
Developer Guide

AWS Flow Framework for Java

API Version 2021-04-28

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Flow Framework for Java Developer Guide

AWS Flow Framework for Java: Developer Guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Flow Framework for Java Developer Guide

Table of Contents

What is the AWS Flow Framework for Java? ... 1
What's in this Guide? ... 1

Getting Started .. 3
Setting up the Framework ... 3

Add the flow framework with Maven ... 4
HelloWorld Application ... 4

HelloWorld Activities Implementation .. 5
HelloWorld Workflow Worker ... 6
HelloWorld Workflow Starter ... 7

HelloWorldWorkflow Application .. 7
HelloWorldWorkflow Activities Worker .. 10
HelloWorldWorkflow Workflow Worker ... 12
HelloWorldWorkflow Workflow and Activities Implementation ... 16
HelloWorldWorkflow Starter .. 20

HelloWorldWorkflowAsync Application ... 25
HelloWorldWorkflowAsync Activities Implementation ... 26
HelloWorldWorkflowAsync Workflow Implementation .. 27
HelloWorldWorkflowAsync Workflow and Activities Host and Starter 29

HelloWorldWorkflowDistributed Application ... 30
HelloWorldWorkflowParallel Application .. 33

HelloWorldWorkflowParallel Activities Worker .. 33
HelloWorldWorkflowParallel Workflow Worker ... 35
HelloWorldWorkflowParallel Workflow and Activities Host and Starter 36

Understanding AWS Flow Framework .. 37
Application Structure .. 37

Role of the Activity Worker .. 39
Role of the Workflow Worker .. 39
Role of the Workflow Starter ... 40
How Amazon SWF Interacts with Your Application ... 40
For More Information .. 40

Reliable Execution .. 41
Providing Reliable Communication ... 41
Ensuring that Results are Not Lost ... 42
Handling Failed Distributed Components .. 42

API Version 2021-04-28 iii

AWS Flow Framework for Java Developer Guide

Distributed Execution .. 43
Replaying Workflows .. 43
Replay and Asynchronous Workflow Methods ... 44
Replay and Workflow Implementation .. 45

Task Lists and Task Execution ... 45
Scalable Applications ... 47
Data Exchange Between Activities and Workflows ... 48

The Promise<T> Type .. 48
Data Converters and Marshaling ... 50

Data Exchange Between Applications and Workflow Executions ... 50
Timeout Types .. 51

Timeouts in Workflow and Decision Tasks .. 51
Timeouts in Activity Tasks .. 52

Understanding Tasks ... 55
Task ... 55
Order of Execution ... 56
Workflow Execution ... 57
Nondeterminism ... 60

Programming Guide .. 61
Implementing Workflow Applications ... 61
Workflow and Activity Contracts .. 63
Workflow and Activity Type Registration .. 66

Workflow Type Name and Version .. 67
Signal Name ... 67
Activity Type Name and Version ... 67
Default Task List ... 67
Other Registration Options .. 68

Activity and Workflow Clients ... 68
Workflow Clients ... 69
Activity Clients ... 77
Scheduling Options .. 81
Dynamic Clients ... 82

Workflow Implementation ... 84
Decision Context ... 85
Exposing Execution State .. 85
Workflow Locals .. 87

API Version 2021-04-28 iv

AWS Flow Framework for Java Developer Guide

Activity Implementation ... 89
Manually Completing Activities ... 89

Implementing Lambda Tasks ... 91
About AWS Lambda ... 91
Benefits and limitations of using Lambda tasks .. 92
Using Lambda tasks in your AWS Flow Framework for Java workflows 92
View the HelloLambda sample .. 97

Running Programs Written with the AWS Flow Framework for Java .. 97
WorkflowWorker .. 98
ActivityWorker ... 99
Worker Threading Model ... 99
Worker Extensibility ... 102

Execution Context .. 102
Decision Context ... 103
Activity Execution Context ... 105

Child Workflow Executions .. 106
Continuous Workflows .. 108
Setting task priority .. 110

Setting Task Priority for Workflows ... 110
Setting Task Priority for Activities .. 111

DataConverters ... 112
Passing Data to Asynchronous Methods ... 112

Passing Collections and Maps to Asynchronous Methods ... 113
Settable<T> .. 114
@NoWait ... 115
Promise<Void> .. 115
AndPromise and OrPromise ... 116

Testability and Dependency Injection ... 116
Spring Integration .. 116
JUnit Integration ... 123

Error Handling .. 129
TryCatchFinally Semantics .. 131
Cancellation ... 132
Nested TryCatchFinally .. 136

Retry Failed Activities ... 138
Retry-Until-Success Strategy .. 138

API Version 2021-04-28 v

AWS Flow Framework for Java Developer Guide

Exponential Retry Strategy .. 141
Custom Retry Strategy .. 148

Daemon Tasks ... 150
Replay Behavior .. 152

Example 1: Synchronous Replay ... 152
Example 2: Asynchronous Replay ... 154
See Also .. 155

Best Practices ... 156
Making Changes to Decider Code .. 156

The Replay Process and Code Changes ... 156
Example Scenario ... 157
Solutions ... 164

Troubleshooting ... 169
Compilation errors ... 169
Unknown resource fault ... 169
Exceptions when calling get() on a Promise .. 170
Nondeterministic workflows .. 170
Problems due to versioning .. 171
Troubleshooting and debugging a workflow execution .. 171
Lost tasks ... 172
Validation failure due to API parameter length constraints ... 173

Reference .. 174
Annotations ... 174

@Activities .. 174
@Activity .. 175
@ActivityRegistrationOptions .. 175
@Asynchronous ... 176
@Execute .. 177
@ExponentialRetry ... 177
@GetState .. 178
@ManualActivityCompletion .. 178
@Signal ... 179
@SkipRegistration .. 179
@Wait and @NoWait ... 179
@Workflow .. 179
@WorkflowRegistrationOptions .. 180

API Version 2021-04-28 vi

AWS Flow Framework for Java Developer Guide

Exceptions .. 182
ActivityFailureException .. 182
ActivityTaskException .. 183
ActivityTaskFailedException .. 183
ActivityTaskTimedOutException .. 183
ChildWorkflowException ... 183
ChildWorkflowFailedException ... 183
ChildWorkflowTerminatedException ... 184
ChildWorkflowTimedOutException ... 184
DataConverterException .. 184
DecisionException ... 184
ScheduleActivityTaskFailedException ... 184
SignalExternalWorkflowException .. 184
StartChildWorkflowFailedException .. 185
StartTimerFailedException .. 185
TimerException .. 185
WorkflowException ... 185

Packages .. 185
Document History .. 187

API Version 2021-04-28 vii

AWS Flow Framework for Java Developer Guide

What is the AWS Flow Framework for Java?

With the AWS Flow Framework, you can focus on implementing your workflow logic. Behind the
scenes, the framework uses the scheduling, routing, and state management capabilities of Amazon
SWF to manage your workflow's execution and make it scalable, reliable, and auditable. AWS
Flow Framework-based workflows are highly concurrent. The workflows can be distributed across
multiple components, which can run as separate processes on separate computers and be scaled
independently. The application can continue to progress if any of its components are running,
making it highly fault tolerant.

What's in this Guide?

This guide has information about how to install, set up, and use the AWS Flow Framework to build
Amazon SWF applications.

Getting Started with the AWS Flow Framework for Java

If you are just starting out with the AWS Flow Framework for Java, read the Getting Started
with the AWS Flow Framework for Java section. It will guide you through downloading and
installing the AWS Flow Framework for Java, how to set up your development environment, and
lead you through a simple example of creating a workflow.

Understanding AWS Flow Framework for Java

Introduces basic Amazon SWF and AWS Flow Framework concepts, describing the basic
structure of a AWS Flow Framework application and how data is exchanged between parts of a
distributed workflow.

AWS Flow Framework for Java Programming Guide

This chapter provides basic programming guidance for developing workflow applications with
the AWS Flow Framework for Java, including how to register activity and workflow types,
implement workflow clients, create child workflows, handle errors, and more.

Understanding a Task in AWS Flow Framework for Java

This chapter provides a more in-depth look at the way the AWS Flow Framework for Java
works, providing you with additional information about the order of execution of asynchronous
workflows and a logical step-through of a standard workflow execution.

What's in this Guide? API Version 2021-04-28 1

AWS Flow Framework for Java Developer Guide

Troubleshooting and debugging tips for AWS Flow Framework for Java

This chapter provides information about common errors that you can use to troubleshoot your
workflows, or that you can use to learn to avoid common errors.

AWS Flow Framework for Java Reference

This chapter is a reference to the Annotations, Exceptions and Packages that the AWS Flow
Framework for Java adds to the SDK for Java.

What's in this Guide? API Version 2021-04-28 2

AWS Flow Framework for Java Developer Guide

Getting Started with the AWS Flow Framework for Java

This section introduces the AWS Flow Framework by walking you through a series of simple
example applications that introduce the basic programming model and API. The example
applications are based on the standard Hello World application that is used to introduce C and
related programming languages. Here is a typical Java implementation of Hello World:

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

The following is a brief description of the example applications. They include complete source code
so you can implement and run the applications yourself. Before starting, you should first configure
your development environment and create an AWS Flow Framework for Java project, like in Setting
up the AWS Flow Framework for Java.

• HelloWorld Application introduces workflow applications by implementing Hello World as a
standard Java application, but structuring it like a workflow application.

• HelloWorldWorkflow Application uses the AWS Flow Framework for Java to convert HelloWorld
into an Amazon SWF workflow.

• HelloWorldWorkflowAsync Application modifies HelloWorldWorkflow to use an asynchronous
workflow method.

• HelloWorldWorkflowDistributed Application modifies HelloWorldWorkflowAsync so that the
workflow and activity workers can run on separate systems.

• HelloWorldWorkflowParallel Application modifies HelloWorldWorkflow to run two activities in
parallel.

Setting up the AWS Flow Framework for Java

The AWS Flow Framework for Java is included with the AWS SDK for Java. If you have not already
set up the AWS SDK for Java, visit Getting Started in the AWS SDK for Java Developer Guide for
information about installing and configuring the SDK itself.

Setting up the Framework API Version 2021-04-28 3

https://aws.amazon.com/sdkforjava/
https://docs.aws.eu/sdk-for-java/v1/developer-guide/getting-started.html

AWS Flow Framework for Java Developer Guide

Add the flow framework with Maven

The Amazon SWF build tools are open source—to view or download the code or to build the tools
yourself, visit the repository at https://github.com/aws/aws-swf-build-tools.

Amazon provides Amazon SWF build tools in the Maven Central Repository.

To set up the flow framework for Maven, add the following dependency to your project's pom.xml
file:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-swf-build-tools</artifactId>
 <version>2.0.0</version>
</dependency>

HelloWorld Application

To introduce the way Amazon SWF applications are structured, we'll create a Java application that
behaves like a workflow, but that runs locally in a single process. No connection to Amazon Web
Services will be needed.

Note

The HelloWorldWorkflow example builds upon this one, connecting to Amazon SWF to
handle management of the workflow.

A workflow application consists of three basic components:

• An activities worker supports a set of activities, each of which is a method that executes
independently to perform a particular task.

• A workflow worker orchestrates the activities' execution and manages data flow. It is a
programmatic realization of a workflow topology, which is basically a flow chart that defines
when the various activities execute, whether they execute sequentially or concurrently, and so
on.

• A workflow starter starts a workflow instance, called an execution, and can interact with it during
execution.

Add the flow framework with Maven API Version 2021-04-28 4

https://github.com/aws/aws-swf-build-tools
https://mvnrepository.com/artifact/com.amazonaws/aws-swf-build-tools

AWS Flow Framework for Java Developer Guide

HelloWorld is implemented as three classes and two related interfaces, which are described in the
following sections. Before starting, you should set up your development environment and create a
new AWS Java project as described in Setting up the AWS Flow Framework for Java. The packages
used for the following walkthroughs are all named helloWorld.XYZ. To use those names, set the
within attribute in aop.xml as follows:

...
<weaver options="-verbose">
 <include within="helloWorld..*"/>
</weaver>

To implement HelloWorld, create a new Java package in your AWS SDK project named
helloWorld.HelloWorld and add the following files:

• An interface file named GreeterActivities.java

• A class file named GreeterActivitiesImpl.java, which implements the activities worker.

• An interface file named GreeterWorkflow.java.

• A class file named GreeterWorkflowImpl.java, which implements the workflow worker.

• A class file named GreeterMain.java, which implements the workflow starter.

The details are discussed in the following sections and include the complete code for each
component, which you can add to the appropriate file.

HelloWorld Activities Implementation

HelloWorld breaks the overall task of printing a "Hello World!" greeting to the console into
three tasks, each of which is performed by an activity method. The activity methods are defined in
the GreeterActivities interface, as follows.

public interface GreeterActivities {
 public String getName();
 public String getGreeting(String name);
 public void say(String what);
}

HelloWorld has one activity implementation, GreeterActivitiesImpl, which provides the
GreeterActivities methods as shown:

HelloWorld Activities Implementation API Version 2021-04-28 5

AWS Flow Framework for Java Developer Guide

public class GreeterActivitiesImpl implements GreeterActivities {
 @Override
 public String getName() {
 return "World";
 }

 @Override
 public String getGreeting(String name) {
 return "Hello " + name + "!";
 }

 @Override
 public void say(String what) {
 System.out.println(what);
 }
}

Activities are independent of each other and can often be used by different workflows. For
example, any workflow can use the say activity to print a string to the console. Workflows can also
have multiple activity implementations, each performing a different set of tasks.

HelloWorld Workflow Worker

To print "Hello World!" to the console, the activity tasks must execute in sequence in the correct
order with the correct data. The HelloWorld workflow worker orchestrates the activities' execution
based on a simple linear workflow topology, which is shown in the following figure.

The three activities execute in sequence, and the data flows from one activity to the next.

The HelloWorld workflow worker has a single method, the workflow's entry point, which is defined
in the GreeterWorkflow interface, as follows:

public interface GreeterWorkflow {
 public void greet();
}

The GreeterWorkflowImpl class implements this interface, as follows:

HelloWorld Workflow Worker API Version 2021-04-28 6

AWS Flow Framework for Java Developer Guide

public class GreeterWorkflowImpl implements GreeterWorkflow{
 private GreeterActivities operations = new GreeterActivitiesImpl();

 public void greet() {
 String name = operations.getName();
 String greeting = operations.getGreeting(name);
 operations.say(greeting);
 }
}

The greet method implements HelloWorld topology by creating an instance of
GreeterActivitiesImpl, calling each activity method in the correct order, and passing the
appropriate data to each method.

HelloWorld Workflow Starter

A workflow starter is an application that starts a workflow execution, and might also communicate
with the workflow while it is executing. The GreeterMain class implements the HelloWorld
workflow starter, as follows:

public class GreeterMain {
 public static void main(String[] args) {
 GreeterWorkflow greeter = new GreeterWorkflowImpl();
 greeter.greet();
 }
}

GreeterMain creates an instance of GreeterWorkflowImpl and calls greet to run the
workflow worker. Run GreeterMain as a Java application and you should see "Hello World!" in the
console output.

HelloWorldWorkflow Application

Although the basic HelloWorld example is structured like a workflow, it differs from an Amazon
SWF workflow in several key respects:

HelloWorld Workflow Starter API Version 2021-04-28 7

AWS Flow Framework for Java Developer Guide

Conventional and Amazon SWF Workflow Applications

HelloWorld Amazon SWF Workflow

Runs locally as a single process. Runs as multiple processes that can be distribut
ed across multiple systems, including Amazon EC2
instances, private data centers, client computers, and
so on. They don't even have to run the same operating
system.

Activities are synchronous methods,
which block until they complete.

Activities are represented by asynchronous methods,
which return immediately and allow the workflow to
perform other tasks while waiting for the activity to
complete.

The workflow worker interacts with
an activities worker by calling the
appropriate method.

Workflow workers interact with activities workers by
using HTTP requests, with Amazon SWF acting as an
intermediary.

The workflow starter interacts with
workflow worker by calling the
appropriate method.

Workflow starters interact with workflow workers by
using HTTP requests, with Amazon SWF acting as an
intermediary.

You could implement a distributed asynchronous workflow application from scratch, for example,
by having your workflow worker interact with an activities worker directly through web services
calls. However, you must then implement all the complicated code required to manage the
asynchronous execution of multiple activities, handle the data flow, and so on. The AWS Flow
Framework for Java and Amazon SWF take care of all those details, which allows you to focus on
implementing the business logic.

HelloWorldWorkflow is a modified version of HelloWorld that runs as an Amazon SWF workflow.
The following figure summarizes how the two applications work.

HelloWorldWorkflow Application API Version 2021-04-28 8

AWS Flow Framework for Java Developer Guide

HelloWorld runs as a single process and the starter, workflow worker, and activities worker interact
by using conventional method calls. With HelloWorldWorkflow, the starter, workflow worker,
and activities worker are distributed components that interact through Amazon SWF by using HTTP
requests. Amazon SWF manages the interaction by maintaining lists of workflow and activities
tasks, which it dispatches to the respective components. This section describes how the framework
works for HelloWorldWorkflow.

HelloWorldWorkflow is implemented by using the AWS Flow Framework for Java API, which
handles the sometimes complicated details of interacting with Amazon SWF in the background
and simplifies the development process considerably. You can use the same project that you did for
HelloWorld, which is already configured for AWS Flow Framework for Java applications. However,
to run the application, you must set up an Amazon SWF account, as follows:

• Sign up for an AWS account, if you don't already have one, at Amazon Web Services.

• Assign your account's Access ID and secret ID to the AWS_ACCESS_KEY_ID and AWS_SECRET_KEY
environment variables, respectively. It's a good practice to not expose the literal key values in
your code. Storing them in environment variables is a convenient way to handle the issue.

• Sign up for Amazon SWF account at Amazon Simple Workflow Service.

HelloWorldWorkflow Application API Version 2021-04-28 9

https://aws.eu/
https://aws.amazon.com/swf/

AWS Flow Framework for Java Developer Guide

• Log into the AWS Management Console and select the Amazon SWF service.

• Choose Manage Domains in the upper right corner and register a new Amazon SWF domain. A
domain is a logical container for your application resources, such as workflow and activity types,
and workflow executions. You can use any convenient domain name, but the walkthroughs use
"helloWorldWalkthrough".

To implement the HelloWorldWorkflow, create a copy of the helloWorld.HelloWorld package
in your project directory and name it helloWorld.HelloWorldWorkflow. The following sections
describe how to modify the original HelloWorld code to use the AWS Flow Framework for Java and
run as an Amazon SWF workflow application.

HelloWorldWorkflow Activities Worker

HelloWorld implemented its activities worker as a single class. An AWS Flow Framework for Java
activities worker has three basic components:

• The activity methods—which perform the actual tasks—are defined in an interface and
implemented in a related class.

• An ActivityWorker class manages the interaction between the activity methods and Amazon
SWF.

• An activities host application registers and starts the activities worker, and handles cleanup.

This section discusses the activity methods; the other two classes are discussed later.

HelloWorldWorkflow defines the activities interface in GreeterActivities, as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
@Activities(version="1.0")

public interface GreeterActivities {
 public String getName();
 public String getGreeting(String name);
 public void say(String what);

HelloWorldWorkflow Activities Worker API Version 2021-04-28 10

https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html

AWS Flow Framework for Java Developer Guide

}

This interface wasn't strictly necessary for HelloWorld, but it is for an AWS Flow Framework
for Java application. Notice that the interface definition itself hasn't changed. However, you
must apply two AWS Flow Framework for Java annotations, @ActivityRegistrationOptions and
@Activities, to the interface definition. The annotations provide configuration information and
direct the AWS Flow Framework for Java annotation processor to use the interface definition to
generate an activities client class, which is discussed later.

@ActivityRegistrationOptions has several named values that are used to configure the
activities' behavior. HelloWorldWorkflow specifies two timeouts:

• defaultTaskScheduleToStartTimeoutSeconds specifies how long the tasks can be queued
in the activities task list, and is set to 300 seconds (5 minutes).

• defaultTaskStartToCloseTimeoutSeconds specifies the maximum time the activity can
take to perform the task and is set to 10 seconds.

These timeouts ensure that the activity completes its task in a reasonable amount of time. If either
timeout is exceeded, the framework generates an error and the workflow worker must decide how
to handle the issue. For a discussion of how to handle such errors, see Error Handling.

@Activities has several values, but typically it just specifies the activities' version number,
which allows you to keep track of different generations of activity implementations. If you change
an activity interface after you have registered it with Amazon SWF, including changing the
@ActivityRegistrationOptions values, you must use a new version number.

HelloWorldWorkflow implements the activity methods in GreeterActivitiesImpl, as follows:

public class GreeterActivitiesImpl implements GreeterActivities {
 @Override
 public String getName() {
 return "World";
 }
 @Override
 public String getGreeting(String name) {
 return "Hello " + name;
 }
 @Override
 public void say(String what) {
 System.out.println(what);

HelloWorldWorkflow Activities Worker API Version 2021-04-28 11

AWS Flow Framework for Java Developer Guide

 }
}

Notice that the code is identical to the HelloWorld implementation. At its core, an AWS Flow
Framework activity is just a method that executes some code and perhaps returns a result. The
difference between a standard application and an Amazon SWF workflow application lies in how
the workflow executes the activities, where the activities execute, and how the results are returned
to the workflow worker.

HelloWorldWorkflow Workflow Worker

An Amazon SWF workflow worker has three basic components.

• A workflow implementation, which is a class that performs the workflow-related tasks.

• An activities client class, which is basically a proxy for the activities class and is used by a
workflow implementation to execute activity methods asynchronously.

• A WorkflowWorker class, which manages the interaction between the workflow and Amazon
SWF.

This section discusses the workflow implementation and activities client; the WorkflowWorker
class is discussed later.

HelloWorldWorkflow defines the workflow interface in GreeterWorkflow, as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {
 @Execute(version = "1.0")
 public void greet();
}

This interface also isn't strictly necessary for HelloWorld but is essential for an AWS Flow
Framework for Java application. You must apply two AWS Flow Framework for Java annotations,
@Workflow and @WorkflowRegistrationOptions, to the workflow interface definition. The

HelloWorldWorkflow Workflow Worker API Version 2021-04-28 12

https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework for Java Developer Guide

annotations provide configuration information and also direct the AWS Flow Framework for Java
annotation processor to generate a workflow client class based on the interface, as discussed later.

@Workflow has one optional parameter, dataConverter, which is often used with its default value,
NullDataConverter, which indicates that JsonDataConverter should be used.

@WorkflowRegistrationOptions also has a number of optional
parameters that can be used to configure the workflow worker. Here, we set
defaultExecutionStartToCloseTimeoutSeconds—which specifies how long the workflow
can run—to 3600 seconds (1 hour).

The GreeterWorkflow interface definition differs from HelloWorld in one important way, the
@Execute annotation. Workflow interfaces specify the methods that can be called by applications
such as the workflow starter and are limited to a handful of methods, each with a particular role.
The framework doesn't specify a name or parameter list for workflow interface methods; you use a
name and parameter list that is suitable for your workflow and apply an AWS Flow Framework for
Java annotation to identify the method's role.

@Execute has two purposes:

• It identifies greet as the workflow's entry point—the method that the workflow starter calls to
start the workflow. In general, an entry point can take one or more parameters, which allows the
starter to initialize the workflow, but this example doesn't require initialization.

• It specifies the workflow's version number, which allows you to keep track of different
generations of workflow implementations. To change a workflow interface after you have
registered it with Amazon SWF, including changing the timeout values, you must use a new
version number.

For information about the other methods that can be included in a workflow interface, see
Workflow and Activity Contracts.

HelloWorldWorkflow implements the workflow in GreeterWorkflowImpl, as follows:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 public void greet() {
 Promise<String> name = operations.getName();

HelloWorldWorkflow Workflow Worker API Version 2021-04-28 13

AWS Flow Framework for Java Developer Guide

 Promise<String> greeting = operations.getGreeting(name);
 operations.say(greeting);
 }
}

The code is similar to HelloWorld, but with two important differences.

• GreeterWorkflowImpl creates an instance of GreeterActivitiesClientImpl, the
activities client, instead of GreeterActivitiesImpl, and executes activities by calling
methods on the client object.

• The name and greeting activities return Promise<String> objects instead of String objects.

HelloWorld is a standard Java application that runs locally as a single process, so
GreeterWorkflowImpl can implement the workflow topology by simply creating an instance
of GreeterActivitiesImpl, calling the methods in order, and passing the return values from
one activity to the next. With an Amazon SWF workflow, an activity's task is still performed by an
activity method from GreeterActivitiesImpl. However, the method doesn't necessarily run in
the same process as the workflow—it might not even run on the same system—and the workflow
needs to execute the activity asynchronously. These requirements raise the following issues:

• How to execute an activity method that might be running in a different process, perhaps on a
different system.

• How to execute an activity method asynchronously.

• How to manage activities' input and return values. For example, if the Activity A return value
is an input to Activity B, you must ensure that Activity B doesn't execute until Activity A is
complete.

You can implement a variety of workflow topologies through the application's control flow by
using familiar Java flow control combined with the activities client and the Promise<T>.

Activities Client

GreeterActivitiesClientImpl is basically a proxy for GreeterActivitiesImpl that allows
a workflow implementation to execute the GreeterActivitiesImpl methods asynchronously.

The GreeterActivitiesClient and GreeterActivitiesClientImpl classes are generated
automatically for you using the information provided in the annotations applied to your
GreeterActivities class. You don't need to implement these yourself.

HelloWorldWorkflow Workflow Worker API Version 2021-04-28 14

AWS Flow Framework for Java Developer Guide

Note

Eclipse generates these classes when you save your project. You can view the generated
code in the .apt_generated subdirectory of your project directory.
To avoid compilation errors in your GreeterWorkflowImpl class, it is a good practice to
move the .apt_generated directory to the top of the Order and Export tab of the Java
Build Path dialog box.

A workflow worker executes an activity by calling the corresponding client method. The method is
asynchronous and immediately returns a Promise<T> object, where T is the activity's return type.
The returned Promise<T> object is basically a placeholder for the value that the activity method
will eventually return.

• When the activities client method returns, the Promise<T> object is initially in an unready state,
which indicates that the object doesn't yet represent a valid return value.

• When the corresponding activity method completes its task and returns, the framework assigns
the return value to the Promise<T> object and puts it in the ready state.

Promise<T> Type

The primary purpose of Promise<T> objects is to manage data flow between asynchronous
components and control when they execute. It relieves your application of the need to explicitly
manage synchronization or depend on mechanisms such as timers to ensure that asynchronous
components don't execute prematurely. When you call an activities client method, it immediately
returns but the framework defers executing the corresponding activity method until any input
Promise<T> objects are ready and represent valid data.

From GreeterWorkflowImpl perspective, all three activities client methods return immediately.
From the GreeterActivitiesImpl perspective, the framework doesn't call getGreeting until
name completes, and doesn't call say until getGreeting completes.

By using Promise<T> to pass data from one activity to the next, HelloWorldWorkflow not only
ensures that activity methods don't attempt to use invalid data, it also controls when the activities
execute and implicitly defines the workflow topology. Passing each activity's Promise<T> return
value to the next activity requires the activities to execute in sequence, defining the linear topology
discussed earlier. With AWS Flow Framework for Java, you don't need to use any special modeling

HelloWorldWorkflow Workflow Worker API Version 2021-04-28 15

AWS Flow Framework for Java Developer Guide

code to define even complex topologies, just standard Java flow control and Promise<T>. For
an example of how to implement a simple parallel topology, see HelloWorldWorkflowParallel
Activities Worker.

Note

When an activity method such as say doesn't return a value, the corresponding client
method returns a Promise<Void> object. The object doesn't represent data, but it is
initially unready and becomes ready when the activity completes. You can therefore pass
a Promise<Void> object to other activities client methods to ensure that they defer
execution until the original activity completes.

Promise<T> allows a workflow implementation to use activities client methods and their
return values much like synchronous methods. However, you must be careful about accessing
a Promise<T> object's value. Unlike the Java Future<T> type, the framework handles
synchronization for Promise<T>, not the application. If you call Promise<T>.get and the
object isn't ready, get throws an exception. Notice that HelloWorldWorkflow never accesses a
Promise<T> object directly; it simply passes the objects from one activity to the next. When an
object becomes ready, the framework extracts the value and passes it to the activity method as a
standard type.

Promise<T> objects should be accessed only by asynchronous code, where the framework
guarantees that the object is ready and represents a valid value. HelloWorldWorkflow deals
with this issue by passing Promise<T> objects only to activities client methods. You can access
a Promise<T> object's value in your workflow implementation by passing the object to an
asynchronous workflow method, which behaves much like an activity. For an example, see
HelloWorldWorkflowAsync Application.

HelloWorldWorkflow Workflow and Activities Implementation

The workflow and activities implementations have associated worker classes, ActivityWorker
and WorkflowWorker. They handle communication between Amazon SWF and the activities and
workflow implementations by polling the appropriate Amazon SWF task list for tasks, executing
the appropriate method for each task, and managing the data flow. For details, see AWS Flow
Framework Basic Concepts: Application Structure

HelloWorldWorkflow Workflow and Activities Implementation API Version 2021-04-28 16

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework for Java Developer Guide

To associate the activity and workflow implementations with the corresponding worker objects,
you implement one or more worker applications which:

• Register workflows or activities with Amazon SWF.

• Create worker objects and associate them with the workflow or activity worker implementations.

• Direct the worker objects to start communicating with Amazon SWF.

If you want to run the workflow and activities as separate processes, you must implement separate
workflow and activities worker hosts. For an example, see HelloWorldWorkflowDistributed
Application. For simplicity, HelloWorldWorkflow implements a single worker host that runs
activities and workflow workers in the same process, as follows:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);

HelloWorldWorkflow Workflow and Activities Implementation API Version 2021-04-28 17

AWS Flow Framework for Java Developer Guide

 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

GreeterWorker has no HelloWorld counterpart, so you must add a Java class named
GreeterWorker to the project and copy the example code to that file.

The first step is to create and configure an AmazonSimpleWorkflowClient object, which invokes the
underlying Amazon SWF service methods. To do so, GreeterWorker:

1. Creates a ClientConfiguration object and specifies a socket timeout of 70 seconds. This value
specifies long to wait for data to be transferred over an established open connection before
closing the socket.

2. Creates a BasicAWSCredentials object to identify the AWS account and passes the account keys
to the constructor. For convenience, and to avoid exposing them as plain text in the code, the
keys are stored as environment variables.

3. Creates an AmazonSimpleWorkflowClient object to represent the workflow, and passes the
BasicAWSCredentials and ClientConfiguration objects to the constructor.

4. Sets the client object's service endpoint URL. Amazon SWF is currently available in all AWS
regions.

For convenience, GreeterWorker defines two string constants.

• domain is the workflow's Amazon SWF domain name, which you created when you set up your
Amazon SWF account. HelloWorldWorkflow assumes that you are running the workflow in the
"helloWorldWalkthrough" domain.

• taskListToPoll is the name of the task lists that Amazon SWF uses to manage
communication between the workflow and activities workers. You can set the name to any
convenient string. HelloWorldWorkflow uses "HelloWorldList" for both workflow and activity
task lists. Behind the scenes, the names end up in different namespaces, so the two task lists are
distinct.

GreeterWorker uses the string constants and the AmazonSimpleWorkflowClient object to create
worker objects, which manage the interaction between the activities and worker implementations
and Amazon SWF. In particular, the worker objects handle the task of polling the appropriate task
list for tasks.

HelloWorldWorkflow Workflow and Activities Implementation API Version 2021-04-28 18

https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/BasicAWSCredentials.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework for Java Developer Guide

GreeterWorker creates an ActivityWorker object and configures it to handle
GreeterActivitiesImpl by adding a new class instance. GreeterWorker then calls the
ActivityWorker object's start method, which directs the object to start polling the specified
activities task list.

GreeterWorker creates a WorkflowWorker object and configures it to handle
GreeterWorkflowImpl by adding the class file name, GreeterWorkflowImpl.class. It then
calls the WorkflowWorker object's start method, which directs the object to start polling the
specified workflow task list.

You can run GreeterWorker successfully at this point. It registers the workflow and activities
with Amazon SWF and starts the worker objects polling their respective task lists. To verify this,
run GreeterWorker and go to the Amazon SWF console and select helloWorldWalkthrough
from the list of domains. If you choose Workflow Types in the Navigation pane, you should see
GreeterWorkflow.greet:

HelloWorldWorkflow Workflow and Activities Implementation API Version 2021-04-28 19

AWS Flow Framework for Java Developer Guide

If you choose Activity Types, the GreeterActivities methods are displayed:

However, if you choose Workflow Executions, you will not see any active executions. Although the
workflow and activities workers are polling for tasks, we have not yet started a workflow execution.

HelloWorldWorkflow Starter

The final piece of the puzzle is to implement a workflow starter, which is an application that starts
the workflow execution. The execution state is stored by Amazon SWF, so that you can view its
history and execution status. HelloWorldWorkflow implements a workflow starter by modifying
the GreeterMain class, as follows:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;

HelloWorldWorkflow Starter API Version 2021-04-28 20

AWS Flow Framework for Java Developer Guide

public class GreeterMain {

 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";

 GreeterWorkflowClientExternalFactory factory = new
 GreeterWorkflowClientExternalFactoryImpl(service, domain);
 GreeterWorkflowClientExternal greeter = factory.getClient("someID");
 greeter.greet();
 }
}

GreeterMain creates an AmazonSimpleWorkflowClient object by using the same code
as GreeterWorker. It then creates a GreeterWorkflowClientExternal object, which
acts as a proxy for the workflow in much the same way that the activities client created in
GreeterWorkflowClientImpl acts as a proxy for the activity methods. Rather than create a
workflow client object by using new, you must:

1. Create an external client factory object and pass the AmazonSimpleWorkflowClient object
and Amazon SWF domain name to the constructor. The client factory object is created by
the framework's annotation processor, which creates the object name by simply appending
"ClientExternalFactoryImpl" to the workflow interface name.

2. Create an external client object by calling the factory object's getClient method, which
creates the object name by appending "ClientExternal" to the workflow interface name. You can
optionally pass getClient a string which Amazon SWF will use to identify this instance of the
workflow. Otherwise, Amazon SWF represents a workflow instance by using a generated GUID.

HelloWorldWorkflow Starter API Version 2021-04-28 21

AWS Flow Framework for Java Developer Guide

The client returned from the factory will only create workflows that are named with the string
passed into the getClient method, (the client returned from the factory already has state in
Amazon SWF). To run a workflow with a different id, you need to go back to the factory and create
a new client with the different id specified.

The workflow client exposes a greet method that GreeterMain calls to begin the workflow, as
greet() was the method specified with the @Execute annotation.

Note

The annotation processor also creates an internal client factory object that is used to create
child workflows. For details, see Child Workflow Executions.

Shut down GreeterWorker for the moment if it is still running, and run GreeterMain. You
should now see someID on the Amazon SWF console's list of active workflow executions:.

If you choose someID and choose the Events tab, the events are displayed:

HelloWorldWorkflow Starter API Version 2021-04-28 22

https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowClientFactoryExternal.html#getClient(java.lang.String)

AWS Flow Framework for Java Developer Guide

Note

If you started GreeterWorker earlier, and it is still running, you will see a longer event list
for reasons discussed shortly. Stop GreeterWorker and try running GreaterMain again.

The Events tab shows only two events:

• WorkflowExecutionStarted indicates that the workflow has started executing.

• DecisionTaskScheduled indicates that Amazon SWF has queued the first decision task.

The reason that the workflow is blocked at the first decision task is that the workflow is distributed
across two applications, GreeterMain and GreeterWorker. GreeterMain started the workflow
execution, but GreeterWorker isn't running, so the workers aren't polling the lists and executing
tasks. You can run either application independently, but you need both for workflow execution to
proceed beyond the first decision task. If you now run GreeterWorker, the workflow and activity
workers will start polling and the various tasks will be completed rapidly. If you now check the
Events tab, the first batch of events is displayed.

HelloWorldWorkflow Starter API Version 2021-04-28 23

AWS Flow Framework for Java Developer Guide

You can choose individual events to get more information. By the time you've finished looking, the
workflow should have printed "Hello World!" to your console.

After the workflow completes, it no longer appears on the list of active executions. However,
if you want to review it, choose the Closed execution status button and then choose List
Executions. This displays all the completed workflow instances in the specified domain
(helloWorldWalkthrough) that have not exceeded their retention time, which you specified
when you created the domain.

HelloWorldWorkflow Starter API Version 2021-04-28 24

AWS Flow Framework for Java Developer Guide

Notice that each workflow instance has a unique Run ID value. You can use the same Workflow ID
for different workflow instances, but only for one active execution at a time.

HelloWorldWorkflowAsync Application

Sometimes, it's preferable to have a workflow perform certain tasks locally instead of using an
activity. However, workflow tasks often involve processing the values represented by Promise<T>
objects. If you pass a Promise<T> object to a synchronous workflow method, the method executes
immediately but it can't access the Promise<T> object's value until the object is ready. You could
poll Promise<T>.isReady until it returns true, but that's inefficient and the method might
block for a long time. A better approach is to use an asynchronous method.

An asynchronous method is implemented much like a standard method—often as a member of
the workflow implementation class—and runs in the workflow implementation's context. You
designate it as an asynchronous method by applying an @Asynchronous annotation, which directs
the framework to treat it much like an activity.

HelloWorldWorkflowAsync Application API Version 2021-04-28 25

AWS Flow Framework for Java Developer Guide

• When a workflow implementation calls an asynchronous method, it returns immediately.
Asynchronous methods typically return a Promise<T> object, which becomes ready when the
method completes.

• If you pass an asynchronous method one or more Promise<T> objects, it defers execution
until all the input objects are ready. An asynchronous method can therefore access its input
Promise<T> values without risking an exception.

Note

Because of the way that the AWS Flow Framework for Java executes the workflow,
asynchronous methods typically execute multiple times, so you should use them only for
quick low-overhead tasks. You should use activities to perform lengthy tasks such as large
computations. For details, see AWS Flow Framework Basic Concepts: Distributed Execution.

This topic is a walkthrough of HelloWorldWorkflowAsync, a modified version of
HelloWorldWorkflow that replaces one of the activities with an asynchronous method. To
implement the application, create a copy of the helloWorld.HelloWorldWorkflow package in your
project directory and name it helloWorld.HelloWorldWorkflowAsync.

Note

This topic builds on the concepts and files presented in the HelloWorld Application and
HelloWorldWorkflow Application topics. Familiarize yourself with the files and concepts
presented in those topics before proceeding.

The following sections describe how to modify the original HelloWorldWorkflow code to use an
asynchronous method.

HelloWorldWorkflowAsync Activities Implementation

HelloWorldWorkflowAsync implements its activities worker interface in GreeterActivities, as
follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

HelloWorldWorkflowAsync Activities Implementation API Version 2021-04-28 26

AWS Flow Framework for Java Developer Guide

@Activities(version="2.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public void say(String what);
}

This interface is similar to the one used by HelloWorldWorkflow, with the following exceptions:

• It omits the getGreeting activity; that task is now handled by an asynchronous method.

• The version number is set to 2.0. After you have registered an activities interface with Amazon
SWF, you can't modify it unless you change the version number.

The remaining activity method implementations are identical to HelloWorldWorkflow. Just delete
getGreeting from GreeterActivitiesImpl.

HelloWorldWorkflowAsync Workflow Implementation

HelloWorldWorkflowAsync defines the workflow interface as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

 @Execute(version = "2.0")
 public void greet();
}

The interface is identical to HelloWorldWorkflow apart from a new version number. As with
activities, if you want to change a registered workflow, you must change its version.

HelloWorldWorkflowAsync implements the workflow as follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Asynchronous;

HelloWorldWorkflowAsync Workflow Implementation API Version 2021-04-28 27

AWS Flow Framework for Java Developer Guide

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 @Override
 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = getGreeting(name);
 operations.say(greeting);
 }

 @Asynchronous
 private Promise<String> getGreeting(Promise<String> name) {
 String returnString = "Hello " + name.get() + "!";
 return Promise.asPromise(returnString);
 }
}

HelloWorldWorkflowAsync replaces the getGreeting activity with a getGreeting asynchronous
method but the greet method works in much the same way:

1. Execute the getName activity, which immediately returns a Promise<String> object, name,
that represents the name.

2. Call the getGreeting asynchronous method and pass it the name object. getGreeting
immediately returns a Promise<String> object, greeting, that represents the greeting.

3. Execute the say activity and pass it the greeting object.

4. When getName completes, name becomes ready and getGreeting uses its value to construct
the greeting.

5. When getGreeting completes, greeting becomes ready and say prints the string to the
console.

The difference is that, instead of calling the activities client to execute a getGreeting activity,
greet calls the asynchronous getGreeting method. The net result is the same, but the
getGreeting method works somewhat differently than the getGreeting activity.

• The workflow worker uses standard function call semantics to execute getGreeting. However,
the asynchronous execution of the activity is mediated by Amazon SWF.

• getGreeting runs in the workflow implementation's process.

HelloWorldWorkflowAsync Workflow Implementation API Version 2021-04-28 28

AWS Flow Framework for Java Developer Guide

• getGreeting returns a Promise<String> object rather than a String object. To get the
String value held by the Promise, you call its get() method. However, because the activity is
being run asynchronously, its return value might not be ready immediately; get() will raise an
exception until the return value of the asynchronous method is available.

For more information about how Promise works, see AWS Flow Framework Basic Concepts: Data
Exchange Between Activities and Workflows.

getGreeting creates a return value by passing the greeting string to the static
Promise.asPromise method. This method creates a Promise<T> object of the appropriate type,
sets the value, and puts it in the ready state.

HelloWorldWorkflowAsync Workflow and Activities Host and Starter

HelloWorldWorkflowAsync implements GreeterWorker as the host class for the workflow and
activity implementations. It is identical to the HelloWorldWorkflow implementation except for the
taskListToPoll name, which is set to "HelloWorldAsyncList".

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";

HelloWorldWorkflowAsync Workflow and Activities Host and Starter API Version 2021-04-28 29

AWS Flow Framework for Java Developer Guide

 String taskListToPoll = "HelloWorldAsyncList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

HelloWorldWorkflowAsync implements the workflow starter in GreeterMain; it is identical to the
HelloWorldWorkflow implementation.

To execute the workflow, run GreeterWorker and GreeterMain, just as with
HelloWorldWorkflow.

HelloWorldWorkflowDistributed Application

With HelloWorldWorkflow and HelloWorldWorkflowAsync, Amazon SWF mediates the interaction
between the workflow and activities implementations, but they run locally as a single process.
GreeterMain is in a separate process, but it still runs on the same system.

A key feature of Amazon SWF is that it supports distributed applications. For example, you could
run the workflow worker on an Amazon EC2 instance, the workflow starter on a data center
computer, and the activities on a client desktop computer. You can even run different activities on
different systems.

The HelloWorldWorkflowDistributed application extends HelloWorldWorkflowAsync to distribute
the application across two systems and three processes.

• The workflow and workflow starter run as separate processes on one system.

• The activities run on a separate system.

To implement the application, create a copy of the helloWorld.HelloWorldWorkflowAsync package
in your project directory and name it helloWorld.HelloWorldWorkflowDistributed. The following
sections describe how to modify the original HelloWorldWorkflowAsync code to distribute the
application across two systems and three processes.

HelloWorldWorkflowDistributed Application API Version 2021-04-28 30

AWS Flow Framework for Java Developer Guide

You don't need to change the workflow or activities implementations to run them on separate
systems, not even the version numbers. You also don't need to modify GreeterMain. All you need
to change is the activities and workflow host.

With HelloWorldWorkflowAsync, a single application serves as the workflow and activity host.
To run the workflow and activity implementations on separate systems, you must implement
separate applications. Delete GreeterWorker from the project and add two new class files,
GreeterWorkflowWorker and GreeterActivitiesWorker.

HelloWorldWorkflowDistributed implements its activities host in GreeterActivitiesWorker, as
follows:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

public class GreeterActivitiesWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();
 }
}

HelloWorldWorkflowDistributed Application API Version 2021-04-28 31

AWS Flow Framework for Java Developer Guide

HelloWorldWorkflowDistributed implements its workflow host in GreeterWorkflowWorker, as
follows:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorkflowWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

Note that GreeterActivitiesWorker is just GreeterWorker without the WorkflowWorker
code and GreeterWorkflowWorker is just GreeterWorker without the ActivityWorker code.

To run the workflow:

1. Create a runnable JAR file with GreeterActivitiesWorker as the entry point.

2. Copy the JAR file from Step 1 to another system, which can be running any operating system
that supports Java.

HelloWorldWorkflowDistributed Application API Version 2021-04-28 32

AWS Flow Framework for Java Developer Guide

3. Ensure that AWS credentials with access to the same Amazon SWF domain are made available
on the other system.

4. Run the JAR file.

5. On your development system, use Eclipse to run GreeterWorkflowWorker and
GreeterMain.

Other than the fact that the activities are running on a different system than the workflow worker
and workflow starter, the workflow works in exactly the same way as HelloWorldAsync. However,
because println call that prints "Hello World!" to the console is in the say activity, the output will
appear on the system that is running the activities worker.

HelloWorldWorkflowParallel Application

The preceding versions of Hello World! all use a linear workflow topology. However, Amazon SWF
isn't limited to linear topologies. The HelloWorldWorkflowParallel application is a modified version
of HelloWorldWorkflow that uses a parallel topology, as shown in the following figure.

With HelloWorldWorkflowParallel, getName and getGreeting run in parallel and each return
part of the greeting. say then merges the two strings into a greeting, and prints it to the console.

To implement the application, create a copy of the helloWorld.HelloWorldWorkflow package in
your project directory and name it helloWorld.HelloWorldWorkflowParallel. The following sections
describe how to modify the original HelloWorldWorkflow code to run getName and getGreeting
in parallel.

HelloWorldWorkflowParallel Activities Worker

The HelloWorldWorkflowParallel activities interface is implemented in GreeterActivities, as
shown in the following example.

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;

HelloWorldWorkflowParallel Application API Version 2021-04-28 33

AWS Flow Framework for Java Developer Guide

import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="5.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public String getGreeting();
 public void say(String greeting, String name);
}

The interface is similar to HelloWorldWorkflow, with the following exceptions:

• getGreeting doesn't take any input; it simply returns a greeting string.

• say takes two input strings, the greeting and the name.

• The interface has a new version number, which is required any time that you change a registered
interface.

HelloWorldWorkflowParallel implements the activities in GreeterActivitiesImpl, as follows:

public class GreeterActivitiesImpl implements GreeterActivities {

 @Override
 public String getName() {
 return "World!";
 }

 @Override
 public String getGreeting() {
 return "Hello ";
 }

 @Override
 public void say(String greeting, String name) {
 System.out.println(greeting + name);
 }
}

getName and getGreeting now simply return half of the greeting string. say concatenates the
two pieces to produce the complete phrase, and prints it to the console.

HelloWorldWorkflowParallel Activities Worker API Version 2021-04-28 34

AWS Flow Framework for Java Developer Guide

HelloWorldWorkflowParallel Workflow Worker

The HelloWorldWorkflowParallel workflow interface is implemented in GreeterWorkflow, as
follows:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

 @Execute(version = "5.0")
 public void greet();
}

The class is identical to the HelloWorldWorkflow version, except that the version number has been
changed to match the activities worker.

The workflow is implemented in GreeterWorkflowImpl, as follows:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = operations.getGreeting();
 operations.say(greeting, name);
 }
}

At a glance, this implementation looks very similar to HelloWorldWorkflow; the three activities
client methods execute in sequence. However, the activities don't.

• HelloWorldWorkflow passed name to getGreeting. Because name was a Promise<T> object,
getGreeting deferred executing the activity until getName completed, so the two activities
executed in sequence.

HelloWorldWorkflowParallel Workflow Worker API Version 2021-04-28 35

AWS Flow Framework for Java Developer Guide

• HelloWorldWorkflowParallel doesn't pass any input getName or getGreeting. Neither method
defers execution and the associated activity methods execute immediately, in parallel.

The say activity takes both greeting and name as input parameters. Because they are
Promise<T> objects, say defers execution until both activities complete, and then constructs and
prints the greeting.

Notice that HelloWorldWorkflowParallel doesn't use any special modeling code to define the
workflow topology. It does it implicitly by using standard Java flow control and taking advantage
of the properties of Promise<T> objects. AWS Flow Framework for Java applications can
implement even complex topologies simply by using Promise<T> objects in conjunction with
conventional Java control flow constructs.

HelloWorldWorkflowParallel Workflow and Activities Host and Starter

HelloWorldWorkflowParallel implements GreeterWorker as the host class for the workflow and
activity implementations. It is identical to the HelloWorldWorkflow implementation except for the
taskListToPoll name, which is set to "HelloWorldParallelList".

HelloWorldWorkflowParallel implements the workflow starter in GreeterMain, and it is
identical to the HelloWorldWorkflow implementation.

To execute the workflow, run GreeterWorker and GreeterMain, just as with
HelloWorldWorkflow.

HelloWorldWorkflowParallel Workflow and Activities Host and Starter API Version 2021-04-28 36

AWS Flow Framework for Java Developer Guide

Understanding AWS Flow Framework for Java

The AWS Flow Framework for Java works with Amazon SWF to make it easy to create scalable
and fault-tolerant applications to perform asynchronous tasks that may be long running, remote,
or both. The "Hello World!" examples in What is the AWS Flow Framework for Java? introduced
the basics of how to use the AWS Flow Framework to implement basic workflow applications.
This section provides conceptual information about how AWS Flow Framework applications work.
The first section summarizes the basic structure of an AWS Flow Framework application, and the
remaining sections provide further detail about how AWS Flow Framework applications work.

Topics

• AWS Flow Framework Basic Concepts: Application Structure

• AWS Flow Framework Basic Concepts: Reliable Execution

• AWS Flow Framework Basic Concepts: Distributed Execution

• AWS Flow Framework Basic Concepts: Task Lists and Task Execution

• AWS Flow Framework Basic Concepts: Scalable Applications

• AWS Flow Framework Basic Concepts: Data Exchange Between Activities and Workflows

• AWS Flow Framework Basic Concepts: Data Exchange Between Applications and Workflow
Executions

• Amazon SWF Timeout Types

AWS Flow Framework Basic Concepts: Application Structure

Conceptually, an AWS Flow Framework application consists of three basic components: workflow
starters, workflow workers, and activity workers. One or more host applications are responsible
for registering the workers (workflow and activity) with Amazon SWF, starting the workers, and
handling cleanup. The workers handle the mechanics of executing the workflow and may be
implemented on several hosts.

This diagram represents a basic AWS Flow Framework application:

Application Structure API Version 2021-04-28 37

AWS Flow Framework for Java Developer Guide

Note

Implementing these components in three separate applications is convenient conceptually,
but you can create applications to implement this functionality in a variety of ways. For
example, you can use a single host application for the activity and workflow workers, or
use separate activity and workflow hosts. You can also have multiple activity workers, each
handling a different set of activities on separate hosts, and so on.

The three AWS Flow Framework components interact indirectly by sending HTTP requests to
Amazon SWF, which manages the requests. Amazon SWF does the following:

• Maintains one or more decision task lists, which determine the next step to be performed by a
workflow worker.

Application Structure API Version 2021-04-28 38

AWS Flow Framework for Java Developer Guide

• Maintains one or more activities task lists, which determine which tasks will be performed by an
activity worker.

• Maintains a detailed step-by-step history of the workflow's execution.

With the AWS Flow Framework, your application code doesn't need to deal directly with many of
the details shown in the figure, such as sending HTTP requests to Amazon SWF. You simply call
AWS Flow Framework methods and the framework handles the details behind the scenes.

Role of the Activity Worker

The activity worker performs the various tasks that the workflow must accomplish. It consists of:

• The activities implementation, which includes a set of activity methods that perform particular
tasks for the workflow.

• An ActivityWorker object, which uses HTTP long poll requests to poll Amazon SWF for activity
tasks to be performed. When a task is needed, Amazon SWF responds to the request by
sending the information required to perform the task. The ActivityWorker object then calls the
appropriate activity method, and returns the results to Amazon SWF.

Role of the Workflow Worker

The workflow worker orchestrates the execution of the various activities, manages data flow, and
handles failed activities. It consists of:

• The workflow implementation, which includes the activity orchestration logic, handles failed
activities, and so on.

• An activities client, which serves as a proxy for the activity worker and enables the workflow
worker to schedule activities to be executed asynchronously.

• A WorkflowWorker object, which uses HTTP long poll requests to poll Amazon SWF for decision
tasks. If there are tasks on the workflow task list, Amazon SWF responds to the request by
returning the information that is required to perform the task. The framework then executes the
workflow to perform the task and returns the results to Amazon SWF.

Role of the Activity Worker API Version 2021-04-28 39

https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework for Java Developer Guide

Role of the Workflow Starter

The workflow starter starts a workflow instance, also referred to as a workflow execution, and can
interact with an instance during execution in order to pass additional data to the workflow worker
or obtain the current workflow state.

The workflow starter uses a workflow client to start the workflow execution, interacts with the
workflow as needed during execution, and handles cleanup. The workflow starter could be a
locally-run application, a web application, the AWS CLI or even the AWS Management Console.

How Amazon SWF Interacts with Your Application

Amazon SWF mediates the interaction between the workflow components and maintains a
detailed workflow history. Amazon SWF doesn't initiate communication with the components; it
waits for HTTP requests from the components and manages the requests as required. For example:

• If the request is from a worker, polling for available tasks, Amazon SWF responds directly to the
worker if a task is available. For more information about how polling works, see Polling for Tasks
in the Amazon Simple Workflow Service Developer Guide.

• If the request is a notification from an activity worker that a task is complete, Amazon SWF
records the information in the execution history and adds a task to the decision task list to
inform the workflow worker that the task is complete, allowing it to proceed to the next step.

• If the request is from the workflow worker to execute an activity, Amazon SWF records the
information in the execution history and adds a task to the activities task list to direct an activity
worker to execute the appropriate activity method.

This approach allows workers to run on any system with an Internet connection, including Amazon
EC2 instances, corporate data centers, client computers, and so on. They don't even have to be
running the same operating system. Because the HTTP requests originate with the workers, there is
no need for externally visible ports; workers can run behind a firewall.

For More Information

For a more thorough discussion of how Amazon SWF works, see Amazon Simple Workflow Service
Developer Guide.

Role of the Workflow Starter API Version 2021-04-28 40

https://docs.aws.eu/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-comm-proto
https://docs.aws.eu/amazonswf/latest/developerguide/
https://docs.aws.eu/amazonswf/latest/developerguide/

AWS Flow Framework for Java Developer Guide

AWS Flow Framework Basic Concepts: Reliable Execution

Asynchronous distributed applications must deal with reliability issues that are not encountered by
conventional applications, including:

• How to provide reliable communication between asynchronous distributed components, such as
long-running components on remote systems.

• How to ensure that results are not lost if a component fails or is disconnected, especially for long-
running applications.

• How to handle failed distributed components.

Applications can rely on the AWS Flow Framework and Amazon SWF to manage these issues. We'll
explore how Amazon SWF provides mechanisms to ensure that your workflows operate reliably and
in a predictable way, even when they are long-running and depend on asynchronous tasks carried
out computationally and with human interaction.

Providing Reliable Communication

AWS Flow Framework provides reliable communication between a workflow worker and its
activities workers by using Amazon SWF to dispatch tasks to distributed activities workers and
return the results to the workflow worker. Amazon SWF uses the following methods to ensure
reliable communication between a worker and its activities:

• Amazon SWF durably stores scheduled activity and workflow tasks and guarantees that they will
be performed at most once.

• Amazon SWF guarantees that an activity task will either complete successfully and return a valid
result or it will notify the workflow worker that the task failed.

• Amazon SWF durably stores each completed activity's result or, for failed activities, it stores
relevant error information.

The AWS Flow Framework then uses the activity results from Amazon SWF to determine how to
proceed with the workflow's execution.

Reliable Execution API Version 2021-04-28 41

AWS Flow Framework for Java Developer Guide

Ensuring that Results are Not Lost

Maintaining Workflow History

An activity that performs a data-mining operation on a petabyte of data might take hours to
complete, and an activity that directs a human worker to perform a complex task might take days,
or even weeks to complete!

To accommodate scenarios such as these, AWS Flow Framework workflows and activities can take
arbitrarily long to complete: up to a limit of one year for a workflow execution. Reliably executing
long running processes requires a mechanism to durably store the workflow's execution history on
an ongoing basis.

The AWS Flow Framework handles this by depending on Amazon SWF, which maintains a running
history of each workflow instance. The workflow's history provides a complete and authoritative
record of the workflow's progress, including all the workflow and activity tasks that have been
scheduled and completed, and the information returned by completed or failed activities.

AWS Flow Framework applications usually don't need to interact with the workflow history
directly, although they can access it if necessary. For most purposes, applications can simply let the
framework interact with the workflow history behind the scenes. For a full discussion of workflow
history, see Workflow History in the Amazon Simple Workflow Service Developer Guide.

Stateless Execution

The execution history allows workflow workers to be stateless. If you have multiple instances of
a workflow or activity worker, any worker can perform any task. The worker receives all the state
information that it needs to perform the task from Amazon SWF.

This approach makes workflows more reliable. For example, if an activity worker fails, you don't
have to restart the workflow. Just restart the worker and it will start polling the task list and
processing whatever tasks are on the list, regardless of when the failure occurred. You can make
your overall workflow fault-tolerant by using two or more workflow and activity workers, perhaps
on separate systems. Then, if one of the workers fails, the others will continue to handle scheduled
tasks without any interruption in workflow progress.

Handling Failed Distributed Components

Activities often fail for ephemeral reasons, such as a brief disconnection, so a common strategy
for handling failed activities is to retry the activity. Instead of handling the retry process by

Ensuring that Results are Not Lost API Version 2021-04-28 42

https://docs.aws.eu/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history

AWS Flow Framework for Java Developer Guide

implementing complex message passing strategies, applications can depend on the AWS Flow
Framework. It provides several mechanisms for retrying failed activities, and provides a built-in
exception-handling mechanism that works with asynchronous, distributed execution of tasks in a
workflow.

AWS Flow Framework Basic Concepts: Distributed Execution

A workflow instance is essentially a virtual thread of execution that can span activities and
orchestration logic running on multiple remote computers. Amazon SWF and the AWS Flow
Framework function as an operating system that manages workflow instances on a virtual CPU by:

• Maintaining each instance's execution state.

• Switching between instances.

• Resuming execution of an instance at the point that it was switched out.

Replaying Workflows

Because activities can be long-running, it's undesirable to have the workflow simply block until
it completes. Instead, the AWS Flow Framework manages workflow execution by using a replay
mechanism, which relies on the workflow history maintained by Amazon SWF to execute the
workflow in episodes.

Each episode replays the workflow logic in a way that executes each activity only once, and ensures
that activities and asynchronous methods don't execute until their Promise objects are ready.

The workflow starter initiates the first replay episode when it starts the workflow execution. The
framework calls the workflow's entry point method and:

1. Executes all workflow tasks that don't depend on activity completion, including calling all
activity client methods.

2. Gives Amazon SWF a list of activities tasks to be scheduled for execution. For the first episode,
this list consists of only those activities that don't depend on a Promise and can be executed
immediately.

3. Notifies Amazon SWF that the episode is complete.

Amazon SWF stores the activity tasks in the workflow history and schedules them for execution by
placing them on the activity task list. The activity workers poll the task list and execute the tasks.

Distributed Execution API Version 2021-04-28 43

AWS Flow Framework for Java Developer Guide

When an activity worker completes a task, it returns the result to Amazon SWF, which records it
in the workflow execution history and schedules a new workflow task for the workflow worker by
placing it on the workflow task list. The workflow worker polls the task list and when it receives the
task, it runs the next replay episode, as follows:

1. The framework runs the workflow's entry point method again and:

• Executes all workflow tasks that don't depend on activity completion, including calling all
activity client methods. However, the framework checks the execution history and doesn't
schedule duplicate activity tasks.

• Checks the history to see which activity tasks have completed and executes any asynchronous
workflow methods that depend on those activities.

2. When all workflow tasks that can be executed have completed, the framework reports back to
Amazon SWF:

• It gives Amazon SWF a list of any activities whose input Promise<T> objects have become
ready since the last episode and can be scheduled for execution.

• If the episode generated no additional activity tasks but there are still uncompleted activities,
the framework notifies Amazon SWF that the episode is complete. It then waits for another
activity to complete, initiating the next replay episode.

• If the episode generated no additional activity tasks and all activities have completed, the
framework notifies Amazon SWF that the workflow execution is complete.

For examples of replay behavior, see AWS Flow Framework for Java Replay Behavior.

Replay and Asynchronous Workflow Methods

Asynchronous workflow methods are often used much like activities, because the method defers
execution until all input Promise<T> objects are ready. However, the replay mechanism handles
asynchronous methods differently than activities.

• Replay doesn't guarantee that an asynchronous method will execute only once. It defers
execution on an asynchronous method until its input Promise objects are ready, but it then
executes that method for all subsequent episodes.

• When an asynchronous method completes, it doesn't start a new episode.

An example of replaying an asynchronous workflow is provided in AWS Flow Framework for Java
Replay Behavior.

Replay and Asynchronous Workflow Methods API Version 2021-04-28 44

AWS Flow Framework for Java Developer Guide

Replay and Workflow Implementation

For the most part, you don't need to be concerned with the details of the replay mechanism.
It is basically something that happens behind the scenes. However, replay has two important
implications for your workflow implementation.

• Do not use workflow methods to perform long-running tasks, because replay will repeat that
task multiple times. Even asynchronous workflow methods typically run more than once. Instead,
use activities for long running tasks; replay executes activities only once.

• Your workflow logic must be completely deterministic; every episode must take the same control
flow path. For example, the control flow path should not depend on the current time. For a
detailed description of replay and the determinism requirement, see Nondeterminism.

AWS Flow Framework Basic Concepts: Task Lists and Task
Execution

Amazon SWF manages workflow and activity tasks by posting them to named lists. Amazon SWF
maintains at least two task lists, one for workflow workers and one for activity workers.

Note

You can specify as many task lists as you need, with different workers assigned to each list.
There is no limit to the number of task lists. You typically specify a worker's task list in the
worker host application when you create the worker object.

The following excerpt from the HelloWorldWorkflow host application creates a new activity
worker and assigns it to the HelloWorldList activities task list.

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ...
 String domain = " helloWorldExamples";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

Replay and Workflow Implementation API Version 2021-04-28 45

AWS Flow Framework for Java Developer Guide

 ...
 }
}

By default, Amazon SWF schedules the worker's tasks on the HelloWorldList list. Then the
worker polls that list for tasks. You can assign any name to a task list. You can even use the same
name for both workflow and activity lists. Internally, Amazon SWF puts workflow and activity task
list names in different namespaces, so the two lists will be distinct.

If you don't specify a task list, the AWS Flow Framework specifies a default list when the worker
registers the type with Amazon SWF. For more information, see Workflow and Activity Type
Registration.

Sometimes it's useful to have a specific worker or group of workers perform certain tasks. For
example, an image processing workflow might use one activity to download an image and another
activity to process the image. It's more efficient to perform both tasks on the same system, and
avoid the overhead of transferring large files over the network.

To support such scenarios, you can explicitly specify a task list when you call an activity client
method by using an overload that includes a schedulingOptions parameter. You specify the
task list by passing the method an appropriately configured ActivitySchedulingOptions
object.

For example, suppose that the say activity of the HelloWorldWorkflow application is hosted
by an activity worker different from getName and getGreeting. The following example shows
how to ensure that say uses the same task list as getName and getGreeting, even if they were
originally assigned to different lists.

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations1 = new GreeterActivitiesClientImpl1(); //
getGreeting and getName
 private GreeterActivitiesClient operations2 = new GreeterActivitiesClientImpl2(); //
say
 @Override
 public void greet() {
 Promise<String> name = operations1.getName();
 Promise<String> greeting = operations1.getGreeting(name);
 runSay(greeting);
 }
 @Asynchronous
 private void runSay(Promise<String> greeting){

Task Lists and Task Execution API Version 2021-04-28 46

AWS Flow Framework for Java Developer Guide

 String taskList = operations1.getSchedulingOptions().getTaskList();
 ActivitySchedulingOptions schedulingOptions = new ActivitySchedulingOptions();
 schedulingOptions.setTaskList(taskList);
 operations2.say(greeting, schedulingOptions);
 }
}

The asynchronous runSay method gets the getGreeting task list from its client object. Then it
creates and configures an ActivitySchedulingOptions object that ensures that say polls the
same task list as getGreeting.

Note

When you pass a schedulingOptions parameter to an activity client method, it overrides
the original task list only for that activity execution. If you call the activities client method
again without specifying a task list, Amazon SWF assigns the task to the original list, and
the activity worker will poll that list.

AWS Flow Framework Basic Concepts: Scalable Applications

Amazon SWF has two key features that make it easy to scale a workflow application to handle the
current load:

• A complete workflow execution history, which allows you to implement a stateless application.

• Task scheduling that is loosely coupled to task execution, which makes it easy to scale your
application to meet current demands.

Amazon SWF schedules tasks by posting them to dynamically allocated task lists, not by
communicating directly with workflow and activity workers. Instead, the workers use HTTP
requests to poll their respective lists for tasks. This approach loosely couples task scheduling to
task execution and allows workers to run on any suitable system, including Amazon EC2 instances,
corporate data centers, client computers, and so on. Because the HTTP requests originate with the
workers, there is no need for externally visible ports, which enables workers to even run behind a
firewall.

The long-polling mechanism that workers use to poll for tasks ensures that workers don't get
overloaded. Even if there is a spike in scheduled tasks, workers pull tasks at their own pace.

Scalable Applications API Version 2021-04-28 47

AWS Flow Framework for Java Developer Guide

However, because workers are stateless, you can dynamically scale an application to meet increased
load by starting additional worker instances. Even if they are running on different systems,
each instance polls the same task list and the first available worker instance executes each task,
regardless of where the worker is located or when it started. When the load declines, you can
reduce the number of workers accordingly.

AWS Flow Framework Basic Concepts: Data Exchange Between
Activities and Workflows

When you call an asynchronous activity client method, it immediately returns a Promise (also
known as a Future) object, which represents the activity method's return value. Initially, the
Promise is in an unready state and the return value is undefined. After the activity method
completes its task and returns, the framework marshals the return value across the network to the
workflow worker, which assigns a value to the Promise and puts the object in a ready state.

Even if an activity method has no return value, you can still use the Promise for managing
workflow execution. If you pass a returned Promise to an activity client method or an asynchronous
workflow method, it defers execution until the object is ready.

If you pass one or more Promises to an activity client method, the framework queues the task but
defers scheduling it until all the objects are ready. It then extracts the data from each Promise and
marshals it across the internet to the activity worker, which passes it to the activity method as a
standard type.

Note

If you need to transfer large amounts of data between workflow and activity workers, the
preferred approach is to store the data in a convenient location and just pass the retrieval
information. For example, you can store the data in an Amazon S3 bucket and pass the
associated URL.

The Promise<T> Type

The Promise<T> type is similar in some ways to the Java Future<T> type. Both types represent
values returned by asynchronous methods and are initially undefined. You access an object's value
by calling its get method. Beyond that, the two types behave quite differently.

Data Exchange Between Activities and Workflows API Version 2021-04-28 48

AWS Flow Framework for Java Developer Guide

• Future<T> is a synchronization construct that allows an application to wait on an asynchronous
method's completion. If you call get and the object isn't ready, it blocks until the object is ready.

• With Promise<T>, synchronization is handled by the framework. If you call get and the object
isn't ready, get throws an exception.

The primary purpose of Promise<T> is to manage data flow from one activity to another. It
ensures that an activity doesn't execute until the input data is valid. In many cases, workflow
workers don't need to access Promise<T> objects directly; they simply pass the objects from one
activity to another and let the framework and the activity workers handle the details. To access
a Promise<T> object's value in a workflow worker, you must be certain that the object is ready
before calling its get method.

• The preferred approach is to pass the Promise<T> object to an asynchronous workflow method
and process the values there. An asynchronous method defers execution until all of its input
Promise<T> objects are ready, which guarantees that you can safely access their values.

• Promise<T> exposes an isReady method that returns true if the object is ready. Using
isReady to poll a Promise<T> object isn't recommended, but isReady is useful in certain
circumstances.

The AWS Flow Framework for Java also includes a Settable<T> type, which is derived from
Promise<T> and has similar behavior. The difference is that the framework usually sets the
value of a Promise<T> object and the workflow worker is responsible for setting the value of a
Settable<T>.

There are some circumstance where a workflow worker needs to create a Promise<T> object and
set its value. For example, an asynchronous method that returns a Promise<T> object needs to
create a return value.

• To create an object that represents a typed value, call the static Promise.asPromise method,
which creates a Promise<T> object of the appropriate type, sets its value, and puts it in the
ready state.

• To create a Promise<Void> object, call the static Promise.Void method.

The Promise<T> Type API Version 2021-04-28 49

AWS Flow Framework for Java Developer Guide

Note

Promise<T> can represent any valid type. However, if the data must be marshaled across
the internet, the type must be compatible with the data converter. See the next section for
details.

Data Converters and Marshaling

The AWS Flow Framework marshals data across the internet by using a data converter. By default,
the framework uses a data converter that is based on the Jackson JSON processor. However, this
converter has some limitations. For example, it can't marshal maps that don't use strings as keys.
If the default converter isn't sufficient for your application, you can implement a custom data
converter. For details, see DataConverters.

AWS Flow Framework Basic Concepts: Data Exchange Between
Applications and Workflow Executions

A workflow entry point method can have one or more parameters, which allows the workflow
starter to pass initial data to the workflow. It can also useful to provide additional data to the
workflow during execution. For example, if a customer changes their shipping address, you could
notify the order-processing workflow so that it can make appropriate changes.

Amazon SWF allows workflows to implement a signal method, which allows applications such
as the workflow starter to pass data to the workflow at any time. A signal method can have any
convenient name and parameters. You designate it as a signal method by including it in your
workflow interface definition, and applying a @Signal annotation to the method declaration.

The following example shows an order processing workflow interface that declares a signal
method, changeOrder, which allows the workflow starter to change the original order after the
workflow has started.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 300)
public interface WaitForSignalWorkflow {
 @Execute(version = "1.0")
 public void placeOrder(int amount);

Data Converters and Marshaling API Version 2021-04-28 50

https://github.com/codehaus/jackson

AWS Flow Framework for Java Developer Guide

 @Signal
 public void changeOrder(int amount);
}

The framework's annotation processor creates a workflow client method with the same name as
the signal method and the workflow starter calls the client method to pass data to the workflow.
For an example, see AWS Flow Framework Recipes

Amazon SWF Timeout Types

To ensure that workflow executions run correctly, you can set different types of timeouts with
Amazon SWF. Some timeouts specify how long the workflow can run in its entirety. Other timeouts
specify how long activity tasks can take before being assigned to a worker and how long they
can take to complete from the time they are scheduled. All timeouts in the Amazon SWF API
are specified in seconds. Amazon SWF also supports the string NONE as a timeout value, which
indicates no timeout.

For timeouts related to decision tasks and activity tasks, Amazon SWF adds an event to the
workflow execution history. The attributes of the event provide information about what type of
timeout occurred and which decision task or activity task was affected. Amazon SWF also schedules
a decision task. When the decider receives the new decision task, it will see the timeout event in the
history and take an appropriate action by calling the RespondDecisionTaskCompleted action.

A task is considered open from the time that it is scheduled until it is closed. Therefore a task
is reported as open while a worker is processing it. A task is closed when a worker reports it
as completed, canceled, or failed. A task may also be closed by Amazon SWF as the result of a
timeout.

Timeouts in Workflow and Decision Tasks

The following diagram shows how workflow and decision timeouts are related to the lifetime of a
workflow:

Timeout Types API Version 2021-04-28 51

https://aws.amazon.com/code/2535278400103493
http://docs.aws.eu/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
http://docs.aws.eu/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.eu/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.eu/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework for Java Developer Guide

There are two timeout types that are relevant to workflow and decision tasks:

• Workflow Start to Close (timeoutType: START_TO_CLOSE) – This timeout specifies the
maximum time that a workflow execution can take to complete. It is set as a default during
workflow registration, but it can be overridden with a different value when the workflow is
started. If this timeout is exceeded, Amazon SWF closes the workflow execution and adds an
event of type WorkflowExecutionTimedOut to the workflow execution history. In addition to the
timeoutType, the event attributes specify the childPolicy that is in effect for this workflow
execution. The child policy specifies how child workflow executions are handled if the parent
workflow execution times out or otherwise terminates. For example, if the childPolicy is set
to TERMINATE, then child workflow executions will be terminated. Once a workflow execution
has timed out, you can't take any action on it other than visibility calls.

• Decision Task Start to Close (timeoutType: START_TO_CLOSE) – This timeout specifies the
maximum time that the corresponding decider can take to complete a decision task. It is set
during workflow type registration. If this timeout is exceeded, the task is marked as timed out in
the workflow execution history, and Amazon SWF adds an event of type DecisionTaskTimedOut
to the workflow history. The event attributes will include the IDs for the events that correspond
to when this decision task was scheduled (scheduledEventId) and when it was started
(startedEventId). In addition to adding the event, Amazon SWF also schedules a new decision
task to alert the decider that this decision task timed out. After this timeout occurs, an attempt
to complete the timed-out decision task using RespondDecisionTaskCompleted will fail.

Timeouts in Activity Tasks

The following diagram shows how timeouts are related to the lifetime of an activity task:

Timeouts in Activity Tasks API Version 2021-04-28 52

http://docs.aws.eu/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.eu/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html
http://docs.aws.eu/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html

AWS Flow Framework for Java Developer Guide

There are four timeout types that are relevant to activity tasks:

• Activity Task Start to Close (timeoutType: START_TO_CLOSE) – This timeout specifies the
maximum time that an activity worker can take to process a task after the worker has received
the task. Attempts to close a timed out activity task using RespondActivityTaskCanceled,
RespondActivityTaskCompleted, and RespondActivityTaskFailed will fail.

• Activity Task Heartbeat (timeoutType: HEARTBEAT) – This timeout specifies
the maximum time that a task can run before providing its progress through the
RecordActivityTaskHeartbeat action.

• Activity Task Schedule to Start (timeoutType: SCHEDULE_TO_START) – This timeout
specifies how long Amazon SWF waits before timing out the activity task if no workers are
available to perform the task. Once timed out, the expired task will not be assigned to another
worker.

• Activity Task Schedule to Close (timeoutType: SCHEDULE_TO_CLOSE) – This timeout
specifies how long the task can take from the time it is scheduled to the time it is complete.
As a best practice, this value should not be greater than the sum of the task schedule-to-start
timeout and the task start-to-close timeout.

Note

Each of the timeout types has a default value, which is generally set to NONE (infinite). The
maximum time for any activity execution is limited to one year, however.

Timeouts in Activity Tasks API Version 2021-04-28 53

http://docs.aws.eu/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
http://docs.aws.eu/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
http://docs.aws.eu/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework for Java Developer Guide

You set default values for these during activity type registration, but you can override them with
new values when you schedule the activity task. When one of these timeouts occurs, Amazon SWF
will add an event of type ActivityTaskTimedOut to the workflow history. The timeoutType value
attribute of this event will specify which of these timeouts occurred. For each of the timeouts,
the value of timeoutType is shown in parentheses. The event attributes will also include the IDs
for the events that correspond to when the activity task was scheduled (scheduledEventId)
and when it was started (startedEventId). In addition to adding the event, Amazon SWF also
schedules a new decision task to alert the decider that the timeout occurred.

Timeouts in Activity Tasks API Version 2021-04-28 54

http://docs.aws.eu/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
http://docs.aws.eu/amazonswf/latest/apireference/API_HistoryEvent.html
http://docs.aws.eu/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

AWS Flow Framework for Java Developer Guide

Understanding a Task in AWS Flow Framework for Java

Topics

• Task

• Order of Execution

• Workflow Execution

• Nondeterminism

Task

The underlying primitive that the AWS Flow Framework for Java uses to manage the execution
of asynchronous code is the Task class. An object of type Task represents work that has to be
performed asynchronously. When you call an asynchronous method, the framework creates a
Task to execute the code in that method and puts it in a list for execution at a later time. Similarly,
when you invoke an Activity, a Task is created for it. The method call returns after this, usually
returning a Promise<T> as the future result of the call.

The Task class is public and may be used directly. For example, we can rewrite the Hello World
example to use a Task instead of an asynchronous method.

@Override
public void startHelloWorld(){
 final Promise<String> greeting = client.getName();
 new Task(greeting) {
 @Override
 protected void doExecute() throws Throwable {
 client.printGreeting("Hello " + greeting.get() +"!");
 }
 };
}

The framework calls the doExecute() method when all the Promises passed to the constructor
of the Task become ready. For more details about the Task class, see the AWS SDK for Java
documentation.

Task API Version 2021-04-28 55

AWS Flow Framework for Java Developer Guide

The framework also includes a class called Functor which represents a Task that is also a
Promise<T>. The Functor object becomes ready when the Task completes. In the following
example, a Functor is created to get the greeting message:

Promise<String> greeting = new Functor<String>() {
 @Override
 protected Promise<String> doExecute() throws Throwable {
 return client.getGreeting();
 }
};
client.printGreeting(greeting);

Order of Execution

Tasks become eligible for execution only when all Promise<T> typed parameters, passed to the
corresponding asynchronous method or activity, become ready. A Task that is ready for execution
is logically moved to a ready queue. In other words, it is scheduled for execution. The worker class
executes the task by invoking the code that you wrote in the body of the asynchronous method,
or by scheduling an activity task in Amazon Simple Workflow Service (AWS) in case of an activity
method.

As tasks execute and produce results, they cause other tasks to become ready and the execution
of the program keeps moving forward. The way the framework executes tasks is important to
understand the order in which your asynchronous code executes. Code that appears sequentially in
your program may not actually execute in that order.

Promise<String> name = getUserName();
printHelloName(name);
printHelloWorld();
System.out.println("Hello, Amazon!");

@Asynchronous
private Promise<String> getUserName(){
 return Promise.asPromise("Bob");
}
@Asynchronous
private void printHelloName(Promise<String> name){
 System.out.println("Hello, " + name.get() + "!");
}

Order of Execution API Version 2021-04-28 56

AWS Flow Framework for Java Developer Guide

@Asynchronous
private void printHelloWorld(){
 System.out.println("Hello, World!");
}

The code in the listing above will print the following:

Hello, Amazon!
Hello, World!
Hello, Bob

This may not be what you expected but can be easily explained by thinking through how the tasks
for the asynchronous methods were executed:

1. The call to getUserName creates a Task. Let's call it Task1. Because getUserName doesn't
take any parameters, Task1 is immediately put in the ready queue.

2. Next, the call to printHelloName creates a Task that needs to wait for the result of
getUserName. Let's call it Task2. Because the requisite value isn't ready yet, Task2 is put in the
wait list.

3. Then a task for printHelloWorld is created and added to the ready queue. Let's call it Task3.

4. The println statement then prints "Hello, Amazon!" to the console.

5. At this point, Task1 and Task3 are in the ready queue and Task2 is in the wait list.

6. The worker executes Task1, and its result makes Task2 ready. Task2 gets added to ready
queue behind Task3.

7. Task3 and Task2 are then executed in that order.

The execution of activities follows the same pattern. When you call a method on the activity client,
it creates a Task that, upon execution, schedules an activity in Amazon SWF.

The framework relies on features like code generation and dynamic proxies to inject the logic for
converting method calls to activity invocations and asynchronous tasks in your program.

Workflow Execution

The execution of the workflow implementation is also managed by the worker class. When you
call a method on the workflow client, it calls Amazon SWF to create a workflow instance. The tasks
in Amazon SWF should not be confused with the tasks in the framework. A task in Amazon SWF

Workflow Execution API Version 2021-04-28 57

AWS Flow Framework for Java Developer Guide

is either an activity task or a decision task. The execution of activity tasks is simple. The activity
worker class receives activity tasks from Amazon SWF, invokes the appropriate activity method in
your implementation, and returns the result to Amazon SWF.

The execution of decision tasks is more involved. The workflow worker receives decision tasks
from Amazon SWF. A decision task is effectively a request asking the workflow logic what to do
next. The first decision task is generated for a workflow instance when it is started through the
workflow client. Upon receiving this decision task, the framework starts executing the code in
the workflow method annotated with @Execute. This method executes the coordination logic
that schedules activities. When the state of the workflow instance changes—for example, when
an activity completes—further decision tasks get scheduled. At this point, the workflow logic can
decide to take an action based on the result of the activity; for example, it may decide to schedule
another activity.

The framework hides all these details from the developer by seamlessly translating decision
tasks to the workflow logic. From a developer's point of view, the code looks just like a regular
program. Under the covers, the framework maps it to calls to Amazon SWF and decision tasks
using the history maintained by Amazon SWF. When a decision task arrives, the framework replays
the program execution plugging in the results of the activities completed so far. Asynchronous
methods and activities that were waiting for these results get unblocked, and the program
execution moves forward.

The execution of the example image processing workflow and the corresponding history is shown
in the following table.

Execution of thumbnail workflow

Workflow program execution History maintained by Amazon SWF

Initial execution

1. Dispatch loop

2. getImageUrls

3. downloadImage

4. createThumbnail (task in wait queue)

5. uploadImage (task in wait queue)

6. <next iteration of the loop>

1. Workflow instance started, id="1"

2. downloadImage scheduled

Workflow Execution API Version 2021-04-28 58

AWS Flow Framework for Java Developer Guide

Workflow program execution History maintained by Amazon SWF

Replay

1. Dispatch loop

2. getImageUrls

3. downloadImage image path="foo"

4. createThumbnail

5. uploadImage (task in wait queue)

6. <next iteration of the loop>

1. Workflow instance started, id="1"

2. downloadImage scheduled

3. downloadImage completed, return="foo"

4. createThumbnail scheduled

Replay

1. Dispatch loop

2. getImageUrls

3. downloadImage image path="foo"

4. createThumbnail thumbnail path="bar"

5. uploadImage

6. <next iteration of the loop>

1. Workflow instance started, id="1"

2. downloadImage scheduled

3. downloadImage completed, return="foo"

4. createThumbnail scheduled

5. createThumbnail completed, return="bar"

6. uploadImage scheduled

Replay

1. Dispatch loop

2. getImageUrls

3. downloadImage image path="foo"

4. createThumbnail thumbnail path="bar"

5. uploadImage

6. <next iteration of the loop>

1. Workflow instance started, id="1"

2. downloadImage scheduled

3. downloadImage completed, return="foo"

4. createThumbnail scheduled

5. createThumbnail completed, return="bar"

6. uploadImage scheduled

7. uploadImage completed

...

When a call to processImage is made, the framework creates a new workflow instance in Amazon
SWF. This is a durable record of the workflow instance being started. The program executes until

Workflow Execution API Version 2021-04-28 59

AWS Flow Framework for Java Developer Guide

the call to the downloadImage activity, which asks Amazon SWF to schedule an activity. The
workflow executes further and creates tasks for subsequent activities, but they can't be executed
until the downloadImage activity completes; hence, this episode of replay ends. Amazon SWF
dispatches the task for downloadImage activity for execution, and once it is completed, a record
is made in the history along with the result. The workflow is now ready to move forward and a
decision task is generated by Amazon SWF. The framework receives the decision task and replays
the workflow plugging in the result of the downloaded image as recorded in the history. This
unblocks the task for createThumbnail, and the execution of the program continues farther
by scheduling the createThumbnail activity task in Amazon SWF. The same process repeats for
uploadImage. The execution of the program continues this way until the workflow has processed
all images and there are no pending tasks. Because no execution state is stored locally, each
decision task may be potentially executed on a different machine. This allows you to easily write
programs that are fault tolerant and easily scalable.

Nondeterminism

Because the framework relies on replay, it is important that the orchestration code (all workflow
code with the exception of activity implementations) be deterministic. For example, the control
flow in your program should not depend on a random number or the current time. Because these
things will change between invocations, the replay may not follow the same path through the
orchestration logic. This will lead to unexpected results or errors. The framework provides a
WorkflowClock that you can use to get the current time in a deterministic way. See the section
on Execution Context for more details.

Note

Incorrect Spring wiring of workflow implementation objects can also lead to
nondeterminism. Workflow implementation beans as well as beans that they depend
on must be in the workflow scope (WorkflowScope). For example, wiring a workflow
implementation bean to a bean that keeps state and is in the global context will result in
unexpected behavior. See the Spring Integration section for more details.

Nondeterminism API Version 2021-04-28 60

AWS Flow Framework for Java Developer Guide

AWS Flow Framework for Java Programming Guide

This section provides details about how to use the features of the AWS Flow Framework for Java to
implement workflow applications.

Topics

• Implementing Workflow Applications with the AWS Flow Framework

• Workflow and Activity Contracts

• Workflow and Activity Type Registration

• Activity and Workflow Clients

• Workflow Implementation

• Activity Implementation

• Implementing AWS Lambda Tasks

• Running Programs Written with the AWS Flow Framework for Java

• Execution Context

• Child Workflow Executions

• Continuous Workflows

• Setting task priority in Amazon SWF

• DataConverters

• Passing Data to Asynchronous Methods

• Testability and Dependency Injection

• Error Handling

• Retry Failed Activities

• Daemon Tasks

• AWS Flow Framework for Java Replay Behavior

Implementing Workflow Applications with the AWS Flow
Framework

The typical steps involved in developing a workflow with the AWS Flow Framework are:

Implementing Workflow Applications API Version 2021-04-28 61

AWS Flow Framework for Java Developer Guide

1. Define activity and workflow contracts. Analyze your application's requirements, then
determine the required activities and the workflow topology. The activities handle the required
processing tasks, while the workflow topology defines the workflow's basic structure and
business logic.

For example, a media processing application might need to download a file, process it, and
then upload the processed file to an Amazon Simple Storage Service (S3) bucket. This can
broken down into four activity tasks:

1. download the file from a server

2. process the file (for instance, by transcoding it to a different media format)

3. upload the file to the S3 bucket

4. perform cleanup by deleting the local files

This workflow would have an entry point method and would implement a simple linear
topology that runs the activities in sequence, much like the HelloWorldWorkflow Application.

2. Implement activity and workflow interfaces. The workflow and activity contracts are defined
by Java interfaces, making their calling conventions predictable by SWF, and providing you
flexibility when implementing your workflow logic and activity tasks. The various parts of your
program can act as consumers of each others' data, yet don't need to be aware of much of the
implementation details of any of the other parts.

For example, you can define a FileProcessingWorkflow interface and provide different
workflow implementations for video encoding, compression, thumbnails, and so on. Each
of those workflows can have different control flows and can call different activity methods;
your workflow starter doesn't need to know. By using interfaces, it is also simple to test your
workflows by using mock implementations that can be replaced later with working code.

3. Generate activity and workflow clients. The AWS Flow Framework eliminates the need for
you to implement the details of managing asynchronous execution, sending HTTP requests,
marshaling data, and so forth. Instead, the workflow starter executes a workflow instance
by calling a method on the workflow client, and the workflow implementation executes
activities by calling methods on the activities client. The framework handles the details of
these interactions in the background.

If you are using Eclipse and you have configured your project, like in Setting up the AWS
Flow Framework for Java, the AWS Flow Framework annotation processor uses the interface

Implementing Workflow Applications API Version 2021-04-28 62

AWS Flow Framework for Java Developer Guide

definitions to automatically generate workflow and activities clients that expose the same set
of methods as the corresponding interface.

4. Implement activity and workflow host applications. Your workflow and activity
implementations must be embedded in host applications that poll Amazon SWF for tasks,
marshal any data, and call the appropriate implementation methods. AWS Flow Framework
for Java includes WorkflowWorker and ActivityWorker classes that make implementing host
applications straightforward and easy to do.

5. Test your workflow. AWS Flow Framework for Java provides JUnit integration that you can use
to test your workflows inline and locally.

6. Deploy the workers. You can deploy your workers as appropriate—for example, you can
deploy them to Amazon EC2 instances or to computers in your data center. Once deployed and
started, the workers start polling Amazon SWF for tasks and handle them as required.

7. Start executions. An application starts a workflow instance by using the workflow client to call
the workflow's entry point. You can also start workflows by using the Amazon SWF console.
Regardless of how you start a workflow instance, you can use Amazon SWF console to monitor
running workflow instance and examine the workflow history for running, completed, and
failed instances.

The AWS SDK for Java includes a set of AWS Flow Framework for Java samples that you can browse
and run by following the instructions in the readme.html file in the root directory. There are also a
set of recipes —simple applications — that show how to handle a variety of specific programming
issue, which are available from AWS Flow Framework Recipes.

Workflow and Activity Contracts

Java interfaces are used to declare the signatures of workflows and activities. The interface forms
the contract between the implementation of the workflow (or activity) and the client of that
workflow (or activity). For example, a workflow type MyWorkflow is defined using an interface that
is annotated with the @Workflow annotation:

@Workflow
@WorkflowRegistrationOptions(
 defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface MyWorkflow
{

Workflow and Activity Contracts API Version 2021-04-28 63

https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
http://aws.amazon.com/sdkforjava/
https://aws.amazon.com/code/2535278400103493

AWS Flow Framework for Java Developer Guide

 @Execute(version = "1.0")
 void startMyWF(int a, String b);

 @Signal
 void signal1(int a, int b, String c);

 @GetState
 MyWorkflowState getState();
}

The contract has no implementation-specific settings. This use of implementation-neutral
contracts allows clients to be decoupled from the implementation and hence provides the
flexibility to change the implementation details without breaking the client. Conversely, you
may also change the client without necessitating changes to the workflow or activity being
consumed. For example, the client may be modified to call an activity asynchronously using
promises (Promise<T>) without requiring a change to the activity implementation. Similarly, the
activity implementation may be changed so that it is completed asynchronously, for example, by a
person sending an email—without requiring the clients of the activity to be changed.

In the example above, the workflow interface MyWorkflow contains a method, startMyWF, for
starting a new execution. This method is annotated with the @Execute annotation and must have
a return type of void or Promise<>. In a given workflow interface, at most one method can be
annotated with this annotation. This method is the entry point of the workflow logic, and the
framework calls this method to execute the workflow logic when a decision task is received.

The workflow interface also defines the signals that may be sent to the workflow. The signal
method gets invoked when a signal with a matching name is received by the workflow execution.
For example, the MyWorkflow interface declares a signal method, signal1, annotated with the
@Signal annotation.

The @Signal annotation is required on signal methods. The return type of a signal method
must be void. A workflow interface may have zero or more signal methods defined in it. You
may declare a workflow interface without an @Execute method and some @Signal methods to
generate clients that can't start their execution but can send signals to running executions.

Methods annotated with @Execute and @Signal annotations may have any number of
parameters of any type other than Promise<T> or its derivatives. This allows you to pass strongly
typed inputs to a workflow execution at start and while it is running. The return type of the
@Execute method must be void or Promise<>.

Workflow and Activity Contracts API Version 2021-04-28 64

AWS Flow Framework for Java Developer Guide

Additionally, you may also declare a method in the workflow interface to report the latest state
of a workflow execution, for instance, the getState method in the previous example. This state
isn't the entire application state of the workflow. The intended use of this feature is to allow
you to store up to 32 KB of data to indicate the latest status of the execution. For example, in
an order processing workflow, you may store a string that indicates that the order has been
received, processed, or canceled. This method is called by the framework every time a decision
task is completed to get the latest state. The state is stored in Amazon Simple Workflow Service
(Amazon SWF) and can be retrieved using the generated external client. This allows you to check
the latest state of a workflow execution. Methods annotated with @GetState must not take any
arguments and must not have a void return type. You can return any type, which fits your needs,
from this method. In the above example, an object of MyWorkflowState (see definition below)
is returned by the method that is used to store a string state and a numeric percent complete. The
method is expected to perform read-only access of the workflow implementation object and is
invoked synchronously, which disallows use of any asynchronous operations like calling methods
annotated with @Asynchronous. At most one method in a workflow interface can be annotated
with @GetState annotation.

public class MyWorkflowState {
 public String status;
 public int percentComplete;
}

Similarly, a set of activities are defined using an interface annotated with @Activities
annotation. Each method in the interface corresponds to an activity—for example:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface MyActivities {
 // Overrides values from annotation found on the interface
 @ActivityRegistrationOptions(description = "This is a sample activity",
 defaultTaskScheduleToStartTimeoutSeconds = 100,
 defaultTaskStartToCloseTimeoutSeconds = 60)
 int activity1();

 void activity2(int a);
}

Workflow and Activity Contracts API Version 2021-04-28 65

AWS Flow Framework for Java Developer Guide

The interface allows you to group together a set of related activities. You can define any number
of activities within an activities interface, and you can define as many activities interfaces as you
want. Similar to @Execute and @Signal methods, activity methods can take any number of
arguments of any type other than Promise<T> or its derivatives. The return type of an activity
must not be Promise<T> or its derivatives.

Workflow and Activity Type Registration

Amazon SWF requires activity and workflow types to be registered before they can be used.
The framework automatically registers the workflows and activities in the implementations you
add to the worker. The framework looks for types that implement workflows and activities and
registers them with Amazon SWF. By default, the framework uses the interface definitions to
infer registration options for workflow and activity types. All workflow interfaces are required to
have either the @WorkflowRegistrationOptions annotation or the @SkipRegistration
annotation. The workflow worker registers all workflow types it is configured with that have
the @WorkflowRegistrationOptions annotation. Similarly, each activity method is
required to be annotated with either the @ActivityRegistrationOptions annotation or
the @SkipRegistration annotation or one of these annotations must be present on the
@Activities interface. The activity worker registers all activity types that it is configured with
that an @ActivityRegistrationOptions annotation applies to. The registration is performed
automatically when you start one of the workers. Workflow and activity types that have the
@SkipRegistration annotation are not registered. @ActivityRegistrationOptions, and
@SkipRegistration annotations have override semantics and the most specific one is applied to
an activity type.

Note that Amazon SWF doesn't allow you to re-register or modify the type once it has been
registered. The framework will try to register all types, but if the type is already registered it will
not be re-registered and no error will be reported.

If you need to modify registered settings, you must register a new version of the type. You can also
override registered settings when starting a new execution or when calling an activity that uses the
generated clients.

The registration requires a type name and some other registration options. The default
implementation determines these as follows:

Workflow and Activity Type Registration API Version 2021-04-28 66

AWS Flow Framework for Java Developer Guide

Workflow Type Name and Version

The framework determines the name of the workflow type from the workflow interface. The form
of the default workflow type name is {prefix}{name}. The {prefix} is set to the name of the
@Workflow interface followed by a '.' and the {name} is set to the name of the @Execute method.
The default name of the workflow type in the preceding example is MyWorkflow.startMyWF. You
can override the default name using the name parameter of the @Execute method. The default
name of the workflow type in the example is startMyWF. The name must not be an empty string.
Note that when you override the name using @Execute, the framework doesn't automatically
prepend a prefix to it. You are free to use your own naming scheme.

The workflow version is specified using the version parameter of the @Execute annotation.
There is no default for version and it must be explicitly specified; versionis a free form string,
and you are free to use your own versioning scheme.

Signal Name

The name of the signal can be specified using the name parameter of the @Signal annotation. If
not specified, it is defaulted to the name of the signal method.

Activity Type Name and Version

The framework determines the name of the activity type from the activities interface. The form
of the default activity type name is {prefix}{name}. The {prefix} is set to the name of the
@Activities interface followed by a '.' and the {name} is set to the method name. The default
{prefix} can be overridden in the @Activities annotation on the activities interface. You can
also specify the activity type name using the @Activity annotation on the activity method. Note
that when you override the name using @Activity, the framework will not automatically prepend
a prefix to it. You are free to user your own naming scheme.

The activity version is specified using the version parameter of the @Activities annotation. This
version is used as the default for all activities defined in the interface and can be overridden on a
per-activity basis using the @Activity annotation.

Default Task List

The default task list can be configured using the @WorkflowRegistrationOptions and
@ActivityRegistrationOptions annotations and setting the defaultTaskList parameter.
By default, it is set to USE_WORKER_TASK_LIST. This is a special value that instructs the

Workflow Type Name and Version API Version 2021-04-28 67

AWS Flow Framework for Java Developer Guide

framework to use the task list that is configured on the worker object that is used to register the
activity or workflow type. You can also choose to not register a default task list by setting the
default task list to NO_DEFAULT_TASK_LIST using these annotations. This can be used in cases
where you want to require that the task list be specified at run time. If no default task list has been
registered, then you must specify the task list when starting the workflow or calling the activity
method using the StartWorkflowOptions and ActivitySchedulingOptions parameters on
the respective method overload of the generated client.

Other Registration Options

All workflow and activity type registration options that are allowed by the Amazon SWF API can be
specified through the framework.

For a complete list of workflow registration options, see the following:

• @Workflow

• @Execute

• @WorkflowRegistrationOptions

• @Signal

For a complete list of activity registration options, see the following:

• @Activity

• @Activities

• @ActivityRegistrationOptions

If you want to have complete control over type registration, see Worker Extensibility.

Activity and Workflow Clients

Workflow and activity clients are generated by the framework based on the @Workflow and
@Activities interfaces. Separate client interfaces are generated that contain methods and
settings that make sense only on the client. If you are developing using Eclipse, this is done by the
Amazon SWF Eclipse plug-in every time you save the file containing the appropriate interface. The
generated code is placed in the generated sources directory in your project in the same package as
the interface.

Other Registration Options API Version 2021-04-28 68

AWS Flow Framework for Java Developer Guide

Note

Note that the default directory name used by Eclipse is .apt_generated. Eclipse doesn't
show directories whose names start with a '.' in Package Explorer. Use a different directory
name if you want to view the generated files in Project Explorer. In Eclipse, right-click the
package in Package Explorer, and then choose Properties, Java Compiler, Annotation
processing, and modify the Generate source directory setting.

Workflow Clients

The generated artifacts for the workflow contain three client-side interfaces and the classes that
implement them. The generated clients include:

• An asynchronous client intended to be consumed from within a workflow implementation that
provides asynchronous methods to start workflow executions and send signals

• An external client that can be used to start executions and send signals and retrieve workflow
state from outside the scope of a workflow implementation

• A self client that can be used to create continuous workflows

For example, the generated client interfaces for the example MyWorkflow interface are:

//Client for use from within a workflow
public interface MyWorkflowClient extends WorkflowClient
{
 Promise<Void> startMyWF(
 int a, String b);

 Promise<Void> startMyWF(
 int a, String b,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 Promise<Integer> a,

Workflow Clients API Version 2021-04-28 69

AWS Flow Framework for Java Developer Guide

 Promise<String> b);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 void signal1(
 int a, int b, String c);
}

//External client for use outside workflows
public interface MyWorkflowClientExternal extends WorkflowClientExternal
{
 void startMyWF(
 int a, String b);

 void startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride);

 void signal1(
 int a, int b, String c);

 MyWorkflowState getState();
}

//self client for creating continuous workflows
public interface MyWorkflowSelfClient extends WorkflowSelfClient
{
 void startMyWF(
 int a, String b);

 void startMyWF(
 int a, String b,
 Promise<?>... waitFor);

 void startMyWF(

Workflow Clients API Version 2021-04-28 70

AWS Flow Framework for Java Developer Guide

 int a, String b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

The interfaces have overloaded methods corresponding to each method in the @Workflow
interface that you declared.

The external client mirrors the methods on the @Workflow interface with one additional overload
of the @Execute method that takes StartWorkflowOptions. You can use this overload to pass
additional options when starting a new workflow execution. These options allow you to override
the default task list, timeout settings, and associate tags with the workflow execution.

On the other hand, the asynchronous client has methods that allow asynchronous invocation of the
@Execute method. The following method overloads are generated in the client interface for the
@Execute method in the workflow interface:

1. An overload that takes the original arguments as is. The return type of this overload will be
Promise<Void> if the original method returned void; otherwise, it will be the Promise<> as
declared on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Workflow Clients API Version 2021-04-28 71

AWS Flow Framework for Java Developer Guide

Promise<Void> startMyWF(int a, String b);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for.

2. An overload that takes the original arguments as is and additional variable arguments of type
Promise<?>. The return type of this overload will be Promise<Void> if the original method
returned void; otherwise, it will be the Promise<> as declared on the original method. For
example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<void> startMyWF(int a, String b, Promise<?>...waitFor);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for, but you want to wait for some other promises to become ready. The
variable argument can be used to pass such Promise<?> objects that were not declared as
arguments, but you want to wait for before executing the call.

3. An overload that takes the original arguments as is, an additional argument of type
StartWorkflowOptions and additional variable arguments of type Promise<?>. The return
type of this overload will be Promise<Void> if the original method returned void; otherwise,
it will be the Promise<> as declared on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<void> startMyWF(
 int a,
 String b,
 StartWorkflowOptions optionOverrides,

Workflow Clients API Version 2021-04-28 72

AWS Flow Framework for Java Developer Guide

 Promise<?>...waitFor);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for, when you want to override default settings used to start the workflow
execution, or when you want to wait for some other promises to become ready. The variable
argument can be used to pass such Promise<?> objects that were not declared as arguments,
but you want to wait for before executing the call.

4. An overload with each argument in the original method replaced with a Promise<> wrapper.
The return type of this overload will be Promise<Void> if the original method returned void;
otherwise, it will be the Promise<> as declared on the original method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b);

This overload should be used when the arguments to be passed to the workflow execution are to
be evaluated asynchronously. A call to this method overload will not execute until all arguments
passed to it become ready.

If some of the arguments are already ready, then convert them to a Promise that is already in
ready state through the Promise.asPromise(value) method. For example:

Promise<Integer> a = getA();
String b = getB();
startMyWF(a, Promise.asPromise(b));

5. An overload with each argument in the original method is replaced with a Promise<> wrapper.
The overload also has additional variable arguments of type Promise<?>. The return type of
this overload will be Promise<Void> if the original method returned void; otherwise, it will be
the Promise<> as declared on the original method. For example:

Original method:

Workflow Clients API Version 2021-04-28 73

AWS Flow Framework for Java Developer Guide

void startMyWF(int a, String b);

Generated method:

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>...waitFor);

This overload should be used when the arguments to be passed to the workflow execution are
to be evaluated asynchronously and you want to wait for some other promises to become ready
as well. A call to this method overload will not execute until all arguments passed to it become
ready.

6. An overload with each argument in the original method replaced with a Promise<?> wrapper.
The overload also has an additional argument of type StartWorkflowOptions and variable
arguments of type Promise<?>. The return type of this overload will be Promise<Void> if the
original method returned void; otherwise, it will be the Promise<> as declared on the original
method. For example:

Original method:

void startMyWF(int a, String b);

Generated method:

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionOverrides,
 Promise<?>...waitFor);

Use this overload when the arguments to be passed to the workflow execution will be evaluated
asynchronously and you want to override default settings used to start the workflow execution.
A call to this method overload will not execute until all arguments passed to it become ready.

A method is also generated corresponding to each signal in the workflow interface—for example:

Workflow Clients API Version 2021-04-28 74

AWS Flow Framework for Java Developer Guide

Original method:

void signal1(int a, int b, String c);

Generated method:

void signal1(int a, int b, String c);

The asynchronous client doesn't contain a method corresponding to the method annotated with
@GetState in the original interface. Because retrieval of state requires a web service call, it is not
suitable for use within a workflow. Hence, it is provided only through the external client.

The self client is intended to be used from within a workflow to start a new execution on
completion of the current execution. The methods on this client are similar to the ones on the
asynchronous client, but return void. This client doesn't have methods corresponding to methods
annotated with @Signal and @GetState. For more details, see the Continuous Workflows.

The generated clients derive from base interfaces: WorkflowClient and
WorkflowClientExternal, respectively, which provide methods that you can use to cancel or
terminate the workflow execution. For more details about these interfaces, see the AWS SDK for
Java documentation.

The generated clients allow you to interact with workflow executions in a strongly typed fashion.
Once created, an instance of a generated client is tied to a specific workflow execution and can be
used only for that execution. In addition, the framework also provides dynamic clients that are not
specific to a workflow type or execution. The generated clients rely on this client under the covers.
You may also directly use these clients. See the section on Dynamic Clients.

The framework also generates factories for creating the strongly typed clients. The generated
client factories for the example MyWorkflow interface are:

//Factory for clients to be used from within a workflow
public interface MyWorkflowClientFactory
 extends WorkflowClientFactory<MyWorkflowClient>
{
}

//Factory for clients to be used outside the scope of a workflow
public interface MyWorkflowClientExternalFactory
{

Workflow Clients API Version 2021-04-28 75

AWS Flow Framework for Java Developer Guide

 GenericWorkflowClientExternal getGenericClient();
 void setGenericClient(GenericWorkflowClientExternal genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);
 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 MyWorkflowClientExternal getClient();
 MyWorkflowClientExternal getClient(String workflowId);
 MyWorkflowClientExternal getClient(WorkflowExecution workflowExecution);
 MyWorkflowClientExternal getClient(
 WorkflowExecution workflowExecution,
 GenericWorkflowClientExternal genericClient,
 DataConverter dataConverter,
 StartWorkflowOptions options);
}

The WorkflowClientFactory base interface is:

public interface WorkflowClientFactory<T> {
 GenericWorkflowClient getGenericClient();
 void setGenericClient(GenericWorkflowClient genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);
 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 T getClient();
 T getClient(String workflowId);
 T getClient(WorkflowExecution execution);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options,
 DataConverter dataConverter);
}

You should use these factories to create instances of the client. The factory allows you to configure
the generic client (the generic client should be used for providing custom client implementation)
and the DataConverter used by the client to marshal data, as well as the options used to start
the workflow execution. For more details, see the DataConverters and Child Workflow Executions
sections. The StartWorkflowOptions contains settings that you can use to override the
defaults—for example, timeouts—specified at registration time. For more details about the
StartWorkflowOptions class, see the AWS SDK for Java documentation.

Workflow Clients API Version 2021-04-28 76

AWS Flow Framework for Java Developer Guide

The external client can be used to start workflow executions from outside of the scope of a
workflow while the asynchronous client can be used to start a workflow execution from code
within a workflow. In order to start an execution, you simply use the generated client to call the
method that corresponds to the method annotated with @Execute in the workflow interface.

The framework also generates implementation classes for the client interfaces. These clients create
and send requests to Amazon SWF to perform the appropriate action. The client version of the
@Execute method either starts a new workflow execution or creates a child workflow execution
using Amazon SWF APIs. Similarly, the client version of the @Signal method uses Amazon SWF
APIs to send a signal.

Note

The external workflow client must be configured with the Amazon SWF client and domain.
You can either use the client factory constructor that takes these as parameters or pass in
a generic client implementation that is already configured with the Amazon SWF client and
domain.
The framework walks the type hierarchy of the workflow interface and also generates client
interfaces for parent workflow interfaces and derives from them.

Activity Clients

Similar to the workflow client, a client is generated for each interface annotated with
@Activities. The generated artifacts include a client side interface and a client class. The
generated interface for the example @Activities interface above (MyActivities) is as follows:

public interface MyActivitiesClient extends ActivitiesClient
{
 Promise<Integer> activity1();
 Promise<Integer> activity1(Promise<?>... waitFor);
 Promise<Integer> activity1(ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(int a);
 Promise<Void> activity2(int a,
 Promise<?>... waitFor);
 Promise<Void> activity2(int a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a);

Activity Clients API Version 2021-04-28 77

AWS Flow Framework for Java Developer Guide

 Promise<Void> activity2(Promise<Integer> a,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
}

The interface contains a set of overloaded methods corresponding to each activity method in the
@Activities interface. These overloads are provided for convenience and allow calling activities
asynchronously. For each activity method in the @Activities interface, the following method
overloads are generated in the client interface:

1. An overload that takes the original arguments as is. The return type of this overload is
Promise<T>, where T is the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(int foo);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for.

2. An overload that takes the original arguments as is, an argument of type
ActivitySchedulingOptions and additional variable arguments of type Promise<?>. The
return type of this overload is Promise<T>, where T is the return type of the original method.
For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(
 int foo,
 ActivitySchedulingOptions optionsOverride,

Activity Clients API Version 2021-04-28 78

AWS Flow Framework for Java Developer Guide

 Promise<?>... waitFor);

This overload should be used when all the arguments of the workflow are available and don't
need to be waited for, when you want to override the default settings, or when you want to wait
for additional Promises to become ready. The variable arguments can be used to pass such
additional Promise<?> objects that were not declared as arguments, but you want to wait for
before executing the call.

3. An overload with each argument in the original method replaced with a Promise<> wrapper.
The return type of this overload is Promise<T>, where T is the return type of the original
method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(Promise<Integer> foo);

This overload should be used when the arguments to be passed to the activity will be evaluated
asynchronously. A call to this method overload will not execute until all arguments passed to it
become ready.

4. An overload with each argument in the original method replaced with a Promise<> wrapper.
The overload also has an additional argument of type ActivitySchedulingOptions and
variable arguments of type Promise<?>. The return type of this overload is Promise<T>,
where T is the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(
 Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

Activity Clients API Version 2021-04-28 79

AWS Flow Framework for Java Developer Guide

This overload should be used when the arguments to be passed to the activity will be evaluated
asynchronously, when you want to override the default settings registered with the type, or
when you want to wait for additional Promises to become ready. A call to this method overload
will not execute until all arguments passed to it become ready. The generated client class
implements this interface. The implementation of each interface method creates and sends a
request to Amazon SWF to schedule an activity task of the appropriate type using Amazon SWF
APIs.

5. An overload that takes the original arguments as is and additional variable arguments of type
Promise<?>. The return type of this overload is Promise<T>, where T is the return type of the
original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise< Void > activity2(int foo,
 Promise<?>...waitFor);

This overload should be used when all the activity's arguments are available and don't need to
be waited for, but you want to wait for other Promise objects to become ready.

6. An overload with each argument in the original method replaced with a Promise wrapper
and additional variable arguments of type Promise<?>. The return type of this overload is
Promise<T>, where T is the return type of the original method. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2(
 Promise<Integer> foo,
 Promise<?>... waitFor);

Activity Clients API Version 2021-04-28 80

AWS Flow Framework for Java Developer Guide

This overload should be used when all the arguments of the activity will be waited for
asynchronously and you also want to wait for some other Promises to become ready. A call to
this method overload will execute asynchronously when all Promise objects passed become
ready.

The generated activity client also has a protected method corresponding to each activity method,
named {activity method name}Impl(), that all activity overloads call into. You can override
this method to create mock client implementations. This method takes as arguments: all the
arguments to the original method in Promise<> wrappers, ActivitySchedulingOptions, and
variable arguments of type Promise<?>. For example:

Original method:

void activity2(int foo);

Generated method:

Promise<Void> activity2Impl(
 Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

Scheduling Options

The generated activity client allows you to pass in ActivitySchedulingOptions as an
argument. The ActivitySchedulingOptions structure contains settings that determine the
configuration of the activity task that the framework schedules in Amazon SWF. These settings
override the defaults that are specified as registration options. To specify scheduling options
dynamically, create an ActivitySchedulingOptions object, configure it as desired, and pass
it to the activity method. In the following example, we have specified the task list that should be
used for the activity task. This will override the default registered task list for this invocation of the
activity.

public class OrderProcessingWorkflowImpl implements OrderProcessingWorkflow {

 OrderProcessingActivitiesClient activitiesClient
 = new OrderProcessingActivitiesClientImpl();

Scheduling Options API Version 2021-04-28 81

AWS Flow Framework for Java Developer Guide

 // Workflow entry point
 @Override
 public void processOrder(Order order) {
 Promise<Void> paymentProcessed = activitiesClient.processPayment(order);
 ActivitySchedulingOptions schedulingOptions
 = new ActivitySchedulingOptions();
 if (order.getLocation() == "Japan") {
 schedulingOptions.setTaskList("TasklistAsia");
 } else {
 schedulingOptions.setTaskList("TasklistNorthAmerica");
 }

 activitiesClient.shipOrder(order,
 schedulingOptions,
 paymentProcessed);
 }
}

Dynamic Clients

In addition to the generated clients, the framework also provides general purpose clients
—DynamicWorkflowClient and DynamicActivityClient—that you can use to
dynamically start workflow executions, send signals, schedule activities, etc. For instance,
you may want to schedule an activity whose type isn't known at design time. You can use the
DynamicActivityClient for scheduling such an activity task. Similarly, you can dynamically
schedule a child workflow execution by using the DynamicWorkflowClient. In the following
example, the workflow looks up the activity from a database and uses the dynamic activity client
to schedule it:

//Workflow entrypoint
@Override
public void start() {
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<ActivityType> activityType
 = client.lookUpActivityFromDB();
 Promise<String> input = client.getInput(activityType);
 scheduleDynamicActivity(activityType,
 input);
}
@Asynchronous
void scheduleDynamicActivity(Promise<ActivityType> type,
 Promise<String> input){

Dynamic Clients API Version 2021-04-28 82

AWS Flow Framework for Java Developer Guide

 Promise<?>[] args = new Promise<?>[1];
 args[0] = input;
 DynamicActivitiesClient activityClient
 = new DynamicActivitiesClientImpl();
 activityClient.scheduleActivity(type.get(),
 args,
 null,
 Void.class);
}

For more details, see the AWS SDK for Java documentation.

Signaling and Canceling Workflow Executions

The generated workflow client has methods corresponding to each signal that can be sent to the
workflow. You can use them from within a workflow to send signals to other workflow executions.
This provides a typed mechanism for sending signals. However, sometimes you may need to
dynamically determine the signal name—for example, when the signal name is received in a
message. You can use the dynamic workflow client to dynamically send signals to any workflow
execution. Similarly, you can use the client to request cancellation of another workflow execution.

In the following example, the workflow looks up the execution to send a signal to from a database
and sends the signal dynamically using the dynamic workflow client.

//Workflow entrypoint
public void start()
{
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<WorkflowExecution> execution = client.lookUpExecutionInDB();
 Promise<String> signalName = client.getSignalToSend();
 Promise<String> input = client.getInput(signalName);
 sendDynamicSignal(execution, signalName, input);
}

@Asynchronous
void sendDynamicSignal(
 Promise<WorkflowExecution> execution,
 Promise<String> signalName,
 Promise<String> input)
{
 DynamicWorkflowClient workflowClient
 = new DynamicWorkflowClientImpl(execution.get());

Dynamic Clients API Version 2021-04-28 83

AWS Flow Framework for Java Developer Guide

 Object[] args = new Promise<?>[1];
 args[0] = input.get();
 workflowClient.signalWorkflowExecution(signalName.get(), args);
}

Workflow Implementation

In order to implement a workflow, you write a class that implements the desired @Workflow
interface. For instance, the example workflow interface (MyWorkflow) can be implemented like so:

public class MyWFImpl implements MyWorkflow
{
 MyActivitiesClient client = new MyActivitiesClientImpl();
 @Override
 public void startMyWF(int a, String b){
 Promise<Integer> result = client.activity1();
 client.activity2(result);
 }
 @Override
 public void signal1(int a, int b, String c){
 //Process signal
 client.activity2(a + b);
 }
}

The @Execute method in this class is the entry point of the workflow logic. Because the
framework uses replay to reconstruct the object state when a decision task is to be processed, a
new object is created for each decision task.

The use of Promise<T> as a parameter is disallowed in the @Execute method within a
@Workflow interface. This is done because making an asynchronous call is purely a decision of
the caller. The workflow implementation itself doesn't depend on whether the invocation was
synchronous or asynchronous. Therefore, the generated client interface has overloads that take
Promise<T> parameters so that these methods can be called asynchronously.

The return type of an @Execute method can only be void or Promise<T>. Note that a return
type of the corresponding external client is void and not Promise<>. Because the external client
isn't intended to be used from the asynchronous code, the external client doesn't return Promise
objects. For getting results of workflow executions stated externally, you can design the workflow
to update state in an external data store through an activity. Amazon SWF's visibility APIs can also

Workflow Implementation API Version 2021-04-28 84

AWS Flow Framework for Java Developer Guide

be used to retrieve the result of a workflow for diagnostic purposes. It isn't recommended that you
use the visibility APIs to retrieve results of workflow executions as a general practice because these
API calls may get throttled by Amazon SWF. The visibility APIs require you to identify the workflow
execution using a WorkflowExecution structure. You can get this structure from the generated
workflow client by calling the getWorkflowExecution method. This method will return the
WorkflowExecution structure corresponding to the workflow execution that the client is bound
to. See the Amazon Simple Workflow Service API Reference for more details about the visibility
APIs.

When calling activities from your workflow implementation, you should use the generated
activities client. Similarly, to send signals, use the generated workflow clients.

Decision Context

The framework provides an ambient context anytime workflow code is executed by the framework.
This context provides context-specific functionality that you may access in your workflow
implementation, such as creating a timer. See the section on Execution Context for more
information.

Exposing Execution State

Amazon SWF allows you to add custom state in the workflow history. The latest state reported
by the workflow execution is returned to you through visibility calls to the Amazon SWF service
and in the Amazon SWF console. For example, in an order processing workflow, you may report
the order status at different stages like 'order received', 'order shipped', and so on. In the AWS Flow
Framework for Java, this is accomplished through a method on your workflow interface that is
annotated with the @GetState annotation. When the decider is done processing a decision task, it
calls this method to get the latest state from the workflow implementation. Besides visibility calls,
the state can also be retrieved using the generated external client (which uses the visibility API calls
internally).

The following example demonstrates how to set the execution context.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();

Decision Context API Version 2021-04-28 85

https://docs.aws.eu/amazonswf/latest/apireference/

AWS Flow Framework for Java Developer Guide

 @GetState
 String getState();
}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();

}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 private PeriodicActivityClient activityClient
 = new PeriodicActivityClientImpl();

 private String state;

 @Override
 public void periodicWorkflow() {
 state = "Just Started";
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor)
 {
 if(count == 100) {
 state = "Finished Processing";
 return;
 }

 // call activity
 activityClient.activity1();

Exposing Execution State API Version 2021-04-28 86

AWS Flow Framework for Java Developer Guide

 // Repeat the activity after 1 hour.
 Promise<Void> timer = clock.createTimer(3600);
 state = "Waiting for timer to fire. Count = "+count;
 callPeriodicActivity(count+1, timer);
 }

 @Override
 public String getState() {
 return state;
 }
}

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public static void activity1()
 {
 ...
 }
}

The generated external client can be used to retrieve the latest state of the workflow execution at
any time.

PeriodicWorkflowClientExternal client
 = new PeriodicWorkflowClientExternalFactoryImpl().getClient();
System.out.println(client.getState());

In the above example, the execution state is reported at various stages. When the workflow
instance starts, periodicWorkflow reports the initial state as 'Just Started'. Each call to
callPeriodicActivity then updates the workflow state. Once activity1 has been called 100
times, the method returns and the workflow instance completes.

Workflow Locals

Sometimes, you may have a need for the use of static variables in your workflow implementation.
For example, you may want to store a counter that is to be accessed from various places (possibly
different classes) in the implementation of the workflow. However, you can't rely on static
variables in your workflows because static variables are shared across threads, which is problematic
because a worker may process different decision tasks on different threads at the same time.

Workflow Locals API Version 2021-04-28 87

AWS Flow Framework for Java Developer Guide

Alternatively, you may store such state in a field on the workflow implementation, but then
you will need to pass the implementation object around. To address this need, the framework
provides a WorkflowExecutionLocal<?> class. Any state that needs to have static variable
like semantics should be kept as an instance local using WorkflowExecutionLocal<?>.
You can declare and use a static variable of this type. For example, in the following snippet, a
WorkflowExecutionLocal<String> is used to store a user name.

public class MyWFImpl implements MyWF {
 public static WorkflowExecutionLocal<String> username
 = new WorkflowExecutionLocal<String>();

 @Override
 public void start(String username){
 this.username.set(username);
 Processor p = new Processor();
 p.updateLastLogin();
 p.greetUser();
 }

 public static WorkflowExecutionLocal<String> getUsername() {
 return username;
 }

 public static void setUsername(WorkflowExecutionLocal<String> username) {
 MyWFImpl.username = username;
 }
}

public class Processor {
 void updateLastLogin(){
 UserActivitiesClient c = new UserActivitiesClientImpl();
 c.refreshLastLogin(MyWFImpl.getUsername().get());
 }
 void greetUser(){
 GreetingActivitiesClient c = new GreetingActivitiesClientImpl();
 c.greetUser(MyWFImpl.getUsername().get());
 }
}

Workflow Locals API Version 2021-04-28 88

AWS Flow Framework for Java Developer Guide

Activity Implementation

Activities are implemented by providing an implementation of the @Activities interface.
The AWS Flow Framework for Java uses the activity implementation instances configured on
the worker to process activity tasks at run time. The worker automatically looks up the activity
implementation of the appropriate type.

You can use properties and fields to pass resources to activity instances, such as database
connections. Because the activity implementation object may be accessed from multiple threads,
shared resources must be thread safe.

Note that the activity implementation doesn't take parameters of type Promise<> or return
objects of that type. This is because the implementation of the activity should not depend on how
it was invoked (synchronously or asynchronously).

The activities interface shown before can be implemented like this:

public class MyActivitiesImpl implements MyActivities {

 @Override
 @ManualActivityCompletion
 public int activity1(){
 //implementation
 }

 @Override
 public void activity2(int foo){
 //implementation
 }
}

A thread local context is available to the activity implementation that can be used to retrieve the
task object, data converter object being used, etc. The current context can be accessed through
ActivityExecutionContextProvider.getActivityExecutionContext(). For more
details, see the AWS SDK for Java documentation for ActivityExecutionContext and the
section Execution Context.

Manually Completing Activities

The @ManualActivityCompletion annotation in the example above is an optional annotation.
It is allowed only on methods that implement an activity and is used to configure the activity to

Activity Implementation API Version 2021-04-28 89

AWS Flow Framework for Java Developer Guide

not automatically complete when the activity method returns. This could be useful when you want
to complete the activity asynchronously—for example, manually after a human action has been
completed.

By default, the framework considers the activity completed when your activity method returns.
This means that the activity worker reports activity task completion to Amazon SWF and provides
it with the results (if any). However, there are use cases where you don't want the activity task to
be marked completed when the activity method returns. This is especially useful when you are
modeling human tasks. For example, the activity method may send an email to a person who must
complete some work before the activity task is completed. In such cases, you can annotate the
activity method with @ManualActivityCompletion annotation to tell the activity worker that
it should not complete the activity automatically. In order to complete the activity manually, you
can either use the ManualActivityCompletionClient provided in the framework or use the
RespondActivityTaskCompleted method on the Amazon SWF Java client provided in the
Amazon SWF SDK. For more details, see the AWS SDK for Java documentation.

In order to complete the activity task, you need to provide a task token. The task
token is used by Amazon SWF to uniquely identify tasks. You can access this token
from the ActivityExecutionContext in your activity implementation. You
must pass this token to the party that is responsible for completing the task.
This token can be retrieved from the ActivityExecutionContext by calling
ActivityExecutionContextProvider.getActivityExecutionContext().getTaskToken().

The getName activity of the Hello World example can be implemented to send an email asking
someone to provide a greeting message:

@ManualActivityCompletion
@Override
public String getName() throws InterruptedException {
 ActivityExecutionContext executionContext
 = contextProvider.getActivityExecutionContext();
 String taskToken = executionContext.getTaskToken();
 sendEmail("abc@xyz.com",
 "Please provide a name for the greeting message and close task with token: " +
 taskToken);
 return "This will not be returned to the caller";
}

The following code snippet can be used to provide the greeting and close the task by using the
ManualActivityCompletionClient. Alternatively, you can also fail the task:

Manually Completing Activities API Version 2021-04-28 90

AWS Flow Framework for Java Developer Guide

public class CompleteActivityTask {

 public void completeGetNameActivity(String taskToken) {

 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(...); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 String result = "Hello World!";
 manualCompletionClient.complete(result);
 }

 public void failGetNameActivity(String taskToken, Throwable failure) {
 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(...); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 manualCompletionClient.fail(failure);
 }
}

Implementing AWS Lambda Tasks

Topics

• About AWS Lambda

• Benefits and limitations of using Lambda tasks

• Using Lambda tasks in your AWS Flow Framework for Java workflows

• View the HelloLambda sample

About AWS Lambda

AWS Lambda is a fully managed compute service that runs your code in response to events
generated by custom code or from various AWS services such as Amazon S3, DynamoDB, Amazon
Kinesis, Amazon SNS, and Amazon Cognito. For more information about Lambda, see the AWS
Lambda Developer Guide.

Implementing Lambda Tasks API Version 2021-04-28 91

https://docs.aws.eu/lambda/latest/dg/
https://docs.aws.eu/lambda/latest/dg/

AWS Flow Framework for Java Developer Guide

Amazon Simple Workflow Service provides a Lambda task so that you can run Lambda functions in
place of, or alongside traditional Amazon SWF activities.

Important

Your AWS account will be charged for Lambda executions (requests) executed by Amazon
SWF on your behalf. For details about Lambda pricing, see https://aws.amazon.com/
lambda/pricing/.

Benefits and limitations of using Lambda tasks

There are a number of benefits of using Lambda tasks in place of a traditional Amazon SWF
activity:

• Lambda tasks don’t need to be registered or versioned like Amazon SWF activity types.

• You can use any existing Lambda functions that you've already defined in your workflows.

• Lambda functions are called directly by Amazon SWF; there is no need for you to implement a
worker program to execute them as you must do with traditional activities.

• Lambda provides you with metrics and logs for tracking and analyzing your function executions.

There are also a number of limitations regarding Lambda tasks that you should be aware of:

• Lambda tasks can only be run in AWS regions that provide support for Lambda. See Lambda
Regions and Endpoints in the Amazon Web Services General Reference for details about the
currently-supported regions for Lambda.

• Lambda tasks are currently supported only by the base SWF HTTP API and in the AWS Flow
Framework for Java. There is currently no support for Lambda tasks in the AWS Flow Framework
for Ruby.

Using Lambda tasks in your AWS Flow Framework for Java workflows

There are three requirements to use Lambda tasks in your AWS Flow Framework for Java
workflows:

• A Lambda function to execute. You can use any Lambda function that you've defined. For more
information about how to create Lambda functions, see the AWS Lambda Developer Guide.

Benefits and limitations of using Lambda tasks API Version 2021-04-28 92

https://aws.eu/lambda/pricing/
https://aws.eu/lambda/pricing/
https://docs.aws.eu/general/latest/gr/rande.html#lambda_region
https://docs.aws.eu/general/latest/gr/rande.html#lambda_region
https://docs.aws.eu/lambda/latest/dg/

AWS Flow Framework for Java Developer Guide

• An IAM role that provides access to execute Lambda functions from your Amazon SWF
workflows.

• Code to schedule the Lambda task from within your workflow.

Set up an IAM role

Before you can invoke Lambda functions from Amazon SWF you must provide an IAM role that
provides access to Lambda from Amazon SWF. You can either:

• choose a pre-defined role, AWSLambdaRole, to give your workflows permission to invoke any
Lambda function associated with your account.

• define your own policy and associated role to give workflows permission to invoke particular
Lambda functions, specified by their Amazon Resource Names (ARNs).

Limit permissions on an IAM role

You can limit permissions on an IAM role you provide to Amazon SWF by using the SourceArn and
SourceAccount context keys in your resource trust policy. These keys limit the usage of an IAM
policy so that it is used only from Amazon Simple Workflow Service executions that belong in the
specified domain ARN. If you use both global condition context keys, the aws:SourceAccount
value and the account referenced in the aws:SourceArn value must use the same account ID
when used in the same policy statement.

In the following example, SourceArn context key restricts the IAM service role to only be used
in Amazon Simple Workflow Service executions that belong to someDomain in the account,
123456789012.

• Statement 1

Principal : "Service": "swf.amazonaws.com"

Action : sts:AssumeRole

"Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:swf:*:123456789012:/domain/someDomain"
 }

Using Lambda tasks in your AWS Flow Framework for Java workflows API Version 2021-04-28 93

AWS Flow Framework for Java Developer Guide

}

In the following example, the SourceAccount context key restricts the IAM service role to only be
used in Amazon Simple Workflow Service executions in the account, 123456789012.

"Condition": {
 "StringLike": {
 "aws:SourceAccount": "123456789012"
 }
}

Providing Amazon SWF with access to invoke any Lambda role

You can use the pre-defined role, AWSLambdaRole, to give your Amazon SWF workflows the ability
to invoke any Lambda function associated with your account.

To use AWSLambdaRole to give Amazon SWF access to invoke Lambda functions

1. Open the Amazon IAM console.

2. Choose Roles, then Create New Role.

3. Give your role a name, such as swf-lambda and choose Next Step.

4. Under AWS Service Roles, choose Amazon SWF, and choose Next Step.

5. On the Attach Policy screen, choose AWSLambdaRole from the list.

6. Choose Next Step and then Create Role once you've reviewed the role.

Defining an IAM role to provide access to invoke a specific Lambda function

If you want to provide access to invoke a specific Lambda function from your workflow, you will
need to define your own IAM policy.

To create an IAM policy to provide access to a particular Lambda function

1. Open the Amazon IAM console.

2. Choose Policies, then Create Policy.

3. Choose Copy an AWS Managed Policy and select AWSLambdaRole from the list. A policy will
be generated for you. Optionally edit its name and description to suit your needs.

4. In the Resource field of the Policy Document, add the ARN of your Lambda function(s). For
example:

Using Lambda tasks in your AWS Flow Framework for Java workflows API Version 2021-04-28 94

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Flow Framework for Java Developer Guide

• Resource : arn:aws:lambda:us-
east-1:111122223333:function:hello_lambda_function

Note

For a complete description of how to specify resources in an IAM role, see Overview of
IAM Policies in Using IAM.

5. Choose Create Policy to finish creating your policy.

You can then select this policy when creating a new IAM role, and use that role to give invoke
access to your Amazon SWF workflows. This procedure is very similar to creating a role with the
AWSLambdaRole policy. instead, choose your own policy when creating the role.

To create a Amazon SWF role using your Lambda policy

1. Open the Amazon IAM console.

2. Choose Roles, then Create New Role.

3. Give your role a name, such as swf-lambda-function and choose Next Step.

4. Under AWS Service Roles, choose Amazon SWF, and choose Next Step.

5. On the Attach Policy screen, choose your Lambda function-specific policy from the list.

6. Choose Next Step and then Create Role once you've reviewed the role.

Schedule a Lambda task for execution

Once you've defined an IAM role that allows you to invoke Lambda functions, you can schedule
them for execution as part of your workflow.

Note

This process is fully demonstrated by the HelloLambda sample in the AWS SDK for Java.

Using Lambda tasks in your AWS Flow Framework for Java workflows API Version 2021-04-28 95

http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
https://console.aws.amazon.com/iam/

AWS Flow Framework for Java Developer Guide

To schedule a Lambda task for execution

1. In your workflow implementation, get an instance of LambdaFunctionClient by calling
getLambdaFunctionClient() on a DecisionContext instance.

// Get a LambdaFunctionClient instance
DecisionContextProvider decisionProvider = new DecisionContextProviderImpl();
DecisionContext decisionContext = decisionProvider.getDecisionContext();
LambdaFunctionClient lambdaClient = decisionContext.getLambdaFunctionClient();

2. Schedule the task using the scheduleLambdaFunction() method on the
LambdaFunctionClient, passing it the name of the Lambda function that you created and
any input data for the Lambda task.

// Schedule the Lambda function for execution, using your IAM role for access.
String lambda_function_name = "The name of your Lambda function.";
String lambda_function_input = "Input data for your Lambda task.";

lambdaClient.scheduleLambdaFunction(lambda_function_name, lambda_function_input);

3. In your workflow execution starter, add the IAM lambda role to your default workflow options
by using StartWorkflowOptions.withLambdaRole(), and then pass the options when
starting the workflow.

// Workflow client classes are generated for you when you use the @Workflow
// annotation on your workflow interface declaration.
MyWorkflowClientExternalFactory clientFactory =
 new MyWorkflowClientExternalFactoryImpl(sdk_swf_client, swf_domain);

MyWorkflowClientExternal workflow_client = clientFactory.getClient();

// Give the ARN of an IAM role that allows SWF to invoke Lambda functions on
// your behalf.
String lambda_iam_role = "arn:aws:iam::111111000000:role/swf_lambda_role";

StartWorkflowOptions workflow_options =
 new StartWorkflowOptions().withLambdaRole(lambda_iam_role);

// Start the workflow execution

Using Lambda tasks in your AWS Flow Framework for Java workflows API Version 2021-04-28 96

AWS Flow Framework for Java Developer Guide

workflow_client.helloWorld("User", workflow_options);

View the HelloLambda sample

A sample that provides an implementation of a workflow that uses a Lambda task is provided in
the AWS SDK for Java. To view and/or run it, download the source.

A full description of how to build and run the HelloLambda sample is provided in the README file
provided with the AWS Flow Framework for Java samples.

Running Programs Written with the AWS Flow Framework for
Java

Topics

• WorkflowWorker

• ActivityWorker

• Worker Threading Model

• Worker Extensibility

The framework provides worker classes to initialize the AWS Flow Framework for Java runtime
and communicate with Amazon SWF. In order to implement a workflow or an activity worker,
you must create and start an instance of a worker class. These worker classes are responsible
for managing ongoing asynchronous operations, invoking asynchronous methods that become
unblocked, and communicating with Amazon SWF. They can be configured with workflow and
activity implementations, the number of threads, the task list to poll, and so on.

The framework comes with two worker classes, one for activities and one for workflows. In
order to run the workflow logic, you use the WorkflowWorker class. Similarly for activities the
ActivityWorker class is used. These classes automatically poll Amazon SWF for activity tasks
and invoke the appropriate methods in your implementation.

The following example shows how to instantiate a WorkflowWorker and start polling for tasks:

AmazonSimpleWorkflow swfClient = new AmazonSimpleWorkflowClient(awsCredentials);

View the HelloLambda sample API Version 2021-04-28 97

https://aws.amazon.com/code/3015904745387737

AWS Flow Framework for Java Developer Guide

WorkflowWorker worker = new WorkflowWorker(swfClient, "domain1", "tasklist1");
// Add workflow implementation types
worker.addWorkflowImplementationType(MyWorkflowImpl.class);

// Start worker
worker.start();

The basic steps to create an instance of the ActivityWorker and starting polling for tasks are as
follows:

AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(awsCredentials);
ActivityWorker worker = new ActivityWorker(swfClient,
 "domain1",
 "tasklist1");
worker.addActivitiesImplementation(new MyActivitiesImpl());

// Start worker
worker.start();

When you want to shut down an activity or decider, your application should shut down the
instances of the worker classes being used as well as the Amazon SWF Java client instance. This will
ensure that all resources used by the worker classes are properly released.

worker.shutdown();
worker.awaitTermination(1, TimeUnit.MINUTES);

In order to start an execution, simply create an instance of the generated external client and call
the @Execute method.

MyWorkflowClientExternalFactory factory = new MyWorkflowClientExternalFactoryImpl();
MyWorkflowClientExternal client = factory.getClient();
client.start();

WorkflowWorker

As the name suggests, this worker class is intended for use by the workflow implementation. It is
configured with a task list and the workflow implementation type. The worker class runs a loop

WorkflowWorker API Version 2021-04-28 98

AWS Flow Framework for Java Developer Guide

to poll for decision tasks in the specified task list. When a decision task is received, it creates an
instance of the workflow implementation and calls the @Execute method to process the task.

ActivityWorker

For implementing activity workers, you can use the ActivityWorker class to conveniently poll a
task list for activity tasks. You configure the activity worker with activity implementation objects.
This worker class runs a loop to poll for activity tasks in the specified task list. When an activity
task is received, it looks up the appropriate implementation that you provided and calls the activity
method to process the task. Unlike the WorkflowWorker, which calls the factory to create a new
instance for every decision task, the ActivityWorker simply uses the object you provided.

The ActivityWorker class uses the AWS Flow Framework for Java annotations to determine the
registration and execution options.

Worker Threading Model

In the AWS Flow Framework for Java, the embodiment of an activity or decider is an instance of
the worker class. Your application is responsible for configuring and instantiating the worker object
on each machine and process that should act as a worker. The worker object then automatically
receives tasks from Amazon SWF, dispatches them to your activity or workflow implementation
and reports results to Amazon SWF. It is possible for a single workflow instance to span many
workers. When Amazon SWF has one or more pending activity tasks, it assigns a task to the first
available worker, then the next one, and so on. This makes it possible for tasks belonging to the
same workflow instance to be processed on different workers concurrently.

ActivityWorker API Version 2021-04-28 99

AWS Flow Framework for Java Developer Guide

Moreover, each worker can be configured to process tasks on multiple threads. This means that the
activity tasks of a workflow instance can run concurrently even if there is only one worker.

Decision tasks behave similarly with the exception that Amazon SWF guarantees that for a given
workflow execution only one decision can be executed at a time. A single workflow execution will
typically require multiple decision tasks; hence, it may end up executing on multiple processes
and threads as well. The decider is configured with the type of the workflow implementation.
When a decision task is received by the decider, it creates an instance (object) of the workflow
implementation. The framework provides an extensible factory pattern for creating these
instances. The default workflow factory creates a new object every time. You can provide custom
factories to override this behavior.

Contrary to deciders, which are configured with workflow implementation types, activity workers
are configured with instances (objects) of the activity implementations. When an activity task is
received by the activity worker, it is dispatched to the appropriate activity implementation object.

Worker Threading Model API Version 2021-04-28 100

AWS Flow Framework for Java Developer Guide

The workflow worker maintains a single pool of threads and executes the workflow on the same
thread that was used to poll Amazon SWF for the task. Because activities are long running (at least
when compared to the workflow logic), the activity worker class maintains two separate pools
of threads; one for polling Amazon SWF for activity tasks and the other for processing tasks by
executing the activity implementation. This allows you to configure the number of threads to poll
for tasks separate from the number of threads to execute them. For example, you can have a small
number of threads to poll and a large number of threads to execute the tasks. The activity worker
class polls Amazon SWF for a task only when it has a free poll thread as well as a free thread to
process the task.

This threading and instancing behavior implies that:

1. Activity implementations must be stateless. You should not use instance variables to store
application state in activity objects. You may, however, use fields to store resources such as
database connections.

2. Activity implementations must be thread safe. Because the same instance may be used to
process tasks from different threads at the same time, access to shared resources from the
activity code must be synchronized.

3. Workflow implementation can be stateful, and instance variables may be used to store state.
Even though a new instance of the workflow implementation is created to process each
decision task, the framework will ensure that state is properly recreated. However, the workflow
implementation must be deterministic. See the section Understanding a Task in AWS Flow
Framework for Java for more details.

4. Workflow implementations don't need to be thread safe when using the default factory.
The default implementation ensures that only one thread uses an instance of the workflow
implementation at a time.

Worker Threading Model API Version 2021-04-28 101

AWS Flow Framework for Java Developer Guide

Worker Extensibility

The AWS Flow Framework for Java also contains a couple of low-level worker classes that give you
fine-grained control as well as extensibility. Using them, you can completely customize workflow
and activity type registration and set factories for creating implementation objects. These workers
are GenericWorkflowWorker and GenericActivityWorker.

The GenericWorkflowWorker can be configured with a factory for creating workflow
definition factories. The workflow definition factory is responsible for creating instances of
the workflow implementation and for providing configuration settings such as registration
options. Under normal circumstances, you should use the WorkflowWorker class directly. It will
automatically create and configure implementation of the factories provided in the framework,
POJOWorkflowDefinitionFactoryFactory and POJOWorkflowDefinitionFactory. The
factory requires that the workflow implementation class must have a no argument constructor.
This constructor is used to create instances of the workflow object at run time. The factory looks
at the annotations you used on the workflow interface and implementation to create appropriate
registration and execution options.

You may provide your own implementation of the factories by implementing
WorkflowDefinitionFactory, WorkflowDefinitionFactoryFactory, and
WorkflowDefinition. The WorkflowDefinition class is used by the worker class to dispatch
decision tasks and signals. By implementing these base classes, you can completely customize
the factory and the dispatch of requests to the workflow implementation. For example, you can
use these extensibility points to provide a custom programming model for writing workflows, for
instance, based on your own annotations or generating it from WSDL instead of the code first
approach used by the framework. In order to use your custom factories, you will have to use the
GenericWorkflowWorker class. For more details about these classes, see the AWS SDK for Java
documentation.

Similarly, GenericActivityWorker allows you to provide a custom activity
implementation factory. By implementing the ActivityImplementationFactory and
ActivityImplementation classes you can completely control activity instantiation as well as
customize registration and execution options. For more details of these classes, see the AWS SDK
for Java documentation.

Execution Context

Topics

Worker Extensibility API Version 2021-04-28 102

AWS Flow Framework for Java Developer Guide

• Decision Context

• Activity Execution Context

The framework provides an ambient context to workflow and activity implementations. This
context is specific to the task being processed and provides some utilities that you can use in your
implementation. A context object is created every time a new task is processed by the worker.

Decision Context

When a decision task is executed, the framework provides the context to workflow implementation
through the DecisionContext class. DecisionContext provides context-sensitive information
like workflow execution run Id and clock and timer functionality.

Accessing DecisionContext in Workflow Implementation

You can access the DecisionContext in your workflow implementation using the
DecisionContextProviderImpl class. Alternatively, you can inject the context in a field
or property of your workflow implementation using Spring as shown in the Testability and
Dependency Injection section.

DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();
DecisionContext context = contextProvider.getDecisionContext();

Creating a Clock and Timer

The DecisionContext contains a property of type WorkflowClock that provides timer and
clock functionality. Because the workflow logic needs to be deterministic, you should not directly
use the system clock in your workflow implementation. The currentTimeMills method on the
WorkflowClock returns the time of the start event of the decision being processed. This ensures
that you get the same time value during replay, hence, making your workflow logic deterministic.

WorkflowClock also has a createTimer method which returns a Promise object that becomes
ready after the specified interval. You can use this value as a parameter to other asynchronous
methods to delay their execution by the specified period of time. This way you can effectively
schedule an asynchronous method or activity for execution at a later time.

The example in the following listing demonstrates how to periodically call an activity.

Decision Context API Version 2021-04-28 103

AWS Flow Framework for Java Developer Guide

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();
}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();
}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void periodicWorkflow() {
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor) {
 if (count == 100) {
 return;
 }
 PeriodicActivityClient client = new PeriodicActivityClientImpl();
 // call activity
 Promise<Void> activityCompletion = client.activity1();

 Promise<Void> timer = clock.createTimer(3600);

 // Repeat the activity either after 1 hour or after previous activity run
 // if it takes longer than 1 hour

Decision Context API Version 2021-04-28 104

AWS Flow Framework for Java Developer Guide

 callPeriodicActivity(count + 1, timer, activityCompletion);
 }
}

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public void activity1() {
 ...
 }
}

In the above listing, the callPeriodicActivity asynchronous method calls activity1 and
then creates a timer using the current AsyncDecisionContext. It passes the returned Promise
as an argument to a recursive call to itself. This recursive call waits until the timer fires (1 hour in
this example) before executing.

Activity Execution Context

Just as the DecisionContext provides context information when a decision task is being
processed, ActivityExecutionContext provides similar context information when
an activity task is being processed. This context is available to your activity code through
ActivityExecutionContextProviderImpl class.

ActivityExecutionContextProvider provider
 = new ActivityExecutionContextProviderImpl();
ActivityExecutionContext aec = provider.getActivityExecutionContext();

Using ActivityExecutionContext, you can perform the following:

Heartbeat a Long Running Activity

If the activity is long running, it must periodically report its progress to Amazon SWF to let it
know that the task is still making progress. In the absence of such a heartbeat, the task may
timeout if a task heartbeat timeout was set at activity type registration or while scheduling the
activity. In order to send a heartbeat, you can use the recordActivityHeartbeat method on
ActivityExecutionContext. Heartbeat also provides a mechanism for canceling ongoing
activities. See the Error Handling section for more details and an example.

Activity Execution Context API Version 2021-04-28 105

AWS Flow Framework for Java Developer Guide

Get Details of the Activity Task

If you want, you can get all the details of the activity task that were passed by Amazon SWF when
the executor got the task. This includes information regarding the inputs to the task, task type,
task token, etc. If you want to implement an activity that is manually completed—for example,
by a human action—then you must use the ActivityExecutionContext to retrieve the task
token and pass it to the process that will eventually complete the activity task. See the section on
Manually Completing Activities for more details.

Get the Amazon SWF Client Object that is Being Used by the Executor

The Amazon SWF client object being used by the executor can be retrieved by calling getService
method on ActivityExecutionContext. This is useful if you want to make a direct call to the
Amazon SWF service.

Child Workflow Executions

In the examples so far, we have started workflow execution directly from an application. However,
a workflow execution may be started from within a workflow by calling the workflow entry point
method on the generated client. When a workflow execution is started from the context of another
workflow execution, it is called a child workflow execution. This allows you to refactor complex
workflows into smaller units and potentially share them across different workflows. For example,
you can create a payment processing workflow and call it from an order processing workflow.

Semantically, the child workflow execution behaves the same as a standalone workflow except for
the following differences:

1. When the parent workflow terminates due to an explicit action by the user—for example, by
calling the TerminateWorkflowExecution Amazon SWF API, or it is terminated due to a
timeout—then the fate of the child workflow execution will be determined by a child policy.
You can set this child policy to terminate, cancel, or abandon (keep running) child workflow
executions.

2. The output of the child workflow (return value of the entry point method) can be used by the
parent workflow execution just like the Promise<T> returned by an asynchronous method.
This is different from standalone executions where the application must get the output by using
Amazon SWF APIs.

Child Workflow Executions API Version 2021-04-28 106

AWS Flow Framework for Java Developer Guide

In the following example, the OrderProcessor workflow creates a PaymentProcessor child
workflow:

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface OrderProcessor {

 @Execute(version = "1.0")
 void processOrder(Order order);
}

public class OrderProcessorImpl implements OrderProcessor {
 PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();

 @Override
 public void processOrder(Order order) {
 float amount = order.getAmount();
 CardInfo cardInfo = order.getCardInfo();

 PaymentProcessorClient childWorkflowClient = factory.getClient();
 childWorkflowClient.processPayment(amount, cardInfo);
 }

}

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PaymentProcessor {

 @Execute(version = "1.0")
 void processPayment(float amount, CardInfo cardInfo);

}

public class PaymentProcessorImpl implements PaymentProcessor {
 PaymentActivitiesClient activitiesClient = new PaymentActivitiesClientImpl();

 @Override
 public void processPayment(float amount, CardInfo cardInfo) {
 Promise<PaymentType> payType = activitiesClient.getPaymentType(cardInfo);

Child Workflow Executions API Version 2021-04-28 107

AWS Flow Framework for Java Developer Guide

 switch(payType.get()) {
 case Visa:
 activitiesClient.processVisa(amount, cardInfo);
 break;
 case Amex:
 activitiesClient.processAmex(amount, cardInfo);
 break;
 default:
 throw new UnSupportedPaymentTypeException();
 }
 }

}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 3600,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PaymentActivities {

 PaymentType getPaymentType(CardInfo cardInfo);

 void processVisa(float amount, CardInfo cardInfo);

 void processAmex(float amount, CardInfo cardInfo);

}

Continuous Workflows

In some use cases, you may need a workflow that executes forever or runs for a long duration, for
example, a workflow that monitors the health of a server fleet.

Note

Because Amazon SWF keeps the entire history of a workflow execution, the history will
keep growing over time. The framework retrieves this history from Amazon SWF when it
performs a replay, and this will become expensive if the history size is too large. In such
long running or continuous workflows, you should periodically close the current execution
and start a new one to continue processing.

Continuous Workflows API Version 2021-04-28 108

AWS Flow Framework for Java Developer Guide

This is a logical continuation of the workflow execution. The generated self client can be used for
this purpose. In your workflow implementation, simply call the @Execute method on the self
client. Once the current execution completes, the framework will start a new execution using the
same workflow Id.

You can also continue the execution by calling the continueAsNewOnCompletion method on
the GenericWorkflowClient that you can retrieve from the current DecisionContext. For
example, the following workflow implementation sets a timer to fire after a day and calls its own
entry point to start a new execution.

public class ContinueAsNewWorkflowImpl implements ContinueAsNewWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private ContinueAsNewWorkflowSelfClient selfClient
 = new ContinueAsNewWorkflowSelfClientImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void startWorkflow() {
 Promise<Void> timer = clock.createTimer(86400);
 continueAsNew(timer);
 }

 @Asynchronous
 void continueAsNew(Promise<Void> timer) {
 selfClient.startWorkflow();
 }
}

When a workflow recursively calls itself, the framework will close the current workflow when all
pending tasks have completed and start a new workflow execution. Note that as long as there
are pending tasks, the current workflow execution will not close. The new execution will not
automatically inherit any history or data from the original execution; if you want to carry over
some state to the new execution, then you must pass it explicitly as input.

Continuous Workflows API Version 2021-04-28 109

AWS Flow Framework for Java Developer Guide

Setting task priority in Amazon SWF

By default, tasks on a task list are delivered based upon their arrival time: tasks that are scheduled
first are generally run first, as far as possible. By setting an optional task priority, you can give
priority to certain tasks: Amazon SWF will attempt to deliver higher-priority tasks on a task list
before those with lower priority.

You can set task priorities for both workflows and activities. A workflow's task priority doesn't
affect the priority of any activity tasks it schedules, nor does it affect any child workflows it starts.
The default priority for an activity or workflow is set (either by you or by Amazon SWF) during
registration, and the registered task priority is always used unless it is overridden while scheduling
the activity or starting a workflow execution.

Task priority values can range from "-2147483648" to "2147483647", with higher numbers
indicating higher priority. If you don't set the task priority for an activity or workflow, it will be
assigned a priority of zero ("0").

Topics

• Setting Task Priority for Workflows

• Setting Task Priority for Activities

Setting Task Priority for Workflows

You can set the task priority for a workflow when you register it or start it. The task priority that is
set when the workflow type is registered is used as the default for any workflow executions of that
type, unless it is overridden when starting the workflow execution.

To register a workflow type with a default task priority, set the defaultTaskPriority option in
WorkflowRegistrationOptions when declaring it:

@Workflow
@WorkflowRegistrationOptions(
 defaultTaskPriority = 10,
 defaultTaskStartToCloseTimeoutSeconds = 240)
public interface PriorityWorkflow
{
 @Execute(version = "1.0")
 void startWorkflow(int a);
}

Setting task priority API Version 2021-04-28 110

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/WorkflowRegistrationOptions.html

AWS Flow Framework for Java Developer Guide

You can also set the taskPriority for a workflow when you start it, overriding the registered
(default) task priority.

StartWorkflowOptions priorityWorkflowOptions
 = new StartWorkflowOptions().withTaskPriority(10);

PriorityWorkflowClientExternalFactory cf
 = new PriorityWorkflowClientExternalFactoryImpl(swfService, domain);

priority_workflow_client = cf.getClient();

priority_workflow_client.startWorkflow(
 "Smith, John", priorityWorkflowOptions);

Additionally, you can set the task priority when starting a child workflow or
continuing a workflow as new. For example, you can set the taskPriority option in
ContinueAsNewWorkflowExecutionParameters or in StartChildWorkflowExecutionParameters.

Setting Task Priority for Activities

You can set the task priority for an activity either when registering it or when scheduling it. The
task priority that is set when registering an activity type is used as the default priority when the
activity is run, unless it is overridden when scheduling the activity.

To register an activity type with a default task priority, set the defaultTaskPriority option in
ActivityRegistrationOptions when declaring it:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskPriority = 10,
 defaultTaskStartToCloseTimeoutSeconds = 120)
public interface ImportantActivities {
 int doSomethingImportant();
}

You can also set the taskPriority for an activity when you schedule it, overriding the registered
(default) task priority.

ActivitySchedulingOptions activityOptions = new
 ActivitySchedulingOptions.withTaskPriority(10);

Setting Task Priority for Activities API Version 2021-04-28 111

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/ContinueAsNewWorkflowExecutionParameters.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/StartChildWorkflowExecutionParameters.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/ActivityRegistrationOptions.html

AWS Flow Framework for Java Developer Guide

ImportantActivitiesClient activityClient = new ImportantActivitiesClientImpl();

activityClient.doSomethingImportant(activityOptions);

DataConverters

When your workflow implementation calls a remote activity, the inputs passed to it and
the result of executing the activity must be serialized so they can be sent over the wire. The
framework uses the DataConverter class for this purpose. This is an abstract class that you can
implement to provide your own serializer. A default Jackson serializer–based implementation,
JsonDataConverter, is provided in the framework. For more details, see the AWS SDK for Java
documentation. Refer to the Jackson JSON Processor documentation for details about how Jackson
performs serialization as well as Jackson annotations that can be used to influence it. The wire
format used is considered part of the contract. Hence, you can specify a DataConverter on your
activities and workflow interfaces by setting the DataConverter property of the @Activities
and @Workflow annotations.

The framework will create objects of the DataConverter type you specified on @Activities
annotation to serialize the inputs to the activity and to deserialize its result. Similarly, objects
of the DataConverter type you specify on @Workflow annotation will be used to serialize
parameters you pass to the workflow, and in the case of child workflow, to deserialize the result.
In addition to inputs, the framework also passes additional data to Amazon SWF—for example,
exception details—the workflow serializer will be used for serializing this data as well.

You can also provide an instance of the DataConverter if you don't want the framework
to automatically create it. The generated clients have constructor overloads that take a
DataConverter.

If you don't specify a DataConverter type and don't pass a DataConverter object, the
JsonDataConverter will be used by default.

Passing Data to Asynchronous Methods

Topics

• Passing Collections and Maps to Asynchronous Methods

• Settable<T>

DataConverters API Version 2021-04-28 112

https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html
https://docs.aws.eu/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html

AWS Flow Framework for Java Developer Guide

• @NoWait

• Promise<Void>

• AndPromise and OrPromise

The use of Promise<T> has been explained in previous sections. Some advanced use cases of
Promise<T> are discussed here.

Passing Collections and Maps to Asynchronous Methods

The framework supports passing arrays, collections, and maps as Promise types to asynchronous
methods. For example, an asynchronous method may take Promise<ArrayList<String>> as an
argument as shown in the following listing.

@Asynchronous
public void printList(Promise<List<String>> list) {
 for (String s: list.get()) {
 activityClient.printActivity(s);
 }
}

Semantically, this behaves as any other Promise typed parameter and the asynchronous method
will wait until the collection becomes available before executing. If the members of a collection
are Promise objects, then you can make the framework wait for all members to become ready as
shown in the following snippet. This will make the asynchronous method wait on each member of
the collection to become available.

@Asynchronous
public void printList(@Wait List<Promise<String>> list) {
 for (Promise<String> s: list) {
 activityClient.printActivity(s);
 }
}

Note that the @Wait annotation must be used on the parameter to indicate that it contains
Promise objects.

Note also that the activity printActivity takes a String argument but the matching method
in the generated client takes a Promise<String>. We are calling the method on the client and not
invoking the activity method directly.

Passing Collections and Maps to Asynchronous Methods API Version 2021-04-28 113

AWS Flow Framework for Java Developer Guide

Settable<T>

Settable<T> is a derived type of Promise<T> that provides a set method that allows you to
manually set the value of a Promise. For example, the following workflow waits for a signal to be
received by waiting on a Settable<?>, which is set in the signal method:

public class MyWorkflowImpl implements MyWorkflow{
 final Settable<String> result = new Settable<String>();

 //@Execute method
 @Override
 public Promise<String> start() {
 return done(result);
 }

 //Signal
 @Override
 public void manualProcessCompletedSignal(String data) {
 result.set(data);
 }

 @Asynchronous
 public Promise<String> done(Settable<String> result){
 return result;
 }
}

A Settable<?> can also be chained to another promise at a time. You can use AndPromise and
OrPromise to group promises. You can unchain a chained Settable by calling the unchain()
method on it. When chained, the Settable<?> automatically becomes ready when the promise
that it is chained to becomes ready. Chaining is especially useful when you want to use a
promise returned from within the scope of a doTry() in other parts of your program. Because
TryCatchFinally is used as a nested class, you can't declare a Promise<> in the parent's scope
and set it in doTry(). This is because Java requires variables to be declared in parent scope and
used in nested classes to be marked final. For example:

@Asynchronous
public Promise<String> chain(final Promise<String> input) {
 final Settable<String> result = new Settable<String>();

 new TryFinally() {

Settable<T> API Version 2021-04-28 114

AWS Flow Framework for Java Developer Guide

 @Override
 protected void doTry() throws Throwable {
 Promise<String> resultToChain = activity1(input);
 activity2(resultToChain);

 // Chain the promise to Settable
 result.chain(resultToChain);
 }

 @Override
 protected void doFinally() throws Throwable {
 if (result.isReady()) { // Was a result returned before the exception?
 // Do cleanup here
 }
 }
 };

 return result;
}

A Settable can be chained to one promise at a time. You can unchain a chained Settable by
calling the unchain() method on it.

@NoWait

When you pass a Promise to an asynchronous method, by default, the framework will wait for the
Promise(s) to become ready before executing the method (except for collection types). You may
override this behavior by using the @NoWait annotation on parameters in the declaration of the
asynchronous method. This is useful if you are passing in Settable<T>, which will be set by the
asynchronous method itself.

Promise<Void>

Dependencies in asynchronous methods are implemented by passing the Promise returned by
one method as an argument to another. However, there may be cases where you want to return
void from a method, but still want other asynchronous methods to execute after its completion.
In such cases, you can use Promise<Void> as the return type of the method. The Promise
class provides a static Void method that you can use to create a Promise<Void> object. This
Promise will become ready when the asynchronous method finishes execution. You can pass this

@NoWait API Version 2021-04-28 115

AWS Flow Framework for Java Developer Guide

Promise to another asynchronous method just like any other Promise object. If you are using
Settable<Void>, then call the set method on it with null to make it ready.

AndPromise and OrPromise

AndPromise and OrPromise allow you to group multiple Promise<> objects into a single logical
promise. An AndPromise becomes ready when all promises used to construct it become ready. An
OrPromise becomes ready when any promise in the collection of promises used to construct it
becomes ready. You can call getValues() on AndPromise and OrPromise to retrieve the list of
values of the constituent promises.

Testability and Dependency Injection

Topics

• Spring Integration

• JUnit Integration

The framework is designed to be Inversion of Control (IoC) friendly. Activity and workflow
implementations as well as the framework supplied workers and context objects can be configured
and instantiated using containers like Spring. Out of the box, the framework provides integration
with the Spring Framework. In addition, integration with JUnit has been provided for unit testing
workflow and activity implementations.

Spring Integration

The com.amazonaws.services.simpleworkflow.flow.spring package contains classes that make
it easy to use the Spring framework in your applications. These include a custom Scope and
Spring-aware activity and workflow workers: WorkflowScope, SpringWorkflowWorker and
SpringActivityWorker. These classes allow you to configure your workflow and activity
implementations as well as the workers entirely through Spring.

WorkflowScope

WorkflowScope is a custom Spring Scope implementation provided by the framework. This scope
allows you to create objects in the Spring container whose lifetime is scoped to that of a decision
task. The beans in this scope are instantiated every time a new decision task is received by the
worker. You should use this scope for workflow implementation beans and any other beans it
depends on. The Spring-provided singleton and prototype scopes should not be used for workflow

AndPromise and OrPromise API Version 2021-04-28 116

AWS Flow Framework for Java Developer Guide

implementation beans because the framework requires that a new bean be created for each
decision task. Failure to do so will result in unexpected behavior.

The following example shows a snippet of Spring configuration that registers the WorkflowScope
and then uses it for configuring a workflow implementation bean and an activity client bean.

<!-- register AWS Flow Framework for Java WorkflowScope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

The line of configuration: <aop:scoped-proxy proxy-target-class="false" />, used
in the configuration of the workflowImpl bean, is required because the WorkflowScope
doesn't support proxying using CGLIB. You should use this configuration for any bean in
the WorkflowScope that is wired to another bean in a different scope. In this case, the
workflowImpl bean needs to be wired to a workflow worker bean in singleton scope (see
complete example below).

You can learn more about using custom scopes in the Spring Framework documentation.

Spring-Aware Workers

When using Spring, you should use the Spring-aware worker classes provided by the framework:
SpringWorkflowWorker and SpringActivityWorker. These workers can be injected

Spring Integration API Version 2021-04-28 117

AWS Flow Framework for Java Developer Guide

in your application using Spring as shown in the next example. The Spring-aware workers
implement Spring's SmartLifecycle interface and, by default, automatically start polling for
tasks when the Spring context is initialized. You can turn off this functionality by setting the
disableAutoStartup property of the worker to true.

The following example shows how to configure a decider. This example uses
MyActivities and MyWorkflow interfaces (not shown here) and corresponding
implementations, MyActivitiesImpl and MyWorkflowImpl. The generated client
interfaces and implementations are MyWorkflowClient/MyWorkflowClientImpl and
MyActivitiesClient/MyActivitiesClientImpl (also not shown here).

The activities client is injected in the workflow implementation using Spring's auto wire feature:

public class MyWorkflowImpl implements MyWorkflow {
 @Autowired
 public MyActivitiesClient client;

 @Override
 public void start() {
 client.activity1();
 }
}

The Spring configuration for the decider is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/
spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">

Spring Integration API Version 2021-04-28 118

AWS Flow Framework for Java Developer Guide

 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>
 <context:annotation-config/>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- Amazon SWF client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <!-- workflow worker -->
 <bean id="workflowWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringWorkflowWorker">
 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />

Spring Integration API Version 2021-04-28 119

AWS Flow Framework for Java Developer Guide

 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 </bean>
</beans>

Because the SpringWorkflowWorker is fully configured in Spring and automatically starts
polling when the Spring context is initialized, the host process for the decider is simple:

public class WorkflowHost {
 public static void main(String[] args){
 ApplicationContext context
 = new FileSystemXmlApplicationContext("resources/spring/
WorkflowHostBean.xml");
 System.out.println("Workflow worker started");
 }
}

Similarly, the activity worker can be configured as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/
spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean

 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>

Spring Integration API Version 2021-04-28 120

AWS Flow Framework for Java Developer Guide

 </map>
 </property>
 </bean>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- Amazon SWF client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities impl -->
 <bean name="activitiesImpl" class="asadj.spring.test.MyActivitiesImpl">
 </bean>

 <!-- activity worker -->
 <bean id="activityWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringActivityWorker">
 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />
 <property name="activitiesImplementations">
 <list>
 <ref bean="activitiesImpl" />
 </list>
 </property>
 </bean>
</beans>

The activity worker host process is similar to the decider:

Spring Integration API Version 2021-04-28 121

AWS Flow Framework for Java Developer Guide

public class ActivityHost {
 public static void main(String[] args) {
 ApplicationContext context = new FileSystemXmlApplicationContext(
 "resources/spring/ActivityHostBean.xml");
 System.out.println("Activity worker started");
 }
}

Injecting Decision Context

If your workflow implementation depends on the context objects, then you can easily inject them
through Spring as well. The framework automatically registers context-related beans in the Spring
container. For example, in the following snippet, the various context objects have been auto wired.
No other Spring configuration of the context objects is required.

public class MyWorkflowImpl implements MyWorkflow {
 @Autowired
 public MyActivitiesClient client;
 @Autowired
 public WorkflowClock clock;
 @Autowired
 public DecisionContext dcContext;
 @Autowired
 public GenericActivityClient activityClient;
 @Autowired
 public GenericWorkflowClient workflowClient;
 @Autowired
 public WorkflowContext wfContext;
 @Override
 public void start() {
 client.activity1();
 }
}

If you want to configure the context objects in the workflow implementation through Spring XML
configuration, then use the bean names declared in the WorkflowScopeBeanNames class in the
com.amazonaws.services.simpleworkflow.flow.spring package. For example:

<!-- workflow implementation -->
<bean id="workflowImpl" class="asadj.spring.test.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>

Spring Integration API Version 2021-04-28 122

AWS Flow Framework for Java Developer Guide

 <property name="clock" ref="workflowClock"/>
 <property name="activityClient" ref="genericActivityClient"/>
 <property name="dcContext" ref="decisionContext"/>
 <property name="workflowClient" ref="genericWorkflowClient"/>
 <property name="wfContext" ref="workflowContext"/>
 <aop:scoped-proxy proxy-target-class="false" />
</bean>

Alternatively, you may inject a DecisionContextProvider in the workflow implementation
bean and use it to create the context. This can be useful if you want to provide custom
implementations of the provider and context.

Injecting Resources in Activities

You can instantiate and configure activity implementations using an Inversion of Control (IoC)
container and easily inject resources like database connections by declaring them as properties of
the activity implementation class. Such resources will typically be scoped as singletons. Note that
activity implementations are called by the activity worker on multiple threads. Therefore, access to
shared resources must be synchronized.

JUnit Integration

The framework provides JUnit extensions as well as test implementations of the context objects,
such as a test clock, that you can use to write and run unit tests with JUnit. With these extensions,
you can test your workflow implementation locally inline.

Writing a Simple Unit Test

In order to write tests for your workflow, use the WorkflowTest class in the
com.amazonaws.services.simpleworkflow.flow.junit package. This class is a framework-specific
JUnit MethodRule implementation and runs your workflow code locally, calling activities inline
as opposed to going through Amazon SWF. This gives you the flexibility to run your tests as
frequently as you desire without incurring any charges.

In order to use this class, simply declare a field of type WorkflowTest and annotate it with the
@Rule annotation. Before running your tests, create a new WorkflowTest object and add your
activity and workflow implementations to it. You can then use the generated workflow client
factory to create a client and start an execution of the workflow. The framework also provides a
custom JUnit runner, FlowBlockJUnit4ClassRunner, that you must use for your workflow tests.
For example:

JUnit Integration API Version 2021-04-28 123

AWS Flow Framework for Java Developer Guide

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory
 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {
 trace = new ArrayList<String>();
 // Register activity implementation to be used during test run
 BookingActivities activities = new BookingActivitiesImpl(trace);
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);
 }

 @After
 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);
 }
}

You can also specify a separate task list for each activity implementation that you add to
WorkflowTest. For example, if you have a workflow implementation that schedules activities in
host-specific task lists, then you can register the activity in the task list of each host:

for (int i = 0; i < 10; i++) {

JUnit Integration API Version 2021-04-28 124

AWS Flow Framework for Java Developer Guide

 String hostname = "host" + i;
 workflowTest.addActivitiesImplementation(hostname,
 new ImageProcessingActivities(hostname));
}

Notice that the code in the @Test is asynchronous. Therefore, you should use the asynchronous
workflow client to start an execution. In order to verify the results of your test, an AsyncAssert
help class is also provided. This class allows you to wait for promises to become ready before
verifying results. In this example, we wait for the result of the workflow execution to be ready
before verifying the test output.

If you are using Spring, then the SpringWorkflowTest class can be used instead of the
WorkflowTest class. SpringWorkflowTest provides properties that you can use to configure
activity and workflow implementations easily through Spring configuration. Just like the Spring-
aware workers, you should use the WorkflowScope to configure workflow implementation beans.
This ensures that a new workflow implementation bean is created for every decision task. Make
sure to configure these beans with the scoped-proxy proxy-target-class setting set to false. See
the Spring Integration section for more details. The example Spring configuration shown in the
Spring Integration section can be changed to test the workflow using SpringWorkflowTest:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://
www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframe
work.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>

JUnit Integration API Version 2021-04-28 125

AWS Flow Framework for Java Developer Guide

 </property>
 </bean>
 <context:annotation-config />
 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}" />
 <constructor-arg value="{AWS.Secret.Key}" />
 </bean>
 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- Amazon SWF client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl"
 scope="workflow">
 <property name="client" ref="activitiesClient" />
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <!-- WorkflowTest -->
 <bean id="workflowTest"
 class="com.amazonaws.services.simpleworkflow.flow.junit.spring.SpringWorkflowTest">
 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 <property name="taskListActivitiesImplementationMap">
 <map>
 <entry>
 <key>
 <value>list1</value>

JUnit Integration API Version 2021-04-28 126

AWS Flow Framework for Java Developer Guide

 </key>
 <ref bean="activitiesImplHost1" />
 </entry>
 </map>
 </property>
 </bean>
</beans>

Mocking Activity Implementations

You may use the real activity implementations during testing, but if you want to unit test
just the workflow logic, you should mock the activities. This can do this by providing a mock
implementation of the activities interface to the WorkflowTest class. For example:

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory
 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {
 trace = new ArrayList<String>();
 // Create and register mock activity implementation to be used during test run
 BookingActivities activities = new BookingActivities() {

 @Override
 public void sendConfirmationActivity(int customerId) {
 trace.add("sendConfirmation-" + customerId);
 }

 @Override
 public void reserveCar(int requestId) {
 trace.add("reserveCar-" + requestId);
 }

 @Override
 public void reserveAirline(int requestId) {

JUnit Integration API Version 2021-04-28 127

AWS Flow Framework for Java Developer Guide

 trace.add("reserveAirline-" + requestId);
 }
 };
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);
 }

 @After
 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);
 }
}

Alternatively, you can provide a mock implementation of the activities client and inject that into
your workflow implementation.

Test Context Objects

If your workflow implementation depends on the framework context objects—for example,
the DecisionContext—you don't have to do anything special to test such workflows.
When a test is run through WorkflowTest, it automatically injects test context objects.
When your workflow implementation accesses the context objects—for example, using
DecisionContextProviderImpl—it will get the test implementation. You can manipulate
these test context objects in your test code (@Test method) to create interesting test cases.
For example, if your workflow creates a timer, you can make the timer fire by calling the
clockAdvanceSeconds method on the WorkflowTest class to move the clock forward in time.
You can also accelerate the clock to make timers fire earlier than they normally would using the
ClockAccelerationCoefficient property on WorkflowTest. For example, if your workflow
creates a timer for one hour, you can set the ClockAccelerationCoefficient to 60 to make
the timer fire in one minute. By default, ClockAccelerationCoefficient is set to 1.

JUnit Integration API Version 2021-04-28 128

AWS Flow Framework for Java Developer Guide

For more details about the com.amazonaws.services.simpleworkflow.flow.test and
com.amazonaws.services.simpleworkflow.flow.junit packages, see the AWS SDK for Java
documentation.

Error Handling

Topics

• TryCatchFinally Semantics

• Cancellation

• Nested TryCatchFinally

The try/catch/finally construct in Java makes it simple to handle errors and is used
ubiquitously. It allows you to associate error handlers to a block of code. Internally, this works
by stuffing additional metadata about the error handlers on the call stack. When an exception is
thrown, the runtime looks at the call stack for an associated error handler and invokes it; and if no
appropriate error handler is found, it propagates the exception up the call chain.

This works well for synchronous code, but handling errors in asynchronous and distributed
programs poses additional challenges. Because an asynchronous call returns immediately, the
caller isn't on the call stack when the asynchronous code executes. This means that unhandled
exceptions in the asynchronous code can't be handled by the caller in the usual way. Typically,
exceptions that originate in asynchronous code are handled by passing error state to a callback
that is passed to the asynchronous method. Alternatively, if a Future<?> is being used, it reports
an error when you try to access it. This is less than ideal because the code that receives the
exception (the callback or code that uses the Future<?>) doesn't have the context of the original
call and may not be able to handle the exception adequately. Furthermore, in a distributed
asynchronous system, with components running concurrently, more than one error may occur
simultaneously. These errors could be of different types and severities and need to be handled
appropriately.

Cleaning up resource after an asynchronous call is also difficult. Unlike synchronous code, you can't
use try/catch/finally in the calling code to clean up resources because work initiated in the try
block may still be ongoing when the finally block executes.

The framework provides a mechanism that makes error handling in distributed asynchronous code
similar to, and almost as simple as, Java's try/catch/finally.

Error Handling API Version 2021-04-28 129

AWS Flow Framework for Java Developer Guide

ImageProcessingActivitiesClient activitiesClient
 = new ImageProcessingActivitiesClientImpl();

public void createThumbnail(final String webPageUrl) {

 new TryCatchFinally() {

 @Override
 protected void doTry() throws Throwable {
 List<String> images = getImageUrls(webPageUrl);
 for (String image: images) {
 Promise<String> localImage
 = activitiesClient.downloadImage(image);
 Promise<String> thumbnailFile
 = activitiesClient.createThumbnail(localImage);
 activitiesClient.uploadImage(thumbnailFile);
 }
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {

 // Handle exception and rethrow failures
 LoggingActivitiesClient logClient = new LoggingActivitiesClientImpl();
 logClient.reportError(e);
 throw new RuntimeException("Failed to process images", e);
 }

 @Override
 protected void doFinally() throws Throwable {
 activitiesClient.cleanUp();
 }
 };
}

The TryCatchFinally class and its variants, TryFinally and TryCatch, work similar to Java's
try/catch/finally. Using it, you can associate exception handlers to blocks of workflow code
that may execute as asynchronous and remote tasks. The doTry() method is logically equivalent
to the try block. The framework automatically executes the code in doTry(). A list of Promise
objects can be passed to the constructor of TryCatchFinally. The doTry method will be
executed when all Promise objects passed in to the constructor become ready. If an exception
is raised by code that was asynchronously invoked from within doTry(), any pending work in

Error Handling API Version 2021-04-28 130

AWS Flow Framework for Java Developer Guide

doTry() is canceled and doCatch() is called to handle the exception. For instance, in the listing
above, if downloadImage throws an exception, then createThumbnail and uploadImage
will be canceled. Finally, doFinally() is called when all asynchronous work is done (completed,
failed, or canceled). It can be used for resource cleanup. You can also nest these classes to suit your
needs.

When an exception is reported in doCatch(), the framework provides a complete logical call stack
that includes asynchronous and remote calls. This can be helpful when debugging, especially if you
have asynchronous methods calling other asynchronous methods. For example, an exception from
downloadImage will produce an exception like this:

RuntimeException: error downloading image
 at downloadImage(Main.java:35)
 at ---continuation---.(repeated:1)
 at errorHandlingAsync$1.doTry(Main.java:24)
 at ---continuation---.(repeated:1)
…

TryCatchFinally Semantics

The execution of an AWS Flow Framework for Java program can be visualized as a tree
of concurrently executing branches. A call to an asynchronous method, an activity, and
TryCatchFinally itself creates a new branch in this tree of execution. For example, the image
processing workflow can be viewed as the tree shown in the following figure.

An error in one branch of execution will cause the unwinding of that branch, just as an exception
causes the unwinding of the call stack in a Java program. The unwinding keeps moving up the
execution branch until either the error is handled or the root of the tree is reached, in which case
the workflow execution is terminated.

The framework reports errors that happen while processing tasks as exceptions. It associates the
exception handlers (doCatch() methods) defined in TryCatchFinally with all tasks that are

TryCatchFinally Semantics API Version 2021-04-28 131

AWS Flow Framework for Java Developer Guide

created by the code in the corresponding doTry(). If a task fails—for example, due to a timeout
or an unhandled exception—then the appropriate exception will be raised and the corresponding
doCatch() will be invoked to handle it. To accomplish this, the framework works in tandem with
Amazon SWF to propagate remote errors and resurrects them as exceptions in the caller's context.

Cancellation

When an exception occurs in synchronous code, the control jumps directly to the catch block,
skipping over any remaining code in the try block. For example:

try {
 a();
 b();
 c();
}
catch (Exception e) {
 e.printStackTrace();
}

In this code, if b() throws an exception, then c() is never invoked. Compare that to a workflow:

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 activityA();
 activityB();
 activityC();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 e.printStackTrace();
 }
};

In this case, calls to activityA, activityB, and activityC all return successfully and result
in the creation of three tasks that will be executed asynchronously. Let's say at a later time that
the task for activityB results in an error. This error is recorded in the history by Amazon SWF.
In order to handle this, the framework will first try to cancel all other tasks that originated within

Cancellation API Version 2021-04-28 132

AWS Flow Framework for Java Developer Guide

the scope of the same doTry(); in this case, activityA and activityC. When all such tasks
complete (cancel, fail, or successfully complete), the appropriate doCatch() method will be
invoked to handle the error.

Unlike the synchronous example, where c() was never executed, activityC was invoked and
a task was scheduled for execution; hence, the framework will make an attempt to cancel it, but
there is no guarantee that it will be canceled. Cancellation can't be guaranteed because the activity
may have already completed, may ignore the cancellation request, or may fail due to an error.
However, the framework does provide the guarantee that doCatch() is called only after all tasks
started from the corresponding doTry() have completed. It also guarantees that doFinally()
is called only after all tasks started from the doTry() and doCatch() have completed. If, for
instance, the activities in the above example depend on each other, say activityB depends
on activityA and activityC on activityB, then the cancellation of activityC will be
immediate because it isn't scheduled in Amazon SWF until activityB completes:

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 Promise<Void> a = activityA();
 Promise<Void> b = activityB(a);
 activityC(b);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 e.printStackTrace();
 }
};

Activity Heartbeat

The AWS Flow Framework for Java's cooperative cancellation mechanism allows in-flight activity
tasks to be canceled gracefully. When cancellation is triggered, tasks that blocked or are waiting
to be assigned to a worker are automatically canceled. If, however, a task is already assigned to
a worker, the framework will request the activity to cancel. Your activity implementation must
explicitly handle such cancellation requests. This is done by reporting heartbeat of your activity.

Reporting heartbeat allows the activity implementation to report the progress of an ongoing
activity task, which is useful for monitoring, and it lets the activity check for cancellation

Cancellation API Version 2021-04-28 133

AWS Flow Framework for Java Developer Guide

requests. The recordActivityHeartbeat method will throw a CancellationException
if a cancellation has been requested. The activity implementation can catch this exception and
act on the cancellation request, or it can ignore the request by swallowing the exception. In
order to honor the cancellation request, the activity should perform the desired clean up, if any,
and then rethrow CancellationException. When this exception is thrown from an activity
implementation, the framework records that the activity task has been completed in canceled
state.

The following example shows an activity that downloads and processes images. It heartbeats after
processing each image, and if cancellation is requested, it cleans up and rethrows the exception to
acknowledge cancellation.

@Override
public void processImages(List<String> urls) {
 int imageCounter = 0;
 for (String url: urls) {
 imageCounter++;
 Image image = download(url);
 process(image);
 try {
 ActivityExecutionContext context
 = contextProvider.getActivityExecutionContext();
 context.recordActivityHeartbeat(Integer.toString(imageCounter));
 } catch(CancellationException ex) {
 cleanDownloadFolder();
 throw ex;
 }
 }
}

Reporting activity heartbeat isn't required, but it is recommended if your activity is long running or
may be performing expensive operations that you wish to be canceled under error conditions. You
should call heartbeatActivityTask periodically from the activity implementation.

If the activity times out, the ActivityTaskTimedOutException will be thrown and
getDetails on the exception object will return the data passed to the last successful call to
heartbeatActivityTask for the corresponding activity task. The workflow implementation may
use this information to determine how much progress was made before the activity task was timed
out.

Cancellation API Version 2021-04-28 134

AWS Flow Framework for Java Developer Guide

Note

It isn't a good practice to heartbeat too frequently because Amazon SWF may throttle
heartbeat requests. See the Amazon Simple Workflow Service Developer Guide for limits
placed by Amazon SWF.

Explicitly Canceling a Task

Besides error conditions, there are other cases where you may explicitly cancel a task. For
example, an activity to process payments using a credit card may need to be canceled if the user
cancels the order. The framework allows you to explicitly cancel tasks created in the scope of a
TryCatchFinally. In the following example, the payment task is canceled if a signal is received
while the payment was being processed.

public class OrderProcessorImpl implements OrderProcessor {
 private PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();
 boolean processingPayment = false;
 private TryCatchFinally paymentTask = null;

 @Override
 public void processOrder(int orderId, final float amount) {
 paymentTask = new TryCatchFinally() {

 @Override
 protected void doTry() throws Throwable {
 processingPayment = true;

 PaymentProcessorClient paymentClient = factory.getClient();
 paymentClient.processPayment(amount);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 if (e instanceof CancellationException) {
 paymentClient.log("Payment canceled.");
 } else {
 throw e;
 }
 }

Cancellation API Version 2021-04-28 135

https://docs.aws.eu/amazonswf/latest/developerguide/

AWS Flow Framework for Java Developer Guide

 @Override
 protected void doFinally() throws Throwable {
 processingPayment = false;
 }
 };

 }

 @Override
 public void cancelPayment() {
 if (processingPayment) {
 paymentTask.cancel(null);
 }
 }
}

Receiving Notification of Canceled Tasks

When a task is completed in canceled state, the framework informs the workflow logic by
throwing a CancellationException. When an activity completes in canceled state, a
record is made in the history and the framework calls the appropriate doCatch() with a
CancellationException. As shown in the previous example, when the payment processing task
is canceled, the workflow receives a CancellationException.

An unhandled CancellationException is propagated up the execution branch just like any
other exception. However, the doCatch() method will receive the CancellationException
only if there is no other exception in the scope; other exceptions are prioritized higher than
cancellation.

Nested TryCatchFinally

You may nest TryCatchFinally's to suit your needs. Because each TryCatchFinally creates
a new branch in the execution tree, you can create nested scopes. Exceptions in the parent
scope will cause cancellation attempts of all tasks initiated by nested TryCatchFinally's
within it. However, exceptions in a nested TryCatchFinally don't automatically propagate
to the parent. If you wish to propagate an exception from a nested TryCatchFinally to its
containing TryCatchFinally, you should rethrow the exception in doCatch(). In other words,
only unhandled exceptions are bubbled up, just like Java's try/catch. If you cancel a nested

Nested TryCatchFinally API Version 2021-04-28 136

AWS Flow Framework for Java Developer Guide

TryCatchFinally by calling the cancel method, the nested TryCatchFinally will be canceled
but the containing TryCatchFinally will not automatically get canceled.

new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 activityA();

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 activityB();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
 };

 activityC();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
};

Nested TryCatchFinally API Version 2021-04-28 137

AWS Flow Framework for Java Developer Guide

Retry Failed Activities

Activities sometimes fail for ephemeral reasons, such as a temporary loss of connectivity. At
another time, the activity might succeed, so the appropriate way to handle activity failure is often
to retry the activity, perhaps multiple times.

There are a variety of strategies for retrying activities; the best one depends on the details of your
workflow. The strategies fall into three basic categories:

• The retry-until-success strategy simply keeps retrying the activity until it completes.

• The exponential retry strategy increases the time interval between retry attempts exponentially
until the activity completes or the process reaches a specified stopping point, such as a maximum
number of attempts.

• The custom retry strategy decides whether or how to retry the activity after each failed attempt.

The following sections describe how to implement these strategies. The example workflow workers
all use a single activity, unreliableActivity, which randomly does one of following:

• Completes immediately

• Fails intentionally by exceeding the timeout value

• Fails intentionally by throwing IllegalStateException

Retry-Until-Success Strategy

The simplest retry strategy is to keep retrying the activity each time it fails until it eventually
succeeds. The basic pattern is:

1. Implement a nested TryCatch or TryCatchFinally class in your workflow's entry point
method.

2. Execute the activity in doTry

3. If the activity fails, the framework calls doCatch, which runs the entry point method again.

4. Repeat Steps 2 - 3 until the activity completes successfully.

The following workflow implements the retry-until-success strategy. The workflow
interface is implemented in RetryActivityRecipeWorkflow and has one method,

Retry Failed Activities API Version 2021-04-28 138

AWS Flow Framework for Java Developer Guide

runUnreliableActivityTillSuccess, which is the workflow's entry point. The workflow
worker is implemented in RetryActivityRecipeWorkflowImpl, as follows:

public class RetryActivityRecipeWorkflowImpl
 implements RetryActivityRecipeWorkflow {

 @Override
 public void runUnreliableActivityTillSuccess() {
 final Settable<Boolean> retryActivity = new Settable<Boolean>();

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 Promise<Void> activityRanSuccessfully
 = client.unreliableActivity();
 setRetryActivityToFalse(activityRanSuccessfully, retryActivity);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 retryActivity.set(true);
 }
 };
 restartRunUnreliableActivityTillSuccess(retryActivity);
 }

 @Asynchronous
 private void setRetryActivityToFalse(
 Promise<Void> activityRanSuccessfully,
 @NoWait Settable<Boolean> retryActivity) {
 retryActivity.set(false);
 }

 @Asynchronous
 private void restartRunUnreliableActivityTillSuccess(
 Settable<Boolean> retryActivity) {
 if (retryActivity.get()) {
 runUnreliableActivityTillSuccess();
 }
 }
}

The workflow works as follows:

Retry-Until-Success Strategy API Version 2021-04-28 139

AWS Flow Framework for Java Developer Guide

1. runUnreliableActivityTillSuccess creates a Settable<Boolean> object named
retryActivity which is used to indicate whether the activity failed and should be retried.
Settable<T> is derived from Promise<T> and works much the same way, but you set a
Settable<T> object's value manually.

2. runUnreliableActivityTillSuccess implements an anonymous nested TryCatch class
to handle any exceptions that are thrown by the unreliableActivity activity. For more
discussion of how to handle exceptions thrown by asynchronous code, see Error Handling.

3. doTry executes the unreliableActivity activity, which returns a Promise<Void> object
named activityRanSuccessfully.

4. doTry calls the asynchronous setRetryActivityToFalse method, which has two
parameters:

• activityRanSuccessfully takes the Promise<Void> object returned by the
unreliableActivity activity.

• retryActivity takes the retryActivity object.

If unreliableActivity completes, activityRanSuccessfully becomes
ready and setRetryActivityToFalse sets retryActivity to false. Otherwise,
activityRanSuccessfully never becomes ready and setRetryActivityToFalse doesn't
execute.

5. If unreliableActivity throws an exception, the framework calls doCatch and passes it the
exception object. doCatch sets retryActivity to true.

6. runUnreliableActivityTillSuccess calls the asynchronous
restartRunUnreliableActivityTillSuccess method and passes it the
retryActivity object. Because retryActivity is a Promise<T> type,
restartRunUnreliableActivityTillSuccess defers execution until retryActivity is
ready, which occurs after TryCatch completes.

7. When retryActivity is ready, restartRunUnreliableActivityTillSuccess extracts
the value.

• If the value is false, the retry succeeded. restartRunUnreliableActivityTillSuccess
doesn'thing and the retry sequence terminates.

• If the value is true, the retry failed. restartRunUnreliableActivityTillSuccess calls
runUnreliableActivityTillSuccess to execute the activity again.

8. Steps 1 - 7 repeat until unreliableActivity completes.

Retry-Until-Success Strategy API Version 2021-04-28 140

AWS Flow Framework for Java Developer Guide

Note

doCatch doesn't handle the exception; it simply sets the retryActivity
object to true to indicate that the activity failed. The retry is handled by the
asynchronous restartRunUnreliableActivityTillSuccess method, which
defers execution until TryCatch completes. The reason for this approach is that,
if you retry an activity in doCatch, you can't cancel it. Retrying the activity in
restartRunUnreliableActivityTillSuccess allows you to execute cancellable
activities.

Exponential Retry Strategy

With the exponential retry strategy, the framework executes a failed activity again after a specified
period of time, N seconds. If that attempt fails the framework executes the activity again after 2N
seconds, and then 4N seconds and so on. Because the wait time can get quite large, you typically
stop the retry attempts at some point rather than continuing indefinitely.

The framework provides three ways to implement an exponential retry strategy:

• The @ExponentialRetry annotation is the simplest approach, but you must set the retry
configuration options at compile time.

• The RetryDecorator class allows you to set retry configuration at run time and change it as
needed.

• The AsyncRetryingExecutor class allows you to set retry configuration at run time and
change it as needed. In addition, the framework calls a user-implemented AsyncRunnable.run
method to run each retry attempt.

All approaches support the following configuration options, where time values are in seconds:

• The initial retry wait time.

• The back-off coefficient, which is used to compute the retry intervals, as follows:

retryInterval = initialRetryIntervalSeconds * Math.pow(backoffCoefficient,
 numberOfTries - 2)

The default value is 2.0.

Exponential Retry Strategy API Version 2021-04-28 141

AWS Flow Framework for Java Developer Guide

• The maximum number of retry attempts. The default value is unlimited.

• The maximum retry interval. The default value is unlimited.

• The expiration time. Retry attempts stop when the total duration of the process exceeds this
value. The default value is unlimited.

• The exceptions that will trigger the retry process. By default, every exception triggers the retry
process.

• The exceptions that will not trigger a retry attempt. By default, no exceptions are excluded.

The following sections describe the various ways that you can implement an exponential retry
strategy.

Exponential Retry with @ExponentialRetry

The simplest way to implement an exponential retry strategy for an activity is to apply an
@ExponentialRetry annotation to the activity in the interface definition. If the activity fails,
the framework handles the retry process automatically, based on the specified option values. The
basic pattern is:

1. Apply @ExponentialRetry to the appropriate activities and specify the retry configuration.

2. If an annotated activity fails, the framework automatically retries the activity according to the
configuration specified by the annotation's arguments.

The ExponentialRetryAnnotationWorkflow workflow worker implements the
exponential retry strategy by using an @ExponentialRetry annotation. It uses
an unreliableActivity activity whose interface definition is implemented in
ExponentialRetryAnnotationActivities, as follows:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskScheduleToStartTimeoutSeconds = 30,
 defaultTaskStartToCloseTimeoutSeconds = 30)
public interface ExponentialRetryAnnotationActivities {
 @ExponentialRetry(
 initialRetryIntervalSeconds = 5,
 maximumAttempts = 5,
 exceptionsToRetry = IllegalStateException.class)
 public void unreliableActivity();

Exponential Retry Strategy API Version 2021-04-28 142

AWS Flow Framework for Java Developer Guide

}

The @ExponentialRetry options specify the following strategy:

• Retry only if the activity throws IllegalStateException.

• Use an initial wait time of 5 seconds.

• No more than 5 retry attempts.

The workflow interface is implemented in RetryWorkflow and has one method,
process, which is the workflow's entry point. The workflow worker is implemented in
ExponentialRetryAnnotationWorkflowImpl, as follows:

public class ExponentialRetryAnnotationWorkflowImpl implements RetryWorkflow {
 public void process() {
 handleUnreliableActivity();
 }

 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

The workflow works as follows:

1. process runs the synchronous handleUnreliableActivity method.

2. handleUnreliableActivity executes the unreliableActivity activity.

If the activity fails by throwing IllegalStateException, the framework automatically runs the
retry strategy specified in ExponentialRetryAnnotationActivities.

Exponential Retry with the RetryDecorator Class

@ExponentialRetry is simple to use. However, the configuration is static and set at compile
time, so the framework uses the same retry strategy every time the activity fails. You can
implement a more flexible exponential retry strategy by using the RetryDecorator class, which
allows you to specify the configuration at run time and change it as needed. The basic pattern is:

1. Create and configure an ExponentialRetryPolicy object that specifies the retry
configuration.

Exponential Retry Strategy API Version 2021-04-28 143

AWS Flow Framework for Java Developer Guide

2. Create a RetryDecorator object and pass the ExponentialRetryPolicy object from Step 1
to the constructor.

3. Apply the decorator object to the activity by passing the activity client's class name to the
RetryDecorator object's decorate method.

4. Execute the activity.

If the activity fails, the framework retries the activity according to the ExponentialRetryPolicy
object's configuration. You can change the retry configuration as needed by modifying this object.

Note

The @ExponentialRetry annotation and the RetryDecorator class are mutually
exclusive. You can't use RetryDecorator to dynamically override a retry policy specified
by an @ExponentialRetry annotation.

The following workflow implementation shows how to use the RetryDecorator class to
implement an exponential retry strategy. It uses an unreliableActivity activity that
doesn't have an @ExponentialRetry annotation. The workflow interface is implemented
in RetryWorkflow and has one method, process, which is the workflow's entry point. The
workflow worker is implemented in DecoratorRetryWorkflowImpl, as follows:

public class DecoratorRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 ExponentialRetryPolicy retryPolicy = new ExponentialRetryPolicy(
 initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);

 Decorator retryDecorator = new RetryDecorator(retryPolicy);
 client = retryDecorator.decorate(RetryActivitiesClient.class, client);
 handleUnreliableActivity();
 }

 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

Exponential Retry Strategy API Version 2021-04-28 144

AWS Flow Framework for Java Developer Guide

The workflow works as follows:

1. process creates and configures an ExponentialRetryPolicy object by:

• Passing the initial retry interval to the constructor.

• Calling the object's withMaximumAttempts method to set the maximum number of
attempts to 5. ExponentialRetryPolicy exposes other with objects that you can use to
specify other configuration options.

2. process creates a RetryDecorator object named retryDecorator and passes the
ExponentialRetryPolicy object from Step 1 to the constructor.

3. process applies the decorator to the activity by calling the retryDecorator.decorate
method and passing it the activity client's class name.

4. handleUnreliableActivity executes the activity.

If the activity fails, the framework retries it according to the configuration specified in Step 1.

Note

Several of the ExponentialRetryPolicy class's with methods
have a corresponding set method that you can call to modify the
corresponding configuration option at any time: setBackoffCoefficient,
setMaximumAttempts, setMaximumRetryIntervalSeconds, and
setMaximumRetryExpirationIntervalSeconds.

Exponential Retry with the AsyncRetryingExecutor Class

The RetryDecorator class provides more flexibility in configuring the retry process than
@ExponentialRetry, but the framework still runs the retry attempts automatically, based on the
ExponentialRetryPolicy object's current configuration. A more flexible approach is to use the
AsyncRetryingExecutor class. In addition to allowing you to configure the retry process at run
time, the framework calls a user-implemented AsyncRunnable.run method to run each retry
attempt instead of simply executing the activity.

The basic pattern is:

1. Create and configure an ExponentialRetryPolicy object to specify the retry configuration.

Exponential Retry Strategy API Version 2021-04-28 145

AWS Flow Framework for Java Developer Guide

2. Create an AsyncRetryingExecutor object, and pass it the ExponentialRetryPolicy
object and an instance of the workflow clock.

3. Implement an anonymous nested TryCatch or TryCatchFinally class.

4. Implement an anonymous AsyncRunnable class and override the run method to implement
custom code for running the activity.

5. Override doTry to call the AsyncRetryingExecutor object's execute method and pass
it the AsyncRunnable class from Step 4. The AsyncRetryingExecutor object calls
AsyncRunnable.run to run the activity.

6. If the activity fails, the AsyncRetryingExecutor object calls the AsyncRunnable.run
method again, according to the retry policy specified in Step 1.

The following workflow shows how to use the AsyncRetryingExecutor class to implement
an exponential retry strategy. It uses the same unreliableActivity activity as the
DecoratorRetryWorkflow workflow discussed earlier. The workflow interface is implemented
in RetryWorkflow and has one method, process, which is the workflow's entry point. The
workflow worker is implemented in AsyncExecutorRetryWorkflowImpl, as follows:

public class AsyncExecutorRetryWorkflowImpl implements RetryWorkflow {
 private final RetryActivitiesClient client = new RetryActivitiesClientImpl();
 private final DecisionContextProvider contextProvider = new
 DecisionContextProviderImpl();
 private final WorkflowClock clock =
 contextProvider.getDecisionContext().getWorkflowClock();

 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 handleUnreliableActivity(initialRetryIntervalSeconds, maximumAttempts);
 }
 public void handleUnreliableActivity(long initialRetryIntervalSeconds, int
 maximumAttempts) {

 ExponentialRetryPolicy retryPolicy = new
 ExponentialRetryPolicy(initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);
 final AsyncExecutor executor = new AsyncRetryingExecutor(retryPolicy, clock);

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {

Exponential Retry Strategy API Version 2021-04-28 146

AWS Flow Framework for Java Developer Guide

 executor.execute(new AsyncRunnable() {
 @Override
 public void run() throws Throwable {
 client.unreliableActivity();
 }
 });
 }
 @Override
 protected void doCatch(Throwable e) throws Throwable {
 }
 };
 }
}

The workflow works as follows:

1. process calls the handleUnreliableActivity method and passes it the configuration
settings.

2. handleUnreliableActivity uses the configuration settings from Step 1 to create an
ExponentialRetryPolicy object, retryPolicy.

3. handleUnreliableActivity creates an AsyncRetryExecutor object, executor, and
passes the ExponentialRetryPolicy object from Step 2 and an instance of the workflow
clock to the constructor

4. handleUnreliableActivity implements an anonymous nested TryCatch class and
overrides the doTry and doCatch methods to run the retry attempts and handle any
exceptions.

5. doTry creates an anonymous AsyncRunnable class and overrides the run method to
implement custom code to execute unreliableActivity. For simplicity, run just executes the
activity, but you can implement more sophisticated approaches as appropriate.

6. doTry calls executor.execute and passes it the AsyncRunnable object. execute calls the
AsyncRunnable object's run method to run the activity.

7. If the activity fails, executor calls run again, according to the retryPolicy object
configuration.

For more discussion of how to use the TryCatch class to handle errors, see AWS Flow Framework
for Java Exceptions.

Exponential Retry Strategy API Version 2021-04-28 147

AWS Flow Framework for Java Developer Guide

Custom Retry Strategy

The most flexible approach to retrying failed activities is a custom strategy, which recursively calls
an asynchronous method that runs the retry attempt, much like the retry-until-success strategy.
However, instead of simply running the activity again, you implement custom logic that decides
whether and how to run each successive retry attempt. The basic pattern is:

1. Create a Settable<T> status object, which is used to indicate whether the activity failed.

2. Implement a nested TryCatch or TryCatchFinally class.

3. doTry executes the activity.

4. If the activity fails, doCatch sets the status object to indicate that the activity failed.

5. Call an asynchronous failure handling method and pass it the status object. The method defers
execution until TryCatch or TryCatchFinally completes.

6. The failure handling method decides whether to retry the activity, and if so, when.

The following workflow shows how to implement a custom retry strategy. It uses
the same unreliableActivity activity as the DecoratorRetryWorkflow and
AsyncExecutorRetryWorkflow workflows. The workflow interface is implemented in
RetryWorkflow and has one method, process, which is the workflow's entry point. The
workflow worker is implemented in CustomLogicRetryWorkflowImpl, as follows:

public class CustomLogicRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 callActivityWithRetry();
 }
 @Asynchronous
 public void callActivityWithRetry() {
 final Settable<Throwable> failure = new Settable<Throwable>();
 new TryCatchFinally() {
 protected void doTry() throws Throwable {
 client.unreliableActivity();
 }
 protected void doCatch(Throwable e) {
 failure.set(e);
 }
 protected void doFinally() throws Throwable {
 if (!failure.isReady()) {

Custom Retry Strategy API Version 2021-04-28 148

AWS Flow Framework for Java Developer Guide

 failure.set(null);
 }
 }
 };
 retryOnFailure(failure);
 }
 @Asynchronous
 private void retryOnFailure(Promise<Throwable> failureP) {
 Throwable failure = failureP.get();
 if (failure != null && shouldRetry(failure)) {
 callActivityWithRetry();
 }
 }
 protected Boolean shouldRetry(Throwable e) {
 //custom logic to decide to retry the activity or not
 return true;
 }
}

The workflow works as follows:

1. process calls the asynchronous callActivityWithRetry method.

2. callActivityWithRetry creates a Settable<Throwable> object named failure which is
used to indicate whether the activity has failed. Settable<T> is derived from Promise<T> and
works much the same way, but you set a Settable<T> object's value manually.

3. callActivityWithRetry implements an anonymous nested TryCatchFinally class to
handle any exceptions that are thrown by unreliableActivity. For more discussion of
how to handle exceptions thrown by asynchronous code, see AWS Flow Framework for Java
Exceptions.

4. doTry executes unreliableActivity.

5. If unreliableActivity throws an exception, the framework calls doCatch and passes it
the exception object. doCatch sets failure to the exception object, which indicates that the
activity failed and puts the object in a ready state.

6. doFinally checks whether failure is ready, which will be true only if failure was set by
doCatch.

• If failure is ready, doFinally does nothing.

• If failure isn't ready, the activity completed and doFinally sets failure to null.

Custom Retry Strategy API Version 2021-04-28 149

AWS Flow Framework for Java Developer Guide

7. callActivityWithRetry calls the asynchronous retryOnFailure method and passes it
failure. Because failure is a Settable<T> type, callActivityWithRetry defers execution
until failure is ready, which occurs after TryCatchFinally completes.

8. retryOnFailure gets the value from failure.

• If failure is set to null, the retry attempt was successful. retryOnFailure does nothing,
which terminates the retry process.

• If failure is set to an exception object and shouldRetry returns true, retryOnFailure calls
callActivityWithRetry to retry the activity.

shouldRetry implements custom logic to decide whether to retry a failed activity. For
simplicity, shouldRetry always returns true and retryOnFailure executes the activity
immediately, but you can implement more sophisticated logic as needed.

9. Steps 2–8 repeat until unreliableActivity completes or shouldRetry decides to stop the
process.

Note

doCatch doesn't handle the retry process; it simply sets failure to indicate that the activity
failed. The retry process is handled by the asynchronous retryOnFailure method, which
defers execution until TryCatch completes. The reason for this approach is that, if you
retry an activity in doCatch, you can't cancel it. Retrying the activity in retryOnFailure
allows you to execute cancellable activities.

Daemon Tasks

The AWS Flow Framework for Java allows the marking of certain tasks as daemon. This allows
you to create tasks that do some background work that should get canceled when all other
work is done. For example, a health monitoring task should be canceled when the rest of the
workflow is complete. You can accomplish this by setting the daemon flag on an asynchronous
method or an instance of TryCatchFinally. In the following example, the asynchronous method
monitorHealth() is marked as daemon.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

Daemon Tasks API Version 2021-04-28 150

AWS Flow Framework for Java Developer Guide

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 monitorHealth();
 }

 @Asynchronous(daemon=true)
 void monitorHealth(Promise<?>... waitFor) {
 activitiesClient.monitoringActivity();
 }
}

In the above example, when doUsefulWorkActivity completes, monitoringHealth will
be automatically canceled. This will in turn cancel the whole execution branch rooted at this
asynchronous method. The semantics of cancellation are the same as in TryCatchFinally.
Similarly, you can mark a TryCatchFinally daemon by passing a Boolean flag to the constructor.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 new TryFinally(true) {
 @Override
 protected void doTry() throws Throwable {
 activitiesClient.monitoringActivity();
 }

 @Override
 protected void doFinally() throws Throwable {
 // clean up
 }
 };
 }
}

A daemon task started within a TryCatchFinally is scoped to the context it is created in—
that is, it will be scoped to either the doTry(), doCatch(), or doFinally() methods. For
example, in the following example the startMonitoring asynchronous method is marked daemon

Daemon Tasks API Version 2021-04-28 151

AWS Flow Framework for Java Developer Guide

and called from doTry(). The task created for it will be canceled as soon as the other tasks
(doUsefulWorkActivity in this case) started within doTry() are complete.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 new TryFinally() {
 @Override
 protected void doTry() throws Throwable {
 activitiesClient.doUsefulWorkActivity();
 startMonitoring();
 }

 @Override
 protected void doFinally() throws Throwable {
 // Clean up
 }
 };
 }

 @Asynchronous(daemon = true)
 void startMonitoring(){
 activitiesClient.monitoringActivity();
 }

AWS Flow Framework for Java Replay Behavior

This topic discusses examples of replay behavior, using the examples in the What is the AWS Flow
Framework for Java? section. Both synchronous and asynchronous scenarios are discussed.

Example 1: Synchronous Replay

For an example of how replay works in a synchronous workflow, modify the HelloWorldWorkflow
workflow and activity implementations by adding println calls within their respective
implementations, as follows:

public class GreeterWorkflowImpl implements GreeterWorkflow {
...
 public void greet() {

Replay Behavior API Version 2021-04-28 152

AWS Flow Framework for Java Developer Guide

 System.out.println("greet executes");
 Promise<String> name = operations.getName();
 System.out.println("client.getName returns");
 Promise<String> greeting = operations.getGreeting(name);
 System.out.println("client.greeting returns");
 operations.say(greeting);
 System.out.println("client.say returns");
 }
}

public class GreeterActivitiesImpl implements GreeterActivities {
 public String getName() {
 System.out.println("activity.getName completes");
 return "World";
 }

 public String getGreeting(String name) {
 System.out.println("activity.getGreeting completes");
 return "Hello " + name + "!";
 }

 public void say(String what) {
 System.out.println(what);
 }
}

For details about the code, see HelloWorldWorkflow Application. The following is an edited version
of the output, with comments that indicate the start of each replay episode.

//Episode 1
greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getName completes
//Episode 2
greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getGreeting completes

Example 1: Synchronous Replay API Version 2021-04-28 153

AWS Flow Framework for Java Developer Guide

//Episode 3
greet executes
client.getName returns
client.greeting returns
client.say returns

Hello World! //say completes
//Episode 4
greet executes
client.getName returns
client.greeting returns
client.say returns

The replay process for this example works as follows:

• The first episode schedules the getName activity task, which has no dependencies.

• The second episode schedules the getGreeting activity task, which depends on getName.

• The third episode schedules the say activity task, which depends on getGreeting.

• The final episode schedules no additional tasks and finds no uncompleted activities, which
terminates the workflow execution.

Note

The three activities client methods are called once for each episode. However, only one of
those calls results in an activity task, so each task is performed only once.

Example 2: Asynchronous Replay

Similarly to the synchronous replay example, you can modify HelloWorldWorkflowAsync
Application to see how an asynchronous replay works. It produces the following output:

//Episode 1
greet executes
client.name returns
workflow.getGreeting returns
client.say returns

activity.getName completes

Example 2: Asynchronous Replay API Version 2021-04-28 154

AWS Flow Framework for Java Developer Guide

//Episode 2
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

Hello World! //say completes
//Episode 3
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

HelloWorldAsync uses three replay episodes because there are only two activities. The
getGreeting activity was replaced by the getGreeting asynchronous workflow method, which
doesn't initiate a replay episode when it completes.

The first episode doesn't call getGreeting, because it depends on the completion of the name
activity. However, after getName completes, replay calls getGreeting once for each succeeding
episode.

See Also

• AWS Flow Framework Basic Concepts: Distributed Execution

See Also API Version 2021-04-28 155

AWS Flow Framework for Java Developer Guide

Best Practices

Use these best practices to make the most of the AWS Flow Framework for Java.

Topics

• Making Changes to Decider Code: Versioning and Feature Flags

Making Changes to Decider Code: Versioning and Feature Flags

This section shows how to avoid backwards-incompatible changes to a decider using two methods:

• Versioning provides a basic solution.

• Versioning with Feature Flags builds on the Versioning solution: No new version of the workflow
is introduced, and there is no need to push new code to update the version.

Before you try these solutions, familiarize yourself with the Example Scenario section which
explains the causes and effects of backwards-incompatible decider changes.

The Replay Process and Code Changes

When an AWS Flow Framework for Java decider worker executes a decision task, it first must
rebuild the current state of the execution before it can add steps to it. The decider does this using a
process called replay.

The replay process re-executes the decider code from the beginning, while simultaneously going
through the history of events that have already occurred. Going through the event history allows
the framework to react to signals or task completion and unblock Promise objects in the code.

When the framework executes the decider code, it assigns an ID to each scheduled task (an
activity, Lambda function, timer, child workflow, or outgoing signal) by incrementing a counter.
The framework communicates this ID to Amazon SWF, and adds the ID to history events, such as
ActivityTaskCompleted.

For the replay process to succeed, it is important for the decider code to be deterministic, and to
schedule the same tasks in the same order for every decision in every workflow execution. If you
don't adhere to this requirement, the framework might, for example, fail to match the ID in an
ActivityTaskCompleted event to an existing Promise object.

Making Changes to Decider Code API Version 2021-04-28 156

AWS Flow Framework for Java Developer Guide

Example Scenario

There is a class of code changes considered to be backwards-incompatible. These changes include
updates that modify the number, type, or order of the scheduled tasks. Consider the following
example:

You write decider code to schedule two timer tasks. You start an execution and run a decision. As a
result, two timer tasks are scheduled, with IDs 1 and 2.

If you update the decider code to schedule only one timer before the next decision to be executed,
during the next decision task the framework will fail to replay the second TimerFired event,
because ID 2 doesn't match any timer tasks that the code has produced.

Scenario Outline

The following outline shows the steps of this scenario. The final goal of the scenario is to migrate
to a system that schedules only one timer but doesn't cause failures in executions started before
the migration.

1. The Initial Decider Version

a. Write the decider.

b. Start the decider.

c. The decider schedules two timers.

d. The decider starts five executions.

e. Stop the decider.

2. A Backwards-Incompatible Decider Change

a. Modify the decider.

b. Start the decider.

c. The decider schedules one timer.

d. The decider starts five executions.

The following sections include examples of Java code that show how to implement this scenario.
The code examples in the Solutions section show various ways to fix backwards-incompatible
changes.

Example Scenario API Version 2021-04-28 157

AWS Flow Framework for Java Developer Guide

Note

You can use the latest version of the AWS SDK for Java to run this code.

Common Code

The following Java code doesn't change between the examples in this scenario.

SampleBase.java

package sample;

import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.flow.JsonDataConverter;
import com.amazonaws.services.simpleworkflow.model.DescribeWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.DomainAlreadyExistsException;
import com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest;
import com.amazonaws.services.simpleworkflow.model.Run;
import com.amazonaws.services.simpleworkflow.model.StartWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;
import com.amazonaws.services.simpleworkflow.model.WorkflowExecution;
import com.amazonaws.services.simpleworkflow.model.WorkflowExecutionDetail;
import com.amazonaws.services.simpleworkflow.model.WorkflowType;

public class SampleBase {

 protected String domain = "DeciderChangeSample";
 protected String taskList = "DeciderChangeSample-" + UUID.randomUUID().toString();
 protected AmazonSimpleWorkflow service =
 AmazonSimpleWorkflowClientBuilder.defaultClient();
 {
 try {
 AmazonSimpleWorkflowClientBuilder.defaultClient().registerDomain(new
 RegisterDomainRequest().withName(domain).withDescription("desc").withWorkflowExecutionRetentionPeriodInDays("7"));
 } catch (DomainAlreadyExistsException e) {
 }
 }

Example Scenario API Version 2021-04-28 158

https://aws.amazon.com/sdk-for-java/

AWS Flow Framework for Java Developer Guide

 protected List<WorkflowExecution> workflowExecutions = new ArrayList<>();

 protected void startFiveExecutions(String workflow, String version, Object input) {
 for (int i = 0; i < 5; i++) {
 String id = UUID.randomUUID().toString();
 Run startWorkflowExecution = service.startWorkflowExecution(
 new
 StartWorkflowExecutionRequest().withDomain(domain).withTaskList(new
 TaskList().withName(taskList)).withInput(new JsonDataConverter().toData(new
 Object[] { input })).withWorkflowId(id).withWorkflowType(new
 WorkflowType().withName(workflow).withVersion(version)));
 workflowExecutions.add(new
 WorkflowExecution().withWorkflowId(id).withRunId(startWorkflowExecution.getRunId()));
 sleep(1000);
 }
 }

 protected void printExecutionResults() {
 waitForExecutionsToClose();
 System.out.println("\nResults:");
 for (WorkflowExecution wid : workflowExecutions) {
 WorkflowExecutionDetail details = service.describeWorkflowExecution(new
 DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
 System.out.println(wid.getWorkflowId() + " " +
 details.getExecutionInfo().getCloseStatus());
 }
 }

 protected void waitForExecutionsToClose() {
 loop: while (true) {
 for (WorkflowExecution wid : workflowExecutions) {
 WorkflowExecutionDetail details = service.describeWorkflowExecution(new
 DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
 if ("OPEN".equals(details.getExecutionInfo().getExecutionStatus())) {
 sleep(1000);
 continue loop;
 }
 }
 return;
 }
 }

 protected void sleep(int millis) {

Example Scenario API Version 2021-04-28 159

AWS Flow Framework for Java Developer Guide

 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }

}

Input.java

package sample;

public class Input {

 private Boolean skipSecondTimer;

 public Input() {
 }

 public Input(Boolean skipSecondTimer) {
 this.skipSecondTimer = skipSecondTimer;
 }

 public Boolean getSkipSecondTimer() {
 return skipSecondTimer != null && skipSecondTimer;
 }

 public Input setSkipSecondTimer(Boolean skipSecondTimer) {
 this.skipSecondTimer = skipSecondTimer;
 return this;
 }

}

Writing Initial Decider Code

The following is the initial Java code of the decider. It's registered as version 1 and it schedules two
five-second timer tasks.

InitialDecider.java

package sample.v1;

Example Scenario API Version 2021-04-28 160

AWS Flow Framework for Java Developer Guide

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 clock.createTimer(5);
 }

 }
}

Simulating a Backwards-Incompatible Change

The following modified Java code of the decider is a good example of a backwards-incompatible
change. The code is still registered as version 1, but schedules only one timer.

ModifiedDecider.java

Example Scenario API Version 2021-04-28 161

AWS Flow Framework for Java Developer Guide

package sample.v1.modified;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1 modified) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 }

 }
}

The following Java code allows you to simulate the problem of making backwards-incompatible
changes by running the modified decider.

RunModifiedDecider.java

package sample;

Example Scenario API Version 2021-04-28 162

AWS Flow Framework for Java Developer Guide

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class BadChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new BadChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start the modified version of the decider
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.modified.Foo.Impl.class);
 after.start();

 // Start a few more executions
 startFiveExecutions("Foo.sample", "1", new Input());

 printExecutionResults();
 }

}

When you run the program, the three executions that fail are those that started under the initial
version of the decider and continued after the migration.

Example Scenario API Version 2021-04-28 163

AWS Flow Framework for Java Developer Guide

Solutions

You can use the following solutions to avoid backwards-incompatible changes. For more
information, see Making Changes to Decider Code and Example Scenario.

Using Versioning

In this solution, you copy the decider to a new class, modify the decider, and then register the
decider under a new workflow version.

VersionedDecider.java

package sample.v2;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "2")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V2) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);

Solutions API Version 2021-04-28 164

AWS Flow Framework for Java Developer Guide

 }

 }

}

In the updated Java code, the second decider worker runs both versions of the workflow, allowing
in-flight executions to continue to execute independently of the changes in version 2.

RunVersionedDecider.java

package sample;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class VersionedChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new VersionedChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider, with workflow version 1
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions with version 1
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start a worker with both the previous version of the decider (workflow
 version 1)
 // and the modified code (workflow version 2)
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 after.addWorkflowImplementationType(sample.v2.Foo.Impl.class);

Solutions API Version 2021-04-28 165

AWS Flow Framework for Java Developer Guide

 after.start();

 // Start a few more executions with version 2
 startFiveExecutions("Foo.sample", "2", new Input());

 printExecutionResults();
 }

}

When you run the program, all executions complete successfully.

Using Feature Flags

Another solution to backwards-compatibility issues is to branch code to support two
implementations in the same class is to branch based on input data instead of workflow versions.

When you take this approach, you add fields to (or modify existing fields of) your input objects
every time you introduce sensitive changes. For executions that start before the migration, the
input object won't have the field (or will have a different value). Thus, you don't have to increase
the version number.

Note

If you add new fields, ensure that the JSON deserialization process is backwards-
compatible. Objects serialized before the introduction of the field should still successfully
deserialize after the migration. Because JSON sets a null value whenever a field is missing,
always use boxed types (Boolean instead of boolean) and handle the cases where the
value is null.

FeatureFlagDecider.java

package sample.v1.featureflag;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

Solutions API Version 2021-04-28 166

AWS Flow Framework for Java Developer Guide

import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1 feature flag) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 if (!input.getSkipSecondTimer()) {
 clock.createTimer(5);
 }
 }

 }
}

In the updated Java code, the code for both versions of the workflow is still registered for version
1. However, after the migration, new executions start with the skipSecondTimer field of the
input data set to true.

RunFeatureFlagDecider.java

package sample;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class FeatureFlagChange extends SampleBase {

Solutions API Version 2021-04-28 167

AWS Flow Framework for Java Developer Guide

 public static void main(String[] args) throws Exception {
 new FeatureFlagChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start a new version of the decider that introduces a change
 // while preserving backwards compatibility based on input fields
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.featureflag.Foo.Impl.class);
 after.start();

 // Start a few more executions and enable the new feature through the input
 data
 startFiveExecutions("Foo.sample", "1", new Input().setSkipSecondTimer(true));

 printExecutionResults();
 }

}

When you run the program, all executions complete successfully.

Solutions API Version 2021-04-28 168

AWS Flow Framework for Java Developer Guide

Troubleshooting and debugging tips for AWS Flow
Framework for Java

Topics

• Compilation errors

• Unknown resource fault

• Exceptions when calling get() on a Promise

• Nondeterministic workflows

• Problems due to versioning

• Troubleshooting and debugging a workflow execution

• Lost tasks

• Validation failure due to API parameter length constraints

This section describes some common pitfalls that you might run into while developing workflows
using AWS Flow Framework for Java. It also provides some tips to help you diagnose and debug
problems.

Compilation errors

If you are using the AspectJ compile time weaving option, you may run into compile time errors in
which the compiler isn't able to find the generated client classes for your workflow and activities.
The likely cause of such compilation errors is that the AspectJ builder ignored the generated clients
during compilation. You can fix this issue by removing AspectJ capability from the project and re-
enabling it. Note that you will need to do this every time your workflow or activities interfaces
change. Because of this issue, we recommend that you use the load time weaving option instead.
See the section Setting up the AWS Flow Framework for Java for more details.

Unknown resource fault

Amazon SWF returns unknown resource fault when you try to perform an operation on a resource
that isn't available. The common causes for this fault are:

• You configure a worker with a domain that doesn't exist. To fix this, first register the domain
using the Amazon SWF console or the Amazon SWF service API.

Compilation errors API Version 2021-04-28 169

https://docs.aws.eu/amazonswf/latest/developerguide/swf-dg-register-domain-console.html
https://docs.aws.eu/amazonswf/latest/apireference/API_RegisterDomain.html

AWS Flow Framework for Java Developer Guide

• You try to create workflow execution or activity tasks of types that have not been registered.
This can happen if you try to create the workflow execution before the workers have been run.
Because workers register their types when they are run for the first time, you must run them
at least once before attempting to start executions (or manually register the types using the
Console or the service API). Note that once types have been registered, you can create executions
even if no worker is running.

• A worker attempts to complete a task that has already timed out. For example, if a worker takes
too long to process a task and exceeds a timeout, it will get an UnknownResource fault when it
attempts to complete or fail the task. The AWS Flow Framework workers will continue to poll
Amazon SWF and process additional tasks. However, you should consider adjusting the timeout.
Adjusting the timeout requires that you register a new version of the activity type.

Exceptions when calling get() on a Promise

Unlike Java Future, Promise is a non-blocking construct and calling get() on a Promise that isn't
ready yet will throw an exception instead of blocking. The correct way to use a Promise is to pass
it to an asynchronous method (or a task) and access its value in the asynchronous method. AWS
Flow Framework for Java ensures that an asynchronous method is called only when all Promise
arguments passed to it have become ready. If you believe your code is correct or if you run into
this while running one of the AWS Flow Framework samples, then it is most likely due to AspectJ
not being properly configured. For details, see the section Setting up the AWS Flow Framework for
Java.

Nondeterministic workflows

As described in the section Nondeterminism, the implementation of your workflow must be
deterministic. Some common mistakes that can lead to nondeterminism are use of system clock,
use of random numbers, and generation of GUIDs. Because these constructs may return different
values at different times, the control flow of your workflow may take different paths each time
it is executed (see the sections AWS Flow Framework Basic Concepts: Distributed Execution and
Understanding a Task in AWS Flow Framework for Java for details). If the framework detects
nondeterminism while executing the workflow, an exception will be thrown.

Exceptions when calling get() on a Promise API Version 2021-04-28 170

AWS Flow Framework for Java Developer Guide

Problems due to versioning

When you implement a new version of your workflow or activity—for instance, when you add a
new feature—you should increase the version of the type by using the appropriate annotation:
@Workflow, @Activites, or @Activity. When new versions of a workflow are deployed, often
times you will have executions of the existing version that are already running. Therefore, you need
to make sure that workers with the appropriate version of your workflow and activities get the
tasks. You can accomplish this by using a different set of task lists for each version. For example,
you can append the version number to the name of the task list. This ensures that tasks belonging
to different versions of the workflow and activities are assigned to the appropriate workers.

Troubleshooting and debugging a workflow execution

The first step in troubleshooting a workflow execution is to use the Amazon SWF console to look at
the workflow history. The workflow history is a complete and authoritative record of all the events
that changed the execution state of the workflow execution. This history is maintained by Amazon
SWF and is invaluable for diagnosing problems. The Amazon SWF console enables you to search for
workflow executions and drill down into individual history events.

AWS Flow Framework provides a WorkflowReplayer class that you can use to replay a workflow
execution locally and debug it. Using this class, you can debug closed and running workflow
executions. WorkflowReplayer relies on the history stored in Amazon SWF to perform the replay.
You can point it to a workflow execution in your Amazon SWF account or provide it with the history
events (for example, you can retrieve the history from Amazon SWF and serialize it locally for later
use). When you replay a workflow execution using the WorkflowReplayer, it doesn't impact the
workflow execution running in your account. The replay is done completely on the client. You can
debug the workflow, create breakpoints, and step into code using your debugging tools as usual. If
you are using Eclipse, consider adding step filters to filter AWS Flow Framework packages.

For example, the following code snippet can be used to replay a workflow execution:

String workflowId = "testWorkflow";
String runId = "<run id>";
Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

Problems due to versioning API Version 2021-04-28 171

AWS Flow Framework for Java Developer Guide

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
 swfService, domain, workflowExecution, workflowImplementationType);

System.out.println("Beginning workflow replay for " + workflowExecution);
Object workflow = replayer.loadWorkflow();
System.out.println("Workflow implementation object:");
System.out.println(workflow);
System.out.println("Done workflow replay for " + workflowExecution);

AWS Flow Framework also allows you to get an asynchronous thread dump of your workflow
execution. This thread dump gives you the call stacks of all open asynchronous tasks. This
information can be useful to determine which tasks in the execution are pending and possibly
stuck. For example:

String workflowId = "testWorkflow";
String runId = "<run id>";
Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
 swfService, domain, workflowExecution, workflowImplementationType);

try {
 String flowThreadDump = replayer.getAsynchronousThreadDumpAsString();
 System.out.println("Workflow asynchronous thread dump:");
 System.out.println(flowThreadDump);
}
catch (WorkflowException e) {
 System.out.println("No asynchronous thread dump available as workflow has failed: "
 + e);
}

Lost tasks

Sometimes you may shut down workers and start new ones in quick succession only to discover
that tasks get delivered to the old workers. This can happen due to race conditions in the system,
which is distributed across several processes. The problem can also appear when you are running
unit tests in a tight loop. Stopping a test in Eclipse can also sometimes cause this because
shutdown handlers may not get called.

Lost tasks API Version 2021-04-28 172

AWS Flow Framework for Java Developer Guide

In order to make sure that the problem is in fact due to old workers getting tasks, you should
look at the workflow history to determine which process received the task that you expected
the new worker to receive. For example, the DecisionTaskStarted event in history contains
the identity of the workflow worker that received the task. The id used by the Flow Framework
is of the form: {processId}@{host name}. For instance, following are the details of the
DecisionTaskStarted event in the Amazon SWF console for a sample execution:

Event Timestamp Mon Feb 20 11:52:40 GMT-800 2012

Identity 2276@ip-0A6C1DF5

Scheduled Event Id 33

In order to avoid this situation, use different task lists for each test. Also, consider adding a delay
between shutting down old workers and starting new ones.

Validation failure due to API parameter length constraints

Amazon SWF enforces length constraints on API parameters. You will receive an HTTP 400 error
if your workflow or activity implementation exceeds the constraints. For example, when calling
recordActivityHeartbeat on ActivityExecutionContext to send a heartbeat for a
running activity, the string must not be longer than 2048 characters.

Another common scenario is when an activity fails due to an exception. The framework reports an
activity failure to Amazon SWF by calling RespondActivityTaskFailed with the serialized exception
as details. The API call will report a 400 error if the serialized exception has a length greater than
32,768 bytes. To mitigate this situation, you can truncate the exception message or the causes to
conform to the length constraint.

Validation failure due to API parameter length constraints API Version 2021-04-28 173

https://docs.aws.eu/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework for Java Developer Guide

AWS Flow Framework for Java Reference

Topics

• AWS Flow Framework for Java Annotations

• AWS Flow Framework for Java Exceptions

• AWS Flow Framework for Java Packages

AWS Flow Framework for Java Annotations

Topics

• @Activities

• @Activity

• @ActivityRegistrationOptions

• @Asynchronous

• @Execute

• @ExponentialRetry

• @GetState

• @ManualActivityCompletion

• @Signal

• @SkipRegistration

• @Wait and @NoWait

• @Workflow

• @WorkflowRegistrationOptions

@Activities

This annotation can be used on an interface to declare a set of activity types. Each method in an
interface annotated with this annotation represents an activity type. An interface can't have both
@Workflow and @Activities annotations-

The following parameters can be specified on this annotation:

Annotations API Version 2021-04-28 174

AWS Flow Framework for Java Developer Guide

activityNamePrefix

Specifies the prefix of the name of the activity types declared in the interface. If set to an empty
string (which is the default), the name of the interface followed by '.' is used as the prefix.

version

Specifies the default version of the activity types declared in the interface. The default value is
1.0.

dataConverter

Specifies the type of the DataConverter to use for serializing/deserializing data when
creating tasks of this activity type and its results. Set to NullDataConverter by default,
which indicates that the JsonDataConverter should be used.

@Activity

This annotation can be used on methods within an interface annotated with @Activities.

The following parameters can be specified on this annotation:

name

Specifies the name of the activity type. The default is an empty string, which indicates that
the default prefix and the activity method name should be used to determine the name of the
activity type (which is of the form {prefix}{name}). Note that when you specify a name in an
@Activity annotation, the framework will not automatically prepend a prefix to it. You are
free to use your own naming scheme.

version

Specifies the version of the activity type. This overrides the default version specified in the
@Activities annotation on the containing interface. The default is an empty string.

@ActivityRegistrationOptions

Specifies the registration options of an activity type. This annotation can be used on an interface
annotated with @Activities or the methods within. If specified in both places, then the
annotation used on the method takes effect.

@Activity API Version 2021-04-28 175

AWS Flow Framework for Java Developer Guide

The following parameters can be specified on this annotation:

defaultTasklist

Specifies the default task list to be registered with Amazon SWF for this activity type. This
default can be overridden when calling the activity method on the generated client using the
ActivitySchedulingOptions parameter. Set to USE_WORKER_TASK_LIST by default. This
is a special value which indicates that the task list used by the worker, which is performing the
registration, should be used.

defaultTaskScheduleToStartTimeoutSeconds

Specifies the defaultTaskScheduleToStartTimeout registered with Amazon SWF for this
activity type. This is the maximum time a task of this activity type is allowed to wait before it is
assigned to a worker. See the Amazon Simple Workflow Service API Reference for more details.

defaultTaskHeartbeatTimeoutSeconds

Specifies the defaultTaskHeartbeatTimeout registered with Amazon SWF for this activity
type. Activity workers must provide heartbeat within this duration; otherwise, the task will be
timed out. Set to -1 by default, which is a special value that indicates this timeout should be
disabled. See the Amazon Simple Workflow Service API Reference for more details.

defaultTaskStartToCloseTimeoutSeconds

Specifies the defaultTaskStartToCloseTimeout registered with Amazon SWF for this activity
type. This timeout determines the maximum time a worker can take to process an activity task
of this type. See the Amazon Simple Workflow Service API Reference for more details.

defaultTaskScheduleToCloseTimeoutSeconds

Specifies the defaultScheduleToCloseTimeout registered with Amazon SWF for this
activity type. This timeout determines the total duration that the task can stay in open state.
Set to -1 by default, which is a special value that indicates this timeout should be disabled. See
the Amazon Simple Workflow Service API Reference for more details.

@Asynchronous

When used on a method in the workflow coordination logic, indicates that the method should be
executed asynchronously. A call to the method will return immediately, but the actual execution
will happen asynchronously when all Promise<> parameters passed to the methods become ready.
Methods annotated with @Asynchronous must have a return type of Promise<> or void.

@Asynchronous API Version 2021-04-28 176

AWS Flow Framework for Java Developer Guide

daemon

Indicates if the task created for the asynchronous method should be a daemon task. False by
default.

@Execute

When used on a method in an interface annotated with the @Workflow annotation, identifies the
entry point of the workflow.

Important

Only one method in the interface can be decorated with @Execute.

The following parameters can be specified on this annotation:

name

Specifies the name of the workflow type. If not set, the name defaults to {prefix}{name}, where
{prefix} is the name of the workflow interface followed by a '.' and {name} is the name of the
@Execute-decorated method in the workflow.

version

Specifies the version of the workflow type.

@ExponentialRetry

When used on an activity or asynchronous method, sets an exponential retry policy if the
method throws an unhandled exception. A retry attempt is made after a back-off period, which is
calculated by the power of the number of attempts.

The following parameters can be specified on this annotation:

intialRetryIntervalSeconds

Specifies the duration to wait before the first retry attempt. This value should not be greater
than maximumRetryIntervalSeconds and retryExpirationSeconds.

@Execute API Version 2021-04-28 177

AWS Flow Framework for Java Developer Guide

maximumRetryIntervalSeconds

Specifies the maximum duration between retry attempts. Once reached, the retry interval is
capped to this value. Set to -1 by default, which means unlimited duration.

retryExpirationSeconds

Specifies the duration after which exponential retry will stop. Set to -1 by default, which means
there is no expiration.

backoffCoefficient

Specifies the coefficient used to calculate the retry interval. See Exponential Retry Strategy.

maximumAttempts

Specifies the number of attempts after which exponential retry will stop. Set to -1 by default,
which means there is no limit on the number of retry attempts.

exceptionsToRetry

Specifies the list of exception types that should trigger a retry. Unhandled exception of these
types will not propagate further and the method will be retried after the calculated retry
interval. By default, the list contains Throwable.

excludeExceptions

Specifies the list of exception types that should not trigger a retry. Unhandled exceptions of this
type will be allowed to propagate. The list is empty by default.

@GetState

When used on a method in an interface annotated with the @Workflow annotation, identifies
that the method is used to retrieve the latest workflow execution state. There can be at most one
method with this annotation in an interface with the @Workflow annotation. Methods with this
annotation must not take any parameters and must have a return type other than void.

@ManualActivityCompletion

This annotation can be used on an activity method to indicate that the activity task should not be
completed when the method returns. The activity task will not be automatically completed and
would need to be completed manually directly using the Amazon SWF API. This is useful for use

@GetState API Version 2021-04-28 178

AWS Flow Framework for Java Developer Guide

cases where the activity task is delegated to some external system that isn't automated or requires
human intervention to be completed.

@Signal

When used on a method in an interface annotated with the @Workflow annotation, identifies a
signal that can be received by executions of the workflow type declared by the interface. Use of
this annotation is required to define a signal method.

The following parameters can be specified on this annotation:

name

Specifies the name portion of the signal name. If not set, the name of the method is used.

@SkipRegistration

When used on an interface annotated with the @Workflow annotation, indicates that the workflow
type should not be registered with Amazon SWF. One of @WorkflowRegistrationOptions
and @SkipRegistrationOptions annotations must be used on an interface annotated with
@Workflow, but not both.

@Wait and @NoWait

These annotations can be used on a parameter of type Promise<> to indicate whether the AWS
Flow Framework for Java should wait for it to become ready before executing the method. By
default, Promise<> parameters passed into @Asynchronous methods must become ready before
method execution occurs. In certain scenarios, it is necessary to override this default behavior.
Promise<> parameters passed into @Asynchronous methods and annotated with @NoWait are
not waited for.

Collections parameters (or subclasses of) that contain promises, such as List<Promise<Int>>,
must be annotated with @Wait annotation. By default, the framework doesn't wait for the
members of a collection.

@Workflow

This annotation is used on an interface to declare a workflow type. An interface decorated with this
annotation should contain exactly one method that is decorated with the @Execute annotation to
declare an entry point for your workflow.

@Signal API Version 2021-04-28 179

AWS Flow Framework for Java Developer Guide

Note

An interface can't have both @Workflow and @Activities annotations declared at once;
they are mutually exclusive.

The following parameters can be specified on this annotation:

dataConverter

Specifies which DataConverter to use when sending requests to, and receiving results from,
workflow executions of this workflow type.

The default is NullDataConverter which, in turn, falls back to JsonDataConverter to
process all request and response data as JavaScript Object Notation (JSON).

Example

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {
 @Execute(version = "1.0")
 public void greet();
}

@WorkflowRegistrationOptions

When used on an interface annotated with @Workflow, provides default settings used by Amazon
SWF when registering the workflow type.

Note

Either @WorkflowRegistrationOptions or @SkipRegistrationOptions must be
used on an interface annotated with @Workflow, but you can't specify both.

@WorkflowRegistrationOptions API Version 2021-04-28 180

AWS Flow Framework for Java Developer Guide

The following parameters can be specified on this annotation:

Description

An optional text description of the workflow type.

defaultExecutionStartToCloseTimeoutSeconds

Specifies the defaultExecutionStartToCloseTimeout registered with Amazon SWF for
the workflow type. This is the total time that a workflow execution of this type can take to
complete.

For more information about workflow timeouts, see Amazon SWF Timeout Types .

defaultTaskStartToCloseTimeoutSeconds

Specifies the defaultTaskStartToCloseTimeout registered with Amazon SWF for the
workflow type. This specifies the time a single decision task for a workflow execution of this
type can take to complete.

If you don't specify defaultTaskStartToCloseTimeout, it will default to 30 seconds.

For more information about workflow timeouts, see Amazon SWF Timeout Types .

defaultTaskList

The default task list used for decision tasks for executions of this workflow type. The default set
here can be overridden by using StartWorkflowOptions when starting a workflow execution.

If you don't specify defaultTaskList, it will be set to USE_WORKER_TASK_LIST by default.
This indicates that the task list used by the worker that is performing the workflow registration
should be used.

defaultChildPolicy

Specifies the policy to use for child workflows if an execution of this type is terminated. The
default value is ABANDON. The possible values are:

• ABANDON – Allow the child workflow executions to keep running

• TERMINATE – Terminate child workflow executions

• REQUEST_CANCEL – Request cancellation of the child workflow executions

@WorkflowRegistrationOptions API Version 2021-04-28 181

AWS Flow Framework for Java Developer Guide

AWS Flow Framework for Java Exceptions

The following exceptions are used by the AWS Flow Framework for Java. This section provides
an overview of the exception. For more details, see the AWS SDK for Java documentation of the
individual exceptions.

Topics

• ActivityFailureException

• ActivityTaskException

• ActivityTaskFailedException

• ActivityTaskTimedOutException

• ChildWorkflowException

• ChildWorkflowFailedException

• ChildWorkflowTerminatedException

• ChildWorkflowTimedOutException

• DataConverterException

• DecisionException

• ScheduleActivityTaskFailedException

• SignalExternalWorkflowException

• StartChildWorkflowFailedException

• StartTimerFailedException

• TimerException

• WorkflowException

ActivityFailureException

This exception is used by the framework internally to communicate activity failure. When an
activity fails due to an unhandled exception, it is wrapped in ActivityFailureException and
reported to Amazon SWF. You need to deal with this exception only if you use the activity worker
extensibility points. Your application code will never need to deal with this exception.

Exceptions API Version 2021-04-28 182

AWS Flow Framework for Java Developer Guide

ActivityTaskException

This is the base class for activity task failure exceptions:
ScheduleActivityTaskFailedException, ActivityTaskFailedException,
ActivityTaskTimedoutException. It contains the task Id and activity type of the failed task.
You can catch this exception in your workflow implementation to deal with activity failures in a
generic way.

ActivityTaskFailedException

Unhandled exceptions in activities are reported back to the workflow implementation by throwing
an ActivityTaskFailedException. The original exception can be retrieved from the cause
property of this exception. The exception also provides other information that is useful for
debugging purposes, such as the unique activity identifier in the history.

The framework is able to provide the remote exception by serializing the original exception from
the activity worker.

ActivityTaskTimedOutException

This exception is thrown if an activity was timed out by Amazon SWF. This could happen if the
activity task could not be assigned to the worker within the require time period or could not be
completed by the worker in the required time. You can set these timeouts on the activity using the
@ActivityRegistrationOptions annotation or using the ActivitySchedulingOptions
parameter when calling the activity method.

ChildWorkflowException

Base class for exceptions used to report failure of child workflow execution. The exception contains
the Ids of the child workflow execution as well as its workflow type. You can catch this exception to
deal with child workflow execution failures in a generic way.

ChildWorkflowFailedException

Unhandled exceptions in child workflows are reported back to the parent workflow
implementation by throwing a ChildWorkflowFailedException. The original exception can be
retrieved from the cause property of this exception. The exception also provides other information
that is useful for debugging purposes, such as the unique identifiers of the child execution.

ActivityTaskException API Version 2021-04-28 183

AWS Flow Framework for Java Developer Guide

ChildWorkflowTerminatedException

This exception is thrown in parent workflow execution to report the termination of a child
workflow execution. You should catch this exception if you want to deal with the termination of the
child workflow, for example, to perform cleanup or compensation.

ChildWorkflowTimedOutException

This exception is thrown in parent workflow execution to report that a child workflow execution
was timed out and closed by Amazon SWF. You should catch this exception if you want to deal with
the forced closure of the child workflow, for example, to perform cleanup or compensation.

DataConverterException

The framework uses the DataConverter component to marshal and unmarshal data that is sent
over the wire. This exception is thrown if the DataConverter fails to marshal or unmarshal data.
This could happen for various reasons, for example, due to a mismatch in the DataConverter
components being used to marshal and unmarshal the data.

DecisionException

This is the base class for exceptions that represent failures to enact a decision by Amazon SWF. You
can catch this exception to generically deal with such exceptions.

ScheduleActivityTaskFailedException

This exception is thrown if Amazon SWF fails to schedule an activity task. This could happen due
to various reasons—for example, the activity was deprecated, or an Amazon SWF limit on your
account has been reached. The failureCause property in the exception specifies the exact cause
of failure to schedule the activity.

SignalExternalWorkflowException

This exception is thrown if Amazon SWF fails to process a request by the workflow execution to
signal another workflow execution. This happens if the target workflow execution could not be
found—that is, the workflow execution you specified doesn't exist or is in closed state.

ChildWorkflowTerminatedException API Version 2021-04-28 184

AWS Flow Framework for Java Developer Guide

StartChildWorkflowFailedException

This exception is thrown if Amazon SWF fails to start a child workflow execution. This could happen
due to various reasons—for example, the type of child workflow specified was deprecated, or
a Amazon SWF limit on your account has been reached. The failureCause property in the
exception specifies the exact cause of failure to start the child workflow execution.

StartTimerFailedException

This exception is thrown if Amazon SWF fails to start a timer requested by the workflow execution.
This could happen if the specified timer ID is already in use, or an Amazon SWF limit on your
account has been reached. The failureCause property in the exception specifies the exact cause
of failure.

TimerException

This is the base class for exceptions related to timers.

WorkflowException

This exception is used internally by the framework to report failures in workflow execution. You
need to deal with this exception only if you are using a workflow worker extensibility point.

AWS Flow Framework for Java Packages

This section provides an overview of the packages included with the AWS Flow Framework for Java.
For more information about each package, see the com.amazonaws.services.simpleworkflow.flow
in the AWS SDK for Java API Reference.

com.amazonaws.services.simpleworkflow.flow

Contains components that integrate with Amazon SWF.

com.amazonaws.services.simpleworkflow.flow.annotations

Contains the annotations used by the AWS Flow Framework for Java programming model.

com.amazonaws.services.simpleworkflow.flow.aspectj

Contains AWS Flow Framework for Java components required for features such as
@Asynchronous and @ExponentialRetry.

StartChildWorkflowFailedException API Version 2021-04-28 185

https://docs.aws.eu/sdk-for-java/latest/reference/
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/aspectj/package-summary.html

AWS Flow Framework for Java Developer Guide

com.amazonaws.services.simpleworkflow.flow.common

Contains common utilities such as framework-defined constants.

com.amazonaws.services.simpleworkflow.flow.core

Contains core features such as Task and Promise.

com.amazonaws.services.simpleworkflow.flow.generic

Contains core components, such as generic clients, that other features build on.

com.amazonaws.services.simpleworkflow.flow.interceptors

Contains implementations of framework provided decorators including RetryDecorator.

com.amazonaws.services.simpleworkflow.flow.junit

Contains components that provide Junit integration.

com.amazonaws.services.simpleworkflow.flow.pojo

Contains classes that implement activity and workflow definitions for the annotation-based
programming model.

com.amazonaws.services.simpleworkflow.flow.spring

Contains components that provide Spring integration.

com.amazonaws.services.simpleworkflow.flow.test

Contains helper classes, such as TestWorkflowClock, for unit testing workflow
implementations.

com.amazonaws.services.simpleworkflow.flow.worker

Contains implementations of activity and workflow workers.

Packages API Version 2021-04-28 186

https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/common/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/core/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/interceptors/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/junit/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/pojo/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/spring/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/test/package-summary.html
https://docs.aws.eu//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/worker/package-summary.html

AWS Flow Framework for Java Developer Guide

Document History

The following table describes the important changes to the documentation since the last release of
the AWS Flow Framework for Java Developer Guide.

• API version: 2012-01-25

• Latest documentation update: June 25, 2018

Change Description Date
Changed

Update Fixed an error in the backoffCoefficient descripti
on for @ExponentialRetry . See @ExponentialRetry.

June 25,
2018

Update Cleaned up the code examples throughout this guide. June 5,
2017

Update Simplified and improved the organization and contents of
this guide.

May 19,
2017

Update Simplified and improved the Making Changes to Decider
Code: Versioning and Feature Flags section.

April 10,
2017

Update Added the new Best Practices section with new guidance
on making changes to decider code.

March 3,
2017

New feature You can specify Lambda tasks in addition to traditional
Activity tasks in your workflows. For more information,
see Implementing AWS Lambda Tasks.

July 21,
2015

New feature Amazon SWF includes support for setting the task priority
on a task list, attempting to deliver the tasks with a
higher priority before tasks with lower priority. For more
information, see Setting task priority in Amazon SWF.

December
17, 2014

Update Made updates and fixes. August 1,
2013

API Version 2021-04-28 187

AWS Flow Framework for Java Developer Guide

Change Description Date
Changed

Update • Made updates and fixes, including updates of the setup
instructions for Eclipse 4.3 and AWS SDK for Java 1.4.7.

• Added a new set of tutorials for building starter
scenarios

June 28,
2013

New feature The initial release of the AWS Flow Framework for Java. February
27, 2012

API Version 2021-04-28 188

	AWS Flow Framework for Java
	Table of Contents
	What is the AWS Flow Framework for Java?
	What's in this Guide?

	Getting Started with the AWS Flow Framework for Java
	Setting up the AWS Flow Framework for Java
	Add the flow framework with Maven

	HelloWorld Application
	HelloWorld Activities Implementation
	HelloWorld Workflow Worker
	HelloWorld Workflow Starter

	HelloWorldWorkflow Application
	HelloWorldWorkflow Activities Worker
	HelloWorldWorkflow Workflow Worker
	Activities Client
	Promise<T> Type

	HelloWorldWorkflow Workflow and Activities Implementation
	HelloWorldWorkflow Starter

	HelloWorldWorkflowAsync Application
	HelloWorldWorkflowAsync Activities Implementation
	HelloWorldWorkflowAsync Workflow Implementation
	HelloWorldWorkflowAsync Workflow and Activities Host and Starter

	HelloWorldWorkflowDistributed Application
	HelloWorldWorkflowParallel Application
	HelloWorldWorkflowParallel Activities Worker
	HelloWorldWorkflowParallel Workflow Worker
	HelloWorldWorkflowParallel Workflow and Activities Host and Starter

	Understanding AWS Flow Framework for Java
	AWS Flow Framework Basic Concepts: Application Structure
	Role of the Activity Worker
	Role of the Workflow Worker
	Role of the Workflow Starter
	How Amazon SWF Interacts with Your Application
	For More Information

	AWS Flow Framework Basic Concepts: Reliable Execution
	Providing Reliable Communication
	Ensuring that Results are Not Lost
	Maintaining Workflow History
	Stateless Execution

	Handling Failed Distributed Components

	AWS Flow Framework Basic Concepts: Distributed Execution
	Replaying Workflows
	Replay and Asynchronous Workflow Methods
	Replay and Workflow Implementation

	AWS Flow Framework Basic Concepts: Task Lists and Task Execution
	AWS Flow Framework Basic Concepts: Scalable Applications
	AWS Flow Framework Basic Concepts: Data Exchange Between Activities and Workflows
	The Promise<T> Type
	Data Converters and Marshaling

	AWS Flow Framework Basic Concepts: Data Exchange Between Applications and Workflow Executions
	Amazon SWF Timeout Types
	Timeouts in Workflow and Decision Tasks
	Timeouts in Activity Tasks

	Understanding a Task in AWS Flow Framework for Java
	Task
	Order of Execution
	Workflow Execution
	Nondeterminism

	AWS Flow Framework for Java Programming Guide
	Implementing Workflow Applications with the AWS Flow Framework
	Workflow and Activity Contracts
	Workflow and Activity Type Registration
	Workflow Type Name and Version
	Signal Name
	Activity Type Name and Version
	Default Task List
	Other Registration Options

	Activity and Workflow Clients
	Workflow Clients
	Activity Clients
	Scheduling Options
	Dynamic Clients
	Signaling and Canceling Workflow Executions

	Workflow Implementation
	Decision Context
	Exposing Execution State
	Workflow Locals

	Activity Implementation
	Manually Completing Activities

	Implementing AWS Lambda Tasks
	About AWS Lambda
	Benefits and limitations of using Lambda tasks
	Using Lambda tasks in your AWS Flow Framework for Java workflows
	Set up an IAM role
	Limit permissions on an IAM role
	Providing Amazon SWF with access to invoke any Lambda role
	Defining an IAM role to provide access to invoke a specific Lambda function

	Schedule a Lambda task for execution

	View the HelloLambda sample

	Running Programs Written with the AWS Flow Framework for Java
	WorkflowWorker
	ActivityWorker
	Worker Threading Model
	Worker Extensibility

	Execution Context
	Decision Context
	Accessing DecisionContext in Workflow Implementation
	Creating a Clock and Timer

	Activity Execution Context
	Heartbeat a Long Running Activity
	Get Details of the Activity Task
	Get the Amazon SWF Client Object that is Being Used by the Executor

	Child Workflow Executions
	Continuous Workflows
	Setting task priority in Amazon SWF
	Setting Task Priority for Workflows
	Setting Task Priority for Activities

	DataConverters
	Passing Data to Asynchronous Methods
	Passing Collections and Maps to Asynchronous Methods
	Settable<T>
	@NoWait
	Promise<Void>
	AndPromise and OrPromise

	Testability and Dependency Injection
	Spring Integration
	WorkflowScope
	Spring-Aware Workers
	Injecting Decision Context
	Injecting Resources in Activities

	JUnit Integration
	Writing a Simple Unit Test
	Mocking Activity Implementations

	Test Context Objects

	Error Handling
	TryCatchFinally Semantics
	Cancellation
	Activity Heartbeat
	Explicitly Canceling a Task
	Receiving Notification of Canceled Tasks

	Nested TryCatchFinally

	Retry Failed Activities
	Retry-Until-Success Strategy
	Exponential Retry Strategy
	Exponential Retry with @ExponentialRetry
	Exponential Retry with the RetryDecorator Class
	Exponential Retry with the AsyncRetryingExecutor Class

	Custom Retry Strategy

	Daemon Tasks
	AWS Flow Framework for Java Replay Behavior
	Example 1: Synchronous Replay
	Example 2: Asynchronous Replay
	See Also

	Best Practices
	Making Changes to Decider Code: Versioning and Feature Flags
	The Replay Process and Code Changes
	Example Scenario
	Scenario Outline
	Common Code
	Writing Initial Decider Code
	Simulating a Backwards-Incompatible Change

	Solutions
	Using Versioning
	Using Feature Flags

	Troubleshooting and debugging tips for AWS Flow Framework for Java
	Compilation errors
	Unknown resource fault
	Exceptions when calling get() on a Promise
	Nondeterministic workflows
	Problems due to versioning
	Troubleshooting and debugging a workflow execution
	Lost tasks
	Validation failure due to API parameter length constraints

	AWS Flow Framework for Java Reference
	AWS Flow Framework for Java Annotations
	@Activities
	@Activity
	@ActivityRegistrationOptions
	@Asynchronous
	@Execute
	@ExponentialRetry
	@GetState
	@ManualActivityCompletion
	@Signal
	@SkipRegistration
	@Wait and @NoWait
	@Workflow
	Example

	@WorkflowRegistrationOptions

	AWS Flow Framework for Java Exceptions
	ActivityFailureException
	ActivityTaskException
	ActivityTaskFailedException
	ActivityTaskTimedOutException
	ChildWorkflowException
	ChildWorkflowFailedException
	ChildWorkflowTerminatedException
	ChildWorkflowTimedOutException
	DataConverterException
	DecisionException
	ScheduleActivityTaskFailedException
	SignalExternalWorkflowException
	StartChildWorkflowFailedException
	StartTimerFailedException
	TimerException
	WorkflowException

	AWS Flow Framework for Java Packages

	Document History

