adws

User Guide

AWS CloudFormation Guard

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard: User Guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Handelsmarken und Handelsaufmachung von Amazon dirfen nicht in einer Weise in Verbindung
mit nicht von Amazon stammenden Produkten oder Services verwendet werden, durch die Kunden
irregeflhrt werden kénnten oder Amazon in schlechtem Licht dargestellt oder diskreditiert werden
konnte. Alle anderen Handelsmarken, die nicht Eigentum von Amazon sind, gehdren den jeweiligen

Besitzern, die moglicherweise zu Amazon gehdren oder nicht, mit Amazon verbunden sind oder von
Amazon gesponsert werden.

AWS CloudFormation Guard User Guide

Table of Contents

Was ist AWS CloudFormation GUARA?eeiiiiiieeiiiieiiiieiee e e e e e e e e e e e e eaeeeeeeeannns 1
Benutzen Sie Guard zum ersten Mal? ... —————— 1
FUNKLONEN VON GUAKIT ...ttt ettt et e e e e e e e e e e e e et eeeeeeeaeaaaeaeeeaans 2
Guard mit Hooks verwenden CloudFOormation ..o 3
ZUGriff @UF GUAI ...ttt a e e e e e e e aaaaaaaaes 3
BeWahrte MELNOTEN ... eeeeeeeeenennnnnnns 3

L@ TUE=T o =Y Ty T | (= o P EEEERRRR 4
FUr LiNUX UNA MACOS ...ttt e e e e e e e e e e e e ettt e e e e e e e aaaeeeeeeaaaa s nsnnnnneeneeeeeeaens 4

Installieren Sie Guard aus einer vorgefertigten Binardateiooovviiiiiiiiiiiiiiiie 4
Installieren Sie Guard VON Cargoeuuiiuiiiiiiieieeee e ettt e e e e e e e e e aaaaaaes 5
Installieren Sie Guard vON HOMEDIEWcoooiiiiiiiiiieeee e e e 6
W AT g T Lo PSP S 6
V0] = TUE1ST= v U g o =T o S USPPPPRR 7
Installieren Sie Guard VON Cargoeuuiueiiiiiiieiiieee e e et e e e e e e e e e aaaaeaes 5
Installieren Sie Guard vOn ChOCOIALEYcccooiiiiiiiii e 8
Als AWS Lambda FUNKLON ...ttt e e e et r e e e e eaaeeaeeeaans 8
V0] = TUE1ST= v U g o =T o S USPPPPRR 8
Installieren Sie den Rust-Paketmanagercccoooiiiiiiiiiiii i, 9
Um Guard als Lambda-Funktion zu installieren ... 9
Um zu bauen und aUSZUFUNIENooiiiiiiii e e e e e e e e e e e e e e e nnnes 11
Aufrufen der Lambda-FUunKtion ... 11

Voraussetzungen und Uberblick fiir die Verwendung von Guard-Regelncccoooeeeveceeeeeeeeene. 12
Vo] =YW EST= U o [T o PRSP 12
Uberblick tiber die Verwendung von GUArd-ReGEINccuoweoeeeeeeeeee e 12
WItING GUArd-REQGEIN ...t e e e e e e e e aaeaaaaaaes 13

L E= 10 1= | o P 13
Verwenden von Abfragen in KIuSEINoooomiiiiece e 16
Verwendung von Operatoren in KIauSEIN ... e 16
Verwenden von benutzerdefinierten Nachrichten in Klauseln ..., 20
Klauseln KOMDINIEIENottt e e e e e e e e e aaeaeeas 20
Blocke mit Guard-Regeln VErWENAENoovviiiieicee e 21
Verwenden von integrierten FUNKLONEN ... e 25
Abfragen definieren und fillern ... 26
Zuweisen und Referenzieren von Variablen in Guard-Regelncccoovviiiiiiiiiii 40

AWS CloudFormation Guard User Guide

Blocke mit benannten Regeln VErfasSEeNccoiiiiiiiiii i 47
Schreiben von Klauseln zur Durchfihrung kontextsensitiver Bewertungen 54
Testing GUArA-REGEINooeiiiieecce et eeeeeesessaannaaaans 67
Vo] =10 E1ST= v U o =T o PSRRI 67

0 T=T 1o o R 67
Exemplarische VOrgeNENSWEISEccoouiuiiiiiiiiici e e e e e e e 69
Verwendung von Eingabeparametern mit Guard-Regelniiiiiieiiiiiiiiiiiiieee, 79
L AT L= 01T 01U] v A o = PO 79
LTI o<1 VZ=T V=T o o [o Vo PRSPPI 79
Mehrere EiNgabeparameEter ... 80
Validierung der Eingabedaten anhand der Guard-Regelnccccoeiiiiiiiiiiiiiiiiiiiieee, 81
Vo] = TUE1ST= v U g o =T o PSPPI 81
Mit dem validate Befehl ... 81
Validierung mehrerer Regeln anhand mehrerer Datendateienccccccoeeeiiiiiiiiiiieeeiiinnn, 82
Fehlerbehebung Dei GUAKA ... e a e 84
Die Klausel schlagt fehl, wenn keine Ressourcen des ausgewahlten Typs vorhanden sind 84
Guard bewertet CloudFormation die Vorlage NiCht ... 84
Allgemeine Themen zur Problembehandlung ... 85
GUArd CLIFREFEIENZttt s e e e e s e e e e e e e eeeaeaeeeeeeeseennssnnnnns 86
Globale Parameter von Guard CLIooooiiiiiiieecre e 86
Baum @N@lYSIEIEN ...ttt e e e e e e e e e e e 86
031 €= PO 86
=T =1 1Y =Y 87

L@] 10 =T o USSR 87

T CT IS o= = USSP 87
T[S I =T 1T o PP PPPRRRP 87
31 €= PO 88
=T =1 1Y =Y 88

L@] 10 =T o USSR 88

T CT IS o= = USSP 88
1= 88
31 €= PO 88
=T =1 1Y - 89

L@] 110 =T o USSR 89

T CT IS o= = PP 90

L 11 1 0 | RSP 90

AWS CloudFormation Guard User Guide

Weitere Informationen finden Sie auch unter ... 90

172 11T 1T =Y o USSP 90

S N AX . e e e e eeeaaeeeeaeeeeter e ——————————————————— 90

= =T 0[] (Y PSP 90
(@] 1101 a 1= o [P PPPUSUUPOURRPRRR 92
=TI o 1= PRSPPI 93

(@ 11 101U | PP URPPUPRPRP 94
Weitere Informationen finden Sie auch unter ... 94

ST (¢d 1= 4 =T | PP RPPPPPPPTP 95
DOKUMENIVETIAUT ...ttt e e e e ettt e e e e e e e e e eaeaaaaaeaeeeeeeeensssees 96
AWS GIOSSAN ... ittt e et et e e e e e e e e et e ettt e et e e e e e e e e e e eeaaeaaeeeeeeeereeaeranar b 99
.. C

AWS CloudFormation Guard User Guide

Was ist AWS CloudFormation Guard?

AWS CloudFormation Guard ist ein Open-Source-Evaluierungstool fur allgemeine Zwecke.
policy-as-code Die Guard-Befehlszeilenschnittstelle (CLI) bietet eine simple-to-use deklarative
domanenspezifische Sprache (DSL), mit der Sie Richtlinien als Code ausdriicken kénnen. Dartber
hinaus kdnnen Sie CLI Befehle verwenden, um strukturierte Hierarchien JSON oder YAML Daten
anhand dieser Regeln zu validieren. Guard bietet auch ein integriertes Unit-Test-Framework, mit dem
Sie Uberprufen kdnnen, ob Ihre Regeln wie vorgesehen funktionieren.

Guard Uberprift CloudFormation Vorlagen nicht auf gliltige Syntax oder zulassige Eigenschaftswerte.
Sie kénnen das Tool cfn-lint verwenden, um eine griindliche Uberpriifung der Vorlagenstruktur
durchzuflhren.

Guard bietet keine serverseitige Durchsetzung. Sie kénnen die CloudFormation Hooks verwenden,
um serverseitige Uberpriifungen und Erzwingungen durchzufiihren, wobei Sie einen Vorgang
blockieren oder davor warnen kdnnen.

Detaillierte Informationen zur AWS CloudFormation Guard Entwicklung finden Sie im GitHub Guard-
Repository.

Themen

* Benutzen Sie Guard zum ersten Mal?

* Funktionen von Guard

» Guard mit Hooks verwenden CloudFormation

Zugriff auf Guard

Bewahrte Methoden

Benutzen Sie Guard zum ersten Mal?

Wenn Sie Guard zum ersten Mal verwenden, empfehlen wir Ihnen, zunachst die folgenden Abschnitte
zu lesen:

» Guard einrichten— In diesem Abschnitt wird beschrieben, wie Sie Guard installieren. Mit Guard
kénnen Sie mit dem Guard Richtlinienregeln schreiben DSL und lhre JSON — oder — YAML
formatierten strukturierten Daten anhand dieser Regeln validieren.

Benutzen Sie Guard zum ersten Mal? 1

https://github.com/aws-cloudformation/cfn-python-lint
https://github.com/aws-cloudformation/cloudformation-guard/
https://github.com/aws-cloudformation/cloudformation-guard/

AWS CloudFormation Guard User Guide

Writing Guard-Regeln— Dieser Abschnitt enthalt detaillierte Anleitungen zum Schreiben von
Richtlinienregeln.

Testing Guard-Regeln— Dieser Abschnitt enthalt eine detaillierte Anleitung zum Testen lhrer
Regeln, um sicherzustellen, dass sie wie vorgesehen funktionieren, und zum Uberpriifen lhrer
JSON — oder YAML formatierten — strukturierten Daten anhand lhrer Regeln.

Validierung der Eingabedaten anhand der Guard-Regeln— Dieser Abschnitt enthalt eine detaillierte
Anleitung zur Validierung lhrer — oder JSON — YAML formatierten strukturierten Daten anhand
Ihrer Regeln.

Guard CLI-Referenz— In diesem Abschnitt werden die Befehle beschrieben, die im Guard
verfligbar sind. CLI

Funktionen von Guard

Mit Guard kénnen Sie Richtlinienregeln schreiben, um beliebige JSON oder YAML formatierte
strukturierte Daten anhand von Vorlagen zu CloudFormation validieren. Guard unterstitzt das
gesamte Spektrum der end-to-end Bewertung von Policy-Checks. Regeln sind in den folgenden
Geschéaftsbereichen nitzlich:

Préventive Steuerung und Einhaltung von Vorschriften (Shift-Left-Tests) — Uberpriifen Sie die
Infrastruktur als Code (laC) oder die Zusammensetzung von Infrastruktur und Diensten anhand
von Richtlinienregeln, die lhre organisatorischen Best Practices fur Sicherheit und Compliance
darstellen. Sie kénnen beispielsweise CloudFormation Vorlagen, CloudFormation Anderungssatze,
JSON basierte Terraform-Konfigurationsdateien oder Kubernetes-Konfigurationen validieren.

Detective Governance und Compliance — Uberpriifen Sie die Konformitat von Ressourcen

der Configuration Management Database (CMDB), z. B. von AWS Config basierten
Konfigurationselementen (Cls). Entwickler kdnnen beispielsweise Guard-Richtlinien
verwenden, AWS Config Cls um den Status bereitgestellter AWS und nicht vorhandener AWS
Ressourcen kontinuierlich zu Uberwachen, VerstdRe gegen Richtlinien zu erkennen und mit der
Problembehebung zu beginnen.

Sicherheit bei der Bereitstellung — Stellen Sie vor der Implementierung sicher, dass Anderungen
sicher sind. Uberpriifen Sie beispielsweise CloudFormation Anderungssétze anhand von
Richtlinienregeln, um Anderungen zu verhindern, die zu einem Ersatz von Ressourcen fiihren, wie
z. B. das Umbenennen einer Amazon DynamoDB-Tabelle.

Funktionen von Guard

AWS CloudFormation Guard User Guide

Guard mit Hooks verwenden CloudFormation

Sie konnen CloudFormation Guard verwenden, um einen Hook in CloudFormation Hooks zu
erstellen. CloudFormation Hooks ermdglicht es Ihnen, Ihre Guard-Regeln proaktiv durchzusetzen,
bevor CloudFormation Sie Operationen erstellen, aktualisieren oder I6schen und Operationen
AWS -Cloud-Control- API erstellen oder aktualisieren. Hooks stellen sicher, dass lhre
Ressourcenkonfigurationen den Best Practices |hrer Organisation in Bezug auf Sicherheit, Betrieb
und Kostenoptimierung entsprechen.

Einzelheiten zur Verwendung von Guard zur Erstellung von CloudFormation Guard Hooks finden
Sie unter Write Guard-Regeln zur Bewertung von Ressourcen fur Guard Hooks im CloudFormation
Hooks User Guide.

Zugriff auf Guard

Um auf den Guard DSL und die Befehle zugreifen zu kbnnen, missen Sie den Guard installierenCLI.
Informationen zur Installation des Guards finden CLI| Sie unterGuard einrichten.

Bewahrte Methoden

Schreiben Sie einfache Regeln und verwenden Sie benannte Regeln, um in anderen Regeln auf sie
zu verweisen. Es kann schwierig sein, komplexe Regeln zu verwalten und zu testen.

Guard mit Hooks verwenden CloudFormation 3

https://docs.aws.amazon.com/cloudformation-cli/latest/hooks-userguide/guard-hooks-write-rules.html

AWS CloudFormation Guard User Guide

Einrichten AWS CloudFormation Guard

AWS CloudFormation Guard ist eine Open-Source-Befehlszeilenschnittstelle ()CLI. Sie bietet

Ihnen eine einfache, domanenspezifische Sprache, mit der Sie Richtlinienregeln schreiben und
deren hierarchische Struktur JSON und YAML Daten anhand dieser Regeln validieren kénnen. Die
Regeln kdnnen Unternehmensrichtlinien in Bezug auf Sicherheit, Compliance und mehr darstellen.
Die strukturierten hierarchischen Daten kdnnen eine Cloud-Infrastruktur darstellen, die als Code
beschrieben wird. Sie kdnnen beispielsweise Regeln erstellen, um sicherzustellen, dass sie in ihren
CloudFormation Vorlagen immer verschllisselte Amazon Simple Storage Service (Amazon S3) -
Buckets modellieren.

Die folgenden Themen enthalten Informationen zur Installation von Guard mit dem von lhnen
ausgewahlten Betriebssystem oder als AWS Lambda Funktion.

Themen

» Guard fur Linux und macOS installieren

» Guard fur Windows installieren

* Guard als AWS Lambda Funktion installieren

Guard fur Linux und macQOS installieren

Sie kdnnen AWS CloudFormation Guard die Installation fur Linux und macOS mithilfe der
vorgefertigten Binardatei Cargo oder tiber Homebrew durchfuhren.

Installieren Sie Guard aus einer vorgefertigten Binardatei

Gehen Sie wie folgt vor, um Guard aus einer vorgefertigten Binardatei zu installieren.

1. Offnen Sie ein Terminal und fiihren Sie den folgenden Befehl aus.

curl --proto '=https' --tlsvl.2 -sSf https://raw.githubusercontent.com/aws-
cloudformation/cloudformation-guard/main/install-gquard.sh | sh

2. Fuhren Sie den folgenden Befehl aus, um lhre PATH Variable festzulegen.

export PATH=~/.guard/bin:$PATH

Fir Linux und macOS 4

AWS CloudFormation Guard User Guide

Ergebnisse: Sie haben Guard erfolgreich installiert und die PATH Variable gesetzt.

* (Optional) Fuhren Sie den folgenden Befehl aus, um die Installation von Guard zu
bestatigen.

cfn-guard --version

Der Befehl gibt die folgende Ausgabe zurtick.

cfn-guard 3.1.2

Installieren Sie Guard von Cargo

Cargo ist der Rust-Paketmanager. Flihren Sie die folgenden Schritte aus, um Rust zu installieren, zu
dem auch Cargo gehdrt. Installieren Sie anschlieRend Guard von Cargo.

1. Fuhren Sie den folgenden Befehl von einem Terminal aus und folgen Sie den Anweisungen auf
dem Bildschirm, um Rust zu installieren.

curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.rs | sh
* (Optional) Fuhren Sie fur Ubuntu-Umgebungen den folgenden Befehl aus.

sudo apt-get update; sudo apt install build-essential

2. Konfigurieren Sie Ihre PATH Umgebungsvariable und fiihren Sie den folgenden Befehl aus.

source $HOME/.cargo/env

3. Wenn Cargo installiert ist, fhren Sie den folgenden Befehl aus, um Guard zu installieren.

cargo install cfn-guard

Ergebnisse: Sie haben Guard erfolgreich installiert.

» (Optional) Fuhren Sie den folgenden Befehl aus, um die Installation von Guard zu
bestatigen.

Installieren Sie Guard von Cargo 5

AWS CloudFormation Guard User Guide

cfn-qguard --version

Der Befehl gibt die folgende Ausgabe zurtick.

cfn-qguard 3.1.2

Installieren Sie Guard von Homebrew

Homebrew ist ein Paketmanager fir macOS und Linux. FUhren Sie die folgenden Schritte aus, um
Homebrew zu installieren. Installieren Sie anschlieRend Guard von Homebrew.

1. Fuhren Sie den folgenden Befehl von einem Terminal aus und folgen Sie den Anweisungen auf
dem Bildschirm, um Homebrew zu installieren.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
install.sh)"

2. Wenn Homebrew installiert ist, fihren Sie den folgenden Befehl aus, um Guard zu installieren.

brew install cloudformation-guard

Ergebnisse: Sie haben Guard erfolgreich installiert.

» (Optional) Fuhren Sie den folgenden Befehl aus, um die Installation von Guard zu
bestatigen.

cfn-guard --version
Der Befehl gibt die folgende Ausgabe zurtick.

cfn-guard 3.1.2

Guard fur Windows installieren

Sie kénnen die Installation AWS CloudFormation Guard fir Windows Uber Cargo oder Uber
Chocolatey durchfiihren.

Installieren Sie Guard von Homebrew 6

AWS CloudFormation Guard User Guide

Voraussetzungen

Um Guard uber die Befehlszeilenschnittstelle zu erstellen, missen Sie die Build Tools fur Visual
Studio 2019 installieren.

1. Laden Sie die Microsoft Visual C++-Buildtools von der Build Tools for Visual Studio 2019-
Website herunter.

2. Fuhren Sie das Installationsprogramm aus und wahlen Sie die Standardeinstellungen aus.

Installieren Sie Guard von Cargo

Cargo ist der Rust-Paketmanager. FUhren Sie die folgenden Schritte aus, um Rust zu installieren, zu
dem auch Cargo gehdrt. Installieren Sie anschlielend Guard von Cargo.

1. Laden Sie Rust herunter und fihren Sie dann rustup-init.exe aus.

2. Wahlen Sie in der Befehlszeile 1 aus, was die Standardoption ist.

Der Befehl gibt die folgende Ausgabe zurtick.

Rust is installed now. Great!
To get started you may need to restart your current shell.
This would reload its PATH environment variable to include
Cargo's bin directory (%USERPROFILES\.cargo\bin).

Press the Enter key to continue.

3. Drucken Sie die Eingabetaste, um die Installation abzuschliel3en.

4. Wenn Cargo installiert ist, fihren Sie den folgenden Befehl aus, um Guard zu installieren.

cargo install cfn-guard

Ergebnisse: Sie haben Guard erfolgreich installiert.

» (Optional) Fuhren Sie den folgenden Befehl aus, um die Installation von Guard zu
bestatigen.

cfn-guard --version

Voraussetzungen 7

https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://forge.rust-lang.org/infra/other-installation-methods.html#other-ways-to-install-rustup

AWS CloudFormation Guard User Guide

Der Befehl gibt die folgende Ausgabe zurtick.

cfn-qguard 3.1.2

Installieren Sie Guard von Chocolatey

Chocolatey ist ein Paketmanager fur Windows. Gehen Sie wie folgt vor, um Chocolatey zu
installieren. Installieren Sie anschliefend Guard von Chocolatey.

1. Folgen Sie dieser Anleitung, um Chocolatey zu installieren

2. Wenn Chocolatey installiert ist, fuhren Sie den folgenden Befehl aus, um Guard zu installieren.

choco install cloudformation-guard

Ergebnisse: Sie haben Guard erfolgreich installiert.

» (Optional) Fuhren Sie den folgenden Befehl aus, um die Installation von Guard zu
bestatigen.

cfn-guard --version

Der Befehl gibt die folgende Ausgabe zurtick.

cfn-guard 3.1.2

Guard als AWS Lambda Funktion installieren

Sie kénnen AWS CloudFormation Guard Uber Cargo, den Rust-Paketmanager, installieren. Guard as
an AWS Lambda function (cfn-guard-1lambda) ist ein leichter Wrapper fir Guard (cfn-guazrd),
der als Lambda-Funktion verwendet werden kann.

Voraussetzungen

Bevor Sie Guard als Lambda-Funktion installieren kénnen, missen Sie die folgenden
Voraussetzungen erfillen:

Installieren Sie Guard von Chocolatey 8

https://chocolatey.org/install

AWS CloudFormation Guard User Guide

+ AWS Command Line Interface (AWS CLI) konfiguriert mit Berechtigungen zum Bereitstellen und
Aufrufen von Lambda-Funktionen. Weitere Informationen finden Sie unter Konfigurieren der AWS
CLI.

* Eine AWS Lambda Ausfiihrungsrolle in AWS ldentity and Access Management (IAM). Weitere
Informationen finden Sie unter AWS Lambda Ausfuhrungsrolle.

» Flgen Sie in CentOS/RHEL Umgebungen das mus1-1ibc Paket-Repository zu lhrer Yum-
Konfiguration hinzu. Weitere Informationen finden Sie unter ngompa/musl-libc.

Installieren Sie den Rust-Paketmanager

Cargo ist der Rust-Paketmanager. Fuhren Sie die folgenden Schritte aus, um Rust zu installieren, zu
dem auch Cargo gehdrt.

1. Fuhren Sie den folgenden Befehl von einem Terminal aus und folgen Sie dann den Anweisungen
auf dem Bildschirm, um Rust zu installieren.

curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.rs | sh
* (Optional) Fuhren Sie fir Ubuntu-Umgebungen den folgenden Befehl aus.

sudo apt-get update; sudo apt install build-essential

2. Konfigurieren Sie Ihre PATH Umgebungsvariable und fihren Sie den folgenden Befehl aus.

source $HOME/.cargo/env

Installieren Sie Guard als Lambda-Funktion (Linux, macOS oder Unix)

Gehen Sie wie folgt vor, um Guard als Lambda-Funktion zu installieren.

1. Fuhren Sie von lhrem Befehlsterminal aus den folgenden Befehl aus.

cargo install cfn-guard-lambda

« (Optional) Fuhren Sie den folgenden Befehl aus, um die Installation von Guard als Lambda-
Funktion zu bestatigen.

Installieren Sie den Rust-Paketmanager 9

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://copr.fedorainfracloud.org/coprs/ngompa/musl-libc/

AWS CloudFormation Guard User Guide

cfn-guard-lambda --version

Der Befehl gibt die folgende Ausgabe zurtck.

cfn-guard-lambda 3.1.2

2. Fulhren Sie den folgenden Befehl aus, um den mus1 Support zu installieren.

rustup target add x86_64-unknown-linux-musl

3. Erstellen Sie mit mus1 und fihren Sie dann den folgenden Befehl in lhrem Terminal aus.

cargo build --release --target x86_64-unknown-linux-musl

Fir eine benutzerdefinierte Laufzeit AWS Lambda ist eine ausfuhrbare Datei mit dem Namen
bootstrap in der ZIP-Datei des Bereitstellungspakets erforderlich. Benennen Sie die generierte
cfn-lambda ausfiihrbare Datei in um bootstrap und fiigen Sie sie dann dem ZIP-Archiv
hinzu.

» Erstellen Sie fir macOS-Umgebungen lhre Cargo-Konfigurationsdatei im Stammverzeichnis
des Rust-Projekts oder in~/.cargo/config.

[target.x86_64-unknown-linux-musl]
linker = "x86_64-1inux-musl-gcc"

4. Wechseln Sie in das cfn-guard-lambda Stammverzeichnis.

cd ~/.cargo/bin/cfn-guard-lambda

5. Fudhren Sie den folgenden Befehl in Inrem Terminal aus.

cp ./../target/x86_64-unknown-linux-musl/release/cfn-guard-lambda ./bootstrap &&
zip lambda.zip bootstrap && rm bootstrap

6. Fuahren Sie den folgenden Befehl aus, um ihn cfn-guard als Lambda-Funktion an |hr Konto zu
senden.

aws lambda create-function --function-name cfnGuard \
--handler guard.handler \

Um Guard als Lambda-Funktion zu installieren 10

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html

AWS CloudFormation Guard User Guide

--zip-file fileb://./lambda.zip \

--runtime provided \

--role arn:aws:iam: :444455556666:r0le/your_lambda_execution_role \
--environment Variables={RUST_BACKTRACE=1} \

--tracing-config Mode=Active

Um Guard als Lambda-Funktion zu erstellen und auszufihren

Flhren Sie den folgenden Befehl aus, um die cfn-guard-lambda als Lambda-Funktion
eingereichte Datei aufzurufen.

aws lambda invoke --function-name cfnGuard \
--payload '{"data":"input data","rules":["rulel","rule2"1}' \
output.json

Um die Anforderungsstruktur der Lambda-Funktion aufzurufen

Fordert an, cfn-guard-1lambda dass die folgenden Felder erforderlich sind:

» data— Die String-Version der YAML- oder JSON-Vorlage

* rules— Die String-Version der Regelsatzdatei

Um zu bauen und auszufiihren 11

AWS CloudFormation Guard User Guide

Voraussetzungen und Uberblick fiir die Verwendung von
Guard-Regeln

In diesem Abschnitt wird gezeigt, wie Sie die wichtigsten Guard-Aufgaben des Schreibens, Testens
und Validierens von Regeln anhand von Daten im JSON- oder YAML-Format ausfihren kdnnen.
Daruber hinaus enthalt er detaillierte Anleitungen, in denen das Schreiben von Regeln fur bestimmte
Anwendungsfalle demonstriert wird.

Themen

» Voraussetzungen

« Uberblick iiber die Verwendung von Guard-Regeln

* AWS CloudFormation Guard Regeln schreiben
* AWS CloudFormation Guard Regeln fur Tests

» Eingabeparameter mit AWS CloudFormation Guard Regeln verwenden

» Validierung von Eingabedaten anhand von Regeln AWS CloudFormation Guard

Voraussetzungen

Bevor Sie Richtlinienregeln mit der domanenspezifischen Sprache (DSL) von Guard schreiben
kénnen, missen Sie die Guard-Befehlszeilenschnittstelle (CLI) installieren. Weitere Informationen
finden Sie unter Guard einrichten.

Uberblick tiber die Verwendung von Guard-Regeln

Wenn Sie Guard verwenden, fuhren Sie in der Regel die folgenden Schritte aus:

1. Schreiben Sie Daten im JSON- oder YAML-Format zur Validierung.

2. Schreiben Sie Guard-Richtlinienregeln. Weitere Informationen finden Sie unter Writing Guard-

Regeln.
3. Stellen Sie mithilfe des test Guard-Befehls sicher, dass lhre Regeln wie vorgesehen

funktionieren. Weitere Informationen zu Komponententests finden Sie unterTesting Guard-Regeln.

4. Verwenden Sie den validate Befehl Guard, um lhre Daten im JSON- oder YAML-Format
anhand Ihrer Regeln zu validieren. Weitere Informationen finden Sie unter Validierung der
Eingabedaten anhand der Guard-Regeln.

Voraussetzungen 12

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard Regeln schreiben

In AWS CloudFormation Guard sind Regeln Regeln. policy-as-code Sie schreiben Regeln in der
doméanenspezifischen Sprache (DSL) von Guard, anhand derer Sie |hre Daten im JSON- oder YAML-
Format validieren kdnnen. Regeln bestehen aus Klauseln.

Sie kdnnen Regeln, die mit Guard DSL geschrieben wurden, in Klartextdateien speichern, die eine
beliebige Dateierweiterung verwenden.

Sie kbnnen mehrere Regeldateien erstellen und sie als Regelsatz kategorisieren. Regelsatze
ermoglichen es Ihnen, lhre Daten im JSON- oder YAML-Format anhand mehrerer Regeldateien
gleichzeitig zu validieren.

Themen
« Klauseln

» Verwenden von Abfragen in Klauseln

» Verwenden von Operatoren in Klauseln

* Verwenden von benutzerdefinierten Nachrichten in Klauseln

* Klauseln kombinieren

» Blécke mit Guard-Regeln verwenden

* Verwenden von integrierten Funktionen

» Definition und Filterung von Guard-Abfragen

» Zuweisen und Referenzieren von Variablen in Guard-Regeln

» Blécke mit benannten Regeln verfassen in AWS CloudFormation Guard

» Klauseln schreiben, um kontextsensitive Bewertungen durchzufihren

Klauseln

Klauseln sind boolesche Ausdriicke, die entweder true (PASS) oder false () ergeben. FAIL Klauseln
verwenden entweder binare Operatoren, um zwei Werte zu vergleichen, oder unare Operatoren, die
auf einen einzelnen Wert angewendet werden.

Beispiele flr unare Klauseln

Die folgende unare Klausel bewertet, ob die Sammlung leer ist. TcpBlockedPorts

Writing Guard-Regeln 13

AWS CloudFormation Guard User Guide

InputParameters.TcpBlockedPorts not empty

Die folgende unére Klausel bewertet, ob es sich bei der ExecutionRoleArn Eigenschaft um eine
Zeichenfolge handelt.

Properties.ExecutionRoleArn is_string

Beispiele flr Binarklauseln

Die folgende Binarklausel bewertet unabhangig von der Gro3- und Kleinschreibungencrypted, ob
die BucketName Eigenschaft die Zeichenfolge enthalt.

Properties.BucketName != /(?i)encrypted/

Die folgende Binarklausel bewertet, ob die ReadCapacityUnits Eigenschaft kleiner oder gleich
5.000 ist.

Properties.ProvisionedThroughput.ReadCapacityUnits <= 5000

Syntax flir das Schreiben von Guard-Regelklauseln

<query> <operator> [query|value literal] [custom message]

Eigenschaften von Guard-Regelklauseln
query

Ein durch Punkte (.) getrennter Ausdruck, der geschrieben wurde, um hierarchische Daten

zu durchqueren. Abfrageausdriicke kdnnen Filterausdriicke enthalten, die auf eine Teilmenge
von Werten abzielen. Abfragen kénnen Variablen zugewiesen werden, sodass Sie sie einmal
schreiben und an anderer Stelle in einem Regelsatz auf sie verweisen kdnnen, wodurch Sie auf
Abfrageergebnisse zugreifen kdnnen.

Weitere Hinweise zum Schreiben und Filtern von Abfragen finden Sie unterAbfragen definieren
und filtern.

Erforderlich: Ja

Klauseln 14

AWS CloudFormation Guard User Guide

operator

Ein unérer oder binarer Operator, mit dessen Hilfe der Status der Abfrage Uberprift werden kann.
Die linke Seite (LHS) eines binaren Operators muss eine Abfrage sein, und die rechte Seite (RHS)
muss entweder eine Abfrage oder ein Werteliteral sein.

Unterstitzte binare Operatoren: == (Gleich) | ! = (Ungleich) | > (GroRer als) | >= (Gréler als oder
gleich) | (Kleiner als) | < (Kleiner als) | <= (Kleiner als oder gleich) | IN (In einer Liste der Form [X,

Y, Z]

Unterstiitzte unare Operatoren: exists | empty | is_string||is_list|is_struct not(!)

Erforderlich: Ja

query|value literal
Eine Abfrage oder ein unterstitztes Werteliteral wie string oder. integer(64)

Unterstutzte Werteliterale:
* Alle primitiven Typen:string,integer(64),float(64),bool, char regex

+ Alle speziellen Bereichstypen zum Ausdriicken voninteger(64),float(64), oder char
Bereichen, ausgedrickt als:

* r[<lower_limit>, <upper_limit>], was in einen beliebigen Wert Ubersetzt wirdk, der
den folgenden Ausdruck erflllt: lower_limit <= k <= upper_limit

« r[<lower_limit>, <upper_limit>), was in einen beliebigen Wert tGbersetzt wirdk, der
den folgenden Ausdruck erflllt: lower_limit <= k < upper_limit

 r(<lower_limit>, <upper_limit>], was in einen beliebigen Wert Gbersetzt wirdk, der
den folgenden Ausdruck erflllt: lower_limit < k <= upper_limit

* r(<lower_limit>, <upper_limit>),was zu einem beliebigen Wert Gibersetzt wirdk,
der den folgenden Ausdruck erfillt: lower_limit < k < upper_limit

» Assoziative Arrays (Maps) fur verschachtelte Schlisselwert-Strukturdaten. Zum Beispiel:

{ "my-map": { "nested-maps": [{ "key": 10, "value": 20 } 1 } }

» Arrays primitiver Typen oder assoziativer Arraytypen

Erforderlich: Bedingt; erforderlich, wenn ein binarer Operator verwendet wird.

Klauseln 15

AWS CloudFormation Guard User Guide

custom message

Eine Zeichenfolge, die Informationen Gber die Klausel bereitstellt. Die Meldung wird in den
ausfuhrlichen Ausgaben der test Befehle validate und angezeigt und kann hilfreich sein, um
die Regelauswertung hierarchischer Daten zu verstehen oder zu debuggen.

Required: No

Verwenden von Abfragen in Klauseln

Hinweise zum Schreiben von Abfragen finden Sie unter Abfragen definieren und filtern undZuweisen
und Referenzieren von Variablen in Guard-Regeln.

Verwenden von Operatoren in Klauseln

Im Folgenden finden Sie CloudFormation Beispielvorlagen, Template-1 undTemplate-2. Zur
Veranschaulichung der Verwendung unterstutzter Operatoren beziehen sich die Beispielabfragen und
Klauseln in diesem Abschnitt auf diese Beispielvorlagen.

Vorlagen-1

Resources:
S3Bucket:
Type: AWS::S3::Bucket
Properties:
BucketName: MyServiceS3Bucket
BucketEncryption:
ServerSideEncryptionConfiguration:

- ServerSideEncryptionByDefault:
SSEAlgorithm: 'aws:kms'
KMSMasterKeyID: 'arn:aws:kms:us-

east-1:123456789:key/056ea50b-1013-3907-8617-c93e474e400"
Tags:
- Key: stage
Value: prod
- Key: service
Value: myService

Vorlage-2

Resources:

Verwenden von Abfragen in Klauseln 16

AWS CloudFormation Guard User Guide

NewVolume:
Type: AWS::EC2::Volume
Properties:
Size: 100
VolumeType: iol
Iops: 100
AvailabilityZone:
Fn::Select:
-0
- Fn::GetAZs: us-east-1
Tags:
- Key: environment
Value: test
DeletionPolicy: Snapshot

Beispiele fur Klauseln, die unare Operatoren verwenden

+ empty— Prift, ob eine Sammlung leer ist. Sie kbnnen damit auch Uberprufen, ob eine Abfrage
Werte in hierarchischen Daten enthalt, da Abfragen zu einer Sammlung fuhren. Sie kbnnen damit
nicht Gberprifen, ob fir Abfragen mit Zeichenkettenwerten eine leere Zeichenfolge (" ") definiert
ist. Weitere Informationen finden Sie unter Abfragen definieren und filtern.

Die folgende Klausel pruft, ob fur die Vorlage eine oder mehrere Ressourcen definiert sind. Sie
wird als ausgewertet, PASS weil eine Ressource mit der logischen ID in Template-1 definiert
S3Bucket ist.

Resources !empty

Die folgende Klausel prift, ob ein oder mehrere Tags fir die S3Bucket Ressource definiert
sind. Sie wird als ausgewertet, PASS weil S3Bucket zwei Tags fir die Tags Eigenschaft in
Template-1 definiert sind.

Resources.S3Bucket.Properties.Tags !empty

+ exists— Pruft, ob jedes Vorkommen der Abfrage einen Wert hat und anstelle von != null
verwendet werden kann.

Die folgende Klausel prift, ob die BucketEncryption Eigenschaft fir definiert istS3Bucket. Sie
wird als ausgewertet, PASS weil fir S3Bucket in Template-1 definiert BucketEncryption ist.

Verwendung von Operatoren in Klauseln 17

AWS CloudFormation Guard User Guide

Resources.S3Bucket.Properties.BucketEncryption exists

@ Note

Die not exists Prufungen empty und geben beim true Durchlaufen der Eingabedaten
auf fehlende Eigenschaftsschlissel zurtick. Wenn der Properties Abschnitt
beispielsweise in der Vorlage flr nicht definiert istS3Bucket, wird die Klausel wie folgt
Resources.S3Bucket.Properties.Tag empty ausgewertet. true Bei den empty
Prufungen exists und wird der JSON-Zeigerpfad innerhalb des Dokuments in den
Fehlermeldungen nicht angezeigt. Beide Klauseln weisen haufig Abruffehler auf, sodass
diese Traversalinformationen nicht beibehalten werden.

* is_string— Uberpriift, ob jedes Vorkommen der Abfrage vom Typ ist. string

Die folgende Klausel prift, ob ein Zeichenkettenwert fiir die BucketName Eigenschaft der
S3Bucket Ressource angegeben ist. Sie wird als ausgewertet, PASS weil der Zeichenkettenwert
fir BucketName in Template-1 angegeben "MyServiceS3Bucket" ist.

Resources.S3Bucket.Properties.BucketName is_string

* is_list— Pruft, ob jedes Vorkommen der Abfrage 1ist vom Typ ist.

Die folgende Klausel prift, ob eine Liste fiir die Tags Eigenschaft der S3Bucket Ressource
angegeben ist. Sie wird als ausgewertet, PASS weil zwei Schllissel-Wert-Paare fir in angegeben
sind. Tags Template-1

Resources.S3Bucket.Properties.Tags is_list
+ is_struct— Prift, ob es sich bei jedem Vorkommen der Abfrage um strukturierte Daten handelt.

Die folgende Klausel prift, ob strukturierte Daten fir die BucketEncryption Eigenschaft der
S3Bucket Ressource angegeben sind. Sie BucketEncryption wird als ausgewertet, PASS
weil sie mit dem ServerSideEncryptionConfiguration Eigenschaftstyp (object) in
Template-1 angegeben wurde.

Resources.S3Bucket.Properties.BucketEncryption is_struct

Verwendung von Operatoren in Klauseln 18

AWS CloudFormation Guard User Guide

® Note

Um den umgekehrten Zustand zu Uberprufen, kdnnen Sie den Operator (not !) zusammen
mit den Operatoren is_stringis_list, und is_struct verwenden.

Beispiele fur Klauseln, die binare Operatoren verwenden

Die folgende Klausel prift unabhangig von der Grol3- und Kleinschreibung, ob der fir die
BucketName Eigenschaft der S3Bucket Ressource in angegebene Wert die Zeichenfolge
Template-1 encrypt enthalt. Dies ergibt, PASS weil der angegebene Bucket-Name die
Zeichenfolge "MyServiceS3Bucket" encrypt nicht enthalt.

Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/

Die folgende Klausel prift, ob der fur die Size Eigenschaft der NewVolume Ressource in
angegebene Wert innerhalb eines bestimmten Bereichs Template-2 liegt: 50 <= Size <= 200. Sie
wird als ausgewertet, PASS weil fir angegeben 100 ist. Size

Resources.NewVolume.Properties.Size IN r[50,200]

Die folgende Klausel tberprift, ob der fir die VolumeType Eigenschaft der NewVolume Ressource
in angegebene Wertiol,io2, oder Template-2 gp3 ist. Sie wird als ausgewertet, PASS weil fur
NewVolume angegeben iol ist.

Resources.NewVolume.Properties.NewVolume.VolumeType IN ['iol', 'io2', 'gp3']

(® Note

Die Beispielabfragen in diesem Abschnitt veranschaulichen die Verwendung von

Operatoren, die Ressourcen mit logischem IDs S3Bucket und NewVolume verwenden.
Ressourcennamen sind haufig benutzerdefiniert und kdnnen in einer laC-Vorlage
(Infrastructure as Code) beliebig benannt werden. Um eine Regel zu schreiben, die generisch
ist und flr alle in der Vorlage definierten AWS: : S3: :Bucket Ressourcen gilt, ist die am
haufigsten verwendete Abfrageform. Resources.*[Type == ‘AWS::S3::Bucket’]
Weitere Informationen zur Verwendung finden Sie unterAbfragen definieren und filtern.

Verwendung von Operatoren in Klauseln 19

AWS CloudFormation Guard User Guide

Weitere Informationen finden Sie im Verzeichnis mit den Beispielen im cloudformation-
guard GitHub Repository.

Verwenden von benutzerdefinierten Nachrichten in Klauseln

Im folgenden Beispiel Template-2 enthalten Klauseln fir eine benutzerdefinierte Nachricht.

Resources.NewVolume.Properties.Size IN r(50,200)
<<

EC2Volume size must be between 50 and 200,
not including 50 and 200

>>
Resources.NewVolume.Properties.VolumeType IN ['iol',b 'io2', 'gp3'] <<Allowed Volume
Types are iol, io2, and gp3>>

Klauseln kombinieren

In Guard wird jede Klausel, die in eine neue Zeile geschrieben wird, implizit mit der nachsten Klausel
kombiniert, indem Konjunktion (andBoolesche Logik) verwendet wird. Sehen Sie sich das folgende
Beispiel an.

clause_A ~ clause_B ”~ clause_C
clause_A
clause_B
clause_C

Sie kénnen Disjunktion auch verwenden, um eine Klausel mit der nachsten Klausel zu kombinieren,
indem Sie or | OR am Ende der ersten Klausel angeben.

<query> <operator> [query|value literal] [custom message] [or]|OR]

In einer Guard-Klausel werden Disjunktionen zuerst ausgewertet, gefolgt von Konjunktionen. Guard-
Regeln kénnen als Konjunktion von Disjunktionen von Klauseln (und and | AND von or | OR s) definiert
werden, die entweder als () oder true (PASS) ausgewertet werden. false FAIL Dies ahnelt der
konjunktiven Normalform.

Die folgenden Beispiele veranschaulichen die Reihenfolge der Bewertungen von Klauseln.

(clause_E v clause_F) ~ clause_G

Verwenden von benutzerdefinierten Nachrichten in Klauseln 20

https://github.com/aws-cloudformation/cloudformation-guard/tree/main/guard-examples
https://en.wikipedia.org/wiki/Conjunctive_normal_form

AWS CloudFormation Guard

User Guide

clause_E OR clause_F

clause_G

(clause_H v clause_I) ~ (clause_J v clause_K)
clause_H OR

clause_I

clause_J OR

clause_K

(clause_L v clause_M v clause_N) ~ clause_0O
clause_L OR
clause_M OR

clause_N
clause_0

Alle Klauseln, die auf dem Beispiel basieren, Template-1 kénnen mithilfe von Konjunktion
kombiniert werden. Sehen Sie sich das folgende Beispiel an.

Resources.
Resources.
Resources.
Resources.
Resources.
Resources.

S3Bucket.
S3Bucket.
S3Bucket.
S3Bucket.
S3Bucket.
S3Bucket.

Properties.
Properties.
Properties.
Properties.
Properties.
Properties.

BucketName is_string
BucketName != /(?i)encrypt/
BucketEncryption exists
BucketEncryption is_struct
Tags is_list

Tags !empty

Blocke mit Guard-Regeln verwenden

Blocke sind Kompositionen, die aus einer Reihe verwandter Klauseln, Bedingungen oder Regeln
Ausflhrlichkeit und Wiederholungen entfernen. Es gibt drei Arten von Blocken:

 Blocke abfragen

* whenBlocke

» Bloécke mit benannten Regeln

Blocke abfragen

Im Folgenden sind die Klauseln aufgefiihrt, die auf dem Beispiel Template-1 basieren. Die
Konjunktion wurde verwendet, um die Klauseln zu kombinieren.

Resources.S3Bucket.Properties.BucketName is_string

Blocke mit Guard-Regeln verwenden

21

AWS CloudFormation Guard User Guide

Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
Resources.S3Bucket.Properties.BucketEncryption exists
Resources.S3Bucket.Properties.BucketEncryption is_struct
Resources.S3Bucket.Properties.Tags is_list
Resources.S3Bucket.Properties.Tags !empty

Teile des Abfrageausdrucks in jeder Klausel werden wiederholt. Sie kénnen die
Zusammensetzbarkeit verbessern und Ausfuhrlichkeit und Wiederholungen aus einer Reihe
verwandter Klauseln mit demselben anfanglichen Abfragepfad entfernen, indem Sie einen
Abfrageblock verwenden. Derselbe Satz von Klauseln kann wie im folgenden Beispiel geschrieben
werden.

Resources.S3Bucket.Properties {
BucketName is_string
BucketName != /(?i)encrypt/
BucketEncryption exists
BucketEncryption is_struct
Tags is_list
Tags lempty

In einem Abfrageblock legt die Abfrage, die dem Block vorausgeht, den Kontext flr die Klauseln
innerhalb des Blocks fest.

Weitere Hinweise zur Verwendung von Blécken finden Sie unterBlocke mit benannten Regeln

verfassen.

whenBlocke

Sie kénnen Blocke bedingt auswerten, indem Sie when Blécke verwenden, die die folgende Form
haben.

when <condition> {
Guard_rule_1
Guard_rule_2

Das when Schllsselwort bezeichnet den Anfang des Blocks. when conditionist eine Guard-Regel.

Der Block wird nur ausgewertet, wenn die Auswertung der Bedingung zu true (PASS) fuhrt.

Blocke mit Guard-Regeln verwenden

22

AWS CloudFormation Guard User Guide

Im Folgenden finden Sie einen when Beispielblock, der auf basiertTemplate-1.

when Resources.S3Bucket.Properties.BucketName is_string {
Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/

Die Klausel innerhalb des when Blocks wird nur ausgewertet, wenn es sich bei dem fir angegebenen
Wert um eine Zeichenfolge BucketName handelt. Wenn der fir angegebene Wert im Parameters
Abschnitt der Vorlage referenziert BucketName wird, wie im folgenden Beispiel gezeigt, wird die
Klausel innerhalb des when Blocks nicht ausgewertet.

Parameters:
S3BucketName:
Type: String
Resources:
S3Bucket:
Type: AWS::S3::Bucket
Properties:
BucketName:
Ref: S3BucketName

Blocke mit benannten Regeln

Sie kdnnen einem Regelsatz (Regelsatz) einen Namen zuweisen und dann in anderen Regeln auf
diese modularen Validierungsblocke, sogenannte Blocke mit benannten Regeln, verweisen. Blocke
mit benannten Regeln haben die folgende Form.

rule <rule name> [when <condition>] {
Guard_rule_1
Guard_rule_2

Das rule Schlusselwort bezeichnet den Anfang des Blocks mit benannten Regeln.

rule nameist eine flir Menschen lesbare Zeichenfolge, die einen Block mit benannten Regeln
eindeutig identifiziert. Es ist eine Bezeichnung fir den Guard-Regelsatz, den es kapselt. Bei dieser
Verwendung umfasst der Begriff Guard-Regel Klauseln, Abfrageblécke, Blécke und Blécke mit when
benannten Regeln. Der Regelname kann verwendet werden, um auf das Auswertungsergebnis des

Blécke mit Guard-Regeln verwenden 23

AWS CloudFormation Guard User Guide

Regelsatzes zu verweisen, den er kapselt, wodurch Blocke mit benannten Regeln wiederverwendet
werden kdnnen. Der Regelname bietet auch Kontext zu Regelfehlern in der Ausgabe und in den
validate Befehlsausgaben. test Der Regelname wird zusammen mit dem Bewertungsstatus des
Blocks (PASSFAIL, oderSKIP) in der Bewertungsausgabe der Regeldatei angezeigt. Sehen Sie sich
das folgende Beispiel an.

Sample output of an evaluation where checkl, check2, and check3 are rule names.
template.json Status = **FAIL**

SKIP rules

checkl **SKIP**

PASS rules

check2 **PASS**

FAILED rules

check3 **FAIL**

Sie kdnnen Blocke mit benannten Regeln auch bedingt auswerten, indem Sie das when
Schlusselwort gefolgt von einer Bedingung hinter dem Regelnamen angeben.

Im Folgenden finden Sie den when Beispielblock, der bereits in diesem Thema behandelt wurde.

rule checkBucketNameStringValue when Resources.S3Bucket.Properties.BucketName is_string

{

Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/
Unter Verwendung von Blécken mit benannten Regeln kann der vorherige Abschnitt auch wie folgt
geschrieben werden.

rule checkBucketNameIsString {
Resources.S3Bucket.Properties.BucketName is_string

}

rule checkBucketNameStringValue when checkBucketNameIsString {
Resources.S3Bucket.Properties.BucketName != /(?i)encrypt/

}

Sie kdnnen Blocke mit benannten Regeln wiederverwenden und mit anderen Guard-Regeln
gruppieren. Im Folgenden finden Sie einige Beispiele.

rule rule_name_A {
Guard_rule_1 OR
Guard_rule_2

Blocke mit Guard-Regeln verwenden 24

AWS CloudFormation Guard User Guide

rule rule_name_B {
Guard_rule_3
Guard_rule_4

rule rule_name_C {
rule_name_A OR rule_name_B

rule rule_name_D {
rule_name_A
rule_name_B

rule rule_name_E when rule_name_D {
Guard_rule_5
Guard_rule_6

Verwenden von integrierten Funktionen

AWS CloudFormation Guard bietet integrierte Funktionen, die Sie in Ihren Regeln verwenden
kénnen, um Operationen wie Zeichenkettenmanipulation, JSON-Analyse und Datentypkonvertierung
durchzuflhren. Funktionen werden nur durch Zuweisung zu einer Variablen unterstutzt.

Die wichtigsten Funktionen
json_parse(json_string)

Analysiert Inline-JSON-Zeichenketten aus einer Vorlage. Nach dem Parsen kdnnen Sie die
Eigenschaften des resultierenden Objekts auswerten.

count(collection)

Gibt die Anzahl der Elemente zurick, in die eine Abfrage aufgel6st wird.

regex_replace(base_string, regex_to_extract, regex_replacement)

Ersetzt Teile einer Zeichenfolge mithilfe regularer Ausdricke.

Verwenden von integrierten Funktionen 25

AWS CloudFormation Guard User Guide

Eine vollstandige Liste der verfigbaren Funktionen, einschliellich Zeichenkettenmanipulation,
Sammlungsoperationen und Funktionen zur Konvertierung von Datentypen, finden Sie in der
Dokumentation zu Funktionen im GitHub Guard-Repository.

Definition und Filterung von Guard-Abfragen

In diesem Thema werden das Schreiben von Abfragen und die Verwendung von Filtern beim
Schreiben von Guard-Regelklauseln behandelt.

Voraussetzungen

Das Filtern ist ein fortgeschrittenes AWS CloudFormation Guard Konzept. Wir empfehlen Ihnen, sich
mit den folgenden grundlegenden Themen vertraut zu machen, bevor Sie sich mit Filtern vertraut
machen:

 Was ist AWS CloudFormation Guard?

» Schreibregeln, Klauseln

Abfragen definieren

Abfrageausdricke sind einfache, durch Punkte (.) getrennte Ausdricke, die geschrieben wurden,
um hierarchische Daten zu durchqueren. Abfrageausdricke kdnnen Filterausdriicke enthalten, die
auf eine Teilmenge von Werten abzielen. Wenn Abfragen ausgewertet werden, fihren sie zu einer
Sammlung von Werten, ahnlich einer Ergebnismenge, die von einer SQL-Abfrage zurlickgegeben
wird.

Die folgende Beispielabfrage durchsucht eine CloudFormation Vorlage nach AWS: : IAM: :Role
Ressourcen.

Resources.*[Type == 'AWS::IAM::Role']

Abfragen folgen diesen Grundprinzipien:

» Jeder Punkt (.) der Abfrage durchlauft die Hierarchie nach unten, wenn ein expliziter
Schlusselbegriff verwendet wird, wie z. B. Resources oder Properties.Encrypted. Wenn ein
Teil der Abfrage nicht mit dem eingehenden Datum Ubereinstimmt, gibt Guard einen Abruffehler
aus.

« Ein Punkt (.) in der Abfrage, der einen Platzhalter verwendet, * durchlauft alle Werte flr die
Struktur auf dieser Ebene.

Abfragen definieren und filtern 26

https://github.com/aws-cloudformation/cloudformation-guard/blob/main/docs/FUNCTIONS.md

AWS CloudFormation Guard User Guide

» Ein Punkt (.) -Teil der Abfrage, der einen Array-Platzhalter verwendet, [*] durchquert alle Indizes
fur dieses Array.

+ Alle Sammlungen kdnnen gefiltert werden, indem Filter in eckigen Klammern angegeben werden.
[1 Sammlungen kénnen auf folgende Weise gefunden werden:

» Natlrlich vorkommende Anordnungen in Daten sind Sammlungen. Hier einige Beispiele aus der :
Anschlisse: [20, 21, 110, 190]

Schlagworte: [{"Key": "Stage", "Value": "PROD"}, {"Key": "App", "Value":
"MyService"}]

* Beim Durchlaufen aller Werte fir eine Struktur wie Resources.*

» Jedes Abfrageergebnis ist selbst eine Sammlung, aus der Werte weiter gefiltert werden kdnnen.
Sehen Sie sich das folgende Beispiel an.

Query all resources
let all_resources = Resource.*

Filter IAM resources from query results
let iam_resources = %resources[Type == /IAM/]

Further refine to get managed policies
let managed_policies = %iam_resources[Type == /ManagedPolicy/]

Traverse each managed policy
%managed_policies {
Do something with each policy

Im Folgenden finden Sie ein Beispiel flr einen CloudFormation Vorlagenausschnitt.

Resources:
SampleRole:
Type: AWS::IAM::Role

SampleInstance:
Type: AWS::EC2::Instance

SampleVPC:
Type: AWS::EC2::VPC

Abfragen definieren und filtern 27

AWS CloudFormation Guard User Guide

SampleSubnetl:
Type: AWS::EC2::Subnet

SampleSubnet2:
Type: AWS::EC2::Subnet

Basierend auf dieser Vorlage ist der durchlaufene Pfad SampleRole und der gewéahlte Endwert ist.
Type: AWS::IAM::Role

Resources:
SampleRole:
Type: AWS::IAM::Role

Der resultierende Wert der Abfrage Resources.*[Type == 'AWS::IAM::Role'] im YAML-
Format wird im folgenden Beispiel gezeigt.

- Type: AWS::IAM::Role

Sie kdnnen Abfragen unter anderem wie folgt verwenden:

+ Weisen Sie Variablen eine Abfrage zu, sodass auf Abfrageergebnisse zugegriffen werden kann,
indem auf diese Variablen verwiesen wird.

+ Folgen Sie der Abfrage mit einem Block, der mit jedem der ausgewahlten Werte testet.

+ Vergleichen Sie eine Abfrage direkt mit einer Basisklausel.

Abfragen Variablen zuordnen

Guard unterstltzt einmalige Variablenzuweisungen innerhalb eines bestimmten Bereichs. Weitere
Informationen zu Variablen in Guard-Regeln finden Sie unterZuweisen und Referenzieren von

Variablen in Guard-Regeln.

Sie kdnnen Variablen Abfragen zuweisen, sodass Sie Abfragen einmal schreiben und dann an
anderer Stelle in Inren Guard-Regeln darauf verweisen kdnnen. Sehen Sie sich das folgende Beispiel
fur Variablenzuweisungen an, das die Abfrageprinzipien demonstriert, die spater in diesem Abschnitt
erdrtert werden.

Abfragen definieren und filtern 28

AWS CloudFormation Guard User Guide

#

Simple query assignment

#

let resources = Resources.* # All resources

#
A more complex query here (this will be explained below)
#
let iam_policies_allowing_log_creates = Resources.*[
Type in [/IAM::Policy/, /IAM::ManagedPolicy/]
some Properties.PolicyDocument.Statement[*] {
some Action[*] == 'cloudwatch:CreatelLogGroup'
Effect == 'Allow'

Direktes Durchlaufen von Werten aus einer Variablen, die einer Abfrage zugewiesen
wurde

Guard unterstuitzt die direkte Ausflihrung der Ergebnisse einer Abfrage. Im folgenden Beispiel testet
der when Block anhand der AvailabilityZone Eigenschaften EncryptedVolumeType, und flir
jede AWS: :EC2: :Volume Ressource, die in einer CloudFormation Vorlage gefunden wurde.

let ec2_volumes = Resources.*[Type == 'AWS::EC2::Volume']

when %ec2_volumes !empty {
%ec2_volumes {
Properties {
Encrypted == true
VolumeType in ['gp2', 'gp3']
AvailabilityZone in ['us-west-2b', 'us-west-2c']

Direkte Vergleiche auf Klauselebene

Guard unterstutzt auch Abfragen als Teil direkter Vergleiche. Sehen Sie sich zum Beispiel Folgendes
an.

let resources = Resources.*

Abfragen definieren und filtern 29

AWS CloudFormation Guard User Guide

some %resources.Properties.Tags[*].Key == /PROD$/
some %resources.Properties.Tags[*].Value == /AApp/

Im vorherigen Beispiel werden die beiden Klauseln (beginnend mit dem some Schllsselwort), die
in der abgebildeten Form ausgedrickt werden, als unabhangige Klauseln betrachtet und separat
bewertet.

Form einer Einzelklausel und einer Blockklausel

Zusammengenommen entsprechen die beiden im vorherigen Abschnitt aufgefihrten Beispielklauseln
nicht dem folgenden Block.

let resources = Resources.*

some %resources.Properties.Tags[*] {
Key == /PROD$/
Value == /~App/

Dieser Block fragt nach jedem Tag Wert in der Sammlung ab und vergleicht seine Eigenschaftswerte
mit den erwarteten Eigenschaftswerten. Durch die kombinierte Form der Klauseln im vorherigen
Abschnitt werden die beiden Klauseln unabhangig voneinander bewertet. Betrachten Sie die folgende

Eingabe.

Resources:
MyResource:

Properties:
Tags:
- Key: EndPROD
Value: NotAppStart
- Key: NotPRODEnd
Value: AppStart

Klauseln in der ersten Form haben die Wirkung vonPASS. Bei der Validierung der ersten Klausel in
der ersten Form Key entspricht der folgende Pfad Gber Resources PropertiesTags,, und dem
Wert Not PRODENd und nicht dem erwarteten Wert. PROD

Resources:

Abfragen definieren und filtern 30

AWS CloudFormation Guard User Guide

MyResource:

Properties:
Tags:
- Key: EndPROD
Value: NotAppStart
- Key: NotPRODEnd
Value: AppStart

Das Gleiche passiert mit der zweiten Klausel der ersten Form. Der Pfad UberResources,
PropertiesTags, und Value entspricht dem WertAppStart. Daher die zweite Klausel
unabhangig.

Das Gesamtergebnis ist einPASS.

Die Blockform wird jedoch wie folgt ausgewertet. Fur jeden Tags Wert wird verglichen, ob Key
sowohl der als auch der Value gleiche Wert NotAppStart zutrifft. Im folgenden Beispiel werden die
NotPRODENnd Werte nicht gefunden.

Resources:
MyResource:

Properties:
Tags:
- Key: EndPROD
Value: NotAppStart
- Key: NotPRODEnd
Value: AppStart

Da bei Auswertungen sowohl auf beide als auch Key == /PROD$/ geprift wirdValue == /*App/,
ist die Ubereinstimmung nicht vollstandig. Daher lautet das ErgebnisFAIL.

(® Note

Wenn Sie mit Sammlungen arbeiten, empfehlen wir, das Blockklauselformular zu verwenden,
wenn Sie mehrere Werte fur jedes Element in der Sammlung vergleichen mochten.
Verwenden Sie das Einzelklauselformular, wenn es sich bei der Sammlung um eine Gruppe
von Skalarwerten handelt oder wenn Sie nur ein einzelnes Attribut vergleichen mdchten.

Abfragen definieren und filtern 31

AWS CloudFormation Guard User Guide

Abfrageergebnisse und zugehdrige Klauseln

Alle Abfragen geben eine Werteliste zurtick. Jeder Teil einer Traversierung, z. B. ein fehlender
Schlissel, leere Werte fir ein Array (Tags: []) beim Zugriff auf alle Indizes oder fehlende Werte fur
eine Map, wenn auf eine leere Map (Resources: {}) gestolRen wird, kann zu Abruffehlern fiihren.

Bei der Auswertung von Klauseln anhand solcher Abfragen werden alle Abruffehler als Fehlschlage
gewertet. Die einzige Ausnahme ist, wenn in der Abfrage explizite Filter verwendet werden. Wenn
Filter verwendet werden, werden die zugehdrigen Klauseln Ubersprungen.

Die folgenden Blockfehler stehen im Zusammenhang mit laufenden Abfragen.
* Wenn eine Vorlage keine Ressourcen enthalt, wird die Abfrage als ausgewertetFAIL, und die
zugehdrigen Klauseln auf Blockebene werden ebenfalls als ausgewertet. FAIL

« Wenn eine Vorlage einen leeren Ressourcenblock wie enthalt{ "Resources": {} 3}, wird die
Abfrage als ausgewertetFAIL, und die zugehdrigen Klauseln auf Blockebene werden ebenfalls als
ausgewertet. FAIL

* Wenn eine Vorlage Ressourcen enthalt, aber keine der Abfrage entsprechen, gibt die Abfrage leere
Ergebnisse zurlck, und die Klauseln auf Blockebene werden tbersprungen.

Verwenden von Filtern in Abfragen

Filter in Abfragen sind im Grunde Guard-Klauseln, die als Auswahlkriterien verwendet werden. Es
folgt die Struktur einer Klausel.

<query> <operator> [query|value literal] [message] [or|OR]

Beachten Sie bei der Arbeit mit Filtern die folgenden wichtigen Punkte: AWS CloudFormation Guard
Regeln schreiben

« Kombinieren Sie Klauseln mithilfe der konjunktiven Normalform (CNF).

* Geben Sie jede Konjunktion (and) -Klausel in einer neuen Zeile an.

* Geben Sie Disjunktionen (or) an, indem Sie das or Schlisselwort zwischen zwei Klauseln
verwenden.

Das folgende Beispiel zeigt konjunktive und disjunktive Klauseln.

Abfragen definieren und filtern 32

https://en.wikipedia.org/wiki/Conjunctive_normal_form

AWS CloudFormation Guard User Guide

resourceType == 'AWS::EC2::SecurityGroup'
InputParameters.TcpBlockedPorts not empty

InputParameters.TcpBlockedPorts[*] {
this in r(100, 400] or
this in r(4000, 65535]

Verwendung von Klauseln als Auswahlkriterien

Sie kénnen die Filterung auf jede Sammlung anwenden. Die Filterung kann direkt auf Attribute in der
Eingabe angewendet werden, die bereits einer Sammlung ahnelnsecurityGroups: [....]. Sie
kénnen die Filterung auch auf eine Abfrage anwenden, bei der es sich immer um eine Sammlung
von Werten handelt. Sie kdnnen alle Funktionen von Klauseln, einschlie3lich der konjunktiven
Normalform, zum Filtern verwenden.

Die folgende allgemeine Abfrage wird haufig verwendet, wenn Ressourcen nach Typ aus einer
CloudFormation Vorlage ausgewahlt werden.

Resources.*[Type == 'AWS::IAM::Role']

Die Abfrage Resources. * gibt alle Werte zurlck, die im Resources Abschnitt der Eingabe
vorhanden sind. Fur die Beispielvorlage Input in Abfragen definieren gibt die Abfrage Folgendes
zuruck.

- Type: AWS::IAM::Role

- %;Ee: AWS::EC2::Instance
- %;Ee: AWS: :EC2::VPC

- %;Ee: AWS::EC2::Subnet

- Type: AWS::EC2::Subnet

Wenden Sie nun den Filter auf diese Sammlung an. Das Kriterium, das erfullt werden muss, istType
== AWS::IAM: :Role. Im Folgenden finden Sie die Ausgabe der Abfrage, nachdem der Filter
angewendet wurde.

Abfragen definieren und filtern 33

AWS CloudFormation Guard User Guide

- Type: AWS::IAM::Role

Uberpriifen Sie als Nachstes verschiedene Klauseln fir AWS: : IAM: :Role Ressourcen.

let all_resources = Resources.*
let all_iam_roles %all_resources[Type == 'AWS::IAM::Role']

Im Folgenden finden Sie ein Beispiel fur eine Filterabfrage, die alle AWS: : IAM: :ManagedPolicy
Ressourcen AWS: : TAM: : Policy auswahit.

Resources.*[
Type in [/IAM::Policy/,
/IAM: :ManagedPolicy/ 1]

Im folgenden Beispiel wird geprift, ob fir diese Richtlinienressourcen ein PolicyDocument
bestimmter Wert angegeben wurde.

Resources. *[
Type in [/IAM::Policy/,
/IAM: :ManagedPolicy/]
Properties.PolicyDocument exists

Aufbau komplexerer Filteranforderungen

Betrachten Sie das folgende Beispiel fir ein AWS Config Konfigurationselement fir Informationen zu
Sicherheitsgruppen flir eingehenden und ausgehenden Datenverkehr.

resourceType: "AWS::EC2::SecurityGroup'
configuration:
ipPermissions:
- fromPort: 172

ipProtocol: tcp

toPort: 172

ipv4Ranges:

- cidrlIp: 10.0.0.0/24

Abfragen definieren und filtern 34

AWS CloudFormation Guard User Guide

- cidrIp: 0.0.0.0/0
- fromPort: 89
ipProtocol: tcp

ipv6Ranges:

- cidrIpv6: '::/0'
toPort: 189
userIdGroupPairs: []
ipv4Ranges:

- cidrIp: 1.1.1.1/32

- fromPort: 89
ipProtocol: '-1'
toPort: 189
userIdGroupPairs: []
ipv4Ranges:

- cidrIp: 1.1.1.1/32
ipPermissionsEgress:

- ipProtocol: '-1'
ipv6Ranges: []
prefixListIds: []
userIdGroupPairs: []

ipv4Ranges:
- cidrIp: 0.0.0.0/0
ipRanges:
- 0.0.0.0/0
tags:
- key: Name

value: good-sg-delete-me
vpcIld: vpc-0123abcd
InputParameter:

TcpBlockedPorts:

- 3389

- 20

- 21

- 110

- 143

Beachten Sie Folgendes:
+ ipPermissions(Eingangsregeln) ist eine Sammlung von Regeln innerhalb eines
Konfigurationsblocks.

+ Jede Regelstruktur enthalt Attribute wie ipv4Ranges und ipv6Ranges zur Spezifizierung einer
Sammlung von CIDR-Blécken.

Abfragen definieren und filtern

35

AWS CloudFormation Guard User Guide

Schreiben wir eine Regel, die alle Eingangsregeln auswahlt, die Verbindungen von einer beliebigen
IP-Adresse aus zulassen, und Uberprift, ob die Regeln nicht zulassen, dass blockierte TCP-Ports
offengelegt werden.

Beginnen Sie mit dem entsprechenden Abfrageteil IPv4, wie im folgenden Beispiel gezeigt.

configuration.ipPermissions[

#

at least one ipv4Ranges equals ANY IPv4
#

some ipv4Ranges[*].cidrIp == '0.0.0.0/0'

Das some Schllsselwort ist in diesem Zusammenhang natzlich. Alle Abfragen geben eine Sammlung
von Werten zurlck, die der Abfrage entsprechen. StandardmaRig wertet Guard aus, dass alle als
Ergebnis der Abfrage zuriickgegebenen Werte mit Prifungen abgeglichen werden. Dieses Verhalten
ist jedoch mdglicherweise nicht immer das, was Sie fur Prifungen bendtigen. Betrachten Sie den
folgenden Teil der Eingabe aus dem Konfigurationselement.

ipv4Ranges:
- cidrlIp: 10.0.0.0/24
- cidrIp: 0.0.0.0/0 # any IP allowed

Es sind zwei Werte fur vorhandenipv4Ranges. Nicht alle ipv4Ranges Werte entsprechen einer
IP-Adresse, die mit bezeichnet wird. 0.0.0.0/0 Sie mochten sehen, ob mindestens ein Wert
Ubereinstimmt. .0.0.0/0 Sie teilen Guard mit, dass nicht alle von einer Abfrage zuriickgegebenen
Ergebnisse Ubereinstimmen muissen, aber mindestens ein Ergebnis muss Ubereinstimmen.

Das some SchlUsselwort weist Guard an, sicherzustellen, dass ein oder mehrere Werte aus der
resultierenden Abfrage der Prifung entsprechen. Wenn keine Abfrageergebniswerte tUbereinstimmen,
gibt Guard einen Fehler aus.

Flgen Sie als Nachstes hinzu IPv6, wie im folgenden Beispiel gezeigt.

configuration.ipPermissions[

#

at-least-one ipv4Ranges equals ANY IPv4

#

some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
#

at-least-one ipv6Ranges contains ANY IPv6
#

Abfragen definieren und filtern 36

AWS CloudFormation Guard User Guide

some ipv6Ranges[*].cidrIpv6 == '::/0'

Stellen Sie im folgenden Beispiel abschliel3end sicher, dass das Protokoll dies nicht istudp.

configuration.ipPermissions[

#

at-least-one ipv4Ranges equals ANY IPv4

#

some ipv4Ranges[*].cidrIp == '0.0.0.0/0' ox
#

at-least-one ipv6Ranges contains ANY IPv6
#

some ipv6Ranges[*].cidrIpvée == '::/0'

#

and ipProtocol is not udp

#

ipProtocol != 'udp']

Im Folgenden finden Sie die vollstandige Regel.

rule any_ip_ingress_checks

{
let ports = InputParameter.TcpBlockedPorts[*]

let targets = configuration.ipPermissions[

#

if either ipv4 or ipv6 that allows access from any address
#

some ipv4Ranges[*].cidrIp == '0.0.0.0/0' ox

some ipv6Ranges[*].cidrIpv6e == '::/0'

#

the ipProtocol is not UDP

#

ipProtocol != 'udp']

when %targets !empty

{
%targets {

Abfragen definieren und filtern 37

AWS CloudFormation Guard User Guide

ipProtocol != '-1'

<<
result: NON_COMPLIANT
check_id: HUB_ID_2334

message: Any IP Protocol is allowed
>>

when fromPort exists
toPort exists

{
let each_target = this
%sports {
this < %each_target.fromPort or
this > %each_target.toPort
<<
result: NON_COMPLIANT
check_id: HUB_ID_2340
message: Blocked TCP port was allowed in range
>>
}
}

Trennen von Sammlungen nach ihren enthaltenen Typen

Wenn Sie laC-Konfigurationsvorlagen (Infrastructure as Code) verwenden, stol3en Sie
moglicherweise auf eine Sammlung, die Verweise auf andere Entitaten innerhalb der
Konfigurationsvorlage enthalt. Im Folgenden finden Sie eine CloudFormation Beispielvorlage,
die Aufgaben von Amazon Elastic Container Service (Amazon ECS) mit einem lokalen Verweis
aufTaskRoleArn, einem Verweis auf TaskArn und einem direkten Zeichenkettenverweis
beschreibt.

Parameters:
TaskArn:
Type: String
Resources:
ecsTask:
Type: 'AWS::ECS::TaskDefinition'
Metadata:
SharedExectionRole: allowed

Abfragen definieren und filtern 38

AWS CloudFormation Guard User Guide

Properties:

TaskRoleArn: 'arn:aws:....

ExecutionRoleArn: 'arn:aws:...

ecsTask2:

Type: 'AWS::ECS::TaskDefinition'
Metadata:

SharedExectionRole: allowed
Properties:

TaskRoleAzxn:

'Fn::GetAtt':
- iamRole

- Arn
ExecutionRoleArn: 'arn:aws:...2
ecsTask3:
Type: 'AWS::ECS::TaskDefinition'
Metadata:
SharedExectionRole: allowed
Properties:
TaskRoleAzrn:
Ref: TaskArn
ExecutionRoleArn: 'arn:aws:...2'
iamRole:
Type: 'AWS::IAM::Role'
Properties:
PermissionsBoundary: 'arn:aws:...3'

Betrachten Sie folgende Abfrage.

let ecs_tasks = Resources.*[Type == 'AWS::ECS::TaskDefinition']

Diese Abfrage gibt eine Sammlung von Werten zurtck, die alle drei in der Beispielvorlage
gezeigten AWS: : ECS: : TaskDefinition Ressourcen enthélt. Trennen Sie ecs_tasks diese, die
TaskRoleArn lokale Verweise enthalten, von anderen, wie im folgenden Beispiel gezeigt.

let ecs_tasks = Resources.*[Type == 'AWS::ECS::TaskDefinition']

let ecs_tasks_role_direct_strings = %ecs_tasks[
Properties.TaskRoleArn is_string]

let ecs_tasks_param_reference = %ecs_tasks[
Properties.TaskRoleArn. 'Ref' exists]

Abfragen definieren und filtern 39

AWS CloudFormation Guard User Guide

rule task_role_from_parameter_or_string {
%ecs_tasks_role_direct_strings !empty or
%ecs_tasks_param_reference !empty

rule disallow_non_local_references {
Known issue for rule access: Custom message must start on the same line
not task_role_from_parameter_or_string

<<

result: NON_COMPLIANT

message: Task roles are not local to stack definition
>>

Zuweisen und Referenzieren von Variablen in Guard-Regeln

Sie kénnen Ihren AWS CloudFormation Guard Regeldateien Variablen zuweisen, um Informationen
zu speichern, auf die Sie in lhren Guard-Regeln verweisen mdchten. Guard unterstlitzt die einmalige
Variablenzuweisung. Variablen werden trage ausgewertet, was bedeutet, dass Guard Variablen nur
auswertet, wenn Regeln ausgefihrt werden.

Themen

» Variablen zuweisen

» Variablen referenzieren

» Glltigkeitsbereich der Variablen

» Beispiele fur Variablen in Guard-Regeldateien

Variablen zuweisen

Verwenden Sie das let Schlisselwort, um eine Variable zu initialisieren und zuzuweisen. Es hat sich
bewahrt, Snake-Grol3- und Kleinschreibung fur Variablennamen zu verwenden. Variablen kdnnen
statische Literale oder dynamische Eigenschaften speichern, die sich aus Abfragen ergeben. Im
folgenden Beispiel ecs_task_definition_task_role_arn speichert die Variable den statischen
Zeichenkettenwertarn:aws:iam:123456789012:role/my-role-name.

let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-role-name’

Im folgenden Beispiel ecs_tasks speichert die Variable die Ergebnisse einer Abfrage, die
nach allen AWS: :ECS: : TaskDefinition Ressourcen in einer CloudFormation Vorlage

Zuweisen und Referenzieren von Variablen in Guard-Regeln 40

AWS CloudFormation Guard User Guide

sucht. Sie kdnnten beim Schreiben von Regeln auf Zugriffsinformationen zu diesen Ressourcen
verweisenecs_tasks.

let ecs_tasks = Resources.*[
Type == 'AWS::ECS::TaskDefinition'

Variablen referenzieren
Verwenden Sie das % Prafix, um auf eine Variable zu verweisen.

Basierend auf dem ecs_task_definition_task_role_arn Variablenbeispiel in Variablen
zuweisen konnen Sie ecs_task_definition_task_role_arnim query|value literal
Abschnitt einer Guard-Regelklausel darauf verweisen. Durch die Verwendung dieser Referenz wird
sichergestellt, dass es sich bei dem fir die TaskDefinitionAxrn Eigenschaft einer beliebigen
AWS: :ECS: :TaskDefinition Ressource in einer CloudFormation Vorlage angegebenen Wert um
den statischen Zeichenkettenwert handeltarn:aws:iam:123456789012:role/my-role-name.

Resources.*.Properties.TaskDefinitionArn == %ecs_task_definition_role_arn

Basierend auf dem ecs_tasks Variablenbeispiel in Variablen zuweisen kénnen Sie ecs_tasks in
einer Abfrage referenzieren (z. B. %ECS_Tasks.Properties). Zuerst wertet Guard die Variable aus
ecs_tasks und verwendet dann die zuriickgegebenen Werte, um die Hierarchie zu durchqueren.

Wenn die Variable in Werte ecs_tasks aufgeldst wird, die keine Zeichenfolge sind, gibt Guard einen
Fehler aus.

® Note

Derzeit unterstlitzt Guard die Referenzierung von Variablen in benutzerdefinierten
Fehlermeldungen nicht.

Gultigkeitsbereich der Variablen

Der Gultigkeitsbereich bezieht sich auf die Sichtbarkeit von Variablen, die in einer Regeldatei definiert
sind. Ein Variablenname kann innerhalb eines Bereichs nur einmal verwendet werden. Es gibt drei
Ebenen, auf denen eine Variable deklariert werden kann, oder drei mdgliche Variablenbereiche:

Zuweisen und Referenzieren von Variablen in Guard-Regeln 41

AWS CloudFormation Guard User Guide

» Dateiebene — In der Regel oben in der Regeldatei deklariert, kdnnen Sie Variablen auf Dateiebene
in allen Regeln innerhalb der Regeldatei verwenden. Sie sind flr die gesamte Datei sichtbar.

In der folgenden Beispieldatei ecs_task_definition_execution_role_arn werden die
Variablen ecs_task_definition_task_role_arn und D auf Dateiebene initialisiert.

let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:r0le/my-task-role-
name'

let ecs_task_definition_execution_role_arn = 'arn:aws:iam::123456789012:role/my-
execution-role-name'

rule check_ecs_task_definition_task_role_arn

{

Resources.*.Properties.TaskRoleArn == %ecs_task_definition_task_role_arn

rule check_ecs_task_definition_execution_role_arn

{
Resources.*.Properties.ExecutionRoleArn ==
%ecs_task_definition_execution_role_arn

}

* Regelebene — Innerhalb einer Regel deklariert, sind Variablen auf Regelebene nur fur diese
spezielle Regel sichtbar. Alle Verweise aul3erhalb der Regel fuhren zu einem Fehler.

In der folgenden Beispiel-Regeldatei ecs_task_definition_execution_role_arn werden
die Variablen ecs_task_definition_task_role_arn und D auf Regelebene initialisiert.
ecs_task_definition_task_role_arnSie kdnnen nur innerhalb der benannten Regel
referenziert werden. check_ecs_task_definition_task_role_arn Sie kdnnen nur
innerhalb der check_ecs_task_definition_execution_role_arn benannten Regel auf die
ecs_task_definition_execution_role_arn Variable verweisen.

rule check_ecs_task_definition_task_role_arn

{

let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-task-
role-name'

Resources.*.Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
}

rule check_ecs_task_definition_execution_role_arn

{

Zuweisen und Referenzieren von Variablen in Guard-Regeln 42

AWS CloudFormation Guard User Guide

let ecs_task_definition_execution_role_arn = 'arn:aws:iam::123456789012:role/my-
execution-role-name'

Resources.*.Properties.ExecutionRoleArn ==
%ecs_task_definition_execution_role_azrn

}

* Blockebene — Innerhalb eines Blocks, z. B. einer when Klausel, deklariert, sind Variablen auf
Blockebene nur fir diesen bestimmten Block sichtbar. Alle Verweise auf3erhalb des Blocks flihren
zu einem Fehler.

In der folgenden Beispiel-Regeldatei ecs_task_definition_execution_role_arn
werden die Variablen ecs_task_definition_task_role_arn und D auf

Blockebene innerhalb des AWS : : ECS: : TaskDefinition Typblocks initialisiert.

Sie kdnnen nur auf die ecs_task_definition_execution_role_arn Variablen
ecs_task_definition_task_role_arn und innerhalb der AWS: :ECS: :TaskDefinition
Typbldcke fir ihre jeweiligen Regeln verweisen.

rule check_ecs_task_definition_task_role_arn

{
AWS: :ECS: :TaskDefinition

{

let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-
task-role-name'

Properties.TaskRoleArn == %ecs_task_definition_task_role_azrn
}
}
rule check_ecs_task_definition_execution_role_arn
{
AWS: :ECS: :TaskDefinition
{
let ecs_task_definition_execution_role_arn = 'arn:aws:iam::123456789012:role/
my-execution-role-name'
Properties.ExecutionRoleArn == %ecs_task_definition_execution_role_azrn
}
}

Beispiele fur Variablen in Guard-Regeldateien

Die folgenden Abschnitte enthalten Beispiele fiur die statische und dynamische Zuweisung von
Variablen.

Zuweisen und Referenzieren von Variablen in Guard-Regeln 43

AWS CloudFormation Guard User Guide

Statische Zuweisung

Im Folgenden finden Sie eine CloudFormation Beispielvorlage.

Resources:
EcsTask:
Type: 'AWS::ECS::TaskDefinition'
Properties:
TaskRoleArn: 'arn:aws:iam::123456789012:role/my-role-name'

Basierend auf dieser Vorlage kdnnen Sie eine Regel mit dem Namen
schreibencheck_ecs_task_definition_task_role_arn, die sicherstellt, dass die
TaskRoleArn Eigenschaft aller AWS: : ECS: : TaskDefinition Vorlagenressourcen
lautetarn:aws:iam: :123456789012:role/my-role-name.

rule check_ecs_task_definition_task_role_arn

{

let ecs_task_definition_task_role_arn = 'arn:aws:iam::123456789012:role/my-role-
name'

Resources.*.Properties.TaskRoleArn == %ecs_task_definition_task_role_arn
}

Im Rahmen der Regel kénnen Sie eine Variable namens initialisieren
ecs_task_definition_task_role_arn und ihr den statischen Zeichenkettenwert
'arn:aws:iam::123456789012:role/my-role-name' zuweisen. Die Regelklausel
Uberprift, ob der fir die TaskRoleArn Eigenschaft der EcsTask Ressource angegebene Wert
angegeben wurde, arn:aws:iam: :123456789012:role/my-role-name indem sie auf
die ecs_task_definition_task_role_axrn Variable im Abschnitt verweist. query|value
literal

Dynamische Zuweisung

Im Folgenden finden Sie eine CloudFormation Beispielvorlage.

Resources:
EcsTask:
Type: 'AWS::ECS::TaskDefinition'
Properties:
TaskRoleArn: 'arn:aws:iam::123456789012:role/my-role-name'

Zuweisen und Referenzieren von Variablen in Guard-Regeln 44

AWS CloudFormation Guard User Guide

Basierend auf dieser Vorlage konnen Sie eine Variable initialisieren, die ecs_tasks im
Gultigkeitsbereich der Datei aufgerufen wird, und ihr die Abfrage Resources.*[Type ==
"AWS: :ECS::TaskDefinition' zuweisen. Guard fragt alle Ressourcen in der Eingabevorlage
ab und speichert Informationen Uber sie inecs_tasks. Sie kénnen auch eine Regel namens
schreibencheck_ecs_task_definition_task_role_arn, die sicherstellt, dass die
TaskRoleArn Eigenschaft aller AWS: : ECS: : TaskDefinition Vorlagenressourcen
arn:aws:iam::123456789012:ro0le/my-role-name

let ecs_tasks = Resources.*[

Type == 'AWS::ECS::TaskDefinition'
]
rule check_ecs_task_definition_task_role_arn
{
%ecs_tasks.Properties.TaskRoleArn == 'arn:aws:iam::123456789012:ro0le/my-role-name'
}

Die Regelklausel tUberprift, ob der fir die TaskRoleArn Eigenschaft der EcsTask Ressource
angegebene Wert auf die ecs_task_definition_task_role_arn Variable im query Abschnitt
verweist. arn:aws:iam::123456789012:role/my-role-name

Erzwingen der Vorlagenkonfiguration CloudFormation

Sehen wir uns ein komplexeres Beispiel fur einen Produktionsanwendungsfall an. In diesem Beispiel
schreiben wir Guard-Regeln, um strengere Kontrollen bei der Definition von ECS Amazon-Aufgaben
zu gewabhrleisten.

Im Folgenden finden Sie eine CloudFormation Beispielvorlage.

Resources:
EcsTask:
Type: 'AWS::ECS::TaskDefinition'
Properties:
TaskRoleArn:
'Fn::GetAtt': [TaskIamRole, Arn]
ExecutionRoleArn:
'Fn::GetAtt': [ExecutionIamRole, Arn]

TaskIamRole:
Type: 'AWS::IAM::Role'
Properties:

Zuweisen und Referenzieren von Variablen in Guard-Regeln 45

AWS CloudFormation Guard User Guide

PermissionsBoundary: 'arn:aws:iam::123456789012:policy/MyExamplePolicy’

ExecutionIamRole:
Type: 'AWS::IAM::Role'
Properties:

PermissionsBoundary: 'arn:aws:iam::123456789012:policy/MyExamplePolicy’

Basierend auf dieser Vorlage schreiben wir die folgenden Regeln, um sicherzustellen, dass diese
Anforderungen erfullt werden:

« Jeder AWS: :ECS::TaskDefinition Ressource in der Vorlage ist sowohl eine Aufgabenrolle als
auch eine Ausflhrungsrolle zugeordnet.

» Die Aufgabenrollen und Ausflihrungsrollen sind Rollen AWS ldentity and Access Management
(IAM).

» Die Rollen sind in der Vorlage definiert.

* Die PermissionsBoundary Eigenschaft wird fir jede Rolle angegeben.

Select all Amazon ECS task definition resources from the template
let ecs_tasks = Resources.*[
Type == 'AWS::ECS::TaskDefinition'

Select a subset of task definitions whose specified value for the TaskRoleArn
property is an Fn::Gett-retrievable attribute
let task_role_refs = some %ecs_tasks.Properties.TaskRoleArn.'Fn::GetAtt'[0]

Select a subset of TaskDefinitions whose specified value for the ExecutionRoleArn
property is an Fn::Gett-retrievable attribute
let execution_role_refs = some %ecs_tasks.Properties.ExecutionRoleArn.'Fn::GetAtt'[0]

Verify requirement #1
rule all_ecs_tasks_must_have_task_end_execution_roles
when %ecs_tasks !empty

{

%ecs_tasks.Properties {
TaskRoleArn exists
ExecutionRoleArn exists

}

}

Zuweisen und Referenzieren von Variablen in Guard-Regeln 46

AWS CloudFormation Guard User Guide

Verify requirements #2 and #3
rule all_roles_are_local_and_type_IAM
when all_ecs_tasks_must_have_task_end_execution_roles

{
let task_iam_references = Resources.%task_role_refs
let execution_iam_reference = Resources.%execution_role_refs
when %task_iam_references !empty {
%task_iam_references.Type == 'AWS::IAM::Role'
}
when %execution_iam_reference !empty {
%execution_iam_reference.Type == 'AWS::IAM::Role'
}
}

Verify requirement #4
rule check_role_have_permissions_boundary
when all_ecs_tasks_must_have_task_end_execution_roles

let task_iam_references = Resources.%task_role_refs
let execution_iam_reference = Resources.%execution_role_refs

when %task_iam_references !empty {

%task_iam_references.Properties.PermissionsBoundary exists

when %execution_iam_reference !empty {
%execution_iam_reference.Properties.PermissionsBoundary exists

Blocke mit benannten Regeln verfassen in AWS CloudFormation Guard

Beim Schreiben von Blécken mit benannten Regeln kénnen Sie die AWS CloudFormation Guard
folgenden zwei Kompositionsstile verwenden:

+ Bedingte Abhangigkeit

» Korrelationale Abhangigkeit

Blécke mit benannten Regeln verfassen 47

AWS CloudFormation Guard User Guide

Die Verwendung einer dieser Arten der Abhangigkeitszusammensetzung tragt zur
Wiederverwendbarkeit bei und reduziert die Ausflihrlichkeit und Wiederholungen in Blécken mit
benannten Regeln.

Themen

» Voraussetzungen

« Zusammensetzung bedingter Abhangigkeiten

« Zusammensetzung korrelativer Abhangigkeiten

Voraussetzungen

Weitere Informationen zu Blécken mit benannten Regeln finden Sie unter Regeln schreiben.

Zusammensetzung bedingter Abhangigkeiten

Bei diesem Kompositionsstil hangt die Auswertung eines when Blocks oder eines Blocks mit
benannten Regeln bedingt vom Ergebnis der Auswertung eines oder mehrerer anderer Blécke oder
Klauseln mit benannten Regeln ab. Die folgende Beispieldatei mit Guard-Regeln enthalt Bldcke mit
benannten Regeln, die bedingte Abhangigkeiten veranschaulichen.

Named-rule block, rule_name_A
rule rule_name_A {

Guard_rule_1

Guard_rule_2

Example-1, Named-rule block, rule_name_B, takes a conditional dependency on
rule_name_A
rule rule_name_B when rule_name_A {
Guard_rule_3
Guard_rule_4

Example-2, when block takes a conditional dependency on rule_name_A
when rule_name_A {

Guard_rule_3

Guard_rule_4

Blocke mit benannten Regeln verfassen 48

AWS CloudFormation Guard User Guide

Example-3, Named-rule block, rule_name_C, takes a conditional dependency on
rule_name_A ~ rule_name_B
rule rule_name_C when rule_name_A
rule_name_B {
Guard_rule_3
Guard_rule_4

Example-4, Named-rule block, rule_name_D, takes a conditional dependency on
(rule_name_A v clause_A) ~ clause_B ” rule_name_B
rule rule_name_D when rule_name_A OR
clause_A
clause_B
rule_name_B {
Guard_rule_3
Guard_rule_4

Example-1Hat in der vorherigen Beispiel-Regeldatei die folgenden méglichen Ergebnisse:

* Beider rule_name_A Auswertung mit werden PASS die von rule_name_B eingekapselten
Guard-Regeln ausgewertet.

* Beider rule_name_A Auswertung mit werden die von FAIL gekapselten Guard-Regeln nicht
ausgewertet. rule_name_B rule_name_Bwird als ausgewertet. SKIP

* Wenn als rule_name_A Ergebnis ausgewertet wirdSKIP, werden die von rule_name_B
gekapselten Guard-Regeln nicht ausgewertet. rule_name_Bwird als ausgewertet. SKIP

(® Note

Dieser Fall tritt auf, wenn er rule_name_A bedingt von einer Regel abhangt, die als
ausgewertet wird FAIL und zu einer Auswertung mit fihrt. rule_name_A SKIP

Im Folgenden finden Sie ein Beispiel flr ein Konfigurationselement flir eine

Configuration Management-Datenbank (CMDB) aus einem AWS Config Element flr
Sicherheitsgruppeninformationen fir eingehenden und ausgehenden Datenverkehr. Dieses Beispiel
demonstriert die Zusammensetzung bedingter Abhangigkeiten.

Blécke mit benannten Regeln verfassen 49

AWS CloudFormation Guard

User Guide

rule check_resource_type_and_parameter {
resourceType == /AWS::EC2::SecurityGroup/
InputParameters.TcpBlockedPorts NOT EMPTY

rule check_parameter_validity when check_resource_type_and_parameter {
InputParameters.TcpBlockedPorts[*] {
this in r[0,65535]

rule check_ip_procotol_and_port_range_validity when check_parameter_validity {
let ports = InputParameters.TcpBlockedPorts[*]

#
select all ipPermission instances that can be reached by ANY IP address
IPv4 or IPv6 and not UDP

#

let configuration = configuration.ipPermissions[
some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
some ipv6Ranges[*].cidrIpv6 == "::/0"
ipProtocol != 'udp']

when %configuration !empty {
sconfiguration {
ipProtocol != '-1'

when fromPort exists
toPort exists {
let ip_perm_block = this
%sports {
this < %ip_perm_block.fromPort or
this > %ip_perm_block.toPort

Im vorherigen Beispiel check_parameter_validity ist bedingt abhdngig von
check_resource_type_and_parameter und
check_ip_procotol_and_port_range_validity ist bedingt abhangig von.

Blocke mit benannten Regeln verfassen

50

AWS CloudFormation Guard

User Guide

check_parameter_validity Im Folgenden finden Sie ein Konfigurationselement fiir die
Konfigurationsmanagement-Datenbank (CMDB), das den obigen Regeln entspricht.

version: '1.3'

resourceType:

configuration:

description: Delete-me-after-testing
groupName: good-sg-test-delete-me

ipPermissions:

fromPort: 172
ipProtocol: tcp
ipv6Ranges: []
prefixListIds: []
toPort: 172
userIdGroupPairs: []
ipv4Ranges:

- cidrIp: 0.0.0.0/0
ipRanges:

- 0.0.0.0/0
fromPort: 89
ipProtocol: tcp
ipv6Ranges:

- cidrIpv6: '::/0'
prefixListIds: []
toPort: 89
userIdGroupPairs: []
ipv4Ranges:

- cidrIp: 0.0.0.0/0
ipRanges:

- 0.0.0.0/0

ipPermissionsEgress:

ipProtocol: '-1'
ipv6Ranges: []
prefixListIds: []
userIdGroupPairs: []

tags:

ipv4Ranges:

- cidrIp: 0.0.0.0/0
ipRanges:

- 0.0.0.0/0
key: Name

"AWS::EC2::SecurityGroup'
resourceld: sg-12345678abcdefghi

Blocke mit benannten Regeln verfassen

51

AWS CloudFormation Guard User Guide

value: good-sg-delete-me
vpcIld: vpc-0123abcd
InputParameters:
TcpBlockedPorts:
- 3389
- 20
- 110
- 142
- 1434
- 5500
supplementaryConfiguration: {3}
resourceTransitionStatus: None

Zusammensetzung korrelativer Abhangigkeiten

Bei diesem Kompositionsstil besteht bei der Auswertung eines when Blocks oder eines Blocks mit
benannten Regeln eine korrelative Abhangigkeit vom Bewertungsergebnis einer oder mehrerer
anderer Guard-Regeln. Korrelationsabhangigkeit kann wie folgt erreicht werden.

Named-rule block, rule_name_A, takes a correlational dependency on all of the Guard
rules encapsulated by the named-rule block
rule rule_name_A {
Guard_rule_1
Guard_rule_2

when block takes a correlational dependency on all of the Guard rules encapsulated by
the when block
when condition {
Guard_rule_1
Guard_rule_2

Sehen Sie sich das folgende Beispiel fur eine Guard-Regeldatei an, um die Zusammensetzung
korrelativer Abhangigkeiten besser zu verstehen.

#

Allowed valid protocols for AWS::ElasticlLoadBalancingV2::Listener resources
#

let allowed_protocols = ["HTTPS", "TLS"]

Blécke mit benannten Regeln verfassen 52

AWS CloudFormation Guard User Guide

let elbs = Resources.*[Type == 'AWS::ElasticlLoadBalancingV2::Listener']

#
If there are AWS::ElasticlLoadBalancingV2::Listener resources present, ensure that
they have protocols specified from the
list of allowed protocols and that the Certificates property is not empty
#
rule ensure_all_elbs_are_secure when %elbs !empty {
%elbs.Properties {
Protocol in %allowed_protocols
Certificates !empty

#
In addition to secure settings, ensure that AWS::ElasticLoadBalancingV2::Listener
resources are private
#
rule ensure_elbs_are_internal_and_secure when %elbs !empty {
ensure_all_elbs_are_secure
%elbs.Properties.Scheme == 'internal'

Hat in der vorherigen Regeldatei ensure_elbs_are_internal_and_secure eine korrelative
Abhangigkeit von. ensure_all_elbs_are_secure Im Folgenden finden Sie eine CloudFormation
Beispielvorlage, die den vorherigen Regeln entspricht.

Resources:
ServicelLBPubliclListener46709EAA:
Type: 'AWS::ElasticlLoadBalancingV2::Listener'
Properties:
Scheme: internal
Protocol: HTTPS
Certificates:
- CertificateArn: 'arn:aws:acm...
ServicelBPubliclListener4670GGG:
Type: 'AWS::ElasticlLoadBalancingV2::Listener'
Properties:
Scheme: internal
Protocol: HTTPS
Certificates:

Blécke mit benannten Regeln verfassen 53

AWS CloudFormation Guard User Guide

- CertificateArn: 'arn:aws:acm...'

Klauseln schreiben, um kontextsensitive Bewertungen durchzuflihren

AWS CloudFormation Guard Klauseln werden anhand hierarchischer Daten ausgewertet. Die Guard-
Evaluierungs-Engine 16st Abfragen anhand eingehender Daten, indem sie hierarchischen Daten wie
angegeben folgt und dabei eine einfache Punktnotation verwendet. Haufig sind mehrere Klauseln
erforderlich, um eine Auswertung anhand einer Datenkarte oder einer Sammlung durchzufihren.
Guard bietet eine praktische Syntax zum Schreiben solcher Klauseln. Die Engine ist kontextsensitiv
und verwendet die entsprechenden zugehdrigen Daten flr Auswertungen.

Im Folgenden finden Sie ein Beispiel flr eine Kubernetes-Pod-Konfiguration mit Containern, auf die
Sie kontextsensitive Evaluierungen anwenden kdnnen.

apiVersion: vl
kind: Pod
metadata:
name: frontend
spec:
containers:
- name: app
image: 'images.my-company.example/app:vé4'
resources:
requests:
memory: 64Mi
cpu: 0.25
limits:
memory: 128Mi
cpu: 0.5
- name: log-aggregator
image: 'images.my-company.example/log-aggregator:vé6'

resources:
requests:
memory: 64Mi
cpu: 0.25
limits:
memory: 128Mi
cpu: 0.75

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 54

AWS CloudFormation Guard User Guide

Sie kénnen Guard-Klauseln verfassen, um diese Daten auszuwerten. Bei der Auswertung einer
Regeldatei ist der Kontext das gesamte Eingabedokument. Im Folgenden finden Sie Beispielklauseln,
die die Durchsetzung von Grenzwerten fir in einem Pod angegebene Container validieren.

#
At this level, the root document is available for evaluation
#
#
Our rule only evaluates for apiVersion == v1 and K8s kind is Pod
#
rule ensure_container_limits_are_enforced
when apiVersion == 'v1'
kind == 'Pod'
{
spec.containers[*] {
resources.limits {
#
Ensure that cpu attribute is set
#
cpu exists
<<
Id: K8S_REC_18
Description: CPU limit must be set for the container
>>
#
Ensure that memory attribute is set
#
memory exists
<<
Id: K8S_REC_22
Description: Memory limit must be set for the container
>>
}
}
}

Verstandnis bei context Evaluierungen

Auf der Ebene der Regelbldcke ist der eingehende Kontext das vollstdndige Dokument. Die
Auswertung der when Bedingung erfolgt anhand dieses eingehenden Stammkontextes, in dem sich

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 55

AWS CloudFormation Guard User Guide

die kind Attribute apiVersion und befinden. Im vorherigen Beispiel werden diese Bedingungen wie
folgt ausgewertettrue.

Gehen Sie nun durch die Hierarchie, spec.containers[*] wie im vorherigen Beispiel gezeigt.
Bei jeder Durchquerung der Hierarchie andert sich der Kontextwert entsprechend. Nachdem die
Durchquerung des spec Blocks abgeschlossen ist, andert sich der Kontext, wie im folgenden
Beispiel gezeigt.

containers:
- name: app
image: 'images.my-company.example/app:v4'

resources:
requests:
memory: 64Mi
cpu: 0.25
limits:

memory: 128Mi
cpu: 0.5
- name: log-aggregator
image: 'images.my-company.example/log-aggregator:vé6'

resources:
requests:
memory: 64Mi
cpu: 0.25
limits:

memory: 128Mi
cpu: 0.75

Nach dem Durchlaufen des containers Attributs wird der Kontext im folgenden Beispiel gezeigt.

- name: app
image: 'images.my-company.example/app:vé4'
resources:
requests:
memory: 64Mi
cpu: 0.25
limits:

memory: 128Mi
cpu: 0.5
- name: log-aggregator
image: 'images.my-company.example/log-aggregator:v6'
resources:

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 56

AWS CloudFormation Guard User Guide

requests:
memory: 64Mi
cpu: 0.25
limits:
memory: 128Mi
cpu: 0.75

Schleifen verstehen

Sie kénnen den Ausdruck verwenden[*], um eine Schleife fiir alle Werte zu definieren, die im Array
fir das containers Attribut enthalten sind. Der Block wird fiir jedes darin enthaltene Element
ausgewertetcontainers. Im obigen Beispiel flr einen Regelausschnitt definieren die im Block
enthaltenen Klauseln Prifungen, die anhand einer Containerdefinition validiert werden sollen. Der
darin enthaltene Klauselblock wird zweimal ausgewertet, einmal fur jede Containerdefinition.

spec.containers[*] {

}

Fir jede Iteration ist der Kontextwert der Wert an dem entsprechenden Index.

® Note

Das einzige unterstitzte Indexzugriffsformat ist [<integer>] oder[*]. Derzeit unterstitzt
Guard keine Bereiche wie[2. .4].

Arrays

Oft werden an Stellen, an denen ein Array akzeptiert wird, auch Einzelwerte akzeptiert. Wenn es
beispielsweise nur einen Container gibt, kann das Array geléscht werden und die folgende Eingabe
wird akzeptiert.

apiVersion: vl
kind: Pod
metadata:

name: frontend

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 57

AWS CloudFormation Guard User Guide

spec:
containers:
name: app
image: images.my-company.example/app:v4
resources:
requests:
memory: "64Mi"
cpu: 0.25
limits:
memory: "128Mi"
cpu: 0.5

Wenn ein Attribut ein Array akzeptieren kann, stellen Sie sicher, dass lhre Regel die Array-Form
verwendet. Im vorherigen Beispiel verwenden Sie containers[*] und nichtcontainers. Guard
fuhrt beim Durchlaufen der Daten eine korrekte Auswertung durch, wenn es nur auf die Form mit
einem Wert trifft.

(® Note

Verwenden Sie immer die Array-Form, wenn Sie den Zugriff auf eine Regelklausel
ausdricken, wenn ein Attribut ein Array akzeptiert. Guard wertet auch dann korrekt aus, wenn
nur ein einziger Wert verwendet wird.

Verwenden Sie das Formular spec.containers[*] anstelle von
spec.containers

Guard-Abfragen geben eine Sammlung aufgeldster Werte zurtick. Wenn Sie das Formular
verwendenspec.containers, enthalten die aufgeldsten Werte fur die Abfrage das Array, auf das
von verwiesen wirdcontainers, nicht die darin enthaltenen Elemente. Wenn Sie das Formular
verwendenspec.containers[*], beziehen Sie sich auf jedes einzelne enthaltene Element.
Denken Sie daran, das [*] Formular immer dann zu verwenden, wenn Sie jedes in der Matrix
enthaltene Element auswerten mochten.

Wird verwendetthis, um auf den aktuellen Kontextwert zu verweisen

Wenn Sie eine Guard-Regel erstellen, kbnnen Sie auf den Kontextwert verweisen, indem Sie this
Oft this ist dies implizit, weil es an den Wert des Kontextes gebunden ist. Zum Beispiel this.spec
sind this.apiVersionthis.kind, und an den Stamm oder das Dokument gebunden. Im

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 58

AWS CloudFormation Guard User Guide

Gegensatz dazu this.resources ist an jeden Wert fir gebundencontainers, z. B. /spec/
containers/Q/ und/spec/containers/1. this.cpuAhnliches gilt fiir die this.memory
Zuordnung zu Grenzwerten, insbesondere /spec/containers/0/resources/limits und/
spec/containers/1/resources/limits.

Im nachsten Beispiel wurde die vorherige Regel fur die Kubernetes-Pod-Konfiguration so
umgeschrieben, dass sie explizit verwendet wird. this

rule ensure_container_limits_are_enforced
when this.apiVersion == 'v1'
this.kind == 'Pod'

this.spec.containers[*] {
this.resources.limits {
#

Ensure that cpu attribute is set
#

this.cpu exists
<<

Id: K8S_REC_18

Description: CPU limit must be set for the container
>>

#

Ensure that memory attribute is set
#

this.memory exists
<<

Id: K8S_REC_22

Description: Memory limit must be set for the container
>>

Sie missen dies nicht explizit verwenden. this Die this Referenz kann jedoch niitzlich sein, wenn
Sie mit Skalaren arbeiten, wie im folgenden Beispiel gezeigt.

InputParameters.TcpBlockedPorts[*] {
this in r[@, 65535)

<<

result: NON_COMPLIANT

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 59

AWS CloudFormation Guard

User Guide

Im vorherigen Beispiel this wird verwendet, um auf jede Portnummer zu verweisen.
Mdgliche Fehler bei der Verwendung von implizit this

Beim Verfassen von Regeln und Klauseln treten haufig Fehler auf, wenn auf Elemente aus
dem impliziten Kontextwert verwiesen wird. this Stellen Sie sich zum Beispiel das folgende
Eingabedatum vor, anhand dessen ausgewertet werden soll (dieses muss erfolgreich sein).

resourceType:

message: TcpBlockedPort not in range (@, 65535)

>>

InputParameters:

TcpBlockedPorts:

configuration:

Beim Testen mit der vorherigen Vorlage flihrt die folgende Regel zu einem Fehler, da sie
falschlicherweise davon ausgeht, dass das Implizite this genutzt wird.

rule check_ip_procotol_and_port_range_validity

{

ipPermissions:
- fromPort: 172

ipProtocol: tcp
ipv6Ranges: []
prefixListIds: []
toPort: 172
userIdGroupPairs: []
ipv4Ranges:

- cidrIp: "0.0.0.0/0"
fromPort: 89
ipProtocol: tcp
ipv6Ranges:

- cidrIpv6: "::/0"
prefixListIds: []
toPort: 109
userIdGroupPairs: []
ipv4Ranges:

- cidrIp: 10.2.0.0/24

#

select all ipPermission instances that can be reached by ANY IP address

"AWS: :EC2: :SecurityGroup'

[21, 22, 110]

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen

60

AWS CloudFormation Guard User Guide

IPv4 or IPv6e and not UDP

#

let any_ip_permissions = configuration.ipPermissions[
some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
some ipv6Ranges[*].cidrIpv6 == "::/0Q"
ipProtocol != 'udp']

when %any_ip_permissions !empty

{
%any_ip_permissions {
ipProtocol != '-1' # this here refers to each ipPermission instance
InputParameters.TcpBlockedPorts[*] {
fromPort > this or
toPort < this
<<
result: NON_COMPLIANT
message: Blocked TCP port was allowed in range
>>
}
}
}

Um dieses Beispiel durchzugehen, speichern Sie die vorherige Regeldatei mit dem Namen
any_ip_ingress_check.guard und die Daten mit dem Dateinamen. ip_ingress.yaml Flhren
Sie dann den folgenden validate Befehl mit diesen Dateien aus.

cfn-guard validate -r any_ip_ingress_check.guard -d ip_ingress.yaml --show-clause-
failures

In der folgenden Ausgabe gibt die Engine an, dass ihr Versuch, eine Eigenschaft fur
InputParameters.TcpBlockedPorts[*] den Wert abzurufen/configuration/
ipPermissions/@, /configuration/ipPermissions/1 fehlgeschlagen ist.

Clause #2 FAIL(Block[Location[file:any_ip_ingress_check.guard, line:17,
column:13]])

Attempting to retrieve array index or key from map at Path = /
configuration/ipPermissions/@, Type was not an array/object map, Remaining Query =
InputParameters.TcpBlockedPorts[*]

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 61

AWS CloudFormation Guard User Guide

Clause #3 FAIL(Block[Location[file:any_ip_ingress_check.guard, line:17,
column:13]])

Attempting to retrieve array index or key from map at Path = /

configuration/ipPermissions/1, Type was not an array/object map, Remaining Query =
InputParameters.TcpBlockedPorts[*]

Um dieses Ergebnis besser zu verstehen, schreiben Sie die Regel neu, indem Sie this explizit
referenziert verwenden.

rule check_ip_procotol_and_port_range_validity

{
#
select all ipPermission instances that can be reached by ANY IP address
IPv4 or IPv6 and not UDP
#
let any_ip_permissions = this.configuration.ipPermissions[
some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
some ipv6Ranges[*].cidrIpv6 == "::/0Q"
ipProtocol != 'udp']
when %any_ip_permissions !empty
{
%any_ip_permissions {
this.ipProtocol != '-1' # this here refers to each ipPermission instance
this.InputParameters.TcpBlockedPorts[*] {
this.fromPort > this or
this.toPort < this
<<
result: NON_COMPLIANT
message: Blocked TCP port was allowed in range
>>
}
}
}
}

this.InputParametersverweist auf jeden Wert, der in der Variablen any_ip_permissions
enthalten ist. Die der Variablen zugewiesene Abfrage wahlt configuration.ipPermissions
Ubereinstimmende Werte aus. Der Fehler weist auf einen Abrufversuch InputParamaters in
diesem Kontext hin, der jedoch im Stammkontext InputParameters erfolgte.

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 62

AWS CloudFormation Guard User Guide

Der innere Block verweist auch auf Variablen, die aul3erhalb des Giltigkeitsbereichs liegen, wie im
folgenden Beispiel gezeigt.

this.ipProtocol != '-1' # this here refers to each ipPermission instance
this.InputParameter.TcpBlockedPorts[*] { # ERROR referencing InputParameter off /
configuration/ipPermissions[*]
this.fromPort > this or # ERROR: implicit this refers to values inside /
InputParameter/TcpBlockedPorts[*]
this.toPort < this
<<

result: NON_COMPLIANT
message: Blocked TCP port was allowed in range

>>

thisbezieht sich auf jeden Portwert in[21, 22, 110@], bezieht sich aber auch auf fromPort
undtoPort. Sie gehdren beide zum Bereich des auleren Blocks.

Behebung von Fehlern mit der impliziten Verwendung von this

Verwenden Sie Variablen, um Werte explizit zuzuweisen und zu referenzieren. Erstens
InputParameter.TcpBlockedPorts ist es Teil des Eingabekontextes (Stammkontextes).
InputParameter.TcpBlockedPortsVerlassen Sie den inneren Block und weisen Sie ihn explizit
zu, wie im folgenden Beispiel gezeigt.

rule check_ip_procotol_and_port_range_validity
{
let ports = InputParameters.TcpBlockedPorts[*]
... cut off for illustrating change

Verweisen Sie dann explizit auf diese Variable.

rule check_ip_procotol_and_port_range_validity

{
#
Important: Assigning InputParameters.TcpBlockedPorts results in an ERROR.
We need to extract each port inside the array. The difference is the query
InputParameters.TcpBlockedPorts returns [[21, 20, 110]] whereas the query
InputParameters.TcpBlockedPorts[*] returns [21, 20, 110].

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 63

AWS CloudFormation Guard User Guide

#
let ports = InputParameters.TcpBlockedPorts[*]

#
select all ipPermission instances that can be reached by ANY IP address
IPv4 or IPv6 and not UDP

#

let any_ip_permissions = configuration.ipPermissions[
some ipv4Ranges[*].cidrIp == "0.0.0.0/0" or
some ipv6Ranges[*].cidrIpv6 == "::/0"
ipProtocol != 'udp']

when %any_ip_permissions !empty

{
%any_ip_permissions {
this.ipProtocol != '-1' # this here refers to each ipPermission instance
%sports {
this.fromPort > this or
this.toPort < this
<<
result: NON_COMPLIANT
message: Blocked TCP port was allowed in range
>>
}
}
}

Machen Sie dasselbe flr innere this Verweise im Inneren%ports.

Es sind jedoch noch nicht alle Fehler behoben, da die interne Schleife ports immer noch eine
falsche Referenz enthalt. Das folgende Beispiel zeigt das Entfernen der falschen Referenz.

rule check_ip_procotol_and_port_range_validity

{

Important: Assigning InputParameters.TcpBlockedPorts results in an ERROR.

We need to extract each port inside the array. The difference is the query
InputParameters.TcpBlockedPorts returns [[21, 20, 110]] whereas the query

InputParameters.TcpBlockedPorts[*] returns [21, 20, 110].

HOH F O B R

let ports = InputParameters.TcpBlockedPorts[*]

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen

64

AWS CloudFormation Guard

User Guide

#

select all ipPermission instances that can be reached by ANY IP address

IPv4 or IPv6e and not UDP

#
let any_ip_permissions = configuration.ipPermissions[
#
if either ipv4 or ipv6 that allows access from any address
#
some ipv4Ranges[*].cidrIp == '0.0.0.0/0' or
some ipv6Ranges[*].cidrIpv6 == '::/0'
#
the ipProtocol is not UDP
#
ipProtocol != 'udp']

when %any_ip_permissions !empty

{
%any_ip_permissions {
ipProtocol != '-1'
<<
result: NON_COMPLIANT
check_id: HUB_ID_2334
message: Any IP Protocol is allowed
>>
when fromPort exists
toPort exists
{
let each_any_ip_perm = this
%sports {
this < %each_any_ip_perm.fromPort or
this > %each_any_ip_perm.toPort
<<
result: NON_COMPLIANT
check_id: HUB_ID_2340
message: Blocked TCP port was allowed in range
>>
}
}
}
}

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen

65

AWS CloudFormation Guard User Guide

}

FUhren Sie als Nachstes den validate Befehl erneut aus. Diesmal ist es vorbei.

cfn-guard validate -r any_ip_ingress_check.guard -d ip_ingress.yaml --show-clause-
failures

Das Folgende ist die Ausgabe des validate Befehls.

ip_ingress.yaml Status = PASS
PASS rules
check_ip_procotol_and_port_range_validity PASS

Um diesen Ansatz auf Fehler zu testen, wird im folgenden Beispiel eine Payload-Anderung
verwendet.

resourceType: 'AWS::EC2::SecurityGroup'
InputParameters:

TcpBlockedPorts: [21, 22, 90, 110]
configuration:

ipPermissions:

- fromPort: 172
ipProtocol: tcp
ipv6Ranges: []
prefixListIds: []
toPort: 172
userIdGroupPairs: []
ipv4Ranges:

- cidrIp: "0.0.0.0/0"

- fromPort: 89
ipProtocol: tcp
ipv6Ranges:

- cidrIpv6: "::/0"
prefixListIds: []
toPort: 109
userIdGroupPairs: []
ipv4Ranges:

- cidrIp: 10.2.0.0/24

90 liegt im Bereich von 89—109, fur den jede beliebige IPv6 Adresse zulassig ist. Im Folgenden wird
der validate Befehl ausgegeben, nachdem er erneut ausgefiihrt wurde.

Schreiben von Klauseln zur Durchfiihrung kontextsensitiver Bewertungen 66

AWS CloudFormation Guard User Guide

Clause #3 FAIL(Clause(Location[file:any_ip_ingress_check.guard, line:43,
column:21], Check: _ LESS THAN %each_any_ip_perm.fromPort))
Comparing Int((Path("/InputParameters/TcpBlockedPorts/2"), 90))
with Int((Path("/configuration/ipPermissions/1/fromPort"), 89)) failed
(DEFAULT: NO_MESSAGE)
Clause #4 FAIL(Clause(Location[file:any_ip_ingress_check.guard, line:44,
column:21], Check: _ GREATER THAN %each_any_ip_perm.toPort))
Comparing Int((Path("/InputParameters/TcpBlockedPorts/2"), 90))
with Int((Path("/configuration/ipPermissions/1/toPort"), 109)) failed

result: NON_COMPLIANT

check_id: HUB_ID_2340

message: Blocked TCP port was allowed in
range

AWS CloudFormation Guard Regeln fur Tests

Sie kénnen das AWS CloudFormation Guard integrierte Unit-Test-Framework verwenden, um zu
Uberprufen, ob lhre Guard-Regeln wie vorgesehen funktionieren. In diesem Abschnitt erfahren Sie,
wie Sie eine Unit-Test-Datei schreiben und wie Sie damit Ihre Regeldatei mit dem test Befehl testen
kdnnen.

Ihre Unit-Test-Datei muss eine der folgenden Erweiterungen haben:. json,.JSON,. jsn,
.yaml.YAML, oder.yml.

Themen
» Voraussetzungen
« Uberblick tiber die Guard-Unit-Testdateien

» Exemplarische Vorgehensweise zum Schreiben einer Unit-Test-Datei fur Guard-Regeln

Voraussetzungen

Schreiben Sie Guard-Regeln, anhand derer |hre Eingabedaten ausgewertet werden. Weitere
Informationen finden Sie unter Writing Guard-Regeln.

Uberblick tiber die Guard-Unit-Testdateien

Guard-Unit-Testdateien sind Dateien im JSON- oder YAML-Format, die mehrere Eingaben und die
erwarteten Ergebnisse fir Regeln enthalten, die in einer Guard-Regeldatei geschrieben sind. Es

Testing Guard-Regeln 67

AWS CloudFormation Guard User Guide

kann mehrere Stichproben geben, um unterschiedliche Erwartungen zu bewerten. Wir empfehlen,
zunachst auf leere Eingaben zu testen und dann nach und nach Informationen zur Bewertung
verschiedener Regeln und Klauseln hinzuzufliigen.

Aulerdem empfehlen wir, Unit-Testing-Dateien mit dem Suffix _test. json oder zu benennen.
_tests.yaml Wenn Sie beispielsweise eine Regeldatei mit dem Namen habenmy_rules.guard,
geben Sie lhrer Unit-Test-Datei my_rules_tests.yaml einen Namen.

Syntax

Im Folgenden wird die Syntax einer Unit-Test-Datei im YAML-Format gezeigt.

- name: <TEST NAME>
input:
<SAMPLE INPUT>
expectations:
rules:
<RULE NAME>: [PASS|FAIL|SKIP]

Eigenschaften
Im Folgenden sind die Eigenschaften einer Guard-Testdatei aufgeflihrt.
input

Daten, anhand derer Sie Ihre Regeln testen kénnen. Wir empfehlen, dass Ihr erster Test eine
leere Eingabe verwendet, wie im folgenden Beispiel gezeigt.

- name: MyTestl
input {3}

Flgen Sie fur nachfolgende Tests Eingabedaten zum Test hinzu.

Erforderlich: Ja

expectations

Das erwartete Ergebnis, wenn bestimmte Regeln anhand lhrer Eingabedaten bewertet werden.
Geben Sie eine oder mehrere Regeln an, die Sie zusatzlich zum erwarteten Ergebnis fur jede
Regel testen mdchten. Das erwartete Ergebnis muss eines der folgenden sein:

Ubersicht 68

AWS CloudFormation Guard User Guide

* PASS— Bei der Ausfuhrung mit Ihren Eingabedaten werden die Regeln wie folgt
ausgewertettrue.

* FAIL— Bei der Ausfuhrung mit Ihren Eingabedaten werden die Regeln wie folgt
ausgewertetfalse.

+ SKIP— Wenn die Regel anhand lhrer Eingabedaten ausgeflhrt wird, wird sie nicht ausgelost.

expectations:
rules:
check_rest_api_is_private: PASS

Erforderlich: Ja

Exemplarische Vorgehensweise zum Schreiben einer Unit-Test-Datei fur
Guard-Regeln

Im Folgenden finden Sie eine Regeldatei mit dem Namenapi_gateway_private.guard. Mit
dieser Regel soll Uberprift werden, ob alle in einer CloudFormation Vorlage definierten Amazon API
Gateway Gateway-Ressourcentypen nur fur den privaten Zugriff bereitgestellt werden. Aul3erdem
wird gepruft, ob mindestens eine Richtlinienerklarung den Zugriff von einer Virtual Private Cloud
(VPC) aus erlaubt.

#

Select all AWS::ApiGateway::RestApi resources

present in the Resources section of the template.

#

let api_gws = Resources.*[Type == 'AWS::ApiGateway::RestApi']
#

Rule intent:
1) ALl AWS::ApiGateway::RestApi resources deployed must be private.

2) ALl AWS::ApiGateway::RestApi resources deployed must have at least one AWS
Identity and Access Management (IAM) policy condition key to allow access from a VPC.

#

Expectations:

1) SKIP when there are no AWS::ApiGateway::RestApi resources in the template.

2) PASS when:

ALL AWS::ApiGateway::RestApi resources in the template have
the EndpointConfiguration property set to Type: PRIVATE.

Exemplarische Vorgehensweise 69

AWS CloudFormation Guard User Guide

ALL AWS::ApiGateway::RestApi resources in the template have one IAM condition key
specified in the Policy property with aws:sourceVpc or :SourceVpc.
3) FAIL otherwise.

rule check_rest_api_is_private when %api_gws !empty {
%api_gws {
Properties.EndpointConfiguration.Types[*] == "PRIVATE"

rule check_rest_api_has_vpc_access when check_rest_api_is_private {
%api_gws {
Properties {
#
ALL AWS::ApiGateway::RestApi resources in the template have one IAM
condition key specified in the Policy property with
aws:sourceVpc or :SourceVpc
#
some Policy.Statement[*] {
Condition.*[keys == /aws:[sS]ource(Vpc|VPC|Vpce|VPCE)/] !'empty

In dieser exemplarischen Vorgehensweise wird die Absicht der ersten Regel getestet: Alle
bereitgestellten AWS: : ApiGateway: :RestApi Ressourcen missen privat sein.

1. Erstellen Sie eine Unit-Test-Datei mit dem Namenapi_gateway_private_tests.yaml, die
den folgenden ersten Test enthalt. Fligen Sie beim ersten Test eine leere Eingabe hinzu und
gehen Sie davon aus, dass die Regel Ubersprungen check_rest_api_is_private wird, da
keine AWS: : ApiGateway: :RestApi Ressourcen als Eingaben vorhanden sind.

- name: MyTestl
input: {3}
expectations:

rules:

Exemplarische Vorgehensweise 70

AWS CloudFormation Guard User Guide

4.

check_rest_api_is_private: SKIP

Flhren Sie den ersten Test in lhrem Terminal mit dem test Befehl aus. Geben Sie fur den - -
rules-file Parameter Ihre Regeldatei an. Geben Sie fir den --test-data Parameter lhre
Unit-Test-Datei an.

cfn-qguard test --rules-file api_gateway_private.guard --test-data
api_gateway_private_tests.yaml

Das Ergebnis des ersten Tests istPASS.

Test Case #1
Name: "MyTestl"
PASS Rules:
check_rest_api_is_private: Expected = SKIP, Evaluated = SKIP

Flgen Sie lhrer Unit-Test-Datei einen weiteren Test hinzu. Erweitern Sie nun den Test auf leere
Ressourcen. Das Folgende ist die aktualisierte api_gateway_private_tests.yaml Datei.

- name: MyTestl
input: {3}
expectations:
rules:
check_rest_api_is_private: SKIP
- name: MyTest2
input:
Resources: {}
expectations:
rules:
check_rest_api_is_private: SKIP

FUhren Sie es test mit der aktualisierten Unit-Test-Datei aus.

cfn-qguard test --rules-file api_gateway_private.gqguard --test-data
api_gateway_private_tests.yaml

Das Ergebnis flr den zweiten Test istPASS.

Test Case #1
Name: "MyTestl"

Exemplarische Vorgehensweise [l

AWS CloudFormation Guard

User Guide

PASS Rules:
check_rest_api_is_private:
Test Case #2
Name: "MyTest2"
PASS Rules:
check_rest_api_is_private:

Expected

Expected

SKIP, Evaluated

SKIP, Evaluated

SKIP

SKIP

5. Fugen Sie lhrer Unit-Test-Datei zwei weitere Tests hinzu. Erweitern Sie die Tests um Folgendes:

* Eine AWS: :ApiGateway: :RestApi Ressource ohne angegebene Eigenschaften.

® Note

Dies ist keine gliltige CloudFormation Vorlage, aber es ist nitzlich, um zu testen, ob
die Regel auch bei falsch formatierten Eingaben korrekt funktioniert.

Gehen Sie davon aus, dass dieser Test fehlschlagt, weil die EndpointConfiguration
Eigenschaft nicht angegeben und daher nicht auf PRIVATE gesetzt ist.

* Eine AWS: :ApiGateway: :RestApi Ressource, die die erste Absicht erflllt, wenn die
EndpointConfiguration Eigenschaft auf gesetzt ist, PRIVATE aber die zweite Absicht
nicht erfullt, da fur sie keine Richtlinienaussagen definiert sind. Erwarten Sie, dass dieser Test

bestanden wird.

Im Folgenden finden Sie die aktualisierte Unit-Test-Datei.

- name: MyTestl
input: {3}
expectations:

rules:

check_rest_api_is_private:

- name: MyTest2
input:
Resources: {}
expectations:
rules:

check_rest_api_is_private:

- name: MyTest3
input:

SKIP

SKIP

Exemplarische Vorgehensweise

72

AWS CloudFormation Guard User Guide

Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
expectations:
rules:
check_xrest_api_is_private: FAIL
- name: MyTest4
input:
Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
Properties:
EndpointConfiguration:
Types: "PRIVATE"
expectations:
rules:
check_rest_api_is_private: PASS

6. Fuhren Sie es test mit der aktualisierten Unit-Test-Datei aus.

cfn-guard test --rules-file api_gateway_private.guard --test-data
api_gateway_private_tests.yaml \

Das dritte Ergebnis istFAIL, und das vierte Ergebnis istPASS.

Test Case #1
Name: "MyTestl"
PASS Rules:
check_rest_api_is_private: Expected

SKIP, Evaluated SKIP
Test Case #2
Name: "MyTest2"
PASS Rules:
check_rest_api_is_private: Expected

SKIP, Evaluated

SKIP

Test Case #3
Name: "MyTest3"
PASS Rules:
check_rest_api_is_private: Expected

FAIL, Evaluated FAIL
Test Case #4
Name: "MyTest4"

PASS Rules:

Exemplarische Vorgehensweise 73

AWS CloudFormation Guard

User Guide

7.

check_rest_api_is_private: Expected = PASS, Evaluated = PASS

Kommentieren Sie die Tests 1—3 in lhrer Unit-Test-Datei aus. Greifen Sie nur fir den vierten

Test auf den ausflihrlichen Kontext zu. Im Folgenden finden Sie die aktualisierte Unit-Test-Datei.

#-

name: MyTestl

input: {3}

expectations:
rules:

check_rest_api_is_private_and_has_access:

name: MyTest2

input:
Resources: {}

expectations:
rules:

check_rest_api_is_private_and_has_access:

name: MyTest3
input:
Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
expectations:
rules:

check_rest_api_is_private_and_has_access:

name: MyTesté4

input:
Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
Properties:
EndpointConfiguration:
Types: "PRIVATE"
expectations:
rules:

check_rest_api_is_private: PASS

SKIP

SKIP

FAIL

Uberpriifen Sie die Evaluierungsergebnisse, indem Sie den test Befehl in lhrem Terminal
ausfihren und dabei das --verbose Flag verwenden. Ein ausfiihrlicher Kontext ist nutzlich, um

Bewertungen zu verstehen. In diesem Fall enthalt es detaillierte Informationen dartber, warum
der vierte Test erfolgreich war und ein PASS Ergebnis hatte.

Exemplarische Vorgehensweise

74

AWS CloudFormation Guard User Guide

cfn-qguard test --rules-file api_gateway_private.guard --test-data
api_gateway_private_tests.yaml \
--verbose

Hier ist die Ausgabe dieses Durchlaufs.

Test Case #1
Name: "MyTests4"
PASS Rules:
check_rest_api_is_private: Expected = PASS, Evaluated = PASS
Rule(check_rest_api_is_private, PASS)
| Message: DEFAULT MESSAGE(PASS)
Condition(check_rest_api_is_private, PASS)
| Message: DEFAULT MESSAGE(PASS)
Clause(Clause(Location[file:api_gateway_private.guard, line:20, column:37],
Check: %api_gws NOT EMPTY), PASS)
| From: Map((Path("/Resources/apiGw"), MapValue { keys:
[String((Path("/Resources/apiGw/Type"), "Type")), String((Path("/Resources/
apiGw/Properties"), "Properties"))], values: {"Type": String((Path("/Resources/
apiGw/Type"), "AWS::ApiGateway::RestApi")), "Properties": Map((Path("/
Resources/apiGw/Properties"), MapValue { keys: [String((Path("/Resources/
apiGw/Properties/EndpointConfiguration”), "EndpointConfiguration"))],
values: {"EndpointConfiguration": Map((Path("/Resources/apiGw/Properties/
EndpointConfiguration"), MapValue { keys: [String((Path("/Resources/apiGw/
Properties/EndpointConfiguration/Types"), "Types"))], values: {"Types":
String((Path("/Resources/apiGw/Properties/EndpointConfiguration/Types"),
"PRIVATE"))} 1))} 1)} 1)
| Message: (DEFAULT: NO_MESSAGE)
Conjunction(cfn_guard::rules::exprs::GuardClause, PASS)
| Message: DEFAULT MESSAGE(PASS)
Clause(Clause(Location[file:api_gateway_private.guard, line:22, column:5],
Check: Properties.EndpointConfiguration.Types[*] EQUALS String("PRIVATE")), PASS)
| Message: (DEFAULT: NO_MESSAGE)

Die wichtigste Beobachtung aus der Ausgabe ist die
ZeileClause(Location[file:api_gateway_private.guard, line:22,

column:5], Check: Properties.EndpointConfiguration.Types[*] EQUALS
String("PRIVATE")), PASS), die besagt, dass die Priifung bestanden wurde. Das Beispiel
zeigte auch den Fall, dass ein Array erwartet Types wurde, aber ein einziger Wert angegeben
wurde. In diesem Fall fihrte Guard die Auswertung fort und lieferte ein korrektes Ergebnis.

Exemplarische Vorgehensweise 75

AWS CloudFormation Guard

User Guide

9.

Flgen Sie Ihrer Komponententestdatei fir eine AWS : : ApiGateway: :RestApi Ressource
mit der angegebenen EndpointConfiguration Eigenschaft einen Testfall wie den vierten
Testfall hinzu. Der Testfall schlagt fehl, anstatt erfolgreich zu sein. Im Folgenden finden Sie die
aktualisierte Unit-Test-Datei.

#-

H OH HF O OH OH O O OB R

name: MyTestl

input: {3}

expectations:
rules:

check_rest_api_is_private_and_has_access:

name: MyTest2

input:
Resources: {}

expectations:
rules:

check_rest_api_is_private_and_has_access:

name: MyTest3
input:
Resources:
apiGw:
Type: AWS::ApiGateway: :RestApi
expectations:
rules:

check_rest_api_is_private_and_has_access:

name: MyTest4

input:
Resources:
apiGw:
Type: AWS::ApiGateway: :RestApi
Properties:
EndpointConfiguration:
Types: "PRIVATE"
expectations:
rules:

check_rest_api_is_private: PASS
name: MyTest5
input:
Resources:
apiGw:
Type: AWS::ApiGateway::RestApi
Properties:
EndpointConfiguration:

SKIP

SKIP

FAIL

Exemplarische Vorgehensweise

76

AWS CloudFormation Guard User Guide

Types: [PRIVATE, REGIONAL]
expectations:
rules:
check_xrest_api_is_private: FAIL

10. Flhren Sie den test Befehl mit der aktualisierten Unit-Test-Datei mithilfe des --verbose Flags
aus.

cfn-qguard test --rules-file api_gateway_private.guard --test-data
api_gateway_private_tests.yaml \
--verbose

Das Ergebnis ist FAIL erwartungsgemald, da REGIONAL es flir angegeben
wurdeEndpointConfiguration, aber nicht erwartet wird.

Test Case #1
Name: "MyTest5"
PASS Rules:
check_rest_api_is_private: Expected = FAIL, Evaluated = FAIL
Rule(check_rest_api_is_private, FAIL)
| Message: DEFAULT MESSAGE(FAIL)
Condition(check_rest_api_is_private, PASS)
| Message: DEFAULT MESSAGE(PASS)
Clause(Clause(Location[file:api_gateway_private.gquard, line:20, column:37],
Check: %api_gws NOT EMPTY), PASS)
| From: Map((Path("/Resources/apiGw"), MapValue { keys:
[String((Path("/Resources/apiGw/Type"), "Type")), String((Path("/Resources/
apiGw/Properties"), "Properties"))], values: {"Type": String((Path("/Resources/
apiGw/Type"), "AWS::ApiGateway::RestApi")), "Properties": Map((Path("/
Resources/apiGw/Properties"), MapValue { keys: [String((Path("/Resources/
apiGw/Properties/EndpointConfiguration”), "EndpointConfiguration"))],
values: {"EndpointConfiguration": Map((Path("/Resources/apiGw/Properties/
EndpointConfiguration"), MapValue { keys: [String((Path("/Resources/apiGw/
Properties/EndpointConfiguration/Types"), "Types"))], values: {"Types":
List((Path("/Resources/apiGw/Properties/EndpointConfiguration/Types"),
[String((Path("/Resources/apiGw/Properties/EndpointConfiguration/Types/0"),
"PRIVATE")), String((Path("/Resources/apiGw/Properties/EndpointConfiguration/
Types/1"), "REGIONAL"))1))} }))} 1))} 1))
| Message: DEFAULT MESSAGE(PASS)
BlockClause(Block[Location[file:api_gateway_private.guard, line:21, column:3]],
FAIL)
| Message: DEFAULT MESSAGE(FAIL)

Exemplarische Vorgehensweise 7

AWS CloudFormation Guard User Guide

Conjunction(cfn_guard: :rules::exprs::GuardClause, FAIL)
| Message: DEFAULT MESSAGE(FAIL)
Clause(Clause(Location[file:api_gateway_private.gquard, line:22,
column:5], Check: Properties.EndpointConfiguration.Types[*] EQUALS
String("PRIVATE")), FAIL)
| From: String((Path("/Resources/apiGw/Properties/
EndpointConfiguration/Types/1"), "REGIONAL"))
| To: String((Path("api_gateway_private.guard/22/5/Clause/"),
"PRIVATE"))
| Message: (DEFAULT: NO_MESSAGE)

Die ausfuihrliche Ausgabe des test Befehls folgt der Struktur der Regeldatei. Jeder Block in der
Regeldatei ist ein Block in der ausfihrlichen Ausgabe. Der oberste Block ist jede Regel. Wenn es
when Bedingungen gibt, die gegen die Regel verstoRen, werden sie in einem gleichgeordneten
Bedingungsblock angezeigt. Im folgenden Beispiel %api_gws !empty wird die Bedingung
getestet und sie besteht.

rule check_rest_api_is_private when %api_gws !empty {

Sobald die Bedingung erflllt ist, testen wir die Regelklauseln.

%api_gws {
Properties.EndpointConfiguration.Types[*] == "PRIVATE"
}

%api_gwsist eine Blockregel, die dem BlockClause Level in der Ausgabe entspricht (Zeile:21).
Die Regelklausel besteht aus einer Reihe von Konjunktionsklauseln (AND), wobei jede
Konjunktionsklausel eine Menge von Disjunktionen ist. OR Die Konjunktion hat eine einzige
Klausel,. Properties.EndpointConfiguration.Types[*] == "PRIVATE" Daher enthalt
die ausfiihrliche Ausgabe eine einzige Klausel. Der Pfad /Resources/apiGw/Properties/
EndpointConfiguration/Types/1 zeigt, welche Werte in der Eingabe verglichen werden. In
diesem Fall handelt es sich um das Element fur den Types Index 1.

In kdnnen Sie die Beispiele in diesem Abschnitt verwendenValidierung der Eingabedaten anhand
der Guard-Regeln, um den validate Befehl zu verwenden, um Eingabedaten anhand von Regeln
auszuwerten.

Exemplarische Vorgehensweise 78

AWS CloudFormation Guard User Guide

Eingabeparameter mit AWS CloudFormation Guard Regeln
verwenden

AWS CloudFormation Guard ermdglicht es Ihnen, Eingabeparameter flir dynamische Datenabfragen
wahrend der Validierung zu verwenden. Diese Funktion ist besonders nitzlich, wenn Sie in Ihren
Regeln auf externe Daten verweisen missen. Bei der Angabe von Eingabeparameterschlisseln setzt
Guard jedoch voraus, dass es keine widersprichlichen Pfade gibt.

Wie benutzt man

1. Verwenden Sie das -i Kennzeichen --input-parameters oder, um Dateien anzugeben, die
Eingabeparameter enthalten. Es konnen mehrere Eingabeparameterdateien angegeben werden,
die zu einem gemeinsamen Kontext kombiniert werden. Eingabeparameterschlissel dirfen keine
widerspruchlichen Pfade haben.

2. Verwenden Sie das -d Kennzeichen --data oder, um die eigentliche Vorlagendatei anzugeben,
die validiert werden soll.

Beispielverwendung

1. Erstellen Sie eine Eingabeparameterdatei (z. B.network.yaml):

NETWORK:
allowed_security_groups: ["sg-282850", '"sg-292040"]
allowed_prefix_lists: ["pl-63a5400a", "pl-02cd2c6b"]

2. Verweisen Sie in lhrer Guard-Rule-Datei auf diese Parameter (z. B.security_groups.guard):

let groups = Resources.*[Type == 'AWS::EC2::SecurityGroup']

let permitted_sgs NETWORK.allowed_security_groups
let permitted_pls = NETWORK.allowed_prefix_lists
rule check_permitted_security_groups_or_prefix_lists(groups) {
%sgroups {
this in %permitted_sgs or
this in %permitted_pls

rule CHECK_PERMITTED_GROUPS when %groups !empty {

Verwendung von Eingabeparametern mit Guard-Regeln 79

AWS CloudFormation Guard User Guide

check_permitted_security_groups_or_prefix_lists(
%sgroups.Properties.GroupName

3. Erstellen Sie eine Vorlage fir fehlerhafte Daten (z. B.security_groups_fail.yaml):

AWSTemplateFormatVersion: 2010-09-09
Description: CloudFormation - EC2 Security Group

Resources:
mySecurityGroup:
Type: AWS::EC2::SecurityGroup
Properties:

GroupName: wrong

4. Fihren Sie den Befehl validate aus:

cfn-qguard validate -r security_groups.guard -i network.yaml -d
security_groups_fail.yaml

In diesem Befehl gilt Folgendes:

+ -rgibt die Regeldatei an.
« -1gibt die Eingabeparameterdatei an.

» -dgibt die Datendatei (Vorlage) an, die validiert werden soll.

Mehrere Eingabeparameter

Sie kbnnen mehrere Eingabeparameterdateien angeben:

cfn-guard validate -r rules.guard -i paramsl.yaml -i params2.yaml -d template.yaml

Alle mit angegebenen Dateien -i werden zu einem einzigen Kontext fur die Parametersuche
kombiniert.

Mehrere Eingabeparameter

80

AWS CloudFormation Guard User Guide

Validierung von Eingabedaten anhand von Regeln AWS
CloudFormation Guard

Sie kdnnen den AWS CloudFormation Guard validate Befehl verwenden, um Daten anhand der
Guard-Regeln zu validieren. Weitere Informationen zum validate Befehl, einschliel3lich seiner
Parameter und Optionen, finden Sie unter Validieren.

Voraussetzungen

» Schreiben Sie Guard-Regeln, anhand derer Ihre Eingabedaten validiert werden. Weitere
Informationen finden Sie unter Writing Guard-Regeln.

+ Testen Sie Ihre Regeln, um sicherzustellen, dass sie wie vorgesehen funktionieren. Weitere
Informationen finden Sie unter Testing Guard-Regeln.

Verwenden Sie den validate Befehl

Flhren Sie den validate Befehl Guard aus, um Ihre Eingabedaten anhand lhrer Guard-

Regeln, z. B. einer AWS CloudFormation Vorlage, zu tberprifen. Geben Sie fir den --rules
Parameter den Namen einer Regeldatei an. Geben Sie flir den --data Parameter den Namen der
Eingabedatendatei an.

cfn-qguard validate --rules rules.guard --data template.json

Wenn Guard die Vorlagen erfolgreich validiert, gibt der validate Befehl den Exit-Status @

($?in Bash) zurtick. Wenn Guard einen RegelverstoR feststellt, gibt der validate Befehl einen
Statusbericht (iber die fehlgeschlagenen Regeln zuriick. Verwenden Sie das Ubersichts-Flag (-s
all), um den detaillierten Bewertungsbaum aufzurufen, der zeigt, wie Guard die einzelnen Regeln
bewertet hat.

template.json Status = FAIL

SKIP rules

rules.guard/aws_apigateway_deployment_checks SKIP
rules.guard/aws_apigateway_stage_checks SKIP
rules.guard/aws_dynamodb_table_checks SKIP
PASS rules

rules.guard/aws_events_rule_checks PASS
rules.guard/aws_iam_role_checks PASS

Validierung der Eingabedaten anhand der Guard-Regeln 81

AWS CloudFormation Guard User Guide

FAILED rules
rules.guard/aws_ec2_volume_checks FAIL
rules.guard/mixed_types_checks FAIL

Evaluation of rules rules.guard against data template.json

Property [/Resources/vol2/Properties/Encrypted] in data [template.json] is not
compliant with [rules.guard/aws_ec2_volume_checks] because provided value [false] did
not match expected value [true]. Error Message []

Property traversed until [/Resources/vol2/Properties] in data [template.json] is not
compliant with [rules.guard/aws_ec2_volume_checks] due to retrieval error. Error
Message [Attempting to retrieve array index or key from map at path = /Resources/vol2/

Properties , Type was not an array/object map, Remaining Query = Size]

Property [/Resources/vol2/Properties/Encrypted] in data [template.json] is not
compliant with [rules.guard/mixed_types_checks] because provided value [false] did not
match expected value [true]. Error Message []

Rule [rules.guard/aws_iam_role_checks] is compliant for data [template.json]
Rule [rules.guard/aws_events_rule_checks] is compliant for data [template.json]

Rule [rules.guard/aws_apigateway_deployment_checks] is not applicable for data
[template.json]

Rule [rules.guard/aws_apigateway_stage_checks] is not applicable for data
[template.json]

Rule [rules.guard/aws_dynamodb_table_checks] is not applicable for data [template.json]

Validierung mehrerer Regeln anhand mehrerer Datendateien

Um die Einhaltung der Regeln zu erleichtern, kdnnen Sie Regeln in mehrere Dateien schreiben und
die Regeln nach lhren Wiinschen organisieren. AnschlieRend kénnen Sie mehrere Regeldateien
anhand einer Datendatei oder mehrerer Datendateien validieren. Der validate Befehl kann

ein Verzeichnis mit Dateien fiir die --rules Optionen --data und verwenden. Sie kénnen
beispielsweise den folgenden Befehl ausfiihren, der /path/to/dataDirectory eine oder mehrere
Datendateien und eine oder mehrere Regeldateien /path/to/ruleDirectory enthalt.

cfn-qguard validate --data /path/to/dataDirectory --rules /path/to/ruleDirectory

Sie kdnnen Regeln schreiben, um zu Uberprifen, ob verschiedene Ressourcen,

die in mehreren CloudFormation Vorlagen definiert sind, Gber die entsprechenden
Eigenschaftszuweisungen verfugen, um die Verschlisselung im Ruhezustand zu
gewahrleisten. Um die Suche und Wartung zu vereinfachen, kénnen Sie Regeln zur

Validierung mehrerer Regeln anhand mehrerer Datendateien 82

AWS CloudFormation Guard User Guide

Uberpriifung der Verschliisselung im Ruhezustand in jeder Ressource in separaten Dateien,
genannt s3_bucket_encryption.gqguardec2_volume_encryption.guard, und
rds_dbinstance_encrytion.guard in einem Verzeichnis mit dem Pfad einrichten~/
GuardRules/encryption_at_rest. Die CloudFormation Vorlagen, die Sie Gberprifen missen,
befinden sich in einem Verzeichnis mit dem Pfad~/CloudFormation/templates. Flhren Sie in
diesem Fall den validate Befehl wie folgt aus.

cfn-guard validate --data ~/CloudFormation/templates --rules ~/GuardRules/
encryption_at_rest

Validierung mehrerer Regeln anhand mehrerer Datendateien 83

AWS CloudFormation Guard User Guide

Problembehebung AWS CloudFormation Guard

Wenn Sie bei der Arbeit mit auf Probleme stof’en AWS CloudFormation Guard, lesen Sie die Themen
in diesem Abschnitt.

Themen

» Die Klausel schlagt fehl, wenn keine Ressourcen des ausgewahlten Typs vorhanden sind

» Guard bewertet keine CloudFormation Vorlage mit Verweisen in Kurzform Fn::GetAtt

» Allgemeine Themen zur Fehlerbehebung

Die Klausel schlagt fehl, wenn keine Ressourcen des ausgewahlten
Typs vorhanden sind

Wenn eine Abfrage einen Filter verwendetResources.*[Type ==
"AWS: :ApiGateway: :RestApi'], z. B. wenn die Eingabe keine AWS: : ApiGateway: :RestApi
Ressourcen enthélt, wird die Klausel wie folgt ausgewertet. FAIL

%api_gws.Properties.EndpointConfiguration.Types[*] == "PRIVATE"

Um dieses Ergebnis zu vermeiden, weisen Sie Variablen Filter zu und verwenden Sie die when
Bedingungsprufung.

let api_gws = Resources.*[Type == 'AWS::ApiGateway::RestApi']
when %api_gws l!empty { ...}

Guard bewertet keine CloudFormation Vorlage mit Verweisen in
Kurzform Fn::GetAtt

Guard unterstutzt die Kurzformen intrinsischer Funktionen nicht. Beispielsweise wird die Verwendung
von!Join, !'Sub in einer Vorlage im YAML-Format nicht unterstutzt. CloudFormation Verwenden
Sie stattdessen die erweiterten Formen intrinsischer Funktionen. CloudFormation Verwenden Sie
beispielsweise, in CloudFormation Vorlagen Fn: : Sub im YAML-FormatFn: : Join, wenn Sie sie
anhand von Guard-Regeln auswerten.

Die Klausel schlagt fehl, wenn keine Ressourcen des ausgewahlten Typs vorhanden sind 84

AWS CloudFormation Guard User Guide

Weitere Informationen zu systeminternen Funktionen finden Sie in der Referenz zu systeminternen
Funktionen im Benutzerhandbuch.AWS CloudFormation

Allgemeine Themen zur Fehlerbehebung

+ Stellen Sie sicher, dass string Literale keine eingebetteten Escape-Zeichenketten enthalten.
Guard unterstitzt keine eingebetteten Escape-Zeichenketten in string Literalen. Wenn Sie
beabsichtigen, Inline-JSON-Strings zu analysieren, verwenden Sie die in Guard 3.0.0 und héher
verfliigbare json_parse() Funktion. Weitere Informationen finden Sie unter Verwenden von
integrierten Funktionen.

« Stellen Sie sicher, dass lhre ! = Vergleiche kompatible Datentypen vergleichen. Zum Beispiel int
sind a string und an keine kompatiblen Datentypen fur den Vergleich. Wenn beim ! = Vergleich
die Werte nicht kompatibel sind, tritt intern ein Fehler auf. Derzeit wird der Fehler unterdrickt und
so umgewandelt, dass er false dem PartialEqMerkmal in Rust entspricht.

Allgemeine Themen zur Problembehandlung 85

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard CLI-Parameter und
Befehlsreferenz

Die folgenden globalen Parameter und Befehle sind Uber die AWS CloudFormation Guard
Befehlszeilenschnittstelle (CLI) verfugbar.

Themen

» Globale Parameter von Guard CLI

» Baum analysieren

* Rule Legen
 Test

» validieren

Globale Parameter von Guard CLI

Sie kénnen die folgenden Parameter mit jedem AWS CloudFormation Guard CLI-Befehl verwenden.
-h, --help

Druckt Hilfeinformationen.

-V, --version

Druckt Versionsinformationen.

Baum analysieren

Generiert einen Analysebaum fir die in einer AWS CloudFormation Guard Regeldatei definierten
Regeln.

Syntax

cfn-guard parse-tree
--output <value>
--rules <value>

Globale Parameter von Guard CLI 86

AWS CloudFormation Guard

User Guide

Parameter

-h, --help

Druckt Hilfeinformationen.

-p, --print-json

Druckt die Ausgabe im JSON-Format.
-y, --print-yaml

Druckt die Ausgabe im YAML-Format.
-V, --version

Druckt Versionsinformationen.
Optionen

-0, --output

Schreibt den generierten Baum in eine Ausgabedatei.

-1, --rules

Stellt eine Regeldatei bereit.

Beispiele

cfn-guard parse-tree --output output.json --rules rules.guard

Rule Legen

Nimmt eine AWS CloudFormation Vorlagendatei im JSON- oder YAML-Format und generiert
automatisch eine Reihe von AWS CloudFormation Guard Regeln, die den Eigenschaften der

Vorlagenressourcen entsprechen. Dieser Befehl ist eine nitzliche Methode, um mit dem Schreiben

von Regeln zu beginnen oder ready-to-use Regeln aus zweifelsfrei funktionierenden Vorlagen zu

erstellen.

Parameter

87

AWS CloudFormation Guard User Guide

Syntax

cfn-guard rulegen
--output <value>
--template <value>

Parameter

-h, --help

Druckt Hilfeinformationen.

-V, --version

Druckt Versionsinformationen.
Optionen

-0, --output

Schreibt die generierten Regeln in eine Ausgabedatei. Angesichts der Moglichkeit, dass Hunderte
oder sogar Tausende von Regeln auftauchen, empfehlen wir, diese Option zu verwenden.

-t, --template

Stellt den Pfad zu einer CloudFormation Vorlagendatei im JSON- oder YAML-Format bereit.
Beispiele

cfn-guard rulegen --output rules.guard --template template.json

Test

Validiert eine AWS CloudFormation Guard Regeldatei anhand einer Guard-Unit-Test-Datei im JSON-
oder YAML-Format, um den Erfolg einzelner Regeln festzustellen.

Syntax

cfn-guard test

Syntax 88

AWS CloudFormation Guard User Guide

--rules-file <value>
--test-data <value>

Parameter

-a, --alphabetical

Sortiert innerhalb eines Verzeichnisses alphabetisch.

-h, --help

Druckt Hilfeinformationen.

-m, --last-modified

Sortiert nach dem Zeitpunkt der letzten Anderung innerhalb eines Verzeichnisses
-V, --version

Druckt Versionsinformationen.

-v, --verbose

Erhéht die Ausfuhrlichkeit der Ausgabe. Kann mehrfach angegeben werden.

Die ausfuhrliche Ausgabe folgt der Struktur der Guard-Regeldatei. Jeder Block in der Regeldatei

ist ein Block in der ausfiuihrlichen Ausgabe. Der oberste Block ist jede Regel. Wenn es when
Bedingungen gibt, die gegen die Regel verstolRen, werden sie als gleichgeordneter Bedingungsblock
angezeigt.

Optionen

-d, --dir

Geben Sie das Stammverzeichnis flir Regeln an.

-0, --output-format

Geben Sie das Format an, in dem die Ausgabe angezeigt werden soll.
Standardwert: single-line-summary

Zulassige Werte: json | yaml | single-line-summary | junit

Parameter 89

AWS CloudFormation Guard User Guide

-1, --rules-file
Gibt den Namen einer Regeldatei an.
-t, --test-data

Stellt den Namen einer Datei oder eines Verzeichnisses fur Datendateien im JSON- oder YAML-
Format bereit.

Beispiele

cfn-guard test --rules-file rules.guard --test-data example. json

Output

PASS |FAIL Expected Rule = rule_name, Status = SKIP|FAIL|PASS, Got Status = SKIP[FAIL]/
PASS

Weitere Informationen finden Sie auch unter

Testing Guard-Regeln

validieren

Uberpriift Daten anhand von AWS CloudFormation Guard Regeln, um festzustellen, ob sie erfolgreich
sind oder nicht.

Syntax

cfn-guard validate
--data <value>
--output-format <value>
--rules <value>
--show-summary <value>
--type <value>

Parameter

-a, --alphabetical

Beispiele 90

AWS CloudFormation Guard User Guide

Uberpriift Dateien in einem Verzeichnis, das alphabetisch sortiert ist.

-h, --help

Druckt Hilfeinformationen.

-m, --last-modified

Uberpriift Dateien in einem Verzeichnis, das nach dem Zeitpunkt der letzten Anderung sortiert ist.
-P, --payload

Stellen Sie Regeln und Daten im folgenden JSON-Format bereit Gber: stdin

{"rules":["<rules 1>", '"<rules 2>", ...], "data":["<data 1>", "<data 2>", ...]1}
Zum Beispiel:

{"data": ["{\"Resources\":{\"NewVolume\":{\"Type\":\"AWS::EC2::Volume\",\"Properties
\":{\"Size\":500,\"Encrypted\":false,\"AvailabilityZone\":\"us-west-2b\"}},
\"NewVolume2\": {\"Type\" :\"AWS::EC2: :Volume\",\"Properties\":{\"Size\":50,\"Encrypted
\":false,\"AvailabilityZone\":\"us-west-2c\"}}},\"Parameters\":{\"InstanceName\":
\"TestInstance\"}}","{\"Resources\":{\"NewVolume\": {\"Type\" :\"AWS: :EC2::Volume\",
\"Properties\":{\"Size\":500,\"Encrypted\":false,\"AvailabilityZone\":\"us-west-2b\"}},
\"NewVolume2\": {\"Type\":\"AWS::EC2: :Volume\",\"Properties\":{\"Size\":50,\"Encrypted
\":false,\"AvailabilityZone\":\"us-west-2c\"}}},\"Parameters\":{\"InstanceName
\":\"TestInstance\"}}"], "rules" : ["Parameters.InstanceName == \"TestInstance
\"","Parameters.InstanceName == \"TestInstance\"" 1}

Geben Sie fur ,Regeln” eine Liste mit Zeichenkettenversionen von Regeldateien an. Geben Sie fur
,Daten” eine Liste der Zeichenkettenversionen von Datendateien an.

Wann - -payload ist angegeben --rules und --data kann nicht angegeben werden.
-p, --print-json

Druckt die Ausgabe im JSON-Format.

-s, --show-clause-failures

Zeigt den Fehler in der Klausel einschlieRlich einer Zusammenfassung an.

-V, --version

Parameter 91

AWS CloudFormation Guard User Guide

Druckt Versionsinformationen.

-v, --verbose

Erhoht die Ausflhrlichkeit der Ausgabe. Kann mehrfach angegeben werden.
-z, --structured

Druckt eine Liste strukturierter und gultiger JSON/YAML. This argument conflicts with the following
arguments: verbose, print-json, show-summary: all/fail/pass/skip Ausgabeformate aus: single-line-
summary

Optionen

-d, --data (Zeichenfolge)

Stellt eine Datendatei oder ein Verzeichnis mit Datendateien in JSON oder YAML bereit. Unterstutzt
die wiederholte Ubergabe mehrerer Werte durch wiederholte Verwendung dieser Option.

Beispiel: --data templatel.yaml --data ./data-dirl --data template2.yaml

Bei Verzeichnisargumenten wie den data-dirl obigen wird das Scannen nur fir Dateien mit den
folgenden Erweiterungen unterstitzt: .yaml, .yml, .json, .jsn, .template

Wenn Sie das Flag angeben, geben Sie die --payload Option nicht an. --data
-1, --input-parameters (Zeichenfolge)

Stellt eine Parameterdatei oder ein Verzeichnis mit Parameterdateien in JSON oder YAML

bereit, das alle zusatzlichen zu verwendenden Parameter zusammen mit Datendateien

angibt, die als kombinierter Kontext verwendet werden sollen. Alle als Eingabe Ubergebenen
Parameterdateien werden zusammengefihrt, und dieser kombinierte Kontext wird erneut mit jeder
Datei zusammengefihrt, die als Argument flr data tbergeben wurde. Aus diesem Grund wird von
jeder Datei erwartet, dass sie sich gegenseitig ausschlieRende Eigenschaften enthalt, ohne dass es
zu Uberschneidungen kommt. Unterstiitzt die wiederholte Ubergabe mehrerer Werte bei wiederholter
Verwendung dieser Option.

Bei Verzeichnisargumenten wird das Scannen nur flr Dateien mit den folgenden Erweiterungen
unterstatzt: .yaml, .yml, .json, .jsn, .template

-o--output-format, (Zeichenfolge)

Optionen 92

AWS CloudFormation Guard User Guide

Gibt das Format frr die Ausgabe an.

Standardwert: single-line-summary

Zulassige Werte: json | yaml | single-line-summary | junit | sarif
-1, --rules (Zeichenfolge)

Stellt eine Regeldatei oder ein Verzeichnis mit Regeldateien bereit. Unterstitzt die wiederholte
Ubergabe mehrerer Werte bei wiederholter Verwendung dieser Option.

Beispiel: --rules rulel.guard --rules ./rules-dirl --rules rule2.guard

Bei Verzeichnisargumenten wie den rules-dirl obigen wird das Scannen nur fur Dateien mit den
folgenden Erweiterungen unterstitzt: .guard, .ruleset

Wenn Sie das --payload Flag angeben, geben Sie die Option nicht an. --rules
--show-summazry (string)

Steuert, ob die Ubersichtstabelle angezeigt werden muss. - -show-summary fail(Standard) oder
--show-summary pass,fail (nur Regeln anzeigen, die bestanden/nicht bestanden haben) oder
--show-summary none (um sie auszuschalten) oder - -show-summary all (um alle Regeln
anzuzeigen, die bestanden, fehlgeschlagen oder Gbersprungen wurden).

Standardwert: fail
Zulassige Werte: none | all | pass | fail | skip
-t, --type (Zeichenfolge)

Stellt das Format |Ihrer Eingabedaten bereit. Wenn Sie den Eingabedatentyp angeben, zeigt Guard
die logischen Namen der CloudFormation Vorlagenressourcen in der Ausgabe an. Standardmafig
zeigt Guard Eigenschaftspfade und Werte an, z. Property [/Resources/vol2/Properties/
Encrypted B.

Allowed values: CFNTemplate
Beispiel

cfn-qguard validate --data example.json --rules rules.guard

Beispiel 93

AWS CloudFormation Guard User Guide

Output

Wenn Guard die Vorlagen erfolgreich validiert, gibt der validate Befehl den Exit-Status 0
($?in Bash) zurtick. Wenn Guard einen RegelverstoB feststellt, gibt der validate Befehl einen
Statusbericht Uber die fehlgeschlagenen Regeln zurilck.

example.json Status = FAIL
FAILED rules

rules.guard/policy_effect_is_deny FAIL

Evaluation of rules rules.guard against data example.json

Property [/path/to/Effect] in data [example.json] is not compliant with
[policy_effect_is_deny] because provided value ["Allow"] did not match expected value
["Deny"]. Error Message [Policy statement "Effect" must be "Deny".]

Weitere Informationen finden Sie auch unter

» Validierung der Eingabedaten anhand der Guard-Regeln

* Verwendung von Eingabeparametern mit Guard-Regeln

Output 94

AWS CloudFormation Guard User Guide

Sicherheit in AWS CloudFormation Guard

Cloud-Sicherheit AWS hat héchste Prioritat. Als AWS Kunde profitieren Sie von einer
Rechenzentrums- und Netzwerkarchitektur, die darauf ausgelegt sind, die Anforderungen der
sicherheitssensibelsten Unternehmen zu erflllen.

Sicherheit ist eine gemeinsame Verantwortung von Ihnen AWS und Ihnen. Das Modell der
ubergreifenden Verantwortlichkeit beschreibt dies als Sicherheit der Cloud und Sicherheit in der
Cloud:

 Sicherheit der Cloud — AWS ist verantwortlich flr den Schutz der Infrastruktur, die AWS Dienste
in der AWS Cloud ausfuhrt. AWS bietet Ihnnen auch Dienste, die Sie sicher nutzen kénnen. Externe
Prufer testen und verifizieren regelmaRig die Wirksamkeit unserer Sicherheitsmallnahmen im
Rahmen der AWS . Weitere Informationen zu den Compliance-Programmen, die fir Guard gelten,
finden Sie unter AWS Services im Umfang nach Compliance-Programmen AWS .

 Sicherheit in der Cloud — lhre Verantwortung richtet sich nach dem AWS Dienst, den Sie nutzen.
Sie sind auch fur andere Faktoren verantwortlich, etwa fir die Vertraulichkeit Ihrer Daten, fir die
Anforderungen Ihres Unternehmens und fir die geltenden Gesetze und Vorschriften.

Die folgende Dokumentation hilft Ihnnen zu verstehen, wie Sie das Modell der gemeinsamen
Verantwortung bei der Installation von Guard als AWS Lambda Funktion (cfn-guard-lambda)
anwenden konnen:

* Sicherheitim AWS Command Line Interface Benutzerhandbuch
» Sicherheitim AWS Lambda Entwicklerhandbuch

+ Sicherheit im AWS Identity and Access Management Benutzerhandbuch

95

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/cli/latest/userguide/security.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security.html

AWS CloudFormation Guard User Guide

AWS CloudFormation Guard Dokumentverlauf

In der folgenden Tabelle werden die Dokumentationsversionen fiir beschrieben AWS CloudFormation
Guard.

» Letzte Aktualisierung der Dokumentation: 30. Juli 2025
* Letzte Version: 3.1.2

Anderung Beschreibung Datum
Aktualisierung der Dokumenta Die Referenzdokumentation 30. Juli 2025
tion far Guard-CLI-Befehle wurde

aktualisiert, um sie an die
aktuelle Implementierung
anzupassen. Die Versionsr
eferenzen wurden auf Guard
3.1.2 aktualisiert.

Veroffentlichung von Version Version 3.0.0 fuhrt die 30. Juni 2023
3.0.0 folgenden Verbesserungen
ein:

 Einflihrungs- und Installat
ionsthemen wurden fir die
Version von Guard 3.0.0
aktualisiert.

* Installationsanweisungen fir
Homebrew und Chocolatey
hinzugeflgt.

* Die Informationen zur
Migration der Guard-Reg
eln wurden aktualisiert, um
den Anderungen in Guard-
Version 3.0.0 Rechnung zu
tragen.

96

AWS CloudFormation Guard

User Guide

Version 2.1.3 veroffentlicht

Version 2.0.4 veroffentlicht

* Es wurde ein prominent
er Link zum Repositor
y hinzugefliigt. AWS
CloudFormation Guard
GitHub

Version 2.1.3 fuhrt die
folgenden Verbesserungen
ein:

Informationen zu den
Verbesserungen von Guard
2.1.3 wurden hinzugefligt.
Verweise auf Guard 2.0
wurden auf Guard 2.1.3
aktualisiert.

Version 2.0.4 fuhrt die
folgenden Verbesserungen
ein:

Das --payload Flag
wurde dem validate Befehl
hinzugeflgt.

Weitere Informationen finden
Sie unter Validieren in der
Guard CLI-Referenz.

9. Juni 2023

19. Oktober 2021

97

AWS CloudFormation Guard User Guide

Version 2.0.3 veroéffentlicht Version 2.0.3 fuhrt die 27. Juli 2021
folgenden Verbesserungen

ein:

» Sie kénnen Testnamen fir
jeden Test in Ihrer Unit-Test
-Datei angeben. Weitere
Informationen finden Sie
unter Testing Guard-Regeln.

 Die folgenden Optionen
wurden dem validate
Befehl hinzugefugt:
* --output-format

* --show-summary

* --type

Weitere Informationen
finden Sie unter Validieren
in der Guard CLI-Referenz.

Erstversion Erste Version des AWS 15. Juli 2021
CloudFormation Guard
Benutzerhandbuchs.

98

AWS CloudFormation Guard User Guide

AWS Glossar

Die neueste AWS Terminologie finden Sie im AWS Glossar in der AWS-Glossar Referenz.

99

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

AWS CloudFormation Guard User Guide

Die vorliegende Ubersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser Ubersetzten Fassung und der englischen Fassung (einschlieRlich
infolge von Verzdgerungen bei der Ubersetzung) ist die englische Fassung maRgeblich.

	AWS CloudFormation Guard
	Table of Contents
	Was ist AWS CloudFormation Guard?
	Benutzen Sie Guard zum ersten Mal?
	Funktionen von Guard
	Guard mit Hooks verwenden CloudFormation
	Zugriff auf Guard
	Bewährte Methoden

	Einrichten AWS CloudFormation Guard
	Guard für Linux und macOS installieren
	Installieren Sie Guard aus einer vorgefertigten Binärdatei
	Installieren Sie Guard von Cargo
	Installieren Sie Guard von Homebrew

	Guard für Windows installieren
	Voraussetzungen
	Installieren Sie Guard von Cargo
	Installieren Sie Guard von Chocolatey

	Guard als AWS Lambda Funktion installieren
	Voraussetzungen
	Installieren Sie den Rust-Paketmanager
	Installieren Sie Guard als Lambda-Funktion (Linux, macOS oder Unix)
	Um Guard als Lambda-Funktion zu erstellen und auszuführen
	Um die Anforderungsstruktur der Lambda-Funktion aufzurufen

	Voraussetzungen und Überblick für die Verwendung von Guard-Regeln
	Voraussetzungen
	Überblick über die Verwendung von Guard-Regeln
	AWS CloudFormation Guard Regeln schreiben
	Klauseln
	Syntax für das Schreiben von Guard-Regelklauseln
	Eigenschaften von Guard-Regelklauseln

	Verwenden von Abfragen in Klauseln
	Verwenden von Operatoren in Klauseln
	Beispiele für Klauseln, die unäre Operatoren verwenden
	Beispiele für Klauseln, die binäre Operatoren verwenden

	Verwenden von benutzerdefinierten Nachrichten in Klauseln
	Klauseln kombinieren
	Blöcke mit Guard-Regeln verwenden
	Blöcke abfragen
	whenBlöcke
	Blöcke mit benannten Regeln

	Verwenden von integrierten Funktionen
	Die wichtigsten Funktionen

	Definition und Filterung von Guard-Abfragen
	Voraussetzungen
	Abfragen definieren
	Abfragen Variablen zuordnen
	Direktes Durchlaufen von Werten aus einer Variablen, die einer Abfrage zugewiesen wurde
	Direkte Vergleiche auf Klauselebene
	Form einer Einzelklausel und einer Blockklausel

	Abfrageergebnisse und zugehörige Klauseln
	Verwenden von Filtern in Abfragen
	Verwendung von Klauseln als Auswahlkriterien
	Aufbau komplexerer Filteranforderungen
	Trennen von Sammlungen nach ihren enthaltenen Typen

	Zuweisen und Referenzieren von Variablen in Guard-Regeln
	Variablen zuweisen
	Variablen referenzieren
	Gültigkeitsbereich der Variablen
	Beispiele für Variablen in Guard-Regeldateien
	Statische Zuweisung
	Dynamische Zuweisung
	Erzwingen der Vorlagenkonfiguration CloudFormation

	Blöcke mit benannten Regeln verfassen in AWS CloudFormation Guard
	Voraussetzungen
	Zusammensetzung bedingter Abhängigkeiten
	Zusammensetzung korrelativer Abhängigkeiten

	Klauseln schreiben, um kontextsensitive Bewertungen durchzuführen
	Verständnis bei context Evaluierungen
	Schleifen verstehen
	Arrays
	Verwenden Sie das Formular spec.containers[*] anstelle von spec.containers
	Wird verwendetthis, um auf den aktuellen Kontextwert zu verweisen
	Mögliche Fehler bei der Verwendung von implizit this
	Behebung von Fehlern mit der impliziten Verwendung von this

	AWS CloudFormation Guard Regeln für Tests
	Voraussetzungen
	Überblick über die Guard-Unit-Testdateien
	Syntax
	Eigenschaften

	Exemplarische Vorgehensweise zum Schreiben einer Unit-Test-Datei für Guard-Regeln

	Eingabeparameter mit AWS CloudFormation Guard Regeln verwenden
	Wie benutzt man
	Beispielverwendung
	Mehrere Eingabeparameter

	Validierung von Eingabedaten anhand von Regeln AWS CloudFormation Guard
	Voraussetzungen
	Verwenden Sie den validate Befehl
	Validierung mehrerer Regeln anhand mehrerer Datendateien

	Problembehebung AWS CloudFormation Guard
	Die Klausel schlägt fehl, wenn keine Ressourcen des ausgewählten Typs vorhanden sind
	Guard bewertet keine CloudFormation Vorlage mit Verweisen in Kurzform Fn::GetAtt
	Allgemeine Themen zur Fehlerbehebung

	AWS CloudFormation Guard CLI-Parameter und Befehlsreferenz
	Globale Parameter von Guard CLI
	Baum analysieren
	Syntax
	Parameter
	Optionen
	Beispiele

	Rule Legen
	Syntax
	Parameter
	Optionen
	Beispiele

	Test
	Syntax
	Parameter
	Optionen
	Beispiele
	Output
	Weitere Informationen finden Sie auch unter

	validieren
	Syntax
	Parameter
	Optionen
	Beispiel
	Output
	Weitere Informationen finden Sie auch unter

	Sicherheit in AWS CloudFormation Guard
	AWS CloudFormation Guard Dokumentverlauf
	AWS Glossar
	

