adws

Entwicklerhandbuch

AWS Flow Framework fur Java

API-Version 2021-04-28

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Flow Framework fur Java Entwicklerhandbuch

AWS Flow Framework fur Java: Entwicklerhandbuch

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Marken und Handelsmarken von Amazon dirfen nicht in einer Weise in Verbindung mit nicht
von Amazon stammenden Produkten oder Services verwendet werden, die geeignet ist, Kunden
irrezufiihren oder Amazon in irgendeiner Weise herabzusetzen oder zu diskreditieren. Alle anderen
Marken, die nicht im Besitz von Amazon sind, gehéren den jeweiligen Besitzern, die moglicherweise
mit Amazon verbunden sind oder von Amazon gesponsert werden.

AWS Flow Framework fur Java Entwicklerhandbuch

Table of Contents

Was ist das AWS Flow Framework fUr JAVA?ooooiiiiiiiiieeeeeee e e e e e e 1
Was ist in diesem Handbuch enthalten? ... 1
TS (SIS T]] 1 = O SEEPURPR 3
Einrichtung desS FrameEWOIKSooiiiiiiiie e e e e e e e e e e e e e e e e e eaan s eeaaaenes 3
Flgen Sie das Flow-Framework mit Maven hinzu ... 4
HellOWOrId BEWEIDUNGovviii et e e e et e e e e e e e e s e e e e e eeaaaaaeeeeeeeennnnns 4
HelloWorld Implementierung der AKEIVItAtENooovviiii i 5
HelloWorld WorkfloOW-MItarDEItEreeviiiiieiieieei e e e e e e e 6
HelloWorld WOrKfIOW-STarteroooiii e e e e e 7
HelloWorldWorkflow BEeWErDUNQiiiiiiii e e e e e e e e e e e e e e e eeanaanaes 8
HelloWorldWorkflow Aktivitaten Arbeiter ... 10
HelloWorldWorkflow WOrKfIOW-WOTIKETcoiiiiiiiiiieeeeeee e 12
HelloWorldWorkflow Implementierung von Arbeitsablaufen und Aktivitaten 17
HelloWorldWOrkflow VOISPEISEcooeiiiiiieeee ettt 21
HelloWorldWorkfloWASYNCBEWEIDUNGvviiiiiiiiciecee e e e e e e e 26
HelloWorldWorkflowAsync Implementierung der AKLVItatenovvveviiiiiiiiiiiiie 28
HelloWorldWorkflowAsync Workflow-Implementierungccccoooeeeiiiiiiiiiiiiieeee 28
HelloWorldWorkflowAsyncArbeitsablauf und Aktivitdten: Host und Starterccccccooeeee. 30
HelloWorldWorkflowDistributed BeWerbungcccooeiiiiiiiiiiiii e 31
HelloWorldWorkflowParallelBEWErbuNgoooriiiiieeecee e 34
HelloWorldWorkflowParallelAktivitaten Arbeiter ... 35
HelloWorldWorkflowParallelWorkflow-Mitarbeiter ... 36
HelloWorldWorkflowParallel Arbeitsablauf und Aktivitdten: Host und Starter 38
Verstehen AWS FIOW FrameEWOTKcoooiiiiiiiiiiiiiiiiee ettt e e e e e e e e e e s s e e eeeaaaeeeas 39
ANWENAUNGSSTIUKLIUN ...t e e e e e e e e e et e e e e e e e asaa e e e eeeesnnnaeeaeeenes 39
Rolle des AKLVItAIS-WOIKEISccooiieieeeeee et 41
Rolle des WOrKfIOW-WOTKEFScciieiiiiieiei ettt e e e e e e e e e e e e e 41
Rolle des WOrkfOW-Startersoueeiiiiiiiiiieiee e e e e e e e e e e e 42
So interagiert Amazon SWF mit lhrer AnWenduNguvumeiiiiiiiiii e 42
Weitere Informationenoooo oo 43
ZUVErIAssige AUSTUNIUNGeiiiiii et as 43
Bereitstellen von zuverlassiger KommuniKationccooooiiiiiiiiiiiiiicce e 43
Sicherstellen, dass Ergebnisse nicht verloren gegangen sindccccoooiiiiiiiiicccccenn, 44
Verarbeitung fehlgeschlagener verteilter Komponentenooovviiiiiiiiiiiiiiieeeeeeeeeeeeee, 45

API-Version 2021-04-28 iii

AWS Flow Framework fur Java Entwicklerhandbuch

Verteilte AUSTUNIUNGot eeeeeeeessnnasaanaes 45
WOIKFIOW=REPIAYeeeeeeeeeee et e e e e e e e e e e e e e as 45
Replay und asynchrone Workflow-Methodenuuuiiiiiiiiiiiiiie e 47
Replay und die Workflow-Implementierungeeeeiiiiiiiiiii e 47

Aufgabenlisten und Aufgabenausfihrung ..o 48

Skalierbare WebanWeNAUNGENoooiiiiiiiiieeeee et e e e e e e e e e e e e as 50

Datenaustausch zwischen Aktivitdten und WOrKflOWSoooviiiiiiiiiiiiiiiiieee e 51
(DT o o] g LTI o Y/ o 1= PSR 51
Datenkonverter und Marshalingcoooooiiiiiiii e e e eeanes 53

Datenaustausch zwischen Anwendungen und Workflow-Ausflihrungencccccoviiiiiiiinnnne, 53

ZeitlUbersChreltUNGSIYPENo e e e e e e e e e 54
Zeituberschreitungen in Workflow- und Entscheidungsaufgabenccccciiinnnnn, 54
Zeituberschreitungen in Aktivitatsaufgaben ..., 56

AUFGabEN VEISIENEN e aeeae e 58

AUFGADE ...ttt a e e e e e e aaaaaaeeeaeerrrr———————————— 58

Reihenfolge der AUSTUNIUNGooooiiiie e e e e e e e e e e e 59

WOrKFIOW-AUSTUNIUNG ..o e e e e e e e e e et e e as 61

NIChtAEtErMINISIMUSottt e e e e e e e e e e e e e aeeaeeeeeeeeeeannnnes 64

Programming GUIAEoooiiiiiiiiiiiit et e e et e e ettt et e e e e e e e eeaeaaaaaaaeeeeeeeeessssssnssnnnnns 65

Implementieren von Workflow-AnWendUNGENcooiiiiiiiiiiiiiieceee e 65

Workflow- und AKEIVItAIS-VEIrAgEccoooiiiiiiie et 67

Registrierung von Workflow- und AKtIVItAIStYPENcccooeiiiiiiii e 70
Workflow-Typname UNd VEISIONoooiiiiiiiieiiee et e et 71
SIGNAINAIME ... e e e e e e e e e e e e e e e e e e et e e ———————————————— 71
Aktivitatstypname UNA VEIrSIONccoooiiiiiiii et e et e e e e aaas 72
StandardaufgabenliSteccooooi oo —————————— 72
Weitere RegistrierungSOPLIONENoooviiii e e e e e 72

Aktivitats- und WOrKIOW-CHENESooiiiieieiiiiiii e e e e e 73
WOTKFIOW-ClIENTS ... e e e e e e e e e e s et e e e e e e e e e e e e e e e e e e nnnnneeees 73
AKEIVITAES-ClIENTS ... e e e e e e e e e s e ettt e e e e e aaaeeeeeeas e nnnnsesenneeees 82
[PV U T Te T=To] oo =T o PSPPI 87
DynamisChe CHENEScoooiiiee e e e e e e e e e e e e e e e e e e eeeeees 87

WOrkflow-ImplemeENti€rUNGcccooiiiii e 89
ENtSCheidUNGSKONTEXLoeeiiceeeee e e e e e et e e e e e e eaan e e eaeeeees 91
Offenlegen des AuSTUNrUNGSStatUSccoooiiiii e 91
WOTKFIOW-LOKAIE e ettt e e e e e e e e e e e e e e e s nnnnreeeeeees 93

API-Version 2021-04-28 iv

AWS Flow Framework fur Java Entwicklerhandbuch

Implementierung von AKLVITAENoooiiii e 94
Aktivitaten manuell abSChIERENoooiiiii e 95
Implementierung von Lambda-Aufgaben ... 97
UDEI AWS LAMDAAcoooveiveeeeee ettt e e teeae e eneetesaeeseneetesteeaeneeneareaeas 97
Vorteile und Einschrankungen der Verwendung von Lambda-Aufgabencccovvne. 98
Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework Workflows fir Java 99
Sehen Sie sich das Beispiel an HelloLambda ..., 103
Ausflihren von Programmen, die mit dem AWS Flow Framework fiir Java geschrieben
118] 0 = o PP UPPUPURRTRR 104
WOTKFIOWWVOIKET ...ttt e e e e e e e e e e e e e e e e e e aeeaaeeeeeaaanns 105
ACHVIEYWOIKET ...ttt e ettt e e e e e et et e e e e e eeeasa e e e eeeeesanaaeeaaenes 105
Worker-Threading-MOdEllcoooiiiini e e e e e e e e as 106
Worker-ErweiterDarkeit e 108
AUSTUNIUNGSKONTEXE ..o e e e e e e e e e 109
ENtSCheidUNGSKONTEXLeie et e e et e e e e e e et eeeaeeenes 109
AktivitatsausfUhrungskontext ... 112
Untergeordnete Workflow-AusfURIUNGENvviiiiiiiieei e 113
Fortlaufende WOIKFIOWSeeiiiiiiiieee e e e e e e e e e e e e e e e eeeees 115
Einstellung der Aufgabenprioritatoeeeeeiii e 116
Einrichten der Aufgabenprioritat flr WOorkflOws ..o 117
Einrichten der Aufgabenprioritat flir AKtIVItAten ... 118
D= = 0] g V7= o (T USSP 119
Datenlbergabe an asynchrone Methodencoooiiiiiiiiii i 120
Ubergabe von Collections und Maps an asynchrone Methodencoceoueeeeeeeoeeeeeeeeeennn. 120
BINStellDare ST > e e e e e e e e e e e e eeaeerannaa 121
(@21 N\ [X A= T RSP 122
PromisSe SVOIA> ...ttt e e e e e e e e e e e e e e e eeeeeeeernnane 123
ANdPromise Und OFPIOMISEccoiiiiiiiiiiiiiiieeee ettt e e e e e e e e e e e e e s eseeeeeeeeeaaeens 123
Prifbarkeit und Dependency INJECHION ... 123
SPriNG-INEGratioNoooeeiee e e e e e e e e e e e e e ————— 124
N L0 o [T (=T =1 o o PP 131
=T a1 =Ty 7= o F= T o o | [o Vo 137
TryCatchFinally SemantiKuuuuueiiiiiii et e e e e e e e e aea e 139
Y o]] 4 U o P PRERPPRRRR 140
Verschachtelt TryCatchFinally ... 145
Wiederholen fehlgeschlagener AKLVItAIENvveueieiiiiiiiie e 146

API-Version 2021-04-28 v

AWS Flow Framework fur Java Entwicklerhandbuch

Retry-Until-SUCCESS Strat@gieuuueeeiieee it 147
Exponentielle Wiederholungsstrategieooiiiiiiiiiiii e 149
Benutzerdefinierte Wiederholungsstrategieuuuuiiiiiiiiiiiiiieeeeee e 157
Daemon-AUfQaben ... ——————————— 160
RePIAY-VEINAIEN ...t e e e e et e e e e e e e aaa e e e e e eeaanaeeaeaeees 162
Beispiel 1: SYyNchron€s REPIAYoovvvrmiiiiiiiiiiiei e e e 162
Beispiel 2: ASYNChrones REPIAYccoveiiiiiii e aeeaaes 164
Weitere Informationen finden Sie Unter: ... 165
Bewahrte MethOden e e e e e e e e e e e e e e e e e e eeeeeneeeeees 166
Vornehmen von Anderungen am EntsCheidercodecooovooeeeeeeeeceeeeeeeeeeeeeeeeeeee e 166
Wiedergabe und COdeANAEIUNGENooeiiiiiiiiiece ettt e e 166

T CT 1Y o1 T=1 S =Y o = o R PP USSP 167
[0S0 T = o PP 174
=Y a1 =T o= a1 o101 o o [PPSR 180
Fehler beim KOmMPIEIENe e e e e e e e e e e e e eees 180
Unbekannter ReSSOUrCEeNfeNIEroooiiiiiii e 181
Ausnahmen beim Aufrufen von get () flir €in Promise ..., 181
Nichtdeterministische WOrKFIOWSooo e 182
Probleme aufgrund der VErsioni€rUNGccooiiiiiiiiiieeeeeeeree eeeeeeaaaanaes 182
Problembehandlung und Debuggen einer Workflow-AusfUhrungccooovrmiiiiccicciceeeen. 182
VeErlorene AUFGADENoooiiiie aaaa————— 184
Die Uberpriifung ist aufgrund von Léangenbeschrankungen fiir API-Parameter fehlgeschlagen . 185
= 1= =Y V4RO 186
N 10 1= o (0 LT =T o PSPPSR 186
@ a1/ 1 = | P PEERRRRR 186

@ a1/ 1 = | P PEERRRRR 187
@ACLivityRegistratioNOPLIONSoooiiiiiie e 188
@ASYNCIAION ...ttt et e et e aaa——r b ——————————— 189
@EXECULEottt et e e e e e e e e e e e e e e e e e e e —— i ——————————— 189
@EXPONENHAIREINY ... e e e e e e aaaaaaas 190

@ GEESTALE ... e ————————————————————— 191
@ManualActivityCompletionoooeiiee e 191

@ SIGNAIo eeeeeaeaaaaaaaaeaeeaterr————————————— 191
@SKIPREGISIrAtiON ... e e e e e e e e e e e e e e e e 192
@Wait und @ NOWaIL ...t e e e e e e e e e aaaaaes 192

(@ N o4 4] [0 TP RRRPPPPP 192

API-Version 2021-04-28 vi

AWS Flow Framework fur Java Entwicklerhandbuch

@WorkflowRegistratioNOPLIONSovviiiiiiiicei e 193
1= 0 = T o 1T o PSP 195
ACtiVItYFaIlUrEEXCEPLION ... e 195
ACHVItY TASKEXCEPHON ..o e e et e e e e e et e e e aeeeees 196
Activity TaskFailedEXCEPHION ... e e 196
ActivityTask TImedOULEXCEPLIONcoooiiieeee e 196
ChildWOorkflOWEXCEPHION ... e e e e e e e e e e e e e eeees 196
ChildWorkflowFailedEXCEPLIONcccoeiieeeeeee e 196
ChildWorkflowTerminatedEXCEPLoONuueeiiiiiiiie e 197
ChildWorkflowTimedOULEXCEPLIONcoooiiiieeeeee e s 197
DataConverterEXCEPLIONcoooiiieeeeee e e e e e e e e 197

(D TSY oI] To] b et =T o)1) o U URPPRRR 197
ScheduleActivityTaskFailedEXCEPLIONcoooiiiiiiec e 197
SignalExternalWorkflOWEXCEPLONccoiiiiiiiiiii e e e e e e e 198
StartChildWorkflowFailedEXCEPLIONcoooiiic e 198
StartTimerFailedEXCEPION ... e e e e e e e 198

B I T=T 0 T (eT=T o] (o o PSRRI 198
WOIKFIOWEXCEPHON ...ttt e e e e e e e e e e e e e e e e aeees 198
=1 (] (RSP 198
Do) (0 41T 1AV =T = T U SOPP 201
.. cciii

API-Version 2021-04-28 vii

AWS Flow Framework fur Java Entwicklerhandbuch

Was ist das AWS Flow Framework fur Java?

Mit dem kdnnen Sie AWS Flow Framework sich auf die Implementierung Ihrer Workflow-Logik
konzentrieren. Hinter den Kulissen verwendet das Framework die Planungs-, Routing- und
Statusverwaltungsfunktionen von Amazon SWF, um die Ausfiihrung lhres Workflows zu verwalten
und ihn skalierbar, zuverlassig und tberprifbar zu machen. AWS Flow Framework basierte
Workflows laufen in hohem Mal3e parallel ab. Die Workflows kdnnen auf mehrere Komponenten
verteilt werden, die als separate Prozesse auf separaten Computern ausgefuhrt und unabhangig
voneinander skaliert werden konnen. Die Anwendung kann weiter ausgefuhrt werden, wenn eine
ihrer Komponenten ausgeflhrt wird, wodurch sie dul3erst fehlertolerant ist.

Was ist in diesem Handbuch enthalten?

Dieses Handbuch enthalt Informationen zur Installation, Einrichtung und Verwendung von Amazon
SWF SWF-Anwendungen. AWS Flow Framework

Erste Schritte mit dem AWS Flow Framework fur Java

Wenn Sie gerade erst mit dem AWS Flow Framework flir Java beginnen, lesen Sie den Erste
Schritte mit dem AWS Flow Framework fur Java Abschnitt. Er fihrt Sie durch das Herunterladen
und Installieren von AWS Flow Framework flr Java, die Einrichtung lhrer Entwicklungsumgebung
und fUhrt Sie durch ein einfaches Beispiel fur die Erstellung eines Workflows.

Verstandnis AWS Flow Framework fur Java

Stellt grundlegende Amazon SWF und AWS Flow Framework Konzepte vor und beschreibt die
grundlegende Struktur einer AWS Flow Framework Anwendung und wie Daten zwischen Teilen
eines verteilten Workflows ausgetauscht werden.

AWS Flow Framework flr Java-Programmierhandbuch

Dieses Kapitel enthalt grundlegende Programmieranleitungen fir die Entwicklung von Workflow-
Anwendungen mit dem AWS Flow Framework fur Java, einschlieBlich der Registrierung von
Aktivitaten und Workflow-Typen, der Implementierung von Workflow-Clients, der Erstellung
untergeordneter Workflows, der Behandlung von Fehlern und mehr.

Eine Aufgabe in AWS Flow Framework fur Java verstehen

Dieses Kapitel bietet einen tieferen Einblick in die Funktionsweise von AWS Flow Framework
for Java und bietet Ihnen zusatzliche Informationen tber die Reihenfolge der Ausfuhrung

Was ist in diesem Handbuch enthalten? API-Version 2021-04-28 1

AWS Flow Framework fur Java Entwicklerhandbuch

asynchroner Workflows sowie eine logische schrittweise Vorgehensweise bei der Ausfiihrung
eines Standard-Workflows.

Tipps zur Fehlerbehebung und zum Debuggen AWS Flow Framework flir Java

Dieses Kapitel enthalt Informationen zu haufigen Fehlern, die Sie bei der Fehlerbehebung fir lhre
Workflows unterstitzen oder Ihnen zeigen, wie Sie haufige Fehler vermeiden.

AWS Flow Framework fur Java-Referenz

Dieses Kapitel ist ein Verweis auf die Anmerkungen, Ausnahmen und Pakete, die AWS Flow
Framework for Java dem SDK for Java hinzuftigt.

Was ist in diesem Handbuch enthalten? API-Version 2021-04-28 2

AWS Flow Framework fur Java Entwicklerhandbuch

Erste Schritte mit dem AWS Flow Framework fur Java

In diesem Abschnitt wird das vorgestellt, AWS Flow Framework indem er Sie durch eine Reihe
einfacher Beispielanwendungen fihrt, in denen das grundlegende Programmiermodell und die API
vorgestellt werden. Die Beispielanwendungen basieren auf der standardmaRigen Anwendung "Hello
World", die haufig fir die Einfihrung von C und verwandter Programmiersprachen verwendet wird.
Hier sehen Sie eine typische Java-Implementierung von "Hello World":

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");
}

Im Folgenden finden Sie eine kurze Beschreibung der Beispielanwendungen: Der vollstandige
Quellcode ist angegeben, sodass Sie die Anwendungen selbst implementieren und ausflhren
konnen. Bevor Sie beginnen, sollten Sie zunachst Ihre Entwicklungsumgebung konfigurieren und ein
AWS Flow Framework Java-Projekt erstellen, wie inEinrichtung des AWS Flow Framework fur Java.

+ HelloWorld Bewerbung stellt Workflow-Anwendungen vor, indem "Hello World" als standardméafige
Java-Anwendung implementiert, aber wie eine Workflow-Anwendung strukturiert wird.

* HelloWorldWorkflow Bewerbungverwendet den AWS Flow Framework for Java zur Konvertierung
HelloWorld in einen Amazon SWF SWF-Workflow.

+ HelloWorldWorkflowAsyncBewerbung andert HelloWorldWorkflow, damit eine asynchrone
Workflow-Methode verwendet wird.

« HelloWorldWorkflowDistributed Bewerbung andert HelloWorldWorkflowAsync, sodass
Workflow und Aktivitats-Worker auf unterschiedlichen System ausgefiuhrt werden.

» HelloWorldWorkflowParallelBewerbung andert Hel1loWorldWorkflow, damit zwei Aktivitaten
parallel ausgefuhrt werden kdnnen.

Einrichtung des AWS Flow Framework fur Java

Das AWS Flow Framework fur Java ist im Lieferumfang von enthalten. AWS SDK fur Java Falls Sie
das noch nicht eingerichtet haben AWS SDK fur Java, finden Sie unter Erste Schritte im AWS SDK
fur Java Entwicklerhandbuch Informationen zur Installation und Konfiguration des SDK selbst.

Einrichtung des Frameworks API-Version 2021-04-28 3

https://aws.amazon.com/sdkforjava/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/getting-started.html

AWS Flow Framework fur Java Entwicklerhandbuch

Flgen Sie das Flow-Framework mit Maven hinzu

Die Amazon SWF SWF-Build-Tools sind Open Source. Um den Code anzusehen oder
herunterzuladen oder die Tools selbst zu erstellen, besuchen Sie das Repository unter. https://
github.com/aws/aws-swf-build-tools

Amazon stellt Amazon SWF SWF-Build-Tools im Maven Central Repository bereit.

Um das Flow-Framework flir Maven einzurichten, figen Sie die folgende Abhangigkeit zur pom. xml-
Datei Ihres Projekts hinzu:

<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-swf-build-tools</artifactId>
<version>2.0.0</version>

</dependency>

HelloWorld Bewerbung

Um die Struktur von Amazon SWF SWF-Anwendungen vorzustellen, erstellen wir eine Java-
Anwendung, die sich wie ein Workflow verhalt, aber lokal in einem einzigen Prozess ausgefihrt wird.
Es ist keine Verbindung zu Amazon Web Services erforderlich.

(® Note

Das HelloWorldWorkflowBeispiel baut auf diesem auf und stellt eine Verbindung zu Amazon

SWEF her, um die Verwaltung des Workflows zu ibernehmen.

Eine Workflow-Anwendung besteht aus drei Grundkomponenten:

+ Ein Aktivitatsauftragnehmer unterstitzt eine Reihe von Aktivitaten, die jeweils eine Methode sind,
die unabhangig ausgefuhrt wird, um eine bestimmte Aufgabe zu erflllen.

+ Ein Workflow-Auftragnehmer orchestriert die Ausfuhrung der Aktivitaten und verwaltet den
Datenfluss. Er ist eine programmgesteuerte Umsetzung einer Workflow-Topologie. Dabei
handelt es sich im Grunde um ein Flussdiagramm, in dem definiert wird, wann die verschiedenen
Aktivitaten ausgefuhrt werden, ob sie nacheinander oder parallel ausgefiihrt werden usw.

« Ein Workflow-Starter startet eine Workflow-Instance, eine sogenannte Ausfihrung, und kann
wahrend der Ausfihrung mit ihr interagieren.

Flgen Sie das Flow-Framework mit Maven hinzu API-Version 2021-04-28 4

https://github.com/aws/aws-swf-build-tools
https://github.com/aws/aws-swf-build-tools
https://mvnrepository.com/artifact/com.amazonaws/aws-swf-build-tools

AWS Flow Framework fur Java Entwicklerhandbuch

HelloWorld ist in drei Klassen und zwei verwandte Schnittstellen implementiert, die in den folgenden
Abschnitten beschrieben werden. Bevor Sie beginnen, sollten Sie |hre Entwicklungsumgebung
einrichten und ein neues AWS Java-Projekt erstellen, wie unter beschriebenEinrichtung des

AWS Flow Framework flur Java. Die fur die folgenden Anleitungen verwendeten Pakete heilden
helloWorld.XYZ. Um diese Namen zu verwenden, legen Sie das within-Attribut in aop.xml wie
folgt fest:

<weaver options="-verbose">
<include within="helloWorld..*"/>
</weaver>

Erstellen Sie zur Implementierung HelloWorld ein neues Java-Paket in lnrem AWS SDK-Projekt mit
dem Namen helloWorld.HelloWorld und fligen Sie die folgenden Dateien hinzu:

* Eine Schnittstellendatei namens GreeterActivities. java

» Eine Klassendatei namens GreeterActivitiesImpl. java, die den Aktivitdtenauftragnehmer
implementiert

 Eine Schnittstellendatei namens GreeterWorkflow. java

+ Eine Klassendatei namens GreeterWorkflowImpl. java, die den Workflow-Auftragnehmer
implementiert

* Eine Klassendatei namens GreeterMain. java, die den Workflow-Starter implementiert

Die Details werden in den folgenden Abschnitten erldutert und enthalten den vollstandigen Code der
einzelnen Komponenten, den Sie in die jeweilige Datei einfigen kdnnen.

HelloWorld Implementierung der Aktivitaten

HelloWorld unterteilt die allgemeine Aufgabe, eine "Hello World!" BegrifRung auf der Konsole
zu drucken, in drei Aufgaben, von denen jede mit einer Aktivitdtsmethode ausgefthrt wird. Die
Aktivitatsmethoden sind in der Schnittstelle GreeterActivities wie folgt definiert.

public interface GreeterActivities {
public String getName();
public String getGreeting(String name);
public void say(String what);

HelloWorld Implementierung der Aktivitaten API-Version 2021-04-28 5

AWS Flow Framework fur Java Entwicklerhandbuch

HelloWorld hat eine AktivitdtsimplementierungGreeterActivitiesImpl, die die
GreeterActivities folgenden Methoden bereitstellt:

public class GreeterActivitiesImpl implements GreeterActivities {
@Override
public String getName() {
return "World";

}

@Override

public String getGreeting(String name) {
return "Hello " + name + "!";

}

@Override

public void say(String what) {
System.out.println(what);
}

Aktivitaten sind unabhangig voneinander und kdnnen haufig in unterschiedlichen Workflows
verwendet werden. Beispielsweise kann jeder Workflow die Aktivitat say verwenden, um
eine Zeichenfolge auf der Konsole auszugeben. Workflows kénnen auch tber mehrere
Aktivitatsimplementierungen verfligen, die jeweils unterschiedliche Aufgaben ausfihren.

HelloWorld Workflow-Mitarbeiter

Um ,Hello World!* zu drucken auf der Konsole missen die Aktivitatsaufgaben nacheinander in der
richtigen Reihenfolge mit den richtigen Daten ausgeflihrt werden. Der HelloWorld Workflow-Worker
orchestriert die Ausfiihrung der Aktivitaten auf der Grundlage einer einfachen linearen Workflow-
Topologie, die in der folgenden Abbildung dargestellt ist.

Call greeting flaime _ greeting Print greeting
=) F—» getMame getGreeting say v
(Start) {Finish])

Die drei Aktivitdten werden nacheinander ausgeflihrt und die Daten werden von einer Aktivitat an die
nachste Ubergeben.

Der HelloWorld Workflow-Worker hat eine einzige Methode, den Einstiegspunkt des Workflows, der in
der GreeterWorkflow Benutzeroberflaiche wie folgt definiert ist:

HelloWorld Workflow-Mitarbeiter API-Version 2021-04-28 6

AWS Flow Framework fur Java Entwicklerhandbuch

public interface GreeterWorkflow {
public void greet();

Die GreeterWorkflowImpl-Klasse implementiert diese Schnittstelle wie folgt:

public class GreeterWorkflowImpl implements GreeterWorkflow{
private GreeterActivities operations = new GreeterActivitiesImpl();

public void greet() {
String name = operations.getName();
String greeting = operations.getGreeting(name);
operations.say(greeting);

Die greet Methode implementiert die HelloWorld Topologie, indem sie eine Instanz von
erstelltGreeterActivitiesImpl, jede Aktivitdtsmethode in der richtigen Reihenfolge aufruft und
die entsprechenden Daten an jede Methode weitergibt.

HelloWorld Workflow-Starter

Ein Workflow-Starter ist eine Anwendung, die eine Workflow-Instance startet und wahrend der
Ausflihrung mit dem Workflow kommunizieren kann. Die GreeterMain Klasse implementiert den
HelloWorld Workflow-Starter wie folgt:

public class GreeterMain {
public static void main(String[] args) {
GreeterWorkflow greeter = new GreeterWorkflowImpl();
greeter.greet();

GreeterMain erstellt eine Instance von GreeterWorkflowImpl und ruft greet auf, um den
Workflow-Auftragnehmer auszufihren. Fihren Sie GreeterMain es als Java-Anwendung aus und
Sie sollten ,Hello World!“ sehen in der Konsolenausgabe.

HelloWorld Workflow-Starter API-Version 2021-04-28 7

AWS Flow Framework fir Java

Entwicklerhandbuch

HelloWorldWorkflow Bewerbung

Obwohl das grundlegende HelloWorldBeispiel wie ein Workflow strukturiert ist, unterscheidet es sich

in mehreren wichtigen Punkten von einem Amazon SWF SWF-Workflow:

Konventionelle Workflow-Anwendungen und Amazon SWF SWF-Workflow-Anwendungen

HelloWorld

Wird lokal als einzelner Prozess
ausgefuhrt.

Aktivitaten sind synchrone Methoden,
die bis zu ihrem Abschluss fir eine
Blockierung sorgen.

Der Workflow-Worker interagiert mit
einem Aktivitats-Worker, indem er die
entsprechende Methode aufruft.

Der Workflow-Starter interagiert mit
dem Workflow-Worker, indem er die
entsprechende Methode aufruft.

Amazon SWF SWF-Arbeitsablauf

Lauft als mehrere Prozesse, die auf mehrere Systeme
verteilt werden kénnen, darunter EC2 Amazon-In
stances, private Rechenzentren, Client-Computer
usw. Es muss nicht einmal das gleiche Betriebssystem
verwendet werden.

Aktivitaten werden durch asynchrone Methoden
abgebildet. Diese geben die Kontrolle sofort zuriick. Sie
ermdglichen es dem Workflow, wahrend der Wartezeit
auf den Abschluss der Aktivitat andere Aufgaben
auszufthren.

Workflow-Worker interagieren mit Activity-Workern
mithilfe von HTTP-Anfragen, wobei Amazon SWF als
Vermittler fungiert.

Workflow-Starter interagieren mit Workflow-Workern
mithilfe von HTTP-Anfragen, wobei Amazon SWF als
Vermittler fungiert.

Sie kénnen eine verteilte, asynchrone Workflow-Anwendung von Grund auf neu implementieren,
indem Sie beispielsweise Ihren Workflow-Worker direkt Gber Webservice-Aufrufe mit einem Aktivitats-
Worker interagieren lassen. Allerdings mussen Sie dann den gesamten, komplizierten Code
implementieren, der fur die asynchrone Ausfihrung mehrerer Aktivitaten, den Datenfluss usw.
erforderlich ist. Die SWF AWS Flow Framework fur Java und Amazon kimmern sich um all diese
Details, sodass Sie sich auf die Implementierung der Geschéaftslogik konzentrieren kénnen.

HelloWorldWorkflow Bewerbung

API-Version 2021-04-28 8

AWS Flow Framework fur Java Entwicklerhandbuch

HelloWorldWorkflow ist eine modifizierte Version davon HelloWorld , die als Amazon SWF SWF-
Workflow ausgefihrt wird. Die folgende Abbildung fasst die Funktionsweise der beiden Anwendungen
zusammen.

Workflow |- GreeterMain
Starter

GreeterWorkflowClientExternal

Activities

Worker \

|
|
|
|
|
|
|
|
|
Y |
|
|
|
|
|
|
|
|
|

Workflow Activities
Task Task
List List

Y Amazon SWF

)

GreeterActivitieslmpl HTTP

GreeterWorkflowlmpl
Fi

Workflow |
Starter | Areeterhﬂain

Workflow /

GreeterActivitiesClientimpl GreeterActivitiesimpl

ActivityWorker

GreeterWorkflowlmpl

IJ' WorkflowWaorker GreeterWorker
Waoarker]
HelloWorld Warkflow HelloWorldWorkflow Activities
Waorker Worker

HelloWorld wird als ein einziger Prozess ausgefuhrt, und der Starter, der Workflow-Worker

und der Aktivitaten-Worker interagieren mithilfe herkdmmlicher Methodenaufrufe. Bei
StarterHelloWorldWorkflow, Workflow Worker und Activities Worker handelt es sich um verteilte
Komponenten, die Uber Amazon SWF mithilfe von HTTP-Anfragen interagieren. Amazon SWF
verwaltet die Interaktion, indem es Listen mit Workflow- und Aktivitdtsaufgaben verwaltet und an die
jeweiligen Komponenten weiterleitet. In diesem Abschnitt wird beschrieben, wie das Framework flr
HelloWorldWorkflow funktioniert.

HelloWorldWorkflow wird mithilfe der AWS Flow Framework for Java-API| implementiert, die die
manchmal komplizierten Details der Interaktion mit Amazon SWF im Hintergrund verarbeitet und den
Entwicklungsprozess erheblich vereinfacht. Sie kénnen dasselbe Projekt verwenden HelloWorld, flr
das Sie bereits AWS Flow Framework fur Java-Anwendungen konfiguriert haben. Um die Anwendung
auszufuhren, missen Sie jedoch wie folgt ein Amazon SWF SWF-Konto einrichten:

» Eroffnen Sie ein AWS Konto bei Amazon Web Services, falls Sie noch keines haben.

HelloWorldWorkflow Bewerbung API-Version 2021-04-28 9

https://aws.amazon.com/

AWS Flow Framework fur Java Entwicklerhandbuch

* Weisen Sie den AWS_SECRET_KEY Umgebungsvariablen die Zugriffs-ID
AWS_ACCESS_KEY_ID und die geheime ID Ihres Kontos zu. Die Schlisselwerte selbst sollten
nicht in Inrem Code enthalten sein. Die Speicherung in Umgebungsvariablen ist ein bequemer
Weg, um das Problem zu I6sen.

» Eréffnen Sie ein Amazon SWF SWF-Konto bei Amazon Simple Workflow Service.

* Melden Sie sich beim Amazon SWF-Service an AWS-Managementkonsole und wahlen Sie ihn
aus.

+ Wahlen Sie oben rechts Domains verwalten und registrieren Sie eine neue Amazon SWF-
Domain. Ein Domane ist ein logischer Container fur Ihre Anwendungsressourcen (z. B. Workflow-
und Aktivitatstypen und Workflow-Ausfuhrungen). Sie kdnnen jeden beliebigen Domainnamen
verwenden, in den exemplarischen Vorgehensweisen wird jedoch " helloWorldWalkthrough
verwendet.

Um das zu implementieren HelloWorldWorkflow, erstellen Sie eine Kopie von HelloWorld. HelloWorld
packe es in dein Projektverzeichnis und nenne es HelloWorld. HelloWorldWorkflow. In den folgenden
Abschnitten wird beschrieben, wie Sie den HelloWorld Originalcode andern, um ihn AWS Flow
Framework fir Java zu verwenden und als Amazon SWF SWF-Workflow-Anwendung auszufuhren.

HelloWorldWorkflow Aktivitaten Arbeiter

HelloWorld hat seine Aktivitaten Worker als eine einzige Klasse eingeftihrt. Ein Worker AWS Flow
Framework flr Java-Aktivitaten besteht aus drei grundlegenden Komponenten:

 Die Aktivitatsmethoden, die die eigentlichen Aufgaben ausfiihren, werden in einer Schnittstelle
definiert und in einer verwandten Klasse implementiert.

» Eine ActivityWorkerKlasse verwaltet die Interaktion zwischen den Aktivitatsmethoden und Amazon
SWEF.

 Eine Aktivitats-Host-Anwendung, die den Aktivitats-Worker registriert und startet und die
Bereinigung Ubernimmt.

Dieser Abschnitt behandelt die Aktivitdatsmethoden. Die beiden anderen Klassen werden spater
besprochen.

HelloWorldWorkflow definiert die Aktivitatsschnittstelle in GreeterActivities wie folgt:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;

HelloWorldWorkflow Aktivitaten Arbeiter API-Version 2021-04-28 10

https://aws.amazon.com/swf/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html

AWS Flow Framework fur Java Entwicklerhandbuch

import
com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 10)
@Activities(version="1.0")

public interface GreeterActivities {
public String getName();
public String getGreeting(String name);
public void say(String what);

Diese Schnittstelle war nicht unbedingt notwendig fur HelloWorld, aber sie ist AWS Flow Framework
fur eine Java-Anwendung notwendig. Beachten Sie, dass sich die Schnittstellendefinition selbst

nicht geandert hat. Sie mussen jedoch zwei AWS Flow Framework fir Java-Anmerkungen
@ActivityRegistrationOptions und @AKktivitat fir die Schnittstellendefinition anwenden. Die
Anmerkungen stellen Konfigurationsinformationen bereit und weisen den Annotationsprozessor AWS
Flow Framework fur Java an, anhand der Schnittstellendefinition eine Clientklasse fur Aktivitaten zu
generieren, auf die spater eingegangen wird.

@ActivityRegistrationOptionshat mehrere benannte Werte, die verwendet werden, um das
Verhalten der Aktivitdten zu konfigurieren. HelloWorldWorkflow gibt zwei Timeouts an:

* defaultTaskScheduleToStartTimeoutSeconds definiert, wie lange sich die Aufgaben in der
Aktivitatsaufgabenliste in der Warteschlange befinden kénnen. Der Wert ist auf 300 Sekunden (5
Minuten) festgelegt.

« defaultTaskStartToCloseTimeoutSeconds definiert die maximale Zeit, die die Aktivitat zur
Ausfuhrung der Aufgabe nutzen kann. Der Wert ist auf 10 Sekunden festgelegt.

Diese Timeouts stellen sicher, dass die Aktivitat ihnre Aufgabe in angemessener Zeit abschlief3t. Wird
ein Timeout Uberschritten, generiert das Framework einen Fehler und der Workflow-Worker muss
entscheiden, wie das Problem behandelt werden soll. Wie man mit solchen Fehlern umgeht, erfahren
Sie unter Fehlerbehandlung.

@Activities hat mehrere Werte. In der Regel wird jedoch nur die Versionsnummer der Aktivitat
definiert. So kénnen Sie verschiedene Generationen der Aktivitatsimplementierungen nachverfolgen.
Wenn Sie eine Aktivitatsschnittstelle &ndern, nachdem Sie sie bei Amazon SWF registriert haben,

HelloWorldWorkflow Aktivitaten Arbeiter API-Version 2021-04-28 11

AWS Flow Framework fur Java Entwicklerhandbuch

einschlieRlich der Anderung der @ActivityRegistrationOptions Werte, miissen Sie eine neue
Versionsnummer verwenden.

HelloWorldWorkflow implementiert die Aktivitditsmethoden wie folgt: GreeterActivitiesImpl

public class GreeterActivitiesImpl implements GreeterActivities {
@Override
public String getName() {
return "World";

}

@Override

public String getGreeting(String name) {
return "Hello " + name;

}

@Override

public void say(String what) {
System.out.println(what);

}

Beachten Sie, dass der Code mit der HelloWorld Implementierung identisch ist. Im Kern ist eine AWS
Flow Framework Aktivitat nur eine Methode, die Code ausfiihrt und méglicherweise ein Ergebnis
zurlickgibt. Der Unterschied zwischen einer Standardanwendung und einer Amazon SWF SWF-
Workflow-Anwendung besteht darin, wie der Workflow die Aktivitdten ausfiihrt, wo die Aktivitaten
ausgefihrt werden und wie die Ergebnisse an den Workflow-Worker zurlickgegeben werden.

HelloWorldWorkflow Workflow-Worker

Ein Amazon SWF SWF-Workflow-Worker besteht aus drei grundlegenden Komponenten.

» Eine Workflow-Implementierung. Dies ist eine Klasse, die die Workflow-bezogenen Aufgaben
ausfuhrt.

» Eine Activities-Client. Diese ist im Wesentlichen ein Proxy fur die Aktivitatsklasse und wird von
einer Workflow-Implementierung verwendet, um Aktivitdtsmethoden asynchron auszufihren.

* Eine WorkflowWorkerKlasse, die die Interaktion zwischen dem Workflow und Amazon SWF

verwaltet.

Dieser Abschnitt beschreibt die Workflow-Implementierung und den Activities-Client. Die
WorkflowWorker-Klasse wird spater besprochen.

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 12

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework fur Java Entwicklerhandbuch

HelloWorldWorkflow definiert die Workflow-Schnittstelle in GreeterWorkflow wie folgt:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Execute(version = "1.0")

public void greet();

Diese Schnittstelle ist auch fur eine Java-Anwendung nicht unbedingt erforderlich, AWS Flow
Framework fir eine Java-Anwendung HelloWorld jedoch unerldsslich. Sie mussen zwei AWS Flow
Framework fur Java-Anmerkungen @Workflow und @WorkflowRegistrationOptions fir die Definition
der Workflow-Schnittstelle anwenden. Die Anmerkungen stellen Konfigurationsinformationen bereit

und weisen den Annotationsprozessor AWS Flow Framework flr Java an, auf der Grundlage der
Schnittstelle eine Workflow-Client-Klasse zu generieren, wie spater beschrieben wird.

@Workflowhat einen optionalen Parameter, DataConverter, der haufig mit seinem Standardwert
verwendet wird, der angibt NullDataConverter, dass er verwendet werden JsonDataConverter sollte.

@WorkflowRegistrationOptions hat aullerdem eine Reihe von optionalen Parametern,
die zur Konfiguration des Workflow-Workers verwendet werden kénnen. Hier legen wir
defaultExecutionStartToCloseTimeoutSeconds — was angibt, wie lange der Workflow
ausgefuhrt werden kann — auf 3600 Sekunden (1 Stunde) fest.

Die GreeterWorkflow Schnittstellendefinition unterscheidet sich HelloWorld in einem wichtigen
Punkt von der Anmerkung. @Execute Workflow-Schnittstellen legen die Methoden fest, die von
Anwendungen wie dem Workflow-Starter aufgerufen werden kénnen. Sie sind auf eine Handvoll
Methoden mit jeweils einer bestimmten Rolle beschrankt. Das Framework spezifiziert keinen Namen
oder keine Parameterliste fur Workflow-Schnittstellenmethoden. Sie verwenden eine Namens- und
Parameterliste, die fur Ihren Workflow geeignet ist, und figen eine AWS Flow Framework For-Java-
Anmerkung hinzu, um die Rolle der Methode zu identifizieren.

@Execute hat zwei Aufgaben:

» Eslegt greet als Einstiegspunkt des Workflows fest (die Methode, die der Workflow-Starter
aufruft, um den Workflow zu starten). Im Allgemeinen kann ein Einstiegspunkt einen oder mehrere

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 13

AWS Flow Framework fur Java Entwicklerhandbuch

Parameter entgegennehmen. Diese erméglichen es dem Starter, den Workflow zu initialisieren.
Das aktuelle Beispiel erfordert jedoch keine Initialisierung.

» Es legt die Versionsnummer des Workflows fest, Gber die Sie verschiedene Generationen von
Workflow-Implementierungen nachverfolgen kénnen. Um eine Workflow-Oberflache zu andern,
nachdem Sie sie bei Amazon SWF registriert haben, einschlieRlich der Anderung der Timeout-
Werte, mussen Sie eine neue Versionsnummer verwenden.

Informationen zu den anderen Methoden, die in eine Workflow-Schnittstelle eingebunden werden
kdnnen, finden Sie unter Workflow- und Aktivitats-Vertrage.

HelloWorldWorkflow implementiert den Workflow wie folgt: GreeterWorkflowImpl

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

public void greet() {
Promise<String> name = operations.getName();
Promise<String> greeting = operations.getGreeting(name);
operations.say(greeting);

}

Der Code &hnelt dem HelloWorld, weist jedoch zwei wichtige Unterschiede auf.

* GreeterWorkflowImpl erzeugt eine Instanz von GreeterActivitiesClientImpl (dem
Activities-Client) statt von GreeterActivitiesImpl, und fuhrt Aktivitadten durch den Aufruf von
Methoden fir das Client-Objekt aus.

* Der Name und Greeting-Aktivitdten geben Promise<String>-Objekte statt String-Objekte
zuruck.

HelloWorld ist eine Java-Standardanwendung, die lokal als ein einziger Prozess ausgefihrt

wird. GreeterWorkflowImpl Sie kann also die Workflow-Topologie implementieren, indem

sie einfach eine Instanz von erstelltGreeterActivitiesImpl, die Methoden der Reihe nach
aufruft und die Riickgabewerte von einer Aktivitat an die nachste weitergibt. Bei einem Amazon
SWF SWF-Workflow wird die Aufgabe einer Aktivitat immer noch von einer Aktivitatsmethode von
ausgefiuhriGreeterActivitiesImpl. Die Methode wird jedoch nicht notwendigerweise im selben

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 14

AWS Flow Framework fur Java Entwicklerhandbuch

Prozess wie der Workflow ausgefihrt. Sie wird moglicherweise nicht einmal auf demselben System
ausgefuhrt. Der Workflow muss die Aktivitat aullerdem asynchron ausfiihren. Diese Anforderungen
werfen folgende Probleme auf:

» Wie kann man eine Aktivitdtsmethode ausfihren, die in einem anderen Prozess oder sogar auf
einem anderen System ausgefihrt wird?

* Wie kann man eine Aktivitditsmethode asynchron ausfiihren?

« Wie kann man die Ubergabe- und Riickgabewerte von Aktivitaten verwaltet? Wenn der
Ruckgabewert von Aktivitat A beispielsweise an Aktivitat B Gibergeben wird, missen Sie
sicherstellen, dass Aktivitat B nicht ausgeflhrt wird, bis Aktivitat A abgeschlossen ist.

Sie kbnnen mit der vertrauten Java-Flusssteuerung in Kombination mit dem Activities-Client und
Promise<T> Uber den Kontrollfluss der Anwendung eine Vielzahl von Workflow-Topologien
implementieren.

Activities-Client

GreeterActivitiesClientImpl istim Grunde ein Proxy fir GreeterActivitiesImpl, der es
einer Workflow-Implementierung ermdéglicht, die GreeterActivitiesImpl-Methoden asynchron
auszufuhren.

Die Klassen GreeterActivitiesClient und GreeterActivitiesClientImpl werden
anhand der Angaben in den Annotionen lhrer GreeterActivities-Klasse automatisch generiert.
Sie mussen diese nicht selbst implementieren.

(® Note

Eclipse generiert die Klassen, wenn Sie |hr Projekt speichern. Sie kbnnen den generierten
Code im Unterverzeichnis .apt_generated Ihres Projektverzeichnisses einsehen.
Um Kompilierungsfehler in lhrer GreeterWorkflowImpl-Klasse zu vermeiden, empfiehlt
es sich, das Verzeichnis . apt_generated auf der Registerkarte Order and Export
(Reihenfolge und Export) des Dialogfelds Java-Buildpfad nach ganz oben zu verschieben.

Ein Workflow-Worker flhrt eine Aktivitat aus, indem er die entsprechende Client-Methode aufruft.

Die Methode arbeitet asynchron. Sie gibt sofort ein Promise<T>-Objekt zurlick, wobei T der
Ruckgabetyp der Aktivitat ist. Das zuriickgegebene Promise<T>-Objekt ist im Grunde ein Platzhalter
fur den Wert, den die Aktivitdtsmethode zurtickgeben kann.

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 15

AWS Flow Framework fur Java Entwicklerhandbuch

» Bei der Rickkehr aus der Activities-Client-Methode befindet sich das Promise<T>-Objekt
zunachst im Status Unready. Dies bedeutet, dass das Objekt noch keinen gultigen Rickgabewert
darstellt.

» Wenn die entsprechende Aktivitdtsmethode ihre Aufgabe abschliefl3t und die Ausflihrung
zuruckgibt, weist das Framework dem Promise<T>-Objekt den Rickgabewert zu und versetzt es
in den Zustand Ready.

Promise <T> Type

Der Hauptzweck von Promise<T>-Objekten ist die Verwaltung des Datenflusses zwischen
asynchronen Komponenten und der Steuerung ihrer Ausfiihrung. Ihre Anwendung muss

die Synchronisation nicht explizit verwalten oder von Mechanismen wie Timer nutzen, um
sicherzustellen, dass asynchrone Komponenten nicht vorzeitig ausgefuhrt werden. Wenn Sie eine
Activity-Client-Methode aufrufen, gibt sie die Kontrolle sofort zurtick. Das Framework verschiebt die
Ausfuhrung der entsprechenden Aktivitdtsmethode, bis alle ibergebenen Promise<T>-Objekte
bereit sind und gultige Daten enthalten.

Aus der Sicht von GreeterWorkflowImpl geben alle drei Aktivity-Client-Methoden die Kontrolle
sofort zuriick. Aus Sicht von GreeterActivitiesImpl ruft das Framework getGreeting erst auf,
wenn name abgeschlossen ist. say wird erst aufgerufen, wenn getGreeting abgeschlossen ist.

Durch die Verwendung von Promise<T> zur Ubergabe von Daten von einer Aktivitit an die
nachste, stellt HelloWorldWorkflow nicht nur sicher, dass Aktivitdtsmethoden keine ungultigen
Daten verwenden, sondern steuert auch, wann die Aktivitaten ausgeflhrt werden und definiert die
Workflow-Topologie. Um den Promise<T>-Ruckgabewert jeder Aktivitat an die nachste Aktivitat
zu Ubergeben, missen die Aktivitaten nacheinander ausgefiihrt werden. Dies definiert die zuvor
beschriebene lineare Topologie. Mit AWS Flow Framework for Java missen Sie keinen speziellen
Modellierungscode verwenden, um selbst komplexe Topologien zu definieren, sondern nur die
standardmafige Java-Flusskontrolle undPromise<T>. Ein Beispiel fur die Implementierung einer
einfachen parallelen Topologie finden Sie unter HelloWorldWorkflowParallelAktivitaten Arbeiter.

(® Note

Wenn eine Aktivitdtsmethode wie say keinen Wert zurtickgibt, gibt die entsprechende Client-
Methode ein Promise<Void>-Objekt zurlick. Das Objekt reprasentiert keine Daten. Es hat
zunachst den Status "Unready". Es ist erst dann bereit, wenn die Aktivitat abgeschlossen ist.
Sie kdnnen ein Promise<Void>-Objekt an andere Activity-Client-Methoden ibergeben. So

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 16

AWS Flow Framework fur Java Entwicklerhandbuch

kénnen Sie sicherzustellen, dass diese die Ausflhrung bis zum Abschluss der urspriinglichen
Aktivitat verschieben.

Promise<T> ermdglicht es einer Workflow-Implementierung, die Activity-Client-Methoden und
deren Rickgabewerte ahnlich wie bei synchronen Methoden zu verwenden. Sie missen allerdings
beim Zugriff auf den Wert eines Promise<T>-Objekts vorsichtig sein. Im Gegensatz zum Java-
Typ Future<T> Gbernimmt das Framework und nicht die Anwendung die Synchronisation fur
Promise<T>. Wenn Sie Promise<T>.get aufrufen und das Objekt nicht bereit ist, |16st get eine
Ausnahme aus. Beachten Sie, dass HelloWorldWorkflow nie direkt auf ein Promise<T>-Objekt
zugreift. Es Ubergibt die Objekte einfach von einer Aktivitat zur nachsten. Wenn ein Objekt bereit ist,
extrahiert das Framework den Wert und Ubergibt ihn als Standardtyp an die Aktivitatsmethode.

Auf Promise<T>-Objekte sollte nur GUber asynchronen Code zugegriffen werden, wobei

das Framework gewahrleistet, dass das Objekt bereit ist und einen gultigen Wert darstellit.
HelloWorldwWorkflow Iost dieses Problem, indem Promise<T>-Objekte nur an Methoden
des Activities-Clients Ubergeben werden. Sie kénnen in Ihrer Workflow-Implementierung auf
den Wert eines Promise<T>-Objekts zugreifen, indem Sie das Objekt an eine asynchrone
Workflow-Methode Uibergeben, die sich wie eine Aktivitat verhalt. Ein Beispiel finden Sie unter
HelloWorldWorkflowAsyncBewerbung.

HelloWorldWorkflow Implementierung von Arbeitsablaufen und Aktivitaten

Den Implementierungen von Workflows und Aktivitadten sind Worker-Klassen zugeordnet,
ActivityWorkerund WorkflowWorker. Sie kimmern sich um die Kommunikation zwischen Amazon

SWF und den Aktivitdten und Workflow-Implementierungen, indem sie die entsprechende Amazon
SWF SWF-Aufgabenliste flr Aufgaben abrufen, die entsprechende Methode fir jede Aufgabe
ausfuhren und den Datenfluss verwalten. Details hierzu finden Sie unter AWS Flow Framework
Grundbegriffe: Anwendungsstruktur

Um die Aktivitats- und Workflow-Implementierungen mit den entsprechenden Worker-Objekten
zu verknupfen, implementieren Sie eine oder mehrere Worker-Anwendungen. Diese haben die
folgenden Aufgaben:

* Registrieren Sie Workflows oder Aktivitaten bei Amazon SWF.

+ Erstellen von Worker-Objekten und Zuordnen dieser Objekte zu den Workflow- oder Aktivitats-
Worker-Implementierungen

+ Weisen Sie die Worker-Objekte an, mit der Kommunikation mit Amazon SWF zu beginnen.

HelloWorldWorkflow Implementierung von Arbeitsablaufen und Aktivitaten API-Version 2021-04-28 17

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework fur Java Entwicklerhandbuch

Wenn Sie den Workflow und die Aktivitaten als getrennte Prozesse ausfihren méchten, missen

Sie separate Workflow- und Aktivitats-Worker-Hosts implementieren. Ein Beispiel finden Sie unter
HelloWorldWorkflowDistributed Bewerbung. HelloWorldWorkflowlmplementiert der Einfachheit halber
einen einzelnen Worker-Host, der Aktivitaten und Workflow-Worker im selben Prozess ausfiihrt, und

zwar wie folgt:

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldwalkthrough";
String taskListToPoll = "HelloWorldList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
wfw.start();

GreeterWorkerhat kein HelloWorld Gegenstiick, daher missen Sie dem Projekt eine Java-Klasse
mit GteeterWorker dem Namen hinzufligen und den Beispielcode in diese Datei kopieren.

HelloWorldWorkflow Implementierung von Arbeitsablaufen und Aktivitaten API-Version 2021-04-28 18

AWS Flow Framework fur Java Entwicklerhandbuch

Der erste Schritt besteht darin, ein AmazonSimpleWorkflowClientObjekt zu erstellen und zu
konfigurieren, das die zugrunde liegenden Amazon SWF-Servicemethoden aufruft. Hierzu geht
GreeterWorker folgendermalien vor:

1. Erstellt ein ClientConfigurationObjekt und gibt ein Socket-Timeout von 70 Sekunden an. Dieser
Wert gibt an, wie lange auf die Ubertragung der Daten (iber eine bestehende offene Verbindung
gewartet wird, bevor der Socket geschlossen wird.

2. Erstellt ein AWSCredentialsBasic-Objekt zur Identifizierung des AWS Kontos und Ubergibt die
Kontoschllssel an den Konstruktor. Zur Vereinfachung und um diese nicht als Klartext im Code zu
hinterlegen, werden die Schlissel als Umgebungsvariablen gespeichert.

3. Erstellt ein AmazonSimpleWorkflowClientObjekt zur Darstellung des Workflows und Ubergibt die
ClientConfiguration Objekte BasicAWSCredentials und an den Konstruktor.

4. Legt die Service-Endpunkt-URL des Client-Objekts fest. Amazon SWF ist derzeit in allen AWS
Regionen verflgbar.

Der Einfachheit halber definiert GreeterWorker zwei String-Konstanten.

* domainist der Amazon SWF-Domainname des Workflows, den Sie bei der Einrichtung |hres
Amazon SWF SWF-Kontos erstellt haben. HelloWorldWorkflowgeht davon aus, dass Sie den
Workflow in der Domane "helloWorldWalkthrough" ausfihren.

* taskListToPollist der Name der Aufgabenlisten, die Amazon SWF verwendet, um die
Kommunikation zwischen den Workflow- und Aktivitatsmitarbeitern zu verwalten. Sie kbnnen
den Namen auf eine beliebige beliebige Zeichenfolge setzen. HelloWorldWorkflow verwendet
"HelloWorldList" sowohl fir Workflow- als auch fir Aktivitadtsaufgabenlisten. Hinter den Kulissen
werden die Namen in verschiedene Namespaces umgesetzt. Daher bleiben beide Aufgabenlisten
unterscheidbar.

GreeterWorkerverwendet die Zeichenkettenkonstanten und das
AmazonSimpleWorkflowClientObjekt, um Worker-Objekte zu erstellen, die die Interaktion zwischen
den Aktivitaten und Worker-Implementierungen und Amazon SWF verwalten. Insbesondere
ubernehmen die Worker-Objekte die Aufgabe, die entsprechende Aufgabenliste flir Aufgaben
abzufragen.

GreeterWorker erstellt ein ActivityWorker-Objekt und konfiguriert es so, dass es
GreeterActivitiesImpl behandelt, indem es eine neue Klasseninstance hinzufigt.

HelloWorldWorkflow Implementierung von Arbeitsablaufen und Aktivitaten API-Version 2021-04-28 19

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/BasicAWSCredentials.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework fur Java Entwicklerhandbuch

GreeterWorker ruft dann die start-Methode des ActivityWorker-Objekts auf, die das Objekt
anweist, mit der Abfrage der angegebenen Aktivitdtsaufgabenliste zu beginnen.

GreeterWorker erzeugt ein WorkflowWorker-Objekt und konfiguriert es Gber das Hinzufligen des
Klassen-Dateinamens GreeterWorkflowImpl.class so, dass es GreeterWorkflowImpl nutzt.
Es ruft dann die WorkflowWorker-Methode des start-Objekts auf, die das Objekt anweist, die
angegebene Workflow-Aufgabenliste abzufragen.

Sie kdnnen GreeterWorker nun erfolgreich ausfihren. Es registriert den Workflow und die
Aktivitaten bei Amazon SWF und startet, dass die Worker-Objekte ihre jeweiligen Aufgabenlisten
abfragen. Um dies zu Uberpriifen, starten GreeterWorker Sie die Amazon SWF SWF-Konsole,
rufen Sie sie auf und wahlen Sie eine Domain helloWorldwWalkthrough aus der Liste der
Domains aus. Wenn Sie Workflow Types (Workflow-Typen) im Bereich Navigation auswahlen, sollten
Sie GreeterWorkflow.greet sehen:

¥ Dashboard Domain: heloWorldWalkthrough | -

¥ Workflow Executions

¥ Workflow Types ¥ Workflow Type List Parameters
¥ Activity Types

Filter by: | No Filter :

Workflow Type Status: (s)Registered () Deprecated

List Types |

Workflow Actions: | Register New

& Name Version

[Greeter'Workflow.greet 1.0

HelloWorldWorkflow Implementierung von Arbeitsablaufen und Aktivitaten API-Version 2021-04-28 20

AWS Flow Framework fur Java Entwicklerhandbuch

Wenn Sie Aktivity Types (Aktivitatstypen) auswahlen, werden die GreeterActivities-Methoden
angezeigt:

Domain: heloWoerldWalkthrough | -

¥ Activity Type List Parameters

Filter by: Mo Filter -

Activity Type Status: @ Registered O Deprecated

List Types

Activity Actions: | Register New

4 Name Version
[GreeterActivities getGreeting 1.0
[GreeterActivities getName 1.0
[GreeterActivities say 1.0

Wenn Sie Workflow Executions (Workflow-Ausfiihrungen) auswahlen, sehen Sie jedoch keine aktiven
Ausflihrungen. Die Workflow- und Aktivitats-Worker suchen zwar nach Aufgaben, aber wir haben
noch keine Workflow-Ausflihrung gestartet.

HelloWorldWorkflow Vorspeise

Als letztes muss ein Workflow-Starter implementiert werden — eine Anwendung, die die Workflow-
Ausflihrung startet. Der Ausfiihrungsstatus wird von Amazon SWF gespeichert, sodass Sie dessen
Verlauf und Ausfihrungsstatus einsehen kénnen. HelloWorldWorkflow implementiert einen Workflow-
Starter, indem die GreeterMain Klasse wie folgt gedndert wird:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;

HelloWorldWorkflow Vorspeise API-Version 2021-04-28 21

AWS Flow Framework fur Java Entwicklerhandbuch

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;

public class GreeterMain {

public static void main(String[] args) throws Exception {
ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldWalkthrough";

GreeterWorkflowClientExternalFactory factory = new

GreeterWorkflowClientExternalFactoryImpl(service, domain);
GreeterWorkflowClientExternal greeter = factory.getClient("someID");
greeter.greet();

}

GreeterMain erzeugt ein AmazonSimpleWorkflowClient-Objekt mit dem gleichen Code wie
GreeterWorker. Es stellt dann ein GreeterWorkflowClientExternal-Objekt, das als Proxy fiir
den Workflow fungiert (&hnlich wie der in GreeterWorkflowClientImpl angelegte Activity-Client
als Proxy fur die Aktivitatsmethoden agiert). Anstatt ein Workflow-Client-Objekt mit new anzulegen,
gehen Sie folgendermalen vor:

1. Erstellen Sie ein externes Client-Factory-Objekt und Ubergeben Sie das
AmazonSimpleWorkflowClient Objekt und den Amazon SWF-Domanennamen an den
Konstruktor. Das Client-Factory-Objekt wird vom Annotationsprozessor des Frameworks erstellt,
der den Objektnamen erstellt, indem einfach "ClientExternalFactorylmpl" an den Namen der
Workflow-Schnittstelle angehangt wird.

2. Erstellen Sie ein externes Client-Objekt, indem Sie die getClient Methode des Factory-Objekts
aufrufen, die den Objektnamen erstellt, indem "ClientExternal" an den Namen der Workflow-
Schnittstelle angehangt wird. Sie kdnnen optional getClient eine Zeichenfolge libergeben, die

HelloWorldWorkflow Vorspeise API-Version 2021-04-28 22

AWS Flow Framework fur Java Entwicklerhandbuch

Amazon SWF verwendet, um diese Instanz des Workflows zu identifizieren. Andernfalls stellt
Amazon SWF eine Workflow-Instanz mithilfe einer generierten GUID dar.

Der von der Factory zurlickgegebene Client erstellt nur Workflows, die mit der Zeichenfolge benannt

sind, die an die Methode getClient Gbergeben wurde (der von der Factory zuriickgegebene Client hat
bereits den Status in Amazon SWF). Um einen Workflow mit einer anderen ID auszufiihren, missen

Sie zurlick zur Factory wechseln und einen neuen Client mit der anderen ID anlegen.

Der Workflow-Client stellt eine greet-Methode zur Verfligung, die GreeterMain aufruft, um den
Workflow zu starten (da greet () die mit der @Execute-Annotation angegebene Methode war).

® Note

Der Annotationsprozessor erzeugt auf3erdem ein internes Client-Factory-Objekt, das zur
Erstellung von untergeordneten Workflows verwendet wird. Details hierzu finden Sie unter
Untergeordnete Workflow-Ausfiihrungen.

Beenden Sie GreeterWorker (falls noch ausgefiihrt). Starten Sie GreeterMain. Sie sollten jetzt
SomelD in der Liste der aktiven Workflow-Ausfliihrungen der Amazon SWF SWF-Konsole sehen:.

Domain:| helloWorldWalkthrough | «

¥ Workflow Execution List Parameters

Filter by: Mo Filter -

Execution Status: @ Active O Closed

Started between ~ 2012Aug2315:43:.06 and 2012 Aug 24 23:59:59

List Executions

Execution Actions
[Workflow Execution ID Run 1D Name (Version)
[[1| somelD Mi2ktcdclHvFsKFhmVs20T1wi4SIyBreEYSYBId1z GreeterWorkflow greet (1.0}

HelloWorldWorkflow Vorspeise API-Version 2021-04-28 23

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowClientFactoryExternal.html#getClient(java.lang.String)

AWS Flow Framework fur Java Entwicklerhandbuch

Wenn Sie someID und die Registerkarte Events (Ereignisse) auswahlen, werden die Ereignisse
angezeigt:

Domain: helloWeorldWalkthrough

Summary Events Activities

¥ Event Date D Event Type
Fri Aug 24 15:50:30 GMT-700 2012 2 DecisionTaskScheduled
Fri Aug 24 15:50:30 GMT-700 2012 1 WorkflowExecutionStarted
(@ Note

Wenn Sie GreeterWorker bereits friiher gestartet haben und es noch ausgefihrt wird,
sehen Sie eine langere Ereignisliste. Die Grinde hierflir werden gleich besprochen. Halten
Sie GreeterWorker an und versuchen Sie erneut, GreaterMain zu starten.

Die Registerkarte Events (Ereignisse) zeigt nur zwei Ereignisse an:

* WorkflowExecutionStarted zeigt an, dass der Workflow mit der Ausflihrung begonnen hat.

* DecisionTaskScheduledgibt an, dass Amazon SWF die erste Entscheidungsaufgabe in die
Warteschlange gestellt hat.

Der Grund dafir, dass der Workflow bei der ersten Entscheidungsaufgabe blockiert wird, ist, dass der
Workflow auf zwei Anwendungen verteilt ist, GreeterMain und GreeterWorker. GreeterMain
die Workflow-Ausfiihrung gestartet haben, aber GreeterWorker nicht lauft, sodass die Worker

die Listen nicht abfragen und Aufgaben ausflihren. Sie kénnen beide Anwendungen unabhangig
voneinander ausfihren. Sie bendétigen jedoch beide, damit die Workflow-Ausfihrung Gber die erste
Entscheidungsaufgabe hinausgeht. Wenn Sie nun GreeterWorker ausfihren, beginnen die
Workflow- und Aktivitats-Worker mit dem Abrufen und die verschiedenen Aufgaben werden schnell
abgeschlossen. Wenn Sie nun die Registerkarte Events prifen, wird die erste Ereignisgruppe
angezeigt.

HelloWorldWorkflow Vorspeise API-Version 2021-04-28 24

AWS Flow Framework fur Java

Entwicklerhandbuch

Domain: helloWorldWalkthrough

Summary Events

Activities

4 Event Date
Fri Aug 24 15:50:30 GMT-T00 2012
Fri Aug 24 15:50:30 GMT-700 2012
Fri Aug 24 15:52:19 GMT-700 2012
Fri Aug 24 15:52:19 GMT-700 2012
Fri Aug 24 15:52:19 GMT-T00 2012
Fri Aug 24 15:52:20 GMT-T00 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-T00 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-700 2012

10
i

Event Type
WorkflowExecutionStarted
DecisionTaskScheduled
DecisionTaskStarted
DecisionTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
DecisionTaskScheduled
DecisionTaskStarted
DecisionTaskCompleted

ActivityTaskScheduled

Sie kdnnen einzelne Ereignisse auswahlen, um weitere Informationen zu erhalten. Wenn Sie mit der

Suche fertig sind, sollte der Workflow ,Hello World!“ gedruckt haben auf deine Konsole.

Nach dem Abschluss des Workflows erscheint er nicht mehr in der Liste der aktiven Ausfihrungen.

Wenn Sie dies Uberprifen méchten, wahlen Sie die Schaltflache fur den Ausfliihrungsstatus

Closed (Geschlossen) und dann List Executions (Ausfiihrungen auflisten) aus. Es werden alle
abgeschlossenen Workflow-Instances in der angegebenen Doméne (helloWorldwWalkthrough)
angezeigt (die die beim Anlegen der Domane angegebene Aufbewahrungszeit nicht Gberschritten

haben).

HelloWorldWorkflow Vorspeise

API-Version 2021-04-28 25

AWS Flow Framework fur Java Entwicklerhandbuch

Domain: helloWorldWalkthrough | «

¥ Workflow Execution List Parameters

Filter by: Mo Filter -

Execution Status:) Active @ Closed

Started between » 2012Aug2316:2852 and 2012 Aug 24 23:59:59

List Executions
Execution Actions
[l Workflow Execution 1D Run ID Name (Version)
[| somelD Mi2ktedelHvE sKFhmVs20T1wk4SlyBr6EYS Greeter\Workflow.greet (1.0)
[l | somelD 11THLRDRMNwKT+anWpORnyo3jFIVoVIVGEa GreeterWorkflow greet (1.0)

Beachten Sie, dass jede Workflow-Instance einen eindeutigen Run ID-Wert hat. Sie kdnnen dieselbe
Workflow-ID fir verschiedene Workflow-Instanzen verwenden, jedoch jeweils nur fir eine aktive
Ausflihrung.

HelloWorldWorkflowAsyncBewerbung

Gelegentlich ist es vorteilhaft, einen Workflow bestimmte Aufgaben lokal durchfiihrt zu lassen, statt
eine Aktivitat zu verwenden. Jedoch umfassen Workflow-Aufgaben haufig die Verarbeitung der
Werte, die von Promise<T>-Objekten reprasentiert werden. Wenn Sie ein Promise<T>-Objekt an
eine synchrone Workflow-Methode weiterleiten, wird die Methode sofort ausgeflihrt, aber sie kann
nicht auf den Wert des Promise<T>-Objekts zugreifen, bevor das Objekt bereit ist. Sie kdnnten
Promise<T>.isReady abfragen, bis es true zurickgibt, dies ist jedoch ineffizient und die Methode
konnte lange blockiert sein. Eine besserer Ansatz ist das Verwenden einer asynchronen Methode.

Eine asynchrone Methode wird ahnlich wie eine Standardmethode implementiert — oft als Mitglied
der Workflow-Implementierungsklasse — und wird im Kontext der Workflow-Implementierung

HelloWorldWorkflowAsyncBewerbung API-Version 2021-04-28 26

AWS Flow Framework fur Java Entwicklerhandbuch

ausgefihrt. Sie legen sie als asynchrone Methode fest, indem Sie eine @Asynchronous-Anmerkung
anwenden, wodurch das Framework angewiesen wird, sie ahnlich wie eine Aktivitat zu behandeln.

« Wenn eine Workflow-Implementierung eine asynchrone Methode aufruft, wird sie sofort
zurlckgegeben. Asynchrone Methoden geben in der Regel ein Promise<T>-Objekt zurilick, das
verfigbar wird, wenn die Methode abgeschlossen ist.

* Wenn Sie einer asynchronen Methode eine oder mehrere Promise<T>-Objekte Gibergeben,
verschiebt sie die Ausflihrung, bis alle Eingabeobjekte bereit sind. Eine asynchrone Methode kann
daher auf ihre Promise<T>-Werte der Eingabe zugreifen, ohne eine Ausnahme zu riskieren.

(@ Note

Aufgrund der Art und Weise, wie die AWS Flow Framework fir Java den Workflow ausfuhrt,
werden asynchrone Methoden in der Regel mehrfach ausgefuhrt. Sie sollten sie daher

nur fur schnelle Aufgaben mit geringem Overhead verwenden. Aktivitaten sollten Sie zur
Durchflhrung zeitintensiver Aufgaben wie grof3en Berechnungen verwenden. Details hierzu
finden Sie unter AWS Flow Framework Grundbegriffe: Verteilte Ausfuhrung.

Dieses Thema ist eine exemplarische Vorgehensweise fur eine modifizierte Version
HelloWorldWorkflowAsync, HelloWorldWorkflow die eine der Aktivitdten durch eine asynchrone
Methode ersetzt. Um die Anwendung zu implementieren, erstellen Sie eine Kopie von
HelloWorld. HelloWorldWorkflow packe es in dein Projektverzeichnis und nenne es HelloWorld.
HelloWorldWorkflowAsync.

(@ Note

Dieses Thema baut auf den Konzepten und Dateien auf, die in den Themen HelloWorld
Bewerbung und HelloWorldWorkflow Bewerbung vorgestellt werden. Machen Sie sich mit den
Dateien und vorgestellten Konzepten finden Sie in diesen Themen, bevor Sie fortfahren.

In den folgenden Abschnitten wird beschrieben, wie der urspringliche HelloWorldWorkflow Code
geandert wird, um eine asynchrone Methode zu verwenden.

HelloWorldWorkflowAsyncBewerbung API-Version 2021-04-28 27

AWS Flow Framework fur Java Entwicklerhandbuch

HelloWorldWorkflowAsync Implementierung der Aktivitaten

HelloWorldWorkflowAsync implementiert seine Worker-Schnittstelle fir Aktivitaten wie folgt:
GreeterActivities

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="2.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
public String getName();
public void say(String what);

Diese Schnittstelle ahnelt der von verwendeten HelloWorldWorkflow, mit den folgenden Ausnahmen:

+ Sie lasst die getGreeting-Aktivitdt weg. Diese Aufgabe wird jetzt von einer asynchronen
Methode verarbeitet.

 Die Versionsnummer wird auf 2.0. Nachdem Sie eine Aktivitatsschnittstelle bei Amazon SWF
registriert haben, kdnnen Sie sie nur andern, wenn Sie die Versionsnummer andern.

Die ubrigen Implementierungen der Aktivitdtsmethoden sind identisch mit. HelloWorldWorkflow
Léschen Sie einfach getGreeting aus GreeterActivitiesImpl.

HelloWorldWorkflowAsync Workflow-Implementierung

HelloWorldWorkflowAsync definiert die Workflow-Schnittstelle wie folgt:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

HelloWorldWorkflowAsync Implementierung der Aktivitaten API-Version 2021-04-28 28

AWS Flow Framework fur Java Entwicklerhandbuch

@Execute(version = "2.0")
public void greet();

Die Schnittstelle ist bis auf HelloWorldWorkflow eine neue Versionsnummer identisch mit. Wenn Sie
einen registrierten Workflow dndern méchten, missen Sie wie bei Aktivitdten seine Version andern.

HelloWorldWorkflowAsync implementiert den Workflow wie folgt:

import com.amazonaws.services.simpleworkflow.flow.annotations.Asynchronous;
import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

@Override

public void greet() {
Promise<String> name = operations.getName();
Promise<String> greeting = getGreeting(name);
operations.say(greeting);

}

@Asynchronous

private Promise<String> getGreeting(Promise<String> name) {
String returnString = "Hello " + name.get() + "!";
return Promise.asPromise(returnString);

}

HelloWorldWorkflowAsync ersetzt die getGreeting Aktivitat durch eine getGreeting asynchrone
Methode, aber die greet Methode funktioniert fast genauso:

1. FOhren Sie die getName-Aktivitat aus, die sofort ein Promise<String>-Objekt, name,
zurlckgibt, das den Namen reprasentiert.

2. Rufen Sie die asynchrone Methode getGreeting auf und tUbergeben Sie ihr das name-Objekt.
getGreeting gibt umgehend ein Promise<String>-Objekt, greeting, zurtck, das die
BegriRung reprasentiert.

3. Fuhren Sie die say-Aktivitat aus und Ubergeben Sie ihr das greeting-Objekt.

4. Wenn getName abgeschlossen wird, ist name einsatzbereit und getGreeting verwendet seinen
Wert zur Erstellung der Begrifung.

HelloWorldWorkflowAsync Workflow-Implementierung API-Version 2021-04-28 29

AWS Flow Framework fur Java Entwicklerhandbuch

5. Wenn getGreeting abgeschlossen wird, ist greeting einsatzbereit und say gibt die
Zeichenfolge in der Konsole aus.

Der Unterschied liegt darin, dass Greet (Gruf3) nicht den Aktivitaten-Client aufruft, um eine
getGreeting-Aktivitat auszufuhren, sondern die asynchrone getGreeting-Methode. Das
Endergebnis ist dasselbe, aber die getGreeting-Methode funktioniert etwas anders als die
getGreeting-Aktivitat.

» Der Workflow-Worker verwendet Aufrufsemantiken der Standardfunktion fur die Ausfliihrung von
getGreeting. Die asynchrone Ausflihrung der Aktivitat wird jedoch von Amazon SWF vermittelt.

+ getGreeting wird im Prozess der Workflow-Implementierung ausgefihrt.

* getGreeting gibt ein Promise<String>-Objekt anstelle eines String-Objekts zurlck.
Um den Zeichenfolgewert abzurufen, der sich im Besitz von Promise befindet, rufen Sie seine
get()-Methode auf. Da die Aktivitat jedoch asynchron ausgefiihrt wird, ist ihr Rlickgabewert
moglicherweise nicht sofort bereit. Es get () wird eine Ausnahme ausgelést, bis der Riickgabewert
der asynchronen Methode verfligbar ist.

Weitere Informationen zur Funktionsweise von Promise finden Sie unter AWS Flow Framework
Grundbegriffe: Data Exchange zwischen Aktivitaten und Workflows.

getGreeting erstellt einen Riickgabewert, indem die Begrilungszeichenfolge an die statische
Promise.asPromise-Methode Ubergeben wird. Diese Methode erstellt ein Promise<T>-Objekt
des entsprechenden Typs, legt den Wert fest und versetzt es in den betriebsbereiten Zustand.

HelloWorldWorkflowAsyncArbeitsablauf und Aktivitaten: Host und Starter

HelloWorldWorkflowAsync implementiert GreeterWorker als Hostklasse fir die Workflow- und
Aktivitatsimplementierungen. Sie ist mit der HelloWorldWorkflow Implementierung identisch, mit
Ausnahme des taskListToPoll Namens, der auf "HelloWorldAsyncList" gesetzt ist.

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

HelloWorldWorkflowAsyncArbeitsablauf und Aktivitdten: Host und Starter API-Version 2021-04-28 30

AWS Flow Framework fur Java Entwicklerhandbuch

public class GreeterWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldwalkthrough";
String taskListToPoll = "HelloWorldAsynclList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
wfw.start();

HelloWorldWorkflowAsync implementiert den Workflow-Starter inGreeterMain; er ist identisch mit
der HelloWorldWorkflow Implementierung.

Um den Workflow auszufiihren, fihren Sie GreeterWorker und ausGreeterMain, genau wie bei
HelloWorldWorkflow.

HelloWorldWorkflowDistributed Bewerbung

Mit HelloWorldWorkflow und HelloWorldWorkflowAsync vermittelt Amazon SWF die Interaktion
zwischen den Implementierungen des Workflows und der Aktivitaten, sie werden jedoch lokal als
ein einziger Prozess ausgefihrt. GreeterMainbefindet sich in einem separaten Prozess, l1auft aber
immer noch auf demselben System.

Ein wesentliches Merkmal von Amazon SWF ist die Unterstltzung verteilter Anwendungen. Sie
kdnnten beispielsweise den Workflow-Worker auf einer EC2 Amazon-Instance, den Workflow-

HelloWorldWorkflowDistributed Bewerbung API-Version 2021-04-28 31

AWS Flow Framework fur Java Entwicklerhandbuch

Starter auf einem Rechenzentrumscomputer und die Aktivitaten auf einem Client-Desktop-Computer
ausfuhren. Sie kénnen sogar unterschiedliche Aktivitaten auf unterschiedlichen Systemen ausfihren.

Die HelloWorldWorkflowDistributed Anwendung erstreckt sich HelloWorldWorkflowAsync auf die
Verteilung der Anwendung auf zwei Systeme und drei Prozesse.

» Der Workflow und der Workflow-Starter werden als getrennte Prozesse auf einem System
ausgefuhrt.

 Die Aktivitdten werden auf einem getrennten System ausgeflhrt.

Um die Anwendung zu implementieren, erstellen Sie eine Kopie von HelloWorld.
HelloWorldWorkflowAsync packe es in dein Projektverzeichnis und nenne es HelloWorld.
HelloWorldWorkflowDistributed. In den folgenden Abschnitten wird beschrieben, wie Sie den
HelloWorldWorkflowAsync Originalcode &ndern, um die Anwendung auf zwei Systeme und drei
Prozesse zu verteilen.

Sie mussen den Workflow oder das Implementieren der Aktivitaten nicht andern, um sie auf
getrennten Systemen auszufiihren, auch nicht die Versionsnummern. Sie missen GreeterMain
auch nicht andern. Sie mussen lediglich den Aktivitaten- und Workflow-Host andern.

Dabei HelloWorldWorkflowAsync dient eine einzige Anwendung als Host fur den Workflow

und die Aktivitat. Um den Workflow und das Implementieren der Aktivitaten auf getrennten
Systemen auszufiihren, missen Sie getrennte Anwendungen implementieren. GreeterWorker
Aus dem Projekt I6schen und zwei neue Klassendateien hinzufiugen, GreeterWorkflowWorker und
GreeterActivitiesWorker.

HelloWorldWorkflowDistributed implementiert seinen Aktivitdten-Host in GreeterActivitiesWorker wie
folgt:

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

public class GreeterActivitiesWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
ClientConfiguration().withSocketTimeout(70*1000);

HelloWorldWorkflowDistributed Bewerbung API-Version 2021-04-28 32

AWS Flow Framework fur Java Entwicklerhandbuch

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldExamples";
String taskListToPoll = "HelloWorldAsynclList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

HelloWorldWorkflowDistributed implementiert seinen Workflow-Host wie folgt:
GreeterWorkflowWorker

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorkflowWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

HelloWorldWorkflowDistributed Bewerbung API-Version 2021-04-28 33

AWS Flow Framework fur Java Entwicklerhandbuch

String domain = "helloWorldExamples";
String taskListToPoll = "HelloWorldAsynclList";

WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
wfw.start();

Beachten Sie, dass GreeterActivitiesWorker nur GreeterWorker ohne den
WorkflowWorker-Code ist und GreeterWorkflowWorker nur GreeterWorker ohne den
ActivityWorker-Code ist.

So fuhren Sie den Workflow aus:

1. Erstellen Sie eine ausfiihrbare JAR-Datei mit GreeterActivitiesWorker als Eingangspunkt.

2. Kopieren Sie die JAR-Datei aus Schritt 1 in ein anderes System, das jedes von Java
unterstitztes Betriebssystem ausflihren kann.

3. Stellen Sie sicher, dass AWS Anmeldeinformationen mit Zugriff auf dieselbe Amazon SWF-
Domain auf dem anderen System verflgbar sind.

4. Fuhren Sie die JAR-Datei aus.

5. Verwenden Sie auf lhnrem Entwicklungssystem Eclipse zum Ausfiihren von
GreeterWorkflowWorker und GreeterMain.

Abgesehen von der Tatsache, dass die Aktivitaten auf einem anderen System als dem Workflow-
Worker und dem Workflow-Starter ausgefuhrt werden, funktioniert der Workflow genauso wie
HelloWorldAsync. Allerdings, weil das println Aufrufen ,Hello World!“ ausgibt Wenn sich die say
Aktivitat auf der Konsole befindet, erscheint die Ausgabe auf dem System, auf dem der Activities
Worker ausgefthrt wird.

HelloWorldWorkflowParallelBewerbung

In den Vorgangerversionen von Hello World! wird eine lineare Workflow-Topologie verwendet.
Amazon SWEF ist jedoch nicht auf lineare Topologien beschrankt. Die HelloWorldWorkflowParallel
Anwendung ist eine modifizierte Version davon HelloWorldWorkflow , die eine parallel Topologie
verwendet, wie in der folgenden Abbildung dargestellt.

HelloWorldWorkflowParallelBewerbung API-Version 2021-04-28 34

AWS Flow Framework fur Java Entwicklerhandbuch

narme
getName

Call greeting I Print greeting
- . | say . |
(Start) o {Finish)

getGreeting

greeting

Mit HelloWorldWorkflowParallel, getName und parallel getGreeting laufen und jeweils einen
Teil der BegruBung zuriickgeben. sayfuhrt dann die beiden Zeichenketten zu einer Begrifiung
zusammen und druckt sie auf der Konsole aus.

Um die Anwendung zu implementieren, erstellen Sie eine Kopie von HelloWorld. HelloWorldWorkflow
packe es in dein Projektverzeichnis und nenne es HelloWorld. HelloWorldWorkflowParallel. In den
folgenden Abschnitten wird beschrieben, wie Sie den HelloWorldWorkflow Originalcode so andern,
dass er getGreeting parallel ausgefihrt getName wird.

HelloWorldWorkflowParallelAktivitaten Arbeiter

Die HelloWorldWorkflowParallel Aktivitdtsschnittstelle ist in implementiertGreeterActivities, wie
im folgenden Beispiel gezeigt.

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="5.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
public String getName();
public String getGreeting();
public void say(String greeting, String name);

Die Schnittstelle ist ahnlich wie HelloWorldWorkflow, mit den folgenden Ausnahmen:

+ getGreeting Ubernimmt keine Eingabe. Sie gibt nur eine BegrtiRungszeichenfolge zurlick.
* say ubernimmt zwei Eingabezeichenfolgen, die BegruRung und den Namen.

- Die Schnittstelle hat eine neue Versionsnummer. Diese ist bei jeder Anderung an der registrierten
Schnittstelle erforderlich.

HelloWorldWorkflowParallelAktivitaten Arbeiter API-Version 2021-04-28 35

AWS Flow Framework fur Java Entwicklerhandbuch

HelloWorldWorkflowParallel implementiert die Aktivitaten wie folgt: GreeterActivitiesImpl

public class GreeterActivitiesImpl implements GreeterActivities {

@Override
public String getName() {
return "World!";

@Override
public String getGreeting() {
return "Hello ";

@Override
public void say(String greeting, String name) {
System.out.println(greeting + name);

getName und getGreeting geben nun einfach die Halfte der BegriRungszeichenkette zurlick. say
verkettet die beiden Teile, um die vollstandige Zeichenfolge zu erzeugen, und gibt sie auf der Konsole
aus.

HelloWorldWorkflowParallelWorkflow-Mitarbeiter

Die HelloWorldWorkflowParallel Workflow-Schnittstelle ist wie folgt implementiert:
GreeterWorkflow

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Execute(version = "5.0")
public void greet();

HelloWorldWorkflowParallelWorkflow-Mitarbeiter API-Version 2021-04-28 36

AWS Flow Framework fur Java Entwicklerhandbuch

Die Klasse ist identisch mit der HelloWorldWorkflow Version, mit der Ausnahme, dass die
Versionsnummer so geandert wurde, dass sie dem Activities Worker entspricht.

Der Workflow wird in GreeterWorkflowImpl wie folgt implementiert:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

public void greet() {
Promise<String> name = operations.getName();
Promise<String> greeting = operations.getGreeting();
operations.say(greeting, name);

Auf den ersten Blick sieht diese Implementierung sehr ahnlich aus wie die drei Aktivitaten
HelloWorldWorkflow, die die Client-Methoden nacheinander ausfiihren. die Aktivitaten jedoch nicht.

* HelloWorldWorkflow Gbergeben name angetGreeting. Da name ein Promise<T>-Objekt ist,
verschiebt getGreeting die Ausfuhrung der Aktivitat, bis getName abgeschlossen ist. Daher
werden die beiden Aktivitaten nacheinander ausgefihrt.

* HelloWorldWorkflowParallel Gbergibt keine Eingabe getName odergetGreeting. Keine der
Methoden verschiebt die Ausfihrung und die zugehdérigen Aktivitditsmethoden werden sofort
parallel ausgefuhrt.

Die Aktivitat say Ubernimmt sowohl greeting als auch name als Eingabeparameter. Da es sich
dabei um Promise<T>-Objekte handelt, verschiebt say die Ausfiihrung, bis beide Aktivitaten
abgeschlossen sind, erstellt dann die Begrifdung und gibt sie aus.

Beachten Sie, dass HelloWorldWorkflowParallel kein spezieller Modellierungscode verwendet wird,
um die Workflow-Topologie zu definieren. Dies geschieht implizit, indem es die standardmafige
Java-Ablaufsteuerung verwendet und die Eigenschaften von Promise<T> Objekten ausnutzt.
AWS Flow Framework fir Java-Anwendungen kdnnen selbst komplexe Topologien einfach

durch die Verwendung von Promise<T> Objekten in Verbindung mit herkémmlichen Java-
Kontrollflusskonstrukten implementiert werden.

HelloWorldWorkflowParallelWorkflow-Mitarbeiter API-Version 2021-04-28 37

AWS Flow Framework fur Java Entwicklerhandbuch

HelloWorldWorkflowParallel Arbeitsablauf und Aktivitaten: Host und Starter

HelloWorldWorkflowParallel implementiert GreeterWorker als Hostklasse fiir die Workflow- und
Aktivitatsimplementierungen. Sie ist mit der HelloWorldWorkflow Implementierung identisch, mit
Ausnahme des taskListToPoll Namens, der auf "HelloWorldParallelList" gesetzt ist.

HelloWorldWorkflowParallelimplementiert den GreeterMain Workflow-Starter in und ist mit
der HelloWorldWorkflow Implementierung identisch.

Flhren Sie zur Ausfuihrung des Workflows GreeterWorker und GreeterMain genau wie bei
HelloWorldWorkflow aus.

HelloWorldWorkflowParallel Arbeitsablauf und Aktivitaten: Host und Starter API-Version 2021-04-28 38

AWS Flow Framework fur Java Entwicklerhandbuch

Verstandnis AWS Flow Framework fur Java

The AWS Flow Framework for Java arbeitet mit Amazon SWF zusammen, um die Erstellung
skalierbarer und fehlertoleranter Anwendungen flir asynchrone Aufgaben zu vereinfachen, die lange
dauern, remote oder beides ausfiihren kdnnen. Das ,Hallo Welt!“ In den Beispielen Was ist das AWS
Flow Framework fur Java? wurden die Grundlagen der Verwendung von AWS Flow Framework

zur Implementierung grundlegender Workflow-Anwendungen vorgestellt. Dieser Abschnitt enthalt
grundlegende Informationen zur Funktionsweise von AWS Flow Framework Anwendungen. Der erste
Abschnitt fasst die grundlegende Struktur einer AWS Flow Framework Anwendung zusammen, und
die Ubrigen Abschnitte enthalten weitere Einzelheiten zur Funktionsweise von AWS Flow Framework
Anwendungen.

Themen

* AWS Flow Framework Grundbegriffe: Anwendungsstruktur

* AWS Flow Framework Grundkonzepte: Zuverlassige Ausfiihrung

* AWS Flow Framework Grundbegriffe: Verteilte Ausfiihrung

* AWS Flow Framework Grundbegriffe: Aufgabenlisten und Aufgabenausfiihrung

* AWS Flow Framework Grundkonzepte: Skalierbare Anwendungen

* AWS Flow Framework Grundbegriffe: Data Exchange zwischen Aktivitaten und Workflows

* AWS Flow Framework Grundbegriffe: Data Exchange zwischen Anwendungen und Workflow-
Ausflihrungen

* Amazon SWF-Timeout-Typen

AWS Flow Framework Grundbegriffe: Anwendungsstruktur

Konzeptionell besteht eine AWS Flow Framework Anwendung aus drei grundlegenden
Komponenten: Workflow-Startern, Workflow-Workern und Activity-Workern. Eine oder mehrere
Hostanwendungen sind dafur verantwortlich, die Worker (Workflow und Aktivitat) bei Amazon SWF
zu registrieren, die Worker zu starten und die Bereinigung durchzufihren. Die Worker setzen die
Mechaniken der Workflow-Ausfihrung um und kénnen auf verschiedenen Hosts implementiert
werden.

Dieses Diagramm stellt eine grundlegende AWS Flow Framework Anwendung dar:

Anwendungsstruktur API-Version 2021-04-28 39

AWS Flow Framework fir Java Entwicklerhandbuch

Amazon SWF

Decision Activities
Task List Task List

Workflow Starter Workflow Host Activities Host
Application Application Application
WorlkflowWoaorker ActivityWorker
Workflow
Implementation
Wgﬂgr'“t’w : Activities
Activities Methods
Client
Workflow Starter Workflow Worker Activities Worker
(® Note

Die Implementierung dieser Komponenten in drei getrennten Anwendungen ist konzeptionell
praktisch. Sie kdnnen jedoch Anwendungen erstellen, um diese Funktionalitat auf
verschiedene Weise zu implementieren. Es ist zum Beispiel mdglich, eine einzelne
Host-Anwendung fur die Aktivitats- und Workflow-Worker oder getrennte Aktivitats- und
Workflow-Hosts zu verwenden. Sie kdnnen auch mehrere Aktivitats-Worker jeweils eine
unterschiedliche Reihe von Aktivitidten auf getrennten Hosts ausfiihren lassen und Ahnliches.

Die drei AWS Flow Framework Komponenten interagieren indirekt, indem sie HTTP-Anfragen an
Amazon SWF senden, das die Anfragen verwaltet. Amazon SWF macht Folgendes:

» Er verwaltet eine oder mehrere Entscheidungsaufgabenlisten, mit denen die nachsten Schritte
festgelegt werden, die ein Workflow-Worker ausfihren soll.

Anwendungsstruktur API-Version 2021-04-28 40

AWS Flow Framework fur Java Entwicklerhandbuch

» Er verwaltet eine oder mehrere Aktivitatsaufgabenlisten, mit denen die nachsten Aufgaben
festgelegt werden, die ein Aktivitats-Worker ausfihren soll.

+ Verwaltet einen detaillierten step-by-step Verlauf der Ausfihrung des Workflows.

Mit dem AWS Flow Framework muss sich |hr Anwendungscode nicht direkt mit vielen der in der
Abbildung gezeigten Details befassen, z. B. dem Senden von HTTP-Anfragen an Amazon SWF. Sie
rufen einfach AWS Flow Framework Methoden auf und das Framework kimmert sich im Hintergrund
um die Details.

Rolle des Aktivitats-Workers

Der Aktivitats-Worker fuhrt die verschiedenen Aufgaben durch, die der Workflow bewerkstelligen
muss. Er besteht aus Folgendem:

» Der Aktivitatsimplementierung. Diese enthalt eine Reihe von Aktivitatsmethoden, die bestimmte
Aufgaben flir den Workflow ausfiihren.

 Ein ActivityWorkerObjekt, das lange HT TP-Abfrageanfragen verwendet, um Amazon SWF
nach auszufuhrenden Aktivitatsaufgaben abzufragen. Wenn eine Aufgabe benétigt wird,

beantwortet Amazon SWF die Anfrage, indem es die fur die Ausfuhrung der Aufgabe erforderlichen
Informationen sendet. Das Activity\WWorkerObjekt ruft dann die entsprechende Aktivitdtsmethode auf

und gibt die Ergebnisse an Amazon SWF zurck.

Rolle des Workflow-Workers

Der Workflow-Workers orchestriert die Ausflihrung der verschiedenen Aktivitaten, verwaltet den
Datenfluss und verarbeitet fehlgeschlagene Aktivitaten. Er besteht aus Folgendem:

» Der Workflow-Implementierung. Diese enthalt die Logik zur Aktivitatsorchestrierung, verarbeitet
fehlgeschlagene Aktivitaten und so weiter.

« Einem Aktivitats-Client. Dieser fungiert als Proxy fir den Aktivitats-Worker und erméglicht dem
Workflow-Worker, eine asynchrone Ausflihrung von Aktivitaten zu planen.

« Ein WorkflowWorkerObjekt, das lange HTTP-Abfrageanfragen verwendet, um Amazon SWF
nach Entscheidungsaufgaben abzufragen. Wenn die Workflow-Aufgabenliste Aufgaben enthalt,

beantwortet Amazon SWF die Anfrage, indem es die Informationen zurticksendet, die fur die
Ausfuhrung der Aufgabe erforderlich sind. Das Framework fihrt dann den Workflow zur Ausfiihrung
der Aufgabe aus und gibt die Ergebnisse an Amazon SWF zurick.

Rolle des Aktivitats-Workers API-Version 2021-04-28 41

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework fur Java Entwicklerhandbuch

Rolle des Workflow-Starters

Der Workflow-Starter startet eine Workflow-Instance, auch Workflow-Ausflihrung genannt. Er kann
wahrend der Ausfihrung mit einer Instance interagieren, um zusatzliche Daten an den Workflow-
Worker zu Ubergeben oder den aktuellen Workflow-Status abzufragen.

Der Workflow-Starter startet die Workflow-Ausflihrung mithilfe eines Workflow-Clients. Er interagiert
mit dem Workflow nach Bedarf wahrend der Workflow-Ausflihrung und flihrt die Bereinigung durch.
Der Workflow-Starter kénnte eine lokal ausgefiihrte Anwendung, eine Webanwendung AWS CLI oder
sogar die sein. AWS-Managementkonsole

So interagiert Amazon SWF mit lhrer Anwendung

Amazon SWF vermittelt die Interaktion zwischen den Workflow-Komponenten und flhrt einen
detaillierten Workflow-Verlauf. Amazon SWF initiiert keine Kommunikation mit den Komponenten.
Es wartet auf HTTP-Anfragen von den Komponenten und verwaltet die Anfragen nach Bedarf. Zum
Beispiel:

« Wenn die Anfrage von einem Mitarbeiter stammt, der nach verfliigbaren Aufgaben fragt, antwortet
Amazon SWF dem Mitarbeiter direkt, ob eine Aufgabe verfigbar ist. Weitere Informationen
zur Funktionsweise von Abfragen finden Sie unter Abfragen von Aufgaben im Amazon Simple

Workflow Service — Entwicklerhandbuch.

» Handelt es sich bei der Anfrage um eine Benachrichtigung eines Aktivitatsarbeiters, dass eine
Aufgabe abgeschlossen ist, zeichnet Amazon SWF die Informationen im Ausfihrungsverlauf auf
und flgt der Liste der Entscheidungsaufgaben eine Aufgabe hinzu, um den Workflow-Mitarbeiter
daruber zu informieren, dass die Aufgabe abgeschlossen ist, sodass er mit dem nachsten Schritt
fortfahren kann.

* Wenn die Anforderung vom Workflow-Worker zur Ausfuhrung einer Aktivitat stammt, zeichnet
Amazon SWF die Informationen im Ausfihrungsverlauf auf und fugt der Aufgabenliste der
Aktivitaten eine Aufgabe hinzu, um einen Aktivitatsarbeiter anzuweisen, die entsprechende
Aktivitdtsmethode auszufuhren.

Dieser Ansatz erméglicht es Mitarbeitern, auf jedem System mit Internetverbindung zu arbeiten,
einschliellich EC2 Amazon-Instances, Unternehmensrechenzentren, Client-Computern usw. Es
muss nicht einmal dasselbe Betriebssystem ausgeflhrt werden. Da die HTTP-Anforderungen von
den Workern stammen, sind keine extern sichtbaren Ports erforderlich. Worker kénnen sogar hinter
einer Firewall ausgefuhrt werden.

Rolle des Workflow-Starters API-Version 2021-04-28 42

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-comm-proto

AWS Flow Framework fur Java Entwicklerhandbuch

Weitere Informationen

Eine ausfuhrlichere Erlduterung der Funktionsweise von Amazon SWF finden Sie im Amazon Simple

Workflow Service Developer Guide.

AWS Flow Framework Grundkonzepte: Zuverlassige Ausflihrung

Asynchron verteilte Anwendungen muissen mit Zuverlassigkeitsproblemen umgehen, die bei
herkdbmmlichen Anwendungen nicht auftreten, einschliel3lich:

» So stellen Sie eine zuverlassige Kommunikation zwischen asynchron verteilten Komponenten
bereit, z. B. lang andauernde Komponenten auf Remote-Systemen.

+ So stellen Sie sicher, dass Ergebnisse nicht verloren gehen, wenn eine Komponente fehlschlagt
oder getrennt wird, besonders bei lang andauernden Anwendungen.

+ So handhaben Sie fehlgeschlagene verteilte Komponenten.

Anwendungen kénnen sich auf die SWF AWS Flow Framework und Amazon SWF verlassen, um
diese Probleme zu |6sen. Wir werden untersuchen, wie Amazon SWF Mechanismen bereitstellt, die
sicherstellen, dass lhre Workflows zuverlassig und vorhersehbar funktionieren, auch wenn sie lange
dauern und von asynchronen Aufgaben abhangen, die rechnerisch und mit menschlicher Interaktion
ausgefuhrt werden.

Bereitstellen von zuverlassiger Kommunikation

AWS Flow Framework erméglicht eine zuverlassige Kommunikation zwischen einem Workflow-
Worker und seinen Activity-Workern, indem Amazon SWF verwendet wird, um Aufgaben an
Mitarbeiter mit verteilten Aktivitaten zu verteilen und die Ergebnisse an den Workflow-Worker
zurtuckzugeben. Amazon SWF verwendet die folgenden Methoden, um eine zuverlassige
Kommunikation zwischen einem Mitarbeiter und seinen Aktivitdten sicherzustellen:

« Amazon SWF speichert geplante Aktivitdten und Workflow-Aufgaben dauerhaft und garantiert,
dass sie héchstens einmal ausgefuhrt werden.

« Amazon SWF garantiert, dass eine Aktivitatsaufgabe entweder erfolgreich abgeschlossen wird und
ein gultiges Ergebnis zurtckgibt, oder dass der Workflow-Worker dartber informiert wird, dass die
Aufgabe fehlgeschlagen ist.

« Amazon SWF speichert dauerhaft das Ergebnis jeder abgeschlossenen Aktivitat oder, bei
fehlgeschlagenen Aktivitaten, relevante Fehlerinformationen.

Weitere Informationen API-Version 2021-04-28 43

https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework fur Java Entwicklerhandbuch

AWS Flow Framework Anschlie3end bestimmt der anhand der Aktivitatsergebnisse von Amazon
SWEF, wie mit der Ausfihrung des Workflows fortgefahren werden soll.

Sicherstellen, dass Ergebnisse nicht verloren gegangen sind

Beibehalten des Workflow-Verlaufs

Eine Aktivitat, die eine Data Mining-Operation fiir ein Petabyte an Daten durchflihrt, kann Stunden
dauern und eine Aktivitat, die einen menschlichen Worker anweist, eine komplexe Aufgabe
durchzufiihren, kann Tage oder sogar Wochen dauern!

Um solchen Szenarien Rechnung zu tragen, kann die Fertigstellung von AWS Flow Framework
Workflows und Aktivitaten beliebig lange dauern: bis zu einem Jahr fur die Ausflihrung eines
Workflows. Die zuverlassige Ausfiihrung von lange dauernden Prozessen erfordert einen
Mechanismus flr die dauerhafte Speicherung des Workflow-Ausfuhrungsverlaufs auf fortschreitender
Basis.

Das AWS Flow Framework handhabt dies, abhangig von Amazon SWF, das einen Laufverlauf
jeder Workflow-Instanz verwaltet. Der Workflow-Verlauf stellt einen vollstandigen und autoritativen
Datensatz des Workflow-Fortschritts bereit, einschlieRlich aller Workflow- und Aktivitadtsaufgaben,
die geplant und abgeschlossen wurden, und den Informationen, die durch abgeschlossene oder
fehlgeschlagene Aktivitaten zurtickgegeben wurden.

AWS Flow Framework Anwendungen mussen normalerweise nicht direkt mit dem Workflow-

Verlauf interagieren, kdnnen aber bei Bedarf darauf zugreifen. Fir die meisten Zwecke kdénnen
Anwendungen einfach das Framework mit dem Workflow-Verlauf im Hintergrund interagieren lassen.
Eine vollstandige Erlauterung des Workflow-Verlaufs finden Sie unter Workflow-Verlauf im Amazon

Simple Workflow Service Developer Guide.
Zustandslose Ausfuhrung

Der Ausfliihrungsverlauf ermdglicht Workflow-Workern zustandslos zu sein. Wenn Sie Gber mehrere
Instances eines Workflow- oder Aktivitats-Worker verfligen, kann jeder Worker jede Aufgabe
durchflihren. Der Mitarbeiter erhalt alle Statusinformationen, die er zur Ausfihrung der Aufgabe
bendtigt, von Amazon SWF.

Dieser Ansatz macht die Workflows zuverlassiger. Wenn zum Beispiel ein Aktivitats-Worker
fehlschlagt, mussen Sie den Workflow nicht neu starten. Starten Sie den Worker einfach neu
und er beginnt damit, die Aufgabenliste abzufragen und eine beliebige Aufgabe auf der Liste zu

Sicherstellen, dass Ergebnisse nicht verloren gegangen sind API-Version 2021-04-28 44

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history

AWS Flow Framework fur Java Entwicklerhandbuch

verarbeiten, unabhangig davon, wann der Fehler aufgetreten ist. Sie kénnen lhren gesamten
Workflow fehlertolerant machen, indem Sie zwei oder mehr Workflow- und Aktivitats-Worker
verwenden, eventuell auf getrennten Systemen. Wenn dann einer der Worker fehlschlagt, fahren
die anderen mit der Verarbeitung geplanter Aufgaben ohne jegliche Unterbrechung im Workflow-
Fortschritt fort.

Verarbeitung fehlgeschlagener verteilter Komponenten

Aktivitaten schlagen haufig aus temporaren Grinden fehl, z. B. eine kurzzeitige
Verbindungstrennung, daher ist eine allgemeine Strategie flr die Handhabung von fehlgeschlagenen
Aktivitaten, die Aktivitat zu wiederholen. Statt den Wiederholungsprozess zu behandeln, indem
komplexe Strategien der Nachrichtenlibergabe implementiert werden, kénnen sich Anwendungen
auf den AWS Flow Framework verlassen. Er bietet mehrere Mechanismen zum Wiederholen
fehlgeschlagener Aktivitaten und stellt einen integrierten Ausnahmebehandlungsmechanismus bereit,
der mit asynchronen, verteilten Ausfihrungen von Aufgaben in einem Workflow funktioniert.

AWS Flow Framework Grundbegriffe: Verteilte Ausfihrung

Eine Workflow-Instanz ist im Grunde ein virtueller Ausfiihrungsthread, der Aktivitaten und
Orchestrierungslogik umfassen kann, die auf mehreren Remotecomputern ausgefihrt werden.
Amazon SWF und die AWS Flow Framework Funktion als Betriebssystem, das Workflow-Instanzen
auf einer virtuellen CPU wie folgt verwaltet:

» Den Ausflihrungsstatus der jeweiligen Instance verwalten
« Zwischen den Instances wechseln

+ Fortsetzen der Ausfliihrung einer Instance an der Stelle, an der sie herausgeschaltet wurde

Workflow-Replay

Da Aktivitaten langwierig sein kdnnen, ist eine Blockierung durch den Workflow bis zu seinem
Abschluss unerwiinscht. Stattdessen AWS Flow Framework verwaltet der die Workflow-Ausflihrung
mithilfe eines Wiedergabemechanismus, der sich auf den von Amazon SWF verwalteten Workflow-
Verlauf stiitzt, um den Workflow in Episoden auszuflihren.

Jeder Abschnitt wiederholt die Workflow-Logik so, dass jede Aktivitat nur einmal ausgefuhrt wird.
Daher ist sichergestellt, dass Aktivitdten und asynchrone Methoden erst ausgeflhrt werden, wenn
ihre Promise-Objekte bereit sind.

Verarbeitung fehlgeschlagener verteilter Komponenten API-Version 2021-04-28 45

AWS Flow Framework fur Java Entwicklerhandbuch

Der Workflow-Starter startet den ersten Replay-Abschnitt, sobald er die Workflow-Ausflihrung startet.
Das Framework ruft die Einstiegspunktmethode des Workflows auf. Dann geht es folgendermalien
VOr:

1. Es fUhrt alle Workflow-Aufgaben aus, die nicht vom Abschluss einer Aktivitdt abhangen,
einschliel3lich des Aufrufs aller Aktivitats-Client-Methoden.

2. Gibt Amazon SWF eine Liste von Aktivitdten und Aufgaben, deren Ausflihrung geplant werden soll.
Fur den ersten Abschnitt besteht diese Liste nur aus den Aktivitaten, die nicht von einem Promise-
Objekt abhangig sind und sofort ausgefuhrt werden kdnnen.

3. Benachrichtigt Amazon SWF, dass die Episode abgeschlossen ist.

Amazon SWF speichert die Aktivitatsaufgaben im Workflow-Verlauf und plant ihre Ausfihrung, indem
sie in die Aktivitatsaufgabenliste aufgenommen werden. Die Aktivitats-Worker rufen die Aufgabenliste
ab und fuhren die Aufgaben aus.

Wenn ein Activity Worker eine Aufgabe abschliel3t, gibt er das Ergebnis an Amazon SWF zurick.
Amazon SWF zeichnet es im Workflow-Ausfihrungsverlauf auf und plant eine neue Workflow-
Aufgabe fur den Workflow-Worker, indem es sie in die Workflow-Aufgabenliste aufnimmt. Der
Workflow-Worker fragt die Aufgabenliste ab. Wenn er die Aufgabe erhalt, fihrt er den nachsten
Replay-Abschnitt wie folgt aus:

1. Das Framework flhrt die Einstiegspunktmethode des Workflows aus. Dann geht es
folgendermalden vor:

 Es fluhrt alle Workflow-Aufgaben aus, die nicht vom Abschluss einer Aktivitat abhangen,
einschlieBlich des Aufrufs aller Aktivitats-Client-Methoden. Das Framework Uberprift jedoch den
Ausflhrungsverlauf und plant keine doppelten Aktivitatsaufgaben.

 Es pruft den Verlauf, um zu ermitteln, welche Aktivitdtsaufgaben abgeschlossen wurden. Dann
fuhrt es alle asynchronen Workflow-Methoden aus, die von diesen Aktivitaten abhangen.

2. Wenn alle Workflow-Aufgaben, die ausgefuhrt werden kdnnen, abgeschlossen sind, meldet das
Framework zuriick an Amazon SWF:

» Es gibt Amazon SWF eine Liste aller Aktivitaten, deren Promise<T> Eingabeobjekte seit der
letzten Episode fertig geworden sind und deren Ausfihrung geplant werden kann.

+ Wenn die Episode keine zusatzlichen Aktivitatsaufgaben generiert hat, es aber immer noch nicht
abgeschlossene Aktivitaten gibt, benachrichtigt das Framework Amazon SWF, dass die Episode
abgeschlossen ist. Es wartet dann auf eine andere Aktivitat, um den nachsten Replay-Abschnitt
zu starten.

Workflow-Replay API-Version 2021-04-28 46

AWS Flow Framework fur Java Entwicklerhandbuch

» Wenn die Episode keine zusatzlichen Aktivitatsaufgaben generiert hat und alle Aktivitaten
abgeschlossen wurden, benachrichtigt das Framework Amazon SWF, dass die Workflow-
Ausflihrung abgeschlossen ist.

Beispiele zum Replay-Verhalten finden Sie unter AWS Flow Framework fur Java Replay Behavior.

Replay und asynchrone Workflow-Methoden

Asynchrone Workflow-Methoden werden oft ahnlich wie Aktivitaten verwendet, denn die Methode
verzdgert die Ausflhrung, bis alle Ubergebenen Promise<T>-Objekte bereit sind. Der Replay-
Mechanismus behandelt asynchrone Methoden jedoch anders als dies bei Aktivitaten der Fall ist.

» Das Replay garantiert nicht, dass eine asynchrone Methode nur einmal ausgefuhrt wird. Es
verzdgert die Ausflhrung einer asynchronen Methode nur so lange, bis die ihr Gbergeben Promise-
Objekte bereit sind. Dann flhrt er sie fur alle folgenden Abschnitte aus.

* Wenn eine asynchrone Methode abgeschlossen ist, startet sie keinen neuen Abschnitt.

Ein Beispiel fur das Replay eines asynchronen Workflows finden Sie in AWS Flow Framework fur
Java Replay Behavior.

Replay und die Workflow-Implementierung

In den meisten Fallen missen Sie sich nicht um die Einzelheiten des Replay-Mechanismus kimmern.
Er arbeitet im Grunde hinter den Kulissen. Das Replay hat jedoch zwei wichtige Auswirkungen auf
Ihre Workflow-Implementierung.

* Verwenden Sie keine Workflow-Methoden, um langlaufende Aufgaben auszuflihren, da das Replay
die entsprechende Aufgabe mehrfach wiederholt. Auch asynchrone Workflow-Methoden werden
typischerweise mehr als einmal ausgefuhrt. Verwenden Sie stattdessen fur langlaufende Aufgaben
Aktivitdten. Dann fuhrt das Replay die Aktivitdten nur einmal aus.

* |hre Workflow-Logik muss vollstandig deterministisch sein. Jeder Abschnitt muss dem gleichen
Steuerungsfluss folgen. Beispielsweise sollte der Steuerungsfluss nicht von der aktuellen Zeit
abhangen. Eine detaillierte Beschreibung des Replays und der deterministischen Anforderungen
finden Sie unter Nichtdeterminismus.

Replay und asynchrone Workflow-Methoden API-Version 2021-04-28 47

AWS Flow Framework fur Java Entwicklerhandbuch

AWS Flow Framework Grundbegriffe: Aufgabenlisten und
Aufgabenausfuhrung

Amazon SWF verwaltet Workflow- und Aktivitdtsaufgaben, indem es sie in benannten Listen
veroffentlicht. Amazon SWF verwaltet mindestens zwei Aufgabenlisten, eine fur Workflow-Worker und
eine fur Activity Worker.

® Note

Sie kénnen beliebig viele Aufgabenlisten angeben, wobei jeder Liste unterschiedliche Worker
zugeordnet sind. Die Anzahl der Aufgabenlisten ist unbegrenzt. In der Regel geben Sie die
Aufgabenliste eines Workers in der Worker-Host-Anwendung an, sobald Sie das Worker-
Objekt erstellen.

Der folgende Auszug aus der HelloWorldWorkflow-Host-Anwendung legt einen neuen Aktivitats-
Worker an und ordnet ihn der Aktivitatsaufgabenliste HelloWorldList zu.

public class GreeterWorker {
public static void main(String[] args) throws Exception {

String domain = " helloWorldExamples";
String taskListToPoll = "HelloWorldList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

StandardmaRig plant Amazon SWF die Aufgaben des Mitarbeiters auf der HelloWorldList

Liste. Dann fragt der Worker diese Liste nach Aufgaben ab. Sie kdnnen einer Aufgabenliste einen
beliebigen Namen zuweisen. Sie kdnnen sogar den gleichen Namen fur Workflow- und Aktivitatslisten
verwenden. Intern platziert Amazon SWF die Namen der Arbeitsablauf- und Aktivitdtsaufgabenlisten
in unterschiedlichen Namespaces, sodass die beiden Listen unterschiedlich sind.

Aufgabenlisten und Aufgabenausfiihrung API-Version 2021-04-28 48

AWS Flow Framework fur Java Entwicklerhandbuch

Wenn Sie keine Aufgabenliste angeben, AWS Flow Framework gibt die eine Standardliste an,
wenn der Worker den Typ bei Amazon SWF registriert. Weitere Informationen finden Sie unter
Registrierung von Workflow- und Aktivitatstypen.

Manchmal ist es sinnvoll, einen bestimmten Worker oder eine bestimmte Gruppe von Workern
bestimmte Aufgaben ausflihren zu lassen. Beispielsweise kann ein Bildverarbeitungs-Workflow
eine Aktivitat verwenden, um ein Bild herunterzuladen und eine andere Aktivitat, um das Bild zu
bearbeiten. Es ist effizienter, beide Aufgaben auf dem gleichen System auszufiihren und den
Overhead der Ubertragung groRer Dateien (iber das Netzwerk zu vermeiden.

Um solche Szenarien zu unterstitzen, kdnnen Sie beim Aufruf einer Activity-Client-Methode explizit
eine Aufgabenliste angeben, indem Sie einen Overload mit einem schedulingOptions-Parameter
verwenden. Sie geben die Aufgabenliste an, indem Sie der Methode ein entsprechend konfiguriertes
ActivitySchedulingOptions Objekt Gbergeben.

Nehmen wir beispielsweise an, die say-Aktivitdt der HelloWorldWorkflow-Anwendung wird
von einem anderen Aktivitats-Worker als getName und getGreeting gehostet. Das folgende
Beispiel zeigt, wie Sie sicherstellen kbnnen, dass say dieselbe Aufgabenliste wie getName und
getGreeting verwendet (auch wenn sie urspringlich verschiedenen Listen zugeordnet waren).

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operationsl = new GreeterActivitiesClientImpll(); //
getGreeting and getName
private GreeterActivitiesClient operations2 = new GreeterActivitiesClientImpl2(); //
say
@Override
public void greet() {
Promise<String> name = operationsl.getName();
Promise<String> greeting = operationsl.getGreeting(name);
runSay(greeting);
}
@Asynchronous
private void runSay(Promise<String> greeting){
String taskList = operationsl.getSchedulingOptions().getTaskList();
ActivitySchedulingOptions schedulingOptions = new ActivitySchedulingOptions();
schedulingOptions.setTaskList(taskList);
operations2.say(greeting, schedulingOptions);

Aufgabenlisten und Aufgabenausfiihrung API-Version 2021-04-28 49

AWS Flow Framework fur Java Entwicklerhandbuch

Die asynchrone runSay-Methode ruft die getGreeting-Aufgabenliste aus seinem Client-Objekt ab.
Dann erstellt und konfiguriert es ein ActivitySchedulingOptions-Objekt. Dieses stellt sicher,
dass say dieselbe Aufgabenliste wie getGreeting abfragt.

@ Note

Wenn Sie einen schedulingOptions-Parameter an eine Activity-Client-Methode
Ubergeben, Uberschreibt dieser den urspringlichen Aufgabenplan nur fir diese
Aktivitatsausfuhrung. Wenn Sie die Client-Methode fiir Aktivitaten erneut aufrufen, ohne eine
Aufgabenliste anzugeben, weist Amazon SWF die Aufgabe der ursprtinglichen Liste zu, und
der Activity Worker fragt diese Liste ab.

AWS Flow Framework Grundkonzepte: Skalierbare Anwendungen

Amazon SWF verfugt Uber zwei Hauptfunktionen, die es einfach machen, eine Workflow-Anwendung
so zu skalieren, dass sie die aktuelle Last bewaltigen kann:

+ Ein vollstéandiger Ausfuhrungsverlauf des Workflows erméglicht die Implementierung einer
zustandslosen Anwendung.

» Eine lose an die Aufgabenausfiihrung gekoppelte Aufgabenplanung vereinfacht das Skalieren der
Anwendung den aktuellen Anforderungen entsprechend.

Amazon SWF plant Aufgaben, indem es sie in dynamisch zugewiesenen Aufgabenlisten veroffentlicht
und nicht direkt mit den Workflow- und Aktivitatsmitarbeitern kommuniziert. Worker fragen ihre
jeweiligen Listen fir Aufgaben stattdessen Uber HTTP-Anforderungen ab. Dieser Ansatz verbindet die
Aufgabenplanung lose mit der Aufgabenausfiihrung und ermdéglicht es den Mitarbeitern, auf jedem
geeigneten System zu arbeiten, einschliel3lich EC2 Amazon-Instances, Unternehmensrechenzentren,
Client-Computern usw. Da die HTTP-Anfragen von den Workern stammen, sind keine extern
sichtbaren Ports erforderlich, sodass die Mitarbeiter sogar hinter einer Firewall laufen kénnen.

Der Langabfragemechanismus, mit dem Worker Aufgaben abfragen, verhindert eine Uberlastung
der Worker. Selbst wenn Spitzen bei den geplanten Aufgaben auftreten, rufen Worker Aufgaben
nach ihrem eigenen Rhythmus ab. Da Worker jedoch zustandslos sind, kdnnen Sie eine Anwendung
bei zunehmender Last dynamisch skalieren, indem Sie zusatzliche Worker-Instances starten.

Selbst wenn diese auf verschiedenen Systemen ausgefiuhrt werden, ruft jede Instance dieselbe
Aufgabenliste ab und der erste verfligbare Worker flhrt die Aufgabe aus. Dabei spielt es keine Rolle,

Skalierbare Webanwendungen API-Version 2021-04-28 50

AWS Flow Framework fur Java Entwicklerhandbuch

wo sich der Worker befindet oder wann er gestartet wird. Bei abnehmender Last kdnnen Sie die
Anzahl der Worker wieder entsprechend reduzieren.

AWS Flow Framework Grundbegriffe: Data Exchange zwischen
Aktivitaten und Workflows

Wenn Sie eine asynchrone Aktivitats-Client-Methode aufrufen, gibt sie sofort ein Promise-Objekt
(auch als Future-Objekt bekannt) zurtick, das den Riickgabewert der Aktivitatsmethode darstellt.
Das Promise-Objekt weist zunachst einen nicht bereiten Zustand auf und der Riickgabewert ist
undefiniert. Nachdem die Aktivitatsmethode ihre Aufgabe abgeschlossen hat und zurtickgibt,
marshallt das Framework den Riickgabewert tiber das Netzwerk zum Workflow-Worker, der dem
Promise-Objekt einen Wert zuweist und das Objekt in einen betriebsbereiten Zustand versetzt.

Selbst wenn eine Aktivitatsmethode keinen Riickgabewert hat, kénnen Sie das Promise-Objekt
dennoch flr das Verwalten der Workflow-Ausfiihrung verwenden. Wenn Sie ein zurlickgegebenes
Promise-Objekt an eine Aktivitats-Client-Methode oder eine asynchrone Workflow-Methode
Ubergeben, schiebt es die Ausfiihrung auf, bis das Objekt bereit ist.

Wenn Sie ein oder mehrere Promise-Objekte an eine Aktivitats-Client-Methode Ubergeben, fligt das
Framework die Aufgabe in die Warteschlange ein, schiebt sie aber auf, bis alle Objekte bereit sind.
Es extrahiert dann die Daten aus jedem Promise-Objekt und marshallt sie Gber das Internet zu dem
Aktivitats-Worker, der sie dann an die Aktivitatsmethode als Standardtyp Ubergibt.

(® Note

Wenn Sie grol3e Mengen an Daten zwischen Workflow- und Aktivitats-Workern Gbermitteln
mussen, besteht der bevorzugte Ansatz darin, die Daten an einem passenden Speicherort
zu speichern und nur die Abrufinformationen zu Ubergeben. Sie kénnen die Daten
beispielsweise in einem Amazon S3 S3-Bucket speichern und die zugehorige URL
Ubergeben.

Die Promise <T> Type

Der Promise<T>-Typ ist in mancherlei Hinsicht mit dem Java-Typ Future<T> vergleichbar. Beide
Typen stellen Werte dar, die von asynchronen Methoden zuriickgegeben werden und urspringlich
undefiniert sind. Sie kdnnen auf den Wert eines Objekts zugreifen, indem Sie seine get-Methode
aufrufen. Darlber hinaus verhalten sich die beiden Typen auf eher unterschiedliche Art und Weise.

Datenaustausch zwischen Aktivitdten und Workflows API-Version 2021-04-28 51

AWS Flow Framework fur Java Entwicklerhandbuch

* Future<T> ist ein Synchronisierungskonstrukt, das einer Anwendung ermdglicht, auf die
Beendigung einer asynchronen Methode zu warten. Wenn Sie get aufrufen und das Objekt nicht
bereit ist, blockiert es, bis das Objekt bereit ist.

* Mit Promise<T> wird die Synchronisierung vom Framework verarbeitet. Wenn Sie get aufrufen
und das Obijekt nicht bereit ist, I16st get eine Ausnahme aus.

Der Hauptzweck von Promise<T> besteht darin, den Datenfluss von einer Aktivitat zu einer anderen
zu verwalten. Es stellt sicher, dass eine Aktivitat erst dann ausgefiihrt wird, wenn die Eingabedaten
gultig sind. In vielen Fallen missen Workflow-Worker nicht direkt auf Promise<T>-Objekte zugreifen.
Sie Ubergeben die Objekte einfach von einer Aktivitat an eine andere und lassen das Framework und
die Aktivitats-Worker die Details handhaben. Um auf den Wert eines Promise<T>-Objekts in einem
Workflow-Worker zuzugreifen, missen Sie sicher sein, dass das Objekt bereit ist, bevor Sie seine
get-Methode aufrufen.

* Der bevorzugte Ansatz besteht darin, das Promise<T>-Objekt an eine asynchrone Workflow-
Methode zu Ubergeben und die Werte dort zu bearbeiten. Eine asynchrone Methode schiebt die
Ausflihrung auf, bis all seine Promise<T>-Eingabeobjekte bereit sind, was garantiert, dass Sie
sicher auf ihre Werte zugreifen kénnen.

* Promise<T> macht eine isReady-Methode verfligbar, die true zurlickgibt, wenn das Objekt
bereit ist. Die Verwendung von isReady zum Abfragen eines Promise<T>-Objekts wird nicht
empfohlen, isReady ist jedoch unter bestimmten Umstanden hilfreich.

Der AWS Flow Framework fir Java enthalt auch einen Settable<T> Typ, der von diesem abgeleitet
ist Promise<T> und ein dhnliches Verhalten aufweist. Der Unterschied besteht darin, dass das
Framework normalerweise den Wert eines Promise<T> Objekts festlegt und der Workflow-Worker
fur die Festlegung des Werts von a verantwortlich istSettable<T>.

Es gibt einige Situationen, in denen ein Workflow-Worker ein Promise<T>-Objekt erstellen und
seinen Wert festlegen muss. So muss etwa eine asynchrone Methode, die ein Promise<T>-Objekt
zurlckgibt, einen Ruckgabewert erstellen.

* Um ein Objekt zu erstellen, das einen typisierten Wert darstellt, rufen Sie die statische
Promise.asPromise-Methode auf, die ein Promise<T>-Objekt des entsprechenden Typs
erstellt, seinen Wert festlegt und es in den betriebsbereiten Zustand versetzt.

« Zum Erstellen eines Promise<Void>-Objekts rufen Sie die statische Promise.Void-Methode
auf.

Die Promise <T> Type API-Version 2021-04-28 52

AWS Flow Framework fur Java Entwicklerhandbuch

® Note

Promise<T> kann einen beliebigen gultigen Typ darstellen. Wenn die Daten jedoch Gber das
Internet gemarshallt werden missen, muss der Typ mit dem Datenkonverter kompatibel sein.
Details finden Sie im nachsten Abschnitt.

Datenkonverter und Marshaling

Der AWS Flow Framework leitet Daten mithilfe eines Datenkonverters Uber das Internet weiter.
StandardmaRig verwendet das Framework einen Datenkonverter, der auf dem Jackson JSON-
Prozessor basiert. Dieser Konverter weist jedoch einige Einschrankungen auf. Er kann beispielsweise
Zuordnungen, die keine Zeichenfolgen als Schllissel verwenden, nicht marshallen. Wenn der
Standardkonverter fur Ihre Anwendung nicht ausreichend ist, kbnnen Sie einen benutzerdefinierten
Datenkonverter implementieren. Details hierzu finden Sie unter DataConverters.

AWS Flow Framework Grundbegriffe: Data Exchange zwischen
Anwendungen und Workflow-Ausfuhrungen

Eine Workflow-Eintrittspunktmethode kann Gber einen oder mehrere Parameter verflgen, die es
dem Workflow-Starter ermdglichen, erste Daten an den Workflow zu Ubergeben. Sie kann aul3erdem
dazu dienen, dem Workflow wahrend der Ausflihrung zusatzliche Daten zur Verfligung zu stellen.
Wenn beispielsweise ein Kunde seine Versandadresse andert, kdnnen Sie den Workflow zur
Bestellverarbeitung benachrichtigen, der dann die entsprechenden Anderungen vornimmt.

Amazon SWF ermdglicht es Workflows, eine Signalmethode zu implementieren, die es Anwendungen
wie dem Workflow-Starter ermoglicht, jederzeit Daten an den Workflow zu Gbergeben. Eine Signal-
Methode kann jeden beliebigen Namen und beliebige Parameter haben. Sie legen sie als Signal-
Methode fest, indem Sie sie in lhre Workflow-Schnittstellendefinition einbeziehen und eine @Signal-
Annotation auf die Methodendeklaration anwenden.

Das folgende Beispiel zeigt eine Workflow-Schnittstelle zur Bestellverarbeitung, die die Signal-
Methode changeOrder deklariert, durch die der Workflow-Starter die Originalbestellung andern
kann, nachdem der Workflow gestartet wurde.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 300)

Datenkonverter und Marshaling API-Version 2021-04-28 53

https://github.com/codehaus/jackson
https://github.com/codehaus/jackson

AWS Flow Framework fur Java Entwicklerhandbuch

public interface WaitForSignalWorkflow {

@Execute(version = "1.0")
public void placeOrder(int amount);
@Signal

public void changeOrder(int amount);

Die Annotationsverarbeitung des Frameworks erzeugt eine Workflow-Client-Methode mit demselben
Namen wie die Signal-Methode und der Workflow-Starter ruft die Client-Methode auf, um Daten an
den Workflow zu tGbergeben. Ein Beispiel finden Sie unter AWS Flow Framework Rezepte

Amazon SWF-Timeout-Typen

Um sicherzustellen, dass Workflow-Ausflihrungen korrekt ausgeflihrt werden, kénnen Sie mit
Amazon SWF verschiedene Arten von Timeouts festlegen. Einige Zeitliberschreitungen legen fest,
wie lange der Workflow insgesamt ausgefiihrt werden kann. Andere Zeitliberschreitungen legen
fest, wie lange es dauern darf, bis Aktivitatsaufgaben einem Worker zugewiesen werden, und wie
lange die Ausfliihrung einer Aufgabe ab der Planung dauern darf. Alle Timeouts in der Amazon SWF
SWEF-API sind in Sekunden angegeben. Amazon SWF unterstitzt die Zeichenfolge auch NONE als
Timeout-Wert, was bedeutet, dass es kein Timeout gibt.

Fir Zeitiberschreitungen im Zusammenhang mit Entscheidungs- und Aktivitatsaufgaben flgt
Amazon SWF dem Workflow-Ausfuhrungsverlauf ein Ereignis hinzu. Die Attribute des Ereignisses
geben Auskunft dartber, welche Art von Timeout eingetreten ist und welche Entscheidungs- oder
Aktivitatsaufgabe betroffen war. Amazon SWF plant auch eine Entscheidungsaufgabe. Wenn der
Entscheider die neue Entscheidungsaufgabe erhalt, sieht er das Timeout-Ereignis in der Historie und
ergreift die entsprechende Aktion, indem er die RespondDecisionTaskCompletedAktion aufruft.

Eine Aufgabe gilt vom Zeitpunkt der Planung bis zum Schlieen der Aufgabe als offen. Fur Aufgaben,
die gerade von einem Worker verarbeitet werden, wird daher der Status "offen" gesendet. Eine
Aufgabe ist geschlossen, wenn ein Worker sie als abgeschlossen, abgebrochen oder fehlgeschlagen
meldet. Eine Aufgabe kann auch von Amazon SWF aufgrund eines Timeouts geschlossen werden.

Zeituberschreitungen in Workflow- und Entscheidungsaufgaben

Die folgende Abbildung zeigt, wie Zeituberschreitungen fur Workflow- und Entscheidungsaufgaben
sich auf die Lebensdauer eines Workflows auswirken:

Zeitlberschreitungstypen API-Version 2021-04-28 54

https://aws.amazon.com/code/2535278400103493
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework fur Java Entwicklerhandbuch

Execution Start to Close timeout

Task Start to Close Task Start to Close
timeout timeout
Workflow Execution | Decision Task Decision Task Decision Task Decision Task
Started started completed started completed
Decision Task Decision Task Workflow Execution Closed
scheduled scheduled (completed, failed, terminated,

canceled or timed out)

Fur Workflow- und Entscheidungsaufgaben gibt es zwei relevante Zeitiberschreitungstypen:

» Workflow-Start to Close (timeoutType: START_TO_CLOSE) — Dieses Timeout gibt die
maximale Zeit an, die bis zum Abschluss einer Workflow-Ausfuhrung in Anspruch nehmen
kann. Bei der Registrierung eines Workflows wird ein Standardwert festgelegt, der jedoch
beim Starten des Workflows durch andere Werte Gberschrieben werden kann. Wenn dieses
Timeout Uberschritten wird, schlie®t Amazon SWF die Workflow-Ausfuhrung und fagt dem
Workflow-Ausfihrungsverlauf ein Ereignis des Typs WorkflowExecutionTimedOuthinzu. Neben
dem timeoutType legen die Ereignisattribute auch die childPolicy fest, die sich auf die
Workflow-Ausfiihrung auswirkt. Die untergeordnete Richtlinie legt fest, wie mit untergeordneten
Workflow-Ausflihrungen verfahren wird, wenn bei der bergeordneten Workflow-Ausflihrung
eine Zeitlberschreitung auftritt oder sie anderweitig beendet wird. Wenn in der childPolicy
beispielsweise TERMINATE festgelegt ist, werden die untergeordneten Workflow-Ausfihrungen
beendet. Nachdem bei einer Workflow-Ausfuhrung eine Zeitiberschreitung aufgetreten ist, kbnnen
Sie als einzige Aktionen daftir noch Sichtbarkeitsaufrufe ausfuhren.

+ Entscheidungsaufgabe von Anfang bis Ende (timeoutType: START_TO_CLOSE) — Dieses
Timeout gibt die maximale Zeit an, die der entsprechende Entscheider bendtigen kann, um
eine Entscheidungsaufgabe abzuschlielen. Sie wird wahrend der Registrierung des Workflow-
Typs festgelegt. Wenn dieses Timeout Uberschritten wird, wird die Aufgabe im Workflow-
Ausfuhrungsverlauf als Timeout markiert, und Amazon SWF fugt dem Workflow-Verlauf ein
Ereignis des Typs DecisionTaskTimedOuthinzu. Zu den Ereignisattributen gehdren die IDs
Ereignisse, die dem Zeitpunkt entsprechen, zu dem diese Entscheidungsaufgabe geplant
(scheduledEventId) und wann sie gestartet wurde (startedEventId). Amazon SWF fiigt nicht
nur das Ereignis hinzu, sondern plant auch eine neue Entscheidungsaufgabe, um den Entscheider

dariber zu informieren, dass bei dieser Entscheidungsaufgabe das Timeout Uberschritten wurde.

Zeitlberschreitungen in Workflow- und Entscheidungsaufgaben API-Version 2021-04-28 55

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html

AWS Flow Framework fur Java Entwicklerhandbuch

Nach einer Zeitliberschreitung schlagen Versuche, die abgelaufene Entscheidungsaufgabe mit
RespondDecisionTaskCompleted abzuschliel3en, fehl.

Zeituberschreitungen in Aktivitatsaufgaben

Die folgende Abbildung zeigt, wie Zeituberschreitungen sich auf die Lebensdauer einer
Aktivitatsaufgabe auswirken:

Schedule to Close timeout
* Schedule to Start timeout
: Start to Close timeout

: Heartbeat timeout

Task Task started Heartbeat Heartbeat Heartbeat
scheduled (dispatched recorded recorded recorded
ScheduleActivityTask to worker) Task closed
decision received (completed, failed,

or timed out)
Fur Aktivitdtsaufgaben gibt es vier relevante Zeitiberschreitungstypen:

+ Aktivitdtsaufgabe von Anfang bis Ende (timeoutType: START_TO_CLOSE) — Dieses Timeout
gibt die maximale Zeit an, die ein Mitarbeiter flr die Bearbeitung einer Aufgabe bendtigen
kann, nachdem der Mitarbeiter die Aufgabe erhalten hat. Versuche, eine Aktivitatsaufgabe mit
RespondActivityTaskCanceled,, und zu schlieRen RespondActivityTaskCompleted, schlagen
RespondActivityTaskFailedfehl.

* Activity Task Heartbeat (timeoutType: HEARTBEAT) — Dieses Timeout gibt die maximale Zeit
an, die eine Aufgabe ausgefuhrt werden kann, bevor ihr Fortschritt durch die Aktion angezeigt wird.
RecordActivityTaskHeartbeat

+ Zeitplan fur den Start der Aktivitdtsaufgabe (timeoutType: SCHEDULE_TO_START) — Dieses
Timeout gibt an, wie lange Amazon SWF wartet, bis das Zeitlimit fur die Aktivitatsaufgabe
Uberschritten wird, wenn keine Mitarbeiter fir die Ausfihrung der Aufgabe verfligbar sind. Nach der
Zeituberschreitung wird die abgelaufene Aufgabe keinem anderen Worker zugewiesen.

+ Zeitplan fur das SchlieBen der Aktivitatsaufgabe (timeoutType: SCHEDULE_TO_CLOSE) —
Dieser Timeout gibt an, wie lange die Aufgabe von der geplanten bis zur Fertigstellung dauern

Zeitliberschreitungen in Aktivitatsaufgaben API-Version 2021-04-28 56

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework fur Java Entwicklerhandbuch

kann. Es hat sich bewahrt, dass dieser Wert nicht groRer als die Summe aus Task-Timeout und
schedule-to-start Task-Timeout sein sollte. start-to-close

® Note

Jeder Zeituberschreitungstyp verflgt Gbe einen Standardwert, in der Regel NONE (unendlich).
Die Hochstdauer fur die Ausfihrung einer Aktivitat ist jedoch auf ein Jahr beschrankt.

Die Standardwerte flr diese Zeitliberschreitungen werden wahrend der Registrierung des
Aktivitatstyps festgelegt, kdnnen jedoch beim Planen der Aktivitdtsaufgabe Uberschrieben werden.
Wenn einer dieser Timeouts eintritt, figt Amazon SWF dem Workflow-Verlauf ein Ereignis des Typs
ActivityTaskTimedOuthinzu. Das Wertattribut timeoutType dieses Ereignisses gibt an, welche
dieser Zeitlberschreitungen aufgetreten ist. Der Wert von timeoutType fir jede Zeitliberschreitung
ist in Klammern angegeben. Zu den Ereignisattributen gehoren auch die IDs Ereignisse, die dem
Zeitpunkt entsprechen, zu dem die Aktivitdtsaufgabe geplant (scheduledEventId) und wann sie
gestartet wurde (startedEventId). Zusatzlich zum Hinzufligen des Ereignisses plant Amazon

SWF auch eine neue Entscheidungsaufgabe, um den Entscheider dariber zu informieren, dass das
Timeout eingetreten ist.

Zeitliberschreitungen in Aktivitatsaufgaben API-Version 2021-04-28 57

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

AWS Flow Framework fur Java Entwicklerhandbuch

Eine Aufgabe in AWS Flow Framework fur Java verstehen

Themen

+ Aufgabe
« Reihenfolge der Ausfuhrung

» Workflow-Ausfuhrung

* Nichtdeterminismus

Aufgabe

Das zugrunde liegende Primitiv, das AWS Flow Framework for Java verwendet, um die Ausflihrung
von asynchronem Code zu verwalten, ist die Task Klasse. Ein Objekt vom Typ Task stellt Arbeit dar,
die asynchron durchgeflihrt werden muss. Wenn Sie eine asynchrone Methode aufrufen, erzeugt das
Framework eine Task, um den Code in dieser Methode auszufiihren, und setzt ihn in eine Liste fir
eine Ausfiihrung zu einem spateren Zeitpunkt. Ebenso wird beim Aufruf einer Activity eine Task
daflr erstellt. Der Methodenaufruf wird danach zurlickgegeben, in der Regel mit einem Promise<T>
als zuklnftiges Ergebnis des Aufrufs.

Die Task-Klasse ist 6ffentlich und kann direkt verwendet werden. Wir kénnen beispielsweise das
Beispiel ,Hello World“ so neu schreiben, dass es eine Task anstatt einer asynchronen Methode
verwendet.

@Override
public void startHelloWorld(){
final Promise<String> greeting = client.getName();
new Task(greeting) {
@Override
protected void doExecute() throws Throwable {
client.printGreeting("Hello " + greeting.get() +"!");
}
1

Das Framework ruft die doExecute()-Methode auf, wenn alle Promises, die an den Konstruktor
der Task Uibergeben wurden, einsatzbereit sind. Weitere Informationen zur Task Klasse finden Sie in
der AWS SDK flr Java Dokumentation.

Aufgabe API-Version 2021-04-28 58

AWS Flow Framework fur Java Entwicklerhandbuch

Das Framework umfasst auch eine Klasse mit der Bezeichnung Functorzr, die eine Task darstellt,
die auch ein Promise<T> ist. Das Functor-Objekt ist einsatzbereit, wenn die Task abgeschlossen
wird. Im folgenden Beispiel wird ein Functor erstellt, um die BegriRungsnachricht abzurufen:

Promise<String> greeting = new Functor<String>() {
@Override
protected Promise<String> doExecute() throws Throwable {
return client.getGreeting();

}
Y

client.printGreeting(greeting);

Reihenfolge der Ausfihrung

Aufgaben werden nur fur die Ausfihrung berechtigt, wenn alle Promise<T>-typisierten Parameter,
die an die entsprechende asynchrone Methode oder Aktivitat Ubergeben wurden, einsatzbereit sind.
Eine zur Ausflihrung bereite Task wird logisch eine eine einsatzbereite Warteschlange verschoben.
Mit anderen Worten wird sie flr die Ausfuihrung geplant. Die Worker-Klasse flihrt die Aufgabe aus,
indem sie den Code aufruft, den Sie in den Hauptteil der asynchronen Methode geschrieben haben,
oder indem sie im Fall einer Aktivitaitsmethode eine Aktivitatsaufgabe in Amazon Simple Workflow
Service (AWS) plant.

Wenn Aufgaben ausgeflhrt werden und Ergebnisse erzielen, sorgen sie dafir, dass andere
Aufgaben einsatzbereit werden, und die Ausfliihrung des Programms schreitet weiter voran. Die Art
und Weise, wie das Framework Aufgaben ausfuhrt, ist wichtig, um die Reihenfolge zu verstehen, in
der lhr asynchroner Code ausgefuihrt wird. Code, der sequenziell in Inrem Programm erscheint, wird
mdglicherweise nicht tatsachlich in dieser Reihenfolge ausgefihrt.

Promise<String> name = getUserName();
printHelloName(name);
printHelloWorld();
System.out.println("Hello, Amazon!");

@Asynchronous
private Promise<String> getUserName(){
return Promise.asPromise("Bob");
}
@Asynchronous
private void printHelloName(Promise<String> name){

Reihenfolge der Ausflihrung API-Version 2021-04-28 59

AWS Flow Framework fur Java Entwicklerhandbuch

System.out.println("Hello, " + name.get() + "!");
}

@Asynchronous
private void printHelloWorld(){
System.out.println("Hello, World!");

}

Der Code in der Auflistung oben wird wie folgt gedruckt:

Hello, Amazon!
Hello, World!
Hello, Bob

Dies ist moglicherweise nicht das, was Sie erwarten. Dies kann aber einfach erklart werden, indem
Sie durchdenken, wie die Aufgaben fir die asynchronen Methoden ausgefiihrt wurden:

1. Der Aufruf von getUsexrName erzeugt eine Task. Nennen wir sie Task1l. Weil getUserName es
keine Parameter akzeptiert, Task1 wird es sofort in die Bereitschaftswarteschlange gestellt.

2. AnschlieRend erzeugt der Aufruf von printHelloName eine Task, die auf das Ergebnis von
getUserName warten muss. Nennen wir sie Task2. Weil der erforderliche Wert noch nicht bereit
ist, Task2 wird er auf die Warteliste gesetzt.

3. Dann wird eine Aufgabe fir printHelloWorld erstellt und zur einsatzbereiten Warteschlange
hinzugefligt. Nennen wir sie Task3.

4. printlnin der Erklarung wird dann ,Hello, Amazon!“ gedruckt zur Konsole.

5. An diesem Punkt befinden sich Task1l und Task3 in der einsatzbereiten Warteschlange und
Task2 befindet sich in der Warteliste.

6. Der Worker fuhrt Task1 aus. Durch das Ergebnis wird Task2 vorbereitet. Task2 wird der
Bereitschaftswarteschlange hinter Task3 hinzugeflgt.

7. Task3 und Task2 werden dann in dieser Reihenfolge ausgeflhrt.

Die Ausflhrung der Aktivitaten folgt dem gleichen Muster. Wenn Sie eine Methode auf dem
Aktivitatsclient aufrufen, wird eine erstellt, Task die bei der Ausfiihrung eine Aktivitat in Amazon SWF
plant.

Das Framework nutzt Funktionen, wie Code-Generierung und dynamische Proxys, um die Logik
fur die Konvertierung von Methodenaufrufen in Aktivitatsaufrufe und asynchrone Aufgaben in lhrem
Programm einzuftgen.

Reihenfolge der Ausflihrung API-Version 2021-04-28 60

AWS Flow Framework fur Java Entwicklerhandbuch

Workflow-Ausfuhrung

Die Ausfuhrung der Workflow-Implementierung wird auch von der Worker-Klasse verwaltet. Wenn
Sie eine Methode auf dem Workflow-Client aufrufen, ruft sie Amazon SWF auf, um eine Workflow-
Instanz zu erstellen. Die Aufgaben in Amazon SWF sollten nicht mit den Aufgaben im Framework
verwechselt werden. Eine Aufgabe in Amazon SWF ist entweder eine Aktivitatsaufgabe oder eine
Entscheidungsaufgabe. Die Ausfihrung einer Aktivitdtsaufgabe ist einfach. Die Activity Worker-
Klasse empfangt Aktivitatsaufgaben von Amazon SWF, ruft die entsprechende Aktivitatsmethode in
Ihrer Implementierung auf und gibt das Ergebnis an Amazon SWF zurtick.

Die Ausfuihrung der Entscheidungsaufgaben ist komplexer. Der Workflow-Worker erhalt
Entscheidungsaufgaben von Amazon SWF. Eine Entscheidungsaufgabe ist effektiv eine Anfrage,

die die Workflow-Logik fragt, was als Nachstes zu tun ist. Die erste Entscheidungsaufgabe wird

fur eine Workflow-Instance generiert, wenn sie tiber den Workflow-Client gestartet wird. Beim
Empfang dieser Entscheidungsaufgabe beginnt das Framework mit der Ausflihrung des Codes in

der Workflow-Methode, die mit @Execute versehen ist. Diese Methode flhrt die Koordinationslogik
aus, die Aktivitaten plant. Wenn sich der Status der Workflow-Instanz andert, z. B. wenn eine Aktivitat
abgeschlossen ist, werden weitere Entscheidungsaufgaben geplant. An diesem Punkt kann die
Workflow-Logik entscheiden, eine Aktion basierend auf dem Ergebnis der Aktivitat auszufihren, zum
Beispiel kann sie entscheiden, eine andere Aktivitat zu planen.

Das Framework blendet alle diese Details vom Entwickler aus, indem Entscheidungsaufgaben
nahtlos in die Workflow-Logik Gbertragen werden. Aus der Sicht eines Entwicklers sieht der Code
einfach wie ein regulares Programm aus. Unter dem Deckmantel ordnet das Framework es
Aufrufen von Amazon SWF und Entscheidungsaufgaben zu und verwendet dabei den von Amazon
SWF verwalteten Verlauf. Wenn eine Entscheidungsaufgabe eintrifft, gibt das Framework die
Programmausflihrung erneut wieder, wobei die Ergebnisse der bisher abgeschlossenen Aktivitaten
eingefiugt werden. Asynchrone Methoden und Aktivitaten, die auf diese Ergebnisse gewartet haben,
werden entsperrt und die Programmausfiihrung geht weiter.

Die Ausfihrung des Beispiel-Bildverarbeitungs-Workflows und des entsprechenden Verlaufs werden
in der folgenden Tabelle gezeigt.

Ausfuhrung des Thumbnail-Workflows
Workflow-Programmausfiihrung Von Amazon SWF verwalteter Verlauf

Anfangliche Ausfuhrung

Workflow-Ausflihrung API-Version 2021-04-28 61

AWS Flow Framework fir Java Entwicklerhandbuch

Workflow-Programmausfiihrung Von Amazon SWF verwalteter Verlauf
1. Bereitstellungsschleife 1. Workflow-Instance gestartet, id="1"
2. getlmageUrls 2. downloadlmage geplant

3. downloadimage

4. createThumbnail (Aufgabe in Warteschl

()]

o oA w N o

S R

ange)

. uploadimage (Aufgabe in Warteschlange)

. <nachster Durchlauf der Schleife>

Erneut abspielen

. Bereitstellungsschleife 1. Workflow-Instance gestartet, id="1"

. getimageUrls 2. downloadlmage geplant

. downloadlmage image path="foo" 3. downloadimage abgeschlossen, return="foo"
createThumbnail 4. createThumbnail geplant

uploadimage (Aufgabe in Warteschlange)

<nachster Durchlauf der Schleife>

Erneut abspielen

Bereitstellungsschleife 1. Workflow-Instance gestartet, id="1"
getlmageUrls 2. downloadlmage geplant

downloadimage image path="foo" 3. downloadimage abgeschlossen, return="foo"
createThumbnail thumbnail path="bar" 4. createThumbnail geplant

uploadimage 5. createThumbnail abgeschlossen, return="b
<nachster Durchlauf der Schleife> ar"

6. uploadlmage geplant

Erneut abspielen

Workflow-Ausflihrung API-Version 2021-04-28 62

AWS Flow Framework fir Java Entwicklerhandbuch

Workflow-Programmausfiihrung Von Amazon SWF verwalteter Verlauf
1. Bereitstellungsschleife 1. Workflow-Instance gestartet, id="1"
2. getlmageUrls 2. downloadlmage geplant
3. downloadimage image path="foo" 3. downloadimage abgeschlossen, return="foo"
4. createThumbnail thumbnail path="bar" 4. createThumbnail geplant
5. uploadimage 5. createThumbnail abgeschlossen, return="b
6. <nachster Durchlauf der Schleife> ar"
6. uploadimage geplant

7. uploadimage abgeschlossen

Wenn ein Aufruf von processImage erfolgt, erstellt das Framework eine neue Workflow-Instanz

in Amazon SWF. Dies ist ein dauerhafter Datensatz der gestarteten Workflow-Instance. Das
Programm wird bis zum Aufruf der downloadImage Aktivitdt ausgefuhrt, wodurch Amazon

SWEF aufgefordert wird, eine Aktivitat zu planen. Der Workflow wird weiter ausgefuhrt und erstellt
Aufgaben fur nachfolgende Aktivitaten. Sie kdnnen jedoch erst ausgefuhrt werden, wenn die
downloadImage Aktivitat abgeschlossen ist. Somit endet diese Episode der Wiederholung.
Amazon SWF sendet die Aufgabe fiir die downloadImage Aktivitat zur Ausfiihrung. Sobald sie
abgeschlossen ist, wird zusammen mit dem Ergebnis ein Eintrag in der Historie erstellt. Der Workflow
ist jetzt bereit, fortzufahren, und eine Entscheidungsaufgabe wird von Amazon SWF generiert. Das
Framework empfangt die Entscheidungsaufgabe und wiederholt den Workflow, wobei das Ergebnis
des heruntergeladenen Abbilds wie im Verlauf aufgezeichnet eingefugt wird. Dadurch wird die
Blockierung der Aufgabe fir createThumbnail aufgehoben, und die Ausfiihrung des Programms
wird weiter fortgesetzt, indem die createThumbnail Aktivitatsaufgabe in Amazon SWF geplant
wird. Derselbe Prozess wird fir uploadImage wiederholt. Die Ausfiihrung des Programms geht
auf diese Weise weiter, bis der Workflow alle Abbilder verarbeitet hat und es keine ausstehenden
Aufgaben gibt. Da kein Ausflihrungsstatus lokal gespeichert ist, kann jede Entscheidungsaufgabe
mdglicherweise auf einem anderen Computer ausgefuhrt werden. Dadurch kénnen Sie ganz einfach
Programme schreiben, die fehlertolerant und problemlos skalierbar sind.

Workflow-Ausflihrung API-Version 2021-04-28 63

AWS Flow Framework fur Java Entwicklerhandbuch

Nichtdeterminismus

Da das Framework auf der Wiedergabe basiert, ist es wichtig, dass der Orchestrierungscode (der
gesamte Workflow-Code mit Ausnahme von Aktivitatsimplementierungen) deterministisch ist.
Beispielsweise sollte der Steuerungsfluss in Ihrem Programm nicht von einer zuféalligen Zahl oder
der aktuellen Zeit abhangen. Da sich diese Dinge zwischen Aufrufen andern, folgt die Wiedergabe
mdglicherweise nicht demselben Pfad durch die Orchestrierungslogik. Dies fuhrt zu unerwarteten
Ergebnissen oder Fehlern. Das Framework bietet einen WorkflowClock, den Sie verwenden
kdnnen, um die aktuelle Zeit auf deterministische Weise abzurufen. Weitere Informationen finden Sie
im Abschnitt zu Ausfuhrungskontext.

® Note

Eine falsche Spring-Verdrahtung der Workflow-Implementierungsobjekte kann auch

zu Nichtdeterminismus fiihren. Workflow-Implementierungs-Beans sowie Beans, von
denen sie abhangig sind, missen sich im Workflow-Umfang (WorkflowScope) befinden.
Beispielsweise fuhrt das Vertraten einer Workflow-Implementierungs-Bean mit einer Bean,
die den Zustand behalt und sich im globalen Kontext befindet, zu unerwartetem Verhalten.
Weitere Details finden Sie im Abschnitt Spring-Integration.

Nichtdeterminismus API-Version 2021-04-28 64

AWS Flow Framework fur Java Entwicklerhandbuch

AWS Flow Framework flr Java-Programmierhandbuch

Dieser Abschnitt enthalt Einzelheiten zur Verwendung der Funktionen von AWS Flow Framework for

Java zur Implementierung von Workflow-Anwendungen.

Themen

Implementierung von Workflow-Anwendungen mit dem AWS Flow Framework

Workflow- und Aktivitats-Vertrage

Registrierung von Workflow- und Aktivitatstypen

Aktivitats- und Workflow-Clients

Workflow-Implementierung

Implementierung von Aktivitaten

AWS Lambda Aufgaben umsetzen

Ausflihren von Programmen, die mit dem AWS Flow Framework fir Java geschrieben wurden

Ausflhrungskontext

Untergeordnete Workflow-Ausfuhrungen

Fortlaufende Workflows

Aufgabenprioritat in Amazon SWF festlegen

DataConverters

Datenubergabe an asynchrone Methoden

Prufbarkeit und Dependency Injection

Fehlerbehandlung

Wiederholen fehlgeschlagener Aktivitaten

Daemon-Aufgaben

AWS Flow Framework flir Java Replay Behavior

Implementierung von Workflow-Anwendungen mit dem AWS Flow
Framework

Die typischen Schritte bei der Entwicklung eines Workflows mit dem AWS Flow Framework sind:

Implementieren von Workflow-Anwendungen API-Version 2021-04-28 65

AWS Flow Framework fur Java Entwicklerhandbuch

1.

Definieren Sie Aktivitats- und Workflow-Vertrage. Analysieren Sie die Anforderungen lhrer
Anwendung und bestimmen Sie die erforderlichen Aktivitaten sowie die Workflow-Topologie. Die
Aktivitaten betreffen die erforderlichen Verarbeitungsaufgaben, wahrend die Workflow-Topologie
die grundlegende Struktur und die Geschaftslogik des Workflows definiert.

Eine Medien verarbeitende Anwendung muss z. B. eine Datei herunterladen, verarbeiten und die
verarbeitete Datei in einen Amazon Simple Storage Service (S3)-Bucket herunterladen. Dieser
Prozess lasst sich in vier Aktivitadtsaufgaben gliedern:

1. Die Datei von einem Server herunterladen
2. Die Datei verarbeiten (z. B. durch Transcodieren in ein anderes Medienformat)
3. Die Datei in den S3-Bucket hochladen

4. Eine Bereinigung durch Léschen der lokalen Dateien durchflihren

Dieser Workflow verfligt Gber eine Eintrittspunktmethode und implementiert eine einfache
lineare Topologie, die die Aktivitaten nacheinander ausfihrt, ahnlich wie HelloWorldWorkflow

Bewerbung.

Implementieren Sie Aktivitats- und Workflow-Schnittstellen. Die Workflow- und Aktivitatsvertrage
werden durch Java-Schnittstellen definiert, durch die inhre Aufrufkonventionen von SWF
prognostizierbar werden und Sie Flexibilitat beim Implementieren lhrer Workflow-Logik und
Aktivitatsaufgaben erhalten. Die verschiedenen Teile lhres Programms kdnnen als Consumer
der Daten des jeweils anderen agieren, mussen jedoch die Implementierungsdetails der anderen

Teile nicht alle kennen.

Sie kénnen z. B. eine FileProcessingWorkflow-Schnittstelle definieren und verschiedene
Workflow-Implementierungen fur Videocodierung, Komprimierung, Thumbnails usw.
bereitstellen. Jeder dieser Workflows kann Gber verschiedene Kontrollabldufe verfigen und
unterschiedliche Aktivitdtsmethoden aufrufen, ohne dass Ihr Workflow-Starter davon Kenntnis
haben muss. Mit Schnittstellen kdnnen Sie Ihre Workflows ganz einfach testen, indem Sie
Pseudoimplementierungen verwenden, die spater durch funktionierenden Code ersetzt werden
kénnen.

Generieren Sie Aktivitats- und Workflow-Clients. AWS Flow Framework Dadurch missen Sie die
Einzelheiten der Verwaltung der asynchronen Ausflhrung, des Sendens von HTTP-Anfragen,
des Marshallings von Daten usw. nicht mehr implementieren. Stattdessen fuhrt der Workflow-
Starter durch Aufrufen einer Methode auf dem Workflow-Client eine Workflow-Instance aus und

Implementieren von Workflow-Anwendungen API-Version 2021-04-28 66

AWS Flow Framework fur Java Entwicklerhandbuch

die Workflow-Implementierung fuhrt Aktivitaten durch Aufrufen von Methoden auf dem Aktivitats-
Client aus. Das Framework verarbeitet die Details dieser Interaktionen im Hintergrund.

Wenn Sie Eclipse verwenden und |hr Projekt wie in konfiguriert haben, verwendet der AWS
Flow Framework Annotationsprozessor die SchnittstellendefinitionenEinrichtung des AWS

Flow Framework fur Java, um automatisch Workflow- und Aktivitatsclients zu generieren, die
dieselben Methoden wie die entsprechende Schnittstelle bereitstellen.

4. Implementieren Sie Aktivitats- und Workflow-Hostanwendungen. lhre Workflow- und
Aktivitatsimplementierungen mussen in Hostanwendungen eingebettet sein, die Amazon
SWF nach Aufgaben abfragen, alle Daten zusammenfiihren und die entsprechenden
Implementierungsmethoden aufrufen. AWS Flow Framework fir Java beinhaltet
WorkflowWorkerund ActivityWorkerKlassen, die die Implementierung von Hostanwendungen
unkompliziert und einfach machen.

5. Testen Sie lhren Arbeitsablauf. AWS Flow Framework for Java bietet eine JUnit Integration, mit
der Sie lhre Workflows inline und lokal testen kénnen.

6. Stellen Sie die Worker bereit. Sie kdbnnen Ihre Mitarbeiter nach Bedarf einsetzen — Sie kdnnen
sie beispielsweise auf EC2 Amazon-Instances oder auf Computern in Ihrem Rechenzentrum
einsetzen. Nach der Bereitstellung und dem Start beginnen die Worker, Amazon SWF nach
Aufgaben abzufragen und diese nach Bedarf zu bearbeiten.

7. Starten Sie die Ausflhrungen. Eine Anwendung startet eine Workflow-Instance, indem der
Workflow-Client zum Abrufen des Eintrittspunkts des Workflows verwendet wird. Sie kbnnen
Workflows auch mithilfe der Amazon SWF SWF-Konsole starten. Unabhangig davon, wie
Sie eine Workflow-Instance starten, konnen Sie die Amazon SWF SWF-Konsole verwenden,
um die laufende Workflow-Instanz zu Gberwachen und den Workflow-Verlauf auf laufende,
abgeschlossene und fehlgeschlagene Instances zu untersuchen.

Das AWS SDK flur Javabeinhaltet eine Reihe von AWS Flow Framework Java-Beispielen, die Sie
durchsuchen und ausflihren kénnen, indem Sie den Anweisungen in der Datei readme.html im

Stammverzeichnis folgen. Es gibt auch eine Reihe von Rezepten — einfache Anwendungen —, die
zeigen, wie man mit einer Vielzahl von spezifischen Programmierproblemen umgeht. Diese finden Sie
unter AWS Flow Framework Rezepte.

Workflow- und Aktivitats-Vertrage

Java-Schnittstellen werden zum Deklarieren der Signaturen der Workflows und Aktivitaten verwendet.
Die Schnittstelle bildet den Vertrag zwischen der Implementierung des Workflows (oder der

Workflow- und Aktivitats-Vertrage API-Version 2021-04-28 67

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://aws.amazon.com/sdkforjava/
https://aws.amazon.com/code/2535278400103493

AWS Flow Framework fur Java Entwicklerhandbuch

Aktivitat) und dem Client dieses Workflows (oder der Aktivitat). Ein Workflow-Typ MyWorkflow wird
beispielsweise mithilfe einer Schnittstelle definiert, die mit der @Workflow-Anmerkung versehen ist:

@Workflow

@WorkflowRegistrationOptions(
defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

public interface MyWorkflow

{
@Execute(version = "1.0")
void startMyWF(int a, String b);
@Signal
void signall(int a, int b, String c);
@GetState
MyWorkflowState getState();

}

Der Vertrag hat keine implementierungsspezifischen Einstellungen. Diese Nutzung der
implementierungsneutralen Vertrdge ermdglicht es, dass Client von der Implementierung entkoppelt
werden, und bietet dadurch die Flexibilitat, die Implementierungsdetails zu andern, ohne den Client
zu brechen. Umgekehrt kénnen Sie den Client auch dndern, ohne zu nétigen, dass Anderungen

am Workflow oder der Aktivitat verbraucht werden. Beispielsweise kann der Client so geandert
werden, dass er eine Aktivitat asynchron unter Verwendung von Promises (Promise<T>) aufruft,
ohne eine Anderung an der Aktivitatsimplementierung zu erfordern. In &hnlicher Weise kann die
Implementierung der Aktivitat so geandert werden, dass sie asynchron abgeschlossen wird, z. B.
durch eine Person, die eine E-Mail sendet, ohne dass die Clients der Aktivitat gedndert werden
mussen.

Im Beispiel oben enthalt die Workflow-Instance MyWorkflow eine Methode, startMyWF, fir das
Starten einer neuen Ausfuhrung. Diese Methode wird mit der @Execute-Anmerkung versehen

und muss einen Rickgabetyp von void oder Promise<> haben. In einer gegebenen Workflow-
Schnittstelle kann maximal eine Methode mit dieser Anmerkung versehen werden. Diese Methode ist
der Eintrittspunkt der Workflow-Logik und das Framework ruft diese Methode auf, um die Workflow-
Logik auszufiihren, wenn eine Entscheidungsaufgabe empfangen wird.

Die Workflow-Schnittstelle definiert auch die Signale, die an den Workflow gesendet werden
kénnen. Die Signalmethode wird aufgerufen, wenn ein Signal mit einem passenden Namen von der

Workflow- und Aktivitats-Vertrage API-Version 2021-04-28 68

AWS Flow Framework fur Java Entwicklerhandbuch

Workflow-Ausfliihrung empfangen wird. Beispielsweise deklariert die MyWorkflow-Schnittstelle eine
Signalmethode, signall, mit der Anmerkung @Signal versehen.

Die @Signal-Anmerkung ist auf Signalmethoden erforderlich. Der Riickgabetyp einer Signalmethode
muss void sein. Eine Workflow-Schnittstelle kann null oder mehrere Signalmethoden in ihr definiert
haben. Sie kdnnen eine Workflow-Schnittstelle ohne eine @Execute-Methode deklarieren und einige
@Signal-Methoden zum Generieren von Clients deklarieren, die ihre Ausfliihrung nicht starten, aber
Signal an laufende Ausflihrungen senden kdnnen.

Methoden, die mit den Anmerkungen @Execute und @Signal versehen sind, kénnen eine beliebige
Anzahl an Parametern jeden Typ haben, abgesehen von Promise<T> oder seinen Derivaten.
Dadurch kénnen Sie stark typisierte Eingaben beim Start und wahrend der Ausfihrung an eine
Workflow-Ausflhrung tbergeben. Der Rickgabetyp der @Execute-Methode muss void oder
Promise<> sein.

Zudem konnen Sie auch eine Methode in der Workflow-Schnittstelle deklarieren, um den aktuellen
Zustand einer Workflow-Ausfiihrung zu melden, zum Beispiel die getState-Methode im vorherigen
Beispiel. Dieser Zustand ist nicht der gesamte Anwendungszustand des Workflows. Die vorgesehene
Nutzung dieser Funktion ist, die Speicherung von bis zu 32 KB an Daten zuzulassen, um den
aktuellen Status der Ausflihrung anzugeben. In einem Bestellvorgangs-Workflow kénnen Sie auch
eine Zeichenfolge speichern, die angibt, dass die Bestellung eingegangen, verarbeitet oder storniert
wurde. Diese Methode wird jedes Mal, wenn eine Entscheidungsaufgabe abgeschlossen wurde,

vom Framework aufgerufen, um den aktuellen Zustand zu erhalten. Der Status wird in Amazon
Simple Workflow Service (Amazon SWF) gespeichert und kann mit dem generierten externen Client
abgerufen werden. Auf diese Weise kdnnen Sie den aktuellen Zustand einer Workflow-Ausfihrung
prufen. Mit @GetState versehene Methoden dirfen keine Argumente akzeptieren und dirfen nicht
den Rlckgabetyp void haben. Sie kénnen jeden Typ, der ihren Anforderungen entspricht, von dieser
Methode zurlickgeben. Im Beispiel oben wird ein Objekt MyWorkflowState (siehe Definition unten)
von der Methode zurtickgegeben, die verwendet wird, um einen Zeichenfolgenzustand und einen
numerischen Prozentabschluss zu speichern. Diese Methode soll einen schreibgeschutzten Zugriff
auf das Workflow-Implementierungsobjekt durchfihren und wird synchron aufgerufen, wodurch die
Verwendung von asynchronen Operationen, wie das Aufrufen von Methoden mit der Anmerkung
@Asynchronous nicht mehr zuldssig ist. In einer Workflow-Schnittstelle kann maximal eine Methode
mit dieser Anmerkung @GetState versehen werden.

public class MyWorkflowState {
public String status;
public int percentComplete;

Workflow- und Aktivitats-Vertrage API-Version 2021-04-28 69

AWS Flow Framework fur Java Entwicklerhandbuch

}

Gleichermal3en wird eine Reihe von Aktivitdten mit einer Schnittstelle mit der Anmerkung
@Activities definiert. Jede Methode in der Schnittstelle entspricht einer Aktivitat — zum Beispiel:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface MyActivities {
// Overrides values from annotation found on the interface
@ActivityRegistrationOptions(description = "This is a sample activity",
defaultTaskScheduleToStartTimeoutSeconds = 100,
defaultTaskStartToCloseTimeoutSeconds = 60)
int activityl();

void activity2(int a);

Uber die Schnittstelle kénnen Sie eine Reihe von verwandten Aktivitaten gruppieren. Sie kénnen eine
beliebige Anzahl von Aktivitaten innerhalb einer Aktivitdten-Schnittstelle definieren und Sie kdnnen so
viele Aktivitdten-Schnittstellen definieren wie Sie méchten. Ahnlich wie die Methoden @Execute und
@Signal kénnen Aktivitatsmethoden eine beliebige Anzahl an Argumenten jeden Typs akzeptieren,
abgesehen von Promise<T> oder seinen Derivaten. Der Riickgabetyp einer Aktivitat darf nicht
Promise<T> oder seine Derivate sein.

Registrierung von Workflow- und Aktivitatstypen

Amazon SWF erfordert, dass Aktivitats- und Workflowtypen registriert werden, bevor sie verwendet
werden kdénnen. Das Framework registriert die Workflows und Aktivitaten automatisch in den
Implementierungen, die Sie dem Worker hinzufiigen. Das Framework sucht nach Typen, die
Workflows und Aktivitaten implementieren, und registriert sie bei Amazon SWF. Das Framework
verwendet standardmaRig die Schnittstellendefinitionen, um Registrierungsoptionen fir
Workflow- und Aktivitatstypen abzuleiten. Alle Workflow-Schnittstellen missen entweder Uber die
@WorkflowRegistrationOptions-Annotation oder die @SkipRegistration-Annotation
verfugen. Der Workflow-Worker registriert alle Workflow-Typen, mit denen er konfiguriert ist, die
Uber die @WorkflowRegistrationOptions-Annotation verfiigen. Gleichermalien muss jede
Aktivitadtsmethode mit entweder der @ActivityRegistrationOptions-Annotation oder der
@SkipRegistration-Annotation versehen sein oder es muss eine dieser Annotationen in der

Registrierung von Workflow- und Aktivitatstypen API-Version 2021-04-28 70

AWS Flow Framework fur Java Entwicklerhandbuch

@Activities-Schnittstelle vorhanden sein. Der Aktivitats-Worker registriert alle Aktivitats-Typen,
mit denen er konfiguriert ist, fur die eine @QActivityRegistrationOptions-Annotation gilt.

Die Registrierung wird beim Starten einer der Worker automatisch durchgefiihrt. Workflow- und
Aktivitatsarten, die Uber @SkipRegistration-Annotation verfligen, werden nicht registriert.
@ActivityRegistrationOptionsund @SkipRegistration-Annotationen besitzen eine
Ubersteuersemantik und die spezifischste wird auf einen Aktivitatstyp angewendet.

Beachten Sie, dass Amazon SWF es Ihnen nicht erlaubt, den Typ erneut zu registrieren oder zu
andern, nachdem er registriert wurde. Das Framework wird versuchen, alle Typen zu registrieren,
aber wenn der Typ bereits registriert ist, wird er nicht erneut registriert und es wird kein Fehler
gemeldet.

Wenn Sie registrierte Einstellungen d&ndern mdchten, missen Sie eine neue Version des Typs
registrieren. Sie kdnnen registrierte Einstellungen auch beim Starten einer neuen Ausfuhrung oder
beim Aufrufen einer Aktivitat, die die generierten Clients verwendet, liberschreiben.

Die Registrierung erfordert einen Typnamen und andere Registrierungsoptionen. Die
Standardimplementierungen bestimmt diese wie folgt:

Workflow-Typname und Version

Das Framework bestimmt den Namen des Workflow-Typs Gber die Workflow-Schnittstelle. Die

Form des Standard-Workflow-Typnamens lautet {prefix} {name}. {prefix} ist auf den Namen

der @Workflow Schnittstelle gefolgt von einem '." gesetzt und {name} ist auf den Namen der
@Execute Methode gesetzt. Der Standardname des Workflow-Typs im vorhergehenden Beispiel
lautet MyWorkflow.startMyWF. Sie kdnnen den Standardnamen mithilfe des Namenparameters
der @Execute-Methode Uberschreiben. Der Standardname des Workflow-Typs im Beispiel lautet
startMyWF. Der Name darf keine leere Zeichenfolge sein. Beachten Sie, dass beim Uberscheiben
des Namens mit @Execute das Framework diesem nicht automatisch ein Prafix voranstellt. Es steht
Ihnen frei, Ihr eigenes Namensschema zu verwenden.

Die Workflow-Version wird mit dem version-Parameter der @Execute-Annotation angegeben.
Es gibt keinen Standard flr version und es muss explizit angegeben werden. versionist eine
formfreie Zeichenfolge und es steht Ihnen frei, lhr eigenes Versioning-Schema zu verwenden.

Signalname

Der Name des Signals kann mit dem Namenparameter der @Signal-Annotation angegeben werden.
Wenn nicht angegeben, gilt standardmallig der Name der Signalmethode.

Workflow-Typname und Version API-Version 2021-04-28 71

AWS Flow Framework fur Java Entwicklerhandbuch

Aktivitatstypname und Version

Das Framework bestimmt den Namen des Aktivitatstypen Uber die Aktivitatenschnittstelle. Die Form
des Standardnamens fir den Aktivitatstyp ist {prefix} {name}. {prefix} ist auf den Namen der
@Activities Schnittstelle gefolgt von einem "' gesetzt und {name} ist auf den Methodennamen
gesetzt. Die Standardeinstellung {prefix} kann in der @Activities Anmerkung auf der
Aktivitatsschnittstelle auller Kraft gesetzt werden. Sie kdnnen den Namen des Aktivitatstyps auch
mit der @Activity-Annotation in der Aktivitdtsmethode angeben. Beachten Sie, dass beim
Uberscheiben des Namens mit @Activity das Framework diesem nicht automatisch ein Prafix
voranstellt. Es steht Ihnen frei, Ihr eigenes Namensschema zu verwenden.

Die Aktivitatsversion wird mit dem Versionsparameter der @Activities-Annotation angegeben.
Diese Version wird als Standard fur alle Aktivitaten verwendet, die in der Schnittstelle definiert sind,
und kann pro Aktivitat mit der @Activity-Annotation Gberschrieben werden.

Standardaufgabenliste

Die Standardaufgabenliste kann mit den Annotationen @WorkflowRegistrationOptions und
@ActivityRegistrationOptions und durch Festlegen des defaultTaskList-Parameters
konfiguriert werden. Standardmallig ist der Wert eingestell USE_WORKER_TASK_LIST. Dies ist ein
spezieller Wert, der das Framework anweist, die Aufgabenliste zu verwenden, die in dem Worker-
Objekt konfiguriert ist, das fur die Registrierung des Aktivitats- oder Workflow-Typs verwendet

wird. Sie kdnnen eine Standardaufgabenliste auch nicht registrieren, indem Sie sie mit diesen
Annotationen auf NO_DEFAULT_TASK_LIST festlegen. Dies kann in Fallen verwendet werden, bei
denen Sie festlegen méchten, dass die Aufgabenliste zur Laufzeit angegeben werden soll. Wenn
keine Standardaufgabenliste registriert wurde, missen Sie die Aufgabenliste beim Starten des
Workflows oder beim Aufrufen der Aktivitatsmethode mit den Parametern StartWorkflowOptions
und ActivitySchedulingOptions fir die jeweilige Methodeniberladung des generierten Clients
angeben.

Weitere Registrierungsoptionen

Alle Registrierungsoptionen fir Workflows und Aktivitatstypen, die von der Amazon SWF SWF-API
zugelassen werden, konnen Uber das Framework angegeben werden.

Eine vollstéandige Liste der Workflow-Registrierungsoptionen finden Sie im Folgenden:

* @Workflow
* @Execute

Aktivitatstypname und Version API-Version 2021-04-28 72

AWS Flow Framework fur Java Entwicklerhandbuch

» @WorkflowRegistrationOptions
« @Signal

Eine vollstandige Liste der Aktivitats-Registrierungsoptionen finden Sie im Folgenden:

* @AKktivitat
* @AKktivitat
* @ActivityRegistrationOptions

Wenn Sie die vollstandige Kontrolle tGber die Registrierung von Typen haben méchten, lesen Sie
Worker-Erweiterbarkeit.

Aktivitats- und Workflow-Clients

Workflow- und Aktivitats-Clients werden von dem Framework generiert, das auf den Schnittstellen
@Workflow und @Activities basiert. Es werden separate Client-Schnittstellen generiert, die
Methoden und Einstellungen enthalten, die nur innerhalb des Clients Sinn ergeben. Wenn Sie

mit Eclipse entwickeln, erledigt dies das Amazon SWF Eclipse-Plug-In jedes Mal, wenn Sie die
Datei mit der entsprechenden Schnittstelle speichern. Der generierte Code wird im generierten
Quellverzeichnis lhres Projekts im selben Paket platziert wie die Schnittstelle.

® Note

Beachten Sie, dass der von Eclipse verwendete Standardname flir das

Verzeichnis .apt_generated lautet. Eclipse zeigt keine Verzeichnisse, deren Namen mit
beginnen. Wenn Sie im Package Explorer. Wenn Sie die generierten Dateien im Project
Explorer anzeigen méchten, verwenden Sie einen anderen Verzeichnisnamen. Klicken Sie

in Eclipse mit der rechten Maustaste auf das Paket im Package Explorer, wahlen Sie dann
Properties (Eigenschaften), Java Compiler, Annotation processing (Annotationen verarbeiten)
und andern Sie die Einstellung Generate source directory (Quellverzeichnis generieren).

Workflow-Clients

Die generierten Artefakte fur den Workflow enthalten drei clientseitige Schnittstellen und die Klassen,
die sie implementieren. Die generierten Clients umfassen Folgendes:

Aktivitats- und Workflow-Clients API-Version 2021-04-28 73

AWS Flow Framework fur Java

Entwicklerhandbuch

Einen asynchronen Client, der aus einer Workflow-Implementierung heraus verbraucht werden soll,

die asynchrone Methoden bereitstellt, die den Workflow ausfiihren und Signale senden.

Einen externen Client, der verwendet werden kann, um Ausfiihrungen zu starten, Signale zu

senden und den Workflow-Status von auRerhalb einer Workflow-Implementierung zu empfangen.

Einen Self-Client, der verwendet werden kann, um einen kontinuierlichen Workflow zu generieren.

So lauten z.B. die generierten Client-Schnittstellen fir die Musterschnittstelle MyWorkflow wie folgt:

//Client for use from within a workflow

public interface MyWorkflowClient extends WorkflowClient

{

Promise<Void> startMyWF(
int a, String b);

Promise<Void> startMyWF(
int a, String b,
Promise<?>... waitFor);

Promise<Void> startMyWF(
int a, String b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b);

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
Promise<?>... waitFor);

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

void signall(
int a, int b, String c);

Workflow-Clients

API-Version 2021-04-28 74

AWS Flow Framework fur Java Entwicklerhandbuch

//External client for use outside workflows
public interface MyWorkflowClientExternal extends WorkflowClientExternal
{
void startMyWF(
int a, String b);

void startMyWF(
int a, String b,
StartWorkflowOptions optionsOverride);

void signall(
int a, int b, String c);

MyWorkflowState getState();

//self client for creating continuous workflows
public interface MyWorkflowSelfClient extends WorkflowSelfClient
{
void startMyWF(
int a, String b);

void startMyWF(
int a, String b,
Promise<?>... waitFor);

void startMyWF(
int a, String b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

void startMyWF(
Promise<Integer> a,
Promise<String> b);

void startMyWF(
Promise<Integer> a,
Promise<String> b,
Promise<?>... waitFor);

void startMyWF(
Promise<Integer> a,
Promise<String> b,

Workflow-Clients API-Version 2021-04-28 75

AWS Flow Framework fur Java Entwicklerhandbuch

StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

Die Schnittstellen haben eine Methodenliberladungen, die jeweils der in der Schnittstelle deklarierten
Methode @Workflow entsprechen.

Der externe Client spiegelt die Methoden der Schnittstelle @Workflow mit einer zusatzlichen
Methodenliberladung @Execute, die StartWorkflowOptions verwendet. Sie kdnnen mit dieser
Uberladung zusétzliche Optionen weiterleiten, wenn Sie eine neue Workflow-Ausfiihrung starten.
Diese Optionen ermdéglichen Ihnen die Standardaufgabenliste, die Timeout-Einstellungen und die
zugehdrigen Tags mit der Workflow-Ausflhrung zu tberschreiben.

Auf der anderen Seite verfugt der asynchrone Client Gber Methoden, die einen asynchronen Aufruf
der Methode @Execute ermdglichen. Die folgenden Methodenliberladungen werden in der Client-
Schnittstelle fir die Methode @Execute in der Workflow-Schnittstelle generiert:

1. Eine Uberladung, welche die urspriinglichen Argumente unveréndert Gibernimmt. Der Riickgabetyp
dieser Uberladung ist Promise<Void>, wenn die urspriingliche Methode void zuriickgegeben
hat; andernfalls ist es Promise<>, wie in der urspringlichen Methode deklariert. Zum Beispiel:

Ursprungliche Methode:

void startMywWF(int a, String b);

Generierte Methode:

Promise<Void> startMyWF(int a, String b);

Diese Uberladung sollte verwendet werden, wenn alle Argumente des Workflows verfiigbar sind
und nicht auf diese gewartet werden muss.

2. Eine Uberladung, die die urspriinglichen Argumente unverandert sowie zusétzliche variable
Argumente des Typs Promise<?> (ibernimmt. Der Riickgabetyp dieser Uberladung ist
Promise<Void>, wenn die urspriingliche Methode void zurlickgegeben hat; andernfalls ist es
Promise<>, wie in der urspringlichen Methode deklariert. Zum Beispiel:

Ursprungliche Methode:

void startMyWF(int a, String b);

Workflow-Clients API-Version 2021-04-28 76

AWS Flow Framework fur Java Entwicklerhandbuch

Generierte Methode:

Promise<void> startMyWF(int a, String b, Promise<?>...waitFor);

Diese Uberladung sollte verwendet werden, wenn alle Argumente des Workflows verfiigbar sind
und nicht auf diese gewartet werden muss, wenn Sie jedoch darauf warten mdchten, dass ein
anderes Promise betriebsbereit wird. Das variable Argument kann verwendet werden, um Objekte
wie Promise<?> weiterzuleiten, die nicht als Argumente deklariert waren, wenn Sie noch mit der
Ausflihrung des Aufrufs warten méchten.

3. Eine Uberladung, die die urspriinglichen Argumente unverandert Gibernimmt sowie ein zusétzliches
Argument des Typs StartWorkflowOptions und ein zusatzliches Argument des Typs
Promise<?>. Der Riickgabetyp dieser Uberladung ist Promise<Void>, wenn die urspriingliche
Methode void zuriickgegeben hat; andernfalls ist es Promise<>, wie in der urspriinglichen
Methode deklariert. Zum Beispiel:

Ursprungliche Methode:

void startMywWF(int a, String b);

Generierte Methode:

Promise<void> startMyWF(
int a,
String b,
StartWorkflowOptions optionOverrides,
Promise<?>...waitFor);

Diese Uberladung sollte verwendet werden, wenn alle Argumente des Workflows verfiigbar sind
und nicht auf diese gewartet werden muss, wenn Sie Standardeinstellungen Gberschreiben und die
Workflow-Ausflhrung starten mdchten oder wenn Sie darauf warten mdchten, dass ein anderes
Promise betriebsbereit wird. Das variable Argument kann verwendet werden, um Objekte wie
Promise<?> weiterzuleiten, die nicht als Argumente deklariert waren, wenn Sie noch mit der
Ausflhrung des Aufrufs warten méchten.

4. Eine Uberladung mit jedem Argument in der urspriinglichen Methode, die durch einen
Promise<>-Wrapper ersetzt wurde. Der Riickgabetyp dieser Uberladung ist Promise<Void>,

Workflow-Clients API-Version 2021-04-28 77

AWS Flow Framework fur Java Entwicklerhandbuch

wenn die urspringliche Methode void zurlickgegeben hat; andernfalls ist es Promise<>, wie in
der urspriunglichen Methode deklariert. Zum Beispiel:

Urspringliche Methode:

void startMywWF(int a, String b);

Generierte Methode:

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b);

Diese Uberladung sollte verwendet werden, wenn die Argumente, die an die Workflow-
Ausflihrung weitergeleitet werden sollen, asynchron evaluiert werden mussen. Ein Aufruf
dieser Methodenliberladung wird so lange nicht ausgefihrt, bis alle Argumente, die an diese
weitergeleitet wurden, betriebsbereit sind.

Wenn einige der Argumente bereits betriebsbereit sind, dann konvertieren Sie diese in ein
Promise, das durch die Methode Promise.asPromise(value) bereits im betriebsbereiten
Status ist. Zum Beispiel:

Promise<Integer> a = getA();
String b = getB();
startMyWF(a, Promise.asPromise(b));

5. Eine Uberladung mit jedem Argument in der urspriinglichen Methode wird durch den Wrapper
Promise<> ersetzt. Die Uberladung hat auch unterschiedliche variable Argumente des Typs
Promise<?>. Der Riickgabetyp dieser Uberladung ist Promise<Void>, wenn die urspriingliche
Methode void zuriickgegeben hat; andernfalls ist es Promise<>, wie in der urspriinglichen
Methode deklariert. Zum Beispiel:

Ursprungliche Methode:
void startMywWF(int a, String b);
Generierte Methode:

Promise<Void> startMyWF(
Workflow-Clients API-Version 2021-04-28 78

AWS Flow Framework fur Java Entwicklerhandbuch

Promise<Integer> a,
Promise<String> b,
Promise<?>...waitFor);

Diese Uberladung sollte verwendet werden, wenn die Argumente, die an die Workflow-Ausfiihrung
weitergeleitet wurden, asynchron evaluiert werden und wenn Sie darauf warten moéchten, dass

ein anderes Promise ebenfalls betriebsbereit wird. Ein Aufruf dieser Methodenliberladung wird so

lange nicht ausgefuhrt, bis alle Argumente, die an diese weitergeleitet wurden, betriebsbereit sind.

6. Eine Uberladung mit jedem Argument in der urspriinglichen Methode, die durch einen Promise<?
>-Wrapper ersetzt wurde. Die Uberladung enthalt auch ein zusétzliches Argument des Typs
StartWorkflowOptions und variable Argumente des Typs Promise<?>. Der Riickgabetyp
dieser Uberladung ist Promise<Void>, wenn die urspriingliche Methode void zuriickgegeben
hat; andernfalls ist es Promise<>, wie in der urspriinglichen Methode deklariert. Zum Beispiel:

Urspriungliche Methode:

void startMyWF(int a, String b);

Generierte Methode:

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
StartWorkflowOptions optionOverrides,
Promise<?>...waitFor);

Verwenden Sie diese Uberladung, wenn die Argumente, die an die Workflow-Ausfiihrung
weitergeleitet werden sollen, asynchron evaluiert werden und wenn Sie die Standardeinstellungen
Uberschreiben mochten, die zum Starten der Workflow-Ausfihrung verwendet werden. Ein Aufruf
dieser Methodenuberladung wird so lange nicht ausgefihrt, bis alle Argumente, die an diese
weitergeleitet wurden, betriebsbereit sind.

Aulerdem wird fur jedes Signal in der Workflow-Oberflache eine Methode generiert — zum Beispiel:

Ursprungliche Methode:

void signall(int a, int b, String c);

Workflow-Clients API-Version 2021-04-28 79

AWS Flow Framework fur Java Entwicklerhandbuch

Generierte Methode:
void signall(int a, int b, String c);

Der asynchrone Client enthalt keine Methode, welche der Methode entspricht, die in der
ursprunglichen Schnittstelle mit @GetState annotiert wurde. Da das Abrufen des Status einen
Webservice-Aufruf erfordert, ist er nicht fur die Verwendung innerhalb eines Workflows geeignet.
Daher kann er nur Gber einen externen Client zur Verfigung gestellt werden.

Der Self-Client soll in einem Workflow verwendet werden, um eine neue Ausflhrung nach
Beendigung der aktuellen Ausfihrung zu starten. Die Methoden auf diesem Client sind den Methoden
auf dem asynchronen Client ahnlich, aber die Riickgabe ist void. Der Client enthalt keine Methoden,
welche den Methode entsprechen, die mit @Signal und @GetState annotiert wurden. Weitere
Informationen hierzu finden Sie unter Fortlaufende Workflows.

Die generierten Clients sind von den Basisschnittstellen WorkflowClient und
WorkflowClientExternal abgeleitet, die Methoden bereitstellen, die Sie zum Abbrechen
oder Beenden der Workflow-Ausfiihrung verwenden kénnen. Weitere Informationen zu diesen
Schnittstellen finden Sie in der AWS SDK fur Java -Dokumentation.

Die generierten Clients ermoglichen die Interaktion mit den Workflow-Ausflihrungen in einer stark
typisierten Form. Eine Instance eines generierten Client, wird, wenn sie einmal erstellt wurde, mit
einer spezifischen Workflow-Ausfiihrung verknlpft und kann nur fur diese Ausfihrung verwendet
werden. AuRerdem stellt das Framework dynamische Clients bereit, die nicht fir einen Workflow-Typ
oder eine Ausflihrung typisch sind. Die generierten Clients basieren verdeckt auf diesem Client. Sie
kdénnen diese Clients auch direkt verwenden. Sehen Sie sich den Abschnitt zu Dynamische Clients
an.

Das Framework generiert auch Fabriken zum Erstellen stark typisierter Clients. Die generierten
Client-Fabriken flr die Musterschnittstelle MyWorkflow sind:

//Factory for clients to be used from within a workflow
public interface MyWorkflowClientFactory
extends WorkflowClientFactory<MyWorkflowClient>
{
}

//Factory for clients to be used outside the scope of a workflow
public interface MyWorkflowClientExternalFactory

{

Workflow-Clients API-Version 2021-04-28 80

AWS Flow Framework fur Java Entwicklerhandbuch

GenericWorkflowClientExternal getGenericClient();
void setGenericClient(GenericWorkflowClientExternal genericClient);
DataConverter getDataConverter();
void setDataConverter(DataConverter dataConverter);
StartWorkflowOptions getStartWorkflowOptions();
void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
MyWorkflowClientExternal getClient();
MyWorkflowClientExternal getClient(String workflowId);
MyWorkflowClientExternal getClient(WorkflowExecution workflowExecution);
MyWorkflowClientExternal getClient(

WorkflowExecution workflowExecution,

GenericWorkflowClientExternal genericClient,

DataConverter dataConverter,

StartWorkflowOptions options);

Die Basisschnittstelle fir WorkflowClientFactory ist:

public interface WorkflowClientFactory<T> {

GenericWorkflowClient getGenericClient();

void setGenericClient(GenericWorkflowClient genericClient);

DataConverter getDataConverter();

void setDataConverter(DataConverter dataConverter);

StartWorkflowOptions getStartWorkflowOptions();

void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);

T getClient();

T getClient(String workflowId);

T getClient(WorkflowExecution execution);

T getClient(WorkflowExecution execution,
StartWorkflowOptions options);

T getClient(WorkflowExecution execution,
StartWorkflowOptions options,
DataConverter dataConverter);

Sie sollten diese Fabriken zum Erstellen von Client-Instances verwenden. Mit der Fabrik kdnnen Sie
den generischen Client (der generische Client sollte fur die Bereitstellung der benutzerdefinierten
Client-Implementierung verwendet werden) und den DataConverter, der vom Client zum
Daten-Marshalling verwendet wird, sowie die Optionen, die verwendet werden, um die Workflow-
Ausflihrung zu starten, konfigurieren. Weitere Informationen finden Sie unter den Abschnitten
DataConverters und Untergeordnete Workflow-Ausfliihrungen. Das StartWorkflowOptions enthalt
Einstellungen, mit denen Sie die bei der Registrierung angegebenen Standardwerte (z. B. Timeouts)

Workflow-Clients API-Version 2021-04-28 81

AWS Flow Framework fur Java Entwicklerhandbuch

aulRer Kraft setzen konnen. Weitere Informationen zur Klasse finden Sie in der Dokumentation.
StartWorkflowOptions AWS SDK fiir Java

Einen externen Client, der verwendet werden kann, um Workflow-Ausfihrungen aul3erhalb eines
Workflows zu starten, wahrend der asynchrone Client verwendet werden kann, um eine Workflow-
Ausfihrung vom Code innerhalb eines Workflows zu starten. Zum Starten einer Ausfiihrung
verwenden Sie einfach den generierten Client, um die Methode aufzurufen, welche der Methode
entspricht, die @Execute in der Workflow-Schnittstelle annotiert ist.

Das Framework generiert auch Implementierungsklassen fir die Client-Schnittstellen. Diese Clients
erstellen Anfragen und senden sie an Amazon SWF, um die entsprechende Aktion auszufihren. Die
Client-Version der @Execute Methode startet entweder eine neue Workflow-Ausflhrung oder erstellt
eine untergeordnete Workflow-Ausfiihrung mit Amazon SWF APIs. In ahnlicher Weise verwendet die
Client-Version der @Signal Methode Amazon SWF APIs , um ein Signal zu senden.

(® Note

Der externe Workflow-Client muss mit dem Amazon SWF-Client und der Domain konfiguriert
sein. Sie kdnnen entweder den Client Factory-Konstruktor verwenden, der diese als
Parameter verwendet, oder eine generische Client-Implementierung Gbergeben, die bereits
mit dem Amazon SWF-Client und der Domain konfiguriert ist.

Das Framework durchlauft die Typenhierarchie der Workflow-Schnittstelle und generiert auch
Client-Schnittstellen fur Gbergeordnete Workflow-Schnittstellen und leitet sich aus diesen ab.

Aktivitats-Clients

Ahnlich wie ein Workflow-Client, wird fiir jede Schnittstelle ein Client generiert, der mit @Activities
annotiert ist. Die generierten Artefakte umfassen eine clientseitige Schnittstelle und eine Client-
Klasse. Die generierte Schnittstelle fur die oben genannte Musterschnittstelle @Activities
(MyActivities) lautet wie folgt:

public interface MyActivitiesClient extends ActivitiesClient

{
Promise<Integer> activityl();
Promise<Integer> activityl(Promise<?>... waitFor);
Promise<Integer> activityl(ActivitySchedulingOptions optionsOverride,

Promise<?>... waitFor);
Promise<Void> activity2(int a);
Promise<Void> activity2(int a,

Aktivitats-Clients API-Version 2021-04-28 82

AWS Flow Framework fur Java Entwicklerhandbuch

Promise<?>... waitFor);

Promise<Void> activity2(int a,
ActivitySchedulingOptions optionsOverride,
Promise<?>... waitFor);

Promise<Void> activity2(Promise<Integer> a);

Promise<Void> activity2(Promise<Integer> a,
Promise<?>... waitFor);

Promise<Void> activity2(Promise<Integer> a,
ActivitySchedulingOptions optionsOverride,
Promise<?>... waitFor);

Die Schnittstelle enthalt eine Menge von Methodeniberladungen, die jeweils der Aktivitatsmethode
in der Schnittstelle @Activities entsprechen. Die Uberladungen dienen der Bequemlichkeit und
ermoglichen den asynchronen Aufruf von Aktivitaten. Fir jede Aktivitatsmethode in der Schnittstelle
@Activities werden die folgenden Methodeniberladungen in der Client-Schnittstelle generiert:

1. Eine Uberladung, welche die urspriinglichen Argumente unveréndert Gibernimmt. Der Riickgabetyp
dieser Uberladung ist Promise<T>, wobei T der Riickgabetyp der urspriinglichen Methode ist.
Zum Beispiel:

Urspringliche Methode:

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2(int foo);

Diese Uberladung sollte verwendet werden, wenn alle Argumente des Workflows verfiigbar sind
und nicht auf diese gewartet werden muss.

2. Eine Uberladung, welche die urspriinglichen Argumente unverandert, ein Argument der Art
ActivitySchedulingOptions und ein zusatzliches variables Argument des Typs Promise<?
> Gibernimmt. Der Riickgabetyp dieser Uberladung ist Promise<T>, wobei T der Riickgabetyp der
ursprunglichen Methode ist. Zum Beispiel:

Ursprungliche Methode:

void activity2(int foo);

Aktivitats-Clients API-Version 2021-04-28 83

AWS Flow Framework fur Java Entwicklerhandbuch

Generierte Methode:

Promise<Void> activity2(

int foo,
ActivitySchedulingOptions optionsOverride,
Promise<?>... waitFor);

Diese Uberladung sollte verwendet werden, wenn alle Argumente des Workflows verfiigbar

sind und nicht auf diese gewartet werden muss, wenn Sie Standardeinstellungen Gberschreiben
oder darauf warten, dass ein zusatzliches Promises betriebsbereit ist. Die variablen Argumente
kénnen verwendet werden, um zusatzliche Objekte wie Promise<?> weiterzuleiten, die nicht als
Argumente deklariert waren, wenn Sie noch mit der Ausfliihrung des Aufrufs warten méchten.

3. Eine Uberladung mit jedem Argument in der urspriinglichen Methode, die durch einen
Promise<>-Wrapper ersetzt wurde. Der Riickgabetyp dieser Uberladung ist Promise<T>, wobei
T der Ruckgabetyp der urspriinglichen Methode ist. Zum Beispiel:

Urspringliche Methode:

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2(Promise<Integer> foo0);

Diese Uberladung sollte verwendet werden, wenn die Argumente, die an die Aktivitit weitergeleitet
werden sollen, asynchron evaluiert werden mussen. Ein Aufruf dieser Methodenuberladung wird
so lange nicht ausgefuhrt, bis alle Argumente, die an diese weitergeleitet wurden, betriebsbereit
sind.

4. Eine Uberladung mit jedem Argument in der urspriinglichen Methode, die durch einen
Promise<>-Wrapper ersetzt wurde. Die Uberladung enthélt auch ein zusétzliches Argument des
Typs ActivitySchedulingOptions und variable Argumente des Typs Promise<?>. Der
Riickgabetyp dieser Uberladung ist Promise<T>, wobei T der Riickgabetyp der urspriinglichen
Methode ist. Zum Beispiel:

Urspringliche Methode:

Aktivitats-Clients API-Version 2021-04-28 84

AWS Flow Framework fur Java Entwicklerhandbuch

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2(
Promise<Integer> foo,
ActivitySchedulingOptions optionsOverride,
Promise<?>...waitFor);

Diese Uberladung sollte verwendet werden, wenn die Argumente, die an die Aktivitat weitergeleitet
werden sollen, asynchron evaluiert werden und wenn Sie Standardeinstellungen, die mit dem

Typ registriert sind, Uberschreiben oder darauf warten méchten, dass zusatzliche Promises
betriebsbereit sind. Ein Aufruf dieser Methodenlberladung wird so lange nicht ausgefuhrt, bis alle
Argumente, die an diese weitergeleitet wurden, betriebsbereit sind. Die generierte Client-Klasse
implementiert diese Schnittstelle. Die Implementierung jeder Schnittstellenmethode erstellt und
sendet eine Anfrage an Amazon SWF, um mithilfe von Amazon SWF eine Aktivitdtsaufgabe des
entsprechenden Typs zu planen APlIs.

5. Eine Uberladung, die die urspriinglichen Argumente unveréndert sowie zusatzliche variable
Argumente des Typs Promise<?> (ibernimmt. Der Riickgabetyp dieser Uberladung ist
Promise<T>, wobei T der Rickgabetyp der urspriinglichen Methode ist. Zum Beispiel:

Ursprungliche Methode:

void activity2(int foo);

Generierte Methode:

Promise< Void > activity2(int foo,
Promise<?>...waitFor);

Diese Uberladung sollte verwendet werden, wenn alle Argumente der Aktivitéat verfiigbar sind und
nicht auf diese gewartet werden muss, wenn Sie jedoch darauf warten méchten, dass andere
Promise-Objekte betriebsbereit werden.

6. Eine Uberladung, bei der jedes Argument in der urspriinglichen Methode durch einen Promise-
Wrapper ersetzt wird und zusatzliche variable Argumente des Typs Promise<?> Der

Aktivitats-Clients API-Version 2021-04-28 85

AWS Flow Framework fur Java Entwicklerhandbuch

Riickgabetyp dieser Uberladung ist Promise<T>, wobei T der Riickgabetyp der urspriinglichen
Methode ist. Zum Beispiel:

Urspringliche Methode:

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2(
Promise<Integer> foo,
Promise<?>... waitFor);

Diese Uberladung sollte verwendet werden, wenn auf alle Argumente der Aktivitat asynchron
gewartet wird und wenn Sie darauf warten mdchten, dass andere Promises betriebsbereit
werden. Ein Aufruf dieser Methodenlberladung wird asynchron ausgefuhrt, wenn alle
weitergeleiteten Promise-Objekte,betriebsbereit sind.

Der generierte Aktivitats-Client verfugt auch Uber eine geschitzte Methode, die jeder
Aktivitatsmethode entspricht und den Namen {activity method name}Impl(), hatden alle
Aktivitéts-UberIadungen aufrufen. Sie kdnnen diese Methode Uberschreiben, um eine Demo-
Clientimplementierung fertigzustellen. Diese Methode nimmt als Argumente an: alle Argumente der
urspringlichen Methode in Promise<>-Wrappers, ActivitySchedulingOptions und variable
Argumente des Typs Promise<?>. Zum Beispiel:

Urspringliche Methode:

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2Impl(
Promise<Integer> foo,
ActivitySchedulingOptions optionsOverride,
Promise<?>...waitFor);

Aktivitats-Clients API-Version 2021-04-28 86

AWS Flow Framework fur Java Entwicklerhandbuch

Planungsoptionen

Der generierte Aktivitats-Client ermdglicht lhnen, ActivitySchedulingOptions als Argument
weiterzuleiten. Die ActivitySchedulingOptions Struktur enthalt Einstellungen, die die
Konfiguration der Aktivitatsaufgabe bestimmen, die das Framework in Amazon SWF plant. Diese
Einstellungen Uberschreiben die Standardeinstellungen, die als Registrierungsoptionen festgelegt
sind. Um Planungsoptionen dynamisch festzulegen, legen Sie ein ActivitySchedulingOptions-
Objekt nach Ihren Wiinschen an und Ubergeben es an die Aktivitatsmethode. Im folgenden Beispiel
haben wir eine Aufgabe festgelegt, die flir die Aktivitatsaufgabe verwendet werden soll. Sie
Uberschreibt die registrierte Aufgabenliste fir diesen Aktivitatsaufruf.

public class OrderProcessingWorkflowImpl implements OrderProcessingWorkflow {

OrderProcessingActivitiesClient activitiesClient
= new OrderProcessingActivitiesClientImpl();

// Workflow entry point
@Override
public void processOrder(Order order) {
Promise<Void> paymentProcessed = activitiesClient.processPayment(order);
ActivitySchedulingOptions schedulingOptions
= new ActivitySchedulingOptions();

if (order.getlLocation() == "Japan") {
schedulingOptions.setTaskList("TasklistAsia");
} else {
schedulingOptions.setTaskList("TasklistNorthAmerica");
}
activitiesClient.shipOrder(order,
schedulingOptions,
paymentProcessed);

Dynamische Clients

Zusatzlich zu den generierten Clients bietet das Framework auch Allzweck-Clients —
DynamicWorkflowClient und DynamicActivityClient —, die Sie verwenden kdnnen,
um Workflow-Ausfuhrungen dynamisch zu starten, Signale zu senden, Aktivitaten zu planen
usw. So mdchten Sie z. B. eine Aktivitat planen, deren Typ beim Design nicht bekannt war. Sie

Planungsoptionen API-Version 2021-04-28 87

AWS Flow Framework fur Java Entwicklerhandbuch

kénnen DynamicActivityClient zur Planung einer solchen Aktivitdtsaufgabe verwenden.
Ebenso kénnen Sie eine untergeordnete Workflow-Ausfuhrung dynamisch planen, indem Sie
DynamicWorkflowClient verwenden. Im folgenden Beispiel schlagt der Workflow die Aktivitat von
einer Datenbank aus nach und verwendet zur Planung den Client flir dynamische Aktivitat:

//Workflow entrypoint
@Override
public void start() {
MyActivitiesClient client = new MyActivitiesClientImpl();
Promise<ActivityType> activityType
= client.lookUpActivityFromDB();
Promise<String> input = client.getInput(activityType);
scheduleDynamicActivity(activityType,
input);
}
@Asynchronous
void scheduleDynamicActivity(Promise<ActivityType> type,
Promise<String> input){
Promise<?>[] args = new Promise<?>[1];
args[@] = input;
DynamicActivitiesClient activityClient
= new DynamicActivitiesClientImpl();
activityClient.scheduleActivity(type.get(),
args,
null,
Void.class);

Weitere Einzelheiten finden Sie in der AWS SDK fir Java Dokumentation.
Signalisieren und Abbrechen von Workflow-Ausfuhrungen

Der generierte Workflow-Client verfugt Gber Methoden, die jedem Signal entsprechen, das an den
Workflow gesendet werden kann. Sie kdnnen diese aus einem Workflow heraus verwenden, um
Signale an andere Workflow-Ausfihrungen zu senden. Dadurch wird ein typisierter Mechanismus
zum Senden von Signalen bereitgestellt. Manchmal missen Sie den Signalnamen jedoch
mdglicherweise dynamisch bestimmen, z. B. wenn der Signalname in einer Nachricht empfangen
wird. Sie kédnnen den dynamischen Workflow-Client verwenden, um dynamisch Signale an eine
beliebige Workflow-Ausfuhrung zu senden. Auf ahnliche Weise kénnen Sie den Client verwenden, um
einen Abbruch einer anderen Workflow-Ausfihrung anzufordern.

Dynamische Clients API-Version 2021-04-28 88

AWS Flow Framework fur Java Entwicklerhandbuch

Im folgenden Beispiel schlagt der Workflow die Ausflihrung zum Senden eines Signals von einer
Datenbank aus nach und sendet das Signal dynamisch, wobei er den dynamischen Workflow-Client
verwendet.

//Workflow entrypoint

public void start()

{
MyActivitiesClient client = new MyActivitiesClientImpl();
Promise<WorkflowExecution> execution = client.lookUpExecutionInDB();
Promise<String> signalName = client.getSignalToSend();
Promise<String> input = client.getInput(signalName);
sendDynamicSignal(execution, signalName, input);

@Asynchronous

void sendDynamicSignal(
Promise<WorkflowExecution> execution,
Promise<String> signalName,
Promise<String> input)

{
DynamicWorkflowClient workflowClient
= new DynamicWorkflowClientImpl(execution.get());
Object[] args = new Promise<?>[1];
args[@] = input.get();
workflowClient.signalWorkflowExecution(signalName.get(), args);
}

Workflow-Implementierung

Um einen Workflow zu implementieren, schreiben Sie eine Klasse, die die gewlinschte @Workflow-
Schnittstelle implementiert. Das Beispiel fir die Workflow-Schnittstelle (MyWorkflow) kann wie folgt
implementiert werden:

public class MyWFImpl implements MyWorkflow
{
MyActivitiesClient client = new MyActivitiesClientImpl();
@Override
public void startMyWF(int a, String b){
Promise<Integer> result = client.activityl();
client.activity2(result);

Workflow-Implementierung API-Version 2021-04-28 89

AWS Flow Framework fur Java Entwicklerhandbuch

@Override
public void signall(int a, int b, String c){
//Process signal
client.activity2(a + b);

Die @Execute-Methode in dieser Klasse ist der Eintrittspunkt der Workflow-Logik. Da

das Framework Replay verwendet, um den Objektstatus zu rekonstruieren, wenn eine
Entscheidungsaufgabe verarbeitet werden soll, wird fir jede Entscheidungsaufgabe ein neues Objekt
erstellt.

Die Verwendung von Promise<T> als Parameter ist in der @Execute-Methode innerhalb einer
@Workflow-Schnittstelle nicht erlaubt. Der Grund hierfir ist, dass das Ausflihren eines asynchronen
Aufrufs allein eine Entscheidung des Aufrufers ist. Die Workflow-Implementierung selbst hangt

nicht davon ab, ob der Aufruf synchron oder asynchron erfolgt. Daher hat die generierte Client-
Schnittstelle Uberlastungen, die Promise<T>-Parameter akzeptieren, sodass diese Methoden
asynchron aufgerufen werden kénnen.

Der Rickgabetyp einer @Execute-Methode kann entweder void oder Promise<T> sein. Beachten
Sie, dass ein Rickgabetyp des entsprechenden externen Clients void und nicht Promise<> ist.

Da der externe Client nicht fir die Verwendung im asynchronen Code vorgesehen ist, gibt der
externe Client keine Objekte zurtick. Promise Um extern festgelegte Ergebnisse von Workflow-
Ausfuhrungen zu erhalten, kénnen Sie den Workflow so entwerfen, dass der Status in einem
externen Datenspeicher durch eine Aktivitat aktualisiert wird. Die Sichtbarkeit von Amazon SWF
APIs kann auch verwendet werden, um das Ergebnis eines Workflows zu Diagnosezwecken
abzurufen. Es wird nicht empfohlen, die Sichtbarkeit APIs zum Abrufen von Ergebnissen von
Workflow-Ausfuhrungen als allgemeine Praxis zu verwenden, da diese API-Aufrufe von Amazon SWF
gedrosselt werden kdnnen. Um die Sichtbarkeit zu gewahrleisten, APIs mussen Sie die Workflow-
Ausflihrung anhand einer Struktur identifizieren. WorkflowExecution Diese Struktur kdnnen Sie
vom generierten Workflow-Client durch Aufrufen der getWorkflowExecution-Methode abrufen.
Diese Methode gibt die WorkflowExecution-Struktur zuriick, die der Workflow-Ausfiihrung
entspricht, an die der Client gebunden ist. Weitere Informationen zur Sichtbarkeit finden Sie in der
Amazon Simple Workflow Service API-Referenz APIs.

Beim Aufrufen von Aktivitaten aus lhrer Workflow-Implementierung sollten Sie den generierten
Aktivitaten-Client verwenden. Zum Senden von Signalen verwenden Sie entsprechend die
generierten Workflow-Clients.

Workflow-Implementierung API-Version 2021-04-28 90

https://docs.aws.amazon.com/amazonswf/latest/apireference/

AWS Flow Framework fur Java Entwicklerhandbuch

Entscheidungskontext

Das Framework stellt bei jeder Ausfiihrung von Workflow-Code durch das Framework einen
Umgebungskontext zur Verfigung. Dieser Kontext bietet kontextspezifische Funktionalitat, auf die
Sie in Ihrer Workflow-Implementierung zugreifen kénnen, z. B. Erstellen eines Timers. Weitere
Informationen finden Sie im Abschnitt Ausfuhrungskontext.

Offenlegen des Ausfihrungsstatus

Amazon SWF ermoglicht es Ihnen, dem Workflow-Verlauf einen benutzerdefinierten Status
hinzuzufligen. Der letzte Status, der von der Workflow-Ausfiihrung gemeldet wurde, wird Ihnen
durch Visibility-Aufrufe an den Amazon SWF-Service und in der Amazon SWF SWF-Konsole
zurtckgegeben. In einem Auftragsverarbeitungs-Workflow kénnen Sie z. B. den Bestellungsstatus
in verschiedenen Phasen melden, z. B. Bestellung erhalten, Bestellung versendet usw. In der AWS
Flow Framework Version fir Java wird dies durch eine Methode auf Ihrer Workflow-Oberflache
erreicht, die mit der @GetState Anmerkung versehen ist. Wenn der Entscheider die Verarbeitung
einer Entscheidungsaufgabe abgeschlossen hat, wird diese Methode aufgerufen, um den aktuellen
Status von der Workflow-Implementierung abzurufen. Neben Sichtbarkeitsaufrufen kann der Status
auch mit dem generierten, externen Client abgerufen werden (der die Sichtbarkeits-API-Aufrufe intern
verwendet).

Das folgende Beispiel zeigt, wie Sie den Ausfihrungskontext festlegen.

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

public interface PeriodicWorkflow {

@Execute(version = "1.0")
void periodicWorkflow();

@GetState
String getState();
}
@Activities(version = "1.0")

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
void activityl();

Entscheidungskontext API-Version 2021-04-28 91

AWS Flow Framework fur Java Entwicklerhandbuch

}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

private DecisionContextProvider contextProvider
= new DecisionContextProviderImpl();

private WorkflowClock clock
= contextProvider.getDecisionContext().getWorkflowClock();

private PeriodicActivityClient activityClient
= new PeriodicActivityClientImpl();

private String state;

@Override

public void periodicWorkflow() {
state = "Just Started";
callPeriodicActivity(0);

}
@Asynchronous
private void callPeriodicActivity(int count,
Promise<?>... waitFor)
{
if(count == 100) {
state = "Finished Processing";
retuzrn;
}
// call activity
activityClient.activityl();
// Repeat the activity after 1 hour.
Promise<Void> timer = clock.createTimer(3600);
state = "Waiting for timer to fire. Count = "+count;
callPeriodicActivity(count+l, timer);
}
@Override

public String getState() {
return state;

Offenlegen des Ausflihrungsstatus API-Version 2021-04-28 92

AWS Flow Framework fur Java Entwicklerhandbuch

public class PeriodicActivityImpl implements PeriodicActivity

{
@Override
public static void activityl()
{
}
}

Der generierte externe Client kann jederzeit zum Abrufen des aktuellen Status der Workflow-
Ausfuhrung verwendet werden.

PeriodicWorkflowClientExternal client
= new PeriodicWorkflowClientExternalFactoryImpl().getClient();
System.out.println(client.getState());

Im obigen Beispiel wird der Ausflihrungsstatus in verschiedenen Stufen gemeldet. Wenn die
Workflow-Instance startet, meldet periodicWorkflow den Anfangsstatus "Just Started" (Soeben
gestartet). Mit jedem Aufruf an callPeriodicActivity wird der Workflow-Status anschlielend
aktualisiert. Sobald activityl 100 Mal aufgerufen wurde, wird die Methode zurlickgegeben und die
Workflow-Instance abgeschlossen.

Workflow-Lokale

Es kann vorkommen, das Sie statische Variablen in Ihrer Workflow-Implementierung verwenden
mussen. Beispielsweise wenn Sie einen Zahler speichern méchten, auf den von verschiedenen
Orten (mdglicherweise unterschiedlichen Klassen) in der Implementierung des Workflows zugegriffen
werden kann. Sie kénnen jedoch nicht auf statische Variablen in Ihren Workflows vertrauen,

da diese flr verschiedene Threads freigegeben sind. Dies ist problematisch, da ein Worker
mdglicherweise verschiedene Entscheidungsaufgaben in unterschiedlichen Threads verarbeitet.
Alternativ kdnnen Sie einen solchen Status in einem Feld in der Workflow-Implementierung
speichern. In diesem Fall missen Sie allerdings das Implementierungsobjekt weitergeben. Fur
diesen Fall stellt das Framework eine WorkflowExecutionLocal<?>-Klasse zur Verfligung.
Jeder Status, der eine statische Variable wie Semantik erfordert, sollte als Instance-Lokal unter
Verwendung von WorkflowExecutionlLocal<?> gespeichert werden. Sie kbnnen eine
statische Variable dieses Typs deklarieren und verwenden. Im folgenden Ausschnitt wird eine
WorkflowExecutionlLocal<String> zum Speichern eines Benutzernamens verwendet.

Workflow-Lokale API-Version 2021-04-28 93

AWS Flow Framework fur Java Entwicklerhandbuch

public class MyWFImpl implements MyWF {
public static WorkflowExecutionLocal<String> username
= new WorkflowExecutionLocal<String>();

@Override

public void start(String username){
this.username.set(username);
Processor p = new Processor();
p.updatelLastLogin();
p.greetUser();
}

public static WorkflowExecutionLocal<String> getUsername() {
return username;

public static void setUsername(WorkflowExecutionLocal<String> username) {
MyWFImpl.username = username;

}

public class Processor {
void updatelLastLogin(){
UserActivitiesClient c¢ = new UserActivitiesClientImpl();
c.refreshLastLogin(MyWFImpl.getUsername().get());

}

void greetUser(){
GreetingActivitiesClient ¢ = new GreetingActivitiesClientImpl();
c.greetUser(MyWFImpl.getUsername().get());

Implementierung von Aktivitaten

Die Aktivitdten werden durch eine Implementierung der @Activities-Schnittstelle realisiert. AWS
Flow Framework for Java verwendet die auf dem Worker konfigurierten Implementierungsinstanzen
fur Aktivitaten, um Aktivitatsaufgaben zur Laufzeit zu verarbeiten. Der Worker sucht automatisch die
Aktivitatsimplementierung des entsprechenden Typs.

Uber Eigenschaften und Felder kénnen Sie Ressourcen an Aktivitats-Instances wie z. B.
Datenbankverbindungen tUbergeben. Da auf das Objekt zur Implementierung der Aktivitat von

Implementierung von Aktivitaten API-Version 2021-04-28 94

AWS Flow Framework fur Java Entwicklerhandbuch

mehreren Threads aus zugegriffen werden kann, missen gemeinsam genutzte Ressourcen
threadsicher sein.

Beachten Sie, dass die Aktivitatsimplementierung keine Parameter vom Typ Promise<> oder
Ruckgabeobjekte dieses Typs akzeptiert. Die Implementierung der Aktivitat sollte nicht davon
abhangen, wie sie aufgerufen wurde (synchron oder asynchron).

Die zuvor gezeigte Aktivitatsschnittstelle kann folgendermalfien implementiert werden:

public class MyActivitiesImpl implements MyActivities {

@Override

@ManualActivityCompletion

public int activityl(){
//implementation

}

@Override
public void activity2(int foo){
//implementation

}

Der Aktivitatsimplementierung steht ein Thread-lokaler Kontext zur

Verfligung, tUber den das verwendete Aufgabenobjekt, Datenkonverter-

Objekt etc. abgerufen werden kann. Auf den aktuellen Kontext kann tber
ActivityExecutionContextProvider.getActivityExecutionContext()
zugegriffen werden. Weitere Informationen finden Sie in der AWS SDK fur Java Dokumentation
ActivityExecutionContext und im AbschnittAusfuhrungskontext.

Aktivitaten manuell abschlief3en

Die @ManualActivityCompletion-Annotation im obigen Beispiel ist eine optionale Annotation.
Sie ist nur bei Methoden erlaubt, die eine Aktivitat implementieren. Sie wird verwendet, um die
Aktivitat so zu konfigurieren, dass sie bei der Rlckkehr aus der Aktivitatsmethode nicht automatisch
beendet wird. Dies kann nitzlich sein, wenn Sie die Aktivitat asynchron abschlielien mochten, z. B.
manuell, nachdem eine menschliche Aktion abgeschlossen wurde.

StandardmaRig sieht das Framework die Aktivitat als abgeschlossen an, sobald Ihre
Aktivitdtsmethode die Kontrolle zurtickgibt. Das bedeutet, dass der Activity Worker Amazon
SWF den Abschluss der Aktivitatsaufgabe meldet und ihm die Ergebnisse (falls vorhanden)

Aktivitdten manuell abschlieRen API-Version 2021-04-28 95

AWS Flow Framework fur Java Entwicklerhandbuch

zur Verflgung stellt. Es gibt jedoch Anwendungsfalle, in denen die Aktivitatsaufgabe bei der
Ruckkehr aus der Aktivitatsmethode nicht als abgeschlossen gekennzeichnet werden soll. Dies

ist besonders hilfreich, wenn Sie menschliche Aufgaben modellieren. Beispielsweise kann die
Aktivitatsmethode eine E-Mail an eine Person senden, die eine Aufgabe erledigen muss, bevor die
Aktivitatsaufgabe abgeschlossen ist. In solchen Fallen kdnnen Sie die Aktivitatsmethode mit der
@ManualActivityCompletion-Annotation definieren, um dem Aktivitats-Worker mitzuteilen,
dass er die Aktivitat nicht automatisch abschlieen soll. Um die Aktivitat manuell abzuschliel3en,
kénnen Sie entweder die im Framework ManualActivityCompletionClient bereitgestellte
Methode oder die RespondActivityTaskCompleted Methode auf dem Amazon SWF-Java-Client
verwenden, die im Amazon SWF SDK bereitgestellt wird. Weitere Informationen finden Sie in der
AWS SDK fir Java Dokumentation.

Um die Aktivitdtsaufgabe abzuschlie®en, miussen Sie ein Aufgaben-Token bereitstellen. Das
Aufgaben-Token wird von Amazon SWF verwendet, um Aufgaben eindeutig zu identifizieren.

In Ihrer Aktivitatsimplementierung kénnen Sie Uber ActivityExecutionContext

auf das Token zugreifen. Sie missen dieses Token an denjenigen Ubergeben, der flr

die Erledigung der Aufgabe verantwortlich ist. Das Token kann durch den Aufruf von
ActivityExecutionContextProvider.getActivityExecutionContext().getTaskToken()
von ActivityExecutionContext abgerufen werden.

Die getName-Aktivitat des HelloWorld-Beispiels kann implementiert werden, um eine E-Mail mit der
Bitte um eine BegruRungsnachricht an jemanden zu senden:

@ManualActivityCompletion
@Override
public String getName() throws InterruptedException {
ActivityExecutionContext executionContext
= contextProvider.getActivityExecutionContext();
String taskToken = executionContext.getTaskToken();
sendEmail("abcexyz.com",
"Please provide a name for the greeting message and close task with token: " +
taskToken);
return "This will not be returned to the caller";

Der folgende Code kann verwendet werden, um die BegrifRung bereitzustellen und die Aufgabe
mit ManualActivityCompletionClient zu schlieRen. Alternativ kbnnen Sie die Aufgabe auch
fehlschlagen lassen:

public class CompleteActivityTask {

Aktivitdten manuell abschlieRen API-Version 2021-04-28 96

AWS Flow Framework fur Java Entwicklerhandbuch

public void completeGetNameActivity(String taskToken) {

AmazonSimpleWorkflow swfClient
= new AmazonSimpleWorkflowClient(...); // use AWS access keys
ManualActivityCompletionClientFactory manualCompletionClientFactory
= new ManualActivityCompletionClientFactoryImpl(swfClient);
ManualActivityCompletionClient manualCompletionClient
= manualCompletionClientFactory.getClient(taskToken);
String result = "Hello World!";
manualCompletionClient.complete(result);

public void failGetNameActivity(String taskToken, Throwable failure) {

AmazonSimpleWorkflow swfClient

= new AmazonSimpleWorkflowClient(...); // use AWS access keys
ManualActivityCompletionClientFactory manualCompletionClientFactory

= new ManualActivityCompletionClientFactoryImpl(swfClient);
ManualActivityCompletionClient manualCompletionClient

= manualCompletionClientFactory.getClient(taskToken);
manualCompletionClient.fail(failure);

AWS Lambda Aufgaben umsetzen

Themen

« Uber AWS Lambda

» Vorteile und Einschrankungen der Verwendung von Lambda-Aufgaben

* Verwenden von Lambda-Aufgaben in lhren AWS Flow Framework Workflows fur Java

» Sehen Sie sich das Beispiel an HelloLambda

Uber AWS Lambda

AWS Lambda ist ein vollstandig verwalteter Rechenservice, der Ihren Code als Reaktion auf
Ereignisse ausfluhrt, die durch benutzerdefinierten Code oder durch verschiedene AWS Dienste wie
Amazon S3, DynamoDB, Amazon Kinesis, Amazon SNS und Amazon Cognito generiert wurden.
Weitere Informationen zu Lambda finden Sie im AWS Lambda Entwicklerhandbuch.

Implementierung von Lambda-Aufgaben API-Version 2021-04-28 97

https://docs.aws.amazon.com/lambda/latest/dg/

AWS Flow Framework fur Java Entwicklerhandbuch

Amazon Simple Workflow Service bietet eine Lambda-Aufgabe, sodass Sie Lambda-Funktionen
anstelle von oder zusammen mit herkdmmlichen Amazon SWF SWF-Aktivitaten ausfihren konnen.

/A Important

Ihr AWS Konto wird fur Lambda-Ausfihrungen (Anfragen) belastet, die von Amazon SWF
in Inrem Namen ausgeflhrt werden. Einzelheiten zu den Lambda-Preisen finden Sie unter
https://aws.amazon.com/lambda/pricing/.

Vorteile und Einschrankungen der Verwendung von Lambda-Aufgaben

Die Verwendung von Lambda-Aufgaben anstelle einer herkdmmlichen Amazon SWF SWF-Aktivitat
bietet eine Reihe von Vorteilen:

» Lambda-Aufgaben mussen nicht wie Amazon SWF SWF-Aktivitatstypen registriert oder versioniert
werden.

« Sie konnen alle vorhandenen Lambda-Funktionen verwenden, die Sie bereits in Ihren Workflows
definiert haben.

* Lambda-Funktionen werden direkt von Amazon SWF aufgerufen. Sie missen kein Worker-
Programm implementieren, um sie auszuflihren, wie dies bei herkdmmlichen Aktivitaten der Fall ist.

» Lambda stellt Innen Metriken und Protokolle zur Verfiigung, mit denen Sie Ihre
Funktionsausflihrungen verfolgen und analysieren kénnen.

Bei Lambda-Aufgaben sind jedoch einige Einschrankungen zu beachten:

» Lambda-Aufgaben kénnen nur in AWS Regionen ausgefihrt werden, die Lambda unterstitzen.
Einzelheiten zu den derzeit unterstitzten Regionen flr Lambda finden Sie unter Lambda Regions
and Endpoints in der Amazon Web Services General Reference.

» Lambda-Aufgaben werden derzeit nur von der SWF-Basis-SWF-HTTP-API und in der AWS Flow
Framework flr Java unterstitzt. Derzeit gibt es keine Unterstitzung fur Lambda-Aufgaben in der
AWS Flow Framework fir Ruby.

Vorteile und Einschrankungen der Verwendung von Lambda-Aufgaben API-Version 2021-04-28 98

https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

AWS Flow Framework fur Java Entwicklerhandbuch

Verwenden von Lambda-Aufgaben in Inren AWS Flow Framework
Workflows fur Java

Fir die Verwendung von Lambda-Aufgaben in Ihren Workflows AWS Flow Framework flir Java gelten
drei Voraussetzungen:

* Eine Lambda Lambda-Funktion. Sie kdnnen jede Lambda-Funktion verwenden, die Sie definiert
haben. Weitere Informationen zum Erstellen von Lambda-Funktionen finden Sie im AWS Lambda
Entwicklerhandbuch.

» Eine IAM-Rolle, die Zugriff auf die Ausfiihrung von Lambda-Funktionen aus lhren Amazon SWF
SWF-Workflows bietet.

» Code zum Planen der Lambda-Aufgabe in Ihrem Workflow.

Einrichten einer IAM-Rolle

Bevor Sie Lambda-Funktionen von Amazon SWF aufrufen konnen, missen Sie eine IAM-Rolle
bereitstellen, die den Zugriff auf Lambda von Amazon SWF aus erméglicht. Fihren Sie dazu einen
der folgenden Schritte aus:

* \Wahlen Sie eine vordefinierte Rolle, AWSLambdaRolle, um Ihren Workflows die Erlaubnis zu
geben, alle Lambda-Funktionen aufzurufen, die mit Ihrem Konto verknUpft sind.

+ Definieren Sie Ihre eigene Richtlinie und die zugehdrige Rolle, um Workflows die Erlaubnis zu
erteilen, bestimmte Lambda-Funktionen aufzurufen, die durch ihre Amazon-Ressourcennamen ()
ARNSs spezifiziert sind.

Beschranken Sie die Berechtigungen fur eine IAM-Rolle

Sie kdnnen die Berechtigungen fur eine IAM-Rolle, die Sie Amazon SWF zur Verfugung stellen,
einschranken, indem Sie die SourceAccount Kontextschllissel SourceArn und in lhrer Resource
Trust Policy verwenden. Diese Schlissel schranken die Verwendung einer IAM-Richtlinie ein,
sodass sie nur fir Amazon Simple Workflow Service-Ausflihrungen verwendet wird, die zum
angegebenen Domain-ARN gehéren. Wenn Sie beide Kontextschllissel flr globale Bedingungen
verwenden, missen der aws : SourceAccount Wert und das Konto, auf das im aws : SourceArn
Wert verwiesen wird, dieselbe Konto-ID verwenden, wenn sie in derselben Richtlinienerklarung
verwendet werden.

Verwenden von Lambda-Aufgaben in lhren AWS Flow Framework Workflows fiir Java API-Version 2021-04-28 99

https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/

AWS Flow Framework fur Java Entwicklerhandbuch

Im folgenden Beispiel schrankt der SourceArn Kontextschlissel die IAM-Servicerolle so ein,
dass sie nur in Amazon Simple Workflow Service-Ausfihrungen verwendet wird, die zu dem Konto
someDomain gehdren,. 123456789012

» Aussage 1
Schulleiter: "Service": "swf.amazonaws.com"
Aktion: sts:AssumeRole
"Condition": {

"ArnLike": {
"aws:SourceArn": "arn:aws:swf:*:123456789012:/domain/someDomain"

Im folgenden Beispiel schrankt der SourceAccount Kontextschlissel die IAM-Servicerolle so
ein, dass sie nur in Amazon Simple Workflow Service-Ausfihrungen im Konto, verwendet wird.
123456789012

"Condition": {
"StringlLike": {
"aws:SourceAccount": "123456789012"
}

Amazon SWF Zugriff zum Aufrufen beliebiger Lambda-Rollen gewahren

Sie kénnen die vordefinierte Rolle Rolle verwenden, AWSLambda um lhren Amazon SWF SWF-
Workflows die Méglichkeit zu geben, jede Lambda-Funktion aufzurufen, die mit lnrem Konto verknulpft
ist.

So verwenden Sie AWSLambda Role, um Amazon SWF Zugriff zum Aufrufen von Lambda-
Funktionen zu gewahren

1. Offnen Sie die Amazon IAM-Konsole.

2. \Wahlen Sie Roles und anschlieend Create New Role aus.

3. Geben Sie einen Namen fiir die Rolle ein, z. B. swf-1ambda, und klicken Sie auf Next Step.

Verwenden von Lambda-Aufgaben in lhren AWS Flow Framework Workflows fiir Java API-Version 2021-04-28 100

https://console.aws.amazon.com/iam/

AWS Flow Framework fur Java Entwicklerhandbuch

4. Wahlen Sie unter AWS Service Roles Amazon SWF und dann Next Step aus.

5. Wahlen Sie auf dem Bildschirm ,Richtlinie anhangen® die Option AWSLambdaRolle aus der Liste
aus.

6. Klicken Sie auf Next Step und auf Create Role, sobald Sie die Rolle Gberprift haben.

Definition einer IAM-Rolle fir den Zugriff auf den Aufruf einer bestimmten Lambda-Funktion

Wenn Sie Zugriff zum Aufrufen einer bestimmten Lambda-Funktion aus Ihrem Workflow gewahren
mdchten, missen Sie Ihre eigene IAM-Richtlinie definieren.

So erstellen Sie eine IAM-Richtlinie flr den Zugriff auf eine bestimmte Lambda-Funktion

1. Offnen Sie die Amazon IAM-Konsole.

2. Wahlen Sie Policies und dann Create Policy aus.

3. Wahlen Sie ,, AWS Verwaltete Richtlinie kopieren“ und wahlen Sie ,AWSLambdaRolle* aus der
Liste aus. Es wird eine Richtlinie erstellt. Sie kdnnen ihren Namen und die Beschreibung nach
Bedarf andern.

4. Fugen Sie im Feld Ressource des Richtliniendokuments den ARN |hrer Lambda-Funktion (en)

hinzu. Zum Beispiel:

» Ressource: arn:aws:lambda:us-
east-1:111122223333:function:hello_lambda_function

® Note

Eine vollstandige Beschreibung der Angabe von Ressourcen in einer IAM-Rolle finden
Sie unter Uberblick iber IAM-Richtlinien in Using IAM.

5. Wahlen Sie Create policy aus, um lhre Richtlinie zu erstellen.

Sie kdnnen diese Richtlinie dann auswahlen, wenn Sie eine neue IAM-Rolle erstellen, und diese
Rolle verwenden, um Aufrufzugriff auf Inre Amazon SWF SWF-Workflows zu gewahren. Dieses
Verfahren ist dem Erstellen einer Rolle mit der Rollenrichtlinie sehr ahnlich. Wahlen Sie stattdessen
Ihre eigene Richtlinie, wenn Sie die AWSLambdaRolle erstellen.

Verwenden von Lambda-Aufgaben in lhren AWS Flow Framework Workflows fiir Java API-Version 2021-04-28 101

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html

AWS Flow Framework fur Java Entwicklerhandbuch

So erstellen Sie eine Amazon SWF SWF-Rolle mithilfe Ihrer Lambda-Richtlinie

1. Offnen Sie die Amazon IAM-Konsole.

2. Wahlen Sie Roles und anschlieRend Create New Role aus.

3. Geben Sie einen Namen fiir die Rolle ein, z. B. swf-lambda-function, und klicken Sie auf
Next Step.

4. Wahlen Sie unter AWS Service Roles Amazon SWF und dann Next Step aus.

5. Wahlen Sie auf dem Bildschirm Attach Policy lhre funktionsspezifische Lambda-Richtlinie aus
der Liste aus.

6. Klicken Sie auf Next Step und auf Create Role, sobald Sie die Rolle tUberprift haben.

Eine Lambda-Aufgabe fur die Ausfihrung planen

Sobald Sie eine IAM-Rolle definiert haben, mit der Sie Lambda-Funktionen aufrufen kénnen, kénnen
Sie deren Ausflihrung als Teil Ihres Workflows planen.

(@ Note

Dieser Prozess wird anhand des HelloLambda Beispiels in der vollstandig demonstriert. AWS
SDK fur Java

So planen Sie die Ausflihrung einer Lambda-Task

1. Rufen Sie in lhrer Workflow-Implementierung eine Instance des LambdaFunctionClient ab,
indem Sie getLambdaFunctionClient() fur eine DecisionContext-Instance aufrufen.

// Get a LambdaFunctionClient instance

DecisionContextProvider decisionProvider = new DecisionContextProviderImpl();
DecisionContext decisionContext = decisionProvider.getDecisionContext();
LambdaFunctionClient lambdaClient = decisionContext.getLambdaFunctionClient();

2. Planen Sie die Aufgabe mithilfe der scheduleLambdaFunction() Methode auf der
LambdaFunctionClient und Gbergeben Sie ihr den Namen der Lambda-Funktion, die Sie
erstellt haben, sowie alle Eingabedaten fur die Lambda-Aufgabe.

Verwenden von Lambda-Aufgaben in lhren AWS Flow Framework Workflows fiir Java API-Version 2021-04-28 102

https://console.aws.amazon.com/iam/

AWS Flow Framework fur Java Entwicklerhandbuch

// Schedule the Lambda function for execution, using your IAM role for access.
String lambda_function_name = "The name of your Lambda function.";
String lambda_function_input = "Input data for your Lambda task.";

lambdaClient.scheduleLambdaFunction(lambda_function_name, lambda_function_input);

3. Fugen Sie in lhrem Workflow-Ausflihrungsstarter die IAM-Lambda-Rolle
zu lhren Standard-Workflow-Optionen hinzu, indem Sie die Optionen
verwendenStartWorkflowOptions.withLambdaRole(), und libergeben Sie sie dann,
wenn Sie den Workflow starten.

// Workflow client classes are generated for you when you use the @Workflow
// annotation on your workflow interface declaration.
MyWorkflowClientExternalFactory clientFactory =

new MyWorkflowClientExternalFactoryImpl(sdk_swf_client, swf_domain);

MyWorkflowClientExternal workflow_client = clientFactory.getClient();
// Give the ARN of an IAM role that allows SWF to invoke Lambda functions on
// your behalf.

String lambda_iam_role = "arn:aws:iam::111111000000:role/swf_lambda_role";

StartWorkflowOptions workflow_options =
new StartWorkflowOptions().withLambdaRole(lambda_iam_role);

// Start the workflow execution
workflow_client.helloWorld("User", workflow_options);

Sehen Sie sich das Beispiel an HelloLambda

Ein Beispiel, das eine Implementierung eines Workflows bietet, der eine Lambda-Aufgabe verwendet,
finden Sie in der AWS SDK fir Java. Laden Sie den Quellcode herunter, um es anzusehen und and/
or auszufuhren.

Eine vollstandige Beschreibung der Erstellung und Ausflihrung des HelloLambdaBeispiels finden Sie
in der README-Datei, die den Java-Beispielen AWS Flow Framework beiliegt.

Sehen Sie sich das Beispiel an HelloLambda API-Version 2021-04-28 103

https://aws.amazon.com/code/3015904745387737

AWS Flow Framework fur Java Entwicklerhandbuch

Ausfuhren von Programmen, die mit dem AWS Flow Framework fur
Java geschrieben wurden

Themen

» WorkflowWorker
 ActivityWorker

» Worker-Threading-Modell

» Worker-Erweiterbarkeit

Das Framework stellt Worker-Klassen zur Initialisierung der Runtime AWS Flow Framework flir Java
und zur Kommunikation mit Amazon SWF bereit. Um einen Workflow- oder Aktivitats-Worker zu
implementieren, missen Sie zuerst eine Instance einer Worker-Klasse erstellen und starten. Diese
Worker-Klassen sind fir die Verwaltung laufender asynchroner Vorgange, das Aufrufen asynchroner
Methoden, die entsperrt werden, und fir die Kommunikation mit Amazon SWF verantwortlich. Sie
kénnen mit Workflow- und Aktivitatsimplementierungen, der Anzahl an Threads, der abzufragenden
Aufgabenliste usw. konfiguriert werden.

Das Framework enthalt zwei Worker-Klassen, eine fur Aktivitdten und eine fir Workflows. Zum
Ausfihren der Workflow-Logik verwenden Sie die WorkflowWorker-Klasse. Analog verwenden Sie
fur Aktivitaten die ActivityWorker-Klasse. Diese Klassen fragen Amazon SWF automatisch nach
Aktivitatsaufgaben ab und rufen die entsprechenden Methoden in lhrer Implementierung auf.

Im folgenden Beispiel wird gezeigt, wie ein WorkflowWorkexr instanziiert wird und Aufgaben
abgerufen werden.

AmazonSimpleWorkflow swfClient = new AmazonSimpleWorkflowClient(awsCredentials);
WorkflowWorker worker = new WorkflowWorker(swfClient, "domainl", "tasklistl");
// Add workflow implementation types
worker.addWorkflowImplementationType(MyWorkflowImpl.class);

// Start worker
worker.start();

Im Folgenden sehen Sie die grundlegenden Schritte zum Erstellen einer Instance von
ActivityWorker und dem Abrufen von Aufgaben:

AmazonSimpleWorkflow swfClient

Ausfihren von Programmen, die mit dem AWS Flow Framework fir Java geschrieben wurden API-Version 2021-04-28 104

AWS Flow Framework fur Java Entwicklerhandbuch

= new AmazonSimpleWorkflowClient(awsCredentials);
ActivityWorker worker = new ActivityWorker(swfClient,
"domainl",
"tasklistl");
worker.addActivitiesImplementation(new MyActivitiesImpl());

// Start worker
worker.start();

Wenn Sie eine Aktivitat oder einen Entscheider beenden mdchten, sollte lhre Anwendung die
Instances der verwendeten Worker-Klassen sowie die Amazon SWF SWF-Java-Client-Instance
herunterfahren. So konnen Sie sicher sein, dass alle Ressourcen, die von den Worker-Klassen
verwendet werden, ordnungsgemal freigegeben werden.

worker.shutdown();
worker.awaitTermination(1l, TimeUnit.MINUTES);

Um mit einer Ausfiihrung zu beginnen, erstellen Sie einfach eine Instance des generierten externen
Client und rufen Sie die @Execute-Methode auf.

MyWorkflowClientExternalFactory factory = new MyWorkflowClientExternalFactoryImpl();
MyWorkflowClientExternal client = factory.getClient();
client.start();

WorkflowWorker

Wie der Name schon sagt, dient diese Worker-Klasse zur Verwendung mit der Workflow-
Implementierung. Sie wird mit einer Aufgabenliste und dem Workflow-Implementierungstyp
konfiguriert. Die Worker-Klasse fiihrt eine Schleife zur Abfrage von Entscheidungsaufgaben in der
angegebenen Aufgabenliste aus. Wenn eine Entscheidungsaufgabe empfangen wird, erstellt sie
eine Instance der Workflow-Implementierung und ruft die @Execute-Methode zur Verarbeitung der
Aufgabe auf.

ActivityWorker

Zur Implementierung von Aktivitats-Workern kénnen Sie die ActivityWorker-Klasse verwenden
und einfach eine Aufgabenliste nach Aktivitatsaufgaben abfragen. Sie konfigurieren den Aktivitats-

WorkflowWorker API-Version 2021-04-28 105

AWS Flow Framework fur Java Entwicklerhandbuch

Worker mit Aktivitats-Implementierungsobjekten. Diese Worker-Klasse fuhrt eine Schleife zur Abfrage
von Aktivitdtsaufgaben in der angegebenen Aufgabenliste aus. Wenn eine Aktivitatssaufgabe
empfangen wird, sucht sie die geeignete von lhnen bereitgestellte Implementierung und ruft

die Aktivitatsmethode zur Verarbeitung der Aufgabe auf. Im Gegensatz zur Worker-Klasse
WorkflowWorker, die die Factory aufruft, um fiir jede Entscheidungsaufgabe eine neue Instance zu
erstellen, verwendet ActivityWorker nur das von lhnen bereitgestellte Objekt.

Die ActivityWorker Klasse verwendet die Anmerkungen AWS Flow Framework fur Java, um die
Registrierungs- und Ausfliihrungsoptionen zu bestimmen.

Worker-Threading-Modell

AWS Flow Framework Bei Java ist die Verkdrperung einer Aktivitat oder eines Entscheiders

eine Instanz der Arbeiterklasse. lhre Anwendung ist verantwortlich fur die Konfiguration und die
Instanziierung des Worker-Objekts auf jedem Computer und Prozess, der als Worker eingesetzt
wird. Das Worker-Objekt empfangt dann automatisch Aufgaben von Amazon SWF, leitet sie an Ihre
Aktivitats- oder Workflow-Implementierung weiter und meldet die Ergebnisse an Amazon SWF. Es
ist mdglich, dass eine einzige Workflow-Instance viele Worker umfasst. Wenn Amazon SWF eine
oder mehrere ausstehende Aktivitdtsaufgaben hat, weist es dem ersten verfliigbaren Mitarbeiter
eine Aufgabe zu, dann dem nachsten usw. So kénnen Aufgaben, die zur selben Workflow-Instance
gehoren, gleichzeitig in unterschiedlichen Workern verarbeitet werden.

|' Amazon SWF ° |

Gt "

e r .

Implementation

Activity worker Decider

r\LLIM‘ILr’ Vel Al euiuci

L 'l'“.! i i Ligiuel

Worker-Threading-Modell API-Version 2021-04-28 106

AWS Flow Framework fiir Java Entwicklerhandbuch

Zusatzlich kann jeder Worker so konfiguriert werden, dass er Aufgaben in mehreren Threads
verarbeitet. Das bedeutet, dass die Aktivitatsaufgaben einer Workflow-Instance gleichzeitig
ausgefihrt werden kdnnen, selbst wenn nur ein Worker zur Verfigung steht.

Entscheidungsaufgaben verhalten sich ahnlich, mit der Ausnahme, dass Amazon SWF garantiert,
dass fur eine bestimmte Workflow-Ausfiihrung jeweils nur eine Entscheidung ausgefuhrt werden
kann. Eine einzelne Workflow-Ausfuhrung erfordert im Allgemeinen mehrere Entscheidungsaufgaben.
Deshalb kommt es oft zu Ausfiihrungen in mehreren Prozessen und Threads. Der Entscheider

wird mit dem Workflow-Implementierungstyp konfiguriert. Wenn eine Entscheidungsaufgabe vom
Entscheider empfangen wird, erstellt er eine Instance (ein Objekt) der Workflow-Implementierung.
Das Framework stellt ein erweiterbares Factory-Muster fur die Erstellung dieser Instances bereit.

Die standardmafRige Workflow-Factory erstellt jedes Mal ein neues Objekt. Um dieses Verhalten zu
umgehen, kdnnen Sie benutzerdefinierte Factories bereitstellen.

Im Gegensatz zu Entscheidern, die mit Workflow-Implementierungstypen konfiguriert werden,
werden Aktivitats-Worker mit Instances (Objekten) der Aktivitatsimplementierungen konfiguriert.
Wenn eine Aktivitatssaufgabe vom Aktivitats-Worker empfangen wird, wird sie an das geeignete
Implementierungsobjekt der Aktivitat gesendet.

Warkflow

Implementation
instances

Threid 1 Thrr:id 2 Thr%ad 3 Thr!gad 1 Th.!gad 2 Thr!aad 3

Activity worker Decider

Der Workflow-Worker verwaltet einen einzigen Thread-Pool und fihrt den Workflow auf demselben
Thread aus, der fur die Abfrage von Amazon SWF fir die Aufgabe verwendet wurde. Da Aktivitaten
lange dauern (zumindest im Vergleich zur Workflow-Logik), verwaltet die Activity Worker-Klasse zwei
separate Thread-Pools: einen fur die Abfrage von Amazon SWF nach Aktivitatsaufgaben und den
anderen fur die Verarbeitung von Aufgaben durch Ausflihrung der Aktivitatsimplementierung. So
kénnen Sie die Anzahl der Threads zum Abrufen von Aufgaben separat von der Anzahl der Threads
konfigurieren, die sie ausfiihren. Beispielsweise kann eine kleine Anzahl an Threads zum Abrufen
verflgbar sein und eine groRe Anzahl fir die Ausflihrung der Aufgaben. Die Activity Worker-Klasse

Worker-Threading-Modell API-Version 2021-04-28 107

AWS Flow Framework fur Java Entwicklerhandbuch

fragt Amazon SWF nur dann nach einer Aufgabe ab, wenn sie Uber einen freien Abfrage-Thread
sowie einen freien Thread zur Bearbeitung der Aufgabe verfugt.

Dieses Threading- und Instancing-Verhalten zeigt Folgendes:

1. Aktivitatsimplementierungen missen zustandslos sein. Sie sollten Instanzvariablen nicht dazu
verwenden, den Anwendungszustand in Aktivitdtsobjekten zu speichern. Uber Felder kénnen Sie
jedoch Ressourcen wie Datenbankverbindungen speichern.

2. Aktivitatsimplementierungen mussen threadsicher sein. Da dieselbe Instanz verwendet werden
kann, um Aufgaben aus verschiedenen Threads gleichzeitig zu verarbeiten, muss der Zugriff auf
gemeinsam genutzte Ressourcen aus dem Aktivitatscode synchronisiert werden.

3. Die Workflow-Implementierung kann zustandsbehaftet sein und Instance-Variablen kénnen
zum Speichern des Status verwendet werden. Auch wenn eine neue Instance der Workflow-
Implementierung erstellt wurde, um jede Entscheidungsaufgabe zu verarbeiten, stellt das
Framework sicher, dass der Status ordnungsgemal wiederhergestellt wird. Allerdings muss die
Implementierung Ihres Workflows deterministisch sein. Weitere Details finden Sie im Abschnitt
Eine Aufgabe in AWS Flow Framework fur Java verstehen.

4. Workflow-Implementierungen missen nicht threadsicher sein, wenn die Standard-Factory
verwendet wird. Durch die Standardimplementierung wird sichergestellt, dass nur ein Thread
gleichzeitig eine Instanz der Implementierung lhres Workflows verwendet.

Worker-Erweiterbarkeit

Die AWS Flow Framework fur Java enthalt auch einige Low-Level-Worker-Klassen, die Ihnen eine
detaillierte Steuerung und Erweiterbarkeit bieten. Damit kbnnen Sie die Registrierung vom Workflow-
und Aktivitats-Typ genau anpassen und Factories fur die Erstellung von Implementierungsobjekten
bestimmen. Diese Worker sind GenericWorkflowWorker und GenericActivityWorker.

GenericWorkflowWorker kann mit einer Factory zur Erstellung von Factories fiir Workflow-
Definitionen konfiguriert werden. Die Factory fur Workflow-Definitionen ist verantwortlich flr

die Erstellung von Instances der Workflow-Implementierung und fur die Bereitstellung von
Konfigurationseinstellungen wie den Registrierungsoptionen. Unter normalen Umstanden sollten Sie
die WorkflowWorker-Klasse direkt verwenden. Sie erstellt und konfiguriert die Implementierung
der bereitgestellten Factories in das Framework, POJOWorkflowDefinitionFactoryFactory
und POJOWorkflowDefinitionFactory. Die Factory setzt voraus, dass die Workflow-
Implementierungsklasse Uber einen Konstruktor verfugt, der keine Argumente annimmt. Dieser
Konstruktor wird verwendet, um Instances des Workflow-Objekts zur Laufzeit zu erstellen. Die

Worker-Erweiterbarkeit API-Version 2021-04-28 108

AWS Flow Framework fur Java Entwicklerhandbuch

Factory prift die Anmerkungen, die Sie in der Workflow-Schnittstelle und der Implementierung
verwendet haben, um geeignete Registrierungs- und Ausfliihrungsoptionen zu erstellen.

Sie kénnen eine eigene Implementierung der Factories bereitstellen, indem Sie
WorkflowDefinitionFactory, WorkflowDefinitionFactoryFactory und
WorkflowDefinition implementieren. Die WorkflowDefinition-Klasse wird von der
Worker-Klasse dazu verwendet, Entscheidungsaufgaben und Signale zu versenden. Wenn Sie
diese Basisklassen implementieren, kdnnen Sie die Factory und die Verteilung von Anfragen

an die Workflow-Implementierung genau anpassen. Sie kdnnen diese Erweiterbarkeitspunkte

dazu verwenden, ein benutzerdefiniertes Programmierungsmodell zum Schreiben von Workflows
bereitzustellen, z. B. basierend auf lhren eigenen Anmerkungen oder durch Generieren aus WSDL -
anstelle des Code-First-Ansatzes, der vom Framework verwendet wird. Um lhre benutzerdefinierten
Factories nutzen zu kdnnen, missen Sie die GenericWorkflowWorker-Klasse verwenden.
Weitere Informationen zu diesen Klassen finden Sie in der Dokumentation. AWS SDK fir Java

In ahnlicher Weise bietet auch GenericActivityWorker die Mdglichkeit, eine
benutzerdefinierte Factory fur Aktivitatsimplementierungen bereitzustellen. Wenn Sie die Klassen
ActivityImplementationFactory und ActivityImplementation implementieren,
konnen Sie die Instanziierung komplett steuern und die Registrierungs- und Ausfuhrungsoptionen
selbst definieren. Weitere Informationen zu diesen Klassen finden Sie in der AWS SDK fur Java
Dokumentation.

Ausfuhrungskontext

Themen

» Entscheidungskontext

« Aktivitatsausfihrungskontext

Das Framework gibt dem Workflow und den Aktivitatsimplementierungen einen Umgebungskontext.
Dieser Kontext bezieht sich jeweils auf die ausgefihrte Aufgabe und stellt einige Dienstprogramme

bereit, die Sie in der Implementierung verwenden kdnnen. Ein Kontextobjekt wird jedes Mal erstellt,
wenn eine neue Aufgabe vom Auftragnehmer verarbeitet wird.

Entscheidungskontext

Wenn eine Entscheidungsaufgabe ausgeflhrt wird, stellt das Framework den Kontext fir die
Workflow-Implementierung Gber die DecisionContext-Klasse zur Verflgung. DecisionContext

Ausfuhrungskontext API-Version 2021-04-28 109

AWS Flow Framework fur Java Entwicklerhandbuch

liefert kontextsensitive Informationen wie die ID des Workflow-Ausflihrungslaufs und die Takt- und
Timerfunktionalitat.

Zugriff DecisionContext bei der Workflow-Implementierung

Sie kénnen auf den DecisionContext in Ihrer Workflow-Implementierung unter Verwendung der
DecisionContextProviderImpl-Klasse zugreifen. Alternativ kbnnen Sie den Kontext in einem
Feld oder einer Eigenschaft Ihrer Workflow-Implementierung angeben. Verwenden Sie dazu Spring,
wie im Abschnitt "Prifbarkeit und Dependency Injection" beschrieben.

DecisionContextProvider contextProvider
= new DecisionContextProviderImpl();
DecisionContext context = contextProvider.getDecisionContext();

Erstellen einer Uhr und eines Timers

Der DecisionContext enthélt eine Eigenschaft vom Typ WorkflowClock, die eine Timer- und
Uhrfunktion bereitstellt. Da die Workflow-Logik deterministisch sein muss, sollten Sie die Systemuhr
in Ihrer Workflow-Implementierung nicht direkt verwenden. Die currentTimeMills-Methode in
der WorkflowClock gibt den Zeitpunkt des Startereignisses der zu verarbeitenden Entscheidung
zurlick. So wird sichergestellt, dass Sie denselben Zeitwert bei einer Wiedergabe erhalten und eine
deterministische Workflow-Logik erhalten.

WorkflowClock umfasst auch eine createTimer-Methode, die ein Promise-Objekt zurlickgibt,
das nach einem festgelegten Intervall verfigbar wird. Verwenden Sie diesen Wert als Parameter
fur andere asynchrone Methoden, um deren Ausflihrung um einen festgelegten Zeitraum zu
verschieben. So kénnen Sie eine asynchrone Methode oder Aktivitat effektiv fur eine spatere
Ausfiuihrung planen.

Im folgenden Beispiel wird gezeigt, wie Sie eine Aktivitat periodisch aufrufen kdnnen.

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

public interface PeriodicWorkflow {

@Execute(version = "1.0")
void periodicWorkflow();
}
@Activities(version = "1.0")

Entscheidungskontext API-Version 2021-04-28 110

AWS Flow Framework fur Java Entwicklerhandbuch

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
void activityl();

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

private DecisionContextProvider contextProvider
= new DecisionContextProviderImpl();

private WorkflowClock clock
= contextProvider.getDecisionContext().getWorkflowClock();

@Override
public void periodicWorkflow() {
callPeriodicActivity(0);

}
@Asynchronous
private void callPeriodicActivity(int count,
Promise<?>... waitFor) {
if (count == 100) {
return;
}
PeriodicActivityClient client = new PeriodicActivityClientImpl();
// call activity
Promise<Void> activityCompletion = client.activityl();
Promise<Void> timer = clock.createTimer(3600);
// Repeat the activity either after 1 hour or after previous activity run
// if it takes longer than 1 hour
callPeriodicActivity(count + 1, timer, activityCompletion);
}

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override

public void activityl() {

Entscheidungskontext API-Version 2021-04-28 111

AWS Flow Framework fur Java Entwicklerhandbuch

}

In der Liste oben ruft die asynchrone Methode callPeriodicActivity activityl auf und
erstellt einen Timer mit dem aktuellen AsyncDecisionContext. Sie Ubergibt das zuriickgegebene
Promise als Argument an einen rekursiven Aufruf von sich selbst. Dieser rekursive Aufruf wartet, bis
der Timer ausgeldst wird (in diesem Beispiel eine Stunde), bevor er ausgefuhrt wird.

Aktivitatsausfuhrungskontext

Genau wie der DecisionContext enthalt der Aktivitatsausfihrungskontext Kontextinformationen
zur Verarbeitung einer Entscheidungsaufgabe. ActivityExecutionContext stellt dhnliche
Kontextinformationen bereit, wenn eine Aktivitatsausgabe verarbeitet wird. Dieser Kontext ist flr lhren
Aktivitatscode Uber die Klasse ActivityExecutionContextProviderImpl verfugbar.

ActivityExecutionContextProvider provider
= new ActivityExecutionContextProviderImpl();
ActivityExecutionContext aec = provider.getActivityExecutionContext();

Mit ActivityExecutionContext kénnen Sie folgende Aufgaben ausfihren:
Heartbeat fur eine langfristige Aktivitat

Wenn die Aktivitat lange andauert, muss sie ihren Fortschritt regelmaRig an Amazon SWF melden,
um sie daruber zu informieren, dass die Aufgabe weiterhin voranschreitet. Wenn kein Heartbeat
gesendet wird, kann eine Zeitliberschreitung auftreten, wenn diese bei der Registrierung des
Aktivitatstyps oder beim Planen der Aktivitat definiert wurde. Um einen Heartbeat zu senden, kénnen
Sie die recordActivityHeartbeat-Methode im ActivityExecutionContext verwenden. Ein
Heartbeat kann auch dazu dienen, laufende Aktivitdten abzubrechen. Weitere Informationen sowie
ein Beispiel finden Sie im Abschnitt Fehlerbehandlung.

Abrufen von Details zur Aktivitatsaufgabe

Wenn Sie méchten, kénnen Sie alle Details der Aktivitdtsaufgabe abrufen, die von Amazon SWF
Ubergeben wurden, als der Executor die Aufgabe erhielt. Dies umfasst Informationen zu den
Eingaben der Aufgabe, Aufgabentyp, Aufgabentoken usw. Wenn Sie eine Aktivitat implementieren
mdchten, die manuell abgeschlossen wird, z. B. durch eine menschliche Aktion, missen Sie das
verwenden, um das Aufgaben-Token abzurufen und es ActivityExecutionContext an den
Prozess weiterzuleiten, der die Aktivitdtsaufgabe letztendlich abschliel3t. Weitere Informationen finden
Sie im Abschnitt zu Aktivitaten manuell abschliel3en.

Aktivitatsausfihrungskontext API-Version 2021-04-28 112

AWS Flow Framework fur Java Entwicklerhandbuch

Ruft das Amazon SWF-Client-Objekt ab, das vom Executor verwendet wird

Das vom Executor verwendete Amazon SWF-Client-Objekt kann durch Aufrufen der getService
Methode on abgerufen werden. ActivityExecutionContext Dies ist nutzlich, wenn Sie den
Amazon SWF-Service direkt anrufen mdchten.

Untergeordnete Workflow-Ausfuhrungen

In den bisherigen Beispielen wurde die Workflow-Ausfihrung direkt in einer Anwendung gestartet.
Eine Workflow-Ausflhrung kann jedoch auch innerhalb eines Workflows gestartet werden, indem flr
den generierten Client die Workflow-Eintrittspunktmethode aufgerufen wird. Wenn eine Workflow-
Ausfuhrung im Kontext der Ausfuihrung eines anderen Workflows gestartet wird, ist das eine
untergeordnete Workflow-Ausflihrung. Damit kbnnen Sie komplexe Workflows in kleinere Einheiten
unterteilen und gegebenenfalls in verschiedenen Workflows einsetzen. Sie kdnnen zum Beispiel
einen Workflow zur Zahlungsabwicklung erstellen und tber den Workflow zur Abwicklung des
Bestellvorgangs aufrufen.

Die untergeordnete Workflow-Ausflihrung erfolgt semantisch genauso wie ein eigenstandiger
Workflow — mit Ausnahme der folgenden Unterschiede:

1. Wenn der Ubergeordnete Workflow aufgrund einer expliziten Aktion des Benutzers beendet wird, z.
B. durch Aufrufen der TerminateWorkflowExecution Amazon SWF SWF-API, oder aufgrund
eines Timeouts beendet wird, wird das Schicksal der Ausfiihrung des untergeordneten Workflows
durch eine untergeordnete Richtlinie bestimmt. Sie kédnnen diese untergeordnete Richtlinie so
einrichten, dass die Ausfuhrung des untergeordneten Workflows beendet, abgebrochen oder
verworfen (lauft weiter) wird.

2. Die Ausgabe des untergeordneten Workflows (Ruckgabewert der Eintrittspunktmethode) kann
von der Ubergeordneten Workflow-Ausfihrung genau so wie der mit einer asynchronen Methode
zurickgegebene Promise<T> verwendet werden. Dies unterscheidet sich von eigenstandigen
Ausfuhrungen, bei denen die Anwendung die Ausgabe mithilfe von Amazon SWF APIs abrufen
muss.

Im folgenden Beispiel erstellt der 0OrderProcessor-Workflow einen untergeordneten Workflow
PaymentProcessor:

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

Untergeordnete Workflow-Ausfiihrungen API-Version 2021-04-28 113

AWS Flow Framework fur Java Entwicklerhandbuch

public interface OrderProcessor {

@Execute(version = "1.0")
void processOrder(Order order);

public class OrderProcessorImpl implements OrderProcessor {
PaymentProcessorClientFactory factory
= new PaymentProcessorClientFactoryImpl();

@Override

public void processOrder(Order order) {
float amount = order.getAmount();
CardInfo cardInfo = order.getCardInfo();

PaymentProcessorClient childWorkflowClient = factory.getClient();
childWorkflowClient.processPayment(amount, cardInfo);

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

public interface PaymentProcessor {

@Execute(version = "1.0")
void processPayment(float amount, CardInfo cardInfo);

public class PaymentProcessorImpl implements PaymentProcessor {
PaymentActivitiesClient activitiesClient = new PaymentActivitiesClientImpl();

@Override
public void processPayment(float amount, CardInfo cardInfo) {
Promise<PaymentType> payType = activitiesClient.getPaymentType(cardInfo);
switch(payType.get()) {
case Visa:
activitiesClient.processVisa(amount, cardInfo);
break;
case Amex:
activitiesClient.processAmex(amount, cardInfo);
break;

Untergeordnete Workflow-Ausfiihrungen API-Version 2021-04-28 114

AWS Flow Framework fur Java Entwicklerhandbuch

default:
throw new UnSupportedPaymentTypeException();
}
}
}
@Activities(version = "1.0")

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 3600,
defaultTaskStartToCloseTimeoutSeconds = 3600)

public interface PaymentActivities {
PaymentType getPaymentType(CardInfo cardInfo);
void processVisa(float amount, CardInfo cardInfo);

void processAmex(float amount, CardInfo cardInfo);

Fortlaufende Workflows

In einigen Anwendungsfallen bendtigen Sie vielleicht einen Workflow, der standig oder fur eine lange
Zeit ausgefuhrt wird — wie zum Beispiel ein Workflow, der den Zustand einer Serverflotte Uberwacht.

(@ Note
Da Amazon SWF den gesamten Verlauf einer Workflow-Ausflihrung speichert, wird der
Verlauf im Laufe der Zeit weiter wachsen. Bei einem erneuten Abspielen ruft das Framework
diesen Verlauf von Amazon SWF ab, was bei einem zu grolien Umfang des Verlaufs teuer
werden kann. Bei solchen lange ausgeflhrten oder fortlaufenden Workflows sollten Sie
die aktuelle Ausfiihrung regelmaRig schlieRen und eine neue Ausflihrung starten, um die
Verarbeitung fortzusetzen.

Das ist eine logische Fortsetzung der Workflow-Ausfuhrung. Der generierte Self-Client kann fir
diesen Zeck verwendet werden. Rufen Sie in Ihrer Workflow-Implementierung einfach die @Execute-
Methode flir den Self-Client auf. Sobald die aktuelle Ausfiihrung abgeschlossen ist, startet das
Framework mit derselben Workflow-ID eine neue Ausfihrung.

Fortlaufende Workflows API-Version 2021-04-28 115

AWS Flow Framework fur Java Entwicklerhandbuch

Sie kénnen die Ausfiihrung auch fortsetzen, indem Sie die continueAsNewOnCompletion-
Methode, die Sie vom aktuellen DecisionContext abrufen kdnnen, fir den
GenericWorkflowClient aufrufen. Mit der folgenden Workflow-Implementierung wird zum
Beispiel ein Timer festgelegt. Dieser wird nach einem Tag ausgel6st und ruft einen eigenen
Eintrittspunkt auf, der eine neue Ausflihrung startet.

public class ContinueAsNewWorkflowImpl implements ContinueAsNewWorkflow {

private DecisionContextProvider contextProvider
= new DecisionContextProviderImpl();

private ContinueAsNewWorkflowSelfClient selfClient
= new ContinueAsNewWorkflowSelfClientImpl();

private WorkflowClock clock
= contextProvider.getDecisionContext().getWorkflowClock();

@Override

public void startWorkflow() {
Promise<Void> timer = clock.createTimer(86400);
continueAsNew(timer);

@Asynchronous
void continueAsNew(Promise<Void> timer) {
selfClient.startWorkflow();

Wenn sich ein Workflow rekursiv selbst aufruft, schliet das Framework den aktuellen Workflow

nach Abschluss aller ausstehenden Aufgaben und startet eine neue Workflow-Ausfiihrung. Solange
noch Aufgaben ausstehen, wird die aktuelle Workflow-Ausflihrung nicht geschlossen. Die neue
Ausflihrung erbt nicht automatisch den Verlauf oder Daten aus der urspringlichen Ausflihrung. Wenn
Sie bestimmte Statusangaben in die neue Ausfiihrung tibernehmen méchten, missen Sie diese
ausdrucklich als Eingabe Ubergeben.

Aufgabenprioritat in Amazon SWF festlegen

StandardmaRig werden Aufgaben in einer Aufgabenliste basierend auf ihrer Ankunftszeit
bereitgestellt: Aufgaben, die zuerst geplant wurden, werden maéglichst zuerst ausgefihrt. Indem Sie

Einstellung der Aufgabenprioritat API-Version 2021-04-28 116

AWS Flow Framework fur Java Entwicklerhandbuch

eine optionale Aufgabenprioritat festlegen, kénnen Sie bestimmten Aufgaben Prioritat einrdumen:
Amazon SWF versucht, Aufgaben mit héherer Prioritat auf einer Aufgabenliste vor Aufgaben mit
niedrigerer Prioritat zuzuweisen.

Sie kénnen die Aufgabenprioritat sowohl fir Workflows als auch Aktivitaten einrichten. Die
Aufgabenprioritat eines Workflows wirkt sich weder auf die Prioritat von durch den Workflow
geplanten Aktivitdtsaufgaben noch auf vom Workflow gestartete untergeordnete Workflows aus.
Die Standardprioritat fur eine Aktivitat oder einen Workflow wird bei der Registrierung festgelegt
(entweder von lhnen oder von Amazon SWF), und die registrierte Aufgabenprioritat wird immer
verwendet, sofern sie nicht beim Planen der Aktivitat oder beim Starten einer Workflow-Ausfiihrung
aulder Kraft gesetzt wird.

Die Werte fur die Aufgabenprioritat missen im Bereich von "-2147483648" und "2147483647" liegen.
Hohere Zahlen geben dabei eine hdhere Prioritdt an. Wenn Sie fur eine Aktivitat oder einen Workflow
keine Aufgabenprioritat festlegen, wird eine Prioritat von Null ("0") zugewiesen.

Themen

 Einrichten der Aufgabenprioritat fur Workflows

 Einrichten der Aufgabenprioritat fur Aktivitaten

Einrichten der Aufgabenprioritat fur Workflows

Sie kdnnen die Aufgabenprioritat fir einen Workflow beim Registrieren oder Starten des

Workflows einrichten. Die beim Registrieren eines Workflowtyps festgelegte Aufgabenprioritat wird
standardmaRig fur alle Workflow-Ausfuhrungen dieses Typs verwendet, sofern sie beim Starten der
Workflow-Ausflhrung nicht Uberschrieben wird.

Um einen Workflow-Typ mit einer standardmaRigen Aufgabenprioritat zu registrieren, legen Sie
WorkflowRegistrationOptionsbei der Deklaration die defaultTaskPriorityOption fest:

@Workflow
@WorkflowRegistrationOptions(
defaultTaskPriority = 10,
defaultTaskStartToCloseTimeoutSeconds = 240)
public interface PriorityWorkflow
{
@Execute(version = "1.0")
void startWorkflow(int a);

Einrichten der Aufgabenprioritat fir Workflows API-Version 2021-04-28 117

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/WorkflowRegistrationOptions.html

AWS Flow Framework fur Java Entwicklerhandbuch

Sie kénnen auch die taskPriority fir einen Workflow festlegen, wenn Sie ihn starten, wobei die
registrierte (standardmanige) Aufgabenprioritat Gberschrieben wird.

StartWorkflowOptions priorityWorkflowOptions
= new StartWorkflowOptions().withTaskPriority(10);

PriorityWorkflowClientExternalFactory cf
= new PriorityWorkflowClientExternalFactoryImpl(swfService, domain);

priority_workflow_client = cf.getClient();

priority_workflow_client.startWorkflow(
"Smith, John", priorityWorkflowOptions);

Zusatzlich kénnen Sie die Aufgabenprioritat festlegen, wenn Sie einen untergeordneten
Workflow starten oder einen Workflow als neu fortsetzen. Sie kénnen beispielsweise
die Option TaskPriority in ContinueAsNewWorkflowExecutionParametersoder in

StartChildWorkflowExecutionParametersfestlegen.

Einrichten der Aufgabenprioritat fur Aktivitaten

Sie kénnen die Aufgabenprioritat flr eine Aktivitat entweder beim Registrieren oder Planen der
Aufgabe einrichten. Die beim Registrieren eines Aktivitatstyps festgelegte Aufgabenprioritat wird
standardmafig beim Ausflihren der Aktivitat verwendet, sofern sie beim Planen der Aktivitat nicht
Uberschrieben wird.

Um einen Aktivitatstyp mit einer standardmafigen Aufgabenprioritat zu registrieren, legen Sie die
defaultTaskPriorityOption ActivityRegistrationOptionsbei der Deklaration fest:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
defaultTaskPriority = 10,
defaultTaskStartToCloseTimeoutSeconds = 120)
public interface ImportantActivities {
int doSomethingImportant();
}

Sie kénnen auch die taskPriority flr eine Aktivitat festlegen, wenn Sie ihn planen, wobei die
registrierte (standardmanige) Aufgabenprioritat Gberschrieben wird.

Einrichten der Aufgabenprioritat fir Aktivitaten API-Version 2021-04-28 118

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/ContinueAsNewWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/StartChildWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/ActivityRegistrationOptions.html

AWS Flow Framework fur Java Entwicklerhandbuch

ActivitySchedulingOptions activityOptions = new
ActivitySchedulingOptions.withTaskPriority(10);

ImportantActivitiesClient activityClient = new ImportantActivitiesClientImpl();

activityClient.doSomethingImportant(activityOptions);

DataConverters

Wenn lhre Workflow-Implementierung eine Remote-Aktivitat aufruft, werden die Eingaben dorthin
Ubergeben und das Ergebnis der Ausfuhrung der Aktivitdt muss serialisiert werden, sodass

sie Uber den Draht gesendet werden kdnnen. Das Framework verwendet die DataConverter
Klasse fur diesen Zweck. Dies ist eine abstrakte Klasse, die Sie implementieren kdnnen,

um lhren eigenen Serializer anzugeben. Eine auf dem Jackson-Serializer basierende
StandardimplementierungJsonDataConverter, istim Framework enthalten. Weitere
Einzelheiten dazu finden Sie in der AWS SDK fur Java -Dokumentation. In der Jackson JSON
Processor-Dokumentation finden Sie weitere Informationen dazu, wie Jackson die Serialisierung
durchfliihrt, sowie Jackson-Annotationen, die fir deren Beeinflussung verwendet werden kénnen.
Das verwendete Drahtformat wird als Teil des Vertrags angesehen. Sie kénnen also einen
DataConverter auf lhren Aktivitaten und Workflow-Schnittstellen angeben, indem Sie die
DataConverter-Eigenschaft der @Activities- und @Workflow-Annotationen festlegen.

Das Framework erzeugt Objekte vom DataConverter-Typ, den Sie in der @Activities-
Annotation angegeben haben, um die Eingaben fur die Aktivitat zu serialisieren und ihr Ergebnis zu
deserialisieren. Ahnlich werden Objekte vom DataConverter-Typ, den Sie in der @Workflow-
Annotation angeben, verwendet, um Parameter, die Sie an den Workflow Ubergeben, zu serialisieren
und im Fall eines untergeordneten Workflows das Ergebnis zu deserialisieren. Zusatzlich zu den
Eingaben Ubergibt das Framework auch zusatzliche Daten an Amazon SWF, z. B. Ausnahmedetails.
Der Workflow-Serializer wird auch fur die Serialisierung dieser Daten verwendet.

Sie kénnen auch eine Instance des DataConverter angeben, wenn Sie nicht méchten, dass das
Framework sie automatisch erstellt. Die generierten Clients haben Konstruktoriberlastungen, die
einen DataConverter akzeptieren.

Wenn Sie keinen DataConverter-Typ angeben und kein DataConverter-Objekt Ubergeben, wird
der JsonDataConverter standardméafig verwendet.

DataConverters API-Version 2021-04-28 119

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html

AWS Flow Framework fur Java Entwicklerhandbuch

Datenlbergabe an asynchrone Methoden

Themen

« Ubergabe von Collections und Maps an asynchrone Methoden

Einstellbare <T>

* @NoWait

* Promise <Void>

* AndPromise und OrPromise

Die Verwendung von Promise<T> wurde in den vorangegangenen Abschnitten erlautert. Hier
werden einige fortgeschrittene Anwendungsfalle von Promise<T> besprochen.

Ubergabe von Collections und Maps an asynchrone Methoden

Das Framework unterstiitzt die Ubergabe von Arrays, Collections und Maps als Promise-Typen an
asynchrone Methoden. Beispielsweise kann eine asynchrone Methode, wie im Folgenden gezeigt,
Promise<ArraylList<String>> als Argument entgegennehmen.

@Asynchronous
public void printList(Promise<List<String>> list) {
for (String s: list.get()) {
activityClient.printActivity(s);
}

Semantisch verhalt sich diese Variante wie jeder andere typisierte Promise-Parameter und die
asynchrone Methode wartet, bis die Collection verfigbar wird, bevor sie ausgefthrt wird. Wenn die
Mitglieder einer Collection Promise-Objekte sind, kdnnen Sie das Framework warten lassen, bis
alle Mitglieder bereit sind. Dies ist im folgenden Snippet zu sehen. Dadurch wartet die asynchrone
Methode auf die Verfligbarkeit aller Mitglieder der Collection.

@Asynchronous
public void printList(@Wait List<Promise<String>> list) {
for (Promise<String> s: list) {
activityClient.printActivity(s);
}
}

Datenlibergabe an asynchrone Methoden API-Version 2021-04-28 120

AWS Flow Framework fur Java Entwicklerhandbuch

Beachten Sie, dass die @Wait-Annotation fur den Parameter verwendet werden muss. Diese zeigt
an, das Promise-Objekte enthalten sind.

Beachten Sie auRerdem, dass die Aktivitat printActivity ein String-Argument entgegennimmt,
die entsprechende Methode im generierten Client jedoch ein Promise<String>-Argument erwartet.
Wir rufen die Methode fur den Client auf. Wir rufen nicht die Aktivitdtsmethode direkt auf.

Einstellbare <T>

Settable<T> ist ein von Promise<T> abgeleiteter Typ, der eine Set-Methode zur Verfiigung
stellt, mit der Sie den Promise-Wert manuell einstellen kdnnen. Beispielsweise wartet der folgende
Workflow auf den Empfang eines Signals, indem er auf ein Settable<?> wartet, das in der
Signalmethode festgelegt ist:

public class MyWorkflowImpl implements MyWorkflow{
final Settable<String> result = new Settable<String>();

//@Execute method

@Override

public Promise<String> start() {
return done(result);

}

//Signal

@Override

public void manualProcessCompletedSignal(String data) {
result.set(data);

}

@Asynchronous
public Promise<String> done(Settable<String> result){
return result;

}

Ein Settable<?>-Wert kann aul3erdem mit einem anderen Promise-Objekt verkettet werden. Mit
AndPromise und OrPromise kénnen Sie Promise-Objekte gruppieren. Sie kénnen die Verkettung
eines verketteten Settable aufheben, indem Sie die unchain()-Methode aufrufen. Wenn eine
Verkettung vorhanden ist, steht Settable<?> automatisch bereit, wenn das verkettete Promise-
Objekt bereit ist. Die Verkettung ist besonders dann nitzlich, wenn Sie ein im Rahmen eines
doTry()-Aufrufes zurlickgegebenes Promise-Objekt in anderen Teilen lhres Programms verwenden

Einstellbare <T> API-Version 2021-04-28 121

AWS Flow Framework fur Java Entwicklerhandbuch

wollen. Da TryCatchFinally es sich um eine verschachtelte Klasse handelt, kdnnen Sie a nicht
Promise<> im Giiltigkeitsbereich des libergeordneten Objekts deklarieren und festlegen. doTry ()
Dies liegt daran, dass in Java Variablen im Ubergeordneten Bereich deklariert und in verschachtelten
Klassen verwendet werden missen, um als endgultig markiert zu werden. Zum Beispiel:

@Asynchronous
public Promise<String> chain(final Promise<String> input) {
final Settable<String> result = new Settable<String>();

new TryFinally() {

@Override

protected void doTry() throws Throwable {
Promise<String> resultToChain = activityl(input);
activity2(resultToChain);

// Chain the promise to Settable
result.chain(resultToChain);

@Override
protected void doFinally() throws Throwable {
if (result.isReady()) { // Was a result returned before the exception?
// Do cleanup here

i

return result;

Ein Settable kann jeweils mit einem Promise-Objekt verkettet werden. Sie kénnen die Verkettung
eines verketteten Settable aufheben, indem Sie die unchain()-Methode aufrufen.

@NoWait

Wenn Sie ein Promise an eine asynchrone Methode Ubergeben, wartet das Framework
standardmafig, bis die Promise(s) bereit sind, bevor es die Methode ausfuhrt (auler bei Collection-
Typen). Sie kdnnen dieses Verhalten Gberschreiben, indem Sie in der Deklaration der asynchronen
Methode die @NoWait-Notation fir die Parameter verwenden. Dies ist dann nitzlich, wenn Sie in
Settable<T> Werte Uibergeben, die durch die asynchrone Methode selbst festgelegt werden.

@NoWait API-Version 2021-04-28 122

AWS Flow Framework fur Java Entwicklerhandbuch

Promise <Void>

Abhangigkeiten in asynchronen Methoden werden implementiert, indem das von einer Methode
zurickgegebene Promise-Objekt als Argument an eine andere Methode Ubergeben wird. Es kann
jedoch Falle geben, in denen Sie aus einer Methode einen void-Wert zurlickgeben méchten, aber
dennoch andere asynchrone Methoden nach ihrer Beendigung ausflihren méchten. In solchen
Fallen kdnnen Sie Promise<Void> als Riickgabetyp der Methode verwenden. Die Klasse Promise
stellt eine statische Void-Methode zur Verfiigung, mit der Sie ein Promise<Void>-Objekt anlegen
kénnen. Dieses Promise-Objekt ist dann bereit, wenn die asynchrone Methode die Ausfiihrung
beendet. Sie kbnnen das Promise wie jedes andere Promise-Objekt an eine andere asynchrone
Methode Ubergeben. Wenn Sie Settable<Void> verwenden, dann rufen Sie zur Bereitstellung
dessen Set-Methode mit "null" auf.

AndPromise und OrPromise

Mit AndPromise und OrPromise kénnen Sie mehrere Promise<>-Objekte zu einem einzigen
logischen Promise-Objekt zusammenfassen. Ein AndPromise ist dann bereit, wenn alle zur
Erstellung verwendeten Promise-Objekte bereit sind. Ein OrPromise ist dann bereit, wenn alle
Promise-Objekte in der zur Erstellung verwendeten Promise-Collection bereit sind. Sie kbnnen
getValues() fir AndPromise und OrPromise aufrufen, um die Werteliste der einzelnen Promise-
Objekte abzurufen.

Prafbarkeit und Dependency Injection

Themen

* Spring-Integration

« JUnit Integration

Das Framework ist auf die Unterstlitzung von 1oC (Inversion of Control, Umkehr des Kontrollflusses)
ausgelegt. Aktivitats- und Workflow-Implementierungen sowie die vom Framework bereitgestellten
Worker und Kontextobjekte kénnen mit Containern wie Spring konfiguriert und instanziiert werden.
Das Framework kann standardmafig in das Spring Framework integriert werden. Darlber hinaus
JUnit wurde eine Integration fir die Implementierung von Workflows und Aktivitaten fir Unit-Tests
bereitgestellt.

Promise <Void> API-Version 2021-04-28 123

AWS Flow Framework fur Java Entwicklerhandbuch

Spring-Integration

Das Paket "com.amazonaws.services.simpleworkflow.flow.spring" enthalt Klassen, die

die Verwendung des Spring-Frameworks in lhren Anwendungen vereinfacht. Dazu zahlen
benutzerdefinierte Scope-und-Spring-fahige Aktivitats- und Workflow-Worker: WorkflowScope,
SpringWorkflowWorker und SpringActivityWorker. Diese Klassen ermoglichen lhnen die
vollstandige Konfiguration lhrer Workflow- und Aktivitatsimplementierungen sowie der Worker mit
Spring.

WorkflowScope

WorkflowScope - Eine benutzerdefinierte Spring Scope-Implementierung, die vom Framework
bereitgestellt wird. Mit diesem Scope kénnen Sie Objekte in Spring-Container erstellen, dessen
Lebensdauer an die der Entscheidungsaufgabe angepasst ist. Die Beans in diesem Scope werden
immer dann instanziiert, wenn der Worker eine neue Entscheidungsaufgabe empfangt. Sie sollten
diesen Scope fur Workflow-Implementierungs-Beans und anderen Beans, von denen er abhangt,
verwenden. Die von Spring bereitgesellten Singleton- und Prototype-Scopes sollten nicht fur
Workflow-Implementierungs-Beans eingesetzt werden, da das Framework erfordert, dass fur jede
Entscheidungsaufgabe eine neue Bean erstellt werden kann. Wenn Sie dies nicht tun, kommt es zu
einem unerwunschten Verhalten.

Das folgende Beispiel zeigt einen Ausschnitt einer Spring-Konfigurationen, bei der der
WorkflowScope registriert und anschlieRend fir die Konfiguration einer Workflow-
Implementierungs-Bean und einer Aktivitats-Client-Bean eingesetzt wird.

<!-- register AWS Flow Framework for Java WorkflowScope -->
<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">
<map>
<entry key="workflow">
<bean
class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
</entry>
</map>
</property>
</bean>

<l-- activities client -->
<bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
scope="workflow">

Spring-Integration API-Version 2021-04-28 124

AWS Flow Framework fur Java Entwicklerhandbuch

</bean>

<!-- workflow implementation -->

<bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
<property name="client" ref="activitiesClient"/>
<aop:scoped-proxy proxy-target-class="false" />

</bean>

Die Konfigurationszeile <aop:scoped-proxy proxy-target-class="false" />, die bei
der Konfiguration der workflowImpl-Bean verwendet wird, ist erforderlich, da WorkflowScope
ein Proxying mittels CGLIB nicht unterstitzt. Sie sollte diese Konfiguration flr alle Beans im
WorkflowScope verwenden, die mit anderen Beans in einem anderen Scope verbunden sind. In
diesem Fall muss die workflowImpl-Bean mit einer Workflow-Worker-Bean in einem Singleton-
Scope verknupft werden (siehe Beispiel unten).

Weitere Informationen zur Verwendung benutzerdefinierter Scopes finden Sie in der Spring
Framework-Dokumentation.

Spring-fahige Worker

Bei der Arbeit mit Spring sollten Sie die Spring-fahigen Worker-Klassen nutzen, die vom Framework
bereitgestellt werden: SpringWorkflowWorker und SpringActivityWorker. Diese Worker
kénnen mittels Spring in lhre Anwendung eingefligt werden, wie im folgenden Beispiel gezeigt.

Die Spring-fahigen Worker implementieren Springs SmartLifecycle-Schnittstelle und starten
standardmafig automatisch das Abrufen von Aufgaben, wenn der Spring-Kontext initialisiert wurde.
Sie kénnen diese Funktion deaktivieren, indem Sie die disableAutoStartup-Eigenschaft des
Workers auf true setzen.

Das folgende Beispiel zeigt die Konfiguration eines Entscheiders. In diesem Beispiel werden die
Schnittstellen MyActivities und MyWorkflow (hier nicht abgebildet) sowie die entsprechenden
Implementierungen MyActivitiesImpl und MyWorkflowImpl verwendet. Die generierten Client-
Schnittstellen und -Implementierungen sind MyWorkflowClient/MyWorkflowClientImpl und
MyActivitiesClient/MyActivitiesClientImpl (ebenfalls nicht abgebildet).

Der Aktivitats-Client wird tber die "auto wire"-Funktion von Spring in die Workflow-Implementierung
eingeflgt:

public class MyWorkflowImpl implements MyWorkflow {
@Autowired
public MyActivitiesClient client;

Spring-Integration API-Version 2021-04-28 125

AWS Flow Framework fur Java Entwicklerhandbuch

@Override
public void start() {
client.activityl();

Die Spring-Konfiguration des Entscheiders sieht wie folgt aus:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/

spring-aop-2.5.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<!-- register custom workflow scope -->
<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes'>
<map>
<entry key="workflow">
<bean
class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
</entry>
</map>
</property>
</bean>
<context:annotation-config/>

<bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
<constructor-arg value="{AWS.Access.ID}"/>
<constructor-arg value="{AWS.Secret.Key}"/>

</bean>

<bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
<property name="socketTimeout" value="70000" />
</bean>

Spring-Integration API-Version 2021-04-28 126

AWS Flow Framework fur Java Entwicklerhandbuch

<l-- Amazon SWF client -->

<bean id="swfClient"
class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
<constructor-arg ref="accesskeys" />
<constructor-arg ref="clientConfiguration" />
<property name="endpoint" value="{service.url}" />

</bean>

<l-- activities client -->

<bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
scope="workflow">

</bean>

<!-- workflow implementation -->

<bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
<property name="client" ref="activitiesClient"/>
<aop:scoped-proxy proxy-target-class="false" />

</bean>

<!-- workflow worker -->
<bean id="workflowWorker"
class="com.amazonaws.services.simpleworkflow.flow.spring.SpringWorkflowWorker">
<constructor-arg ref="swfClient" />
<constructor-arg value="domainl" />
<constructor-arg value="tasklistl" />
<property name="registerDomain" value="true" />
<property name="domainRetentionPeriodInDays" value="1" />
<property name="workflowImplementations">
<list>
<ref bean="workflowImpl" />
</list>
</property>
</bean>
</beans>

Da der in Spring vollstéandig konfiguriert SpringWorkflowWorker ist und bei der Initialisierung des
Spring-Kontextes automatisch mit der Abfrage beginnt, ist der Host-Prozess flir den Decider einfach:

public class WorkflowHost {
public static void main(String[] args){
ApplicationContext context
= new FileSystemXmlApplicationContext("resources/spring/
WorkflowHostBean.xml");

Spring-Integration API-Version 2021-04-28 127

AWS Flow Framework fur Java Entwicklerhandbuch

System.out.println("Workflow worker started");

Entsprechend kann auch der Aktivitats-Worker wie folgt konfiguriert werden:

<?xml version="1.0" encoding="UTF-8"7?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/

spring-aop-2.5.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<l-- register custom scope -->
<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">
<map>
<entry key="workflow">
<bean

class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
</entry>
</map>
</property>
</bean>

<bean id="accesskeys" class='"com.amazonaws.auth.BasicAWSCredentials">
<constructor-arg value="{AWS.Access.ID}"/>
<constructor-arg value="{AWS.Secret.Key}"/>

</bean>

<bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
<property name="socketTimeout" value="70000" />
</bean>

<!-- Amazon SWF client -->
<bean id="swfClient"
class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">

Spring-Integration API-Version 2021-04-28 128

AWS Flow Framework fur Java Entwicklerhandbuch

<constructor-arg ref="accesskeys" />
<constructor-arg ref="clientConfiguration" />
<property name="endpoint" value="{service.url}" />

</bean>

<!-- activities impl -->

<bean name="activitiesImpl" class="asadj.spring.test.MyActivitiesImpl">
</bean>

<!-- activity worker -->

<bean id="activityWorker"
class="com.amazonaws.services.simpleworkflow.flow.spring.SpringActivityWorker">
<constructor-arg ref="swfClient" />
<constructor-arg value="domainl" />
<constructor-arg value="tasklistl" />
<property name="registerDomain" value="true" />
<property name="domainRetentionPeriodInDays" value="1" />
<property name="activitiesImplementations">
<list>
<ref bean="activitiesImpl" />
</list>
</property>
</bean>
</beans>

Der Hostprozess des Aktivitats-Workers ahnelt dem des Entscheiders:

public class ActivityHost {
public static void main(String[] args) {
ApplicationContext context = new FileSystemXmlApplicationContext(
"resources/spring/ActivityHostBean.xml");
System.out.println("Activity worker started");

EinflUgen des Entscheidungskontexts

Wie Ihre Workflow-Implementierung von den Kontextobjekten abhangt, kdnnen Sie diese ebenfalls
ganz einfach mit Spring einfligen. Das Framework registriert kontextbasierte Beans automatisch im
Spring-Container. Im folgenden Codeausschnitt wurden beispielsweise verschiedene Kontextobjekte
automatisch verknlpft. Eine weitere Spring-Konfiguration der Kontextobjekte ist nicht erforderlich.

Spring-Integration API-Version 2021-04-28 129

AWS Flow Framework fur Java Entwicklerhandbuch

public class MyWorkflowImpl implements MyWorkflow {
@Autowired
public MyActivitiesClient client;
@Autowired
public WorkflowClock clock;
@Autowired
public DecisionContext dcContext;
@Autowired
public GenericActivityClient activityClient;
@Autowired
public GenericWorkflowClient workflowClient;
@Autowired
public WorkflowContext wfContext;
@Override
public void start() {
client.activityl();

Wenn Sie die Kontextobjekte in der Workflow-Implementierung Uber die Spring-XML-Konfiguration
konfigurieren méchten, verwenden Sie die Bean-Namen, die in der WorkflowScopeBeanNames-
Klasse im Paket "com.amazonaws.services.simpleworkflow.flow.spring" deklariert sind. Zum Beispiel:

<!-- workflow implementation -->
<bean id="workflowImpl" class="asadj.spring.test.MyWorkflowImpl" scope="workflow">
<property name="client" ref="activitiesClient"/>
<property name="clock" ref="workflowClock"/>
<property name="activityClient" ref="genericActivityClient"/>
<property name="dcContext" ref="decisionContext"/>
<property name="workflowClient" ref="genericWorkflowClient"/>
<property name="wfContext" ref="workflowContext"/>
<aop:scoped-proxy proxy-target-class="false" />
</bean>

Alternativ kénnen Sie auch einen DecisionContextProvider in die Bean der Workflow-
Implementierung einfligen und zum Erstellen des Kontexts verwenden. Dies ist hilfreich, wenn Sie
benutzerdefinierte Implementierungen des Providers und Kontexts bereitstellen méchten.

Einfligen von Ressourcen in Aktivitaten

Sie kénnen Aktivitatsimplementierungen mit einem loC-Container instanziieren und konfigurieren und
Ressourcen wie Datenbankverbindungen einfiigen, indem Sie diese als Eigenschaften der Klasse

Spring-Integration API-Version 2021-04-28 130

AWS Flow Framework fur Java Entwicklerhandbuch

der Aktivitatsimplementierung deklarieren. Diese Ressourcen werden in der Regeln als Singletons
definiert. Beachten Sie, dass Aktivitatsimplementierungen vom Aktivitats-Worker auf verschiedenen
Threads aufgerufen werden. Deshalb muss der Zugriff auf freigegebene Ressourcen synchronisiert
werden.

JUnit Integration

Das Framework bietet JUnit Erweiterungen sowie Testimplementierungen der Kontextobjekte, z.
B. eine Testuhr, mit der Sie Komponententests schreiben und ausfuhren kénnen. JUnit Mit diesen
Erweiterungen ist ein lokaler Inline-Test der Workflow-Implementierung moglich.

Schreiben eines einfachen Einheitentests

Verwenden Sie zum Entwerfen von Tests fir lhren Workflow die WorkflowTest-Klasse aus dem
Paket "com.amazonaws.services.simpleworkflow.flow.junit". Bei dieser Klasse handelt es sich um
eine Framework-spezifische JUnit MethodRule Implementierung. Sie flhrt Ihren Workflow-Code
lokal aus und ruft Aktivitaten inline auf, anstatt Amazon SWF zu verwenden. Dadurch haben Sie die
Madglichkeit, Ihre Test so oft Sie mdchten, auszufihren, ohne dass Gebuhren anfallen.

Wenn Sie diese Klasse verwenden mdchten, deklarieren Sie einfach ein Feld vom Typ
WorkflowTest und versehen es mit der Anmerkung @Rule. Erstellen Sie vor der Ausfiihrung
Ihrer Tests ein neues WorkflowTest-Objekt und fligen Sie diesem lhre Aktivitats- und Workflow-
Implementierungen hinzu. Sie kénnen die generierte Workflow-Client-Factory zum Erstellen

eines Clients und zum Starten der Ausflihrung des Workflows verwenden. Das Framework bietet
auch einen benutzerdefinierten JUnit RunnerFlowBlockJUnit4ClassRunner, den Sie fir lhre
Workflow-Tests verwenden missen. Zum Beispiel:

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

@Rule
public WorkflowTest workflowTest = new WorkflowTest();

List<String> trace;

private BookingWorkflowClientFactory workflowFactory
= new BookingWorkflowClientFactoryImpl();

@Before
public void setUp() throws Exception {

JUnit Integration API-Version 2021-04-28 131

AWS Flow Framework fur Java Entwicklerhandbuch

trace = new ArraylList<String>();

// Register activity implementation to be used during test run
BookingActivities activities = new BookingActivitiesImpl(trace);
workflowTest.addActivitiesImplementation(activities);
workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);

@After
public void tearDown() throws Exception {
trace = null;

@Test

public void testReserveBoth() {
BookingWorkflowClient workflow = workflowFactory.getClient();
Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
List<String> expected = new ArraylList<String>();
expected.add("reserveCar-123");
expected.add("reserveAirline-123");
expected.add("sendConfirmation-345");
AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);

Sie kénnen zudem flr jede Aktivitdtsimplementierung, die Sie zu WorkflowTest hinzufiigen, eine
separate Aufgabenliste angeben. Wenn Sie beispielsweise eine Workflow-Implementierung haben,
die Aktivitaten in hostspezifischen Aufgabenlisten plant, kdnnen Sie die Aktivitat in der Aufgabenliste
der einzelnen Hosts registrieren:

for (int i = 0; i < 10; i++) {
String hostname = "host" + i;
workflowTest.addActivitiesImplementation(hostname,
new ImageProcessingActivities(hostname));

Beachten Sie, dass der Code in @Test asynchron ist. Deshalb sollten Sie die Ausfihrung mit dem
asynchronen Workflow-Client starten. Zur Uberpriifung der Testergebnisse steht eine AsyncAssert-
Hilfsklasse zur Verfugung. Diese Klasse ermdglicht Ihnen das Warten auf sog. Promises, die dartber
informieren, dass die Operation vor der Verifizierung der Ergebnisse abgeschlossen ist. In diesem
Beispiel wird auf das Ergebnis der Workflow-Ausfihrung gewartet, um vor dem Verifizieren der
Testausgabe fertig zu sein.

JUnit Integration API-Version 2021-04-28 132

AWS Flow Framework fur Java Entwicklerhandbuch

Wenn Sie Spring benutzen, dann kann die SpringWorkflowTest-Klasse anstelle der
WorkflowTest-Klasse verwendet werden. SpringWorkflowTest stellt Eigenschaften bereit, die
Sie verwenden kénnen, um Aktivitats- und Workflow-Implementierungen einfach Gber die Spring-
Konfiguration zu konfigurieren. Genau wie die Spring-fahigen Worker sollten Sie zum Konfigurieren
von Workflow-Implementierungs-Beans den WorkflowScope verwenden. Das sorgt dafir, dass fir
jede Entscheidungsaufgabe eine neue Workflow-Implementierungs-Bean generiert wird. Stellen Sie
sicher, dass Sie diese Beans so konfigurieren, dass die proxy-target-class Scoped-Proxy-Einstellung
auf eingestellt ist. false Weitere Informationen finden Sie im Abschnitt zur Spring-Integration. Das
Beispiel der Spring-Konfiguration, das in diesem Abschnitt gezeigt wird, kann geédndert werden, um
den Workflow mit SpringWorkflowTest zu testen:

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:aop="http://
www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalLocation="http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframe
work.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<!-- register custom workflow scope -->
<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">
<map>
<entry key="workflow">
<bean
class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
</entry>
</map>
</property>
</bean>
<context:annotation-config />
<bean id="accesskeys" class='"com.amazonaws.auth.BasicAWSCredentials">
<constructor-arg value="{AWS.Access.ID}" />
<constructor-arg value="{AWS.Secret.Key}" />
</bean>
<bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
<property name="socketTimeout" value="70000" />
</bean>

JUnit Integration API-Version 2021-04-28 133

AWS Flow Framework fur Java Entwicklerhandbuch

<!-- Amazon SWF client -->

<bean id="swfClient"
class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
<constructor-arg ref="accesskeys" />
<constructor-arg ref="clientConfiguration" />
<property name="endpoint" value="{service.url}" />

</bean>

<!-- activities client -->

<bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
scope="workflow">

</bean>

<!-- workflow implementation -->

<bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl"
scope="workflow">
<property name="client" ref="activitiesClient" />
<aop:scoped-proxy proxy-target-class="false" />

</bean>

<!-- WorkflowTest -->
<bean id="workflowTest"
class="com.amazonaws.services.simpleworkflow.flow.junit.spring.SpringWorkflowTest">
<property name="workflowImplementations">
<list>
<ref bean="workflowImpl" />
</list>
</property>
<property name="taskListActivitiesImplementationMap">
<map>
<entry>
<key>
<value>listl</value>
</key>
<ref bean="activitiesImplHostl" />
</entry>
</map>
</property>
</bean>
</beans>

JUnit Integration API-Version 2021-04-28 134

AWS Flow Framework fur Java Entwicklerhandbuch

Nachahmen von Aktivitatsimplementierungen

Sie kbnnen wahrend des Testens echte Aktivitatsimplementierungen verwenden. Wenn Sie aber
nur einen Einheitentest flr die Workflow-Logik durchfiihren méchten, sollten Sie die Aktivitaten
nachahmen. Dazu stellen Sie eine Mock-Implementierung der Aktivitatsschnittstelle fiir die
WorkflowTest-Klasse bereit. Zum Beispiel:

@RunwWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

@Rule
public WorkflowTest workflowTest = new WorkflowTest();

List<String> trace;

private BookingWorkflowClientFactory workflowFactory
= new BookingWorkflowClientFactoryImpl();

@Before

public void setUp() throws Exception {
trace = new ArraylList<String>();
// Create and register mock activity implementation to be used during test zrun
BookingActivities activities = new BookingActivities() {

@Override
public void sendConfirmationActivity(int customerId) {
trace.add("sendConfirmation-" + customerlId);

@Override
public void reserveCar(int requestId) {
trace.add("reserveCar-" + requestld);

@Override
public void reserveAirline(int requestId) {
trace.add("reserveAirline-" + requestId);

I
workflowTest.addActivitiesImplementation(activities);
workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);

JUnit Integration API-Version 2021-04-28 135

AWS Flow Framework fur Java Entwicklerhandbuch

@After
public void tearDown() throws Exception {
trace = null;

@Test

public void testReserveBoth() {
BookingWorkflowClient workflow = workflowFactory.getClient();
Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
List<String> expected = new ArraylList<String>();
expected.add("reserveCar-123");
expected.add("reserveAirline-123");
expected.add("sendConfirmation-345");
AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);

Alternativ kdbnnen Sie eine Mock-Implementierung des Aktivitats-Clients bereitstellen und in lhre
Workflow-Implementierung einfigen.

Testen von Kontextobjekten

Wenn Ilhre Workflow-Implementierung von den Framework-Kontextobjekten abhangt, z. B. von,
muissen DecisionContext Sie nichts Besonderes tun, um solche Workflows zu testen. Wird

ein Test mittels WorkflowTest durchgefiihrt, werden automatisch Testkontextobjekte eingefligt.
Wenn lhre Workflow-Implementierung auf die Kontextobjekte zugreift, z. B. mithilfe von, wird

sie die Testimplementierung erhalten. DecisionContextProviderImpl Sie kénnen diese
Testkontextobjekte in Inrem Testcode andern (@Test-Methode), um relevante Testfélle zu
entwerfen. Erstellt Inr Workflow beispielsweise einen Timer, kdnnen Sie dafir sorgen, dass der
Timer ausgeldst wird, indem Sie die clockAdvanceSeconds-Methode auf der WorkflowTest-
Klasse aufrufen, um die Uhr vorzustellen. Mit der ClockAccelerationCoefficient-Eigenschaft
im WorkflowTest konnen Sie ebenfalls die Uhrzeit vorstellen, damit der Timer friiher als blich
ausgelost wird. Erstellt Ihr Workflow beispielsweise einen Timer fir eine Stunde, kénnen Sie
ClockAccelerationCoefficient auf 60 setzen, damit der Timer in einer Minute ausgeldst wird.
Standardmagig ist ClockAccelerationCoefficient auf "1" gesetzt.

Weitere Informationen zu den Paketen "com.amazonaws.services.simpleworkflow.flow.test"
und "com.amazonaws.services.simpleworkflow.flow.junit" finden Sie in der AWS SDK fir Java -
Dokumentation.

JUnit Integration API-Version 2021-04-28 136

AWS Flow Framework fur Java Entwicklerhandbuch

Fehlerbehandlung

Themen

« TryCatchFinally Semantik

* Abbruch

» Verschachtelt TryCatchFinally

Das Konstrukt try/catch/finally in Java vereinfacht die Fehlerbehandlung und wird sehr haufig
eingesetzt. Es ermdoglicht die Verknlpfung von Fehler-Handlern mit einem Codeblock. Dies geschieht
intern durch die Anhaufung von Metadaten zu den Fehler-Handlern auf dem Aufruf-Stack. Wird

eine Ausnahme ausgeldst, sucht die Laufzeit beim Aufruf-Stack nach einem zugehorigen Fehler-
Handler und ruft diesen auf. Wird kein passender gefunden, wird die Ausnahme an die Aufruf-Kette
weitergegeben.

Dies funktioniert gut bei synchronem Code. Die Fehlerbehandlung in asynchronen und verteilten
Programmen stellt jedoch einige Herausforderungen dar. Da ein asynchroner Aufruf sofort
zurtickkehrt, befindet sich der Aufrufer nicht auf der Aufrufliste, wenn der asynchrone Code
ausgefuhrt wird. Das bedeutet, dass nicht behandelte Ausnahmen in einem asynchronen Code vom
Aufrufer nicht in der Ublichen Weise behandelt werden kénnen. In der Regel werden Ausnahmen,
die in einem asynchronen Code auftreten, behandelt, indem der Fehlerstatus an ein Callback
Ubergeben wird, das an die asynchrone Methode Ubermittelt wird. Alternativ erfolgt bei Verwendung
von Future<?> die Meldung eines Fehlers, wenn Sie versuchen, darauf zuzugreifen. Dies ist
keineswegs ideal, da dem Code, der die Ausnahme empfangt (das Callback oder den Code,

das bzw. der Future<?> verwendet), der Kontext des urspringlichen Aufrufs fehlt und er die
Ausnahme moglicherweise nicht adaquat behandeln kann. Darlber hinaus kann es bei einem
verteilten asynchronen System, bei dem mehrere Komponenten parallel ausgefuhrt werden,
gleichzeitig zu mehreren Fehlern kommen. Dabei kann es sich um unterschiedliche Fehlertypen von
unterschiedlichem Schweregrad handeln, die alle entsprechend behandelt werden missen.

Das Bereinigen einer Ressource nach einem asynchronen Aufruf ist ebenfalls schwierig. Im
Gegensatz zu synchronem Code kdnnen Sie den Code try/catch/finally im aufrufenden Code nicht
verwenden, um Ressourcen zu bereinigen, da die im Try-Block eingeleitete Arbeit moglicherweise
noch andauert, wenn der Finally-Block ausgeflhrt wird.

Das Framework bietet einen Mechanismus, der die Fehlerbehandlung in verteiltem asynchronem
Code der von Java ahnelt und fast so einfach wie die von Java ist. try/catch/finally

Fehlerbehandlung API-Version 2021-04-28 137

AWS Flow Framework fur Java Entwicklerhandbuch

ImageProcessingActivitiesClient activitiesClient
= new ImageProcessingActivitiesClientImpl();

public void createThumbnail(final String webPageUrl) {
new TryCatchFinally() {

@Override
protected void doTry() throws Throwable {
List<String> images = getImageUrls(webPageUrl);
for (String image: images) {
Promise<String> locallImage
= activitiesClient.downloadImage(image);
Promise<String> thumbnailFile
= activitiesClient.createThumbnail(localImage);
activitiesClient.uploadImage(thumbnailFile);

}

@Override
protected void doCatch(Throwable e) throws Throwable {

// Handle exception and rethrow failures

LoggingActivitiesClient logClient = new LoggingActivitiesClientImpl();
logClient.reportError(e);

throw new RuntimeException("Failed to process images", e);

@Override
protected void doFinally() throws Throwable {
activitiesClient.cleanUp();
}
I

Die TryCatchFinally-Klasse und deren Varianten TryFinally und TryCatch funktionieren
ahnlich wie Javas try/catch/finally. Mit dieser Lésung konnen Sie Ausnahme-Handler mit
Blécken von Workflow-Code verknlpfen, die als asynchrone und Remote-Aufgaben ausgefihrt
werden kénnen. Die doTry ()-Methode entspricht logisch dem try-Block. Das Framework flihrt den
Code automatisch in doTry () aus. Eine Liste von Promise-Objekten kann an den Konstruktor von
TryCatchFinally ubergeben werden. Die doTry-Methode wird ausgefiihrt, wenn alle Promise
-Objekte, die an den Konstruktor Gbergeben wurden, bereit sind. Wird eine Ausnahme von einem

Fehlerbehandlung API-Version 2021-04-28 138

AWS Flow Framework fur Java Entwicklerhandbuch

Code ausgeldst, der asynchron innerhalb von doTry () aufgerufen wurde, werden alle Vorgange

in doTry() abgebrochen und doCatch() aufgerufen, um die Ausnahme zu behandeln. Wenn
beispielsweise in der obigen Auflistung downloadImage eine Ausnahme auslést, dann werden
createThumbnail und uploadImage abgebrochen. Wenn alle asynchronen Vorgange beendet
wurden (abgeschlossen, fehlgeschlagen oder abgebrochen), wird abschlieRend doFinally()
aufgerufen. Es kann zum Bereinigen von Ressourcen verwendet werden. Sie kdnnen diese Klassen
auch gemal Ihren Anforderungen verschachteln.

Wenn eine Ausnahme in doCatch() gemeldet wird, stellt das Framework einen vollstandigen
logischen Aufruf-Stack mit asynchronen und Remote-Aufrufen bereit. Dies kann beim Debuggen
natzlich sein, insbesondere bei asynchronen Methoden, die andere asynchrone Methoden aufrufen.
Eine Ausnahme von downloadlmage flhrt beispielsweise zu einer Ausnahme wie der folgenden:

RuntimeException: error downloading image
at downloadImage(Main.java:35)

at ---continuation---.(repeated:1)
at errorHandlingAsync$l.doTry(Main.java:24)
at ---continuation---.(repeated:1)

TryCatchFinally Semantik

Die Ausfiuihrung eines Programms AWS Flow Framework fir Java kann als Baum gleichzeitig
ausgefuhrter Zweige visualisiert werden. Durch den Aufruf einer asynchronen Methode, einer Aktivitat
oder TryCatchFinally wird eine neue Verzweigung in dieser Baumstruktur der Ausflihrung
angelegt. Der Bildverarbeitungs-Workflow beispielsweise ist in Form einer Baumstruktur auf folgender
Abbildung zu sehen.

Ein Fehler in einer Verzweigung der Ausfihrung fihrt zu einer Entladung der Verzweigung, genau
wie eine Ausnahme die Entladung eines Aufruf-Stacks in einem Java-Programm verursacht. Dieser

TryCatchFinally Semantik API-Version 2021-04-28 139

AWS Flow Framework fur Java Entwicklerhandbuch

Vorgang setzt sich fort, bis entweder der Fehler behandelt oder der Stamm erreicht ist. In diesem Fall
wird die Workflow-Ausflihrung beendet.

Das Framework meldet Fehler, die bei der Verarbeitung von Aufgaben auftreten, als Ausnahmen.
Es verknipft die Ausnahme-Handler (doCatch()-Methoden), die in TryCatchFinally definiert
sind, mit allen Aufgaben, die vom Code im entsprechenden doTry() erstellt wurden. Wenn eine
Aufgabe fehlschlagt, z. B. aufgrund eines Timeouts oder einer unbehandelten Ausnahme, wird die
entsprechende Ausnahme ausgel6st und die entsprechende wird aufgerufen, um sie zu behandeln.
doCatch() Um dies zu erreichen, arbeitet das Framework mit Amazon SWF zusammen, um
Remote-Fehler zu verbreiten und sie als Ausnahmen im Kontext des Aufrufers wieder aufleben zu
lassen.

Abbruch

Tritt eine Ausnahme im asynchronen Code auf, springt das Steuerelement direkt zum catch-Block
und Uberspringt den verbleibenden Code im try-Block. Zum Beispiel:

try {
a();
b();
c();
}

catch (Exception e) {
e.printStackTrace();
}

Bei diesem Code wird, wenn b(') eine Ausnahme auslost, c () niemals aufgerufen. Vergleichen Sie
dies mit einem Workflow:

new TryCatch() {

@Override

protected void doTry() throws Throwable {
activityA();
activityB();
activityC();

}

@Override
protected void doCatch(Throwable e) throws Throwable {

Abbruch API-Version 2021-04-28 140

AWS Flow Framework fur Java Entwicklerhandbuch

e.printStackTrace();

i

Hier werden Aufrufe von activityA, activityB und activityC erfolgreich zurickgegeben und
fuhren zur Erstellung dreier Aufgaben, die asynchron ausgefuhrt werden. Angenommen, die Aufgabe
fir activityB verursacht zu einem spateren Zeitpunkt einen Fehler. Dieser Fehler wird von
Amazon SWF in der Historie aufgezeichnet. Aus diesem Grund versucht das Framework zunachst
alle anderen Aufgaben abzubrechen, die aus dem Bereich desselben doTry () stammen. In diesem
Fall sind das activityAund activityC. Nach Beendigung aller Aufgaben (durch Abbrechen,
Fehlschlagen oder erfolgreichem Abschlief3en), wird die entsprechende doCatch()-Methode
aufgerufen, um den Fehler zu behandeln.

Im Gegensatz zum synchronen Beispiel, bei dem c () niemals ausgefihrt wurde, wurde activityC
hier aufgerufen. Zudem wurde eine Aufgabe fur die Ausfuhrung eingeplant. Deshalb versucht das
Framework einen Abbruch, fir dessen Erfolg es aber keine Garantie gibt. Der Abbruch kann nicht
garantiert werden, da die Aktivitat mdglicherweise bereits abgeschlossen ist, die Abbruchanforderung
ignoriert oder fehlschlagt. Das Framework garantiert jedoch, dass doCatch() nur aufgerufen wird,
wenn alle Aufgaben, die Uber das entsprechende doTry() gestartet wurden, abgeschlossen sind. Es
garantiert zudem, dass doFinally () nur aufgerufen wird, wenn alle Aufgaben, die vom doTry()-
und doCatch()-Block gestartet wurden, abgeschlossen sind. Wenn die Aktivitaten im obigen
Beispiel beispielsweise voneinander abhangen, beispielsweise von activityA und activityC
von, dann erfolgt die Stornierung von activityC sofortactivityB, da sie erstin Amazon SWF
geplant ist, wenn Folgendes activityB abgeschlossen ist: activityB

new TryCatch() {

@Override

protected void doTry() throws Throwable {
Promise<Void> a = activityA();
Promise<Void> b = activityB(a);
activityC(b);

}

@Override
protected void doCatch(Throwable e) throws Throwable {
e.printStackTrace();
}
¥

Abbruch API-Version 2021-04-28 141

AWS Flow Framework fur Java Entwicklerhandbuch

Aktivitats-Heartbeat

Mit dem kooperativen Stornierungsmechanismus von AWS Flow Framework for Java kénnen
Aufgaben wahrend des Fluges problemlos storniert werden. Wird der Abbruch ausgeldst, werden
blockierte Aufgaben oder Aufgaben, die darauf warten, zu einem Worker zugewiesen zu werden,
automatisch abgebrochen. Wenn eine Aufgabe aber bereits einem Worker zugewiesen wurde,
fordert das Framework den Abbruch der Aktivitat an. lhre Aktivitdtsimplementierung muss diese
Abbruchanforderungen explizit behandeln kénnen. Dies geschieht durch das Ubermitteln von
Heartbeats lhrer Aktivitat.

Durch das Senden von Heartbeats ist die Aktivitatsimplementierung in der Lage, den Fortschritt einer
andauernden Aufgabe zu melden. Dies unterstiitzt die Uberwachung und ermdglicht der Aktivitat zu
prufen, ob Abbruchanforderungen vorliegen. Die recordActivityHeartbeat-Methode I6st bei
Anforderung eines Abbruchs eine CancellationException aus. Die Aktivitatsimplementierung
kann diese Ausnahme abfangen und auf die Abbruchanforderung reagieren oder die Anforderung
durch "Verschlucken" der Ausnahme ignorieren. Um der Abbruchanforderung Rechnung

zu tragen, sollte die Aktivitat die gewtinschte Bereinigung vornehmen, sofern erforderlich,

und dann CancellationException erneut auslésen. Wird diese Ausnahme von einer
Aktivitatsimplementierung ausgeldst, erfasst das Framework, dass die Aktivitdtsaufgabe im
abgebrochenen Status beendet wurde.

Das folgende Beispiel zeigt eine Aufgabe, bei der Bilder heruntergeladen und verarbeitet werden.
Es kommt nach jeder Verarbeitung eines Bilds zu einem Heartbeat. Wird ein Abbruch gefordert, wird
bereinigt und die Ausnahme zur Bestatigung des Abbruchs erneut ausgelost.

@Override
public void processImages(List<String> urls) {
int imageCounter = 0;
for (String url: urls) {
imageCounter++;
Image image = download(url);
process(image);
try {
ActivityExecutionContext context
= contextProvider.getActivityExecutionContext();
context.recordActivityHeartbeat(Integer.toString(imageCounter));
} catch(CancellationException ex) {
cleanDownloadFoldex();
throw ex;

Abbruch API-Version 2021-04-28 142

AWS Flow Framework fur Java Entwicklerhandbuch

}

Das Senden von Aktivitats-Heartbeats ist nicht erforderlich, wird aber empfohlen, wenn die
Ausflhrung der Aktivitat lange dauert oder dabei kostenintensive Operationen ausgefuhrt werden,
die im Falle eines Fehlers abgebrochen werden sollten. Sie sollten heartbeatActivityTask
periodisch von der Aktivitdtsimplementierung aus aufrufen.

Kommt es bei der Ausfihrung der Aktivitat zu einer Zeitliberschreitung, wird die
ActivityTaskTimedOutException ausgeldost und getDetails auf dem Ausnahmeobjekt

gibt fur die entsprechende Aktivitdtsaufgabe die Daten zuriick, die an den letzten erfolgreichen
Aufruf von heartbeatActivityTask Ubergeben wurden. Die Workflow-Implementierung kann
anhand dieser Informationen feststellen, wie weit die Ausfihrung fortgeschritten war, ehe es zu einer
Zeitliberschreitung bei der Aktivitdtsaufgabe kam.

(® Note

Es empfiehlt sich nicht, zu haufig Heartbeat-Anfragen zu drosseln, da Amazon SWF
Heartbeat-Anfragen drosseln kann. Informationen zu den von Amazon SWF festgelegten
Beschrankungen finden Sie im Amazon Simple Workflow Service Developer Guide.

Explizites Abbrechen einer Aufgabe

Abgesehen von Fehlerbedingungen gibt es noch andere Falle, in denen eine Aufgabe explizit
abzubrechen ist. So muss beispielsweise eine Aktivitat zur Verarbeitung von Zahlungen mit der
Kreditkarte abgebrochen werden, wenn der Benutzer den Auftrag storniert. Das Framework
ermoglicht das explizite Abbrechen von Aufgaben, die mit TryCatchFinally erstellt wurden. Im
folgenden Beispiel wird die Zahlungsaufgabe abgebrochen, wenn wahrend der Verarbeitung der
Zahlung ein Signal empfangen wird.

public class OrderProcessorImpl implements OrderProcessor {
private PaymentProcessorClientFactory factory
= new PaymentProcessorClientFactoryImpl();
boolean processingPayment = false;
private TryCatchFinally paymentTask = null;

@Override
public void processOrder(int orderId, final float amount) {
paymentTask = new TryCatchFinally() {

Abbruch API-Version 2021-04-28 143

https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework fur Java

Entwicklerhandbuch

i

@Override
protected void doTry() throws Throwable {
processingPayment = true;

PaymentProcessorClient paymentClient = factory.getClient();
paymentClient.processPayment(amount);

@Override
protected void doCatch(Throwable e) throws Throwable {
if (e instanceof CancellationException) {
paymentClient.log("Payment canceled.");

} else {
throw e;
}
}
@Override

protected void doFinally() throws Throwable {
processingPayment = false;

@Override
public void cancelPayment() {
if (processingPayment) {

paymentTask.cancel(null);

Empfangen von Benachrichtigungen tber abgebrochene Aufgaben

Wird eine Aufgabe im abgebrochenen Status beendet, informiert das Framework die Workflow-Logik
durch Auslésen einer CancellationException. Wenn eine Aktivitat im abgebrochenen Status
beendet wird, wird ein Datensatz zum Verlauf hinzugefligt und das Framework ruft das erforderliche
doCatch() mit einer CancellationException auf. Wie im vorherigen Beispiel gezeigt, empfangt
der Workflow eine CancellationException, wenn die Aufgabe der Zahlungsverarbeitung
abgebrochen wird.

Abbruch

API-Version 2021-04-28 144

AWS Flow Framework fur Java Entwicklerhandbuch

Eine unbehandelte CancellationException wird wie jede andere Ausnahme in der
Ausnahmeverzweigung weiter nach oben gereicht. Die doCatch()-Methode empfangt die
CancellationException aber nur, wenn es im Scope keine weitere Ausnahme gibt. Andere
Ausnahmen werden hoher priorisiert als der Abbruch.

Verschachtelt TryCatchFinally

Sie kénnen TryCatchFinally gemaR lhren Anforderungen verschachteln. Da jeder Zweig in der
Ausfiihrungsstruktur einen neuen Zweig TryCatchFinally erstellt, kbnnen Sie verschachtelte
Bereiche erstellen. Ausnahmen im Gbergeordneten Scope filhren zu Abbruchversuchen bei allen
Aufgaben, die durch ein verschachteltes TryCatchFinally'in ihnen initiiert wurden. Allerdings
werden Ausnahmen in einem verschachtelten TryCatchFinally nicht automatisch an das
Ubergeordnete Element weitergegeben. Wenn Sie eine Ausnahme aus einem verschachtelten
TryCatchFinally an das enthaltene TryCatchFinally weitergeben méchten, sollten Sie die
Ausnahme in doCatch() erneut auslésen. Anderes ausgedriickt: Nur unbehandelte Ausnahmen
steigen wie Javas try/catch-Konstrukt auf. Wenn Sie ein verschachteltes TryCatchFinally
durch Aufruf der Abbruchmethode abbrechen, wird das verschachtelte TryCatchFinally
abgebrochen, aber nicht automatisch auch das enthaltene TryCatchFinally.

activitys TrCate uri-;b
:;.I- WE

new TryCatch() {
@Override
protected void doTry() throws Throwable {
activityA();

new TryCatch() {
@Override
protected void doTry() throws Throwable {
activityB();
}

Verschachtelt TryCatchFinally API-Version 2021-04-28 145

AWS Flow Framework fur Java Entwicklerhandbuch

@Override
protected void doCatch(Throwable e) throws Throwable {
reportError(e);
}
};
activityC();
}
@Override
protected void doCatch(Throwable e) throws Throwable {
reportError(e);
}

};

Wiederholen fehlgeschlagener Aktivitaten

Gelegentlich schlagen Aktivitdten aus temporaren Grinden fehl, z. B. aufgrund eines
vorubergehenden Verbindungsverlusts. In anderen Fallen wird die Aktivitat moglicherweise
erfolgreich durchgefuhrt, daher besteht das geeignete Verfahren zum Umgang mit dem
Aktivitatsfehler haufig im (ggf. mehrmaligen) Wiederholen der Aktivitat.

Es gibt verschiedene Strategien zum Wiederholen von Aktivitdten. Welche am besten geeignet
ist, hangt von den Details in Inrem Workflow ab. Die Strategien lassen sich grundsatzlich in drei
Kategorien einteilen:

+ Die retry-until-success Strategie wiederholt die Aktivitat einfach so lange, bis sie abgeschlossen ist.

» Die exponentielle Wiederholungsstrategie verlangert das Zeitintervall zwischen den Versuchen
exponentiell, bis die Aktivitat abgeschlossen wird oder der Vorgang eine bestimmte Stoppmarke
erreicht, beispielsweise eine maximale Anzahl an Versuchen.

» Die benutzerdefinierte Wiederholungsstrategie legt fest, ob und wie die Aktivitat nach einem
fehlgeschlagenen Versuch wiederholt wird.

In den folgenden Abschnitten wird die Implementierung dieser Strategien beschrieben. In diesem
Beispiel nutzen die Workflow-Worker alle eine einzige Aktivitat, unreliableActivity, die
willkurlich eine der folgenden Verhaltensweisen zeigt:

* Wird umgehend abgeschlossen

- Schlagt beabsichtigt fehl durch Uberschreiten des Timeout-Wertes

Wiederholen fehlgeschlagener Aktivitaten API-Version 2021-04-28 146

AWS Flow Framework fur Java Entwicklerhandbuch

» Schlagt beabsichtigt fehl durch Ausgeben von I1legalStateException

Retry-Until-Success Strategie

Die einfachste Wiederholungsstrategie besteht darin, die Aktivitdt nach jedem Fehler zu wiederholen,
bis sie schlieBlich erfolgreich durchgefiihrt werden kann. Das grundlegende Muster ist:

1. Implementieren Sie eine verschachtelte TryCatch- oder TryCatchFinally-Klasse in die
Eintrittspunktmethode Ihres Workflows.

2. FUhren Sie die Aktivitat in doTry aus.

3. Falls die Aktivitat fehlschlagt, ruft das Framework doCatch auf, wodurch die Eintrittspunktmethode
erneut ausgeflihrt wird.

4. Wiederholen Sie die Schritte 2 bis 3, bis die Aktivitat erfolgreich abgeschlossen wird.

Der folgende Workflow implementiert die retry-until-success Strategie. Die Workflow-
Schnittstelle wird in RetryActivityRecipeWorkflow implementiert und enthalt die Methode
runUnreliableActivityTillSuccess, die den Eintrittspunkt des Workflows darstellt. Der
Workflow-Worker wird in RetryActivityRecipeWorkflowImpl wie folgt implementiert:

public class RetryActivityRecipeWorkflowImpl
implements RetryActivityRecipeWorkflow {

@Override
public void runUnreliableActivityTillSuccess() {
final Settable<Boolean> retryActivity = new Settable<Boolean>();

new TryCatch() {
@Override
protected void doTry() throws Throwable {
Promise<Void> activityRanSuccessfully
= client.unreliableActivity();
setRetryActivityToFalse(activityRanSuccessfully, retryActivity);

@Override
protected void doCatch(Throwable e) throws Throwable {
retryActivity.set(true);
}
};

Retry-Until-Success Strategie API-Version 2021-04-28 147

AWS Flow Framework fur Java Entwicklerhandbuch

restartRunUnreliableActivityTillSuccess(retryActivity);

@Asynchronous
private void setRetryActivityToFalse(
Promise<Void> activityRanSuccessfully,
@NoWait Settable<Boolean> retryActivity) {
retryActivity.set(false);

@Asynchronous
private void restartRunUnreliableActivityTillSuccess(
Settable<Boolean> retryActivity) {
if (retryActivity.get()) {
runUnreliableActivityTillSuccess();

}

Der Workflow funktioniert folgendermalien:

1.

runUnreliableActivityTillSuccess erstellt ein Settable<Boolean>-Objekt namens
retryActivity, das verwendet wird, um anzugeben, ob die Aktivitat fehlgeschlagen ist und
erneut getestet werden sollte. Settable<T> ist von Promise<T> abgeleitet und funktioniert zwar
ahnlich, jedoch legen Sie den Wert eines Settable<T>-Objekts manuell fest.

. runUnreliableActivityTillSuccess implementiert eine anonyme verschachtelte

TryCatch-Klasse zur Verarbeitung von Ausnahmen, die von der unreliableActivity-Aktivitat
ausgegeben werden. Weitere Informationen zum Umgang mit Ausnahmen, die von asynchronem
Code ausgegeben werden, finden Sie unter Fehlerbehandlung.

. doTry fuhrt die unreliableActivity-Aktivitat aus, die ein Promise<Void>-Objekt namens

activityRanSuccessfully zuriickgibt.

. doTry ruft die asynchrone setRetryActivityToFalse-Methode auf, die zwei Parameter

umfasst:

« activityRanSuccessfully Gbernimmt das Promise<Void>-Objekt, das von der
unreliableActivity-Aktivitat zurickgegeben wird.

* retryActivity Ubernimmtdas retryActivity-Objekt.

Bei Abschluss von unreliableActivity wird activityRanSuccessfully einsatzbereit
und setRetryActivityToFalse legt retryActivity auf "false" fest. Andernfalls wird

Retry-Until-Success Strategie API-Version 2021-04-28 148

AWS Flow Framework fur Java Entwicklerhandbuch

activityRanSuccessfully nicht einsatzbereit und setRetryActivityToFalse wird nicht
ausgefuhrt.

5. Wenn unreliableActivity eine Ausnahme ausgibt, ruft das Framework doCatch auf und
Ubergibt es an das Ausnahmeobjekt. doCatch legt retryActivity auf "true" fest.

6. runUnreliableActivityTillSuccess ruft die asynchrone
restartRunUnreliableActivityTillSuccess-Methode auf und libergibt ihr das
retryActivity-Objekt. Da retryActivity ein Promise<T>-Typ ist, verschiebt
restartRunUnreliableActivityTillSuccess die Ausfihrung, bis retryActivity
einsatzbereit ist. Dies ist der Fall, sobald TryCatch abgeschlossen wird.

7. Wenn retryActivity einsatzbereit ist, extrahiert
restartRunUnreliableActivityTillSuccess den Wert.

* Wenn der Wert false ist, war die Wiederholung erfolgreich.
restartRunUnreliableActivityTillSuccess unternimmt nichts und die
Wiederholungssequenz wird beendet.

* Wenn als Wert "true" ausgegeben wird, ist der Wiederholungsversuch
fehlgeschlagen. restartRunUnreliableActivityTillSuccess ruft
runUnreliableActivityTillSuccess auf, um die Aktivitat erneut auszufihren.

8. Die Schritte 1 bis 7 werden wiederholt, bis unreliableActivity abgeschlossen wird.

(® Note

doCatch verarbeitet die Ausnahme nicht, sondern legt nur das retryActivity-Objekt auf
"true" fest, um anzugeben, dass die Aktivitat fehlgeschlagen ist. Die Wiederholung wird von
der asynchronen restartRunUnreliableActivityTillSuccess-Methode verarbeitet,
die die Ausflihrung verschiebt, bis TryCatch abgeschlossen wird. Der Grund fir diesen
Ansatz ist, dass Sie eine Aktivitat, die Sie in doCatch wiederholen, nicht beenden kénnen.
Wenn die Aktivitat in restartRunUnreliableActivityTillSuccess wiederholt wird,
konnen Sie Aktivitaten ausflhren, die sich beenden lassen.

Exponentielle Wiederholungsstrategie

Bei der exponentiellen Wiederholungsstrategie fuhrt das Framework eine fehlgeschlagene Aktivitat
nach einem festgelegten Zeitraum (N Sekunden) erneut aus. Schlagt dieser Versuch fehl, wiederholt
das Framework die Aktivitat nach 2N Sekunden, dann nach 4N Sekunden usw. Da die Wartezeit sehr

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 149

AWS Flow Framework fur Java Entwicklerhandbuch

lang werden kann, werden Sie die Wiederholungen nicht endlos fortsetzen, sondern den Vorgang
irgendwann beenden.

Das Framework bietet drei Moglichkeiten zur Implementierung einer exponentiellen
Wiederholungsstrategie:

» Die @ExponentialRetry-Anmerkung ist der einfachste Ansatz. Sie missen die
Wiederholungsoptionen jedoch bei der Kompilierung festlegen.

* Die RetryDecorator-Klasse ermdéglicht es Ihnen, die Wiederholungskonfiguration zur Laufzeit
festzulegen und bei Bedarf zu andern.

* Die AsyncRetryingExecutor-Klasse ermdglicht es Ihnen, die Wiederholungskonfiguration
zur Laufzeit festzulegen und bei Bedarf zu andern. Dartber hinaus ruft das Framework eine vom
Benutzer implementierte AsyncRunnable. run-Methode zur Ausflihrung jedes neuen Versuchs
auf.

Alle Ansatze unterstitzen folgende Konfigurationsoptionen, wobei die Werte fir die Zeit in Sekunden
angegeben werden:
* Die erste Wiederholungswartezeit.

» Den Backoff-Koeffizienten, der verwendet wird, um die Wiederholungsintervalle folgendermaf3en zu
errechnen:

retryInterval = initialRetryIntervalSeconds * Math.pow(backoffCoefficient,
numberOfTries - 2)

Der Standardwert lautet 2.0.
» Die maximale Anzahl an Wiederholungen. Der Standardwert ist unbegrenzt.
» Das maximale Wiederholungsintervall. Der Standardwert ist unbegrenzt.

» Die Ablaufzeit. Es werden keine Wiederholungen mehr ausgefihrt, wenn die Gesamtdauer des
Vorgangs diesen Wert Ubersteigt. Der Standardwert ist unbegrenzt.

» Die Ausnahmen, die den Wiederholungsvorgang auslésen. StandardmaRig 16st jede Ausnahme
den Wiederholungsvorgang aus.

» Die Ausnahmen, die keinen Wiederholungsvorgang auslésen. StandardmaRig sind keine
Ausnahmen ausgeschlossen.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 150

AWS Flow Framework fur Java Entwicklerhandbuch

In den folgenden Abschnitten werden die verschiedenen Methoden zur Implementierung einer
exponentiellen Wiederholungsstrategie beschrieben.

Exponentieller Wiederholungsversuch mit @ ExponentialRetry

Die einfachste Mdéglichkeit zur Implementierung einer exponentiellen Wiederholungsstrategie

fur eine Aktivitat ist die Anwendung einer @ExponentialRetry -Anmerkung auf die Aktivitat

in der Schnittstellendefinition. Schlagt die Aktivitat fehl, verarbeitet das Framework den
Wiederholungsvorgang automatisch basierend auf den festgelegten Optionen. Das grundlegende
Muster ist:

1. Wenden Sie @ExponentialRetry auf die entsprechenden Aktivitdten an und legen Sie die
Wiederholungskonfiguration fest.

2. Schlagt eine mit einer Anmerkung versehene Aktivitat fehl, wiederholt das Framework die Aktivitat
automatisch basierend auf der durch die Anmerkungsargumente festgelegten Konfiguration.

Der ExponentialRetryAnnotationWorkflow-Workflow-Worker implementiert die exponentielle
Wiederholungsstrategie durch Verwendung einer @ExponentialRetry-Anmerkung. Er

verwendet eine unreliableActivity-Aktivitat, deren Schnittstellendefinition wie folgt in
ExponentialRetryAnnotationActivities implementiert wird:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
defaultTaskScheduleToStartTimeoutSeconds = 30,
defaultTaskStartToCloseTimeoutSeconds = 30)
public interface ExponentialRetryAnnotationActivities {
@ExponentialRetry(
initialRetryIntervalSeconds = 5,
maximumAttempts = 5,
exceptionsToRetry = IllegalStateException.class)
public void unreliableActivity();

Die @ExponentialRetry-Optionen legen folgende Strategie fest:

* Nur wiederholen, wenn die Aktivitat I1legalStateException ausgibt.
» Eine erste Wartezeit von 5 Sekunden verwenden.

* Nicht mehr als 5 Wiederholungen.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 151

AWS Flow Framework fur Java Entwicklerhandbuch

Die Workflow-Schnittstelle wird in RetryWorkflow implementiert und enthalt die Methode
process, die den Eintrittspunkt des Workflows darstellt. Der Workflow-Worker wird in
ExponentialRetryAnnotationWorkflowImpl wie folgt implementiert:

public class ExponentialRetryAnnotationWorkflowImpl implements RetryWorkflow {
public void process() {
handleUnreliableActivity();
}

public void handleUnreliableActivity() {
client.unreliableActivity();

}

Der Workflow funktioniert folgendermal3en:

1. process fuhrt die synchrone handleUnreliableActivity-Methode aus.

2. handleUnreliableActivity flhrt die unreliableActivity-Aktivitat aus.

Schlagt die Aktivitat fehl, indem I1legalStateException ausgegeben wird, fihrt das
Framework automatisch die in ExponentialRetryAnnotationActivities festgelegte
Wiederholungsstrategie aus.

Exponentielle Wiederholung mit der Klasse RetryDecorator

@ExponentialRetry ist benutzerfreundlich. Allerdings ist die Konfiguration statisch und wird

bei der Kompilierung festgelegt, sodass das Framework bei jedem Fehler der Aktivitat dieselbe
Wiederholungsstrategie anwendet. Sie kdnnen eine flexiblere exponentielle Wiederholungsstrategie
implementieren, indem Sie die RetryDecorator-Klasse verwenden, mit der Sie die Konfiguration
zur Laufzeit festlegen und bei Bedarf andern kénnen. Das grundlegende Muster ist:

1. Erzeugen und konfigurieren Sie ein ExponentialRetryPolicy-Objekt, das die
Wiederholungskonfiguration festlegt.

2. Erzeugen Sie ein RetryDecorator-Objekt und geben Sie das ExponentialRetryPolicy-
Objekt aus Schritt 1 an den Konstruktor weiter.

3. Wenden Sie das Decorator-Objekt auf die Aktivitat an, indem Sie den Klassennamen des
Aktivitats-Clients auf die Ausstattungsmethode des RetryDecorator-Objekts Ubergeben.

4. Fuhren Sie die Aktivitat aus.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 152

AWS Flow Framework fur Java Entwicklerhandbuch

Schlagt die Aktivitat fehl, wiederholt das Framework die Aktivitat basierend auf der
ExponentialRetryPolicy-Objektkonfiguration. Sie kdnnen die Wiederholungskonfiguration bei
Bedarf andern, indem Sie dieses Objekt anpassen.

(® Note

Die @ExponentialRetry-Anmerkung und die RetryDecorator-Klasse schliellen
sich gegenseitig aus. Sie kdnnen RetryDecorator nicht verwenden, um eine
Wiederholungsrichtlinie, die von einer @ExponentialRetry-Anmerkung festgelegt wird,
dynamisch zu Uberschreiben.

Die folgende Workflow-Implementierung zeigt, wie die RetryDecorator-Klasse verwendet
wird, um eine exponentielle Wiederholungsstrategie zu implementieren. Sie verwendet eine
unreliableActivity-Aktivitat, die nicht Uber eine @ExponentialRetry-Anmerkung
verfiigt. Die Workflow-Schnittstelle wird in RetryWorkflow implementiert und enthalt die
Methode process, die den Eintrittspunkt des Workflows darstellt. Der Workflow-Worker wird in
DecoratorRetryWorkflowImpl wie folgt implementiert:

public class DecoratorRetryWorkflowImpl implements RetryWorkflow {

public void process() {
long initialRetryIntervalSeconds = 5;
int maximumAttempts = 5;
ExponentialRetryPolicy retryPolicy = new ExponentialRetryPolicy(
initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);

Decorator retryDecorator = new RetryDecorator(retryPolicy);

client = retryDecorator.decorate(RetryActivitiesClient.class, client);
handleUnreliableActivity();

public void handleUnreliableActivity() {
client.unreliableActivity();

Der Workflow funktioniert folgendermalen:

1. process erzeugt und konfiguriert ein ExponentialRetryPolicy-Objekt folgendermalien:

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 153

AWS Flow Framework fur Java Entwicklerhandbuch

» Das erste Wiederholungsintervall wird an den Konstruktor Gbergeben.

+ Aufrufen der withMaximumAttempts-Methode des Objekts, um die maximale Anzahl der
Versuche auf 5 festzulegen. ExponentialRetryPolicy zeigt andere with-Objekte an, mit
denen Sie andere Konfigurationsoptionen angeben kénnen.

2. process erzeugt ein RetryDecorator-Objekt namens retryDecorator und Ubergibt das
ExponentialRetryPolicy-Objekt aus Schritt 1 an den Konstruktor.

3. process wendet den Decorator auf die Aktivitat an, indem es die retryDecorator.decorate-
Methode aufruft und ihr den Klassennamen des Aktivitats-Clients Gbergibt.

4. handleUnreliableActivity flhrt die Aktivitat aus.

Schlagt die Aktivitat fehl, wiederholt das Framework sie basierend auf der in Schritt 1 festgelegten
Konfiguration.

@ Note

Einige with-Methoden der ExponentialRetryPolicy-Klasse besitzen

eine entsprechende set-Methode, die Sie jederzeit aufrufen kdnnen, um die
entsprechende Konfigurationsoption anzupassen: setBackoffCoefficient,
setMaximumAttempts, setMaximumRetryIntervalSeconds und
setMaximumRetryExpirationIntervalSeconds.

Exponentielle Wiederholung mit der Klasse AsyncRetryingExecutor

Die RetryDecorator-Klasse bietet mehr Flexibilitat bei der Konfiguration des
Wiederholungsvorgangs als @ExponentialRetry, allerdings fihrt das Framework

dennoch automatisch die Wiederholungen basierend auf der aktuellen Konfiguration des
ExponentialRetryPolicy-Objekts aus. Ein flexiblerer Ansatz ist die Verwendung der
AsyncRetryingExecutor-Klasse. Sie haben nicht nur die Mdglichkeit, den Wiederholungsvorgang
zur Laufzeit zu konfigurieren, sondern das Framework ruft zudem eine vom Benutzer implementierte
AsyncRunnable. run-Methode zur Ausflihrung jeder Wiederholung auf, statt die Aktivitat einfach
auszufihren.

Das grundlegende Muster ist:

1. Erzeugen und konfigurieren Sie ein ExponentialRetryPolicy-Objekt, um die
Wiederholungskonfiguration festzulegen.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 154

AWS Flow Framework fur Java Entwicklerhandbuch

2.

Erzeugen Sie ein AsyncRetryingExecutor-Objekt und Gbergeben Sie ihm das
ExponentialRetryPolicy-Objekt und eine Instanz der Workflow-Uhr.

3. Implementieren Sie eine anonyme verschachtelte TryCatch- oder TryCatchFinally-Klasse.

. Implementieren Sie eine anonyme AsyncRunnable-Klasse und Uiberschreiben Sie die run-

Methode, um den benutzerdefinierten Code zur Ausfuhrung der Aktivitat zu implementieren.

. Uberschreiben Sie doTry, um die execute-Methode des AsyncRetryingExecutor-

Objekts aufzurufen, und tbergeben Sie ihr die AsyncRunnable-Klasse aus Schritt 4. Das
AsyncRetryingExecutor-Objekt ruft AsyncRunnable. run auf, um die Aktivitat auszuflhren.

. Schlagt die Aktivitat fehl, ruft das AsyncRetryingExecutor-Objekt in Einklang mit der

Wiederholungsrichtlinie, die in Schritt 1 festgelegt wurde, die AsyncRunnable.run-Methode
erneut auf.

Der folgende Workflow zeigt, wie die AsyncRetryingExecutor-Klasse verwendet wird,

um eine exponentielle Wiederholungsstrategie zu implementieren. Er verwendet dieselbe

u

nreliableActivity-Aktivitdt wie der zuvor behandelte DecoratorRetryWorkflow-

Workflow. Die Workflow-Schnittstelle wird in RetryWorkflow implementiert und enthalt die
Methode process, die den Eintrittspunkt des Workflows darstellt. Der Workflow-Worker wird in

AsyncExecutorRetryWorkflowImpl wie folgt implementiert:

public class AsyncExecutorRetryWorkflowImpl implements RetryWorkflow {

private final RetryActivitiesClient client = new RetryActivitiesClientImpl();

private final DecisionContextProvider contextProvider = new
DecisionContextProviderImpl();

private final WorkflowClock clock =
contextProvider.getDecisionContext().getWorkflowClock();

public void process() {
long initialRetryIntervalSeconds = 5;
int maximumAttempts = 5;
handleUnreliableActivity(initialRetryIntervalSeconds, maximumAttempts);
}
public void handleUnreliableActivity(long initialRetryIntervalSeconds, int
maximumAttempts) {

ExponentialRetryPolicy retryPolicy = new
ExponentialRetryPolicy(initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);

final AsyncExecutor executor = new AsyncRetryingExecutor(retryPolicy, clock);

new TryCatch() {

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 155

AWS Flow Framework fur Java Entwicklerhandbuch

@Override
protected void doTry() throws Throwable {
executor.execute(new AsyncRunnable() {
@Override
public void run() throws Throwable {
client.unreliableActivity();
}
1)
}
@Override
protected void doCatch(Throwable e) throws Throwable {

Der Workflow funktioniert folgendermalien:

1.

process ruft die handleUnreliableActivity-Methode auf und tbergibt ihr die
Konfigurationseinstellungen.

. handleUnreliableActivity verwendet die Konfigurationseinstellungen aus Schritt 1, um das

ExponentialRetryPolicy-Objekt retryPolicy zu erzeugen.

. handleUnreliableActivity erzeugt das AsyncRetryExecutor-Objekt executor und

Ubergibt das ExponentialRetryPolicy-Objekt aus Schritt 2 und eine Instanz der Workflow-Uhr
an den Konstruktor.

. handleUnreliableActivity implementiert eine anonyme verschachtelte TryCatch-Klasse

und Uberschreibt die doTry- und doCatch-Methode, um die Wiederholungen auszufihren und
mogliche Ausnahmen zu verarbeiten.

. doTry erzeugt eine anonyme AsyncRunnable-Klasse und Uberschreibt die run-Methode, um

den benutzerdefinierten Code zur Ausfihrung von unreliableActivity zu implementieren.
Der Einfachheit halber fiihrt run nur die Aktivitat aus, Sie kdnnen bei Bedarf jedoch komplexere
Ansatze implementieren.

. doTry ruft executor.execute auf und lbergibt es an das AsyncRunnable-Objekt. execute

ruft die run-Methode des AsyncRunnable-Objekts auf, um die Aktivitat auszufihren.

. Schlagt die Aktivitat fehl, ruft der Executor erneut run auf, basierend auf der Konfiguration des

retryPolicy-Obijekts.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 156

AWS Flow Framework fur Java Entwicklerhandbuch

Weitere Informationen zur Verwendung der TryCatch-Klasse zur Fehlerbehandlung finden Sie unter
AWS Flow Framework fiur Java-Ausnahmen.

Benutzerdefinierte Wiederholungsstrategie

Der flexibelste Ansatz zur Wiederholung fehlgeschlagener Aktivitaten ist eine benutzerdefinierte
Strategie, bei der rekursiv eine asynchrone Methode aufgerufen wird, die den Wiederholungsversuch
ausfuhrt, ahnlich wie bei der Strategie. retry-until-success Statt die Aktivitat einfach erneut
auszufuhren, implementieren Sie jedoch eine benutzerdefinierte Logik, die entscheidet, ob und wie
jede Wiederholung ausgefuihrt werden soll. Das grundlegende Muster ist:

1. Erzeugen Sie ein Settable<T>-Statusobjekt, das verwendet wird, um anzugeben, ob die Aktivitat
fehlgeschlagen ist.

2. Implementieren Sie eine verschachtelte TryCatch- oder TryCatchFinally-Klasse.
3. doTry flhrt die Aktivitat aus.

4. Schlagt die Aktivitat fehl, legt doCatch das Statusobjekt fest, um anzugeben, dass die Aktivitat
fehlgeschlagen ist.

5. Rufen Sie eine asynchrone Fehlerbehandlungsmethode auf und Gbergeben Sie ihr das
Statusobjekt. Die Methode verschiebt die Ausflihrung, bis TryCatch oder TryCatchFinally
abgeschlossen wird.

6. Die Fehlerbehandlungsmethode entscheidet, ob und wann die Aktivitat wiederholt werden soll.

Der folgende Workflow zeigt, wie eine benutzerdefinierte Wiederholungsstrategie implementiert wird.
Er verwendet dieselbe unreliableActivity-Aktivitat wie der DecoratorRetryWorkflow- und
AsyncExecutorRetryWorkflow-Workflow. Die Workflow-Schnittstelle wird in RetryWorkflow
implementiert und enthalt die Methode process, die den Eintrittspunkt des Workflows darstellt. Der
Workflow-Worker wird in CustomLogicRetryWorkflowImpl wie folgt implementiert:

public class CustomLogicRetryWorkflowImpl implements RetryWorkflow {

public void process() {
callActivityWithRetry();
}
@Asynchronous
public void callActivityWithRetry() {
final Settable<Throwable> failure = new Settable<Throwable>();
new TryCatchFinally() {
protected void doTry() throws Throwable {

Benutzerdefinierte Wiederholungsstrategie API-Version 2021-04-28 157

AWS Flow Framework fur Java Entwicklerhandbuch

client.unreliableActivity();

}

protected void doCatch(Throwable e) {
failure.set(e);

}

protected void doFinally() throws Throwable {
if (!failure.isReady()) {

failure.set(null);

}
}
};
retryOnFailure(failure);
}
@Asynchronous

private void retryOnFailure(Promise<Throwable> failureP) {
Throwable failure = failureP.get();
if (failure != null && shouldRetry(failure)) {

callActivityWithRetry();

}

}

protected Boolean shouldRetry(Throwable e) {
//custom logic to decide to retry the activity or not
return true;

Der Workflow funktioniert folgendermalien:

1. process ruft die asynchrone callActivityWithRetry-Methode auf.

2. callActivityWithRetry erstellt ein Settable<Throwable>-Objekt namens
"failure" (Fehler), mit dem angezeigt wird, dass die Aktivitat fehlgeschlagen ist. Settable<T>
ist von Promise<T> abgeleitet und funktioniert zwar ahnlich, jedoch legen Sie den Wert eines
Settable<T>-Objekts manuell fest.

3. callActivityWithRetry implementiert eine anonyme verschachtelte TryCatchFinally-
Klasse zur Verarbeitung von Ausnahmen, die von unreliableActivity ausgegeben werden.
Weitere Informationen zum Umgang mit Ausnahmen, die von asynchronem Code ausgegeben
werden, finden Sie unter AWS Flow Framework fur Java-Ausnahmen.

4. doTry fuhrt unreliableActivity aus.

5. Wenn unreliableActivity eine Ausnahme auslést, ruft das Framework doCatch auf und
Ubergibt sie an das Ausnahmeobjekt. doCatch legt failure auf das Ausnahmeobjekt fest, was

Benutzerdefinierte Wiederholungsstrategie API-Version 2021-04-28 158

AWS Flow Framework fur Java Entwicklerhandbuch

anzeigt, dass die Aktivitat fehlgeschlagen ist, und versetzt das Objekt in einen betriebsbereiten
Zustand.

6. doFinally uberprift, ob failure einsatzbereit ist, was nur der Fall ist, wenn failure von
doCatch festgelegt wurde.

* Wenn es bereit failure ist, tut es nichts. doFinally

« Wenn failure nicht einsatzbereit ist, wird die Aktivitat abgeschlossen und doFinally legt
"failure" auf null fest.

7. callActivityWithRetry ruft die asynchrone retryOnFailure-Methode auf und Ubergibt
ihr "failure". Da "failure" ein Settable<T>-Typ ist, verschiebt callActivityWithRetry
die Ausfiihrung, bis "failure" einsatzbereit ist. Dies ist der Fall, sobald TryCatchFinally
abgeschlossen wird.

8. retryOnFailure ruft den Wert von "failure" ab.

* Wenn der Fehler auf Null gesetzt ist, war der Wiederholungsversuch erfolgreich.
retryOnFailure unternimmt nichts, wodurch der Wiederholungsprozess beendet wird.

« Wenn "failure" auf ein Ausnahmeobjekt festgelegt ist und shouldRetxry "true" zurtickgibt, ruft
retryOnFailure callActivityWithRetry auf, um die Aktivitdt zu wiederholen.

shouldRetry implementiert eine benutzerdefinierte Logik, um zu entscheiden, ob eine
fehlgeschlagene Aktivitat wiederholt werden soll. Der Einfachheit halber gibt shouldRetry
immer true zurlck und retryOnFailure fuhrt die Aktivitat sofort aus, Sie kdnnen bei Bedarf
jedoch eine komplexere Logik implementieren.

9. Die Schritte 2—8 werden wiederholt, bis der Vorgang unreliableActivity abgeschlossen ist
oder shouldRetry beendet werden soll.

® Note

doCatch verarbeitet den Wiederholungsvorgang nicht, sondern legt nur "failure" fest, um
anzugeben, dass die Aktivitat fehlgeschlagen ist. Der Wiederholungsvorgang wird von der
asynchronen retryOnFailure-Methode verarbeitet, die die Ausflihrung verschiebt, bis
TryCatch abgeschlossen wird. Der Grund fir diesen Ansatz ist, dass Sie eine Aktivitat, die
Sie in doCatch wiederholen, nicht beenden kdnnen. Wenn die Aktivitat in retryOnFailure
wiederholt wird, kdnnen Sie Aktivitaten ausfuhren, die sich beenden lassen.

Benutzerdefinierte Wiederholungsstrategie API-Version 2021-04-28 159

AWS Flow Framework fur Java Entwicklerhandbuch

Daemon-Aufgaben

Das AWS Flow Framework fir Java ermdglicht das Markieren bestimmter Aufgaben alsdaemon.
Mithilfe dieser Markierung kénnen Sie Aufgaben zum Ausflihren von Hintergrundroutinen

erstellen, die abgebrochen werden sollen, wenn alle Routinen beendet sind. Eine Aufgabe zum
Uberwachen des Status soll beispielsweise abgebrochen werden, wenn der Rest des Workflows
abgeschlossen ist. Legen Sie dazu das daemon-Flag fiir eine asynchrone Methode oder Instance von
TryCatchFinally fest. Im folgenden Beispiel wird die asynchrone Methode monitorHealth()

als daemon markiert.

public class MyWorkflowImpl implements MyWorkflow {
MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

@Override
public void startMyWF(int a, String b) {
activitiesClient.doUsefulWorkActivity();

monitorHealth();

}

@Asynchronous(daemon=true)

void monitorHealth(Promise<?>... waitFor) {
activitiesClient.monitoringActivity();

}

Im obigen Beispiel wird bei Abschluss von doUsefulWorkActivity monitoringHealth
automatisch abgebrochen. Dadurch wird der gesamte Ausflihrungszweig, der aus dieser
asynchronen Methode stammt, abgebrochen. Die Semantik dieses Abbruchs entspricht der in
TryCatchFinally. Entsprechend kdnnen Sie einen TryCatchFinally-Daemon markieren,
indem Sie ein boolesches Flag an den Konstruktor tibergeben.

public class MyWorkflowImpl implements MyWorkflow {
MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

@Override
public void startMyWF(int a, String b) {
activitiesClient.doUsefulWorkActivity();
new TryFinally(true) {
@Override

Daemon-Aufgaben API-Version 2021-04-28 160

AWS Flow Framework fur Java Entwicklerhandbuch

protected void doTry() throws Throwable {
activitiesClient.monitoringActivity();

@Override
protected void doFinally() throws Throwable {
// clean up

i

Eine Daemon-Aufgabe, die innerhalb einer gestartet wird, TryCatchFinally ist auf den Kontext
beschrankt, in dem sie erstellt wurde, d. h. sie wird entweder auf die Methoden, oder beschrankt.
doTry() doCatch() doFinally() Im folgenden Beispiel wird die asynchrone startMonitoring-
Methode als Daemon markiert und von doTry () aufgerufen. Die dafir erstellte Aufgabe wird
abgebrochen, sobald die anderen Aufgaben (doUsefulWorkActivity in diesem Fall), die in
doTry() gestartet wurden, abgeschlossen sind.

public class MyWorkflowImpl implements MyWorkflow {
MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

@Override
public void startMyWF(int a, String b) {
new TryFinally() {
@Override
protected void doTry() throws Throwable {
activitiesClient.doUsefulWorkActivity();
startMonitoring();

@Override
protected void doFinally() throws Throwable {
// Clean up

};

@Asynchronous(daemon = true)
void startMonitoring(){
activitiesClient.monitoringActivity();

}

Daemon-Aufgaben API-Version 2021-04-28 161

AWS Flow Framework fur Java Entwicklerhandbuch

AWS Flow Framework fur Java Replay Behavior

In diesem Thema werden Beispiele fur Replay-Verhalten unter Verwendung von Beispielen im
Abschnitt Was ist das AWS Flow Framework fur Java? erlautert. Sowohl synchrone als auch
asynchrone Szenarien werden behandelt.

Beispiel 1: Synchrones Replay

Ein Beispiel dafur, wie die Wiedergabe in einem synchronen Workflow funktioniert, finden Sie, indem
Sie die HelloWorldWorkflowWorkflow- und Aktivitdtsimplementierungen wie folgt andern, indem Sie

innerhalb der jeweiligen Implementierungen println Aufrufe hinzufligen:

public class GreeterWorkflowImpl implements GreeterWorkflow {

public void greet() {
System.out.println("greet executes");
Promise<String> name = operations.getName();
System.out.println("client.getName returns");
Promise<String> greeting = operations.getGreeting(name);
System.out.println("client.greeting returns");
operations.say(greeting);
System.out.println("client.say returns");

}

kkhkkkkhkkhkkhkhkhkkkkkx

public class GreeterActivitiesImpl implements GreeterActivities {
public String getName() {
System.out.println("activity.getName completes");
return "World";

public String getGreeting(String name) {
System.out.println("activity.getGreeting completes");
return "Hello " + name + "!";

public void say(String what) {
System.out.println(what);

Replay-Verhalten API-Version 2021-04-28 162

AWS Flow Framework fur Java

Entwicklerhandbuch

Details zum Code finden Sie unter HelloWorldWorkflow Bewerbung. Im Folgenden sehen Sie eine

bearbeitete Version der Ausgabe mit Kommentaren, die den Start jedes Replay-Abschnitts angeben.

//Episode 1

greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getName completes
//Episode 2

greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getGreeting completes
//Episode 3

greet executes

client.getName returns
client.greeting returns
client.say returns

Hello World! //say completes
//Episode 4

greet executes
client.getName returns
client.greeting returns
client.say returns

Der Replay-Prozess flr dieses Beispiel funktioniert wie folgt:

Im ersten Abschnitt wird die getName-Aktivitatsaufgabe geplant, die keine Abhangigkeiten hat.

* Im zweiten Abschnitt wird die getGreeting-Aktivitdtsaufgabe geplant, die von getName abhangt.

Aktivitaten gefunden, wodurch die Workflow-Ausflihrung beendet wird.

Im dritten Abschnitt wird die say-Aktivitatsaufgabe geplant, die von getGreeting abhangt.

Im letzten Abschnitt werden keine zusatzlichen Aufgaben geplant und keine nicht abgeschlossenen

Beispiel 1: Synchrones Replay

API-Version 2021-04-28 163

AWS Flow Framework fur Java Entwicklerhandbuch

® Note

Die drei Aktivitaten-Client-Methoden werden einmal fir jeden Abschnitt aufgerufen. Allerdings
ergibt sich nur aus einem dieser Aufrufe eine Aktivitatsaufgabe, sodass jede Aufgabe nur
einmal durchgefihrt wird.

Beispiel 2: Asynchrones Replay

Ahnlich wie im Beispiel fiir synchrones Replay kénnen Sie HelloWorldWorkflowAsyncBewerbung
andern, um zu sehen, wie ein asynchrones Replay funktioniert. Es erzeugt folgende Ausgabe:

//Episode 1

greet executes

client.name returns
workflow.getGreeting returns
client.say returns

activity.getName completes
//Episode 2

greet executes

client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

Hello World! //say completes
//Episode 3

greet executes

client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

HelloWorldAsync verwendet drei Wiederholungsepisoden, da es nur zwei Aktivitaten gibt. Die
getGreeting-Aktivitat wurde durch die asynchrone Workflow-Methode getGreeting ersetzt, die
keinen Replay-Abschnitt initiiert, wenn sie abgeschlossen wird.

Der erste Abschnitt ruft getGreeting nicht auf, da er vom Abschluss der Aktivitat name
abhangt. Aber nachdem getName abgeschlossen wurde, ruft Replay getGreeting einmal fir jeden
nachfolgenden Abschnitt auf.

Beispiel 2: Asynchrones Replay API-Version 2021-04-28 164

AWS Flow Framework fur Java Entwicklerhandbuch

Weitere Informationen finden Sie unter:

* AWS Flow Framework Grundbegriffe: Verteilte Ausfiihrung

Weitere Informationen finden Sie unter: API-Version 2021-04-28 165

AWS Flow Framework fur Java Entwicklerhandbuch

Bewahrte Methoden

Verwenden Sie diese bewahrten Methoden, um das Beste aus dem AWS Flow Framework flr Java
herauszuholen.

Themen

« Vornehmen von Anderungen am Entscheidercode: Versioning und Funktions-Flags

Vornehmen von Anderungen am Entscheidercode: Versioning und
Funktions-Flags

In diesem Abschnitt erfahren Sie, wie Sie Anderungen am Entscheidercode vornehmen, um die
Abwartskompatibilitat sicherzustellen. Hierfir haben Sie zwei Mdglichkeiten:

+ Versioning ist eine grundlegende Losung.

« Version mit Funktions-Flags baut auf reinem Versioning auf: Es wird keine neue Version des

Workflows eingefuihrt und flr die Versionsaktualisierung ist kein neuer Code erforderlich.

Bevor Sie diese Loésungen ausprobieren, sollten Sie sich mit dem Abschnitt Beispielszenario vertraut

machen. Dort werden die Ursachen und Auswirkungen von Anderungen am Entscheidercode
erlautert, die zu Abwartsinkompatibilitat fihren.

Wiedergabe und Codeanderungen

Wenn ein Decider-Worker AWS Flow Framework flr Java eine Entscheidungsaufgabe ausfuhrt, muss
er zunachst den aktuellen Status der Ausflihrung neu erstellen, bevor er weitere Schritte hinzufigen
kann. Der Entscheider verwendet hierflr die sogenannte Wiedergabe.

Beim Wiedergabeprozess wird der Entscheidercode von Anfang an erneut ausgefuhrt und gleichzeitig
der Ereignisverlauf durchgegangen. Dadurch kann das Framework auf Signale oder den Abschluss
einer Aufgabe reagieren und Promise-Objekte im Code freigeben.

Wenn das Framework den Decider-Code ausflhrt, weist es jeder geplanten Aufgabe (einer Aktivitat,
Lambda-Funktion, einem Timer, einem untergeordneten Workflow oder einem ausgehenden Signal)
eine ID zu, indem es einen Zahler erhoht. Das Framework tbermittelt diese ID an Amazon SWF und
fugt die ID zu Verlaufsereignissen hinzu, z. ActivityTaskCompleted

Vornehmen von Anderungen am Entscheidercode API-Version 2021-04-28 166

AWS Flow Framework fur Java Entwicklerhandbuch

Damit der Wiedergabeprozess erfolgreich ist, muss der Entscheidercode deterministisch sein und
dieselben Aufgaben flr jede Entscheidung bei jeder Workflow-Ausflihrung in derselben Reihenfolge
planen. Wenn diese Anforderung nicht erflllt ist, kann es beispielsweise vorkommen, dass das
Framework die ID in einem ActivityTaskCompleted-Ereignis nicht einem vorhandenen
Promise-Objekt zuordnen kann.

Beispielszenario

Es gibt eine Klasse von Codeénderungen, die als abwartsinkompatibel gilt. Zu diesen Anderungen
gehoren Aktualisierungen, bei denen die Anzahl, der Typ oder die Reihenfolge der geplanten
Aufgaben verandert werden. Betrachten Sie das folgende Beispiel:

Sie schreiben Entscheidercode, um zwei Timer-Aufgaben zu planen. Sie beginnen mit der
Ausflhrung und fuhren eine Entscheidung aus. Daher werden zwei Timer-Aufgaben mit IDs 1 und 2
geplant.

Wenn Sie den Entscheidercode so aktualisieren, dass nur ein Timer geplant wird, bevor die nachste
Entscheidung ausgefiihrt wird, kann das Framework bei der nachsten Entscheidungsaufgabe

das zweite TimerFired-Ereignis nicht wiedergeben, da die ID 2 nicht mit einer Timer-Aufgabe
Ubereinstimmt, die vom Code erzeugt wurde.

Uberblick (iber das Szenario

Der folgende Uberblick zeigt die einzelnen Schritte dieses Szenarios. Endziel des Szenarios ist es,
eine Migration auf ein System durchzuflhren, bei dem nur ein Timer geplant wird, ohne dass dies
dazu fuhrt, dass Ausfuhrungen fehlschlagen, die vor der Migration gestartet wurden.

1. Die erste Entscheiderversion
a. Schreiben Sie den Entscheider.
b. Starten Sie den Entscheider.
c. Der Entscheider plant zwei Timer.
d. Der Entscheider startet funf Ausfihrungen.
e. Halten Sie den Entscheider an.
2. Eine abwartsinkompatible Anderung am Entscheider
a. Andern Sie den Entscheider.
b. Starten Sie den Entscheider.

c. Der Entscheider plant einen Timer.

Beispielszenario API-Version 2021-04-28 167

AWS Flow Framework fur Java

Entwicklerhandbuch

d. Der Entscheider startet funf Ausfiihrungen.

Die folgenden Abschnitte enthalten Java-Beispielcode, mit dem sich dieses Szenario implementieren
I&sst. Die Codebeispiele im Abschnitt Losungen zeigen zwei Moglichkeiten, abwartsinkompatible

Anderungen zu beheben.

® Note

Sie kdnnen die aktuelle Version von AWS SDK fiur Java verwenden, um diesen Code

auszufiinren.

Gangiger Code

Der folgende Java-Code andert sich zwischen den Beispielen in diesem Szenario nicht.

SampleBase. java

package sample;

import
import
import

import
import
import
import
import
import
import
import
import
import
import
import

public

java.util.Arraylist;
java.util.List;
java.util.UUID;

com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.

amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.

services.
services.
services.
services.
.simpleworkflow.model.DomainAlreadyExistsException;

services

services.
services.
services.
services.
services.
.simpleworkflow.model.WorkflowExecutionDetail;

services

services.

class SampleBase {

protected String domain =
protected String taskList

simpleworkflow.AmazonSimpleWorkflow;
simpleworkflow.AmazonSimpleWorkflowClientBuilder;
simpleworkflow.flow.JsonDataConverter;
simpleworkflow.model.DescribeWorkflowExecutionRequest;

simpleworkflow.model.RegisterDomainRequest;
simpleworkflow.model.Run;
simpleworkflow.model.StartWorkflowExecutionRequest;
simpleworkflow.model.TaskList;

simpleworkflow.model .WorkflowExecution;

simpleworkflow.model.WorkflowType;

"DeciderChangeSample";
= "DeciderChangeSample-" + UUID.randomUUID().toString();

Beispielszenario

API-Version 2021-04-28 168

https://aws.amazon.com/sdk-for-java/

AWS Flow Framework fur Java Entwicklerhandbuch

protected AmazonSimpleWorkflow service =
AmazonSimpleWorkflowClientBuilder.defaultClient();

{

try {
AmazonSimpleWorkflowClientBuilder.defaultClient().registerDomain(new

RegisterDomainRequest().withName(domain).withDescription("desc").withWorkflowExecutionRetentic
} catch (DomainAlreadyExistsException e) {

}

protected List<WorkflowExecution> workflowExecutions = new ArraylList<>();

protected void startFiveExecutions(String workflow, String version, Object input) {
for (int i = 0; i < 5; i++) {
String id = UUID.randomUUID().toString();
Run startWorkflowExecution = service.startWorkflowExecution(
new
StartWorkflowExecutionRequest().withDomain(domain).withTaskList(new
TaskList().withName(taskList)).withInput(new JsonDataConverter().toData(new
Object[] { input })).withWorkflowId(id).withWorkflowType(new
WorkflowType().withName(workflow).withVersion(version)));
workflowExecutions.add(new
WorkflowExecution().withWorkflowId(id).withRunId(startWorkflowExecution.getRunId()));
sleep(1000);

protected void printExecutionResults() {
waitForExecutionsToClose();
System.out.println("\nResults:");
for (WorkflowExecution wid : workflowExecutions) {
WorkflowExecutionDetail details = service.describeWorkflowExecution(new
DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
System.out.println(wid.getWorkflowId() + " " +
details.getExecutionInfo().getCloseStatus());

}

protected void waitForExecutionsToClose() {
loop: while (true) {
for (WorkflowExecution wid : workflowExecutions) {
WorkflowExecutionDetail details = service.describeWorkflowExecution(new
DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
if ("OPEN".equals(details.getExecutionInfo().getExecutionStatus())) {

Beispielszenario API-Version 2021-04-28 169

AWS Flow Framework fur Java Entwicklerhandbuch

sleep(1000);
continue loop;

retuzrn;

protected void sleep(int millis) {

try {
Thread.sleep(millis);

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

Input.java

package sample;
public class Input {
private Boolean skipSecondTimer;

public Input() {
}

public Input(Boolean skipSecondTimer) {
this.skipSecondTimer = skipSecondTimer;

public Boolean getSkipSecondTimer() {
return skipSecondTimer != null && skipSecondTimer;

public Input setSkipSecondTimer(Boolean skipSecondTimer) {
this.skipSecondTimer = skipSecondTimer;
return this;

Beispielszenario API-Version 2021-04-28 170

AWS Flow Framework fur Java Entwicklerhandbuch

Schreiben des ersten Entscheidercodes

Nachfolgend sehen Sie den ersten Java-Code des Entscheiders. Er ist als Version 1 registriert und
plant zwei funfsekindige Timer-Aufgaben.

InitialDecider. java

package sample.vl;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "1")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V1) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);
clock.createTimer(5);

Beispielszenario API-Version 2021-04-28 171

AWS Flow Framework fur Java Entwicklerhandbuch

Simulieren einer abwartsinkompatiblen Anderung

Der folgende, modifizierte Java-Code des Entscheiders ist ein gutes Beispiel flr eine
abwartsinkompatible Anderung. Der Code ist weiterhin als Version 1 registriert, plant jedoch nur noch
einen Timer.

ModifiedDecider. java

package sample.vl.modified;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "1")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V1 modified) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);

Beispielszenario API-Version 2021-04-28 172

AWS Flow Framework fur Java Entwicklerhandbuch

Mit dem folgenden Java-Code kdnnen Sie das Problem einer abwértsinkompatiblen Anderung
simulieren, indem Sie den modifizierten Entscheider ausfuhren.

RunModifiedDecider. java

package sample;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;
public class BadChange extends SampleBase {

public static void main(String[] args) throws Exception {
new BadChange().run();

public void run() throws Exception {
// Start the first version of the decider
WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
before.addWorkflowImplementationType(sample.vl.Foo.Impl.class);
before.start();

// Start a few executions
startFiveExecutions("Foo.sample", "1", new Input());

// Stop the first decider worker and wait a few seconds
// for its pending pollers to match and return
before.suspendPolling();

sleep(2000);

// At this point, three executions are still open, with more decisions to make
// Start the modified version of the decider

WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
after.addwWorkflowImplementationType(sample.vl.modified.Foo.Impl.class);

after.start();

// Start a few more executions
startFiveExecutions("Foo.sample", "1", new Input());

printExecutionResults();

Beispielszenario API-Version 2021-04-28 173

AWS Flow Framework fur Java Entwicklerhandbuch

Wenn Sie das Programm ausfihren, scheitern die drei Ausfiihrungen, die mit der ersten Version des
Entscheiders gestartet und nach der Migration fortgesetzt wurden.

Losungen

Verwenden Sie eine der folgenden Lésungen, um abwértsinkompatible Anderungen zu vermeiden.
Weitere Informationen finden Sie unter Vornehmen von Anderungen am Entscheidercode und

Beispielszenario.

Verwenden von Versioning

Fir diese LOsung kopieren Sie den Entscheider in eine neue Klasse, modifizieren ihn und registrieren
den Entscheider dann unter einer neuen Workflow-Version.

VersionedDecider. java

package sample.v2;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "2")
public void sample(Input input);

public static class Impl implements Foo {
private DecisionContext decisionContext = new

DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

Lésungen API-Version 2021-04-28 174

AWS Flow Framework fur Java Entwicklerhandbuch

@Override
public void sample(Input input) {
System.out.println("Decision (V2) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);

Im aktualisierten Java-Code fiihrt der zweite Entscheiderauftragnehmer beide Versionen des
Workflows aus. Dadurch kénnen laufende Ausfiihrungen unabhangig von den Anderungen in
Version 2 fortgesetzt werden.

RunVersionedDecider. java

package sample;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;
public class VersionedChange extends SampleBase {

public static void main(String[] args) throws Exception {
new VersionedChange().run();

public void run() throws Exception {
// Start the first version of the decider, with workflow version 1
WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
before.addWorkflowImplementationType(sample.vl.Foo.Impl.class);
before.start();

// Start a few executions with version 1
startFiveExecutions("Foo.sample", "1", new Input());

// Stop the first decider worker and wait a few seconds
// for its pending pollers to match and return
before.suspendPolling();

sleep(2000);

// At this point, three executions are still open, with more decisions to make

Lésungen API-Version 2021-04-28 175

AWS Flow Framework fur Java Entwicklerhandbuch

// Start a worker with both the previous version of the decider (workflow
version 1)

// and the modified code (workflow version 2)

WorkflowWorker after = new WorkflowWorker(service, domain, taskList);

after.addWorkflowImplementationType(sample.vl.Foo.Impl.class);

after.addWorkflowImplementationType(sample.v2.Foo.Impl.class);

after.start();

// Start a few more executions with version 2
startFiveExecutions("Foo.sample", "2", new Input());

printExecutionResults();

Wenn Sie das Programm ausfiihren, werden alle Ausflihrungen erfolgreich abgeschlossen.
Verwenden von Funktions-Flags

Eine weitere Losung fur Probleme mit der Abwartskompatibilitdt besteht darin, den Code basierend
auf Eingabedaten anstelle von Workflow-Versionen in zwei Implementierungen in derselben Klasse
aufzuteilen.

Wenn Sie diesen Ansatz wahlen, figen Sie Ilhren Eingabeobjekten jedes Mal, wenn Sie sensible
Anderungen vornehmen, Felder hinzu (oder modifizieren vorhandene Felder |hrer Eingabeobjekte).
Fir Ausflhrungen, die vor der Migration beginnen, enthalt das Eingabeobjekt das Feld nicht (oder es
enthalt einen anderen Wert). Daher mussen Sie die Versionsnummer nicht erhéhen.

® Note

Wenn Sie neue Felder hinzufligen, stellen Sie sicher, dass der JSON-
Deserialisierungsprozess abwartskompatibel ist. Objekte, die vor der Einflhrung des

Felds serialisiert wurden, sollten nach der Migration weiterhin erfolgreich deserialisiert
werden kdnnen. Da JSON einen null-Wert festlegt, wenn ein Feld fehlt, verwenden Sie
grundsatzlich gepackte Typen (Boolean anstelle von boolean) und verarbeiten Sie Falle, in
denen der Wert null ist.

FeatureFlagDecider. java

Lésungen API-Version 2021-04-28 176

AWS Flow Framework fur Java Entwicklerhandbuch

package sample.vl.featureflag;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "1")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V1 feature flag) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);
if (!input.getSkipSecondTimer()) {
clock.createTimer(5);

Im aktualisierten Java-Code ist der Code beider Versionen des Workflows weiterhin flr
Version 1 registriert. Nach der Migration beginnen neue Ausfihrungen dagegen mit dem Feld
skipSecondTimer der Eingabedaten mit dem Wert true.

Lésungen API-Version 2021-04-28 177

AWS Flow Framework fur Java Entwicklerhandbuch

RunFeatureFlagDecider. java

package sample;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;
public class FeatureFlagChange extends SampleBase {

public static void main(String[] args) throws Exception {
new FeatureFlagChange().run();

public void run() throws Exception {
// Start the first version of the decider
WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
before.addWorkflowImplementationType(sample.vl.Foo.Impl.class);
before.start();

// Start a few executions
startFiveExecutions("Foo.sample", "1", new Input());

// Stop the first decider worker and wait a few seconds
// for its pending pollers to match and return
before.suspendPolling();

sleep(2000);

// At this point, three executions are still open, with more decisions to make

// Start a new version of the decider that introduces a change

// while preserving backwards compatibility based on input fields
WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
after.addWorkflowImplementationType(sample.vl.featureflag.Foo.Impl.class);
after.start();

// Start a few more executions and enable the new feature through the input
data

startFiveExecutions("Foo.sample", "1", new Input().setSkipSecondTimer(true));

printExecutionResults();

Lésungen API-Version 2021-04-28 178

AWS Flow Framework fur Java Entwicklerhandbuch

Wenn Sie das Programm ausfiihren, werden alle Ausflihrungen erfolgreich abgeschlossen.

Lésungen API-Version 2021-04-28 179

AWS Flow Framework fur Java Entwicklerhandbuch

Tipps zur Fehlerbehebung und zum Debuggen AWS Flow
Framework fur Java

Themen

* Fehler beim Kompilieren

* Unbekannter Ressourcenfehler

* Ausnahmen beim Aufrufen von get () flr ein Promise

* Nichtdeterministische Workflows

* Probleme aufgrund der Versionierung

* Problembehandlung und Debuggen einer Workflow-Ausfiihrung

» Verlorene Aufgaben

» Die Uberpriifung ist aufgrund von Langenbeschrankungen fiir APl-Parameter fehlgeschlagen

In diesem Abschnitt werden einige haufige Fallstricke beschrieben, auf die Sie bei der Entwicklung
von Workflows mit AWS Flow Framework for Java stoRen kdnnten. AuRerdem erhalten Sie einige
Tipps, die Ihnen bei der Diagnose und der Behebung von Problemen helfen.

Fehler beim Kompilieren

Wenn Sie die AspectJ-Compile-Time-Weaving-Option verwenden, treten mdglicherweise
Kompilierzeitfehler auf, bei denen der Compiler die generierten Client-Klassen fir Ihren Workflow

und lhre Aktivitaten nicht finden kann. Die wahrscheinliche Ursache solcher Kompilierfehler ist, dass
der AspectJ-Builder die generierten Clients wahrend der Kompilierung ignoriert hat. Sie kdnnen
dieses Problem beheben, indem Sie die AspectJ-Funktion aus dem Projekt entfernen und erneut
aktivieren. Beachten Sie, dass Sie dies jedes Mal durchfihren mussen, wenn sich lhre Workflow-
oder Aktivitatsschnittstellen andern. Aufgrund dieses Problems wird empfohlen, stattdessen die Load-
Time-Weaving-Option zu verwenden. Weitere Details finden Sie im Abschnitt Einrichtung des AWS
Flow Framework fUr Java.

Fehler beim Kompilieren API-Version 2021-04-28 180

AWS Flow Framework fur Java Entwicklerhandbuch

Unbekannter Ressourcenfehler

Amazon SWF gibt einen unbekannten Ressourcenfehler zuriick, wenn Sie versuchen, einen Vorgang
mit einer Ressource durchzufihren, die nicht verfigbar ist. Die haufigen Ursachen fur diesen Fehler
sind:

+ Sie konfigurieren einen Worker mit einer Doméane, die nicht vorhanden ist. Um dieses Problem zu
beheben, registrieren Sie zunachst die Domain mit der Amazon SWF-Konsole oder der Amazon
SWE-Service API.

+ Sie versuchen, Workflow-Ausflihrungs- oder Aktivitdtsaufgaben flr Typen durchzufihren, die
nicht registriert wurden. Dies kann passieren, wenn Sie versuchen, die Workflow-Ausfihrung
zu erstellen, bevor die Worker ausgefuhrt wurden. Da Worker ihre Typen registrieren, wenn sie
zum ersten Mal ausgefuhrt werden, missen Sie sie mindestens einmal ausflihren, bevor Sie
versuchen, Ausfihrungen zu starten (oder die Typen manuell Gber die Konsole oder die Service-
API registrieren). Beachten Sie, dass Sie, sobald Typen registriert wurden, Ausfiihrungen auch
dann erstellen kdnnen, wenn keine Worker ausgefuhrt werden.

+ Ein Worker versucht, eine Aufgabe abzuschlieen, die bereits das Zeitlimit Uberschritten hat. Wenn
ein Worker beispielsweise zu lange fur die Bearbeitung einer Aufgabe bendtigt und ein Timeout
Uberschreitet, wird ein UnknownResource Fehler angezeigt, wenn er versucht, die Aufgabe
abzuschlie®en oder fehlschlagt. Die AWS Flow Framework Mitarbeiter werden weiterhin Amazon
SWEF abfragen und zusatzliche Aufgaben bearbeiten. Sie sollten jedoch in Betracht ziehen, die
Zeitbeschrankung anzupassen. Zum Anpassen der Zeitbeschrankung mussen Sie eine neue
Version des Aktivitatstyps registrieren.

Ausnahmen beim Aufrufen von get () fir ein Promise

Anders als Java Future ist Promise ein blockierungsfreies Konstrukt und das Aufrufen von get ()
fur ein noch nicht bereites Promise-Objekt flihrt zu einer Ausnahme anstelle einer Blockierung. Die
korrekte Verwendung von a Promise besteht darin, es an eine asynchrone Methode (oder eine
Aufgabe) zu Ubergeben und in der asynchronen Methode auf seinen Wert zuzugreifen. AWS Flow
Framework for Java stellt sicher, dass eine asynchrone Methode nur aufgerufen wird, wenn alle an
sie Ubergebenen Promise Argumente bereit sind. Wenn Sie glauben, dass Ihr Code korrekt ist,
oder wenn Sie beim Ausflhren eines der AWS Flow Framework Beispiele darauf stol3en, liegt dies
hdchstwahrscheinlich daran, dass Aspectd nicht richtig konfiguriert ist. Details hierzu finden Sie im
Abschnitt Einrichtung des AWS Flow Framework fur Java.

Unbekannter Ressourcenfehler API-Version 2021-04-28 181

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-register-domain-console.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html

AWS Flow Framework fur Java Entwicklerhandbuch

Nichtdeterministische Workflows

Wie im Abschnitt Nichtdeterminismus beschrieben, muss die Implementierung Ihres Workflows
deterministisch sein. Einige haufige Fehler, die zu Nichtdeterminismus fihren kénnen, sind die
Verwendung der Systemuhr, die Verwendung von Zufallszahlen und die Generierung von. GUIDs

Da diese Konstrukte zu unterschiedlichen Zeiten unterschiedliche Werte zuriickgeben kénnen, kann
die Ablaufsteuerung lhres Workflows bei jeder Ausfiihrung unterschiedliche Wege einschlagen
(weitere Informationen finden Sie in den Abschnitten AWS Flow Framework Grundbegriffe: Verteilte
Ausfuhrung undEine Aufgabe in AWS Flow Framework fUr Java verstehen). Wenn das Framework
wahrend der Ausfihrung des Workflows Nichtdeterminismus erkennt, wird eine Ausnahme ausgeldst.

Probleme aufgrund der Versionierung

Wenn Sie eine neue Version Ihres Workflows oder lhrer Aktivitat implementieren, z. B. wenn Sie ein
neues Feature hinzufligen, sollten Sie die Version des Typs erhéhen, indem Sie die entsprechende
Anmerkung verwenden:, oder. @Workflow @Activites @Activity Wenn neue Versionen

eines Workflows bereitgestellt werden, haben Sie oft Ausfihrungen der bestehenden Version, die
bereits ausgeflhrt werden. Sie miussen daher sicherstellen, dass Worker mit der entsprechenden
Version lhres Workflows und lhrer Aktivitaten die Aufgabe erhalten. Sie kénnen dies erreichen,
indem Sie verschiedene Aufgabenlisten fur jede Version verwenden. Sie kdnnen beispielsweise

die Versionsnummer an den Namen der Aufgabenliste anfligen. Dadurch wird sichergestellt, dass
Aufgaben, die zu unterschiedlichen Versionen des Workflows und der Aktivitdten gehéren, den
entsprechenden Workern zugewiesen werden.

Problembehandlung und Debuggen einer Workflow-Ausflihrung

Der erste Schritt bei der Fehlerbehebung bei der Ausflihrung eines Workflows besteht darin, die
Amazon SWF SWF-Konsole zu verwenden, um sich den Workflow-Verlauf anzusehen. Der Workflow-
Verlauf ist ein kompletter und autoritativer Datensatz aller Ereignissen, die den Ausflihrungsstatus der
Workflow-Ausflihrung geandert haben. Dieser Verlauf wird von Amazon SWF verwaltet und ist fir die
Diagnose von Problemen von unschatzbarem Wert. Mit der Amazon SWF SWF-Konsole kénnen Sie
nach Workflow-Ausfihrungen suchen und einzelne Verlaufsereignisse aufschlisseln.

AWS Flow Framework bietet eine WorkflowReplayer Klasse, mit der Sie eine Workflow-
Ausflihrung lokal wiedergeben und debuggen kénnen. Mit dieser Klasse kbnnen Sie geschlossene
und laufende Workflow-Ausflihrungen debuggen. WorkflowReplayexrstiitzt sich auf den in

Nichtdeterministische Workflows API-Version 2021-04-28 182

AWS Flow Framework fur Java Entwicklerhandbuch

Amazon SWF gespeicherten Verlauf, um die Wiedergabe durchzuflihren. Sie kénnen es auf eine
Workflow-Ausfiihrung in lhrem Amazon SWF-Konto verweisen oder es mit den Verlaufsereignissen
versehen (Sie kdnnen beispielsweise den Verlauf von Amazon SWF abrufen und ihn fir die
spatere Verwendung lokal serialisieren). Wenn Sie eine Workflow-Ausflihrung mithilfe von
WorkflowReplayer erneut abspielen, wirkt sich dies nicht auf die Workflow-Ausfiihrung aus, die
in lhrem Konto ausgefuhrt wird. Das erneute Abspielen findet vollstdndig auf dem Client statt. Sie
kénnen wie gewohnt mithilfe Ihrer Debugging-Tools den Workflow debuggen, Haltepunkte erstellen
und in den Code hineinzuspringen. Wenn Sie Eclipse verwenden, sollten Sie erwagen, Schrittfilter
zum Filtern von AWS Flow Framework Paketen hinzuzufiigen.

Der folgende Codeausschnitt beispielsweise kann verwendet werden, um eine Workflow-Ausfuhrung
erneut abzuspielen:

String workflowId = "testWorkflow";

String runIld = "<run id>";

Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
swfService, domain, workflowExecution, workflowImplementationType);

System.out.println("Beginning workflow replay for " + workflowExecution);
Object workflow = replayer.loadWorkflow();

System.out.println("Workflow implementation object:");
System.out.println(workflow);

System.out.println("Done workflow replay for " + workflowExecution);

AWS Flow Framework ermoglicht es Ihnen auch, einen asynchronen Thread-Dump lhrer Workflow-
Ausfuhrung zu erstellen. Dieser Thread-Dump liefert Ihnen die Aufruflisten aller offenen asynchronen
Aufgaben. Diese Informationen kdnnen beim Bestimmen, welche Aufgaben in der Ausfuhrung noch
ausstehen und mdglicherweise hangen geblieben sind, helfen. Zum Beispiel:

String workflowId = "testWorkflow";

String runId = "<run id>";

Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runld);

Problembehandlung und Debuggen einer Workflow-Ausflihrung API-Version 2021-04-28 183

AWS Flow Framework fur Java Entwicklerhandbuch

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
swfService, domain, workflowExecution, workflowImplementationType);

try {
String flowThreadDump = replayer.getAsynchronousThreadDumpAsString();
System.out.println("Workflow asynchronous thread dump:");
System.out.println(flowThreadDump);

}
catch (WorkflowException e) {

System.out.println("No asynchronous thread dump available as workflow has failed: "
+e);

}

Verlorene Aufgaben

Manchmal fahren Sie vielleicht in kurzer Abfolge Worker herunter und starten neue, nur um
festzustellen, dass Aufgaben an dieselben alten Worker tbermittelt werden. Dies kann aufgrund
von Race Conditions im System passieren, das Uber mehrere Prozesse hinweg verteilt ist. Das
Problem kann auf3erdem auftreten, wenn Sie Komponententests in einer engen Schleife ausfihren.
Das Beenden eines Tests in Eclipse kann dies manchmal auch verursachen, da heruntergefahrene
Handler mdglicherweise nicht aufgerufen werden.

Um sicherzustellen, dass das Problem tatsachlich darauf zurtickzufiihren ist, dass alte Worker
Aufgaben erhalten, sollten Sie sich den Workflow-Verlauf ansehen, um zu bestimmen, welcher
Prozess die Aufgabe erhalten hat, von der Sie erwartet hatten, dass der neue Worker sie
erhalt. Beispielsweise enthalt das DecisionTaskStarted-Ereignis im Verlauf die Identitat
des Workflow-Workers, der die Aufgabe erhalten hat. Die vom Flow Framework verwendete

ID hat die Form: {processId} @{host name}. Im Folgenden finden Sie beispielsweise die
Details des DecisionTaskStarted Ereignisses in der Amazon SWF SWF-Konsole fiir eine
Beispielausfuhrung:

Ereigniszeitstempel Mon Feb 20 11:52:40 GMT-800 2012
Identitat 2276 @ip -0A6C1 DF5
ID des geplanten Events 33

Verlorene Aufgaben API-Version 2021-04-28 184

AWS Flow Framework fur Java Entwicklerhandbuch

Um diese Situation zu vermeiden, verwenden Sie unterschiedliche Aufgabenlisten fir jeden Test.
Ziehen Sie auRerdem in Betracht, eine Verzégerung zwischen dem Herunterfahren alter Worker und
dem Starten neuer Worker hinzuzuftigen.

Die Uberpriifung ist aufgrund von Langenbeschrankungen fiir API-
Parameter fehlgeschlagen

Amazon SWF erzwingt Langenbeschrankungen flr API-Parameter. Sie erhalten eine

HTTP 400 Fehlermeldung, wenn lhre Workflow- oder Aktivitatsimplementierung die
Beschrankungen Uberschreitet. Wenn Sie beispielsweise aufrufenrecordActivityHeartbeat,
ActivityExecutionContext um einen Heartbeat fir eine laufende Aktivitat zu senden, darf die
Zeichenfolge nicht Ianger als 2048 Zeichen sein.

Ein anderes haufiges Szenario ist, wenn eine Aktivitat aufgrund einer Ausnahme fehlschlagt.
Das Framework meldet Amazon SWF einen Aktivitatsfehler, indem es die serialisierte Ausnahme
als Details aufruft RespondActivityTaskFailed. Der API-Aufruf meldet einen 400-Fehler, wenn

die serialisierte Ausnahme eine Lange von mehr als 32.768 Byte hat. Um dieser Situation
entgegenzuwirken, kdnnen Sie die Ausnahmemeldung oder die Ursachen klirzen, damit sie der
Langenbeschrankung entsprechen.

Die Uberpriifung ist aufgrund von Langenbeschrankungen fiir API-Parameter fehlgeschlagen API-Version 2021-04-28 185

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework fur Java Entwicklerhandbuch

AWS Flow Framework fur Java-Referenz

Themen

* AWS Flow Framework fur Java-Annotationen

* AWS Flow Framework fur Java-Ausnahmen

* AWS Flow Framework fur Java-Pakete

AWS Flow Framework fur Java-Annotationen

Themen

* @AKtivitat

@AKktivitat
@ActivityRegistrationOptions
@Asynchron

@Execute
@ExponentialRetry

@GetState
@ManualActivityCompletion

@Signal
@SkipRegistration
@Wait und @ NoWait

@Workflow
@WorkflowRegistrationOptions

@Aktivitat

Diese Annotation kann fur eine Schnittstelle verwendet werden, um eine Gruppe von Aktivitatstypen
zu deklarieren. Jede Methode in einer mit dieser Annotation versehenen Schnittstelle stellt einen
Aktivitatstyp dar. Eine Schnittstelle kann nicht sowohl @Workflow- als auch @Activities-
Annotationen enthalten.

Die folgenden Parameter kbnnen Uber dieser Annotation angegeben werden:

Anmerkungen API-Version 2021-04-28 186

AWS Flow Framework fur Java Entwicklerhandbuch

activityNamePrefix

Gibt das Préfix des Namens des in der Schnittstelle deklarierten Aktivitatstyps an. Wenn der Wert
auf eine leere Zeichenfolge festgelegt ist (Standard), wird der Name der Schnittstelle gefolgt von
einem Punkt (.) als Prafix verwendet.

version

Gibt die Standardversion der in der Schnittstelle deklarierten Aktivitatstypen an. Der Standardwert
ist1.0.

dataConverter

Gibt den Typ von an, der fur serializing/deserializing Daten verwendet werden DataConverter
soll, wenn Aufgaben dieses Aktivitatstyps erstellt werden, und die zugehdrigen

Ergebnisse. StandardmaRig auf NullDataConverter festgelegt, was bedeutet, dass das
JsonDataConverter verwendet werden soll.

@Aktivitat

Diese Annotation kann fir Methoden innerhalb einer mit @Activities definierten Schnittstelle
verwendet werden.

Die folgenden Parameter kénnen Uber dieser Annotation angegeben werden:

name

Gibt den Namen des Aktivitatstyps an. Der Standardwert ist eine leere Zeichenfolge. Diese
gibt an, dass der Name des Aktivitatstyps Uber das Standardprafix und den Namen der
Aktivitdtsmethode ({Prafix}{Name}) festgelegt werden soll. Beachten Sie, dass das Framework
bei der Angabe eines Namens in einer @Activity-Annotation nicht automatisch ein Prafix
voranstellt. Es steht Ihnen frei, lhr eigenes Namensschema zu verwenden.

version

Gibt die Version des Aktivitatstyps an. Dies Uberschreibt die Standardversion, die in der
@Activities-Annotation der enthaltenden Schnittstelle angegeben ist. Der Standardwert ist
eine leere Zeichenfolge.

@AKktivitat API-Version 2021-04-28 187

AWS Flow Framework fur Java Entwicklerhandbuch

@ActivityRegistrationOptions

Gibt die Registrierungsoptionen fir einen Aktivitatstyp an. Diese Annotation kann fir eine
Schnittstelle verwendet werden, die mit @Activities oder den darin enthaltenen Methoden definiert
ist. Beim Festlegen an beiden Orten gilt die fur die Methode verwendete Annotation.

Die folgenden Parameter konnen Uber dieser Annotation angegeben werden:
defaultTasklist

Gibt die Standard-Aufgabenliste an, die flr diesen Aktivitatstyp bei Amazon SWF registriert
werden soll. Dieser Standardwert kann beim Aufruf der Aktivitdtsmethode flir den generierten
Client Gber den Parameter ActivitySchedulingOptions lUberschrieben werden.
StandardmaRig auf USE_WORKER_TASK_LIST festgelegt. Dies ist ein spezieller Wert. Er gibt an,
dass die Aufgabenliste des Workers verwendet werden soll, der die Registrierung durchfihrt.

defaultTaskScheduleToStartTimeoutSeconds

Gibt die bei Amazon SWF fur diesen Aktivitatstyp defaultTaskSchedule ToStartTimeout
registrierte Datei an. Dies ist die maximale Zeit, die eine Aufgabe dieses Aktivitatstyps warten
darf, bevor sie einem Worker zugeordnet wird. Weitere Informationen finden Sie in der Amazon
Simple Workflow Service API-Referenz.

defaultTaskHeartbeatTimeoutSeconds

Gibt die bei Amazon SWF fir diesen Aktivitatstyp defaultTaskHeartbeatTimeout registrierte
Datei an. Aktivitats-Worker missen innerhalb dieser Zeit einen Heartbeat liefern — andernfalls gibt
es einen Timeout fur die Aufgabe. Standardmafig auf -1 festgelegt. Dieser spezielle Wert gibt an,
dass der Timeout deaktiviert werden soll. Weitere Informationen finden Sie in der Amazon Simple
Workflow Service API-Referenz.

defaultTaskStartToCloseTimeoutSeconds

Gibt die bei Amazon SWF fir diesen Aktivitatstyp defaultTaskStart ToCloseTimeout registrierte
Datei an. Dieser Timeout bestimmt die maximale Zeit, die ein Worker fur die Bearbeitung einer
Aktivitat dieses Typs bendtigen darf. Weitere Informationen finden Sie in der Amazon Simple
Workflow Service API-Referenz.

defaultTaskScheduleToCloseTimeoutSeconds

Gibt die bei Amazon SWEF fiir diesen Aktivitatstyp defaultScheduleToCloseTimeout
registrierte Datei an. Dieser Timeout bestimmt die Gesamtdauer, fur die die Aufgabe im offenen

@ActivityRegistrationOptions API-Version 2021-04-28 188

AWS Flow Framework fur Java Entwicklerhandbuch

Zustand bleiben kann. Standardmallig auf -1 festgelegt. Dieser spezielle Wert gibt an, dass der
Timeout deaktiviert werden soll. Weitere Informationen finden Sie in der Amazon Simple Workflow
Service API-Referenz.

@Asynchron

Gibt bei Verwendung fir eine Methode in der Workflow-Koordinationslogik an, dass die Methode
asynchron ausgefihrt werden soll. Ein Aufruf der Methode gibt die Kontrolle sofort zuriick. Die
eigentliche Ausflihrung erfolgt jedoch asynchron, sobald alle an die Methoden Ubergebenen
Promise<>-Parameter bereit sind. Mit @Asynchronous definierte Methoden mussen den
Ruckgabetyp Promise<> oder void haben.

daemon

Gibt an, ob die fur die asynchrone Methode erstellte Aufgabe eine Daemon-Aufgabe sein soll.
StandardmaRig ist False festgelegt.

@Execute

Bei Verwendung flir eine Methode in einer mit der @Workflow-Annotation definierten Schnittstelle
gibt dieser Wert den Einstiegspunkt des Workflows an.

/A Important

Nur eine Methode in der Schnittstelle darf mit @Execute ausgezeichnet werden.

Die folgenden Parameter kbnnen Uber dieser Annotation angegeben werden:

name

Gibt den Namen des Workflowtyps an. Falls die Option nicht festgelegt ist, lautet der Name
standardmafig {prefix}{name}, wobei {prefix} der Name der Workflow-Schnittstelle ist, gefolgt von
einem Punkt (.) und {name} der Name der @Execute-verziert-Methode im Workflow ist.

version

Gibt die Version des Workflowtyps an.

@Asynchron API-Version 2021-04-28 189

AWS Flow Framework fur Java Entwicklerhandbuch

@ExponentialRetry

Legt bei Verwendung fir eine Aktivitat oder eine asynchrone Methode eine exponentielle
Wiederholungsrichtlinie fest, falls die Methode eine unbehandelte Ausnahme auslést. Ein
Wiederholungsversuch erfolgt nach einer Backoff-Periode, die sich Uiber die Anzahl der Versuche
errechnet.

Die folgenden Parameter kénnen Uber dieser Annotation angegeben werden:

intialRetryIntervalSeconds

Gibt die Dauer an, die vor dem ersten Wiederholungsversuch gewartet werden soll. Dieser Wert
sollte nicht groRer als maximumRetryIntervalSeconds und retryExpirationSeconds
sein.

maximumRetryIntervalSeconds

Gibt die maximale Dauer zwischen den Wiederholungsversuchen an. Einmal erreicht, wird das
Wiederholungsintervall auf diesen Wert begrenzt. Standardmafig auf -1 festgelegt, was fir eine
unbegrenzte Dauer steht.

retryExpirationSeconds

Gibt die Dauer an, nach der die exponentielle Wiederholung gestoppt wird. StandardméaRig auf -1
festgelegt. Das heildt, es gibt keinen Ablauf.

backoffCoefficient

Gibt den Koeffizienten an, der zur Berechnung des Wiederholungsintervalls verwendet wird. Siehe
Exponentielle Wiederholungsstrategie.

maximumAttempts

Gibt die Anzahl der Versuche an, nach denen die exponentielle Wiederholung gestoppt
wird. StandardmaRig auf -1 festgelegt. Das heil3t, es gibt keine Begrenzung der Anzahl der
Wiederholungsversuche.

exceptionsToRetry
Gibt die Liste der Ausnahmetypen an, die einen erneuten Versuch auslésen sollen. Unbehandelte

Ausnahmen dieser Typen werden nicht weitergegeben. Die Methode wird nach dem berechneten
Wiederholungsintervall erneut ausgefihrt. Standardmafig enthalt die Liste Throwable.

@ExponentialRetry API-Version 2021-04-28 190

AWS Flow Framework fur Java Entwicklerhandbuch

excludeExceptions

Gibt die Liste der Ausnahmetypen an, die keinen erneuten Versuch auslésen sollen.
Unbehandelte Ausnahmen dieses Typs dirfen weitergegeben werden. Die Liste ist
standardmafig leer.

@GetState

Bei Verwendung fir eine Methode in einer mit der @Workflow-Annotation definierten Schnittstelle
wird die Methode verwendet, um den letzten Status der Workflow-Ausflihrung abzurufen. Es kann

in einer Schnittstelle mit der @Workflow-Annotation maximal eine Methode mit dieser Annotation
geben. Methoden mit dieser Annotation dlrfen keine Parameter entgegennehmen und missen einen
anderen Rickgabetyp als void haben.

@ManualActivityCompletion

Diese Annotation kann fur eine Aktivitdtsmethode verwendet werden. Sie definiert, dass die
Aktivitatsaufgabe bei der Rickgabe aus der Methode nicht abgeschlossen werden soll. Die
Aktivitdtsaufgabe wird nicht automatisch abgeschlossen und misste manuell direkt Uber die
Amazon SWF SWF-API abgeschlossen werden. Dies ist fur Anwendungsfalle hilfreich, in denen die
Aktivitatsaufgabe an ein externes System delegiert wird und dieses nicht automatisiert ist oder ein
menschliches Eingreifen erfordert.

@Signal

Identifiziert bei Verwendung fir eine Methode in einer mit der @workflow-Annotation definierten
Schnittstelle ein Signal, das von Ausfiihrungen des von der Schnittstelle deklarierten Workflowtyps
empfangen werden kann. Die Verwendung dieser Annotation ist erforderlich, um eine Signalmethode
zu definieren.

Die folgenden Parameter kénnen tber dieser Annotation angegeben werden:

name

Gibt den Namensteil des Signalnamens an. Wenn nicht festgelegt, wird der Name der Methode
verwendet.

@GetState API-Version 2021-04-28 191

AWS Flow Framework fur Java Entwicklerhandbuch

@SkipRegistration

Wenn es auf einer Schnittstelle verwendet wird, die mit der @Workflow Anmerkung versehen

ist, bedeutet dies, dass der Workflow-Typ nicht bei Amazon SWF registriert werden sollte. Fir
eine mit @Workflow definierte Schnittstelle muss die @WorkflowRegistrationOptions- oder
@SkipRegistrationOptions-Annotationen verwendet werden. Es dirfen jedoch nicht beide
verwendet werden.

@Wait und @ NoWait

Diese Anmerkungen kdnnen fir einen Parameter des Typs verwendet werden, Promise<> um
anzugeben, ob AWS Flow Framework for Java warten soll, bis er bereit ist, bevor die Methode
ausgefihrt wird. Standardmafig missen an die @Asynchronous-Methoden lbergebene
Promise<>-Parameter bereit sein, bevor die Methodenausfiihrung erfolgt. In bestimmten Szenarien
ist es notwendig, dieses Standardverhalten zu Uberschreiben. Promise<>-Parameter, die an
@Asynchronous-Methoden tbergeben und mit @NoWait-Annotationen versehen sind, werden nicht
abgefragt.

Collection-Parameter (oder entsprechende Unterklassen) mit Zusagen wie List<Promise<Int>>
mussen mit @Wait definiert werden. Standardmaflig wartet das Framework nicht auf die Mitglieder
einer Collection.

@Workflow

Diese Annotation wird fur eine Schnittstelle verwendet, um einen workflow-Typ zu deklarieren. Eine
mit dieser Annotation ausgezeichnete Schnittstelle sollte genau eine Methode enthalten, die mit der
@Execute-Annotation zur Deklaration des Einstiegspunkts fiir Inren Workflow ausgezeichnet ist.

(® Note

Eine Schnittstelle kann nicht gleichzeitig die @Workflow- und @Activities-Annotationen
verwenden. Sie schlieRen sich gegenseitig aus.

Die folgenden Parameter kénnen Uber dieser Annotation angegeben werden:

dataConverter

Gibt an, welcher DataConverter beim Senden von Anforderungen an und beim Empfangen von
Ergebnissen an/von Workflow-Ausflihrungen dieses Workflowtyps verwendet werden soll.

@SkipRegistration API-Version 2021-04-28 192

AWS Flow Framework fur Java Entwicklerhandbuch

Die Standardeinstellung, auf NullDataConverter die wiederum zurlickgegriffen wird,
JsonDataConverter um alle Anfrage- und Antwortdaten als JavaScript Object Notation (JSON)
zu verarbeiten.

Beispiel

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Execute(version = "1.0")

public void greet();

@WorkflowRegistrationOptions

Stellt bei Verwendung auf einer mit Anmerkungen versehenen Oberflache Standardeinstellungen
bereit@Workflow, die von Amazon SWF bei der Registrierung des Workflow-Typs verwendet
wurden.

(® Note

Fir eine mit @Workflow definierte Schnittstelle muss @WorkflowRegistrationOptions
oder @SkipRegistrationOptions verwendet werden. Es kdnnen nicht beide verwendet
werden.

Die folgenden Parameter kénnen Uber dieser Annotation angegeben werden:

Beschreibung

Eine optionale kurze Textbeschreibung des Workflowtyps.

@WorkflowRegistrationOptions API-Version 2021-04-28 193

AWS Flow Framework fur Java Entwicklerhandbuch

defaultExecutionStartToCloseTimeoutSeconds

Gibt den bei Amazon SWF fiir den Workflowtyp defaultExecutionStartToCloseTimeout
registrierten Typ an. Dies ist die Gesamitzeit, die eine solche Workflow-Ausflihrung in Anspruch
nehmen kann.

Weitere Informationen zu Workflow-Timeouts finden Sie unter Amazon SWF-Timeout-Typen .

defaultTaskStartToCloseTimeoutSeconds

Gibt den bei Amazon SWF fiir den Workflowtyp defaultTaskStartToCloseTimeout
registrierten Typ an. Gibt an, wie lange eine einzelne Entscheidungsaufgabe fir eine solche
Workflow-Ausfuhrung dauern kann.

Wenn Sie defaultTaskStartToCloseTimeout nicht angeben, wird die Standardeinstellung
auf 30 Sekunden gesetzt.

Weitere Informationen zu Workflow-Timeouts finden Sie unter Amazon SWF-Timeout-Typen .

defaultTaskList

Die Standard-Aufgaben, die flr Entscheidungsaufgaben fir Ausfihrungen dieses Workflowtyps
verwendet wird. Die hier festgelegte Voreinstellung kann beim Starten einer Workflow-Ausfihrung
mit StartWorkflowOptions Uberschrieben werden.

Wenn Sie defaultTaskList nicht angeben, wird der Wert standardmaRig auf
USE_WORKER_TASK_LIST festgelegt. Dies bedeutet, dass die Aufgabenliste des Workers
verwendet werden soll, der die Workflow-Registrierung durchfthrt.

defaultChildPolicy

Gibt die Richtlinie an, die fur untergeordnete Workflows verwendet werden soll, wenn eine
Ausfuihrung dieses Typs abgebrochen wird. Der Standardwert ist ABANDON. Die méglichen Werte
sind:

« ABANDON— Erlaubt, dass die untergeordneten Workflow-Ausfliihrungen weiterlaufen
* TERMINATE— Beendet untergeordnete Workflow-Ausflihrungen

* REQUEST_CANCEL— Beantragen Sie die Stornierung der untergeordneten Workflow-
Ausfuhrungen

@WorkflowRegistrationOptions API-Version 2021-04-28 194

AWS Flow Framework fur Java Entwicklerhandbuch

AWS Flow Framework fur Java-Ausnahmen

Die folgenden Ausnahmen werden von der AWS Flow Framework fir Java verwendet. Dieser
Abschnitt bietet eine Ubersicht (iber die Ausnahmen. Weitere Einzelheiten finden Sie in der AWS
SDK fur Java Dokumentation der einzelnen Ausnahmen.

Themen

+ ActivityFailureException

* ActivityTaskException

» ActivityTaskFailedException

» ActivityTaskTimedOutException

» ChildWorkflowException

» ChildWorkflowFailedException

» ChildWorkflowTerminatedException

» ChildWorkflowTimedOutException

» DataConverterException

» DecisionException

» ScheduleActivityTaskFailedException

+ SignalExternalWorkflowException

+ StartChildWorkflowFailedException

+ StartTimerFailedException

» TimerException

» WorkflowException

ActivityFailureException

Diese Ausnahme wird vom Framework intern verwendet, um fehlgeschlagene Aktivitaten zu
kommunizieren. Wenn eine Aktivitat aufgrund einer unbehandelten Ausnahme fehlschlagt, wird sie
zusammengefasst ActivityFailureException und an Amazon SWF gemeldet. Sie mussen
diese Ausnahme nur bearbeiten, wenn Sie die Erweiterbarkeitspunkte des Aktivitats-Workers
verwenden. |hr Anwendungscode wird nie fur die Bearbeitung dieser Ausnahme verwendet.

Ausnahmen API-Version 2021-04-28 195

AWS Flow Framework fur Java Entwicklerhandbuch

ActivityTaskException

Dies ist die Basisklasse fur Ausnahmen von Fehlern bei Aktivitatsaufgaben:
ScheduleActivityTaskFailedException, ActivityTaskFailedException,
ActivityTaskTimedoutException. Sie enthalt die Aufgaben-ID und den Aktivitatstyp der
fehlgeschlagenen Aufgabe. Sie kénnen diese Ausnahme in lhrer Workflow-Implementierung
abfangen, um fehlgeschlagene Aktivitdten generisch zu bearbeiten.

ActivityTaskFailedException

Unbearbeitete Ausnahmen in Aktivitaten werden der Workflow-Implementierung zurtickgemeldet,
indem ActivityTaskFailedException ausgel6st wird. Die urspriingliche Ausnahme kann

aus der cause-Eigenschaft dieser Ausnahme abgerufen werden. Die Ausnahme liefert aber auch
weitere Informationen, die sich beim Debugging als hilfreich erweisen kénnen, z. B. den eindeutigen
Bezeichner der Aktivitat im Verlauf.

Das Framework kann die Remote-Ausnahme bereitstellen, indem die urspringliche Ausnahme vom
Aktivitats-Worker serialisiert wird.

ActivityTaskTimedOutException

Diese Ausnahme wird ausgeldst, wenn bei einer Aktivitat von Amazon SWF ein Timeout

ausgel6st wurde. Dazu kommt es, wenn die Aktivitatsaufgabe dem Worker nicht innerhalb

des erforderlichen Zeitraums zugewiesen oder vom Worker nicht in der erforderlichen

Zeit abgeschlossen werden konnte. Sie kdnnen diese Timeouts in der Aktivitat mit der
@ActivityRegistrationOptions-Annotation festlegen oder beim Aufrufen der Aktivitdtsmethode
mit dem ActivitySchedulingOptions-Parameter.

ChildWorkflowException

Basisklasse flir Ausnahmen, mit der fehlgeschlagene Ausfiihrungen von untergeordneten Workflows
zurickgemeldet werden. Die Ausnahme enthalt die IDs der untergeordneten Workflow-Ausflihrung
sowie den Workflow-Typ. Sie kbnnen diese Ausnahme in lhrer Workflow-Implementierung abfangen,
um fehlgeschlagene Ausflihrungen untergeordneter Workflows generisch zu bearbeiten.

ChildWorkflowFailedException

Unbearbeitete Ausnahmen in untergeordneten Workflows werden der Gbergeordneten Workflow-
Implementierung zuriickgemeldet, indem ChildWorkflowFailedException ausgeldst wird. Die

ActivityTaskException API-Version 2021-04-28 196

AWS Flow Framework fur Java Entwicklerhandbuch

ursprungliche Ausnahme kann aus der cause-Eigenschaft dieser Ausnahme abgerufen werden. Die
Ausnahme liefert aber auch weitere Informationen, die sich beim Debugging als hilfreich erweisen
koénnen, z. B. den eindeutigen Bezeichner der untergeordneten Ausfuhrung.

ChildWorkflowTerminatedException

Diese Ausnahme wird in Ubergeordneten Workflow-Ausfihrungen ausgeldst, um eine beendete
untergeordnete Workflow-Ausfihrung zu melden. Sie sollten diese Ausnahme abfangen, wenn Sie
den beendeten untergeordneten Workflow bearbeiten mochten, z. B. um eine Bereinigung oder
Erstattung durchzufihren.

ChildWorkflowTimedOutException

Diese Ausnahme wird bei der Ausfihrung eines Ubergeordneten Workflows ausgel6st, um zu
melden, dass bei der Ausfihrung eines untergeordneten Workflows das Timeout Uberschritten
und von Amazon SWF geschlossen wurde. Sie sollten diese Ausnahme abfangen, wenn Sie
den untergeordneten Workflow, der beendet werden musste, bearbeiten mochten, z. B. um eine
Bereinigung oder Erstattung durchzuflhren.

DataConverterException

Das Framework verwendet die DataConverter-Komponente fir das Marshalling und Unmarshalling
von Daten, die remote Ubertragen wurden. Diese Ausnahme wird ausgelost, wenn das Marshalling
oder Unmarshalling von Daten durch DataConverter fehlschlagt. Dafir gibt es viele mogliche
Grinde, beispielsweise wenn die DataConverter-Komponenten, die flir das Marshalling und
Unmarshalling von Daten verwendet werden, nicht Gbereinstimmen.

DecisionException

Dies ist die Basisklasse fur Ausnahmen, die darauf hindeuten, dass eine Entscheidung von Amazon
SWF nicht umgesetzt wurde. Sie kdnnen diese Ausnahme in Ihrer Workflow-Implementierung
abfangen, um solche Ausnahmen generisch zu bearbeiten.

ScheduleActivityTaskFailedException

Diese Ausnahme wird ausgeldst, wenn Amazon SWF eine Aktivitatsaufgabe nicht planen kann. Dies
kann verschiedene Griinde haben — zum Beispiel, weil die Aktivitat veraltet war oder ein Amazon
SWF SWEF-Limit fir Ihr Konto erreicht wurde. Die failureCause-Eigenschaft in der Ausnahme gibt
den genauen Grund fur die fehlgeschlagene Planung einer Aktivitat an.

ChildWorkflowTerminatedException API-Version 2021-04-28 197

AWS Flow Framework fur Java Entwicklerhandbuch

SignalExternalWorkflowException

Diese Ausnahme wird ausgeldst, wenn Amazon SWF eine Anforderung der Workflow-Ausfuhrung
nicht verarbeitet, um eine weitere Workflow-Ausfuhrung zu signalisieren. Dies passiert, wenn die
Ziel-Workflow-Ausflhrung nicht gefunden werden konnte — das heif3t, die von lhnen angegebene
Workflow-Ausfuhrung existiert nicht oder befindet sich im geschlossenen Zustand.

StartChildWorkflowFailedException

Diese Ausnahme wird ausgeldst, wenn Amazon SWF die Ausflihrung eines untergeordneten
Workflows nicht starten kann. Dies kann verschiedene Griinde haben, z. B. weil der angegebene
Workflow-Typ flr untergeordnete Benutzer veraltet ist oder ein Amazon SWF SWF-Limit fur Ihr Konto
erreicht wurde. Die failureCause-Eigenschaft in der Ausnahme gibt den genauen Grund fiir den
fehlgeschlagene Start einer untergeordneten Workflow-Ausfuhrung an.

StartTimerFailedException

Diese Ausnahme wird ausgeldst, wenn Amazon SWF einen von der Workflow-Ausflihrung
angeforderten Timer nicht starten kann. Dies kann passieren, wenn die angegebene Timer-ID bereits
verwendet wird oder ein Amazon SWF SWF-Limit fir Ihr Konto erreicht wurde. Die failureCause-
Eigenschaft in der Ausnahme gibt den genauen Grund fir den Fehler an.

TimerException
Dies ist die Basisklasse fur Ausnahmen, die mit Timern im Zusammenhang stehen.
WorkflowException

Diese Ausnahme wird vom Framework intern verwendet, um Fehler in Workflow-Ausflihrungen zu
kommunizieren. Sie mussen diese Ausnahme nur verarbeiten, wenn Sie einen Erweiterbarkeitspunkt
des Workflow-Workers verwenden.

AWS Flow Framework fur Java-Pakete

Dieser Abschnitt bietet einen Uberblick (iber die Pakete, die in der AWS Flow Framework
fur Java enthalten sind. Weitere Informationen zu den einzelnen Paketen finden Sie unter

com.amazonaws.services.simpleworkflow.flow in der API-Referenz. AWS SDK fur Java

SignalExternalWorkflowException API-Version 2021-04-28 198

https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com/sdk-for-java/latest/reference/

AWS Flow Framework fur Java Entwicklerhandbuch

com.amazonaws.services.simpleworkflow.flow

Enthalt Komponenten, die in Amazon SWF integriert sind.

com.amazonaws.services.simpleworkflow.flow.annotations

Enthalt die Anmerkungen, die vom Programmiermodell fur Java verwendet werden. AWS Flow
Framework

com.amazonaws.services.simpleworkflow.flow.aspectj

Enthalt fir Java Komponenten, die fir Funktionen wie und erforderlich sind. AWS Flow
Framework @Asynchron @ExponentialRetry

com.amazonaws.services.simpleworkflow.flow.common

Enthalt gangige Dienstprogramme wie Framework-definierte Konstanten.

com.amazonaws.services.simpleworkflow.flow.core

Enthalt Kernfunktionen wie Task und Promise.

com.amazonaws.services.simpleworkflow.flow.generic

Enthalt Kernkomponenten wie generische Clients, auf die andere Funktionen aufbauen.

com.amazonaws.services.simpleworkflow.flow.interceptors

Enthalt Implementierungen der vom Framework bereitgestellten Decorators, einschliellich
RetryDecorator.

com.amazonaws.services.simpleworkflow.flow.junit

Enthalt Komponenten, die Junit-Integration zur Verfligung stellen.

com.amazonaws.services.simpleworkflow.flow.pojo

Enthalt Klassen, die Aktivitats- und Workflow-Definitionen fiir das Annotationsbasierte
Programmierungsmodell implementieren.

com.amazonaws.services.simpleworkflow.flow.spring

Enthalt Komponenten, die Spring-Integration zur Verfigung stellen.

com.amazonaws.services.simpleworkflow.flow.test

Enthalt Helferobjektklassen, wie TestWorkflowClock, fir Workflow-Implementierungen zum
Testen der Einheit.

Pakete API-Version 2021-04-28 199

https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/aspectj/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/common/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/core/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/interceptors/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/junit/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/pojo/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/spring/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/test/package-summary.html

AWS Flow Framework fur Java Entwicklerhandbuch

com.amazonaws.services.simpleworkflow.flow.worker

Enthalt Implementierungen von Aktivitats- und Workflow-Workern.

Pakete API-Version 2021-04-28 200

https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/worker/package-summary.html

AWS Flow Framework fur Java

Entwicklerhandbuch

Dokumentverlauf

In der folgenden Tabelle werden die wichtigen Anderungen an der Dokumentation seit der letzten

Version des AWS Flow Framework for Java Developer Guide beschrieben.

« API-Version: 2012-01-25
 Letzte Aktualisierung der Dokumentation: 25. Juni 2018

Anderung Beschreibung

Aktualisierung Es wurde ein Fehler in der backoffCoefficient -
Beschreibung fir @ExponentialRetry behoben. Siehe
@ExponentialRetry.

Aktualisierung Im gesamten Handbuch wurden die Codebeispiele
bereinigt.
Aktualisierung Die Anordnung und die Inhalte des Handbuchs wurden

vereinfacht und verbessert.

Aktualisierung Der Abschnitt Vornehmen von Anderungen am Entscheid

ercode: Versioning und Funktions-Flags wurde vereinfacht
und verbessert.

Aktualisierung Der neue Bewahrte Methoden-Abschnitt mit neuer
Anleitung zum Andern des Decider-Codes wurde hinzugefi
at.

Neues Feature Sie kdnnen Lambda-Aufgaben zuséatzlich zu herkommli

chen Aktivitatsaufgaben in Ihren Workflows angeben.
Weitere Informationen finden Sie unter AWS Lambda

Aufgaben umsetzen.

Neues Feature Amazon SWF unterstitzt das Festlegen der Aufgabenp
rioritat in einer Aufgabenliste und versucht, die Aufgaben
mit hdherer Prioritat vor Aufgaben mit niedrigerer Prioritat

Anderungs
datum

25. Juni
2018

5. Juni 2017

19. Mai
2017

10. April
2017

3. Marz
2017

21. Juli
2015

17. Dezember
2014

API-Version 2021-04-28 201

AWS Flow Framework fur Java

Entwicklerhandbuch

Anderung

Aktualisierung

Aktualisierung

Neues Feature

Beschreibung

zu liefern. Weitere Informationen finden Sie unter
Aufgabenprioritat in Amazon SWF festlegen.

Aktualisierungen und Korrekturen wurden vorgenommen.

+ Aktualisierungen und Korrekturen, einschlief3lich Aktualisi
erungen der Einrichtungsanweisungen fur Eclipse 4.3
und AWS SDK fur Java 1.4.7 wurden vorgenommen.

* Neue Tutorials zum Erstellen von Starter-Szenarien
wurden hinzugefugt.

Die erste Version von AWS Flow Framework flir Java.

Anderungs
datum

1. August
2013

28. Juni
2013

27. Februar
2012

API-Version 2021-04-28 202

AWS Flow Framework fur Java Entwicklerhandbuch

Die vorliegende Ubersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser Ubersetzten Fassung und der englischen Fassung (einschlieRlich
infolge von Verzdgerungen bei der Ubersetzung) ist die englische Fassung maRgeblich.

API-Version 2021-04-28 cciii

	AWS Flow Framework für Java
	Table of Contents
	Was ist das AWS Flow Framework für Java?
	Was ist in diesem Handbuch enthalten?

	Erste Schritte mit dem AWS Flow Framework für Java
	Einrichtung des AWS Flow Framework für Java
	Fügen Sie das Flow-Framework mit Maven hinzu

	HelloWorld Bewerbung
	HelloWorld Implementierung der Aktivitäten
	HelloWorld Workflow-Mitarbeiter
	HelloWorld Workflow-Starter

	HelloWorldWorkflow Bewerbung
	HelloWorldWorkflow Aktivitäten Arbeiter
	HelloWorldWorkflow Workflow-Worker
	Activities-Client
	Promise <T> Type

	HelloWorldWorkflow Implementierung von Arbeitsabläufen und Aktivitäten
	HelloWorldWorkflow Vorspeise

	HelloWorldWorkflowAsyncBewerbung
	HelloWorldWorkflowAsync Implementierung der Aktivitäten
	HelloWorldWorkflowAsync Workflow-Implementierung
	HelloWorldWorkflowAsyncArbeitsablauf und Aktivitäten: Host und Starter

	HelloWorldWorkflowDistributed Bewerbung
	HelloWorldWorkflowParallelBewerbung
	HelloWorldWorkflowParallelAktivitäten Arbeiter
	HelloWorldWorkflowParallelWorkflow-Mitarbeiter
	HelloWorldWorkflowParallel Arbeitsablauf und Aktivitäten: Host und Starter

	Verständnis AWS Flow Framework für Java
	AWS Flow Framework Grundbegriffe: Anwendungsstruktur
	Rolle des Aktivitäts-Workers
	Rolle des Workflow-Workers
	Rolle des Workflow-Starters
	So interagiert Amazon SWF mit Ihrer Anwendung
	Weitere Informationen

	AWS Flow Framework Grundkonzepte: Zuverlässige Ausführung
	Bereitstellen von zuverlässiger Kommunikation
	Sicherstellen, dass Ergebnisse nicht verloren gegangen sind
	Beibehalten des Workflow-Verlaufs
	Zustandslose Ausführung

	Verarbeitung fehlgeschlagener verteilter Komponenten

	AWS Flow Framework Grundbegriffe: Verteilte Ausführung
	Workflow-Replay
	Replay und asynchrone Workflow-Methoden
	Replay und die Workflow-Implementierung

	AWS Flow Framework Grundbegriffe: Aufgabenlisten und Aufgabenausführung
	AWS Flow Framework Grundkonzepte: Skalierbare Anwendungen
	AWS Flow Framework Grundbegriffe: Data Exchange zwischen Aktivitäten und Workflows
	Die Promise <T> Type
	Datenkonverter und Marshaling

	AWS Flow Framework Grundbegriffe: Data Exchange zwischen Anwendungen und Workflow-Ausführungen
	Amazon SWF-Timeout-Typen
	Zeitüberschreitungen in Workflow- und Entscheidungsaufgaben
	Zeitüberschreitungen in Aktivitätsaufgaben

	Eine Aufgabe in AWS Flow Framework für Java verstehen
	Aufgabe
	Reihenfolge der Ausführung
	Workflow-Ausführung
	Nichtdeterminismus

	AWS Flow Framework für Java-Programmierhandbuch
	Implementierung von Workflow-Anwendungen mit dem AWS Flow Framework
	Workflow- und Aktivitäts-Verträge
	Registrierung von Workflow- und Aktivitätstypen
	Workflow-Typname und Version
	Signalname
	Aktivitätstypname und Version
	Standardaufgabenliste
	Weitere Registrierungsoptionen

	Aktivitäts- und Workflow-Clients
	Workflow-Clients
	Aktivitäts-Clients
	Planungsoptionen
	Dynamische Clients
	Signalisieren und Abbrechen von Workflow-Ausführungen

	Workflow-Implementierung
	Entscheidungskontext
	Offenlegen des Ausführungsstatus
	Workflow-Lokale

	Implementierung von Aktivitäten
	Aktivitäten manuell abschließen

	AWS Lambda Aufgaben umsetzen
	Über AWS Lambda
	Vorteile und Einschränkungen der Verwendung von Lambda-Aufgaben
	Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework Workflows für Java
	Einrichten einer IAM-Rolle
	Beschränken Sie die Berechtigungen für eine IAM-Rolle
	Amazon SWF Zugriff zum Aufrufen beliebiger Lambda-Rollen gewähren
	Definition einer IAM-Rolle für den Zugriff auf den Aufruf einer bestimmten Lambda-Funktion

	Eine Lambda-Aufgabe für die Ausführung planen

	Sehen Sie sich das Beispiel an HelloLambda

	Ausführen von Programmen, die mit dem AWS Flow Framework für Java geschrieben wurden
	WorkflowWorker
	ActivityWorker
	Worker-Threading-Modell
	Worker-Erweiterbarkeit

	Ausführungskontext
	Entscheidungskontext
	Zugriff DecisionContext bei der Workflow-Implementierung
	Erstellen einer Uhr und eines Timers

	Aktivitätsausführungskontext
	Heartbeat für eine langfristige Aktivität
	Abrufen von Details zur Aktivitätsaufgabe
	Ruft das Amazon SWF-Client-Objekt ab, das vom Executor verwendet wird

	Untergeordnete Workflow-Ausführungen
	Fortlaufende Workflows
	Aufgabenpriorität in Amazon SWF festlegen
	Einrichten der Aufgabenpriorität für Workflows
	Einrichten der Aufgabenpriorität für Aktivitäten

	DataConverters
	Datenübergabe an asynchrone Methoden
	Übergabe von Collections und Maps an asynchrone Methoden
	Einstellbare <T>
	@NoWait
	Promise <Void>
	AndPromise und OrPromise

	Prüfbarkeit und Dependency Injection
	Spring-Integration
	WorkflowScope
	Spring-fähige Worker
	Einfügen des Entscheidungskontexts
	Einfügen von Ressourcen in Aktivitäten

	JUnit Integration
	Schreiben eines einfachen Einheitentests
	Nachahmen von Aktivitätsimplementierungen

	Testen von Kontextobjekten

	Fehlerbehandlung
	TryCatchFinally Semantik
	Abbruch
	Aktivitäts-Heartbeat
	Explizites Abbrechen einer Aufgabe
	Empfangen von Benachrichtigungen über abgebrochene Aufgaben

	Verschachtelt TryCatchFinally

	Wiederholen fehlgeschlagener Aktivitäten
	Retry-Until-Success Strategie
	Exponentielle Wiederholungsstrategie
	Exponentieller Wiederholungsversuch mit @ ExponentialRetry
	Exponentielle Wiederholung mit der Klasse RetryDecorator
	Exponentielle Wiederholung mit der Klasse AsyncRetryingExecutor

	Benutzerdefinierte Wiederholungsstrategie

	Daemon-Aufgaben
	AWS Flow Framework für Java Replay Behavior
	Beispiel 1: Synchrones Replay
	Beispiel 2: Asynchrones Replay
	Weitere Informationen finden Sie unter:

	Bewährte Methoden
	Vornehmen von Änderungen am Entscheidercode: Versioning und Funktions-Flags
	Wiedergabe und Codeänderungen
	Beispielszenario
	Überblick über das Szenario
	Gängiger Code
	Schreiben des ersten Entscheidercodes
	Simulieren einer abwärtsinkompatiblen Änderung

	Lösungen
	Verwenden von Versioning
	Verwenden von Funktions-Flags

	Tipps zur Fehlerbehebung und zum Debuggen AWS Flow Framework für Java
	Fehler beim Kompilieren
	Unbekannter Ressourcenfehler
	Ausnahmen beim Aufrufen von get () für ein Promise
	Nichtdeterministische Workflows
	Probleme aufgrund der Versionierung
	Problembehandlung und Debuggen einer Workflow-Ausführung
	Verlorene Aufgaben
	Die Überprüfung ist aufgrund von Längenbeschränkungen für API-Parameter fehlgeschlagen

	AWS Flow Framework für Java-Referenz
	AWS Flow Framework für Java-Annotationen
	@Aktivität
	@Aktivität
	@ActivityRegistrationOptions
	@Asynchron
	@Execute
	@ExponentialRetry
	@GetState
	@ManualActivityCompletion
	@Signal
	@SkipRegistration
	@Wait und @ NoWait
	@Workflow
	Beispiel

	@WorkflowRegistrationOptions

	AWS Flow Framework für Java-Ausnahmen
	ActivityFailureException
	ActivityTaskException
	ActivityTaskFailedException
	ActivityTaskTimedOutException
	ChildWorkflowException
	ChildWorkflowFailedException
	ChildWorkflowTerminatedException
	ChildWorkflowTimedOutException
	DataConverterException
	DecisionException
	ScheduleActivityTaskFailedException
	SignalExternalWorkflowException
	StartChildWorkflowFailedException
	StartTimerFailedException
	TimerException
	WorkflowException

	AWS Flow Framework für Java-Pakete

	Dokumentverlauf
	

