
Entwicklerhandbuch

AWS Flow Framework für Java

API-Version 2021-04-28

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Flow Framework für Java Entwicklerhandbuch

AWS Flow Framework für Java: Entwicklerhandbuch

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Marken und Handelsmarken von Amazon dürfen nicht in einer Weise in Verbindung mit nicht
von Amazon stammenden Produkten oder Services verwendet werden, die geeignet ist, Kunden
irrezuführen oder Amazon in irgendeiner Weise herabzusetzen oder zu diskreditieren. Alle anderen
Marken, die nicht im Besitz von Amazon sind, gehören den jeweiligen Besitzern, die möglicherweise
mit Amazon verbunden sind oder von Amazon gesponsert werden.

AWS Flow Framework für Java Entwicklerhandbuch

Table of Contents
Was ist das AWS Flow Framework für Java? ... 1

Was ist in diesem Handbuch enthalten? .. 1
Erste Schritte .. 3

Einrichtung des Frameworks ... 3
Fügen Sie das Flow-Framework mit Maven hinzu ... 4

HelloWorld Bewerbung .. 4
HelloWorld Implementierung der Aktivitäten .. 5
HelloWorld Workflow-Mitarbeiter .. 6
HelloWorld Workflow-Starter ... 7

HelloWorldWorkflow Bewerbung ... 8
HelloWorldWorkflow Aktivitäten Arbeiter .. 10
HelloWorldWorkflow Workflow-Worker ... 12
HelloWorldWorkflow Implementierung von Arbeitsabläufen und Aktivitäten 17
HelloWorldWorkflow Vorspeise ... 21

HelloWorldWorkflowAsyncBewerbung ... 26
HelloWorldWorkflowAsync Implementierung der Aktivitäten .. 28
HelloWorldWorkflowAsync Workflow-Implementierung .. 28
HelloWorldWorkflowAsyncArbeitsablauf und Aktivitäten: Host und Starter 30

HelloWorldWorkflowDistributed Bewerbung .. 31
HelloWorldWorkflowParallelBewerbung ... 34

HelloWorldWorkflowParallelAktivitäten Arbeiter ... 35
HelloWorldWorkflowParallelWorkflow-Mitarbeiter ... 36
HelloWorldWorkflowParallel Arbeitsablauf und Aktivitäten: Host und Starter 38

Verstehen AWS Flow Framework .. 39
Anwendungsstruktur .. 39

Rolle des Aktivitäts-Workers ... 41
Rolle des Workflow-Workers .. 41
Rolle des Workflow-Starters ... 42
So interagiert Amazon SWF mit Ihrer Anwendung .. 42
Weitere Informationen ... 43

Zuverlässige Ausführung ... 43
Bereitstellen von zuverlässiger Kommunikation ... 43
Sicherstellen, dass Ergebnisse nicht verloren gegangen sind ... 44
Verarbeitung fehlgeschlagener verteilter Komponenten .. 45

API-Version 2021-04-28 iii

AWS Flow Framework für Java Entwicklerhandbuch

Verteilte Ausführung .. 45
Workflow-Replay ... 45
Replay und asynchrone Workflow-Methoden ... 47
Replay und die Workflow-Implementierung .. 47

Aufgabenlisten und Aufgabenausführung ... 48
Skalierbare Webanwendungen .. 50
Datenaustausch zwischen Aktivitäten und Workflows .. 51

Die Promise <T> Type ... 51
Datenkonverter und Marshaling .. 53

Datenaustausch zwischen Anwendungen und Workflow-Ausführungen 53
Zeitüberschreitungstypen ... 54

Zeitüberschreitungen in Workflow- und Entscheidungsaufgaben .. 54
Zeitüberschreitungen in Aktivitätsaufgaben .. 56

Aufgaben verstehen ... 58
Aufgabe .. 58
Reihenfolge der Ausführung .. 59
Workflow-Ausführung ... 61
Nichtdeterminismus .. 64

Programming Guide ... 65
Implementieren von Workflow-Anwendungen ... 65
Workflow- und Aktivitäts-Verträge ... 67
Registrierung von Workflow- und Aktivitätstypen .. 70

Workflow-Typname und Version ... 71
Signalname ... 71
Aktivitätstypname und Version ... 72
Standardaufgabenliste .. 72
Weitere Registrierungsoptionen .. 72

Aktivitäts- und Workflow-Clients .. 73
Workflow-Clients ... 73
Aktivitäts-Clients .. 82
Planungsoptionen .. 87
Dynamische Clients .. 87

Workflow-Implementierung .. 89
Entscheidungskontext ... 91
Offenlegen des Ausführungsstatus ... 91
Workflow-Lokale .. 93

API-Version 2021-04-28 iv

AWS Flow Framework für Java Entwicklerhandbuch

Implementierung von Aktivitäten ... 94
Aktivitäten manuell abschließen ... 95

Implementierung von Lambda-Aufgaben .. 97
Über AWS Lambda ... 97
Vorteile und Einschränkungen der Verwendung von Lambda-Aufgaben 98
Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework Workflows für Java 99
Sehen Sie sich das Beispiel an HelloLambda ... 103

Ausführen von Programmen, die mit dem AWS Flow Framework für Java geschrieben
wurden ... 104

WorkflowWorker .. 105
ActivityWorker ... 105
Worker-Threading-Modell .. 106
Worker-Erweiterbarkeit .. 108

Ausführungskontext ... 109
Entscheidungskontext ... 109
Aktivitätsausführungskontext ... 112

Untergeordnete Workflow-Ausführungen .. 113
Fortlaufende Workflows ... 115
Einstellung der Aufgabenpriorität .. 116

Einrichten der Aufgabenpriorität für Workflows .. 117
Einrichten der Aufgabenpriorität für Aktivitäten .. 118

DataConverters .. 119
Datenübergabe an asynchrone Methoden .. 120

Übergabe von Collections und Maps an asynchrone Methoden .. 120
Einstellbare <T> .. 121
@NoWait ... 122
Promise <Void> .. 123
AndPromise und OrPromise ... 123

Prüfbarkeit und Dependency Injection .. 123
Spring-Integration .. 124
JUnit Integration .. 131

Fehlerbehandlung .. 137
TryCatchFinally Semantik ... 139
Abbruch ... 140
Verschachtelt TryCatchFinally .. 145

Wiederholen fehlgeschlagener Aktivitäten .. 146

API-Version 2021-04-28 v

AWS Flow Framework für Java Entwicklerhandbuch

Retry-Until-Success Strategie ... 147
Exponentielle Wiederholungsstrategie .. 149
Benutzerdefinierte Wiederholungsstrategie .. 157

Daemon-Aufgaben ... 160
Replay-Verhalten ... 162

Beispiel 1: Synchrones Replay ... 162
Beispiel 2: Asynchrones Replay ... 164
Weitere Informationen finden Sie unter: ... 165

Bewährte Methoden ... 166
Vornehmen von Änderungen am Entscheidercode .. 166

Wiedergabe und Codeänderungen ... 166
Beispielszenario .. 167
Lösungen ... 174

Fehlerbehebung .. 180
Fehler beim Kompilieren ... 180
Unbekannter Ressourcenfehler ... 181
Ausnahmen beim Aufrufen von get () für ein Promise ... 181
Nichtdeterministische Workflows ... 182
Probleme aufgrund der Versionierung .. 182
Problembehandlung und Debuggen einer Workflow-Ausführung ... 182
Verlorene Aufgaben ... 184
Die Überprüfung ist aufgrund von Längenbeschränkungen für API-Parameter fehlgeschlagen . 185

Referenz ... 186
Anmerkungen ... 186

@Aktivität .. 186
@Aktivität .. 187
@ActivityRegistrationOptions .. 188
@Asynchron .. 189
@Execute .. 189
@ExponentialRetry ... 190
@GetState ... 191
@ManualActivityCompletion ... 191
@Signal ... 191
@SkipRegistration ... 192
@Wait und @ NoWait .. 192
@Workflow .. 192

API-Version 2021-04-28 vi

AWS Flow Framework für Java Entwicklerhandbuch

@WorkflowRegistrationOptions .. 193
Ausnahmen .. 195

ActivityFailureException .. 195
ActivityTaskException ... 196
ActivityTaskFailedException .. 196
ActivityTaskTimedOutException .. 196
ChildWorkflowException .. 196
ChildWorkflowFailedException .. 196
ChildWorkflowTerminatedException ... 197
ChildWorkflowTimedOutException .. 197
DataConverterException ... 197
DecisionException ... 197
ScheduleActivityTaskFailedException ... 197
SignalExternalWorkflowException ... 198
StartChildWorkflowFailedException .. 198
StartTimerFailedException .. 198
TimerException ... 198
WorkflowException .. 198

Pakete .. 198
Dokumentverlauf ... 201
.. cciii

API-Version 2021-04-28 vii

AWS Flow Framework für Java Entwicklerhandbuch

Was ist das AWS Flow Framework für Java?
Mit dem können Sie AWS Flow Framework sich auf die Implementierung Ihrer Workflow-Logik
konzentrieren. Hinter den Kulissen verwendet das Framework die Planungs-, Routing- und
Statusverwaltungsfunktionen von Amazon SWF, um die Ausführung Ihres Workflows zu verwalten
und ihn skalierbar, zuverlässig und überprüfbar zu machen. AWS Flow Framework basierte
Workflows laufen in hohem Maße parallel ab. Die Workflows können auf mehrere Komponenten
verteilt werden, die als separate Prozesse auf separaten Computern ausgeführt und unabhängig
voneinander skaliert werden können. Die Anwendung kann weiter ausgeführt werden, wenn eine
ihrer Komponenten ausgeführt wird, wodurch sie äußerst fehlertolerant ist.

Was ist in diesem Handbuch enthalten?

Dieses Handbuch enthält Informationen zur Installation, Einrichtung und Verwendung von Amazon
SWF SWF-Anwendungen. AWS Flow Framework

Erste Schritte mit dem AWS Flow Framework für Java

Wenn Sie gerade erst mit dem AWS Flow Framework für Java beginnen, lesen Sie den Erste
Schritte mit dem AWS Flow Framework für Java Abschnitt. Er führt Sie durch das Herunterladen
und Installieren von AWS Flow Framework für Java, die Einrichtung Ihrer Entwicklungsumgebung
und führt Sie durch ein einfaches Beispiel für die Erstellung eines Workflows.

Verständnis AWS Flow Framework für Java

Stellt grundlegende Amazon SWF und AWS Flow Framework Konzepte vor und beschreibt die
grundlegende Struktur einer AWS Flow Framework Anwendung und wie Daten zwischen Teilen
eines verteilten Workflows ausgetauscht werden.

AWS Flow Framework für Java-Programmierhandbuch

Dieses Kapitel enthält grundlegende Programmieranleitungen für die Entwicklung von Workflow-
Anwendungen mit dem AWS Flow Framework für Java, einschließlich der Registrierung von
Aktivitäten und Workflow-Typen, der Implementierung von Workflow-Clients, der Erstellung
untergeordneter Workflows, der Behandlung von Fehlern und mehr.

Eine Aufgabe in AWS Flow Framework für Java verstehen

Dieses Kapitel bietet einen tieferen Einblick in die Funktionsweise von AWS Flow Framework
for Java und bietet Ihnen zusätzliche Informationen über die Reihenfolge der Ausführung

Was ist in diesem Handbuch enthalten? API-Version 2021-04-28 1

AWS Flow Framework für Java Entwicklerhandbuch

asynchroner Workflows sowie eine logische schrittweise Vorgehensweise bei der Ausführung
eines Standard-Workflows.

Tipps zur Fehlerbehebung und zum Debuggen AWS Flow Framework für Java

Dieses Kapitel enthält Informationen zu häufigen Fehlern, die Sie bei der Fehlerbehebung für Ihre
Workflows unterstützen oder Ihnen zeigen, wie Sie häufige Fehler vermeiden.

AWS Flow Framework für Java-Referenz

Dieses Kapitel ist ein Verweis auf die Anmerkungen, Ausnahmen und Pakete, die AWS Flow
Framework for Java dem SDK for Java hinzufügt.

Was ist in diesem Handbuch enthalten? API-Version 2021-04-28 2

AWS Flow Framework für Java Entwicklerhandbuch

Erste Schritte mit dem AWS Flow Framework für Java

In diesem Abschnitt wird das vorgestellt, AWS Flow Framework indem er Sie durch eine Reihe
einfacher Beispielanwendungen führt, in denen das grundlegende Programmiermodell und die API
vorgestellt werden. Die Beispielanwendungen basieren auf der standardmäßigen Anwendung "Hello
World", die häufig für die Einführung von C und verwandter Programmiersprachen verwendet wird.
Hier sehen Sie eine typische Java-Implementierung von "Hello World":

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Im Folgenden finden Sie eine kurze Beschreibung der Beispielanwendungen: Der vollständige
Quellcode ist angegeben, sodass Sie die Anwendungen selbst implementieren und ausführen
können. Bevor Sie beginnen, sollten Sie zunächst Ihre Entwicklungsumgebung konfigurieren und ein
AWS Flow Framework Java-Projekt erstellen, wie inEinrichtung des AWS Flow Framework für Java.

• HelloWorld Bewerbung stellt Workflow-Anwendungen vor, indem "Hello World" als standardmäßige
Java-Anwendung implementiert, aber wie eine Workflow-Anwendung strukturiert wird.

• HelloWorldWorkflow Bewerbungverwendet den AWS Flow Framework for Java zur Konvertierung
HelloWorld in einen Amazon SWF SWF-Workflow.

• HelloWorldWorkflowAsyncBewerbung ändert HelloWorldWorkflow, damit eine asynchrone
Workflow-Methode verwendet wird.

• HelloWorldWorkflowDistributed Bewerbung ändert HelloWorldWorkflowAsync, sodass
Workflow und Aktivitäts-Worker auf unterschiedlichen System ausgeführt werden.

• HelloWorldWorkflowParallelBewerbung ändert HelloWorldWorkflow, damit zwei Aktivitäten
parallel ausgeführt werden können.

Einrichtung des AWS Flow Framework für Java

Das AWS Flow Framework für Java ist im Lieferumfang von enthalten. AWS SDK für Java Falls Sie
das noch nicht eingerichtet haben AWS SDK für Java, finden Sie unter Erste Schritte im AWS SDK
für Java Entwicklerhandbuch Informationen zur Installation und Konfiguration des SDK selbst.

Einrichtung des Frameworks API-Version 2021-04-28 3

https://aws.amazon.com/sdkforjava/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/getting-started.html

AWS Flow Framework für Java Entwicklerhandbuch

Fügen Sie das Flow-Framework mit Maven hinzu

Die Amazon SWF SWF-Build-Tools sind Open Source. Um den Code anzusehen oder
herunterzuladen oder die Tools selbst zu erstellen, besuchen Sie das Repository unter. https://
github.com/aws/aws-swf-build-tools

Amazon stellt Amazon SWF SWF-Build-Tools im Maven Central Repository bereit.

Um das Flow-Framework für Maven einzurichten, fügen Sie die folgende Abhängigkeit zur pom.xml-
Datei Ihres Projekts hinzu:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-swf-build-tools</artifactId>
 <version>2.0.0</version>
</dependency>

HelloWorld Bewerbung
Um die Struktur von Amazon SWF SWF-Anwendungen vorzustellen, erstellen wir eine Java-
Anwendung, die sich wie ein Workflow verhält, aber lokal in einem einzigen Prozess ausgeführt wird.
Es ist keine Verbindung zu Amazon Web Services erforderlich.

Note

Das HelloWorldWorkflowBeispiel baut auf diesem auf und stellt eine Verbindung zu Amazon
SWF her, um die Verwaltung des Workflows zu übernehmen.

Eine Workflow-Anwendung besteht aus drei Grundkomponenten:

• Ein Aktivitätsauftragnehmer unterstützt eine Reihe von Aktivitäten, die jeweils eine Methode sind,
die unabhängig ausgeführt wird, um eine bestimmte Aufgabe zu erfüllen.

• Ein Workflow-Auftragnehmer orchestriert die Ausführung der Aktivitäten und verwaltet den
Datenfluss. Er ist eine programmgesteuerte Umsetzung einer Workflow-Topologie. Dabei
handelt es sich im Grunde um ein Flussdiagramm, in dem definiert wird, wann die verschiedenen
Aktivitäten ausgeführt werden, ob sie nacheinander oder parallel ausgeführt werden usw.

• Ein Workflow-Starter startet eine Workflow-Instance, eine sogenannte Ausführung, und kann
während der Ausführung mit ihr interagieren.

Fügen Sie das Flow-Framework mit Maven hinzu API-Version 2021-04-28 4

https://github.com/aws/aws-swf-build-tools
https://github.com/aws/aws-swf-build-tools
https://mvnrepository.com/artifact/com.amazonaws/aws-swf-build-tools

AWS Flow Framework für Java Entwicklerhandbuch

HelloWorld ist in drei Klassen und zwei verwandte Schnittstellen implementiert, die in den folgenden
Abschnitten beschrieben werden. Bevor Sie beginnen, sollten Sie Ihre Entwicklungsumgebung
einrichten und ein neues AWS Java-Projekt erstellen, wie unter beschriebenEinrichtung des
AWS Flow Framework für Java. Die für die folgenden Anleitungen verwendeten Pakete heißen
helloWorld.XYZ. Um diese Namen zu verwenden, legen Sie das within-Attribut in aop.xml wie
folgt fest:

...
<weaver options="-verbose">
 <include within="helloWorld..*"/>
</weaver>

Erstellen Sie zur Implementierung HelloWorld ein neues Java-Paket in Ihrem AWS SDK-Projekt mit
dem Namen helloWorld.HelloWorld und fügen Sie die folgenden Dateien hinzu:

• Eine Schnittstellendatei namens GreeterActivities.java

• Eine Klassendatei namens GreeterActivitiesImpl.java, die den Aktivitätenauftragnehmer
implementiert

• Eine Schnittstellendatei namens GreeterWorkflow.java

• Eine Klassendatei namens GreeterWorkflowImpl.java, die den Workflow-Auftragnehmer
implementiert

• Eine Klassendatei namens GreeterMain.java, die den Workflow-Starter implementiert

Die Details werden in den folgenden Abschnitten erläutert und enthalten den vollständigen Code der
einzelnen Komponenten, den Sie in die jeweilige Datei einfügen können.

HelloWorld Implementierung der Aktivitäten

HelloWorld unterteilt die allgemeine Aufgabe, eine "Hello World!" Begrüßung auf der Konsole
zu drucken, in drei Aufgaben, von denen jede mit einer Aktivitätsmethode ausgeführt wird. Die
Aktivitätsmethoden sind in der Schnittstelle GreeterActivities wie folgt definiert.

public interface GreeterActivities {
 public String getName();
 public String getGreeting(String name);
 public void say(String what);
}

HelloWorld Implementierung der Aktivitäten API-Version 2021-04-28 5

AWS Flow Framework für Java Entwicklerhandbuch

HelloWorld hat eine AktivitätsimplementierungGreeterActivitiesImpl, die die
GreeterActivities folgenden Methoden bereitstellt:

public class GreeterActivitiesImpl implements GreeterActivities {
 @Override
 public String getName() {
 return "World";
 }

 @Override
 public String getGreeting(String name) {
 return "Hello " + name + "!";
 }

 @Override
 public void say(String what) {
 System.out.println(what);
 }
}

Aktivitäten sind unabhängig voneinander und können häufig in unterschiedlichen Workflows
verwendet werden. Beispielsweise kann jeder Workflow die Aktivität say verwenden, um
eine Zeichenfolge auf der Konsole auszugeben. Workflows können auch über mehrere
Aktivitätsimplementierungen verfügen, die jeweils unterschiedliche Aufgaben ausführen.

HelloWorld Workflow-Mitarbeiter

Um „Hello World!“ zu drucken auf der Konsole müssen die Aktivitätsaufgaben nacheinander in der
richtigen Reihenfolge mit den richtigen Daten ausgeführt werden. Der HelloWorld Workflow-Worker
orchestriert die Ausführung der Aktivitäten auf der Grundlage einer einfachen linearen Workflow-
Topologie, die in der folgenden Abbildung dargestellt ist.

Die drei Aktivitäten werden nacheinander ausgeführt und die Daten werden von einer Aktivität an die
nächste übergeben.

Der HelloWorld Workflow-Worker hat eine einzige Methode, den Einstiegspunkt des Workflows, der in
der GreeterWorkflow Benutzeroberfläche wie folgt definiert ist:

HelloWorld Workflow-Mitarbeiter API-Version 2021-04-28 6

AWS Flow Framework für Java Entwicklerhandbuch

public interface GreeterWorkflow {
 public void greet();
}

Die GreeterWorkflowImpl-Klasse implementiert diese Schnittstelle wie folgt:

public class GreeterWorkflowImpl implements GreeterWorkflow{
 private GreeterActivities operations = new GreeterActivitiesImpl();

 public void greet() {
 String name = operations.getName();
 String greeting = operations.getGreeting(name);
 operations.say(greeting);
 }
}

Die greet Methode implementiert die HelloWorld Topologie, indem sie eine Instanz von
erstelltGreeterActivitiesImpl, jede Aktivitätsmethode in der richtigen Reihenfolge aufruft und
die entsprechenden Daten an jede Methode weitergibt.

HelloWorld Workflow-Starter

Ein Workflow-Starter ist eine Anwendung, die eine Workflow-Instance startet und während der
Ausführung mit dem Workflow kommunizieren kann. Die GreeterMain Klasse implementiert den
HelloWorld Workflow-Starter wie folgt:

public class GreeterMain {
 public static void main(String[] args) {
 GreeterWorkflow greeter = new GreeterWorkflowImpl();
 greeter.greet();
 }
}

GreeterMain erstellt eine Instance von GreeterWorkflowImpl und ruft greet auf, um den
Workflow-Auftragnehmer auszuführen. Führen Sie GreeterMain es als Java-Anwendung aus und
Sie sollten „Hello World!“ sehen in der Konsolenausgabe.

HelloWorld Workflow-Starter API-Version 2021-04-28 7

AWS Flow Framework für Java Entwicklerhandbuch

HelloWorldWorkflow Bewerbung

Obwohl das grundlegende HelloWorldBeispiel wie ein Workflow strukturiert ist, unterscheidet es sich
in mehreren wichtigen Punkten von einem Amazon SWF SWF-Workflow:

Konventionelle Workflow-Anwendungen und Amazon SWF SWF-Workflow-Anwendungen

HelloWorld Amazon SWF SWF-Arbeitsablauf

Wird lokal als einzelner Prozess
ausgeführt.

Läuft als mehrere Prozesse, die auf mehrere Systeme
verteilt werden können, darunter EC2 Amazon-In
stances, private Rechenzentren, Client-Computer
usw. Es muss nicht einmal das gleiche Betriebssystem
verwendet werden.

Aktivitäten sind synchrone Methoden,
die bis zu ihrem Abschluss für eine
Blockierung sorgen.

Aktivitäten werden durch asynchrone Methoden
abgebildet. Diese geben die Kontrolle sofort zurück. Sie
ermöglichen es dem Workflow, während der Wartezeit
auf den Abschluss der Aktivität andere Aufgaben
auszuführen.

Der Workflow-Worker interagiert mit
einem Aktivitäts-Worker, indem er die
entsprechende Methode aufruft.

Workflow-Worker interagieren mit Activity-Workern
mithilfe von HTTP-Anfragen, wobei Amazon SWF als
Vermittler fungiert.

Der Workflow-Starter interagiert mit
dem Workflow-Worker, indem er die
entsprechende Methode aufruft.

Workflow-Starter interagieren mit Workflow-Workern
mithilfe von HTTP-Anfragen, wobei Amazon SWF als
Vermittler fungiert.

Sie können eine verteilte, asynchrone Workflow-Anwendung von Grund auf neu implementieren,
indem Sie beispielsweise Ihren Workflow-Worker direkt über Webservice-Aufrufe mit einem Aktivitäts-
Worker interagieren lassen. Allerdings müssen Sie dann den gesamten, komplizierten Code
implementieren, der für die asynchrone Ausführung mehrerer Aktivitäten, den Datenfluss usw.
erforderlich ist. Die SWF AWS Flow Framework für Java und Amazon kümmern sich um all diese
Details, sodass Sie sich auf die Implementierung der Geschäftslogik konzentrieren können.

HelloWorldWorkflow Bewerbung API-Version 2021-04-28 8

AWS Flow Framework für Java Entwicklerhandbuch

HelloWorldWorkflow ist eine modifizierte Version davon HelloWorld , die als Amazon SWF SWF-
Workflow ausgeführt wird. Die folgende Abbildung fasst die Funktionsweise der beiden Anwendungen
zusammen.

HelloWorld wird als ein einziger Prozess ausgeführt, und der Starter, der Workflow-Worker
und der Aktivitäten-Worker interagieren mithilfe herkömmlicher Methodenaufrufe. Bei
StarterHelloWorldWorkflow, Workflow Worker und Activities Worker handelt es sich um verteilte
Komponenten, die über Amazon SWF mithilfe von HTTP-Anfragen interagieren. Amazon SWF
verwaltet die Interaktion, indem es Listen mit Workflow- und Aktivitätsaufgaben verwaltet und an die
jeweiligen Komponenten weiterleitet. In diesem Abschnitt wird beschrieben, wie das Framework für
HelloWorldWorkflow funktioniert.

HelloWorldWorkflow wird mithilfe der AWS Flow Framework for Java-API implementiert, die die
manchmal komplizierten Details der Interaktion mit Amazon SWF im Hintergrund verarbeitet und den
Entwicklungsprozess erheblich vereinfacht. Sie können dasselbe Projekt verwenden HelloWorld, für
das Sie bereits AWS Flow Framework für Java-Anwendungen konfiguriert haben. Um die Anwendung
auszuführen, müssen Sie jedoch wie folgt ein Amazon SWF SWF-Konto einrichten:

• Eröffnen Sie ein AWS Konto bei Amazon Web Services, falls Sie noch keines haben.

HelloWorldWorkflow Bewerbung API-Version 2021-04-28 9

https://aws.amazon.com/

AWS Flow Framework für Java Entwicklerhandbuch

• Weisen Sie den AWS_SECRET_KEY Umgebungsvariablen die Zugriffs-ID
AWS_ACCESS_KEY_ID und die geheime ID Ihres Kontos zu. Die Schlüsselwerte selbst sollten
nicht in Ihrem Code enthalten sein. Die Speicherung in Umgebungsvariablen ist ein bequemer
Weg, um das Problem zu lösen.

• Eröffnen Sie ein Amazon SWF SWF-Konto bei Amazon Simple Workflow Service.

• Melden Sie sich beim Amazon SWF-Service an AWS-Managementkonsole und wählen Sie ihn
aus.

• Wählen Sie oben rechts Domains verwalten und registrieren Sie eine neue Amazon SWF-
Domain. Ein Domäne ist ein logischer Container für Ihre Anwendungsressourcen (z. B. Workflow-
und Aktivitätstypen und Workflow-Ausführungen). Sie können jeden beliebigen Domainnamen
verwenden, in den exemplarischen Vorgehensweisen wird jedoch "“ helloWorldWalkthrough
verwendet.

Um das zu implementieren HelloWorldWorkflow, erstellen Sie eine Kopie von HelloWorld. HelloWorld
packe es in dein Projektverzeichnis und nenne es HelloWorld. HelloWorldWorkflow. In den folgenden
Abschnitten wird beschrieben, wie Sie den HelloWorld Originalcode ändern, um ihn AWS Flow
Framework für Java zu verwenden und als Amazon SWF SWF-Workflow-Anwendung auszuführen.

HelloWorldWorkflow Aktivitäten Arbeiter

HelloWorld hat seine Aktivitäten Worker als eine einzige Klasse eingeführt. Ein Worker AWS Flow
Framework für Java-Aktivitäten besteht aus drei grundlegenden Komponenten:

• Die Aktivitätsmethoden, die die eigentlichen Aufgaben ausführen, werden in einer Schnittstelle
definiert und in einer verwandten Klasse implementiert.

• Eine ActivityWorkerKlasse verwaltet die Interaktion zwischen den Aktivitätsmethoden und Amazon
SWF.

• Eine Aktivitäts-Host-Anwendung, die den Aktivitäts-Worker registriert und startet und die
Bereinigung übernimmt.

Dieser Abschnitt behandelt die Aktivitätsmethoden. Die beiden anderen Klassen werden später
besprochen.

HelloWorldWorkflow definiert die Aktivitätsschnittstelle in GreeterActivities wie folgt:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;

HelloWorldWorkflow Aktivitäten Arbeiter API-Version 2021-04-28 10

https://aws.amazon.com/swf/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html

AWS Flow Framework für Java Entwicklerhandbuch

import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
@Activities(version="1.0")

public interface GreeterActivities {
 public String getName();
 public String getGreeting(String name);
 public void say(String what);
}

Diese Schnittstelle war nicht unbedingt notwendig für HelloWorld, aber sie ist AWS Flow Framework
für eine Java-Anwendung notwendig. Beachten Sie, dass sich die Schnittstellendefinition selbst
nicht geändert hat. Sie müssen jedoch zwei AWS Flow Framework für Java-Anmerkungen
@ActivityRegistrationOptions und @Aktivität für die Schnittstellendefinition anwenden. Die
Anmerkungen stellen Konfigurationsinformationen bereit und weisen den Annotationsprozessor AWS
Flow Framework für Java an, anhand der Schnittstellendefinition eine Clientklasse für Aktivitäten zu
generieren, auf die später eingegangen wird.

@ActivityRegistrationOptionshat mehrere benannte Werte, die verwendet werden, um das
Verhalten der Aktivitäten zu konfigurieren. HelloWorldWorkflow gibt zwei Timeouts an:

• defaultTaskScheduleToStartTimeoutSeconds definiert, wie lange sich die Aufgaben in der
Aktivitätsaufgabenliste in der Warteschlange befinden können. Der Wert ist auf 300 Sekunden (5
Minuten) festgelegt.

• defaultTaskStartToCloseTimeoutSeconds definiert die maximale Zeit, die die Aktivität zur
Ausführung der Aufgabe nutzen kann. Der Wert ist auf 10 Sekunden festgelegt.

Diese Timeouts stellen sicher, dass die Aktivität ihre Aufgabe in angemessener Zeit abschließt. Wird
ein Timeout überschritten, generiert das Framework einen Fehler und der Workflow-Worker muss
entscheiden, wie das Problem behandelt werden soll. Wie man mit solchen Fehlern umgeht, erfahren
Sie unter Fehlerbehandlung.

@Activities hat mehrere Werte. In der Regel wird jedoch nur die Versionsnummer der Aktivität
definiert. So können Sie verschiedene Generationen der Aktivitätsimplementierungen nachverfolgen.
Wenn Sie eine Aktivitätsschnittstelle ändern, nachdem Sie sie bei Amazon SWF registriert haben,

HelloWorldWorkflow Aktivitäten Arbeiter API-Version 2021-04-28 11

AWS Flow Framework für Java Entwicklerhandbuch

einschließlich der Änderung der @ActivityRegistrationOptions Werte, müssen Sie eine neue
Versionsnummer verwenden.

HelloWorldWorkflow implementiert die Aktivitätsmethoden wie folgt: GreeterActivitiesImpl

public class GreeterActivitiesImpl implements GreeterActivities {
 @Override
 public String getName() {
 return "World";
 }
 @Override
 public String getGreeting(String name) {
 return "Hello " + name;
 }
 @Override
 public void say(String what) {
 System.out.println(what);
 }
}

Beachten Sie, dass der Code mit der HelloWorld Implementierung identisch ist. Im Kern ist eine AWS
Flow Framework Aktivität nur eine Methode, die Code ausführt und möglicherweise ein Ergebnis
zurückgibt. Der Unterschied zwischen einer Standardanwendung und einer Amazon SWF SWF-
Workflow-Anwendung besteht darin, wie der Workflow die Aktivitäten ausführt, wo die Aktivitäten
ausgeführt werden und wie die Ergebnisse an den Workflow-Worker zurückgegeben werden.

HelloWorldWorkflow Workflow-Worker

Ein Amazon SWF SWF-Workflow-Worker besteht aus drei grundlegenden Komponenten.

• Eine Workflow-Implementierung. Dies ist eine Klasse, die die Workflow-bezogenen Aufgaben
ausführt.

• Eine Activities-Client. Diese ist im Wesentlichen ein Proxy für die Aktivitätsklasse und wird von
einer Workflow-Implementierung verwendet, um Aktivitätsmethoden asynchron auszuführen.

• Eine WorkflowWorkerKlasse, die die Interaktion zwischen dem Workflow und Amazon SWF
verwaltet.

Dieser Abschnitt beschreibt die Workflow-Implementierung und den Activities-Client. Die
WorkflowWorker-Klasse wird später besprochen.

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 12

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework für Java Entwicklerhandbuch

HelloWorldWorkflow definiert die Workflow-Schnittstelle in GreeterWorkflow wie folgt:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {
 @Execute(version = "1.0")
 public void greet();
}

Diese Schnittstelle ist auch für eine Java-Anwendung nicht unbedingt erforderlich, AWS Flow
Framework für eine Java-Anwendung HelloWorld jedoch unerlässlich. Sie müssen zwei AWS Flow
Framework für Java-Anmerkungen @Workflow und @WorkflowRegistrationOptions für die Definition
der Workflow-Schnittstelle anwenden. Die Anmerkungen stellen Konfigurationsinformationen bereit
und weisen den Annotationsprozessor AWS Flow Framework für Java an, auf der Grundlage der
Schnittstelle eine Workflow-Client-Klasse zu generieren, wie später beschrieben wird.

@Workflowhat einen optionalen Parameter, DataConverter, der häufig mit seinem Standardwert
verwendet wird, der angibt NullDataConverter, dass er verwendet werden JsonDataConverter sollte.

@WorkflowRegistrationOptions hat außerdem eine Reihe von optionalen Parametern,
die zur Konfiguration des Workflow-Workers verwendet werden können. Hier legen wir
defaultExecutionStartToCloseTimeoutSeconds — was angibt, wie lange der Workflow
ausgeführt werden kann — auf 3600 Sekunden (1 Stunde) fest.

Die GreeterWorkflow Schnittstellendefinition unterscheidet sich HelloWorld in einem wichtigen
Punkt von der Anmerkung. @Execute Workflow-Schnittstellen legen die Methoden fest, die von
Anwendungen wie dem Workflow-Starter aufgerufen werden können. Sie sind auf eine Handvoll
Methoden mit jeweils einer bestimmten Rolle beschränkt. Das Framework spezifiziert keinen Namen
oder keine Parameterliste für Workflow-Schnittstellenmethoden. Sie verwenden eine Namens- und
Parameterliste, die für Ihren Workflow geeignet ist, und fügen eine AWS Flow Framework For-Java-
Anmerkung hinzu, um die Rolle der Methode zu identifizieren.

@Execute hat zwei Aufgaben:

• Es legt greet als Einstiegspunkt des Workflows fest (die Methode, die der Workflow-Starter
aufruft, um den Workflow zu starten). Im Allgemeinen kann ein Einstiegspunkt einen oder mehrere

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 13

AWS Flow Framework für Java Entwicklerhandbuch

Parameter entgegennehmen. Diese ermöglichen es dem Starter, den Workflow zu initialisieren.
Das aktuelle Beispiel erfordert jedoch keine Initialisierung.

• Es legt die Versionsnummer des Workflows fest, über die Sie verschiedene Generationen von
Workflow-Implementierungen nachverfolgen können. Um eine Workflow-Oberfläche zu ändern,
nachdem Sie sie bei Amazon SWF registriert haben, einschließlich der Änderung der Timeout-
Werte, müssen Sie eine neue Versionsnummer verwenden.

Informationen zu den anderen Methoden, die in eine Workflow-Schnittstelle eingebunden werden
können, finden Sie unter Workflow- und Aktivitäts-Verträge.

HelloWorldWorkflow implementiert den Workflow wie folgt: GreeterWorkflowImpl

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = operations.getGreeting(name);
 operations.say(greeting);
 }
}

Der Code ähnelt dem HelloWorld, weist jedoch zwei wichtige Unterschiede auf.

• GreeterWorkflowImpl erzeugt eine Instanz von GreeterActivitiesClientImpl (dem
Activities-Client) statt von GreeterActivitiesImpl, und führt Aktivitäten durch den Aufruf von
Methoden für das Client-Objekt aus.

• Der Name und Greeting-Aktivitäten geben Promise<String>-Objekte statt String-Objekte
zurück.

HelloWorld ist eine Java-Standardanwendung, die lokal als ein einziger Prozess ausgeführt
wird. GreeterWorkflowImpl Sie kann also die Workflow-Topologie implementieren, indem
sie einfach eine Instanz von erstelltGreeterActivitiesImpl, die Methoden der Reihe nach
aufruft und die Rückgabewerte von einer Aktivität an die nächste weitergibt. Bei einem Amazon
SWF SWF-Workflow wird die Aufgabe einer Aktivität immer noch von einer Aktivitätsmethode von
ausgeführtGreeterActivitiesImpl. Die Methode wird jedoch nicht notwendigerweise im selben

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 14

AWS Flow Framework für Java Entwicklerhandbuch

Prozess wie der Workflow ausgeführt. Sie wird möglicherweise nicht einmal auf demselben System
ausgeführt. Der Workflow muss die Aktivität außerdem asynchron ausführen. Diese Anforderungen
werfen folgende Probleme auf:

• Wie kann man eine Aktivitätsmethode ausführen, die in einem anderen Prozess oder sogar auf
einem anderen System ausgeführt wird?

• Wie kann man eine Aktivitätsmethode asynchron ausführen?

• Wie kann man die Übergabe- und Rückgabewerte von Aktivitäten verwaltet? Wenn der
Rückgabewert von Aktivität A beispielsweise an Aktivität B übergeben wird, müssen Sie
sicherstellen, dass Aktivität B nicht ausgeführt wird, bis Aktivität A abgeschlossen ist.

Sie können mit der vertrauten Java-Flusssteuerung in Kombination mit dem Activities-Client und
Promise<T> über den Kontrollfluss der Anwendung eine Vielzahl von Workflow-Topologien
implementieren.

Activities-Client

GreeterActivitiesClientImpl ist im Grunde ein Proxy für GreeterActivitiesImpl, der es
einer Workflow-Implementierung ermöglicht, die GreeterActivitiesImpl-Methoden asynchron
auszuführen.

Die Klassen GreeterActivitiesClient und GreeterActivitiesClientImpl werden
anhand der Angaben in den Annotionen Ihrer GreeterActivities-Klasse automatisch generiert.
Sie müssen diese nicht selbst implementieren.

Note

Eclipse generiert die Klassen, wenn Sie Ihr Projekt speichern. Sie können den generierten
Code im Unterverzeichnis .apt_generated Ihres Projektverzeichnisses einsehen.
Um Kompilierungsfehler in Ihrer GreeterWorkflowImpl-Klasse zu vermeiden, empfiehlt
es sich, das Verzeichnis .apt_generated auf der Registerkarte Order and Export
(Reihenfolge und Export) des Dialogfelds Java-Buildpfad nach ganz oben zu verschieben.

Ein Workflow-Worker führt eine Aktivität aus, indem er die entsprechende Client-Methode aufruft.
Die Methode arbeitet asynchron. Sie gibt sofort ein Promise<T>-Objekt zurück, wobei T der
Rückgabetyp der Aktivität ist. Das zurückgegebene Promise<T>-Objekt ist im Grunde ein Platzhalter
für den Wert, den die Aktivitätsmethode zurückgeben kann.

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 15

AWS Flow Framework für Java Entwicklerhandbuch

• Bei der Rückkehr aus der Activities-Client-Methode befindet sich das Promise<T>-Objekt
zunächst im Status Unready. Dies bedeutet, dass das Objekt noch keinen gültigen Rückgabewert
darstellt.

• Wenn die entsprechende Aktivitätsmethode ihre Aufgabe abschließt und die Ausführung
zurückgibt, weist das Framework dem Promise<T>-Objekt den Rückgabewert zu und versetzt es
in den Zustand Ready.

Promise <T> Type

Der Hauptzweck von Promise<T>-Objekten ist die Verwaltung des Datenflusses zwischen
asynchronen Komponenten und der Steuerung ihrer Ausführung. Ihre Anwendung muss
die Synchronisation nicht explizit verwalten oder von Mechanismen wie Timer nutzen, um
sicherzustellen, dass asynchrone Komponenten nicht vorzeitig ausgeführt werden. Wenn Sie eine
Activity-Client-Methode aufrufen, gibt sie die Kontrolle sofort zurück. Das Framework verschiebt die
Ausführung der entsprechenden Aktivitätsmethode, bis alle übergebenen Promise<T>-Objekte
bereit sind und gültige Daten enthalten.

Aus der Sicht von GreeterWorkflowImpl geben alle drei Aktivity-Client-Methoden die Kontrolle
sofort zurück. Aus Sicht von GreeterActivitiesImpl ruft das Framework getGreeting erst auf,
wenn name abgeschlossen ist. say wird erst aufgerufen, wenn getGreeting abgeschlossen ist.

Durch die Verwendung von Promise<T> zur Übergabe von Daten von einer Aktivität an die
nächste, stellt HelloWorldWorkflow nicht nur sicher, dass Aktivitätsmethoden keine ungültigen
Daten verwenden, sondern steuert auch, wann die Aktivitäten ausgeführt werden und definiert die
Workflow-Topologie. Um den Promise<T>-Rückgabewert jeder Aktivität an die nächste Aktivität
zu übergeben, müssen die Aktivitäten nacheinander ausgeführt werden. Dies definiert die zuvor
beschriebene lineare Topologie. Mit AWS Flow Framework for Java müssen Sie keinen speziellen
Modellierungscode verwenden, um selbst komplexe Topologien zu definieren, sondern nur die
standardmäßige Java-Flusskontrolle undPromise<T>. Ein Beispiel für die Implementierung einer
einfachen parallelen Topologie finden Sie unter HelloWorldWorkflowParallelAktivitäten Arbeiter.

Note

Wenn eine Aktivitätsmethode wie say keinen Wert zurückgibt, gibt die entsprechende Client-
Methode ein Promise<Void>-Objekt zurück. Das Objekt repräsentiert keine Daten. Es hat
zunächst den Status "Unready". Es ist erst dann bereit, wenn die Aktivität abgeschlossen ist.
Sie können ein Promise<Void>-Objekt an andere Activity-Client-Methoden übergeben. So

HelloWorldWorkflow Workflow-Worker API-Version 2021-04-28 16

AWS Flow Framework für Java Entwicklerhandbuch

können Sie sicherzustellen, dass diese die Ausführung bis zum Abschluss der ursprünglichen
Aktivität verschieben.

Promise<T> ermöglicht es einer Workflow-Implementierung, die Activity-Client-Methoden und
deren Rückgabewerte ähnlich wie bei synchronen Methoden zu verwenden. Sie müssen allerdings
beim Zugriff auf den Wert eines Promise<T>-Objekts vorsichtig sein. Im Gegensatz zum Java-
Typ Future<T> übernimmt das Framework und nicht die Anwendung die Synchronisation für
Promise<T>. Wenn Sie Promise<T>.get aufrufen und das Objekt nicht bereit ist, löst get eine
Ausnahme aus. Beachten Sie, dass HelloWorldWorkflow nie direkt auf ein Promise<T>-Objekt
zugreift. Es übergibt die Objekte einfach von einer Aktivität zur nächsten. Wenn ein Objekt bereit ist,
extrahiert das Framework den Wert und übergibt ihn als Standardtyp an die Aktivitätsmethode.

Auf Promise<T>-Objekte sollte nur über asynchronen Code zugegriffen werden, wobei
das Framework gewährleistet, dass das Objekt bereit ist und einen gültigen Wert darstellt.
HelloWorldWorkflow löst dieses Problem, indem Promise<T>-Objekte nur an Methoden
des Activities-Clients übergeben werden. Sie können in Ihrer Workflow-Implementierung auf
den Wert eines Promise<T>-Objekts zugreifen, indem Sie das Objekt an eine asynchrone
Workflow-Methode übergeben, die sich wie eine Aktivität verhält. Ein Beispiel finden Sie unter
HelloWorldWorkflowAsyncBewerbung.

HelloWorldWorkflow Implementierung von Arbeitsabläufen und Aktivitäten

Den Implementierungen von Workflows und Aktivitäten sind Worker-Klassen zugeordnet,
ActivityWorkerund WorkflowWorker. Sie kümmern sich um die Kommunikation zwischen Amazon
SWF und den Aktivitäten und Workflow-Implementierungen, indem sie die entsprechende Amazon
SWF SWF-Aufgabenliste für Aufgaben abrufen, die entsprechende Methode für jede Aufgabe
ausführen und den Datenfluss verwalten. Details hierzu finden Sie unter AWS Flow Framework
Grundbegriffe: Anwendungsstruktur

Um die Aktivitäts- und Workflow-Implementierungen mit den entsprechenden Worker-Objekten
zu verknüpfen, implementieren Sie eine oder mehrere Worker-Anwendungen. Diese haben die
folgenden Aufgaben:

• Registrieren Sie Workflows oder Aktivitäten bei Amazon SWF.

• Erstellen von Worker-Objekten und Zuordnen dieser Objekte zu den Workflow- oder Aktivitäts-
Worker-Implementierungen

• Weisen Sie die Worker-Objekte an, mit der Kommunikation mit Amazon SWF zu beginnen.

HelloWorldWorkflow Implementierung von Arbeitsabläufen und Aktivitäten API-Version 2021-04-28 17

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework für Java Entwicklerhandbuch

Wenn Sie den Workflow und die Aktivitäten als getrennte Prozesse ausführen möchten, müssen
Sie separate Workflow- und Aktivitäts-Worker-Hosts implementieren. Ein Beispiel finden Sie unter
HelloWorldWorkflowDistributed Bewerbung. HelloWorldWorkflowImplementiert der Einfachheit halber
einen einzelnen Worker-Host, der Aktivitäten und Workflow-Worker im selben Prozess ausführt, und
zwar wie folgt:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

GreeterWorkerhat kein HelloWorld Gegenstück, daher müssen Sie dem Projekt eine Java-Klasse
mit GreeterWorker dem Namen hinzufügen und den Beispielcode in diese Datei kopieren.

HelloWorldWorkflow Implementierung von Arbeitsabläufen und Aktivitäten API-Version 2021-04-28 18

AWS Flow Framework für Java Entwicklerhandbuch

Der erste Schritt besteht darin, ein AmazonSimpleWorkflowClientObjekt zu erstellen und zu
konfigurieren, das die zugrunde liegenden Amazon SWF-Servicemethoden aufruft. Hierzu geht
GreeterWorker folgendermaßen vor:

1. Erstellt ein ClientConfigurationObjekt und gibt ein Socket-Timeout von 70 Sekunden an. Dieser
Wert gibt an, wie lange auf die Übertragung der Daten über eine bestehende offene Verbindung
gewartet wird, bevor der Socket geschlossen wird.

2. Erstellt ein AWSCredentialsBasic-Objekt zur Identifizierung des AWS Kontos und übergibt die
Kontoschlüssel an den Konstruktor. Zur Vereinfachung und um diese nicht als Klartext im Code zu
hinterlegen, werden die Schlüssel als Umgebungsvariablen gespeichert.

3. Erstellt ein AmazonSimpleWorkflowClientObjekt zur Darstellung des Workflows und übergibt die
ClientConfiguration Objekte BasicAWSCredentials und an den Konstruktor.

4. Legt die Service-Endpunkt-URL des Client-Objekts fest. Amazon SWF ist derzeit in allen AWS
Regionen verfügbar.

Der Einfachheit halber definiert GreeterWorker zwei String-Konstanten.

• domainist der Amazon SWF-Domainname des Workflows, den Sie bei der Einrichtung Ihres
Amazon SWF SWF-Kontos erstellt haben. HelloWorldWorkflowgeht davon aus, dass Sie den
Workflow in der Domäne "helloWorldWalkthrough" ausführen.

• taskListToPollist der Name der Aufgabenlisten, die Amazon SWF verwendet, um die
Kommunikation zwischen den Workflow- und Aktivitätsmitarbeitern zu verwalten. Sie können
den Namen auf eine beliebige beliebige Zeichenfolge setzen. HelloWorldWorkflow verwendet
"HelloWorldList" sowohl für Workflow- als auch für Aktivitätsaufgabenlisten. Hinter den Kulissen
werden die Namen in verschiedene Namespaces umgesetzt. Daher bleiben beide Aufgabenlisten
unterscheidbar.

GreeterWorkerverwendet die Zeichenkettenkonstanten und das
AmazonSimpleWorkflowClientObjekt, um Worker-Objekte zu erstellen, die die Interaktion zwischen
den Aktivitäten und Worker-Implementierungen und Amazon SWF verwalten. Insbesondere
übernehmen die Worker-Objekte die Aufgabe, die entsprechende Aufgabenliste für Aufgaben
abzufragen.

GreeterWorker erstellt ein ActivityWorker-Objekt und konfiguriert es so, dass es
GreeterActivitiesImpl behandelt, indem es eine neue Klasseninstance hinzufügt.

HelloWorldWorkflow Implementierung von Arbeitsabläufen und Aktivitäten API-Version 2021-04-28 19

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/BasicAWSCredentials.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework für Java Entwicklerhandbuch

GreeterWorker ruft dann die start-Methode des ActivityWorker-Objekts auf, die das Objekt
anweist, mit der Abfrage der angegebenen Aktivitätsaufgabenliste zu beginnen.

GreeterWorker erzeugt ein WorkflowWorker-Objekt und konfiguriert es über das Hinzufügen des
Klassen-Dateinamens GreeterWorkflowImpl.class so, dass es GreeterWorkflowImpl nutzt.
Es ruft dann die WorkflowWorker-Methode des start-Objekts auf, die das Objekt anweist, die
angegebene Workflow-Aufgabenliste abzufragen.

Sie können GreeterWorker nun erfolgreich ausführen. Es registriert den Workflow und die
Aktivitäten bei Amazon SWF und startet, dass die Worker-Objekte ihre jeweiligen Aufgabenlisten
abfragen. Um dies zu überprüfen, starten GreeterWorker Sie die Amazon SWF SWF-Konsole,
rufen Sie sie auf und wählen Sie eine Domain helloWorldWalkthrough aus der Liste der
Domains aus. Wenn Sie Workflow Types (Workflow-Typen) im Bereich Navigation auswählen, sollten
Sie GreeterWorkflow.greet sehen:

HelloWorldWorkflow Implementierung von Arbeitsabläufen und Aktivitäten API-Version 2021-04-28 20

AWS Flow Framework für Java Entwicklerhandbuch

Wenn Sie Aktivity Types (Aktivitätstypen) auswählen, werden die GreeterActivities-Methoden
angezeigt:

Wenn Sie Workflow Executions (Workflow-Ausführungen) auswählen, sehen Sie jedoch keine aktiven
Ausführungen. Die Workflow- und Aktivitäts-Worker suchen zwar nach Aufgaben, aber wir haben
noch keine Workflow-Ausführung gestartet.

HelloWorldWorkflow Vorspeise

Als letztes muss ein Workflow-Starter implementiert werden – eine Anwendung, die die Workflow-
Ausführung startet. Der Ausführungsstatus wird von Amazon SWF gespeichert, sodass Sie dessen
Verlauf und Ausführungsstatus einsehen können. HelloWorldWorkflow implementiert einen Workflow-
Starter, indem die GreeterMain Klasse wie folgt geändert wird:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;

HelloWorldWorkflow Vorspeise API-Version 2021-04-28 21

AWS Flow Framework für Java Entwicklerhandbuch

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;

public class GreeterMain {

 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";

 GreeterWorkflowClientExternalFactory factory = new
 GreeterWorkflowClientExternalFactoryImpl(service, domain);
 GreeterWorkflowClientExternal greeter = factory.getClient("someID");
 greeter.greet();
 }
}

GreeterMain erzeugt ein AmazonSimpleWorkflowClient-Objekt mit dem gleichen Code wie
GreeterWorker. Es stellt dann ein GreeterWorkflowClientExternal-Objekt, das als Proxy für
den Workflow fungiert (ähnlich wie der in GreeterWorkflowClientImpl angelegte Activity-Client
als Proxy für die Aktivitätsmethoden agiert). Anstatt ein Workflow-Client-Objekt mit new anzulegen,
gehen Sie folgendermaßen vor:

1. Erstellen Sie ein externes Client-Factory-Objekt und übergeben Sie das
AmazonSimpleWorkflowClient Objekt und den Amazon SWF-Domänennamen an den
Konstruktor. Das Client-Factory-Objekt wird vom Annotationsprozessor des Frameworks erstellt,
der den Objektnamen erstellt, indem einfach "ClientExternalFactoryImpl" an den Namen der
Workflow-Schnittstelle angehängt wird.

2. Erstellen Sie ein externes Client-Objekt, indem Sie die getClient Methode des Factory-Objekts
aufrufen, die den Objektnamen erstellt, indem "ClientExternal" an den Namen der Workflow-
Schnittstelle angehängt wird. Sie können optional getClient eine Zeichenfolge übergeben, die

HelloWorldWorkflow Vorspeise API-Version 2021-04-28 22

AWS Flow Framework für Java Entwicklerhandbuch

Amazon SWF verwendet, um diese Instanz des Workflows zu identifizieren. Andernfalls stellt
Amazon SWF eine Workflow-Instanz mithilfe einer generierten GUID dar.

Der von der Factory zurückgegebene Client erstellt nur Workflows, die mit der Zeichenfolge benannt
sind, die an die Methode getClient übergeben wurde (der von der Factory zurückgegebene Client hat
bereits den Status in Amazon SWF). Um einen Workflow mit einer anderen ID auszuführen, müssen
Sie zurück zur Factory wechseln und einen neuen Client mit der anderen ID anlegen.

Der Workflow-Client stellt eine greet-Methode zur Verfügung, die GreeterMain aufruft, um den
Workflow zu starten (da greet() die mit der @Execute-Annotation angegebene Methode war).

Note

Der Annotationsprozessor erzeugt außerdem ein internes Client-Factory-Objekt, das zur
Erstellung von untergeordneten Workflows verwendet wird. Details hierzu finden Sie unter
Untergeordnete Workflow-Ausführungen.

Beenden Sie GreeterWorker (falls noch ausgeführt). Starten Sie GreeterMain. Sie sollten jetzt
SomeID in der Liste der aktiven Workflow-Ausführungen der Amazon SWF SWF-Konsole sehen:.

HelloWorldWorkflow Vorspeise API-Version 2021-04-28 23

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowClientFactoryExternal.html#getClient(java.lang.String)

AWS Flow Framework für Java Entwicklerhandbuch

Wenn Sie someID und die Registerkarte Events (Ereignisse) auswählen, werden die Ereignisse
angezeigt:

Note

Wenn Sie GreeterWorker bereits früher gestartet haben und es noch ausgeführt wird,
sehen Sie eine längere Ereignisliste. Die Gründe hierfür werden gleich besprochen. Halten
Sie GreeterWorker an und versuchen Sie erneut, GreaterMain zu starten.

Die Registerkarte Events (Ereignisse) zeigt nur zwei Ereignisse an:

• WorkflowExecutionStarted zeigt an, dass der Workflow mit der Ausführung begonnen hat.

• DecisionTaskScheduledgibt an, dass Amazon SWF die erste Entscheidungsaufgabe in die
Warteschlange gestellt hat.

Der Grund dafür, dass der Workflow bei der ersten Entscheidungsaufgabe blockiert wird, ist, dass der
Workflow auf zwei Anwendungen verteilt ist, GreeterMain und GreeterWorker. GreeterMain
die Workflow-Ausführung gestartet haben, aber GreeterWorker nicht läuft, sodass die Worker
die Listen nicht abfragen und Aufgaben ausführen. Sie können beide Anwendungen unabhängig
voneinander ausführen. Sie benötigen jedoch beide, damit die Workflow-Ausführung über die erste
Entscheidungsaufgabe hinausgeht. Wenn Sie nun GreeterWorker ausführen, beginnen die
Workflow- und Aktivitäts-Worker mit dem Abrufen und die verschiedenen Aufgaben werden schnell
abgeschlossen. Wenn Sie nun die Registerkarte Events prüfen, wird die erste Ereignisgruppe
angezeigt.

HelloWorldWorkflow Vorspeise API-Version 2021-04-28 24

AWS Flow Framework für Java Entwicklerhandbuch

Sie können einzelne Ereignisse auswählen, um weitere Informationen zu erhalten. Wenn Sie mit der
Suche fertig sind, sollte der Workflow „Hello World!“ gedruckt haben auf deine Konsole.

Nach dem Abschluss des Workflows erscheint er nicht mehr in der Liste der aktiven Ausführungen.
Wenn Sie dies überprüfen möchten, wählen Sie die Schaltfläche für den Ausführungsstatus
Closed (Geschlossen) und dann List Executions (Ausführungen auflisten) aus. Es werden alle
abgeschlossenen Workflow-Instances in der angegebenen Domäne (helloWorldWalkthrough)
angezeigt (die die beim Anlegen der Domäne angegebene Aufbewahrungszeit nicht überschritten
haben).

HelloWorldWorkflow Vorspeise API-Version 2021-04-28 25

AWS Flow Framework für Java Entwicklerhandbuch

Beachten Sie, dass jede Workflow-Instance einen eindeutigen Run ID-Wert hat. Sie können dieselbe
Workflow-ID für verschiedene Workflow-Instanzen verwenden, jedoch jeweils nur für eine aktive
Ausführung.

HelloWorldWorkflowAsyncBewerbung

Gelegentlich ist es vorteilhaft, einen Workflow bestimmte Aufgaben lokal durchführt zu lassen, statt
eine Aktivität zu verwenden. Jedoch umfassen Workflow-Aufgaben häufig die Verarbeitung der
Werte, die von Promise<T>-Objekten repräsentiert werden. Wenn Sie ein Promise<T>-Objekt an
eine synchrone Workflow-Methode weiterleiten, wird die Methode sofort ausgeführt, aber sie kann
nicht auf den Wert des Promise<T>-Objekts zugreifen, bevor das Objekt bereit ist. Sie könnten
Promise<T>.isReady abfragen, bis es true zurückgibt, dies ist jedoch ineffizient und die Methode
könnte lange blockiert sein. Eine besserer Ansatz ist das Verwenden einer asynchronen Methode.

Eine asynchrone Methode wird ähnlich wie eine Standardmethode implementiert — oft als Mitglied
der Workflow-Implementierungsklasse — und wird im Kontext der Workflow-Implementierung

HelloWorldWorkflowAsyncBewerbung API-Version 2021-04-28 26

AWS Flow Framework für Java Entwicklerhandbuch

ausgeführt. Sie legen sie als asynchrone Methode fest, indem Sie eine @Asynchronous-Anmerkung
anwenden, wodurch das Framework angewiesen wird, sie ähnlich wie eine Aktivität zu behandeln.

• Wenn eine Workflow-Implementierung eine asynchrone Methode aufruft, wird sie sofort
zurückgegeben. Asynchrone Methoden geben in der Regel ein Promise<T>-Objekt zurück, das
verfügbar wird, wenn die Methode abgeschlossen ist.

• Wenn Sie einer asynchronen Methode eine oder mehrere Promise<T>-Objekte übergeben,
verschiebt sie die Ausführung, bis alle Eingabeobjekte bereit sind. Eine asynchrone Methode kann
daher auf ihre Promise<T>-Werte der Eingabe zugreifen, ohne eine Ausnahme zu riskieren.

Note

Aufgrund der Art und Weise, wie die AWS Flow Framework für Java den Workflow ausführt,
werden asynchrone Methoden in der Regel mehrfach ausgeführt. Sie sollten sie daher
nur für schnelle Aufgaben mit geringem Overhead verwenden. Aktivitäten sollten Sie zur
Durchführung zeitintensiver Aufgaben wie großen Berechnungen verwenden. Details hierzu
finden Sie unter AWS Flow Framework Grundbegriffe: Verteilte Ausführung.

Dieses Thema ist eine exemplarische Vorgehensweise für eine modifizierte Version
HelloWorldWorkflowAsync, HelloWorldWorkflow die eine der Aktivitäten durch eine asynchrone
Methode ersetzt. Um die Anwendung zu implementieren, erstellen Sie eine Kopie von
HelloWorld. HelloWorldWorkflow packe es in dein Projektverzeichnis und nenne es HelloWorld.
HelloWorldWorkflowAsync.

Note

Dieses Thema baut auf den Konzepten und Dateien auf, die in den Themen HelloWorld
Bewerbung und HelloWorldWorkflow Bewerbung vorgestellt werden. Machen Sie sich mit den
Dateien und vorgestellten Konzepten finden Sie in diesen Themen, bevor Sie fortfahren.

In den folgenden Abschnitten wird beschrieben, wie der ursprüngliche HelloWorldWorkflow Code
geändert wird, um eine asynchrone Methode zu verwenden.

HelloWorldWorkflowAsyncBewerbung API-Version 2021-04-28 27

AWS Flow Framework für Java Entwicklerhandbuch

HelloWorldWorkflowAsync Implementierung der Aktivitäten

HelloWorldWorkflowAsync implementiert seine Worker-Schnittstelle für Aktivitäten wie folgt:
GreeterActivities

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="2.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public void say(String what);
}

Diese Schnittstelle ähnelt der von verwendeten HelloWorldWorkflow, mit den folgenden Ausnahmen:

• Sie lässt die getGreeting-Aktivität weg. Diese Aufgabe wird jetzt von einer asynchronen
Methode verarbeitet.

• Die Versionsnummer wird auf 2.0. Nachdem Sie eine Aktivitätsschnittstelle bei Amazon SWF
registriert haben, können Sie sie nur ändern, wenn Sie die Versionsnummer ändern.

Die übrigen Implementierungen der Aktivitätsmethoden sind identisch mit. HelloWorldWorkflow
Löschen Sie einfach getGreeting aus GreeterActivitiesImpl.

HelloWorldWorkflowAsync Workflow-Implementierung

HelloWorldWorkflowAsync definiert die Workflow-Schnittstelle wie folgt:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

HelloWorldWorkflowAsync Implementierung der Aktivitäten API-Version 2021-04-28 28

AWS Flow Framework für Java Entwicklerhandbuch

 @Execute(version = "2.0")
 public void greet();
}

Die Schnittstelle ist bis auf HelloWorldWorkflow eine neue Versionsnummer identisch mit. Wenn Sie
einen registrierten Workflow ändern möchten, müssen Sie wie bei Aktivitäten seine Version ändern.

HelloWorldWorkflowAsync implementiert den Workflow wie folgt:

import com.amazonaws.services.simpleworkflow.flow.annotations.Asynchronous;
import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 @Override
 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = getGreeting(name);
 operations.say(greeting);
 }

 @Asynchronous
 private Promise<String> getGreeting(Promise<String> name) {
 String returnString = "Hello " + name.get() + "!";
 return Promise.asPromise(returnString);
 }
}

HelloWorldWorkflowAsync ersetzt die getGreeting Aktivität durch eine getGreeting asynchrone
Methode, aber die greet Methode funktioniert fast genauso:

1. Führen Sie die getName-Aktivität aus, die sofort ein Promise<String>-Objekt, name,
zurückgibt, das den Namen repräsentiert.

2. Rufen Sie die asynchrone Methode getGreeting auf und übergeben Sie ihr das name-Objekt.
getGreeting gibt umgehend ein Promise<String>-Objekt, greeting, zurück, das die
Begrüßung repräsentiert.

3. Führen Sie die say-Aktivität aus und übergeben Sie ihr das greeting-Objekt.

4. Wenn getName abgeschlossen wird, ist name einsatzbereit und getGreeting verwendet seinen
Wert zur Erstellung der Begrüßung.

HelloWorldWorkflowAsync Workflow-Implementierung API-Version 2021-04-28 29

AWS Flow Framework für Java Entwicklerhandbuch

5. Wenn getGreeting abgeschlossen wird, ist greeting einsatzbereit und say gibt die
Zeichenfolge in der Konsole aus.

Der Unterschied liegt darin, dass Greet (Gruß) nicht den Aktivitäten-Client aufruft, um eine
getGreeting-Aktivität auszuführen, sondern die asynchrone getGreeting-Methode. Das
Endergebnis ist dasselbe, aber die getGreeting-Methode funktioniert etwas anders als die
getGreeting-Aktivität.

• Der Workflow-Worker verwendet Aufrufsemantiken der Standardfunktion für die Ausführung von
getGreeting. Die asynchrone Ausführung der Aktivität wird jedoch von Amazon SWF vermittelt.

• getGreeting wird im Prozess der Workflow-Implementierung ausgeführt.

• getGreeting gibt ein Promise<String>-Objekt anstelle eines String-Objekts zurück.
Um den Zeichenfolgewert abzurufen, der sich im Besitz von Promise befindet, rufen Sie seine
get()-Methode auf. Da die Aktivität jedoch asynchron ausgeführt wird, ist ihr Rückgabewert
möglicherweise nicht sofort bereit. Es get() wird eine Ausnahme ausgelöst, bis der Rückgabewert
der asynchronen Methode verfügbar ist.

Weitere Informationen zur Funktionsweise von Promise finden Sie unter AWS Flow Framework
Grundbegriffe: Data Exchange zwischen Aktivitäten und Workflows.

getGreeting erstellt einen Rückgabewert, indem die Begrüßungszeichenfolge an die statische
Promise.asPromise-Methode übergeben wird. Diese Methode erstellt ein Promise<T>-Objekt
des entsprechenden Typs, legt den Wert fest und versetzt es in den betriebsbereiten Zustand.

HelloWorldWorkflowAsyncArbeitsablauf und Aktivitäten: Host und Starter

HelloWorldWorkflowAsync implementiert GreeterWorker als Hostklasse für die Workflow- und
Aktivitätsimplementierungen. Sie ist mit der HelloWorldWorkflow Implementierung identisch, mit
Ausnahme des taskListToPoll Namens, der auf "HelloWorldAsyncList" gesetzt ist.

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

HelloWorldWorkflowAsyncArbeitsablauf und Aktivitäten: Host und Starter API-Version 2021-04-28 30

AWS Flow Framework für Java Entwicklerhandbuch

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";
 String taskListToPoll = "HelloWorldAsyncList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

HelloWorldWorkflowAsync implementiert den Workflow-Starter inGreeterMain; er ist identisch mit
der HelloWorldWorkflow Implementierung.

Um den Workflow auszuführen, führen Sie GreeterWorker und ausGreeterMain, genau wie bei
HelloWorldWorkflow.

HelloWorldWorkflowDistributed Bewerbung

Mit HelloWorldWorkflow und HelloWorldWorkflowAsync vermittelt Amazon SWF die Interaktion
zwischen den Implementierungen des Workflows und der Aktivitäten, sie werden jedoch lokal als
ein einziger Prozess ausgeführt. GreeterMainbefindet sich in einem separaten Prozess, läuft aber
immer noch auf demselben System.

Ein wesentliches Merkmal von Amazon SWF ist die Unterstützung verteilter Anwendungen. Sie
könnten beispielsweise den Workflow-Worker auf einer EC2 Amazon-Instance, den Workflow-

HelloWorldWorkflowDistributed Bewerbung API-Version 2021-04-28 31

AWS Flow Framework für Java Entwicklerhandbuch

Starter auf einem Rechenzentrumscomputer und die Aktivitäten auf einem Client-Desktop-Computer
ausführen. Sie können sogar unterschiedliche Aktivitäten auf unterschiedlichen Systemen ausführen.

Die HelloWorldWorkflowDistributed Anwendung erstreckt sich HelloWorldWorkflowAsync auf die
Verteilung der Anwendung auf zwei Systeme und drei Prozesse.

• Der Workflow und der Workflow-Starter werden als getrennte Prozesse auf einem System
ausgeführt.

• Die Aktivitäten werden auf einem getrennten System ausgeführt.

Um die Anwendung zu implementieren, erstellen Sie eine Kopie von HelloWorld.
HelloWorldWorkflowAsync packe es in dein Projektverzeichnis und nenne es HelloWorld.
HelloWorldWorkflowDistributed. In den folgenden Abschnitten wird beschrieben, wie Sie den
HelloWorldWorkflowAsync Originalcode ändern, um die Anwendung auf zwei Systeme und drei
Prozesse zu verteilen.

Sie müssen den Workflow oder das Implementieren der Aktivitäten nicht ändern, um sie auf
getrennten Systemen auszuführen, auch nicht die Versionsnummern. Sie müssen GreeterMain
auch nicht ändern. Sie müssen lediglich den Aktivitäten- und Workflow-Host ändern.

Dabei HelloWorldWorkflowAsync dient eine einzige Anwendung als Host für den Workflow
und die Aktivität. Um den Workflow und das Implementieren der Aktivitäten auf getrennten
Systemen auszuführen, müssen Sie getrennte Anwendungen implementieren. GreeterWorker
Aus dem Projekt löschen und zwei neue Klassendateien hinzufügen, GreeterWorkflowWorker und
GreeterActivitiesWorker.

HelloWorldWorkflowDistributed implementiert seinen Aktivitäten-Host in GreeterActivitiesWorker wie
folgt:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

public class GreeterActivitiesWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

HelloWorldWorkflowDistributed Bewerbung API-Version 2021-04-28 32

AWS Flow Framework für Java Entwicklerhandbuch

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();
 }
}

HelloWorldWorkflowDistributed implementiert seinen Workflow-Host wie folgt:
GreeterWorkflowWorker

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorkflowWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

HelloWorldWorkflowDistributed Bewerbung API-Version 2021-04-28 33

AWS Flow Framework für Java Entwicklerhandbuch

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

Beachten Sie, dass GreeterActivitiesWorker nur GreeterWorker ohne den
WorkflowWorker-Code ist und GreeterWorkflowWorker nur GreeterWorker ohne den
ActivityWorker-Code ist.

So führen Sie den Workflow aus:

1. Erstellen Sie eine ausführbare JAR-Datei mit GreeterActivitiesWorker als Eingangspunkt.

2. Kopieren Sie die JAR-Datei aus Schritt 1 in ein anderes System, das jedes von Java
unterstütztes Betriebssystem ausführen kann.

3. Stellen Sie sicher, dass AWS Anmeldeinformationen mit Zugriff auf dieselbe Amazon SWF-
Domain auf dem anderen System verfügbar sind.

4. Führen Sie die JAR-Datei aus.

5. Verwenden Sie auf Ihrem Entwicklungssystem Eclipse zum Ausführen von
GreeterWorkflowWorker und GreeterMain.

Abgesehen von der Tatsache, dass die Aktivitäten auf einem anderen System als dem Workflow-
Worker und dem Workflow-Starter ausgeführt werden, funktioniert der Workflow genauso wie
HelloWorldAsync. Allerdings, weil das println Aufrufen „Hello World!“ ausgibt Wenn sich die say
Aktivität auf der Konsole befindet, erscheint die Ausgabe auf dem System, auf dem der Activities
Worker ausgeführt wird.

HelloWorldWorkflowParallelBewerbung

In den Vorgängerversionen von Hello World! wird eine lineare Workflow-Topologie verwendet.
Amazon SWF ist jedoch nicht auf lineare Topologien beschränkt. Die HelloWorldWorkflowParallel
Anwendung ist eine modifizierte Version davon HelloWorldWorkflow , die eine parallel Topologie
verwendet, wie in der folgenden Abbildung dargestellt.

HelloWorldWorkflowParallelBewerbung API-Version 2021-04-28 34

AWS Flow Framework für Java Entwicklerhandbuch

Mit HelloWorldWorkflowParallel, getName und parallel getGreeting laufen und jeweils einen
Teil der Begrüßung zurückgeben. sayführt dann die beiden Zeichenketten zu einer Begrüßung
zusammen und druckt sie auf der Konsole aus.

Um die Anwendung zu implementieren, erstellen Sie eine Kopie von HelloWorld. HelloWorldWorkflow
packe es in dein Projektverzeichnis und nenne es HelloWorld. HelloWorldWorkflowParallel. In den
folgenden Abschnitten wird beschrieben, wie Sie den HelloWorldWorkflow Originalcode so ändern,
dass er getGreeting parallel ausgeführt getName wird.

HelloWorldWorkflowParallelAktivitäten Arbeiter

Die HelloWorldWorkflowParallel Aktivitätsschnittstelle ist in implementiertGreeterActivities, wie
im folgenden Beispiel gezeigt.

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="5.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public String getGreeting();
 public void say(String greeting, String name);
}

Die Schnittstelle ist ähnlich wie HelloWorldWorkflow, mit den folgenden Ausnahmen:

• getGreeting übernimmt keine Eingabe. Sie gibt nur eine Begrüßungszeichenfolge zurück.

• say übernimmt zwei Eingabezeichenfolgen, die Begrüßung und den Namen.

• Die Schnittstelle hat eine neue Versionsnummer. Diese ist bei jeder Änderung an der registrierten
Schnittstelle erforderlich.

HelloWorldWorkflowParallelAktivitäten Arbeiter API-Version 2021-04-28 35

AWS Flow Framework für Java Entwicklerhandbuch

HelloWorldWorkflowParallel implementiert die Aktivitäten wie folgt: GreeterActivitiesImpl

public class GreeterActivitiesImpl implements GreeterActivities {

 @Override
 public String getName() {
 return "World!";
 }

 @Override
 public String getGreeting() {
 return "Hello ";
 }

 @Override
 public void say(String greeting, String name) {
 System.out.println(greeting + name);
 }
}

getName und getGreeting geben nun einfach die Hälfte der Begrüßungszeichenkette zurück. say
verkettet die beiden Teile, um die vollständige Zeichenfolge zu erzeugen, und gibt sie auf der Konsole
aus.

HelloWorldWorkflowParallelWorkflow-Mitarbeiter

Die HelloWorldWorkflowParallel Workflow-Schnittstelle ist wie folgt implementiert:
GreeterWorkflow

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

 @Execute(version = "5.0")
 public void greet();
}

HelloWorldWorkflowParallelWorkflow-Mitarbeiter API-Version 2021-04-28 36

AWS Flow Framework für Java Entwicklerhandbuch

Die Klasse ist identisch mit der HelloWorldWorkflow Version, mit der Ausnahme, dass die
Versionsnummer so geändert wurde, dass sie dem Activities Worker entspricht.

Der Workflow wird in GreeterWorkflowImpl wie folgt implementiert:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = operations.getGreeting();
 operations.say(greeting, name);
 }
}

Auf den ersten Blick sieht diese Implementierung sehr ähnlich aus wie die drei Aktivitäten
HelloWorldWorkflow, die die Client-Methoden nacheinander ausführen. die Aktivitäten jedoch nicht.

• HelloWorldWorkflow übergeben name angetGreeting. Da name ein Promise<T>-Objekt ist,
verschiebt getGreeting die Ausführung der Aktivität, bis getName abgeschlossen ist. Daher
werden die beiden Aktivitäten nacheinander ausgeführt.

• HelloWorldWorkflowParallel übergibt keine Eingabe getName odergetGreeting. Keine der
Methoden verschiebt die Ausführung und die zugehörigen Aktivitätsmethoden werden sofort
parallel ausgeführt.

Die Aktivität say übernimmt sowohl greeting als auch name als Eingabeparameter. Da es sich
dabei um Promise<T>-Objekte handelt, verschiebt say die Ausführung, bis beide Aktivitäten
abgeschlossen sind, erstellt dann die Begrüßung und gibt sie aus.

Beachten Sie, dass HelloWorldWorkflowParallel kein spezieller Modellierungscode verwendet wird,
um die Workflow-Topologie zu definieren. Dies geschieht implizit, indem es die standardmäßige
Java-Ablaufsteuerung verwendet und die Eigenschaften von Promise<T> Objekten ausnutzt.
AWS Flow Framework für Java-Anwendungen können selbst komplexe Topologien einfach
durch die Verwendung von Promise<T> Objekten in Verbindung mit herkömmlichen Java-
Kontrollflusskonstrukten implementiert werden.

HelloWorldWorkflowParallelWorkflow-Mitarbeiter API-Version 2021-04-28 37

AWS Flow Framework für Java Entwicklerhandbuch

HelloWorldWorkflowParallel Arbeitsablauf und Aktivitäten: Host und Starter

HelloWorldWorkflowParallel implementiert GreeterWorker als Hostklasse für die Workflow- und
Aktivitätsimplementierungen. Sie ist mit der HelloWorldWorkflow Implementierung identisch, mit
Ausnahme des taskListToPoll Namens, der auf "HelloWorldParallelList" gesetzt ist.

HelloWorldWorkflowParallelimplementiert den GreeterMain Workflow-Starter in und ist mit
der HelloWorldWorkflow Implementierung identisch.

Führen Sie zur Ausführung des Workflows GreeterWorker und GreeterMain genau wie bei
HelloWorldWorkflow aus.

HelloWorldWorkflowParallel Arbeitsablauf und Aktivitäten: Host und Starter API-Version 2021-04-28 38

AWS Flow Framework für Java Entwicklerhandbuch

Verständnis AWS Flow Framework für Java

The AWS Flow Framework for Java arbeitet mit Amazon SWF zusammen, um die Erstellung
skalierbarer und fehlertoleranter Anwendungen für asynchrone Aufgaben zu vereinfachen, die lange
dauern, remote oder beides ausführen können. Das „Hallo Welt!“ In den Beispielen Was ist das AWS
Flow Framework für Java? wurden die Grundlagen der Verwendung von AWS Flow Framework
zur Implementierung grundlegender Workflow-Anwendungen vorgestellt. Dieser Abschnitt enthält
grundlegende Informationen zur Funktionsweise von AWS Flow Framework Anwendungen. Der erste
Abschnitt fasst die grundlegende Struktur einer AWS Flow Framework Anwendung zusammen, und
die übrigen Abschnitte enthalten weitere Einzelheiten zur Funktionsweise von AWS Flow Framework
Anwendungen.

Themen

• AWS Flow Framework Grundbegriffe: Anwendungsstruktur

• AWS Flow Framework Grundkonzepte: Zuverlässige Ausführung

• AWS Flow Framework Grundbegriffe: Verteilte Ausführung

• AWS Flow Framework Grundbegriffe: Aufgabenlisten und Aufgabenausführung

• AWS Flow Framework Grundkonzepte: Skalierbare Anwendungen

• AWS Flow Framework Grundbegriffe: Data Exchange zwischen Aktivitäten und Workflows

• AWS Flow Framework Grundbegriffe: Data Exchange zwischen Anwendungen und Workflow-
Ausführungen

• Amazon SWF-Timeout-Typen

AWS Flow Framework Grundbegriffe: Anwendungsstruktur

Konzeptionell besteht eine AWS Flow Framework Anwendung aus drei grundlegenden
Komponenten: Workflow-Startern, Workflow-Workern und Activity-Workern. Eine oder mehrere
Hostanwendungen sind dafür verantwortlich, die Worker (Workflow und Aktivität) bei Amazon SWF
zu registrieren, die Worker zu starten und die Bereinigung durchzuführen. Die Worker setzen die
Mechaniken der Workflow-Ausführung um und können auf verschiedenen Hosts implementiert
werden.

Dieses Diagramm stellt eine grundlegende AWS Flow Framework Anwendung dar:

Anwendungsstruktur API-Version 2021-04-28 39

AWS Flow Framework für Java Entwicklerhandbuch

Note

Die Implementierung dieser Komponenten in drei getrennten Anwendungen ist konzeptionell
praktisch. Sie können jedoch Anwendungen erstellen, um diese Funktionalität auf
verschiedene Weise zu implementieren. Es ist zum Beispiel möglich, eine einzelne
Host-Anwendung für die Aktivitäts- und Workflow-Worker oder getrennte Aktivitäts- und
Workflow-Hosts zu verwenden. Sie können auch mehrere Aktivitäts-Worker jeweils eine
unterschiedliche Reihe von Aktivitäten auf getrennten Hosts ausführen lassen und Ähnliches.

Die drei AWS Flow Framework Komponenten interagieren indirekt, indem sie HTTP-Anfragen an
Amazon SWF senden, das die Anfragen verwaltet. Amazon SWF macht Folgendes:

• Er verwaltet eine oder mehrere Entscheidungsaufgabenlisten, mit denen die nächsten Schritte
festgelegt werden, die ein Workflow-Worker ausführen soll.

Anwendungsstruktur API-Version 2021-04-28 40

AWS Flow Framework für Java Entwicklerhandbuch

• Er verwaltet eine oder mehrere Aktivitätsaufgabenlisten, mit denen die nächsten Aufgaben
festgelegt werden, die ein Aktivitäts-Worker ausführen soll.

• Verwaltet einen detaillierten step-by-step Verlauf der Ausführung des Workflows.

Mit dem AWS Flow Framework muss sich Ihr Anwendungscode nicht direkt mit vielen der in der
Abbildung gezeigten Details befassen, z. B. dem Senden von HTTP-Anfragen an Amazon SWF. Sie
rufen einfach AWS Flow Framework Methoden auf und das Framework kümmert sich im Hintergrund
um die Details.

Rolle des Aktivitäts-Workers

Der Aktivitäts-Worker führt die verschiedenen Aufgaben durch, die der Workflow bewerkstelligen
muss. Er besteht aus Folgendem:

• Der Aktivitätsimplementierung. Diese enthält eine Reihe von Aktivitätsmethoden, die bestimmte
Aufgaben für den Workflow ausführen.

• Ein ActivityWorkerObjekt, das lange HTTP-Abfrageanfragen verwendet, um Amazon SWF
nach auszuführenden Aktivitätsaufgaben abzufragen. Wenn eine Aufgabe benötigt wird,
beantwortet Amazon SWF die Anfrage, indem es die für die Ausführung der Aufgabe erforderlichen
Informationen sendet. Das ActivityWorkerObjekt ruft dann die entsprechende Aktivitätsmethode auf
und gibt die Ergebnisse an Amazon SWF zurück.

Rolle des Workflow-Workers

Der Workflow-Workers orchestriert die Ausführung der verschiedenen Aktivitäten, verwaltet den
Datenfluss und verarbeitet fehlgeschlagene Aktivitäten. Er besteht aus Folgendem:

• Der Workflow-Implementierung. Diese enthält die Logik zur Aktivitätsorchestrierung, verarbeitet
fehlgeschlagene Aktivitäten und so weiter.

• Einem Aktivitäts-Client. Dieser fungiert als Proxy für den Aktivitäts-Worker und ermöglicht dem
Workflow-Worker, eine asynchrone Ausführung von Aktivitäten zu planen.

• Ein WorkflowWorkerObjekt, das lange HTTP-Abfrageanfragen verwendet, um Amazon SWF
nach Entscheidungsaufgaben abzufragen. Wenn die Workflow-Aufgabenliste Aufgaben enthält,
beantwortet Amazon SWF die Anfrage, indem es die Informationen zurücksendet, die für die
Ausführung der Aufgabe erforderlich sind. Das Framework führt dann den Workflow zur Ausführung
der Aufgabe aus und gibt die Ergebnisse an Amazon SWF zurück.

Rolle des Aktivitäts-Workers API-Version 2021-04-28 41

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework für Java Entwicklerhandbuch

Rolle des Workflow-Starters

Der Workflow-Starter startet eine Workflow-Instance, auch Workflow-Ausführung genannt. Er kann
während der Ausführung mit einer Instance interagieren, um zusätzliche Daten an den Workflow-
Worker zu übergeben oder den aktuellen Workflow-Status abzufragen.

Der Workflow-Starter startet die Workflow-Ausführung mithilfe eines Workflow-Clients. Er interagiert
mit dem Workflow nach Bedarf während der Workflow-Ausführung und führt die Bereinigung durch.
Der Workflow-Starter könnte eine lokal ausgeführte Anwendung, eine Webanwendung AWS CLI oder
sogar die sein. AWS-Managementkonsole

So interagiert Amazon SWF mit Ihrer Anwendung

Amazon SWF vermittelt die Interaktion zwischen den Workflow-Komponenten und führt einen
detaillierten Workflow-Verlauf. Amazon SWF initiiert keine Kommunikation mit den Komponenten.
Es wartet auf HTTP-Anfragen von den Komponenten und verwaltet die Anfragen nach Bedarf. Zum
Beispiel:

• Wenn die Anfrage von einem Mitarbeiter stammt, der nach verfügbaren Aufgaben fragt, antwortet
Amazon SWF dem Mitarbeiter direkt, ob eine Aufgabe verfügbar ist. Weitere Informationen
zur Funktionsweise von Abfragen finden Sie unter Abfragen von Aufgaben im Amazon Simple
Workflow Service – Entwicklerhandbuch.

• Handelt es sich bei der Anfrage um eine Benachrichtigung eines Aktivitätsarbeiters, dass eine
Aufgabe abgeschlossen ist, zeichnet Amazon SWF die Informationen im Ausführungsverlauf auf
und fügt der Liste der Entscheidungsaufgaben eine Aufgabe hinzu, um den Workflow-Mitarbeiter
darüber zu informieren, dass die Aufgabe abgeschlossen ist, sodass er mit dem nächsten Schritt
fortfahren kann.

• Wenn die Anforderung vom Workflow-Worker zur Ausführung einer Aktivität stammt, zeichnet
Amazon SWF die Informationen im Ausführungsverlauf auf und fügt der Aufgabenliste der
Aktivitäten eine Aufgabe hinzu, um einen Aktivitätsarbeiter anzuweisen, die entsprechende
Aktivitätsmethode auszuführen.

Dieser Ansatz ermöglicht es Mitarbeitern, auf jedem System mit Internetverbindung zu arbeiten,
einschließlich EC2 Amazon-Instances, Unternehmensrechenzentren, Client-Computern usw. Es
muss nicht einmal dasselbe Betriebssystem ausgeführt werden. Da die HTTP-Anforderungen von
den Workern stammen, sind keine extern sichtbaren Ports erforderlich. Worker können sogar hinter
einer Firewall ausgeführt werden.

Rolle des Workflow-Starters API-Version 2021-04-28 42

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-comm-proto

AWS Flow Framework für Java Entwicklerhandbuch

Weitere Informationen

Eine ausführlichere Erläuterung der Funktionsweise von Amazon SWF finden Sie im Amazon Simple
Workflow Service Developer Guide.

AWS Flow Framework Grundkonzepte: Zuverlässige Ausführung

Asynchron verteilte Anwendungen müssen mit Zuverlässigkeitsproblemen umgehen, die bei
herkömmlichen Anwendungen nicht auftreten, einschließlich:

• So stellen Sie eine zuverlässige Kommunikation zwischen asynchron verteilten Komponenten
bereit, z. B. lang andauernde Komponenten auf Remote-Systemen.

• So stellen Sie sicher, dass Ergebnisse nicht verloren gehen, wenn eine Komponente fehlschlägt
oder getrennt wird, besonders bei lang andauernden Anwendungen.

• So handhaben Sie fehlgeschlagene verteilte Komponenten.

Anwendungen können sich auf die SWF AWS Flow Framework und Amazon SWF verlassen, um
diese Probleme zu lösen. Wir werden untersuchen, wie Amazon SWF Mechanismen bereitstellt, die
sicherstellen, dass Ihre Workflows zuverlässig und vorhersehbar funktionieren, auch wenn sie lange
dauern und von asynchronen Aufgaben abhängen, die rechnerisch und mit menschlicher Interaktion
ausgeführt werden.

Bereitstellen von zuverlässiger Kommunikation

AWS Flow Framework ermöglicht eine zuverlässige Kommunikation zwischen einem Workflow-
Worker und seinen Activity-Workern, indem Amazon SWF verwendet wird, um Aufgaben an
Mitarbeiter mit verteilten Aktivitäten zu verteilen und die Ergebnisse an den Workflow-Worker
zurückzugeben. Amazon SWF verwendet die folgenden Methoden, um eine zuverlässige
Kommunikation zwischen einem Mitarbeiter und seinen Aktivitäten sicherzustellen:

• Amazon SWF speichert geplante Aktivitäten und Workflow-Aufgaben dauerhaft und garantiert,
dass sie höchstens einmal ausgeführt werden.

• Amazon SWF garantiert, dass eine Aktivitätsaufgabe entweder erfolgreich abgeschlossen wird und
ein gültiges Ergebnis zurückgibt, oder dass der Workflow-Worker darüber informiert wird, dass die
Aufgabe fehlgeschlagen ist.

• Amazon SWF speichert dauerhaft das Ergebnis jeder abgeschlossenen Aktivität oder, bei
fehlgeschlagenen Aktivitäten, relevante Fehlerinformationen.

Weitere Informationen API-Version 2021-04-28 43

https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework für Java Entwicklerhandbuch

AWS Flow Framework Anschließend bestimmt der anhand der Aktivitätsergebnisse von Amazon
SWF, wie mit der Ausführung des Workflows fortgefahren werden soll.

Sicherstellen, dass Ergebnisse nicht verloren gegangen sind

Beibehalten des Workflow-Verlaufs

Eine Aktivität, die eine Data Mining-Operation für ein Petabyte an Daten durchführt, kann Stunden
dauern und eine Aktivität, die einen menschlichen Worker anweist, eine komplexe Aufgabe
durchzuführen, kann Tage oder sogar Wochen dauern!

Um solchen Szenarien Rechnung zu tragen, kann die Fertigstellung von AWS Flow Framework
Workflows und Aktivitäten beliebig lange dauern: bis zu einem Jahr für die Ausführung eines
Workflows. Die zuverlässige Ausführung von lange dauernden Prozessen erfordert einen
Mechanismus für die dauerhafte Speicherung des Workflow-Ausführungsverlaufs auf fortschreitender
Basis.

Das AWS Flow Framework handhabt dies, abhängig von Amazon SWF, das einen Laufverlauf
jeder Workflow-Instanz verwaltet. Der Workflow-Verlauf stellt einen vollständigen und autoritativen
Datensatz des Workflow-Fortschritts bereit, einschließlich aller Workflow- und Aktivitätsaufgaben,
die geplant und abgeschlossen wurden, und den Informationen, die durch abgeschlossene oder
fehlgeschlagene Aktivitäten zurückgegeben wurden.

AWS Flow Framework Anwendungen müssen normalerweise nicht direkt mit dem Workflow-
Verlauf interagieren, können aber bei Bedarf darauf zugreifen. Für die meisten Zwecke können
Anwendungen einfach das Framework mit dem Workflow-Verlauf im Hintergrund interagieren lassen.
Eine vollständige Erläuterung des Workflow-Verlaufs finden Sie unter Workflow-Verlauf im Amazon
Simple Workflow Service Developer Guide.

Zustandslose Ausführung

Der Ausführungsverlauf ermöglicht Workflow-Workern zustandslos zu sein. Wenn Sie über mehrere
Instances eines Workflow- oder Aktivitäts-Worker verfügen, kann jeder Worker jede Aufgabe
durchführen. Der Mitarbeiter erhält alle Statusinformationen, die er zur Ausführung der Aufgabe
benötigt, von Amazon SWF.

Dieser Ansatz macht die Workflows zuverlässiger. Wenn zum Beispiel ein Aktivitäts-Worker
fehlschlägt, müssen Sie den Workflow nicht neu starten. Starten Sie den Worker einfach neu
und er beginnt damit, die Aufgabenliste abzufragen und eine beliebige Aufgabe auf der Liste zu

Sicherstellen, dass Ergebnisse nicht verloren gegangen sind API-Version 2021-04-28 44

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history

AWS Flow Framework für Java Entwicklerhandbuch

verarbeiten, unabhängig davon, wann der Fehler aufgetreten ist. Sie können Ihren gesamten
Workflow fehlertolerant machen, indem Sie zwei oder mehr Workflow- und Aktivitäts-Worker
verwenden, eventuell auf getrennten Systemen. Wenn dann einer der Worker fehlschlägt, fahren
die anderen mit der Verarbeitung geplanter Aufgaben ohne jegliche Unterbrechung im Workflow-
Fortschritt fort.

Verarbeitung fehlgeschlagener verteilter Komponenten

Aktivitäten schlagen häufig aus temporären Gründen fehl, z. B. eine kurzzeitige
Verbindungstrennung, daher ist eine allgemeine Strategie für die Handhabung von fehlgeschlagenen
Aktivitäten, die Aktivität zu wiederholen. Statt den Wiederholungsprozess zu behandeln, indem
komplexe Strategien der Nachrichtenübergabe implementiert werden, können sich Anwendungen
auf den AWS Flow Framework verlassen. Er bietet mehrere Mechanismen zum Wiederholen
fehlgeschlagener Aktivitäten und stellt einen integrierten Ausnahmebehandlungsmechanismus bereit,
der mit asynchronen, verteilten Ausführungen von Aufgaben in einem Workflow funktioniert.

AWS Flow Framework Grundbegriffe: Verteilte Ausführung

Eine Workflow-Instanz ist im Grunde ein virtueller Ausführungsthread, der Aktivitäten und
Orchestrierungslogik umfassen kann, die auf mehreren Remotecomputern ausgeführt werden.
Amazon SWF und die AWS Flow Framework Funktion als Betriebssystem, das Workflow-Instanzen
auf einer virtuellen CPU wie folgt verwaltet:

• Den Ausführungsstatus der jeweiligen Instance verwalten

• Zwischen den Instances wechseln

• Fortsetzen der Ausführung einer Instance an der Stelle, an der sie herausgeschaltet wurde

Workflow-Replay

Da Aktivitäten langwierig sein können, ist eine Blockierung durch den Workflow bis zu seinem
Abschluss unerwünscht. Stattdessen AWS Flow Framework verwaltet der die Workflow-Ausführung
mithilfe eines Wiedergabemechanismus, der sich auf den von Amazon SWF verwalteten Workflow-
Verlauf stützt, um den Workflow in Episoden auszuführen.

Jeder Abschnitt wiederholt die Workflow-Logik so, dass jede Aktivität nur einmal ausgeführt wird.
Daher ist sichergestellt, dass Aktivitäten und asynchrone Methoden erst ausgeführt werden, wenn
ihre Promise-Objekte bereit sind.

Verarbeitung fehlgeschlagener verteilter Komponenten API-Version 2021-04-28 45

AWS Flow Framework für Java Entwicklerhandbuch

Der Workflow-Starter startet den ersten Replay-Abschnitt, sobald er die Workflow-Ausführung startet.
Das Framework ruft die Einstiegspunktmethode des Workflows auf. Dann geht es folgendermaßen
vor:

1. Es führt alle Workflow-Aufgaben aus, die nicht vom Abschluss einer Aktivität abhängen,
einschließlich des Aufrufs aller Aktivitäts-Client-Methoden.

2. Gibt Amazon SWF eine Liste von Aktivitäten und Aufgaben, deren Ausführung geplant werden soll.
Für den ersten Abschnitt besteht diese Liste nur aus den Aktivitäten, die nicht von einem Promise-
Objekt abhängig sind und sofort ausgeführt werden können.

3. Benachrichtigt Amazon SWF, dass die Episode abgeschlossen ist.

Amazon SWF speichert die Aktivitätsaufgaben im Workflow-Verlauf und plant ihre Ausführung, indem
sie in die Aktivitätsaufgabenliste aufgenommen werden. Die Aktivitäts-Worker rufen die Aufgabenliste
ab und führen die Aufgaben aus.

Wenn ein Activity Worker eine Aufgabe abschließt, gibt er das Ergebnis an Amazon SWF zurück.
Amazon SWF zeichnet es im Workflow-Ausführungsverlauf auf und plant eine neue Workflow-
Aufgabe für den Workflow-Worker, indem es sie in die Workflow-Aufgabenliste aufnimmt. Der
Workflow-Worker fragt die Aufgabenliste ab. Wenn er die Aufgabe erhält, führt er den nächsten
Replay-Abschnitt wie folgt aus:

1. Das Framework führt die Einstiegspunktmethode des Workflows aus. Dann geht es
folgendermaßen vor:

• Es führt alle Workflow-Aufgaben aus, die nicht vom Abschluss einer Aktivität abhängen,
einschließlich des Aufrufs aller Aktivitäts-Client-Methoden. Das Framework überprüft jedoch den
Ausführungsverlauf und plant keine doppelten Aktivitätsaufgaben.

• Es prüft den Verlauf, um zu ermitteln, welche Aktivitätsaufgaben abgeschlossen wurden. Dann
führt es alle asynchronen Workflow-Methoden aus, die von diesen Aktivitäten abhängen.

2. Wenn alle Workflow-Aufgaben, die ausgeführt werden können, abgeschlossen sind, meldet das
Framework zurück an Amazon SWF:

• Es gibt Amazon SWF eine Liste aller Aktivitäten, deren Promise<T> Eingabeobjekte seit der
letzten Episode fertig geworden sind und deren Ausführung geplant werden kann.

• Wenn die Episode keine zusätzlichen Aktivitätsaufgaben generiert hat, es aber immer noch nicht
abgeschlossene Aktivitäten gibt, benachrichtigt das Framework Amazon SWF, dass die Episode
abgeschlossen ist. Es wartet dann auf eine andere Aktivität, um den nächsten Replay-Abschnitt
zu starten.

Workflow-Replay API-Version 2021-04-28 46

AWS Flow Framework für Java Entwicklerhandbuch

• Wenn die Episode keine zusätzlichen Aktivitätsaufgaben generiert hat und alle Aktivitäten
abgeschlossen wurden, benachrichtigt das Framework Amazon SWF, dass die Workflow-
Ausführung abgeschlossen ist.

Beispiele zum Replay-Verhalten finden Sie unter AWS Flow Framework für Java Replay Behavior.

Replay und asynchrone Workflow-Methoden

Asynchrone Workflow-Methoden werden oft ähnlich wie Aktivitäten verwendet, denn die Methode
verzögert die Ausführung, bis alle übergebenen Promise<T>-Objekte bereit sind. Der Replay-
Mechanismus behandelt asynchrone Methoden jedoch anders als dies bei Aktivitäten der Fall ist.

• Das Replay garantiert nicht, dass eine asynchrone Methode nur einmal ausgeführt wird. Es
verzögert die Ausführung einer asynchronen Methode nur so lange, bis die ihr übergeben Promise-
Objekte bereit sind. Dann führt er sie für alle folgenden Abschnitte aus.

• Wenn eine asynchrone Methode abgeschlossen ist, startet sie keinen neuen Abschnitt.

Ein Beispiel für das Replay eines asynchronen Workflows finden Sie in AWS Flow Framework für
Java Replay Behavior.

Replay und die Workflow-Implementierung

In den meisten Fällen müssen Sie sich nicht um die Einzelheiten des Replay-Mechanismus kümmern.
Er arbeitet im Grunde hinter den Kulissen. Das Replay hat jedoch zwei wichtige Auswirkungen auf
Ihre Workflow-Implementierung.

• Verwenden Sie keine Workflow-Methoden, um langlaufende Aufgaben auszuführen, da das Replay
die entsprechende Aufgabe mehrfach wiederholt. Auch asynchrone Workflow-Methoden werden
typischerweise mehr als einmal ausgeführt. Verwenden Sie stattdessen für langlaufende Aufgaben
Aktivitäten. Dann führt das Replay die Aktivitäten nur einmal aus.

• Ihre Workflow-Logik muss vollständig deterministisch sein. Jeder Abschnitt muss dem gleichen
Steuerungsfluss folgen. Beispielsweise sollte der Steuerungsfluss nicht von der aktuellen Zeit
abhängen. Eine detaillierte Beschreibung des Replays und der deterministischen Anforderungen
finden Sie unter Nichtdeterminismus.

Replay und asynchrone Workflow-Methoden API-Version 2021-04-28 47

AWS Flow Framework für Java Entwicklerhandbuch

AWS Flow Framework Grundbegriffe: Aufgabenlisten und
Aufgabenausführung

Amazon SWF verwaltet Workflow- und Aktivitätsaufgaben, indem es sie in benannten Listen
veröffentlicht. Amazon SWF verwaltet mindestens zwei Aufgabenlisten, eine für Workflow-Worker und
eine für Activity Worker.

Note

Sie können beliebig viele Aufgabenlisten angeben, wobei jeder Liste unterschiedliche Worker
zugeordnet sind. Die Anzahl der Aufgabenlisten ist unbegrenzt. In der Regel geben Sie die
Aufgabenliste eines Workers in der Worker-Host-Anwendung an, sobald Sie das Worker-
Objekt erstellen.

Der folgende Auszug aus der HelloWorldWorkflow-Host-Anwendung legt einen neuen Aktivitäts-
Worker an und ordnet ihn der Aktivitätsaufgabenliste HelloWorldList zu.

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ...
 String domain = " helloWorldExamples";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();
 ...
 }
}

Standardmäßig plant Amazon SWF die Aufgaben des Mitarbeiters auf der HelloWorldList
Liste. Dann fragt der Worker diese Liste nach Aufgaben ab. Sie können einer Aufgabenliste einen
beliebigen Namen zuweisen. Sie können sogar den gleichen Namen für Workflow- und Aktivitätslisten
verwenden. Intern platziert Amazon SWF die Namen der Arbeitsablauf- und Aktivitätsaufgabenlisten
in unterschiedlichen Namespaces, sodass die beiden Listen unterschiedlich sind.

Aufgabenlisten und Aufgabenausführung API-Version 2021-04-28 48

AWS Flow Framework für Java Entwicklerhandbuch

Wenn Sie keine Aufgabenliste angeben, AWS Flow Framework gibt die eine Standardliste an,
wenn der Worker den Typ bei Amazon SWF registriert. Weitere Informationen finden Sie unter
Registrierung von Workflow- und Aktivitätstypen.

Manchmal ist es sinnvoll, einen bestimmten Worker oder eine bestimmte Gruppe von Workern
bestimmte Aufgaben ausführen zu lassen. Beispielsweise kann ein Bildverarbeitungs-Workflow
eine Aktivität verwenden, um ein Bild herunterzuladen und eine andere Aktivität, um das Bild zu
bearbeiten. Es ist effizienter, beide Aufgaben auf dem gleichen System auszuführen und den
Overhead der Übertragung großer Dateien über das Netzwerk zu vermeiden.

Um solche Szenarien zu unterstützen, können Sie beim Aufruf einer Activity-Client-Methode explizit
eine Aufgabenliste angeben, indem Sie einen Overload mit einem schedulingOptions-Parameter
verwenden. Sie geben die Aufgabenliste an, indem Sie der Methode ein entsprechend konfiguriertes
ActivitySchedulingOptions Objekt übergeben.

Nehmen wir beispielsweise an, die say-Aktivität der HelloWorldWorkflow-Anwendung wird
von einem anderen Aktivitäts-Worker als getName und getGreeting gehostet. Das folgende
Beispiel zeigt, wie Sie sicherstellen können, dass say dieselbe Aufgabenliste wie getName und
getGreeting verwendet (auch wenn sie ursprünglich verschiedenen Listen zugeordnet waren).

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations1 = new GreeterActivitiesClientImpl1(); //
getGreeting and getName
 private GreeterActivitiesClient operations2 = new GreeterActivitiesClientImpl2(); //
say
 @Override
 public void greet() {
 Promise<String> name = operations1.getName();
 Promise<String> greeting = operations1.getGreeting(name);
 runSay(greeting);
 }
 @Asynchronous
 private void runSay(Promise<String> greeting){
 String taskList = operations1.getSchedulingOptions().getTaskList();
 ActivitySchedulingOptions schedulingOptions = new ActivitySchedulingOptions();
 schedulingOptions.setTaskList(taskList);
 operations2.say(greeting, schedulingOptions);
 }
}

Aufgabenlisten und Aufgabenausführung API-Version 2021-04-28 49

AWS Flow Framework für Java Entwicklerhandbuch

Die asynchrone runSay-Methode ruft die getGreeting-Aufgabenliste aus seinem Client-Objekt ab.
Dann erstellt und konfiguriert es ein ActivitySchedulingOptions-Objekt. Dieses stellt sicher,
dass say dieselbe Aufgabenliste wie getGreeting abfragt.

Note

Wenn Sie einen schedulingOptions-Parameter an eine Activity-Client-Methode
übergeben, überschreibt dieser den ursprünglichen Aufgabenplan nur für diese
Aktivitätsausführung. Wenn Sie die Client-Methode für Aktivitäten erneut aufrufen, ohne eine
Aufgabenliste anzugeben, weist Amazon SWF die Aufgabe der ursprünglichen Liste zu, und
der Activity Worker fragt diese Liste ab.

AWS Flow Framework Grundkonzepte: Skalierbare Anwendungen

Amazon SWF verfügt über zwei Hauptfunktionen, die es einfach machen, eine Workflow-Anwendung
so zu skalieren, dass sie die aktuelle Last bewältigen kann:

• Ein vollständiger Ausführungsverlauf des Workflows ermöglicht die Implementierung einer
zustandslosen Anwendung.

• Eine lose an die Aufgabenausführung gekoppelte Aufgabenplanung vereinfacht das Skalieren der
Anwendung den aktuellen Anforderungen entsprechend.

Amazon SWF plant Aufgaben, indem es sie in dynamisch zugewiesenen Aufgabenlisten veröffentlicht
und nicht direkt mit den Workflow- und Aktivitätsmitarbeitern kommuniziert. Worker fragen ihre
jeweiligen Listen für Aufgaben stattdessen über HTTP-Anforderungen ab. Dieser Ansatz verbindet die
Aufgabenplanung lose mit der Aufgabenausführung und ermöglicht es den Mitarbeitern, auf jedem
geeigneten System zu arbeiten, einschließlich EC2 Amazon-Instances, Unternehmensrechenzentren,
Client-Computern usw. Da die HTTP-Anfragen von den Workern stammen, sind keine extern
sichtbaren Ports erforderlich, sodass die Mitarbeiter sogar hinter einer Firewall laufen können.

Der Langabfragemechanismus, mit dem Worker Aufgaben abfragen, verhindert eine Überlastung
der Worker. Selbst wenn Spitzen bei den geplanten Aufgaben auftreten, rufen Worker Aufgaben
nach ihrem eigenen Rhythmus ab. Da Worker jedoch zustandslos sind, können Sie eine Anwendung
bei zunehmender Last dynamisch skalieren, indem Sie zusätzliche Worker-Instances starten.
Selbst wenn diese auf verschiedenen Systemen ausgeführt werden, ruft jede Instance dieselbe
Aufgabenliste ab und der erste verfügbare Worker führt die Aufgabe aus. Dabei spielt es keine Rolle,

Skalierbare Webanwendungen API-Version 2021-04-28 50

AWS Flow Framework für Java Entwicklerhandbuch

wo sich der Worker befindet oder wann er gestartet wird. Bei abnehmender Last können Sie die
Anzahl der Worker wieder entsprechend reduzieren.

AWS Flow Framework Grundbegriffe: Data Exchange zwischen
Aktivitäten und Workflows
Wenn Sie eine asynchrone Aktivitäts-Client-Methode aufrufen, gibt sie sofort ein Promise-Objekt
(auch als Future-Objekt bekannt) zurück, das den Rückgabewert der Aktivitätsmethode darstellt.
Das Promise-Objekt weist zunächst einen nicht bereiten Zustand auf und der Rückgabewert ist
undefiniert. Nachdem die Aktivitätsmethode ihre Aufgabe abgeschlossen hat und zurückgibt,
marshallt das Framework den Rückgabewert über das Netzwerk zum Workflow-Worker, der dem
Promise-Objekt einen Wert zuweist und das Objekt in einen betriebsbereiten Zustand versetzt.

Selbst wenn eine Aktivitätsmethode keinen Rückgabewert hat, können Sie das Promise-Objekt
dennoch für das Verwalten der Workflow-Ausführung verwenden. Wenn Sie ein zurückgegebenes
Promise-Objekt an eine Aktivitäts-Client-Methode oder eine asynchrone Workflow-Methode
übergeben, schiebt es die Ausführung auf, bis das Objekt bereit ist.

Wenn Sie ein oder mehrere Promise-Objekte an eine Aktivitäts-Client-Methode übergeben, fügt das
Framework die Aufgabe in die Warteschlange ein, schiebt sie aber auf, bis alle Objekte bereit sind.
Es extrahiert dann die Daten aus jedem Promise-Objekt und marshallt sie über das Internet zu dem
Aktivitäts-Worker, der sie dann an die Aktivitätsmethode als Standardtyp übergibt.

Note

Wenn Sie große Mengen an Daten zwischen Workflow- und Aktivitäts-Workern übermitteln
müssen, besteht der bevorzugte Ansatz darin, die Daten an einem passenden Speicherort
zu speichern und nur die Abrufinformationen zu übergeben. Sie können die Daten
beispielsweise in einem Amazon S3 S3-Bucket speichern und die zugehörige URL
übergeben.

Die Promise <T> Type

Der Promise<T>-Typ ist in mancherlei Hinsicht mit dem Java-Typ Future<T> vergleichbar. Beide
Typen stellen Werte dar, die von asynchronen Methoden zurückgegeben werden und ursprünglich
undefiniert sind. Sie können auf den Wert eines Objekts zugreifen, indem Sie seine get-Methode
aufrufen. Darüber hinaus verhalten sich die beiden Typen auf eher unterschiedliche Art und Weise.

Datenaustausch zwischen Aktivitäten und Workflows API-Version 2021-04-28 51

AWS Flow Framework für Java Entwicklerhandbuch

• Future<T> ist ein Synchronisierungskonstrukt, das einer Anwendung ermöglicht, auf die
Beendigung einer asynchronen Methode zu warten. Wenn Sie get aufrufen und das Objekt nicht
bereit ist, blockiert es, bis das Objekt bereit ist.

• Mit Promise<T> wird die Synchronisierung vom Framework verarbeitet. Wenn Sie get aufrufen
und das Objekt nicht bereit ist, löst get eine Ausnahme aus.

Der Hauptzweck von Promise<T> besteht darin, den Datenfluss von einer Aktivität zu einer anderen
zu verwalten. Es stellt sicher, dass eine Aktivität erst dann ausgeführt wird, wenn die Eingabedaten
gültig sind. In vielen Fällen müssen Workflow-Worker nicht direkt auf Promise<T>-Objekte zugreifen.
Sie übergeben die Objekte einfach von einer Aktivität an eine andere und lassen das Framework und
die Aktivitäts-Worker die Details handhaben. Um auf den Wert eines Promise<T>-Objekts in einem
Workflow-Worker zuzugreifen, müssen Sie sicher sein, dass das Objekt bereit ist, bevor Sie seine
get-Methode aufrufen.

• Der bevorzugte Ansatz besteht darin, das Promise<T>-Objekt an eine asynchrone Workflow-
Methode zu übergeben und die Werte dort zu bearbeiten. Eine asynchrone Methode schiebt die
Ausführung auf, bis all seine Promise<T>-Eingabeobjekte bereit sind, was garantiert, dass Sie
sicher auf ihre Werte zugreifen können.

• Promise<T> macht eine isReady-Methode verfügbar, die true zurückgibt, wenn das Objekt
bereit ist. Die Verwendung von isReady zum Abfragen eines Promise<T>-Objekts wird nicht
empfohlen, isReady ist jedoch unter bestimmten Umständen hilfreich.

Der AWS Flow Framework für Java enthält auch einen Settable<T> Typ, der von diesem abgeleitet
ist Promise<T> und ein ähnliches Verhalten aufweist. Der Unterschied besteht darin, dass das
Framework normalerweise den Wert eines Promise<T> Objekts festlegt und der Workflow-Worker
für die Festlegung des Werts von a verantwortlich istSettable<T>.

Es gibt einige Situationen, in denen ein Workflow-Worker ein Promise<T>-Objekt erstellen und
seinen Wert festlegen muss. So muss etwa eine asynchrone Methode, die ein Promise<T>-Objekt
zurückgibt, einen Rückgabewert erstellen.

• Um ein Objekt zu erstellen, das einen typisierten Wert darstellt, rufen Sie die statische
Promise.asPromise-Methode auf, die ein Promise<T>-Objekt des entsprechenden Typs
erstellt, seinen Wert festlegt und es in den betriebsbereiten Zustand versetzt.

• Zum Erstellen eines Promise<Void>-Objekts rufen Sie die statische Promise.Void-Methode
auf.

Die Promise <T> Type API-Version 2021-04-28 52

AWS Flow Framework für Java Entwicklerhandbuch

Note

Promise<T> kann einen beliebigen gültigen Typ darstellen. Wenn die Daten jedoch über das
Internet gemarshallt werden müssen, muss der Typ mit dem Datenkonverter kompatibel sein.
Details finden Sie im nächsten Abschnitt.

Datenkonverter und Marshaling

Der AWS Flow Framework leitet Daten mithilfe eines Datenkonverters über das Internet weiter.
Standardmäßig verwendet das Framework einen Datenkonverter, der auf dem Jackson JSON-
Prozessor basiert. Dieser Konverter weist jedoch einige Einschränkungen auf. Er kann beispielsweise
Zuordnungen, die keine Zeichenfolgen als Schlüssel verwenden, nicht marshallen. Wenn der
Standardkonverter für Ihre Anwendung nicht ausreichend ist, können Sie einen benutzerdefinierten
Datenkonverter implementieren. Details hierzu finden Sie unter DataConverters.

AWS Flow Framework Grundbegriffe: Data Exchange zwischen
Anwendungen und Workflow-Ausführungen

Eine Workflow-Eintrittspunktmethode kann über einen oder mehrere Parameter verfügen, die es
dem Workflow-Starter ermöglichen, erste Daten an den Workflow zu übergeben. Sie kann außerdem
dazu dienen, dem Workflow während der Ausführung zusätzliche Daten zur Verfügung zu stellen.
Wenn beispielsweise ein Kunde seine Versandadresse ändert, können Sie den Workflow zur
Bestellverarbeitung benachrichtigen, der dann die entsprechenden Änderungen vornimmt.

Amazon SWF ermöglicht es Workflows, eine Signalmethode zu implementieren, die es Anwendungen
wie dem Workflow-Starter ermöglicht, jederzeit Daten an den Workflow zu übergeben. Eine Signal-
Methode kann jeden beliebigen Namen und beliebige Parameter haben. Sie legen sie als Signal-
Methode fest, indem Sie sie in Ihre Workflow-Schnittstellendefinition einbeziehen und eine @Signal-
Annotation auf die Methodendeklaration anwenden.

Das folgende Beispiel zeigt eine Workflow-Schnittstelle zur Bestellverarbeitung, die die Signal-
Methode changeOrder deklariert, durch die der Workflow-Starter die Originalbestellung ändern
kann, nachdem der Workflow gestartet wurde.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 300)

Datenkonverter und Marshaling API-Version 2021-04-28 53

https://github.com/codehaus/jackson
https://github.com/codehaus/jackson

AWS Flow Framework für Java Entwicklerhandbuch

public interface WaitForSignalWorkflow {
 @Execute(version = "1.0")
 public void placeOrder(int amount);
 @Signal
 public void changeOrder(int amount);
}

Die Annotationsverarbeitung des Frameworks erzeugt eine Workflow-Client-Methode mit demselben
Namen wie die Signal-Methode und der Workflow-Starter ruft die Client-Methode auf, um Daten an
den Workflow zu übergeben. Ein Beispiel finden Sie unter AWS Flow Framework Rezepte

Amazon SWF-Timeout-Typen

Um sicherzustellen, dass Workflow-Ausführungen korrekt ausgeführt werden, können Sie mit
Amazon SWF verschiedene Arten von Timeouts festlegen. Einige Zeitüberschreitungen legen fest,
wie lange der Workflow insgesamt ausgeführt werden kann. Andere Zeitüberschreitungen legen
fest, wie lange es dauern darf, bis Aktivitätsaufgaben einem Worker zugewiesen werden, und wie
lange die Ausführung einer Aufgabe ab der Planung dauern darf. Alle Timeouts in der Amazon SWF
SWF-API sind in Sekunden angegeben. Amazon SWF unterstützt die Zeichenfolge auch NONE als
Timeout-Wert, was bedeutet, dass es kein Timeout gibt.

Für Zeitüberschreitungen im Zusammenhang mit Entscheidungs- und Aktivitätsaufgaben fügt
Amazon SWF dem Workflow-Ausführungsverlauf ein Ereignis hinzu. Die Attribute des Ereignisses
geben Auskunft darüber, welche Art von Timeout eingetreten ist und welche Entscheidungs- oder
Aktivitätsaufgabe betroffen war. Amazon SWF plant auch eine Entscheidungsaufgabe. Wenn der
Entscheider die neue Entscheidungsaufgabe erhält, sieht er das Timeout-Ereignis in der Historie und
ergreift die entsprechende Aktion, indem er die RespondDecisionTaskCompletedAktion aufruft.

Eine Aufgabe gilt vom Zeitpunkt der Planung bis zum Schließen der Aufgabe als offen. Für Aufgaben,
die gerade von einem Worker verarbeitet werden, wird daher der Status "offen" gesendet. Eine
Aufgabe ist geschlossen, wenn ein Worker sie als abgeschlossen, abgebrochen oder fehlgeschlagen
meldet. Eine Aufgabe kann auch von Amazon SWF aufgrund eines Timeouts geschlossen werden.

Zeitüberschreitungen in Workflow- und Entscheidungsaufgaben

Die folgende Abbildung zeigt, wie Zeitüberschreitungen für Workflow- und Entscheidungsaufgaben
sich auf die Lebensdauer eines Workflows auswirken:

Zeitüberschreitungstypen API-Version 2021-04-28 54

https://aws.amazon.com/code/2535278400103493
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework für Java Entwicklerhandbuch

Für Workflow- und Entscheidungsaufgaben gibt es zwei relevante Zeitüberschreitungstypen:

• Workflow-Start to Close (timeoutType: START_TO_CLOSE) — Dieses Timeout gibt die
maximale Zeit an, die bis zum Abschluss einer Workflow-Ausführung in Anspruch nehmen
kann. Bei der Registrierung eines Workflows wird ein Standardwert festgelegt, der jedoch
beim Starten des Workflows durch andere Werte überschrieben werden kann. Wenn dieses
Timeout überschritten wird, schließt Amazon SWF die Workflow-Ausführung und fügt dem
Workflow-Ausführungsverlauf ein Ereignis des Typs WorkflowExecutionTimedOuthinzu. Neben
dem timeoutType legen die Ereignisattribute auch die childPolicy fest, die sich auf die
Workflow-Ausführung auswirkt. Die untergeordnete Richtlinie legt fest, wie mit untergeordneten
Workflow-Ausführungen verfahren wird, wenn bei der übergeordneten Workflow-Ausführung
eine Zeitüberschreitung auftritt oder sie anderweitig beendet wird. Wenn in der childPolicy
beispielsweise TERMINATE festgelegt ist, werden die untergeordneten Workflow-Ausführungen
beendet. Nachdem bei einer Workflow-Ausführung eine Zeitüberschreitung aufgetreten ist, können
Sie als einzige Aktionen dafür noch Sichtbarkeitsaufrufe ausführen.

• Entscheidungsaufgabe von Anfang bis Ende (timeoutType: START_TO_CLOSE) — Dieses
Timeout gibt die maximale Zeit an, die der entsprechende Entscheider benötigen kann, um
eine Entscheidungsaufgabe abzuschließen. Sie wird während der Registrierung des Workflow-
Typs festgelegt. Wenn dieses Timeout überschritten wird, wird die Aufgabe im Workflow-
Ausführungsverlauf als Timeout markiert, und Amazon SWF fügt dem Workflow-Verlauf ein
Ereignis des Typs DecisionTaskTimedOuthinzu. Zu den Ereignisattributen gehören die IDs
Ereignisse, die dem Zeitpunkt entsprechen, zu dem diese Entscheidungsaufgabe geplant
(scheduledEventId) und wann sie gestartet wurde (startedEventId). Amazon SWF fügt nicht
nur das Ereignis hinzu, sondern plant auch eine neue Entscheidungsaufgabe, um den Entscheider
darüber zu informieren, dass bei dieser Entscheidungsaufgabe das Timeout überschritten wurde.

Zeitüberschreitungen in Workflow- und Entscheidungsaufgaben API-Version 2021-04-28 55

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html

AWS Flow Framework für Java Entwicklerhandbuch

Nach einer Zeitüberschreitung schlagen Versuche, die abgelaufene Entscheidungsaufgabe mit
RespondDecisionTaskCompleted abzuschließen, fehl.

Zeitüberschreitungen in Aktivitätsaufgaben

Die folgende Abbildung zeigt, wie Zeitüberschreitungen sich auf die Lebensdauer einer
Aktivitätsaufgabe auswirken:

Für Aktivitätsaufgaben gibt es vier relevante Zeitüberschreitungstypen:

• Aktivitätsaufgabe von Anfang bis Ende (timeoutType: START_TO_CLOSE) — Dieses Timeout
gibt die maximale Zeit an, die ein Mitarbeiter für die Bearbeitung einer Aufgabe benötigen
kann, nachdem der Mitarbeiter die Aufgabe erhalten hat. Versuche, eine Aktivitätsaufgabe mit
RespondActivityTaskCanceled,, und zu schließen RespondActivityTaskCompleted, schlagen
RespondActivityTaskFailedfehl.

• Activity Task Heartbeat (timeoutType: HEARTBEAT) — Dieses Timeout gibt die maximale Zeit
an, die eine Aufgabe ausgeführt werden kann, bevor ihr Fortschritt durch die Aktion angezeigt wird.
RecordActivityTaskHeartbeat

• Zeitplan für den Start der Aktivitätsaufgabe (timeoutType: SCHEDULE_TO_START) — Dieses
Timeout gibt an, wie lange Amazon SWF wartet, bis das Zeitlimit für die Aktivitätsaufgabe
überschritten wird, wenn keine Mitarbeiter für die Ausführung der Aufgabe verfügbar sind. Nach der
Zeitüberschreitung wird die abgelaufene Aufgabe keinem anderen Worker zugewiesen.

• Zeitplan für das Schließen der Aktivitätsaufgabe (timeoutType: SCHEDULE_TO_CLOSE) —
Dieser Timeout gibt an, wie lange die Aufgabe von der geplanten bis zur Fertigstellung dauern

Zeitüberschreitungen in Aktivitätsaufgaben API-Version 2021-04-28 56

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework für Java Entwicklerhandbuch

kann. Es hat sich bewährt, dass dieser Wert nicht größer als die Summe aus Task-Timeout und
schedule-to-start Task-Timeout sein sollte. start-to-close

Note

Jeder Zeitüberschreitungstyp verfügt übe einen Standardwert, in der Regel NONE (unendlich).
Die Höchstdauer für die Ausführung einer Aktivität ist jedoch auf ein Jahr beschränkt.

Die Standardwerte für diese Zeitüberschreitungen werden während der Registrierung des
Aktivitätstyps festgelegt, können jedoch beim Planen der Aktivitätsaufgabe überschrieben werden.
Wenn einer dieser Timeouts eintritt, fügt Amazon SWF dem Workflow-Verlauf ein Ereignis des Typs
ActivityTaskTimedOuthinzu. Das Wertattribut timeoutType dieses Ereignisses gibt an, welche
dieser Zeitüberschreitungen aufgetreten ist. Der Wert von timeoutType für jede Zeitüberschreitung
ist in Klammern angegeben. Zu den Ereignisattributen gehören auch die IDs Ereignisse, die dem
Zeitpunkt entsprechen, zu dem die Aktivitätsaufgabe geplant (scheduledEventId) und wann sie
gestartet wurde (startedEventId). Zusätzlich zum Hinzufügen des Ereignisses plant Amazon
SWF auch eine neue Entscheidungsaufgabe, um den Entscheider darüber zu informieren, dass das
Timeout eingetreten ist.

Zeitüberschreitungen in Aktivitätsaufgaben API-Version 2021-04-28 57

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

AWS Flow Framework für Java Entwicklerhandbuch

Eine Aufgabe in AWS Flow Framework für Java verstehen
Themen

• Aufgabe

• Reihenfolge der Ausführung

• Workflow-Ausführung

• Nichtdeterminismus

Aufgabe

Das zugrunde liegende Primitiv, das AWS Flow Framework for Java verwendet, um die Ausführung
von asynchronem Code zu verwalten, ist die Task Klasse. Ein Objekt vom Typ Task stellt Arbeit dar,
die asynchron durchgeführt werden muss. Wenn Sie eine asynchrone Methode aufrufen, erzeugt das
Framework eine Task, um den Code in dieser Methode auszuführen, und setzt ihn in eine Liste für
eine Ausführung zu einem späteren Zeitpunkt. Ebenso wird beim Aufruf einer Activity eine Task
dafür erstellt. Der Methodenaufruf wird danach zurückgegeben, in der Regel mit einem Promise<T>
als zukünftiges Ergebnis des Aufrufs.

Die Task-Klasse ist öffentlich und kann direkt verwendet werden. Wir können beispielsweise das
Beispiel „Hello World“ so neu schreiben, dass es eine Task anstatt einer asynchronen Methode
verwendet.

@Override
public void startHelloWorld(){
 final Promise<String> greeting = client.getName();
 new Task(greeting) {
 @Override
 protected void doExecute() throws Throwable {
 client.printGreeting("Hello " + greeting.get() +"!");
 }
 };
}

Das Framework ruft die doExecute()-Methode auf, wenn alle Promises, die an den Konstruktor
der Task übergeben wurden, einsatzbereit sind. Weitere Informationen zur Task Klasse finden Sie in
der AWS SDK für Java Dokumentation.

Aufgabe API-Version 2021-04-28 58

AWS Flow Framework für Java Entwicklerhandbuch

Das Framework umfasst auch eine Klasse mit der Bezeichnung Functor, die eine Task darstellt,
die auch ein Promise<T> ist. Das Functor-Objekt ist einsatzbereit, wenn die Task abgeschlossen
wird. Im folgenden Beispiel wird ein Functor erstellt, um die Begrüßungsnachricht abzurufen:

Promise<String> greeting = new Functor<String>() {
 @Override
 protected Promise<String> doExecute() throws Throwable {
 return client.getGreeting();
 }
};
client.printGreeting(greeting);

Reihenfolge der Ausführung

Aufgaben werden nur für die Ausführung berechtigt, wenn alle Promise<T>-typisierten Parameter,
die an die entsprechende asynchrone Methode oder Aktivität übergeben wurden, einsatzbereit sind.
Eine zur Ausführung bereite Task wird logisch eine eine einsatzbereite Warteschlange verschoben.
Mit anderen Worten wird sie für die Ausführung geplant. Die Worker-Klasse führt die Aufgabe aus,
indem sie den Code aufruft, den Sie in den Hauptteil der asynchronen Methode geschrieben haben,
oder indem sie im Fall einer Aktivitätsmethode eine Aktivitätsaufgabe in Amazon Simple Workflow
Service (AWS) plant.

Wenn Aufgaben ausgeführt werden und Ergebnisse erzielen, sorgen sie dafür, dass andere
Aufgaben einsatzbereit werden, und die Ausführung des Programms schreitet weiter voran. Die Art
und Weise, wie das Framework Aufgaben ausführt, ist wichtig, um die Reihenfolge zu verstehen, in
der Ihr asynchroner Code ausgeführt wird. Code, der sequenziell in Ihrem Programm erscheint, wird
möglicherweise nicht tatsächlich in dieser Reihenfolge ausgeführt.

Promise<String> name = getUserName();
printHelloName(name);
printHelloWorld();
System.out.println("Hello, Amazon!");

@Asynchronous
private Promise<String> getUserName(){
 return Promise.asPromise("Bob");
}
@Asynchronous
private void printHelloName(Promise<String> name){

Reihenfolge der Ausführung API-Version 2021-04-28 59

AWS Flow Framework für Java Entwicklerhandbuch

 System.out.println("Hello, " + name.get() + "!");
}
@Asynchronous
private void printHelloWorld(){
 System.out.println("Hello, World!");
}

Der Code in der Auflistung oben wird wie folgt gedruckt:

Hello, Amazon!
Hello, World!
Hello, Bob

Dies ist möglicherweise nicht das, was Sie erwarten. Dies kann aber einfach erklärt werden, indem
Sie durchdenken, wie die Aufgaben für die asynchronen Methoden ausgeführt wurden:

1. Der Aufruf von getUserName erzeugt eine Task. Nennen wir sie Task1. Weil getUserName es
keine Parameter akzeptiert, Task1 wird es sofort in die Bereitschaftswarteschlange gestellt.

2. Anschließend erzeugt der Aufruf von printHelloName eine Task, die auf das Ergebnis von
getUserName warten muss. Nennen wir sie Task2. Weil der erforderliche Wert noch nicht bereit
ist, Task2 wird er auf die Warteliste gesetzt.

3. Dann wird eine Aufgabe für printHelloWorld erstellt und zur einsatzbereiten Warteschlange
hinzugefügt. Nennen wir sie Task3.

4. printlnIn der Erklärung wird dann „Hello, Amazon!“ gedruckt zur Konsole.

5. An diesem Punkt befinden sich Task1 und Task3 in der einsatzbereiten Warteschlange und
Task2 befindet sich in der Warteliste.

6. Der Worker führt Task1 aus. Durch das Ergebnis wird Task2 vorbereitet. Task2 wird der
Bereitschaftswarteschlange hinter Task3 hinzugefügt.

7. Task3 und Task2 werden dann in dieser Reihenfolge ausgeführt.

Die Ausführung der Aktivitäten folgt dem gleichen Muster. Wenn Sie eine Methode auf dem
Aktivitätsclient aufrufen, wird eine erstellt, Task die bei der Ausführung eine Aktivität in Amazon SWF
plant.

Das Framework nutzt Funktionen, wie Code-Generierung und dynamische Proxys, um die Logik
für die Konvertierung von Methodenaufrufen in Aktivitätsaufrufe und asynchrone Aufgaben in Ihrem
Programm einzufügen.

Reihenfolge der Ausführung API-Version 2021-04-28 60

AWS Flow Framework für Java Entwicklerhandbuch

Workflow-Ausführung

Die Ausführung der Workflow-Implementierung wird auch von der Worker-Klasse verwaltet. Wenn
Sie eine Methode auf dem Workflow-Client aufrufen, ruft sie Amazon SWF auf, um eine Workflow-
Instanz zu erstellen. Die Aufgaben in Amazon SWF sollten nicht mit den Aufgaben im Framework
verwechselt werden. Eine Aufgabe in Amazon SWF ist entweder eine Aktivitätsaufgabe oder eine
Entscheidungsaufgabe. Die Ausführung einer Aktivitätsaufgabe ist einfach. Die Activity Worker-
Klasse empfängt Aktivitätsaufgaben von Amazon SWF, ruft die entsprechende Aktivitätsmethode in
Ihrer Implementierung auf und gibt das Ergebnis an Amazon SWF zurück.

Die Ausführung der Entscheidungsaufgaben ist komplexer. Der Workflow-Worker erhält
Entscheidungsaufgaben von Amazon SWF. Eine Entscheidungsaufgabe ist effektiv eine Anfrage,
die die Workflow-Logik fragt, was als Nächstes zu tun ist. Die erste Entscheidungsaufgabe wird
für eine Workflow-Instance generiert, wenn sie über den Workflow-Client gestartet wird. Beim
Empfang dieser Entscheidungsaufgabe beginnt das Framework mit der Ausführung des Codes in
der Workflow-Methode, die mit @Execute versehen ist. Diese Methode führt die Koordinationslogik
aus, die Aktivitäten plant. Wenn sich der Status der Workflow-Instanz ändert, z. B. wenn eine Aktivität
abgeschlossen ist, werden weitere Entscheidungsaufgaben geplant. An diesem Punkt kann die
Workflow-Logik entscheiden, eine Aktion basierend auf dem Ergebnis der Aktivität auszuführen, zum
Beispiel kann sie entscheiden, eine andere Aktivität zu planen.

Das Framework blendet alle diese Details vom Entwickler aus, indem Entscheidungsaufgaben
nahtlos in die Workflow-Logik übertragen werden. Aus der Sicht eines Entwicklers sieht der Code
einfach wie ein reguläres Programm aus. Unter dem Deckmantel ordnet das Framework es
Aufrufen von Amazon SWF und Entscheidungsaufgaben zu und verwendet dabei den von Amazon
SWF verwalteten Verlauf. Wenn eine Entscheidungsaufgabe eintrifft, gibt das Framework die
Programmausführung erneut wieder, wobei die Ergebnisse der bisher abgeschlossenen Aktivitäten
eingefügt werden. Asynchrone Methoden und Aktivitäten, die auf diese Ergebnisse gewartet haben,
werden entsperrt und die Programmausführung geht weiter.

Die Ausführung des Beispiel-Bildverarbeitungs-Workflows und des entsprechenden Verlaufs werden
in der folgenden Tabelle gezeigt.

Ausführung des Thumbnail-Workflows

Workflow-Programmausführung Von Amazon SWF verwalteter Verlauf

Anfängliche Ausführung

Workflow-Ausführung API-Version 2021-04-28 61

AWS Flow Framework für Java Entwicklerhandbuch

Workflow-Programmausführung Von Amazon SWF verwalteter Verlauf

1. Bereitstellungsschleife

2. getImageUrls

3. downloadImage

4. createThumbnail (Aufgabe in Warteschl
ange)

5. uploadImage (Aufgabe in Warteschlange)

6. <nächster Durchlauf der Schleife>

1. Workflow-Instance gestartet, id="1"

2. downloadImage geplant

Erneut abspielen

1. Bereitstellungsschleife

2. getImageUrls

3. downloadImage image path="foo"

4. createThumbnail

5. uploadImage (Aufgabe in Warteschlange)

6. <nächster Durchlauf der Schleife>

1. Workflow-Instance gestartet, id="1"

2. downloadImage geplant

3. downloadImage abgeschlossen, return="foo"

4. createThumbnail geplant

Erneut abspielen

1. Bereitstellungsschleife

2. getImageUrls

3. downloadImage image path="foo"

4. createThumbnail thumbnail path="bar"

5. uploadImage

6. <nächster Durchlauf der Schleife>

1. Workflow-Instance gestartet, id="1"

2. downloadImage geplant

3. downloadImage abgeschlossen, return="foo"

4. createThumbnail geplant

5. createThumbnail abgeschlossen, return="b
ar"

6. uploadImage geplant

Erneut abspielen

Workflow-Ausführung API-Version 2021-04-28 62

AWS Flow Framework für Java Entwicklerhandbuch

Workflow-Programmausführung Von Amazon SWF verwalteter Verlauf

1. Bereitstellungsschleife

2. getImageUrls

3. downloadImage image path="foo"

4. createThumbnail thumbnail path="bar"

5. uploadImage

6. <nächster Durchlauf der Schleife>

1. Workflow-Instance gestartet, id="1"

2. downloadImage geplant

3. downloadImage abgeschlossen, return="foo"

4. createThumbnail geplant

5. createThumbnail abgeschlossen, return="b
ar"

6. uploadImage geplant

7. uploadImage abgeschlossen

...

Wenn ein Aufruf von processImage erfolgt, erstellt das Framework eine neue Workflow-Instanz
in Amazon SWF. Dies ist ein dauerhafter Datensatz der gestarteten Workflow-Instance. Das
Programm wird bis zum Aufruf der downloadImage Aktivität ausgeführt, wodurch Amazon
SWF aufgefordert wird, eine Aktivität zu planen. Der Workflow wird weiter ausgeführt und erstellt
Aufgaben für nachfolgende Aktivitäten. Sie können jedoch erst ausgeführt werden, wenn die
downloadImage Aktivität abgeschlossen ist. Somit endet diese Episode der Wiederholung.
Amazon SWF sendet die Aufgabe für die downloadImage Aktivität zur Ausführung. Sobald sie
abgeschlossen ist, wird zusammen mit dem Ergebnis ein Eintrag in der Historie erstellt. Der Workflow
ist jetzt bereit, fortzufahren, und eine Entscheidungsaufgabe wird von Amazon SWF generiert. Das
Framework empfängt die Entscheidungsaufgabe und wiederholt den Workflow, wobei das Ergebnis
des heruntergeladenen Abbilds wie im Verlauf aufgezeichnet eingefügt wird. Dadurch wird die
Blockierung der Aufgabe für createThumbnail aufgehoben, und die Ausführung des Programms
wird weiter fortgesetzt, indem die createThumbnail Aktivitätsaufgabe in Amazon SWF geplant
wird. Derselbe Prozess wird für uploadImage wiederholt. Die Ausführung des Programms geht
auf diese Weise weiter, bis der Workflow alle Abbilder verarbeitet hat und es keine ausstehenden
Aufgaben gibt. Da kein Ausführungsstatus lokal gespeichert ist, kann jede Entscheidungsaufgabe
möglicherweise auf einem anderen Computer ausgeführt werden. Dadurch können Sie ganz einfach
Programme schreiben, die fehlertolerant und problemlos skalierbar sind.

Workflow-Ausführung API-Version 2021-04-28 63

AWS Flow Framework für Java Entwicklerhandbuch

Nichtdeterminismus

Da das Framework auf der Wiedergabe basiert, ist es wichtig, dass der Orchestrierungscode (der
gesamte Workflow-Code mit Ausnahme von Aktivitätsimplementierungen) deterministisch ist.
Beispielsweise sollte der Steuerungsfluss in Ihrem Programm nicht von einer zufälligen Zahl oder
der aktuellen Zeit abhängen. Da sich diese Dinge zwischen Aufrufen ändern, folgt die Wiedergabe
möglicherweise nicht demselben Pfad durch die Orchestrierungslogik. Dies führt zu unerwarteten
Ergebnissen oder Fehlern. Das Framework bietet einen WorkflowClock, den Sie verwenden
können, um die aktuelle Zeit auf deterministische Weise abzurufen. Weitere Informationen finden Sie
im Abschnitt zu Ausführungskontext.

Note

Eine falsche Spring-Verdrahtung der Workflow-Implementierungsobjekte kann auch
zu Nichtdeterminismus führen. Workflow-Implementierungs-Beans sowie Beans, von
denen sie abhängig sind, müssen sich im Workflow-Umfang (WorkflowScope) befinden.
Beispielsweise führt das Vertraten einer Workflow-Implementierungs-Bean mit einer Bean,
die den Zustand behält und sich im globalen Kontext befindet, zu unerwartetem Verhalten.
Weitere Details finden Sie im Abschnitt Spring-Integration.

Nichtdeterminismus API-Version 2021-04-28 64

AWS Flow Framework für Java Entwicklerhandbuch

AWS Flow Framework für Java-Programmierhandbuch

Dieser Abschnitt enthält Einzelheiten zur Verwendung der Funktionen von AWS Flow Framework for
Java zur Implementierung von Workflow-Anwendungen.

Themen

• Implementierung von Workflow-Anwendungen mit dem AWS Flow Framework

• Workflow- und Aktivitäts-Verträge

• Registrierung von Workflow- und Aktivitätstypen

• Aktivitäts- und Workflow-Clients

• Workflow-Implementierung

• Implementierung von Aktivitäten

• AWS Lambda Aufgaben umsetzen

• Ausführen von Programmen, die mit dem AWS Flow Framework für Java geschrieben wurden

• Ausführungskontext

• Untergeordnete Workflow-Ausführungen

• Fortlaufende Workflows

• Aufgabenpriorität in Amazon SWF festlegen

• DataConverters

• Datenübergabe an asynchrone Methoden

• Prüfbarkeit und Dependency Injection

• Fehlerbehandlung

• Wiederholen fehlgeschlagener Aktivitäten

• Daemon-Aufgaben

• AWS Flow Framework für Java Replay Behavior

Implementierung von Workflow-Anwendungen mit dem AWS Flow
Framework

Die typischen Schritte bei der Entwicklung eines Workflows mit dem AWS Flow Framework sind:

Implementieren von Workflow-Anwendungen API-Version 2021-04-28 65

AWS Flow Framework für Java Entwicklerhandbuch

1. Definieren Sie Aktivitäts- und Workflow-Verträge. Analysieren Sie die Anforderungen Ihrer
Anwendung und bestimmen Sie die erforderlichen Aktivitäten sowie die Workflow-Topologie. Die
Aktivitäten betreffen die erforderlichen Verarbeitungsaufgaben, während die Workflow-Topologie
die grundlegende Struktur und die Geschäftslogik des Workflows definiert.

Eine Medien verarbeitende Anwendung muss z. B. eine Datei herunterladen, verarbeiten und die
verarbeitete Datei in einen Amazon Simple Storage Service (S3)-Bucket herunterladen. Dieser
Prozess lässt sich in vier Aktivitätsaufgaben gliedern:

1. Die Datei von einem Server herunterladen

2. Die Datei verarbeiten (z. B. durch Transcodieren in ein anderes Medienformat)

3. Die Datei in den S3-Bucket hochladen

4. Eine Bereinigung durch Löschen der lokalen Dateien durchführen

Dieser Workflow verfügt über eine Eintrittspunktmethode und implementiert eine einfache
lineare Topologie, die die Aktivitäten nacheinander ausführt, ähnlich wie HelloWorldWorkflow
Bewerbung.

2. Implementieren Sie Aktivitäts- und Workflow-Schnittstellen. Die Workflow- und Aktivitätsverträge
werden durch Java-Schnittstellen definiert, durch die ihre Aufrufkonventionen von SWF
prognostizierbar werden und Sie Flexibilität beim Implementieren Ihrer Workflow-Logik und
Aktivitätsaufgaben erhalten. Die verschiedenen Teile Ihres Programms können als Consumer
der Daten des jeweils anderen agieren, müssen jedoch die Implementierungsdetails der anderen
Teile nicht alle kennen.

Sie können z. B. eine FileProcessingWorkflow-Schnittstelle definieren und verschiedene
Workflow-Implementierungen für Videocodierung, Komprimierung, Thumbnails usw.
bereitstellen. Jeder dieser Workflows kann über verschiedene Kontrollabläufe verfügen und
unterschiedliche Aktivitätsmethoden aufrufen, ohne dass Ihr Workflow-Starter davon Kenntnis
haben muss. Mit Schnittstellen können Sie Ihre Workflows ganz einfach testen, indem Sie
Pseudoimplementierungen verwenden, die später durch funktionierenden Code ersetzt werden
können.

3. Generieren Sie Aktivitäts- und Workflow-Clients. AWS Flow Framework Dadurch müssen Sie die
Einzelheiten der Verwaltung der asynchronen Ausführung, des Sendens von HTTP-Anfragen,
des Marshallings von Daten usw. nicht mehr implementieren. Stattdessen führt der Workflow-
Starter durch Aufrufen einer Methode auf dem Workflow-Client eine Workflow-Instance aus und

Implementieren von Workflow-Anwendungen API-Version 2021-04-28 66

AWS Flow Framework für Java Entwicklerhandbuch

die Workflow-Implementierung führt Aktivitäten durch Aufrufen von Methoden auf dem Aktivitäts-
Client aus. Das Framework verarbeitet die Details dieser Interaktionen im Hintergrund.

Wenn Sie Eclipse verwenden und Ihr Projekt wie in konfiguriert haben, verwendet der AWS
Flow Framework Annotationsprozessor die SchnittstellendefinitionenEinrichtung des AWS
Flow Framework für Java, um automatisch Workflow- und Aktivitätsclients zu generieren, die
dieselben Methoden wie die entsprechende Schnittstelle bereitstellen.

4. Implementieren Sie Aktivitäts- und Workflow-Hostanwendungen. Ihre Workflow- und
Aktivitätsimplementierungen müssen in Hostanwendungen eingebettet sein, die Amazon
SWF nach Aufgaben abfragen, alle Daten zusammenführen und die entsprechenden
Implementierungsmethoden aufrufen. AWS Flow Framework für Java beinhaltet
WorkflowWorkerund ActivityWorkerKlassen, die die Implementierung von Hostanwendungen
unkompliziert und einfach machen.

5. Testen Sie Ihren Arbeitsablauf. AWS Flow Framework for Java bietet eine JUnit Integration, mit
der Sie Ihre Workflows inline und lokal testen können.

6. Stellen Sie die Worker bereit. Sie können Ihre Mitarbeiter nach Bedarf einsetzen — Sie können
sie beispielsweise auf EC2 Amazon-Instances oder auf Computern in Ihrem Rechenzentrum
einsetzen. Nach der Bereitstellung und dem Start beginnen die Worker, Amazon SWF nach
Aufgaben abzufragen und diese nach Bedarf zu bearbeiten.

7. Starten Sie die Ausführungen. Eine Anwendung startet eine Workflow-Instance, indem der
Workflow-Client zum Abrufen des Eintrittspunkts des Workflows verwendet wird. Sie können
Workflows auch mithilfe der Amazon SWF SWF-Konsole starten. Unabhängig davon, wie
Sie eine Workflow-Instance starten, können Sie die Amazon SWF SWF-Konsole verwenden,
um die laufende Workflow-Instanz zu überwachen und den Workflow-Verlauf auf laufende,
abgeschlossene und fehlgeschlagene Instances zu untersuchen.

Das AWS SDK für Javabeinhaltet eine Reihe von AWS Flow Framework Java-Beispielen, die Sie
durchsuchen und ausführen können, indem Sie den Anweisungen in der Datei readme.html im
Stammverzeichnis folgen. Es gibt auch eine Reihe von Rezepten — einfache Anwendungen —, die
zeigen, wie man mit einer Vielzahl von spezifischen Programmierproblemen umgeht. Diese finden Sie
unter AWS Flow Framework Rezepte.

Workflow- und Aktivitäts-Verträge

Java-Schnittstellen werden zum Deklarieren der Signaturen der Workflows und Aktivitäten verwendet.
Die Schnittstelle bildet den Vertrag zwischen der Implementierung des Workflows (oder der

Workflow- und Aktivitäts-Verträge API-Version 2021-04-28 67

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://aws.amazon.com/sdkforjava/
https://aws.amazon.com/code/2535278400103493

AWS Flow Framework für Java Entwicklerhandbuch

Aktivität) und dem Client dieses Workflows (oder der Aktivität). Ein Workflow-Typ MyWorkflow wird
beispielsweise mithilfe einer Schnittstelle definiert, die mit der @Workflow-Anmerkung versehen ist:

@Workflow
@WorkflowRegistrationOptions(
 defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface MyWorkflow
{
 @Execute(version = "1.0")
 void startMyWF(int a, String b);

 @Signal
 void signal1(int a, int b, String c);

 @GetState
 MyWorkflowState getState();
}

Der Vertrag hat keine implementierungsspezifischen Einstellungen. Diese Nutzung der
implementierungsneutralen Verträge ermöglicht es, dass Client von der Implementierung entkoppelt
werden, und bietet dadurch die Flexibilität, die Implementierungsdetails zu ändern, ohne den Client
zu brechen. Umgekehrt können Sie den Client auch ändern, ohne zu nötigen, dass Änderungen
am Workflow oder der Aktivität verbraucht werden. Beispielsweise kann der Client so geändert
werden, dass er eine Aktivität asynchron unter Verwendung von Promises (Promise<T>) aufruft,
ohne eine Änderung an der Aktivitätsimplementierung zu erfordern. In ähnlicher Weise kann die
Implementierung der Aktivität so geändert werden, dass sie asynchron abgeschlossen wird, z. B.
durch eine Person, die eine E-Mail sendet, ohne dass die Clients der Aktivität geändert werden
müssen.

Im Beispiel oben enthält die Workflow-Instance MyWorkflow eine Methode, startMyWF, für das
Starten einer neuen Ausführung. Diese Methode wird mit der @Execute-Anmerkung versehen
und muss einen Rückgabetyp von void oder Promise<> haben. In einer gegebenen Workflow-
Schnittstelle kann maximal eine Methode mit dieser Anmerkung versehen werden. Diese Methode ist
der Eintrittspunkt der Workflow-Logik und das Framework ruft diese Methode auf, um die Workflow-
Logik auszuführen, wenn eine Entscheidungsaufgabe empfangen wird.

Die Workflow-Schnittstelle definiert auch die Signale, die an den Workflow gesendet werden
können. Die Signalmethode wird aufgerufen, wenn ein Signal mit einem passenden Namen von der

Workflow- und Aktivitäts-Verträge API-Version 2021-04-28 68

AWS Flow Framework für Java Entwicklerhandbuch

Workflow-Ausführung empfangen wird. Beispielsweise deklariert die MyWorkflow-Schnittstelle eine
Signalmethode, signal1, mit der Anmerkung @Signal versehen.

Die @Signal-Anmerkung ist auf Signalmethoden erforderlich. Der Rückgabetyp einer Signalmethode
muss void sein. Eine Workflow-Schnittstelle kann null oder mehrere Signalmethoden in ihr definiert
haben. Sie können eine Workflow-Schnittstelle ohne eine @Execute-Methode deklarieren und einige
@Signal-Methoden zum Generieren von Clients deklarieren, die ihre Ausführung nicht starten, aber
Signal an laufende Ausführungen senden können.

Methoden, die mit den Anmerkungen @Execute und @Signal versehen sind, können eine beliebige
Anzahl an Parametern jeden Typ haben, abgesehen von Promise<T> oder seinen Derivaten.
Dadurch können Sie stark typisierte Eingaben beim Start und während der Ausführung an eine
Workflow-Ausführung übergeben. Der Rückgabetyp der @Execute-Methode muss void oder
Promise<> sein.

Zudem können Sie auch eine Methode in der Workflow-Schnittstelle deklarieren, um den aktuellen
Zustand einer Workflow-Ausführung zu melden, zum Beispiel die getState-Methode im vorherigen
Beispiel. Dieser Zustand ist nicht der gesamte Anwendungszustand des Workflows. Die vorgesehene
Nutzung dieser Funktion ist, die Speicherung von bis zu 32 KB an Daten zuzulassen, um den
aktuellen Status der Ausführung anzugeben. In einem Bestellvorgangs-Workflow können Sie auch
eine Zeichenfolge speichern, die angibt, dass die Bestellung eingegangen, verarbeitet oder storniert
wurde. Diese Methode wird jedes Mal, wenn eine Entscheidungsaufgabe abgeschlossen wurde,
vom Framework aufgerufen, um den aktuellen Zustand zu erhalten. Der Status wird in Amazon
Simple Workflow Service (Amazon SWF) gespeichert und kann mit dem generierten externen Client
abgerufen werden. Auf diese Weise können Sie den aktuellen Zustand einer Workflow-Ausführung
prüfen. Mit @GetState versehene Methoden dürfen keine Argumente akzeptieren und dürfen nicht
den Rückgabetyp void haben. Sie können jeden Typ, der ihren Anforderungen entspricht, von dieser
Methode zurückgeben. Im Beispiel oben wird ein Objekt MyWorkflowState (siehe Definition unten)
von der Methode zurückgegeben, die verwendet wird, um einen Zeichenfolgenzustand und einen
numerischen Prozentabschluss zu speichern. Diese Methode soll einen schreibgeschützten Zugriff
auf das Workflow-Implementierungsobjekt durchführen und wird synchron aufgerufen, wodurch die
Verwendung von asynchronen Operationen, wie das Aufrufen von Methoden mit der Anmerkung
@Asynchronous nicht mehr zulässig ist. In einer Workflow-Schnittstelle kann maximal eine Methode
mit dieser Anmerkung @GetState versehen werden.

public class MyWorkflowState {
 public String status;
 public int percentComplete;

Workflow- und Aktivitäts-Verträge API-Version 2021-04-28 69

AWS Flow Framework für Java Entwicklerhandbuch

}

Gleichermaßen wird eine Reihe von Aktivitäten mit einer Schnittstelle mit der Anmerkung
@Activities definiert. Jede Methode in der Schnittstelle entspricht einer Aktivität — zum Beispiel:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface MyActivities {
 // Overrides values from annotation found on the interface
 @ActivityRegistrationOptions(description = "This is a sample activity",
 defaultTaskScheduleToStartTimeoutSeconds = 100,
 defaultTaskStartToCloseTimeoutSeconds = 60)
 int activity1();

 void activity2(int a);
}

Über die Schnittstelle können Sie eine Reihe von verwandten Aktivitäten gruppieren. Sie können eine
beliebige Anzahl von Aktivitäten innerhalb einer Aktivitäten-Schnittstelle definieren und Sie können so
viele Aktivitäten-Schnittstellen definieren wie Sie möchten. Ähnlich wie die Methoden @Execute und
@Signal können Aktivitätsmethoden eine beliebige Anzahl an Argumenten jeden Typs akzeptieren,
abgesehen von Promise<T> oder seinen Derivaten. Der Rückgabetyp einer Aktivität darf nicht
Promise<T> oder seine Derivate sein.

Registrierung von Workflow- und Aktivitätstypen

Amazon SWF erfordert, dass Aktivitäts- und Workflowtypen registriert werden, bevor sie verwendet
werden können. Das Framework registriert die Workflows und Aktivitäten automatisch in den
Implementierungen, die Sie dem Worker hinzufügen. Das Framework sucht nach Typen, die
Workflows und Aktivitäten implementieren, und registriert sie bei Amazon SWF. Das Framework
verwendet standardmäßig die Schnittstellendefinitionen, um Registrierungsoptionen für
Workflow- und Aktivitätstypen abzuleiten. Alle Workflow-Schnittstellen müssen entweder über die
@WorkflowRegistrationOptions-Annotation oder die @SkipRegistration-Annotation
verfügen. Der Workflow-Worker registriert alle Workflow-Typen, mit denen er konfiguriert ist, die
über die @WorkflowRegistrationOptions-Annotation verfügen. Gleichermaßen muss jede
Aktivitätsmethode mit entweder der @ActivityRegistrationOptions-Annotation oder der
@SkipRegistration-Annotation versehen sein oder es muss eine dieser Annotationen in der

Registrierung von Workflow- und Aktivitätstypen API-Version 2021-04-28 70

AWS Flow Framework für Java Entwicklerhandbuch

@Activities-Schnittstelle vorhanden sein. Der Aktivitäts-Worker registriert alle Aktivitäts-Typen,
mit denen er konfiguriert ist, für die eine @ActivityRegistrationOptions-Annotation gilt.
Die Registrierung wird beim Starten einer der Worker automatisch durchgeführt. Workflow- und
Aktivitätsarten, die über @SkipRegistration-Annotation verfügen, werden nicht registriert.
@ActivityRegistrationOptionsund @SkipRegistration-Annotationen besitzen eine
Übersteuersemantik und die spezifischste wird auf einen Aktivitätstyp angewendet.

Beachten Sie, dass Amazon SWF es Ihnen nicht erlaubt, den Typ erneut zu registrieren oder zu
ändern, nachdem er registriert wurde. Das Framework wird versuchen, alle Typen zu registrieren,
aber wenn der Typ bereits registriert ist, wird er nicht erneut registriert und es wird kein Fehler
gemeldet.

Wenn Sie registrierte Einstellungen ändern möchten, müssen Sie eine neue Version des Typs
registrieren. Sie können registrierte Einstellungen auch beim Starten einer neuen Ausführung oder
beim Aufrufen einer Aktivität, die die generierten Clients verwendet, überschreiben.

Die Registrierung erfordert einen Typnamen und andere Registrierungsoptionen. Die
Standardimplementierungen bestimmt diese wie folgt:

Workflow-Typname und Version

Das Framework bestimmt den Namen des Workflow-Typs über die Workflow-Schnittstelle. Die
Form des Standard-Workflow-Typnamens lautet {prefix} {name}. {prefix} ist auf den Namen
der @Workflow Schnittstelle gefolgt von einem '.' gesetzt und {name} ist auf den Namen der
@Execute Methode gesetzt. Der Standardname des Workflow-Typs im vorhergehenden Beispiel
lautet MyWorkflow.startMyWF. Sie können den Standardnamen mithilfe des Namenparameters
der @Execute-Methode überschreiben. Der Standardname des Workflow-Typs im Beispiel lautet
startMyWF. Der Name darf keine leere Zeichenfolge sein. Beachten Sie, dass beim Überscheiben
des Namens mit @Execute das Framework diesem nicht automatisch ein Präfix voranstellt. Es steht
Ihnen frei, Ihr eigenes Namensschema zu verwenden.

Die Workflow-Version wird mit dem version-Parameter der @Execute-Annotation angegeben.
Es gibt keinen Standard für version und es muss explizit angegeben werden. versionist eine
formfreie Zeichenfolge und es steht Ihnen frei, Ihr eigenes Versioning-Schema zu verwenden.

Signalname

Der Name des Signals kann mit dem Namenparameter der @Signal-Annotation angegeben werden.
Wenn nicht angegeben, gilt standardmäßig der Name der Signalmethode.

Workflow-Typname und Version API-Version 2021-04-28 71

AWS Flow Framework für Java Entwicklerhandbuch

Aktivitätstypname und Version

Das Framework bestimmt den Namen des Aktivitätstypen über die Aktivitätenschnittstelle. Die Form
des Standardnamens für den Aktivitätstyp ist {prefix} {name}. {prefix} ist auf den Namen der
@Activities Schnittstelle gefolgt von einem '.' gesetzt und {name} ist auf den Methodennamen
gesetzt. Die Standardeinstellung {prefix} kann in der @Activities Anmerkung auf der
Aktivitätsschnittstelle außer Kraft gesetzt werden. Sie können den Namen des Aktivitätstyps auch
mit der @Activity-Annotation in der Aktivitätsmethode angeben. Beachten Sie, dass beim
Überscheiben des Namens mit @Activity das Framework diesem nicht automatisch ein Präfix
voranstellt. Es steht Ihnen frei, Ihr eigenes Namensschema zu verwenden.

Die Aktivitätsversion wird mit dem Versionsparameter der @Activities-Annotation angegeben.
Diese Version wird als Standard für alle Aktivitäten verwendet, die in der Schnittstelle definiert sind,
und kann pro Aktivität mit der @Activity-Annotation überschrieben werden.

Standardaufgabenliste

Die Standardaufgabenliste kann mit den Annotationen @WorkflowRegistrationOptions und
@ActivityRegistrationOptions und durch Festlegen des defaultTaskList-Parameters
konfiguriert werden. Standardmäßig ist der Wert eingestell USE_WORKER_TASK_LIST. Dies ist ein
spezieller Wert, der das Framework anweist, die Aufgabenliste zu verwenden, die in dem Worker-
Objekt konfiguriert ist, das für die Registrierung des Aktivitäts- oder Workflow-Typs verwendet
wird. Sie können eine Standardaufgabenliste auch nicht registrieren, indem Sie sie mit diesen
Annotationen auf NO_DEFAULT_TASK_LIST festlegen. Dies kann in Fällen verwendet werden, bei
denen Sie festlegen möchten, dass die Aufgabenliste zur Laufzeit angegeben werden soll. Wenn
keine Standardaufgabenliste registriert wurde, müssen Sie die Aufgabenliste beim Starten des
Workflows oder beim Aufrufen der Aktivitätsmethode mit den Parametern StartWorkflowOptions
und ActivitySchedulingOptions für die jeweilige Methodenüberladung des generierten Clients
angeben.

Weitere Registrierungsoptionen

Alle Registrierungsoptionen für Workflows und Aktivitätstypen, die von der Amazon SWF SWF-API
zugelassen werden, können über das Framework angegeben werden.

Eine vollständige Liste der Workflow-Registrierungsoptionen finden Sie im Folgenden:

• @Workflow

• @Execute

Aktivitätstypname und Version API-Version 2021-04-28 72

AWS Flow Framework für Java Entwicklerhandbuch

• @WorkflowRegistrationOptions

• @Signal

Eine vollständige Liste der Aktivitäts-Registrierungsoptionen finden Sie im Folgenden:

• @Aktivität

• @Aktivität

• @ActivityRegistrationOptions

Wenn Sie die vollständige Kontrolle über die Registrierung von Typen haben möchten, lesen Sie
Worker-Erweiterbarkeit.

Aktivitäts- und Workflow-Clients

Workflow- und Aktivitäts-Clients werden von dem Framework generiert, das auf den Schnittstellen
@Workflow und @Activities basiert. Es werden separate Client-Schnittstellen generiert, die
Methoden und Einstellungen enthalten, die nur innerhalb des Clients Sinn ergeben. Wenn Sie
mit Eclipse entwickeln, erledigt dies das Amazon SWF Eclipse-Plug-In jedes Mal, wenn Sie die
Datei mit der entsprechenden Schnittstelle speichern. Der generierte Code wird im generierten
Quellverzeichnis Ihres Projekts im selben Paket platziert wie die Schnittstelle.

Note

Beachten Sie, dass der von Eclipse verwendete Standardname für das
Verzeichnis .apt_generated lautet. Eclipse zeigt keine Verzeichnisse, deren Namen mit
beginnen. Wenn Sie im Package Explorer. Wenn Sie die generierten Dateien im Project
Explorer anzeigen möchten, verwenden Sie einen anderen Verzeichnisnamen. Klicken Sie
in Eclipse mit der rechten Maustaste auf das Paket im Package Explorer, wählen Sie dann
Properties (Eigenschaften), Java Compiler, Annotation processing (Annotationen verarbeiten)
und ändern Sie die Einstellung Generate source directory (Quellverzeichnis generieren).

Workflow-Clients

Die generierten Artefakte für den Workflow enthalten drei clientseitige Schnittstellen und die Klassen,
die sie implementieren. Die generierten Clients umfassen Folgendes:

Aktivitäts- und Workflow-Clients API-Version 2021-04-28 73

AWS Flow Framework für Java Entwicklerhandbuch

• Einen asynchronen Client, der aus einer Workflow-Implementierung heraus verbraucht werden soll,
die asynchrone Methoden bereitstellt, die den Workflow ausführen und Signale senden.

• Einen externen Client, der verwendet werden kann, um Ausführungen zu starten, Signale zu
senden und den Workflow-Status von außerhalb einer Workflow-Implementierung zu empfangen.

• Einen Self-Client, der verwendet werden kann, um einen kontinuierlichen Workflow zu generieren.

So lauten z.B. die generierten Client-Schnittstellen für die Musterschnittstelle MyWorkflow wie folgt:

//Client for use from within a workflow
public interface MyWorkflowClient extends WorkflowClient
{
 Promise<Void> startMyWF(
 int a, String b);

 Promise<Void> startMyWF(
 int a, String b,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 void signal1(
 int a, int b, String c);
}

Workflow-Clients API-Version 2021-04-28 74

AWS Flow Framework für Java Entwicklerhandbuch

//External client for use outside workflows
public interface MyWorkflowClientExternal extends WorkflowClientExternal
{
 void startMyWF(
 int a, String b);

 void startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride);

 void signal1(
 int a, int b, String c);

 MyWorkflowState getState();
}

//self client for creating continuous workflows
public interface MyWorkflowSelfClient extends WorkflowSelfClient
{
 void startMyWF(
 int a, String b);

 void startMyWF(
 int a, String b,
 Promise<?>... waitFor);

 void startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b,

Workflow-Clients API-Version 2021-04-28 75

AWS Flow Framework für Java Entwicklerhandbuch

 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

Die Schnittstellen haben eine Methodenüberladungen, die jeweils der in der Schnittstelle deklarierten
Methode @Workflow entsprechen.

Der externe Client spiegelt die Methoden der Schnittstelle @Workflow mit einer zusätzlichen
Methodenüberladung @Execute, die StartWorkflowOptions verwendet. Sie können mit dieser
Überladung zusätzliche Optionen weiterleiten, wenn Sie eine neue Workflow-Ausführung starten.
Diese Optionen ermöglichen Ihnen die Standardaufgabenliste, die Timeout-Einstellungen und die
zugehörigen Tags mit der Workflow-Ausführung zu überschreiben.

Auf der anderen Seite verfügt der asynchrone Client über Methoden, die einen asynchronen Aufruf
der Methode @Execute ermöglichen. Die folgenden Methodenüberladungen werden in der Client-
Schnittstelle für die Methode @Execute in der Workflow-Schnittstelle generiert:

1. Eine Überladung, welche die ursprünglichen Argumente unverändert übernimmt. Der Rückgabetyp
dieser Überladung ist Promise<Void>, wenn die ursprüngliche Methode void zurückgegeben
hat; andernfalls ist es Promise<>, wie in der ursprünglichen Methode deklariert. Zum Beispiel:

Ursprüngliche Methode:

void startMyWF(int a, String b);

Generierte Methode:

Promise<Void> startMyWF(int a, String b);

Diese Überladung sollte verwendet werden, wenn alle Argumente des Workflows verfügbar sind
und nicht auf diese gewartet werden muss.

2. Eine Überladung, die die ursprünglichen Argumente unverändert sowie zusätzliche variable
Argumente des Typs Promise<?> übernimmt. Der Rückgabetyp dieser Überladung ist
Promise<Void>, wenn die ursprüngliche Methode void zurückgegeben hat; andernfalls ist es
Promise<>, wie in der ursprünglichen Methode deklariert. Zum Beispiel:

Ursprüngliche Methode:

void startMyWF(int a, String b);

Workflow-Clients API-Version 2021-04-28 76

AWS Flow Framework für Java Entwicklerhandbuch

Generierte Methode:

Promise<void> startMyWF(int a, String b, Promise<?>...waitFor);

Diese Überladung sollte verwendet werden, wenn alle Argumente des Workflows verfügbar sind
und nicht auf diese gewartet werden muss, wenn Sie jedoch darauf warten möchten, dass ein
anderes Promise betriebsbereit wird. Das variable Argument kann verwendet werden, um Objekte
wie Promise<?> weiterzuleiten, die nicht als Argumente deklariert waren, wenn Sie noch mit der
Ausführung des Aufrufs warten möchten.

3. Eine Überladung, die die ursprünglichen Argumente unverändert übernimmt sowie ein zusätzliches
Argument des Typs StartWorkflowOptions und ein zusätzliches Argument des Typs
Promise<?>. Der Rückgabetyp dieser Überladung ist Promise<Void>, wenn die ursprüngliche
Methode void zurückgegeben hat; andernfalls ist es Promise<>, wie in der ursprünglichen
Methode deklariert. Zum Beispiel:

Ursprüngliche Methode:

void startMyWF(int a, String b);

Generierte Methode:

Promise<void> startMyWF(
 int a,
 String b,
 StartWorkflowOptions optionOverrides,
 Promise<?>...waitFor);

Diese Überladung sollte verwendet werden, wenn alle Argumente des Workflows verfügbar sind
und nicht auf diese gewartet werden muss, wenn Sie Standardeinstellungen überschreiben und die
Workflow-Ausführung starten möchten oder wenn Sie darauf warten möchten, dass ein anderes
Promise betriebsbereit wird. Das variable Argument kann verwendet werden, um Objekte wie
Promise<?> weiterzuleiten, die nicht als Argumente deklariert waren, wenn Sie noch mit der
Ausführung des Aufrufs warten möchten.

4. Eine Überladung mit jedem Argument in der ursprünglichen Methode, die durch einen
Promise<>-Wrapper ersetzt wurde. Der Rückgabetyp dieser Überladung ist Promise<Void>,

Workflow-Clients API-Version 2021-04-28 77

AWS Flow Framework für Java Entwicklerhandbuch

wenn die ursprüngliche Methode void zurückgegeben hat; andernfalls ist es Promise<>, wie in
der ursprünglichen Methode deklariert. Zum Beispiel:

Ursprüngliche Methode:

void startMyWF(int a, String b);

Generierte Methode:

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b);

Diese Überladung sollte verwendet werden, wenn die Argumente, die an die Workflow-
Ausführung weitergeleitet werden sollen, asynchron evaluiert werden müssen. Ein Aufruf
dieser Methodenüberladung wird so lange nicht ausgeführt, bis alle Argumente, die an diese
weitergeleitet wurden, betriebsbereit sind.

Wenn einige der Argumente bereits betriebsbereit sind, dann konvertieren Sie diese in ein
Promise, das durch die Methode Promise.asPromise(value) bereits im betriebsbereiten
Status ist. Zum Beispiel:

Promise<Integer> a = getA();
String b = getB();
startMyWF(a, Promise.asPromise(b));

5. Eine Überladung mit jedem Argument in der ursprünglichen Methode wird durch den Wrapper
Promise<> ersetzt. Die Überladung hat auch unterschiedliche variable Argumente des Typs
Promise<?>. Der Rückgabetyp dieser Überladung ist Promise<Void>, wenn die ursprüngliche
Methode void zurückgegeben hat; andernfalls ist es Promise<>, wie in der ursprünglichen
Methode deklariert. Zum Beispiel:

Ursprüngliche Methode:

void startMyWF(int a, String b);

Generierte Methode:

Promise<Void> startMyWF(
Workflow-Clients API-Version 2021-04-28 78

AWS Flow Framework für Java Entwicklerhandbuch

 Promise<Integer> a,
 Promise<String> b,
 Promise<?>...waitFor);

Diese Überladung sollte verwendet werden, wenn die Argumente, die an die Workflow-Ausführung
weitergeleitet wurden, asynchron evaluiert werden und wenn Sie darauf warten möchten, dass
ein anderes Promise ebenfalls betriebsbereit wird. Ein Aufruf dieser Methodenüberladung wird so
lange nicht ausgeführt, bis alle Argumente, die an diese weitergeleitet wurden, betriebsbereit sind.

6. Eine Überladung mit jedem Argument in der ursprünglichen Methode, die durch einen Promise<?
>-Wrapper ersetzt wurde. Die Überladung enthält auch ein zusätzliches Argument des Typs
StartWorkflowOptions und variable Argumente des Typs Promise<?>. Der Rückgabetyp
dieser Überladung ist Promise<Void>, wenn die ursprüngliche Methode void zurückgegeben
hat; andernfalls ist es Promise<>, wie in der ursprünglichen Methode deklariert. Zum Beispiel:

Ursprüngliche Methode:

void startMyWF(int a, String b);

Generierte Methode:

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionOverrides,
 Promise<?>...waitFor);

Verwenden Sie diese Überladung, wenn die Argumente, die an die Workflow-Ausführung
weitergeleitet werden sollen, asynchron evaluiert werden und wenn Sie die Standardeinstellungen
überschreiben möchten, die zum Starten der Workflow-Ausführung verwendet werden. Ein Aufruf
dieser Methodenüberladung wird so lange nicht ausgeführt, bis alle Argumente, die an diese
weitergeleitet wurden, betriebsbereit sind.

Außerdem wird für jedes Signal in der Workflow-Oberfläche eine Methode generiert — zum Beispiel:

Ursprüngliche Methode:

void signal1(int a, int b, String c);

Workflow-Clients API-Version 2021-04-28 79

AWS Flow Framework für Java Entwicklerhandbuch

Generierte Methode:

void signal1(int a, int b, String c);

Der asynchrone Client enthält keine Methode, welche der Methode entspricht, die in der
ursprünglichen Schnittstelle mit @GetState annotiert wurde. Da das Abrufen des Status einen
Webservice-Aufruf erfordert, ist er nicht für die Verwendung innerhalb eines Workflows geeignet.
Daher kann er nur über einen externen Client zur Verfügung gestellt werden.

Der Self-Client soll in einem Workflow verwendet werden, um eine neue Ausführung nach
Beendigung der aktuellen Ausführung zu starten. Die Methoden auf diesem Client sind den Methoden
auf dem asynchronen Client ähnlich, aber die Rückgabe ist void. Der Client enthält keine Methoden,
welche den Methode entsprechen, die mit @Signal und @GetState annotiert wurden. Weitere
Informationen hierzu finden Sie unter Fortlaufende Workflows.

Die generierten Clients sind von den Basisschnittstellen WorkflowClient und
WorkflowClientExternal abgeleitet, die Methoden bereitstellen, die Sie zum Abbrechen
oder Beenden der Workflow-Ausführung verwenden können. Weitere Informationen zu diesen
Schnittstellen finden Sie in der AWS SDK für Java -Dokumentation.

Die generierten Clients ermöglichen die Interaktion mit den Workflow-Ausführungen in einer stark
typisierten Form. Eine Instance eines generierten Client, wird, wenn sie einmal erstellt wurde, mit
einer spezifischen Workflow-Ausführung verknüpft und kann nur für diese Ausführung verwendet
werden. Außerdem stellt das Framework dynamische Clients bereit, die nicht für einen Workflow-Typ
oder eine Ausführung typisch sind. Die generierten Clients basieren verdeckt auf diesem Client. Sie
können diese Clients auch direkt verwenden. Sehen Sie sich den Abschnitt zu Dynamische Clients
an.

Das Framework generiert auch Fabriken zum Erstellen stark typisierter Clients. Die generierten
Client-Fabriken für die Musterschnittstelle MyWorkflow sind:

//Factory for clients to be used from within a workflow
public interface MyWorkflowClientFactory
 extends WorkflowClientFactory<MyWorkflowClient>
{
}

//Factory for clients to be used outside the scope of a workflow
public interface MyWorkflowClientExternalFactory
{

Workflow-Clients API-Version 2021-04-28 80

AWS Flow Framework für Java Entwicklerhandbuch

 GenericWorkflowClientExternal getGenericClient();
 void setGenericClient(GenericWorkflowClientExternal genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);
 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 MyWorkflowClientExternal getClient();
 MyWorkflowClientExternal getClient(String workflowId);
 MyWorkflowClientExternal getClient(WorkflowExecution workflowExecution);
 MyWorkflowClientExternal getClient(
 WorkflowExecution workflowExecution,
 GenericWorkflowClientExternal genericClient,
 DataConverter dataConverter,
 StartWorkflowOptions options);
}

Die Basisschnittstelle für WorkflowClientFactory ist:

public interface WorkflowClientFactory<T> {
 GenericWorkflowClient getGenericClient();
 void setGenericClient(GenericWorkflowClient genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);
 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 T getClient();
 T getClient(String workflowId);
 T getClient(WorkflowExecution execution);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options,
 DataConverter dataConverter);
}

Sie sollten diese Fabriken zum Erstellen von Client-Instances verwenden. Mit der Fabrik können Sie
den generischen Client (der generische Client sollte für die Bereitstellung der benutzerdefinierten
Client-Implementierung verwendet werden) und den DataConverter, der vom Client zum
Daten-Marshalling verwendet wird, sowie die Optionen, die verwendet werden, um die Workflow-
Ausführung zu starten, konfigurieren. Weitere Informationen finden Sie unter den Abschnitten
DataConverters und Untergeordnete Workflow-Ausführungen. Das StartWorkflowOptions enthält
Einstellungen, mit denen Sie die bei der Registrierung angegebenen Standardwerte (z. B. Timeouts)

Workflow-Clients API-Version 2021-04-28 81

AWS Flow Framework für Java Entwicklerhandbuch

außer Kraft setzen können. Weitere Informationen zur Klasse finden Sie in der Dokumentation.
StartWorkflowOptions AWS SDK für Java

Einen externen Client, der verwendet werden kann, um Workflow-Ausführungen außerhalb eines
Workflows zu starten, während der asynchrone Client verwendet werden kann, um eine Workflow-
Ausführung vom Code innerhalb eines Workflows zu starten. Zum Starten einer Ausführung
verwenden Sie einfach den generierten Client, um die Methode aufzurufen, welche der Methode
entspricht, die @Execute in der Workflow-Schnittstelle annotiert ist.

Das Framework generiert auch Implementierungsklassen für die Client-Schnittstellen. Diese Clients
erstellen Anfragen und senden sie an Amazon SWF, um die entsprechende Aktion auszuführen. Die
Client-Version der @Execute Methode startet entweder eine neue Workflow-Ausführung oder erstellt
eine untergeordnete Workflow-Ausführung mit Amazon SWF APIs. In ähnlicher Weise verwendet die
Client-Version der @Signal Methode Amazon SWF APIs , um ein Signal zu senden.

Note

Der externe Workflow-Client muss mit dem Amazon SWF-Client und der Domain konfiguriert
sein. Sie können entweder den Client Factory-Konstruktor verwenden, der diese als
Parameter verwendet, oder eine generische Client-Implementierung übergeben, die bereits
mit dem Amazon SWF-Client und der Domain konfiguriert ist.
Das Framework durchläuft die Typenhierarchie der Workflow-Schnittstelle und generiert auch
Client-Schnittstellen für übergeordnete Workflow-Schnittstellen und leitet sich aus diesen ab.

Aktivitäts-Clients

Ähnlich wie ein Workflow-Client, wird für jede Schnittstelle ein Client generiert, der mit @Activities
annotiert ist. Die generierten Artefakte umfassen eine clientseitige Schnittstelle und eine Client-
Klasse. Die generierte Schnittstelle für die oben genannte Musterschnittstelle @Activities
(MyActivities) lautet wie folgt:

public interface MyActivitiesClient extends ActivitiesClient
{
 Promise<Integer> activity1();
 Promise<Integer> activity1(Promise<?>... waitFor);
 Promise<Integer> activity1(ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(int a);
 Promise<Void> activity2(int a,

Aktivitäts-Clients API-Version 2021-04-28 82

AWS Flow Framework für Java Entwicklerhandbuch

 Promise<?>... waitFor);
 Promise<Void> activity2(int a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a);
 Promise<Void> activity2(Promise<Integer> a,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
}

Die Schnittstelle enthält eine Menge von Methodenüberladungen, die jeweils der Aktivitätsmethode
in der Schnittstelle @Activities entsprechen. Die Überladungen dienen der Bequemlichkeit und
ermöglichen den asynchronen Aufruf von Aktivitäten. Für jede Aktivitätsmethode in der Schnittstelle
@Activities werden die folgenden Methodenüberladungen in der Client-Schnittstelle generiert:

1. Eine Überladung, welche die ursprünglichen Argumente unverändert übernimmt. Der Rückgabetyp
dieser Überladung ist Promise<T>, wobei T der Rückgabetyp der ursprünglichen Methode ist.
Zum Beispiel:

Ursprüngliche Methode:

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2(int foo);

Diese Überladung sollte verwendet werden, wenn alle Argumente des Workflows verfügbar sind
und nicht auf diese gewartet werden muss.

2. Eine Überladung, welche die ursprünglichen Argumente unverändert, ein Argument der Art
ActivitySchedulingOptions und ein zusätzliches variables Argument des Typs Promise<?
> übernimmt. Der Rückgabetyp dieser Überladung ist Promise<T>, wobei T der Rückgabetyp der
ursprünglichen Methode ist. Zum Beispiel:

Ursprüngliche Methode:

void activity2(int foo);

Aktivitäts-Clients API-Version 2021-04-28 83

AWS Flow Framework für Java Entwicklerhandbuch

Generierte Methode:

Promise<Void> activity2(
 int foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);

Diese Überladung sollte verwendet werden, wenn alle Argumente des Workflows verfügbar
sind und nicht auf diese gewartet werden muss, wenn Sie Standardeinstellungen überschreiben
oder darauf warten, dass ein zusätzliches Promises betriebsbereit ist. Die variablen Argumente
können verwendet werden, um zusätzliche Objekte wie Promise<?> weiterzuleiten, die nicht als
Argumente deklariert waren, wenn Sie noch mit der Ausführung des Aufrufs warten möchten.

3. Eine Überladung mit jedem Argument in der ursprünglichen Methode, die durch einen
Promise<>-Wrapper ersetzt wurde. Der Rückgabetyp dieser Überladung ist Promise<T>, wobei
T der Rückgabetyp der ursprünglichen Methode ist. Zum Beispiel:

Ursprüngliche Methode:

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2(Promise<Integer> foo);

Diese Überladung sollte verwendet werden, wenn die Argumente, die an die Aktivität weitergeleitet
werden sollen, asynchron evaluiert werden müssen. Ein Aufruf dieser Methodenüberladung wird
so lange nicht ausgeführt, bis alle Argumente, die an diese weitergeleitet wurden, betriebsbereit
sind.

4. Eine Überladung mit jedem Argument in der ursprünglichen Methode, die durch einen
Promise<>-Wrapper ersetzt wurde. Die Überladung enthält auch ein zusätzliches Argument des
Typs ActivitySchedulingOptions und variable Argumente des Typs Promise<?>. Der
Rückgabetyp dieser Überladung ist Promise<T>, wobei T der Rückgabetyp der ursprünglichen
Methode ist. Zum Beispiel:

Ursprüngliche Methode:

Aktivitäts-Clients API-Version 2021-04-28 84

AWS Flow Framework für Java Entwicklerhandbuch

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2(
 Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

Diese Überladung sollte verwendet werden, wenn die Argumente, die an die Aktivität weitergeleitet
werden sollen, asynchron evaluiert werden und wenn Sie Standardeinstellungen, die mit dem
Typ registriert sind, überschreiben oder darauf warten möchten, dass zusätzliche Promises
betriebsbereit sind. Ein Aufruf dieser Methodenüberladung wird so lange nicht ausgeführt, bis alle
Argumente, die an diese weitergeleitet wurden, betriebsbereit sind. Die generierte Client-Klasse
implementiert diese Schnittstelle. Die Implementierung jeder Schnittstellenmethode erstellt und
sendet eine Anfrage an Amazon SWF, um mithilfe von Amazon SWF eine Aktivitätsaufgabe des
entsprechenden Typs zu planen APIs.

5. Eine Überladung, die die ursprünglichen Argumente unverändert sowie zusätzliche variable
Argumente des Typs Promise<?> übernimmt. Der Rückgabetyp dieser Überladung ist
Promise<T>, wobei T der Rückgabetyp der ursprünglichen Methode ist. Zum Beispiel:

Ursprüngliche Methode:

void activity2(int foo);

Generierte Methode:

Promise< Void > activity2(int foo,
 Promise<?>...waitFor);

Diese Überladung sollte verwendet werden, wenn alle Argumente der Aktivität verfügbar sind und
nicht auf diese gewartet werden muss, wenn Sie jedoch darauf warten möchten, dass andere
Promise-Objekte betriebsbereit werden.

6. Eine Überladung, bei der jedes Argument in der ursprünglichen Methode durch einen Promise-
Wrapper ersetzt wird und zusätzliche variable Argumente des Typs Promise<?> Der

Aktivitäts-Clients API-Version 2021-04-28 85

AWS Flow Framework für Java Entwicklerhandbuch

Rückgabetyp dieser Überladung ist Promise<T>, wobei T der Rückgabetyp der ursprünglichen
Methode ist. Zum Beispiel:

Ursprüngliche Methode:

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2(
 Promise<Integer> foo,
 Promise<?>... waitFor);

Diese Überladung sollte verwendet werden, wenn auf alle Argumente der Aktivität asynchron
gewartet wird und wenn Sie darauf warten möchten, dass andere Promises betriebsbereit
werden. Ein Aufruf dieser Methodenüberladung wird asynchron ausgeführt, wenn alle
weitergeleiteten Promise-Objekte,betriebsbereit sind.

Der generierte Aktivitäts-Client verfügt auch über eine geschützte Methode, die jeder
Aktivitätsmethode entspricht und den Namen {activity method name}Impl(), hat den alle
Aktivitäts-Überladungen aufrufen. Sie können diese Methode überschreiben, um eine Demo-
Clientimplementierung fertigzustellen. Diese Methode nimmt als Argumente an: alle Argumente der
ursprünglichen Methode in Promise<>-Wrappers, ActivitySchedulingOptions und variable
Argumente des Typs Promise<?>. Zum Beispiel:

Ursprüngliche Methode:

void activity2(int foo);

Generierte Methode:

Promise<Void> activity2Impl(
 Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

Aktivitäts-Clients API-Version 2021-04-28 86

AWS Flow Framework für Java Entwicklerhandbuch

Planungsoptionen

Der generierte Aktivitäts-Client ermöglicht Ihnen, ActivitySchedulingOptions als Argument
weiterzuleiten. Die ActivitySchedulingOptions Struktur enthält Einstellungen, die die
Konfiguration der Aktivitätsaufgabe bestimmen, die das Framework in Amazon SWF plant. Diese
Einstellungen überschreiben die Standardeinstellungen, die als Registrierungsoptionen festgelegt
sind. Um Planungsoptionen dynamisch festzulegen, legen Sie ein ActivitySchedulingOptions-
Objekt nach Ihren Wünschen an und übergeben es an die Aktivitätsmethode. Im folgenden Beispiel
haben wir eine Aufgabe festgelegt, die für die Aktivitätsaufgabe verwendet werden soll. Sie
überschreibt die registrierte Aufgabenliste für diesen Aktivitätsaufruf.

public class OrderProcessingWorkflowImpl implements OrderProcessingWorkflow {

 OrderProcessingActivitiesClient activitiesClient
 = new OrderProcessingActivitiesClientImpl();

 // Workflow entry point
 @Override
 public void processOrder(Order order) {
 Promise<Void> paymentProcessed = activitiesClient.processPayment(order);
 ActivitySchedulingOptions schedulingOptions
 = new ActivitySchedulingOptions();
 if (order.getLocation() == "Japan") {
 schedulingOptions.setTaskList("TasklistAsia");
 } else {
 schedulingOptions.setTaskList("TasklistNorthAmerica");
 }

 activitiesClient.shipOrder(order,
 schedulingOptions,
 paymentProcessed);
 }
}

Dynamische Clients

Zusätzlich zu den generierten Clients bietet das Framework auch Allzweck-Clients —
DynamicWorkflowClient und DynamicActivityClient —, die Sie verwenden können,
um Workflow-Ausführungen dynamisch zu starten, Signale zu senden, Aktivitäten zu planen
usw. So möchten Sie z. B. eine Aktivität planen, deren Typ beim Design nicht bekannt war. Sie

Planungsoptionen API-Version 2021-04-28 87

AWS Flow Framework für Java Entwicklerhandbuch

können DynamicActivityClient zur Planung einer solchen Aktivitätsaufgabe verwenden.
Ebenso können Sie eine untergeordnete Workflow-Ausführung dynamisch planen, indem Sie
DynamicWorkflowClient verwenden. Im folgenden Beispiel schlägt der Workflow die Aktivität von
einer Datenbank aus nach und verwendet zur Planung den Client für dynamische Aktivität:

//Workflow entrypoint
@Override
public void start() {
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<ActivityType> activityType
 = client.lookUpActivityFromDB();
 Promise<String> input = client.getInput(activityType);
 scheduleDynamicActivity(activityType,
 input);
}
@Asynchronous
void scheduleDynamicActivity(Promise<ActivityType> type,
 Promise<String> input){
 Promise<?>[] args = new Promise<?>[1];
 args[0] = input;
 DynamicActivitiesClient activityClient
 = new DynamicActivitiesClientImpl();
 activityClient.scheduleActivity(type.get(),
 args,
 null,
 Void.class);
}

Weitere Einzelheiten finden Sie in der AWS SDK für Java Dokumentation.

Signalisieren und Abbrechen von Workflow-Ausführungen

Der generierte Workflow-Client verfügt über Methoden, die jedem Signal entsprechen, das an den
Workflow gesendet werden kann. Sie können diese aus einem Workflow heraus verwenden, um
Signale an andere Workflow-Ausführungen zu senden. Dadurch wird ein typisierter Mechanismus
zum Senden von Signalen bereitgestellt. Manchmal müssen Sie den Signalnamen jedoch
möglicherweise dynamisch bestimmen, z. B. wenn der Signalname in einer Nachricht empfangen
wird. Sie können den dynamischen Workflow-Client verwenden, um dynamisch Signale an eine
beliebige Workflow-Ausführung zu senden. Auf ähnliche Weise können Sie den Client verwenden, um
einen Abbruch einer anderen Workflow-Ausführung anzufordern.

Dynamische Clients API-Version 2021-04-28 88

AWS Flow Framework für Java Entwicklerhandbuch

Im folgenden Beispiel schlägt der Workflow die Ausführung zum Senden eines Signals von einer
Datenbank aus nach und sendet das Signal dynamisch, wobei er den dynamischen Workflow-Client
verwendet.

//Workflow entrypoint
public void start()
{
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<WorkflowExecution> execution = client.lookUpExecutionInDB();
 Promise<String> signalName = client.getSignalToSend();
 Promise<String> input = client.getInput(signalName);
 sendDynamicSignal(execution, signalName, input);
}

@Asynchronous
void sendDynamicSignal(
 Promise<WorkflowExecution> execution,
 Promise<String> signalName,
 Promise<String> input)
{
 DynamicWorkflowClient workflowClient
 = new DynamicWorkflowClientImpl(execution.get());
 Object[] args = new Promise<?>[1];
 args[0] = input.get();
 workflowClient.signalWorkflowExecution(signalName.get(), args);
}

Workflow-Implementierung

Um einen Workflow zu implementieren, schreiben Sie eine Klasse, die die gewünschte @Workflow-
Schnittstelle implementiert. Das Beispiel für die Workflow-Schnittstelle (MyWorkflow) kann wie folgt
implementiert werden:

public class MyWFImpl implements MyWorkflow
{
 MyActivitiesClient client = new MyActivitiesClientImpl();
 @Override
 public void startMyWF(int a, String b){
 Promise<Integer> result = client.activity1();
 client.activity2(result);
 }

Workflow-Implementierung API-Version 2021-04-28 89

AWS Flow Framework für Java Entwicklerhandbuch

 @Override
 public void signal1(int a, int b, String c){
 //Process signal
 client.activity2(a + b);
 }
}

Die @Execute-Methode in dieser Klasse ist der Eintrittspunkt der Workflow-Logik. Da
das Framework Replay verwendet, um den Objektstatus zu rekonstruieren, wenn eine
Entscheidungsaufgabe verarbeitet werden soll, wird für jede Entscheidungsaufgabe ein neues Objekt
erstellt.

Die Verwendung von Promise<T> als Parameter ist in der @Execute-Methode innerhalb einer
@Workflow-Schnittstelle nicht erlaubt. Der Grund hierfür ist, dass das Ausführen eines asynchronen
Aufrufs allein eine Entscheidung des Aufrufers ist. Die Workflow-Implementierung selbst hängt
nicht davon ab, ob der Aufruf synchron oder asynchron erfolgt. Daher hat die generierte Client-
Schnittstelle Überlastungen, die Promise<T>-Parameter akzeptieren, sodass diese Methoden
asynchron aufgerufen werden können.

Der Rückgabetyp einer @Execute-Methode kann entweder void oder Promise<T> sein. Beachten
Sie, dass ein Rückgabetyp des entsprechenden externen Clients void und nicht Promise<> ist.
Da der externe Client nicht für die Verwendung im asynchronen Code vorgesehen ist, gibt der
externe Client keine Objekte zurück. Promise Um extern festgelegte Ergebnisse von Workflow-
Ausführungen zu erhalten, können Sie den Workflow so entwerfen, dass der Status in einem
externen Datenspeicher durch eine Aktivität aktualisiert wird. Die Sichtbarkeit von Amazon SWF
APIs kann auch verwendet werden, um das Ergebnis eines Workflows zu Diagnosezwecken
abzurufen. Es wird nicht empfohlen, die Sichtbarkeit APIs zum Abrufen von Ergebnissen von
Workflow-Ausführungen als allgemeine Praxis zu verwenden, da diese API-Aufrufe von Amazon SWF
gedrosselt werden können. Um die Sichtbarkeit zu gewährleisten, APIs müssen Sie die Workflow-
Ausführung anhand einer Struktur identifizieren. WorkflowExecution Diese Struktur können Sie
vom generierten Workflow-Client durch Aufrufen der getWorkflowExecution-Methode abrufen.
Diese Methode gibt die WorkflowExecution-Struktur zurück, die der Workflow-Ausführung
entspricht, an die der Client gebunden ist. Weitere Informationen zur Sichtbarkeit finden Sie in der
Amazon Simple Workflow Service API-Referenz APIs.

Beim Aufrufen von Aktivitäten aus Ihrer Workflow-Implementierung sollten Sie den generierten
Aktivitäten-Client verwenden. Zum Senden von Signalen verwenden Sie entsprechend die
generierten Workflow-Clients.

Workflow-Implementierung API-Version 2021-04-28 90

https://docs.aws.amazon.com/amazonswf/latest/apireference/

AWS Flow Framework für Java Entwicklerhandbuch

Entscheidungskontext

Das Framework stellt bei jeder Ausführung von Workflow-Code durch das Framework einen
Umgebungskontext zur Verfügung. Dieser Kontext bietet kontextspezifische Funktionalität, auf die
Sie in Ihrer Workflow-Implementierung zugreifen können, z. B. Erstellen eines Timers. Weitere
Informationen finden Sie im Abschnitt Ausführungskontext.

Offenlegen des Ausführungsstatus

Amazon SWF ermöglicht es Ihnen, dem Workflow-Verlauf einen benutzerdefinierten Status
hinzuzufügen. Der letzte Status, der von der Workflow-Ausführung gemeldet wurde, wird Ihnen
durch Visibility-Aufrufe an den Amazon SWF-Service und in der Amazon SWF SWF-Konsole
zurückgegeben. In einem Auftragsverarbeitungs-Workflow können Sie z. B. den Bestellungsstatus
in verschiedenen Phasen melden, z. B. Bestellung erhalten, Bestellung versendet usw. In der AWS
Flow Framework Version für Java wird dies durch eine Methode auf Ihrer Workflow-Oberfläche
erreicht, die mit der @GetState Anmerkung versehen ist. Wenn der Entscheider die Verarbeitung
einer Entscheidungsaufgabe abgeschlossen hat, wird diese Methode aufgerufen, um den aktuellen
Status von der Workflow-Implementierung abzurufen. Neben Sichtbarkeitsaufrufen kann der Status
auch mit dem generierten, externen Client abgerufen werden (der die Sichtbarkeits-API-Aufrufe intern
verwendet).

Das folgende Beispiel zeigt, wie Sie den Ausführungskontext festlegen.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();

 @GetState
 String getState();
}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();

Entscheidungskontext API-Version 2021-04-28 91

AWS Flow Framework für Java Entwicklerhandbuch

}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 private PeriodicActivityClient activityClient
 = new PeriodicActivityClientImpl();

 private String state;

 @Override
 public void periodicWorkflow() {
 state = "Just Started";
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor)
 {
 if(count == 100) {
 state = "Finished Processing";
 return;
 }

 // call activity
 activityClient.activity1();

 // Repeat the activity after 1 hour.
 Promise<Void> timer = clock.createTimer(3600);
 state = "Waiting for timer to fire. Count = "+count;
 callPeriodicActivity(count+1, timer);
 }

 @Override
 public String getState() {
 return state;
 }
}

Offenlegen des Ausführungsstatus API-Version 2021-04-28 92

AWS Flow Framework für Java Entwicklerhandbuch

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public static void activity1()
 {
 ...
 }
}

Der generierte externe Client kann jederzeit zum Abrufen des aktuellen Status der Workflow-
Ausführung verwendet werden.

PeriodicWorkflowClientExternal client
 = new PeriodicWorkflowClientExternalFactoryImpl().getClient();
System.out.println(client.getState());

Im obigen Beispiel wird der Ausführungsstatus in verschiedenen Stufen gemeldet. Wenn die
Workflow-Instance startet, meldet periodicWorkflow den Anfangsstatus "Just Started" (Soeben
gestartet). Mit jedem Aufruf an callPeriodicActivity wird der Workflow-Status anschließend
aktualisiert. Sobald activity1 100 Mal aufgerufen wurde, wird die Methode zurückgegeben und die
Workflow-Instance abgeschlossen.

Workflow-Lokale

Es kann vorkommen, das Sie statische Variablen in Ihrer Workflow-Implementierung verwenden
müssen. Beispielsweise wenn Sie einen Zähler speichern möchten, auf den von verschiedenen
Orten (möglicherweise unterschiedlichen Klassen) in der Implementierung des Workflows zugegriffen
werden kann. Sie können jedoch nicht auf statische Variablen in Ihren Workflows vertrauen,
da diese für verschiedene Threads freigegeben sind. Dies ist problematisch, da ein Worker
möglicherweise verschiedene Entscheidungsaufgaben in unterschiedlichen Threads verarbeitet.
Alternativ können Sie einen solchen Status in einem Feld in der Workflow-Implementierung
speichern. In diesem Fall müssen Sie allerdings das Implementierungsobjekt weitergeben. Für
diesen Fall stellt das Framework eine WorkflowExecutionLocal<?>-Klasse zur Verfügung.
Jeder Status, der eine statische Variable wie Semantik erfordert, sollte als Instance-Lokal unter
Verwendung von WorkflowExecutionLocal<?> gespeichert werden. Sie können eine
statische Variable dieses Typs deklarieren und verwenden. Im folgenden Ausschnitt wird eine
WorkflowExecutionLocal<String> zum Speichern eines Benutzernamens verwendet.

Workflow-Lokale API-Version 2021-04-28 93

AWS Flow Framework für Java Entwicklerhandbuch

public class MyWFImpl implements MyWF {
 public static WorkflowExecutionLocal<String> username
 = new WorkflowExecutionLocal<String>();

 @Override
 public void start(String username){
 this.username.set(username);
 Processor p = new Processor();
 p.updateLastLogin();
 p.greetUser();
 }

 public static WorkflowExecutionLocal<String> getUsername() {
 return username;
 }

 public static void setUsername(WorkflowExecutionLocal<String> username) {
 MyWFImpl.username = username;
 }
}

public class Processor {
 void updateLastLogin(){
 UserActivitiesClient c = new UserActivitiesClientImpl();
 c.refreshLastLogin(MyWFImpl.getUsername().get());
 }
 void greetUser(){
 GreetingActivitiesClient c = new GreetingActivitiesClientImpl();
 c.greetUser(MyWFImpl.getUsername().get());
 }
}

Implementierung von Aktivitäten

Die Aktivitäten werden durch eine Implementierung der @Activities-Schnittstelle realisiert. AWS
Flow Framework for Java verwendet die auf dem Worker konfigurierten Implementierungsinstanzen
für Aktivitäten, um Aktivitätsaufgaben zur Laufzeit zu verarbeiten. Der Worker sucht automatisch die
Aktivitätsimplementierung des entsprechenden Typs.

Über Eigenschaften und Felder können Sie Ressourcen an Aktivitäts-Instances wie z. B.
Datenbankverbindungen übergeben. Da auf das Objekt zur Implementierung der Aktivität von

Implementierung von Aktivitäten API-Version 2021-04-28 94

AWS Flow Framework für Java Entwicklerhandbuch

mehreren Threads aus zugegriffen werden kann, müssen gemeinsam genutzte Ressourcen
threadsicher sein.

Beachten Sie, dass die Aktivitätsimplementierung keine Parameter vom Typ Promise<> oder
Rückgabeobjekte dieses Typs akzeptiert. Die Implementierung der Aktivität sollte nicht davon
abhängen, wie sie aufgerufen wurde (synchron oder asynchron).

Die zuvor gezeigte Aktivitätsschnittstelle kann folgendermaßen implementiert werden:

public class MyActivitiesImpl implements MyActivities {

 @Override
 @ManualActivityCompletion
 public int activity1(){
 //implementation
 }

 @Override
 public void activity2(int foo){
 //implementation
 }
}

Der Aktivitätsimplementierung steht ein Thread-lokaler Kontext zur
Verfügung, über den das verwendete Aufgabenobjekt, Datenkonverter-
Objekt etc. abgerufen werden kann. Auf den aktuellen Kontext kann über
ActivityExecutionContextProvider.getActivityExecutionContext()
zugegriffen werden. Weitere Informationen finden Sie in der AWS SDK für Java Dokumentation
ActivityExecutionContext und im AbschnittAusführungskontext.

Aktivitäten manuell abschließen

Die @ManualActivityCompletion-Annotation im obigen Beispiel ist eine optionale Annotation.
Sie ist nur bei Methoden erlaubt, die eine Aktivität implementieren. Sie wird verwendet, um die
Aktivität so zu konfigurieren, dass sie bei der Rückkehr aus der Aktivitätsmethode nicht automatisch
beendet wird. Dies kann nützlich sein, wenn Sie die Aktivität asynchron abschließen möchten, z. B.
manuell, nachdem eine menschliche Aktion abgeschlossen wurde.

Standardmäßig sieht das Framework die Aktivität als abgeschlossen an, sobald Ihre
Aktivitätsmethode die Kontrolle zurückgibt. Das bedeutet, dass der Activity Worker Amazon
SWF den Abschluss der Aktivitätsaufgabe meldet und ihm die Ergebnisse (falls vorhanden)

Aktivitäten manuell abschließen API-Version 2021-04-28 95

AWS Flow Framework für Java Entwicklerhandbuch

zur Verfügung stellt. Es gibt jedoch Anwendungsfälle, in denen die Aktivitätsaufgabe bei der
Rückkehr aus der Aktivitätsmethode nicht als abgeschlossen gekennzeichnet werden soll. Dies
ist besonders hilfreich, wenn Sie menschliche Aufgaben modellieren. Beispielsweise kann die
Aktivitätsmethode eine E-Mail an eine Person senden, die eine Aufgabe erledigen muss, bevor die
Aktivitätsaufgabe abgeschlossen ist. In solchen Fällen können Sie die Aktivitätsmethode mit der
@ManualActivityCompletion-Annotation definieren, um dem Aktivitäts-Worker mitzuteilen,
dass er die Aktivität nicht automatisch abschließen soll. Um die Aktivität manuell abzuschließen,
können Sie entweder die im Framework ManualActivityCompletionClient bereitgestellte
Methode oder die RespondActivityTaskCompleted Methode auf dem Amazon SWF-Java-Client
verwenden, die im Amazon SWF SDK bereitgestellt wird. Weitere Informationen finden Sie in der
AWS SDK für Java Dokumentation.

Um die Aktivitätsaufgabe abzuschließen, müssen Sie ein Aufgaben-Token bereitstellen. Das
Aufgaben-Token wird von Amazon SWF verwendet, um Aufgaben eindeutig zu identifizieren.
In Ihrer Aktivitätsimplementierung können Sie über ActivityExecutionContext
auf das Token zugreifen. Sie müssen dieses Token an denjenigen übergeben, der für
die Erledigung der Aufgabe verantwortlich ist. Das Token kann durch den Aufruf von
ActivityExecutionContextProvider.getActivityExecutionContext().getTaskToken()
von ActivityExecutionContext abgerufen werden.

Die getName-Aktivität des HelloWorld-Beispiels kann implementiert werden, um eine E-Mail mit der
Bitte um eine Begrüßungsnachricht an jemanden zu senden:

@ManualActivityCompletion
@Override
public String getName() throws InterruptedException {
 ActivityExecutionContext executionContext
 = contextProvider.getActivityExecutionContext();
 String taskToken = executionContext.getTaskToken();
 sendEmail("abc@xyz.com",
 "Please provide a name for the greeting message and close task with token: " +
 taskToken);
 return "This will not be returned to the caller";
}

Der folgende Code kann verwendet werden, um die Begrüßung bereitzustellen und die Aufgabe
mit ManualActivityCompletionClient zu schließen. Alternativ können Sie die Aufgabe auch
fehlschlagen lassen:

public class CompleteActivityTask {

Aktivitäten manuell abschließen API-Version 2021-04-28 96

AWS Flow Framework für Java Entwicklerhandbuch

 public void completeGetNameActivity(String taskToken) {

 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(...); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 String result = "Hello World!";
 manualCompletionClient.complete(result);
 }

 public void failGetNameActivity(String taskToken, Throwable failure) {
 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(...); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 manualCompletionClient.fail(failure);
 }
}

AWS Lambda Aufgaben umsetzen

Themen

• Über AWS Lambda

• Vorteile und Einschränkungen der Verwendung von Lambda-Aufgaben

• Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework Workflows für Java

• Sehen Sie sich das Beispiel an HelloLambda

Über AWS Lambda

AWS Lambda ist ein vollständig verwalteter Rechenservice, der Ihren Code als Reaktion auf
Ereignisse ausführt, die durch benutzerdefinierten Code oder durch verschiedene AWS Dienste wie
Amazon S3, DynamoDB, Amazon Kinesis, Amazon SNS und Amazon Cognito generiert wurden.
Weitere Informationen zu Lambda finden Sie im AWS Lambda Entwicklerhandbuch.

Implementierung von Lambda-Aufgaben API-Version 2021-04-28 97

https://docs.aws.amazon.com/lambda/latest/dg/

AWS Flow Framework für Java Entwicklerhandbuch

Amazon Simple Workflow Service bietet eine Lambda-Aufgabe, sodass Sie Lambda-Funktionen
anstelle von oder zusammen mit herkömmlichen Amazon SWF SWF-Aktivitäten ausführen können.

Important

Ihr AWS Konto wird für Lambda-Ausführungen (Anfragen) belastet, die von Amazon SWF
in Ihrem Namen ausgeführt werden. Einzelheiten zu den Lambda-Preisen finden Sie unter
https://aws.amazon.com/lambda/pricing/.

Vorteile und Einschränkungen der Verwendung von Lambda-Aufgaben

Die Verwendung von Lambda-Aufgaben anstelle einer herkömmlichen Amazon SWF SWF-Aktivität
bietet eine Reihe von Vorteilen:

• Lambda-Aufgaben müssen nicht wie Amazon SWF SWF-Aktivitätstypen registriert oder versioniert
werden.

• Sie können alle vorhandenen Lambda-Funktionen verwenden, die Sie bereits in Ihren Workflows
definiert haben.

• Lambda-Funktionen werden direkt von Amazon SWF aufgerufen. Sie müssen kein Worker-
Programm implementieren, um sie auszuführen, wie dies bei herkömmlichen Aktivitäten der Fall ist.

• Lambda stellt Ihnen Metriken und Protokolle zur Verfügung, mit denen Sie Ihre
Funktionsausführungen verfolgen und analysieren können.

Bei Lambda-Aufgaben sind jedoch einige Einschränkungen zu beachten:

• Lambda-Aufgaben können nur in AWS Regionen ausgeführt werden, die Lambda unterstützen.
Einzelheiten zu den derzeit unterstützten Regionen für Lambda finden Sie unter Lambda Regions
and Endpoints in der Amazon Web Services General Reference.

• Lambda-Aufgaben werden derzeit nur von der SWF-Basis-SWF-HTTP-API und in der AWS Flow
Framework für Java unterstützt. Derzeit gibt es keine Unterstützung für Lambda-Aufgaben in der
AWS Flow Framework für Ruby.

Vorteile und Einschränkungen der Verwendung von Lambda-Aufgaben API-Version 2021-04-28 98

https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

AWS Flow Framework für Java Entwicklerhandbuch

Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework
Workflows für Java

Für die Verwendung von Lambda-Aufgaben in Ihren Workflows AWS Flow Framework für Java gelten
drei Voraussetzungen:

• Eine Lambda Lambda-Funktion. Sie können jede Lambda-Funktion verwenden, die Sie definiert
haben. Weitere Informationen zum Erstellen von Lambda-Funktionen finden Sie im AWS Lambda
Entwicklerhandbuch.

• Eine IAM-Rolle, die Zugriff auf die Ausführung von Lambda-Funktionen aus Ihren Amazon SWF
SWF-Workflows bietet.

• Code zum Planen der Lambda-Aufgabe in Ihrem Workflow.

Einrichten einer IAM-Rolle

Bevor Sie Lambda-Funktionen von Amazon SWF aufrufen können, müssen Sie eine IAM-Rolle
bereitstellen, die den Zugriff auf Lambda von Amazon SWF aus ermöglicht. Führen Sie dazu einen
der folgenden Schritte aus:

• Wählen Sie eine vordefinierte Rolle, AWSLambdaRolle, um Ihren Workflows die Erlaubnis zu
geben, alle Lambda-Funktionen aufzurufen, die mit Ihrem Konto verknüpft sind.

• Definieren Sie Ihre eigene Richtlinie und die zugehörige Rolle, um Workflows die Erlaubnis zu
erteilen, bestimmte Lambda-Funktionen aufzurufen, die durch ihre Amazon-Ressourcennamen ()
ARNs spezifiziert sind.

Beschränken Sie die Berechtigungen für eine IAM-Rolle

Sie können die Berechtigungen für eine IAM-Rolle, die Sie Amazon SWF zur Verfügung stellen,
einschränken, indem Sie die SourceAccount Kontextschlüssel SourceArn und in Ihrer Resource
Trust Policy verwenden. Diese Schlüssel schränken die Verwendung einer IAM-Richtlinie ein,
sodass sie nur für Amazon Simple Workflow Service-Ausführungen verwendet wird, die zum
angegebenen Domain-ARN gehören. Wenn Sie beide Kontextschlüssel für globale Bedingungen
verwenden, müssen der aws:SourceAccount Wert und das Konto, auf das im aws:SourceArn
Wert verwiesen wird, dieselbe Konto-ID verwenden, wenn sie in derselben Richtlinienerklärung
verwendet werden.

Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework Workflows für Java API-Version 2021-04-28 99

https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/

AWS Flow Framework für Java Entwicklerhandbuch

Im folgenden Beispiel schränkt der SourceArn Kontextschlüssel die IAM-Servicerolle so ein,
dass sie nur in Amazon Simple Workflow Service-Ausführungen verwendet wird, die zu dem Konto
someDomain gehören,. 123456789012

• Aussage 1

Schulleiter: "Service": "swf.amazonaws.com"

Aktion: sts:AssumeRole

"Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:swf:*:123456789012:/domain/someDomain"
 }
}

Im folgenden Beispiel schränkt der SourceAccount Kontextschlüssel die IAM-Servicerolle so
ein, dass sie nur in Amazon Simple Workflow Service-Ausführungen im Konto, verwendet wird.
123456789012

"Condition": {
 "StringLike": {
 "aws:SourceAccount": "123456789012"
 }
}

Amazon SWF Zugriff zum Aufrufen beliebiger Lambda-Rollen gewähren

Sie können die vordefinierte Rolle Rolle verwenden, AWSLambda um Ihren Amazon SWF SWF-
Workflows die Möglichkeit zu geben, jede Lambda-Funktion aufzurufen, die mit Ihrem Konto verknüpft
ist.

So verwenden Sie AWSLambda Role, um Amazon SWF Zugriff zum Aufrufen von Lambda-
Funktionen zu gewähren

1. Öffnen Sie die Amazon IAM-Konsole.

2. Wählen Sie Roles und anschließend Create New Role aus.

3. Geben Sie einen Namen für die Rolle ein, z. B. swf-lambda, und klicken Sie auf Next Step.

Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework Workflows für Java API-Version 2021-04-28 100

https://console.aws.amazon.com/iam/

AWS Flow Framework für Java Entwicklerhandbuch

4. Wählen Sie unter AWS Service Roles Amazon SWF und dann Next Step aus.

5. Wählen Sie auf dem Bildschirm „Richtlinie anhängen“ die Option AWSLambdaRolle aus der Liste
aus.

6. Klicken Sie auf Next Step und auf Create Role, sobald Sie die Rolle überprüft haben.

Definition einer IAM-Rolle für den Zugriff auf den Aufruf einer bestimmten Lambda-Funktion

Wenn Sie Zugriff zum Aufrufen einer bestimmten Lambda-Funktion aus Ihrem Workflow gewähren
möchten, müssen Sie Ihre eigene IAM-Richtlinie definieren.

So erstellen Sie eine IAM-Richtlinie für den Zugriff auf eine bestimmte Lambda-Funktion

1. Öffnen Sie die Amazon IAM-Konsole.

2. Wählen Sie Policies und dann Create Policy aus.

3. Wählen Sie „ AWS Verwaltete Richtlinie kopieren“ und wählen Sie „AWSLambdaRolle“ aus der
Liste aus. Es wird eine Richtlinie erstellt. Sie können ihren Namen und die Beschreibung nach
Bedarf ändern.

4. Fügen Sie im Feld Ressource des Richtliniendokuments den ARN Ihrer Lambda-Funktion (en)
hinzu. Zum Beispiel:

• Ressource: arn:aws:lambda:us-
east-1:111122223333:function:hello_lambda_function

Note

Eine vollständige Beschreibung der Angabe von Ressourcen in einer IAM-Rolle finden
Sie unter Überblick über IAM-Richtlinien in Using IAM.

5. Wählen Sie Create policy aus, um Ihre Richtlinie zu erstellen.

Sie können diese Richtlinie dann auswählen, wenn Sie eine neue IAM-Rolle erstellen, und diese
Rolle verwenden, um Aufrufzugriff auf Ihre Amazon SWF SWF-Workflows zu gewähren. Dieses
Verfahren ist dem Erstellen einer Rolle mit der Rollenrichtlinie sehr ähnlich. Wählen Sie stattdessen
Ihre eigene Richtlinie, wenn Sie die AWSLambdaRolle erstellen.

Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework Workflows für Java API-Version 2021-04-28 101

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html

AWS Flow Framework für Java Entwicklerhandbuch

So erstellen Sie eine Amazon SWF SWF-Rolle mithilfe Ihrer Lambda-Richtlinie

1. Öffnen Sie die Amazon IAM-Konsole.

2. Wählen Sie Roles und anschließend Create New Role aus.

3. Geben Sie einen Namen für die Rolle ein, z. B. swf-lambda-function, und klicken Sie auf
Next Step.

4. Wählen Sie unter AWS Service Roles Amazon SWF und dann Next Step aus.

5. Wählen Sie auf dem Bildschirm Attach Policy Ihre funktionsspezifische Lambda-Richtlinie aus
der Liste aus.

6. Klicken Sie auf Next Step und auf Create Role, sobald Sie die Rolle überprüft haben.

Eine Lambda-Aufgabe für die Ausführung planen

Sobald Sie eine IAM-Rolle definiert haben, mit der Sie Lambda-Funktionen aufrufen können, können
Sie deren Ausführung als Teil Ihres Workflows planen.

Note

Dieser Prozess wird anhand des HelloLambda Beispiels in der vollständig demonstriert. AWS
SDK für Java

So planen Sie die Ausführung einer Lambda-Task

1. Rufen Sie in Ihrer Workflow-Implementierung eine Instance des LambdaFunctionClient ab,
indem Sie getLambdaFunctionClient() für eine DecisionContext-Instance aufrufen.

// Get a LambdaFunctionClient instance
DecisionContextProvider decisionProvider = new DecisionContextProviderImpl();
DecisionContext decisionContext = decisionProvider.getDecisionContext();
LambdaFunctionClient lambdaClient = decisionContext.getLambdaFunctionClient();

2. Planen Sie die Aufgabe mithilfe der scheduleLambdaFunction() Methode auf der
LambdaFunctionClient und übergeben Sie ihr den Namen der Lambda-Funktion, die Sie
erstellt haben, sowie alle Eingabedaten für die Lambda-Aufgabe.

Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework Workflows für Java API-Version 2021-04-28 102

https://console.aws.amazon.com/iam/

AWS Flow Framework für Java Entwicklerhandbuch

// Schedule the Lambda function for execution, using your IAM role for access.
String lambda_function_name = "The name of your Lambda function.";
String lambda_function_input = "Input data for your Lambda task.";

lambdaClient.scheduleLambdaFunction(lambda_function_name, lambda_function_input);

3. Fügen Sie in Ihrem Workflow-Ausführungsstarter die IAM-Lambda-Rolle
zu Ihren Standard-Workflow-Optionen hinzu, indem Sie die Optionen
verwendenStartWorkflowOptions.withLambdaRole(), und übergeben Sie sie dann,
wenn Sie den Workflow starten.

// Workflow client classes are generated for you when you use the @Workflow
// annotation on your workflow interface declaration.
MyWorkflowClientExternalFactory clientFactory =
 new MyWorkflowClientExternalFactoryImpl(sdk_swf_client, swf_domain);

MyWorkflowClientExternal workflow_client = clientFactory.getClient();

// Give the ARN of an IAM role that allows SWF to invoke Lambda functions on
// your behalf.
String lambda_iam_role = "arn:aws:iam::111111000000:role/swf_lambda_role";

StartWorkflowOptions workflow_options =
 new StartWorkflowOptions().withLambdaRole(lambda_iam_role);

// Start the workflow execution
workflow_client.helloWorld("User", workflow_options);

Sehen Sie sich das Beispiel an HelloLambda

Ein Beispiel, das eine Implementierung eines Workflows bietet, der eine Lambda-Aufgabe verwendet,
finden Sie in der AWS SDK für Java. Laden Sie den Quellcode herunter, um es anzusehen und and/
or auszuführen.

Eine vollständige Beschreibung der Erstellung und Ausführung des HelloLambdaBeispiels finden Sie
in der README-Datei, die den Java-Beispielen AWS Flow Framework beiliegt.

Sehen Sie sich das Beispiel an HelloLambda API-Version 2021-04-28 103

https://aws.amazon.com/code/3015904745387737

AWS Flow Framework für Java Entwicklerhandbuch

Ausführen von Programmen, die mit dem AWS Flow Framework für
Java geschrieben wurden

Themen

• WorkflowWorker

• ActivityWorker

• Worker-Threading-Modell

• Worker-Erweiterbarkeit

Das Framework stellt Worker-Klassen zur Initialisierung der Runtime AWS Flow Framework für Java
und zur Kommunikation mit Amazon SWF bereit. Um einen Workflow- oder Aktivitäts-Worker zu
implementieren, müssen Sie zuerst eine Instance einer Worker-Klasse erstellen und starten. Diese
Worker-Klassen sind für die Verwaltung laufender asynchroner Vorgänge, das Aufrufen asynchroner
Methoden, die entsperrt werden, und für die Kommunikation mit Amazon SWF verantwortlich. Sie
können mit Workflow- und Aktivitätsimplementierungen, der Anzahl an Threads, der abzufragenden
Aufgabenliste usw. konfiguriert werden.

Das Framework enthält zwei Worker-Klassen, eine für Aktivitäten und eine für Workflows. Zum
Ausführen der Workflow-Logik verwenden Sie die WorkflowWorker-Klasse. Analog verwenden Sie
für Aktivitäten die ActivityWorker-Klasse. Diese Klassen fragen Amazon SWF automatisch nach
Aktivitätsaufgaben ab und rufen die entsprechenden Methoden in Ihrer Implementierung auf.

Im folgenden Beispiel wird gezeigt, wie ein WorkflowWorker instanziiert wird und Aufgaben
abgerufen werden.

AmazonSimpleWorkflow swfClient = new AmazonSimpleWorkflowClient(awsCredentials);
WorkflowWorker worker = new WorkflowWorker(swfClient, "domain1", "tasklist1");
// Add workflow implementation types
worker.addWorkflowImplementationType(MyWorkflowImpl.class);

// Start worker
worker.start();

Im Folgenden sehen Sie die grundlegenden Schritte zum Erstellen einer Instance von
ActivityWorker und dem Abrufen von Aufgaben:

AmazonSimpleWorkflow swfClient

Ausführen von Programmen, die mit dem AWS Flow Framework für Java geschrieben wurden API-Version 2021-04-28 104

AWS Flow Framework für Java Entwicklerhandbuch

 = new AmazonSimpleWorkflowClient(awsCredentials);
ActivityWorker worker = new ActivityWorker(swfClient,
 "domain1",
 "tasklist1");
worker.addActivitiesImplementation(new MyActivitiesImpl());

// Start worker
worker.start();

Wenn Sie eine Aktivität oder einen Entscheider beenden möchten, sollte Ihre Anwendung die
Instances der verwendeten Worker-Klassen sowie die Amazon SWF SWF-Java-Client-Instance
herunterfahren. So können Sie sicher sein, dass alle Ressourcen, die von den Worker-Klassen
verwendet werden, ordnungsgemäß freigegeben werden.

worker.shutdown();
worker.awaitTermination(1, TimeUnit.MINUTES);

Um mit einer Ausführung zu beginnen, erstellen Sie einfach eine Instance des generierten externen
Client und rufen Sie die @Execute-Methode auf.

MyWorkflowClientExternalFactory factory = new MyWorkflowClientExternalFactoryImpl();
MyWorkflowClientExternal client = factory.getClient();
client.start();

WorkflowWorker

Wie der Name schon sagt, dient diese Worker-Klasse zur Verwendung mit der Workflow-
Implementierung. Sie wird mit einer Aufgabenliste und dem Workflow-Implementierungstyp
konfiguriert. Die Worker-Klasse führt eine Schleife zur Abfrage von Entscheidungsaufgaben in der
angegebenen Aufgabenliste aus. Wenn eine Entscheidungsaufgabe empfangen wird, erstellt sie
eine Instance der Workflow-Implementierung und ruft die @Execute-Methode zur Verarbeitung der
Aufgabe auf.

ActivityWorker

Zur Implementierung von Aktivitäts-Workern können Sie die ActivityWorker-Klasse verwenden
und einfach eine Aufgabenliste nach Aktivitätsaufgaben abfragen. Sie konfigurieren den Aktivitäts-

WorkflowWorker API-Version 2021-04-28 105

AWS Flow Framework für Java Entwicklerhandbuch

Worker mit Aktivitäts-Implementierungsobjekten. Diese Worker-Klasse führt eine Schleife zur Abfrage
von Aktivitätsaufgaben in der angegebenen Aufgabenliste aus. Wenn eine Aktivitätssaufgabe
empfangen wird, sucht sie die geeignete von Ihnen bereitgestellte Implementierung und ruft
die Aktivitätsmethode zur Verarbeitung der Aufgabe auf. Im Gegensatz zur Worker-Klasse
WorkflowWorker, die die Factory aufruft, um für jede Entscheidungsaufgabe eine neue Instance zu
erstellen, verwendet ActivityWorker nur das von Ihnen bereitgestellte Objekt.

Die ActivityWorker Klasse verwendet die Anmerkungen AWS Flow Framework für Java, um die
Registrierungs- und Ausführungsoptionen zu bestimmen.

Worker-Threading-Modell

AWS Flow Framework Bei Java ist die Verkörperung einer Aktivität oder eines Entscheiders
eine Instanz der Arbeiterklasse. Ihre Anwendung ist verantwortlich für die Konfiguration und die
Instanziierung des Worker-Objekts auf jedem Computer und Prozess, der als Worker eingesetzt
wird. Das Worker-Objekt empfängt dann automatisch Aufgaben von Amazon SWF, leitet sie an Ihre
Aktivitäts- oder Workflow-Implementierung weiter und meldet die Ergebnisse an Amazon SWF. Es
ist möglich, dass eine einzige Workflow-Instance viele Worker umfasst. Wenn Amazon SWF eine
oder mehrere ausstehende Aktivitätsaufgaben hat, weist es dem ersten verfügbaren Mitarbeiter
eine Aufgabe zu, dann dem nächsten usw. So können Aufgaben, die zur selben Workflow-Instance
gehören, gleichzeitig in unterschiedlichen Workern verarbeitet werden.

Worker-Threading-Modell API-Version 2021-04-28 106

AWS Flow Framework für Java Entwicklerhandbuch

Zusätzlich kann jeder Worker so konfiguriert werden, dass er Aufgaben in mehreren Threads
verarbeitet. Das bedeutet, dass die Aktivitätsaufgaben einer Workflow-Instance gleichzeitig
ausgeführt werden können, selbst wenn nur ein Worker zur Verfügung steht.

Entscheidungsaufgaben verhalten sich ähnlich, mit der Ausnahme, dass Amazon SWF garantiert,
dass für eine bestimmte Workflow-Ausführung jeweils nur eine Entscheidung ausgeführt werden
kann. Eine einzelne Workflow-Ausführung erfordert im Allgemeinen mehrere Entscheidungsaufgaben.
Deshalb kommt es oft zu Ausführungen in mehreren Prozessen und Threads. Der Entscheider
wird mit dem Workflow-Implementierungstyp konfiguriert. Wenn eine Entscheidungsaufgabe vom
Entscheider empfangen wird, erstellt er eine Instance (ein Objekt) der Workflow-Implementierung.
Das Framework stellt ein erweiterbares Factory-Muster für die Erstellung dieser Instances bereit.
Die standardmäßige Workflow-Factory erstellt jedes Mal ein neues Objekt. Um dieses Verhalten zu
umgehen, können Sie benutzerdefinierte Factories bereitstellen.

Im Gegensatz zu Entscheidern, die mit Workflow-Implementierungstypen konfiguriert werden,
werden Aktivitäts-Worker mit Instances (Objekten) der Aktivitätsimplementierungen konfiguriert.
Wenn eine Aktivitätssaufgabe vom Aktivitäts-Worker empfangen wird, wird sie an das geeignete
Implementierungsobjekt der Aktivität gesendet.

Der Workflow-Worker verwaltet einen einzigen Thread-Pool und führt den Workflow auf demselben
Thread aus, der für die Abfrage von Amazon SWF für die Aufgabe verwendet wurde. Da Aktivitäten
lange dauern (zumindest im Vergleich zur Workflow-Logik), verwaltet die Activity Worker-Klasse zwei
separate Thread-Pools: einen für die Abfrage von Amazon SWF nach Aktivitätsaufgaben und den
anderen für die Verarbeitung von Aufgaben durch Ausführung der Aktivitätsimplementierung. So
können Sie die Anzahl der Threads zum Abrufen von Aufgaben separat von der Anzahl der Threads
konfigurieren, die sie ausführen. Beispielsweise kann eine kleine Anzahl an Threads zum Abrufen
verfügbar sein und eine große Anzahl für die Ausführung der Aufgaben. Die Activity Worker-Klasse

Worker-Threading-Modell API-Version 2021-04-28 107

AWS Flow Framework für Java Entwicklerhandbuch

fragt Amazon SWF nur dann nach einer Aufgabe ab, wenn sie über einen freien Abfrage-Thread
sowie einen freien Thread zur Bearbeitung der Aufgabe verfügt.

Dieses Threading- und Instancing-Verhalten zeigt Folgendes:

1. Aktivitätsimplementierungen müssen zustandslos sein. Sie sollten Instanzvariablen nicht dazu
verwenden, den Anwendungszustand in Aktivitätsobjekten zu speichern. Über Felder können Sie
jedoch Ressourcen wie Datenbankverbindungen speichern.

2. Aktivitätsimplementierungen müssen threadsicher sein. Da dieselbe Instanz verwendet werden
kann, um Aufgaben aus verschiedenen Threads gleichzeitig zu verarbeiten, muss der Zugriff auf
gemeinsam genutzte Ressourcen aus dem Aktivitätscode synchronisiert werden.

3. Die Workflow-Implementierung kann zustandsbehaftet sein und Instance-Variablen können
zum Speichern des Status verwendet werden. Auch wenn eine neue Instance der Workflow-
Implementierung erstellt wurde, um jede Entscheidungsaufgabe zu verarbeiten, stellt das
Framework sicher, dass der Status ordnungsgemäß wiederhergestellt wird. Allerdings muss die
Implementierung Ihres Workflows deterministisch sein. Weitere Details finden Sie im Abschnitt
Eine Aufgabe in AWS Flow Framework für Java verstehen.

4. Workflow-Implementierungen müssen nicht threadsicher sein, wenn die Standard-Factory
verwendet wird. Durch die Standardimplementierung wird sichergestellt, dass nur ein Thread
gleichzeitig eine Instanz der Implementierung Ihres Workflows verwendet.

Worker-Erweiterbarkeit

Die AWS Flow Framework für Java enthält auch einige Low-Level-Worker-Klassen, die Ihnen eine
detaillierte Steuerung und Erweiterbarkeit bieten. Damit können Sie die Registrierung vom Workflow-
und Aktivitäts-Typ genau anpassen und Factories für die Erstellung von Implementierungsobjekten
bestimmen. Diese Worker sind GenericWorkflowWorker und GenericActivityWorker.

GenericWorkflowWorker kann mit einer Factory zur Erstellung von Factories für Workflow-
Definitionen konfiguriert werden. Die Factory für Workflow-Definitionen ist verantwortlich für
die Erstellung von Instances der Workflow-Implementierung und für die Bereitstellung von
Konfigurationseinstellungen wie den Registrierungsoptionen. Unter normalen Umständen sollten Sie
die WorkflowWorker-Klasse direkt verwenden. Sie erstellt und konfiguriert die Implementierung
der bereitgestellten Factories in das Framework, POJOWorkflowDefinitionFactoryFactory
und POJOWorkflowDefinitionFactory. Die Factory setzt voraus, dass die Workflow-
Implementierungsklasse über einen Konstruktor verfügt, der keine Argumente annimmt. Dieser
Konstruktor wird verwendet, um Instances des Workflow-Objekts zur Laufzeit zu erstellen. Die

Worker-Erweiterbarkeit API-Version 2021-04-28 108

AWS Flow Framework für Java Entwicklerhandbuch

Factory prüft die Anmerkungen, die Sie in der Workflow-Schnittstelle und der Implementierung
verwendet haben, um geeignete Registrierungs- und Ausführungsoptionen zu erstellen.

Sie können eine eigene Implementierung der Factories bereitstellen, indem Sie
WorkflowDefinitionFactory, WorkflowDefinitionFactoryFactory und
WorkflowDefinition implementieren. Die WorkflowDefinition-Klasse wird von der
Worker-Klasse dazu verwendet, Entscheidungsaufgaben und Signale zu versenden. Wenn Sie
diese Basisklassen implementieren, können Sie die Factory und die Verteilung von Anfragen
an die Workflow-Implementierung genau anpassen. Sie können diese Erweiterbarkeitspunkte
dazu verwenden, ein benutzerdefiniertes Programmierungsmodell zum Schreiben von Workflows
bereitzustellen, z. B. basierend auf Ihren eigenen Anmerkungen oder durch Generieren aus WSDL –
anstelle des Code-First-Ansatzes, der vom Framework verwendet wird. Um Ihre benutzerdefinierten
Factories nutzen zu können, müssen Sie die GenericWorkflowWorker-Klasse verwenden.
Weitere Informationen zu diesen Klassen finden Sie in der Dokumentation. AWS SDK für Java

In ähnlicher Weise bietet auch GenericActivityWorker die Möglichkeit, eine
benutzerdefinierte Factory für Aktivitätsimplementierungen bereitzustellen. Wenn Sie die Klassen
ActivityImplementationFactory und ActivityImplementation implementieren,
können Sie die Instanziierung komplett steuern und die Registrierungs- und Ausführungsoptionen
selbst definieren. Weitere Informationen zu diesen Klassen finden Sie in der AWS SDK für Java
Dokumentation.

Ausführungskontext

Themen

• Entscheidungskontext

• Aktivitätsausführungskontext

Das Framework gibt dem Workflow und den Aktivitätsimplementierungen einen Umgebungskontext.
Dieser Kontext bezieht sich jeweils auf die ausgeführte Aufgabe und stellt einige Dienstprogramme
bereit, die Sie in der Implementierung verwenden können. Ein Kontextobjekt wird jedes Mal erstellt,
wenn eine neue Aufgabe vom Auftragnehmer verarbeitet wird.

Entscheidungskontext

Wenn eine Entscheidungsaufgabe ausgeführt wird, stellt das Framework den Kontext für die
Workflow-Implementierung über die DecisionContext-Klasse zur Verfügung. DecisionContext

Ausführungskontext API-Version 2021-04-28 109

AWS Flow Framework für Java Entwicklerhandbuch

liefert kontextsensitive Informationen wie die ID des Workflow-Ausführungslaufs und die Takt- und
Timerfunktionalität.

Zugriff DecisionContext bei der Workflow-Implementierung

Sie können auf den DecisionContext in Ihrer Workflow-Implementierung unter Verwendung der
DecisionContextProviderImpl-Klasse zugreifen. Alternativ können Sie den Kontext in einem
Feld oder einer Eigenschaft Ihrer Workflow-Implementierung angeben. Verwenden Sie dazu Spring,
wie im Abschnitt "Prüfbarkeit und Dependency Injection" beschrieben.

DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();
DecisionContext context = contextProvider.getDecisionContext();

Erstellen einer Uhr und eines Timers

Der DecisionContext enthält eine Eigenschaft vom Typ WorkflowClock, die eine Timer- und
Uhrfunktion bereitstellt. Da die Workflow-Logik deterministisch sein muss, sollten Sie die Systemuhr
in Ihrer Workflow-Implementierung nicht direkt verwenden. Die currentTimeMills-Methode in
der WorkflowClock gibt den Zeitpunkt des Startereignisses der zu verarbeitenden Entscheidung
zurück. So wird sichergestellt, dass Sie denselben Zeitwert bei einer Wiedergabe erhalten und eine
deterministische Workflow-Logik erhalten.

WorkflowClock umfasst auch eine createTimer-Methode, die ein Promise-Objekt zurückgibt,
das nach einem festgelegten Intervall verfügbar wird. Verwenden Sie diesen Wert als Parameter
für andere asynchrone Methoden, um deren Ausführung um einen festgelegten Zeitraum zu
verschieben. So können Sie eine asynchrone Methode oder Aktivität effektiv für eine spätere
Ausführung planen.

Im folgenden Beispiel wird gezeigt, wie Sie eine Aktivität periodisch aufrufen können.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();
}

@Activities(version = "1.0")

Entscheidungskontext API-Version 2021-04-28 110

AWS Flow Framework für Java Entwicklerhandbuch

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();
}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void periodicWorkflow() {
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor) {
 if (count == 100) {
 return;
 }
 PeriodicActivityClient client = new PeriodicActivityClientImpl();
 // call activity
 Promise<Void> activityCompletion = client.activity1();

 Promise<Void> timer = clock.createTimer(3600);

 // Repeat the activity either after 1 hour or after previous activity run
 // if it takes longer than 1 hour
 callPeriodicActivity(count + 1, timer, activityCompletion);
 }
}

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public void activity1() {
 ...
 }

Entscheidungskontext API-Version 2021-04-28 111

AWS Flow Framework für Java Entwicklerhandbuch

}

In der Liste oben ruft die asynchrone Methode callPeriodicActivity activity1 auf und
erstellt einen Timer mit dem aktuellen AsyncDecisionContext. Sie übergibt das zurückgegebene
Promise als Argument an einen rekursiven Aufruf von sich selbst. Dieser rekursive Aufruf wartet, bis
der Timer ausgelöst wird (in diesem Beispiel eine Stunde), bevor er ausgeführt wird.

Aktivitätsausführungskontext

Genau wie der DecisionContext enthält der Aktivitätsausführungskontext Kontextinformationen
zur Verarbeitung einer Entscheidungsaufgabe. ActivityExecutionContext stellt ähnliche
Kontextinformationen bereit, wenn eine Aktivitätsausgabe verarbeitet wird. Dieser Kontext ist für Ihren
Aktivitätscode über die Klasse ActivityExecutionContextProviderImpl verfügbar.

ActivityExecutionContextProvider provider
 = new ActivityExecutionContextProviderImpl();
ActivityExecutionContext aec = provider.getActivityExecutionContext();

Mit ActivityExecutionContext können Sie folgende Aufgaben ausführen:

Heartbeat für eine langfristige Aktivität

Wenn die Aktivität lange andauert, muss sie ihren Fortschritt regelmäßig an Amazon SWF melden,
um sie darüber zu informieren, dass die Aufgabe weiterhin voranschreitet. Wenn kein Heartbeat
gesendet wird, kann eine Zeitüberschreitung auftreten, wenn diese bei der Registrierung des
Aktivitätstyps oder beim Planen der Aktivität definiert wurde. Um einen Heartbeat zu senden, können
Sie die recordActivityHeartbeat-Methode im ActivityExecutionContext verwenden. Ein
Heartbeat kann auch dazu dienen, laufende Aktivitäten abzubrechen. Weitere Informationen sowie
ein Beispiel finden Sie im Abschnitt Fehlerbehandlung.

Abrufen von Details zur Aktivitätsaufgabe

Wenn Sie möchten, können Sie alle Details der Aktivitätsaufgabe abrufen, die von Amazon SWF
übergeben wurden, als der Executor die Aufgabe erhielt. Dies umfasst Informationen zu den
Eingaben der Aufgabe, Aufgabentyp, Aufgabentoken usw. Wenn Sie eine Aktivität implementieren
möchten, die manuell abgeschlossen wird, z. B. durch eine menschliche Aktion, müssen Sie das
verwenden, um das Aufgaben-Token abzurufen und es ActivityExecutionContext an den
Prozess weiterzuleiten, der die Aktivitätsaufgabe letztendlich abschließt. Weitere Informationen finden
Sie im Abschnitt zu Aktivitäten manuell abschließen.

Aktivitätsausführungskontext API-Version 2021-04-28 112

AWS Flow Framework für Java Entwicklerhandbuch

Ruft das Amazon SWF-Client-Objekt ab, das vom Executor verwendet wird

Das vom Executor verwendete Amazon SWF-Client-Objekt kann durch Aufrufen der getService
Methode on abgerufen werden. ActivityExecutionContext Dies ist nützlich, wenn Sie den
Amazon SWF-Service direkt anrufen möchten.

Untergeordnete Workflow-Ausführungen
In den bisherigen Beispielen wurde die Workflow-Ausführung direkt in einer Anwendung gestartet.
Eine Workflow-Ausführung kann jedoch auch innerhalb eines Workflows gestartet werden, indem für
den generierten Client die Workflow-Eintrittspunktmethode aufgerufen wird. Wenn eine Workflow-
Ausführung im Kontext der Ausführung eines anderen Workflows gestartet wird, ist das eine
untergeordnete Workflow-Ausführung. Damit können Sie komplexe Workflows in kleinere Einheiten
unterteilen und gegebenenfalls in verschiedenen Workflows einsetzen. Sie können zum Beispiel
einen Workflow zur Zahlungsabwicklung erstellen und über den Workflow zur Abwicklung des
Bestellvorgangs aufrufen.

Die untergeordnete Workflow-Ausführung erfolgt semantisch genauso wie ein eigenständiger
Workflow – mit Ausnahme der folgenden Unterschiede:

1. Wenn der übergeordnete Workflow aufgrund einer expliziten Aktion des Benutzers beendet wird, z.
B. durch Aufrufen der TerminateWorkflowExecution Amazon SWF SWF-API, oder aufgrund
eines Timeouts beendet wird, wird das Schicksal der Ausführung des untergeordneten Workflows
durch eine untergeordnete Richtlinie bestimmt. Sie können diese untergeordnete Richtlinie so
einrichten, dass die Ausführung des untergeordneten Workflows beendet, abgebrochen oder
verworfen (läuft weiter) wird.

2. Die Ausgabe des untergeordneten Workflows (Rückgabewert der Eintrittspunktmethode) kann
von der übergeordneten Workflow-Ausführung genau so wie der mit einer asynchronen Methode
zurückgegebene Promise<T> verwendet werden. Dies unterscheidet sich von eigenständigen
Ausführungen, bei denen die Anwendung die Ausgabe mithilfe von Amazon SWF APIs abrufen
muss.

Im folgenden Beispiel erstellt der OrderProcessor-Workflow einen untergeordneten Workflow
PaymentProcessor:

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)

Untergeordnete Workflow-Ausführungen API-Version 2021-04-28 113

AWS Flow Framework für Java Entwicklerhandbuch

public interface OrderProcessor {

 @Execute(version = "1.0")
 void processOrder(Order order);
}

public class OrderProcessorImpl implements OrderProcessor {
 PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();

 @Override
 public void processOrder(Order order) {
 float amount = order.getAmount();
 CardInfo cardInfo = order.getCardInfo();

 PaymentProcessorClient childWorkflowClient = factory.getClient();
 childWorkflowClient.processPayment(amount, cardInfo);
 }

}

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PaymentProcessor {

 @Execute(version = "1.0")
 void processPayment(float amount, CardInfo cardInfo);

}

public class PaymentProcessorImpl implements PaymentProcessor {
 PaymentActivitiesClient activitiesClient = new PaymentActivitiesClientImpl();

 @Override
 public void processPayment(float amount, CardInfo cardInfo) {
 Promise<PaymentType> payType = activitiesClient.getPaymentType(cardInfo);
 switch(payType.get()) {
 case Visa:
 activitiesClient.processVisa(amount, cardInfo);
 break;
 case Amex:
 activitiesClient.processAmex(amount, cardInfo);
 break;

Untergeordnete Workflow-Ausführungen API-Version 2021-04-28 114

AWS Flow Framework für Java Entwicklerhandbuch

 default:
 throw new UnSupportedPaymentTypeException();
 }
 }

}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 3600,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PaymentActivities {

 PaymentType getPaymentType(CardInfo cardInfo);

 void processVisa(float amount, CardInfo cardInfo);

 void processAmex(float amount, CardInfo cardInfo);

}

Fortlaufende Workflows

In einigen Anwendungsfällen benötigen Sie vielleicht einen Workflow, der ständig oder für eine lange
Zeit ausgeführt wird – wie zum Beispiel ein Workflow, der den Zustand einer Serverflotte überwacht.

Note

Da Amazon SWF den gesamten Verlauf einer Workflow-Ausführung speichert, wird der
Verlauf im Laufe der Zeit weiter wachsen. Bei einem erneuten Abspielen ruft das Framework
diesen Verlauf von Amazon SWF ab, was bei einem zu großen Umfang des Verlaufs teuer
werden kann. Bei solchen lange ausgeführten oder fortlaufenden Workflows sollten Sie
die aktuelle Ausführung regelmäßig schließen und eine neue Ausführung starten, um die
Verarbeitung fortzusetzen.

Das ist eine logische Fortsetzung der Workflow-Ausführung. Der generierte Self-Client kann für
diesen Zeck verwendet werden. Rufen Sie in Ihrer Workflow-Implementierung einfach die @Execute-
Methode für den Self-Client auf. Sobald die aktuelle Ausführung abgeschlossen ist, startet das
Framework mit derselben Workflow-ID eine neue Ausführung.

Fortlaufende Workflows API-Version 2021-04-28 115

AWS Flow Framework für Java Entwicklerhandbuch

Sie können die Ausführung auch fortsetzen, indem Sie die continueAsNewOnCompletion-
Methode, die Sie vom aktuellen DecisionContext abrufen können, für den
GenericWorkflowClient aufrufen. Mit der folgenden Workflow-Implementierung wird zum
Beispiel ein Timer festgelegt. Dieser wird nach einem Tag ausgelöst und ruft einen eigenen
Eintrittspunkt auf, der eine neue Ausführung startet.

public class ContinueAsNewWorkflowImpl implements ContinueAsNewWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private ContinueAsNewWorkflowSelfClient selfClient
 = new ContinueAsNewWorkflowSelfClientImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void startWorkflow() {
 Promise<Void> timer = clock.createTimer(86400);
 continueAsNew(timer);
 }

 @Asynchronous
 void continueAsNew(Promise<Void> timer) {
 selfClient.startWorkflow();
 }
}

Wenn sich ein Workflow rekursiv selbst aufruft, schließt das Framework den aktuellen Workflow
nach Abschluss aller ausstehenden Aufgaben und startet eine neue Workflow-Ausführung. Solange
noch Aufgaben ausstehen, wird die aktuelle Workflow-Ausführung nicht geschlossen. Die neue
Ausführung erbt nicht automatisch den Verlauf oder Daten aus der ursprünglichen Ausführung. Wenn
Sie bestimmte Statusangaben in die neue Ausführung übernehmen möchten, müssen Sie diese
ausdrücklich als Eingabe übergeben.

Aufgabenpriorität in Amazon SWF festlegen

Standardmäßig werden Aufgaben in einer Aufgabenliste basierend auf ihrer Ankunftszeit
bereitgestellt: Aufgaben, die zuerst geplant wurden, werden möglichst zuerst ausgeführt. Indem Sie

Einstellung der Aufgabenpriorität API-Version 2021-04-28 116

AWS Flow Framework für Java Entwicklerhandbuch

eine optionale Aufgabenpriorität festlegen, können Sie bestimmten Aufgaben Priorität einräumen:
Amazon SWF versucht, Aufgaben mit höherer Priorität auf einer Aufgabenliste vor Aufgaben mit
niedrigerer Priorität zuzuweisen.

Sie können die Aufgabenpriorität sowohl für Workflows als auch Aktivitäten einrichten. Die
Aufgabenpriorität eines Workflows wirkt sich weder auf die Priorität von durch den Workflow
geplanten Aktivitätsaufgaben noch auf vom Workflow gestartete untergeordnete Workflows aus.
Die Standardpriorität für eine Aktivität oder einen Workflow wird bei der Registrierung festgelegt
(entweder von Ihnen oder von Amazon SWF), und die registrierte Aufgabenpriorität wird immer
verwendet, sofern sie nicht beim Planen der Aktivität oder beim Starten einer Workflow-Ausführung
außer Kraft gesetzt wird.

Die Werte für die Aufgabenpriorität müssen im Bereich von "-2147483648" und "2147483647" liegen.
Höhere Zahlen geben dabei eine höhere Priorität an. Wenn Sie für eine Aktivität oder einen Workflow
keine Aufgabenpriorität festlegen, wird eine Priorität von Null ("0") zugewiesen.

Themen

• Einrichten der Aufgabenpriorität für Workflows

• Einrichten der Aufgabenpriorität für Aktivitäten

Einrichten der Aufgabenpriorität für Workflows

Sie können die Aufgabenpriorität für einen Workflow beim Registrieren oder Starten des
Workflows einrichten. Die beim Registrieren eines Workflowtyps festgelegte Aufgabenpriorität wird
standardmäßig für alle Workflow-Ausführungen dieses Typs verwendet, sofern sie beim Starten der
Workflow-Ausführung nicht überschrieben wird.

Um einen Workflow-Typ mit einer standardmäßigen Aufgabenpriorität zu registrieren, legen Sie
WorkflowRegistrationOptionsbei der Deklaration die defaultTaskPriorityOption fest:

@Workflow
@WorkflowRegistrationOptions(
 defaultTaskPriority = 10,
 defaultTaskStartToCloseTimeoutSeconds = 240)
public interface PriorityWorkflow
{
 @Execute(version = "1.0")
 void startWorkflow(int a);
}

Einrichten der Aufgabenpriorität für Workflows API-Version 2021-04-28 117

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/WorkflowRegistrationOptions.html

AWS Flow Framework für Java Entwicklerhandbuch

Sie können auch die taskPriority für einen Workflow festlegen, wenn Sie ihn starten, wobei die
registrierte (standardmäßige) Aufgabenpriorität überschrieben wird.

StartWorkflowOptions priorityWorkflowOptions
 = new StartWorkflowOptions().withTaskPriority(10);

PriorityWorkflowClientExternalFactory cf
 = new PriorityWorkflowClientExternalFactoryImpl(swfService, domain);

priority_workflow_client = cf.getClient();

priority_workflow_client.startWorkflow(
 "Smith, John", priorityWorkflowOptions);

Zusätzlich können Sie die Aufgabenpriorität festlegen, wenn Sie einen untergeordneten
Workflow starten oder einen Workflow als neu fortsetzen. Sie können beispielsweise
die Option TaskPriority in ContinueAsNewWorkflowExecutionParametersoder in
StartChildWorkflowExecutionParametersfestlegen.

Einrichten der Aufgabenpriorität für Aktivitäten

Sie können die Aufgabenpriorität für eine Aktivität entweder beim Registrieren oder Planen der
Aufgabe einrichten. Die beim Registrieren eines Aktivitätstyps festgelegte Aufgabenpriorität wird
standardmäßig beim Ausführen der Aktivität verwendet, sofern sie beim Planen der Aktivität nicht
überschrieben wird.

Um einen Aktivitätstyp mit einer standardmäßigen Aufgabenpriorität zu registrieren, legen Sie die
defaultTaskPriorityOption ActivityRegistrationOptionsbei der Deklaration fest:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskPriority = 10,
 defaultTaskStartToCloseTimeoutSeconds = 120)
public interface ImportantActivities {
 int doSomethingImportant();
}

Sie können auch die taskPriority für eine Aktivität festlegen, wenn Sie ihn planen, wobei die
registrierte (standardmäßige) Aufgabenpriorität überschrieben wird.

Einrichten der Aufgabenpriorität für Aktivitäten API-Version 2021-04-28 118

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/ContinueAsNewWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/StartChildWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/ActivityRegistrationOptions.html

AWS Flow Framework für Java Entwicklerhandbuch

ActivitySchedulingOptions activityOptions = new
 ActivitySchedulingOptions.withTaskPriority(10);

ImportantActivitiesClient activityClient = new ImportantActivitiesClientImpl();

activityClient.doSomethingImportant(activityOptions);

DataConverters

Wenn Ihre Workflow-Implementierung eine Remote-Aktivität aufruft, werden die Eingaben dorthin
übergeben und das Ergebnis der Ausführung der Aktivität muss serialisiert werden, sodass
sie über den Draht gesendet werden können. Das Framework verwendet die DataConverter
Klasse für diesen Zweck. Dies ist eine abstrakte Klasse, die Sie implementieren können,
um Ihren eigenen Serializer anzugeben. Eine auf dem Jackson-Serializer basierende
StandardimplementierungJsonDataConverter, ist im Framework enthalten. Weitere
Einzelheiten dazu finden Sie in der AWS SDK für Java -Dokumentation. In der Jackson JSON
Processor-Dokumentation finden Sie weitere Informationen dazu, wie Jackson die Serialisierung
durchführt, sowie Jackson-Annotationen, die für deren Beeinflussung verwendet werden können.
Das verwendete Drahtformat wird als Teil des Vertrags angesehen. Sie können also einen
DataConverter auf Ihren Aktivitäten und Workflow-Schnittstellen angeben, indem Sie die
DataConverter-Eigenschaft der @Activities- und @Workflow-Annotationen festlegen.

Das Framework erzeugt Objekte vom DataConverter-Typ, den Sie in der @Activities-
Annotation angegeben haben, um die Eingaben für die Aktivität zu serialisieren und ihr Ergebnis zu
deserialisieren. Ähnlich werden Objekte vom DataConverter-Typ, den Sie in der @Workflow-
Annotation angeben, verwendet, um Parameter, die Sie an den Workflow übergeben, zu serialisieren
und im Fall eines untergeordneten Workflows das Ergebnis zu deserialisieren. Zusätzlich zu den
Eingaben übergibt das Framework auch zusätzliche Daten an Amazon SWF, z. B. Ausnahmedetails.
Der Workflow-Serializer wird auch für die Serialisierung dieser Daten verwendet.

Sie können auch eine Instance des DataConverter angeben, wenn Sie nicht möchten, dass das
Framework sie automatisch erstellt. Die generierten Clients haben Konstruktorüberlastungen, die
einen DataConverter akzeptieren.

Wenn Sie keinen DataConverter-Typ angeben und kein DataConverter-Objekt übergeben, wird
der JsonDataConverter standardmäßig verwendet.

DataConverters API-Version 2021-04-28 119

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html

AWS Flow Framework für Java Entwicklerhandbuch

Datenübergabe an asynchrone Methoden

Themen

• Übergabe von Collections und Maps an asynchrone Methoden

• Einstellbare <T>

• @NoWait

• Promise <Void>

• AndPromise und OrPromise

Die Verwendung von Promise<T> wurde in den vorangegangenen Abschnitten erläutert. Hier
werden einige fortgeschrittene Anwendungsfälle von Promise<T> besprochen.

Übergabe von Collections und Maps an asynchrone Methoden

Das Framework unterstützt die Übergabe von Arrays, Collections und Maps als Promise-Typen an
asynchrone Methoden. Beispielsweise kann eine asynchrone Methode, wie im Folgenden gezeigt,
Promise<ArrayList<String>> als Argument entgegennehmen.

@Asynchronous
public void printList(Promise<List<String>> list) {
 for (String s: list.get()) {
 activityClient.printActivity(s);
 }
}

Semantisch verhält sich diese Variante wie jeder andere typisierte Promise-Parameter und die
asynchrone Methode wartet, bis die Collection verfügbar wird, bevor sie ausgeführt wird. Wenn die
Mitglieder einer Collection Promise-Objekte sind, können Sie das Framework warten lassen, bis
alle Mitglieder bereit sind. Dies ist im folgenden Snippet zu sehen. Dadurch wartet die asynchrone
Methode auf die Verfügbarkeit aller Mitglieder der Collection.

@Asynchronous
public void printList(@Wait List<Promise<String>> list) {
 for (Promise<String> s: list) {
 activityClient.printActivity(s);
 }
}

Datenübergabe an asynchrone Methoden API-Version 2021-04-28 120

AWS Flow Framework für Java Entwicklerhandbuch

Beachten Sie, dass die @Wait-Annotation für den Parameter verwendet werden muss. Diese zeigt
an, das Promise-Objekte enthalten sind.

Beachten Sie außerdem, dass die Aktivität printActivity ein String-Argument entgegennimmt,
die entsprechende Methode im generierten Client jedoch ein Promise<String>-Argument erwartet.
Wir rufen die Methode für den Client auf. Wir rufen nicht die Aktivitätsmethode direkt auf.

Einstellbare <T>

Settable<T> ist ein von Promise<T> abgeleiteter Typ, der eine Set-Methode zur Verfügung
stellt, mit der Sie den Promise-Wert manuell einstellen können. Beispielsweise wartet der folgende
Workflow auf den Empfang eines Signals, indem er auf ein Settable<?> wartet, das in der
Signalmethode festgelegt ist:

public class MyWorkflowImpl implements MyWorkflow{
 final Settable<String> result = new Settable<String>();

 //@Execute method
 @Override
 public Promise<String> start() {
 return done(result);
 }

 //Signal
 @Override
 public void manualProcessCompletedSignal(String data) {
 result.set(data);
 }

 @Asynchronous
 public Promise<String> done(Settable<String> result){
 return result;
 }
}

Ein Settable<?>-Wert kann außerdem mit einem anderen Promise-Objekt verkettet werden. Mit
AndPromise und OrPromise können Sie Promise-Objekte gruppieren. Sie können die Verkettung
eines verketteten Settable aufheben, indem Sie die unchain()-Methode aufrufen. Wenn eine
Verkettung vorhanden ist, steht Settable<?> automatisch bereit, wenn das verkettete Promise-
Objekt bereit ist. Die Verkettung ist besonders dann nützlich, wenn Sie ein im Rahmen eines
doTry()-Aufrufes zurückgegebenes Promise-Objekt in anderen Teilen Ihres Programms verwenden

Einstellbare <T> API-Version 2021-04-28 121

AWS Flow Framework für Java Entwicklerhandbuch

wollen. Da TryCatchFinally es sich um eine verschachtelte Klasse handelt, können Sie a nicht
Promise<> im Gültigkeitsbereich des übergeordneten Objekts deklarieren und festlegen. doTry()
Dies liegt daran, dass in Java Variablen im übergeordneten Bereich deklariert und in verschachtelten
Klassen verwendet werden müssen, um als endgültig markiert zu werden. Zum Beispiel:

@Asynchronous
public Promise<String> chain(final Promise<String> input) {
 final Settable<String> result = new Settable<String>();

 new TryFinally() {

 @Override
 protected void doTry() throws Throwable {
 Promise<String> resultToChain = activity1(input);
 activity2(resultToChain);

 // Chain the promise to Settable
 result.chain(resultToChain);
 }

 @Override
 protected void doFinally() throws Throwable {
 if (result.isReady()) { // Was a result returned before the exception?
 // Do cleanup here
 }
 }
 };

 return result;
}

Ein Settable kann jeweils mit einem Promise-Objekt verkettet werden. Sie können die Verkettung
eines verketteten Settable aufheben, indem Sie die unchain()-Methode aufrufen.

@NoWait

Wenn Sie ein Promise an eine asynchrone Methode übergeben, wartet das Framework
standardmäßig, bis die Promise(s) bereit sind, bevor es die Methode ausführt (außer bei Collection-
Typen). Sie können dieses Verhalten überschreiben, indem Sie in der Deklaration der asynchronen
Methode die @NoWait-Notation für die Parameter verwenden. Dies ist dann nützlich, wenn Sie in
Settable<T> Werte übergeben, die durch die asynchrone Methode selbst festgelegt werden.

@NoWait API-Version 2021-04-28 122

AWS Flow Framework für Java Entwicklerhandbuch

Promise <Void>

Abhängigkeiten in asynchronen Methoden werden implementiert, indem das von einer Methode
zurückgegebene Promise-Objekt als Argument an eine andere Methode übergeben wird. Es kann
jedoch Fälle geben, in denen Sie aus einer Methode einen void-Wert zurückgeben möchten, aber
dennoch andere asynchrone Methoden nach ihrer Beendigung ausführen möchten. In solchen
Fällen können Sie Promise<Void> als Rückgabetyp der Methode verwenden. Die Klasse Promise
stellt eine statische Void-Methode zur Verfügung, mit der Sie ein Promise<Void>-Objekt anlegen
können. Dieses Promise-Objekt ist dann bereit, wenn die asynchrone Methode die Ausführung
beendet. Sie können das Promise wie jedes andere Promise-Objekt an eine andere asynchrone
Methode übergeben. Wenn Sie Settable<Void> verwenden, dann rufen Sie zur Bereitstellung
dessen Set-Methode mit "null" auf.

AndPromise und OrPromise

Mit AndPromise und OrPromise können Sie mehrere Promise<>-Objekte zu einem einzigen
logischen Promise-Objekt zusammenfassen. Ein AndPromise ist dann bereit, wenn alle zur
Erstellung verwendeten Promise-Objekte bereit sind. Ein OrPromise ist dann bereit, wenn alle
Promise-Objekte in der zur Erstellung verwendeten Promise-Collection bereit sind. Sie können
getValues() für AndPromise und OrPromise aufrufen, um die Werteliste der einzelnen Promise-
Objekte abzurufen.

Prüfbarkeit und Dependency Injection

Themen

• Spring-Integration

• JUnit Integration

Das Framework ist auf die Unterstützung von IoC (Inversion of Control, Umkehr des Kontrollflusses)
ausgelegt. Aktivitäts- und Workflow-Implementierungen sowie die vom Framework bereitgestellten
Worker und Kontextobjekte können mit Containern wie Spring konfiguriert und instanziiert werden.
Das Framework kann standardmäßig in das Spring Framework integriert werden. Darüber hinaus
JUnit wurde eine Integration für die Implementierung von Workflows und Aktivitäten für Unit-Tests
bereitgestellt.

Promise <Void> API-Version 2021-04-28 123

AWS Flow Framework für Java Entwicklerhandbuch

Spring-Integration

Das Paket "com.amazonaws.services.simpleworkflow.flow.spring" enthält Klassen, die
die Verwendung des Spring-Frameworks in Ihren Anwendungen vereinfacht. Dazu zählen
benutzerdefinierte Scope-und-Spring-fähige Aktivitäts- und Workflow-Worker: WorkflowScope,
SpringWorkflowWorker und SpringActivityWorker. Diese Klassen ermöglichen Ihnen die
vollständige Konfiguration Ihrer Workflow- und Aktivitätsimplementierungen sowie der Worker mit
Spring.

WorkflowScope

WorkflowScope – Eine benutzerdefinierte Spring Scope-Implementierung, die vom Framework
bereitgestellt wird. Mit diesem Scope können Sie Objekte in Spring-Container erstellen, dessen
Lebensdauer an die der Entscheidungsaufgabe angepasst ist. Die Beans in diesem Scope werden
immer dann instanziiert, wenn der Worker eine neue Entscheidungsaufgabe empfängt. Sie sollten
diesen Scope für Workflow-Implementierungs-Beans und anderen Beans, von denen er abhängt,
verwenden. Die von Spring bereitgesellten Singleton- und Prototype-Scopes sollten nicht für
Workflow-Implementierungs-Beans eingesetzt werden, da das Framework erfordert, dass für jede
Entscheidungsaufgabe eine neue Bean erstellt werden kann. Wenn Sie dies nicht tun, kommt es zu
einem unerwünschten Verhalten.

Das folgende Beispiel zeigt einen Ausschnitt einer Spring-Konfigurationen, bei der der
WorkflowScope registriert und anschließend für die Konfiguration einer Workflow-
Implementierungs-Bean und einer Aktivitäts-Client-Bean eingesetzt wird.

<!-- register AWS Flow Framework for Java WorkflowScope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">

Spring-Integration API-Version 2021-04-28 124

AWS Flow Framework für Java Entwicklerhandbuch

 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

Die Konfigurationszeile <aop:scoped-proxy proxy-target-class="false" />, die bei
der Konfiguration der workflowImpl-Bean verwendet wird, ist erforderlich, da WorkflowScope
ein Proxying mittels CGLIB nicht unterstützt. Sie sollte diese Konfiguration für alle Beans im
WorkflowScope verwenden, die mit anderen Beans in einem anderen Scope verbunden sind. In
diesem Fall muss die workflowImpl-Bean mit einer Workflow-Worker-Bean in einem Singleton-
Scope verknüpft werden (siehe Beispiel unten).

Weitere Informationen zur Verwendung benutzerdefinierter Scopes finden Sie in der Spring
Framework-Dokumentation.

Spring-fähige Worker

Bei der Arbeit mit Spring sollten Sie die Spring-fähigen Worker-Klassen nutzen, die vom Framework
bereitgestellt werden: SpringWorkflowWorker und SpringActivityWorker. Diese Worker
können mittels Spring in Ihre Anwendung eingefügt werden, wie im folgenden Beispiel gezeigt.
Die Spring-fähigen Worker implementieren Springs SmartLifecycle-Schnittstelle und starten
standardmäßig automatisch das Abrufen von Aufgaben, wenn der Spring-Kontext initialisiert wurde.
Sie können diese Funktion deaktivieren, indem Sie die disableAutoStartup-Eigenschaft des
Workers auf true setzen.

Das folgende Beispiel zeigt die Konfiguration eines Entscheiders. In diesem Beispiel werden die
Schnittstellen MyActivities und MyWorkflow (hier nicht abgebildet) sowie die entsprechenden
Implementierungen MyActivitiesImpl und MyWorkflowImpl verwendet. Die generierten Client-
Schnittstellen und -Implementierungen sind MyWorkflowClient/MyWorkflowClientImpl und
MyActivitiesClient/MyActivitiesClientImpl (ebenfalls nicht abgebildet).

Der Aktivitäts-Client wird über die "auto wire"-Funktion von Spring in die Workflow-Implementierung
eingefügt:

public class MyWorkflowImpl implements MyWorkflow {
 @Autowired
 public MyActivitiesClient client;

Spring-Integration API-Version 2021-04-28 125

AWS Flow Framework für Java Entwicklerhandbuch

 @Override
 public void start() {
 client.activity1();
 }
}

Die Spring-Konfiguration des Entscheiders sieht wie folgt aus:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/
spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>
 <context:annotation-config/>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

Spring-Integration API-Version 2021-04-28 126

AWS Flow Framework für Java Entwicklerhandbuch

 <!-- Amazon SWF client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <!-- workflow worker -->
 <bean id="workflowWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringWorkflowWorker">
 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />
 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 </bean>
</beans>

Da der in Spring vollständig konfiguriert SpringWorkflowWorker ist und bei der Initialisierung des
Spring-Kontextes automatisch mit der Abfrage beginnt, ist der Host-Prozess für den Decider einfach:

public class WorkflowHost {
 public static void main(String[] args){
 ApplicationContext context
 = new FileSystemXmlApplicationContext("resources/spring/
WorkflowHostBean.xml");

Spring-Integration API-Version 2021-04-28 127

AWS Flow Framework für Java Entwicklerhandbuch

 System.out.println("Workflow worker started");
 }
}

Entsprechend kann auch der Aktivitäts-Worker wie folgt konfiguriert werden:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/
spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean

 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- Amazon SWF client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">

Spring-Integration API-Version 2021-04-28 128

AWS Flow Framework für Java Entwicklerhandbuch

 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities impl -->
 <bean name="activitiesImpl" class="asadj.spring.test.MyActivitiesImpl">
 </bean>

 <!-- activity worker -->
 <bean id="activityWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringActivityWorker">
 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />
 <property name="activitiesImplementations">
 <list>
 <ref bean="activitiesImpl" />
 </list>
 </property>
 </bean>
</beans>

Der Hostprozess des Aktivitäts-Workers ähnelt dem des Entscheiders:

public class ActivityHost {
 public static void main(String[] args) {
 ApplicationContext context = new FileSystemXmlApplicationContext(
 "resources/spring/ActivityHostBean.xml");
 System.out.println("Activity worker started");
 }
}

Einfügen des Entscheidungskontexts

Wie Ihre Workflow-Implementierung von den Kontextobjekten abhängt, können Sie diese ebenfalls
ganz einfach mit Spring einfügen. Das Framework registriert kontextbasierte Beans automatisch im
Spring-Container. Im folgenden Codeausschnitt wurden beispielsweise verschiedene Kontextobjekte
automatisch verknüpft. Eine weitere Spring-Konfiguration der Kontextobjekte ist nicht erforderlich.

Spring-Integration API-Version 2021-04-28 129

AWS Flow Framework für Java Entwicklerhandbuch

public class MyWorkflowImpl implements MyWorkflow {
 @Autowired
 public MyActivitiesClient client;
 @Autowired
 public WorkflowClock clock;
 @Autowired
 public DecisionContext dcContext;
 @Autowired
 public GenericActivityClient activityClient;
 @Autowired
 public GenericWorkflowClient workflowClient;
 @Autowired
 public WorkflowContext wfContext;
 @Override
 public void start() {
 client.activity1();
 }
}

Wenn Sie die Kontextobjekte in der Workflow-Implementierung über die Spring-XML-Konfiguration
konfigurieren möchten, verwenden Sie die Bean-Namen, die in der WorkflowScopeBeanNames-
Klasse im Paket "com.amazonaws.services.simpleworkflow.flow.spring" deklariert sind. Zum Beispiel:

<!-- workflow implementation -->
<bean id="workflowImpl" class="asadj.spring.test.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <property name="clock" ref="workflowClock"/>
 <property name="activityClient" ref="genericActivityClient"/>
 <property name="dcContext" ref="decisionContext"/>
 <property name="workflowClient" ref="genericWorkflowClient"/>
 <property name="wfContext" ref="workflowContext"/>
 <aop:scoped-proxy proxy-target-class="false" />
</bean>

Alternativ können Sie auch einen DecisionContextProvider in die Bean der Workflow-
Implementierung einfügen und zum Erstellen des Kontexts verwenden. Dies ist hilfreich, wenn Sie
benutzerdefinierte Implementierungen des Providers und Kontexts bereitstellen möchten.

Einfügen von Ressourcen in Aktivitäten

Sie können Aktivitätsimplementierungen mit einem IoC-Container instanziieren und konfigurieren und
Ressourcen wie Datenbankverbindungen einfügen, indem Sie diese als Eigenschaften der Klasse

Spring-Integration API-Version 2021-04-28 130

AWS Flow Framework für Java Entwicklerhandbuch

der Aktivitätsimplementierung deklarieren. Diese Ressourcen werden in der Regeln als Singletons
definiert. Beachten Sie, dass Aktivitätsimplementierungen vom Aktivitäts-Worker auf verschiedenen
Threads aufgerufen werden. Deshalb muss der Zugriff auf freigegebene Ressourcen synchronisiert
werden.

JUnit Integration

Das Framework bietet JUnit Erweiterungen sowie Testimplementierungen der Kontextobjekte, z.
B. eine Testuhr, mit der Sie Komponententests schreiben und ausführen können. JUnit Mit diesen
Erweiterungen ist ein lokaler Inline-Test der Workflow-Implementierung möglich.

Schreiben eines einfachen Einheitentests

Verwenden Sie zum Entwerfen von Tests für Ihren Workflow die WorkflowTest-Klasse aus dem
Paket "com.amazonaws.services.simpleworkflow.flow.junit". Bei dieser Klasse handelt es sich um
eine Framework-spezifische JUnit MethodRule Implementierung. Sie führt Ihren Workflow-Code
lokal aus und ruft Aktivitäten inline auf, anstatt Amazon SWF zu verwenden. Dadurch haben Sie die
Möglichkeit, Ihre Test so oft Sie möchten, auszuführen, ohne dass Gebühren anfallen.

Wenn Sie diese Klasse verwenden möchten, deklarieren Sie einfach ein Feld vom Typ
WorkflowTest und versehen es mit der Anmerkung @Rule. Erstellen Sie vor der Ausführung
Ihrer Tests ein neues WorkflowTest-Objekt und fügen Sie diesem Ihre Aktivitäts- und Workflow-
Implementierungen hinzu. Sie können die generierte Workflow-Client-Factory zum Erstellen
eines Clients und zum Starten der Ausführung des Workflows verwenden. Das Framework bietet
auch einen benutzerdefinierten JUnit RunnerFlowBlockJUnit4ClassRunner, den Sie für Ihre
Workflow-Tests verwenden müssen. Zum Beispiel:

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory
 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {

JUnit Integration API-Version 2021-04-28 131

AWS Flow Framework für Java Entwicklerhandbuch

 trace = new ArrayList<String>();
 // Register activity implementation to be used during test run
 BookingActivities activities = new BookingActivitiesImpl(trace);
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);
 }

 @After
 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);
 }
}

Sie können zudem für jede Aktivitätsimplementierung, die Sie zu WorkflowTest hinzufügen, eine
separate Aufgabenliste angeben. Wenn Sie beispielsweise eine Workflow-Implementierung haben,
die Aktivitäten in hostspezifischen Aufgabenlisten plant, können Sie die Aktivität in der Aufgabenliste
der einzelnen Hosts registrieren:

for (int i = 0; i < 10; i++) {
 String hostname = "host" + i;
 workflowTest.addActivitiesImplementation(hostname,
 new ImageProcessingActivities(hostname));
}

Beachten Sie, dass der Code in @Test asynchron ist. Deshalb sollten Sie die Ausführung mit dem
asynchronen Workflow-Client starten. Zur Überprüfung der Testergebnisse steht eine AsyncAssert-
Hilfsklasse zur Verfügung. Diese Klasse ermöglicht Ihnen das Warten auf sog. Promises, die darüber
informieren, dass die Operation vor der Verifizierung der Ergebnisse abgeschlossen ist. In diesem
Beispiel wird auf das Ergebnis der Workflow-Ausführung gewartet, um vor dem Verifizieren der
Testausgabe fertig zu sein.

JUnit Integration API-Version 2021-04-28 132

AWS Flow Framework für Java Entwicklerhandbuch

Wenn Sie Spring benutzen, dann kann die SpringWorkflowTest-Klasse anstelle der
WorkflowTest-Klasse verwendet werden. SpringWorkflowTest stellt Eigenschaften bereit, die
Sie verwenden können, um Aktivitäts- und Workflow-Implementierungen einfach über die Spring-
Konfiguration zu konfigurieren. Genau wie die Spring-fähigen Worker sollten Sie zum Konfigurieren
von Workflow-Implementierungs-Beans den WorkflowScope verwenden. Das sorgt dafür, dass für
jede Entscheidungsaufgabe eine neue Workflow-Implementierungs-Bean generiert wird. Stellen Sie
sicher, dass Sie diese Beans so konfigurieren, dass die proxy-target-class Scoped-Proxy-Einstellung
auf eingestellt ist. false Weitere Informationen finden Sie im Abschnitt zur Spring-Integration. Das
Beispiel der Spring-Konfiguration, das in diesem Abschnitt gezeigt wird, kann geändert werden, um
den Workflow mit SpringWorkflowTest zu testen:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://
www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframe
work.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>
 <context:annotation-config />
 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}" />
 <constructor-arg value="{AWS.Secret.Key}" />
 </bean>
 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

JUnit Integration API-Version 2021-04-28 133

AWS Flow Framework für Java Entwicklerhandbuch

 <!-- Amazon SWF client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl"
 scope="workflow">
 <property name="client" ref="activitiesClient" />
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <!-- WorkflowTest -->
 <bean id="workflowTest"
 class="com.amazonaws.services.simpleworkflow.flow.junit.spring.SpringWorkflowTest">
 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 <property name="taskListActivitiesImplementationMap">
 <map>
 <entry>
 <key>
 <value>list1</value>
 </key>
 <ref bean="activitiesImplHost1" />
 </entry>
 </map>
 </property>
 </bean>
</beans>

JUnit Integration API-Version 2021-04-28 134

AWS Flow Framework für Java Entwicklerhandbuch

Nachahmen von Aktivitätsimplementierungen

Sie können während des Testens echte Aktivitätsimplementierungen verwenden. Wenn Sie aber
nur einen Einheitentest für die Workflow-Logik durchführen möchten, sollten Sie die Aktivitäten
nachahmen. Dazu stellen Sie eine Mock-Implementierung der Aktivitätsschnittstelle für die
WorkflowTest-Klasse bereit. Zum Beispiel:

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory
 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {
 trace = new ArrayList<String>();
 // Create and register mock activity implementation to be used during test run
 BookingActivities activities = new BookingActivities() {

 @Override
 public void sendConfirmationActivity(int customerId) {
 trace.add("sendConfirmation-" + customerId);
 }

 @Override
 public void reserveCar(int requestId) {
 trace.add("reserveCar-" + requestId);
 }

 @Override
 public void reserveAirline(int requestId) {
 trace.add("reserveAirline-" + requestId);
 }
 };
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);
 }

JUnit Integration API-Version 2021-04-28 135

AWS Flow Framework für Java Entwicklerhandbuch

 @After
 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);
 }
}

Alternativ können Sie eine Mock-Implementierung des Aktivitäts-Clients bereitstellen und in Ihre
Workflow-Implementierung einfügen.

Testen von Kontextobjekten

Wenn Ihre Workflow-Implementierung von den Framework-Kontextobjekten abhängt, z. B. von,
müssen DecisionContext Sie nichts Besonderes tun, um solche Workflows zu testen. Wird
ein Test mittels WorkflowTest durchgeführt, werden automatisch Testkontextobjekte eingefügt.
Wenn Ihre Workflow-Implementierung auf die Kontextobjekte zugreift, z. B. mithilfe von, wird
sie die Testimplementierung erhalten. DecisionContextProviderImpl Sie können diese
Testkontextobjekte in Ihrem Testcode ändern (@Test-Methode), um relevante Testfälle zu
entwerfen. Erstellt Ihr Workflow beispielsweise einen Timer, können Sie dafür sorgen, dass der
Timer ausgelöst wird, indem Sie die clockAdvanceSeconds-Methode auf der WorkflowTest-
Klasse aufrufen, um die Uhr vorzustellen. Mit der ClockAccelerationCoefficient-Eigenschaft
im WorkflowTest können Sie ebenfalls die Uhrzeit vorstellen, damit der Timer früher als üblich
ausgelöst wird. Erstellt Ihr Workflow beispielsweise einen Timer für eine Stunde, können Sie
ClockAccelerationCoefficient auf 60 setzen, damit der Timer in einer Minute ausgelöst wird.
Standardmäßig ist ClockAccelerationCoefficient auf "1" gesetzt.

Weitere Informationen zu den Paketen "com.amazonaws.services.simpleworkflow.flow.test"
und "com.amazonaws.services.simpleworkflow.flow.junit" finden Sie in der AWS SDK für Java -
Dokumentation.

JUnit Integration API-Version 2021-04-28 136

AWS Flow Framework für Java Entwicklerhandbuch

Fehlerbehandlung

Themen

• TryCatchFinally Semantik

• Abbruch

• Verschachtelt TryCatchFinally

Das Konstrukt try/catch/finally in Java vereinfacht die Fehlerbehandlung und wird sehr häufig
eingesetzt. Es ermöglicht die Verknüpfung von Fehler-Handlern mit einem Codeblock. Dies geschieht
intern durch die Anhäufung von Metadaten zu den Fehler-Handlern auf dem Aufruf-Stack. Wird
eine Ausnahme ausgelöst, sucht die Laufzeit beim Aufruf-Stack nach einem zugehörigen Fehler-
Handler und ruft diesen auf. Wird kein passender gefunden, wird die Ausnahme an die Aufruf-Kette
weitergegeben.

Dies funktioniert gut bei synchronem Code. Die Fehlerbehandlung in asynchronen und verteilten
Programmen stellt jedoch einige Herausforderungen dar. Da ein asynchroner Aufruf sofort
zurückkehrt, befindet sich der Aufrufer nicht auf der Aufrufliste, wenn der asynchrone Code
ausgeführt wird. Das bedeutet, dass nicht behandelte Ausnahmen in einem asynchronen Code vom
Aufrufer nicht in der üblichen Weise behandelt werden können. In der Regel werden Ausnahmen,
die in einem asynchronen Code auftreten, behandelt, indem der Fehlerstatus an ein Callback
übergeben wird, das an die asynchrone Methode übermittelt wird. Alternativ erfolgt bei Verwendung
von Future<?> die Meldung eines Fehlers, wenn Sie versuchen, darauf zuzugreifen. Dies ist
keineswegs ideal, da dem Code, der die Ausnahme empfängt (das Callback oder den Code,
das bzw. der Future<?> verwendet), der Kontext des ursprünglichen Aufrufs fehlt und er die
Ausnahme möglicherweise nicht adäquat behandeln kann. Darüber hinaus kann es bei einem
verteilten asynchronen System, bei dem mehrere Komponenten parallel ausgeführt werden,
gleichzeitig zu mehreren Fehlern kommen. Dabei kann es sich um unterschiedliche Fehlertypen von
unterschiedlichem Schweregrad handeln, die alle entsprechend behandelt werden müssen.

Das Bereinigen einer Ressource nach einem asynchronen Aufruf ist ebenfalls schwierig. Im
Gegensatz zu synchronem Code können Sie den Code try/catch/finally im aufrufenden Code nicht
verwenden, um Ressourcen zu bereinigen, da die im Try-Block eingeleitete Arbeit möglicherweise
noch andauert, wenn der Finally-Block ausgeführt wird.

Das Framework bietet einen Mechanismus, der die Fehlerbehandlung in verteiltem asynchronem
Code der von Java ähnelt und fast so einfach wie die von Java ist. try/catch/finally

Fehlerbehandlung API-Version 2021-04-28 137

AWS Flow Framework für Java Entwicklerhandbuch

ImageProcessingActivitiesClient activitiesClient
 = new ImageProcessingActivitiesClientImpl();

public void createThumbnail(final String webPageUrl) {

 new TryCatchFinally() {

 @Override
 protected void doTry() throws Throwable {
 List<String> images = getImageUrls(webPageUrl);
 for (String image: images) {
 Promise<String> localImage
 = activitiesClient.downloadImage(image);
 Promise<String> thumbnailFile
 = activitiesClient.createThumbnail(localImage);
 activitiesClient.uploadImage(thumbnailFile);
 }
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {

 // Handle exception and rethrow failures
 LoggingActivitiesClient logClient = new LoggingActivitiesClientImpl();
 logClient.reportError(e);
 throw new RuntimeException("Failed to process images", e);
 }

 @Override
 protected void doFinally() throws Throwable {
 activitiesClient.cleanUp();
 }
 };
}

Die TryCatchFinally-Klasse und deren Varianten TryFinally und TryCatch funktionieren
ähnlich wie Javas try/catch/finally. Mit dieser Lösung können Sie Ausnahme-Handler mit
Blöcken von Workflow-Code verknüpfen, die als asynchrone und Remote-Aufgaben ausgeführt
werden können. Die doTry()-Methode entspricht logisch dem try-Block. Das Framework führt den
Code automatisch in doTry() aus. Eine Liste von Promise-Objekten kann an den Konstruktor von
TryCatchFinally übergeben werden. Die doTry-Methode wird ausgeführt, wenn alle Promise
-Objekte, die an den Konstruktor übergeben wurden, bereit sind. Wird eine Ausnahme von einem

Fehlerbehandlung API-Version 2021-04-28 138

AWS Flow Framework für Java Entwicklerhandbuch

Code ausgelöst, der asynchron innerhalb von doTry() aufgerufen wurde, werden alle Vorgänge
in doTry() abgebrochen und doCatch() aufgerufen, um die Ausnahme zu behandeln. Wenn
beispielsweise in der obigen Auflistung downloadImage eine Ausnahme auslöst, dann werden
createThumbnail und uploadImage abgebrochen. Wenn alle asynchronen Vorgänge beendet
wurden (abgeschlossen, fehlgeschlagen oder abgebrochen), wird abschließend doFinally()
aufgerufen. Es kann zum Bereinigen von Ressourcen verwendet werden. Sie können diese Klassen
auch gemäß Ihren Anforderungen verschachteln.

Wenn eine Ausnahme in doCatch() gemeldet wird, stellt das Framework einen vollständigen
logischen Aufruf-Stack mit asynchronen und Remote-Aufrufen bereit. Dies kann beim Debuggen
nützlich sein, insbesondere bei asynchronen Methoden, die andere asynchrone Methoden aufrufen.
Eine Ausnahme von downloadImage führt beispielsweise zu einer Ausnahme wie der folgenden:

RuntimeException: error downloading image
 at downloadImage(Main.java:35)
 at ---continuation---.(repeated:1)
 at errorHandlingAsync$1.doTry(Main.java:24)
 at ---continuation---.(repeated:1)
…

TryCatchFinally Semantik

Die Ausführung eines Programms AWS Flow Framework für Java kann als Baum gleichzeitig
ausgeführter Zweige visualisiert werden. Durch den Aufruf einer asynchronen Methode, einer Aktivität
oder TryCatchFinally wird eine neue Verzweigung in dieser Baumstruktur der Ausführung
angelegt. Der Bildverarbeitungs-Workflow beispielsweise ist in Form einer Baumstruktur auf folgender
Abbildung zu sehen.

Ein Fehler in einer Verzweigung der Ausführung führt zu einer Entladung der Verzweigung, genau
wie eine Ausnahme die Entladung eines Aufruf-Stacks in einem Java-Programm verursacht. Dieser

TryCatchFinally Semantik API-Version 2021-04-28 139

AWS Flow Framework für Java Entwicklerhandbuch

Vorgang setzt sich fort, bis entweder der Fehler behandelt oder der Stamm erreicht ist. In diesem Fall
wird die Workflow-Ausführung beendet.

Das Framework meldet Fehler, die bei der Verarbeitung von Aufgaben auftreten, als Ausnahmen.
Es verknüpft die Ausnahme-Handler (doCatch()-Methoden), die in TryCatchFinally definiert
sind, mit allen Aufgaben, die vom Code im entsprechenden doTry() erstellt wurden. Wenn eine
Aufgabe fehlschlägt, z. B. aufgrund eines Timeouts oder einer unbehandelten Ausnahme, wird die
entsprechende Ausnahme ausgelöst und die entsprechende wird aufgerufen, um sie zu behandeln.
doCatch() Um dies zu erreichen, arbeitet das Framework mit Amazon SWF zusammen, um
Remote-Fehler zu verbreiten und sie als Ausnahmen im Kontext des Aufrufers wieder aufleben zu
lassen.

Abbruch

Tritt eine Ausnahme im asynchronen Code auf, springt das Steuerelement direkt zum catch-Block
und überspringt den verbleibenden Code im try-Block. Zum Beispiel:

try {
 a();
 b();
 c();
}
catch (Exception e) {
 e.printStackTrace();
}

Bei diesem Code wird, wenn b() eine Ausnahme auslöst, c() niemals aufgerufen. Vergleichen Sie
dies mit einem Workflow:

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 activityA();
 activityB();
 activityC();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {

Abbruch API-Version 2021-04-28 140

AWS Flow Framework für Java Entwicklerhandbuch

 e.printStackTrace();
 }
};

Hier werden Aufrufe von activityA, activityB und activityC erfolgreich zurückgegeben und
führen zur Erstellung dreier Aufgaben, die asynchron ausgeführt werden. Angenommen, die Aufgabe
für activityB verursacht zu einem späteren Zeitpunkt einen Fehler. Dieser Fehler wird von
Amazon SWF in der Historie aufgezeichnet. Aus diesem Grund versucht das Framework zunächst
alle anderen Aufgaben abzubrechen, die aus dem Bereich desselben doTry() stammen. In diesem
Fall sind das activityAund activityC. Nach Beendigung aller Aufgaben (durch Abbrechen,
Fehlschlagen oder erfolgreichem Abschließen), wird die entsprechende doCatch()-Methode
aufgerufen, um den Fehler zu behandeln.

Im Gegensatz zum synchronen Beispiel, bei dem c() niemals ausgeführt wurde, wurde activityC
hier aufgerufen. Zudem wurde eine Aufgabe für die Ausführung eingeplant. Deshalb versucht das
Framework einen Abbruch, für dessen Erfolg es aber keine Garantie gibt. Der Abbruch kann nicht
garantiert werden, da die Aktivität möglicherweise bereits abgeschlossen ist, die Abbruchanforderung
ignoriert oder fehlschlägt. Das Framework garantiert jedoch, dass doCatch() nur aufgerufen wird,
wenn alle Aufgaben, die über das entsprechende doTry() gestartet wurden, abgeschlossen sind. Es
garantiert zudem, dass doFinally() nur aufgerufen wird, wenn alle Aufgaben, die vom doTry()-
und doCatch()-Block gestartet wurden, abgeschlossen sind. Wenn die Aktivitäten im obigen
Beispiel beispielsweise voneinander abhängen, beispielsweise von activityA und activityC
von, dann erfolgt die Stornierung von activityC sofortactivityB, da sie erst in Amazon SWF
geplant ist, wenn Folgendes activityB abgeschlossen ist: activityB

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 Promise<Void> a = activityA();
 Promise<Void> b = activityB(a);
 activityC(b);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 e.printStackTrace();
 }
};

Abbruch API-Version 2021-04-28 141

AWS Flow Framework für Java Entwicklerhandbuch

Aktivitäts-Heartbeat

Mit dem kooperativen Stornierungsmechanismus von AWS Flow Framework for Java können
Aufgaben während des Fluges problemlos storniert werden. Wird der Abbruch ausgelöst, werden
blockierte Aufgaben oder Aufgaben, die darauf warten, zu einem Worker zugewiesen zu werden,
automatisch abgebrochen. Wenn eine Aufgabe aber bereits einem Worker zugewiesen wurde,
fordert das Framework den Abbruch der Aktivität an. Ihre Aktivitätsimplementierung muss diese
Abbruchanforderungen explizit behandeln können. Dies geschieht durch das Übermitteln von
Heartbeats Ihrer Aktivität.

Durch das Senden von Heartbeats ist die Aktivitätsimplementierung in der Lage, den Fortschritt einer
andauernden Aufgabe zu melden. Dies unterstützt die Überwachung und ermöglicht der Aktivität zu
prüfen, ob Abbruchanforderungen vorliegen. Die recordActivityHeartbeat-Methode löst bei
Anforderung eines Abbruchs eine CancellationException aus. Die Aktivitätsimplementierung
kann diese Ausnahme abfangen und auf die Abbruchanforderung reagieren oder die Anforderung
durch "Verschlucken" der Ausnahme ignorieren. Um der Abbruchanforderung Rechnung
zu tragen, sollte die Aktivität die gewünschte Bereinigung vornehmen, sofern erforderlich,
und dann CancellationException erneut auslösen. Wird diese Ausnahme von einer
Aktivitätsimplementierung ausgelöst, erfasst das Framework, dass die Aktivitätsaufgabe im
abgebrochenen Status beendet wurde.

Das folgende Beispiel zeigt eine Aufgabe, bei der Bilder heruntergeladen und verarbeitet werden.
Es kommt nach jeder Verarbeitung eines Bilds zu einem Heartbeat. Wird ein Abbruch gefordert, wird
bereinigt und die Ausnahme zur Bestätigung des Abbruchs erneut ausgelöst.

@Override
public void processImages(List<String> urls) {
 int imageCounter = 0;
 for (String url: urls) {
 imageCounter++;
 Image image = download(url);
 process(image);
 try {
 ActivityExecutionContext context
 = contextProvider.getActivityExecutionContext();
 context.recordActivityHeartbeat(Integer.toString(imageCounter));
 } catch(CancellationException ex) {
 cleanDownloadFolder();
 throw ex;
 }

Abbruch API-Version 2021-04-28 142

AWS Flow Framework für Java Entwicklerhandbuch

 }
}

Das Senden von Aktivitäts-Heartbeats ist nicht erforderlich, wird aber empfohlen, wenn die
Ausführung der Aktivität lange dauert oder dabei kostenintensive Operationen ausgeführt werden,
die im Falle eines Fehlers abgebrochen werden sollten. Sie sollten heartbeatActivityTask
periodisch von der Aktivitätsimplementierung aus aufrufen.

Kommt es bei der Ausführung der Aktivität zu einer Zeitüberschreitung, wird die
ActivityTaskTimedOutException ausgelöst und getDetails auf dem Ausnahmeobjekt
gibt für die entsprechende Aktivitätsaufgabe die Daten zurück, die an den letzten erfolgreichen
Aufruf von heartbeatActivityTask übergeben wurden. Die Workflow-Implementierung kann
anhand dieser Informationen feststellen, wie weit die Ausführung fortgeschritten war, ehe es zu einer
Zeitüberschreitung bei der Aktivitätsaufgabe kam.

Note

Es empfiehlt sich nicht, zu häufig Heartbeat-Anfragen zu drosseln, da Amazon SWF
Heartbeat-Anfragen drosseln kann. Informationen zu den von Amazon SWF festgelegten
Beschränkungen finden Sie im Amazon Simple Workflow Service Developer Guide.

Explizites Abbrechen einer Aufgabe

Abgesehen von Fehlerbedingungen gibt es noch andere Fälle, in denen eine Aufgabe explizit
abzubrechen ist. So muss beispielsweise eine Aktivität zur Verarbeitung von Zahlungen mit der
Kreditkarte abgebrochen werden, wenn der Benutzer den Auftrag storniert. Das Framework
ermöglicht das explizite Abbrechen von Aufgaben, die mit TryCatchFinally erstellt wurden. Im
folgenden Beispiel wird die Zahlungsaufgabe abgebrochen, wenn während der Verarbeitung der
Zahlung ein Signal empfangen wird.

public class OrderProcessorImpl implements OrderProcessor {
 private PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();
 boolean processingPayment = false;
 private TryCatchFinally paymentTask = null;

 @Override
 public void processOrder(int orderId, final float amount) {
 paymentTask = new TryCatchFinally() {

Abbruch API-Version 2021-04-28 143

https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework für Java Entwicklerhandbuch

 @Override
 protected void doTry() throws Throwable {
 processingPayment = true;

 PaymentProcessorClient paymentClient = factory.getClient();
 paymentClient.processPayment(amount);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 if (e instanceof CancellationException) {
 paymentClient.log("Payment canceled.");
 } else {
 throw e;
 }
 }

 @Override
 protected void doFinally() throws Throwable {
 processingPayment = false;
 }
 };

 }

 @Override
 public void cancelPayment() {
 if (processingPayment) {
 paymentTask.cancel(null);
 }
 }
}

Empfangen von Benachrichtigungen über abgebrochene Aufgaben

Wird eine Aufgabe im abgebrochenen Status beendet, informiert das Framework die Workflow-Logik
durch Auslösen einer CancellationException. Wenn eine Aktivität im abgebrochenen Status
beendet wird, wird ein Datensatz zum Verlauf hinzugefügt und das Framework ruft das erforderliche
doCatch() mit einer CancellationException auf. Wie im vorherigen Beispiel gezeigt, empfängt
der Workflow eine CancellationException, wenn die Aufgabe der Zahlungsverarbeitung
abgebrochen wird.

Abbruch API-Version 2021-04-28 144

AWS Flow Framework für Java Entwicklerhandbuch

Eine unbehandelte CancellationException wird wie jede andere Ausnahme in der
Ausnahmeverzweigung weiter nach oben gereicht. Die doCatch()-Methode empfängt die
CancellationException aber nur, wenn es im Scope keine weitere Ausnahme gibt. Andere
Ausnahmen werden höher priorisiert als der Abbruch.

Verschachtelt TryCatchFinally

Sie können TryCatchFinally gemäß Ihren Anforderungen verschachteln. Da jeder Zweig in der
Ausführungsstruktur einen neuen Zweig TryCatchFinally erstellt, können Sie verschachtelte
Bereiche erstellen. Ausnahmen im übergeordneten Scope führen zu Abbruchversuchen bei allen
Aufgaben, die durch ein verschachteltes TryCatchFinally' in ihnen initiiert wurden. Allerdings
werden Ausnahmen in einem verschachtelten TryCatchFinally nicht automatisch an das
übergeordnete Element weitergegeben. Wenn Sie eine Ausnahme aus einem verschachtelten
TryCatchFinally an das enthaltene TryCatchFinally weitergeben möchten, sollten Sie die
Ausnahme in doCatch() erneut auslösen. Anderes ausgedrückt: Nur unbehandelte Ausnahmen
steigen wie Javas try/catch-Konstrukt auf. Wenn Sie ein verschachteltes TryCatchFinally
durch Aufruf der Abbruchmethode abbrechen, wird das verschachtelte TryCatchFinally
abgebrochen, aber nicht automatisch auch das enthaltene TryCatchFinally.

new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 activityA();

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 activityB();
 }

Verschachtelt TryCatchFinally API-Version 2021-04-28 145

AWS Flow Framework für Java Entwicklerhandbuch

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
 };

 activityC();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
};

Wiederholen fehlgeschlagener Aktivitäten
Gelegentlich schlagen Aktivitäten aus temporären Gründen fehl, z. B. aufgrund eines
vorübergehenden Verbindungsverlusts. In anderen Fällen wird die Aktivität möglicherweise
erfolgreich durchgeführt, daher besteht das geeignete Verfahren zum Umgang mit dem
Aktivitätsfehler häufig im (ggf. mehrmaligen) Wiederholen der Aktivität.

Es gibt verschiedene Strategien zum Wiederholen von Aktivitäten. Welche am besten geeignet
ist, hängt von den Details in Ihrem Workflow ab. Die Strategien lassen sich grundsätzlich in drei
Kategorien einteilen:

• Die retry-until-success Strategie wiederholt die Aktivität einfach so lange, bis sie abgeschlossen ist.

• Die exponentielle Wiederholungsstrategie verlängert das Zeitintervall zwischen den Versuchen
exponentiell, bis die Aktivität abgeschlossen wird oder der Vorgang eine bestimmte Stoppmarke
erreicht, beispielsweise eine maximale Anzahl an Versuchen.

• Die benutzerdefinierte Wiederholungsstrategie legt fest, ob und wie die Aktivität nach einem
fehlgeschlagenen Versuch wiederholt wird.

In den folgenden Abschnitten wird die Implementierung dieser Strategien beschrieben. In diesem
Beispiel nutzen die Workflow-Worker alle eine einzige Aktivität, unreliableActivity, die
willkürlich eine der folgenden Verhaltensweisen zeigt:

• Wird umgehend abgeschlossen

• Schlägt beabsichtigt fehl durch Überschreiten des Timeout-Wertes

Wiederholen fehlgeschlagener Aktivitäten API-Version 2021-04-28 146

AWS Flow Framework für Java Entwicklerhandbuch

• Schlägt beabsichtigt fehl durch Ausgeben von IllegalStateException

Retry-Until-Success Strategie

Die einfachste Wiederholungsstrategie besteht darin, die Aktivität nach jedem Fehler zu wiederholen,
bis sie schließlich erfolgreich durchgeführt werden kann. Das grundlegende Muster ist:

1. Implementieren Sie eine verschachtelte TryCatch- oder TryCatchFinally-Klasse in die
Eintrittspunktmethode Ihres Workflows.

2. Führen Sie die Aktivität in doTry aus.

3. Falls die Aktivität fehlschlägt, ruft das Framework doCatch auf, wodurch die Eintrittspunktmethode
erneut ausgeführt wird.

4. Wiederholen Sie die Schritte 2 bis 3, bis die Aktivität erfolgreich abgeschlossen wird.

Der folgende Workflow implementiert die retry-until-success Strategie. Die Workflow-
Schnittstelle wird in RetryActivityRecipeWorkflow implementiert und enthält die Methode
runUnreliableActivityTillSuccess, die den Eintrittspunkt des Workflows darstellt. Der
Workflow-Worker wird in RetryActivityRecipeWorkflowImpl wie folgt implementiert:

public class RetryActivityRecipeWorkflowImpl
 implements RetryActivityRecipeWorkflow {

 @Override
 public void runUnreliableActivityTillSuccess() {
 final Settable<Boolean> retryActivity = new Settable<Boolean>();

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 Promise<Void> activityRanSuccessfully
 = client.unreliableActivity();
 setRetryActivityToFalse(activityRanSuccessfully, retryActivity);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 retryActivity.set(true);
 }
 };

Retry-Until-Success Strategie API-Version 2021-04-28 147

AWS Flow Framework für Java Entwicklerhandbuch

 restartRunUnreliableActivityTillSuccess(retryActivity);
 }

 @Asynchronous
 private void setRetryActivityToFalse(
 Promise<Void> activityRanSuccessfully,
 @NoWait Settable<Boolean> retryActivity) {
 retryActivity.set(false);
 }

 @Asynchronous
 private void restartRunUnreliableActivityTillSuccess(
 Settable<Boolean> retryActivity) {
 if (retryActivity.get()) {
 runUnreliableActivityTillSuccess();
 }
 }
}

Der Workflow funktioniert folgendermaßen:

1. runUnreliableActivityTillSuccess erstellt ein Settable<Boolean>-Objekt namens
retryActivity, das verwendet wird, um anzugeben, ob die Aktivität fehlgeschlagen ist und
erneut getestet werden sollte. Settable<T> ist von Promise<T> abgeleitet und funktioniert zwar
ähnlich, jedoch legen Sie den Wert eines Settable<T>-Objekts manuell fest.

2. runUnreliableActivityTillSuccess implementiert eine anonyme verschachtelte
TryCatch-Klasse zur Verarbeitung von Ausnahmen, die von der unreliableActivity-Aktivität
ausgegeben werden. Weitere Informationen zum Umgang mit Ausnahmen, die von asynchronem
Code ausgegeben werden, finden Sie unter Fehlerbehandlung.

3. doTry führt die unreliableActivity-Aktivität aus, die ein Promise<Void>-Objekt namens
activityRanSuccessfully zurückgibt.

4. doTry ruft die asynchrone setRetryActivityToFalse-Methode auf, die zwei Parameter
umfasst:

• activityRanSuccessfully übernimmt das Promise<Void>-Objekt, das von der
unreliableActivity-Aktivität zurückgegeben wird.

• retryActivity übernimmt das retryActivity-Objekt.

Bei Abschluss von unreliableActivity wird activityRanSuccessfully einsatzbereit
und setRetryActivityToFalse legt retryActivity auf "false" fest. Andernfalls wird

Retry-Until-Success Strategie API-Version 2021-04-28 148

AWS Flow Framework für Java Entwicklerhandbuch

activityRanSuccessfully nicht einsatzbereit und setRetryActivityToFalse wird nicht
ausgeführt.

5. Wenn unreliableActivity eine Ausnahme ausgibt, ruft das Framework doCatch auf und
übergibt es an das Ausnahmeobjekt. doCatch legt retryActivity auf "true" fest.

6. runUnreliableActivityTillSuccess ruft die asynchrone
restartRunUnreliableActivityTillSuccess-Methode auf und übergibt ihr das
retryActivity-Objekt. Da retryActivity ein Promise<T>-Typ ist, verschiebt
restartRunUnreliableActivityTillSuccess die Ausführung, bis retryActivity
einsatzbereit ist. Dies ist der Fall, sobald TryCatch abgeschlossen wird.

7. Wenn retryActivity einsatzbereit ist, extrahiert
restartRunUnreliableActivityTillSuccess den Wert.

• Wenn der Wert false ist, war die Wiederholung erfolgreich.
restartRunUnreliableActivityTillSuccess unternimmt nichts und die
Wiederholungssequenz wird beendet.

• Wenn als Wert "true" ausgegeben wird, ist der Wiederholungsversuch
fehlgeschlagen. restartRunUnreliableActivityTillSuccess ruft
runUnreliableActivityTillSuccess auf, um die Aktivität erneut auszuführen.

8. Die Schritte 1 bis 7 werden wiederholt, bis unreliableActivity abgeschlossen wird.

Note

doCatch verarbeitet die Ausnahme nicht, sondern legt nur das retryActivity-Objekt auf
"true" fest, um anzugeben, dass die Aktivität fehlgeschlagen ist. Die Wiederholung wird von
der asynchronen restartRunUnreliableActivityTillSuccess-Methode verarbeitet,
die die Ausführung verschiebt, bis TryCatch abgeschlossen wird. Der Grund für diesen
Ansatz ist, dass Sie eine Aktivität, die Sie in doCatch wiederholen, nicht beenden können.
Wenn die Aktivität in restartRunUnreliableActivityTillSuccess wiederholt wird,
können Sie Aktivitäten ausführen, die sich beenden lassen.

Exponentielle Wiederholungsstrategie

Bei der exponentiellen Wiederholungsstrategie führt das Framework eine fehlgeschlagene Aktivität
nach einem festgelegten Zeitraum (N Sekunden) erneut aus. Schlägt dieser Versuch fehl, wiederholt
das Framework die Aktivität nach 2N Sekunden, dann nach 4N Sekunden usw. Da die Wartezeit sehr

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 149

AWS Flow Framework für Java Entwicklerhandbuch

lang werden kann, werden Sie die Wiederholungen nicht endlos fortsetzen, sondern den Vorgang
irgendwann beenden.

Das Framework bietet drei Möglichkeiten zur Implementierung einer exponentiellen
Wiederholungsstrategie:

• Die @ExponentialRetry-Anmerkung ist der einfachste Ansatz. Sie müssen die
Wiederholungsoptionen jedoch bei der Kompilierung festlegen.

• Die RetryDecorator-Klasse ermöglicht es Ihnen, die Wiederholungskonfiguration zur Laufzeit
festzulegen und bei Bedarf zu ändern.

• Die AsyncRetryingExecutor-Klasse ermöglicht es Ihnen, die Wiederholungskonfiguration
zur Laufzeit festzulegen und bei Bedarf zu ändern. Darüber hinaus ruft das Framework eine vom
Benutzer implementierte AsyncRunnable.run-Methode zur Ausführung jedes neuen Versuchs
auf.

Alle Ansätze unterstützen folgende Konfigurationsoptionen, wobei die Werte für die Zeit in Sekunden
angegeben werden:

• Die erste Wiederholungswartezeit.

• Den Backoff-Koeffizienten, der verwendet wird, um die Wiederholungsintervalle folgendermaßen zu
errechnen:

retryInterval = initialRetryIntervalSeconds * Math.pow(backoffCoefficient,
 numberOfTries - 2)

Der Standardwert lautet 2.0.

• Die maximale Anzahl an Wiederholungen. Der Standardwert ist unbegrenzt.

• Das maximale Wiederholungsintervall. Der Standardwert ist unbegrenzt.

• Die Ablaufzeit. Es werden keine Wiederholungen mehr ausgeführt, wenn die Gesamtdauer des
Vorgangs diesen Wert übersteigt. Der Standardwert ist unbegrenzt.

• Die Ausnahmen, die den Wiederholungsvorgang auslösen. Standardmäßig löst jede Ausnahme
den Wiederholungsvorgang aus.

• Die Ausnahmen, die keinen Wiederholungsvorgang auslösen. Standardmäßig sind keine
Ausnahmen ausgeschlossen.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 150

AWS Flow Framework für Java Entwicklerhandbuch

In den folgenden Abschnitten werden die verschiedenen Methoden zur Implementierung einer
exponentiellen Wiederholungsstrategie beschrieben.

Exponentieller Wiederholungsversuch mit @ ExponentialRetry

Die einfachste Möglichkeit zur Implementierung einer exponentiellen Wiederholungsstrategie
für eine Aktivität ist die Anwendung einer @ExponentialRetry -Anmerkung auf die Aktivität
in der Schnittstellendefinition. Schlägt die Aktivität fehl, verarbeitet das Framework den
Wiederholungsvorgang automatisch basierend auf den festgelegten Optionen. Das grundlegende
Muster ist:

1. Wenden Sie @ExponentialRetry auf die entsprechenden Aktivitäten an und legen Sie die
Wiederholungskonfiguration fest.

2. Schlägt eine mit einer Anmerkung versehene Aktivität fehl, wiederholt das Framework die Aktivität
automatisch basierend auf der durch die Anmerkungsargumente festgelegten Konfiguration.

Der ExponentialRetryAnnotationWorkflow-Workflow-Worker implementiert die exponentielle
Wiederholungsstrategie durch Verwendung einer @ExponentialRetry-Anmerkung. Er
verwendet eine unreliableActivity-Aktivität, deren Schnittstellendefinition wie folgt in
ExponentialRetryAnnotationActivities implementiert wird:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskScheduleToStartTimeoutSeconds = 30,
 defaultTaskStartToCloseTimeoutSeconds = 30)
public interface ExponentialRetryAnnotationActivities {
 @ExponentialRetry(
 initialRetryIntervalSeconds = 5,
 maximumAttempts = 5,
 exceptionsToRetry = IllegalStateException.class)
 public void unreliableActivity();
}

Die @ExponentialRetry-Optionen legen folgende Strategie fest:

• Nur wiederholen, wenn die Aktivität IllegalStateException ausgibt.

• Eine erste Wartezeit von 5 Sekunden verwenden.

• Nicht mehr als 5 Wiederholungen.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 151

AWS Flow Framework für Java Entwicklerhandbuch

Die Workflow-Schnittstelle wird in RetryWorkflow implementiert und enthält die Methode
process, die den Eintrittspunkt des Workflows darstellt. Der Workflow-Worker wird in
ExponentialRetryAnnotationWorkflowImpl wie folgt implementiert:

public class ExponentialRetryAnnotationWorkflowImpl implements RetryWorkflow {
 public void process() {
 handleUnreliableActivity();
 }

 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

Der Workflow funktioniert folgendermaßen:

1. process führt die synchrone handleUnreliableActivity-Methode aus.

2. handleUnreliableActivity führt die unreliableActivity-Aktivität aus.

Schlägt die Aktivität fehl, indem IllegalStateException ausgegeben wird, führt das
Framework automatisch die in ExponentialRetryAnnotationActivities festgelegte
Wiederholungsstrategie aus.

Exponentielle Wiederholung mit der Klasse RetryDecorator

@ExponentialRetry ist benutzerfreundlich. Allerdings ist die Konfiguration statisch und wird
bei der Kompilierung festgelegt, sodass das Framework bei jedem Fehler der Aktivität dieselbe
Wiederholungsstrategie anwendet. Sie können eine flexiblere exponentielle Wiederholungsstrategie
implementieren, indem Sie die RetryDecorator-Klasse verwenden, mit der Sie die Konfiguration
zur Laufzeit festlegen und bei Bedarf ändern können. Das grundlegende Muster ist:

1. Erzeugen und konfigurieren Sie ein ExponentialRetryPolicy-Objekt, das die
Wiederholungskonfiguration festlegt.

2. Erzeugen Sie ein RetryDecorator-Objekt und geben Sie das ExponentialRetryPolicy-
Objekt aus Schritt 1 an den Konstruktor weiter.

3. Wenden Sie das Decorator-Objekt auf die Aktivität an, indem Sie den Klassennamen des
Aktivitäts-Clients auf die Ausstattungsmethode des RetryDecorator-Objekts übergeben.

4. Führen Sie die Aktivität aus.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 152

AWS Flow Framework für Java Entwicklerhandbuch

Schlägt die Aktivität fehl, wiederholt das Framework die Aktivität basierend auf der
ExponentialRetryPolicy-Objektkonfiguration. Sie können die Wiederholungskonfiguration bei
Bedarf ändern, indem Sie dieses Objekt anpassen.

Note

Die @ExponentialRetry-Anmerkung und die RetryDecorator-Klasse schließen
sich gegenseitig aus. Sie können RetryDecorator nicht verwenden, um eine
Wiederholungsrichtlinie, die von einer @ExponentialRetry-Anmerkung festgelegt wird,
dynamisch zu überschreiben.

Die folgende Workflow-Implementierung zeigt, wie die RetryDecorator-Klasse verwendet
wird, um eine exponentielle Wiederholungsstrategie zu implementieren. Sie verwendet eine
unreliableActivity-Aktivität, die nicht über eine @ExponentialRetry-Anmerkung
verfügt. Die Workflow-Schnittstelle wird in RetryWorkflow implementiert und enthält die
Methode process, die den Eintrittspunkt des Workflows darstellt. Der Workflow-Worker wird in
DecoratorRetryWorkflowImpl wie folgt implementiert:

public class DecoratorRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 ExponentialRetryPolicy retryPolicy = new ExponentialRetryPolicy(
 initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);

 Decorator retryDecorator = new RetryDecorator(retryPolicy);
 client = retryDecorator.decorate(RetryActivitiesClient.class, client);
 handleUnreliableActivity();
 }

 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

Der Workflow funktioniert folgendermaßen:

1. process erzeugt und konfiguriert ein ExponentialRetryPolicy-Objekt folgendermaßen:

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 153

AWS Flow Framework für Java Entwicklerhandbuch

• Das erste Wiederholungsintervall wird an den Konstruktor übergeben.

• Aufrufen der withMaximumAttempts-Methode des Objekts, um die maximale Anzahl der
Versuche auf 5 festzulegen. ExponentialRetryPolicy zeigt andere with-Objekte an, mit
denen Sie andere Konfigurationsoptionen angeben können.

2. process erzeugt ein RetryDecorator-Objekt namens retryDecorator und übergibt das
ExponentialRetryPolicy-Objekt aus Schritt 1 an den Konstruktor.

3. process wendet den Decorator auf die Aktivität an, indem es die retryDecorator.decorate-
Methode aufruft und ihr den Klassennamen des Aktivitäts-Clients übergibt.

4. handleUnreliableActivity führt die Aktivität aus.

Schlägt die Aktivität fehl, wiederholt das Framework sie basierend auf der in Schritt 1 festgelegten
Konfiguration.

Note

Einige with-Methoden der ExponentialRetryPolicy-Klasse besitzen
eine entsprechende set-Methode, die Sie jederzeit aufrufen können, um die
entsprechende Konfigurationsoption anzupassen: setBackoffCoefficient,
setMaximumAttempts, setMaximumRetryIntervalSeconds und
setMaximumRetryExpirationIntervalSeconds.

Exponentielle Wiederholung mit der Klasse AsyncRetryingExecutor

Die RetryDecorator-Klasse bietet mehr Flexibilität bei der Konfiguration des
Wiederholungsvorgangs als @ExponentialRetry, allerdings führt das Framework
dennoch automatisch die Wiederholungen basierend auf der aktuellen Konfiguration des
ExponentialRetryPolicy-Objekts aus. Ein flexiblerer Ansatz ist die Verwendung der
AsyncRetryingExecutor-Klasse. Sie haben nicht nur die Möglichkeit, den Wiederholungsvorgang
zur Laufzeit zu konfigurieren, sondern das Framework ruft zudem eine vom Benutzer implementierte
AsyncRunnable.run-Methode zur Ausführung jeder Wiederholung auf, statt die Aktivität einfach
auszuführen.

Das grundlegende Muster ist:

1. Erzeugen und konfigurieren Sie ein ExponentialRetryPolicy-Objekt, um die
Wiederholungskonfiguration festzulegen.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 154

AWS Flow Framework für Java Entwicklerhandbuch

2. Erzeugen Sie ein AsyncRetryingExecutor-Objekt und übergeben Sie ihm das
ExponentialRetryPolicy-Objekt und eine Instanz der Workflow-Uhr.

3. Implementieren Sie eine anonyme verschachtelte TryCatch- oder TryCatchFinally-Klasse.

4. Implementieren Sie eine anonyme AsyncRunnable-Klasse und überschreiben Sie die run-
Methode, um den benutzerdefinierten Code zur Ausführung der Aktivität zu implementieren.

5. Überschreiben Sie doTry, um die execute-Methode des AsyncRetryingExecutor-
Objekts aufzurufen, und übergeben Sie ihr die AsyncRunnable-Klasse aus Schritt 4. Das
AsyncRetryingExecutor-Objekt ruft AsyncRunnable.run auf, um die Aktivität auszuführen.

6. Schlägt die Aktivität fehl, ruft das AsyncRetryingExecutor-Objekt in Einklang mit der
Wiederholungsrichtlinie, die in Schritt 1 festgelegt wurde, die AsyncRunnable.run-Methode
erneut auf.

Der folgende Workflow zeigt, wie die AsyncRetryingExecutor-Klasse verwendet wird,
um eine exponentielle Wiederholungsstrategie zu implementieren. Er verwendet dieselbe
unreliableActivity-Aktivität wie der zuvor behandelte DecoratorRetryWorkflow-
Workflow. Die Workflow-Schnittstelle wird in RetryWorkflow implementiert und enthält die
Methode process, die den Eintrittspunkt des Workflows darstellt. Der Workflow-Worker wird in
AsyncExecutorRetryWorkflowImpl wie folgt implementiert:

public class AsyncExecutorRetryWorkflowImpl implements RetryWorkflow {
 private final RetryActivitiesClient client = new RetryActivitiesClientImpl();
 private final DecisionContextProvider contextProvider = new
 DecisionContextProviderImpl();
 private final WorkflowClock clock =
 contextProvider.getDecisionContext().getWorkflowClock();

 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 handleUnreliableActivity(initialRetryIntervalSeconds, maximumAttempts);
 }
 public void handleUnreliableActivity(long initialRetryIntervalSeconds, int
 maximumAttempts) {

 ExponentialRetryPolicy retryPolicy = new
 ExponentialRetryPolicy(initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);
 final AsyncExecutor executor = new AsyncRetryingExecutor(retryPolicy, clock);

 new TryCatch() {

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 155

AWS Flow Framework für Java Entwicklerhandbuch

 @Override
 protected void doTry() throws Throwable {
 executor.execute(new AsyncRunnable() {
 @Override
 public void run() throws Throwable {
 client.unreliableActivity();
 }
 });
 }
 @Override
 protected void doCatch(Throwable e) throws Throwable {
 }
 };
 }
}

Der Workflow funktioniert folgendermaßen:

1. process ruft die handleUnreliableActivity-Methode auf und übergibt ihr die
Konfigurationseinstellungen.

2. handleUnreliableActivity verwendet die Konfigurationseinstellungen aus Schritt 1, um das
ExponentialRetryPolicy-Objekt retryPolicy zu erzeugen.

3. handleUnreliableActivity erzeugt das AsyncRetryExecutor-Objekt executor und
übergibt das ExponentialRetryPolicy-Objekt aus Schritt 2 und eine Instanz der Workflow-Uhr
an den Konstruktor.

4. handleUnreliableActivity implementiert eine anonyme verschachtelte TryCatch-Klasse
und überschreibt die doTry- und doCatch-Methode, um die Wiederholungen auszuführen und
mögliche Ausnahmen zu verarbeiten.

5. doTry erzeugt eine anonyme AsyncRunnable-Klasse und überschreibt die run-Methode, um
den benutzerdefinierten Code zur Ausführung von unreliableActivity zu implementieren.
Der Einfachheit halber führt run nur die Aktivität aus, Sie können bei Bedarf jedoch komplexere
Ansätze implementieren.

6. doTry ruft executor.execute auf und übergibt es an das AsyncRunnable-Objekt. execute
ruft die run-Methode des AsyncRunnable-Objekts auf, um die Aktivität auszuführen.

7. Schlägt die Aktivität fehl, ruft der Executor erneut run auf, basierend auf der Konfiguration des
retryPolicy-Objekts.

Exponentielle Wiederholungsstrategie API-Version 2021-04-28 156

AWS Flow Framework für Java Entwicklerhandbuch

Weitere Informationen zur Verwendung der TryCatch-Klasse zur Fehlerbehandlung finden Sie unter
AWS Flow Framework für Java-Ausnahmen.

Benutzerdefinierte Wiederholungsstrategie

Der flexibelste Ansatz zur Wiederholung fehlgeschlagener Aktivitäten ist eine benutzerdefinierte
Strategie, bei der rekursiv eine asynchrone Methode aufgerufen wird, die den Wiederholungsversuch
ausführt, ähnlich wie bei der Strategie. retry-until-success Statt die Aktivität einfach erneut
auszuführen, implementieren Sie jedoch eine benutzerdefinierte Logik, die entscheidet, ob und wie
jede Wiederholung ausgeführt werden soll. Das grundlegende Muster ist:

1. Erzeugen Sie ein Settable<T>-Statusobjekt, das verwendet wird, um anzugeben, ob die Aktivität
fehlgeschlagen ist.

2. Implementieren Sie eine verschachtelte TryCatch- oder TryCatchFinally-Klasse.

3. doTry führt die Aktivität aus.

4. Schlägt die Aktivität fehl, legt doCatch das Statusobjekt fest, um anzugeben, dass die Aktivität
fehlgeschlagen ist.

5. Rufen Sie eine asynchrone Fehlerbehandlungsmethode auf und übergeben Sie ihr das
Statusobjekt. Die Methode verschiebt die Ausführung, bis TryCatch oder TryCatchFinally
abgeschlossen wird.

6. Die Fehlerbehandlungsmethode entscheidet, ob und wann die Aktivität wiederholt werden soll.

Der folgende Workflow zeigt, wie eine benutzerdefinierte Wiederholungsstrategie implementiert wird.
Er verwendet dieselbe unreliableActivity-Aktivität wie der DecoratorRetryWorkflow- und
AsyncExecutorRetryWorkflow-Workflow. Die Workflow-Schnittstelle wird in RetryWorkflow
implementiert und enthält die Methode process, die den Eintrittspunkt des Workflows darstellt. Der
Workflow-Worker wird in CustomLogicRetryWorkflowImpl wie folgt implementiert:

public class CustomLogicRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 callActivityWithRetry();
 }
 @Asynchronous
 public void callActivityWithRetry() {
 final Settable<Throwable> failure = new Settable<Throwable>();
 new TryCatchFinally() {
 protected void doTry() throws Throwable {

Benutzerdefinierte Wiederholungsstrategie API-Version 2021-04-28 157

AWS Flow Framework für Java Entwicklerhandbuch

 client.unreliableActivity();
 }
 protected void doCatch(Throwable e) {
 failure.set(e);
 }
 protected void doFinally() throws Throwable {
 if (!failure.isReady()) {
 failure.set(null);
 }
 }
 };
 retryOnFailure(failure);
 }
 @Asynchronous
 private void retryOnFailure(Promise<Throwable> failureP) {
 Throwable failure = failureP.get();
 if (failure != null && shouldRetry(failure)) {
 callActivityWithRetry();
 }
 }
 protected Boolean shouldRetry(Throwable e) {
 //custom logic to decide to retry the activity or not
 return true;
 }
}

Der Workflow funktioniert folgendermaßen:

1. process ruft die asynchrone callActivityWithRetry-Methode auf.

2. callActivityWithRetry erstellt ein Settable<Throwable>-Objekt namens
"failure" (Fehler), mit dem angezeigt wird, dass die Aktivität fehlgeschlagen ist. Settable<T>
ist von Promise<T> abgeleitet und funktioniert zwar ähnlich, jedoch legen Sie den Wert eines
Settable<T>-Objekts manuell fest.

3. callActivityWithRetry implementiert eine anonyme verschachtelte TryCatchFinally-
Klasse zur Verarbeitung von Ausnahmen, die von unreliableActivity ausgegeben werden.
Weitere Informationen zum Umgang mit Ausnahmen, die von asynchronem Code ausgegeben
werden, finden Sie unter AWS Flow Framework für Java-Ausnahmen.

4. doTry führt unreliableActivity aus.

5. Wenn unreliableActivity eine Ausnahme auslöst, ruft das Framework doCatch auf und
übergibt sie an das Ausnahmeobjekt. doCatch legt failure auf das Ausnahmeobjekt fest, was

Benutzerdefinierte Wiederholungsstrategie API-Version 2021-04-28 158

AWS Flow Framework für Java Entwicklerhandbuch

anzeigt, dass die Aktivität fehlgeschlagen ist, und versetzt das Objekt in einen betriebsbereiten
Zustand.

6. doFinally überprüft, ob failure einsatzbereit ist, was nur der Fall ist, wenn failure von
doCatch festgelegt wurde.

• Wenn es bereit failure ist, tut es nichts. doFinally

• Wenn failure nicht einsatzbereit ist, wird die Aktivität abgeschlossen und doFinally legt
"failure" auf null fest.

7. callActivityWithRetry ruft die asynchrone retryOnFailure-Methode auf und übergibt
ihr "failure". Da "failure" ein Settable<T>-Typ ist, verschiebt callActivityWithRetry
die Ausführung, bis "failure" einsatzbereit ist. Dies ist der Fall, sobald TryCatchFinally
abgeschlossen wird.

8. retryOnFailure ruft den Wert von "failure" ab.

• Wenn der Fehler auf Null gesetzt ist, war der Wiederholungsversuch erfolgreich.
retryOnFailure unternimmt nichts, wodurch der Wiederholungsprozess beendet wird.

• Wenn "failure" auf ein Ausnahmeobjekt festgelegt ist und shouldRetry "true" zurückgibt, ruft
retryOnFailure callActivityWithRetry auf, um die Aktivität zu wiederholen.

shouldRetry implementiert eine benutzerdefinierte Logik, um zu entscheiden, ob eine
fehlgeschlagene Aktivität wiederholt werden soll. Der Einfachheit halber gibt shouldRetry
immer true zurück und retryOnFailure führt die Aktivität sofort aus, Sie können bei Bedarf
jedoch eine komplexere Logik implementieren.

9. Die Schritte 2—8 werden wiederholt, bis der Vorgang unreliableActivity abgeschlossen ist
oder shouldRetry beendet werden soll.

Note

doCatch verarbeitet den Wiederholungsvorgang nicht, sondern legt nur "failure" fest, um
anzugeben, dass die Aktivität fehlgeschlagen ist. Der Wiederholungsvorgang wird von der
asynchronen retryOnFailure-Methode verarbeitet, die die Ausführung verschiebt, bis
TryCatch abgeschlossen wird. Der Grund für diesen Ansatz ist, dass Sie eine Aktivität, die
Sie in doCatch wiederholen, nicht beenden können. Wenn die Aktivität in retryOnFailure
wiederholt wird, können Sie Aktivitäten ausführen, die sich beenden lassen.

Benutzerdefinierte Wiederholungsstrategie API-Version 2021-04-28 159

AWS Flow Framework für Java Entwicklerhandbuch

Daemon-Aufgaben
Das AWS Flow Framework für Java ermöglicht das Markieren bestimmter Aufgaben alsdaemon.
Mithilfe dieser Markierung können Sie Aufgaben zum Ausführen von Hintergrundroutinen
erstellen, die abgebrochen werden sollen, wenn alle Routinen beendet sind. Eine Aufgabe zum
Überwachen des Status soll beispielsweise abgebrochen werden, wenn der Rest des Workflows
abgeschlossen ist. Legen Sie dazu das daemon-Flag für eine asynchrone Methode oder Instance von
TryCatchFinally fest. Im folgenden Beispiel wird die asynchrone Methode monitorHealth()
als daemon markiert.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 monitorHealth();
 }

 @Asynchronous(daemon=true)
 void monitorHealth(Promise<?>... waitFor) {
 activitiesClient.monitoringActivity();
 }
}

Im obigen Beispiel wird bei Abschluss von doUsefulWorkActivity monitoringHealth
automatisch abgebrochen. Dadurch wird der gesamte Ausführungszweig, der aus dieser
asynchronen Methode stammt, abgebrochen. Die Semantik dieses Abbruchs entspricht der in
TryCatchFinally. Entsprechend können Sie einen TryCatchFinally-Daemon markieren,
indem Sie ein boolesches Flag an den Konstruktor übergeben.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 new TryFinally(true) {
 @Override

Daemon-Aufgaben API-Version 2021-04-28 160

AWS Flow Framework für Java Entwicklerhandbuch

 protected void doTry() throws Throwable {
 activitiesClient.monitoringActivity();
 }

 @Override
 protected void doFinally() throws Throwable {
 // clean up
 }
 };
 }
}

Eine Daemon-Aufgabe, die innerhalb einer gestartet wird, TryCatchFinally ist auf den Kontext
beschränkt, in dem sie erstellt wurde, d. h. sie wird entweder auf die Methoden, oder beschränkt.
doTry() doCatch() doFinally() Im folgenden Beispiel wird die asynchrone startMonitoring-
Methode als Daemon markiert und von doTry() aufgerufen. Die dafür erstellte Aufgabe wird
abgebrochen, sobald die anderen Aufgaben (doUsefulWorkActivity in diesem Fall), die in
doTry() gestartet wurden, abgeschlossen sind.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 new TryFinally() {
 @Override
 protected void doTry() throws Throwable {
 activitiesClient.doUsefulWorkActivity();
 startMonitoring();
 }

 @Override
 protected void doFinally() throws Throwable {
 // Clean up
 }
 };
 }

 @Asynchronous(daemon = true)
 void startMonitoring(){
 activitiesClient.monitoringActivity();
 }

Daemon-Aufgaben API-Version 2021-04-28 161

AWS Flow Framework für Java Entwicklerhandbuch

AWS Flow Framework für Java Replay Behavior

In diesem Thema werden Beispiele für Replay-Verhalten unter Verwendung von Beispielen im
Abschnitt Was ist das AWS Flow Framework für Java? erläutert. Sowohl synchrone als auch
asynchrone Szenarien werden behandelt.

Beispiel 1: Synchrones Replay

Ein Beispiel dafür, wie die Wiedergabe in einem synchronen Workflow funktioniert, finden Sie, indem
Sie die HelloWorldWorkflowWorkflow- und Aktivitätsimplementierungen wie folgt ändern, indem Sie
innerhalb der jeweiligen Implementierungen println Aufrufe hinzufügen:

public class GreeterWorkflowImpl implements GreeterWorkflow {
...
 public void greet() {
 System.out.println("greet executes");
 Promise<String> name = operations.getName();
 System.out.println("client.getName returns");
 Promise<String> greeting = operations.getGreeting(name);
 System.out.println("client.greeting returns");
 operations.say(greeting);
 System.out.println("client.say returns");
 }
}

public class GreeterActivitiesImpl implements GreeterActivities {
 public String getName() {
 System.out.println("activity.getName completes");
 return "World";
 }

 public String getGreeting(String name) {
 System.out.println("activity.getGreeting completes");
 return "Hello " + name + "!";
 }

 public void say(String what) {
 System.out.println(what);
 }
}

Replay-Verhalten API-Version 2021-04-28 162

AWS Flow Framework für Java Entwicklerhandbuch

Details zum Code finden Sie unter HelloWorldWorkflow Bewerbung. Im Folgenden sehen Sie eine
bearbeitete Version der Ausgabe mit Kommentaren, die den Start jedes Replay-Abschnitts angeben.

//Episode 1
greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getName completes
//Episode 2
greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getGreeting completes
//Episode 3
greet executes
client.getName returns
client.greeting returns
client.say returns

Hello World! //say completes
//Episode 4
greet executes
client.getName returns
client.greeting returns
client.say returns

Der Replay-Prozess für dieses Beispiel funktioniert wie folgt:

• Im ersten Abschnitt wird die getName-Aktivitätsaufgabe geplant, die keine Abhängigkeiten hat.

• Im zweiten Abschnitt wird die getGreeting-Aktivitätsaufgabe geplant, die von getName abhängt.

• Im dritten Abschnitt wird die say-Aktivitätsaufgabe geplant, die von getGreeting abhängt.

• Im letzten Abschnitt werden keine zusätzlichen Aufgaben geplant und keine nicht abgeschlossenen
Aktivitäten gefunden, wodurch die Workflow-Ausführung beendet wird.

Beispiel 1: Synchrones Replay API-Version 2021-04-28 163

AWS Flow Framework für Java Entwicklerhandbuch

Note

Die drei Aktivitäten-Client-Methoden werden einmal für jeden Abschnitt aufgerufen. Allerdings
ergibt sich nur aus einem dieser Aufrufe eine Aktivitätsaufgabe, sodass jede Aufgabe nur
einmal durchgeführt wird.

Beispiel 2: Asynchrones Replay

Ähnlich wie im Beispiel für synchrones Replay können Sie HelloWorldWorkflowAsyncBewerbung
ändern, um zu sehen, wie ein asynchrones Replay funktioniert. Es erzeugt folgende Ausgabe:

//Episode 1
greet executes
client.name returns
workflow.getGreeting returns
client.say returns

activity.getName completes
//Episode 2
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

Hello World! //say completes
//Episode 3
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

HelloWorldAsync verwendet drei Wiederholungsepisoden, da es nur zwei Aktivitäten gibt. Die
getGreeting-Aktivität wurde durch die asynchrone Workflow-Methode getGreeting ersetzt, die
keinen Replay-Abschnitt initiiert, wenn sie abgeschlossen wird.

Der erste Abschnitt ruft getGreeting nicht auf, da er vom Abschluss der Aktivität name
abhängt. Aber nachdem getName abgeschlossen wurde, ruft Replay getGreeting einmal für jeden
nachfolgenden Abschnitt auf.

Beispiel 2: Asynchrones Replay API-Version 2021-04-28 164

AWS Flow Framework für Java Entwicklerhandbuch

Weitere Informationen finden Sie unter:

• AWS Flow Framework Grundbegriffe: Verteilte Ausführung

Weitere Informationen finden Sie unter: API-Version 2021-04-28 165

AWS Flow Framework für Java Entwicklerhandbuch

Bewährte Methoden
Verwenden Sie diese bewährten Methoden, um das Beste aus dem AWS Flow Framework für Java
herauszuholen.

Themen

• Vornehmen von Änderungen am Entscheidercode: Versioning und Funktions-Flags

Vornehmen von Änderungen am Entscheidercode: Versioning und
Funktions-Flags

In diesem Abschnitt erfahren Sie, wie Sie Änderungen am Entscheidercode vornehmen, um die
Abwärtskompatibilität sicherzustellen. Hierfür haben Sie zwei Möglichkeiten:

• Versioning ist eine grundlegende Lösung.

• Version mit Funktions-Flags baut auf reinem Versioning auf: Es wird keine neue Version des
Workflows eingeführt und für die Versionsaktualisierung ist kein neuer Code erforderlich.

Bevor Sie diese Lösungen ausprobieren, sollten Sie sich mit dem Abschnitt Beispielszenario vertraut
machen. Dort werden die Ursachen und Auswirkungen von Änderungen am Entscheidercode
erläutert, die zu Abwärtsinkompatibilität führen.

Wiedergabe und Codeänderungen

Wenn ein Decider-Worker AWS Flow Framework für Java eine Entscheidungsaufgabe ausführt, muss
er zunächst den aktuellen Status der Ausführung neu erstellen, bevor er weitere Schritte hinzufügen
kann. Der Entscheider verwendet hierfür die sogenannte Wiedergabe.

Beim Wiedergabeprozess wird der Entscheidercode von Anfang an erneut ausgeführt und gleichzeitig
der Ereignisverlauf durchgegangen. Dadurch kann das Framework auf Signale oder den Abschluss
einer Aufgabe reagieren und Promise-Objekte im Code freigeben.

Wenn das Framework den Decider-Code ausführt, weist es jeder geplanten Aufgabe (einer Aktivität,
Lambda-Funktion, einem Timer, einem untergeordneten Workflow oder einem ausgehenden Signal)
eine ID zu, indem es einen Zähler erhöht. Das Framework übermittelt diese ID an Amazon SWF und
fügt die ID zu Verlaufsereignissen hinzu, z. ActivityTaskCompleted

Vornehmen von Änderungen am Entscheidercode API-Version 2021-04-28 166

AWS Flow Framework für Java Entwicklerhandbuch

Damit der Wiedergabeprozess erfolgreich ist, muss der Entscheidercode deterministisch sein und
dieselben Aufgaben für jede Entscheidung bei jeder Workflow-Ausführung in derselben Reihenfolge
planen. Wenn diese Anforderung nicht erfüllt ist, kann es beispielsweise vorkommen, dass das
Framework die ID in einem ActivityTaskCompleted-Ereignis nicht einem vorhandenen
Promise-Objekt zuordnen kann.

Beispielszenario

Es gibt eine Klasse von Codeänderungen, die als abwärtsinkompatibel gilt. Zu diesen Änderungen
gehören Aktualisierungen, bei denen die Anzahl, der Typ oder die Reihenfolge der geplanten
Aufgaben verändert werden. Betrachten Sie das folgende Beispiel:

Sie schreiben Entscheidercode, um zwei Timer-Aufgaben zu planen. Sie beginnen mit der
Ausführung und führen eine Entscheidung aus. Daher werden zwei Timer-Aufgaben mit IDs 1 und 2
geplant.

Wenn Sie den Entscheidercode so aktualisieren, dass nur ein Timer geplant wird, bevor die nächste
Entscheidung ausgeführt wird, kann das Framework bei der nächsten Entscheidungsaufgabe
das zweite TimerFired-Ereignis nicht wiedergeben, da die ID 2 nicht mit einer Timer-Aufgabe
übereinstimmt, die vom Code erzeugt wurde.

Überblick über das Szenario

Der folgende Überblick zeigt die einzelnen Schritte dieses Szenarios. Endziel des Szenarios ist es,
eine Migration auf ein System durchzuführen, bei dem nur ein Timer geplant wird, ohne dass dies
dazu führt, dass Ausführungen fehlschlagen, die vor der Migration gestartet wurden.

1. Die erste Entscheiderversion

a. Schreiben Sie den Entscheider.

b. Starten Sie den Entscheider.

c. Der Entscheider plant zwei Timer.

d. Der Entscheider startet fünf Ausführungen.

e. Halten Sie den Entscheider an.

2. Eine abwärtsinkompatible Änderung am Entscheider

a. Ändern Sie den Entscheider.

b. Starten Sie den Entscheider.

c. Der Entscheider plant einen Timer.

Beispielszenario API-Version 2021-04-28 167

AWS Flow Framework für Java Entwicklerhandbuch

d. Der Entscheider startet fünf Ausführungen.

Die folgenden Abschnitte enthalten Java-Beispielcode, mit dem sich dieses Szenario implementieren
lässt. Die Codebeispiele im Abschnitt Lösungen zeigen zwei Möglichkeiten, abwärtsinkompatible
Änderungen zu beheben.

Note

Sie können die aktuelle Version von AWS SDK für Java verwenden, um diesen Code
auszuführen.

Gängiger Code

Der folgende Java-Code ändert sich zwischen den Beispielen in diesem Szenario nicht.

SampleBase.java

package sample;

import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.flow.JsonDataConverter;
import com.amazonaws.services.simpleworkflow.model.DescribeWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.DomainAlreadyExistsException;
import com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest;
import com.amazonaws.services.simpleworkflow.model.Run;
import com.amazonaws.services.simpleworkflow.model.StartWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;
import com.amazonaws.services.simpleworkflow.model.WorkflowExecution;
import com.amazonaws.services.simpleworkflow.model.WorkflowExecutionDetail;
import com.amazonaws.services.simpleworkflow.model.WorkflowType;

public class SampleBase {

 protected String domain = "DeciderChangeSample";
 protected String taskList = "DeciderChangeSample-" + UUID.randomUUID().toString();

Beispielszenario API-Version 2021-04-28 168

https://aws.amazon.com/sdk-for-java/

AWS Flow Framework für Java Entwicklerhandbuch

 protected AmazonSimpleWorkflow service =
 AmazonSimpleWorkflowClientBuilder.defaultClient();
 {
 try {
 AmazonSimpleWorkflowClientBuilder.defaultClient().registerDomain(new
 RegisterDomainRequest().withName(domain).withDescription("desc").withWorkflowExecutionRetentionPeriodInDays("7"));
 } catch (DomainAlreadyExistsException e) {
 }
 }

 protected List<WorkflowExecution> workflowExecutions = new ArrayList<>();

 protected void startFiveExecutions(String workflow, String version, Object input) {
 for (int i = 0; i < 5; i++) {
 String id = UUID.randomUUID().toString();
 Run startWorkflowExecution = service.startWorkflowExecution(
 new
 StartWorkflowExecutionRequest().withDomain(domain).withTaskList(new
 TaskList().withName(taskList)).withInput(new JsonDataConverter().toData(new
 Object[] { input })).withWorkflowId(id).withWorkflowType(new
 WorkflowType().withName(workflow).withVersion(version)));
 workflowExecutions.add(new
 WorkflowExecution().withWorkflowId(id).withRunId(startWorkflowExecution.getRunId()));
 sleep(1000);
 }
 }

 protected void printExecutionResults() {
 waitForExecutionsToClose();
 System.out.println("\nResults:");
 for (WorkflowExecution wid : workflowExecutions) {
 WorkflowExecutionDetail details = service.describeWorkflowExecution(new
 DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
 System.out.println(wid.getWorkflowId() + " " +
 details.getExecutionInfo().getCloseStatus());
 }
 }

 protected void waitForExecutionsToClose() {
 loop: while (true) {
 for (WorkflowExecution wid : workflowExecutions) {
 WorkflowExecutionDetail details = service.describeWorkflowExecution(new
 DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
 if ("OPEN".equals(details.getExecutionInfo().getExecutionStatus())) {

Beispielszenario API-Version 2021-04-28 169

AWS Flow Framework für Java Entwicklerhandbuch

 sleep(1000);
 continue loop;
 }
 }
 return;
 }
 }

 protected void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }

}

Input.java

package sample;

public class Input {

 private Boolean skipSecondTimer;

 public Input() {
 }

 public Input(Boolean skipSecondTimer) {
 this.skipSecondTimer = skipSecondTimer;
 }

 public Boolean getSkipSecondTimer() {
 return skipSecondTimer != null && skipSecondTimer;
 }

 public Input setSkipSecondTimer(Boolean skipSecondTimer) {
 this.skipSecondTimer = skipSecondTimer;
 return this;
 }

}

Beispielszenario API-Version 2021-04-28 170

AWS Flow Framework für Java Entwicklerhandbuch

Schreiben des ersten Entscheidercodes

Nachfolgend sehen Sie den ersten Java-Code des Entscheiders. Er ist als Version 1 registriert und
plant zwei fünfsekündige Timer-Aufgaben.

InitialDecider.java

package sample.v1;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 clock.createTimer(5);
 }

 }
}

Beispielszenario API-Version 2021-04-28 171

AWS Flow Framework für Java Entwicklerhandbuch

Simulieren einer abwärtsinkompatiblen Änderung

Der folgende, modifizierte Java-Code des Entscheiders ist ein gutes Beispiel für eine
abwärtsinkompatible Änderung. Der Code ist weiterhin als Version 1 registriert, plant jedoch nur noch
einen Timer.

ModifiedDecider.java

package sample.v1.modified;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1 modified) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 }

 }
}

Beispielszenario API-Version 2021-04-28 172

AWS Flow Framework für Java Entwicklerhandbuch

Mit dem folgenden Java-Code können Sie das Problem einer abwärtsinkompatiblen Änderung
simulieren, indem Sie den modifizierten Entscheider ausführen.

RunModifiedDecider.java

package sample;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class BadChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new BadChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start the modified version of the decider
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.modified.Foo.Impl.class);
 after.start();

 // Start a few more executions
 startFiveExecutions("Foo.sample", "1", new Input());

 printExecutionResults();
 }

}

Beispielszenario API-Version 2021-04-28 173

AWS Flow Framework für Java Entwicklerhandbuch

Wenn Sie das Programm ausführen, scheitern die drei Ausführungen, die mit der ersten Version des
Entscheiders gestartet und nach der Migration fortgesetzt wurden.

Lösungen

Verwenden Sie eine der folgenden Lösungen, um abwärtsinkompatible Änderungen zu vermeiden.
Weitere Informationen finden Sie unter Vornehmen von Änderungen am Entscheidercode und
Beispielszenario.

Verwenden von Versioning

Für diese Lösung kopieren Sie den Entscheider in eine neue Klasse, modifizieren ihn und registrieren
den Entscheider dann unter einer neuen Workflow-Version.

VersionedDecider.java

package sample.v2;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "2")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

Lösungen API-Version 2021-04-28 174

AWS Flow Framework für Java Entwicklerhandbuch

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V2) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 }

 }

}

Im aktualisierten Java-Code führt der zweite Entscheiderauftragnehmer beide Versionen des
Workflows aus. Dadurch können laufende Ausführungen unabhängig von den Änderungen in
Version 2 fortgesetzt werden.

RunVersionedDecider.java

package sample;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class VersionedChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new VersionedChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider, with workflow version 1
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions with version 1
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

Lösungen API-Version 2021-04-28 175

AWS Flow Framework für Java Entwicklerhandbuch

 // Start a worker with both the previous version of the decider (workflow
 version 1)
 // and the modified code (workflow version 2)
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 after.addWorkflowImplementationType(sample.v2.Foo.Impl.class);
 after.start();

 // Start a few more executions with version 2
 startFiveExecutions("Foo.sample", "2", new Input());

 printExecutionResults();
 }

}

Wenn Sie das Programm ausführen, werden alle Ausführungen erfolgreich abgeschlossen.

Verwenden von Funktions-Flags

Eine weitere Lösung für Probleme mit der Abwärtskompatibilität besteht darin, den Code basierend
auf Eingabedaten anstelle von Workflow-Versionen in zwei Implementierungen in derselben Klasse
aufzuteilen.

Wenn Sie diesen Ansatz wählen, fügen Sie Ihren Eingabeobjekten jedes Mal, wenn Sie sensible
Änderungen vornehmen, Felder hinzu (oder modifizieren vorhandene Felder Ihrer Eingabeobjekte).
Für Ausführungen, die vor der Migration beginnen, enthält das Eingabeobjekt das Feld nicht (oder es
enthält einen anderen Wert). Daher müssen Sie die Versionsnummer nicht erhöhen.

Note

Wenn Sie neue Felder hinzufügen, stellen Sie sicher, dass der JSON-
Deserialisierungsprozess abwärtskompatibel ist. Objekte, die vor der Einführung des
Felds serialisiert wurden, sollten nach der Migration weiterhin erfolgreich deserialisiert
werden können. Da JSON einen null-Wert festlegt, wenn ein Feld fehlt, verwenden Sie
grundsätzlich gepackte Typen (Boolean anstelle von boolean) und verarbeiten Sie Fälle, in
denen der Wert null ist.

FeatureFlagDecider.java

Lösungen API-Version 2021-04-28 176

AWS Flow Framework für Java Entwicklerhandbuch

package sample.v1.featureflag;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1 feature flag) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 if (!input.getSkipSecondTimer()) {
 clock.createTimer(5);
 }
 }

 }
}

Im aktualisierten Java-Code ist der Code beider Versionen des Workflows weiterhin für
Version 1 registriert. Nach der Migration beginnen neue Ausführungen dagegen mit dem Feld
skipSecondTimer der Eingabedaten mit dem Wert true.

Lösungen API-Version 2021-04-28 177

AWS Flow Framework für Java Entwicklerhandbuch

RunFeatureFlagDecider.java

package sample;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class FeatureFlagChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new FeatureFlagChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start a new version of the decider that introduces a change
 // while preserving backwards compatibility based on input fields
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.featureflag.Foo.Impl.class);
 after.start();

 // Start a few more executions and enable the new feature through the input
 data
 startFiveExecutions("Foo.sample", "1", new Input().setSkipSecondTimer(true));

 printExecutionResults();
 }

}

Lösungen API-Version 2021-04-28 178

AWS Flow Framework für Java Entwicklerhandbuch

Wenn Sie das Programm ausführen, werden alle Ausführungen erfolgreich abgeschlossen.

Lösungen API-Version 2021-04-28 179

AWS Flow Framework für Java Entwicklerhandbuch

Tipps zur Fehlerbehebung und zum Debuggen AWS Flow
Framework für Java
Themen

• Fehler beim Kompilieren

• Unbekannter Ressourcenfehler

• Ausnahmen beim Aufrufen von get () für ein Promise

• Nichtdeterministische Workflows

• Probleme aufgrund der Versionierung

• Problembehandlung und Debuggen einer Workflow-Ausführung

• Verlorene Aufgaben

• Die Überprüfung ist aufgrund von Längenbeschränkungen für API-Parameter fehlgeschlagen

In diesem Abschnitt werden einige häufige Fallstricke beschrieben, auf die Sie bei der Entwicklung
von Workflows mit AWS Flow Framework for Java stoßen könnten. Außerdem erhalten Sie einige
Tipps, die Ihnen bei der Diagnose und der Behebung von Problemen helfen.

Fehler beim Kompilieren

Wenn Sie die AspectJ-Compile-Time-Weaving-Option verwenden, treten möglicherweise
Kompilierzeitfehler auf, bei denen der Compiler die generierten Client-Klassen für Ihren Workflow
und Ihre Aktivitäten nicht finden kann. Die wahrscheinliche Ursache solcher Kompilierfehler ist, dass
der AspectJ-Builder die generierten Clients während der Kompilierung ignoriert hat. Sie können
dieses Problem beheben, indem Sie die AspectJ-Funktion aus dem Projekt entfernen und erneut
aktivieren. Beachten Sie, dass Sie dies jedes Mal durchführen müssen, wenn sich Ihre Workflow-
oder Aktivitätsschnittstellen ändern. Aufgrund dieses Problems wird empfohlen, stattdessen die Load-
Time-Weaving-Option zu verwenden. Weitere Details finden Sie im Abschnitt Einrichtung des AWS
Flow Framework für Java.

Fehler beim Kompilieren API-Version 2021-04-28 180

AWS Flow Framework für Java Entwicklerhandbuch

Unbekannter Ressourcenfehler

Amazon SWF gibt einen unbekannten Ressourcenfehler zurück, wenn Sie versuchen, einen Vorgang
mit einer Ressource durchzuführen, die nicht verfügbar ist. Die häufigen Ursachen für diesen Fehler
sind:

• Sie konfigurieren einen Worker mit einer Domäne, die nicht vorhanden ist. Um dieses Problem zu
beheben, registrieren Sie zunächst die Domain mit der Amazon SWF-Konsole oder der Amazon
SWF-Service API.

• Sie versuchen, Workflow-Ausführungs- oder Aktivitätsaufgaben für Typen durchzuführen, die
nicht registriert wurden. Dies kann passieren, wenn Sie versuchen, die Workflow-Ausführung
zu erstellen, bevor die Worker ausgeführt wurden. Da Worker ihre Typen registrieren, wenn sie
zum ersten Mal ausgeführt werden, müssen Sie sie mindestens einmal ausführen, bevor Sie
versuchen, Ausführungen zu starten (oder die Typen manuell über die Konsole oder die Service-
API registrieren). Beachten Sie, dass Sie, sobald Typen registriert wurden, Ausführungen auch
dann erstellen können, wenn keine Worker ausgeführt werden.

• Ein Worker versucht, eine Aufgabe abzuschließen, die bereits das Zeitlimit überschritten hat. Wenn
ein Worker beispielsweise zu lange für die Bearbeitung einer Aufgabe benötigt und ein Timeout
überschreitet, wird ein UnknownResource Fehler angezeigt, wenn er versucht, die Aufgabe
abzuschließen oder fehlschlägt. Die AWS Flow Framework Mitarbeiter werden weiterhin Amazon
SWF abfragen und zusätzliche Aufgaben bearbeiten. Sie sollten jedoch in Betracht ziehen, die
Zeitbeschränkung anzupassen. Zum Anpassen der Zeitbeschränkung müssen Sie eine neue
Version des Aktivitätstyps registrieren.

Ausnahmen beim Aufrufen von get () für ein Promise

Anders als Java Future ist Promise ein blockierungsfreies Konstrukt und das Aufrufen von get()
für ein noch nicht bereites Promise-Objekt führt zu einer Ausnahme anstelle einer Blockierung. Die
korrekte Verwendung von a Promise besteht darin, es an eine asynchrone Methode (oder eine
Aufgabe) zu übergeben und in der asynchronen Methode auf seinen Wert zuzugreifen. AWS Flow
Framework for Java stellt sicher, dass eine asynchrone Methode nur aufgerufen wird, wenn alle an
sie übergebenen Promise Argumente bereit sind. Wenn Sie glauben, dass Ihr Code korrekt ist,
oder wenn Sie beim Ausführen eines der AWS Flow Framework Beispiele darauf stoßen, liegt dies
höchstwahrscheinlich daran, dass AspectJ nicht richtig konfiguriert ist. Details hierzu finden Sie im
Abschnitt Einrichtung des AWS Flow Framework für Java.

Unbekannter Ressourcenfehler API-Version 2021-04-28 181

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-register-domain-console.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html

AWS Flow Framework für Java Entwicklerhandbuch

Nichtdeterministische Workflows

Wie im Abschnitt Nichtdeterminismus beschrieben, muss die Implementierung Ihres Workflows
deterministisch sein. Einige häufige Fehler, die zu Nichtdeterminismus führen können, sind die
Verwendung der Systemuhr, die Verwendung von Zufallszahlen und die Generierung von. GUIDs
Da diese Konstrukte zu unterschiedlichen Zeiten unterschiedliche Werte zurückgeben können, kann
die Ablaufsteuerung Ihres Workflows bei jeder Ausführung unterschiedliche Wege einschlagen
(weitere Informationen finden Sie in den Abschnitten AWS Flow Framework Grundbegriffe: Verteilte
Ausführung undEine Aufgabe in AWS Flow Framework für Java verstehen). Wenn das Framework
während der Ausführung des Workflows Nichtdeterminismus erkennt, wird eine Ausnahme ausgelöst.

Probleme aufgrund der Versionierung

Wenn Sie eine neue Version Ihres Workflows oder Ihrer Aktivität implementieren, z. B. wenn Sie ein
neues Feature hinzufügen, sollten Sie die Version des Typs erhöhen, indem Sie die entsprechende
Anmerkung verwenden:, oder. @Workflow @Activites @Activity Wenn neue Versionen
eines Workflows bereitgestellt werden, haben Sie oft Ausführungen der bestehenden Version, die
bereits ausgeführt werden. Sie müssen daher sicherstellen, dass Worker mit der entsprechenden
Version Ihres Workflows und Ihrer Aktivitäten die Aufgabe erhalten. Sie können dies erreichen,
indem Sie verschiedene Aufgabenlisten für jede Version verwenden. Sie können beispielsweise
die Versionsnummer an den Namen der Aufgabenliste anfügen. Dadurch wird sichergestellt, dass
Aufgaben, die zu unterschiedlichen Versionen des Workflows und der Aktivitäten gehören, den
entsprechenden Workern zugewiesen werden.

Problembehandlung und Debuggen einer Workflow-Ausführung

Der erste Schritt bei der Fehlerbehebung bei der Ausführung eines Workflows besteht darin, die
Amazon SWF SWF-Konsole zu verwenden, um sich den Workflow-Verlauf anzusehen. Der Workflow-
Verlauf ist ein kompletter und autoritativer Datensatz aller Ereignissen, die den Ausführungsstatus der
Workflow-Ausführung geändert haben. Dieser Verlauf wird von Amazon SWF verwaltet und ist für die
Diagnose von Problemen von unschätzbarem Wert. Mit der Amazon SWF SWF-Konsole können Sie
nach Workflow-Ausführungen suchen und einzelne Verlaufsereignisse aufschlüsseln.

AWS Flow Framework bietet eine WorkflowReplayer Klasse, mit der Sie eine Workflow-
Ausführung lokal wiedergeben und debuggen können. Mit dieser Klasse können Sie geschlossene
und laufende Workflow-Ausführungen debuggen. WorkflowReplayerstützt sich auf den in

Nichtdeterministische Workflows API-Version 2021-04-28 182

AWS Flow Framework für Java Entwicklerhandbuch

Amazon SWF gespeicherten Verlauf, um die Wiedergabe durchzuführen. Sie können es auf eine
Workflow-Ausführung in Ihrem Amazon SWF-Konto verweisen oder es mit den Verlaufsereignissen
versehen (Sie können beispielsweise den Verlauf von Amazon SWF abrufen und ihn für die
spätere Verwendung lokal serialisieren). Wenn Sie eine Workflow-Ausführung mithilfe von
WorkflowReplayer erneut abspielen, wirkt sich dies nicht auf die Workflow-Ausführung aus, die
in Ihrem Konto ausgeführt wird. Das erneute Abspielen findet vollständig auf dem Client statt. Sie
können wie gewohnt mithilfe Ihrer Debugging-Tools den Workflow debuggen, Haltepunkte erstellen
und in den Code hineinzuspringen. Wenn Sie Eclipse verwenden, sollten Sie erwägen, Schrittfilter
zum Filtern von AWS Flow Framework Paketen hinzuzufügen.

Der folgende Codeausschnitt beispielsweise kann verwendet werden, um eine Workflow-Ausführung
erneut abzuspielen:

String workflowId = "testWorkflow";
String runId = "<run id>";
Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
 swfService, domain, workflowExecution, workflowImplementationType);

System.out.println("Beginning workflow replay for " + workflowExecution);
Object workflow = replayer.loadWorkflow();
System.out.println("Workflow implementation object:");
System.out.println(workflow);
System.out.println("Done workflow replay for " + workflowExecution);

AWS Flow Framework ermöglicht es Ihnen auch, einen asynchronen Thread-Dump Ihrer Workflow-
Ausführung zu erstellen. Dieser Thread-Dump liefert Ihnen die Aufruflisten aller offenen asynchronen
Aufgaben. Diese Informationen können beim Bestimmen, welche Aufgaben in der Ausführung noch
ausstehen und möglicherweise hängen geblieben sind, helfen. Zum Beispiel:

String workflowId = "testWorkflow";
String runId = "<run id>";
Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

Problembehandlung und Debuggen einer Workflow-Ausführung API-Version 2021-04-28 183

AWS Flow Framework für Java Entwicklerhandbuch

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
 swfService, domain, workflowExecution, workflowImplementationType);

try {
 String flowThreadDump = replayer.getAsynchronousThreadDumpAsString();
 System.out.println("Workflow asynchronous thread dump:");
 System.out.println(flowThreadDump);
}
catch (WorkflowException e) {
 System.out.println("No asynchronous thread dump available as workflow has failed: "
 + e);
}

Verlorene Aufgaben

Manchmal fahren Sie vielleicht in kurzer Abfolge Worker herunter und starten neue, nur um
festzustellen, dass Aufgaben an dieselben alten Worker übermittelt werden. Dies kann aufgrund
von Race Conditions im System passieren, das über mehrere Prozesse hinweg verteilt ist. Das
Problem kann außerdem auftreten, wenn Sie Komponententests in einer engen Schleife ausführen.
Das Beenden eines Tests in Eclipse kann dies manchmal auch verursachen, da heruntergefahrene
Handler möglicherweise nicht aufgerufen werden.

Um sicherzustellen, dass das Problem tatsächlich darauf zurückzuführen ist, dass alte Worker
Aufgaben erhalten, sollten Sie sich den Workflow-Verlauf ansehen, um zu bestimmen, welcher
Prozess die Aufgabe erhalten hat, von der Sie erwartet hatten, dass der neue Worker sie
erhält. Beispielsweise enthält das DecisionTaskStarted-Ereignis im Verlauf die Identität
des Workflow-Workers, der die Aufgabe erhalten hat. Die vom Flow Framework verwendete
ID hat die Form: {processId} @ {host name}. Im Folgenden finden Sie beispielsweise die
Details des DecisionTaskStarted Ereignisses in der Amazon SWF SWF-Konsole für eine
Beispielausführung:

Ereigniszeitstempel Mon Feb 20 11:52:40 GMT-800 2012

Identität 2276 @ip -0A6C1 DF5

ID des geplanten Events 33

Verlorene Aufgaben API-Version 2021-04-28 184

AWS Flow Framework für Java Entwicklerhandbuch

Um diese Situation zu vermeiden, verwenden Sie unterschiedliche Aufgabenlisten für jeden Test.
Ziehen Sie außerdem in Betracht, eine Verzögerung zwischen dem Herunterfahren alter Worker und
dem Starten neuer Worker hinzuzufügen.

Die Überprüfung ist aufgrund von Längenbeschränkungen für API-
Parameter fehlgeschlagen

Amazon SWF erzwingt Längenbeschränkungen für API-Parameter. Sie erhalten eine
HTTP 400 Fehlermeldung, wenn Ihre Workflow- oder Aktivitätsimplementierung die
Beschränkungen überschreitet. Wenn Sie beispielsweise aufrufenrecordActivityHeartbeat,
ActivityExecutionContext um einen Heartbeat für eine laufende Aktivität zu senden, darf die
Zeichenfolge nicht länger als 2048 Zeichen sein.

Ein anderes häufiges Szenario ist, wenn eine Aktivität aufgrund einer Ausnahme fehlschlägt.
Das Framework meldet Amazon SWF einen Aktivitätsfehler, indem es die serialisierte Ausnahme
als Details aufruft RespondActivityTaskFailed. Der API-Aufruf meldet einen 400-Fehler, wenn
die serialisierte Ausnahme eine Länge von mehr als 32.768 Byte hat. Um dieser Situation
entgegenzuwirken, können Sie die Ausnahmemeldung oder die Ursachen kürzen, damit sie der
Längenbeschränkung entsprechen.

Die Überprüfung ist aufgrund von Längenbeschränkungen für API-Parameter fehlgeschlagen API-Version 2021-04-28 185

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework für Java Entwicklerhandbuch

AWS Flow Framework für Java-Referenz
Themen

• AWS Flow Framework für Java-Annotationen

• AWS Flow Framework für Java-Ausnahmen

• AWS Flow Framework für Java-Pakete

AWS Flow Framework für Java-Annotationen

Themen

• @Aktivität

• @Aktivität

• @ActivityRegistrationOptions

• @Asynchron

• @Execute

• @ExponentialRetry

• @GetState

• @ManualActivityCompletion

• @Signal

• @SkipRegistration

• @Wait und @ NoWait

• @Workflow

• @WorkflowRegistrationOptions

@Aktivität

Diese Annotation kann für eine Schnittstelle verwendet werden, um eine Gruppe von Aktivitätstypen
zu deklarieren. Jede Methode in einer mit dieser Annotation versehenen Schnittstelle stellt einen
Aktivitätstyp dar. Eine Schnittstelle kann nicht sowohl @Workflow- als auch @Activities-
Annotationen enthalten.

Die folgenden Parameter können über dieser Annotation angegeben werden:

Anmerkungen API-Version 2021-04-28 186

AWS Flow Framework für Java Entwicklerhandbuch

activityNamePrefix

Gibt das Präfix des Namens des in der Schnittstelle deklarierten Aktivitätstyps an. Wenn der Wert
auf eine leere Zeichenfolge festgelegt ist (Standard), wird der Name der Schnittstelle gefolgt von
einem Punkt (.) als Präfix verwendet.

version

Gibt die Standardversion der in der Schnittstelle deklarierten Aktivitätstypen an. Der Standardwert
ist 1.0.

dataConverter

Gibt den Typ von an, der für serializing/deserializing Daten verwendet werden DataConverter
soll, wenn Aufgaben dieses Aktivitätstyps erstellt werden, und die zugehörigen
Ergebnisse. Standardmäßig auf NullDataConverter festgelegt, was bedeutet, dass das
JsonDataConverter verwendet werden soll.

@Aktivität

Diese Annotation kann für Methoden innerhalb einer mit @Activities definierten Schnittstelle
verwendet werden.

Die folgenden Parameter können über dieser Annotation angegeben werden:

name

Gibt den Namen des Aktivitätstyps an. Der Standardwert ist eine leere Zeichenfolge. Diese
gibt an, dass der Name des Aktivitätstyps über das Standardpräfix und den Namen der
Aktivitätsmethode ({Präfix}{Name}) festgelegt werden soll. Beachten Sie, dass das Framework
bei der Angabe eines Namens in einer @Activity-Annotation nicht automatisch ein Präfix
voranstellt. Es steht Ihnen frei, Ihr eigenes Namensschema zu verwenden.

version

Gibt die Version des Aktivitätstyps an. Dies überschreibt die Standardversion, die in der
@Activities-Annotation der enthaltenden Schnittstelle angegeben ist. Der Standardwert ist
eine leere Zeichenfolge.

@Aktivität API-Version 2021-04-28 187

AWS Flow Framework für Java Entwicklerhandbuch

@ActivityRegistrationOptions

Gibt die Registrierungsoptionen für einen Aktivitätstyp an. Diese Annotation kann für eine
Schnittstelle verwendet werden, die mit @Activities oder den darin enthaltenen Methoden definiert
ist. Beim Festlegen an beiden Orten gilt die für die Methode verwendete Annotation.

Die folgenden Parameter können über dieser Annotation angegeben werden:

defaultTasklist

Gibt die Standard-Aufgabenliste an, die für diesen Aktivitätstyp bei Amazon SWF registriert
werden soll. Dieser Standardwert kann beim Aufruf der Aktivitätsmethode für den generierten
Client über den Parameter ActivitySchedulingOptions überschrieben werden.
Standardmäßig auf USE_WORKER_TASK_LIST festgelegt. Dies ist ein spezieller Wert. Er gibt an,
dass die Aufgabenliste des Workers verwendet werden soll, der die Registrierung durchführt.

defaultTaskScheduleToStartTimeoutSeconds

Gibt die bei Amazon SWF für diesen Aktivitätstyp defaultTaskSchedule ToStartTimeout
registrierte Datei an. Dies ist die maximale Zeit, die eine Aufgabe dieses Aktivitätstyps warten
darf, bevor sie einem Worker zugeordnet wird. Weitere Informationen finden Sie in der Amazon
Simple Workflow Service API-Referenz.

defaultTaskHeartbeatTimeoutSeconds

Gibt die bei Amazon SWF für diesen Aktivitätstyp defaultTaskHeartbeatTimeout registrierte
Datei an. Aktivitäts-Worker müssen innerhalb dieser Zeit einen Heartbeat liefern – andernfalls gibt
es einen Timeout für die Aufgabe. Standardmäßig auf -1 festgelegt. Dieser spezielle Wert gibt an,
dass der Timeout deaktiviert werden soll. Weitere Informationen finden Sie in der Amazon Simple
Workflow Service API-Referenz.

defaultTaskStartToCloseTimeoutSeconds

Gibt die bei Amazon SWF für diesen Aktivitätstyp defaultTaskStart ToCloseTimeout registrierte
Datei an. Dieser Timeout bestimmt die maximale Zeit, die ein Worker für die Bearbeitung einer
Aktivität dieses Typs benötigen darf. Weitere Informationen finden Sie in der Amazon Simple
Workflow Service API-Referenz.

defaultTaskScheduleToCloseTimeoutSeconds

Gibt die bei Amazon SWF für diesen Aktivitätstyp defaultScheduleToCloseTimeout
registrierte Datei an. Dieser Timeout bestimmt die Gesamtdauer, für die die Aufgabe im offenen

@ActivityRegistrationOptions API-Version 2021-04-28 188

AWS Flow Framework für Java Entwicklerhandbuch

Zustand bleiben kann. Standardmäßig auf -1 festgelegt. Dieser spezielle Wert gibt an, dass der
Timeout deaktiviert werden soll. Weitere Informationen finden Sie in der Amazon Simple Workflow
Service API-Referenz.

@Asynchron

Gibt bei Verwendung für eine Methode in der Workflow-Koordinationslogik an, dass die Methode
asynchron ausgeführt werden soll. Ein Aufruf der Methode gibt die Kontrolle sofort zurück. Die
eigentliche Ausführung erfolgt jedoch asynchron, sobald alle an die Methoden übergebenen
Promise<>-Parameter bereit sind. Mit @Asynchronous definierte Methoden müssen den
Rückgabetyp Promise<> oder void haben.

daemon

Gibt an, ob die für die asynchrone Methode erstellte Aufgabe eine Daemon-Aufgabe sein soll.
Standardmäßig ist False festgelegt.

@Execute

Bei Verwendung für eine Methode in einer mit der @Workflow-Annotation definierten Schnittstelle
gibt dieser Wert den Einstiegspunkt des Workflows an.

Important

Nur eine Methode in der Schnittstelle darf mit @Execute ausgezeichnet werden.

Die folgenden Parameter können über dieser Annotation angegeben werden:

name

Gibt den Namen des Workflowtyps an. Falls die Option nicht festgelegt ist, lautet der Name
standardmäßig {prefix}{name}, wobei {prefix} der Name der Workflow-Schnittstelle ist, gefolgt von
einem Punkt (.) und {name} der Name der @Execute-verziert-Methode im Workflow ist.

version

Gibt die Version des Workflowtyps an.

@Asynchron API-Version 2021-04-28 189

AWS Flow Framework für Java Entwicklerhandbuch

@ExponentialRetry

Legt bei Verwendung für eine Aktivität oder eine asynchrone Methode eine exponentielle
Wiederholungsrichtlinie fest, falls die Methode eine unbehandelte Ausnahme auslöst. Ein
Wiederholungsversuch erfolgt nach einer Backoff-Periode, die sich über die Anzahl der Versuche
errechnet.

Die folgenden Parameter können über dieser Annotation angegeben werden:

intialRetryIntervalSeconds

Gibt die Dauer an, die vor dem ersten Wiederholungsversuch gewartet werden soll. Dieser Wert
sollte nicht größer als maximumRetryIntervalSeconds und retryExpirationSeconds
sein.

maximumRetryIntervalSeconds

Gibt die maximale Dauer zwischen den Wiederholungsversuchen an. Einmal erreicht, wird das
Wiederholungsintervall auf diesen Wert begrenzt. Standardmäßig auf -1 festgelegt, was für eine
unbegrenzte Dauer steht.

retryExpirationSeconds

Gibt die Dauer an, nach der die exponentielle Wiederholung gestoppt wird. Standardmäßig auf -1
festgelegt. Das heißt, es gibt keinen Ablauf.

backoffCoefficient

Gibt den Koeffizienten an, der zur Berechnung des Wiederholungsintervalls verwendet wird. Siehe
Exponentielle Wiederholungsstrategie.

maximumAttempts

Gibt die Anzahl der Versuche an, nach denen die exponentielle Wiederholung gestoppt
wird. Standardmäßig auf -1 festgelegt. Das heißt, es gibt keine Begrenzung der Anzahl der
Wiederholungsversuche.

exceptionsToRetry

Gibt die Liste der Ausnahmetypen an, die einen erneuten Versuch auslösen sollen. Unbehandelte
Ausnahmen dieser Typen werden nicht weitergegeben. Die Methode wird nach dem berechneten
Wiederholungsintervall erneut ausgeführt. Standardmäßig enthält die Liste Throwable.

@ExponentialRetry API-Version 2021-04-28 190

AWS Flow Framework für Java Entwicklerhandbuch

excludeExceptions

Gibt die Liste der Ausnahmetypen an, die keinen erneuten Versuch auslösen sollen.
Unbehandelte Ausnahmen dieses Typs dürfen weitergegeben werden. Die Liste ist
standardmäßig leer.

@GetState

Bei Verwendung für eine Methode in einer mit der @Workflow-Annotation definierten Schnittstelle
wird die Methode verwendet, um den letzten Status der Workflow-Ausführung abzurufen. Es kann
in einer Schnittstelle mit der @Workflow-Annotation maximal eine Methode mit dieser Annotation
geben. Methoden mit dieser Annotation dürfen keine Parameter entgegennehmen und müssen einen
anderen Rückgabetyp als void haben.

@ManualActivityCompletion

Diese Annotation kann für eine Aktivitätsmethode verwendet werden. Sie definiert, dass die
Aktivitätsaufgabe bei der Rückgabe aus der Methode nicht abgeschlossen werden soll. Die
Aktivitätsaufgabe wird nicht automatisch abgeschlossen und müsste manuell direkt über die
Amazon SWF SWF-API abgeschlossen werden. Dies ist für Anwendungsfälle hilfreich, in denen die
Aktivitätsaufgabe an ein externes System delegiert wird und dieses nicht automatisiert ist oder ein
menschliches Eingreifen erfordert.

@Signal

Identifiziert bei Verwendung für eine Methode in einer mit der @Workflow-Annotation definierten
Schnittstelle ein Signal, das von Ausführungen des von der Schnittstelle deklarierten Workflowtyps
empfangen werden kann. Die Verwendung dieser Annotation ist erforderlich, um eine Signalmethode
zu definieren.

Die folgenden Parameter können über dieser Annotation angegeben werden:

name

Gibt den Namensteil des Signalnamens an. Wenn nicht festgelegt, wird der Name der Methode
verwendet.

@GetState API-Version 2021-04-28 191

AWS Flow Framework für Java Entwicklerhandbuch

@SkipRegistration

Wenn es auf einer Schnittstelle verwendet wird, die mit der @Workflow Anmerkung versehen
ist, bedeutet dies, dass der Workflow-Typ nicht bei Amazon SWF registriert werden sollte. Für
eine mit @Workflow definierte Schnittstelle muss die @WorkflowRegistrationOptions- oder
@SkipRegistrationOptions-Annotationen verwendet werden. Es dürfen jedoch nicht beide
verwendet werden.

@Wait und @ NoWait

Diese Anmerkungen können für einen Parameter des Typs verwendet werden, Promise<> um
anzugeben, ob AWS Flow Framework for Java warten soll, bis er bereit ist, bevor die Methode
ausgeführt wird. Standardmäßig müssen an die @Asynchronous-Methoden übergebene
Promise<>-Parameter bereit sein, bevor die Methodenausführung erfolgt. In bestimmten Szenarien
ist es notwendig, dieses Standardverhalten zu überschreiben. Promise<>-Parameter, die an
@Asynchronous-Methoden übergeben und mit @NoWait-Annotationen versehen sind, werden nicht
abgefragt.

Collection-Parameter (oder entsprechende Unterklassen) mit Zusagen wie List<Promise<Int>>
müssen mit @Wait definiert werden. Standardmäßig wartet das Framework nicht auf die Mitglieder
einer Collection.

@Workflow

Diese Annotation wird für eine Schnittstelle verwendet, um einen workflow-Typ zu deklarieren. Eine
mit dieser Annotation ausgezeichnete Schnittstelle sollte genau eine Methode enthalten, die mit der
@Execute-Annotation zur Deklaration des Einstiegspunkts für Ihren Workflow ausgezeichnet ist.

Note

Eine Schnittstelle kann nicht gleichzeitig die @Workflow- und @Activities-Annotationen
verwenden. Sie schließen sich gegenseitig aus.

Die folgenden Parameter können über dieser Annotation angegeben werden:

dataConverter

Gibt an, welcher DataConverter beim Senden von Anforderungen an und beim Empfangen von
Ergebnissen an/von Workflow-Ausführungen dieses Workflowtyps verwendet werden soll.

@SkipRegistration API-Version 2021-04-28 192

AWS Flow Framework für Java Entwicklerhandbuch

Die Standardeinstellung, auf NullDataConverter die wiederum zurückgegriffen wird,
JsonDataConverter um alle Anfrage- und Antwortdaten als JavaScript Object Notation (JSON)
zu verarbeiten.

Beispiel

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {
 @Execute(version = "1.0")
 public void greet();
}

@WorkflowRegistrationOptions

Stellt bei Verwendung auf einer mit Anmerkungen versehenen Oberfläche Standardeinstellungen
bereit@Workflow, die von Amazon SWF bei der Registrierung des Workflow-Typs verwendet
wurden.

Note

Für eine mit @Workflow definierte Schnittstelle muss @WorkflowRegistrationOptions
oder @SkipRegistrationOptions verwendet werden. Es können nicht beide verwendet
werden.

Die folgenden Parameter können über dieser Annotation angegeben werden:

Beschreibung

Eine optionale kurze Textbeschreibung des Workflowtyps.

@WorkflowRegistrationOptions API-Version 2021-04-28 193

AWS Flow Framework für Java Entwicklerhandbuch

defaultExecutionStartToCloseTimeoutSeconds

Gibt den bei Amazon SWF für den Workflowtyp defaultExecutionStartToCloseTimeout
registrierten Typ an. Dies ist die Gesamtzeit, die eine solche Workflow-Ausführung in Anspruch
nehmen kann.

Weitere Informationen zu Workflow-Timeouts finden Sie unter Amazon SWF-Timeout-Typen .

defaultTaskStartToCloseTimeoutSeconds

Gibt den bei Amazon SWF für den Workflowtyp defaultTaskStartToCloseTimeout
registrierten Typ an. Gibt an, wie lange eine einzelne Entscheidungsaufgabe für eine solche
Workflow-Ausführung dauern kann.

Wenn Sie defaultTaskStartToCloseTimeout nicht angeben, wird die Standardeinstellung
auf 30 Sekunden gesetzt.

Weitere Informationen zu Workflow-Timeouts finden Sie unter Amazon SWF-Timeout-Typen .

defaultTaskList

Die Standard-Aufgaben, die für Entscheidungsaufgaben für Ausführungen dieses Workflowtyps
verwendet wird. Die hier festgelegte Voreinstellung kann beim Starten einer Workflow-Ausführung
mit StartWorkflowOptions überschrieben werden.

Wenn Sie defaultTaskList nicht angeben, wird der Wert standardmäßig auf
USE_WORKER_TASK_LIST festgelegt. Dies bedeutet, dass die Aufgabenliste des Workers
verwendet werden soll, der die Workflow-Registrierung durchführt.

defaultChildPolicy

Gibt die Richtlinie an, die für untergeordnete Workflows verwendet werden soll, wenn eine
Ausführung dieses Typs abgebrochen wird. Der Standardwert ist ABANDON. Die möglichen Werte
sind:

• ABANDON— Erlaubt, dass die untergeordneten Workflow-Ausführungen weiterlaufen

• TERMINATE— Beendet untergeordnete Workflow-Ausführungen

• REQUEST_CANCEL— Beantragen Sie die Stornierung der untergeordneten Workflow-
Ausführungen

@WorkflowRegistrationOptions API-Version 2021-04-28 194

AWS Flow Framework für Java Entwicklerhandbuch

AWS Flow Framework für Java-Ausnahmen

Die folgenden Ausnahmen werden von der AWS Flow Framework für Java verwendet. Dieser
Abschnitt bietet eine Übersicht über die Ausnahmen. Weitere Einzelheiten finden Sie in der AWS
SDK für Java Dokumentation der einzelnen Ausnahmen.

Themen

• ActivityFailureException

• ActivityTaskException

• ActivityTaskFailedException

• ActivityTaskTimedOutException

• ChildWorkflowException

• ChildWorkflowFailedException

• ChildWorkflowTerminatedException

• ChildWorkflowTimedOutException

• DataConverterException

• DecisionException

• ScheduleActivityTaskFailedException

• SignalExternalWorkflowException

• StartChildWorkflowFailedException

• StartTimerFailedException

• TimerException

• WorkflowException

ActivityFailureException

Diese Ausnahme wird vom Framework intern verwendet, um fehlgeschlagene Aktivitäten zu
kommunizieren. Wenn eine Aktivität aufgrund einer unbehandelten Ausnahme fehlschlägt, wird sie
zusammengefasst ActivityFailureException und an Amazon SWF gemeldet. Sie müssen
diese Ausnahme nur bearbeiten, wenn Sie die Erweiterbarkeitspunkte des Aktivitäts-Workers
verwenden. Ihr Anwendungscode wird nie für die Bearbeitung dieser Ausnahme verwendet.

Ausnahmen API-Version 2021-04-28 195

AWS Flow Framework für Java Entwicklerhandbuch

ActivityTaskException

Dies ist die Basisklasse für Ausnahmen von Fehlern bei Aktivitätsaufgaben:
ScheduleActivityTaskFailedException, ActivityTaskFailedException,
ActivityTaskTimedoutException. Sie enthält die Aufgaben-ID und den Aktivitätstyp der
fehlgeschlagenen Aufgabe. Sie können diese Ausnahme in Ihrer Workflow-Implementierung
abfangen, um fehlgeschlagene Aktivitäten generisch zu bearbeiten.

ActivityTaskFailedException

Unbearbeitete Ausnahmen in Aktivitäten werden der Workflow-Implementierung zurückgemeldet,
indem ActivityTaskFailedException ausgelöst wird. Die ursprüngliche Ausnahme kann
aus der cause-Eigenschaft dieser Ausnahme abgerufen werden. Die Ausnahme liefert aber auch
weitere Informationen, die sich beim Debugging als hilfreich erweisen können, z. B. den eindeutigen
Bezeichner der Aktivität im Verlauf.

Das Framework kann die Remote-Ausnahme bereitstellen, indem die ursprüngliche Ausnahme vom
Aktivitäts-Worker serialisiert wird.

ActivityTaskTimedOutException

Diese Ausnahme wird ausgelöst, wenn bei einer Aktivität von Amazon SWF ein Timeout
ausgelöst wurde. Dazu kommt es, wenn die Aktivitätsaufgabe dem Worker nicht innerhalb
des erforderlichen Zeitraums zugewiesen oder vom Worker nicht in der erforderlichen
Zeit abgeschlossen werden konnte. Sie können diese Timeouts in der Aktivität mit der
@ActivityRegistrationOptions-Annotation festlegen oder beim Aufrufen der Aktivitätsmethode
mit dem ActivitySchedulingOptions-Parameter.

ChildWorkflowException

Basisklasse für Ausnahmen, mit der fehlgeschlagene Ausführungen von untergeordneten Workflows
zurückgemeldet werden. Die Ausnahme enthält die IDs der untergeordneten Workflow-Ausführung
sowie den Workflow-Typ. Sie können diese Ausnahme in Ihrer Workflow-Implementierung abfangen,
um fehlgeschlagene Ausführungen untergeordneter Workflows generisch zu bearbeiten.

ChildWorkflowFailedException

Unbearbeitete Ausnahmen in untergeordneten Workflows werden der übergeordneten Workflow-
Implementierung zurückgemeldet, indem ChildWorkflowFailedException ausgelöst wird. Die

ActivityTaskException API-Version 2021-04-28 196

AWS Flow Framework für Java Entwicklerhandbuch

ursprüngliche Ausnahme kann aus der cause-Eigenschaft dieser Ausnahme abgerufen werden. Die
Ausnahme liefert aber auch weitere Informationen, die sich beim Debugging als hilfreich erweisen
können, z. B. den eindeutigen Bezeichner der untergeordneten Ausführung.

ChildWorkflowTerminatedException

Diese Ausnahme wird in übergeordneten Workflow-Ausführungen ausgelöst, um eine beendete
untergeordnete Workflow-Ausführung zu melden. Sie sollten diese Ausnahme abfangen, wenn Sie
den beendeten untergeordneten Workflow bearbeiten möchten, z. B. um eine Bereinigung oder
Erstattung durchzuführen.

ChildWorkflowTimedOutException

Diese Ausnahme wird bei der Ausführung eines übergeordneten Workflows ausgelöst, um zu
melden, dass bei der Ausführung eines untergeordneten Workflows das Timeout überschritten
und von Amazon SWF geschlossen wurde. Sie sollten diese Ausnahme abfangen, wenn Sie
den untergeordneten Workflow, der beendet werden musste, bearbeiten möchten, z. B. um eine
Bereinigung oder Erstattung durchzuführen.

DataConverterException

Das Framework verwendet die DataConverter-Komponente für das Marshalling und Unmarshalling
von Daten, die remote übertragen wurden. Diese Ausnahme wird ausgelöst, wenn das Marshalling
oder Unmarshalling von Daten durch DataConverter fehlschlägt. Dafür gibt es viele mögliche
Gründe, beispielsweise wenn die DataConverter-Komponenten, die für das Marshalling und
Unmarshalling von Daten verwendet werden, nicht übereinstimmen.

DecisionException

Dies ist die Basisklasse für Ausnahmen, die darauf hindeuten, dass eine Entscheidung von Amazon
SWF nicht umgesetzt wurde. Sie können diese Ausnahme in Ihrer Workflow-Implementierung
abfangen, um solche Ausnahmen generisch zu bearbeiten.

ScheduleActivityTaskFailedException

Diese Ausnahme wird ausgelöst, wenn Amazon SWF eine Aktivitätsaufgabe nicht planen kann. Dies
kann verschiedene Gründe haben — zum Beispiel, weil die Aktivität veraltet war oder ein Amazon
SWF SWF-Limit für Ihr Konto erreicht wurde. Die failureCause-Eigenschaft in der Ausnahme gibt
den genauen Grund für die fehlgeschlagene Planung einer Aktivität an.

ChildWorkflowTerminatedException API-Version 2021-04-28 197

AWS Flow Framework für Java Entwicklerhandbuch

SignalExternalWorkflowException

Diese Ausnahme wird ausgelöst, wenn Amazon SWF eine Anforderung der Workflow-Ausführung
nicht verarbeitet, um eine weitere Workflow-Ausführung zu signalisieren. Dies passiert, wenn die
Ziel-Workflow-Ausführung nicht gefunden werden konnte — das heißt, die von Ihnen angegebene
Workflow-Ausführung existiert nicht oder befindet sich im geschlossenen Zustand.

StartChildWorkflowFailedException

Diese Ausnahme wird ausgelöst, wenn Amazon SWF die Ausführung eines untergeordneten
Workflows nicht starten kann. Dies kann verschiedene Gründe haben, z. B. weil der angegebene
Workflow-Typ für untergeordnete Benutzer veraltet ist oder ein Amazon SWF SWF-Limit für Ihr Konto
erreicht wurde. Die failureCause-Eigenschaft in der Ausnahme gibt den genauen Grund für den
fehlgeschlagene Start einer untergeordneten Workflow-Ausführung an.

StartTimerFailedException

Diese Ausnahme wird ausgelöst, wenn Amazon SWF einen von der Workflow-Ausführung
angeforderten Timer nicht starten kann. Dies kann passieren, wenn die angegebene Timer-ID bereits
verwendet wird oder ein Amazon SWF SWF-Limit für Ihr Konto erreicht wurde. Die failureCause-
Eigenschaft in der Ausnahme gibt den genauen Grund für den Fehler an.

TimerException

Dies ist die Basisklasse für Ausnahmen, die mit Timern im Zusammenhang stehen.

WorkflowException

Diese Ausnahme wird vom Framework intern verwendet, um Fehler in Workflow-Ausführungen zu
kommunizieren. Sie müssen diese Ausnahme nur verarbeiten, wenn Sie einen Erweiterbarkeitspunkt
des Workflow-Workers verwenden.

AWS Flow Framework für Java-Pakete

Dieser Abschnitt bietet einen Überblick über die Pakete, die in der AWS Flow Framework
für Java enthalten sind. Weitere Informationen zu den einzelnen Paketen finden Sie unter
com.amazonaws.services.simpleworkflow.flow in der API-Referenz.AWS SDK für Java

SignalExternalWorkflowException API-Version 2021-04-28 198

https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com/sdk-for-java/latest/reference/

AWS Flow Framework für Java Entwicklerhandbuch

com.amazonaws.services.simpleworkflow.flow

Enthält Komponenten, die in Amazon SWF integriert sind.

com.amazonaws.services.simpleworkflow.flow.annotations

Enthält die Anmerkungen, die vom Programmiermodell für Java verwendet werden. AWS Flow
Framework

com.amazonaws.services.simpleworkflow.flow.aspectj

Enthält für Java Komponenten, die für Funktionen wie und erforderlich sind. AWS Flow
Framework @Asynchron @ExponentialRetry

com.amazonaws.services.simpleworkflow.flow.common

Enthält gängige Dienstprogramme wie Framework-definierte Konstanten.

com.amazonaws.services.simpleworkflow.flow.core

Enthält Kernfunktionen wie Task und Promise.

com.amazonaws.services.simpleworkflow.flow.generic

Enthält Kernkomponenten wie generische Clients, auf die andere Funktionen aufbauen.

com.amazonaws.services.simpleworkflow.flow.interceptors

Enthält Implementierungen der vom Framework bereitgestellten Decorators, einschließlich
RetryDecorator.

com.amazonaws.services.simpleworkflow.flow.junit

Enthält Komponenten, die Junit-Integration zur Verfügung stellen.

com.amazonaws.services.simpleworkflow.flow.pojo

Enthält Klassen, die Aktivitäts- und Workflow-Definitionen für das Annotationsbasierte
Programmierungsmodell implementieren.

com.amazonaws.services.simpleworkflow.flow.spring

Enthält Komponenten, die Spring-Integration zur Verfügung stellen.

com.amazonaws.services.simpleworkflow.flow.test

Enthält Helferobjektklassen, wie TestWorkflowClock, für Workflow-Implementierungen zum
Testen der Einheit.

Pakete API-Version 2021-04-28 199

https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/aspectj/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/common/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/core/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/interceptors/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/junit/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/pojo/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/spring/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/test/package-summary.html

AWS Flow Framework für Java Entwicklerhandbuch

com.amazonaws.services.simpleworkflow.flow.worker

Enthält Implementierungen von Aktivitäts- und Workflow-Workern.

Pakete API-Version 2021-04-28 200

https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/worker/package-summary.html

AWS Flow Framework für Java Entwicklerhandbuch

Dokumentverlauf
In der folgenden Tabelle werden die wichtigen Änderungen an der Dokumentation seit der letzten
Version des AWS Flow Framework for Java Developer Guide beschrieben.

• API-Version: 2012-01-25

• Letzte Aktualisierung der Dokumentation: 25. Juni 2018

Änderung Beschreibung Änderungs
datum

Aktualisierung Es wurde ein Fehler in der backoffCoefficient -
Beschreibung für @ExponentialRetry behoben. Siehe
@ExponentialRetry.

25. Juni
2018

Aktualisierung Im gesamten Handbuch wurden die Codebeispiele
bereinigt.

5. Juni 2017

Aktualisierung Die Anordnung und die Inhalte des Handbuchs wurden
vereinfacht und verbessert.

19. Mai
2017

Aktualisierung Der Abschnitt Vornehmen von Änderungen am Entscheid
ercode: Versioning und Funktions-Flags wurde vereinfacht
und verbessert.

10. April
2017

Aktualisierung Der neue Bewährte Methoden-Abschnitt mit neuer
Anleitung zum Ändern des Decider-Codes wurde hinzugefü
gt.

3. März
2017

Neues Feature Sie können Lambda-Aufgaben zusätzlich zu herkömmli
chen Aktivitätsaufgaben in Ihren Workflows angeben.
Weitere Informationen finden Sie unter AWS Lambda
Aufgaben umsetzen.

21. Juli
2015

Neues Feature Amazon SWF unterstützt das Festlegen der Aufgabenp
riorität in einer Aufgabenliste und versucht, die Aufgaben
mit höherer Priorität vor Aufgaben mit niedrigerer Priorität

17. Dezember
2014

API-Version 2021-04-28 201

AWS Flow Framework für Java Entwicklerhandbuch

Änderung Beschreibung Änderungs
datum

zu liefern. Weitere Informationen finden Sie unter
Aufgabenpriorität in Amazon SWF festlegen.

Aktualisierung Aktualisierungen und Korrekturen wurden vorgenommen. 1. August
2013

Aktualisierung • Aktualisierungen und Korrekturen, einschließlich Aktualisi
erungen der Einrichtungsanweisungen für Eclipse 4.3
und AWS SDK für Java 1.4.7 wurden vorgenommen.

• Neue Tutorials zum Erstellen von Starter-Szenarien
wurden hinzugefügt.

28. Juni
2013

Neues Feature Die erste Version von AWS Flow Framework für Java. 27. Februar
2012

API-Version 2021-04-28 202

AWS Flow Framework für Java Entwicklerhandbuch

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich
infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

API-Version 2021-04-28 cciii

	AWS Flow Framework für Java
	Table of Contents
	Was ist das AWS Flow Framework für Java?
	Was ist in diesem Handbuch enthalten?

	Erste Schritte mit dem AWS Flow Framework für Java
	Einrichtung des AWS Flow Framework für Java
	Fügen Sie das Flow-Framework mit Maven hinzu

	HelloWorld Bewerbung
	HelloWorld Implementierung der Aktivitäten
	HelloWorld Workflow-Mitarbeiter
	HelloWorld Workflow-Starter

	HelloWorldWorkflow Bewerbung
	HelloWorldWorkflow Aktivitäten Arbeiter
	HelloWorldWorkflow Workflow-Worker
	Activities-Client
	Promise <T> Type

	HelloWorldWorkflow Implementierung von Arbeitsabläufen und Aktivitäten
	HelloWorldWorkflow Vorspeise

	HelloWorldWorkflowAsyncBewerbung
	HelloWorldWorkflowAsync Implementierung der Aktivitäten
	HelloWorldWorkflowAsync Workflow-Implementierung
	HelloWorldWorkflowAsyncArbeitsablauf und Aktivitäten: Host und Starter

	HelloWorldWorkflowDistributed Bewerbung
	HelloWorldWorkflowParallelBewerbung
	HelloWorldWorkflowParallelAktivitäten Arbeiter
	HelloWorldWorkflowParallelWorkflow-Mitarbeiter
	HelloWorldWorkflowParallel Arbeitsablauf und Aktivitäten: Host und Starter

	Verständnis AWS Flow Framework für Java
	AWS Flow Framework Grundbegriffe: Anwendungsstruktur
	Rolle des Aktivitäts-Workers
	Rolle des Workflow-Workers
	Rolle des Workflow-Starters
	So interagiert Amazon SWF mit Ihrer Anwendung
	Weitere Informationen

	AWS Flow Framework Grundkonzepte: Zuverlässige Ausführung
	Bereitstellen von zuverlässiger Kommunikation
	Sicherstellen, dass Ergebnisse nicht verloren gegangen sind
	Beibehalten des Workflow-Verlaufs
	Zustandslose Ausführung

	Verarbeitung fehlgeschlagener verteilter Komponenten

	AWS Flow Framework Grundbegriffe: Verteilte Ausführung
	Workflow-Replay
	Replay und asynchrone Workflow-Methoden
	Replay und die Workflow-Implementierung

	AWS Flow Framework Grundbegriffe: Aufgabenlisten und Aufgabenausführung
	AWS Flow Framework Grundkonzepte: Skalierbare Anwendungen
	AWS Flow Framework Grundbegriffe: Data Exchange zwischen Aktivitäten und Workflows
	Die Promise <T> Type
	Datenkonverter und Marshaling

	AWS Flow Framework Grundbegriffe: Data Exchange zwischen Anwendungen und Workflow-Ausführungen
	Amazon SWF-Timeout-Typen
	Zeitüberschreitungen in Workflow- und Entscheidungsaufgaben
	Zeitüberschreitungen in Aktivitätsaufgaben

	Eine Aufgabe in AWS Flow Framework für Java verstehen
	Aufgabe
	Reihenfolge der Ausführung
	Workflow-Ausführung
	Nichtdeterminismus

	AWS Flow Framework für Java-Programmierhandbuch
	Implementierung von Workflow-Anwendungen mit dem AWS Flow Framework
	Workflow- und Aktivitäts-Verträge
	Registrierung von Workflow- und Aktivitätstypen
	Workflow-Typname und Version
	Signalname
	Aktivitätstypname und Version
	Standardaufgabenliste
	Weitere Registrierungsoptionen

	Aktivitäts- und Workflow-Clients
	Workflow-Clients
	Aktivitäts-Clients
	Planungsoptionen
	Dynamische Clients
	Signalisieren und Abbrechen von Workflow-Ausführungen

	Workflow-Implementierung
	Entscheidungskontext
	Offenlegen des Ausführungsstatus
	Workflow-Lokale

	Implementierung von Aktivitäten
	Aktivitäten manuell abschließen

	AWS Lambda Aufgaben umsetzen
	Über AWS Lambda
	Vorteile und Einschränkungen der Verwendung von Lambda-Aufgaben
	Verwenden von Lambda-Aufgaben in Ihren AWS Flow Framework Workflows für Java
	Einrichten einer IAM-Rolle
	Beschränken Sie die Berechtigungen für eine IAM-Rolle
	Amazon SWF Zugriff zum Aufrufen beliebiger Lambda-Rollen gewähren
	Definition einer IAM-Rolle für den Zugriff auf den Aufruf einer bestimmten Lambda-Funktion

	Eine Lambda-Aufgabe für die Ausführung planen

	Sehen Sie sich das Beispiel an HelloLambda

	Ausführen von Programmen, die mit dem AWS Flow Framework für Java geschrieben wurden
	WorkflowWorker
	ActivityWorker
	Worker-Threading-Modell
	Worker-Erweiterbarkeit

	Ausführungskontext
	Entscheidungskontext
	Zugriff DecisionContext bei der Workflow-Implementierung
	Erstellen einer Uhr und eines Timers

	Aktivitätsausführungskontext
	Heartbeat für eine langfristige Aktivität
	Abrufen von Details zur Aktivitätsaufgabe
	Ruft das Amazon SWF-Client-Objekt ab, das vom Executor verwendet wird

	Untergeordnete Workflow-Ausführungen
	Fortlaufende Workflows
	Aufgabenpriorität in Amazon SWF festlegen
	Einrichten der Aufgabenpriorität für Workflows
	Einrichten der Aufgabenpriorität für Aktivitäten

	DataConverters
	Datenübergabe an asynchrone Methoden
	Übergabe von Collections und Maps an asynchrone Methoden
	Einstellbare <T>
	@NoWait
	Promise <Void>
	AndPromise und OrPromise

	Prüfbarkeit und Dependency Injection
	Spring-Integration
	WorkflowScope
	Spring-fähige Worker
	Einfügen des Entscheidungskontexts
	Einfügen von Ressourcen in Aktivitäten

	JUnit Integration
	Schreiben eines einfachen Einheitentests
	Nachahmen von Aktivitätsimplementierungen

	Testen von Kontextobjekten

	Fehlerbehandlung
	TryCatchFinally Semantik
	Abbruch
	Aktivitäts-Heartbeat
	Explizites Abbrechen einer Aufgabe
	Empfangen von Benachrichtigungen über abgebrochene Aufgaben

	Verschachtelt TryCatchFinally

	Wiederholen fehlgeschlagener Aktivitäten
	Retry-Until-Success Strategie
	Exponentielle Wiederholungsstrategie
	Exponentieller Wiederholungsversuch mit @ ExponentialRetry
	Exponentielle Wiederholung mit der Klasse RetryDecorator
	Exponentielle Wiederholung mit der Klasse AsyncRetryingExecutor

	Benutzerdefinierte Wiederholungsstrategie

	Daemon-Aufgaben
	AWS Flow Framework für Java Replay Behavior
	Beispiel 1: Synchrones Replay
	Beispiel 2: Asynchrones Replay
	Weitere Informationen finden Sie unter:

	Bewährte Methoden
	Vornehmen von Änderungen am Entscheidercode: Versioning und Funktions-Flags
	Wiedergabe und Codeänderungen
	Beispielszenario
	Überblick über das Szenario
	Gängiger Code
	Schreiben des ersten Entscheidercodes
	Simulieren einer abwärtsinkompatiblen Änderung

	Lösungen
	Verwenden von Versioning
	Verwenden von Funktions-Flags

	Tipps zur Fehlerbehebung und zum Debuggen AWS Flow Framework für Java
	Fehler beim Kompilieren
	Unbekannter Ressourcenfehler
	Ausnahmen beim Aufrufen von get () für ein Promise
	Nichtdeterministische Workflows
	Probleme aufgrund der Versionierung
	Problembehandlung und Debuggen einer Workflow-Ausführung
	Verlorene Aufgaben
	Die Überprüfung ist aufgrund von Längenbeschränkungen für API-Parameter fehlgeschlagen

	AWS Flow Framework für Java-Referenz
	AWS Flow Framework für Java-Annotationen
	@Aktivität
	@Aktivität
	@ActivityRegistrationOptions
	@Asynchron
	@Execute
	@ExponentialRetry
	@GetState
	@ManualActivityCompletion
	@Signal
	@SkipRegistration
	@Wait und @ NoWait
	@Workflow
	Beispiel

	@WorkflowRegistrationOptions

	AWS Flow Framework für Java-Ausnahmen
	ActivityFailureException
	ActivityTaskException
	ActivityTaskFailedException
	ActivityTaskTimedOutException
	ChildWorkflowException
	ChildWorkflowFailedException
	ChildWorkflowTerminatedException
	ChildWorkflowTimedOutException
	DataConverterException
	DecisionException
	ScheduleActivityTaskFailedException
	SignalExternalWorkflowException
	StartChildWorkflowFailedException
	StartTimerFailedException
	TimerException
	WorkflowException

	AWS Flow Framework für Java-Pakete

	Dokumentverlauf
	

