
User Guide

AWS CloudFormation Guard

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard: User Guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Handelsmarken und Handelsaufmachung von Amazon dürfen nicht in einer Weise in Verbindung
mit nicht von Amazon stammenden Produkten oder Services verwendet werden, durch die Kunden
irregeführt werden könnten oder Amazon in schlechtem Licht dargestellt oder diskreditiert werden
könnte. Alle anderen Handelsmarken, die nicht Eigentum von Amazon sind, gehören den jeweiligen
Besitzern, die möglicherweise zu Amazon gehören oder nicht, mit Amazon verbunden sind oder von
Amazon gesponsert werden.

AWS CloudFormation Guard User Guide

Table of Contents
Was ist AWS CloudFormation Guard? .. 1

Benutzen Sie Guard zum ersten Mal? .. 1
Funktionen von Guard ... 2
Guard mit Hooks verwenden CloudFormation .. 3
Zugriff auf Guard ... 3
Bewährte Methoden ... 3

Guard einrichten ... 4
Für Linux und macOS ... 4

Installieren Sie Guard aus einer vorgefertigten Binärdatei ... 4
Installieren Sie Guard von Cargo ... 5
Installieren Sie Guard von Homebrew ... 6

Für Windows .. 6
Voraussetzungen .. 7
Installieren Sie Guard von Cargo ... 5
Installieren Sie Guard von Chocolatey ... 8

Als AWS Lambda Funktion ... 8
Voraussetzungen .. 8
Installieren Sie den Rust-Paketmanager .. 9
Um Guard als Lambda-Funktion zu installieren ... 9
Um zu bauen und auszuführen .. 11
Aufrufen der Lambda-Funktion ... 11

Voraussetzungen und Überblick für die Verwendung von Guard-Regeln ... 12
Voraussetzungen ... 12
Überblick über die Verwendung von Guard-Regeln ... 12
Writing Guard-Regeln .. 13

Klauseln ... 13
Verwenden von Abfragen in Klauseln .. 16
Verwendung von Operatoren in Klauseln .. 16
Verwenden von benutzerdefinierten Nachrichten in Klauseln .. 20
Klauseln kombinieren .. 20
Blöcke mit Guard-Regeln verwenden ... 21
Verwenden von integrierten Funktionen ... 25
Abfragen definieren und filtern ... 26
Zuweisen und Referenzieren von Variablen in Guard-Regeln ... 40

iii

AWS CloudFormation Guard User Guide

Blöcke mit benannten Regeln verfassen .. 47
Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 54

Testing Guard-Regeln ... 67
Voraussetzungen .. 67
Übersicht ... 67
Exemplarische Vorgehensweise ... 69

Verwendung von Eingabeparametern mit Guard-Regeln ... 79
Wie benutzt man ... 79
Beispielverwendung .. 79
Mehrere Eingabeparameter .. 80

Validierung der Eingabedaten anhand der Guard-Regeln .. 81
Voraussetzungen .. 81
Mit dem validate Befehl ... 81
Validierung mehrerer Regeln anhand mehrerer Datendateien .. 82

Fehlerbehebung bei Guard .. 84
Die Klausel schlägt fehl, wenn keine Ressourcen des ausgewählten Typs vorhanden sind 84
Guard bewertet CloudFormation die Vorlage nicht ... 84
Allgemeine Themen zur Problembehandlung ... 85

Guard CLI-Referenz ... 86
Globale Parameter von Guard CLI ... 86
Baum analysieren .. 86

Syntax ... 86
Parameter .. 87
Optionen .. 87
Beispiele .. 87

Rule Legen .. 87
Syntax ... 88
Parameter .. 88
Optionen .. 88
Beispiele .. 88

Test .. 88
Syntax ... 88
Parameter .. 89
Optionen .. 89
Beispiele .. 90
Output .. 90

iv

AWS CloudFormation Guard User Guide

Weitere Informationen finden Sie auch unter ... 90
validieren .. 90

Syntax ... 90
Parameter .. 90
Optionen .. 92
Beispiel .. 93
Output .. 94
Weitere Informationen finden Sie auch unter ... 94

Sicherheit .. 95
Dokumentverlauf ... 96
AWS Glossar .. 99
.. c

v

AWS CloudFormation Guard User Guide

Was ist AWS CloudFormation Guard?

AWS CloudFormation Guard ist ein Open-Source-Evaluierungstool für allgemeine Zwecke.
policy-as-code Die Guard-Befehlszeilenschnittstelle (CLI) bietet eine simple-to-use deklarative
domänenspezifische Sprache (DSL), mit der Sie Richtlinien als Code ausdrücken können. Darüber
hinaus können Sie CLI Befehle verwenden, um strukturierte Hierarchien JSON oder YAML Daten
anhand dieser Regeln zu validieren. Guard bietet auch ein integriertes Unit-Test-Framework, mit dem
Sie überprüfen können, ob Ihre Regeln wie vorgesehen funktionieren.

Guard überprüft CloudFormation Vorlagen nicht auf gültige Syntax oder zulässige Eigenschaftswerte.
Sie können das Tool cfn-lint verwenden, um eine gründliche Überprüfung der Vorlagenstruktur
durchzuführen.

Guard bietet keine serverseitige Durchsetzung. Sie können die CloudFormation Hooks verwenden,
um serverseitige Überprüfungen und Erzwingungen durchzuführen, wobei Sie einen Vorgang
blockieren oder davor warnen können.

Detaillierte Informationen zur AWS CloudFormation Guard Entwicklung finden Sie im GitHub Guard-
Repository.

Themen

• Benutzen Sie Guard zum ersten Mal?

• Funktionen von Guard

• Guard mit Hooks verwenden CloudFormation

• Zugriff auf Guard

• Bewährte Methoden

Benutzen Sie Guard zum ersten Mal?

Wenn Sie Guard zum ersten Mal verwenden, empfehlen wir Ihnen, zunächst die folgenden Abschnitte
zu lesen:

• Guard einrichten— In diesem Abschnitt wird beschrieben, wie Sie Guard installieren. Mit Guard
können Sie mit dem Guard Richtlinienregeln schreiben DSL und Ihre JSON — oder — YAML
formatierten strukturierten Daten anhand dieser Regeln validieren.

Benutzen Sie Guard zum ersten Mal? 1

https://github.com/aws-cloudformation/cfn-python-lint
https://github.com/aws-cloudformation/cloudformation-guard/
https://github.com/aws-cloudformation/cloudformation-guard/

AWS CloudFormation Guard User Guide

• Writing Guard-Regeln— Dieser Abschnitt enthält detaillierte Anleitungen zum Schreiben von
Richtlinienregeln.

• Testing Guard-Regeln— Dieser Abschnitt enthält eine detaillierte Anleitung zum Testen Ihrer
Regeln, um sicherzustellen, dass sie wie vorgesehen funktionieren, und zum Überprüfen Ihrer
JSON — oder YAML formatierten — strukturierten Daten anhand Ihrer Regeln.

• Validierung der Eingabedaten anhand der Guard-Regeln— Dieser Abschnitt enthält eine detaillierte
Anleitung zur Validierung Ihrer — oder JSON — YAML formatierten strukturierten Daten anhand
Ihrer Regeln.

• Guard CLI-Referenz— In diesem Abschnitt werden die Befehle beschrieben, die im Guard
verfügbar sind. CLI

Funktionen von Guard

Mit Guard können Sie Richtlinienregeln schreiben, um beliebige JSON oder YAML formatierte
strukturierte Daten anhand von Vorlagen zu CloudFormation validieren. Guard unterstützt das
gesamte Spektrum der end-to-end Bewertung von Policy-Checks. Regeln sind in den folgenden
Geschäftsbereichen nützlich:

• Präventive Steuerung und Einhaltung von Vorschriften (Shift-Left-Tests) — Überprüfen Sie die
Infrastruktur als Code (IaC) oder die Zusammensetzung von Infrastruktur und Diensten anhand
von Richtlinienregeln, die Ihre organisatorischen Best Practices für Sicherheit und Compliance
darstellen. Sie können beispielsweise CloudFormation Vorlagen, CloudFormation Änderungssätze,
JSON basierte Terraform-Konfigurationsdateien oder Kubernetes-Konfigurationen validieren.

• Detective Governance und Compliance — Überprüfen Sie die Konformität von Ressourcen
der Configuration Management Database (CMDB), z. B. von AWS Config basierten
Konfigurationselementen (CIs). Entwickler können beispielsweise Guard-Richtlinien
verwenden, AWS Config CIs um den Status bereitgestellter AWS und nicht vorhandener AWS
Ressourcen kontinuierlich zu überwachen, Verstöße gegen Richtlinien zu erkennen und mit der
Problembehebung zu beginnen.

• Sicherheit bei der Bereitstellung — Stellen Sie vor der Implementierung sicher, dass Änderungen
sicher sind. Überprüfen Sie beispielsweise CloudFormation Änderungssätze anhand von
Richtlinienregeln, um Änderungen zu verhindern, die zu einem Ersatz von Ressourcen führen, wie
z. B. das Umbenennen einer Amazon DynamoDB-Tabelle.

Funktionen von Guard 2

AWS CloudFormation Guard User Guide

Guard mit Hooks verwenden CloudFormation

Sie können CloudFormation Guard verwenden, um einen Hook in CloudFormation Hooks zu
erstellen. CloudFormation Hooks ermöglicht es Ihnen, Ihre Guard-Regeln proaktiv durchzusetzen,
bevor CloudFormation Sie Operationen erstellen, aktualisieren oder löschen und Operationen
AWS -Cloud-Control- API erstellen oder aktualisieren. Hooks stellen sicher, dass Ihre
Ressourcenkonfigurationen den Best Practices Ihrer Organisation in Bezug auf Sicherheit, Betrieb
und Kostenoptimierung entsprechen.

Einzelheiten zur Verwendung von Guard zur Erstellung von CloudFormation Guard Hooks finden
Sie unter Write Guard-Regeln zur Bewertung von Ressourcen für Guard Hooks im CloudFormation
Hooks User Guide.

Zugriff auf Guard

Um auf den Guard DSL und die Befehle zugreifen zu können, müssen Sie den Guard installierenCLI.
Informationen zur Installation des Guards finden CLI Sie unterGuard einrichten.

Bewährte Methoden

Schreiben Sie einfache Regeln und verwenden Sie benannte Regeln, um in anderen Regeln auf sie
zu verweisen. Es kann schwierig sein, komplexe Regeln zu verwalten und zu testen.

Guard mit Hooks verwenden CloudFormation 3

https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/guard-hooks-write-rules.html

AWS CloudFormation Guard User Guide

Einrichten AWS CloudFormation Guard
AWS CloudFormation Guard ist eine Open-Source-Befehlszeilenschnittstelle ()CLI. Sie bietet
Ihnen eine einfache, domänenspezifische Sprache, mit der Sie Richtlinienregeln schreiben und
deren hierarchische Struktur JSON und YAML Daten anhand dieser Regeln validieren können. Die
Regeln können Unternehmensrichtlinien in Bezug auf Sicherheit, Compliance und mehr darstellen.
Die strukturierten hierarchischen Daten können eine Cloud-Infrastruktur darstellen, die als Code
beschrieben wird. Sie können beispielsweise Regeln erstellen, um sicherzustellen, dass sie in ihren
CloudFormation Vorlagen immer verschlüsselte Amazon Simple Storage Service (Amazon S3) -
Buckets modellieren.

Die folgenden Themen enthalten Informationen zur Installation von Guard mit dem von Ihnen
ausgewählten Betriebssystem oder als AWS Lambda Funktion.

Themen

• Guard für Linux und macOS installieren

• Guard für Windows installieren

• Guard als AWS Lambda Funktion installieren

Guard für Linux und macOS installieren

Sie können AWS CloudFormation Guard die Installation für Linux und macOS mithilfe der
vorgefertigten Binärdatei Cargo oder über Homebrew durchführen.

Installieren Sie Guard aus einer vorgefertigten Binärdatei

Gehen Sie wie folgt vor, um Guard aus einer vorgefertigten Binärdatei zu installieren.

1. Öffnen Sie ein Terminal und führen Sie den folgenden Befehl aus.

curl --proto '=https' --tlsv1.2 -sSf https://raw.githubusercontent.com/aws-
cloudformation/cloudformation-guard/main/install-guard.sh | sh

2. Führen Sie den folgenden Befehl aus, um Ihre PATH Variable festzulegen.

export PATH=~/.guard/bin:$PATH

Für Linux und macOS 4

AWS CloudFormation Guard User Guide

Ergebnisse: Sie haben Guard erfolgreich installiert und die PATH Variable gesetzt.

• (Optional) Führen Sie den folgenden Befehl aus, um die Installation von Guard zu
bestätigen.

cfn-guard --version

Der Befehl gibt die folgende Ausgabe zurück.

cfn-guard 3.1.2

Installieren Sie Guard von Cargo

Cargo ist der Rust-Paketmanager. Führen Sie die folgenden Schritte aus, um Rust zu installieren, zu
dem auch Cargo gehört. Installieren Sie anschließend Guard von Cargo.

1. Führen Sie den folgenden Befehl von einem Terminal aus und folgen Sie den Anweisungen auf
dem Bildschirm, um Rust zu installieren.

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

• (Optional) Führen Sie für Ubuntu-Umgebungen den folgenden Befehl aus.

sudo apt-get update; sudo apt install build-essential

2. Konfigurieren Sie Ihre PATH Umgebungsvariable und führen Sie den folgenden Befehl aus.

source $HOME/.cargo/env

3. Wenn Cargo installiert ist, führen Sie den folgenden Befehl aus, um Guard zu installieren.

cargo install cfn-guard

Ergebnisse: Sie haben Guard erfolgreich installiert.

• (Optional) Führen Sie den folgenden Befehl aus, um die Installation von Guard zu
bestätigen.

Installieren Sie Guard von Cargo 5

AWS CloudFormation Guard User Guide

cfn-guard --version

Der Befehl gibt die folgende Ausgabe zurück.

cfn-guard 3.1.2

Installieren Sie Guard von Homebrew

Homebrew ist ein Paketmanager für macOS und Linux. Führen Sie die folgenden Schritte aus, um
Homebrew zu installieren. Installieren Sie anschließend Guard von Homebrew.

1. Führen Sie den folgenden Befehl von einem Terminal aus und folgen Sie den Anweisungen auf
dem Bildschirm, um Homebrew zu installieren.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
install.sh)"

2. Wenn Homebrew installiert ist, führen Sie den folgenden Befehl aus, um Guard zu installieren.

brew install cloudformation-guard

Ergebnisse: Sie haben Guard erfolgreich installiert.

• (Optional) Führen Sie den folgenden Befehl aus, um die Installation von Guard zu
bestätigen.

cfn-guard --version

Der Befehl gibt die folgende Ausgabe zurück.

cfn-guard 3.1.2

Guard für Windows installieren

Sie können die Installation AWS CloudFormation Guard für Windows über Cargo oder über
Chocolatey durchführen.

Installieren Sie Guard von Homebrew 6

AWS CloudFormation Guard User Guide

Voraussetzungen

Um Guard über die Befehlszeilenschnittstelle zu erstellen, müssen Sie die Build Tools für Visual
Studio 2019 installieren.

1. Laden Sie die Microsoft Visual C++-Buildtools von der Build Tools for Visual Studio 2019-
Website herunter.

2. Führen Sie das Installationsprogramm aus und wählen Sie die Standardeinstellungen aus.

Installieren Sie Guard von Cargo

Cargo ist der Rust-Paketmanager. Führen Sie die folgenden Schritte aus, um Rust zu installieren, zu
dem auch Cargo gehört. Installieren Sie anschließend Guard von Cargo.

1. Laden Sie Rust herunter und führen Sie dann rustup-init.exe aus.

2. Wählen Sie in der Befehlszeile 1 aus, was die Standardoption ist.

Der Befehl gibt die folgende Ausgabe zurück.

Rust is installed now. Great!

 To get started you may need to restart your current shell.
 This would reload its PATH environment variable to include
 Cargo's bin directory (%USERPROFILE%\.cargo\bin).

 Press the Enter key to continue.

3. Drücken Sie die Eingabetaste, um die Installation abzuschließen.

4. Wenn Cargo installiert ist, führen Sie den folgenden Befehl aus, um Guard zu installieren.

cargo install cfn-guard

Ergebnisse: Sie haben Guard erfolgreich installiert.

• (Optional) Führen Sie den folgenden Befehl aus, um die Installation von Guard zu
bestätigen.

cfn-guard --version

Voraussetzungen 7

https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://forge.rust-lang.org/infra/other-installation-methods.html#other-ways-to-install-rustup

AWS CloudFormation Guard User Guide

Der Befehl gibt die folgende Ausgabe zurück.

cfn-guard 3.1.2

Installieren Sie Guard von Chocolatey

Chocolatey ist ein Paketmanager für Windows. Gehen Sie wie folgt vor, um Chocolatey zu
installieren. Installieren Sie anschließend Guard von Chocolatey.

1. Folgen Sie dieser Anleitung, um Chocolatey zu installieren

2. Wenn Chocolatey installiert ist, führen Sie den folgenden Befehl aus, um Guard zu installieren.

choco install cloudformation-guard

Ergebnisse: Sie haben Guard erfolgreich installiert.

• (Optional) Führen Sie den folgenden Befehl aus, um die Installation von Guard zu
bestätigen.

cfn-guard --version

Der Befehl gibt die folgende Ausgabe zurück.

cfn-guard 3.1.2

Guard als AWS Lambda Funktion installieren

Sie können AWS CloudFormation Guard über Cargo, den Rust-Paketmanager, installieren. Guard as
an AWS Lambda function (cfn-guard-lambda) ist ein leichter Wrapper für Guard (cfn-guard),
der als Lambda-Funktion verwendet werden kann.

Voraussetzungen

Bevor Sie Guard als Lambda-Funktion installieren können, müssen Sie die folgenden
Voraussetzungen erfüllen:

Installieren Sie Guard von Chocolatey 8

https://chocolatey.org/install

AWS CloudFormation Guard User Guide

• AWS Command Line Interface (AWS CLI) konfiguriert mit Berechtigungen zum Bereitstellen und
Aufrufen von Lambda-Funktionen. Weitere Informationen finden Sie unter Konfigurieren der AWS
CLI.

• Eine AWS Lambda Ausführungsrolle in AWS Identity and Access Management (IAM). Weitere
Informationen finden Sie unter AWS Lambda Ausführungsrolle.

• Fügen Sie in CentOS/RHEL Umgebungen das musl-libc Paket-Repository zu Ihrer Yum-
Konfiguration hinzu. Weitere Informationen finden Sie unter ngompa/musl-libc.

Installieren Sie den Rust-Paketmanager

Cargo ist der Rust-Paketmanager. Führen Sie die folgenden Schritte aus, um Rust zu installieren, zu
dem auch Cargo gehört.

1. Führen Sie den folgenden Befehl von einem Terminal aus und folgen Sie dann den Anweisungen
auf dem Bildschirm, um Rust zu installieren.

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

• (Optional) Führen Sie für Ubuntu-Umgebungen den folgenden Befehl aus.

sudo apt-get update; sudo apt install build-essential

2. Konfigurieren Sie Ihre PATH Umgebungsvariable und führen Sie den folgenden Befehl aus.

source $HOME/.cargo/env

Installieren Sie Guard als Lambda-Funktion (Linux, macOS oder Unix)

Gehen Sie wie folgt vor, um Guard als Lambda-Funktion zu installieren.

1. Führen Sie von Ihrem Befehlsterminal aus den folgenden Befehl aus.

cargo install cfn-guard-lambda

• (Optional) Führen Sie den folgenden Befehl aus, um die Installation von Guard als Lambda-
Funktion zu bestätigen.

Installieren Sie den Rust-Paketmanager 9

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://copr.fedorainfracloud.org/coprs/ngompa/musl-libc/

AWS CloudFormation Guard User Guide

cfn-guard-lambda --version

Der Befehl gibt die folgende Ausgabe zurück.

cfn-guard-lambda 3.1.2

2. Führen Sie den folgenden Befehl aus, um den musl Support zu installieren.

rustup target add x86_64-unknown-linux-musl

3. Erstellen Sie mit musl und führen Sie dann den folgenden Befehl in Ihrem Terminal aus.

cargo build --release --target x86_64-unknown-linux-musl

Für eine benutzerdefinierte Laufzeit AWS Lambda ist eine ausführbare Datei mit dem Namen
bootstrap in der ZIP-Datei des Bereitstellungspakets erforderlich. Benennen Sie die generierte
cfn-lambda ausführbare Datei in um bootstrap und fügen Sie sie dann dem ZIP-Archiv
hinzu.

• Erstellen Sie für macOS-Umgebungen Ihre Cargo-Konfigurationsdatei im Stammverzeichnis
des Rust-Projekts oder in~/.cargo/config.

[target.x86_64-unknown-linux-musl]
linker = "x86_64-linux-musl-gcc"

4. Wechseln Sie in das cfn-guard-lambda Stammverzeichnis.

cd ~/.cargo/bin/cfn-guard-lambda

5. Führen Sie den folgenden Befehl in Ihrem Terminal aus.

cp ./../target/x86_64-unknown-linux-musl/release/cfn-guard-lambda ./bootstrap &&
 zip lambda.zip bootstrap && rm bootstrap

6. Führen Sie den folgenden Befehl aus, um ihn cfn-guard als Lambda-Funktion an Ihr Konto zu
senden.

aws lambda create-function --function-name cfnGuard \
 --handler guard.handler \

Um Guard als Lambda-Funktion zu installieren 10

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html

AWS CloudFormation Guard User Guide

 --zip-file fileb://./lambda.zip \
 --runtime provided \
 --role arn:aws:iam::444455556666:role/your_lambda_execution_role \
 --environment Variables={RUST_BACKTRACE=1} \
 --tracing-config Mode=Active

Um Guard als Lambda-Funktion zu erstellen und auszuführen

Führen Sie den folgenden Befehl aus, um die cfn-guard-lambda als Lambda-Funktion
eingereichte Datei aufzurufen.

aws lambda invoke --function-name cfnGuard \
 --payload '{"data":"input data","rules":["rule1","rule2"]}' \
 output.json

Um die Anforderungsstruktur der Lambda-Funktion aufzurufen

Fordert an, cfn-guard-lambda dass die folgenden Felder erforderlich sind:

• data— Die String-Version der YAML- oder JSON-Vorlage

• rules— Die String-Version der Regelsatzdatei

Um zu bauen und auszuführen 11

AWS CloudFormation Guard User Guide

Voraussetzungen und Überblick für die Verwendung von
Guard-Regeln
In diesem Abschnitt wird gezeigt, wie Sie die wichtigsten Guard-Aufgaben des Schreibens, Testens
und Validierens von Regeln anhand von Daten im JSON- oder YAML-Format ausführen können.
Darüber hinaus enthält er detaillierte Anleitungen, in denen das Schreiben von Regeln für bestimmte
Anwendungsfälle demonstriert wird.

Themen

• Voraussetzungen

• Überblick über die Verwendung von Guard-Regeln

• AWS CloudFormation Guard Regeln schreiben

• AWS CloudFormation Guard Regeln für Tests

• Eingabeparameter mit AWS CloudFormation Guard Regeln verwenden

• Validierung von Eingabedaten anhand von Regeln AWS CloudFormation Guard

Voraussetzungen
Bevor Sie Richtlinienregeln mit der domänenspezifischen Sprache (DSL) von Guard schreiben
können, müssen Sie die Guard-Befehlszeilenschnittstelle (CLI) installieren. Weitere Informationen
finden Sie unter Guard einrichten.

Überblick über die Verwendung von Guard-Regeln
Wenn Sie Guard verwenden, führen Sie in der Regel die folgenden Schritte aus:

1. Schreiben Sie Daten im JSON- oder YAML-Format zur Validierung.

2. Schreiben Sie Guard-Richtlinienregeln. Weitere Informationen finden Sie unter Writing Guard-
Regeln.

3. Stellen Sie mithilfe des test Guard-Befehls sicher, dass Ihre Regeln wie vorgesehen
funktionieren. Weitere Informationen zu Komponententests finden Sie unterTesting Guard-Regeln.

4. Verwenden Sie den validate Befehl Guard, um Ihre Daten im JSON- oder YAML-Format
anhand Ihrer Regeln zu validieren. Weitere Informationen finden Sie unter Validierung der
Eingabedaten anhand der Guard-Regeln.

Voraussetzungen 12

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard Regeln schreiben

In AWS CloudFormation Guard sind Regeln Regeln. policy-as-code Sie schreiben Regeln in der
domänenspezifischen Sprache (DSL) von Guard, anhand derer Sie Ihre Daten im JSON- oder YAML-
Format validieren können. Regeln bestehen aus Klauseln.

Sie können Regeln, die mit Guard DSL geschrieben wurden, in Klartextdateien speichern, die eine
beliebige Dateierweiterung verwenden.

Sie können mehrere Regeldateien erstellen und sie als Regelsatz kategorisieren. Regelsätze
ermöglichen es Ihnen, Ihre Daten im JSON- oder YAML-Format anhand mehrerer Regeldateien
gleichzeitig zu validieren.

Themen

• Klauseln

• Verwenden von Abfragen in Klauseln

• Verwenden von Operatoren in Klauseln

• Verwenden von benutzerdefinierten Nachrichten in Klauseln

• Klauseln kombinieren

• Blöcke mit Guard-Regeln verwenden

• Verwenden von integrierten Funktionen

• Definition und Filterung von Guard-Abfragen

• Zuweisen und Referenzieren von Variablen in Guard-Regeln

• Blöcke mit benannten Regeln verfassen in AWS CloudFormation Guard

• Klauseln schreiben, um kontextsensitive Bewertungen durchzuführen

Klauseln

Klauseln sind boolesche Ausdrücke, die entweder true (PASS) oder false () ergeben. FAIL Klauseln
verwenden entweder binäre Operatoren, um zwei Werte zu vergleichen, oder unäre Operatoren, die
auf einen einzelnen Wert angewendet werden.

Beispiele für unäre Klauseln

Die folgende unäre Klausel bewertet, ob die Sammlung leer ist. TcpBlockedPorts

Writing Guard-Regeln 13

AWS CloudFormation Guard User Guide

InputParameters.TcpBlockedPorts not empty

Die folgende unäre Klausel bewertet, ob es sich bei der ExecutionRoleArn Eigenschaft um eine
Zeichenfolge handelt.

Properties.ExecutionRoleArn is_string

Beispiele für Binärklauseln

Die folgende Binärklausel bewertet unabhängig von der Groß- und Kleinschreibungencrypted, ob
die BucketName Eigenschaft die Zeichenfolge enthält.

Properties.BucketName != /(?i)encrypted/

Die folgende Binärklausel bewertet, ob die ReadCapacityUnits Eigenschaft kleiner oder gleich
5.000 ist.

Properties.ProvisionedThroughput.ReadCapacityUnits <= 5000

Syntax für das Schreiben von Guard-Regelklauseln

<query> <operator> [query|value literal] [custom message]

Eigenschaften von Guard-Regelklauseln

query

Ein durch Punkte (.) getrennter Ausdruck, der geschrieben wurde, um hierarchische Daten
zu durchqueren. Abfrageausdrücke können Filterausdrücke enthalten, die auf eine Teilmenge
von Werten abzielen. Abfragen können Variablen zugewiesen werden, sodass Sie sie einmal
schreiben und an anderer Stelle in einem Regelsatz auf sie verweisen können, wodurch Sie auf
Abfrageergebnisse zugreifen können.

Weitere Hinweise zum Schreiben und Filtern von Abfragen finden Sie unterAbfragen definieren
und filtern.

Erforderlich: Ja

Klauseln 14

AWS CloudFormation Guard User Guide

operator

Ein unärer oder binärer Operator, mit dessen Hilfe der Status der Abfrage überprüft werden kann.
Die linke Seite (LHS) eines binären Operators muss eine Abfrage sein, und die rechte Seite (RHS)
muss entweder eine Abfrage oder ein Werteliteral sein.

Unterstützte binäre Operatoren: == (Gleich) | != (Ungleich) | > (Größer als) | >= (Größer als oder
gleich) | (Kleiner als) | < (Kleiner als) | <= (Kleiner als oder gleich) | IN (In einer Liste der Form [x,
y, z]

Unterstützte unäre Operatoren: exists | empty | is_string | | is_list | is_struct not(!)

Erforderlich: Ja

query|value literal

Eine Abfrage oder ein unterstütztes Werteliteral wie string oder. integer(64)

Unterstützte Werteliterale:

• Alle primitiven Typen:string,integer(64),float(64),bool, char regex

• Alle speziellen Bereichstypen zum Ausdrücken voninteger(64),float(64), oder char
Bereichen, ausgedrückt als:

• r[<lower_limit>, <upper_limit>], was in einen beliebigen Wert übersetzt wirdk, der
den folgenden Ausdruck erfüllt: lower_limit <= k <= upper_limit

• r[<lower_limit>, <upper_limit>), was in einen beliebigen Wert übersetzt wirdk, der
den folgenden Ausdruck erfüllt: lower_limit <= k < upper_limit

• r(<lower_limit>, <upper_limit>], was in einen beliebigen Wert übersetzt wirdk, der
den folgenden Ausdruck erfüllt: lower_limit < k <= upper_limit

• r(<lower_limit>, <upper_limit>),was zu einem beliebigen Wert übersetzt wirdk,
der den folgenden Ausdruck erfüllt: lower_limit < k < upper_limit

• Assoziative Arrays (Maps) für verschachtelte Schlüsselwert-Strukturdaten. Zum Beispiel:

{ "my-map": { "nested-maps": [{ "key": 10, "value": 20 }] } }

• Arrays primitiver Typen oder assoziativer Arraytypen

Erforderlich: Bedingt; erforderlich, wenn ein binärer Operator verwendet wird.

Klauseln 15

AWS CloudFormation Guard User Guide

custom message

Eine Zeichenfolge, die Informationen über die Klausel bereitstellt. Die Meldung wird in den
ausführlichen Ausgaben der test Befehle validate und angezeigt und kann hilfreich sein, um
die Regelauswertung hierarchischer Daten zu verstehen oder zu debuggen.

Required: No

Verwenden von Abfragen in Klauseln

Hinweise zum Schreiben von Abfragen finden Sie unter Abfragen definieren und filtern undZuweisen
und Referenzieren von Variablen in Guard-Regeln.

Verwenden von Operatoren in Klauseln

Im Folgenden finden Sie CloudFormation Beispielvorlagen, Template-1 undTemplate-2. Zur
Veranschaulichung der Verwendung unterstützter Operatoren beziehen sich die Beispielabfragen und
Klauseln in diesem Abschnitt auf diese Beispielvorlagen.

Vorlagen-1

Resources:
 S3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: MyServiceS3Bucket
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: 'arn:aws:kms:us-
east-1:123456789:key/056ea50b-1013-3907-8617-c93e474e400'
 Tags:
 - Key: stage
 Value: prod
 - Key: service
 Value: myService

Vorlage-2

Resources:

Verwenden von Abfragen in Klauseln 16

AWS CloudFormation Guard User Guide

 NewVolume:
 Type: AWS::EC2::Volume
 Properties:
 Size: 100
 VolumeType: io1
 Iops: 100
 AvailabilityZone:
 Fn::Select:
 - 0
 - Fn::GetAZs: us-east-1
 Tags:
 - Key: environment
 Value: test
 DeletionPolicy: Snapshot

Beispiele für Klauseln, die unäre Operatoren verwenden

• empty— Prüft, ob eine Sammlung leer ist. Sie können damit auch überprüfen, ob eine Abfrage
Werte in hierarchischen Daten enthält, da Abfragen zu einer Sammlung führen. Sie können damit
nicht überprüfen, ob für Abfragen mit Zeichenkettenwerten eine leere Zeichenfolge ("") definiert
ist. Weitere Informationen finden Sie unter Abfragen definieren und filtern.

Die folgende Klausel prüft, ob für die Vorlage eine oder mehrere Ressourcen definiert sind. Sie
wird als ausgewertet, PASS weil eine Ressource mit der logischen ID in Template-1 definiert
S3Bucket ist.

Resources !empty

Die folgende Klausel prüft, ob ein oder mehrere Tags für die S3Bucket Ressource definiert
sind. Sie wird als ausgewertet, PASS weil S3Bucket zwei Tags für die Tags Eigenschaft in
Template-1 definiert sind.

Resources.S3Bucket.Properties.Tags !empty

• exists— Prüft, ob jedes Vorkommen der Abfrage einen Wert hat und anstelle von != null
verwendet werden kann.

Die folgende Klausel prüft, ob die BucketEncryption Eigenschaft für definiert istS3Bucket. Sie
wird als ausgewertet, PASS weil für S3Bucket in Template-1 definiert BucketEncryption ist.

Verwendung von Operatoren in Klauseln 17

AWS CloudFormation Guard User Guide

Resources.S3Bucket.Properties.BucketEncryption exists

Note

Die not exists Prüfungen empty und geben beim true Durchlaufen der Eingabedaten
auf fehlende Eigenschaftsschlüssel zurück. Wenn der Properties Abschnitt
beispielsweise in der Vorlage für nicht definiert istS3Bucket, wird die Klausel wie folgt
Resources.S3Bucket.Properties.Tag empty ausgewertet. true Bei den empty
Prüfungen exists und wird der JSON-Zeigerpfad innerhalb des Dokuments in den
Fehlermeldungen nicht angezeigt. Beide Klauseln weisen häufig Abruffehler auf, sodass
diese Traversalinformationen nicht beibehalten werden.

• is_string— Überprüft, ob jedes Vorkommen der Abfrage vom Typ ist. string

Die folgende Klausel prüft, ob ein Zeichenkettenwert für die BucketName Eigenschaft der
S3Bucket Ressource angegeben ist. Sie wird als ausgewertet, PASS weil der Zeichenkettenwert
für BucketName in Template-1 angegeben "MyServiceS3Bucket" ist.

Resources.S3Bucket.Properties.BucketName is_string

• is_list— Prüft, ob jedes Vorkommen der Abfrage list vom Typ ist.

Die folgende Klausel prüft, ob eine Liste für die Tags Eigenschaft der S3Bucket Ressource
angegeben ist. Sie wird als ausgewertet, PASS weil zwei Schlüssel-Wert-Paare für in angegeben
sind. Tags Template-1

Resources.S3Bucket.Properties.Tags is_list

• is_struct— Prüft, ob es sich bei jedem Vorkommen der Abfrage um strukturierte Daten handelt.

Die folgende Klausel prüft, ob strukturierte Daten für die BucketEncryption Eigenschaft der
S3Bucket Ressource angegeben sind. Sie BucketEncryption wird als ausgewertet, PASS
weil sie mit dem ServerSideEncryptionConfiguration Eigenschaftstyp (object) in
Template-1 angegeben wurde.

Resources.S3Bucket.Properties.BucketEncryption is_struct

Verwendung von Operatoren in Klauseln 18

AWS CloudFormation Guard User Guide

Note

Um den umgekehrten Zustand zu überprüfen, können Sie den Operator (not !) zusammen
mit den Operatoren is_stringis_list, und is_struct verwenden.

Beispiele für Klauseln, die binäre Operatoren verwenden

Die folgende Klausel prüft unabhängig von der Groß- und Kleinschreibung, ob der für die
BucketName Eigenschaft der S3Bucket Ressource in angegebene Wert die Zeichenfolge
Template-1 encrypt enthält. Dies ergibt, PASS weil der angegebene Bucket-Name die
Zeichenfolge "MyServiceS3Bucket" encrypt nicht enthält.

Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/

Die folgende Klausel prüft, ob der für die Size Eigenschaft der NewVolume Ressource in
angegebene Wert innerhalb eines bestimmten Bereichs Template-2 liegt: 50 <= Size <= 200. Sie
wird als ausgewertet, PASS weil für angegeben 100 ist. Size

Resources.NewVolume.Properties.Size IN r[50,200]

Die folgende Klausel überprüft, ob der für die VolumeType Eigenschaft der NewVolume Ressource
in angegebene Wertio1,io2, oder Template-2 gp3 ist. Sie wird als ausgewertet, PASS weil für
NewVolume angegeben io1 ist.

Resources.NewVolume.Properties.NewVolume.VolumeType IN ['io1','io2','gp3']

Note

Die Beispielabfragen in diesem Abschnitt veranschaulichen die Verwendung von
Operatoren, die Ressourcen mit logischem IDs S3Bucket und NewVolume verwenden.
Ressourcennamen sind häufig benutzerdefiniert und können in einer IaC-Vorlage
(Infrastructure as Code) beliebig benannt werden. Um eine Regel zu schreiben, die generisch
ist und für alle in der Vorlage definierten AWS::S3::Bucket Ressourcen gilt, ist die am
häufigsten verwendete Abfrageform. Resources.*[Type == ‘AWS::S3::Bucket’]
Weitere Informationen zur Verwendung finden Sie unterAbfragen definieren und filtern.

Verwendung von Operatoren in Klauseln 19

AWS CloudFormation Guard User Guide

Weitere Informationen finden Sie im Verzeichnis mit den Beispielen im cloudformation-
guard GitHub Repository.

Verwenden von benutzerdefinierten Nachrichten in Klauseln

Im folgenden Beispiel Template-2 enthalten Klauseln für eine benutzerdefinierte Nachricht.

Resources.NewVolume.Properties.Size IN r(50,200)
<<
 EC2Volume size must be between 50 and 200,
 not including 50 and 200
>>
Resources.NewVolume.Properties.VolumeType IN ['io1','io2','gp3'] <<Allowed Volume
 Types are io1, io2, and gp3>>

Klauseln kombinieren

In Guard wird jede Klausel, die in eine neue Zeile geschrieben wird, implizit mit der nächsten Klausel
kombiniert, indem Konjunktion (andBoolesche Logik) verwendet wird. Sehen Sie sich das folgende
Beispiel an.

clause_A ^ clause_B ^ clause_C
clause_A
clause_B
clause_C

Sie können Disjunktion auch verwenden, um eine Klausel mit der nächsten Klausel zu kombinieren,
indem Sie or|OR am Ende der ersten Klausel angeben.

<query> <operator> [query|value literal] [custom message] [or|OR]

In einer Guard-Klausel werden Disjunktionen zuerst ausgewertet, gefolgt von Konjunktionen. Guard-
Regeln können als Konjunktion von Disjunktionen von Klauseln (und and|AND von or|OR s) definiert
werden, die entweder als () oder true (PASS) ausgewertet werden. false FAIL Dies ähnelt der
konjunktiven Normalform.

Die folgenden Beispiele veranschaulichen die Reihenfolge der Bewertungen von Klauseln.

(clause_E v clause_F) ^ clause_G

Verwenden von benutzerdefinierten Nachrichten in Klauseln 20

https://github.com/aws-cloudformation/cloudformation-guard/tree/main/guard-examples
https://en.wikipedia.org/wiki/Conjunctive_normal_form

AWS CloudFormation Guard User Guide

clause_E OR clause_F
clause_G

(clause_H v clause_I) ^ (clause_J v clause_K)
clause_H OR
clause_I
clause_J OR
clause_K

(clause_L v clause_M v clause_N) ^ clause_O
clause_L OR
clause_M OR
clause_N
clause_O

Alle Klauseln, die auf dem Beispiel basieren, Template-1 können mithilfe von Konjunktion
kombiniert werden. Sehen Sie sich das folgende Beispiel an.

Resources.S3Bucket.Properties.BucketName is_string
Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
Resources.S3Bucket.Properties.BucketEncryption exists
Resources.S3Bucket.Properties.BucketEncryption is_struct
Resources.S3Bucket.Properties.Tags is_list
Resources.S3Bucket.Properties.Tags !empty

Blöcke mit Guard-Regeln verwenden

Blöcke sind Kompositionen, die aus einer Reihe verwandter Klauseln, Bedingungen oder Regeln
Ausführlichkeit und Wiederholungen entfernen. Es gibt drei Arten von Blöcken:

• Blöcke abfragen

• whenBlöcke

• Blöcke mit benannten Regeln

Blöcke abfragen

Im Folgenden sind die Klauseln aufgeführt, die auf dem Beispiel Template-1 basieren. Die
Konjunktion wurde verwendet, um die Klauseln zu kombinieren.

Resources.S3Bucket.Properties.BucketName is_string

Blöcke mit Guard-Regeln verwenden 21

AWS CloudFormation Guard User Guide

Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
Resources.S3Bucket.Properties.BucketEncryption exists
Resources.S3Bucket.Properties.BucketEncryption is_struct
Resources.S3Bucket.Properties.Tags is_list
Resources.S3Bucket.Properties.Tags !empty

Teile des Abfrageausdrucks in jeder Klausel werden wiederholt. Sie können die
Zusammensetzbarkeit verbessern und Ausführlichkeit und Wiederholungen aus einer Reihe
verwandter Klauseln mit demselben anfänglichen Abfragepfad entfernen, indem Sie einen
Abfrageblock verwenden. Derselbe Satz von Klauseln kann wie im folgenden Beispiel geschrieben
werden.

Resources.S3Bucket.Properties {
 BucketName is_string
 BucketName != /(?i)encrypt/
 BucketEncryption exists
 BucketEncryption is_struct
 Tags is_list
 Tags !empty
}

In einem Abfrageblock legt die Abfrage, die dem Block vorausgeht, den Kontext für die Klauseln
innerhalb des Blocks fest.

Weitere Hinweise zur Verwendung von Blöcken finden Sie unterBlöcke mit benannten Regeln
verfassen.

whenBlöcke

Sie können Blöcke bedingt auswerten, indem Sie when Blöcke verwenden, die die folgende Form
haben.

 when <condition> {
 Guard_rule_1
 Guard_rule_2
 ...
 }

Das when Schlüsselwort bezeichnet den Anfang des Blocks. when conditionist eine Guard-Regel.
Der Block wird nur ausgewertet, wenn die Auswertung der Bedingung zu true (PASS) führt.

Blöcke mit Guard-Regeln verwenden 22

AWS CloudFormation Guard User Guide

Im Folgenden finden Sie einen when Beispielblock, der auf basiertTemplate-1.

when Resources.S3Bucket.Properties.BucketName is_string {
 Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
 }

Die Klausel innerhalb des when Blocks wird nur ausgewertet, wenn es sich bei dem für angegebenen
Wert um eine Zeichenfolge BucketName handelt. Wenn der für angegebene Wert im Parameters
Abschnitt der Vorlage referenziert BucketName wird, wie im folgenden Beispiel gezeigt, wird die
Klausel innerhalb des when Blocks nicht ausgewertet.

Parameters:
 S3BucketName:
 Type: String
 Resources:
 S3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName:
 Ref: S3BucketName
 ...

Blöcke mit benannten Regeln

Sie können einem Regelsatz (Regelsatz) einen Namen zuweisen und dann in anderen Regeln auf
diese modularen Validierungsblöcke, sogenannte Blöcke mit benannten Regeln, verweisen. Blöcke
mit benannten Regeln haben die folgende Form.

 rule <rule name> [when <condition>] {
 Guard_rule_1
 Guard_rule_2
 ...
 }

Das rule Schlüsselwort bezeichnet den Anfang des Blocks mit benannten Regeln.

rule nameist eine für Menschen lesbare Zeichenfolge, die einen Block mit benannten Regeln
eindeutig identifiziert. Es ist eine Bezeichnung für den Guard-Regelsatz, den es kapselt. Bei dieser
Verwendung umfasst der Begriff Guard-Regel Klauseln, Abfrageblöcke, Blöcke und Blöcke mit when
benannten Regeln. Der Regelname kann verwendet werden, um auf das Auswertungsergebnis des

Blöcke mit Guard-Regeln verwenden 23

AWS CloudFormation Guard User Guide

Regelsatzes zu verweisen, den er kapselt, wodurch Blöcke mit benannten Regeln wiederverwendet
werden können. Der Regelname bietet auch Kontext zu Regelfehlern in der Ausgabe und in den
validate Befehlsausgaben. test Der Regelname wird zusammen mit dem Bewertungsstatus des
Blocks (PASSFAIL, oderSKIP) in der Bewertungsausgabe der Regeldatei angezeigt. Sehen Sie sich
das folgende Beispiel an.

Sample output of an evaluation where check1, check2, and check3 are rule names.
template.json Status = **FAIL**
SKIP rules
check1 **SKIP**
PASS rules
check2 **PASS**
FAILED rules
check3 **FAIL**

Sie können Blöcke mit benannten Regeln auch bedingt auswerten, indem Sie das when
Schlüsselwort gefolgt von einer Bedingung hinter dem Regelnamen angeben.

Im Folgenden finden Sie den when Beispielblock, der bereits in diesem Thema behandelt wurde.

rule checkBucketNameStringValue when Resources.S3Bucket.Properties.BucketName is_string
 {
 Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
}

Unter Verwendung von Blöcken mit benannten Regeln kann der vorherige Abschnitt auch wie folgt
geschrieben werden.

rule checkBucketNameIsString {
 Resources.S3Bucket.Properties.BucketName is_string
}
rule checkBucketNameStringValue when checkBucketNameIsString {
 Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
}

Sie können Blöcke mit benannten Regeln wiederverwenden und mit anderen Guard-Regeln
gruppieren. Im Folgenden finden Sie einige Beispiele.

rule rule_name_A {
 Guard_rule_1 OR
 Guard_rule_2

Blöcke mit Guard-Regeln verwenden 24

AWS CloudFormation Guard User Guide

 ...
}

rule rule_name_B {
 Guard_rule_3
 Guard_rule_4
 ...
}

rule rule_name_C {
 rule_name_A OR rule_name_B
}

rule rule_name_D {
 rule_name_A
 rule_name_B
}

rule rule_name_E when rule_name_D {
 Guard_rule_5
 Guard_rule_6
 ...
}

Verwenden von integrierten Funktionen

AWS CloudFormation Guard bietet integrierte Funktionen, die Sie in Ihren Regeln verwenden
können, um Operationen wie Zeichenkettenmanipulation, JSON-Analyse und Datentypkonvertierung
durchzuführen. Funktionen werden nur durch Zuweisung zu einer Variablen unterstützt.

Die wichtigsten Funktionen

json_parse(json_string)

Analysiert Inline-JSON-Zeichenketten aus einer Vorlage. Nach dem Parsen können Sie die
Eigenschaften des resultierenden Objekts auswerten.

count(collection)

Gibt die Anzahl der Elemente zurück, in die eine Abfrage aufgelöst wird.

regex_replace(base_string, regex_to_extract, regex_replacement)

Ersetzt Teile einer Zeichenfolge mithilfe regulärer Ausdrücke.

Verwenden von integrierten Funktionen 25

AWS CloudFormation Guard User Guide

Eine vollständige Liste der verfügbaren Funktionen, einschließlich Zeichenkettenmanipulation,
Sammlungsoperationen und Funktionen zur Konvertierung von Datentypen, finden Sie in der
Dokumentation zu Funktionen im GitHub Guard-Repository.

Definition und Filterung von Guard-Abfragen

In diesem Thema werden das Schreiben von Abfragen und die Verwendung von Filtern beim
Schreiben von Guard-Regelklauseln behandelt.

Voraussetzungen

Das Filtern ist ein fortgeschrittenes AWS CloudFormation Guard Konzept. Wir empfehlen Ihnen, sich
mit den folgenden grundlegenden Themen vertraut zu machen, bevor Sie sich mit Filtern vertraut
machen:

• Was ist AWS CloudFormation Guard?

• Schreibregeln, Klauseln

Abfragen definieren

Abfrageausdrücke sind einfache, durch Punkte (.) getrennte Ausdrücke, die geschrieben wurden,
um hierarchische Daten zu durchqueren. Abfrageausdrücke können Filterausdrücke enthalten, die
auf eine Teilmenge von Werten abzielen. Wenn Abfragen ausgewertet werden, führen sie zu einer
Sammlung von Werten, ähnlich einer Ergebnismenge, die von einer SQL-Abfrage zurückgegeben
wird.

Die folgende Beispielabfrage durchsucht eine CloudFormation Vorlage nach AWS::IAM::Role
Ressourcen.

Resources.*[Type == 'AWS::IAM::Role']

Abfragen folgen diesen Grundprinzipien:

• Jeder Punkt (.) der Abfrage durchläuft die Hierarchie nach unten, wenn ein expliziter
Schlüsselbegriff verwendet wird, wie z. B. Resources oder Properties.Encrypted. Wenn ein
Teil der Abfrage nicht mit dem eingehenden Datum übereinstimmt, gibt Guard einen Abruffehler
aus.

• Ein Punkt (.) in der Abfrage, der einen Platzhalter verwendet, * durchläuft alle Werte für die
Struktur auf dieser Ebene.

Abfragen definieren und filtern 26

https://github.com/aws-cloudformation/cloudformation-guard/blob/main/docs/FUNCTIONS.md

AWS CloudFormation Guard User Guide

• Ein Punkt (.) -Teil der Abfrage, der einen Array-Platzhalter verwendet, [*] durchquert alle Indizes
für dieses Array.

• Alle Sammlungen können gefiltert werden, indem Filter in eckigen Klammern angegeben werden.
[] Sammlungen können auf folgende Weise gefunden werden:

• Natürlich vorkommende Anordnungen in Daten sind Sammlungen. Hier einige Beispiele aus der :

Anschlüsse: [20, 21, 110, 190]

Schlagworte: [{"Key": "Stage", "Value": "PROD"}, {"Key": "App", "Value":
"MyService"}]

• Beim Durchlaufen aller Werte für eine Struktur wie Resources.*

• Jedes Abfrageergebnis ist selbst eine Sammlung, aus der Werte weiter gefiltert werden können.
Sehen Sie sich das folgende Beispiel an.

Query all resources
let all_resources = Resource.*

Filter IAM resources from query results
let iam_resources = %resources[Type == /IAM/]

Further refine to get managed policies
let managed_policies = %iam_resources[Type == /ManagedPolicy/]

Traverse each managed policy
%managed_policies {
 # Do something with each policy
}

Im Folgenden finden Sie ein Beispiel für einen CloudFormation Vorlagenausschnitt.

Resources:
 SampleRole:
 Type: AWS::IAM::Role
 ...
 SampleInstance:
 Type: AWS::EC2::Instance
 ...
 SampleVPC:
 Type: AWS::EC2::VPC

Abfragen definieren und filtern 27

AWS CloudFormation Guard User Guide

 ...
 SampleSubnet1:
 Type: AWS::EC2::Subnet
 ...
 SampleSubnet2:
 Type: AWS::EC2::Subnet
 ...

Basierend auf dieser Vorlage ist der durchlaufene Pfad SampleRole und der gewählte Endwert ist.
Type: AWS::IAM::Role

Resources:
 SampleRole:
 Type: AWS::IAM::Role
 ...

Der resultierende Wert der Abfrage Resources.*[Type == 'AWS::IAM::Role'] im YAML-
Format wird im folgenden Beispiel gezeigt.

- Type: AWS::IAM::Role
 ...

Sie können Abfragen unter anderem wie folgt verwenden:

• Weisen Sie Variablen eine Abfrage zu, sodass auf Abfrageergebnisse zugegriffen werden kann,
indem auf diese Variablen verwiesen wird.

• Folgen Sie der Abfrage mit einem Block, der mit jedem der ausgewählten Werte testet.

• Vergleichen Sie eine Abfrage direkt mit einer Basisklausel.

Abfragen Variablen zuordnen

Guard unterstützt einmalige Variablenzuweisungen innerhalb eines bestimmten Bereichs. Weitere
Informationen zu Variablen in Guard-Regeln finden Sie unterZuweisen und Referenzieren von
Variablen in Guard-Regeln.

Sie können Variablen Abfragen zuweisen, sodass Sie Abfragen einmal schreiben und dann an
anderer Stelle in Ihren Guard-Regeln darauf verweisen können. Sehen Sie sich das folgende Beispiel
für Variablenzuweisungen an, das die Abfrageprinzipien demonstriert, die später in diesem Abschnitt
erörtert werden.

Abfragen definieren und filtern 28

AWS CloudFormation Guard User Guide

#
Simple query assignment
#
let resources = Resources.* # All resources

#
A more complex query here (this will be explained below)
#
let iam_policies_allowing_log_creates = Resources.*[
 Type in [/IAM::Policy/, /IAM::ManagedPolicy/]
 some Properties.PolicyDocument.Statement[*] {
 some Action[*] == 'cloudwatch:CreateLogGroup'
 Effect == 'Allow'
 }
]

Direktes Durchlaufen von Werten aus einer Variablen, die einer Abfrage zugewiesen
wurde

Guard unterstützt die direkte Ausführung der Ergebnisse einer Abfrage. Im folgenden Beispiel testet
der when Block anhand der AvailabilityZone Eigenschaften EncryptedVolumeType, und für
jede AWS::EC2::Volume Ressource, die in einer CloudFormation Vorlage gefunden wurde.

let ec2_volumes = Resources.*[Type == 'AWS::EC2::Volume']

when %ec2_volumes !empty {
 %ec2_volumes {
 Properties {
 Encrypted == true
 VolumeType in ['gp2', 'gp3']
 AvailabilityZone in ['us-west-2b', 'us-west-2c']
 }
 }
}

Direkte Vergleiche auf Klauselebene

Guard unterstützt auch Abfragen als Teil direkter Vergleiche. Sehen Sie sich zum Beispiel Folgendes
an.

let resources = Resources.*

Abfragen definieren und filtern 29

AWS CloudFormation Guard User Guide

 some %resources.Properties.Tags[*].Key == /PROD$/
 some %resources.Properties.Tags[*].Value == /^App/

Im vorherigen Beispiel werden die beiden Klauseln (beginnend mit dem some Schlüsselwort), die
in der abgebildeten Form ausgedrückt werden, als unabhängige Klauseln betrachtet und separat
bewertet.

Form einer Einzelklausel und einer Blockklausel

Zusammengenommen entsprechen die beiden im vorherigen Abschnitt aufgeführten Beispielklauseln
nicht dem folgenden Block.

let resources = Resources.*

some %resources.Properties.Tags[*] {
 Key == /PROD$/
 Value == /^App/
}

Dieser Block fragt nach jedem Tag Wert in der Sammlung ab und vergleicht seine Eigenschaftswerte
mit den erwarteten Eigenschaftswerten. Durch die kombinierte Form der Klauseln im vorherigen
Abschnitt werden die beiden Klauseln unabhängig voneinander bewertet. Betrachten Sie die folgende
Eingabe.

Resources:
 ...
 MyResource:
 ...
 Properties:
 Tags:
 - Key: EndPROD
 Value: NotAppStart
 - Key: NotPRODEnd
 Value: AppStart

Klauseln in der ersten Form haben die Wirkung vonPASS. Bei der Validierung der ersten Klausel in
der ersten Form Key entspricht der folgende Pfad über Resources PropertiesTags,, und dem
Wert NotPRODEnd und nicht dem erwarteten Wert. PROD

Resources:

Abfragen definieren und filtern 30

AWS CloudFormation Guard User Guide

 ...
 MyResource:
 ...
 Properties:
 Tags:
 - Key: EndPROD
 Value: NotAppStart
 - Key: NotPRODEnd
 Value: AppStart

Das Gleiche passiert mit der zweiten Klausel der ersten Form. Der Pfad überResources,
PropertiesTags, und Value entspricht dem WertAppStart. Daher die zweite Klausel
unabhängig.

Das Gesamtergebnis ist einPASS.

Die Blockform wird jedoch wie folgt ausgewertet. Für jeden Tags Wert wird verglichen, ob Key
sowohl der als auch der Value gleiche Wert NotAppStart zutrifft. Im folgenden Beispiel werden die
NotPRODEnd Werte nicht gefunden.

Resources:
 ...
 MyResource:
 ...
 Properties:
 Tags:
 - Key: EndPROD
 Value: NotAppStart
 - Key: NotPRODEnd
 Value: AppStart

Da bei Auswertungen sowohl auf beide als auch Key == /PROD$/ geprüft wirdValue == /^App/,
ist die Übereinstimmung nicht vollständig. Daher lautet das ErgebnisFAIL.

Note

Wenn Sie mit Sammlungen arbeiten, empfehlen wir, das Blockklauselformular zu verwenden,
wenn Sie mehrere Werte für jedes Element in der Sammlung vergleichen möchten.
Verwenden Sie das Einzelklauselformular, wenn es sich bei der Sammlung um eine Gruppe
von Skalarwerten handelt oder wenn Sie nur ein einzelnes Attribut vergleichen möchten.

Abfragen definieren und filtern 31

AWS CloudFormation Guard User Guide

Abfrageergebnisse und zugehörige Klauseln

Alle Abfragen geben eine Werteliste zurück. Jeder Teil einer Traversierung, z. B. ein fehlender
Schlüssel, leere Werte für ein Array (Tags: []) beim Zugriff auf alle Indizes oder fehlende Werte für
eine Map, wenn auf eine leere Map (Resources: {}) gestoßen wird, kann zu Abruffehlern führen.

Bei der Auswertung von Klauseln anhand solcher Abfragen werden alle Abruffehler als Fehlschläge
gewertet. Die einzige Ausnahme ist, wenn in der Abfrage explizite Filter verwendet werden. Wenn
Filter verwendet werden, werden die zugehörigen Klauseln übersprungen.

Die folgenden Blockfehler stehen im Zusammenhang mit laufenden Abfragen.

• Wenn eine Vorlage keine Ressourcen enthält, wird die Abfrage als ausgewertetFAIL, und die
zugehörigen Klauseln auf Blockebene werden ebenfalls als ausgewertet. FAIL

• Wenn eine Vorlage einen leeren Ressourcenblock wie enthält{ "Resources": {} }, wird die
Abfrage als ausgewertetFAIL, und die zugehörigen Klauseln auf Blockebene werden ebenfalls als
ausgewertet. FAIL

• Wenn eine Vorlage Ressourcen enthält, aber keine der Abfrage entsprechen, gibt die Abfrage leere
Ergebnisse zurück, und die Klauseln auf Blockebene werden übersprungen.

Verwenden von Filtern in Abfragen

Filter in Abfragen sind im Grunde Guard-Klauseln, die als Auswahlkriterien verwendet werden. Es
folgt die Struktur einer Klausel.

 <query> <operator> [query|value literal] [message] [or|OR]

Beachten Sie bei der Arbeit mit Filtern die folgenden wichtigen Punkte: AWS CloudFormation Guard
Regeln schreiben

• Kombinieren Sie Klauseln mithilfe der konjunktiven Normalform (CNF).

• Geben Sie jede Konjunktion (and) -Klausel in einer neuen Zeile an.

• Geben Sie Disjunktionen (or) an, indem Sie das or Schlüsselwort zwischen zwei Klauseln
verwenden.

Das folgende Beispiel zeigt konjunktive und disjunktive Klauseln.

Abfragen definieren und filtern 32

https://en.wikipedia.org/wiki/Conjunctive_normal_form

AWS CloudFormation Guard User Guide

resourceType == 'AWS::EC2::SecurityGroup'
InputParameters.TcpBlockedPorts not empty

InputParameters.TcpBlockedPorts[*] {
 this in r(100, 400] or
 this in r(4000, 65535]
}

Verwendung von Klauseln als Auswahlkriterien

Sie können die Filterung auf jede Sammlung anwenden. Die Filterung kann direkt auf Attribute in der
Eingabe angewendet werden, die bereits einer Sammlung ähnelnsecurityGroups: [....]. Sie
können die Filterung auch auf eine Abfrage anwenden, bei der es sich immer um eine Sammlung
von Werten handelt. Sie können alle Funktionen von Klauseln, einschließlich der konjunktiven
Normalform, zum Filtern verwenden.

Die folgende allgemeine Abfrage wird häufig verwendet, wenn Ressourcen nach Typ aus einer
CloudFormation Vorlage ausgewählt werden.

Resources.*[Type == 'AWS::IAM::Role']

Die Abfrage Resources.* gibt alle Werte zurück, die im Resources Abschnitt der Eingabe
vorhanden sind. Für die Beispielvorlage Input in Abfragen definieren gibt die Abfrage Folgendes
zurück.

- Type: AWS::IAM::Role
 ...
- Type: AWS::EC2::Instance
 ...
- Type: AWS::EC2::VPC
 ...
- Type: AWS::EC2::Subnet
 ...
- Type: AWS::EC2::Subnet
 ...

Wenden Sie nun den Filter auf diese Sammlung an. Das Kriterium, das erfüllt werden muss, istType
== AWS::IAM::Role. Im Folgenden finden Sie die Ausgabe der Abfrage, nachdem der Filter
angewendet wurde.

Abfragen definieren und filtern 33

AWS CloudFormation Guard User Guide

- Type: AWS::IAM::Role
 ...

Überprüfen Sie als Nächstes verschiedene Klauseln für AWS::IAM::Role Ressourcen.

let all_resources = Resources.*
let all_iam_roles = %all_resources[Type == 'AWS::IAM::Role']

Im Folgenden finden Sie ein Beispiel für eine Filterabfrage, die alle AWS::IAM::ManagedPolicy
Ressourcen AWS::IAM::Policy auswählt.

Resources.*[
 Type in [/IAM::Policy/,
 /IAM::ManagedPolicy/]
]

Im folgenden Beispiel wird geprüft, ob für diese Richtlinienressourcen ein PolicyDocument
bestimmter Wert angegeben wurde.

Resources.*[
 Type in [/IAM::Policy/,
 /IAM::ManagedPolicy/]
 Properties.PolicyDocument exists
]

Aufbau komplexerer Filteranforderungen

Betrachten Sie das folgende Beispiel für ein AWS Config Konfigurationselement für Informationen zu
Sicherheitsgruppen für eingehenden und ausgehenden Datenverkehr.

resourceType: 'AWS::EC2::SecurityGroup'
configuration:
 ipPermissions:
 - fromPort: 172
 ipProtocol: tcp
 toPort: 172
 ipv4Ranges:
 - cidrIp: 10.0.0.0/24

Abfragen definieren und filtern 34

AWS CloudFormation Guard User Guide

 - cidrIp: 0.0.0.0/0
 - fromPort: 89
 ipProtocol: tcp
 ipv6Ranges:
 - cidrIpv6: '::/0'
 toPort: 189
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 1.1.1.1/32
 - fromPort: 89
 ipProtocol: '-1'
 toPort: 189
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 1.1.1.1/32
 ipPermissionsEgress:
 - ipProtocol: '-1'
 ipv6Ranges: []
 prefixListIds: []
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 0.0.0.0/0
 ipRanges:
 - 0.0.0.0/0
 tags:
 - key: Name
 value: good-sg-delete-me
 vpcId: vpc-0123abcd
InputParameter:
 TcpBlockedPorts:
 - 3389
 - 20
 - 21
 - 110
 - 143

Beachten Sie Folgendes:

• ipPermissions(Eingangsregeln) ist eine Sammlung von Regeln innerhalb eines
Konfigurationsblocks.

• Jede Regelstruktur enthält Attribute wie ipv4Ranges und ipv6Ranges zur Spezifizierung einer
Sammlung von CIDR-Blöcken.

Abfragen definieren und filtern 35

AWS CloudFormation Guard User Guide

Schreiben wir eine Regel, die alle Eingangsregeln auswählt, die Verbindungen von einer beliebigen
IP-Adresse aus zulassen, und überprüft, ob die Regeln nicht zulassen, dass blockierte TCP-Ports
offengelegt werden.

Beginnen Sie mit dem entsprechenden Abfrageteil IPv4, wie im folgenden Beispiel gezeigt.

configuration.ipPermissions[
 #
 # at least one ipv4Ranges equals ANY IPv4
 #
 some ipv4Ranges[*].cidrIp == '0.0.0.0/0'
]

Das some Schlüsselwort ist in diesem Zusammenhang nützlich. Alle Abfragen geben eine Sammlung
von Werten zurück, die der Abfrage entsprechen. Standardmäßig wertet Guard aus, dass alle als
Ergebnis der Abfrage zurückgegebenen Werte mit Prüfungen abgeglichen werden. Dieses Verhalten
ist jedoch möglicherweise nicht immer das, was Sie für Prüfungen benötigen. Betrachten Sie den
folgenden Teil der Eingabe aus dem Konfigurationselement.

ipv4Ranges:
 - cidrIp: 10.0.0.0/24
 - cidrIp: 0.0.0.0/0 # any IP allowed

Es sind zwei Werte für vorhandenipv4Ranges. Nicht alle ipv4Ranges Werte entsprechen einer
IP-Adresse, die mit bezeichnet wird. 0.0.0.0/0 Sie möchten sehen, ob mindestens ein Wert
übereinstimmt. 0.0.0.0/0 Sie teilen Guard mit, dass nicht alle von einer Abfrage zurückgegebenen
Ergebnisse übereinstimmen müssen, aber mindestens ein Ergebnis muss übereinstimmen.
Das some Schlüsselwort weist Guard an, sicherzustellen, dass ein oder mehrere Werte aus der
resultierenden Abfrage der Prüfung entsprechen. Wenn keine Abfrageergebniswerte übereinstimmen,
gibt Guard einen Fehler aus.

Fügen Sie als Nächstes hinzu IPv6, wie im folgenden Beispiel gezeigt.

configuration.ipPermissions[
 #
 # at-least-one ipv4Ranges equals ANY IPv4
 #
 some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
 #
 # at-least-one ipv6Ranges contains ANY IPv6
 #

Abfragen definieren und filtern 36

AWS CloudFormation Guard User Guide

 some ipv6Ranges[*].cidrIpv6 == '::/0'
]

Stellen Sie im folgenden Beispiel abschließend sicher, dass das Protokoll dies nicht istudp.

configuration.ipPermissions[
 #
 # at-least-one ipv4Ranges equals ANY IPv4
 #
 some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
 #
 # at-least-one ipv6Ranges contains ANY IPv6
 #
 some ipv6Ranges[*].cidrIpv6 == '::/0'

 #
 # and ipProtocol is not udp
 #
 ipProtocol != 'udp']
]

Im Folgenden finden Sie die vollständige Regel.

rule any_ip_ingress_checks
{

 let ports = InputParameter.TcpBlockedPorts[*]

 let targets = configuration.ipPermissions[
 #
 # if either ipv4 or ipv6 that allows access from any address
 #
 some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
 some ipv6Ranges[*].cidrIpv6 == '::/0'

 #
 # the ipProtocol is not UDP
 #
 ipProtocol != 'udp']

 when %targets !empty
 {
 %targets {

Abfragen definieren und filtern 37

AWS CloudFormation Guard User Guide

 ipProtocol != '-1'
 <<
 result: NON_COMPLIANT
 check_id: HUB_ID_2334
 message: Any IP Protocol is allowed
 >>

 when fromPort exists
 toPort exists
 {
 let each_target = this
 %ports {
 this < %each_target.fromPort or
 this > %each_target.toPort
 <<
 result: NON_COMPLIANT
 check_id: HUB_ID_2340
 message: Blocked TCP port was allowed in range
 >>
 }
 }

 }
 }
}

Trennen von Sammlungen nach ihren enthaltenen Typen

Wenn Sie IaC-Konfigurationsvorlagen (Infrastructure as Code) verwenden, stoßen Sie
möglicherweise auf eine Sammlung, die Verweise auf andere Entitäten innerhalb der
Konfigurationsvorlage enthält. Im Folgenden finden Sie eine CloudFormation Beispielvorlage,
die Aufgaben von Amazon Elastic Container Service (Amazon ECS) mit einem lokalen Verweis
aufTaskRoleArn, einem Verweis auf TaskArn und einem direkten Zeichenkettenverweis
beschreibt.

Parameters:
 TaskArn:
 Type: String
Resources:
 ecsTask:
 Type: 'AWS::ECS::TaskDefinition'
 Metadata:
 SharedExectionRole: allowed

Abfragen definieren und filtern 38

AWS CloudFormation Guard User Guide

 Properties:
 TaskRoleArn: 'arn:aws:....'
 ExecutionRoleArn: 'arn:aws:...'
 ecsTask2:
 Type: 'AWS::ECS::TaskDefinition'
 Metadata:
 SharedExectionRole: allowed
 Properties:
 TaskRoleArn:
 'Fn::GetAtt':
 - iamRole
 - Arn
 ExecutionRoleArn: 'arn:aws:...2'
 ecsTask3:
 Type: 'AWS::ECS::TaskDefinition'
 Metadata:
 SharedExectionRole: allowed
 Properties:
 TaskRoleArn:
 Ref: TaskArn
 ExecutionRoleArn: 'arn:aws:...2'
 iamRole:
 Type: 'AWS::IAM::Role'
 Properties:
 PermissionsBoundary: 'arn:aws:...3'

Betrachten Sie folgende Abfrage.

let ecs_tasks = Resources.*[Type == 'AWS::ECS::TaskDefinition']

Diese Abfrage gibt eine Sammlung von Werten zurück, die alle drei in der Beispielvorlage
gezeigten AWS::ECS::TaskDefinition Ressourcen enthält. Trennen Sie ecs_tasks diese, die
TaskRoleArn lokale Verweise enthalten, von anderen, wie im folgenden Beispiel gezeigt.

let ecs_tasks = Resources.*[Type == 'AWS::ECS::TaskDefinition']

let ecs_tasks_role_direct_strings = %ecs_tasks[
 Properties.TaskRoleArn is_string]

let ecs_tasks_param_reference = %ecs_tasks[
 Properties.TaskRoleArn.'Ref' exists]

Abfragen definieren und filtern 39

AWS CloudFormation Guard User Guide

rule task_role_from_parameter_or_string {
 %ecs_tasks_role_direct_strings !empty or
 %ecs_tasks_param_reference !empty
}

rule disallow_non_local_references {
 # Known issue for rule access: Custom message must start on the same line
 not task_role_from_parameter_or_string
 <<
 result: NON_COMPLIANT
 message: Task roles are not local to stack definition
 >>
}

Zuweisen und Referenzieren von Variablen in Guard-Regeln

Sie können Ihren AWS CloudFormation Guard Regeldateien Variablen zuweisen, um Informationen
zu speichern, auf die Sie in Ihren Guard-Regeln verweisen möchten. Guard unterstützt die einmalige
Variablenzuweisung. Variablen werden träge ausgewertet, was bedeutet, dass Guard Variablen nur
auswertet, wenn Regeln ausgeführt werden.

Themen

• Variablen zuweisen

• Variablen referenzieren

• Gültigkeitsbereich der Variablen

• Beispiele für Variablen in Guard-Regeldateien

Variablen zuweisen

Verwenden Sie das let Schlüsselwort, um eine Variable zu initialisieren und zuzuweisen. Es hat sich
bewährt, Snake-Groß- und Kleinschreibung für Variablennamen zu verwenden. Variablen können
statische Literale oder dynamische Eigenschaften speichern, die sich aus Abfragen ergeben. Im
folgenden Beispiel ecs_task_definition_task_role_arn speichert die Variable den statischen
Zeichenkettenwertarn:aws:iam:123456789012:role/my-role-name.

let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-role-name'

Im folgenden Beispiel ecs_tasks speichert die Variable die Ergebnisse einer Abfrage, die
nach allen AWS::ECS::TaskDefinition Ressourcen in einer CloudFormation Vorlage

Zuweisen und Referenzieren von Variablen in Guard-Regeln 40

AWS CloudFormation Guard User Guide

sucht. Sie könnten beim Schreiben von Regeln auf Zugriffsinformationen zu diesen Ressourcen
verweisenecs_tasks.

let ecs_tasks = Resources.*[
 Type == 'AWS::ECS::TaskDefinition'
]

Variablen referenzieren

Verwenden Sie das % Präfix, um auf eine Variable zu verweisen.

Basierend auf dem ecs_task_definition_task_role_arn Variablenbeispiel in Variablen
zuweisen können Sie ecs_task_definition_task_role_arn im query|value literal
Abschnitt einer Guard-Regelklausel darauf verweisen. Durch die Verwendung dieser Referenz wird
sichergestellt, dass es sich bei dem für die TaskDefinitionArn Eigenschaft einer beliebigen
AWS::ECS::TaskDefinition Ressource in einer CloudFormation Vorlage angegebenen Wert um
den statischen Zeichenkettenwert handeltarn:aws:iam:123456789012:role/my-role-name.

Resources.*.Properties.TaskDefinitionArn == %ecs_task_definition_role_arn

Basierend auf dem ecs_tasks Variablenbeispiel in Variablen zuweisen können Sie ecs_tasks in
einer Abfrage referenzieren (z. B. %ECS_Tasks.Properties). Zuerst wertet Guard die Variable aus
ecs_tasks und verwendet dann die zurückgegebenen Werte, um die Hierarchie zu durchqueren.
Wenn die Variable in Werte ecs_tasks aufgelöst wird, die keine Zeichenfolge sind, gibt Guard einen
Fehler aus.

Note

Derzeit unterstützt Guard die Referenzierung von Variablen in benutzerdefinierten
Fehlermeldungen nicht.

Gültigkeitsbereich der Variablen

Der Gültigkeitsbereich bezieht sich auf die Sichtbarkeit von Variablen, die in einer Regeldatei definiert
sind. Ein Variablenname kann innerhalb eines Bereichs nur einmal verwendet werden. Es gibt drei
Ebenen, auf denen eine Variable deklariert werden kann, oder drei mögliche Variablenbereiche:

Zuweisen und Referenzieren von Variablen in Guard-Regeln 41

AWS CloudFormation Guard User Guide

• Dateiebene — In der Regel oben in der Regeldatei deklariert, können Sie Variablen auf Dateiebene
in allen Regeln innerhalb der Regeldatei verwenden. Sie sind für die gesamte Datei sichtbar.

In der folgenden Beispieldatei ecs_task_definition_execution_role_arn werden die
Variablen ecs_task_definition_task_role_arn und D auf Dateiebene initialisiert.

let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-task-role-
name'
let ecs_task_definition_execution_role_arn = 'arn:aws:iam::123456789012:role/my-
execution-role-name'

rule check_ecs_task_definition_task_role_arn
{
 Resources.*.Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
}

rule check_ecs_task_definition_execution_role_arn
{
 Resources.*.Properties.ExecutionRoleArn ==
 %ecs_task_definition_execution_role_arn
}

• Regelebene — Innerhalb einer Regel deklariert, sind Variablen auf Regelebene nur für diese
spezielle Regel sichtbar. Alle Verweise außerhalb der Regel führen zu einem Fehler.

In der folgenden Beispiel-Regeldatei ecs_task_definition_execution_role_arn werden
die Variablen ecs_task_definition_task_role_arn und D auf Regelebene initialisiert.
ecs_task_definition_task_role_arnSie können nur innerhalb der benannten Regel
referenziert werden. check_ecs_task_definition_task_role_arn Sie können nur
innerhalb der check_ecs_task_definition_execution_role_arn benannten Regel auf die
ecs_task_definition_execution_role_arn Variable verweisen.

rule check_ecs_task_definition_task_role_arn
{
 let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-task-
role-name'
 Resources.*.Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
}

rule check_ecs_task_definition_execution_role_arn
{

Zuweisen und Referenzieren von Variablen in Guard-Regeln 42

AWS CloudFormation Guard User Guide

 let ecs_task_definition_execution_role_arn = 'arn:aws:iam::123456789012:role/my-
execution-role-name'
 Resources.*.Properties.ExecutionRoleArn ==
 %ecs_task_definition_execution_role_arn
}

• Blockebene — Innerhalb eines Blocks, z. B. einer when Klausel, deklariert, sind Variablen auf
Blockebene nur für diesen bestimmten Block sichtbar. Alle Verweise außerhalb des Blocks führen
zu einem Fehler.

In der folgenden Beispiel-Regeldatei ecs_task_definition_execution_role_arn
werden die Variablen ecs_task_definition_task_role_arn und D auf
Blockebene innerhalb des AWS::ECS::TaskDefinition Typblocks initialisiert.
Sie können nur auf die ecs_task_definition_execution_role_arn Variablen
ecs_task_definition_task_role_arn und innerhalb der AWS::ECS::TaskDefinition
Typblöcke für ihre jeweiligen Regeln verweisen.

rule check_ecs_task_definition_task_role_arn
{
 AWS::ECS::TaskDefinition
 {
 let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-
task-role-name'
 Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
 }
}

rule check_ecs_task_definition_execution_role_arn
{
 AWS::ECS::TaskDefinition
 {
 let ecs_task_definition_execution_role_arn = 'arn:aws:iam::123456789012:role/
my-execution-role-name'
 Properties.ExecutionRoleArn == %ecs_task_definition_execution_role_arn
 }
}

Beispiele für Variablen in Guard-Regeldateien

Die folgenden Abschnitte enthalten Beispiele für die statische und dynamische Zuweisung von
Variablen.

Zuweisen und Referenzieren von Variablen in Guard-Regeln 43

AWS CloudFormation Guard User Guide

Statische Zuweisung

Im Folgenden finden Sie eine CloudFormation Beispielvorlage.

Resources:
 EcsTask:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 TaskRoleArn: 'arn:aws:iam::123456789012:role/my-role-name'

Basierend auf dieser Vorlage können Sie eine Regel mit dem Namen
schreibencheck_ecs_task_definition_task_role_arn, die sicherstellt, dass die
TaskRoleArn Eigenschaft aller AWS::ECS::TaskDefinition Vorlagenressourcen
lautetarn:aws:iam::123456789012:role/my-role-name.

rule check_ecs_task_definition_task_role_arn
{
 let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-role-
name'
 Resources.*.Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
}

Im Rahmen der Regel können Sie eine Variable namens initialisieren
ecs_task_definition_task_role_arn und ihr den statischen Zeichenkettenwert
'arn:aws:iam::123456789012:role/my-role-name' zuweisen. Die Regelklausel
überprüft, ob der für die TaskRoleArn Eigenschaft der EcsTask Ressource angegebene Wert
angegeben wurde, arn:aws:iam::123456789012:role/my-role-name indem sie auf
die ecs_task_definition_task_role_arn Variable im Abschnitt verweist. query|value
literal

Dynamische Zuweisung

Im Folgenden finden Sie eine CloudFormation Beispielvorlage.

Resources:
 EcsTask:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 TaskRoleArn: 'arn:aws:iam::123456789012:role/my-role-name'

Zuweisen und Referenzieren von Variablen in Guard-Regeln 44

AWS CloudFormation Guard User Guide

Basierend auf dieser Vorlage können Sie eine Variable initialisieren, die ecs_tasks im
Gültigkeitsbereich der Datei aufgerufen wird, und ihr die Abfrage Resources.*[Type ==
'AWS::ECS::TaskDefinition' zuweisen. Guard fragt alle Ressourcen in der Eingabevorlage
ab und speichert Informationen über sie inecs_tasks. Sie können auch eine Regel namens
schreibencheck_ecs_task_definition_task_role_arn, die sicherstellt, dass die
TaskRoleArn Eigenschaft aller AWS::ECS::TaskDefinition Vorlagenressourcen
arn:aws:iam::123456789012:role/my-role-name

let ecs_tasks = Resources.*[
 Type == 'AWS::ECS::TaskDefinition'
]

rule check_ecs_task_definition_task_role_arn
{
 %ecs_tasks.Properties.TaskRoleArn == 'arn:aws:iam::123456789012:role/my-role-name'
}

Die Regelklausel überprüft, ob der für die TaskRoleArn Eigenschaft der EcsTask Ressource
angegebene Wert auf die ecs_task_definition_task_role_arn Variable im query Abschnitt
verweist. arn:aws:iam::123456789012:role/my-role-name

Erzwingen der Vorlagenkonfiguration CloudFormation

Sehen wir uns ein komplexeres Beispiel für einen Produktionsanwendungsfall an. In diesem Beispiel
schreiben wir Guard-Regeln, um strengere Kontrollen bei der Definition von ECS Amazon-Aufgaben
zu gewährleisten.

Im Folgenden finden Sie eine CloudFormation Beispielvorlage.

Resources:
 EcsTask:
 Type: 'AWS::ECS::TaskDefinition'
 Properties:
 TaskRoleArn:
 'Fn::GetAtt': [TaskIamRole, Arn]
 ExecutionRoleArn:
 'Fn::GetAtt': [ExecutionIamRole, Arn]

 TaskIamRole:
 Type: 'AWS::IAM::Role'
 Properties:

Zuweisen und Referenzieren von Variablen in Guard-Regeln 45

AWS CloudFormation Guard User Guide

 PermissionsBoundary: 'arn:aws:iam::123456789012:policy/MyExamplePolicy'

 ExecutionIamRole:
 Type: 'AWS::IAM::Role'
 Properties:
 PermissionsBoundary: 'arn:aws:iam::123456789012:policy/MyExamplePolicy'

Basierend auf dieser Vorlage schreiben wir die folgenden Regeln, um sicherzustellen, dass diese
Anforderungen erfüllt werden:

• Jeder AWS::ECS::TaskDefinition Ressource in der Vorlage ist sowohl eine Aufgabenrolle als
auch eine Ausführungsrolle zugeordnet.

• Die Aufgabenrollen und Ausführungsrollen sind Rollen AWS Identity and Access Management
(IAM).

• Die Rollen sind in der Vorlage definiert.

• Die PermissionsBoundary Eigenschaft wird für jede Rolle angegeben.

Select all Amazon ECS task definition resources from the template
let ecs_tasks = Resources.*[
 Type == 'AWS::ECS::TaskDefinition'
]

Select a subset of task definitions whose specified value for the TaskRoleArn
 property is an Fn::Gett-retrievable attribute
let task_role_refs = some %ecs_tasks.Properties.TaskRoleArn.'Fn::GetAtt'[0]

Select a subset of TaskDefinitions whose specified value for the ExecutionRoleArn
 property is an Fn::Gett-retrievable attribute
let execution_role_refs = some %ecs_tasks.Properties.ExecutionRoleArn.'Fn::GetAtt'[0]

Verify requirement #1
rule all_ecs_tasks_must_have_task_end_execution_roles
 when %ecs_tasks !empty
{
 %ecs_tasks.Properties {
 TaskRoleArn exists
 ExecutionRoleArn exists
 }
}

Zuweisen und Referenzieren von Variablen in Guard-Regeln 46

AWS CloudFormation Guard User Guide

Verify requirements #2 and #3
rule all_roles_are_local_and_type_IAM
 when all_ecs_tasks_must_have_task_end_execution_roles
{
 let task_iam_references = Resources.%task_role_refs
 let execution_iam_reference = Resources.%execution_role_refs

 when %task_iam_references !empty {
 %task_iam_references.Type == 'AWS::IAM::Role'
 }

 when %execution_iam_reference !empty {
 %execution_iam_reference.Type == 'AWS::IAM::Role'
 }
}

Verify requirement #4
rule check_role_have_permissions_boundary
 when all_ecs_tasks_must_have_task_end_execution_roles
{
 let task_iam_references = Resources.%task_role_refs
 let execution_iam_reference = Resources.%execution_role_refs

 when %task_iam_references !empty {
 %task_iam_references.Properties.PermissionsBoundary exists
 }

 when %execution_iam_reference !empty {
 %execution_iam_reference.Properties.PermissionsBoundary exists
 }
}

Blöcke mit benannten Regeln verfassen in AWS CloudFormation Guard

Beim Schreiben von Blöcken mit benannten Regeln können Sie die AWS CloudFormation Guard
folgenden zwei Kompositionsstile verwenden:

• Bedingte Abhängigkeit

• Korrelationale Abhängigkeit

Blöcke mit benannten Regeln verfassen 47

AWS CloudFormation Guard User Guide

Die Verwendung einer dieser Arten der Abhängigkeitszusammensetzung trägt zur
Wiederverwendbarkeit bei und reduziert die Ausführlichkeit und Wiederholungen in Blöcken mit
benannten Regeln.

Themen

• Voraussetzungen

• Zusammensetzung bedingter Abhängigkeiten

• Zusammensetzung korrelativer Abhängigkeiten

Voraussetzungen

Weitere Informationen zu Blöcken mit benannten Regeln finden Sie unter Regeln schreiben.

Zusammensetzung bedingter Abhängigkeiten

Bei diesem Kompositionsstil hängt die Auswertung eines when Blocks oder eines Blocks mit
benannten Regeln bedingt vom Ergebnis der Auswertung eines oder mehrerer anderer Blöcke oder
Klauseln mit benannten Regeln ab. Die folgende Beispieldatei mit Guard-Regeln enthält Blöcke mit
benannten Regeln, die bedingte Abhängigkeiten veranschaulichen.

Named-rule block, rule_name_A
rule rule_name_A {
 Guard_rule_1
 Guard_rule_2
 ...
}

Example-1, Named-rule block, rule_name_B, takes a conditional dependency on
 rule_name_A
rule rule_name_B when rule_name_A {
 Guard_rule_3
 Guard_rule_4
 ...
}

Example-2, when block takes a conditional dependency on rule_name_A
when rule_name_A {
 Guard_rule_3
 Guard_rule_4
 ...
}

Blöcke mit benannten Regeln verfassen 48

AWS CloudFormation Guard User Guide

Example-3, Named-rule block, rule_name_C, takes a conditional dependency on
 rule_name_A ^ rule_name_B
rule rule_name_C when rule_name_A
 rule_name_B {
 Guard_rule_3
 Guard_rule_4
 ...
}

Example-4, Named-rule block, rule_name_D, takes a conditional dependency on
 (rule_name_A v clause_A) ^ clause_B ^ rule_name_B
rule rule_name_D when rule_name_A OR
 clause_A
 clause_B
 rule_name_B {
 Guard_rule_3
 Guard_rule_4
 ...
}

Example-1Hat in der vorherigen Beispiel-Regeldatei die folgenden möglichen Ergebnisse:

• Bei der rule_name_A Auswertung mit werden PASS die von rule_name_B eingekapselten
Guard-Regeln ausgewertet.

• Bei der rule_name_A Auswertung mit werden die von FAIL gekapselten Guard-Regeln nicht
ausgewertet. rule_name_B rule_name_Bwird als ausgewertet. SKIP

• Wenn als rule_name_A Ergebnis ausgewertet wirdSKIP, werden die von rule_name_B
gekapselten Guard-Regeln nicht ausgewertet. rule_name_Bwird als ausgewertet. SKIP

Note

Dieser Fall tritt auf, wenn er rule_name_A bedingt von einer Regel abhängt, die als
ausgewertet wird FAIL und zu einer Auswertung mit führt. rule_name_A SKIP

Im Folgenden finden Sie ein Beispiel für ein Konfigurationselement für eine
Configuration Management-Datenbank (CMDB) aus einem AWS Config Element für
Sicherheitsgruppeninformationen für eingehenden und ausgehenden Datenverkehr. Dieses Beispiel
demonstriert die Zusammensetzung bedingter Abhängigkeiten.

Blöcke mit benannten Regeln verfassen 49

AWS CloudFormation Guard User Guide

rule check_resource_type_and_parameter {
 resourceType == /AWS::EC2::SecurityGroup/
 InputParameters.TcpBlockedPorts NOT EMPTY
}

rule check_parameter_validity when check_resource_type_and_parameter {
 InputParameters.TcpBlockedPorts[*] {
 this in r[0,65535]
 }
}

rule check_ip_procotol_and_port_range_validity when check_parameter_validity {
 let ports = InputParameters.TcpBlockedPorts[*]

 #
 # select all ipPermission instances that can be reached by ANY IP address
 # IPv4 or IPv6 and not UDP
 #
 let configuration = configuration.ipPermissions[
 some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
 some ipv6Ranges[*].cidrIpv6 == "::/0"
 ipProtocol != 'udp']
 when %configuration !empty {
 %configuration {
 ipProtocol != '-1'

 when fromPort exists
 toPort exists {
 let ip_perm_block = this
 %ports {
 this < %ip_perm_block.fromPort or
 this > %ip_perm_block.toPort
 }
 }
 }
 }
}

Im vorherigen Beispiel check_parameter_validity ist bedingt abhängig von
check_resource_type_and_parameter und
check_ip_procotol_and_port_range_validity ist bedingt abhängig von.

Blöcke mit benannten Regeln verfassen 50

AWS CloudFormation Guard User Guide

check_parameter_validity Im Folgenden finden Sie ein Konfigurationselement für die
Konfigurationsmanagement-Datenbank (CMDB), das den obigen Regeln entspricht.

version: '1.3'
resourceType: 'AWS::EC2::SecurityGroup'
resourceId: sg-12345678abcdefghi
configuration:
 description: Delete-me-after-testing
 groupName: good-sg-test-delete-me
 ipPermissions:
 - fromPort: 172
 ipProtocol: tcp
 ipv6Ranges: []
 prefixListIds: []
 toPort: 172
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 0.0.0.0/0
 ipRanges:
 - 0.0.0.0/0
 - fromPort: 89
 ipProtocol: tcp
 ipv6Ranges:
 - cidrIpv6: '::/0'
 prefixListIds: []
 toPort: 89
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 0.0.0.0/0
 ipRanges:
 - 0.0.0.0/0
 ipPermissionsEgress:
 - ipProtocol: '-1'
 ipv6Ranges: []
 prefixListIds: []
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 0.0.0.0/0
 ipRanges:
 - 0.0.0.0/0
 tags:
 - key: Name

Blöcke mit benannten Regeln verfassen 51

AWS CloudFormation Guard User Guide

 value: good-sg-delete-me
 vpcId: vpc-0123abcd
InputParameters:
 TcpBlockedPorts:
 - 3389
 - 20
 - 110
 - 142
 - 1434
 - 5500
supplementaryConfiguration: {}
resourceTransitionStatus: None

Zusammensetzung korrelativer Abhängigkeiten

Bei diesem Kompositionsstil besteht bei der Auswertung eines when Blocks oder eines Blocks mit
benannten Regeln eine korrelative Abhängigkeit vom Bewertungsergebnis einer oder mehrerer
anderer Guard-Regeln. Korrelationsabhängigkeit kann wie folgt erreicht werden.

Named-rule block, rule_name_A, takes a correlational dependency on all of the Guard
 rules encapsulated by the named-rule block
rule rule_name_A {
 Guard_rule_1
 Guard_rule_2
 ...
}

when block takes a correlational dependency on all of the Guard rules encapsulated by
 the when block
when condition {
 Guard_rule_1
 Guard_rule_2
 ...
}

Sehen Sie sich das folgende Beispiel für eine Guard-Regeldatei an, um die Zusammensetzung
korrelativer Abhängigkeiten besser zu verstehen.

#
Allowed valid protocols for AWS::ElasticLoadBalancingV2::Listener resources
#
let allowed_protocols = ["HTTPS", "TLS"]

Blöcke mit benannten Regeln verfassen 52

AWS CloudFormation Guard User Guide

let elbs = Resources.*[Type == 'AWS::ElasticLoadBalancingV2::Listener']

#
If there are AWS::ElasticLoadBalancingV2::Listener resources present, ensure that
 they have protocols specified from the
list of allowed protocols and that the Certificates property is not empty
#
rule ensure_all_elbs_are_secure when %elbs !empty {
 %elbs.Properties {
 Protocol in %allowed_protocols
 Certificates !empty
 }
}

In addition to secure settings, ensure that AWS::ElasticLoadBalancingV2::Listener
 resources are private
#
rule ensure_elbs_are_internal_and_secure when %elbs !empty {
 ensure_all_elbs_are_secure
 %elbs.Properties.Scheme == 'internal'
}

Hat in der vorherigen Regeldatei ensure_elbs_are_internal_and_secure eine korrelative
Abhängigkeit von. ensure_all_elbs_are_secure Im Folgenden finden Sie eine CloudFormation
Beispielvorlage, die den vorherigen Regeln entspricht.

Resources:
 ServiceLBPublicListener46709EAA:
 Type: 'AWS::ElasticLoadBalancingV2::Listener'
 Properties:
 Scheme: internal
 Protocol: HTTPS
 Certificates:
 - CertificateArn: 'arn:aws:acm...'
 ServiceLBPublicListener4670GGG:
 Type: 'AWS::ElasticLoadBalancingV2::Listener'
 Properties:
 Scheme: internal
 Protocol: HTTPS
 Certificates:

Blöcke mit benannten Regeln verfassen 53

AWS CloudFormation Guard User Guide

 - CertificateArn: 'arn:aws:acm...'

Klauseln schreiben, um kontextsensitive Bewertungen durchzuführen

AWS CloudFormation Guard Klauseln werden anhand hierarchischer Daten ausgewertet. Die Guard-
Evaluierungs-Engine löst Abfragen anhand eingehender Daten, indem sie hierarchischen Daten wie
angegeben folgt und dabei eine einfache Punktnotation verwendet. Häufig sind mehrere Klauseln
erforderlich, um eine Auswertung anhand einer Datenkarte oder einer Sammlung durchzuführen.
Guard bietet eine praktische Syntax zum Schreiben solcher Klauseln. Die Engine ist kontextsensitiv
und verwendet die entsprechenden zugehörigen Daten für Auswertungen.

Im Folgenden finden Sie ein Beispiel für eine Kubernetes-Pod-Konfiguration mit Containern, auf die
Sie kontextsensitive Evaluierungen anwenden können.

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: app
 image: 'images.my-company.example/app:v4'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.5
 - name: log-aggregator
 image: 'images.my-company.example/log-aggregator:v6'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.75

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 54

AWS CloudFormation Guard User Guide

Sie können Guard-Klauseln verfassen, um diese Daten auszuwerten. Bei der Auswertung einer
Regeldatei ist der Kontext das gesamte Eingabedokument. Im Folgenden finden Sie Beispielklauseln,
die die Durchsetzung von Grenzwerten für in einem Pod angegebene Container validieren.

#
At this level, the root document is available for evaluation
#

#
Our rule only evaluates for apiVersion == v1 and K8s kind is Pod
#
rule ensure_container_limits_are_enforced
 when apiVersion == 'v1'
 kind == 'Pod'
{
 spec.containers[*] {
 resources.limits {
 #
 # Ensure that cpu attribute is set
 #
 cpu exists
 <<
 Id: K8S_REC_18
 Description: CPU limit must be set for the container
 >>

 #
 # Ensure that memory attribute is set
 #
 memory exists
 <<
 Id: K8S_REC_22
 Description: Memory limit must be set for the container
 >>
 }
 }
}

Verständnis bei context Evaluierungen

Auf der Ebene der Regelblöcke ist der eingehende Kontext das vollständige Dokument. Die
Auswertung der when Bedingung erfolgt anhand dieses eingehenden Stammkontextes, in dem sich

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 55

AWS CloudFormation Guard User Guide

die kind Attribute apiVersion und befinden. Im vorherigen Beispiel werden diese Bedingungen wie
folgt ausgewertettrue.

Gehen Sie nun durch die Hierarchie, spec.containers[*] wie im vorherigen Beispiel gezeigt.
Bei jeder Durchquerung der Hierarchie ändert sich der Kontextwert entsprechend. Nachdem die
Durchquerung des spec Blocks abgeschlossen ist, ändert sich der Kontext, wie im folgenden
Beispiel gezeigt.

containers:
 - name: app
 image: 'images.my-company.example/app:v4'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.5
 - name: log-aggregator
 image: 'images.my-company.example/log-aggregator:v6'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.75

Nach dem Durchlaufen des containers Attributs wird der Kontext im folgenden Beispiel gezeigt.

- name: app
 image: 'images.my-company.example/app:v4'
 resources:
 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.5
- name: log-aggregator
 image: 'images.my-company.example/log-aggregator:v6'
 resources:

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 56

AWS CloudFormation Guard User Guide

 requests:
 memory: 64Mi
 cpu: 0.25
 limits:
 memory: 128Mi
 cpu: 0.75

Schleifen verstehen

Sie können den Ausdruck verwenden[*], um eine Schleife für alle Werte zu definieren, die im Array
für das containers Attribut enthalten sind. Der Block wird für jedes darin enthaltene Element
ausgewertetcontainers. Im obigen Beispiel für einen Regelausschnitt definieren die im Block
enthaltenen Klauseln Prüfungen, die anhand einer Containerdefinition validiert werden sollen. Der
darin enthaltene Klauselblock wird zweimal ausgewertet, einmal für jede Containerdefinition.

{
 spec.containers[*] {
 ...
 }
}

Für jede Iteration ist der Kontextwert der Wert an dem entsprechenden Index.

Note

Das einzige unterstützte Indexzugriffsformat ist [<integer>] oder[*]. Derzeit unterstützt
Guard keine Bereiche wie[2..4].

Arrays

Oft werden an Stellen, an denen ein Array akzeptiert wird, auch Einzelwerte akzeptiert. Wenn es
beispielsweise nur einen Container gibt, kann das Array gelöscht werden und die folgende Eingabe
wird akzeptiert.

apiVersion: v1
kind: Pod
metadata:
 name: frontend

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 57

AWS CloudFormation Guard User Guide

spec:
 containers:
 name: app
 image: images.my-company.example/app:v4
 resources:
 requests:
 memory: "64Mi"
 cpu: 0.25
 limits:
 memory: "128Mi"
 cpu: 0.5

Wenn ein Attribut ein Array akzeptieren kann, stellen Sie sicher, dass Ihre Regel die Array-Form
verwendet. Im vorherigen Beispiel verwenden Sie containers[*] und nichtcontainers. Guard
führt beim Durchlaufen der Daten eine korrekte Auswertung durch, wenn es nur auf die Form mit
einem Wert trifft.

Note

Verwenden Sie immer die Array-Form, wenn Sie den Zugriff auf eine Regelklausel
ausdrücken, wenn ein Attribut ein Array akzeptiert. Guard wertet auch dann korrekt aus, wenn
nur ein einziger Wert verwendet wird.

Verwenden Sie das Formular spec.containers[*] anstelle von
spec.containers

Guard-Abfragen geben eine Sammlung aufgelöster Werte zurück. Wenn Sie das Formular
verwendenspec.containers, enthalten die aufgelösten Werte für die Abfrage das Array, auf das
von verwiesen wirdcontainers, nicht die darin enthaltenen Elemente. Wenn Sie das Formular
verwendenspec.containers[*], beziehen Sie sich auf jedes einzelne enthaltene Element.
Denken Sie daran, das [*] Formular immer dann zu verwenden, wenn Sie jedes in der Matrix
enthaltene Element auswerten möchten.

Wird verwendetthis, um auf den aktuellen Kontextwert zu verweisen

Wenn Sie eine Guard-Regel erstellen, können Sie auf den Kontextwert verweisen, indem Sie this
Oft this ist dies implizit, weil es an den Wert des Kontextes gebunden ist. Zum Beispiel this.spec
sind this.apiVersionthis.kind, und an den Stamm oder das Dokument gebunden. Im

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 58

AWS CloudFormation Guard User Guide

Gegensatz dazu this.resources ist an jeden Wert für gebundencontainers, z. B. /spec/
containers/0/ und/spec/containers/1. this.cpuÄhnliches gilt für die this.memory
Zuordnung zu Grenzwerten, insbesondere /spec/containers/0/resources/limits und/
spec/containers/1/resources/limits.

Im nächsten Beispiel wurde die vorherige Regel für die Kubernetes-Pod-Konfiguration so
umgeschrieben, dass sie explizit verwendet wird. this

rule ensure_container_limits_are_enforced
 when this.apiVersion == 'v1'
 this.kind == 'Pod'
{
 this.spec.containers[*] {
 this.resources.limits {
 #
 # Ensure that cpu attribute is set
 #
 this.cpu exists
 <<
 Id: K8S_REC_18
 Description: CPU limit must be set for the container
 >>

 #
 # Ensure that memory attribute is set
 #
 this.memory exists
 <<
 Id: K8S_REC_22
 Description: Memory limit must be set for the container
 >>
 }
 }
}

Sie müssen dies nicht explizit verwenden. this Die this Referenz kann jedoch nützlich sein, wenn
Sie mit Skalaren arbeiten, wie im folgenden Beispiel gezeigt.

InputParameters.TcpBlockedPorts[*] {
 this in r[0, 65535)
 <<
 result: NON_COMPLIANT

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 59

AWS CloudFormation Guard User Guide

 message: TcpBlockedPort not in range (0, 65535)
 >>
}

Im vorherigen Beispiel this wird verwendet, um auf jede Portnummer zu verweisen.

Mögliche Fehler bei der Verwendung von implizit this

Beim Verfassen von Regeln und Klauseln treten häufig Fehler auf, wenn auf Elemente aus
dem impliziten Kontextwert verwiesen wird. this Stellen Sie sich zum Beispiel das folgende
Eingabedatum vor, anhand dessen ausgewertet werden soll (dieses muss erfolgreich sein).

resourceType: 'AWS::EC2::SecurityGroup'
InputParameters:
 TcpBlockedPorts: [21, 22, 110]
configuration:
 ipPermissions:
 - fromPort: 172
 ipProtocol: tcp
 ipv6Ranges: []
 prefixListIds: []
 toPort: 172
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: "0.0.0.0/0"
 - fromPort: 89
 ipProtocol: tcp
 ipv6Ranges:
 - cidrIpv6: "::/0"
 prefixListIds: []
 toPort: 109
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 10.2.0.0/24

Beim Testen mit der vorherigen Vorlage führt die folgende Regel zu einem Fehler, da sie
fälschlicherweise davon ausgeht, dass das Implizite this genutzt wird.

rule check_ip_procotol_and_port_range_validity
{
 #
 # select all ipPermission instances that can be reached by ANY IP address

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 60

AWS CloudFormation Guard User Guide

 # IPv4 or IPv6 and not UDP
 #
 let any_ip_permissions = configuration.ipPermissions[
 some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
 some ipv6Ranges[*].cidrIpv6 == "::/0"

 ipProtocol != 'udp']

 when %any_ip_permissions !empty
 {
 %any_ip_permissions {
 ipProtocol != '-1' # this here refers to each ipPermission instance
 InputParameters.TcpBlockedPorts[*] {
 fromPort > this or
 toPort < this
 <<
 result: NON_COMPLIANT
 message: Blocked TCP port was allowed in range
 >>
 }
 }
 }
}

Um dieses Beispiel durchzugehen, speichern Sie die vorherige Regeldatei mit dem Namen
any_ip_ingress_check.guard und die Daten mit dem Dateinamen. ip_ingress.yaml Führen
Sie dann den folgenden validate Befehl mit diesen Dateien aus.

cfn-guard validate -r any_ip_ingress_check.guard -d ip_ingress.yaml --show-clause-
failures

In der folgenden Ausgabe gibt die Engine an, dass ihr Versuch, eine Eigenschaft für
InputParameters.TcpBlockedPorts[*] den Wert abzurufen/configuration/
ipPermissions/0, /configuration/ipPermissions/1 fehlgeschlagen ist.

Clause #2 FAIL(Block[Location[file:any_ip_ingress_check.guard, line:17,
 column:13]])

 Attempting to retrieve array index or key from map at Path = /
configuration/ipPermissions/0, Type was not an array/object map, Remaining Query =
 InputParameters.TcpBlockedPorts[*]

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 61

AWS CloudFormation Guard User Guide

Clause #3 FAIL(Block[Location[file:any_ip_ingress_check.guard, line:17,
 column:13]])

 Attempting to retrieve array index or key from map at Path = /
configuration/ipPermissions/1, Type was not an array/object map, Remaining Query =
 InputParameters.TcpBlockedPorts[*]

Um dieses Ergebnis besser zu verstehen, schreiben Sie die Regel neu, indem Sie this explizit
referenziert verwenden.

rule check_ip_procotol_and_port_range_validity
{
 #
 # select all ipPermission instances that can be reached by ANY IP address
 # IPv4 or IPv6 and not UDP
 #
 let any_ip_permissions = this.configuration.ipPermissions[
 some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
 some ipv6Ranges[*].cidrIpv6 == "::/0"

 ipProtocol != 'udp']

 when %any_ip_permissions !empty
 {
 %any_ip_permissions {
 this.ipProtocol != '-1' # this here refers to each ipPermission instance
 this.InputParameters.TcpBlockedPorts[*] {
 this.fromPort > this or
 this.toPort < this
 <<
 result: NON_COMPLIANT
 message: Blocked TCP port was allowed in range
 >>
 }
 }
 }
}

this.InputParametersverweist auf jeden Wert, der in der Variablen any_ip_permissions
enthalten ist. Die der Variablen zugewiesene Abfrage wählt configuration.ipPermissions
übereinstimmende Werte aus. Der Fehler weist auf einen Abrufversuch InputParamaters in
diesem Kontext hin, der jedoch im Stammkontext InputParameters erfolgte.

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 62

AWS CloudFormation Guard User Guide

Der innere Block verweist auch auf Variablen, die außerhalb des Gültigkeitsbereichs liegen, wie im
folgenden Beispiel gezeigt.

{
 this.ipProtocol != '-1' # this here refers to each ipPermission instance
 this.InputParameter.TcpBlockedPorts[*] { # ERROR referencing InputParameter off /
configuration/ipPermissions[*]
 this.fromPort > this or # ERROR: implicit this refers to values inside /
InputParameter/TcpBlockedPorts[*]
 this.toPort < this
 <<
 result: NON_COMPLIANT
 message: Blocked TCP port was allowed in range
 >>
 }
}

thisbezieht sich auf jeden Portwert in[21, 22, 110], bezieht sich aber auch auf fromPort
undtoPort. Sie gehören beide zum Bereich des äußeren Blocks.

Behebung von Fehlern mit der impliziten Verwendung von this

Verwenden Sie Variablen, um Werte explizit zuzuweisen und zu referenzieren. Erstens
InputParameter.TcpBlockedPorts ist es Teil des Eingabekontextes (Stammkontextes).
InputParameter.TcpBlockedPortsVerlassen Sie den inneren Block und weisen Sie ihn explizit
zu, wie im folgenden Beispiel gezeigt.

rule check_ip_procotol_and_port_range_validity
{
 let ports = InputParameters.TcpBlockedPorts[*]
 # ... cut off for illustrating change
}

Verweisen Sie dann explizit auf diese Variable.

rule check_ip_procotol_and_port_range_validity
{
 #
 # Important: Assigning InputParameters.TcpBlockedPorts results in an ERROR.
 # We need to extract each port inside the array. The difference is the query
 # InputParameters.TcpBlockedPorts returns [[21, 20, 110]] whereas the query
 # InputParameters.TcpBlockedPorts[*] returns [21, 20, 110].

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 63

AWS CloudFormation Guard User Guide

 #
 let ports = InputParameters.TcpBlockedPorts[*]

 #
 # select all ipPermission instances that can be reached by ANY IP address
 # IPv4 or IPv6 and not UDP
 #
 let any_ip_permissions = configuration.ipPermissions[
 some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
 some ipv6Ranges[*].cidrIpv6 == "::/0"

 ipProtocol != 'udp']

 when %any_ip_permissions !empty
 {
 %any_ip_permissions {
 this.ipProtocol != '-1' # this here refers to each ipPermission instance
 %ports {
 this.fromPort > this or
 this.toPort < this
 <<
 result: NON_COMPLIANT
 message: Blocked TCP port was allowed in range
 >>
 }
 }
 }
}

Machen Sie dasselbe für innere this Verweise im Inneren%ports.

Es sind jedoch noch nicht alle Fehler behoben, da die interne Schleife ports immer noch eine
falsche Referenz enthält. Das folgende Beispiel zeigt das Entfernen der falschen Referenz.

rule check_ip_procotol_and_port_range_validity
{
 #
 # Important: Assigning InputParameters.TcpBlockedPorts results in an ERROR.
 # We need to extract each port inside the array. The difference is the query
 # InputParameters.TcpBlockedPorts returns [[21, 20, 110]] whereas the query
 # InputParameters.TcpBlockedPorts[*] returns [21, 20, 110].
 #
 let ports = InputParameters.TcpBlockedPorts[*]

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 64

AWS CloudFormation Guard User Guide

 #
 # select all ipPermission instances that can be reached by ANY IP address
 # IPv4 or IPv6 and not UDP
 #
 let any_ip_permissions = configuration.ipPermissions[
 #
 # if either ipv4 or ipv6 that allows access from any address
 #
 some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
 some ipv6Ranges[*].cidrIpv6 == '::/0'

 #
 # the ipProtocol is not UDP
 #
 ipProtocol != 'udp']

 when %any_ip_permissions !empty
 {
 %any_ip_permissions {
 ipProtocol != '-1'
 <<
 result: NON_COMPLIANT
 check_id: HUB_ID_2334
 message: Any IP Protocol is allowed
 >>

 when fromPort exists
 toPort exists
 {
 let each_any_ip_perm = this
 %ports {
 this < %each_any_ip_perm.fromPort or
 this > %each_any_ip_perm.toPort
 <<
 result: NON_COMPLIANT
 check_id: HUB_ID_2340
 message: Blocked TCP port was allowed in range
 >>
 }
 }
 }
 }

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 65

AWS CloudFormation Guard User Guide

}

Führen Sie als Nächstes den validate Befehl erneut aus. Diesmal ist es vorbei.

cfn-guard validate -r any_ip_ingress_check.guard -d ip_ingress.yaml --show-clause-
failures

Das Folgende ist die Ausgabe des validate Befehls.

ip_ingress.yaml Status = PASS
PASS rules
check_ip_procotol_and_port_range_validity PASS

Um diesen Ansatz auf Fehler zu testen, wird im folgenden Beispiel eine Payload-Änderung
verwendet.

resourceType: 'AWS::EC2::SecurityGroup'
InputParameters:
 TcpBlockedPorts: [21, 22, 90, 110]
configuration:
 ipPermissions:
 - fromPort: 172
 ipProtocol: tcp
 ipv6Ranges: []
 prefixListIds: []
 toPort: 172
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: "0.0.0.0/0"
 - fromPort: 89
 ipProtocol: tcp
 ipv6Ranges:
 - cidrIpv6: "::/0"
 prefixListIds: []
 toPort: 109
 userIdGroupPairs: []
 ipv4Ranges:
 - cidrIp: 10.2.0.0/24

90 liegt im Bereich von 89—109, für den jede beliebige IPv6 Adresse zulässig ist. Im Folgenden wird
der validate Befehl ausgegeben, nachdem er erneut ausgeführt wurde.

Schreiben von Klauseln zur Durchführung kontextsensitiver Bewertungen 66

AWS CloudFormation Guard User Guide

Clause #3 FAIL(Clause(Location[file:any_ip_ingress_check.guard, line:43,
 column:21], Check: _ LESS THAN %each_any_ip_perm.fromPort))
 Comparing Int((Path("/InputParameters/TcpBlockedPorts/2"), 90))
 with Int((Path("/configuration/ipPermissions/1/fromPort"), 89)) failed
 (DEFAULT: NO_MESSAGE)
Clause #4 FAIL(Clause(Location[file:any_ip_ingress_check.guard, line:44,
 column:21], Check: _ GREATER THAN %each_any_ip_perm.toPort))
 Comparing Int((Path("/InputParameters/TcpBlockedPorts/2"), 90))
 with Int((Path("/configuration/ipPermissions/1/toPort"), 109)) failed

 result: NON_COMPLIANT
 check_id: HUB_ID_2340
 message: Blocked TCP port was allowed in
 range

AWS CloudFormation Guard Regeln für Tests
Sie können das AWS CloudFormation Guard integrierte Unit-Test-Framework verwenden, um zu
überprüfen, ob Ihre Guard-Regeln wie vorgesehen funktionieren. In diesem Abschnitt erfahren Sie,
wie Sie eine Unit-Test-Datei schreiben und wie Sie damit Ihre Regeldatei mit dem test Befehl testen
können.

Ihre Unit-Test-Datei muss eine der folgenden Erweiterungen haben:.json,.JSON,.jsn,
.yaml.YAML, oder.yml.

Themen

• Voraussetzungen

• Überblick über die Guard-Unit-Testdateien

• Exemplarische Vorgehensweise zum Schreiben einer Unit-Test-Datei für Guard-Regeln

Voraussetzungen

Schreiben Sie Guard-Regeln, anhand derer Ihre Eingabedaten ausgewertet werden. Weitere
Informationen finden Sie unter Writing Guard-Regeln.

Überblick über die Guard-Unit-Testdateien

Guard-Unit-Testdateien sind Dateien im JSON- oder YAML-Format, die mehrere Eingaben und die
erwarteten Ergebnisse für Regeln enthalten, die in einer Guard-Regeldatei geschrieben sind. Es

Testing Guard-Regeln 67

AWS CloudFormation Guard User Guide

kann mehrere Stichproben geben, um unterschiedliche Erwartungen zu bewerten. Wir empfehlen,
zunächst auf leere Eingaben zu testen und dann nach und nach Informationen zur Bewertung
verschiedener Regeln und Klauseln hinzuzufügen.

Außerdem empfehlen wir, Unit-Testing-Dateien mit dem Suffix _test.json oder zu benennen.
_tests.yaml Wenn Sie beispielsweise eine Regeldatei mit dem Namen habenmy_rules.guard,
geben Sie Ihrer Unit-Test-Datei my_rules_tests.yaml einen Namen.

Syntax

Im Folgenden wird die Syntax einer Unit-Test-Datei im YAML-Format gezeigt.

- name: <TEST NAME>
 input:
 <SAMPLE INPUT>
 expectations:
 rules:
 <RULE NAME>: [PASS|FAIL|SKIP]

Eigenschaften

Im Folgenden sind die Eigenschaften einer Guard-Testdatei aufgeführt.

input

Daten, anhand derer Sie Ihre Regeln testen können. Wir empfehlen, dass Ihr erster Test eine
leere Eingabe verwendet, wie im folgenden Beispiel gezeigt.

- name: MyTest1
 input {}

Fügen Sie für nachfolgende Tests Eingabedaten zum Test hinzu.

Erforderlich: Ja

expectations

Das erwartete Ergebnis, wenn bestimmte Regeln anhand Ihrer Eingabedaten bewertet werden.
Geben Sie eine oder mehrere Regeln an, die Sie zusätzlich zum erwarteten Ergebnis für jede
Regel testen möchten. Das erwartete Ergebnis muss eines der folgenden sein:

Übersicht 68

AWS CloudFormation Guard User Guide

• PASS— Bei der Ausführung mit Ihren Eingabedaten werden die Regeln wie folgt
ausgewertettrue.

• FAIL— Bei der Ausführung mit Ihren Eingabedaten werden die Regeln wie folgt
ausgewertetfalse.

• SKIP— Wenn die Regel anhand Ihrer Eingabedaten ausgeführt wird, wird sie nicht ausgelöst.

expectations:
 rules:
 check_rest_api_is_private: PASS

Erforderlich: Ja

Exemplarische Vorgehensweise zum Schreiben einer Unit-Test-Datei für
Guard-Regeln

Im Folgenden finden Sie eine Regeldatei mit dem Namenapi_gateway_private.guard. Mit
dieser Regel soll überprüft werden, ob alle in einer CloudFormation Vorlage definierten Amazon API
Gateway Gateway-Ressourcentypen nur für den privaten Zugriff bereitgestellt werden. Außerdem
wird geprüft, ob mindestens eine Richtlinienerklärung den Zugriff von einer Virtual Private Cloud
(VPC) aus erlaubt.

#
Select all AWS::ApiGateway::RestApi resources
present in the Resources section of the template.
#
let api_gws = Resources.*[Type == 'AWS::ApiGateway::RestApi']

#
Rule intent:
1) All AWS::ApiGateway::RestApi resources deployed must be private.

2) All AWS::ApiGateway::RestApi resources deployed must have at least one AWS
 Identity and Access Management (IAM) policy condition key to allow access from a VPC.
#
Expectations:
1) SKIP when there are no AWS::ApiGateway::RestApi resources in the template.
2) PASS when:
ALL AWS::ApiGateway::RestApi resources in the template have
 the EndpointConfiguration property set to Type: PRIVATE.

Exemplarische Vorgehensweise 69

AWS CloudFormation Guard User Guide

ALL AWS::ApiGateway::RestApi resources in the template have one IAM condition key
 specified in the Policy property with aws:sourceVpc or :SourceVpc.
3) FAIL otherwise.

#
#

rule check_rest_api_is_private when %api_gws !empty {
 %api_gws {
 Properties.EndpointConfiguration.Types[*] == "PRIVATE"

 }
}

rule check_rest_api_has_vpc_access when check_rest_api_is_private {
 %api_gws {
 Properties {
 #
 # ALL AWS::ApiGateway::RestApi resources in the template have one IAM
 condition key specified in the Policy property with
 # aws:sourceVpc or :SourceVpc
 #
 some Policy.Statement[*] {
 Condition.*[keys == /aws:[sS]ource(Vpc|VPC|Vpce|VPCE)/] !empty
 }
 }
 }
}

In dieser exemplarischen Vorgehensweise wird die Absicht der ersten Regel getestet: Alle
bereitgestellten AWS::ApiGateway::RestApi Ressourcen müssen privat sein.

1. Erstellen Sie eine Unit-Test-Datei mit dem Namenapi_gateway_private_tests.yaml, die
den folgenden ersten Test enthält. Fügen Sie beim ersten Test eine leere Eingabe hinzu und
gehen Sie davon aus, dass die Regel übersprungen check_rest_api_is_private wird, da
keine AWS::ApiGateway::RestApi Ressourcen als Eingaben vorhanden sind.

- name: MyTest1
 input: {}
 expectations:
 rules:

Exemplarische Vorgehensweise 70

AWS CloudFormation Guard User Guide

 check_rest_api_is_private: SKIP

2. Führen Sie den ersten Test in Ihrem Terminal mit dem test Befehl aus. Geben Sie für den --
rules-file Parameter Ihre Regeldatei an. Geben Sie für den --test-data Parameter Ihre
Unit-Test-Datei an.

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml

Das Ergebnis des ersten Tests istPASS.

Test Case #1
Name: "MyTest1"
 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP

3. Fügen Sie Ihrer Unit-Test-Datei einen weiteren Test hinzu. Erweitern Sie nun den Test auf leere
Ressourcen. Das Folgende ist die aktualisierte api_gateway_private_tests.yaml Datei.

- name: MyTest1
 input: {}
 expectations:
 rules:
 check_rest_api_is_private: SKIP
- name: MyTest2
 input:
 Resources: {}
 expectations:
 rules:
 check_rest_api_is_private: SKIP

4. Führen Sie es test mit der aktualisierten Unit-Test-Datei aus.

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml

Das Ergebnis für den zweiten Test istPASS.

Test Case #1
Name: "MyTest1"

Exemplarische Vorgehensweise 71

AWS CloudFormation Guard User Guide

 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP
Test Case #2
Name: "MyTest2"
 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP

5. Fügen Sie Ihrer Unit-Test-Datei zwei weitere Tests hinzu. Erweitern Sie die Tests um Folgendes:

• Eine AWS::ApiGateway::RestApi Ressource ohne angegebene Eigenschaften.

Note

Dies ist keine gültige CloudFormation Vorlage, aber es ist nützlich, um zu testen, ob
die Regel auch bei falsch formatierten Eingaben korrekt funktioniert.

Gehen Sie davon aus, dass dieser Test fehlschlägt, weil die EndpointConfiguration
Eigenschaft nicht angegeben und daher nicht auf PRIVATE gesetzt ist.

• Eine AWS::ApiGateway::RestApi Ressource, die die erste Absicht erfüllt, wenn die
EndpointConfiguration Eigenschaft auf gesetzt ist, PRIVATE aber die zweite Absicht
nicht erfüllt, da für sie keine Richtlinienaussagen definiert sind. Erwarten Sie, dass dieser Test
bestanden wird.

Im Folgenden finden Sie die aktualisierte Unit-Test-Datei.

- name: MyTest1
 input: {}
 expectations:
 rules:
 check_rest_api_is_private: SKIP
- name: MyTest2
 input:
 Resources: {}
 expectations:
 rules:
 check_rest_api_is_private: SKIP
- name: MyTest3
 input:

Exemplarische Vorgehensweise 72

AWS CloudFormation Guard User Guide

 Resources:
 apiGw:
 Type: AWS::ApiGateway::RestApi
 expectations:
 rules:
 check_rest_api_is_private: FAIL
- name: MyTest4
 input:
 Resources:
 apiGw:
 Type: AWS::ApiGateway::RestApi
 Properties:
 EndpointConfiguration:
 Types: "PRIVATE"
 expectations:
 rules:
 check_rest_api_is_private: PASS

6. Führen Sie es test mit der aktualisierten Unit-Test-Datei aus.

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml \

Das dritte Ergebnis istFAIL, und das vierte Ergebnis istPASS.

Test Case #1
Name: "MyTest1"
 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP

Test Case #2
Name: "MyTest2"
 PASS Rules:
 check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP

Test Case #3
Name: "MyTest3"
 PASS Rules:
 check_rest_api_is_private: Expected = FAIL, Evaluated = FAIL

Test Case #4
Name: "MyTest4"
 PASS Rules:

Exemplarische Vorgehensweise 73

AWS CloudFormation Guard User Guide

 check_rest_api_is_private: Expected = PASS, Evaluated = PASS

7. Kommentieren Sie die Tests 1—3 in Ihrer Unit-Test-Datei aus. Greifen Sie nur für den vierten
Test auf den ausführlichen Kontext zu. Im Folgenden finden Sie die aktualisierte Unit-Test-Datei.

#- name: MyTest1
input: {}
expectations:
rules:
check_rest_api_is_private_and_has_access: SKIP
#- name: MyTest2
input:
Resources: {}
expectations:
rules:
check_rest_api_is_private_and_has_access: SKIP
#- name: MyTest3
input:
Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
expectations:
rules:
check_rest_api_is_private_and_has_access: FAIL
- name: MyTest4
 input:
 Resources:
 apiGw:
 Type: AWS::ApiGateway::RestApi
 Properties:
 EndpointConfiguration:
 Types: "PRIVATE"
 expectations:
 rules:
 check_rest_api_is_private: PASS

8. Überprüfen Sie die Evaluierungsergebnisse, indem Sie den test Befehl in Ihrem Terminal
ausführen und dabei das --verbose Flag verwenden. Ein ausführlicher Kontext ist nützlich, um
Bewertungen zu verstehen. In diesem Fall enthält es detaillierte Informationen darüber, warum
der vierte Test erfolgreich war und ein PASS Ergebnis hatte.

Exemplarische Vorgehensweise 74

AWS CloudFormation Guard User Guide

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml \
 --verbose

Hier ist die Ausgabe dieses Durchlaufs.

Test Case #1
Name: "MyTest4"
 PASS Rules:
 check_rest_api_is_private: Expected = PASS, Evaluated = PASS
Rule(check_rest_api_is_private, PASS)
 | Message: DEFAULT MESSAGE(PASS)
 Condition(check_rest_api_is_private, PASS)
 | Message: DEFAULT MESSAGE(PASS)
 Clause(Clause(Location[file:api_gateway_private.guard, line:20, column:37],
 Check: %api_gws NOT EMPTY), PASS)
 | From: Map((Path("/Resources/apiGw"), MapValue { keys:
 [String((Path("/Resources/apiGw/Type"), "Type")), String((Path("/Resources/
apiGw/Properties"), "Properties"))], values: {"Type": String((Path("/Resources/
apiGw/Type"), "AWS::ApiGateway::RestApi")), "Properties": Map((Path("/
Resources/apiGw/Properties"), MapValue { keys: [String((Path("/Resources/
apiGw/Properties/EndpointConfiguration"), "EndpointConfiguration"))],
 values: {"EndpointConfiguration": Map((Path("/Resources/apiGw/Properties/
EndpointConfiguration"), MapValue { keys: [String((Path("/Resources/apiGw/
Properties/EndpointConfiguration/Types"), "Types"))], values: {"Types":
 String((Path("/Resources/apiGw/Properties/EndpointConfiguration/Types"),
 "PRIVATE"))} }))} }))} }))
 | Message: (DEFAULT: NO_MESSAGE)
 Conjunction(cfn_guard::rules::exprs::GuardClause, PASS)
 | Message: DEFAULT MESSAGE(PASS)
 Clause(Clause(Location[file:api_gateway_private.guard, line:22, column:5],
 Check: Properties.EndpointConfiguration.Types[*] EQUALS String("PRIVATE")), PASS)
 | Message: (DEFAULT: NO_MESSAGE)

Die wichtigste Beobachtung aus der Ausgabe ist die
ZeileClause(Location[file:api_gateway_private.guard, line:22,
column:5], Check: Properties.EndpointConfiguration.Types[*] EQUALS
String("PRIVATE")), PASS), die besagt, dass die Prüfung bestanden wurde. Das Beispiel
zeigte auch den Fall, dass ein Array erwartet Types wurde, aber ein einziger Wert angegeben
wurde. In diesem Fall führte Guard die Auswertung fort und lieferte ein korrektes Ergebnis.

Exemplarische Vorgehensweise 75

AWS CloudFormation Guard User Guide

9. Fügen Sie Ihrer Komponententestdatei für eine AWS::ApiGateway::RestApi Ressource
mit der angegebenen EndpointConfiguration Eigenschaft einen Testfall wie den vierten
Testfall hinzu. Der Testfall schlägt fehl, anstatt erfolgreich zu sein. Im Folgenden finden Sie die
aktualisierte Unit-Test-Datei.

#- name: MyTest1
input: {}
expectations:
rules:
check_rest_api_is_private_and_has_access: SKIP
#- name: MyTest2
input:
Resources: {}
expectations:
rules:
check_rest_api_is_private_and_has_access: SKIP
#- name: MyTest3
input:
Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
expectations:
rules:
check_rest_api_is_private_and_has_access: FAIL
#- name: MyTest4
input:
Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
Properties:
EndpointConfiguration:
Types: "PRIVATE"
expectations:
rules:
check_rest_api_is_private: PASS
- name: MyTest5
 input:
 Resources:
 apiGw:
 Type: AWS::ApiGateway::RestApi
 Properties:
 EndpointConfiguration:

Exemplarische Vorgehensweise 76

AWS CloudFormation Guard User Guide

 Types: [PRIVATE, REGIONAL]
 expectations:
 rules:
 check_rest_api_is_private: FAIL

10. Führen Sie den test Befehl mit der aktualisierten Unit-Test-Datei mithilfe des --verbose Flags
aus.

cfn-guard test --rules-file api_gateway_private.guard --test-data
 api_gateway_private_tests.yaml \
 --verbose

Das Ergebnis ist FAIL erwartungsgemäß, da REGIONAL es für angegeben
wurdeEndpointConfiguration, aber nicht erwartet wird.

Test Case #1
Name: "MyTest5"
 PASS Rules:
 check_rest_api_is_private: Expected = FAIL, Evaluated = FAIL
Rule(check_rest_api_is_private, FAIL)
 | Message: DEFAULT MESSAGE(FAIL)
 Condition(check_rest_api_is_private, PASS)
 | Message: DEFAULT MESSAGE(PASS)
 Clause(Clause(Location[file:api_gateway_private.guard, line:20, column:37],
 Check: %api_gws NOT EMPTY), PASS)
 | From: Map((Path("/Resources/apiGw"), MapValue { keys:
 [String((Path("/Resources/apiGw/Type"), "Type")), String((Path("/Resources/
apiGw/Properties"), "Properties"))], values: {"Type": String((Path("/Resources/
apiGw/Type"), "AWS::ApiGateway::RestApi")), "Properties": Map((Path("/
Resources/apiGw/Properties"), MapValue { keys: [String((Path("/Resources/
apiGw/Properties/EndpointConfiguration"), "EndpointConfiguration"))],
 values: {"EndpointConfiguration": Map((Path("/Resources/apiGw/Properties/
EndpointConfiguration"), MapValue { keys: [String((Path("/Resources/apiGw/
Properties/EndpointConfiguration/Types"), "Types"))], values: {"Types":
 List((Path("/Resources/apiGw/Properties/EndpointConfiguration/Types"),
 [String((Path("/Resources/apiGw/Properties/EndpointConfiguration/Types/0"),
 "PRIVATE")), String((Path("/Resources/apiGw/Properties/EndpointConfiguration/
Types/1"), "REGIONAL"))]))} }))} }))} }))
 | Message: DEFAULT MESSAGE(PASS)
 BlockClause(Block[Location[file:api_gateway_private.guard, line:21, column:3]],
 FAIL)
 | Message: DEFAULT MESSAGE(FAIL)

Exemplarische Vorgehensweise 77

AWS CloudFormation Guard User Guide

 Conjunction(cfn_guard::rules::exprs::GuardClause, FAIL)
 | Message: DEFAULT MESSAGE(FAIL)
 Clause(Clause(Location[file:api_gateway_private.guard, line:22,
 column:5], Check: Properties.EndpointConfiguration.Types[*] EQUALS
 String("PRIVATE")), FAIL)
 | From: String((Path("/Resources/apiGw/Properties/
EndpointConfiguration/Types/1"), "REGIONAL"))
 | To: String((Path("api_gateway_private.guard/22/5/Clause/"),
 "PRIVATE"))
 | Message: (DEFAULT: NO_MESSAGE)

Die ausführliche Ausgabe des test Befehls folgt der Struktur der Regeldatei. Jeder Block in der
Regeldatei ist ein Block in der ausführlichen Ausgabe. Der oberste Block ist jede Regel. Wenn es
when Bedingungen gibt, die gegen die Regel verstoßen, werden sie in einem gleichgeordneten
Bedingungsblock angezeigt. Im folgenden Beispiel %api_gws !empty wird die Bedingung
getestet und sie besteht.

rule check_rest_api_is_private when %api_gws !empty {

Sobald die Bedingung erfüllt ist, testen wir die Regelklauseln.

%api_gws {
 Properties.EndpointConfiguration.Types[*] == "PRIVATE"
}

%api_gwsist eine Blockregel, die dem BlockClause Level in der Ausgabe entspricht (Zeile:21).
Die Regelklausel besteht aus einer Reihe von Konjunktionsklauseln (AND), wobei jede
Konjunktionsklausel eine Menge von Disjunktionen ist. OR Die Konjunktion hat eine einzige
Klausel,. Properties.EndpointConfiguration.Types[*] == "PRIVATE" Daher enthält
die ausführliche Ausgabe eine einzige Klausel. Der Pfad /Resources/apiGw/Properties/
EndpointConfiguration/Types/1 zeigt, welche Werte in der Eingabe verglichen werden. In
diesem Fall handelt es sich um das Element für den Types Index 1.

In können Sie die Beispiele in diesem Abschnitt verwendenValidierung der Eingabedaten anhand
der Guard-Regeln, um den validate Befehl zu verwenden, um Eingabedaten anhand von Regeln
auszuwerten.

Exemplarische Vorgehensweise 78

AWS CloudFormation Guard User Guide

Eingabeparameter mit AWS CloudFormation Guard Regeln
verwenden

AWS CloudFormation Guard ermöglicht es Ihnen, Eingabeparameter für dynamische Datenabfragen
während der Validierung zu verwenden. Diese Funktion ist besonders nützlich, wenn Sie in Ihren
Regeln auf externe Daten verweisen müssen. Bei der Angabe von Eingabeparameterschlüsseln setzt
Guard jedoch voraus, dass es keine widersprüchlichen Pfade gibt.

Wie benutzt man

1. Verwenden Sie das -i Kennzeichen --input-parameters oder, um Dateien anzugeben, die
Eingabeparameter enthalten. Es können mehrere Eingabeparameterdateien angegeben werden,
die zu einem gemeinsamen Kontext kombiniert werden. Eingabeparameterschlüssel dürfen keine
widersprüchlichen Pfade haben.

2. Verwenden Sie das -d Kennzeichen --data oder, um die eigentliche Vorlagendatei anzugeben,
die validiert werden soll.

Beispielverwendung

1. Erstellen Sie eine Eingabeparameterdatei (z. B.network.yaml):

NETWORK:
 allowed_security_groups: ["sg-282850", "sg-292040"]
 allowed_prefix_lists: ["pl-63a5400a", "pl-02cd2c6b"]

2. Verweisen Sie in Ihrer Guard-Rule-Datei auf diese Parameter (z. B.security_groups.guard):

let groups = Resources.*[Type == 'AWS::EC2::SecurityGroup']

let permitted_sgs = NETWORK.allowed_security_groups
let permitted_pls = NETWORK.allowed_prefix_lists
rule check_permitted_security_groups_or_prefix_lists(groups) {
 %groups {
 this in %permitted_sgs or
 this in %permitted_pls
 }
}

rule CHECK_PERMITTED_GROUPS when %groups !empty {

Verwendung von Eingabeparametern mit Guard-Regeln 79

AWS CloudFormation Guard User Guide

 check_permitted_security_groups_or_prefix_lists(
 %groups.Properties.GroupName
)
}

3. Erstellen Sie eine Vorlage für fehlerhafte Daten (z. B.security_groups_fail.yaml):

AWSTemplateFormatVersion: 2010-09-09
Description: CloudFormation - EC2 Security Group

Resources:
 mySecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupName: wrong

4. Führen Sie den Befehl validate aus:

cfn-guard validate -r security_groups.guard -i network.yaml -d
 security_groups_fail.yaml

In diesem Befehl gilt Folgendes:

• -rgibt die Regeldatei an.

• -igibt die Eingabeparameterdatei an.

• -dgibt die Datendatei (Vorlage) an, die validiert werden soll.

Mehrere Eingabeparameter

Sie können mehrere Eingabeparameterdateien angeben:

cfn-guard validate -r rules.guard -i params1.yaml -i params2.yaml -d template.yaml

Alle mit angegebenen Dateien -i werden zu einem einzigen Kontext für die Parametersuche
kombiniert.

Mehrere Eingabeparameter 80

AWS CloudFormation Guard User Guide

Validierung von Eingabedaten anhand von Regeln AWS
CloudFormation Guard

Sie können den AWS CloudFormation Guard validate Befehl verwenden, um Daten anhand der
Guard-Regeln zu validieren. Weitere Informationen zum validate Befehl, einschließlich seiner
Parameter und Optionen, finden Sie unter Validieren.

Voraussetzungen

• Schreiben Sie Guard-Regeln, anhand derer Ihre Eingabedaten validiert werden. Weitere
Informationen finden Sie unter Writing Guard-Regeln.

• Testen Sie Ihre Regeln, um sicherzustellen, dass sie wie vorgesehen funktionieren. Weitere
Informationen finden Sie unter Testing Guard-Regeln.

Verwenden Sie den validate Befehl

Führen Sie den validate Befehl Guard aus, um Ihre Eingabedaten anhand Ihrer Guard-
Regeln, z. B. einer AWS CloudFormation Vorlage, zu überprüfen. Geben Sie für den --rules
Parameter den Namen einer Regeldatei an. Geben Sie für den --data Parameter den Namen der
Eingabedatendatei an.

cfn-guard validate --rules rules.guard --data template.json

Wenn Guard die Vorlagen erfolgreich validiert, gibt der validate Befehl den Exit-Status 0
($?in Bash) zurück. Wenn Guard einen Regelverstoß feststellt, gibt der validate Befehl einen
Statusbericht über die fehlgeschlagenen Regeln zurück. Verwenden Sie das Übersichts-Flag (-s
all), um den detaillierten Bewertungsbaum aufzurufen, der zeigt, wie Guard die einzelnen Regeln
bewertet hat.

template.json Status = FAIL
SKIP rules
rules.guard/aws_apigateway_deployment_checks SKIP
rules.guard/aws_apigateway_stage_checks SKIP
rules.guard/aws_dynamodb_table_checks SKIP
PASS rules
rules.guard/aws_events_rule_checks PASS
rules.guard/aws_iam_role_checks PASS

Validierung der Eingabedaten anhand der Guard-Regeln 81

AWS CloudFormation Guard User Guide

FAILED rules
rules.guard/aws_ec2_volume_checks FAIL
rules.guard/mixed_types_checks FAIL

Evaluation of rules rules.guard against data template.json
--
Property [/Resources/vol2/Properties/Encrypted] in data [template.json] is not
 compliant with [rules.guard/aws_ec2_volume_checks] because provided value [false] did
 not match expected value [true]. Error Message []
Property traversed until [/Resources/vol2/Properties] in data [template.json] is not
 compliant with [rules.guard/aws_ec2_volume_checks] due to retrieval error. Error
 Message [Attempting to retrieve array index or key from map at path = /Resources/vol2/
Properties , Type was not an array/object map, Remaining Query = Size]
Property [/Resources/vol2/Properties/Encrypted] in data [template.json] is not
 compliant with [rules.guard/mixed_types_checks] because provided value [false] did not
 match expected value [true]. Error Message []
--
Rule [rules.guard/aws_iam_role_checks] is compliant for data [template.json]
Rule [rules.guard/aws_events_rule_checks] is compliant for data [template.json]
--
Rule [rules.guard/aws_apigateway_deployment_checks] is not applicable for data
 [template.json]
Rule [rules.guard/aws_apigateway_stage_checks] is not applicable for data
 [template.json]
Rule [rules.guard/aws_dynamodb_table_checks] is not applicable for data [template.json]

Validierung mehrerer Regeln anhand mehrerer Datendateien

Um die Einhaltung der Regeln zu erleichtern, können Sie Regeln in mehrere Dateien schreiben und
die Regeln nach Ihren Wünschen organisieren. Anschließend können Sie mehrere Regeldateien
anhand einer Datendatei oder mehrerer Datendateien validieren. Der validate Befehl kann
ein Verzeichnis mit Dateien für die --rules Optionen --data und verwenden. Sie können
beispielsweise den folgenden Befehl ausführen, der /path/to/dataDirectory eine oder mehrere
Datendateien und eine oder mehrere Regeldateien /path/to/ruleDirectory enthält.

cfn-guard validate --data /path/to/dataDirectory --rules /path/to/ruleDirectory

Sie können Regeln schreiben, um zu überprüfen, ob verschiedene Ressourcen,
die in mehreren CloudFormation Vorlagen definiert sind, über die entsprechenden
Eigenschaftszuweisungen verfügen, um die Verschlüsselung im Ruhezustand zu
gewährleisten. Um die Suche und Wartung zu vereinfachen, können Sie Regeln zur

Validierung mehrerer Regeln anhand mehrerer Datendateien 82

AWS CloudFormation Guard User Guide

Überprüfung der Verschlüsselung im Ruhezustand in jeder Ressource in separaten Dateien,
genannt s3_bucket_encryption.guardec2_volume_encryption.guard, und
rds_dbinstance_encrytion.guard in einem Verzeichnis mit dem Pfad einrichten~/
GuardRules/encryption_at_rest. Die CloudFormation Vorlagen, die Sie überprüfen müssen,
befinden sich in einem Verzeichnis mit dem Pfad~/CloudFormation/templates. Führen Sie in
diesem Fall den validate Befehl wie folgt aus.

cfn-guard validate --data ~/CloudFormation/templates --rules ~/GuardRules/
encryption_at_rest

Validierung mehrerer Regeln anhand mehrerer Datendateien 83

AWS CloudFormation Guard User Guide

Problembehebung AWS CloudFormation Guard

Wenn Sie bei der Arbeit mit auf Probleme stoßen AWS CloudFormation Guard, lesen Sie die Themen
in diesem Abschnitt.

Themen

• Die Klausel schlägt fehl, wenn keine Ressourcen des ausgewählten Typs vorhanden sind

• Guard bewertet keine CloudFormation Vorlage mit Verweisen in Kurzform Fn::GetAtt

• Allgemeine Themen zur Fehlerbehebung

Die Klausel schlägt fehl, wenn keine Ressourcen des ausgewählten
Typs vorhanden sind

Wenn eine Abfrage einen Filter verwendetResources.*[Type ==
'AWS::ApiGateway::RestApi'], z. B. wenn die Eingabe keine AWS::ApiGateway::RestApi
Ressourcen enthält, wird die Klausel wie folgt ausgewertet. FAIL

%api_gws.Properties.EndpointConfiguration.Types[*] == "PRIVATE"

Um dieses Ergebnis zu vermeiden, weisen Sie Variablen Filter zu und verwenden Sie die when
Bedingungsprüfung.

let api_gws = Resources.*[Type == 'AWS::ApiGateway::RestApi']
 when %api_gws !empty { ...}

Guard bewertet keine CloudFormation Vorlage mit Verweisen in
Kurzform Fn::GetAtt

Guard unterstützt die Kurzformen intrinsischer Funktionen nicht. Beispielsweise wird die Verwendung
von!Join, !Sub in einer Vorlage im YAML-Format nicht unterstützt. CloudFormation Verwenden
Sie stattdessen die erweiterten Formen intrinsischer Funktionen. CloudFormation Verwenden Sie
beispielsweise, in CloudFormation Vorlagen Fn::Sub im YAML-FormatFn::Join, wenn Sie sie
anhand von Guard-Regeln auswerten.

Die Klausel schlägt fehl, wenn keine Ressourcen des ausgewählten Typs vorhanden sind 84

AWS CloudFormation Guard User Guide

Weitere Informationen zu systeminternen Funktionen finden Sie in der Referenz zu systeminternen
Funktionen im Benutzerhandbuch.AWS CloudFormation

Allgemeine Themen zur Fehlerbehebung

• Stellen Sie sicher, dass string Literale keine eingebetteten Escape-Zeichenketten enthalten.
Guard unterstützt keine eingebetteten Escape-Zeichenketten in string Literalen. Wenn Sie
beabsichtigen, Inline-JSON-Strings zu analysieren, verwenden Sie die in Guard 3.0.0 und höher
verfügbare json_parse() Funktion. Weitere Informationen finden Sie unter Verwenden von
integrierten Funktionen.

• Stellen Sie sicher, dass Ihre != Vergleiche kompatible Datentypen vergleichen. Zum Beispiel int
sind a string und an keine kompatiblen Datentypen für den Vergleich. Wenn beim != Vergleich
die Werte nicht kompatibel sind, tritt intern ein Fehler auf. Derzeit wird der Fehler unterdrückt und
so umgewandelt, dass er false dem PartialEqMerkmal in Rust entspricht.

Allgemeine Themen zur Problembehandlung 85

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard CLI-Parameter und
Befehlsreferenz
Die folgenden globalen Parameter und Befehle sind über die AWS CloudFormation Guard
Befehlszeilenschnittstelle (CLI) verfügbar.

Themen

• Globale Parameter von Guard CLI

• Baum analysieren

• Rule Legen

• Test

• validieren

Globale Parameter von Guard CLI

Sie können die folgenden Parameter mit jedem AWS CloudFormation Guard CLI-Befehl verwenden.

-h, --help

Druckt Hilfeinformationen.

-V, --version

Druckt Versionsinformationen.

Baum analysieren

Generiert einen Analysebaum für die in einer AWS CloudFormation Guard Regeldatei definierten
Regeln.

Syntax

cfn-guard parse-tree
--output <value>
--rules <value>

Globale Parameter von Guard CLI 86

AWS CloudFormation Guard User Guide

Parameter

-h, --help

Druckt Hilfeinformationen.

-p, --print-json

Druckt die Ausgabe im JSON-Format.

-y, --print-yaml

Druckt die Ausgabe im YAML-Format.

-V, --version

Druckt Versionsinformationen.

Optionen

-o, --output

Schreibt den generierten Baum in eine Ausgabedatei.

-r, --rules

Stellt eine Regeldatei bereit.

Beispiele

cfn-guard parse-tree --output output.json --rules rules.guard

Rule Legen

Nimmt eine AWS CloudFormation Vorlagendatei im JSON- oder YAML-Format und generiert
automatisch eine Reihe von AWS CloudFormation Guard Regeln, die den Eigenschaften der
Vorlagenressourcen entsprechen. Dieser Befehl ist eine nützliche Methode, um mit dem Schreiben
von Regeln zu beginnen oder ready-to-use Regeln aus zweifelsfrei funktionierenden Vorlagen zu
erstellen.

Parameter 87

AWS CloudFormation Guard User Guide

Syntax

cfn-guard rulegen
--output <value>
--template <value>

Parameter

-h, --help

Druckt Hilfeinformationen.

-V, --version

Druckt Versionsinformationen.

Optionen

-o, --output

Schreibt die generierten Regeln in eine Ausgabedatei. Angesichts der Möglichkeit, dass Hunderte
oder sogar Tausende von Regeln auftauchen, empfehlen wir, diese Option zu verwenden.

-t, --template

Stellt den Pfad zu einer CloudFormation Vorlagendatei im JSON- oder YAML-Format bereit.

Beispiele

cfn-guard rulegen --output rules.guard --template template.json

Test

Validiert eine AWS CloudFormation Guard Regeldatei anhand einer Guard-Unit-Test-Datei im JSON-
oder YAML-Format, um den Erfolg einzelner Regeln festzustellen.

Syntax

cfn-guard test

Syntax 88

AWS CloudFormation Guard User Guide

--rules-file <value>
--test-data <value>

Parameter

-a, --alphabetical

Sortiert innerhalb eines Verzeichnisses alphabetisch.

-h, --help

Druckt Hilfeinformationen.

-m, --last-modified

Sortiert nach dem Zeitpunkt der letzten Änderung innerhalb eines Verzeichnisses

-V, --version

Druckt Versionsinformationen.

-v, --verbose

Erhöht die Ausführlichkeit der Ausgabe. Kann mehrfach angegeben werden.

Die ausführliche Ausgabe folgt der Struktur der Guard-Regeldatei. Jeder Block in der Regeldatei
ist ein Block in der ausführlichen Ausgabe. Der oberste Block ist jede Regel. Wenn es when
Bedingungen gibt, die gegen die Regel verstoßen, werden sie als gleichgeordneter Bedingungsblock
angezeigt.

Optionen

-d, --dir

Geben Sie das Stammverzeichnis für Regeln an.

-o, --output-format

Geben Sie das Format an, in dem die Ausgabe angezeigt werden soll.

Standardwert: single-line-summary

Zulässige Werte: json | yaml | single-line-summary | junit

Parameter 89

AWS CloudFormation Guard User Guide

-r, --rules-file

Gibt den Namen einer Regeldatei an.

-t, --test-data

Stellt den Namen einer Datei oder eines Verzeichnisses für Datendateien im JSON- oder YAML-
Format bereit.

Beispiele

cfn-guard test --rules-file rules.guard --test-data example.json

Output

PASS|FAIL Expected Rule = rule_name, Status = SKIP|FAIL|PASS, Got Status = SKIP|FAIL|
PASS

Weitere Informationen finden Sie auch unter

Testing Guard-Regeln

validieren

Überprüft Daten anhand von AWS CloudFormation Guard Regeln, um festzustellen, ob sie erfolgreich
sind oder nicht.

Syntax

cfn-guard validate
--data <value>
--output-format <value>
--rules <value>
--show-summary <value>
--type <value>

Parameter

-a, --alphabetical

Beispiele 90

AWS CloudFormation Guard User Guide

Überprüft Dateien in einem Verzeichnis, das alphabetisch sortiert ist.

-h, --help

Druckt Hilfeinformationen.

-m, --last-modified

Überprüft Dateien in einem Verzeichnis, das nach dem Zeitpunkt der letzten Änderung sortiert ist.

-P, --payload

Stellen Sie Regeln und Daten im folgenden JSON-Format bereit über: stdin

{"rules":["<rules 1>", "<rules 2>", ...], "data":["<data 1>", "<data 2>", ...]}

Zum Beispiel:

{"data": ["{\"Resources\":{\"NewVolume\":{\"Type\":\"AWS::EC2::Volume\",\"Properties
\":{\"Size\":500,\"Encrypted\":false,\"AvailabilityZone\":\"us-west-2b\"}},
\"NewVolume2\":{\"Type\":\"AWS::EC2::Volume\",\"Properties\":{\"Size\":50,\"Encrypted
\":false,\"AvailabilityZone\":\"us-west-2c\"}}},\"Parameters\":{\"InstanceName\":
\"TestInstance\"}}","{\"Resources\":{\"NewVolume\":{\"Type\":\"AWS::EC2::Volume\",
\"Properties\":{\"Size\":500,\"Encrypted\":false,\"AvailabilityZone\":\"us-west-2b\"}},
\"NewVolume2\":{\"Type\":\"AWS::EC2::Volume\",\"Properties\":{\"Size\":50,\"Encrypted
\":false,\"AvailabilityZone\":\"us-west-2c\"}}},\"Parameters\":{\"InstanceName
\":\"TestInstance\"}}"], "rules" : ["Parameters.InstanceName == \"TestInstance
\"","Parameters.InstanceName == \"TestInstance\""]}

Geben Sie für „Regeln“ eine Liste mit Zeichenkettenversionen von Regeldateien an. Geben Sie für
„Daten“ eine Liste der Zeichenkettenversionen von Datendateien an.

Wann --payload ist angegeben --rules und --data kann nicht angegeben werden.

-p, --print-json

Druckt die Ausgabe im JSON-Format.

-s, --show-clause-failures

Zeigt den Fehler in der Klausel einschließlich einer Zusammenfassung an.

-V, --version

Parameter 91

AWS CloudFormation Guard User Guide

Druckt Versionsinformationen.

-v, --verbose

Erhöht die Ausführlichkeit der Ausgabe. Kann mehrfach angegeben werden.

-z, --structured

Druckt eine Liste strukturierter und gültiger JSON/YAML. This argument conflicts with the following
arguments: verbose, print-json, show-summary: all/fail/pass/skip Ausgabeformate aus: single-line-
summary

Optionen

-d, --data (Zeichenfolge)

Stellt eine Datendatei oder ein Verzeichnis mit Datendateien in JSON oder YAML bereit. Unterstützt
die wiederholte Übergabe mehrerer Werte durch wiederholte Verwendung dieser Option.

Beispiel: --data template1.yaml --data ./data-dir1 --data template2.yaml

Bei Verzeichnisargumenten wie den data-dir1 obigen wird das Scannen nur für Dateien mit den
folgenden Erweiterungen unterstützt: .yaml, .yml, .json, .jsn, .template

Wenn Sie das Flag angeben, geben Sie die --payload Option nicht an. --data

-i, --input-parameters (Zeichenfolge)

Stellt eine Parameterdatei oder ein Verzeichnis mit Parameterdateien in JSON oder YAML
bereit, das alle zusätzlichen zu verwendenden Parameter zusammen mit Datendateien
angibt, die als kombinierter Kontext verwendet werden sollen. Alle als Eingabe übergebenen
Parameterdateien werden zusammengeführt, und dieser kombinierte Kontext wird erneut mit jeder
Datei zusammengeführt, die als Argument für data übergeben wurde. Aus diesem Grund wird von
jeder Datei erwartet, dass sie sich gegenseitig ausschließende Eigenschaften enthält, ohne dass es
zu Überschneidungen kommt. Unterstützt die wiederholte Übergabe mehrerer Werte bei wiederholter
Verwendung dieser Option.

Bei Verzeichnisargumenten wird das Scannen nur für Dateien mit den folgenden Erweiterungen
unterstützt: .yaml, .yml, .json, .jsn, .template

-o--output-format, (Zeichenfolge)

Optionen 92

AWS CloudFormation Guard User Guide

Gibt das Format für die Ausgabe an.

Standardwert: single-line-summary

Zulässige Werte: json | yaml | single-line-summary | junit | sarif

-r, --rules (Zeichenfolge)

Stellt eine Regeldatei oder ein Verzeichnis mit Regeldateien bereit. Unterstützt die wiederholte
Übergabe mehrerer Werte bei wiederholter Verwendung dieser Option.

Beispiel: --rules rule1.guard --rules ./rules-dir1 --rules rule2.guard

Bei Verzeichnisargumenten wie den rules-dir1 obigen wird das Scannen nur für Dateien mit den
folgenden Erweiterungen unterstützt: .guard, .ruleset

Wenn Sie das --payload Flag angeben, geben Sie die Option nicht an. --rules

--show-summary (string)

Steuert, ob die Übersichtstabelle angezeigt werden muss. --show-summary fail(Standard) oder
--show-summary pass,fail (nur Regeln anzeigen, die bestanden/nicht bestanden haben) oder
--show-summary none (um sie auszuschalten) oder --show-summary all (um alle Regeln
anzuzeigen, die bestanden, fehlgeschlagen oder übersprungen wurden).

Standardwert: fail

Zulässige Werte: none | all | pass | fail | skip

-t, --type (Zeichenfolge)

Stellt das Format Ihrer Eingabedaten bereit. Wenn Sie den Eingabedatentyp angeben, zeigt Guard
die logischen Namen der CloudFormation Vorlagenressourcen in der Ausgabe an. Standardmäßig
zeigt Guard Eigenschaftspfade und Werte an, z. Property [/Resources/vol2/Properties/
Encrypted B.

Allowed values: CFNTemplate

Beispiel

cfn-guard validate --data example.json --rules rules.guard

Beispiel 93

AWS CloudFormation Guard User Guide

Output

Wenn Guard die Vorlagen erfolgreich validiert, gibt der validate Befehl den Exit-Status 0
($?in Bash) zurück. Wenn Guard einen Regelverstoß feststellt, gibt der validate Befehl einen
Statusbericht über die fehlgeschlagenen Regeln zurück.

example.json Status = FAIL
FAILED rules
rules.guard/policy_effect_is_deny FAIL

Evaluation of rules rules.guard against data example.json
--
Property [/path/to/Effect] in data [example.json] is not compliant with
 [policy_effect_is_deny] because provided value ["Allow"] did not match expected value
 ["Deny"]. Error Message [Policy statement "Effect" must be "Deny".]

Weitere Informationen finden Sie auch unter

• Validierung der Eingabedaten anhand der Guard-Regeln

• Verwendung von Eingabeparametern mit Guard-Regeln

Output 94

AWS CloudFormation Guard User Guide

Sicherheit in AWS CloudFormation Guard
Cloud-Sicherheit AWS hat höchste Priorität. Als AWS Kunde profitieren Sie von einer
Rechenzentrums- und Netzwerkarchitektur, die darauf ausgelegt sind, die Anforderungen der
sicherheitssensibelsten Unternehmen zu erfüllen.

Sicherheit ist eine gemeinsame Verantwortung von Ihnen AWS und Ihnen. Das Modell der
übergreifenden Verantwortlichkeit beschreibt dies als Sicherheit der Cloud und Sicherheit in der
Cloud:

• Sicherheit der Cloud — AWS ist verantwortlich für den Schutz der Infrastruktur, die AWS Dienste
in der AWS Cloud ausführt. AWS bietet Ihnen auch Dienste, die Sie sicher nutzen können. Externe
Prüfer testen und verifizieren regelmäßig die Wirksamkeit unserer Sicherheitsmaßnahmen im
Rahmen der AWS . Weitere Informationen zu den Compliance-Programmen, die für Guard gelten,
finden Sie unter AWS Services im Umfang nach Compliance-Programmen AWS .

• Sicherheit in der Cloud — Ihre Verantwortung richtet sich nach dem AWS Dienst, den Sie nutzen.
Sie sind auch für andere Faktoren verantwortlich, etwa für die Vertraulichkeit Ihrer Daten, für die
Anforderungen Ihres Unternehmens und für die geltenden Gesetze und Vorschriften.

Die folgende Dokumentation hilft Ihnen zu verstehen, wie Sie das Modell der gemeinsamen
Verantwortung bei der Installation von Guard als AWS Lambda Funktion (cfn-guard-lambda)
anwenden können:

• Sicherheit im AWS Command Line Interface Benutzerhandbuch

• Sicherheit im AWS Lambda Entwicklerhandbuch

• Sicherheit im AWS Identity and Access Management Benutzerhandbuch

95

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/cli/latest/userguide/security.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security.html

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard Dokumentverlauf

In der folgenden Tabelle werden die Dokumentationsversionen für beschrieben AWS CloudFormation
Guard.

• Letzte Aktualisierung der Dokumentation: 30. Juli 2025

• Letzte Version: 3.1.2

Änderung Beschreibung Datum

Aktualisierung der Dokumenta
tion

Die Referenzdokumentation
für Guard-CLI-Befehle wurde
aktualisiert, um sie an die
aktuelle Implementierung
anzupassen. Die Versionsr
eferenzen wurden auf Guard
3.1.2 aktualisiert.

30. Juli 2025

Veröffentlichung von Version
3.0.0

Version 3.0.0 führt die
folgenden Verbesserungen
ein:

• Einführungs- und Installat
ionsthemen wurden für die
Version von Guard 3.0.0
aktualisiert.

• Installationsanweisungen für
Homebrew und Chocolatey
hinzugefügt.

• Die Informationen zur
Migration der Guard-Reg
eln wurden aktualisiert, um
den Änderungen in Guard-
Version 3.0.0 Rechnung zu
tragen.

30. Juni 2023

96

AWS CloudFormation Guard User Guide

• Es wurde ein prominent
er Link zum Repositor
y hinzugefügt. AWS
CloudFormation Guard
GitHub

Version 2.1.3 veröffentlicht Version 2.1.3 führt die
folgenden Verbesserungen
ein:

Informationen zu den
Verbesserungen von Guard
2.1.3 wurden hinzugefügt.
Verweise auf Guard 2.0
wurden auf Guard 2.1.3
aktualisiert.

9. Juni 2023

Version 2.0.4 veröffentlicht Version 2.0.4 führt die
folgenden Verbesserungen
ein:

Das --payload Flag
wurde dem validate Befehl
hinzugefügt.

Weitere Informationen finden
Sie unter Validieren in der
Guard CLI-Referenz.

19. Oktober 2021

97

AWS CloudFormation Guard User Guide

Version 2.0.3 veröffentlicht Version 2.0.3 führt die
folgenden Verbesserungen
ein:

• Sie können Testnamen für
jeden Test in Ihrer Unit-Test
-Datei angeben. Weitere
Informationen finden Sie
unter Testing Guard-Regeln.

• Die folgenden Optionen
wurden dem validate
Befehl hinzugefügt:

• --output-format

• --show-summary

• --type

Weitere Informationen
finden Sie unter Validieren
in der Guard CLI-Referenz.

27. Juli 2021

Erstversion Erste Version des AWS
CloudFormation Guard
Benutzerhandbuchs.

15. Juli 2021

98

AWS CloudFormation Guard User Guide

AWS Glossar
Die neueste AWS Terminologie finden Sie im AWS Glossar in der AWS-Glossar Referenz.

99

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

AWS CloudFormation Guard User Guide

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich
infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

c

	AWS CloudFormation Guard
	Table of Contents
	Was ist AWS CloudFormation Guard?
	Benutzen Sie Guard zum ersten Mal?
	Funktionen von Guard
	Guard mit Hooks verwenden CloudFormation
	Zugriff auf Guard
	Bewährte Methoden

	Einrichten AWS CloudFormation Guard
	Guard für Linux und macOS installieren
	Installieren Sie Guard aus einer vorgefertigten Binärdatei
	Installieren Sie Guard von Cargo
	Installieren Sie Guard von Homebrew

	Guard für Windows installieren
	Voraussetzungen
	Installieren Sie Guard von Cargo
	Installieren Sie Guard von Chocolatey

	Guard als AWS Lambda Funktion installieren
	Voraussetzungen
	Installieren Sie den Rust-Paketmanager
	Installieren Sie Guard als Lambda-Funktion (Linux, macOS oder Unix)
	Um Guard als Lambda-Funktion zu erstellen und auszuführen
	Um die Anforderungsstruktur der Lambda-Funktion aufzurufen

	Voraussetzungen und Überblick für die Verwendung von Guard-Regeln
	Voraussetzungen
	Überblick über die Verwendung von Guard-Regeln
	AWS CloudFormation Guard Regeln schreiben
	Klauseln
	Syntax für das Schreiben von Guard-Regelklauseln
	Eigenschaften von Guard-Regelklauseln

	Verwenden von Abfragen in Klauseln
	Verwenden von Operatoren in Klauseln
	Beispiele für Klauseln, die unäre Operatoren verwenden
	Beispiele für Klauseln, die binäre Operatoren verwenden

	Verwenden von benutzerdefinierten Nachrichten in Klauseln
	Klauseln kombinieren
	Blöcke mit Guard-Regeln verwenden
	Blöcke abfragen
	whenBlöcke
	Blöcke mit benannten Regeln

	Verwenden von integrierten Funktionen
	Die wichtigsten Funktionen

	Definition und Filterung von Guard-Abfragen
	Voraussetzungen
	Abfragen definieren
	Abfragen Variablen zuordnen
	Direktes Durchlaufen von Werten aus einer Variablen, die einer Abfrage zugewiesen wurde
	Direkte Vergleiche auf Klauselebene
	Form einer Einzelklausel und einer Blockklausel

	Abfrageergebnisse und zugehörige Klauseln
	Verwenden von Filtern in Abfragen
	Verwendung von Klauseln als Auswahlkriterien
	Aufbau komplexerer Filteranforderungen
	Trennen von Sammlungen nach ihren enthaltenen Typen

	Zuweisen und Referenzieren von Variablen in Guard-Regeln
	Variablen zuweisen
	Variablen referenzieren
	Gültigkeitsbereich der Variablen
	Beispiele für Variablen in Guard-Regeldateien
	Statische Zuweisung
	Dynamische Zuweisung
	Erzwingen der Vorlagenkonfiguration CloudFormation

	Blöcke mit benannten Regeln verfassen in AWS CloudFormation Guard
	Voraussetzungen
	Zusammensetzung bedingter Abhängigkeiten
	Zusammensetzung korrelativer Abhängigkeiten

	Klauseln schreiben, um kontextsensitive Bewertungen durchzuführen
	Verständnis bei context Evaluierungen
	Schleifen verstehen
	Arrays
	Verwenden Sie das Formular spec.containers[*] anstelle von spec.containers
	Wird verwendetthis, um auf den aktuellen Kontextwert zu verweisen
	Mögliche Fehler bei der Verwendung von implizit this
	Behebung von Fehlern mit der impliziten Verwendung von this

	AWS CloudFormation Guard Regeln für Tests
	Voraussetzungen
	Überblick über die Guard-Unit-Testdateien
	Syntax
	Eigenschaften

	Exemplarische Vorgehensweise zum Schreiben einer Unit-Test-Datei für Guard-Regeln

	Eingabeparameter mit AWS CloudFormation Guard Regeln verwenden
	Wie benutzt man
	Beispielverwendung
	Mehrere Eingabeparameter

	Validierung von Eingabedaten anhand von Regeln AWS CloudFormation Guard
	Voraussetzungen
	Verwenden Sie den validate Befehl
	Validierung mehrerer Regeln anhand mehrerer Datendateien

	Problembehebung AWS CloudFormation Guard
	Die Klausel schlägt fehl, wenn keine Ressourcen des ausgewählten Typs vorhanden sind
	Guard bewertet keine CloudFormation Vorlage mit Verweisen in Kurzform Fn::GetAtt
	Allgemeine Themen zur Fehlerbehebung

	AWS CloudFormation Guard CLI-Parameter und Befehlsreferenz
	Globale Parameter von Guard CLI
	Baum analysieren
	Syntax
	Parameter
	Optionen
	Beispiele

	Rule Legen
	Syntax
	Parameter
	Optionen
	Beispiele

	Test
	Syntax
	Parameter
	Optionen
	Beispiele
	Output
	Weitere Informationen finden Sie auch unter

	validieren
	Syntax
	Parameter
	Optionen
	Beispiel
	Output
	Weitere Informationen finden Sie auch unter

	Sicherheit in AWS CloudFormation Guard
	AWS CloudFormation Guard Dokumentverlauf
	AWS Glossar
	

