = DockerClientBuilder.getInstance().build();
}

return dockerClient;

/**
* Retrieves an asynchronous Amazon Elastic Container Registry (ECR) client.
*

Learn the basics API Version 2015-09-21 309

Amazon ECR User Guide

* @return the configured ECR asynchronous client.
*/
private static EcrAsyncClient getAsyncClient() {

/*

The “NettyNioAsyncHttpClient class is part of the AWS SDK for Java,
version 2,

and it is designed to provide a high-performance, asynchronous HTTP
client for interacting with AWS services.

It uses the Netty framework to handle the underlying network
communication and the Java NIO API to

provide a non-blocking, event-driven approach to HTTP requests and
responses.

*/

SdkAsyncHttpClient httpClient = NettyNioAsyncHttpClient.builder()
.maxConcurrency(50) // Adjust as needed.
.connectionTimeout(Duration.ofSeconds(60@)) // Set the connection

timeout.
.readTimeout(Duration.ofSeconds(6@)) // Set the read timeout.
.writeTimeout(Duration.ofSeconds(60)) // Set the write timeout.
.build();

ClientOverrideConfiguration overrideConfig =
ClientOverrideConfiguration.buildex()
.apiCallTimeout(Duration.ofMinutes(2)) // Set the overall API call
timeout.
.apiCallAttemptTimeout(Duration.ofSeconds(90)) // Set the individual
call attempt timeout.
.build();

if (ecrClient == null) {
ecrClient = EcrAsyncClient.builder()
.region(Region.US_EAST_1)
.httpClient(httpClient)
.overrideConfiguration(overrideConfig)
.build();
}

return ecrClient;

/**
* Sets the lifecycle policy for the specified repository.
*

Learn the basics API Version 2015-09-21 310

Amazon ECR User Guide

* @param repoName the name of the repository for which to set the lifecycle

policy.
*/
public void setLifeCyclePolicy(String repoName) {
/*
This policy helps to maintain the size and efficiency of the container
registry
by automatically removing older and potentially unused images,
ensuring that the storage is optimized and the registry remains up-to-
date.
*/
String polText = """
{
"rules": [
{
"rulePriority": 1,
"description": "Expire images older than 14 days",
"selection": {
"tagStatus": "any",
"countType": "sincelmagePushed",
"countUnit": "days",
"countNumber": 14
1,
"action": {
"type": "expire"
}
}
]
}

StartLifecyclePolicyPreviewRequest lifecyclePolicyPreviewRequest =
StartLifecyclePolicyPreviewRequest.builder()
.lifecyclePolicyText(polText)
.repositoryName(repoName)
.build();

CompletableFuture<StartLifecyclePolicyPreviewResponse> response =
getAsyncClient().startLifecyclePolicyPreview(lifecyclePolicyPreviewRequest);
response.whenComplete((lifecyclePolicyPreviewResponse, ex) -> {
if (lifecyclePolicyPreviewResponse != null) {

System.out.println("Lifecycle policy preview started
successfully.");
} else {

Learn the basics API Version 2015-09-21 311

Amazon ECR User Guide

if (ex.getCause() instanceof EcrException) {
throw (EcrException) ex.getCause();
} else {

String errorMessage = "Unexpected error occurred: " +
ex.getMessage();

throw new RuntimeException(errorMessage, ex);

1}
// Wait for the CompletableFuture to complete.
response.join();

/**
* Verifies the existence of an image in an Amazon Elastic Container Registry

(Amazon ECR) repository asynchronously.
*

* @param repositoryName The name of the Amazon ECR repository.

* @param imageTag The tag of the image to verify.

* @throws EcrException if there is an error retrieving the image
information from Amazon ECR.

* @throws CompletionException if the asynchronous operation completes
exceptionally.

*/

public void verifyImage(String repositoryName, String imageTag) {
DescribeImagesRequest request = DescribeImagesRequest.builder()
.repositoryName(repositoryName)

.imagelds(Imageldentifier.builder().imageTag(imageTag).build())
.build();

CompletableFuture<DescribeImagesResponse> response =
getAsyncClient().describeImages(request);
response.whenComplete((describeImagesResponse, ex) -> {
if (ex !'= null) {
if (ex instanceof CompletionException) {
Throwable cause = ex.getCause();
if (cause instanceof EcrException) {
throw (EcrException) cause;
} else {

throw new RuntimeException("Unexpected error: " +
cause.getMessage(), cause);

}
} else {

Learn the basics API Version 2015-09-21 312

Amazon ECR User Guide

throw new RuntimeException("Unexpected error: " +
ex.getCause());
}
} else if (describeImagesResponse != null && !
describeImagesResponse.imageDetails().isEmpty()) {
System.out.println("Image is present in the repository.");
} else {
System.out.println("Image is not present in the repository.");

1)

// Wait for the CompletableFuture to complete.
response.join();

/**
* Retrieves the repository URI for the specified repository name.
*

* @param repoName the name of the repository to retrieve the URI for.
* @return the repository URI for the specified repository name.

* @throws EcrException if there is an error retrieving the repository
information.

* @throws CompletionException if the asynchronous operation completes
exceptionally.

*/

public void getRepositoryURI(String repoName) {
DescribeRepositoriesRequest request =
DescribeRepositoriesRequest.builder()
.repositoryNames(repoName)
.build();

CompletableFuture<DescribeRepositoriesResponse> response =
getAsyncClient().describeRepositories(request);
response.whenComplete((describeRepositoriesResponse, ex) -> {
if (ex !'= null) {
Throwable cause = ex.getCause();
if (cause instanceof InterruptedException) {
Thread.currentThread().interrupt();
String errorMessage = "Thread interrupted while waiting for
asynchronous operation: " + cause.getMessage();
throw new RuntimeException(errorMessage, cause);
} else if (cause instanceof EcrException) {
throw (EcrException) cause;
} else {

Learn the basics API Version 2015-09-21 313

Amazon ECR

User Guide

String errorMessage = "Unexpected error: " +
cause.getMessage();
throw new RuntimeException(errorMessage, cause);
}
} else {
if (describeRepositoriesResponse != null) {
if (!describeRepositoriesResponse.repositories().isEmpty()) {
String repositoryUri =
describeRepositoriesResponse.repositories().get(0).repositoryUri();
System.out.println("Repository URI found: " +
repositoryUri);

} else {
System.out.println("No repositories found for the given
name.");
}
} else {

System.err.println("No response received from
describeRepositories.");

}
}

1)

response.join();
}
/**

* Retrieves the authorization token for Amazon Elastic Container Registry
(ECR).

* This method makes an asynchronous call to the ECR client to retrieve the
authorization token.

* If the operation is successful, the method prints the token to the
console.

* If an exception occurs, the method handles the exception and prints the

€IIror message.
*

* @throws EcrException if there is an error retrieving the authorization
token from ECR.
* @throws RuntimeException if there is an unexpected error during the
operation.
*/
public void getAuthToken() {

CompletableFuture<GetAuthorizationTokenResponse> response =
getAsyncClient().getAuthorizationToken();

response.whenComplete((authorizationTokenResponse, ex) -> {

if (authorizationTokenResponse != null) {

Learn the basics API Version 2015-09-21 314

Amazon ECR User Guide

AuthorizationData authorizationData =
authorizationTokenResponse.authorizationData().get(Q);
String token = authorizationData.authorizationToken();
if (!token.isEmpty()) {
System.out.println("The token was successfully retrieved.");
}
} else {
if (ex.getCause() instanceof EcrException) {
throw (EcrException) ex.getCause();
} else {
String errorMessage = "Unexpected error occurred: " +
ex.getMessage();
throw new RuntimeException(errorMessage, ex); // Rethrow the
exception

1)

response.join();

/**
* Gets the repository policy for the specified repository.
*
* @param repoName the name of the repository.
* @throws EcrException if an AWS error occurs while getting the repository
policy.
*/
public String getRepoPolicy(String repoName) {
if (repoName == null || repoName.isEmpty()) {
throw new IllegalArgumentException("Repository name cannot be null or
empty");
}

GetRepositoryPolicyRequest getRepositoryPolicyRequest =
GetRepositoryPolicyRequest.builder()
.repositoryName(repoName)
.build();

CompletableFuture<GetRepositoryPolicyResponse> response =
getAsyncClient().getRepositoryPolicy(getRepositoryPolicyRequest);
response.whenComplete((resp, ex) -> {
if (resp != null) {
System.out.println("Repository policy retrieved successfully.");
} else {

Learn the basics API Version 2015-09-21 315

Amazon ECR User Guide

if (ex.getCause() instanceof EcrException) {
throw (EcrException) ex.getCause();
} else {
String errorMessage = "Unexpected error occurred: " +
ex.getMessage();
throw new RuntimeException(errorMessage, ex);

}
}
});
GetRepositoryPolicyResponse result = response.join();
return result != null ? result.policyText() : null;
}
/**

* Sets the repository policy for the specified ECR repository.

* @param repoName the name of the ECR repository.
* @param iamRole the IAM role to be granted access to the repository.
* @throws RepositoryPolicyNotFoundException if the repository policy does

not exist.
* @throws EcrException if there is an unexpected error
setting the repository policy.
*/
public void setRepoPolicy(String repoName, String iamRole) {
/*

This example policy document grants the specified AWS principal the
permission to perform the

‘ecr:BatchGetImage®™ action. This policy is designed to allow the
specified principal

to retrieve Docker images from the ECR repository.

*/
String policyDocumentTemplate = """
{
"Version":"2012-10-17",
"Statement" : [{
"Sid" : "new statement",
"Effect" : "Allow",
"Principal" : {
"AWS" i "%s"
1,
"Action" : "ecr:BatchGetImage"
]
}

Learn the basics API Version 2015-09-21 316

Amazon ECR User Guide

min o,
’

String policyDocument = String.format(policyDocumentTemplate, iamRole);
SetRepositoryPolicyRequest setRepositoryPolicyRequest =
SetRepositoryPolicyRequest.builder()
.repositoryName(repoName)
.policyText(policyDocument)
.build();

CompletableFuture<SetRepositoryPolicyResponse> response =
getAsyncClient().setRepositoryPolicy(setRepositoryPolicyRequest);
response.whenComplete((resp, ex) -> {
if (resp != null) {
System.out.println("Repository policy set successfully.");
} else {
Throwable cause = ex.getCause();
if (cause instanceof RepositoryPolicyNotFoundException) {
throw (RepositoryPolicyNotFoundException) cause;
} else if (cause instanceof EcrException) {
throw (EcrException) cause;
} else {
String errorMessage = "Unexpected error: " +
cause.getMessage();

throw new RuntimeException(errorMessage, cause);

1)

response.join();

/**
* Pushes a Docker image to an Amazon Elastic Container Registry (ECR)
repository.
*
* @param repoName the name of the ECR repository to push the image to.
* @param imageName the name of the Docker image.
*/
public void pushDockerImage(String repoName, String imageName) {

System.out.println("Pushing " + imageName + " to Amazon ECR will take a
few seconds.");

CompletableFuture<AuthConfig> authResponseFuture =
getAsyncClient().getAuthorizationToken()
.thenApply(response -> {

Learn the basics API Version 2015-09-21 317

Amazon ECR User Guide

String token =
response.authorizationData().get(0Q).authorizationToken();

String decodedToken = new
String(Baseb4.getDecoder().decode(token));

String password = decodedToken.substring(4);

DescribeRepositoriesResponse descrRepoResponse =
getAsyncClient().describeRepositories(b -> b.repositoryNames(repoName)).join();

Repository repoData =
descrRepoResponse.repositories().stream().filter(r ->
r.repositoryName().equals(repoName)).findFirst().orElse(null);

assert repoData != null;

String registryURL = repoData.repositoryUri().split("/")[Q];

AuthConfig authConfig = new AuthConfig()
.withUsername("AWS")
.withPassword(password)
.withRegistryAddress(registryURL);
return authConfig;
)
.thenCompose(authConfig -> {
DescribeRepositoriesResponse descrRepoResponse =
getAsyncClient().describeRepositories(b -> b.repositoryNames(repoName)).join();
Repository repoData =
descrRepoResponse.repositories().stream().filter(r ->
r.repositoryName().equals(repoName)).findFirst().orElse(null);
getDockerClient().tagImageCmd(imageName + ":latest",
repoData.repositoryUri() + ":latest", imageName).exec();
try {

getDockerClient().pushImageCmd(repoData.repositoryUri()).withTag("echo-
text").withAuthConfig(authConfig).start().awaitCompletion();
System.out.println("The " + imageName + " was pushed to

ECR");
} catch (InterruptedException e) {
throw (RuntimeException) e.getCause();
}
return CompletableFuture.completedFuture(authConfig);
1);
authResponseFuture.join();
}

Learn the basics API Version 2015-09-21 318

Amazon ECR User Guide

// Make sure local image echo-text exists.
public boolean isEchoTextImagePresent() {
try {
List<Image> images = getDockerClient().listImagesCmd().exec();
boolean helloWorldFound = false;
for (Image image : images) {
String[] repoTags = image.getRepoTags();
if (repoTags != null) {
for (String tag : repoTags) {
if (tag.startsWith("echo-text")) {
System.out.println(tag);
helloWorldFound = true;

}

if (helloWorldFound) {
System.out.println("The local image named echo-text exists.");
return true;

} else {
System.out.println("The local image named echo-text does not

exist.");

return false;

}

} catch (DockerClientException ex) {
logger.error("ERROR: " + ex.getMessage());
return false;

» For API details, see the following topics in AWS SDK for Java 2.x API Reference.

» CreateRepository

o DeleteRepository

» Describelmages

» DescribeRepositories

« GetAuthorizationToken

» GetRepositoryPolicy

» SetRepositoryPolicy

Learn the basics API Version 2015-09-21 319

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/CreateRepository
https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/DeleteRepository
https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/DescribeImages
https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/DescribeRepositories
https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/GetAuthorizationToken
https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/GetRepositoryPolicy
https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/SetRepositoryPolicy

Amazon ECR User Guide

« StartLifecyclePolicyPreview

Kotlin

SDK for Kotlin

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario demonstrating Amazon ECR features.

import java.util.Scanner

/**
* Before running this Kotlin code example, set up your development environment,
including your credentials.

*

* For more information, see the following documentation topic:
*

* https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html
*

* This code example requires an IAM Role that has permissions to interact with
the Amazon ECR service.

*

* To create an IAM role, see:
*

* https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

*

* This code example requires a local docker image named echo-text. Without a
local image,

* this program will not successfully run. For more information including how to
create the local

* image, see:

*

* /scenarios/basics/ecr/README

*

*/

val DASHES = String(CharArray(80)).replace("\u0@000", "-")

Learn the basics API Version 2015-09-21 320

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/StartLifecyclePolicyPreview
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

suspend fun main(args: Array<String>) {
val usage =

Usage: <iamRoleARN> <accountId>

Where:
iamRoleARN - The IAM role ARN that has the necessary permissions to
access and manage the Amazon ECR repository.
accountId - Your AWS account number.

"t otrimIndent()

if (args.size != 2) {
println(usage)
return

var iamRole = args[0]

var localImageName: String

var accountId = args[1]

val ecrActions = ECRActions()

val scanner = Scanner(System. in’)

println(

The Amazon Elastic Container Registry (ECR) is a fully-managed Docker
container registry

service provided by AWS. It allows developers and organizations to
securely

store, manage, and deploy Docker container images.

ECR provides a simple and scalable way to manage container images
throughout their lifecycle,

from building and testing to production deployment.

The “EcrClient’ service client that is part of the AWS SDK for Kotlin
provides a set of methods to

programmatically interact with the Amazon ECR service. This allows
developers to

automate the storage, retrieval, and management of container images as
part of their application

deployment pipelines. With ECR, teams can focus on building and deploying
their

Learn the basics API Version 2015-09-21 321

Amazon ECR User Guide

applications without having to worry about the underlying infrastructure
required to
host and manage a container registry.

This scenario walks you through how to perform key operations for this
service.
Let's get started...

You have two choices:
1 - Run the entire program.
2 - Delete an existing Amazon ECR repository named echo-text (created
from a previous execution of
this program that did not complete).

"t trimIndent(),

while (true) {
val input = scanner.nextLine()

if (input.trim { it <= ' ' }.equals("1", ignoreCase = true)) {
println("Continuing with the program...")
println("")
break

} else if (input.trim { it <= ' ' }.equals("2", ignoreCase = true)) {
val repoName = "echo-text"
ecrActions.deleteECRRepository(repoName)
return

} else {

// Handle invalid input.
println("Invalid input. Please try again.")

waitForInputToContinue(scanner)
println(DASHES)
println(

1. Create an ECR repository.
The first task is to ensure we have a local Docker image named echo-
text.

If this image exists, then an Amazon ECR repository is created.

An ECR repository is a private Docker container repository provided

Learn the basics API Version 2015-09-21 322

Amazon ECR

User Guide

by Amazon Web Services (AWS). It is a managed service that makes it easy

to store, manage, and deploy Docker container images.

nnn.trimIndent()r

// Ensure that a local docker image named echo-text exists.
val doesExist = ecrActions.listlLocalImages()
val repoName: String
if (!doesExist) {
println("The local image named echo-text does not exist")

return

} else {
localImageName = "echo-text"
repoName = "echo-text"

val repoArn = ecrActions.createECRRepository(repoName).toString()
println("The ARN of the ECR repository is $repoArn")
waitForInputToContinue(scanner)

println(DASHES)
println(

2. Set an ECR repository policy.

Setting an ECR repository policy using the “setRepositoryPolicy’ function

is crucial for maintaining

the security and integrity of your container images. The repository

policy allows you to

define specific rules and restrictions for accessing and managing the
images stored within your ECR

repository.

"t trimIndent(),
)
waitForInputToContinue(scanner)
ecrActions.setRepoPolicy(repoName, iamRole)
waitForInputToContinue(scanner)

println(DASHES)
println(

3. Display ECR repository policy.

Learn the basics

API Version 2015-09-21 323

Amazon ECR User Guide

Now we will retrieve the ECR policy to ensure it was successfully set.
"t trimIndent(),

)

waitForInputToContinue(scanner)

val policyText = ecrActions.getRepoPolicy(repoName)

println("Policy Text:")

println(policyText)

waitForInputToContinue(scanner)

println(DASHES)
println(

4. Retrieve an ECR authorization token.

You need an authorization token to securely access and interact with the
Amazon ECR registry.

The ‘getAuthorizationToken™ method of the “EcrAsyncClient’ is responsible
for securely accessing

and interacting with an Amazon ECR repository. This operation is
responsible for obtaining a

valid authorization token, which is required to authenticate your
requests to the ECR service.

Without a valid authorization token, you would not be able to perform any
operations on the
ECR repository, such as pushing, pulling, or managing your Docker images.

" trimIndent(),
)
waitForInputToContinue(scanner)
ecrActions.getAuthToken()
waitForInputToContinue(scanner)

println(DASHES)
println(

5. Get the ECR Repository URI.

The URI of an Amazon ECR repository is important. When you want to
deploy a container image to

a container orchestration platform like Amazon Elastic Kubernetes Service
(EKS)

Learn the basics API Version 2015-09-21 324

Amazon ECR User Guide

or Amazon Elastic Container Service (ECS), you need to specify the full
image URI,

which includes the ECR repository URI. This allows the container runtime
to pull the

correct container image from the ECR repository.

"t trimIndent(),

)

waitForInputToContinue(scanner)

val repositoryURI: String? = ecrActions.getRepositoryURI(repoName)
println("The repository URI is $repositoryURI")
waitForInputToContinue(scanner)

println(DASHES)
println(

6. Set an ECR Lifecycle Policy.

An ECR Lifecycle Policy is used to manage the lifecycle of Docker images

stored in your ECR repositories.
These policies allow you to automatically remove old or unused Docker

images from your repositories,
freeing up storage space and reducing costs.

"t trimIndent(),
)

waitForInputToContinue(scanner)

val pol = ecrActions.setLifeCyclePolicy(repoName)
println(pol)

waitForInputToContinue(scanner)

println(DASHES)
println(

7. Push a docker image to the Amazon ECR Repository.

The “pushImageCmd() ™ method pushes a local Docker image to an Amazon ECR
repository.

It sets up the Docker client by connecting to the local Docker host using
the default port.

It then retrieves the authorization token for the ECR repository by
making a call to the AWS SDK.

Learn the basics API Version 2015-09-21 325

Amazon ECR User Guide

The method uses the authorization token to create an ‘AuthConfig’ object,
which is used to authenticate

the Docker client when pushing the image. Finally, the method tags the
Docker image with the specified

repository name and image tag, and then pushes the image to the ECR
repository using the Docker client.

If the push operation is successful, the method prints a message
indicating that the image was pushed to ECR.

nnn.trimIndent()r

waitForInputToContinue(scanner)
ecrActions.pushDockerImage(repoName, localImageName)
waitForInputToContinue(scanner)

println(DASHES)

println("8. Verify if the image is in the ECR Repository.")
waitForInputToContinue(scanner)
ecrActions.verifyImage(repoName, localImageName)
waitForInputToContinue(scanner)

println(DASHES)
println("9. As an optional step, you can interact with the image in Amazon
ECR by using the CLI.")
println("Would you like to view instructions on how to use the CLI to run the
image? (y/n)")
val ans = scanner.nextLine().trim()
if (ans.equals("y", true)) {
val instructions = """
1. Authenticate with ECR - Before you can pull the image from Amazon ECR,

you need to authenticate with the registry. You can do this using the AWS CLI:

aws ecr get-login-password --region us-east-1 | docker login --
username AWS --password-stdin $accountId.dkr.ecr.us-east-1.amazonaws.com

2. Describe the image using this command:

aws ecr describe-images --repository-name $repoName --image-ids
imageTag=$localImageName

3. Run the Docker container and view the output using this command:

Learn the basics API Version 2015-09-21 326

Amazon ECR User Guide

docker run --rm $accountId.dkr.ecr.us-east-1.amazonaws.com/$repoName:
$localImageName

println(instructions)

}

waitForInputToContinue(scanner)

println(DASHES)
println("1@. Delete the ECR Repository.")
println(
If the repository isn't empty, you must either delete the contents of the
repository
or use the force option (used in this scenario) to delete the repository
and have Amazon ECR delete all of its contents
on your behalf.

""" otrimIndent(),
)
println("Would you like to delete the Amazon ECR Repository? (y/n)")
val delAns = scanner.nextLine().trim { it <= ' ' }

if (delAns.equals("y", ignoreCase = true)) {
println("You selected to delete the AWS ECR resources.")
waitForInputToContinue(scanner)
ecrActions.deleteECRRepository(repoName)

println(DASHES)
println("This concludes the Amazon ECR SDK scenario")
println(DASHES)

private fun waitForInputToContinue(scanner: Scanner) {
while (true) {
println("")
println("Enter 'c' followed by <ENTER> to continue:")
val input = scanner.nextLine()

if (input.trim { it <= ' ' }.equals("c", ignoreCase = true)) {
println("Continuing with the program...")
println("")
break

} else {

// Handle invalid input.
println("Invalid input. Please try again.")

Learn the basics API Version 2015-09-21 327

Amazon ECR User Guide

A wrapper class for Amazon ECR SDK methods.

import aws.sdk.kotlin.services.ecr.EcrClient

import aws.sdk.kotlin.services.ecr.model.CreateRepositoryRequest

import aws.sdk.kotlin.services.ecr.model.DeleteRepositoryRequest

import aws.sdk.kotlin.services.ecr.model.DescribeImagesRequest

import aws.sdk.kotlin.services.ecr.model.DescribeRepositoriesRequest
import aws.sdk.kotlin.services.ecr.model.EcrException

import aws.sdk.kotlin.services.ecr.model.GetRepositoryPolicyRequest
import aws.sdk.kotlin.services.ecr.model.ImageIdentifier

import aws.sdk.kotlin.services.ecr.model.RepositoryAlreadyExistsException
import aws.sdk.kotlin.services.ecr.model.SetRepositoryPolicyRequest
import aws.sdk.kotlin.services.ecr.model.StartLifecyclePolicyPreviewRequest
import com.github.dockerjava.api.DockerClient

import com.github.dockerjava.api.command.DockerCmdExecFactory

import com.github.dockerjava.api.model.AuthConfig

import com.github.dockerjava.core.DockerClientBuilder

import com.github.dockerjava.netty.NettyDockerCmdExecFactory

import java.io.IOException

import java.util.Base64

class ECRActions {
private var dockerClient: DockerClient? = null

private fun getDockerClient(): DockerClient? {
val osName = System.getProperty("os.name")
if (osName.startsWith("Windows")) {
// Make sure Docker Desktop is running.
val dockerHost = "tcp://localhost:2375" // Use the Docker Desktop
default port.
val dockerCmdExecFactory: DockerCmdExecFactory =

NettyDockerCmdExecFactory().withReadTimeout(20000).withConnectTimeout (20000)
dockerClient =
DockerClientBuilder.getInstance(dockerHost).withDockerCmdExecFactory(dockerCmdExecFactoz
} else {
dockerClient = DockerClientBuilder.getInstance().build()

Learn the basics API Version 2015-09-21 328

Amazon ECR User Guide

return dockerClient

/**
* Sets the lifecycle policy for the specified repository.
*
* @param repoName the name of the repository for which to set the lifecycle
policy.
*/
suspend fun setLifeCyclePolicy(repoName: String): String? {
val polText =

{
"rules": [
{
"rulePriority": 1,
"description": "Expire images older than 14 days",
"selection": {
"tagStatus": "any",
"countType": "sinceImagePushed",
"countUnit": "days",
"countNumber": 14
I
"action": {
"type": "expire"
}
}
]
}
""" otrimIndent()

val lifecyclePolicyPreviewRequest =
StartLifecyclePolicyPreviewRequest {
lifecyclePolicyText = polText
repositoryName = repoName

// Execute the request asynchronously.
EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val response =
ecrClient.startLifecyclePolicyPreview(lifecyclePolicyPreviewRequest)
return response.lifecyclePolicyText

Learn the basics API Version 2015-09-21 329

Amazon ECR User Guide

* Retrieves the repository URI for the specified repository name.

* @param repoName the name of the repository to retrieve the URI for.
* @return the repository URI for the specified repository name.
*/
suspend fun getRepositoryURI(repoName: String?): String? {
require(!(repoName == null || repoName.isEmpty())) { "Repository name
cannot be null or empty" }
val request =
DescribeRepositoriesRequest {
repositoryNames = listOf(repoName)

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val describeRepositoriesResponse =
ecrClient.describeRepositories(request)
if (!describeRepositoriesResponse.repositories?.isEmpty()!!) {

return
describeRepositoriesResponse?.repositories?.get(0)?.repositoryUri
} else {
println("No repositories found for the given name.")
return ""
}
}
}
/**
* Retrieves the authorization token for Amazon Elastic Container Registry
(ECR).
*
*/
suspend fun getAuthToken() {
EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->

// Retrieve the authorization token for ECR.
val response = ecrClient.getAuthorizationToken()
val authorizationData = response.authorizationData?.get(Q)
val token = authorizationData?.authorizationToken
if (token != null) {
println("The token was successfully retrieved.")

Learn the basics API Version 2015-09-21 330

Amazon ECR User Guide

/**
* Gets the repository policy for the specified repository.
*
* @param repoName the name of the repository.
*/
suspend fun getRepoPolicy(repoName: String?): String? {
require(!(repoName == null || repoName.isEmpty())) { "Repository name
cannot be null or empty" }

// Create the request
val getRepositoryPolicyRequest =
GetRepositoryPolicyRequest {
repositoryName = repoName
}
EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val response =
ecrClient.getRepositoryPolicy(getRepositoryPolicyRequest)
val responseText = response.policyText
return responseText

/**
* Sets the repository policy for the specified ECR repository.
*
* @param repoName the name of the ECR repository.
* @param iamRole the IAM role to be granted access to the repository.
*/
suspend fun setRepoPolicy(
repoName: String?,
iamRole: String?,
) {

val policyDocumentTemplate =

{
"Version":"2012-10-17",
"Statement" : [{
"Sid" : "new statement",

Learn the basics API Version 2015-09-21 331

Amazon ECR User Guide

"Effect" : "Allow",
"Principal” : {
"AWS" : "$iamRole"
},
"Action" : "ecr:BatchGetImage"

31

"t otrimIndent()
val setRepositoryPolicyRequest =
SetRepositoryPolicyRequest {
repositoryName = repoName
policyText = policyDocumentTemplate

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val response =
ecrClient.setRepositoryPolicy(setRepositoryPolicyRequest)
if (response != null) {
println("Repository policy set successfully.")

* Creates an Amazon Elastic Container Registry (Amazon ECR) repository.

* @param repoName the name of the repository to create.

* @return the Amazon Resource Name (ARN) of the created repository, or an
empty string if the operation failed.

* @throws RepositoryAlreadyExistsException if the repository exists.

* @throws EcrException if an error occurs while creating the
repository.

*/

suspend fun createECRRepository(repoName: String?): String? {
val request =
CreateRepositoryRequest {
repositoryName = repoName

return try {
EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val response = ecrClient.createRepository(request)

Learn the basics API Version 2015-09-21 332

Amazon ECR User Guide

response.repository?.repositoryArn
}

} catch (e: RepositoryAlreadyExistsException) {
println("Repository already exists: $repoName")
repoName?.let { getRepoARN(it) }

} catch (e: EcrException) {
println("An error occurred: ${e.messagel}")
null

suspend fun getRepoARN(repoName: String): String? {

// Fetch the existing repository's ARN.

val describeRequest =
DescribeRepositoriesRequest {

repositoryNames = listOf(repoName)

}

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val describeResponse =

ecrClient.describeRepositories(describeRequest)

return describeResponse.repositories?.get(0)?.repositoryArn

fun listlLocalImages(): Boolean = try {
val images = getDockerClient()?.listImagesCmd()?.exec()
images?.any { image ->
image.repoTags?.any { tag -> tag.startsWith("echo-text") } ?: false
} ?: false
} catch (ex: Exception) {
println("ERROR: ${ex.messagel}")
false

/**
* Pushes a Docker image to an Amazon Elastic Container Registry (ECR)
repository.
*
* @param repoName the name of the ECR repository to push the image to.
* @param imageName the name of the Docker image.
*/
suspend fun pushDockerImage(
repoName: String,

Learn the basics API Version 2015-09-21 333

Amazon ECR User Guide

imageName: String,

) {
println("Pushing $imageName to $repoName will take a few seconds")
val authConfig = getAuthConfig(repoName)

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val desRequest =
DescribeRepositoriesRequest {
repositoryNames = listOf(repoName)

val describeRepoResponse = ecrClient.describeRepositories(desRequest)
val repoData =
describeRepoResponse.repositories?.firstOrNull
{ it.repositoryName == repoName }
?: throw RuntimeException("Repository not found: $repoName")

val tagImageCmd = getDockerClient()?.tagImageCmd("$imageName",
"${repoData.repositoryUri}", imageName)
if (tagImageCmd != null) {
tagImageCmd.exec()
}
val pushImageCmd =
repoData.repositoryUri?.let {
dockerClient?.pushImageCmd(it)
// ?.withTag("latest")
?.withAuthConfig(authConfig)

try {
if (pushImageCmd != null) {
pushImageCmd.start().awaitCompletion()
}
println("The $imageName was pushed to Amazon ECR")
} catch (e: IOException) {
throw RuntimeException(e)

/**
* Verifies the existence of an image in an Amazon Elastic Container Registry
(Amazon ECR) repository asynchronously.

Learn the basics API Version 2015-09-21 334

Amazon ECR User Guide

*

* @param repositoryName The name of the Amazon ECR repository.
* @param imageTag The tag of the image to verify.
*/
suspend fun verifyImage(
repoName: String?,
imageTagVal: String?,
) {
require(!(repoName == null || repoName.isEmpty())) { "Repository name
cannot be null or empty" }
require(!(imageTagVal == null || imageTagVal.isEmpty())) { "Image tag
cannot be null or empty" }

val imageld =
ImageIdentifier {
imageTag = imageTagVal
}
val request =
DescribeImagesRequest {
repositoryName = repoName
imagelds = 1listOf(imageld)

}

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val describeImagesResponse = ecrClient.describeImages(request)
if (describeImagesResponse != null && !

describeImagesResponse.imageDetails?.isEmpty()!!) {
println("Image is present in the repository.")
} else {
println("Image is not present in the repository.")

/**
* Deletes an ECR (Elastic Container Registry) repository.
*

* @param repoName the name of the repository to delete.
*/
suspend fun deleteECRRepository(repoName: String) {
if (repoName.isNullOrEmpty()) {
throw IllegalArgumentException("Repository name cannot be null or
empty")

Learn the basics API Version 2015-09-21 335

Amazon ECR User Guide
}
val repositoryRequest =
DeleteRepositoryRequest {
force = true
repositoryName = repoName
}
EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->

ecrClient.deleteRepository(repositoryRequest)
println("You have successfully deleted the $repoName repository")

// Return an AuthConfig.
private suspend fun getAuthConfig(repoName: String): AuthConfig {

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
// Retrieve the authorization token for ECR.
val response = ecrClient.getAuthorizationToken()
val authorizationData = response.authorizationData?.get(0)
val token = authorizationData?.authorizationToken
val decodedToken = String(Baseb4.getDecoder().decode(token))
val password = decodedToken.substring(4)

val request =
DescribeRepositoriesRequest {
repositoryNames = listOf(repoName)

val descrRepoResponse = ecrClient.describeRepositories(request)
val repoData = descrRepoResponse.repositories?.firstOrNull

{ it.repositoryName == repoName }

val registryURL: String =

repoData?.repositoryUri?.split("/")?.get(@) 2: ""

return AuthConfig()
.withUsername("AWS")
.withPassword(password)
.withRegistryAddress(registryURL)

Learn the basics

API Version 2015-09-21 336

Amazon ECR User Guide

» For API details, see the following topics in AWS SDK for Kotlin API reference.

o CreateRepository

« DeleteRepository

o Describelmages

» DescribeRepositories

¢ GetAuthorizationToken

o GetRepositoryPolicy

» SetRepositoryPolicy

« StartLifecyclePolicyPreview

Python

SDK for Python (Boto3)

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

class ECRGettingStarted:

A scenario that demonstrates how to use Boto3 to perform basic operations
using

Amazon ECR.

def __init_ (
self,
ecr_wrapper: ECRWrapper,
docker_client: docker.DockerClient,

self.ecr_wrapper = ecr_wrapper
self.docker_client = docker_client
self.tag = "echo-text"
self.repository_name = "ecr-basics"
Learn the basics API Version 2015-09-21 337

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR User Guide

self.docker_image = None
self.full_tag_name = None
self.repository = None

def run(self, role_arn: str) -> None:

Runs the scenario.

print(
The Amazon Elastic Container Registry (ECR) is a fully-managed Docker container
registry

service provided by AWS. It allows developers and organizations to securely
store, manage, and deploy Docker container images.

ECR provides a simple and scalable way to manage container images throughout
their lifecycle,

from building and testing to production deployment.

The “ECRWrapper' class is a wrapper for the Boto3 'ecr' client. The 'ecr' client
provides a set of methods to

programmatically interact with the Amazon ECR service. This allows developers to
automate the storage, retrieval, and management of container images as part of
their application

deployment pipelines. With ECR, teams can focus on building and deploying their
applications without having to worry about the underlying infrastructure required
to

host and manage a container registry.

This scenario walks you through how to perform key operations for this service.
Let's get started...

)
press_enter_to_continue()
print_dashes()
print(
Frmn
* Create an ECR repository.

An ECR repository is a private Docker container repository provided
by Amazon Web Services (AWS). It is a managed service that makes it easy
to store, manage, and deploy Docker container images.

)

print(f"Creating a repository named {self.repository_namel}")

Learn the basics API Version 2015-09-21 338

Amazon ECR User Guide

self.repository =
self.ecr_wrapper.create_repository(self.repository_name)

print(f"The ARN of the ECR repository is
{self.repository['repositoryArn']}")

repository_uri = self.repository["repositoryUri"]

press_enter_to_continue()

print_dashes()

print(
.FIIIIII
* Build a Docker image.

Create a local Docker image if it does not already exist.
A Python Docker client is used to execute Docker commands.
You must have Docker installed and running.

)

print(f"Building a docker image from 'docker_files/Dockerfile'")

self.full_tag_name = f"{repository_uri}:{self.tag}"

self.docker_image = self.docker_client.images.build(
path="docker_files", tag=self.full_tag_name

)[0]

print(f"Docker image {self.full_tag_name} successfully built.")

press_enter_to_continue()

print_dashes()

if role_arn is None:
print(
* Because an IAM role ARN was not provided, a role policy will not be set for
this repository.

)
else:
print(

* Set an ECR repository policy.

Setting an ECR repository policy using the “setRepositoryPolicy’ function is

crucial for maintaining
the security and integrity of your container images. The repository policy allows

you to
define specific rules and restrictions for accessing and managing the images

stored within your ECR

Learn the basics API Version 2015-09-21 339

Amazon ECR User Guide

repository.

self.grant_role_download_access(role_arn)

print(f"Download access granted to the IAM role ARN {role_arn}")
press_enter_to_continue()

print_dashes()

print(

* Display ECR repository policy.

Now we will retrieve the ECR policy to ensure it was successfully set.

)

policy_text =
self.ecr_wrapper.get_repository_policy(self.repository_name)

print("Policy Text:")

print(f"{policy_text}")

press_enter_to_continue()

print_dashes()

print(

* Retrieve an ECR authorization token.

You need an authorization token to securely access and interact with the Amazon

ECR registry.
The ‘get_authorization_token™ method of the ‘ecr’ client is responsible for

securely accessing

and interacting with an Amazon ECR repository. This operation is responsible for
obtaining a

valid authorization token, which is required to authenticate your requests to the

ECR service.

Without a valid authorization token, you would not be able to perform any
operations on the
ECR repository, such as pushing, pulling, or managing your Docker images.

)

authorization_token = self.ecr_wrapper.get_authorization_token()

Learn the basics API Version 2015-09-21 340

Amazon ECR User Guide

print("Authorization token retrieved.")
press_enter_to_continue()
print_dashes()

print(

* Get the ECR Repository URI.

The URI of an Amazon ECR repository is important. When you want to deploy a
container image to

a container orchestration platform like Amazon Elastic Kubernetes Service (EKS)

or Amazon Elastic Container Service (ECS), you need to specify the full image
URI,

which includes the ECR repository URI. This allows the container runtime to pull
the

correct container image from the ECR repository.

)

repository_descriptions = self.ecr_wrapper.describe_repositories(
[self.repository_name]

)

repository_uri = repository_descriptions[@]["repositoryUri"]

print(f"Repository URI found: {repository_uri}")

press_enter_to_continue()

print_dashes()

print(

* Set an ECR Lifecycle Policy.

An ECR Lifecycle Policy is used to manage the lifecycle of Docker images stored
in your ECR repositories.

These policies allow you to automatically remove old or unused Docker images from
your repositories,

freeing up storage space and reducing costs.

This example policy helps to maintain the size and efficiency of the container
registry

by automatically removing older and potentially unused images, ensuring that the
storage is optimized and the registry remains up-to-date.

)

press_enter_to_continue()
self.put_expiration_policy()
print(f"An expiration policy was added to the repository.")

Learn the basics API Version 2015-09-21 341

Amazon ECR

User Guide

print_dashes()

print(

* Push a docker image to the Amazon ECR Repository.

The Docker client uses the authorization token is used to authenticate the when
pushing the image to the
ECR repository.

baseb4.

)

decoded_authorization =
b64decode(authorization_token).decode("utf-8")
username, password = decoded_authorization.split(":")

resp = self.docker_client.api.push(
repository=repository_uri,
auth_config={"username": username, "password": password},
tag=self.tag,
stream=True,
decode=True,

for line in resp:
print(line)

print_dashes()

print("* Verify if the image is in the ECR Repository.")
image_descriptions = self.ecr_wrapper.describe_images(
self.repository_name, [self.tag]
)
if len(image_descriptions) > 0:
print("Image found in ECR Repository.")
else:
print("Image not found in ECR Repository.")
press_enter_to_continue()
print_dashes()

print(
"* As an optional step, you can interact with the image in Amazon ECR

by using the CLI."

)
if g.ask(

Learn the basics

API Version 2015-09-21 342

Amazon ECR User Guide

"Would you like to view instructions on how to use the CLI to run the

image? (y/n)",
g.is_yesno,

print(
Frmn
1. Authenticate with ECR - Before you can pull the image from Amazon ECR, you
need to authenticate with the registry. You can do this using the AWS CLI:

aws ecr get-login-password --region us-east-1 | docker login --username AWS
--password-stdin {repository_uri.split("/")[0]}

2. Describe the image using this command:

aws ecr describe-images --repository-name {self.repository_name} --image-ids
imageTag={self.tag}

3. Run the Docker container and view the output using this command:

docker run --rm {self.full_tag_name}

self.cleanup(Tzrue)

def cleanup(self, ask: bool):
Deletes the resources created in this scenario.
:param ask: If True, prompts the user to confirm before deleting the
resources.
if self.repository is not None and (
not ask
or q.ask(
f"Would you like to delete the ECR repository
'{self.repository_name}? (y/n) "
)

print(f"Deleting the ECR repository '{self.repository_name}'.")
self.ecr_wrapper.delete_repository(self.repository_name)

if self.full_tag_name is not None and (
not ask
or q.ask(

Learn the basics API Version 2015-09-21 343

Amazon ECR User Guide

f"Would you like to delete the local Docker image
'{self.full_tag_name}? (y/n) "
)

print(f"Deleting the docker image '{self.full_tag_name}'.")
self.docker_client.images.remove(self.full_tag_name)

def grant_role_download_access(self, role_arn: str):
Grants the specified role access to download images from the ECR
repository.

:param role_arn: The ARN of the role to grant access to.
policy_json = {

"Version":"2012-10-17",

"Statement": [

{
"Sid": "AllowDownload",
"Effect": "Allow",
"Principal": {"AWS": role_arn},
"Action": ["ecr:BatchGetImage"],
}

1,

self.ecr_wrapper.set_repository_policy(
self.repository_name, json.dumps(policy_json)

def put_expiration_policy(self):

Puts an expiration policy on the ECR repository.
policy_json = {
"rules": [
{
"rulePriority": 1,
"description": "Expire images older than 14 days",
"selection": {
"tagStatus": "any",
"countType": "sinceImagePushed",
"countUnit": "days",

Learn the basics API Version 2015-09-21 344

Amazon ECR User Guide

"countNumber": 14,

iy

"action": {"type": "expire"},

self.ecr_wrapper.put_lifecycle_policy(
self.repository_name, json.dumps(policy_json)

if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Run Amazon ECR getting started scenario."
)
parser.add_argument(
"--iam-role-arn",
type=str,
default=None,
help="an optional IAM role ARN that will be granted access to download
images from a repository.",
required=False,

)
parser.add_argument(

"--no-art",

action="store_true",

help="accessibility setting that suppresses art in the console output.",
)

args = parser.parse_args()
no_art = args.no_art
iam_role_arn = args.iam_role_azrn
demo = None
a_docker_client = None
try:
a_docker_client = docker.from_env()
if not a_docker_client.ping():
raise docker.errors.DockerException("Docker is not running.")
except docker.errors.DockerException as err:
logging.error(
The Python Docker client could not be created.
Do you have Docker installed and running?

Learn the basics API Version 2015-09-21 345

Amazon ECR User Guide

Here is the error message:
[J
%S

mmn
’

err,
)
sys.exit("Error with Docker.")
try:
an_ecr_wrapper = ECRWrapper.from_client()
demo = ECRGettingStarted(an_ecr_wrapper, a_docker_client)
demo.run(iam_role_arn)

except Exception as exception:
logging.exception("Something went wrong with the demo!")
if demo is not None:
demo.cleanup(False)

ECRWrapper class that wraps Amazon ECR actions.

class ECRWrapper:
def __init__ (self, ecr_client: client):
self.ecr_client = ecr_client

@classmethod
def from_client(cls) -> "ECRWrapper":

Creates a ECRWrapper instance with a default Amazon ECR client.

:return: An instance of ECRWrapper initialized with the default Amazon
ECR client.

ecr_client = boto3.client("ecr")

return cls(ecr_client)

def create_repository(self, repository_name: str) -> dict[str, any]:

Creates an ECR repository.

:param repository_name: The name of the repository to create.
:return: A dictionary of the created repository.

Learn the basics API Version 2015-09-21 346

Amazon ECR User Guide

try:
response =
self.ecr_client.create_repository(repositoryName=repository_name)
return response["repository"]
except ClientError as err:
if err.response["Error"]["Code"] ==
"RepositoryAlreadyExistsException":
print(f"Repository {repository_name} already exists.")
response = self.ecr_client.describe_repositories(
repositoryNames=[repository_name]
)
return self.describe_repositories([repository_name])[0]
else:
logger.errox(
"Error creating repository %s. Here's why %s",
repository_name,
err.response["Error"]["Message"],
)

raise

def delete_repository(self, repository_name: str):

Deletes an ECR repository.

:param repository_name: The name of the repository to delete.
try:
self.ecr_client.delete_repository(
repositoryName=repository_name, force=True
)
print(f"Deleted repository {repository_name}.")
except ClientError as err:
logger.error(
"Couldn't delete repository %s.. Here's why %s",
repository_name,
err.response["Error"]["Message"],

)

raise

def set_repository_policy(self, repository_name: str, policy_text: str):

Sets the policy for an ECR repository.

Learn the basics API Version 2015-09-21 347

Amazon ECR User Guide

:param repository_name: The name of the repository to set the policy for.
:param policy_text: The policy text to set.

try:
self.ecr_client.set_repository_policy(
repositoryName=repository_name, policyText=policy_text
)
print(f"Set repository policy for repository {repository_name}.")
except ClientError as err:
if err.response["Error"]["Code"] ==
"RepositoryPolicyNotFoundException":
logger.error("Repository does not exist. %s.'", repository_name)
raise
else:
logger.error(

"Couldn't set repository policy for repository %s. Here's why

repository_name,
err.response["Error"]["Message"],

)

raise

def get_repository_policy(self, repository_name: str) -> str:

Gets the policy for an ECR repository.

:param repository_name: The name of the repository to get the policy for.
:return: The policy text.
try:
response = self.ecr_client.get_repository_policy(
repositoryName=repository_name
)
return response["policyText"]
except ClientError as err:
if err.response["Error"]["Code"] ==
"RepositoryPolicyNotFoundException":
logger.error("Repository does not exist. %s.", repository_name)
raise
else:
logger.error(

Learn the basics API Version 2015-09-21 348

Amazon ECR

User Guide

def

def

"Couldn't get repository policy for repository %s. Here's why

repository_name,
err.response["Error"]["Message"],

)

raise

get_authorization_token(self) -> str:

Gets an authorization token for an ECR repository.

:return: The authorization token.
try:
response = self.ecr_client.get_authorization_token()
return response["authorizationData"][@]["authorizationToken"]
except ClientError as err:
logger.error(
"Couldn't get authorization token. Here's why %s",
err.response["Error"]["Message"],

)

raise

describe_repositories(self, repository_names: list[str]) -> list[dict]:

Describes ECR repositories.

:param repository_names: The names of the repositories to describe.
:return: The list of repository descriptions.
try:
response = self.ecr_client.describe_repositories(
repositoryNames=repository_names
)
return response["repositories"]
except ClientError as err:
logger.error(
"Couldn't describe repositories. Here's why %s",
err.response["Error"]["Message"],

)

raise

Learn the basics

API Version 2015-09-21 349

Amazon ECR User Guide

def put_lifecycle_policy(self, repository_name: str, lifecycle_policy_text:

str):

Puts a lifecycle policy for an ECR repository.

:param repository_name: The name of the repository to put the lifecycle
policy for.

:param lifecycle_policy_text: The lifecycle policy text to put.
try:
self.ecr_client.put_lifecycle_policy(
repositoryName=repository_name,
lifecyclePolicyText=1ifecycle_policy_text,
)
print(f"Put lifecycle policy for repository {repository_name}.")
except ClientError as err:
logger.errox(
"Couldn't put lifecycle policy for repository %s. Here's why %s",
repository_name,
err.response["Error"]["Message"],

)

raise

def describe_images(
self, repository_name: str, image_ids: list[str] = None
) -> list[dict]:

Describes ECR images.

:param repository_name: The name of the repository to describe images
for.
:param image_ids: The optional IDs of images to describe.
:return: The list of image descriptions.
try:
params = {
"repositoryName": repository_name,
}
if image_ids is not None:
params["imageIds"] = [{"imageTag": tag} for tag in image_ids]

paginator = self.ecr_client.get_paginator("describe_images")

Learn the basics API Version 2015-09-21 350

Amazon ECR User Guide

image_descriptions = []

for page in paginator.paginate(**params):
image_descriptions.extend(page["imageDetails"])

return image_descriptions

except ClientError as err:

logger.errox(
"Couldn't describe images. Here's why %s",
err.response["Error"]["Message"],

)

raise

» For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

« CreateRepository

DeleteRepository

» Describelmages

» DescribeRepositories

¢ GetAuthorizationToken

» GetRepositoryPolicy

» SetRepositoryPolicy

« StartLifecyclePolicyPreview

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with

an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions for Amazon ECR using AWS SDKs

The following code examples demonstrate how to perform individual Amazon ECR actions with
AWS SDKs. Each example includes a link to GitHub, where you can find instructions for setting up
and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Elastic Container Registry APl Reference.

Actions API Version 2015-09-21 351

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/CreateRepository
https://docs.aws.eu/goto/boto3/ecr-2015-09-21/DeleteRepository
https://docs.aws.eu/goto/boto3/ecr-2015-09-21/DescribeImages
https://docs.aws.eu/goto/boto3/ecr-2015-09-21/DescribeRepositories
https://docs.aws.eu/goto/boto3/ecr-2015-09-21/GetAuthorizationToken
https://docs.aws.eu/goto/boto3/ecr-2015-09-21/GetRepositoryPolicy
https://docs.aws.eu/goto/boto3/ecr-2015-09-21/SetRepositoryPolicy
https://docs.aws.eu/goto/boto3/ecr-2015-09-21/StartLifecyclePolicyPreview
https://docs.aws.eu/AmazonECR/latest/APIReference/Welcome.html

Amazon ECR User Guide

Examples

o Use CreateRepository with an AWS SDK or CLI

o Use DeleteRepository with an AWS SDK or CLI

» Use Describelmages with an AWS SDK or CLI

o Use DescribeRepositories with an AWS SDK or CLI

» Use GetAuthorizationToken with an AWS SDK or CLI
» Use GetRepositoryPolicy with an AWS SDK or CLI

» Use Listimages with an AWS SDK or CLI

o Use PushimageCmd with an AWS SDK

o Use PutLifeCyclePolicy with an AWS SDK or CLI

o Use SetRepositoryPolicy with an AWS SDK or CLI

» Use StartLifecyclePolicyPreview with an AWS SDK or CLI

Use CreateRepository with an AWS SDK or CLI

The following code examples show how to use CreateRepository.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

« Learn the basics

CLI

AWS CLI
Example 1: To create a repository

The following create-repository example creates a repository inside the specified
namespace in the default registry for an account.

aws ecr create-repository \
--repository-name project-a/sample-repo

Output:

Actions API Version 2015-09-21 352

Amazon ECR User Guide

"repository": {
"registryId": "123456789012",
"repositoryName": "project-a/sample-repo",
"repositoryArn": "arn:aws:ecr:us-west-2:123456789012:repository/project-
a/sample-repo"

}

For more information, see Creating a Repository in the Amazon ECR User Guide.

Example 2: To create a repository configured with image tag immutability

The following create-repository example creates a repository configured for tag
immutability in the default registry for an account.

aws ecr create-repository \
--repository-name project-a/sample-repo \
--image-tag-mutability IMMUTABLE

Output:

"repository": {
"registryId": "123456789012",
"repositoryName": "project-a/sample-repo",
"repositoryArn": "arn:aws:ecr:us-west-2:123456789012:repository/project-
a/sample-repo",
"imageTagMutability": "IMMUTABLE"

For more information, see Image Tag Mutability in the Amazon ECR User Guide.

Example 3: To create a repository configured with a scanning configuration

The following create-repository example creates a repository configured to perform a
vulnerability scan on image push in the default registry for an account.

aws ecr create-repository \
--repository-name project-a/sample-repo \
--image-scanning-configuration scanOnPush=true

Actions

API Version 2015-09-21 353

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-tag-mutability.html

Amazon ECR User Guide

Output:

"repository": {
"registryId": "123456789012",
"repositoryName": "project-a/sample-repo",
"repositoryArn": "arn:aws:ecr:us-west-2:123456789012:repository/project-
a/sample-repo",
"imageScanningConfiguration": {
"scanOnPush": true

For more information, see Image Scanning in the Amazon ECR User Guide.

» For API details, see CreateRepository in AWS CLI Command Reference.

Java

SDK for Java 2.x

(@ Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
* Creates an Amazon Elastic Container Registry (Amazon ECR) repository.
*
* @param repoName the name of the repository to create.
* @return the Amazon Resource Name (ARN) of the created repository, or an
empty string if the operation failed.

* @throws IllegalArgumentException If repository name is invalid.

* @throws RuntimeException if an error occurs while creating the
repository.

*/

public String createECRRepository(String repoName) {
if (repoName == null || repoName.isEmpty()) {
throw new IllegalArgumentException('"Repository name cannot be null or

empty");

Actions API Version 2015-09-21 354

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-scanning.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR User Guide

CreateRepositoryRequest request = CreateRepositoryRequest.builder()
.repositoryName(repoName)
.build();

CompletableFuture<CreateRepositoryResponse> response =
getAsyncClient().createRepository(request);
try {
CreateRepositoryResponse result = response.join();
if (result !'= null) {
System.out.println("The " + repoName + " repository was created
successfully.");
return result.repository().repositoryArn();
} else {
throw new RuntimeException("Unexpected response type");
}
} catch (CompletionException e) {
Throwable cause = e.getCause();
if (cause instanceof EcrException ex) {
if
("RepositoryAlreadyExistsException".equals(ex.awsErrorDetails().errorCode())) {
System.out.println("The Amazon ECR repository already exists,
moving on...");
DescribeRepositoriesRequest describeRequest =
DescribeRepositoriesRequest.builder()
.repositoryNames(repoName)
.build();
DescribeRepositoriesResponse describeResponse =
getAsyncClient().describeRepositories(describeRequest).join();
return
describeResponse.repositories().get(@).repositoryArn();
} else {
throw new RuntimeException(ex);
}
} else {
throw new RuntimeException(e);

» For API details, see CreateRepository in AWS SDK for Java 2.x API Reference.

Actions API Version 2015-09-21 355

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/CreateRepository

Amazon ECR User Guide

Kotlin

SDK for Kotlin

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

* Creates an Amazon Elastic Container Registry (Amazon ECR) repository.

* @param repoName the name of the repository to create.

* @return the Amazon Resource Name (ARN) of the created repository, or an
empty string if the operation failed.

* @throws RepositoryAlreadyExistsException if the repository exists.

* @throws EcrException if an error occurs while creating the
repository.

*/

suspend fun createECRRepository(repoName: String?): String? {
val request =
CreateRepositoryRequest {
repositoryName = repoName

return try {

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val response = ecrClient.createRepository(request)
response.repository?.repositoryArn

}

} catch (e: RepositoryAlreadyExistsException) {
println("Repository already exists: $repoName")
repoName?.let { getRepoARN(it) }

} catch (e: EcrException) {
println("An error occurred: ${e.messagel}")
null

Actions API Version 2015-09-21 356

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

» For API details, see CreateRepository in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ECRWrapper:
def __init___(self, ecr_client: client):
self.ecr_client = ecr_client

@classmethod
def from_client(cls) -> "ECRWrapper":

Creates a ECRWrapper instance with a default Amazon ECR client.

:return: An instance of ECRWrapper initialized with the default Amazon
ECR client.

ecr_client = boto3.client("ecr")

return cls(ecr_client)

def create_repository(self, repository_name: str) -> dict[str, any]:

Creates an ECR repository.

:param repository_name: The name of the repository to create.
:return: A dictionary of the created repository.
try:
response =
self.ecr_client.create_repository(repositoryName=repository_name)
return response["repository"]
except ClientError as err:
if err.response["Error"]["Code"] ==
"RepositoryAlreadyExistsException":

Actions API Version 2015-09-21 357

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR User Guide

print(f"Repository {repository_name} already exists.")

response = self.ecr_client.describe_repositories(
repositoryNames=[repository_name]

)

return self.describe_repositories([repository_name])[0]

else:

logger.error(
"Error creating repository %s. Here's why %s",
repository_name,
err.response["Error"]["Message"],

)

raise

» For API details, see CreateRepository in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteRepository with an AWS SDK or CLI

The following code examples show how to use DeleteRepository.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

+ Learn the basics

Cul
AWS CLI
To delete a repository

The following delete-repository example command force deletes the specified
repository in the default registry for an account. The --fozrce flag is required if the
repository contains images.

aws ecr delete-repository \

Actions API Version 2015-09-21 358

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/CreateRepository

Amazon ECR User Guide

--repository-name ubuntu \

--force
Output:
{
"repository": {
"registryId": "123456789012",
"repositoryName": "ubuntu",
"repositoryArn": "arn:aws:ecr:us-west-2:123456789012:repository/ubuntu"
}
}

For more information, see Deleting a Repository in the Amazon ECR User Guide.

» For API details, see DeleteRepository in AWS CLI Command Reference.

Java

SDK for Java 2.x

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
* Deletes an ECR (Elastic Container Registry) repository.
*
* @param repoName the name of the repository to delete.
* @throws IllegalArgumentException if the repository name is null or empty.
* @throws EcrException if there is an error deleting the repository.
* @throws RuntimeException if an unexpected error occurs during the deletion
process.
*/
public void deleteECRRepository(String repoName) {
if (repoName == null || repoName.isEmpty()) {
throw new IllegalArgumentException('"Repository name cannot be null or
empty");
}

Actions API Version 2015-09-21 359

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-delete.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/delete-repository.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR User Guide

DeleteRepositoryRequest repositoryRequest =
DeleteRepositoryRequest.builder()
.force(true)
.repositoryName(repoName)
.build();

CompletableFuture<DeleteRepositoryResponse> response =
getAsyncClient().deleteRepository(repositoryRequest);
response.whenComplete((deleteRepositoryResponse, ex) -> {
if (deleteRepositoryResponse != null) {
System.out.println("You have successfully deleted the " +
repoName + " repository");
} else {
Throwable cause = ex.getCause();
if (cause instanceof EcrException) {
throw (EcrException) cause;
} else {
throw new RuntimeException("Unexpected error: " +
cause.getMessage(), cause);

}
1)

// Wait for the CompletableFuture to complete
response.join();

» For API details, see DeleteRepository in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**

Actions API Version 2015-09-21 360

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/DeleteRepository
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

* Deletes an ECR (Elastic Container Registry) repository.
*
* @param repoName the name of the repository to delete.
*/
suspend fun deleteECRRepository(repoName: String) {
if (repoName.isNullOrEmpty()) {
throw IllegalArgumentException("Repository name cannot be null or
empty")
}

val repositoryRequest =
DeleteRepositoryRequest {
force = true
repositoryName = repoName

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
ecrClient.deleteRepository(repositoryRequest)
println("You have successfully deleted the $repoName repository")

« For API details, see DeleteRepository in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

(@ Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ECRWrapper:
def __init_ (self, ecr_client: client):
self.ecr_client = ecr_client

@classmethod
def from_client(cls) -> "ECRWrapper":

Actions API Version 2015-09-21 361

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR User Guide

Creates a ECRWrapper instance with a default Amazon ECR client.

:return: An instance of ECRWrapper initialized with the default Amazon
ECR client.

ecr_client = boto3.client("ecr")

return cls(ecr_client)

def delete_repository(self, repository_name: str):

Deletes an ECR repository.

:param repository_name: The name of the repository to delete.
try:
self.ecr_client.delete_repository(
repositoryName=repository_name, force=True
)
print(f"Deleted repository {repository_name}.")
except ClientError as err:
logger.errox(
"Couldn't delete repository %s.. Here's why %s",
repository_name,
err.response["Error"]["Message"],

)

raise

» For API details, see DeleteRepository in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeImages with an AWS SDK or CLI

The following code examples show how to use DescribeImages.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

Actions API Version 2015-09-21 362

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/DeleteRepository

Amazon ECR User Guide

¢ Learn the basics

CLI

AWS CLI
To describe an image in a repository

The folowing describe-images example displays details about an image in the cluster-
autoscaler repository with the tag v1.13.6.

aws ecr describe-images \
--repository-name cluster-autoscaler \
--image-ids imageTag=v1.13.6

Output:
{
"imageDetails": [
{
"registryId": "012345678910",
"repositoryName": "cluster-autoscaler",
"imageDigest":

"sha256:4a1c6567c38904384ebcb64e35b7eeddd8451110c299e3368d2210066487d97e5",
"imageTags": [
"v1.13.6"
1,
"imageSizeInBytes": 48318255,
"imagePushedAt": 1565128275.0

« For API details, see Describelmages in AWS CLI Command Reference.

Actions API Version 2015-09-21 363

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/describe-images.html

Amazon ECR User Guide

Java

SDK for Java 2.x

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
* Verifies the existence of an image in an Amazon Elastic Container Registry

(Amazon ECR) repository asynchronously.
*

* @param repositoryName The name of the Amazon ECR repository.

* @param imageTag The tag of the image to verify.

* @throws EcrException if there is an error retrieving the image
information from Amazon ECR.

* @throws CompletionException if the asynchronous operation completes
exceptionally.

*/

public void verifyImage(String repositoryName, String imageTag) {
DescribeImagesRequest request = DescribeImagesRequest.builder()
.repositoryName(repositoryName)
.imagelds(Imageldentifier.builder().imageTag(imageTag).build())
.build();

CompletableFuture<DescribeImagesResponse> response =
getAsyncClient().describeImages(request);
response.whenComplete((describeImagesResponse, ex) -> {
if (ex !'= null) {
if (ex instanceof CompletionException) {
Throwable cause = ex.getCause();
if (cause instanceof EcrException) {
throw (EcrException) cause;
} else {
throw new RuntimeException("Unexpected error: " +
cause.getMessage(), cause);
}
} else {
throw new RuntimeException("Unexpected error: " +
ex.getCause());

Actions API Version 2015-09-21 364

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR User Guide

}
} else if (describeImagesResponse != null && !
describeImagesResponse.imageDetails().isEmpty()) {

System.out.println("Image is present in the repository.");
} else {

System.out.println("Image is not present in the repository.");

1)

// Wait for the CompletableFuture to complete.
response.join();

» For API details, see Describelmages in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
* Verifies the existence of an image in an Amazon Elastic Container Registry
(Amazon ECR) repository asynchronously.
*
* @param repositoryName The name of the Amazon ECR repository.
* @param imageTag The tag of the image to verify.
*/
suspend fun verifyImage(
repoName: String?,
imageTagVal: String?,
) {
require(!(repoName == null || repoName.isEmpty())) { "Repository name
cannot be null or empty" }
require(!(imageTagVal == null || imageTagVal.isEmpty())) { "Image tag
cannot be null or empty" }

Actions API Version 2015-09-21 365

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/DescribeImages
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

val imageld =
Imageldentifier {
imageTag = imageTagVal
}
val request =
DescribeImagesRequest {
repositoryName = repoName
imagelds = 1listOf(imageld)

}

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val describeImagesResponse = ecrClient.describeImages(request)
if (describelImagesResponse != null && !

describeImagesResponse.imageDetails?.isEmpty()!!) {
println("Image is present in the repository.")
} else {
println("Image is not present in the repository.")

« For API details, see Describelmages in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

(@ Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ECRWrapper:
def __init_ (self, ecr_client: client):
self.ecr_client = ecr_client

@classmethod
def from_client(cls) -> "ECRWrapper":

Actions API Version 2015-09-21 366

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR User Guide

Creates a ECRWrapper instance with a default Amazon ECR client.

:return: An instance of ECRWrapper initialized with the default Amazon
ECR client.

ecr_client = boto3.client("ecr")

return cls(ecr_client)

def describe_images(
self, repository_name: str, image_ids: list[str] = None
) -> list[dict]:

Describes ECR images.

:param repository_name: The name of the repository to describe images
for.
:param image_ids: The optional IDs of images to describe.
:return: The list of image descriptions.
try:
params = {
"repositoryName": repository_name,
}
if image_ids is not None:
params["imageIds"] = [{"imageTag": tag} for tag in image_ids]

paginator = self.ecr_client.get_paginator("describe_images")

image_descriptions = []

for page in paginator.paginate(**params):
image_descriptions.extend(page["imageDetails"])

return image_descriptions

except ClientError as err:

logger.error(
"Couldn't describe images. Here's why %s",
err.response["Error"]["Message"],

)

raise

» For API details, see Describelmages in AWS SDK for Python (Boto3) APl Reference.

Actions API Version 2015-09-21 367

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/DescribeImages

Amazon ECR User Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeRepositories with an AWS SDK or CLI
The following code examples show how to use DescribeRepositories.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

« Learn the basics

CLI
AWS CLI
To describe the repositories in a registry
This example describes the repositories in the default registry for an account.

Command:

aws ecr describe-repositories

Output:
{
"repositories": [
{
"registryId": "012345678910",
"repositoryName": "ubuntu",
"repositoryArn": "arn:aws:ecr:us-west-2:012345678910:repository/
ubuntu"
3,
{
"registryId": "012345678910",
"repositoryName": "test",
"repositoryArn": "arn:aws:ecr:us-west-2:012345678910:repository/test"
}
]

Actions API Version 2015-09-21 368

Amazon ECR User Guide

}

» For API details, see DescribeRepositories in AWS CLI Command Reference.

Java

SDK for Java 2.x

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**

* Retrieves the repository URI for the specified repository name.

* @param repoName the name of the repository to retrieve the URI for.
* @return the repository URI for the specified repository name.

* @throws EcrException if there is an error retrieving the repository
information.

* @throws CompletionException if the asynchronous operation completes
exceptionally.

*/

public void getRepositoryURI(String repoName) {
DescribeRepositoriesRequest request =
DescribeRepositoriesRequest.builder()
.repositoryNames(repoName)
.build();

CompletableFuture<DescribeRepositoriesResponse> response =
getAsyncClient().describeRepositories(request);
response.whenComplete((describeRepositoriesResponse, ex) -> {
if (ex !'= null) {
Throwable cause = ex.getCause();
if (cause instanceof InterruptedException) {
Thread.currentThread().interrupt();
String errorMessage = "Thread interrupted while waiting for
asynchronous operation: " + cause.getMessage();
throw new RuntimeException(errorMessage, cause);
} else if (cause instanceof EcrException) {
throw (EcrException) cause;

Actions API Version 2015-09-21 369

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/describe-repositories.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR User Guide

} else {
String errorMessage = "Unexpected error: " +
cause.getMessage();
throw new RuntimeException(errorMessage, cause);
}
} else {
if (describeRepositoriesResponse != null) {
if (!describeRepositoriesResponse.repositories().isEmpty()) {
String repositoryUri =
describeRepositoriesResponse.repositories().get(@).repositoryUri();
System.out.println("Repository URI found: " +
repositoryUri);

} else {
System.out.println("No repositories found for the given
name.");
}
} else {

System.err.println("No response received from
describeRepositories.");

}

1)

response.join();

« For API details, see DescribeRepositories in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
* Retrieves the repository URI for the specified repository name.
*

Actions API Version 2015-09-21 370

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/DescribeRepositories
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

* @param repoName the name of the repository to retrieve the URI for.
* @return the repository URI for the specified repository name.
*/
suspend fun getRepositoryURI(repoName: String?): String? {
require(!(repoName == null || repoName.isEmpty())) { "Repository name
cannot be null or empty" }
val request =
DescribeRepositoriesRequest {
repositoryNames = listOf(repoName)

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val describeRepositoriesResponse =
ecrClient.describeRepositories(request)
if (!describeRepositoriesResponse.repositories?.isEmpty()!!) {
return
describeRepositoriesResponse?.repositories?.get(0)?.repositoryUri
} else {
println("No repositories found for the given name.")

return

« For API details, see DescribeRepositories in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

(@ Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ECRWrapper:
def __init_ (self, ecr_client: client):
self.ecr_client = ecr_client

@classmethod

Actions API Version 2015-09-21 371

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR User Guide

def from_client(cls) -> "ECRWrapper":

Creates a ECRWrapper instance with a default Amazon ECR client.

:return: An instance of ECRWrapper initialized with the default Amazon
ECR client.

ecr_client = boto3.client("ecr")

return cls(ecr_client)

def describe_repositories(self, repository_names: list[str]) -> list[dict]:

Describes ECR repositories.

:param repository_names: The names of the repositories to describe.
:return: The list of repository descriptions.
try:
response = self.ecr_client.describe_repositories(
repositoryNames=repository_names
)
return response["repositories"]
except ClientError as err:
logger.error(
"Couldn't describe repositories. Here's why %s",
err.response["Error"]["Message"],

)

raise

» For API details, see DescribeRepositories in AWS SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions API Version 2015-09-21 372

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/DescribeRepositories
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ecr#code-examples

Amazon ECR User Guide

async fn show_repos(client: &aws_sdk_ecr::Client) -> Result<(),
aws_sdk_ecr: :Error> {

let rsp = client.describe_repositories().send().await?;

let repos = rsp.repositories();

println!("Found {} repositories:", repos.len());

for repo in repos {

println!(" ARN: {}", repo.repository_arn().unwrap());
println!(" Name: {3}", repo.repository_name().unwrap());

ok(())

» For API details, see DescribeRepositories in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetAuthorizationToken with an AWS SDK or CLI

The following code examples show how to use GetAuthorizationToken.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

+ Learn the basics

CLI

AWS CLI
To get an authorization token for your default registry

The following get-authorization-token example command gets an authorization token
for your default registry.

Actions API Version 2015-09-21 373

https://docs.rs/aws-sdk-ecr/latest/aws_sdk_ecr/client/struct.Client.html#method.describe_repositories

Amazon ECR User Guide

aws ecr get-authorization-token

Output:

"authorizationData": [

{
"authorizationToken": "QVdTOKN...",

"expiresAt": 1448875853.241,
"proxyEndpoint": "https://123456789012.dkr.ecr.us-

west-2.amazonaws.com"

}

« For API details, see GetAuthorizationToken in AWS CLI Command Reference.

Java

SDK for Java 2.x

(@ Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**

* Retrieves the authorization token for Amazon Elastic Container Registry
(ECR).

* This method makes an asynchronous call to the ECR client to retrieve the
authorization token.

* If the operation is successful, the method prints the token to the
console.

* If an exception occurs, the method handles the exception and prints the

€Irror message.
*

* @throws EcrException if there is an error retrieving the authorization

token from ECR.
* @throws RuntimeException if there is an unexpected error during the

operation.

Actions API Version 2015-09-21 374

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-authorization-token.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR User Guide

*/
public void getAuthToken() {
CompletableFuture<GetAuthorizationTokenResponse> response =
getAsyncClient().getAuthorizationToken();
response.whenComplete((authorizationTokenResponse, ex) -> {
if (authorizationTokenResponse != null) {
AuthorizationData authorizationData =
authorizationTokenResponse.authorizationData().get(Q);
String token = authorizationData.authorizationToken();
if (!token.isEmpty()) {
System.out.println("The token was successfully retrieved.");

}
} else {
if (ex.getCause() instanceof EcrException) {
throw (EcrException) ex.getCause();
} else {
String errorMessage = "Unexpected error occurred: " +
ex.getMessage();
throw new RuntimeException(errorMessage, ex); // Rethrow the
exception

1)

response.join();

« For API details, see GetAuthorizationToken in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**

Actions API Version 2015-09-21 375

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/GetAuthorizationToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

* Retrieves the authorization token for Amazon Elastic Container Registry
(ECR).
*
*/
suspend fun getAuthToken() {
EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
// Retrieve the authorization token for ECR.
val response = ecrClient.getAuthorizationToken()
val authorizationData = response.authorizationData?.get(Q)
val token = authorizationData?.authorizationToken
if (token != null) {
println("The token was successfully retrieved.")

« For API details, see GetAuthorizationToken in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

(@ Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ECRWrapper:
def __init_ (self, ecr_client: client):
self.ecr_client = ecr_client

@classmethod
def from_client(cls) -> "ECRWrapper":

Creates a ECRWrapper instance with a default Amazon ECR client.

:return: An instance of ECRWrapper initialized with the default Amazon
ECR client.

ecr_client = boto3.client("ecr")

Actions API Version 2015-09-21 376

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR User Guide

return cls(ecr_client)

def get_authorization_token(self) -> str:

Gets an authorization token for an ECR repository.

:return: The authorization token.
try:
response = self.ecr_client.get_authorization_token()
return response["authorizationData"][@]["authorizationToken"]
except ClientError as err:
logger.errox(
"Couldn't get authorization token. Here's why %s",
err.response["Error"]["Message"],

)

raise

» For API details, see GetAuthorizationToken in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetRepositoryPolicy with an AWS SDK or CLI

The following code examples show how to use GetRepositoryPolicy.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

e Learn the basics

CLI

AWS CLI

To retrieve the repository policy for a repository

Actions API Version 2015-09-21 377

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/GetAuthorizationToken

Amazon ECR User Guide

The following get-repository-policy example displays details about the repository
policy for the cluster-autoscaler repository.

aws ecr get-repository-policy \
--repository-name cluster-autoscaler

Output:

"registryId": "©12345678910",
"repositoryName": "cluster-autoscaler",
"policyText": "{\n \"Version\" : \"2008-10-17\",\n \"Statement\" :
[{\n \"Sid\" : \"allow public pull\",\n \"Effect\" : \"Allow\",\n
\"Principal\" : \"*\",\n \"Action\" : [\"ecr:BatchCheckLayerAvailability\",
\"ecr:BatchGetImage\", \"ecr:GetDownloadUrlForLayer\" J\n } J\n}"
}

» For API details, see GetRepositoryPolicy in AWS CLI Command Reference.

Java

SDK for Java 2.x

(@ Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

* Gets the repository policy for the specified repository.

* @param repoName the name of the repository.

* @throws EcrException if an AWS error occurs while getting the repository
policy.

*/

public String getRepoPolicy(String repoName) {
if (repoName == null || repoName.isEmpty()) {
throw new IllegalArgumentException('"Repository name cannot be null or

empty");

Actions API Version 2015-09-21 378

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-repository-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR User Guide

GetRepositoryPolicyRequest getRepositoryPolicyRequest =
GetRepositoryPolicyRequest.builder()
.repositoryName(repoName)
.build();

CompletableFuture<GetRepositoryPolicyResponse> response =
getAsyncClient().getRepositoryPolicy(getRepositoryPolicyRequest);
response.whenComplete((resp, ex) -> {
if (resp != null) {
System.out.println("Repository policy retrieved successfully.");
} else {
if (ex.getCause() instanceof EcrException) {
throw (EcrException) ex.getCause();
} else {
String errorMessage = "Unexpected error occurred: " +
ex.getMessage();
throw new RuntimeException(errorMessage, ex);

1)

GetRepositoryPolicyResponse result = response.join();
return result != null ? result.policyText() : null;

» For API details, see GetRepositoryPolicy in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**

Actions API Version 2015-09-21 379

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/GetRepositoryPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

* Gets the repository policy for the specified repository.
*
* @param repoName the name of the repository.
*/
suspend fun getRepoPolicy(repoName: String?): String? {
require(!(repoName == null || repoName.isEmpty())) { "Repository name
cannot be null or empty" }

// Create the request
val getRepositoryPolicyRequest =
GetRepositoryPolicyRequest {
repositoryName = repoName
}
EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val response =
ecrClient.getRepositoryPolicy(getRepositoryPolicyRequest)
val responseText = response.policyText
return responseText

» For API details, see GetRepositoryPolicy in AWS SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ECRWrapper:
def __init___(self, ecr_client: client):
self.ecr_client = ecr_client

@classmethod
def from_client(cls) -> "ECRWrapper":

Creates a ECRWrapper instance with a default Amazon ECR client.

Actions API Version 2015-09-21 380

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR User Guide

:return: An instance of ECRWrapper initialized with the default Amazon
ECR client.

ecr_client = boto3.client("ecr")

return cls(ecr_client)

def get_repository_policy(self, repository_name: str) -> str:

Gets the policy for an ECR repository.

:param repository_name: The name of the repository to get the policy for.
:return: The policy text.
try:
response = self.ecr_client.get_repository_policy(
repositoryName=repository_name
)
return response["policyText"]
except ClientError as err:
if err.response["Error"]["Code"] ==
"RepositoryPolicyNotFoundException":
logger.error("Repository does not exist. %s.

, repository_name)
raise
else:
logger.error(
"Couldn't get repository policy for repository %s. Here's why

repository_name,
err.response["Error"]["Message"],

)

raise

» For API details, see GetRepositoryPolicy in AWS SDK for Python (Boto3) APl Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with

an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions API Version 2015-09-21 381

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/GetRepositoryPolicy

Amazon ECR User Guide

Use ListImages with an AWS SDK or CLI

The following code examples show how to use ListImages.
CLI

AWS CLI
To list the images in a repository

The following 1ist-images example displays a list of the images in the cluster-
autoscaler repository.

aws ecr list-images \
--repository-name cluster-autoscaler

Output:

"imageIds": [
{
"imageDigest":
"sha256:99c6fb4377e9a420aleb3b410a951c9f464eff3b7dbc76c65e434e39b94b6570",
"imageTag": "v1.13.8"
3,
{
"imageDigest":
"sha256:99c6fb4377e9a420aleb3b410a951c9f464eff3b7dbc76c65e434e39b94b6570",
"imageTag": "v1.13.7"
1,
{
"imageDigest":
"sha256:4al1c6567c38904384ebcb4e35b7eeddd8451110c299e3368d2210066487d97e5",
"imageTag": "v1.13.6"

« For API details, see Listimages in AWS CLI Command Reference.

Actions API Version 2015-09-21 382

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/list-images.html

Amazon ECR User Guide

Rust

SDK for Rust

(@ Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn show_images(
client: &aws_sdk_ecr::Client,
repository: &str,
) -> Result<(), aws_sdk_ecr::Error> {
let rsp = client
.list_images()
.repository_name(repository)
.send()
.await?;

let images = rsp.image_ids();
println!("found {} images", images.len());

for image in images {
println!(
"image: {}:{3}",
image.image_tag().unwrap(),
image.image_digest().unwrap()

);

ok(())

« For API details, see Listimages in AWS SDK for Rust API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions API Version 2015-09-21 383

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/ecr#code-examples
https://docs.rs/aws-sdk-ecr/latest/aws_sdk_ecr/client/struct.Client.html#method.list_images

Amazon ECR User Guide

Use PushImageCmd with an AWS SDK

The following code examples show how to use PushImageCmd.
Java

SDK for Java 2.x

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
* Pushes a Docker image to an Amazon Elastic Container Registry (ECR)
repository.
*
* @param repoName the name of the ECR repository to push the image to.
* @param imageName the name of the Docker image.
*/
public void pushDockerImage(String repoName, String imageName) {
System.out.println("Pushing " + imageName + " to Amazon ECR will take a
few seconds.");
CompletableFuture<AuthConfig> authResponseFuture =
getAsyncClient().getAuthorizationToken()
.thenApply(response -> {
String token =
response.authorizationData().get(0Q).authorizationToken();
String decodedToken = new
String(Baseb4.getDecoder().decode(token));
String password = decodedToken.substring(4);

DescribeRepositoriesResponse descrRepoResponse =
getAsyncClient().describeRepositories(b -> b.repositoryNames(repoName)).join();

Repository repoData =
descrRepoResponse.repositories().stream().filter(r ->
r.repositoryName().equals(repoName)).findFirst().orElse(null);

assert repoData != null;

String registryURL = repoData.repositoryUri().split("/")[Q];

AuthConfig authConfig = new AuthConfig()

Actions API Version 2015-09-21 384

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR User Guide

.withUsername("AWS")
.withPassword(password)
.withRegistryAddress(registryURL);
return authConfig;
b
.thenCompose(authConfig -> {
DescribeRepositoriesResponse descrRepoResponse =
getAsyncClient().describeRepositories(b -> b.repositoryNames(repoName)).join();
Repository repoData =
descrRepoResponse.repositories().stream().filter(r ->
r.repositoryName().equals(repoName)).findFirst().orElse(null);
getDockerClient().tagImageCmd(imageName + ":latest",
repoData.repositoryUri() + ":latest", imageName).exec();
try {

getDockerClient().pushImageCmd(repoData.repositoryUri()).withTag("echo-
text").withAuthConfig(authConfig).start().awaitCompletion();

System.out.println("The " + imageName + " was pushed to
ECR");

} catch (InterruptedException e) {
throw (RuntimeException) e.getCause();

}
return CompletableFuture.completedFuture(authConfig);

1)

authResponseFuture.join();

« For API details, see PushimageCmd in AWS SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

(@ Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions API Version 2015-09-21 385

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/PushImageCmd
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

/**
* Pushes a Docker image to an Amazon Elastic Container Registry (ECR)
repository.
*
* @param repoName the name of the ECR repository to push the image to.
* @param imageName the name of the Docker image.
*/
suspend fun pushDockerImage(
repoName: String,
imageName: String,
) {
println("Pushing $imageName to $repoName will take a few seconds")
val authConfig = getAuthConfig(repoName)

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val desRequest =
DescribeRepositoriesRequest {
repositoryNames = listOf(repoName)

val describeRepoResponse = ecrClient.describeRepositories(desRequest)
val repoData =
describeRepoResponse.repositories?.firstOrNull
{ it.repositoryName == repoName }
?: throw RuntimeException("Repository not found: $repoName")

val tagImageCmd = getDockerClient()?.tagImageCmd("$imageName",
"${repoData.repositoryUril}", imageName)
if (tagImageCmd != null) {
tagImageCmd.exec()
}
val pushImageCmd =
repoData.repositoryUri?.let {
dockerClient?.pushImageCmd(it)
// ?.withTag("latest")
?.withAuthConfig(authConfig)

try {
if (pushImageCmd != null) {
pushImageCmd.start().awaitCompletion()

Actions API Version 2015-09-21 386

Amazon ECR User Guide

println("The $imageName was pushed to Amazon ECR")
} catch (e: IOException) {
throw RuntimeException(e)

}

« For API details, see PushimageCmd in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use PutLifeCyclePolicy with an AWS SDK or CLI

The following code examples show how to use PutLifeCyclePolicy.
CLI
AWS CLI
To create a lifecycle policy

The following put-1lifecycle-policy example creates a lifecycle policy for the specified
repository in the default registry for an account.

aws ecr put-lifecycle-policy \
--repository-name "project-a/amazon-ecs-sample" \
--lifecycle-policy-text "file://policy.json"

Contents of policy. json:

"rules": [
{
"rulePriority": 1,
"description": "Expire images older than 14 days",
"selection": {
"tagStatus": "untagged",
"countType": "sinceImagePushed",

Actions API Version 2015-09-21 387

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon ECR User Guide

"countUnit": "days",
"countNumber": 14
},
"action": {
"type": "expire"
}
}
]
}
Output:
{
"registryId": "<aws_account_id>",
"repositoryName": "project-a/amazon-ecs-sample",

"lifecyclePolicyText": "{\"rules\":[{\"rulePriority\":1,\"description\":
\"Expire images older than 14 days\",\"selection\":{\"tagStatus\":\"untagged\",
\"countType\":\"sinceImagePushed\",\"countUnit\":\"days\",\"countNumber\":14},
\"action\":{\"type\":\"expire\"}}]1}"

}

For more information, see Lifecycle Policies in the Amazon ECR User Guide.

« For API details, see PutLifeCyclePolicy in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ECRWrapper:
def __init___(self, ecr_client: client):
self.ecr_client = ecr_client

@classmethod
def from_client(cls) -> "ECRWrapper":

Actions API Version 2015-09-21 388

https://docs.aws.amazon.com/AmazonECR/latest/userguide/LifecyclePolicies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/put-life-cycle-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR User Guide

Creates a ECRWrapper instance with a default Amazon ECR client.

:return: An instance of ECRWrapper initialized with the default Amazon
ECR client.

ecr_client = boto3.client("ecr")

return cls(ecr_client)

def put_lifecycle_policy(self, repository_name: str, lifecycle_policy_text:
str):

Puts a lifecycle policy for an ECR repository.

:param repository_name: The name of the repository to put the lifecycle
policy for.
:param lifecycle_policy_text: The lifecycle policy text to put.
try:
self.ecr_client.put_lifecycle_policy(
repositoryName=repository_name,
lifecyclePolicyText=1lifecycle_policy_text,
)
print(f"Put lifecycle policy for repository {repository_name}.")
except ClientError as err:
logger.error(
"Couldn't put lifecycle policy for repository %s. Here's why %s",
repository_name,
err.response["Error"]["Message"],
)

raise

Example that puts an expiration date policy.

def put_expiration_policy(self):

Puts an expiration policy on the ECR repository.

policy_json = {
"rules": [

Actions API Version 2015-09-21 389

Amazon ECR User Guide

{
"rulePriority": 1,
"description": "Expire images older than 14 days",
"selection": {
"tagStatus": "any",
"countType": "sinceImagePushed",
"countUnit": "days",
"countNumber": 14,
1,
"action": {"type": "expire"},
}

self.ecr_wrapper.put_lifecycle_policy(
self.repository_name, json.dumps(policy_json)

)

» For API details, see PutLifeCyclePolicy in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SetRepositoryPolicy with an AWS SDK or CLI
The following code examples show how to use SetRepositoryPolicy.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

« Learn the basics

CLI

AWS CLI

To set the repository policy for a repository

Actions API Version 2015-09-21 390

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/PutLifeCyclePolicy

Amazon ECR User Guide

The following set-repository-policy example attaches a repository policy contained in
a file to the cluster-autoscaler repository.

aws ecr set-repository-policy \
--repository-name cluster-autoscaler \
--policy-text file://my-policy.json

Contents of my-policy. json:

{
"Version":"2012-10-17",
"Statement" : [
{

"Sid" : "allow public pull",

"Effect" : "Allow",

"Principal" : "*",

"Action" : [
"ecr:BatchCheckLayerAvailability",
"ecr:BatchGetImage",
"ecr:GetDownloadUrlForLayer"

]

}
]
}
Output:
{

"registryId": "012345678910",
"repositoryName": "cluster-autoscaler",
"policyText": "{\n \"Version\" : \"2008-10-17\",\n \"Statement\" :
[{\n \"Sid\" : \"allow public pull\",\n \"Effect\" : \"Allow\",\n
\"Principal\" : \"*\",\n \"Action\" : [\"ecr:BatchCheckLayerAvailability\",
\"ecr:BatchGetImage\", \"ecr:GetDownloadUrlForLayer\" J\n } J\n}"
}

» For API details, see SetRepositoryPolicy in AWS CLI Command Reference.

Actions API Version 2015-09-21 391

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/set-repository-policy.html

Amazon ECR

User Guide

Java

SDK for Java 2.x

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
* Sets the repository policy for the specified ECR repository.
*
* @param repoName the name of the ECR repository.
* @param iamRole the IAM role to be granted access to the repository.
* @throws RepositoryPolicyNotFoundException if the repository policy does
not exist.

* @throws EcrException if there is an unexpected error
setting the repository policy.
*/
public void setRepoPolicy(String repoName, String iamRole) {
/*

This example policy document grants the specified AWS principal the
permission to perform the

‘ecr:BatchGetImage™ action. This policy is designed to allow the
specified principal

to retrieve Docker images from the ECR repository.

*/
String policyDocumentTemplate = """
{
"Version":"2012-10-17",
"Statement" : [{
"Sid" : "new statement",
"Effect" : "Allow",
"Principal” : {
"AWS" : "S%s"
I
"Action" : "ecr:BatchGetImage"
11
}

mwon .,
4

Actions

API Version 2015-09-21 392

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR User Guide

String policyDocument = String.format(policyDocumentTemplate, iamRole);
SetRepositoryPolicyRequest setRepositoryPolicyRequest =
SetRepositoryPolicyRequest.builder()
.repositoryName(repoName)
.policyText(policyDocument)
.build();

CompletableFuture<SetRepositoryPolicyResponse> response =
getAsyncClient().setRepositoryPolicy(setRepositoryPolicyRequest);
response.whenComplete((resp, ex) -> {
if (resp != null) {
System.out.println("Repository policy set successfully.");
} else {
Throwable cause = ex.getCause();
if (cause instanceof RepositoryPolicyNotFoundException) {
throw (RepositoryPolicyNotFoundException) cause;
} else if (cause instanceof EcrException) {
throw (EcrException) cause;
} else {
String errorMessage = "Unexpected error: " +
cause.getMessage();

throw new RuntimeException(errorMessage, cause);

1)

response.join();

« For API details, see SetRepositoryPolicy in AWS SDK for Java 2.x API Reference.

Kotlin
SDK for Kotlin
(® Note
There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.
Actions

API Version 2015-09-21 393

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/SetRepositoryPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

* Sets the repository policy for the specified ECR repository.

* @param repoName the name of the ECR repository.
* @param iamRole the IAM role to be granted access to the repository.
*/
suspend fun setRepoPolicy(
repoName: String?,
iamRole: String?,

) {
val policyDocumentTemplate =
{
"Version":"2012-10-17",
"Statement" : [{
"Sid" : "new statement",
"Effect" : "Allow",
"Principal” : {
"AWS" : "$iamRole"
I
"Action" : "ecr:BatchGetImage"
1]
}
"t trimIndent()

val setRepositoryPolicyRequest =
SetRepositoryPolicyRequest {
repositoryName = repoName
policyText = policyDocumentTemplate

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val response =
ecrClient.setRepositoryPolicy(setRepositoryPolicyRequest)
if (response != null) {
println("Repository policy set successfully.")

» For API details, see SetRepositoryPolicy in AWS SDK for Kotlin API reference.

Actions API Version 2015-09-21 394

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon ECR User Guide

Python

SDK for Python (Boto3)

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class ECRWrapper:
def __init__(self, ecr_client: client):
self.ecr_client = ecr_client

@classmethod
def from_client(cls) -> "ECRWrapper":

Creates a ECRWrapper instance with a default Amazon ECR client.

:return: An instance of ECRWrapper initialized with the default Amazon
ECR client.

ecr_client = boto3.client("ecr")
return cls(ecr_client)

def set_repository_policy(self, repository_name: str, policy_text: str):

Sets the policy for an ECR repository.

:param repository_name: The name of the repository to set the policy for.
:param policy_text: The policy text to set.
try:
self.ecr_client.set_repository_policy(
repositoryName=repository_name, policyText=policy_text
)
print(f"Set repository policy for repository {repository_name}.")
except ClientError as err:
if err.response["Error"]["Code"] ==
"RepositoryPolicyNotFoundException":
logger.error("Repository does not exist. %s.", repository_name)

Actions API Version 2015-09-21 395

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/ecr#code-examples

Amazon ECR User Guide

raise
else:
logger.error(
"Couldn't set repository policy for repository %s. Here's why

repository_name,
err.response["Error"]["Message"],

)

raise

Example that grants an IAM role download access.

def grant_role_download_access(self, role_arn: str):
Grants the specified role access to download images from the ECR
repository.

:param role_arn: The ARN of the role to grant access to.
policy_json = {

"Version":"2012-10-17",

"Statement": [

{
"Sid": "AllowDownload",
"Effect": "Allow",
"Principal": {"AWS": role_arn},
"Action": ["ecr:BatchGetImage"],
}

self.ecr_wrapper.set_repository_policy(
self.repository_name, json.dumps(policy_json)

» For API details, see SetRepositoryPolicy in AWS SDK for Python (Boto3) API Reference.

Actions API Version 2015-09-21 396

https://docs.aws.eu/goto/boto3/ecr-2015-09-21/SetRepositoryPolicy

Amazon ECR User Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use StartLifecyclePolicyPreview with an AWS SDK or CLI

The following code examples show how to use StartLifecyclePolicyPreview.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

« Learn the basics

Cul
AWS CLI
To create a lifecycle policy preview

The following start-lifecycle-policy-preview example creates a lifecycle policy
preview defined by a JSON file for the specified repository.

aws ecr start-lifecycle-policy-preview \
--repository-name '"project-a/amazon-ecs-sample" \
--lifecycle-policy-text "file://policy.json"

Contents of policy. json:

"rules": [

"rulePriority": 1,
"description": "Expire images older than 14 days",
"selection": {

"tagStatus": "untagged",

"countType": "sinceImagePushed",
"countUnit": "days",
"countNumber": 14

1,

"action": {
"type": "expire"

}

Actions API Version 2015-09-21 397

Amazon ECR User Guide

}
]
}
Output:
{
"registryId": "012345678910",
"repositoryName": "project-a/amazon-ecs-sample",
"lifecyclePolicyText": "{\n \"rules\": [\n {\n
\"rulePriority\": 1,\n \"description\": \"Expire images older than 14
days\",\n \"selection\": {\n \"tagStatus\": \"untagged
\",\n \"countType\": \'"sinceImagePushed\",\n
\"countUnit\": \"days\",\n \"countNumber\": 14\n },\n
\"action\": {\n \"type\": \"expire\"\n N\n
Nn I\n}\n",
"status": "IN_PROGRESS"
}

« For API details, see StartLifecyclePolicyPreview in AWS CLI Command Reference.

Java

SDK for Java 2.x

(® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
* Verifies the existence of an image in an Amazon Elastic Container Registry

(Amazon ECR) repository asynchronously.
*

* @param repositoryName The name of the Amazon ECR repository.

* @param imageTag The tag of the image to verify.

* @throws EcrException if there is an error retrieving the image
information from Amazon ECR.

* @throws CompletionException if the asynchronous operation completes
exceptionally.

Actions API Version 2015-09-21 398

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/start-lifecycle-policy-preview.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/ecr#code-examples

Amazon ECR User Guide

*/
public void verifyImage(String repositoryName, String imageTag) {
DescribeImagesRequest request = DescribeImagesRequest.builder()
.repositoryName(repositoryName)
.imageIlds(ImageIdentifier.buildexr().imageTag(imageTag).build())
.build();

CompletableFuture<DescribeImagesResponse> response =
getAsyncClient().describeImages(request);
response.whenComplete((describeImagesResponse, ex) -> {
if (ex !'= null) {
if (ex instanceof CompletionException) {
Throwable cause = ex.getCause();
if (cause instanceof EcrException) {
throw (EcrException) cause;
} else {
throw new RuntimeException("Unexpected error:
cause.getMessage(), cause);

n +

}
} else {
throw new RuntimeException("Unexpected error: " +
ex.getCause());
}
} else if (describeImagesResponse != null && !

describeImagesResponse.imageDetails().isEmpty()) {
System.out.println("Image is present in the repository.");
} else {
System.out.println("Image is not present in the repository.");

1)

// Wait for the CompletableFuture to complete.
response.join();

» For API details, see StartLifecyclePolicyPreview in AWS SDK for Java 2.x APl Reference.

Actions API Version 2015-09-21 399

https://docs.aws.eu/goto/SdkForJavaV2/ecr-2015-09-21/StartLifecyclePolicyPreview

Amazon ECR User Guide

Kotlin

SDK for Kotlin

® Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

/**
* Verifies the existence of an image in an Amazon Elastic Container Registry
(Amazon ECR) repository asynchronously.
*
* @param repositoryName The name of the Amazon ECR repository.
* @param imageTag The tag of the image to verify.
*/
suspend fun verifyImage(
repoName: String?,
imageTagVal: String?,
) {
require(!(repoName == null || repoName.isEmpty())) { "Repository name
cannot be null or empty" }
require(!(imageTagVal == null || imageTagVal.isEmpty())) { "Image tag
cannot be null or empty" }

val imageld =
Imageldentifier {
imageTag = imageTagVal
}
val request =
DescribeImagesRequest {
repositoryName = repoName
imagelds = 1listOf(imageld)

}

EcrClient.fromEnvironment { region = "us-east-1" }.use { ecrClient ->
val describeImagesResponse = ecrClient.describeImages(request)
if (describeImagesResponse != null && !

describeImagesResponse.imageDetails?.isEmpty()!!) {
println("Image is present in the repository.")

Actions API Version 2015-09-21 400

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/ecr#code-examples

Amazon ECR User Guide

} else {
println("Image is not present in the repository.")

}

» For API details, see StartLifecyclePolicyPreview in AWS SDK for Kotlin API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon ECR with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions API Version 2015-09-21 401

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon ECR

User Guide

Amazon ECR service quotas

The following table provides the default service quotas for Amazon Elastic Container Registry

(Amazon ECR).

Name

Basic image scans per 24 hours

Filters per rule in a replication

configuration

Images per repository

Layer parts

Lifecycle policy length

Maximum layer part size

Default

Each supported
Region: 100,000

Each supported
Region: 100

Each supported
Region: 100,000

Each supported
Region: 4,200

Each supported
Region: 30,720

Each supported
Region: 10

Adjus Description

e

No

No

Yes

No

No

No

The maximum number
of images that can be
scanned within a 24 hour
period in the current
account and region using
basic scanning. This limit
includes both scan on
push and manual scans.

The maximum number
of filters per rulein a
replication configuration.

The maximum number of
images per repository.

The maximum number
of layer parts. This is
only applicable if you are
using Amazon ECR API
actions directly to initiate
multipart uploads for
image push operations.

The maximum number of
characters in a lifecycle

policy.

The maximum size (MiB)
of a layer part. This is

API Version 2015-09-21 402

https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-03A36CE1

Amazon ECR

User Guide

Name

Maximum layer size

Minimum layer part size

Pull through cache rules per registry

Rate of BatchCheckLayerAvailability
requests

Default
e

Each supported No
Region: 52,000

Each supported No
Region: 5

Each supported No
Region: 50

Each supported Yes
Region: 1,000 per
second

Adjus Description

only applicable if you are
using Amazon ECR API
actions directly to initiate
multipart uploads for
image push operations.

The maximum size (MiB)
of a layer.

The minimum size (MiB)
of a layer part. This is
only applicable if you are
using Amazon ECR API
actions directly to initiate
multipart uploads for
image push operations.

The maximum number of
pull-through cache rules.

The maximum number
of BatchCheckLayerAva
ilability requests that
you can make per second
in the current Region.
When an image is
pushed to a repositor

y, each image layer is
checked to verify if it has
been uploaded before.

If it has been uploaded,
then the image layer is
skipped.

API Version 2015-09-21 403

https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-B9173138

Amazon ECR User Guide

Name Default Adjus Description
e
Rate of BatchGetimage requests Each supported Yes The maximum number of
Region: 2,000 per BatchGetlmage requests
second that you can make per

second in the current
Region. When an image
is pulled, the BatchGetl
mage APl is called once
to retrieve the image
manifest. If you request
a quota increase for

this API, review your
GetDownloadUrlForLayer
usage as well.

Rate of CompleteLayerUpload requests Each supported Yes The maximum number
Region: 100 per of CompleteLayerUploa
second d requests that you can

make per second in the
current Region. When
an image is pushed, the
CompleteLayerUpload
APl is called once per
each new image layer to
verify that the upload
has completed.

Rate of GetAuthorizationToken Each supported Yes The maximum number of
requests Region: 500 per GetAuthorizationToken
second requests that you can

make per second in the
current Region.

API Version 2015-09-21 404

https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-16E70933
https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-44194860
https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-55A41110

Amazon ECR

User Guide

Name Default

Rate of GetDownloadUrlForLayer Each supported

requests Region: 3,000 per
second

Rate of InitiateLayerUpload requests Each supported

Region: 100 per
second

Adjus Description

e

Yes

Yes

The maximum number of
GetDownloadUrlForLayer
requests that you can
make per second in the
current Region. When

an image is pulled, the
GetDownloadUrlForLayer
APl is called once per
image layer that is not
already cached. If you
request a quota increase
for this API, review your
BatchGetlmage usage as
well.

The maximum number
of InitiateLayerUpload
requests that you can
make per second in the
current Region. When
an image is pushed,

the InitiateLayerUploa

d APl is called once per
image layer that has not
already been uploaded.
Whether or not an image
layer has been uploaded
is determined by the
BatchCheckLayerAva
ilability API action.

API Version 2015-09-21 405

https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-A60A366D
https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-95B28F8D

Amazon ECR

User Guide

Name

Rate of Putlmage requests

Rate of UploadLayerPart requests

Rate of image scans

Registered repositories

Default Adjus Description

e

Each supported Yes
Region: 10 per
second

Each supported Yes
Region: 500 per
second

Each supported No
Region: 1

Each supported Yes
Region: 100,000

The maximum number
of Putlmage requests
that you can make per
second in the current
Region. When an image
is pushed and all new
image layers have been
uploaded, the Putimage
APl is called once to
create or update the
image manifest and the
tags associated with the
image.

The maximum number
of UploadLayerPart
requests that you can
make per second in the
current Region. When
an image is pushed,
each new image layer is
uploaded in parts and
the UploadLayerPart API
is called once per each
new image layer part.

The maximum number of
image scans per image,
per 24 hours.

The maximum number of
repositories that you can
create in this account in
the current Region.

API Version 2015-09-21 406

https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-AD52DFB2
https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-A1670B10
https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home/services/ecr/quotas/L-CFEB8E8D

Amazon ECR

User Guide

Name

Rules per lifecycle policy

Rules per replication configuration

Tags per image

Unique destinations across all rules in a
replication configuration

Default

Each supported
Region: 50

Each supported
Region: 10

Each supported
Region: 1,000

Each supported
Region: 25

Adjus Description

e

No

No

No

No

The maximum number of
rules in a lifecycle policy

The maximum number
of rules in a replication
configuration.

The maximum number of
tags per image.

The maximum number
of unique destinati

ons across all rules in a
replication configuration.

API Version 2015-09-21 407

Amazon ECR User Guide

Amazon ECR troubleshooting

This chapter helps you find diagnostic information for Amazon ECR, and provides troubleshooting
steps for common issues and error messages.

Topics

» Troubleshooting Docker commands and issues when using Amazon ECR

» Troubleshooting Amazon ECR error messages

Troubleshooting Docker commands and issues when using
Amazon ECR

In some cases, running a Docker command against Amazon ECR might result in an error message.
Some common error messages and potential solutions are explained below.

Topics

» Docker logs do not contain expected error messages

 Error: "Filesystem Verification Failed" or "404: Image Not Found" when pulling an image from an

Amazon ECR repository

 Error: "Filesystem Layer Verification Failed" when pulling images from Amazon ECR

o HTTP 403 Errors or "no basic auth credentials" error when pushing to repository

Docker logs do not contain expected error messages

To begin debugging any Docker-related issue, start by turning on Docker debugging output on the
Docker daemon running on your host instances. If you are using images pulled from Amazon ECR
on Amazon ECS container instances, see Configuring verbose output from the Docker daemon in
the Amazon Elastic Container Service Developer Guide.

Troubleshooting Docker API Version 2015-09-21 408

https://docs.aws.eu/AmazonECS/latest/developerguide/docker-debug-mode.html

Amazon ECR User Guide

Error: "Filesystem Verification Failed" or "404: Image Not Found" when
pulling an image from an Amazon ECR repository

You may receive the error Filesystem verification failed when using the docker pull
command to pull an image from an Amazon ECR repository with Docker 1.9 or above. You may
receive the error 404: Image not found when you are using Docker versions before 1.9.

Some possible reasons and their explanations are given below.
The local disk is full

If the local disk on which you're running docker pull is full, then the SHA-1 hash calculated on
the local file may be different than the one calculated by Amazon ECR. Check that your local
disk has enough remaining free space to store the Docker image you are pulling. You can also
delete old images to make room for new ones. Use the docker images command to see a list of
all locally downloaded Docker images, along with their sizes.

Client cannot connect to the remote repository due to network error

Calls to an Amazon ECR repository require a functioning connection to the internet. Verify
your network settings, and verify that other tools and applications can access resources on the
internet. If you are running docker pull on an Amazon EC2 instance in a private subnet, verify
that the subnet has a route to the internet. Use a network address translation (NAT) server or a
managed NAT gateway.

Currently, calls to an Amazon ECR repository also require network access through your
corporate firewall to Amazon Simple Storage Service (Amazon S3). If your organization uses
firewall software or a NAT device that allows service endpoints, ensure that the Amazon S3
service endpoints for your current Region are allowed.

If you are using Docker behind an HTTP proxy, you can configure Docker with the appropriate

proxy settings. For more information, see HTTP proxy in the Docker documentation.

Error: "Filesystem Layer Verification Failed" when pulling images from
Amazon ECR

You may receive the error image image-name not found when pulling images using the docker
pull command. If you inspect the Docker logs, you may see an error like the following:

Error: "Filesystem Verification Failed" or "404: Image Not Found" when pulling an image from an API Version 2015-09-21 409
Amazon ECR repository

https://docs.docker.com/engine/admin/systemd/#/http-proxy

Amazon ECR User Guide

filesystem layer verification failed for digest sha256:2b96f...

This error indicates that one or more of the layers for your image has failed to download. Some
possible reasons and their explanations are given below.

You are using an older version of Docker

This error can occur in a small percentage of cases when using a Docker version less than 1.10.
Upgrade your Docker client to 1.10 or greater.

Your client has encountered a network or disk error

A full disk or a network issue may prevent one or more layers from downloading, as
discussed earlier about the Filesystem verification failed message. Follow the
recommendations above to ensure that your filesystem is not full, and that you have enabled
access to Amazon S3 from within your network.

HTTP 403 Errors or "no basic auth credentials" error when pushing to
repository

There are times when you may receive an HTTP 403 (Forbidden) error, or the error message
no basic auth credentials from the docker push or docker pull commands, even if you
have successfully authenticated to Docker using the aws ecr get-login-password command. The
following are some known causes of this issue:

You have authenticated to a different region

Authentication requests are tied to specific regions, and cannot be used across regions. For
example, if you obtain an authorization token from US West (Oregon), you cannot use it to
authenticate against your repositories in US East (N. Virginia). To resolve the issue, ensure that
you have retrieved an authentication token from the same Region your repository exists in. For
more information, see the section called “Registry authentication”.

You have authenticated to push to a repository you don't have permissions for

You do not have the necessary permissions to push to the repository. For more information, see
Private repository policies in Amazon ECR.

HTTP 403 Errors or "no basic auth credentials" error when pushing to repository API Version 2015-09-21 410

Amazon ECR User Guide

Your token has expired

The default authorization token expiration period for tokens obtained using the
GetAuthorizationToken operationis 12 hours.

Bug in wincred credential manager

Some versions of Docker for Windows use a credential manager called wincred, which does
not properly handle the Docker login command produced by aws ecr get-login-password (for
more information, see CredsStoxre fails with private repositories). You can run the Docker
login command that is output, but when you try to push or pull images, those commands fail.
You can work around this bug by removing the https:// scheme from the registry argument
in the Docker login command that is output from aws ecr get-login-password. An example
Docker login command without the HTTPS scheme is shown below.

dockex login -u AWS -p <password> <aws_account_id>.dkx.ecx.<region>.amazonaws.com

Troubleshooting Amazon ECR error messages

In some cases, an API call that you have initiated through the Amazon ECR console or the AWS CLI
exits with an error message. Some common error messages and potential solutions are explained
below.

HTTP 429: Too Many Requests or ThrottleException

You may receive a 429: Too Many Requests error ora ThrottleException error from one

or more Amazon ECR actions or API calls. This indicates that you are calling a single endpoint

in Amazon ECR repeatedly over a short interval, and that your requests are getting throttled.
Throttling occurs when calls to a single endpoint from a single user exceed a certain threshold over
a period of time.

Each API operations in Amazon ECR has a rate throttles associated with it. For example, the
throttle for the GetAuthorizationToken action is 20 transaction per second (TPS), with up to
a 200 TPS burst allowed. In each region, each account receives a bucket that can store up to 200
GetAuthorizationToken credits. These credits are replenished at a rate of 20 per second. If
your bucket has 200 credits, you could achieve 200 GetAuthorizationToken API transactions
per second for one second, and then sustain 20 transactions per second indefinitely. For more
information on the rate limits for Amazon ECR APIs, see Amazon ECR service quotas.

Troubleshooting Amazon ECR error messages API Version 2015-09-21 411

https://github.com/moby/moby/issues/22910
https://docs.aws.eu/AmazonECR/latest/APIReference/API_GetAuthorizationToken.html

Amazon ECR User Guide

To handle throttling errors, implement a retry function with incremental backoff into your code.
For more information, see Retry behavior in the AWS SDKs and Tools Reference Guide. Another
option is to request a rate limit increase, which you can do using the Service Quotas console. .

HTTP 403: "User [arn] is not authorized to perform [operation]"

You may receive the following error when attempting to perform an action with Amazon ECR:

$ aws ecr get-login-password
A client error (AccessDeniedException) occurred when calling the GetAuthorizationToken
operation:
User: arn:aws:iam::account-number:user/username is not authorized to perform:
ecr:GetAuthorizationToken on resource: *

This indicates that your user does not have permissions granted to use Amazon ECR, or that those
permissions are not set up correctly. In particular, if you are performing actions against an Amazon
ECR repository, verify that the user has been granted permissions to access that repository. For
more information about creating and verifying permissions for Amazon ECR, see Identity and
Access Management for Amazon Elastic Container Registry.

HTTP 404: "Repository Does Not Exist" error

If you specify a Docker Hub repository that does not currently exist, Docker Hub creates it
automatically. With Amazon ECR, new repositories must be explicitly created before they can
be used. This prevents new repositories from being created accidentally (for example, due to
typos), and it also ensures that an appropriate security access policy is explicitly assigned to any
new repositories. For more information about creating repositories, see Amazon ECR private

repositories.

Error: Cannot perform an interactive login from a non TTY device

If you receive the error Cannot perform an interactive login from a non TTY device,
the following troubleshooting steps should help.

« Verify that you're using AWS CLI version 2 and that you don't have a conflicting version of AWS
CLI version 1 on your system. For more information, see Installing or updating the latest version
of the AWS CLI.

« Verify that you've configured your AWS CLI with valid credentials. For more information, see
Installing or updating the latest version of the AWS CLI.

HTTP 403: "User [arn] is not authorized to perform [operation]" API Version 2015-09-21 412

https://docs.aws.eu/general/latest/gr/api-retries.html
https://docs.aws.eu/cli/latest/userguide/getting-started-install.html
https://docs.aws.eu/cli/latest/userguide/getting-started-install.html
https://docs.aws.eu/cli/latest/userguide/cli-chap-configure.html

Amazon ECR User Guide

« Verify that the syntax of your AWS CLI command is correct.

Error: Cannot perform an interactive login from a non TTY device API Version 2015-09-21 413

Amazon ECR User Guide

Using Podman with Amazon ECR

Using Podman with Amazon ECR enables organizations to leverage the security and simplicity of
Podman while benefiting from the scalability and reliability of Amazon ECR for container image
management. By following the outlined steps and commands, developers and administrators

can streamline their container workflows, enhance security, and optimize resource utilization. As
containerization continues to gain momentum, using Podman and Amazon ECR provides a robust
and flexible solution for managing and deploying containerized applications.

Using Podman to authenticate with Amazon ECR

Before interacting with Amazon ECR using Podman, authentication is required. This can
be achieved by running the "aws ecr get-login-password’ command to retrieve an
authentication token, and then using that token with the “podman login’ command to
authenticate with Amazon ECR.

aws ecr get-login-password --region <region> | podman login --username AWS --password-
stdin <aws_account_id>.dkx.ecr.<region>.amazonaws.com

Using the Amazon ECR credential helper with Podman

Amazon ECR provides a Docker credential helper that works with Podman. The credential helper
makes it easier to store and use Docker credentials when pushing and pulling images to Amazon
ECR. For installation and configuration steps, see Amazon ECR Docker Credential Helper.

/A Important

Podman only partially supports the docker-creds-helper specification. Podman supports
the credHelpers keyword in Docker configuration but does not support the credsStore
keyword.

To use the Amazon ECR credential helper with Podman, configure your Docker
configuration file with the credHelpers format:

"credHelpers": {
"public.ecr.aws": "ecr-login",

Using Podman to authenticate with Amazon ECR API Version 2015-09-21 414

https://github.com/awslabs/amazon-ecr-credential-helper

Amazon ECR User Guide

"<aws_account_id>.dkr.ecr.<region>.amazonaws.com": "ecr-login"

The following credsStore configuration is not supported by Podman:

"credsStore": "ecr-login"

® Note

The Amazon ECR Docker credential helper does not support multi-factor authentication
(MFA) currently.

Pulling images from Amazon ECR with Podman

After successful authentication, container images can be pulled from Amazon ECR using the
"podman pull’ command with the full Amazon ECR repository URI.

podman pull aws_account_id.dkr.ecr.region.amazonaws.com/repository_name:tag

Running containers for Amazon ECR with Podman

Once the desired image has been pulled, a container can be instantiated using the “podman run’
command.

podman run -d aws_account_id.dkr.ecrx.region.amazonaws.com/repository_name:tag

Pushing images to Amazon ECR with Podman

To push a local image to Amazon ECR, the image must first be tagged with the Amazon ECR
repository URI using “podman tag’, and then the “podman push’ command can be used to
upload the image to Amazon ECR.

Pulling images from Amazon ECR with Podman API Version 2015-09-21 415

Amazon ECR User Guide

podman
tag local_image:tag aws_account_id.dkr.ecr.region.amazonaws.com/repository_name:tag
podman push aws_account_id.dkr.ecr.region.amazonaws.com/repository_name:tag

Pushing images to Amazon ECR with Podman API Version 2015-09-21 416

Amazon ECR User Guide

Document history

The following table describes the important changes to the documentation since the last release of
Amazon ECR. We also update the documentation frequently to address the feedback that you send

us.

Change Description Date
ECR managed signing Amazon ECR now supports managed container 21

image signing to enhance your security posture November

and eliminate the operational overhead of setting 2025

up signing. Container image signing allows you to

verify that images are from trusted sources. For more

information, see Managed signing.
IPv6 support for AWS Added support for dual-stack (IPv4 and IPv6) 21
PrivateLink (VPC connectivity for Amazon ECR VPC endpoints powered November
endpoints) by AWS PrivateLink. You can now create dual-stack 2025

VPC endpoints that handle traffic over both IPv4 and

IPv6 private IP addresses. For more information, see

Amazon ECR interface VPC endpoints (AWS PrivateLi

nk).
ECR Archive feature Amazon ECR has added support for archiving images 19

for long-term retention. For more information, see November

Archiving an image in Amazon ECR. 2025
Updated to include Amazon ECR has updated updated image tagging 23 July
support for image tag abilities to include image tag immutability exclusion 2025

immutability exclusion
patterns

patterns while creating and updating repositories.
You can now to specify tags that can be updated
even when tag immutability is enabled on a repositor
y by defining wildcard patterns (such as, latest",
v*.beta, dev-*)to exclude specific tags from

immutability rules while maintaining immutability for

all other tags. For more information, see Creating an
Amazon ECR private repository to store images.

API Version 2015-09-21 417

CloudTrail events now
pointto ecr.amazo
naws.com

IP Address (sourceIPAddress) fields for CloudTrai
| events associated with Docker/OCI Client endpoints
. For examples, see Example: Image pull action and

Example: Image push action.

Amazon ECR User Guide
Change Description Date
Updated Enhanced Amazon ECR has updated updated Enhanced Image 16 June
Image Scanning to Scanning abilities to include visibility into how 2025
provide image usage images are used on Amazon EKS and Amazon ECS.
insights For more information, see Scan images for OS and

programming language package vulnerabilities in
Amazon ECR.

IPv6 support Added support for making requests to Amazon ECR 30 April
registries using both IPv4-only and dual-stack (IPv4 2025
and IPv6) endpoints. For more information, see
Making requests to Amazon ECR registries.

Added Amazon ECR Amazon ECR added support for creating pull through 12 March

private registry support cache rules for the Amazon ECR private registry. For 2025

to pull through cache more information, see Sync an upstream registry with
an Amazon ECR private registry and Amazon ECR
service-linked role for pull through cache.

Added support for Amazon ECR added support for configuring registry 23

setting registry policy policy scope for your private registry. For more December

scope information, see Private registry permissions in 2024
Amazon ECR and Amazon ECR private registry.

AmazonEC2Container Amazon ECR added a new policy that grants pull-only 10

RegistryPullOnly — New permissions to Amazon ECR. October

policy 2024

Docker/OCI Client-pr The value ecr.amazonaws.com replaces AWS 1 July

oxied operations in Internal in User Agent (userAgent)and Source 2024

API Version 2015-09-21 418

https://docs.aws.eu//AmazonECR/latest/userguide/image-scanning-enhanced.html
https://docs.aws.eu//AmazonECR/latest/userguide/image-scanning-enhanced.html
https://docs.aws.eu//AmazonECR/latest/userguide/image-scanning-enhanced.html
https://docs.aws.eu/AmazonECR/latest/userguide/registry-permissions.html
https://docs.aws.eu/AmazonECR/latest/userguide/registry-permissions.html
https://docs.aws.eu/AmazonECR/latest/userguide/Registries.html#registry-permissions-account-settings

Amazon ECR User Guide
Change Description Date
Added description Amazon ECR uses a service-linked role named 20 June
of new Amazon ECR AWSServiceRoleForECRTemplate which gives 2024
service-linked role for permission for Amazon ECR to perform actions on
repository creation your behalf to complete repository creation template
templates. actions. For more information, see Amazon ECR

service-linked role for repository creation templates.
Added the ECRTempla Added the ECRTemplateServiceRolePolic 20 June
teService y service-linked role. For more information, see 2024
RolePolicy service-l ECRTemplateServiceRolePolicy
inked role.
Added cross-Region and Amazon ECR added support to China Region for 15 May
cross-account replication filtering which repositories are replicated. For more 2024
to China Regions. information, see Private image replication in Amazon

ECR
Added GitLab container Amazon ECR added support for creating pull through 8 May
registry to pull through cache rules for the GitLab container registry. For more 2024
cache rules information, see Sync an upstream registry with an

Amazon ECR private registry.
Amazon ECR lifecycle Amazon ECR added support for wildcards in a 18
policy update to add lifecycle policy through the use of the tagPatter December
support for using nList parameterin a lifecycle policy rule. For more 2023
wildcards information, see Automate the cleanup of images by

using lifecycle policies in Amazon ECR.
Amazon ECR repository Amazon ECR added support for repository creation 15
creation templates templates. For more information, see Templates to November

control repositories created during a pull through 2023

cache, create on push, or replication action.

API Version 2015-09-21 419

Amazon ECR User Guide
Change Description Date
Amazon ECR pull Amazon ECR added support for using upstream 15
through cache added registries that require authentication for your pull November
supported for authentic through cache rules. For more information, see Sync 2023
ated upstream registries an upstream registry with an Amazon ECR private

registry.
AWSECRPullThroughC Amazon ECR added new permissions to the November
ache_ServiceRolePolicy AWSECRPullThroughCache_ServiceRolePo 15, 2023
- Update to an existing licy policy. These permissions allow Amazon
policy ECR to retrieve the encrypted contents of a Secrets

Manager secret. This is required when using a

pull through cache rule to cache images from an

upstream registry that requires authentication.
Amazon ECR image Amazon ECR and AWS Signer added support for 6 June
signing creating and pushing container image signatures 2023

using the Notary client. For more information, see

Sign images in Amazon ECR.
Added Kubernetes Amazon ECR added support for creating pull through 1 June
container registry to pull cache rules for the Kubernetes container registry. For 2023
through cache rules more information, see Sync an upstream registry with

an Amazon ECR private registry.
Amazon ECR enhanced Amazon Inspector added support for setting the 28 June
scanning duration duration that your repositories are monitored for 2022
support when enhanced scanning is enabled. For more

information, see Changing the enhanced scanning

duration for images in Amazon Inspector.
Amazon ECR sends Amazon ECR sends repository pull count metrics 6 January
repository pull count to Amazon CloudWatch. For more information, see 2022

metrics to Amazon
CloudWatch

Amazon ECR repository metrics.

API Version 2015-09-21 420

Amazon ECR User Guide
Change Description Date
Expanded replication Amazon ECR added support for filtering which 21
support repositories are replicated. For more information, see September

Private image replication in Amazon ECR. 2021

AWS managed policies Amazon ECR added documentation of AWS managed 24 June

for Amazon ECR policies. For more information, see AWS managed 2021
policies for Amazon Elastic Container Registry.

Cross-Region and cross- Amazon ECR added support for configuring replicati 8

account replication on settings for your private registry. For more December
information, see Private registry settings in Amazon 2020
ECR.

OCl artifact support Amazon ECR added support for pushing and pulling 24 August
Open Container Initiative (OCI) artifacts. A new 2020
parameter artifactMediaType was added to the
DescribeImages APIresponse to indicate the type
of artifact.

For more information, see Pushing a Helm chart to an
Amazon ECR private repository.

Encryption at rest Amazon ECR added support for configuring encryptio 29 July
n for your repositories using server-side encryptio 2020
n with customer managed keys stored in AWS Key
Management Service (AWS KMS).

For more information, see Encryption at rest.
Multi-architecture Amazon ECR added support for creating and pushing 28 April
images Docker manifest lists which are used for multi-arc 2020

hitecture images.

For more information, see Pushing a multi-arc

hitecture image to an Amazon ECR private repository.

API Version 2015-09-21 421

Amazon ECR User Guide

Change Description Date
Amazon ECR Usage Amazon ECR added CloudWatch usage metrics which 28 Feb
Metrics provides visibility into your account's resource usage. 2020

You also have the ability to create CloudWatch alarms
from both the CloudWatch and Service Quotas
consoles to get alerts when your usage approaches
your applied service quota.

For more information, see Amazon ECR usage

metrics.
Updated Amazon ECR Updated the Amazon ECR service quotas to include 19 Feb
service quotas per-API quotas. 2020

For more information, see Amazon ECR service

quotas.
Added get-login- Added support for get-login-password, which 4 Feb 2020
password command provides a simple and secure method for retrieving an

authorization token.

For more information, see Using an authorization

token.

Image Scanning Added support for image scanning, which helps in 24 Oct
identifying software vulnerabilities in your container 2019
images. Amazon ECR uses the Common Vulnerabi
lities and Exposures (CVEs) database from the open
source CoreQS Clair project and provides you with a
list of scan findings.

For more information, see Scan images for software

vulnerabilities in Amazon ECR.

API Version 2015-09-21 422

Amazon ECR User Guide
Change Description Date
VPC Endpoint Policy Added support for setting an IAM policy on the 26 Sept

Amazon ECR interface VPC endpoints. 2019
For more information, see Create an endpoint policy
for your Amazon ECR VPC endpoints.

Image Tag Mutability Added support for configuring a repository to 25 July
be immutable to prevent image tags from being 2019
overwritten.

For more information, see Preventing image tags
from being overwritten in Amazon ECR.

Interface VPC Endpoints Added support for configuring interface VPC 25 Jan

(AWS PrivateLink) endpoints powered by AWS PrivateLink. This allows 2019
you to create a private connection between your VPC
and Amazon ECR without requiring access over the
internet, through a NAT instance, a VPN connection,
or Direct Connect.

For more information, see Amazon ECR interface VPC
endpoints (AWS PrivateLink).

Resource tagging Amazon ECR added support for adding metadata tags 18 Dec
to your repositories. 2018
For more information, see Tagging a private repositor
y in Amazon ECR.

Amazon ECR Name Amazon Elastic Container Registry is renamed 21 Nov

Change (previously Amazon EC2 Container Registry). 2017

Lifecycle Policies Amazon ECR lifecycle policies enable you to specify 11 Oct
the lifecycle management of images in a repository. 2017

For more information, see Automate the cleanup of

images by using lifecycle policies in Amazon ECR.

API Version 2015-09-21 423

Amazon ECR User Guide

Change Description Date

Amazon ECR support for Amazon ECR now supports Docker Image Manifest V2 27 Jan
Docker image manifest 2, Schema 2 (used with Docker version 1.10 and newer). 2017

schema 2

For more information, see Container image manifest

format support in Amazon ECR.
Amazon ECR General Amazon Elastic Container Registry (Amazon ECR) is a 21 Dec
Availability managed AWS Docker registry service that is secure, 2015

scalable, and reliable.

API Version 2015-09-21 424

	Amazon ECR
	Table of Contents
	What is Amazon Elastic Container Registry?
	Concepts and components of Amazon ECR
	Common use cases in Amazon ECR
	Features of Amazon ECR
	How to get started with Amazon ECR
	Pricing for Amazon ECR

	Moving an image through its lifecycle in Amazon ECR
	Prerequisites
	Install the AWS CLI
	Install Docker

	Step 1: Create a Docker image
	Step 2: Create a repository
	Step 3: Authenticate to your default registry
	Step 4: Push an image to Amazon ECR
	Step 5: Pull an image from Amazon ECR
	Step 6: Delete an image
	Step 7: Delete a repository

	Optimizing performance for Amazon ECR
	Making requests to Amazon ECR registries
	Getting started with making requests over IPv6
	Testing IP address compatibility
	Making requests over IPv6 by using dual-stack endpoints
	Using Amazon ECR endpoints from the docker CLI
	Using IPv6 addresses in IAM policies

	Amazon ECR private registry
	Private registry concepts
	Private registry authentication in Amazon ECR
	Using the Amazon ECR credential helper
	Using an authorization token
	Using HTTP API authentication

	Private registry settings in Amazon ECR
	Private registry permissions in Amazon ECR
	Private registry policy examples for Amazon ECR
	Example: Allow all IAM principals in a source account to replicate all repositories
	Example: Allow IAM principals from multiple accounts
	Example: Allow all IAM principals in a source account to replicate all repositories with prefix prod-.

	Switching to the extended registry policy scope
	Granting registry permissions for cross account replication in Amazon ECR
	To configure a permissions policy for replication (AWS Management Console)
	To configure a permissions policy for replication (AWS CLI)

	Granting registry permissions for pull through cache in Amazon ECR

	Amazon ECR private repositories
	Private repository concepts
	Creating an Amazon ECR private repository to store images
	Next steps

	Viewing the contents and details of a private repository in Amazon ECR
	Deleting a private repository in Amazon ECR
	Private repository policies in Amazon ECR
	Repository policies vs IAM policies
	Private repository policy examples in Amazon ECR
	Example: Allow one or more users
	Example: Allow another account
	Example: Deny all
	Example: Restricting access to specific IP addresses
	Example: Allow an AWS service

	Setting a private repository policy statement in Amazon ECR

	Tagging a private repository in Amazon ECR
	Tag basics
	Tagging your resources for billing
	Adding tags to a private repository in Amazon ECR
	Adding tags to a repository (AWS Management Console)
	Adding tags to a repository (AWS CLI or API)

	Deleting tags from a private repository in Amazon ECR
	To delete a tag from a private repository (AWS Management Console)
	To delete a tag from a private repository (AWS CLI)

	Private images in Amazon ECR
	Pushing an image to an Amazon ECR private repository
	IAM permissions for pushing an image to an Amazon ECR private repository
	Pushing a Docker image to an Amazon ECR private repository
	Pushing a multi-architecture image to an Amazon ECR private repository
	Pushing a Helm chart to an Amazon ECR private repository

	Deleting signatures and other artifacts from an Amazon ECR private repository
	Viewing image details in Amazon ECR
	Pulling an image to your local environment from an Amazon ECR private repository
	Pulling the Amazon Linux container image
	Deleting an image in Amazon ECR
	Archiving an image in Amazon ECR
	What is the ECR archival storage class?
	Archiving an image
	Restoring an image

	Retagging an image in Amazon ECR
	To retag an image (AWS CLI)
	To retag an image (AWS Tools for Windows PowerShell)

	Preventing image tags from being overwritten in Amazon ECR
	Setting image tag mutability (AWS Management Console)
	Setting image tag mutability (AWS CLI)

	Container image manifest format support in Amazon ECR
	Amazon ECR image manifest conversion

	Using Amazon ECR images with Amazon ECS
	Required IAM permissions
	Specifying an Amazon ECR image in an Amazon ECS task definition

	Using Amazon ECR Images with Amazon EKS
	Required IAM permissions
	Installing a Helm chart on an Amazon EKS cluster

	Sign images in Amazon ECR
	Choose a signing method
	Considerations
	Managed signing
	Prerequisites
	Getting started
	Considerations

	Signature verification
	Managed verification with Amazon EKS
	Lambda admission controller for Amazon ECS
	Manual verification with Notation CLI
	Configure authentication for the Notation client

	Manual signing
	Prerequisites

	Scan images for software vulnerabilities in Amazon ECR
	Filters to choose which repositories are scanned in Amazon ECR
	Filter wildcards

	Scan images for OS and programming language package vulnerabilities in Amazon ECR
	Considerations for enhanced scanning
	Changing the enhanced scanning duration for images in Amazon Inspector
	IAM permissions required for enhanced scanning in Amazon ECR
	Configuring enhanced scanning for images in Amazon ECR
	EventBridge events sent for enhanced scanning in Amazon ECR
	Retrieving the findings for enhanced scans in Amazon ECR

	Scan images for OS vulnerabilities in Amazon ECR
	Clair Deprecation
	Operating system support for basic scanning and improved basic scanning
	Configuring basic scanning for images in Amazon ECR
	Switching to the improved basic scanning for images in Amazon ECR
	Manually scanning an image for OS vulnerabilities in Amazon ECR
	Retrieving the findings for basic scans in Amazon ECR

	Troubleshooting image scanning in Amazon ECR
	Understanding scan status SCAN_ELIGIBILITY_EXPIRED

	Sync an upstream registry with an Amazon ECR private registry
	Repository creation templates
	Considerations for using pull through cache rules
	IAM permissions required to sync an upstream registry with an Amazon ECR private registry
	Using registry permissions
	To create a private registry permissions policy (AWS Management Console)
	To create a private registry permissions policy (AWS CLI)

	Next steps

	Setting up permissions for cross-account ECR to ECR PTC
	IAM policies required for cross-account ECR to ECR pull through cache
	Creating an IAM role to define the pull through cache permissions
	Creating a Trust policy for the IAM role
	Creating a resource policy in the upstream Amazon ECR registry

	Creating a pull through cache rule in Amazon ECR
	Prerequisites
	To create a pull through cache rule (AWS Management Console)
	For Amazon ECR Public, Kubernetes container registry, or Quay
	For Docker Hub
	For GitHub Container Registry
	For Microsoft Azure Container Registry
	For GitLab Container Registry
	For Amazon ECR private registry within your AWS account
	For Amazon ECR private registry from another AWS account

	To create a pull through cache rule (AWS CLI)
	For Amazon ECR Public
	For Kubernetes Container Registry
	For Quay
	For Docker Hub
	For GitHub Container Registry
	For Microsoft Azure Container Registry
	For GitLab Container Registry
	For Amazon ECR private registry within your AWS account
	For Amazon ECR private registry from another AWS account

	Next steps

	Validating pull through cache rules in Amazon ECR
	To validate a pull through cache rule (AWS Management Console)
	To validate a pull through cache rule (AWS CLI)

	Pulling an image with a pull through cache rule in Amazon ECR
	For Amazon ECR Public
	Kubernetes container registry
	Quay
	Docker Hub
	GitHub Container Registry
	Microsoft Azure Container Registry
	GitLab Container Registry

	Storing your upstream repository credentials in an AWS Secrets Manager secret
	Customizing repository prefixes for ECR to ECR pull through cache
	Troubleshooting pull through cache issues in Amazon ECR

	Private image replication in Amazon ECR
	Cross-account replication policy requirements
	Policy configuration overview
	Destination registry policy requirements
	Source account requirements
	Common misconceptions
	Troubleshooting replication failures

	Considerations for private image replication
	Private image replication examples for Amazon ECR
	Example: Configuring cross-Region replication to a single destination Region
	Example: Configuring cross-Region replication using a repository filter
	Example: Configuring cross-Region replication to multiple destination Regions
	Example: Configuring cross-account replication
	Example: Specifying multiple rules in a configuration
	Example: Removing all replication settings

	Configuring private image replication in Amazon ECR
	To configure registry replication settings (AWS Management Console)
	To configure registry replication settings (AWS CLI)

	Removing private image replication settings in Amazon ECR
	To remove registry replication settings (AWS Management Console)
	To remove registry replication settings (AWS CLI)

	Templates to control repositories created during a pull through cache, create on push, or replication action
	How repository creation templates work
	Creating a repository creation template in Amazon ECR
	IAM permissions for creating repository creation templates
	Create a custom policy for repository creation templates
	Create an IAM role for repository creation templates
	Create a repository creation template

	Updating a repository creation template
	Deleting a repository creation template in Amazon ECR

	Automate the cleanup of images by using lifecycle policies in Amazon ECR
	How lifecycle policies work
	Lifecycle policy evaluation rules

	Creating a lifecycle policy preview in Amazon ECR
	Creating a lifecycle policy for a repository in Amazon ECR
	Prerequisite
	To create a lifecycle policy (AWS Management Console)
	To create a lifecycle policy (AWS CLI)

	Examples of lifecycle policies in Amazon ECR
	Lifecycle policy template
	Filtering on image age
	Filtering on image count
	Filtering on multiple rules
	Example A
	Example B

	Filtering on multiple tags in a single rule
	Example A
	Example B

	Filtering on all images
	Example A
	Example B

	Archive examples
	Archiving images older than a specified number of days
	Archiving images not pulled in a specified number of days
	Combining archive and delete rules

	Lifecycle policy properties in Amazon ECR
	Rule priority
	Description
	Tag status
	Tag pattern list
	Tag prefix list
	Storage class
	Count type
	Count unit
	Count number
	Action

	Pull-time update exclusions
	Managing pull-time update exclusions
	Considerations for pull-time update exclusions

	Security in Amazon Elastic Container Registry
	Identity and Access Management for Amazon Elastic Container Registry
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Other policy types
	Multiple policy types

	How Amazon Elastic Container Registry works with IAM
	Amazon ECR Identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	Amazon ECR resource-based policies
	Examples

	Authorization based on Amazon ECR tags
	Amazon ECR IAM roles
	Using Temporary Credentials with Amazon ECR
	Service-linked roles

	Amazon Elastic Container Registry Identity-based policy examples
	Policy Best Practices
	Using the Amazon ECR console
	Allow Users to View Their Own Permissions
	Accessing One Amazon ECR Repository

	Using Tag-Based Access Control
	AWS managed policies for Amazon Elastic Container Registry
	AmazonEC2ContainerRegistryFullAccess
	AmazonEC2ContainerRegistryPowerUser
	AmazonEC2ContainerRegistryPullOnly
	AmazonEC2ContainerRegistryReadOnly
	AWSECRPullThroughCache_ServiceRolePolicy
	ECRReplicationServiceRolePolicy
	ECRTemplateServiceRolePolicy
	Amazon ECR updates to AWS managed policies

	Using service-linked roles for Amazon ECR
	Supported Regions for Amazon ECR service-linked roles
	Amazon ECR service-linked role for replication
	Service-linked role permissions for Amazon ECR
	Creating a service-linked role for Amazon ECR
	Editing a service-linked role for Amazon ECR
	Deleting the service-linked role for Amazon ECR

	Amazon ECR service-linked role for pull through cache
	Service-linked role permissions for Amazon ECR
	Creating a service-linked role for Amazon ECR
	Editing a service-linked role for Amazon ECR
	Deleting the service-linked role for Amazon ECR

	Amazon ECR service-linked role for repository creation templates
	Service-linked role permissions for Amazon ECR
	Creating a service-linked role for Amazon ECR
	Editing a service-linked role for Amazon ECR
	Deleting the service-linked role for Amazon ECR

	Troubleshooting Amazon Elastic Container Registry Identity and Access
	I Am Not Authorized to Perform an Action in Amazon ECR
	I Am Not Authorized to Perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon ECR resources

	Data protection in Amazon ECR
	Encryption at rest
	Considerations
	Required IAM permissions
	Required IAM permissions when using the AWS managed key for Amazon ECR
	Required IAM permissions when using a customer managed key
	Allow a user to list KMS keys in the console when creating a repository

	Monitoring Amazon ECR interaction with AWS KMS
	Amazon ECR encryption context

	Troubleshooting

	Compliance validation for Amazon Elastic Container Registry
	Infrastructure Security in Amazon Elastic Container Registry
	Amazon ECR interface VPC endpoints (AWS PrivateLink)
	Considerations for Amazon ECR VPC endpoints
	Considerations for Windows images

	Create the VPC endpoints for Amazon ECR
	Create the Amazon S3 gateway endpoint
	Minimum Amazon S3 Bucket Permissions for Amazon ECR
	Example

	Create the CloudWatch Logs endpoint
	Create an endpoint policy for your Amazon ECR VPC endpoints
	Shared subnets

	Cross-service confused deputy prevention

	Amazon ECR monitoring
	Visualizing your service quotas and setting alarms
	Amazon ECR usage metrics
	Amazon ECR usage reports
	Amazon ECR repository metrics
	Enabling CloudWatch metrics
	Available metrics and dimensions
	Amazon ECR metrics
	Dimensions for Amazon ECR metrics

	Viewing Amazon ECR metrics using the CloudWatch console

	Amazon ECR events and EventBridge
	Sample events from Amazon ECR

	Logging Amazon ECR actions with AWS CloudTrail
	Amazon ECR information in CloudTrail
	Understanding Amazon ECR log file entries
	CloudTrail log entry examples
	Example: Create repository action
	Example: AWS KMSCreateGrant API action when creating an Amazon ECR repository
	Example: Image push action
	Example: Image pull action
	Example: Image lifecycle policy action
	Example: Image archival action
	Example: Image restore action
	Example: Image referrers action

	Using Amazon ECR with an AWS SDK
	Code examples for Amazon ECR using AWS SDKs
	Basic examples for Amazon ECR using AWS SDKs
	Hello Amazon ECR
	Learn the basics of Amazon ECR with an AWS SDK
	Actions for Amazon ECR using AWS SDKs
	Use CreateRepository with an AWS SDK or CLI
	Use DeleteRepository with an AWS SDK or CLI
	Use DescribeImages with an AWS SDK or CLI
	Use DescribeRepositories with an AWS SDK or CLI
	Use GetAuthorizationToken with an AWS SDK or CLI
	Use GetRepositoryPolicy with an AWS SDK or CLI
	Use ListImages with an AWS SDK or CLI
	Use PushImageCmd with an AWS SDK
	Use PutLifeCyclePolicy with an AWS SDK or CLI
	Use SetRepositoryPolicy with an AWS SDK or CLI
	Use StartLifecyclePolicyPreview with an AWS SDK or CLI

	Amazon ECR service quotas
	Amazon ECR troubleshooting
	Troubleshooting Docker commands and issues when using Amazon ECR
	Docker logs do not contain expected error messages
	Error: "Filesystem Verification Failed" or "404: Image Not Found" when pulling an image from an Amazon ECR repository
	Error: "Filesystem Layer Verification Failed" when pulling images from Amazon ECR
	HTTP 403 Errors or "no basic auth credentials" error when pushing to repository

	Troubleshooting Amazon ECR error messages
	HTTP 429: Too Many Requests or ThrottleException
	HTTP 403: "User [arn] is not authorized to perform [operation]"
	HTTP 404: "Repository Does Not Exist" error
	Error: Cannot perform an interactive login from a non TTY device

	Using Podman with Amazon ECR
	Using Podman to authenticate with Amazon ECR
	Using the Amazon ECR credential helper with Podman
	Pulling images from Amazon ECR with Podman
	Running containers for Amazon ECR with Podman
	Pushing images to Amazon ECR with Podman

	Document history

