
Hooks Benutzerhandbuch

CloudFormation

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

CloudFormation Hooks Benutzerhandbuch

CloudFormation: Hooks Benutzerhandbuch

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Handelsmarken und Handelsaufmachung von Amazon dürfen nicht in einer Weise in Verbindung
mit nicht von Amazon stammenden Produkten oder Services verwendet werden, durch die Kunden
irregeführt werden könnten oder Amazon in schlechtem Licht dargestellt oder diskreditiert werden
könnte. Alle anderen Handelsmarken, die nicht Eigentum von Amazon sind, gehören den jeweiligen
Besitzern, die möglicherweise zu Amazon gehören oder nicht, mit Amazon verbunden sind oder von
Amazon gesponsert werden.

CloudFormation Hooks Benutzerhandbuch

Table of Contents
Was sind CloudFormation Hooks? .. 1

Hook-Implementierungsoptionen ... 1
AWS Control Tower proaktive Kontrollen ... 1
Regeln schützen ... 1
Lambda-Funktionen .. 2
Benutzerdefinierte Hooks .. 2

Hooks erstellen und verwalten ... 3
Konzepte .. 6

Hook .. 6
Fehlermodus ... 6
Hook-Ziele ... 7
Zielaktionen ... 7
Anmerkungen .. 7
Hook-Handler .. 8
Timeout- und Wiederholungslimits ... 9

Proaktive Kontrollen als Hooks ... 9
AWS CLI Befehle für die Arbeit mit Hooks .. 9
Aktiviere einen proaktiven, steuerungsbasierten Hook .. 10
Löschen Sie proaktive, steuerungsbasierte Hooks .. 14

Schutzhaken .. 15
AWS CLI Befehle für die Arbeit mit Guard Hooks ... 16
Schreiben Sie Guard-Regeln für Hooks ... 16
Bereiten Sie sich darauf vor, einen Guard-Hook zu erstellen .. 31
Aktiviere einen Guard Hook ... 33
Logs für Guard Hooks anzeigen .. 38
Löschen Sie Guard Hooks ... 39

Lambda-Hook ... 40
AWS CLI Befehle für die Arbeit mit Lambda Hooks .. 41
Lambda-Funktionen für Hooks erstellen .. 41
Bereiten Sie sich darauf vor, einen Lambda-Hook zu erstellen ... 65
Aktiviere einen Lambda Hook .. 67
Logs für Lambda Hooks anzeigen ... 72
Lambda Hooks löschen .. 73

Benutzerdefinierte Hooks .. 74

iii

CloudFormation Hooks Benutzerhandbuch

Voraussetzungen .. 76
Ein Hooks-Projekt initiieren .. 78
Hooks modellieren .. 80
Hooks registrieren ... 148
Hooks testen ... 153
Hooks aktualisieren ... 162
Hooks deregistrieren ... 163
Hooks veröffentlichen ... 164
Schemasyntax ... 172

Hooks deaktivieren/aktivieren ... 182
Deaktiviere und aktiviere einen Hook (Konsole) ... 182
Deaktiviere und aktiviere einen Hook (AWS CLI) ... 183

Ergebnisse des Hook-Aufrufs anzeigen ... 184
Aufrufergebnisse anzeigen (Konsole) ... 184

Ergebnisse für alle Hooks anzeigen ... 184
Den Aufrufverlauf für einzelne Hooks anzeigen ... 185
Ergebnisse für stapelspezifische Aufrufe anzeigen .. 185

Aufrufergebnisse anzeigen ()AWS CLI ... 186
Konfigurationsschema .. 191

Eigenschaften des Hook-Konfigurationsschemas ... 191
Beispiele für die Hook-Konfiguration ... 193
Filter auf Stapelebene ... 193

FilteringCriteria .. 195
StackNames ... 195
StackRoles ... 196
Include und Exclude ... 197
Beispiele für Filter auf Stack-Ebene ... 198

Zielfilter ... 201
Beispiele für Zielfilter .. 203

Verwenden von Platzhaltern .. 205
Erstellen Sie Hooks mithilfe von CloudFormation Vorlagen .. 214
Gewähren Sie IAM-Berechtigungen ... 217

Erlauben Sie einem Benutzer, Hooks zu verwalten .. 218
Erlauben Sie einem Benutzer, benutzerdefinierte Hooks öffentlich zu veröffentlichen 219
Erlauben Sie einem Benutzer, die Ergebnisse von Hook-Aufrufen einzusehen 220

Listet die Ergebnisse von Hook-Aufrufen auf ... 220

iv

CloudFormation Hooks Benutzerhandbuch

Erlaubt einem Benutzer, detaillierte Ergebnisse des Hook-Aufrufs anzuzeigen 223
AWS KMS wichtige Richtlinien und Berechtigungen .. 224

Übersicht ... 225
Verschlüsselungskontext ... 226
Kundenverwaltete KMS-Schlüsselrichtlinie ... 226
KMS-Berechtigungen für die SetTypeConfiguration API ... 229
KMS-Berechtigungen für GetHookResult API .. 230

Dokumentverlauf ... 232
.. ccxxxvii

v

CloudFormation Hooks Benutzerhandbuch

Was sind CloudFormation Hooks?

CloudFormation Hooks ist eine Funktion, mit der Sie sicherstellen können, dass Ihre CloudFormation
Ressourcen, Stacks und Änderungssätze den Best Practices Ihres Unternehmens in Bezug auf
Sicherheit, Betrieb und Kostenoptimierung entsprechen. CloudFormation Hooks können auch
das gleiche Maß an Compliance für Ihre AWS -Cloud-Control- API Ressourcen sicherstellen. Mit
CloudFormation Hooks können Sie Code bereitstellen, der die Konfiguration Ihrer AWS Ressourcen
vor der Bereitstellung proaktiv überprüft. Wenn nicht konforme Ressourcen gefunden werden, schlägt
CloudFormation entweder der Vorgang fehl und verhindert, dass die Ressourcen bereitgestellt
werden, oder es wird eine Warnung ausgegeben, sodass der Bereitstellungsvorgang fortgesetzt
werden kann.

Sie können Hooks verwenden, um eine Vielzahl von Anforderungen und Richtlinien durchzusetzen.
Ein sicherheitsbezogener Hook kann beispielsweise überprüfen, ob Sicherheitsgruppen über
angemessene Regeln für eingehenden und ausgehenden Datenverkehr für Ihre Amazon VPC
verfügen. Ein kostenbezogener Hook kann Entwicklungsumgebungen darauf beschränken, nur
kleinere EC2Amazon-Instance-Typen zu verwenden. Ein auf Datenverfügbarkeit ausgelegter Hook
kann automatische Backups für Amazon RDS erzwingen.

Hook-Implementierungsoptionen

CloudFormation bietet mehrere Optionen für die Implementierung von Hooks, sodass Sie flexibel den
Ansatz wählen können, der Ihren Anforderungen am besten entspricht.

AWS Control Tower proaktive Kontrollen

Der AWS Control Tower Control Catalog bietet standardisierte proaktive Kontrollen, die Sie
als Hooks implementieren können. Dieser Ansatz spart Zeit bei der Einrichtung und hilft Ihnen,
Ressourcenkonfigurationen anhand von AWS Best Practices in Ihrem Unternehmen zu validieren,
ohne Code schreiben zu müssen.

Regeln schützen

AWS CloudFormation Guard ist ein policy-as-code Evaluierungstool, das eine domänenspezifische
Sprache zum Schreiben benutzerdefinierter Bewertungslogik für Hooks bereitstellt. Dieser Ansatz
ermöglicht es Ihnen, Konformitätsprüfungen mithilfe der deklarativen Syntax von Guard zu definieren,

Hook-Implementierungsoptionen 1

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

CloudFormation Hooks Benutzerhandbuch

sodass Sie Ihre Bewertungslogik ohne umfangreiche Programmierkenntnisse einfach erstellen und
verwalten können.

Lambda-Funktionen

Sie können Hooks auch mithilfe von Lambda-Funktionen implementieren, sodass Sie die volle
Leistung und Flexibilität von Lambda für Ihre Bewertungslogik nutzen können. Sie können jede von
Lambda unterstützte Laufzeitsprache verwenden und bei Bedarf in andere AWS Dienste integrieren.

Benutzerdefinierte Hooks

Für fortgeschrittene Anwendungsfälle können Sie Ihre eigene Bewertungslogik mithilfe von
Programmiersprachen schreiben, die von der CloudFormation CLI unterstützt werden. Dieser
Ansatz bietet maximale Flexibilität bei der Umsetzung unternehmensspezifischer Governance-
Anforderungen. Als unterstützter Erweiterungstyp in der CloudFormation Registrierung können Ihre
benutzerdefinierten Hooks sowohl öffentlich als auch privat verteilt und aktiviert werden.

Lambda-Funktionen 2

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry.html

CloudFormation Hooks Benutzerhandbuch

CloudFormation Hooks erstellen und verwalten

CloudFormation Hooks bieten einen Mechanismus, mit dem Sie Ihre CloudFormation Ressourcen
auswerten können, bevor Sie das Erstellen, Ändern oder Löschen von Stacks zulassen. Mit dieser
Funktion können Sie sicherstellen, dass Ihre CloudFormation Ressourcen den Best Practices Ihrer
Organisation in Bezug auf Sicherheit, Betrieb und Kostenoptimierung entsprechen.

Um einen Hook zu erstellen, haben Sie vier Möglichkeiten.

• Proaktive Kontrollen als Hooks — Evaluiert Ressourcen mithilfe proaktiver Kontrollen aus dem
AWS Control Tower Kontrollkatalog.

• Guard Hook — Wertet Ressourcen anhand einer AWS CloudFormation Guard Regel aus.

• Lambda Hook — Leitet Anfragen zur Ressourcenbewertung an eine AWS Lambda Funktion weiter.

• Benutzerdefinierter Hook — Verwendet einen benutzerdefinierten Hook-Handler, den Sie manuell
entwickeln.

Proactive controls as Hooks

Gehen Sie wie folgt vor, um einen Hook aus proaktiven Steuerelementen zu erstellen:

1. Navigieren Sie zur CloudFormation Konsole und beginnen Sie mit der Erstellung eines
Hooks.

2. Wählen Sie bestimmte Kontrollen aus dem Kontrollkatalog aus, anhand derer Ihr Hook
Ressourcen auswerten soll.

Diese Kontrollen werden automatisch angewendet, wenn bestimmte Ressourcen erstellt oder
aktualisiert werden. Ihre Auswahl bestimmt, welche Ressourcentypen der Hook auswertet.

3. Stellen Sie den Hook-Modus so ein, dass Benutzer entweder vor Verstößen gewarnt oder
nicht konforme Vorgänge verhindert werden.

4. Konfigurieren Sie optionale Filter, um Stacks nach Stack-Namen oder Stack-Rolle ein- oder
auszuschließen.

5. Nachdem Sie die Konfiguration abgeschlossen haben, aktivieren Sie den Hook, um mit der
Durchsetzung zu beginnen.

3

CloudFormation Hooks Benutzerhandbuch

Guard Hook

Gehen Sie folgendermaßen vor, um einen Guard Hook zu erstellen:

1. Schreiben Sie Ihre Logik zur Ressourcenbewertung als Guard-Richtlinienregel und
verwenden Sie dabei die domänenspezifische Sprache (DSL) von Guard.

2. Speichern Sie die Guard-Richtlinienregel in einem Amazon S3 S3-Bucket.

3. Navigieren Sie zur CloudFormation Konsole und beginnen Sie mit der Erstellung eines
Guard-Hooks.

4. Geben Sie den Amazon S3 S3-Pfad zu Ihrer Guard-Regel an.

5. Wählen Sie die spezifischen Zieltypen aus, die der Hook auswerten soll.

• CloudFormation Ressourcen (RESOURCE)

• Vorlagen für den gesamten Stapel (STACK)

• Sätze ändern (CHANGE_SET)

• Cloud-Control-API-Ressourcen (CLOUD_CONTROL)

6. Wählen Sie die Bereitstellungsaktionen (Erstellen, Aktualisieren, Löschen) aus, mit denen Ihr
Hook aufgerufen werden soll.

7. Wählen Sie aus, wie der Hook reagiert, wenn die Evaluierung fehlschlägt.

8. Konfigurieren Sie optionale Filter, um anzugeben, welche Ressourcentypen der Hook
auswerten soll

9. Konfigurieren Sie optionale Filter, um Stacks nach Stack-Name oder Stack-Rolle ein- oder
auszuschließen.

10. Nachdem Sie die Konfiguration abgeschlossen haben, aktivieren Sie den Hook, um mit der
Durchsetzung zu beginnen.

Lambda Hook

Gehen Sie folgendermaßen vor, um einen Lambda-Hook zu erstellen:

1. Schreiben Sie Ihre Ressourcenauswertungslogik als Lambda-Funktion.

2. Navigieren Sie zur CloudFormation Konsole und beginnen Sie mit der Erstellung eines
Lambda-Hooks.

3. Geben Sie den Amazon-Ressourcennamen (ARN) für Ihre Lambda-Funktion an.

4. Wählen Sie die spezifischen Zieltypen aus, die der Hook auswerten soll.

4

CloudFormation Hooks Benutzerhandbuch

• CloudFormation Ressourcen (RESOURCE)

• Vorlagen für den gesamten Stapel (STACK)

• Sätze ändern (CHANGE_SET)

• Cloud-Control-API-Ressourcen (CLOUD_CONTROL)

5. Wählen Sie die Bereitstellungsaktionen (Erstellen, Aktualisieren, Löschen) aus, mit denen Ihr
Hook aufgerufen werden soll.

6. Wählen Sie aus, wie der Hook reagiert, wenn die Evaluierung fehlschlägt.

7. Konfigurieren Sie optionale Filter, um anzugeben, welche Ressourcentypen der Hook
auswerten soll

8. Konfigurieren Sie optionale Filter, um Stacks nach Stack-Name oder Stack-Rolle ein- oder
auszuschließen.

9. Nachdem Sie die Konfiguration abgeschlossen haben, aktivieren Sie den Hook, um mit der
Durchsetzung zu beginnen.

Custom Hook

Custom Hooks sind Erweiterungen, die Sie mithilfe der CloudFormation Befehlszeilenschnittstelle
(CFN-CLI) in der CloudFormation Registrierung registrieren.

Gehen Sie wie folgt vor, um einen benutzerdefinierten Hook zu erstellen:

1. Initiieren Sie das Projekt — Generieren Sie die Dateien, die für die Entwicklung eines
benutzerdefinierten Hooks benötigt werden.

2. Den Hook modellieren — Schreiben Sie ein Schema, das den Hook und die Handler definiert,
die die Operationen angeben, mit denen der Hook aufgerufen werden kann.

3. Den Hook registrieren und aktivieren — Nachdem Sie einen Hook erstellt haben, müssen Sie
ihn in dem Konto und der Region registrieren, in der Sie ihn verwenden möchten. Dadurch
wird er aktiviert.

Die folgenden Themen enthalten weitere Informationen zum Erstellen und Verwalten von Hooks.

Themen

• CloudFormation Hooks-Konzepte

• AWS Control Tower proaktive Kontrollen als Hooks

5

CloudFormation Hooks Benutzerhandbuch

• Schutzhaken

• Lambda-Hook

• Entwicklung benutzerdefinierter Hooks mit der CloudFormation CLI

CloudFormation Hooks-Konzepte

Die folgenden Begriffe und Konzepte sind für Ihr Verständnis und Ihre Verwendung von
CloudFormation Hooks von zentraler Bedeutung.

Hook

Ein Hook enthält Code, der unmittelbar vor dem Erstellen, CloudFormation Aktualisieren oder
Löschen von Stacks oder bestimmten Ressourcen aufgerufen wird. Er kann auch während einer
Operation zum Erstellen eines Änderungssatzes aufgerufen werden. Hooks können die Vorlage,
die Ressourcen oder den Änderungssatz überprüfen, der CloudFormation bereitgestellt werden soll.
Darüber hinaus können Hooks unmittelbar vor dem Erstellen, Aktualisieren oder Löschen bestimmter
Ressourcen durch die Cloud Control-API aufgerufen werden.

Wenn ein Hook Konfigurationen identifiziert, die nicht den in Ihrer Hook-Logik definierten
Organisationsrichtlinien entsprechen, können Sie wählen, ob Sie entweder WARN Benutzer
verwenden oder FAIL die Bereitstellung der Ressource CloudFormation verhindern möchten.

Hooks haben die folgenden Eigenschaften:

• Proaktive Validierung — Reduziert Risiken, Betriebskosten und Kosten, indem Ressourcen
identifiziert werden, die nicht den Anforderungen entsprechen, bevor sie erstellt, aktualisiert oder
gelöscht werden.

• Automatische Durchsetzung — Ermöglicht die Durchsetzung in Ihrem eigenen System AWS-
Konto , um zu verhindern, dass Ressourcen bereitgestellt werden, die nicht den Vorschriften
entsprechen. CloudFormation

Fehlermodus

Ihre Hook-Logik kann Erfolg oder Misserfolg zurückgeben. Eine erfolgreiche Antwort ermöglicht die
Fortsetzung des Vorgangs. Ein Ausfall nicht richtlinienkonformer Ressourcen kann folgende Folgen
haben:

Konzepte 6

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

CloudFormation Hooks Benutzerhandbuch

• FAIL— Stoppt den Bereitstellungsvorgang.

• WARN— Ermöglicht die Fortsetzung der Bereitstellung mit einer Warnmeldung.

Das Erstellen von Hooks im WARN Modus ist eine effektive Methode, um das Hook-Verhalten zu
überwachen, ohne die Stack-Operationen zu beeinträchtigen. Aktivieren Sie zunächst Hooks im WARN
Modus, um zu verstehen, welche Operationen betroffen sein werden. Nachdem Sie die möglichen
Auswirkungen bewertet haben, können Sie den Hook-Modus in den FAIL Modus wechseln, um damit
zu beginnen, fehlerhafte Operationen zu verhindern.

Hook-Ziele

Hook-Ziele geben die Operationen an, die ein Hook auswertet. Dies können Operationen sein an:

• Ressourcen, die von CloudFormation (RESOURCE) unterstützt werden

• Vorlagen stapeln (STACK)

• Sätze ändern (CHANGE_SET)

• Von der Cloud Control API unterstützte Ressourcen (CLOUD_CONTROL)

Sie definieren ein oder mehrere Ziele, die die umfassendsten Operationen angeben, die der Hook
auswertet. Sie können beispielsweise ein Hook-Targeting so erstellenRESOURCE, dass es auf alle
AWS Ressourcen und STACK auf alle Stack-Vorlagen abzielt.

Zielaktionen

Zielaktionen definieren die spezifischen Aktionen (CREATEUPDATE, oderDELETE), die einen Hook
aufrufen. Für RESOURCESTACK, und CLOUD_CONTROL Ziele sind alle Zielaktionen anwendbar. Für
CHANGE_SET Ziele ist nur die CREATE Aktion anwendbar.

Anmerkungen

GetHookResultBei den Antworten können Anmerkungen zurückgegeben werden, die detaillierte
Ergebnisse der Konformitätsprüfungen und Hinweise zur Problembehebung für jede evaluierte
Ressource enthalten. Einzelheiten zur Annotationsstruktur der API finden Sie unter Anmerkung in
der AWS CloudFormation API-Referenz. Anweisungen zur Anzeige dieser Überprüfungsergebnisse
finden Sie unterAufrufergebnisse für CloudFormation Hooks anzeigen.

Hook-Ziele 7

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_Annotation.html

CloudFormation Hooks Benutzerhandbuch

Sie können Anmerkungen nach Bedarf für vertrauliche Compliance-Informationen verschlüsseln,
indem Sie bei der Konfiguration des Hooks Ihren eigenen KMS-Schlüssel angeben. Weitere
Informationen finden Sie unter Syntaxreferenz für das Hook-Konfigurationsschema. Informationen
zum Einrichten der Schlüsselrichtlinie, die Sie benötigen, wenn Sie Ihren KMS-Schlüssel für
Hooks angeben, finden Sie unter. AWS KMS wichtige Richtlinien und Berechtigungen für die
Verschlüsselung von CloudFormation Hooks-Ergebnissen im Ruhezustand

Important

Beachten Sie, dass die KmsKeyId Option zur Angabe eines vom Kunden verwalteten
Schlüssels derzeit nur verfügbar ist, wenn Sie den AWS CLI zur Konfiguration Ihres Hooks
verwenden.

Hook-Handler

Bei benutzerdefinierten Hooks ist dies der Code, der die Auswertung übernimmt. Er ist einem
Zielaufrufpunkt und einer Zielaktion zugeordnet, die genau den Punkt markieren, an dem ein
Hook ausgeführt wird. Sie schreiben Handler, die die Logik für diese spezifischen Punkte hosten.
Ein Zielaufrufpunkt mit einer PRE CREATE Zielaktion macht beispielsweise einen preCreate
Hook-Handler aus. Code innerhalb des Hook-Handlers wird ausgeführt, wenn ein passender
Zielaufrufpunkt und ein passender Dienst eine zugehörige Zielaktion ausführen.

Gültige Werte: (preCreate| preUpdate |preDelete)

Important

Stack-Operationen, die zum Status von führen, rufen UpdateCleanup keinen Hook auf. In
den folgenden beiden Szenarien wird beispielsweise der preDelete Handler des Hooks
nicht aufgerufen:

• Der Stack wird aktualisiert, nachdem eine Ressource aus der Vorlage entfernt wurde.

• eine Ressource mit dem Aktualisierungstyp „Ersatz“ wird gelöscht.

Hook-Handler 8

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html#update-replacement

CloudFormation Hooks Benutzerhandbuch

Timeout- und Wiederholungslimits

Hooks haben ein Zeitlimit von 30 Sekunden pro Aufruf und sind auf 3 Wiederholungsversuche
begrenzt. Wenn ein Aufruf das Timeout überschreitet, geben wir eine Fehlermeldung zurück, die
besagt, dass die Hook-Ausführung das Timeout überschritten hat. CloudFormation Markiert nach
dem dritten erneuten Versuch die Hook-Ausführung als fehlgeschlagen.

AWS Control Tower proaktive Kontrollen als Hooks
Der AWS Control Tower Kontrollkatalog enthält vorgefertigte Compliance-Regeln (proaktive
Kontrollen), die Sie als Hooks implementieren können. Dieser Ansatz spart Zeit bei der Einrichtung
und hilft Ihnen, Ressourcenkonfigurationen anhand von AWS Best Practices in Ihrem Unternehmen
zu validieren, ohne Code schreiben zu müssen.

Proaktive Kontrollen bewerten AWS Ressourcen vor der Bereitstellung und verhindern so, dass
nicht konforme Ressourcen erstellt werden, anstatt Probleme später zu erkennen. Sie überprüfen
Konfigurationen anhand etablierter Sicherheits-, Betriebs- und Governance-Standards.

Um loszulegen, aktivieren Sie einfach proaktive, steuerungsbasierte Hooks in Ihrem gewünschten
Konto und in der gewünschten Region. Diese Hooks bewerten dann bestimmte Zieltypen, um
sicherzustellen, dass die von Ihnen ausgewählten Kontrollen eingehalten werden.

Weitere Informationen zu verfügbaren proaktiven Kontrollen finden Sie im AWS Control Tower
Kontrollkatalog.

Themen

• AWS CLI Befehle für die Arbeit mit Hooks

• Aktivieren eines proaktiven kontrollbasierten Hooks in Ihrem Konto

• Löschen Sie proaktive, auf Kontrollen basierende Hooks in Ihrem Konto

AWS CLI Befehle für die Arbeit mit Hooks

Zu den AWS CLI Befehlen für die Arbeit mit proaktiven, steuerungsbasierten Hooks gehören:

• activate-typeum den Aktivierungsprozess für einen proaktiven, steuerungsbasierten Hook zu
starten.

• set-type-configurationum die Kontrollen festzulegen, die auf einen proaktiven, steuerungsbasierten
Hook in Ihrem Konto angewendet werden sollen.

Timeout- und Wiederholungslimits 9

https://docs.aws.amazon.com/controltower/latest/controlreference/controls-reference.html
https://docs.aws.amazon.com/controltower/latest/controlreference/controls-reference.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html

CloudFormation Hooks Benutzerhandbuch

• list-typesum die Hooks in deinem Konto aufzulisten.

• describe-typeum detaillierte Informationen über einen bestimmten Hook oder eine bestimmte Hook-
Version zurückzugeben, einschließlich aktueller Konfigurationsdaten.

• deactivate-typeum einen zuvor aktivierten Hook aus Ihrem Konto zu entfernen.

Aktivieren eines proaktiven kontrollbasierten Hooks in Ihrem Konto

Im folgenden Thema erfahren Sie, wie Sie einen proaktiven, steuerungsbasierten Hook in Ihrem
Konto aktivieren, sodass er in dem Konto und der Region, in der er aktiviert wurde, verwendet werden
kann.

Important

Bevor Sie fortfahren, stellen Sie sicher, dass Sie über die erforderlichen Berechtigungen
verfügen, um mit Hooks zu arbeiten und proaktive Steuerelemente von der CloudFormation
Konsole aus anzuzeigen. Weitere Informationen finden Sie unter Erteilen Sie IAM-
Berechtigungen für Hooks CloudFormation.

Themen

• Aktivieren Sie einen proaktiven, steuerungsbasierten Hook (Konsole)

• Aktiviere einen proaktiven, steuerungsbasierten Hook ()AWS CLI

Aktivieren Sie einen proaktiven, steuerungsbasierten Hook (Konsole)

Um einen proaktiven, steuerungsbasierten Hook zur Verwendung in Ihrem Konto zu aktivieren

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com /cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm die AWS-Region Stelle aus, an der
Sie den Hook-In erstellen möchten.

3. Wählen Sie im Navigationsbereich auf der linken Seite Hooks aus.

4. Wählen Sie auf der Seite Hooks die Option Create a Hook und dann With the Control Catalog
aus.

Aktiviere einen proaktiven, steuerungsbasierten Hook 10

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

CloudFormation Hooks Benutzerhandbuch

5. Wählen Sie auf der Seite „Steuerelemente auswählen“ für Proaktive Kontrollen eine oder
mehrere proaktive Kontrollen aus, die Sie verwenden möchten.

Diese Kontrollen werden automatisch angewendet, wenn bestimmte Ressourcen erstellt oder
aktualisiert werden. Ihre Auswahl bestimmt, welche Ressourcentypen der Hook auswertet.

6. Wählen Sie Weiter aus.

7. Wählen Sie als Hook-Name eine der folgenden Optionen aus:

• Geben Sie einen kurzen, aussagekräftigen Namen ein, der danach Private::Controls::
hinzugefügt wird. Wenn Sie beispielsweise eingebenMyTestHook, wird der vollständige Hook-
Name zuPrivate::Controls::MyTestHook.

• Geben Sie den vollständigen Hook-Namen (auch Alias genannt) in diesem Format
an:Provider::ServiceName::HookName.

8. Wählen Sie für den Hook-Modus aus, wie der Hook reagiert, wenn die Auswertung von
Steuerelementen fehlschlägt:

• Warnen — Gibt Warnungen an Benutzer aus, ermöglicht aber die Fortsetzung der Aktionen.
Dies ist nützlich für unkritische Validierungen oder Informationsprüfungen.

• Fehlgeschlagen — verhindert, dass die Aktion fortgesetzt wird. Dies ist hilfreich für die
Durchsetzung strenger Compliance- oder Sicherheitsrichtlinien.

9. Wählen Sie Weiter aus.

10. (Optional) Gehen Sie für Hook-Filter wie folgt vor:

a. Wählen Sie unter Filterkriterien die Logik für die Anwendung von Stacknamen- und Stack-
Rollenfiltern aus:

• Alle Stack-Namen und Stack-Rollen — Der Hook wird nur aufgerufen, wenn alle
angegebenen Filter übereinstimmen.

• Beliebige Stack-Namen und Stack-Rollen — Der Hook wird aufgerufen, wenn mindestens
einer der angegebenen Filter übereinstimmt.

b. Schließen Sie bei Stack-Namen bestimmte Stacks in Hook-Aufrufe ein oder schließen Sie
sie aus.

• Geben Sie für Include die Stack-Namen an, die eingeschlossen werden sollen.
Verwenden Sie dies, wenn Sie über eine kleine Gruppe bestimmter Stacks verfügen, auf
die Sie abzielen möchten. Nur die in dieser Liste angegebenen Stapel rufen den Hook auf.

Aktiviere einen proaktiven, steuerungsbasierten Hook 11

CloudFormation Hooks Benutzerhandbuch

• Geben Sie für Exclude die Stack-Namen an, die ausgeschlossen werden sollen.
Verwenden Sie dies, wenn Sie den Hook für die meisten Stacks aufrufen, aber einige
bestimmte ausschließen möchten. Alle Stapel außer den hier aufgeführten rufen den Hook
auf.

c. Schließen Sie bei Stack-Rollen je nach den zugehörigen IAM-Rollen bestimmte Stacks in
Hook-Aufrufe ein oder aus.

• Geben Sie für Include eine oder mehrere IAM-Rollen an, die auf Stacks abzielen ARNs
sollen, die diesen Rollen zugeordnet sind. Nur Stack-Operationen, die von diesen Rollen
initiiert wurden, rufen den Hook auf.

• Geben Sie für Exclude eine oder mehrere IAM-Rollen ARNs für Stacks an, die Sie
ausschließen möchten. Der Hook wird für alle Stacks aufgerufen, mit Ausnahme der
Stacks, die von den angegebenen Rollen initiiert wurden.

11. Wählen Sie Weiter aus.

12. Überprüfen Sie auf der Seite Überprüfen und aktivieren Ihre Auswahl. Um Änderungen
vorzunehmen, wählen Sie im entsprechenden Abschnitt Bearbeiten aus.

13. Wenn Sie bereit sind, fortzufahren, wählen Sie Hook aktivieren.

Aktiviere einen proaktiven, steuerungsbasierten Hook ()AWS CLI

Bevor Sie fortfahren, vergewissern Sie sich, dass Sie die proaktiven Kontrollen identifiziert haben, die
Sie mit diesem Hook verwenden werden. Weitere Informationen finden Sie im AWS Control Tower
Control Catalog.

Um einen proaktiven, steuerungsbasierten Hook zur Verwendung in Ihrem Konto zu aktivieren ()AWS
CLI

1. Um mit der Aktivierung eines Hooks zu beginnen, verwende den folgenden activate-typeBefehl
und ersetze dabei die Platzhalter durch deine spezifischen Werte.

aws cloudformation activate-type --type HOOK \
 --type-name AWS::ControlTower::Hook \
 --publisher-id aws-hooks \
 --type-name-alias MyOrg::Security::ComplianceHook \
 --region us-west-2

Aktiviere einen proaktiven, steuerungsbasierten Hook 12

https://docs.aws.amazon.com/controltower/latest/controlreference/controls-reference.html
https://docs.aws.amazon.com/controltower/latest/controlreference/controls-reference.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html

CloudFormation Hooks Benutzerhandbuch

2. Um die Aktivierung des Hooks abzuschließen, müssen Sie ihn mithilfe einer JSON-
Konfigurationsdatei konfigurieren.

Verwenden Sie den cat Befehl, um eine JSON-Datei mit der folgenden Struktur zu erstellen.
Weitere Informationen finden Sie unter Syntaxreferenz für das Hook-Konfigurationsschema.

Im folgenden Beispiel wird ein Hook konfiguriert, der während CREATE und bei Vorgängen auf
bestimmten IAM- EC2, Amazon- und Amazon S3 S3-Ressourcen aufgerufen wird. UPDATE
Es wendet drei proaktive Kontrollen (CT.IAM.PR.5,,CT.S3.PR.12) anCT.EC2.PR.17, um
diese Ressourcen anhand von Compliance-Standards zu validieren. Der Hook arbeitet im
WARN Modus, was bedeutet, dass er nicht konforme Ressourcen mit Warnungen kennzeichnet,
Bereitstellungen jedoch nicht blockiert.

$ cat > config.json
{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": ["RESOURCE"],
 "FailureMode": "WARN",
 "Properties": {
 "ControlsToApply": "CT.IAM.PR.5,CT.EC2.PR.17,CT.S3.PR.12"
 },
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE"
]
 }
 }
 }
}

• HookInvocationStatus: Auf einstellen, um den ENABLED Hook zu aktivieren.

• TargetOperations: Auf gesetzt, RESOURCE da dies der einzige unterstützte Wert für einen
proaktiven, steuerungsbasierten Hook ist.

• FailureMode: Festlegung entweder auf FAIL oder WARN.

• ControlsToApply: Geben Sie die Steuerung IDs der zu verwendenden proaktiven
Kontrollen an. Weitere Informationen finden Sie im AWS Control Tower Kontrollkatalog.

Aktiviere einen proaktiven, steuerungsbasierten Hook 13

https://docs.aws.amazon.com/controltower/latest/controlreference/controls-reference.html

CloudFormation Hooks Benutzerhandbuch

• (Optional)TargetFilters: Für Actions können Sie CREATE oder oder oder UPDATE beides
(Standard) angeben, um zu steuern, wann der Hook aufgerufen wird. Wenn Sie CREATE nur
angeben, wird der Hook nur auf CREATE Operationen beschränkt. Andere TargetFilters
Eigenschaften haben keine Auswirkung.

3. Verwenden Sie den folgenden set-type-configurationBefehl zusammen mit der von Ihnen
erstellten JSON-Datei, um die Konfiguration anzuwenden. Ersetzen Sie die Platzhalter durch Ihre
spezifischen Werte.

aws cloudformation set-type-configuration \
 --configuration file://config.json \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook" \
 --region us-west-2

Löschen Sie proaktive, auf Kontrollen basierende Hooks in Ihrem Konto

Wenn du einen aktivierten proaktiven, kontrollbasierten Hook nicht mehr benötigst, verwende die
folgenden Verfahren, um ihn in deinem Konto zu löschen.

Wie Sie einen Hook vorübergehend deaktivieren, anstatt ihn zu löschen, finden Sie unter.
CloudFormation Hooks deaktivieren und aktivieren

Themen

• Löschen Sie einen proaktiven, auf Steuerung basierenden Hook in Ihrem Konto (Konsole)

• Lösche einen proaktiven, auf Steuerung basierenden Hook in deinem Konto ()AWS CLI

Löschen Sie einen proaktiven, auf Steuerung basierenden Hook in Ihrem Konto
(Konsole)

Um einen proaktiven, steuerungsbasierten Hook in Ihrem Konto zu löschen

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com /cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm aus, AWS-Region wo sich der
Hook befindet.

3. Wählen Sie im Navigationsbereich Hooks aus.

Löschen Sie proaktive, steuerungsbasierte Hooks 14

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

CloudFormation Hooks Benutzerhandbuch

4. Suchen Sie auf der Seite Hooks nach dem proaktiven, steuerungsbasierten Hook, den Sie
löschen möchten.

5. Markieren Sie das Kontrollkästchen neben Ihrem Hook und wählen Sie Löschen.

6. Wenn Sie zur Bestätigung aufgefordert werden, geben Sie den Hook-Namen ein, um das
Löschen des angegebenen Hooks zu bestätigen, und wählen Sie dann Löschen.

Lösche einen proaktiven, auf Steuerung basierenden Hook in deinem Konto ()AWS
CLI

Note

Bevor Sie den Hook löschen können, müssen Sie ihn zunächst deaktivieren. Weitere
Informationen finden Sie unter Deaktiviere und aktiviere einen Hook in deinem Konto (AWS
CLI).

Verwenden Sie den folgenden deactivate-typeBefehl, um einen Hook zu deaktivieren, wodurch er aus
Ihrem Konto entfernt wird. Ersetze Platzhalter durch deine spezifischen Werte.

aws cloudformation deactivate-type \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook" \
 --region us-west-2

Schutzhaken

Um einen AWS CloudFormation Guard Hook in Ihrem Konto verwenden zu können, müssen Sie den
Hook für das Konto und die Region aktivieren, in der Sie ihn verwenden möchten. Wenn Sie einen
Hook aktivieren, kann er für Stack-Operationen in dem Konto und der Region verwendet werden, in
der er aktiviert ist.

Wenn Sie einen Guard-Hook aktivieren, CloudFormation wird in der Registrierung Ihres Kontos
ein Eintrag für den aktivierten Hook als privaten Hook erstellt. Auf diese Weise können Sie alle
Konfigurationseigenschaften festlegen, die der Hook enthält. Die Konfigurationseigenschaften
definieren, wie der Hook für eine bestimmte AWS-Konto Region konfiguriert wird.

Themen

Schutzhaken 15

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Hooks Benutzerhandbuch

• AWS CLI Befehle für die Arbeit mit Guard Hooks

• Schreiben Sie Guard-Regeln, um Ressourcen für Guard Hooks auszuwerten

• Bereiten Sie sich darauf vor, einen Guard-Hook zu erstellen

• Aktiviere einen Guard Hook in deinem Konto

• Sehen Sie sich die Logs für die Guard Hooks in Ihrem Konto an

• Löschen Sie Guard Hooks in Ihrem Konto

AWS CLI Befehle für die Arbeit mit Guard Hooks

Zu den AWS CLI Befehlen für die Arbeit mit Guard Hooks gehören:

• activate-typeum den Aktivierungsprozess für einen Guard Hook zu starten.

• set-type-configurationum die Konfigurationsdaten für einen Hook in Ihrem Konto anzugeben.

• list-typesum die Hooks in Ihrem Konto aufzulisten.

• describe-typeum detaillierte Informationen über einen bestimmten Hook oder eine bestimmte Hook-
Version zurückzugeben, einschließlich aktueller Konfigurationsdaten.

• deactivate-typeum einen zuvor aktivierten Hook aus Ihrem Konto zu entfernen.

Schreiben Sie Guard-Regeln, um Ressourcen für Guard Hooks
auszuwerten

AWS CloudFormation Guard ist eine domänenspezifische Open-Source-Sprache (DSL) für
allgemeine Zwecke, die Sie zum Verfassen verwenden können. policy-as-code In diesem Thema
wird erklärt, wie Sie Guard verwenden, um Beispielregeln zu erstellen, die im Guard Hook ausgeführt
werden können, um automatische Auswertungen CloudFormation und AWS -Cloud-Control-
API Operationen durchzuführen. Es wird sich auch auf die verschiedenen Arten von Eingaben
konzentrieren, die für Ihre Guard-Regeln verfügbar sind, je nachdem, wann Ihr Guard Hook
ausgeführt wird. Ein Guard Hook kann so konfiguriert werden, dass er während der folgenden Arten
von Vorgängen ausgeführt wird:

• Ressourcenvorgänge

• Operationen stapeln

• Set-Operationen ändern

AWS CLI Befehle für die Arbeit mit Guard Hooks 16

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Hooks Benutzerhandbuch

Weitere Informationen zum Schreiben von Guard-Regeln finden Sie unter AWS CloudFormation
Guard Regeln schreiben

Themen

• Guard-Regeln für den Ressourcenbetrieb

• Stack Operation Guard-Regeln

• Ändern Sie die festgelegten Operation-Guard-Regeln

Guard-Regeln für den Ressourcenbetrieb

Jedes Mal, wenn Sie eine Ressource erstellen, aktualisieren oder löschen, wird dies als
Ressourcenvorgang betrachtet. Wenn Sie beispielsweise die Aktualisierung eines CloudFormation
Stacks ausführen, der eine neue Ressource erstellt, haben Sie einen Ressourcenvorgang
abgeschlossen. Wenn Sie eine Ressource mithilfe der Cloud Control API erstellen, aktualisieren oder
löschen, wird dies ebenfalls als Ressourcenvorgang betrachtet. In der Konfiguration für Ihren Hook
können Sie Ihren Guard Hook für Ziele RESOURCE und CLOUD_CONTROL Operationen konfigurieren.
TargetOperations Wenn Ihr Guard Hook eine Ressourcenoperation auswertet, bewertet die
Guard-Engine eine Ressourceneingabe.

Themen

• Syntax der Guard-Ressourceneingabe

• Beispiel für die Eingabe eines Guard-Ressourcenvorgangs

• Regeln für Ressourcenänderungen schützen

Syntax der Guard-Ressourceneingabe

Bei der Guard-Ressourceneingabe handelt es sich um die Daten, die Ihren Guard-Regeln zur
Auswertung zur Verfügung gestellt werden.

Im Folgenden finden Sie ein Beispiel für die Form einer Ressourceneingabe:

HookContext:
 AWSAccountID: String
 StackId: String
 HookTypeName: String
 HookTypeVersion: String
 InvocationPoint: [CREATE_PRE_PROVISION, UPDATE_PRE_PROVISION, DELETE_PRE_PROVISION]
 TargetName: String

Schreiben Sie Guard-Regeln für Hooks 17

https://docs.aws.amazon.com/cfn-guard/latest/ug/writing-rules.html
https://docs.aws.amazon.com/cfn-guard/latest/ug/writing-rules.html

CloudFormation Hooks Benutzerhandbuch

 TargetType: RESOURCE
 TargetLogicalId: String
 ChangeSetId: String
Resources:
 {ResourceLogicalID}:
 ResourceType: {ResourceType}
 ResourceProperties:
 {ResourceProperties}
Previous:
 ResourceLogicalID:
 ResourceType: {ResourceType}
 ResourceProperties:
 {PreviousResourceProperties}

HookContext

AWSAccountID

Die ID der Ressource AWS-Konto , die ausgewertet wird, enthält.

StackId

Die Stack-ID des CloudFormation Stacks, der Teil des Ressourcenvorgangs ist. Dies ist leer,
wenn der Aufrufer die Cloud Control API ist.

HookTypeName

Der Name des Hooks, der gerade läuft.

HookTypeVersion

Die Version des Hooks, der ausgeführt wird.

InvocationPoint

Der genaue Punkt in der Bereitstellungslogik, an dem der Hook ausgeführt wird.

Gültige Werte: (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

TargetName

Der Zieltyp, der ausgewertet wird, zum BeispielAWS::S3::Bucket.

TargetType

Der Zieltyp, der ausgewertet wird, zum BeispielAWS::S3::Bucket. Für Ressourcen, die mit
der Cloud Control API bereitgestellt wurden, lautet dieser Wert. RESOURCE

Schreiben Sie Guard-Regeln für Hooks 18

CloudFormation Hooks Benutzerhandbuch

TargetLogicalId

Der Wert TargetLogicalId der Ressource, die bewertet wird. Wenn der Ursprung des
Hooks ist CloudFormation, ist dies die logische ID (auch als logischer Name bezeichnet) der
Ressource. Wenn der Ursprung des Hooks die Cloud Control API ist, handelt es sich um einen
konstruierten Wert.

ChangeSetId

Die Änderungssatz-ID, die ausgeführt wurde, um den Hook-Aufruf auszulösen. Dieser Wert
ist leer, wenn die Ressourcenänderung durch die Cloud Control API oder die create-stack
delete-stack Operationen, oder initiiert wurde. update-stack

Resources

ResourceLogicalID

Wenn der Vorgang von initiiert wird CloudFormation, ResourceLogicalID ist dies die
logische ID der Ressource in der CloudFormation Vorlage.

Wenn der Vorgang von der Cloud Control API initiiert wird, ResourceLogicalID handelt es
sich um eine Kombination aus Ressourcentyp, Name, Vorgangs-ID und Anforderungs-ID.

ResourceType

Der Typname der Ressource (Beispiel:AWS::S3::Bucket).

ResourceProperties

Die vorgeschlagenen Eigenschaften der Ressource, die geändert wird. Wenn der Guard Hook
gegen die CloudFormation Ressourcenänderungen läuft, werden alle Funktionen, Parameter
und Transformationen vollständig aufgelöst. Wenn die Ressource gelöscht wird, ist dieser Wert
leer.

Previous

ResourceLogicalID

Wenn der Vorgang von initiiert wird CloudFormation, ResourceLogicalID ist dies die
logische ID der Ressource in der CloudFormation Vorlage.

Wenn der Vorgang von der Cloud Control API initiiert wird, ResourceLogicalID handelt es
sich um eine Kombination aus Ressourcentyp, Name, Vorgangs-ID und Anforderungs-ID.

ResourceType

Der Typname der Ressource (Beispiel:AWS::S3::Bucket).

Schreiben Sie Guard-Regeln für Hooks 19

CloudFormation Hooks Benutzerhandbuch

ResourceProperties

Die aktuellen Eigenschaften, die der Ressource zugeordnet sind, die geändert wird. Wenn die
Ressource gelöscht wird, ist dieser Wert leer.

Beispiel für die Eingabe eines Guard-Ressourcenvorgangs

Die folgende Beispieleingabe zeigt einen Guard-Hook, der die Definition der zu aktualisierenden
AWS::S3::Bucket Ressource empfängt. Dies sind die Daten, die Guard zur Auswertung zur
Verfügung stehen.

HookContext:
 AwsAccountId: "123456789012"
 StackId: "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000"
 HookTypeName: org::s3policy::hook
 HookTypeVersion: "00001"
 InvocationPoint: UPDATE_PRE_PROVISION
 TargetName: AWS::S3::Bucket
 TargetType: RESOURCE
 TargetLogicalId: MyS3Bucket
 ChangeSetId: ""
Resources:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: true
Previous:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: false

Alle für den Ressourcentyp verfügbaren Eigenschaften finden Sie unter AWS::S3::Bucket.

Regeln für Ressourcenänderungen schützen

Wenn ein Guard-Hook Ressourcenänderungen auswertet, lädt er zunächst alle mit dem Hook
konfigurierten Regeln herunter. Diese Regeln werden dann anhand der Ressourceneingabe

Schreiben Sie Guard-Regeln für Hooks 20

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-s3-bucket.html

CloudFormation Hooks Benutzerhandbuch

bewertet. Der Hook schlägt fehl, wenn Regeln ihre Bewertung nicht bestehen. Wenn es keine Fehler
gibt, wird der Hook bestanden.

Das folgende Beispiel ist eine Guard-Regel, die auswertet, ob die ObjectLockEnabled Eigenschaft
true für einen beliebigen AWS::S3::Bucket Ressourcentyp gilt.

let s3_buckets_default_lock_enabled = Resources.*[Type == 'AWS::S3::Bucket']

rule S3_BUCKET_DEFAULT_LOCK_ENABLED when %s3_buckets_default_lock_enabled !empty {
 %s3_buckets_default_lock_enabled.Properties.ObjectLockEnabled exists
 %s3_buckets_default_lock_enabled.Properties.ObjectLockEnabled == true
 <<
 Violation: S3 Bucket ObjectLockEnabled must be set to true.
 Fix: Set the S3 property ObjectLockEnabled parameter to true.
 >>
}

Wenn diese Regel anhand der folgenden Eingabe ausgeführt wird, schlägt sie fehl, da die
ObjectLockEnabled Eigenschaft nicht auf true gesetzt ist.

Resources:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: false

Wenn diese Regel für die folgende Eingabe ausgeführt wird, gilt sie als erfolgreich, da die auf gesetzt
ObjectLockEnabled isttrue.

Resources:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: true

Wenn ein Hook fehlschlägt, werden die fehlgeschlagenen Regeln zurück an unsere CloudFormation
Cloud Control API weitergegeben. Wenn ein Logging-Bucket für den Guard Hook konfiguriert wurde,
wird dort zusätzliches Regelfeedback bereitgestellt. Dieses zusätzliche Feedback beinhaltet die Fix
Informationen Violation und.

Schreiben Sie Guard-Regeln für Hooks 21

CloudFormation Hooks Benutzerhandbuch

Stack Operation Guard-Regeln

Wenn ein CloudFormation Stack erstellt, aktualisiert oder gelöscht wird, können Sie Ihren Guard
Hook so konfigurieren, dass er zunächst die neue Vorlage auswertet und möglicherweise die
Fortsetzung des Stack-Vorgangs blockiert. Sie können Ihren Guard Hook in der TargetOperations
Konfiguration für Ihren Hook so konfigurieren, dass er auf bestimmte STACK Operationen abzielt.

Themen

• Guard Stack-Eingabesyntax

• Beispiel für die Eingabe einer Guard-Stack-Operation

• Regeln für Stack-Änderungen schützen

Guard Stack-Eingabesyntax

Die Eingabe für Guard-Stack-Operationen bietet die gesamte CloudFormation Vorlage für die
Auswertung Ihrer Guard-Regeln.

Das Folgende ist ein Beispiel für die Form einer Stack-Eingabe:

HookContext:
 AWSAccountID: String
 StackId: String
 HookTypeName: String
 HookTypeVersion: String
 InvocationPoint: [CREATE_PRE_PROVISION, UPDATE_PRE_PROVISION, DELETE_PRE_PROVISION]
 TargetName: String
 TargetType:STACK
 ChangeSetId: String
{Proposed CloudFormation Template}
Previous:
 {CloudFormation Template}

HookContext

AWSAccountID

Die ID der Ressource AWS-Konto , die die Ressource enthält.

StackId

Die Stack-ID des CloudFormation Stacks, der Teil des Stack-Vorgangs ist.

Schreiben Sie Guard-Regeln für Hooks 22

CloudFormation Hooks Benutzerhandbuch

HookTypeName

Der Name des Hooks, der gerade läuft.

HookTypeVersion

Die Version des Hooks, der ausgeführt wird.

InvocationPoint

Der genaue Punkt in der Bereitstellungslogik, an dem der Hook ausgeführt wird.

Gültige Werte: (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

TargetName

Der Name des Stacks, der ausgewertet wird.

TargetType

Dieser Wert wird verwendet, STACK wenn er als Hook auf Stackebene ausgeführt wird.

ChangeSetId

Die Änderungssatz-ID, die ausgeführt wurde, um den Hook-Aufruf auszulösen. Dieser Wert ist
leer, wenn die Stack-Operation durch eine create-stackupdate-stack, oder delete-
stack -Operation initiiert wurde.

Proposed CloudFormation Template

Der vollständige CloudFormation Vorlagenwert, der an CloudFormation create-stack update-
stack Oder-Operationen übergeben wurde. Dazu gehören Dinge wie ResourcesOutputs,
undProperties. Es kann sich um eine JSON- oder YAML-Zeichenfolge handeln, je nachdem,
was bereitgestellt wurde. CloudFormation

Bei delete-stack Operationen ist dieser Wert leer.

Previous

Die letzte erfolgreich bereitgestellte CloudFormation Vorlage. Dieser Wert ist leer, wenn der Stack
erstellt oder gelöscht wird.

Bei delete-stack Operationen ist dieser Wert leer.

Schreiben Sie Guard-Regeln für Hooks 23

CloudFormation Hooks Benutzerhandbuch

Note

Die bereitgestellten Vorlagen werden an Operationen create oder update Stack-
Operationen übergeben. Beim Löschen eines Stacks werden keine Vorlagenwerte
bereitgestellt.

Beispiel für die Eingabe einer Guard-Stack-Operation

Die folgende Beispieleingabe zeigt einen Guard-Hook, der eine vollständige Vorlage und die zuvor
bereitgestellte Vorlage erhält. Die Vorlage in diesem Beispiel verwendet das JSON-Format.

HookContext:
 AwsAccountId: 123456789012
 StackId: "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000"
 HookTypeName: org::templatechecker::hook
 HookTypeVersion: "00001"
 InvocationPoint: UPDATE_PRE_PROVISION
 TargetName: MyStack
 TargetType: CHANGE_SET
 TargetLogicalId: arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000
 ChangeSetId: arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000
Resources: {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {"ServerSideEncryptionByDefault":
 {"SSEAlgorithm": "aws:kms",
 "KMSMasterKeyID": "KMS-KEY-ARN" },
 "BucketKeyEnabled": true }
]
 }
 }
}
Previous: {
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {

Schreiben Sie Guard-Regeln für Hooks 24

CloudFormation Hooks Benutzerhandbuch

 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {}
 }
 }
}

Regeln für Stack-Änderungen schützen

Wenn ein Guard-Hook Stack-Änderungen auswertet, lädt er zunächst alle mit dem Hook
konfigurierten Regeln herunter. Diese Regeln werden dann anhand der Ressourceneingabe
bewertet. Der Hook schlägt fehl, wenn Regeln ihre Bewertung nicht bestehen. Wenn es keine Fehler
gibt, wird der Hook bestanden.

Das folgende Beispiel ist eine Guard-Regel, die auswertet, ob es AWS::S3::Bucket
Ressourcentypen gibt, die eine Eigenschaft namens enthaltenBucketEncryption, wobei die
Eigenschaft entweder auf aws:kms oder SSEAlgorithm AES256 gesetzt ist.

let s3_buckets_s3_default_encryption = Resources.*[Type == 'AWS::S3::Bucket']

rule S3_DEFAULT_ENCRYPTION_KMS when %s3_buckets_s3_default_encryption !empty {
 %s3_buckets_s3_default_encryption.Properties.BucketEncryption exists

 %s3_buckets_s3_default_encryption.Properties.BucketEncryption.ServerSideEncryptionConfiguration[*].ServerSideEncryptionByDefault.SSEAlgorithm
 in ["aws:kms","AES256"]
 <<
 Violation: S3 Bucket default encryption must be set.
 Fix: Set the S3 Bucket property
 BucketEncryption.ServerSideEncryptionConfiguration.ServerSideEncryptionByDefault.SSEAlgorithm
 to either "aws:kms" or "AES256"
 >>
}

Wenn die Regel für die folgende Vorlage ausgeführt wird, wird fail sie ausgeführt.

AWSTemplateFormatVersion: 2010-09-09
Description: S3 bucket without default encryption
Resources:
 EncryptedS3Bucket:
 Type: 'AWS::S3::Bucket'
 Properties:

Schreiben Sie Guard-Regeln für Hooks 25

CloudFormation Hooks Benutzerhandbuch

 BucketName: !Sub 'encryptedbucket-${AWS::Region}-${AWS::AccountId}'

Wenn die Regel für die folgende Vorlage ausgeführt wird, wird sie ausgeführtpass.

AWSTemplateFormatVersion: 2010-09-09
Description: S3 bucket with default encryption using SSE-KMS with an S3 Bucket Key
Resources:
 EncryptedS3Bucket:
 Type: 'AWS::S3::Bucket'
 Properties:
 BucketName: !Sub 'encryptedbucket-${AWS::Region}-${AWS::AccountId}'
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: KMS-KEY-ARN
 BucketKeyEnabled: true

Ändern Sie die festgelegten Operation-Guard-Regeln

Wenn ein CloudFormation Änderungssatz erstellt wird, können Sie Ihren Guard Hook so
konfigurieren, dass er die Vorlage und die im Änderungssatz vorgeschlagenen Änderungen
auswertet, um die Ausführung des Änderungssatzes zu blockieren.

Themen

• Eingabesyntax des Guard-Änderungssatzes

• Beispiel für die Eingabe einer Guard-Change-Set-Operation

• Schutzregel für Change-Set-Operationen

Eingabesyntax des Guard-Änderungssatzes

Bei der Eingabe des Guard-Änderungssatzes handelt es sich um die Daten, die Ihren Guard-Regeln
zur Auswertung zur Verfügung gestellt werden.

Im Folgenden finden Sie ein Beispiel für die Form einer Eingabe für einen Änderungssatz:

HookContext:
 AWSAccountID: String
 StackId: String

Schreiben Sie Guard-Regeln für Hooks 26

CloudFormation Hooks Benutzerhandbuch

 HookTypeName: String
 HookTypeVersion: String
 InvocationPoint: [CREATE_PRE_PROVISION, UPDATE_PRE_PROVISION, DELETE_PRE_PROVISION]
 TargetName: CHANGE_SET
 TargetType:CHANGE_SET
 TargetLogicalId:ChangeSet ID
 ChangeSetId: String
{Proposed CloudFormation Template}
Previous:
 {CloudFormation Template}
Changes: [{ResourceChange}]

Die ResourceChange Modellsyntax lautet:

logicalResourceId: String
RessourcenTyp: String
action: CREATE, UPDATE, DELETE
Zeilennummer: Number
BeforeContext: JSON String
Nach dem Kontext: JSON String

HookContext

AWSAccountID

Die ID der Ressource AWS-Konto , die die Ressource enthält.

StackId

Die Stack-ID des CloudFormation Stacks, der Teil des Stack-Vorgangs ist.

HookTypeName

Der Name des Hooks, der gerade läuft.

HookTypeVersion

Die Version des Hooks, der ausgeführt wird.

InvocationPoint

Der genaue Punkt in der Bereitstellungslogik, an dem der Hook ausgeführt wird.

Gültige Werte: (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

Schreiben Sie Guard-Regeln für Hooks 27

CloudFormation Hooks Benutzerhandbuch

TargetName

Der Name des Stacks, der ausgewertet wird.

TargetType

Dieser Wert wird verwendet, CHANGE_SET wenn er als Hook auf Change-Set-Ebene
ausgeführt wird.

TargetLogicalId

Dieser Wert ist der ARN des Änderungssatzes.

ChangeSetId

Die Änderungssatz-ID, die ausgeführt wurde, um den Hook-Aufruf auszulösen. Dieser Wert ist
leer, wenn die Stack-Operation durch eine create-stackupdate-stack, oder delete-
stack -Operation initiiert wurde.

Proposed CloudFormation Template

Die vollständige CloudFormation Vorlage, die für eine create-change-set Operation
bereitgestellt wurde. Es kann sich um eine JSON- oder YAML-Zeichenfolge handeln, je nachdem,
wofür sie CloudFormation bereitgestellt wurde.

Previous

Die letzte erfolgreich bereitgestellte CloudFormation Vorlage. Dieser Wert ist leer, wenn der Stack
erstellt oder gelöscht wird.

Changes

Das Changes Modell. Dies listet die Ressourcenänderungen auf.

Änderungen

logicalResourceId

Der logische Ressourcenname der geänderten Ressource.

RessourcenTyp

Der Ressourcentyp, der geändert wird.

action

Die Art des Vorgangs, der auf der Ressource ausgeführt wird.

Schreiben Sie Guard-Regeln für Hooks 28

CloudFormation Hooks Benutzerhandbuch

Gültige Werte: (CREATE| UPDATE |DELETE)

Zeilennummer

Die Zeilennummer in der Vorlage, die der Änderung zugeordnet ist.

BeforeContext

Eine JSON-Zeichenfolge mit Eigenschaften der Ressource vor der Änderung:

{"properties": {"property1": "value"}}

Nach dem Kontext

Eine JSON-Zeichenfolge mit Eigenschaften der Ressource nach der Änderung:

{"properties": {"property1": "new value"}}

Beispiel für die Eingabe einer Guard-Change-Set-Operation

Die folgende Beispieleingabe zeigt einen Guard-Hook, der eine vollständige Vorlage, die zuvor
bereitgestellte Vorlage und eine Liste von Ressourcenänderungen erhält. Die Vorlage in diesem
Beispiel verwendet das JSON-Format.

HookContext:
 AwsAccountId: "00000000"
 StackId: MyStack
 HookTypeName: org::templatechecker::hook
 HookTypeVersion: "00001"
 InvocationPoint: UPDATE_PRE_PROVISION
 TargetName: my-example-stack
 TargetType:STACK
 TargetLogicalId: arn...:changeSet/change-set
 ChangeSetId: ""
Resources: {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketName": "amzn-s3-demo-bucket",
 "VersioningConfiguration":{
 "Status": "Enabled"
 }

Schreiben Sie Guard-Regeln für Hooks 29

CloudFormation Hooks Benutzerhandbuch

 }
 }
Previous: {
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketName": "amzn-s3-demo-bucket",
 "VersioningConfiguration":{
 "Status": "Suspended"
 }
 }
 }
 }
}
Changes: [
 {
 "logicalResourceId": "S3Bucket",
 "resourceType": "AWS::S3::Bucket",
 "action": "UPDATE",
 "lineNumber": 5,
 "beforeContext": "{\"Properties\":{\"VersioningConfiguration\":{\"Status\":
\"Suspended\"}}}",
 "afterContext": "{\"Properties\":{\"VersioningConfiguration\":{\"Status\":\"Enabled
\"}}}"
 }
]

Schutzregel für Change-Set-Operationen

Das folgende Beispiel ist eine Guard-Regel, die Änderungen an Amazon S3 S3-Buckets auswertet
und sicherstellt, dass diese nicht VersionConfiguration deaktiviert sind.

let s3_buckets_changing = Changes[resourceType == 'AWS::S3::Bucket']

rule S3_VERSIONING_STAY_ENABLED when %s3_buckets_changing !empty {
 let afterContext = json_parse(%s3_buckets_changing.afterContext)
 when %afterContext.Properties.VersioningConfiguration.Status !empty {
 %afterContext.Properties.VersioningConfiguration.Status == 'Enabled'
 }
}

Schreiben Sie Guard-Regeln für Hooks 30

CloudFormation Hooks Benutzerhandbuch

Bereiten Sie sich darauf vor, einen Guard-Hook zu erstellen

Bevor Sie einen Guard-Hook erstellen, müssen Sie die folgenden Voraussetzungen erfüllen:

• Sie müssen bereits eine Guard-Regel erstellt haben. Weitere Informationen hierzu finden Sie unter
Schreiben Sie Guard-Regeln für Hooks.

• Der Benutzer oder die Rolle, die den Hook erstellt, muss über ausreichende Berechtigungen
verfügen, um Hooks zu aktivieren. Weitere Informationen finden Sie unter Erteilen Sie IAM-
Berechtigungen für Hooks CloudFormation.

• Um das AWS CLI oder ein SDK zum Erstellen eines Guard-Hooks zu verwenden, müssen Sie
manuell eine Ausführungsrolle mit IAM-Berechtigungen und einer Vertrauensrichtlinie erstellen, um
einen Guard-Hook aufrufen CloudFormation zu können.

Erstellen Sie eine Ausführungsrolle für einen Guard Hook

Ein Hook verwendet eine Ausführungsrolle für die Berechtigungen, die er benötigt, um diesen Hook in
Ihrem aufzurufen. AWS-Konto

Diese Rolle kann automatisch erstellt werden, wenn Sie aus dem einen Guard-Hook erstellen. AWS-
Managementkonsole Andernfalls müssen Sie diese Rolle selbst erstellen.

Im folgenden Abschnitt erfahren Sie, wie Sie Berechtigungen einrichten, um Ihren Guard Hook zu
erstellen.

Erforderliche Berechtigungen

Folgen Sie der Anleitung unter Erstellen einer Rolle mit benutzerdefinierten Vertrauensrichtlinien im
IAM-Benutzerhandbuch zum Erstellen einer Rolle mit einer benutzerdefinierten Vertrauensrichtlinie.

Führen Sie dann die folgenden Schritte aus, um Ihre Berechtigungen einzurichten:

1. Fügen Sie der IAM-Rolle, die Sie zur Erstellung des Guard Hook verwenden möchten, die
folgende Richtlinie für Mindestberechtigungen hinzu.

JSON

{
 "Version":"2012-10-17",
 "Statement": [

Bereiten Sie sich darauf vor, einen Guard-Hook zu erstellen 31

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

CloudFormation Hooks Benutzerhandbuch

 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::my-guard-output-bucket/*",
 "arn:aws:s3:::my-guard-rules-bucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::my-guard-output-bucket/*"
]
 }
]
}

2. Erteilen Sie Ihrem Hook die Erlaubnis, die Rolle zu übernehmen, indem Sie der Rolle
eine Vertrauensrichtlinie hinzufügen. Im Folgenden finden Sie ein Beispiel für eine
Vertrauensrichtlinie, die Sie verwenden können.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "hooks.cloudformation.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }

Bereiten Sie sich darauf vor, einen Guard-Hook zu erstellen 32

CloudFormation Hooks Benutzerhandbuch

]
}

Aktiviere einen Guard Hook in deinem Konto

Im folgenden Thema erfahren Sie, wie Sie einen Guard Hook in Ihrem Konto aktivieren, sodass er in
dem Konto und der Region, in der er aktiviert wurde, verwendet werden kann.

Themen

• Aktiviere einen Guard Hook (Konsole)

• Aktiviere einen Guard Hook (AWS CLI)

• Zugehörige Ressourcen

Aktiviere einen Guard Hook (Konsole)

Um einen Guard Hook zur Verwendung in Ihrem Konto zu aktivieren

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com/cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm die AWS-Region Stelle aus, an der
Sie den Hook-In erstellen möchten.

3. Wählen Sie im Navigationsbereich auf der linken Seite Hooks aus.

4. Wählen Sie auf der Seite Hooks die Option Create a Hook und dann With Guard aus.

5. Wenn Sie noch keine Guard-Regeln erstellt haben, erstellen Sie Ihre Guard-Regel, speichern Sie
sie in Amazon S3 und kehren Sie dann zu diesem Verfahren zurück. Sehen Sie sich zunächst
die Beispielregeln unter an. Schreiben Sie Guard-Regeln, um Ressourcen für Guard Hooks
auszuwerten

Wenn Sie Ihre Guard-Regel bereits erstellt und in S3 gespeichert haben, fahren Sie mit dem
nächsten Schritt fort.

Note

Das in S3 gespeicherte Objekt muss eine der folgenden Dateierweiterungen
haben:.guard,.zip, oder.tar.gz.

Aktiviere einen Guard Hook 33

https://console.aws.amazon.com/cloudformation/

CloudFormation Hooks Benutzerhandbuch

6. Gehen Sie für die Guard-Hook-Quelle, Speichern Sie Ihre Guard-Regeln in S3, wie folgt vor:

• Geben Sie für S3-URI den S3-Pfad zu Ihrer Regeldatei an oder verwenden Sie die
Schaltfläche S3 durchsuchen, um ein Dialogfeld zu öffnen, in dem Sie nach dem S3-Objekt
suchen und es auswählen können.

• (Optional) Wenn in Ihrem S3-Bucket die Versionierung aktiviert ist, können Sie für die
Objektversion eine bestimmte Version des S3-Objekts auswählen.

Der Guard Hook lädt Ihre Regeln jedes Mal, wenn der Hook aufgerufen wird, von S3 herunter.
Um versehentliche Änderungen oder Löschungen zu verhindern, empfehlen wir, bei der
Konfiguration Ihres Guard Hook eine Version zu verwenden.

7. (Optional) Geben Sie für den S3-Bucket für den Guard-Ausgabebericht einen S3-Bucket an, in
dem der Guard-Ausgabebericht gespeichert werden soll. Dieser Bericht enthält die Ergebnisse
Ihrer Guard-Regelvalidierungen.

Um das Ziel des Ausgabeberichts zu konfigurieren, wählen Sie eine der folgenden Optionen:

• Aktivieren Sie das Kontrollkästchen Dasselbe Bucket verwenden, in dem meine Guard-
Regeln gespeichert sind, um denselben Bucket zu verwenden, in dem sich Ihre Guard-Regeln
befinden.

• Wählen Sie einen anderen S3-Bucket-Namen zum Speichern des Guard-Ausgabeberichts.

8. (Optional) Erweitern Sie die Eingabeparameter für die Guard-Regel und geben Sie dann unter
Eingabeparameter für Ihre Guard-Regel in S3 speichern die folgenden Informationen ein:

• Geben Sie für S3-URI den S3-Pfad zu einer Parameterdatei an oder verwenden Sie die
Schaltfläche S3 durchsuchen, um ein Dialogfeld zu öffnen, in dem Sie nach dem S3-Objekt
suchen und es auswählen können.

• (Optional) Wenn in Ihrem S3-Bucket die Versionierung aktiviert ist, können Sie für die
Objektversion eine bestimmte Version des S3-Objekts auswählen.

9. Wählen Sie Weiter aus.

10. Wählen Sie für Hook-Name eine der folgenden Optionen:

• Geben Sie einen kurzen, aussagekräftigen Namen ein, der danach Private::Guard::
hinzugefügt wird. Wenn Sie beispielsweise eingebenMyTestHook, wird der vollständige Hook-
Name zuPrivate::Guard::MyTestHook.

• Geben Sie den vollständigen Hook-Namen (auch Alias genannt) in diesem Format an:
Provider::ServiceName::HookName

Aktiviere einen Guard Hook 34

CloudFormation Hooks Benutzerhandbuch

11. Wählen Sie für Hook-Ziele aus, was ausgewertet werden soll:

• Stacks — Wertet Stack-Vorlagen aus, wenn Benutzer Stacks erstellen, aktualisieren oder
löschen.

• Ressourcen — Wertet einzelne Ressourcenänderungen aus, wenn Benutzer Stacks
aktualisieren.

• Änderungssätze — Wertet geplante Aktualisierungen aus, wenn Benutzer Änderungssätze
erstellen.

• Cloud Control API — Evaluiert Erstellungs-, Aktualisierungs- oder Löschvorgänge, die von der
Cloud Control API initiiert wurden.

12. Wählen Sie unter Aktionen aus, welche Aktionen (Erstellen, Aktualisieren, Löschen) Ihren Hook
aufrufen sollen.

13. Wählen Sie für den Hook-Modus aus, wie der Hook reagiert, wenn Regeln ihre Auswertung nicht
bestehen:

• Warnen — Gibt Warnungen an Benutzer aus, ermöglicht aber die Fortsetzung der Aktionen.
Dies ist nützlich für unkritische Validierungen oder Informationsprüfungen.

• Fehlgeschlagen — verhindert, dass die Aktion fortgesetzt wird. Dies ist hilfreich für die
Durchsetzung strenger Compliance- oder Sicherheitsrichtlinien.

14. Wählen Sie für die Ausführungsrolle die IAM-Rolle aus, die der Hook annimmt, um Ihre
Guard-Regeln aus S3 abzurufen, und schreiben Sie optional einen detaillierten Guard-
Ausgabebericht zurück. Sie können entweder zulassen CloudFormation , dass automatisch eine
Ausführungsrolle für Sie erstellt wird, oder Sie können eine Rolle angeben, die Sie erstellt haben.

15. Wählen Sie Weiter aus.

16. (Optional) Gehen Sie für Hook-Filter wie folgt vor:

a. Geben Sie unter Ressourcenfilter an, welche Ressourcentypen den Hook aufrufen können.
Dadurch wird sichergestellt, dass der Hook nur für relevante Ressourcen aufgerufen wird.

b. Wählen Sie unter Filterkriterien die Logik für die Anwendung von Stacknamen- und Stack-
Rollenfiltern aus:

• Alle Stack-Namen und Stack-Rollen — Der Hook wird nur aufgerufen, wenn alle
angegebenen Filter übereinstimmen.

• Beliebige Stack-Namen und Stack-Rollen — Der Hook wird aufgerufen, wenn mindestens
einer der angegebenen Filter übereinstimmt.

Aktiviere einen Guard Hook 35

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

CloudFormation Hooks Benutzerhandbuch

Note

Bei Cloud Control API-Vorgängen werden alle Filter für Stack-Namen und Stack-
Rollen ignoriert.

c. Schließen Sie bei Stack-Namen bestimmte Stacks in Hook-Aufrufe ein oder aus.

• Geben Sie für Include die Stack-Namen an, die eingeschlossen werden sollen.
Verwenden Sie dies, wenn Sie über eine kleine Gruppe bestimmter Stacks verfügen, auf
die Sie abzielen möchten. Nur die in dieser Liste angegebenen Stapel rufen den Hook auf.

• Geben Sie für Exclude die Stack-Namen an, die ausgeschlossen werden sollen.
Verwenden Sie dies, wenn Sie den Hook für die meisten Stacks aufrufen, aber einige
bestimmte ausschließen möchten. Alle Stapel außer den hier aufgeführten rufen den Hook
auf.

d. Schließen Sie bei Stack-Rollen je nach den zugehörigen IAM-Rollen bestimmte Stacks in
Hook-Aufrufe ein oder aus.

• Geben Sie für Include eine oder mehrere IAM-Rollen an, die auf Stacks abzielen ARNs
sollen, die diesen Rollen zugeordnet sind. Nur Stack-Operationen, die von diesen Rollen
initiiert wurden, rufen den Hook auf.

• Geben Sie für Exclude eine oder mehrere IAM-Rollen ARNs für Stacks an, die Sie
ausschließen möchten. Der Hook wird für alle Stacks aufgerufen, mit Ausnahme der
Stacks, die von den angegebenen Rollen initiiert wurden.

17. Wählen Sie Weiter aus.

18. Überprüfen Sie auf der Seite Überprüfen und aktivieren Ihre Auswahl. Um Änderungen
vorzunehmen, wählen Sie Bearbeiten in dem entsprechenden Abschnitt.

19. Wenn Sie bereit sind, fortzufahren, wählen Sie Hook aktivieren.

Aktiviere einen Guard Hook (AWS CLI)

Bevor Sie fortfahren, vergewissern Sie sich, dass Sie die Guard-Regel und die Ausführungsrolle, die
Sie mit diesem Hook verwenden werden, erstellt haben. Weitere Informationen erhalten Sie unter
Schreiben Sie Guard-Regeln, um Ressourcen für Guard Hooks auszuwerten und Erstellen Sie eine
Ausführungsrolle für einen Guard Hook.

Aktiviere einen Guard Hook 36

CloudFormation Hooks Benutzerhandbuch

Um einen Guard-Hook zur Verwendung in Ihrem Konto zu aktivieren (AWS CLI)

1. Um mit der Aktivierung eines Hooks zu beginnen, verwende den folgenden activate-typeBefehl
und ersetze dabei die Platzhalter durch deine spezifischen Werte. Dieser Befehl autorisiert den
Hook, eine angegebene Ausführungsrolle von Ihnen zu verwenden. AWS-Konto

aws cloudformation activate-type --type HOOK \
 --type-name AWS::Hooks::GuardHook \
 --publisher-id aws-hooks \
 --type-name-alias Private::Guard::MyTestHook \
 --execution-role-arn arn:aws:iam::123456789012:role/my-execution-role \
 --region us-west-2

2. Um die Aktivierung des Hooks abzuschließen, müssen Sie ihn mithilfe einer JSON-
Konfigurationsdatei konfigurieren.

Verwenden Sie den cat Befehl, um eine JSON-Datei mit der folgenden Struktur zu erstellen.
Weitere Informationen finden Sie unter Syntaxreferenz für das Hook-Konfigurationsschema.

$ cat > config.json
{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE",
 "CHANGE_SET"
],
 "FailureMode": "WARN",
 "Properties": {
 "ruleLocation": "s3://amzn-s3-demo-bucket/MyGuardRules.guard",
 "logBucket": "amzn-s3-demo-logging-bucket"
 },
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE",
 "DELETE"
]
 }
 }

Aktiviere einen Guard Hook 37

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html

CloudFormation Hooks Benutzerhandbuch

 }
}

• HookInvocationStatus: Auf setzen, ENABLED um den Hook zu aktivieren.

• TargetOperations: Geben Sie die Operationen an, die der Hook auswerten soll.

• FailureMode: Festlegung entweder auf FAIL oder WARN.

• ruleLocation: Ersetzen Sie es durch den S3-URI, in dem Ihre Regel gespeichert ist. Das
in S3 gespeicherte Objekt muss eine der folgenden Dateierweiterungen haben: .guard.zip,
und.tar.gz.

• logBucket: (Optional) Geben Sie den Namen eines S3-Buckets für Guard JSON-Berichte an.

• TargetFilters: Geben Sie die Arten von Aktionen an, die den Hook aufrufen.

3. Verwenden Sie den folgenden set-type-configurationBefehl zusammen mit der von Ihnen
erstellten JSON-Datei, um die Konfiguration anzuwenden. Ersetzen Sie die Platzhalter durch Ihre
spezifischen Werte.

aws cloudformation set-type-configuration \
 --configuration file://config.json \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Zugehörige Ressourcen

Wir stellen Vorlagenbeispiele zur Verfügung, anhand derer Sie verstehen können, wie ein Guard
Hook in einer CloudFormation Stack-Vorlage deklariert wird. Weitere Informationen finden Sie unter
AWS::CloudFormation::GuardHook im AWS CloudFormation -Benutzerhandbuch.

Sehen Sie sich die Logs für die Guard Hooks in Ihrem Konto an

Wenn Sie einen Guard Hook aktivieren, können Sie einen Amazon S3 S3-Bucket als Ziel für den
Hook-Ausgabebericht angeben. Nach der Aktivierung speichert der Hook automatisch die Ergebnisse
Ihrer Guard-Regelvalidierungen im angegebenen Bucket. Sie können diese Ergebnisse dann in der
Amazon S3 S3-Konsole anzeigen.

Logs für Guard Hooks anzeigen 38

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-guardhook.html

CloudFormation Hooks Benutzerhandbuch

Guard Hook-Protokolle in der Amazon S3 S3-Konsole anzeigen

Um die Guard Hook-Ausgabeprotokolldatei anzuzeigen

1. Melden Sie sich bei der https://console.aws.amazon.com/s3/an.

2. Wählen Sie in der Navigationsleiste am oberen Rand des Bildschirms Ihren AWS-Region.

3. Wählen Sie Buckets.

4. Wählen Sie den Bucket aus, den Sie für Ihren Guard-Ausgabebericht ausgewählt haben.

5. Wählen Sie die gewünschte Protokolldatei für den Validierungsausgabebericht aus.

6. Wählen Sie aus, ob Sie die Datei herunterladen oder zur Ansicht öffnen möchten.

Löschen Sie Guard Hooks in Ihrem Konto

Wenn Sie einen aktivierten Guard Hook nicht mehr benötigen, gehen Sie wie folgt vor, um ihn in
Ihrem Konto zu löschen.

Wie Sie einen Hook vorübergehend deaktivieren, anstatt ihn zu löschen, finden Sie
unterCloudFormation Hooks deaktivieren und aktivieren.

Themen

• Löschen Sie einen Guard Hook in Ihrem Konto (Konsole)

• Lösche einen Guard Hook in deinem Konto (AWS CLI)

Löschen Sie einen Guard Hook in Ihrem Konto (Konsole)

Um einen Guard Hook in deinem Konto zu löschen

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com/cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm aus, AWS-Region wo sich der
Hook befindet.

3. Wählen Sie im Navigationsbereich Hooks aus.

4. Suchen Sie auf der Seite Hooks nach dem Guard Hook, den Sie löschen möchten.

5. Markiere das Kästchen neben deinem Hook und wähle Löschen.

Löschen Sie Guard Hooks 39

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/cloudformation/

CloudFormation Hooks Benutzerhandbuch

6. Wenn Sie zur Bestätigung aufgefordert werden, geben Sie den Hook-Namen ein, um das
Löschen des angegebenen Hooks zu bestätigen, und wählen Sie dann Löschen.

Lösche einen Guard Hook in deinem Konto (AWS CLI)

Note

Bevor Sie den Hook löschen können, müssen Sie ihn zuerst deaktivieren. Weitere
Informationen finden Sie unter Deaktiviere und aktiviere einen Hook in deinem Konto (AWS
CLI).

Verwenden Sie den folgenden deactivate-typeBefehl, um einen Hook zu deaktivieren, wodurch er aus
Ihrem Konto entfernt wird. Ersetze Platzhalter durch deine spezifischen Werte.

aws cloudformation deactivate-type \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Lambda-Hook

Um einen AWS Lambda Hook in Ihrem Konto verwenden zu können, müssen Sie zuerst den Hook
für das Konto und die Region aktivieren, in der Sie ihn verwenden möchten. Wenn Sie einen Hook
aktivieren, kann er für Stack-Operationen in dem Konto und der Region verwendet werden, in der er
aktiviert ist.

Wenn Sie einen Lambda-Hook aktivieren, CloudFormation erstellt er einen Eintrag in der
Registrierung Ihres Kontos für den aktivierten Hook als privaten Hook. Auf diese Weise können Sie
alle Konfigurationseigenschaften festlegen, die der Hook enthält. Die Konfigurationseigenschaften
definieren, wie der Hook für eine bestimmte AWS-Konto Region konfiguriert wird.

Themen

• AWS CLI Befehle für die Arbeit mit Lambda Hooks

• Erstellen Sie Lambda-Funktionen, um Ressourcen für Lambda Hooks auszuwerten

• Bereiten Sie sich darauf vor, einen Lambda-Hook zu erstellen

• Aktiviere einen Lambda Hook in deinem Konto

Lambda-Hook 40

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Hooks Benutzerhandbuch

• Logs für die Lambda Hooks in Ihrem Konto anzeigen

• Löschen Sie Lambda Hooks in Ihrem Konto

AWS CLI Befehle für die Arbeit mit Lambda Hooks

Zu den AWS CLI Befehlen für die Arbeit mit Lambda Hooks gehören:

• activate-typeum den Aktivierungsprozess für einen Lambda Hook zu starten.

• set-type-configurationum die Konfigurationsdaten für einen Hook in Ihrem Konto anzugeben.

• list-typesum die Hooks in Ihrem Konto aufzulisten.

• describe-typeum detaillierte Informationen über einen bestimmten Hook oder eine bestimmte Hook-
Version zurückzugeben, einschließlich aktueller Konfigurationsdaten.

• deactivate-typeum einen zuvor aktivierten Hook aus Ihrem Konto zu entfernen.

Erstellen Sie Lambda-Funktionen, um Ressourcen für Lambda Hooks
auszuwerten

CloudFormation Mit Lambda Hooks können Sie Ihren eigenen benutzerdefinierten Code auswerten
CloudFormation und anhand dessen AWS -Cloud-Control- API arbeiten. Ihr Hook kann den Fortgang
eines Vorgangs blockieren oder eine Warnung an den Aufrufer ausgeben, sodass der Vorgang
fortgesetzt werden kann. Wenn Sie einen Lambda-Hook erstellen, können Sie ihn so konfigurieren,
dass er die folgenden CloudFormation Operationen abfängt und auswertet:

• Ressourcenvorgänge

• Operationen stapeln

• Set-Operationen ändern

Themen

• Entwicklung eines Lambda-Hooks

• Evaluierung von Ressourcenoperationen mit Lambda Hooks

• Auswertung von Stack-Operationen mit Lambda Hooks

• Evaluierung von Change-Set-Vorgängen mit Lambda Hooks

AWS CLI Befehle für die Arbeit mit Lambda Hooks 41

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Hooks Benutzerhandbuch

Entwicklung eines Lambda-Hooks

Wenn Hooks Ihr Lambda aufrufen, wartet es bis zu 30 Sekunden, bis das Lambda die Eingabe
ausgewertet hat. Das Lambda gibt eine JSON-Antwort zurück, die angibt, ob der Hook erfolgreich war
oder fehlgeschlagen ist.

Themen

• Eingabe anfordern

• Eingabe der Antwort

• Beispiele

Eingabe anfordern

Die an Ihre Lambda-Funktion übergebene Eingabe hängt von der Hook-Zieloperation ab (Beispiele:
Stack, Ressource oder Änderungssatz).

Eingabe der Antwort

Um Hooks mitzuteilen, ob Ihre Anfrage erfolgreich war oder fehlgeschlagen ist, muss Ihre Lambda-
Funktion eine JSON-Antwort zurückgeben.

Das Folgende ist ein Beispiel für die Form der Antwort, die Hooks erwartet:

{
 "HookStatus": "SUCCESS" or "FAILED" or "IN_PROGRESS",
 "errorCode": "NonCompliant" or "InternalFailure"
 "Nachricht": String,
 "clientRequestToken": String,
 "Callback-Kontext": None,
 "callbackDelaySeconds": Integer,
 "Anmerkungen": [
 {
 "annotationName": String,
 "status": "PASSED" or "FAILED" or "SKIPPED",
 "statusMessage": String,
 "remediationMessage": String,
 "remediationLink": String,
 "severityLevel": "INFORMATIONAL" or "LOW" or "MEDIUM" or "HIGH" or "CRITICAL"
 }
]

Lambda-Funktionen für Hooks erstellen 42

CloudFormation Hooks Benutzerhandbuch

}

HookStatus

Der Status des Hooks. Dies ist ein Pflichtfeld.

Gültige Werte: (SUCCESS| FAILED |IN_PROGRESS)

Note

Ein Hook kann IN_PROGRESS dreimal zurückkehren. Wenn kein Ergebnis zurückgegeben
wird, schlägt der Hook fehl. Für einen Lambda-Hook bedeutet dies, dass Ihre Lambda-
Funktion bis zu dreimal aufgerufen werden kann.

errorCode

Zeigt an, ob der Vorgang ausgewertet und für ungültig befunden wurde oder ob Fehler innerhalb
des Hooks aufgetreten sind, wodurch die Auswertung verhindert wurde. Dieses Feld ist
erforderlich, wenn der Hook fehlschlägt.

Gültige Werte: (NonCompliant|InternalFailure)

Nachricht

Die Nachricht an den Aufrufer, die angibt, warum der Hook erfolgreich war oder fehlgeschlagen
ist.

Note

Bei der Auswertung von CloudFormation Vorgängen wird dieses Feld auf 4096 Zeichen
gekürzt.
Bei der Auswertung von Cloud Control API-Vorgängen wird dieses Feld auf 1024 Zeichen
gekürzt.

clientRequestToken

Das Anforderungstoken, das als Eingabe für die Hook-Anfrage bereitgestellt wurde. Dies ist ein
Pflichtfeld.

Lambda-Funktionen für Hooks erstellen 43

CloudFormation Hooks Benutzerhandbuch

Callback-Kontext

Wenn Sie angeben, dass das hookStatus ist, übergeben IN_PROGRESS Sie einen zusätzlichen
Kontext, der als Eingabe bereitgestellt wird, wenn die Lambda-Funktion erneut aufgerufen wird.

callbackDelaySeconds

Wie lange Hooks warten sollten, um diesen Hook erneut aufzurufen.

Anmerkungen

Eine Reihe von Annotationsobjekten, die weitere Details und Anleitungen zur Problembehebung
enthalten.

Name der Anmerkung

Ein Bezeichner für die Anmerkung.

Status

Der Status des Hook-Aufrufs. Dies ist hilfreich, wenn Anmerkungen eine Logik mit Pass/Fail-
Bewertung darstellen, die einer Guard-Regel ähnelt.

Gültige Werte: (| |) PASSED FAILED SKIPPED

Statusmeldung

Erklärung für den spezifischen Status.

Meldung zur Behebung

Vorschlag zum Korrigieren eines FAILED Status. Wenn bei einer Ressource beispielsweise
die Verschlüsselung fehlt, können Sie angeben, wie die Verschlüsselung zur
Ressourcenkonfiguration hinzugefügt werden soll.

Link zur Behebung

Eine HTTP-URL für zusätzliche Anleitungen zur Problembehebung.

severityLevel

Definiert das relative Risiko, das mit Verstößen dieser Art verbunden ist. Wenn Sie Ihren
Hook-Aufrufergebnissen Schweregrade zuweisen, können Sie sich auf das AWS Security
Hub CSPM Schweregradschema als Beispiel für die Strukturierung aussagekräftiger
Schweregradkategorien beziehen.

Lambda-Funktionen für Hooks erstellen 44

https://docs.aws.amazon.com/securityhub/latest/userguide/asff-required-attributes.html#Severity

CloudFormation Hooks Benutzerhandbuch

Gültige Werte: (INFORMATIONAL| | LOW | MEDIUM |HIGH) CRITICAL

Beispiele

Im Folgenden finden Sie ein Beispiel für eine erfolgreiche Antwort:

{
 "hookStatus": "SUCCESS",
 "message": "compliant",
 "clientRequestToken": "123avjdjk31"
}

Das Folgende ist ein Beispiel für eine fehlgeschlagene Antwort:

{
 "hookStatus": "FAILED",
 "errorCode": "NonCompliant",
 "message": "S3 Bucket Versioning must be enabled.",
 "clientRequestToken": "123avjdjk31"
 }

Evaluierung von Ressourcenoperationen mit Lambda Hooks

Jedes Mal, wenn Sie eine Ressource erstellen, aktualisieren oder löschen, wird dies als
Ressourcenvorgang betrachtet. Wenn Sie beispielsweise die Aktualisierung eines CloudFormation
Stacks ausführen, der eine neue Ressource erstellt, haben Sie einen Ressourcenvorgang
abgeschlossen. Wenn Sie eine Ressource mithilfe der Cloud Control API erstellen, aktualisieren oder
löschen, wird dies ebenfalls als Ressourcenvorgang betrachtet. Sie können Ihren CloudFormation
Lambda-Hook für Ziele RESOURCE und CLOUD_CONTROL Operationen in der TargetOperations
Hook-Konfiguration konfigurieren.

Note

Der delete Hook-Handler wird nur aufgerufen, wenn eine Ressource mithilfe eines
Operationstriggers von der Cloud Control API delete-resource oder gelöscht wird.
CloudFormation delete-stack

Themen

Lambda-Funktionen für Hooks erstellen 45

CloudFormation Hooks Benutzerhandbuch

• Eingabesyntax für Lambda-Hook-Ressourcen

• Beispiel für eine Eingabe zur Änderung der Lambda-Hook-Ressource

• Beispiel für eine Lambda-Funktion für Ressourcenoperationen

Eingabesyntax für Lambda-Hook-Ressourcen

Wenn Ihr Lambda für einen Ressourcenvorgang aufgerufen wird, erhalten Sie eine JSON-Eingabe,
die die Ressourceneigenschaften, die vorgeschlagenen Eigenschaften und den Kontext rund um den
Hook-Aufruf enthält.

Im Folgenden finden Sie ein Beispiel für die Form der JSON-Eingabe:

{
 "awsAccountId": String,
 "stackId": String,
 "changeSetId": String,
 "hookTypeName": String,
 "hookTypeVersion": String,
 "hookModel": {
 "LambdaFunction": String
 },
 "actionInvocationPoint": "CREATE_PRE_PROVISION" or "UPDATE_PRE_PROVISION" or
 "DELETE_PRE_PROVISION"
 "requestData": {
 "targetName": String,
 "targetType": String,
 "targetLogicalId": String,
 "targetModel": {
 "resourceProperties": {...},
 "previousResourceProperties": {...}
 }
 },
 "requestContext": {
 "Aufruf": 1,
 "CallbackContext": null
 }
}

awsAccountId

Die ID der Ressource AWS-Konto , die ausgewertet wird, enthält.

Lambda-Funktionen für Hooks erstellen 46

CloudFormation Hooks Benutzerhandbuch

stackId

Die Stack-ID des CloudFormation Stacks, zu dem diese Operation gehört. Dieses Feld ist leer,
wenn der Aufrufer die Cloud Control API ist.

changeSetId

Die ID des Änderungssatzes, der den Hook-Aufruf initiiert hat. Dieser Wert ist leer, wenn die
Ressourcenänderung durch die Cloud Control API oder die create-stack delete-stack
Operationen, oder initiiert wurde. update-stack

hookTypeName

Der Name des Hooks, der gerade läuft.

hookTypeVersion

Die Version des Hooks, der ausgeführt wird.

hookModel

LambdaFunction

Der aktuelle Lambda-ARN, der vom Hook aufgerufen wird.

actionInvocationPoint

Der genaue Punkt in der Bereitstellungslogik, an dem der Hook ausgeführt wird.

Gültige Werte: (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

requestData

targetName

Der Zieltyp, der ausgewertet wird, zum BeispielAWS::S3::Bucket.

targetType

Der Zieltyp, der ausgewertet wird, zum BeispielAWS::S3::Bucket. Für Ressourcen, die mit
der Cloud Control API bereitgestellt wurden, lautet dieser Wert. RESOURCE

targetLogicalId

Die logische ID der Ressource, die ausgewertet wird. Wenn der Ursprung des Hook-Aufrufs
ist CloudFormation, ist dies die logische Ressourcen-ID, die in Ihrer CloudFormation Vorlage
definiert ist. Wenn der Ursprung dieses Hook-Aufrufs die Cloud Control API ist, handelt es sich
um einen konstruierten Wert.

Lambda-Funktionen für Hooks erstellen 47

CloudFormation Hooks Benutzerhandbuch

targetModel

resourceProperties

Die vorgeschlagenen Eigenschaften der Ressource, die geändert werden soll. Wenn die
Ressource gelöscht wird, ist dieser Wert leer.

previousResourceProperties

Die Eigenschaften, die derzeit der Ressource zugeordnet sind, die geändert wird. Wenn die
Ressource erstellt wird, ist dieser Wert leer.

requestContext

Aufruf

Der aktuelle Versuch, den Hook auszuführen.

CallbackContext

Wenn der Hook auf gesetzt war und zurückgegeben callbackContext
wurdeIN_PROGRESS, ist er nach dem erneuten Aufruf wieder da.

Beispiel für eine Eingabe zur Änderung der Lambda-Hook-Ressource

Die folgende Beispieleingabe zeigt einen Lambda-Hook, der die Definition der zu aktualisierenden
AWS::DynamoDB::Table Ressource empfängt, wobei ReadCapacityUnits der Wert von 3 auf
10 geändert ProvisionedThroughput wird. Dies sind die Daten, die Lambda zur Auswertung zur
Verfügung stehen.

{
 "awsAccountId": "123456789012",
 "stackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000",
 "hookTypeName": "my::lambda::resourcehookfunction",
 "hookTypeVersion": "00000008",
 "hookModel": {
 "LambdaFunction": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 },
 "actionInvocationPoint": "UPDATE_PRE_PROVISION",
 "requestData": {
 "targetName": "AWS::DynamoDB::Table",
 "targetType": "AWS::DynamoDB::Table",
 "targetLogicalId": "DDBTable",
 "targetModel": {

Lambda-Funktionen für Hooks erstellen 48

CloudFormation Hooks Benutzerhandbuch

 "resourceProperties": {
 "AttributeDefinitions": [
 {
 "AttributeType": "S",
 "AttributeName": "Album"
 },
 {
 "AttributeType": "S",
 "AttributeName": "Artist"
 }
],
 "ProvisionedThroughput": {
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 10
 },
 "KeySchema": [
 {
 "KeyType": "HASH",
 "AttributeName": "Album"
 },
 {
 "KeyType": "RANGE",
 "AttributeName": "Artist"
 }
]
 },
 "previousResourceProperties": {
 "AttributeDefinitions": [
 {
 "AttributeType": "S",
 "AttributeName": "Album"
 },
 {
 "AttributeType": "S",
 "AttributeName": "Artist"
 }
],
 "ProvisionedThroughput": {
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 5
 },
 "KeySchema": [
 {
 "KeyType": "HASH",

Lambda-Funktionen für Hooks erstellen 49

CloudFormation Hooks Benutzerhandbuch

 "AttributeName": "Album"
 },
 {
 "KeyType": "RANGE",
 "AttributeName": "Artist"
 }
]
 }
 }
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

Alle für den Ressourcentyp verfügbaren Eigenschaften finden Sie unter AWS::DynamoDB::Table.

Beispiel für eine Lambda-Funktion für Ressourcenoperationen

Die folgende einfache Funktion schlägt bei jeder Ressourcenaktualisierung für DynamoDB fehl, bei
der versucht wird, den Wert ReadCapacity von auf einen Wert über 10 ProvisionedThroughput
zu setzen. Wenn der Hook erfolgreich ist, wird dem Aufrufer die Meldung "ReadCapacity ist korrekt
konfiguriert“ angezeigt. Wenn die Anforderung nicht validiert werden kann, schlägt der Hook mit dem
Status "ReadCapacity nicht mehr als 10“ fehl.

Node.js

export const handler = async (event, context) => {
 var targetModel = event?.requestData?.targetModel;
 var targetName = event?.requestData?.targetName;
 var response = {
 "hookStatus": "SUCCESS",
 "message": "ReadCapacity is correctly configured.",
 "clientRequestToken": event.clientRequestToken
 };

 if (targetName == "AWS::DynamoDB::Table") {
 var readCapacity =
 targetModel?.resourceProperties?.ProvisionedThroughput?.ReadCapacityUnits;
 if (readCapacity > 10) {
 response.hookStatus = "FAILED";
 response.errorCode = "NonCompliant";

Lambda-Funktionen für Hooks erstellen 50

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-dynamodb-table.html

CloudFormation Hooks Benutzerhandbuch

 response.message = "ReadCapacity must be cannot be more than 10.";
 }
 }
 return response;
};

Python

import json

def lambda_handler(event, context):
 # Using dict.get() for safe access to nested dictionary values
 request_data = event.get('requestData', {})
 target_model = request_data.get('targetModel', {})
 target_name = request_data.get('targetName', '')

 response = {
 "hookStatus": "SUCCESS",
 "message": "ReadCapacity is correctly configured.",
 "clientRequestToken": event.get('clientRequestToken')
 }

 if target_name == "AWS::DynamoDB::Table":
 # Safely navigate nested dictionary
 resource_properties = target_model.get('resourceProperties', {})
 provisioned_throughput = resource_properties.get('ProvisionedThroughput',
 {})
 read_capacity = provisioned_throughput.get('ReadCapacityUnits')

 if read_capacity and read_capacity > 10:
 response['hookStatus'] = "FAILED"
 response['errorCode'] = "NonCompliant"
 response['message'] = "ReadCapacity must be cannot be more than 10."

 return response

Auswertung von Stack-Operationen mit Lambda Hooks

Jedes Mal, wenn Sie einen Stack mit einer neuen Vorlage erstellen, aktualisieren oder löschen,
können Sie Ihren CloudFormation Lambda-Hook so konfigurieren, dass er zunächst die neue Vorlage
auswertet und möglicherweise die Fortsetzung des Stack-Vorgangs blockiert. Sie können Ihren

Lambda-Funktionen für Hooks erstellen 51

CloudFormation Hooks Benutzerhandbuch

CloudFormation Lambda-Hook in der TargetOperations Hook-Konfiguration so konfigurieren,
dass er auf STACK Operationen abzielt.

Themen

• Lambda Hook-Stack-Eingabesyntax

• Beispiel für eine Lambda-Hook-Stack-Änderungseingabe

• Beispiel für eine Lambda-Funktion für Stack-Operationen

Lambda Hook-Stack-Eingabesyntax

Wenn Ihr Lambda für einen Stack-Vorgang aufgerufen wird, erhalten Sie eine JSON-Anfrage, die den
Hook-Aufrufkontext und den Anforderungskontext enthält. actionInvocationPoint Aufgrund der
Größe der CloudFormation Vorlagen und der begrenzten Eingabegröße, die von Lambda-Funktionen
akzeptiert wird, werden die tatsächlichen Vorlagen in einem Amazon S3 S3-Objekt gespeichert. Die
Eingabe von requestData beinhaltet eine von Amazon S3 signierte URL zu einem anderen Objekt,
das die aktuelle und vorherige Vorlagenversion enthält.

Das Folgende ist ein Beispiel für die Form der JSON-Eingabe:

{
 "clientRequesttoken": String,
 "awsAccountId": String,
 "stackID": String,
 "changeSetId": String,
 "hookTypeName": String,
 "hookTypeVersion": String,
 "hookModel": {
 "LambdaFunction":String
 },
 "actionInvocationPoint": "CREATE_PRE_PROVISION" or "UPDATE_PRE_PROVISION" or
 "DELETE_PRE_PROVISION"
 "requestData": {
 "targetName": "STACK",
 "targetType": "STACK",
 "targetLogicalId": String,
 "payload": String (S3 Presigned URL)
 },
 "requestContext": {
 "invocation": Integer,
 "callbackContext": String

Lambda-Funktionen für Hooks erstellen 52

CloudFormation Hooks Benutzerhandbuch

 }
}

clientRequesttoken

Das Anforderungstoken, das als Eingabe für die Hook-Anfrage bereitgestellt wurde. Dies ist ein
Pflichtfeld.

awsAccountId

Die ID des Stacks AWS-Konto , der den ausgewerteten Stapel enthält.

stackID

Die Stack-ID des CloudFormation Stacks.

changeSetId

Die ID des Änderungssatzes, der den Hook-Aufruf initiiert hat. Dieser Wert ist leer, wenn die
Stack-Änderung durch die Cloud Control API oder die delete-stack Operationen create-
stackupdate-stack, oder initiiert wurde.

hookTypeName

Der Name des Hooks, der gerade läuft.

hookTypeVersion

Die Version des Hooks, der ausgeführt wird.

hookModel

LambdaFunction

Der aktuelle Lambda-ARN, der vom Hook aufgerufen wird.

actionInvocationPoint

Der genaue Punkt in der Bereitstellungslogik, an dem der Hook ausgeführt wird.

Gültige Werte: (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

requestData

targetName

Dieser Wert wird seinSTACK.

Lambda-Funktionen für Hooks erstellen 53

CloudFormation Hooks Benutzerhandbuch

targetType

Dieser Wert wird seinSTACK.

targetLogicalId

Der Name des Stacks.

payload

Die vorsignierte Amazon S3 S3-URL, die ein JSON-Objekt mit den aktuellen und vorherigen
Vorlagendefinitionen enthält.

requestContext

Wenn der Hook erneut aufgerufen wird, wird dieses Objekt gesetzt.

invocation

Der aktuelle Versuch, den Hook auszuführen.

callbackContext

Wenn der Hook auf gesetzt war IN_PROGRESS und zurückgegeben callbackContext
wurde, wird er beim erneuten Aufruf hier angezeigt.

Die payload Eigenschaft in den Anforderungsdaten ist eine URL, die Ihr Code abrufen muss. Sobald
es die URL erhalten hat, erhalten Sie ein Objekt mit dem folgenden Schema:

{
 "template": String,
 "previousTemplate": String
}

template

Die vollständige CloudFormation Vorlage, die für create-stack oder bereitgestellt
wurdeupdate-stack. Je nachdem, wofür bereitgestellt wurde, kann es sich um CloudFormation
eine JSON- oder YAML-Zeichenfolge handeln.

Bei delete-stack Operationen ist dieser Wert leer.

previousTemplate

Die vorherige CloudFormation Vorlage. Es kann sich um eine JSON- oder YAML-Zeichenfolge
handeln, je nachdem, was bereitgestellt wurde. CloudFormation

Lambda-Funktionen für Hooks erstellen 54

CloudFormation Hooks Benutzerhandbuch

Bei delete-stack Operationen ist dieser Wert leer.

Beispiel für eine Lambda-Hook-Stack-Änderungseingabe

Im Folgenden finden Sie ein Beispiel für eine Stack-Change-Eingabe. Der Hook evaluiert eine
Änderung, die das ObjectLockEnabled auf true aktualisiert und eine Amazon SQS SQS-
Warteschlange hinzufügt:

{
 "clientRequestToken": "f8da6d11-b23f-48f4-814c-0fb6a667f50e",
 "awsAccountId": "123456789012",
 "stackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000",
 "changeSetId": null,
 "hookTypeName": "my::lambda::stackhook",
 "hookTypeVersion": "00000008",
 "hookModel": {
 "LambdaFunction": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 },
 "actionInvocationPoint": "UPDATE_PRE_PROVISION",
 "requestData": {
 "targetName": "STACK",
 "targetType": "STACK",
 "targetLogicalId": "my-cloudformation-stack",
 "payload": "https://s3......"
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

Dies ist ein Beispiel payload für: requestData

{
 "template": "{\"Resources\":{\"S3Bucket\":{\"Type\":\"AWS::S3::Bucket\",
\"Properties\":{\"ObjectLockEnabled\":true}},\"SQSQueue\":{\"Type\":\"AWS::SQS::Queue
\",\"Properties\":{\"QueueName\":\"NewQueue\"}}}}",
 "previousTemplate": "{\"Resources\":{\"S3Bucket\":{\"Type\":\"AWS::S3::Bucket\",
\"Properties\":{\"ObjectLockEnabled\":false}}}}"
}

Lambda-Funktionen für Hooks erstellen 55

CloudFormation Hooks Benutzerhandbuch

Beispiel für eine Lambda-Funktion für Stack-Operationen

Das folgende Beispiel ist eine einfache Funktion, die die Nutzdaten der Stack-Operation herunterlädt,
die JSON-Vorlage analysiert und zurückgibt. SUCCESS

Node.js

export const handler = async (event, context) => {
 var targetType = event?.requestData?.targetType;
 var payloadUrl = event?.requestData?.payload;

 var response = {
 "hookStatus": "SUCCESS",
 "message": "Stack update is compliant",
 "clientRequestToken": event.clientRequestToken
 };
 try {
 const templateHookPayloadRequest = await fetch(payloadUrl);
 const templateHookPayload = await templateHookPayloadRequest.json()
 if (templateHookPayload.template) {
 // Do something with the template templateHookPayload.template
 // JSON or YAML
 }
 if (templateHookPayload.previousTemplate) {
 // Do something with the template templateHookPayload.previousTemplate
 // JSON or YAML
 }
 } catch (error) {
 console.log(error);
 response.hookStatus = "FAILED";
 response.message = "Failed to evaluate stack operation.";
 response.errorCode = "InternalFailure";
 }
 return response;
};

Python

Um Python verwenden zu können, müssen Sie die requests Bibliothek importieren. Dazu
müssen Sie die Bibliothek bei der Erstellung Ihrer Lambda-Funktion in Ihr Bereitstellungspaket
aufnehmen. Weitere Informationen finden Sie unter Erstellen eines ZIP-Bereitstellungspakets mit
Abhängigkeiten im AWS Lambda Entwicklerhandbuch.

Lambda-Funktionen für Hooks erstellen 56

https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-dependencies
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-dependencies

CloudFormation Hooks Benutzerhandbuch

import json
import requests

def lamnbda_handler(event, context):
 # Safely access nested dictionary values
 request_data = event.get('requestData', {})
 target_type = request_data.get('targetType')
 payload_url = request_data.get('payload')

 response = {
 "hookStatus": "SUCCESS",
 "message": "Stack update is compliant",
 "clientRequestToken": event.get('clientRequestToken')
 }

 try:
 # Fetch the payload
 template_hook_payload_request = requests.get(payload_url)
 template_hook_payload_request.raise_for_status() # Raise an exception for
 bad responses
 template_hook_payload = template_hook_payload_request.json()

 if 'template' in template_hook_payload:
 # Do something with the template template_hook_payload['template']
 # JSON or YAML
 pass

 if 'previousTemplate' in template_hook_payload:
 # Do something with the template
 template_hook_payload['previousTemplate']
 # JSON or YAML
 pass

 except Exception as error:
 print(error)
 response['hookStatus'] = "FAILED"
 response['message'] = "Failed to evaluate stack operation."
 response['errorCode'] = "InternalFailure"

 return response

Lambda-Funktionen für Hooks erstellen 57

CloudFormation Hooks Benutzerhandbuch

Evaluierung von Change-Set-Vorgängen mit Lambda Hooks

Jedes Mal, wenn Sie einen Änderungssatz erstellen, können Sie Ihren CloudFormation Lambda
Hook so konfigurieren, dass er zuerst den neuen Änderungssatz auswertet und möglicherweise seine
Ausführung blockiert. Sie können Ihren CloudFormation Lambda-Hook in der TargetOperations
Hook-Konfiguration so konfigurieren, dass er auf CHANGE_SET Operationen abzielt.

Themen

• Lambda Hook Change Set-Eingabesyntax

• Beispiel für eine Lambda-Hook-Change-Set-Änderungseingabe

• Beispiel für eine Lambda-Funktion für Change-Set-Operationen

Lambda Hook Change Set-Eingabesyntax

Die Eingabe für Änderungssatz-Operationen ähnelt Stack-Operationen, aber die Nutzlast von umfasst
requestData auch eine Liste von Ressourcenänderungen, die durch den Änderungssatz eingeführt
wurden.

Im Folgenden finden Sie ein Beispiel für die Form der JSON-Eingabe:

{
 "clientRequesttoken": String,
 "awsAccountId": String,
 "stackID": String,
 "changeSetId": String,
 "hookTypeName": String,
 "hookTypeVersion": String,
 "hookModel": {
 "LambdaFunction":String
 },
 "requestData": {
 "targetName": "CHANGE_SET",
 "targetType": "CHANGE_SET",
 "targetLogicalId": String,
 "payload": String (S3 Presigned URL)
 },
 "requestContext": {
 "invocation": Integer,
 "callbackContext": String
 }

Lambda-Funktionen für Hooks erstellen 58

CloudFormation Hooks Benutzerhandbuch

}

clientRequesttoken

Das Anforderungstoken, das als Eingabe für die Hook-Anfrage bereitgestellt wurde. Dies ist ein
Pflichtfeld.

awsAccountId

Die ID des Stacks AWS-Konto , der den ausgewerteten Stapel enthält.

stackID

Die Stack-ID des CloudFormation Stacks.

changeSetId

Die ID des Änderungssatzes, der den Hook-Aufruf initiiert hat.

hookTypeName

Der Name des Hooks, der gerade läuft.

hookTypeVersion

Die Version des Hooks, der ausgeführt wird.

hookModel

LambdaFunction

Der aktuelle Lambda-ARN, der vom Hook aufgerufen wird.

requestData

targetName

Dieser Wert wird sein. CHANGE_SET

targetType

Dieser Wert wird seinCHANGE_SET.

targetLogicalId

Der Änderungssatz ARN..

payload

Die vorsignierte Amazon S3 S3-URL, die ein JSON-Objekt mit der aktuellen Vorlage sowie
eine Liste der Änderungen enthält, die durch diesen Änderungssatz eingeführt wurden.

Lambda-Funktionen für Hooks erstellen 59

CloudFormation Hooks Benutzerhandbuch

requestContext

Wenn der Hook erneut aufgerufen wird, wird dieses Objekt gesetzt.

invocation

Der aktuelle Versuch, den Hook auszuführen.

callbackContext

Wenn der Hook auf gesetzt war IN_PROGRESS und zurückgegeben callbackContext
wurde, wird er beim erneuten Aufruf hier angezeigt.

Die payload Eigenschaft in den Anforderungsdaten ist eine URL, die Ihr Code abrufen muss. Sobald
es die URL erhalten hat, erhalten Sie ein Objekt mit dem folgenden Schema:

{
 "template": String,
 "changedResources": [
 {
 "action": String,
 "beforeContext": JSON String,
 "afterContext": JSON String,
 "lineNumber": Integer,
 "logicalResourceId": String,
 "resourceType": String
 }
]
}

template

Die vollständige CloudFormation Vorlage, die für create-stack oder bereitgestellt
wurdeupdate-stack. Je nachdem, wofür bereitgestellt wurde, kann es sich um CloudFormation
eine JSON- oder YAML-Zeichenfolge handeln.

changedResources

Eine Liste der geänderten Ressourcen.

action

Die Art der Änderung, die auf die Ressource angewendet wurde.

Lambda-Funktionen für Hooks erstellen 60

CloudFormation Hooks Benutzerhandbuch

Gültige Werte: (CREATE| UPDATE |DELETE)

beforeContext

Eine JSON-Zeichenfolge der Ressourceneigenschaften vor der Änderung. Dieser Wert ist Null,
wenn die Ressource erstellt wird. Alle booleschen Werte und Zahlenwerte in dieser JSON-
Zeichenfolge sind STRINGS.

afterContext

Eine JSON-Zeichenfolge der Ressourceneigenschaften, falls dieser Änderungssatz ausgeführt
wird. Dieser Wert ist Null, wenn die Ressource gelöscht wird. Alle booleschen Werte und
Zahlenwerte in dieser JSON-Zeichenfolge sind STRINGS.

lineNumber

Die Zeilennummer in der Vorlage, die diese Änderung verursacht hat. Wenn es sich bei der
Aktion um einen Wert handelt, ist DELETE dieser Wert Null.

logicalResourceId

Die logische Ressourcen-ID der Ressource, die geändert wird.

resourceType

Der Ressourcentyp, der geändert wird.

Beispiel für eine Lambda-Hook-Change-Set-Änderungseingabe

Im Folgenden finden Sie ein Beispiel für eine Änderungseingabe für einen Änderungssatz. Im
folgenden Beispiel sehen Sie die Änderungen, die durch den Änderungssatz eingeführt wurden. Die
erste Änderung ist das Löschen einer Warteschlange namensCoolQueue. Die zweite Änderung ist
das Hinzufügen einer neuen Warteschlange namensNewCoolQueue. Die letzte Änderung ist ein
Update fürDynamoDBTable.

{
 "clientRequestToken": "f8da6d11-b23f-48f4-814c-0fb6a667f50e",
 "awsAccountId": "123456789012",
 "stackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000",
 "changeSetId": "arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000",
 "hookTypeName": "my::lambda::changesethook",
 "hookTypeVersion": "00000008",

Lambda-Funktionen für Hooks erstellen 61

CloudFormation Hooks Benutzerhandbuch

 "hookModel": {
 "LambdaFunction": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 },
 "actionInvocationPoint": "CREATE_PRE_PROVISION",
 "requestData": {
 "targetName": "CHANGE_SET",
 "targetType": "CHANGE_SET",
 "targetLogicalId": "arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000",
 "payload": "https://s3......"
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

Dies ist ein Beispiel payload fürrequestData.payload:

{
 template: 'Resources:\n' +
 ' DynamoDBTable:\n' +
 ' Type: AWS::DynamoDB::Table\n' +
 ' Properties:\n' +
 ' AttributeDefinitions:\n' +
 ' - AttributeName: "PK"\n' +
 ' AttributeType: "S"\n' +
 ' BillingMode: "PAY_PER_REQUEST"\n' +
 ' KeySchema:\n' +
 ' - AttributeName: "PK"\n' +
 ' KeyType: "HASH"\n' +
 ' PointInTimeRecoverySpecification:\n' +
 ' PointInTimeRecoveryEnabled: false\n' +
 ' NewSQSQueue:\n' +
 ' Type: AWS::SQS::Queue\n' +
 ' Properties:\n' +
 ' QueueName: "NewCoolQueue"',
 changedResources: [
 {
 logicalResourceId: 'SQSQueue',
 resourceType: 'AWS::SQS::Queue',
 action: 'DELETE',
 lineNumber: null,

Lambda-Funktionen für Hooks erstellen 62

CloudFormation Hooks Benutzerhandbuch

 beforeContext: '{"Properties":{"QueueName":"CoolQueue"}}',
 afterContext: null
 },
 {
 logicalResourceId: 'NewSQSQueue',
 resourceType: 'AWS::SQS::Queue',
 action: 'CREATE',
 lineNumber: 14,
 beforeContext: null,
 afterContext: '{"Properties":{"QueueName":"NewCoolQueue"}}'
 },
 {
 logicalResourceId: 'DynamoDBTable',
 resourceType: 'AWS::DynamoDB::Table',
 action: 'UPDATE',
 lineNumber: 2,
 beforeContext: '{"Properties":
{"BillingMode":"PAY_PER_REQUEST","AttributeDefinitions":
[{"AttributeType":"S","AttributeName":"PK"}],"KeySchema":
[{"KeyType":"HASH","AttributeName":"PK"}]}}',
 afterContext: '{"Properties":
{"BillingMode":"PAY_PER_REQUEST","PointInTimeRecoverySpecification":
{"PointInTimeRecoveryEnabled":"false"},"AttributeDefinitions":
[{"AttributeType":"S","AttributeName":"PK"}],"KeySchema":
[{"KeyType":"HASH","AttributeName":"PK"}]}}'
 }
]
}

Beispiel für eine Lambda-Funktion für Change-Set-Operationen

Das folgende Beispiel ist eine einfache Funktion, die die Nutzdaten der Change-Set-Operation
herunterlädt, jede Änderung durchläuft und dann die Vorher-Nachher-Eigenschaften ausgibt, bevor
sie eine zurückgibt. SUCCESS

Node.js

export const handler = async (event, context) => {
 var payloadUrl = event?.requestData?.payload;
 var response = {
 "hookStatus": "SUCCESS",
 "message": "Change set changes are compliant",
 "clientRequestToken": event.clientRequestToken

Lambda-Funktionen für Hooks erstellen 63

CloudFormation Hooks Benutzerhandbuch

 };
 try {
 const changeSetHookPayloadRequest = await fetch(payloadUrl);
 const changeSetHookPayload = await changeSetHookPayloadRequest.json();
 const changes = changeSetHookPayload.changedResources || [];
 for(const change of changes) {
 var beforeContext = {};
 var afterContext = {};
 if(change.beforeContext) {
 beforeContext = JSON.parse(change.beforeContext);
 }
 if(change.afterContext) {
 afterContext = JSON.parse(change.afterContext);
 }
 console.log(beforeContext)
 console.log(afterContext)
 // Evaluate Change here
 }
 } catch (error) {
 console.log(error);
 response.hookStatus = "FAILED";
 response.message = "Failed to evaluate change set operation.";
 response.errorCode = "InternalFailure";
 }
 return response;
};

Python

Um Python verwenden zu können, müssen Sie die requests Bibliothek importieren. Dazu
müssen Sie die Bibliothek bei der Erstellung Ihrer Lambda-Funktion in Ihr Bereitstellungspaket
aufnehmen. Weitere Informationen finden Sie unter Erstellen eines ZIP-Bereitstellungspakets mit
Abhängigkeiten im AWS Lambda Entwicklerhandbuch.

import json
import requests

def lambda_handler(event, context):
 payload_url = event.get('requestData', {}).get('payload')
 response = {
 "hookStatus": "SUCCESS",
 "message": "Change set changes are compliant",
 "clientRequestToken": event.get('clientRequestToken')

Lambda-Funktionen für Hooks erstellen 64

https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-dependencies
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-dependencies

CloudFormation Hooks Benutzerhandbuch

 }

 try:
 change_set_hook_payload_request = requests.get(payload_url)
 change_set_hook_payload_request.raise_for_status() # Raises an HTTPError
 for bad responses
 change_set_hook_payload = change_set_hook_payload_request.json()

 changes = change_set_hook_payload.get('changedResources', [])

 for change in changes:
 before_context = {}
 after_context = {}

 if change.get('beforeContext'):
 before_context = json.loads(change['beforeContext'])

 if change.get('afterContext'):
 after_context = json.loads(change['afterContext'])

 print(before_context)
 print(after_context)
 # Evaluate Change here

 except requests.RequestException as error:
 print(error)
 response['hookStatus'] = "FAILED"
 response['message'] = "Failed to evaluate change set operation."
 response['errorCode'] = "InternalFailure"
 except json.JSONDecodeError as error:
 print(error)
 response['hookStatus'] = "FAILED"
 response['message'] = "Failed to parse JSON payload."
 response['errorCode'] = "InternalFailure"

 return response

Bereiten Sie sich darauf vor, einen Lambda-Hook zu erstellen

Bevor Sie einen Lambda-Hook erstellen, müssen Sie die folgenden Voraussetzungen erfüllen:

Bereiten Sie sich darauf vor, einen Lambda-Hook zu erstellen 65

CloudFormation Hooks Benutzerhandbuch

• Sie müssen bereits eine Lambda-Funktion erstellt haben. Weitere Informationen hierzu finden Sie
unter Lambda-Funktionen für Hooks erstellen.

• Der Benutzer oder die Rolle, die den Hook erstellt, muss über ausreichende Berechtigungen
verfügen, um Hooks zu aktivieren. Weitere Informationen finden Sie unter Erteilen Sie IAM-
Berechtigungen für Hooks CloudFormation.

• Um das AWS CLI oder ein SDK zum Erstellen eines Lambda-Hooks zu verwenden, müssen Sie
manuell eine Ausführungsrolle mit IAM-Berechtigungen und einer Vertrauensrichtlinie erstellen, um
einen Lambda-Hook aufrufen CloudFormation zu können.

Erstellen Sie eine Ausführungsrolle für einen Lambda-Hook

Ein Hook verwendet eine Ausführungsrolle für die Berechtigungen, die er benötigt, um diesen Hook in
Ihrem aufzurufen. AWS-Konto

Diese Rolle kann automatisch erstellt werden, wenn Sie aus dem einen Lambda-Hook erstellen.
AWS-Managementkonsole Andernfalls müssen Sie diese Rolle selbst erstellen.

Im folgenden Abschnitt erfahren Sie, wie Sie Berechtigungen für die Erstellung Ihres Lambda-Hooks
einrichten.

Erforderliche Berechtigungen

Folgen Sie der Anleitung unter Erstellen einer Rolle mit benutzerdefinierten Vertrauensrichtlinien im
IAM-Benutzerhandbuch zum Erstellen einer Rolle mit einer benutzerdefinierten Vertrauensrichtlinie.

Führen Sie dann die folgenden Schritte aus, um Ihre Berechtigungen einzurichten:

1. Fügen Sie der IAM-Rolle, die Sie zum Erstellen des Lambda-Hooks verwenden möchten, die
folgende Richtlinie für Mindestberechtigungen hinzu.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",

Bereiten Sie sich darauf vor, einen Lambda-Hook zu erstellen 66

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

CloudFormation Hooks Benutzerhandbuch

 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 }
]
}

2. Erteilen Sie Ihrem Hook die Erlaubnis, die Rolle zu übernehmen, indem Sie der Rolle
eine Vertrauensrichtlinie hinzufügen. Im Folgenden finden Sie ein Beispiel für eine
Vertrauensrichtlinie, die Sie verwenden können.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "hooks.cloudformation.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Aktiviere einen Lambda Hook in deinem Konto

Das folgende Thema zeigt Ihnen, wie Sie einen Lambda Hook in Ihrem Konto aktivieren, sodass er in
dem Konto und der Region, in der er aktiviert wurde, verwendet werden kann.

Themen

• Aktiviere einen Lambda Hook (Konsole)

• Aktiviere einen Lambda-Hook ()AWS CLI

• Zugehörige Ressourcen

Aktiviere einen Lambda Hook 67

CloudFormation Hooks Benutzerhandbuch

Aktiviere einen Lambda Hook (Konsole)

Um einen Lambda Hook zur Verwendung in Ihrem Konto zu aktivieren

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com/cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm die AWS-Region Stelle aus, an der
Sie den Hook-In erstellen möchten.

3. Wenn Sie keine Lambda-Funktion für den Hook erstellt haben, gehen Sie wie folgt vor:

• Öffnen Sie die Seite Funktionen der Lambda-Konsole.

• Erstellen Sie die Lambda-Funktion, die Sie mit diesem Hook verwenden werden, und kehren
Sie dann zu dieser Prozedur zurück. Weitere Informationen finden Sie unter Erstellen Sie
Lambda-Funktionen, um Ressourcen für Lambda Hooks auszuwerten.

Wenn Sie Ihre Lambda-Funktion bereits erstellt haben, fahren Sie mit dem nächsten Schritt fort.

4. Wählen Sie im Navigationsbereich auf der linken Seite Hooks aus.

5. Wählen Sie auf der Seite Hooks die Option Create a Hook und dann With Lambda aus.

6. Wählen Sie unter Hook-Name eine der folgenden Optionen aus:

• Geben Sie einen kurzen, aussagekräftigen Namen ein, der danach Private::Lambda::
hinzugefügt wird. Wenn Sie beispielsweise eingebenMyTestHook, wird der vollständige Hook-
Name zuPrivate::Lambda::MyTestHook.

• Geben Sie den vollständigen Hook-Namen (auch Alias genannt) in diesem Format an:
Provider::ServiceName::HookName

7. Geben Sie für die Lambda-Funktion die Lambda-Funktion an, die mit diesem Hook verwendet
werden soll. Sie können Folgendes verwenden:

• Der vollständige Amazon-Ressourcenname (ARN) ohne Suffix.

• Ein qualifizierter ARN mit einem Versions- oder Alias-Suffix.

8. Wählen Sie für Hook-Ziele aus, was ausgewertet werden soll:

• Stacks — Wertet Stack-Vorlagen aus, wenn Benutzer Stacks erstellen, aktualisieren oder
löschen.

• Ressourcen — Wertet einzelne Ressourcenänderungen aus, wenn Benutzer Stacks
aktualisieren.

Aktiviere einen Lambda Hook 68

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/lambda/home#/functions

CloudFormation Hooks Benutzerhandbuch

• Änderungssätze — Wertet geplante Aktualisierungen aus, wenn Benutzer Änderungssätze
erstellen.

• Cloud Control API — Evaluiert Erstellungs-, Aktualisierungs- oder Löschvorgänge, die von der
Cloud Control API initiiert wurden.

9. Wählen Sie unter Aktionen aus, welche Aktionen (Erstellen, Aktualisieren, Löschen) Ihren Hook
aufrufen sollen.

10. Wählen Sie für den Hook-Modus aus, wie der Hook reagiert, wenn die vom Hook aufgerufene
Lambda-Funktion eine FAILED Antwort zurückgibt:

• Warnen — Gibt Warnungen an Benutzer aus, ermöglicht aber die Fortsetzung der Aktionen.
Dies ist nützlich für unkritische Validierungen oder Informationsprüfungen.

• Fehlgeschlagen — verhindert, dass die Aktion fortgesetzt wird. Dies ist hilfreich für die
Durchsetzung strenger Compliance- oder Sicherheitsrichtlinien.

11. Wählen Sie für die Ausführungsrolle die IAM-Rolle aus, von der der Hook annimmt, um Ihre
Lambda-Funktion aufzurufen. Sie können entweder zulassen CloudFormation , dass automatisch
eine Ausführungsrolle für Sie erstellt wird, oder Sie können eine Rolle angeben, die Sie erstellt
haben.

12. Wählen Sie Weiter aus.

13. (Optional) Gehen Sie für Hook-Filter wie folgt vor:

a. Geben Sie unter Ressourcenfilter an, welche Ressourcentypen den Hook aufrufen können.
Dadurch wird sichergestellt, dass der Hook nur für relevante Ressourcen aufgerufen wird.

b. Wählen Sie unter Filterkriterien die Logik für die Anwendung von Stacknamen- und Stack-
Rollenfiltern aus:

• Alle Stack-Namen und Stack-Rollen — Der Hook wird nur aufgerufen, wenn alle
angegebenen Filter übereinstimmen.

• Beliebige Stack-Namen und Stack-Rollen — Der Hook wird aufgerufen, wenn mindestens
einer der angegebenen Filter übereinstimmt.

Note

Bei Cloud Control API-Vorgängen werden alle Filter für Stack-Namen und Stack-
Rollen ignoriert.

Aktiviere einen Lambda Hook 69

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

CloudFormation Hooks Benutzerhandbuch

c. Schließen Sie bei Stack-Namen bestimmte Stacks in Hook-Aufrufe ein oder aus.

• Geben Sie für Include die Stack-Namen an, die eingeschlossen werden sollen.
Verwenden Sie dies, wenn Sie über eine kleine Gruppe bestimmter Stacks verfügen, auf
die Sie abzielen möchten. Nur die in dieser Liste angegebenen Stapel rufen den Hook auf.

• Geben Sie für Exclude die Stack-Namen an, die ausgeschlossen werden sollen.
Verwenden Sie dies, wenn Sie den Hook für die meisten Stacks aufrufen, aber einige
bestimmte ausschließen möchten. Alle Stapel außer den hier aufgeführten rufen den Hook
auf.

d. Schließen Sie bei Stack-Rollen je nach den zugehörigen IAM-Rollen bestimmte Stacks in
Hook-Aufrufe ein oder aus.

• Geben Sie für Include eine oder mehrere IAM-Rollen an, die auf Stacks abzielen ARNs
sollen, die diesen Rollen zugeordnet sind. Nur Stack-Operationen, die von diesen Rollen
initiiert wurden, rufen den Hook auf.

• Geben Sie für Exclude eine oder mehrere IAM-Rollen ARNs für Stacks an, die Sie
ausschließen möchten. Der Hook wird für alle Stacks aufgerufen, mit Ausnahme der
Stacks, die von den angegebenen Rollen initiiert wurden.

14. Wählen Sie Weiter aus.

15. Überprüfen Sie auf der Seite Überprüfen und aktivieren Ihre Auswahl. Um Änderungen
vorzunehmen, wählen Sie Bearbeiten in dem entsprechenden Abschnitt.

16. Wenn Sie bereit sind, fortzufahren, wählen Sie Hook aktivieren.

Aktiviere einen Lambda-Hook ()AWS CLI

Bevor Sie fortfahren, vergewissern Sie sich, dass Sie die Lambda-Funktion und die Ausführungsrolle,
die Sie mit diesem Hook verwenden werden, erstellt haben. Weitere Informationen erhalten Sie unter
Erstellen Sie Lambda-Funktionen, um Ressourcen für Lambda Hooks auszuwerten und Erstellen Sie
eine Ausführungsrolle für einen Lambda-Hook.

Um einen Lambda Hook zur Verwendung in Ihrem Konto zu aktivieren ()AWS CLI

1. Um mit der Aktivierung eines Hooks zu beginnen, verwenden Sie den folgenden activate-
typeBefehl und ersetzen Sie die Platzhalter durch Ihre spezifischen Werte. Dieser Befehl
autorisiert den Hook, eine angegebene Ausführungsrolle von Ihnen zu verwenden. AWS-Konto

aws cloudformation activate-type --type HOOK \

Aktiviere einen Lambda Hook 70

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html

CloudFormation Hooks Benutzerhandbuch

 --type-name AWS::Hooks::LambdaHook \
 --publisher-id aws-hooks \
 --execution-role-arn arn:aws:iam::123456789012:role/my-execution-role \
 --type-name-alias Private::Lambda::MyTestHook \
 --region us-west-2

2. Um die Aktivierung des Hooks abzuschließen, müssen Sie ihn mithilfe einer JSON-
Konfigurationsdatei konfigurieren.

Verwenden Sie den cat Befehl, um eine JSON-Datei mit der folgenden Struktur zu erstellen.
Weitere Informationen finden Sie unter Syntaxreferenz für das Hook-Konfigurationsschema.

$ cat > config.json
{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "CLOUD_CONTROL"
],
 "FailureMode": "WARN",
 "Properties": {
 "LambdaFunction": "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction"
 },
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE",
 "DELETE"
]
 }
 }
 }
}

• HookInvocationStatus: Auf setzen, ENABLED um den Hook zu aktivieren.

• TargetOperations: Geben Sie die Operationen an, die der Hook auswerten soll.

• FailureMode: Festlegung entweder auf FAIL oder WARN.

• LambdaFunction: Geben Sie den ARN der Lambda-Funktion an.

• TargetFilters: Geben Sie die Arten von Aktionen an, die den Hook aufrufen.

Aktiviere einen Lambda Hook 71

CloudFormation Hooks Benutzerhandbuch

3. Verwenden Sie den folgenden set-type-configurationBefehl zusammen mit der von Ihnen
erstellten JSON-Datei, um die Konfiguration anzuwenden. Ersetzen Sie die Platzhalter durch Ihre
spezifischen Werte.

aws cloudformation set-type-configuration \
 --configuration file://config.json \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Zugehörige Ressourcen

Wir stellen Vorlagenbeispiele zur Verfügung, anhand derer Sie verstehen können, wie ein Lambda-
Hook in einer CloudFormation Stack-Vorlage deklariert wird. Weitere Informationen finden Sie unter
AWS::CloudFormation::LambdaHook im AWS CloudFormation -Benutzerhandbuch.

Logs für die Lambda Hooks in Ihrem Konto anzeigen

Wenn Sie einen Lambda-Hook verwenden, finden Sie die Protokolldatei Ihres
Validierungsausgabeberichts in der Lambda-Konsole.

Lambda Hook-Logs in der Lambda-Konsole anzeigen

So zeigen Sie die Lambda Hook-Ausgabelogdatei an

1. Melden Sie sich bei der Lambda-Konsole an.

2. Wählen Sie in der Navigationsleiste am oberen Rand des Bildschirms Ihren AWS-Region.

3. Wählen Sie Funktionen.

4. Wählen Sie die gewünschte Lambda-Funktion aus.

5. Wählen Sie die Registerkarte Test.

6. Wählen Sie CloudWatch Logs Live Trail

7. Wählen Sie das Drop-down-Menü und wählen Sie die Protokollgruppen aus, die Sie anzeigen
möchten.

8. Wählen Sie Starten. Das Protokoll wird im Fenster CloudWatch Logs Live Trail angezeigt.
Wählen Sie je nach Wunsch „In Spalten anzeigen“ oder „Im Klartext anzeigen“.

Logs für Lambda Hooks anzeigen 72

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-lambdahook.html

CloudFormation Hooks Benutzerhandbuch

• Sie können den Ergebnissen weitere Filter hinzufügen, indem Sie sie im Feld Filtermuster
hinzufügen hinzufügen. In diesem Feld können Sie Ergebnisse so filtern, dass sie nur
Ereignisse enthalten, die dem angegebenen Muster entsprechen.

Weitere Informationen zum Anzeigen von Protokollen für Lambda-Funktionen finden Sie unter
CloudWatch Protokolle für Lambda-Funktionen anzeigen.

Löschen Sie Lambda Hooks in Ihrem Konto

Wenn Sie einen aktivierten Lambda Hook nicht mehr benötigen, verwenden Sie die folgenden
Verfahren, um ihn in Ihrem Konto zu löschen.

Wie Sie einen Hook vorübergehend deaktivieren, anstatt ihn zu löschen, finden Sie
unterCloudFormation Hooks deaktivieren und aktivieren.

Themen

• Löschen Sie einen Lambda Hook in Ihrem Konto (Konsole)

• Lösche einen Lambda Hook in deinem Konto ()AWS CLI

Löschen Sie einen Lambda Hook in Ihrem Konto (Konsole)

Um einen Lambda Hook in Ihrem Konto zu löschen

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com/cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm aus, AWS-Region wo sich der
Hook befindet.

3. Wählen Sie im Navigationsbereich Hooks aus.

4. Suchen Sie auf der Seite Hooks den Lambda-Hook, den Sie löschen möchten.

5. Aktivieren Sie das Kontrollkästchen neben Ihrem Hook und wählen Sie Löschen.

6. Wenn Sie zur Bestätigung aufgefordert werden, geben Sie den Hook-Namen ein, um das
Löschen des angegebenen Hooks zu bestätigen, und wählen Sie dann Löschen.

Lambda Hooks löschen 73

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs-view.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs-view.html
https://console.aws.amazon.com/cloudformation/

CloudFormation Hooks Benutzerhandbuch

Lösche einen Lambda Hook in deinem Konto ()AWS CLI

Note

Bevor Sie den Hook löschen können, müssen Sie ihn zuerst deaktivieren. Weitere
Informationen finden Sie unter Deaktiviere und aktiviere einen Hook in deinem Konto (AWS
CLI).

Verwenden Sie den folgenden deactivate-typeBefehl, um einen Hook zu deaktivieren, wodurch er aus
Ihrem Konto entfernt wird. Ersetze Platzhalter durch deine spezifischen Werte.

aws cloudformation deactivate-type \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Entwicklung benutzerdefinierter Hooks mit der CloudFormation CLI
Dieser Abschnitt richtet sich an Kunden, die benutzerdefinierte Hooks entwickeln und diese in der
CloudFormation Registrierung registrieren möchten. Es bietet einen Überblick über die Struktur
von CloudFormation Hooks und Anleitungen zum Entwickeln, Registrieren, Testen, Verwalten und
Veröffentlichen eigener Hooks mit Python oder Java.

Bei der Entwicklung eines benutzerdefinierten Hooks gibt es drei Hauptschritte:

1. Initiieren

Um benutzerdefinierte Hooks zu entwickeln, müssen Sie die CloudFormation CLI konfigurieren
und verwenden. Um das Projekt eines Hooks und die erforderlichen Dateien zu initiieren,
verwenden Sie den CloudFormation initCLI-Befehl und geben Sie an, dass Sie einen Hook
erstellen möchten. Weitere Informationen finden Sie unter Initiieren eines benutzerdefinierten
CloudFormation Hooks-Projekts.

2. Model

Um Ihr Hook-Schema zu modellieren, zu erstellen und zu validieren, definieren Sie den Hook,
seine Eigenschaften und Attribute.

Die CloudFormation CLI erstellt leere Handler-Funktionen, die einem bestimmten Hook-
Aufrufpunkt entsprechen. Fügen Sie diesen Handlern Ihre eigene Logik hinzu, um zu steuern,

Benutzerdefinierte Hooks 74

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-init.html

CloudFormation Hooks Benutzerhandbuch

was während Ihres Hook-Aufrufs in jeder Phase seines Ziellebenszyklus passiert. Weitere
Informationen finden Sie unter Modellieren von benutzerdefinierten CloudFormation Hooks.

3. Registrieren Sie sich

Um einen Hook zu registrieren, reichen Sie Ihren Hook ein, um ihn entweder als private oder als
öffentliche Erweiterung eines Drittanbieters registrieren zu lassen. Registrieren Sie Ihren Hook bei
der submit Operation. Weitere Informationen finden Sie unter Einen benutzerdefinierten Hook
registrieren mit CloudFormation.

Die folgenden Aufgaben sind mit der Registrierung Ihres Hooks verbunden:

a. Veröffentlichen — Hooks werden in der Registry veröffentlicht.

b. Konfigurieren — Hooks werden konfiguriert, wenn die Typkonfiguration gegen Stacks
aufgerufen wird.

Note

Hooks laufen nach 30 Sekunden ab und versuchen es bis zu dreimal erneut. Weitere
Informationen finden Sie unter Timeout- und Wiederholungslimits.

Themen

• Voraussetzungen für die Entwicklung benutzerdefinierter CloudFormation Hooks

• Initiieren eines benutzerdefinierten CloudFormation Hooks-Projekts

• Modellieren von benutzerdefinierten CloudFormation Hooks

• Einen benutzerdefinierten Hook registrieren mit CloudFormation

• Testen Sie einen benutzerdefinierten Hook in Ihrem AWS-Konto

• Einen benutzerdefinierten Hook aktualisieren

• Einen benutzerdefinierten Hook von der Registrierung abmelden CloudFormation

• Hooks für den öffentlichen Gebrauch veröffentlichen

• Schema-Syntaxreferenz für CloudFormation Hooks

Benutzerdefinierte Hooks 75

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-submit.html

CloudFormation Hooks Benutzerhandbuch

Voraussetzungen für die Entwicklung benutzerdefinierter CloudFormation
Hooks

Sie können einen benutzerdefinierten Hook mit Java oder Python entwickeln. Im Folgenden sind die
Voraussetzungen für die Entwicklung benutzerdefinierter Hooks aufgeführt:

Java-Voraussetzungen

• Apache Maven

• JDK 17

Note

Wenn Sie beabsichtigen, die CloudFormation Befehlszeilenschnittstelle (CLI) zu
verwenden, um ein Hooks-Projekt für Java zu initiieren, müssen Sie auch Python 3.8 oder
höher installieren. Das Java-Plugin für die CloudFormation CLI kann über pip (Pythons
Paketmanager) installiert werden, der mit Python nicht kompatibel ist.

Um Hook-Handler für Ihr Java-Hooks-Projekt zu implementieren, können Sie die Java-Hook-Handler-
Beispieldateien herunterladen.

Python-Voraussetzungen

• Python-Version 3.8 oder höher.

Um Hook-Handler für Ihr Python-Hooks-Projekt zu implementieren, können Sie die Python-Hook-
Handler-Beispieldateien herunterladen.

Berechtigungen für die Entwicklung von Hooks

Zusätzlich zu den Berechtigungen CloudFormation CreateUpdate, und Delete Stack benötigen
Sie Zugriff auf die folgenden AWS CloudFormation Operationen. Der Zugriff auf diese Operationen
wird über die CloudFormation Richtlinie Ihrer IAM-Rolle verwaltet.

• register-type

• list-types

• deregister-type

Voraussetzungen 76

https://maven.apache.org/install.html
https://www.oracle.com/java/technologies/downloads/#java17
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html
samples/java-handlers.zip
samples/java-handlers.zip
https://www.python.org/downloads/
samples/python-handlers.zip
samples/python-handlers.zip
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/register-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deregister-type.html

CloudFormation Hooks Benutzerhandbuch

• set-type-configuration

Weitere Informationen finden Sie unter Erteilen Sie IAM-Berechtigungen für Hooks CloudFormation.

Richten Sie eine Entwicklungsumgebung für Hooks ein

Um Hooks zu entwickeln, sollten Sie mit CloudFormation Vorlagen und entweder mit Python oder
Java vertraut sein.

Um die CloudFormation CLI und die zugehörigen Plugins zu installieren:

1. Installieren Sie die CloudFormation CLI mit pip dem Python-Paketmanager.

pip3 install cloudformation-cli

2. Installieren Sie entweder das Python- oder das Java-Plugin für die CloudFormation CLI.

Python

pip3 install cloudformation-cli-python-plugin

Java

pip3 install cloudformation-cli-java-plugin

Um die CloudFormation CLI und das Plugin zu aktualisieren, können Sie die Upgrade-Option
verwenden.

Python

pip3 install --upgrade cloudformation-cli cloudformation-cli-python-plugin

Java

pip3 install --upgrade cloudformation-cli cloudformation-cli-java-plugin

Voraussetzungen 77

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

CloudFormation Hooks Benutzerhandbuch

Initiieren eines benutzerdefinierten CloudFormation Hooks-Projekts

Der erste Schritt bei der Erstellung Ihres benutzerdefinierten Hooks-Projekts besteht darin,
das Projekt zu initiieren. Sie können den CloudFormation CLI init Befehl verwenden, um Ihr
benutzerdefiniertes Hooks-Projekt zu starten.

initMit dem Befehl wird ein Assistent gestartet, der Sie durch die Einrichtung des Projekts führt,
einschließlich einer Hooks-Schemadatei. Verwenden Sie diese Schemadatei als Ausgangspunkt
für die Definition der Form und Semantik Ihrer Hooks. Weitere Informationen finden Sie unter
Schemasyntax.

Um ein Hook-Projekt zu initiieren:

1. Erstellen Sie ein Verzeichnis für das Projekt.

mkdir ~/mycompany-testing-mytesthook

2. Navigieren Sie zum neuen Verzeichnis.

cd ~/mycompany-testing-mytesthook

3. Verwenden Sie den CloudFormation CLI init Befehl, um das Projekt zu starten.

cfn init

Der Befehl gibt die folgende Ausgabe zurück.

Initializing new project

4. initMit dem Befehl wird ein Assistent gestartet, der Sie durch die Einrichtung des Projekts führt.
Wenn Sie dazu aufgefordert werden, geben Sie h die Eingabetaste ein, um ein Hooks-Projekt
anzugeben.

Do you want to develop a new resource(r) a module(m) or a hook(h)?

h

5. Geben Sie einen Namen für Ihren Hook-Typ ein.

What's the name of your hook type?

Ein Hooks-Projekt initiieren 78

CloudFormation Hooks Benutzerhandbuch

(Organization::Service::Hook)

MyCompany::Testing::MyTestHook

6. Wenn nur ein Sprach-Plugin installiert ist, ist es standardmäßig ausgewählt. Wenn mehr als
ein Sprach-Plugin installiert ist, können Sie Ihre gewünschte Sprache wählen. Geben Sie eine
Zahlenauswahl für die Sprache Ihrer Wahl ein.

Select a language for code generation:
[1] java
[2] python38
[3] python39
(enter an integer):

7. Richten Sie die Paketierung auf der Grundlage der ausgewählten Entwicklungssprache ein.

Python

(Optional) Wählen Sie Docker für plattformunabhängige Paketierung. Docker ist zwar nicht
erforderlich, wird aber dringend empfohlen, um das Paketieren zu vereinfachen.

Use docker for platform-independent packaging (Y/n)?
This is highly recommended unless you are experienced with cross-platform Python
 packaging.

Java

Legen Sie den Namen des Java-Pakets fest und wählen Sie ein Codegen-Modell aus. Sie
können den Standard-Paketnamen verwenden oder einen neuen erstellen.

Enter a package name (empty for default 'com.mycompany.testing.mytesthook'):

Choose codegen model - 1 (default) or 2 (guided-aws):

Ergebnisse: Sie haben das Projekt erfolgreich initiiert und die für die Entwicklung eines Hooks
erforderlichen Dateien generiert. Das Folgende ist ein Beispiel für die Verzeichnisse und Dateien, aus
denen ein Hooks-Projekt für Python 3.8 besteht.

mycompany-testing-mytesthook.json

Ein Hooks-Projekt initiieren 79

CloudFormation Hooks Benutzerhandbuch

rpdk.log
README.md
requirements.txt
hook-role.yaml
template.yml
docs
 README.md
src
 __init__.py
 handlers.py
 models.py
 target_models
 aws_s3_bucket.py

Note

Die Dateien im src Verzeichnis werden auf der Grundlage Ihrer Sprachauswahl erstellt. Die
generierten Dateien enthalten einige nützliche Kommentare und Beispiele. Einige Dateien,
wie z. B.models.py, werden in einem späteren Schritt automatisch aktualisiert, wenn Sie
den generate Befehl zum Hinzufügen von Laufzeitcode für Ihre Handler ausführen.

Modellieren von benutzerdefinierten CloudFormation Hooks

Die Modellierung von benutzerdefinierten CloudFormation Hooks beinhaltet die Erstellung
eines Schemas, das den Hook, seine Eigenschaften und seine Attribute definiert. Wenn Sie Ihr
benutzerdefiniertes Hook-Projekt mithilfe des cfn init Befehls erstellen, wird ein Beispiel-Hook-
Schema als Textdatei im JSON-Format erstellt. hook-name.json

Zielaufrufpunkte und Zielaktionen geben den genauen Punkt an, an dem der Hook aufgerufen wird.
Hook-Handler hosten eine ausführbare benutzerdefinierte Logik für diese Punkte. Beispielsweise
verwendet eine Zielaktion der CREATE Operation einen preCreate Handler. Ihr im Handler
geschriebener Code wird aufgerufen, wenn Hook-Ziele und -Dienste eine passende Aktion
ausführen. Hook-Ziele sind das Ziel, an dem Hooks aufgerufen werden. Sie können Ziele wie
CloudFormation öffentliche Ressourcen, private Ressourcen oder benutzerdefinierte Ressourcen
angeben. Hooks unterstützen eine unbegrenzte Anzahl von Hook-Zielen.

Das Schema enthält die für den Hook erforderlichen Berechtigungen. Um den Hook zu erstellen,
müssen Sie die Berechtigungen für jeden Hook-Handler angeben. CloudFormation ermutigt
Autoren, Richtlinien zu verfassen, die den standardmäßigen Sicherheitsempfehlungen folgen, d.

Hooks modellieren 80

CloudFormation Hooks Benutzerhandbuch

h. die Gewährung geringster Rechte oder nur die zur Ausführung einer Aufgabe erforderlichen
Berechtigungen. Ermitteln Sie, was Benutzer (und Rollen) tun müssen, und erstellen Sie dann
Richtlinien, die es ihnen ermöglichen, nur diese Aufgaben für Hook-Operationen auszuführen.
CloudFormation verwendet diese Berechtigungen, um die von Hook-Benutzern bereitgestellten
Berechtigungen einzugrenzen. Diese Berechtigungen werden an den Hook weitergegeben. Hook-
Handler verwenden diese Berechtigungen, um auf AWS Ressourcen zuzugreifen.

Sie können die folgende Schemadatei als Ausgangspunkt verwenden, um Ihren Hook zu definieren.
Verwenden Sie das Hook-Schema, um anzugeben, welche Handler Sie implementieren möchten.
Wenn Sie einen bestimmten Handler nicht implementieren möchten, entfernen Sie ihn aus dem
Abschnitt „Handler“ des Hook-Schemas. Weitere Informationen zum Schema finden Sie unter.
Schemasyntax

{
 "typeName":"MyCompany::Testing::MyTestHook",
 "description":"Verifies S3 bucket and SQS queues properties before create and
 update",
 "sourceUrl":"https://mycorp.com/my-repo.git",
 "documentationUrl":"https://mycorp.com/documentation",
 "typeConfiguration":{
 "properties":{
 "minBuckets":{
 "description":"Minimum number of compliant buckets",
 "type":"string"
 },
 "minQueues":{
 "description":"Minimum number of compliant queues",
 "type":"string"
 },
 "encryptionAlgorithm":{
 "description":"Encryption algorithm for SSE",
 "default":"AES256",
 "type":"string"
 }
 },
 "required":[

],
 "additionalProperties":false
 },
 "handlers":{
 "preCreate":{

Hooks modellieren 81

CloudFormation Hooks Benutzerhandbuch

 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preUpdate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preDelete":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[
 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetEncryptionConfiguration",
 "sqs:ListQueues",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl"
]
 }
 },
 "additionalProperties":false
}

Themen

• Modellieren von benutzerdefinierten CloudFormation Hooks mit Java

• Modellieren von benutzerdefinierten CloudFormation Hooks mit Python

Hooks modellieren 82

CloudFormation Hooks Benutzerhandbuch

Modellieren von benutzerdefinierten CloudFormation Hooks mit Java

Die Modellierung von benutzerdefinierten CloudFormation Hooks beinhaltet die Erstellung eines
Schemas, das den Hook, seine Eigenschaften und seine Attribute definiert. Dieses Tutorial führt Sie
durch die Modellierung benutzerdefinierter Hooks mit Java.

Schritt 1: Fügen Sie Projektabhängigkeiten hinzu

Java-basierte Hooks-Projekte verlassen sich auf die pom.xml Datei von Maven als Abhängigkeit.
Erweitern Sie den folgenden Abschnitt und kopieren Sie den Quellcode in die pom.xml Datei im
Stammverzeichnis des Projekts.

Hook-Projektabhängigkeiten (pom.xml)

<?xml version="1.0" encoding="UTF-8"?>
<project
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.mycompany.testing.mytesthook</groupId>
 <artifactId>mycompany-testing-mytesthook-handler</artifactId>
 <name>mycompany-testing-mytesthook-handler</name>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <aws.java.sdk.version>2.16.1</aws.java.sdk.version>
 <checkstyle.version>8.36.2</checkstyle.version>
 <commons-io.version>2.8.0</commons-io.version>
 <jackson.version>2.11.3</jackson.version>
 <maven-checkstyle-plugin.version>3.1.1</maven-checkstyle-plugin.version>
 <mockito.version>3.6.0</mockito.version>
 <spotbugs.version>4.1.4</spotbugs.version>
 <spotless.version>2.5.0</spotless.version>
 <maven-javadoc-plugin.version>3.2.0</maven-javadoc-plugin.version>
 <maven-source-plugin.version>3.2.1</maven-source-plugin.version>

Hooks modellieren 83

CloudFormation Hooks Benutzerhandbuch

 <cfn.generate.args/>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>bom</artifactId>
 <version>2.16.1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <!-- https://mvnrepository.com/artifact/software.amazon.cloudformation/aws-
cloudformation-rpdk-java-plugin -->
 <dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>aws-cloudformation-rpdk-java-plugin</artifactId>
 <version>[2.0.0,3.0.0)</version>
 </dependency>

 <!-- AWS Java SDK v2 Dependencies -->
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sdk-core</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>cloudformation</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>s3</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>utils</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>apache-client</artifactId>

Hooks modellieren 84

CloudFormation Hooks Benutzerhandbuch

 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sqs</artifactId>
 </dependency>

 <!-- Test dependency for Java Providers -->
 <dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>cloudformation-cli-java-plugin-testing-support</artifactId>
 <version>1.0.0</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-s3 -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>
 <version>1.12.85</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/commons-io/commons-io -->
 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>${commons-io.version}</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.commons/commons-lang3 -->
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.9</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.commons/commons-collections4
 -->
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-collections4</artifactId>
 <version>4.4</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>29.0-jre</version>

Hooks modellieren 85

CloudFormation Hooks Benutzerhandbuch

 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-
cloudformation -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-cloudformation</artifactId>
 <version>1.11.555</version>
 <scope>test</scope>
 </dependency>

 <!-- https://mvnrepository.com/artifact/commons-codec/commons-codec -->
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.14</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/software.amazon.cloudformation/aws-
cloudformation-resource-schema -->
 <dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>aws-cloudformation-resource-schema</artifactId>
 <version>[2.0.5, 3.0.0)</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/
jackson-databind -->
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>${jackson.version}</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/
jackson-dataformat-cbor -->
 <dependency>
 <groupId>com.fasterxml.jackson.dataformat</groupId>
 <artifactId>jackson-dataformat-cbor</artifactId>
 <version>${jackson.version}</version>
 </dependency>

 <dependency>
 <groupId>com.fasterxml.jackson.datatype</groupId>
 <artifactId>jackson-datatype-jsr310</artifactId>
 <version>${jackson.version}</version>
 </dependency>

Hooks modellieren 86

CloudFormation Hooks Benutzerhandbuch

 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.module/jackson-
modules-java8 -->
 <dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-modules-java8</artifactId>
 <version>${jackson.version}</version>
 <type>pom</type>
 <scope>runtime</scope>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.json/json -->
 <dependency>
 <groupId>org.json</groupId>
 <artifactId>json</artifactId>
 <version>20180813</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-core -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-core</artifactId>
 <version>1.11.1034</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-core -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.0</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-log4j2 --
>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-log4j2</artifactId>
 <version>1.2.0</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/com.google.code.gson/gson -->
 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.8</version>
 </dependency>

Hooks modellieren 87

CloudFormation Hooks Benutzerhandbuch

 <!-- https://mvnrepository.com/artifact/org.projectlombok/lombok -->
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>1.18.4</version>
 <scope>provided</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-api -->
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.17.1</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core --
>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.17.1</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-slf4j-
impl -->
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-slf4j-impl</artifactId>
 <version>2.17.1</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.assertj/assertj-core -->
 <dependency>
 <groupId>org.assertj</groupId>
 <artifactId>assertj-core</artifactId>
 <version>3.12.2</version>
 <scope>test</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.junit.jupiter/junit-jupiter -->
 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter</artifactId>
 <version>5.5.0-M1</version>
 <scope>test</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.mockito/mockito-core -->
 <dependency>

Hooks modellieren 88

CloudFormation Hooks Benutzerhandbuch

 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>3.6.0</version>
 <scope>test</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.mockito/mockito-junit-jupiter -->
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-junit-jupiter</artifactId>
 <version>3.6.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.1</version>
 <configuration>
 <compilerArgs>
 <arg>-Xlint:all,-options,-processing</arg>
 </compilerArgs>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>**/Log4j2Plugins.dat</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>

Hooks modellieren 89

CloudFormation Hooks Benutzerhandbuch

 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.6.0</version>
 <executions>
 <execution>
 <id>generate</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>exec</goal>
 </goals>
 <configuration>
 <executable>cfn</executable>
 <commandlineArgs>generate ${cfn.generate.args}</
commandlineArgs>
 <workingDirectory>${project.basedir}</workingDirectory>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>3.0.0</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>${project.basedir}/target/generated-sources/
rpdk</source>
 </sources>
 </configuration>
 </execution>

Hooks modellieren 90

CloudFormation Hooks Benutzerhandbuch

 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.4</version>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>3.0.0-M3</version>
 </plugin>
 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.4</version>
 <configuration>
 <excludes>
 <exclude>**/BaseHookConfiguration*</exclude>
 <exclude>**/BaseHookHandler*</exclude>
 <exclude>**/HookHandlerWrapper*</exclude>
 <exclude>**/ResourceModel*</exclude>
 <exclude>**/TypeConfigurationModel*</exclude>
 <exclude>**/model/**/*</exclude>
 </excludes>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>report</id>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 <execution>
 <id>jacoco-check</id>
 <goals>
 <goal>check</goal>
 </goals>
 <configuration>

Hooks modellieren 91

CloudFormation Hooks Benutzerhandbuch

 <rules>
 <rule>
 <element>PACKAGE</element>
 <limits>
 <limit>
 <counter>BRANCH</counter>
 <value>COVEREDRATIO</value>
 <minimum>0.8</minimum>
 </limit>
 <limit>
 <counter>INSTRUCTION</counter>
 <value>COVEREDRATIO</value>
 <minimum>0.8</minimum>
 </limit>
 </limits>
 </rule>
 </rules>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 <resources>
 <resource>
 <directory>${project.basedir}</directory>
 <includes>
 <include>mycompany-testing-mytesthook.json</include>
 </includes>
 </resource>
 <resource>
 <directory>${project.basedir}/target/loaded-target-schemas</directory>
 <includes>
 <include>**/*.json</include>
 </includes>
 </resource>
 </resources>
 </build>
</project>

Schritt 2: Generieren Sie das Hook-Projektpaket

Generieren Sie Ihr Hook-Projektpaket. Das CloudFormation CLI erstellt leere Handler-Funktionen, die
bestimmten Hook-Aktionen im Ziellebenszyklus entsprechen, wie in der Hook-Spezifikation definiert.

Hooks modellieren 92

CloudFormation Hooks Benutzerhandbuch

cfn generate

Der Befehl gibt die folgende Ausgabe zurück.

Generated files for MyCompany::Testing::MyTestHook

Note

Stellen Sie sicher, dass Ihre Lambda-Laufzeiten up-to-date die Verwendung einer veralteten
Version vermeiden. Weitere Informationen finden Sie unter Lambda-Laufzeiten für
Ressourcentypen und Hooks aktualisieren.

Schritt 3: Hook-Handler hinzufügen

Fügen Sie Ihren eigenen Hook-Handler-Laufzeitcode zu den Handlern hinzu, die Sie implementieren
möchten. Sie können beispielsweise den folgenden Code für die Protokollierung hinzufügen.

logger.log("Internal testing Hook triggered for target: " +
 request.getHookContext().getTargetName());

Das CloudFormation CLI generiert ein Plain Old Java Objects (JavaPOJO). Im Folgenden finden Sie
Ausgabebeispiele, die aus generiert wurdenAWS::S3::Bucket.

Example AWSS3 .java BucketTargetModel

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import...

@Data
@NoArgsConstructor
@EqualsAndHashCode(callSuper = true)
@ToString(callSuper = true)
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class AwsS3BucketTargetModel extends ResourceHookTargetModel<AwsS3Bucket> {

 @JsonIgnore

Hooks modellieren 93

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/runtime-update.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/runtime-update.html

CloudFormation Hooks Benutzerhandbuch

 private static final TypeReference<AwsS3Bucket> TARGET_REFERENCE =
 new TypeReference<AwsS3Bucket>() {};

 @JsonIgnore
 private static final TypeReference<AwsS3BucketTargetModel> MODEL_REFERENCE =
 new TypeReference<AwsS3BucketTargetModel>() {};

 @JsonIgnore
 public static final String TARGET_TYPE_NAME = "AWS::S3::Bucket";

 @JsonIgnore
 public TypeReference<AwsS3Bucket> getHookTargetTypeReference() {
 return TARGET_REFERENCE;
 }

 @JsonIgnore
 public TypeReference<AwsS3BucketTargetModel> getTargetModelTypeReference() {
 return MODEL_REFERENCE;
 }
}

Example AwsS3Bucket.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@EqualsAndHashCode(callSuper = true)
@ToString(callSuper = true)
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class AwsS3Bucket extends ResourceHookTarget {
 @JsonIgnore
 public static final String TYPE_NAME = "AWS::S3::Bucket";

 @JsonIgnore
 public static final String IDENTIFIER_KEY_ID = "/properties/Id";

Hooks modellieren 94

CloudFormation Hooks Benutzerhandbuch

 @JsonProperty("InventoryConfigurations")
 private List<InventoryConfiguration> inventoryConfigurations;

 @JsonProperty("WebsiteConfiguration")
 private WebsiteConfiguration websiteConfiguration;

 @JsonProperty("DualStackDomainName")
 private String dualStackDomainName;

 @JsonProperty("AccessControl")
 private String accessControl;

 @JsonProperty("AnalyticsConfigurations")
 private List<AnalyticsConfiguration> analyticsConfigurations;

 @JsonProperty("AccelerateConfiguration")
 private AccelerateConfiguration accelerateConfiguration;

 @JsonProperty("PublicAccessBlockConfiguration")
 private PublicAccessBlockConfiguration publicAccessBlockConfiguration;

 @JsonProperty("BucketName")
 private String bucketName;

 @JsonProperty("RegionalDomainName")
 private String regionalDomainName;

 @JsonProperty("OwnershipControls")
 private OwnershipControls ownershipControls;

 @JsonProperty("ObjectLockConfiguration")
 private ObjectLockConfiguration objectLockConfiguration;

 @JsonProperty("ObjectLockEnabled")
 private Boolean objectLockEnabled;

 @JsonProperty("LoggingConfiguration")
 private LoggingConfiguration loggingConfiguration;

 @JsonProperty("ReplicationConfiguration")
 private ReplicationConfiguration replicationConfiguration;

 @JsonProperty("Tags")

Hooks modellieren 95

CloudFormation Hooks Benutzerhandbuch

 private List<Tag> tags;

 @JsonProperty("DomainName")
 private String domainName;

 @JsonProperty("BucketEncryption")
 private BucketEncryption bucketEncryption;

 @JsonProperty("WebsiteURL")
 private String websiteURL;

 @JsonProperty("NotificationConfiguration")
 private NotificationConfiguration notificationConfiguration;

 @JsonProperty("LifecycleConfiguration")
 private LifecycleConfiguration lifecycleConfiguration;

 @JsonProperty("VersioningConfiguration")
 private VersioningConfiguration versioningConfiguration;

 @JsonProperty("MetricsConfigurations")
 private List<MetricsConfiguration> metricsConfigurations;

 @JsonProperty("IntelligentTieringConfigurations")
 private List<IntelligentTieringConfiguration> intelligentTieringConfigurations;

 @JsonProperty("CorsConfiguration")
 private CorsConfiguration corsConfiguration;

 @JsonProperty("Id")
 private String id;

 @JsonProperty("Arn")
 private String arn;

 @JsonIgnore
 public JSONObject getPrimaryIdentifier() {
 final JSONObject identifier = new JSONObject();
 if (this.getId() != null) {
 identifier.put(IDENTIFIER_KEY_ID, this.getId());
 }

 // only return the identifier if it can be used, i.e. if all components are
 present

Hooks modellieren 96

CloudFormation Hooks Benutzerhandbuch

 return identifier.length() == 1 ? identifier : null;
 }

 @JsonIgnore
 public List<JSONObject> getAdditionalIdentifiers() {
 final List<JSONObject> identifiers = new ArrayList<JSONObject>();
 // only return the identifiers if any can be used
 return identifiers.isEmpty() ? null : identifiers;
 }
}

Example BucketEncryption.java

package software.amazon.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class BucketEncryption {
 @JsonProperty("ServerSideEncryptionConfiguration")
 private List<ServerSideEncryptionRule> serverSideEncryptionConfiguration;

}

Example ServerSideEncryptionRule.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)

Hooks modellieren 97

CloudFormation Hooks Benutzerhandbuch

public class ServerSideEncryptionRule {
 @JsonProperty("BucketKeyEnabled")
 private Boolean bucketKeyEnabled;

 @JsonProperty("ServerSideEncryptionByDefault")
 private ServerSideEncryptionByDefault serverSideEncryptionByDefault;

}

Example ServerSideEncryptionByDefault.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class ServerSideEncryptionByDefault {
 @JsonProperty("SSEAlgorithm")
 private String sSEAlgorithm;

 @JsonProperty("KMSMasterKeyID")
 private String kMSMasterKeyID;

}

Mit dem POJOs generierten können Sie nun die Handler schreiben, die die Funktionalität des Hooks
tatsächlich implementieren. Implementieren Sie in diesem Beispiel den preUpdate Aufrufpunkt
preCreate und für die Handler.

Schritt 4: Implementieren Sie Hook-Handler

Themen

• Codierung des API Client Builders

• Codierung des API Request Makers

• Implementierung des Hilfscodes

Hooks modellieren 98

CloudFormation Hooks Benutzerhandbuch

• Implementierung des Basis-Handlers

• Implementierung des preCreate Handlers

• Codierung des preCreate Handlers

• Der preCreate Test wird aktualisiert

• Implementierung des preUpdate Handlers

• Codierung des preUpdate Handlers

• Der preUpdate Test wird aktualisiert

• Implementierung des preDelete Handlers

• Codierung des preDelete Handlers

• Den preDelete Handler aktualisieren

Codierung des API Client Builders

1. Öffnen Sie in Ihrem IDE die ClientBuilder.java Datei, die sich im src/main/java/com/
mycompany/testing/mytesthook Ordner befindet.

2. Ersetzen Sie den gesamten Inhalt der ClientBuilder.java Datei durch den folgenden Code.

Example ClientBuilder.java

package com.awscommunity.kms.encryptionsettings;

import software.amazon.awssdk.services.ec2.Ec2Client;
import software.amazon.cloudformation.HookLambdaWrapper;

/**
 * Describes static HTTP clients (to consume less memory) for API calls that
 * this hook makes to a number of AWS services.
 */
public final class ClientBuilder {

 private ClientBuilder() {
 }

 /**
 * Create an HTTP client for Amazon EC2.
 *
 * @return Ec2Client An {@link Ec2Client} object.
 */

Hooks modellieren 99

CloudFormation Hooks Benutzerhandbuch

 public static Ec2Client getEc2Client() {
 return
 Ec2Client.builder().httpClient(HookLambdaWrapper.HTTP_CLIENT).build();
 }
}

Codierung des API Request Makers

1. Öffnen Sie in Ihrem IDE die Translator.java Datei, die sich im src/main/java/com/
mycompany/testing/mytesthook Ordner befindet.

2. Ersetzen Sie den gesamten Inhalt der Translator.java Datei durch den folgenden Code.

Example Translator.java

package com.mycompany.testing.mytesthook;

import software.amazon.awssdk.services.s3.model.GetBucketEncryptionRequest;
import software.amazon.awssdk.services.s3.model.ListBucketsRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

/**
 * This class is a centralized placeholder for
 * - api request construction
 * - object translation to/from aws sdk
 */

public class Translator {

 static ListBucketsRequest translateToListBucketsRequest(final HookTargetModel
 targetModel) {
 return ListBucketsRequest.builder().build();
 }

 static ListQueuesRequest translateToListQueuesRequest(final String nextToken) {
 return ListQueuesRequest.builder().nextToken(nextToken).build();
 }

 static ListBucketsRequest createListBucketsRequest() {
 return ListBucketsRequest.builder().build();
 }

Hooks modellieren 100

CloudFormation Hooks Benutzerhandbuch

 static ListQueuesRequest createListQueuesRequest() {
 return createListQueuesRequest(null);
 }

 static ListQueuesRequest createListQueuesRequest(final String nextToken) {
 return ListQueuesRequest.builder().nextToken(nextToken).build();
 }

 static GetBucketEncryptionRequest createGetBucketEncryptionRequest(final String
 bucket) {
 return GetBucketEncryptionRequest.builder().bucket(bucket).build();
 }
}

Implementierung des Hilfscodes

1. Öffnen Sie in Ihrem IDE die AbstractTestBase.java Datei, die sich im src/main/java/
com/mycompany/testing/mytesthook Ordner befindet.

2. Ersetzen Sie den gesamten Inhalt der AbstractTestBase.java Datei durch den folgenden
Code.

Example Translator.java

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableMap;
import org.mockito.Mockito;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.AwsSessionCredentials;
import software.amazon.awssdk.auth.credentials.StaticCredentialsProvider;
import software.amazon.awssdk.awscore.AwsRequest;
import software.amazon.awssdk.awscore.AwsRequestOverrideConfiguration;
import software.amazon.awssdk.awscore.AwsResponse;
import software.amazon.awssdk.core.SdkClient;
import software.amazon.awssdk.core.pagination.sync.SdkIterable;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.Credentials;
import software.amazon.cloudformation.proxy.LoggerProxy;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;

Hooks modellieren 101

CloudFormation Hooks Benutzerhandbuch

import software.amazon.cloudformation.proxy.ProxyClient;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import javax.annotation.Nonnull;
import java.time.Duration;
import java.util.concurrent.CompletableFuture;
import java.util.function.Function;
import java.util.function.Supplier;

import static org.assertj.core.api.Assertions.assertThat;

@lombok.Getter
public class AbstractTestBase {
 protected final AwsSessionCredentials awsSessionCredential;
 protected final AwsCredentialsProvider v2CredentialsProvider;
 protected final AwsRequestOverrideConfiguration configuration;
 protected final LoggerProxy loggerProxy;
 protected final Supplier<Long> awsLambdaRuntime = () ->
 Duration.ofMinutes(15).toMillis();
 protected final AmazonWebServicesClientProxy proxy;
 protected final Credentials mockCredentials =
 new Credentials("mockAccessId", "mockSecretKey", "mockSessionToken");

 @lombok.Setter
 private SdkClient serviceClient;

 protected AbstractTestBase() {
 loggerProxy = Mockito.mock(LoggerProxy.class);
 awsSessionCredential =
 AwsSessionCredentials.create(mockCredentials.getAccessKeyId(),
 mockCredentials.getSecretAccessKey(),
 mockCredentials.getSessionToken());
 v2CredentialsProvider =
 StaticCredentialsProvider.create(awsSessionCredential);
 configuration = AwsRequestOverrideConfiguration.builder()
 .credentialsProvider(v2CredentialsProvider)
 .build();
 proxy = new AmazonWebServicesClientProxy(
 loggerProxy,
 mockCredentials,
 awsLambdaRuntime
) {
 @Override

Hooks modellieren 102

CloudFormation Hooks Benutzerhandbuch

 public <ClientT> ProxyClient<ClientT> newProxy(@Nonnull
 Supplier<ClientT> client) {
 return new ProxyClient<ClientT>() {
 @Override
 public <RequestT extends AwsRequest, ResponseT extends
 AwsResponse>
 ResponseT injectCredentialsAndInvokeV2(RequestT request,
 Function<RequestT,
 ResponseT> requestFunction) {
 return proxy.injectCredentialsAndInvokeV2(request,
 requestFunction);
 }

 @Override
 public <RequestT extends AwsRequest, ResponseT extends
 AwsResponse> CompletableFuture<ResponseT>
 injectCredentialsAndInvokeV2Async(RequestT request,
 Function<RequestT, CompletableFuture<ResponseT>> requestFunction) {
 return proxy.injectCredentialsAndInvokeV2Async(request,
 requestFunction);
 }

 @Override
 public <RequestT extends AwsRequest, ResponseT extends
 AwsResponse, IterableT extends SdkIterable<ResponseT>>
 IterableT
 injectCredentialsAndInvokeIterableV2(RequestT request,
 Function<RequestT, IterableT> requestFunction) {
 return proxy.injectCredentialsAndInvokeIterableV2(request,
 requestFunction);
 }

 @SuppressWarnings("unchecked")
 @Override
 public ClientT client() {
 return (ClientT) serviceClient;
 }
 };
 }
 };
 }

Hooks modellieren 103

CloudFormation Hooks Benutzerhandbuch

 protected void assertResponse(final ProgressEvent<HookTargetModel,
 CallbackContext> response, final OperationStatus expectedStatus, final String
 expectedMsg) {
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(expectedStatus);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getMessage()).isNotNull();
 assertThat(response.getMessage()).isEqualTo(expectedMsg);
 }

 protected HookTargetModel createHookTargetModel(final Object
 resourceProperties) {
 return HookTargetModel.of(ImmutableMap.of("ResourceProperties",
 resourceProperties));
 }

 protected HookTargetModel createHookTargetModel(final Object
 resourceProperties, final Object previousResourceProperties) {
 return HookTargetModel.of(
 ImmutableMap.of(
 "ResourceProperties", resourceProperties,
 "PreviousResourceProperties", previousResourceProperties
)
);
 }
}

Implementierung des Basis-Handlers

1. Öffnen Sie in Ihrem IDE die BaseHookHandlerStd.java Datei, die sich im src/main/java/
com/mycompany/testing/mytesthook Ordner befindet.

2. Ersetzen Sie den gesamten Inhalt der BaseHookHandlerStd.java Datei durch den folgenden
Code.

Example Translator.java

package com.mycompany.testing.mytesthook;

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;

Hooks modellieren 104

CloudFormation Hooks Benutzerhandbuch

import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ProxyClient;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

public abstract class BaseHookHandlerStd extends BaseHookHandler<CallbackContext,
 TypeConfigurationModel> {
 public static final String HOOK_TYPE_NAME = "MyCompany::Testing::MyTestHook";

 protected Logger logger;

 @Override
 public ProgressEvent<HookTargetModel, CallbackContext> handleRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final Logger logger,
 final TypeConfigurationModel typeConfiguration
) {
 this.logger = logger;

 final String targetName = request.getHookContext().getTargetName();

 final ProgressEvent<HookTargetModel, CallbackContext> result;
 if (AwsS3Bucket.TYPE_NAME.equals(targetName)) {
 result = handleS3BucketRequest(
 proxy,
 request,
 callbackContext != null ? callbackContext : new
 CallbackContext(),
 proxy.newProxy(ClientBuilder::createS3Client),
 typeConfiguration
);
 } else if (AwsSqsQueue.TYPE_NAME.equals(targetName)) {
 result = handleSqsQueueRequest(
 proxy,
 request,

Hooks modellieren 105

CloudFormation Hooks Benutzerhandbuch

 callbackContext != null ? callbackContext : new
 CallbackContext(),
 proxy.newProxy(ClientBuilder::createSqsClient),
 typeConfiguration
);
 } else {
 throw new UnsupportedTargetException(targetName);
 }

 log(
 String.format(
 "Result for [%s] invocation for target [%s] returned status [%s]
 with message [%s]",
 request.getHookContext().getInvocationPoint(),
 targetName,
 result.getStatus(),
 result.getMessage()
)
);

 return result;
 }

 protected abstract ProgressEvent<HookTargetModel, CallbackContext>
 handleS3BucketRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<S3Client> proxyClient,
 final TypeConfigurationModel typeConfiguration
);

 protected abstract ProgressEvent<HookTargetModel, CallbackContext>
 handleSqsQueueRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<SqsClient> proxyClient,
 final TypeConfigurationModel typeConfiguration
);

 protected void log(final String message) {
 if (logger != null) {
 logger.log(message);

Hooks modellieren 106

CloudFormation Hooks Benutzerhandbuch

 } else {
 System.out.println(message);
 }
 }
}

Implementierung des preCreate Handlers

Der preCreate Handler überprüft die serverseitigen Verschlüsselungseinstellungen für eine
AWS::S3::Bucket Oder-RessourceAWS::SQS::Queue.

• Für eine AWS::S3::Bucket Ressource ist der Hook nur erfolgreich, wenn Folgendes zutrifft:

• Die Amazon S3 S3-Bucket-Verschlüsselung ist eingestellt.

• Der Amazon S3 S3-Bucket-Schlüssel ist für den Bucket aktiviert.

• Der für den Amazon S3 S3-Bucket festgelegte Verschlüsselungsalgorithmus ist der richtige
erforderliche Algorithmus.

• Die AWS Key Management Service Schlüssel-ID ist festgelegt.

• Für eine AWS::SQS::Queue Ressource wird der Hook nur erfolgreich sein, wenn Folgendes
zutrifft:

• Die AWS Key Management Service Schlüssel-ID ist gesetzt.

Codierung des preCreate Handlers

1. Öffnen Sie in Ihrem IDE die PreCreateHookHandler.java Datei, die sich im src/main/
java/software/mycompany/testing/mytesthook Ordner befindet.

2. Ersetzen Sie den gesamten Inhalt der PreCreateHookHandler.java Datei durch den
folgenden Code.

package com.mycompany.testing.mytesthook;

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3BucketTargetModel;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.BucketEncryption;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionByDefault;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;

Hooks modellieren 107

CloudFormation Hooks Benutzerhandbuch

import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueueTargetModel;
import org.apache.commons.collections.CollectionUtils;
import org.apache.commons.lang3.StringUtils;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import
 software.amazon.cloudformation.proxy.hook.targetmodel.ResourceHookTargetModel;

import java.util.List;

public class PreCreateHookHandler extends BaseHookHandler<TypeConfigurationModel,
 CallbackContext> {

 @Override
 public HookProgressEvent<CallbackContext> handleRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final Logger logger,
 final TypeConfigurationModel typeConfiguration) {

 final String targetName = request.getHookContext().getTargetName();
 if ("AWS::S3::Bucket".equals(targetName)) {
 final ResourceHookTargetModel<AwsS3Bucket> targetModel =
 request.getHookContext().getTargetModel(AwsS3BucketTargetModel.class);

 final AwsS3Bucket bucket = targetModel.getResourceProperties();
 final String encryptionAlgorithm =
 typeConfiguration.getEncryptionAlgorithm();

 return validateS3BucketEncryption(bucket, encryptionAlgorithm);

 } else if ("AWS::SQS::Queue".equals(targetName)) {
 final ResourceHookTargetModel<AwsSqsQueue> targetModel =
 request.getHookContext().getTargetModel(AwsSqsQueueTargetModel.class);

 final AwsSqsQueue queue = targetModel.getResourceProperties();
 return validateSQSQueueEncryption(queue);

Hooks modellieren 108

CloudFormation Hooks Benutzerhandbuch

 } else {
 throw new UnsupportedTargetException(targetName);
 }
 }

 private HookProgressEvent<CallbackContext> validateS3BucketEncryption(final
 AwsS3Bucket bucket, final String requiredEncryptionAlgorithm) {
 HookStatus resultStatus = null;
 String resultMessage = null;

 if (bucket != null) {
 final BucketEncryption bucketEncryption = bucket.getBucketEncryption();
 if (bucketEncryption != null) {
 final List<ServerSideEncryptionRule> serverSideEncryptionRules =
 bucketEncryption.getServerSideEncryptionConfiguration();
 if (CollectionUtils.isNotEmpty(serverSideEncryptionRules)) {
 for (final ServerSideEncryptionRule rule :
 serverSideEncryptionRules) {
 final Boolean bucketKeyEnabled =
 rule.getBucketKeyEnabled();
 if (bucketKeyEnabled) {
 final ServerSideEncryptionByDefault
 serverSideEncryptionByDefault = rule.getServerSideEncryptionByDefault();

 final String encryptionAlgorithm =
 serverSideEncryptionByDefault.getSSEAlgorithm();
 final String kmsKeyId =
 serverSideEncryptionByDefault.getKMSMasterKeyID(); // "KMSMasterKeyID" is name of
 the property for an AWS::S3::Bucket;

 if (!StringUtils.equals(encryptionAlgorithm,
 requiredEncryptionAlgorithm) && StringUtils.isBlank(kmsKeyId)) {
 resultStatus = HookStatus.FAILED;
 resultMessage = "KMS Key ID not set
 and SSE Encryption Algorithm is incorrect for bucket with name: " +
 bucket.getBucketName();
 } else if (!StringUtils.equals(encryptionAlgorithm,
 requiredEncryptionAlgorithm)) {
 resultStatus = HookStatus.FAILED;
 resultMessage = "SSE Encryption Algorithm is
 incorrect for bucket with name: " + bucket.getBucketName();
 } else if (StringUtils.isBlank(kmsKeyId)) {
 resultStatus = HookStatus.FAILED;

Hooks modellieren 109

CloudFormation Hooks Benutzerhandbuch

 resultMessage = "KMS Key ID not set for bucket with
 name: " + bucket.getBucketName();
 } else {
 resultStatus = HookStatus.SUCCESS;
 resultMessage = "Successfully invoked
 PreCreateHookHandler for target: AWS::S3::Bucket";
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "Bucket key not enabled for bucket with
 name: " + bucket.getBucketName();
 }

 if (resultStatus == HookStatus.FAILED) {
 break;
 }
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "No SSE Encryption configurations for bucket
 with name: " + bucket.getBucketName();
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "Bucket Encryption not enabled for bucket with
 name: " + bucket.getBucketName();
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "Resource properties for S3 Bucket target model are
 empty";
 }

 return HookProgressEvent.<CallbackContext>builder()
 .status(resultStatus)
 .message(resultMessage)
 .errorCode(resultStatus == HookStatus.FAILED ?
 HandlerErrorCode.ResourceConflict : null)
 .build();
 }

 private HookProgressEvent<CallbackContext> validateSQSQueueEncryption(final
 AwsSqsQueue queue) {
 if (queue == null) {

Hooks modellieren 110

CloudFormation Hooks Benutzerhandbuch

 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .message("Resource properties for SQS Queue target model are
 empty")
 .errorCode(HandlerErrorCode.ResourceConflict)
 .build();
 }

 final String kmsKeyId = queue.getKmsMasterKeyId(); // "KmsMasterKeyId" is
 name of the property for an AWS::SQS::Queue
 if (StringUtils.isBlank(kmsKeyId)) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .message("Server side encryption turned off for queue with
 name: " + queue.getQueueName())
 .errorCode(HandlerErrorCode.ResourceConflict)
 .build();
 }

 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.SUCCESS)
 .message("Successfully invoked PreCreateHookHandler for target:
 AWS::SQS::Queue")
 .build();
 }
}

Der preCreate Test wird aktualisiert

1. Öffnen Sie in Ihrem IDE die PreCreateHandlerTest.java Datei, die sich im src/test/
java/software/mycompany/testing/mytesthook Ordner befindet.

2. Ersetzen Sie den gesamten Inhalt der PreCreateHandlerTest.java Datei durch den
folgenden Code.

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableMap;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.BucketEncryption;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionByDefault;

Hooks modellieren 111

CloudFormation Hooks Benutzerhandbuch

import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import java.util.Collections;
import java.util.Map;

import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.api.Assertions.assertThatExceptionOfType;
import static org.mockito.Mockito.mock;

@ExtendWith(MockitoExtension.class)
public class PreCreateHookHandlerTest {

 @Mock
 private AmazonWebServicesClientProxy proxy;

 @Mock
 private Logger logger;

 @BeforeEach
 public void setup() {
 proxy = mock(AmazonWebServicesClientProxy.class);
 logger = mock(Logger.class);
 }

 @Test
 public void handleRequest_awsSqsQueueSuccess() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

Hooks modellieren 112

CloudFormation Hooks Benutzerhandbuch

 final AwsSqsQueue queue = buildSqsQueue("MyQueue", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(queue);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::SQS::Queue").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.SUCCESS, "Successfully invoked
 PreCreateHookHandler for target: AWS::SQS::Queue");
 }

 @Test
 public void handleRequest_awsS3BucketSuccess() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", true,
 "AES256", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.SUCCESS, "Successfully invoked
 PreCreateHookHandler for target: AWS::S3::Bucket");
 }

 @Test
 public void handleRequest_awsS3BucketFail_bucketKeyNotEnabled() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", false,
 "AES256", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(bucket);

Hooks modellieren 113

CloudFormation Hooks Benutzerhandbuch

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "Bucket key not enabled for
 bucket with name: amzn-s3-demo-bucket");
 }

 @Test
 public void handleRequest_awsS3BucketFail_incorrectSSEEncryptionAlgorithm() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", true,
 "SHA512", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "SSE Encryption Algorithm is
 incorrect for bucket with name: amzn-s3-demo-bucket");
 }

 @Test
 public void handleRequest_awsS3BucketFail_kmsKeyIdNotSet() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", true,
 "AES256", null);
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

Hooks modellieren 114

CloudFormation Hooks Benutzerhandbuch

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "KMS Key ID not set for bucket
 with name: amzn-s3-demo-bucket");
 }

 @Test
 public void handleRequest_awsSqsQueueFail_serverSideEncryptionOff() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsSqsQueue queue = buildSqsQueue("MyQueue", null);
 final HookTargetModel targetModel = createHookTargetModel(queue);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::SQS::Queue").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "Server side encryption turned
 off for queue with name: MyQueue");
 }

 @Test
 public void handleRequest_unsupportedTarget() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final Map<String, Object> unsupportedTarget =
 ImmutableMap.of("ResourceName", "MyUnsupportedTarget");
 final HookTargetModel targetModel =
 createHookTargetModel(unsupportedTarget);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

Hooks modellieren 115

CloudFormation Hooks Benutzerhandbuch

 .hookContext(HookContext.builder().targetName("AWS::Unsupported::Target").targetModel(targetModel).build())
 .build();

 assertThatExceptionOfType(UnsupportedTargetException.class)
 .isThrownBy(() -> handler.handleRequest(proxy, request, null,
 logger, typeConfiguration))
 .withMessageContaining("Unsupported target")
 .withMessageContaining("AWS::Unsupported::Target")
 .satisfies(e ->
 assertThat(e.getErrorCode()).isEqualTo(HandlerErrorCode.InvalidRequest));
 }

 private void assertResponse(final HookProgressEvent<CallbackContext> response,
 final HookStatus expectedStatus, final String expectedErrorMsg) {
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(expectedStatus);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getMessage()).isNotNull();
 assertThat(response.getMessage()).isEqualTo(expectedErrorMsg);
 }

 private HookTargetModel createHookTargetModel(final Object resourceProperties)
 {
 return HookTargetModel.of(ImmutableMap.of("ResourceProperties",
 resourceProperties));
 }

 @SuppressWarnings("SameParameterValue")
 private AwsSqsQueue buildSqsQueue(final String queueName, final String
 kmsKeyId) {
 return AwsSqsQueue.builder()
 .queueName(queueName)
 .kmsMasterKeyId(kmsKeyId) // "KmsMasterKeyId" is name of the
 property for an AWS::SQS::Queue
 .build();
 }

 @SuppressWarnings("SameParameterValue")
 private AwsS3Bucket buildAwsS3Bucket(
 final String bucketName,
 final Boolean bucketKeyEnabled,
 final String sseAlgorithm,

Hooks modellieren 116

CloudFormation Hooks Benutzerhandbuch

 final String kmsKeyId
) {
 return AwsS3Bucket.builder()
 .bucketName(bucketName)
 .bucketEncryption(
 BucketEncryption.builder()
 .serverSideEncryptionConfiguration(
 Collections.singletonList(
 ServerSideEncryptionRule.builder()
 .bucketKeyEnabled(bucketKeyEnabled)
 .serverSideEncryptionByDefault(
 ServerSideEncryptionByDefault.builder()
 .sSEAlgorithm(sseAlgorithm)
 .kMSMasterKeyID(kmsKeyId) //
 "KMSMasterKeyID" is name of the property for an AWS::S3::Bucket
 .build()
).build()
)
).build()
).build();
 }
}

Implementierung des preUpdate Handlers

Implementieren Sie einen preUpdate Handler, der vor den Aktualisierungsoperationen für alle
angegebenen Ziele im Handler initiiert. Der preUpdate Handler erreicht Folgendes:

• Für eine AWS::S3::Bucket Ressource wird der Hook nur erfolgreich sein, wenn Folgendes
zutrifft:

• Der Bucket-Verschlüsselungsalgorithmus für einen Amazon S3 S3-Bucket wurde nicht geändert.

Codierung des preUpdate Handlers

1. Öffnen Sie in Ihrem IDE die PreUpdateHookHandler.java Datei, die sich im src/main/
java/software/mycompany/testing/mytesthook Ordner befindet.

2. Ersetzen Sie den gesamten Inhalt der PreUpdateHookHandler.java Datei durch den
folgenden Code.

package com.mycompany.testing.mytesthook;

Hooks modellieren 117

CloudFormation Hooks Benutzerhandbuch

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3BucketTargetModel;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import org.apache.commons.lang3.StringUtils;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import
 software.amazon.cloudformation.proxy.hook.targetmodel.ResourceHookTargetModel;

import java.util.List;

public class PreUpdateHookHandler extends BaseHookHandler<TypeConfigurationModel,
 CallbackContext> {

 @Override
 public HookProgressEvent<CallbackContext> handleRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final Logger logger,
 final TypeConfigurationModel typeConfiguration) {

 final String targetName = request.getHookContext().getTargetName();
 if ("AWS::S3::Bucket".equals(targetName)) {
 final ResourceHookTargetModel<AwsS3Bucket> targetModel =
 request.getHookContext().getTargetModel(AwsS3BucketTargetModel.class);

 final AwsS3Bucket bucketProperties =
 targetModel.getResourceProperties();
 final AwsS3Bucket previousBucketProperties =
 targetModel.getPreviousResourceProperties();

 return validateBucketEncryptionRulesNotUpdated(bucketProperties,
 previousBucketProperties);
 } else {
 throw new UnsupportedTargetException(targetName);
 }

Hooks modellieren 118

CloudFormation Hooks Benutzerhandbuch

 }

 private HookProgressEvent<CallbackContext>
 validateBucketEncryptionRulesNotUpdated(final AwsS3Bucket resourceProperties,
 final AwsS3Bucket previousResourceProperties) {
 final List<ServerSideEncryptionRule> bucketEncryptionConfigs =
 resourceProperties.getBucketEncryption().getServerSideEncryptionConfiguration();
 final List<ServerSideEncryptionRule> previousBucketEncryptionConfigs =
 previousResourceProperties.getBucketEncryption().getServerSideEncryptionConfiguration();

 if (bucketEncryptionConfigs.size() !=
 previousBucketEncryptionConfigs.size()) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .errorCode(HandlerErrorCode.NotUpdatable)
 .message(
 String.format(
 "Current number of bucket encryption configs does not
 match previous. Current has %d configs while previously there were %d configs",
 bucketEncryptionConfigs.size(),
 previousBucketEncryptionConfigs.size()
)
).build();
 }

 for (int i = 0; i < bucketEncryptionConfigs.size(); ++i) {
 final String currentEncryptionAlgorithm =
 bucketEncryptionConfigs.get(i).getServerSideEncryptionByDefault().getSSEAlgorithm();
 final String previousEncryptionAlgorithm =
 previousBucketEncryptionConfigs.get(i).getServerSideEncryptionByDefault().getSSEAlgorithm();

 if (!StringUtils.equals(currentEncryptionAlgorithm,
 previousEncryptionAlgorithm)) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .errorCode(HandlerErrorCode.NotUpdatable)
 .message(
 String.format(
 "Bucket Encryption algorithm can not be changed once
 set. The encryption algorithm was changed to '%s' from '%s'.",
 currentEncryptionAlgorithm,
 previousEncryptionAlgorithm
)
)

Hooks modellieren 119

CloudFormation Hooks Benutzerhandbuch

 .build();
 }
 }

 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.SUCCESS)
 .message("Successfully invoked PreUpdateHookHandler for target:
 AWS::SQS::Queue")
 .build();
 }
}

Der preUpdate Test wird aktualisiert

1. Öffnen Sie in Ihrem IDE die PreUpdateHandlerTest.java Datei im src/main/java/com/
mycompany/testing/mytesthook Ordner.

2. Ersetzen Sie den gesamten Inhalt der PreUpdateHandlerTest.java Datei durch den
folgenden Code.

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableMap;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.BucketEncryption;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionByDefault;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookStatus;

Hooks modellieren 120

CloudFormation Hooks Benutzerhandbuch

import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import java.util.Arrays;
import java.util.stream.Stream;

import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.api.Assertions.assertThatExceptionOfType;
import static org.mockito.Mockito.mock;

@ExtendWith(MockitoExtension.class)
public class PreUpdateHookHandlerTest {

 @Mock
 private AmazonWebServicesClientProxy proxy;

 @Mock
 private Logger logger;

 @BeforeEach
 public void setup() {
 proxy = mock(AmazonWebServicesClientProxy.class);
 logger = mock(Logger.class);
 }

 @Test
 public void handleRequest_awsS3BucketSuccess() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final ServerSideEncryptionRule serverSideEncryptionRule =
 buildServerSideEncryptionRule("AES256");
 final AwsS3Bucket resourceProperties = buildAwsS3Bucket("amzn-s3-demo-
bucket", serverSideEncryptionRule);
 final AwsS3Bucket previousResourceProperties = buildAwsS3Bucket("amzn-s3-
demo-bucket", serverSideEncryptionRule);
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

Hooks modellieren 121

CloudFormation Hooks Benutzerhandbuch

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.SUCCESS, "Successfully invoked
 PreUpdateHookHandler for target: AWS::SQS::Queue");
 }

 @Test
 public void handleRequest_awsS3BucketFail_bucketEncryptionConfigsDontMatch() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final ServerSideEncryptionRule[] serverSideEncryptionRules =
 Stream.of("AES256", "SHA512", "AES32")
 .map(this::buildServerSideEncryptionRule)
 .toArray(ServerSideEncryptionRule[]::new);

 final AwsS3Bucket resourceProperties = buildAwsS3Bucket("amzn-s3-demo-
bucket", serverSideEncryptionRules[0]);
 final AwsS3Bucket previousResourceProperties = buildAwsS3Bucket("amzn-s3-
demo-bucket", serverSideEncryptionRules);
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "Current number of bucket
 encryption configs does not match previous. Current has 1 configs while previously
 there were 3 configs");
 }

 @Test
 public void
 handleRequest_awsS3BucketFail_bucketEncryptionAlgorithmDoesNotMatch() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final AwsS3Bucket resourceProperties = buildAwsS3Bucket("amzn-s3-demo-
bucket", buildServerSideEncryptionRule("SHA512"));

Hooks modellieren 122

CloudFormation Hooks Benutzerhandbuch

 final AwsS3Bucket previousResourceProperties = buildAwsS3Bucket("amzn-s3-
demo-bucket", buildServerSideEncryptionRule("AES256"));
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, String.format("Bucket
 Encryption algorithm can not be changed once set. The encryption algorithm was
 changed to '%s' from '%s'.", "SHA512", "AES256"));
 }

 @Test
 public void handleRequest_unsupportedTarget() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final Object resourceProperties = ImmutableMap.of("FileSizeLimit", 256);
 final Object previousResourceProperties = ImmutableMap.of("FileSizeLimit",
 512);
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::Unsupported::Target").targetModel(targetModel).build())
 .build();

 assertThatExceptionOfType(UnsupportedTargetException.class)
 .isThrownBy(() -> handler.handleRequest(proxy, request, null,
 logger, typeConfiguration))
 .withMessageContaining("Unsupported target")
 .withMessageContaining("AWS::Unsupported::Target")
 .satisfies(e ->
 assertThat(e.getErrorCode()).isEqualTo(HandlerErrorCode.InvalidRequest));
 }

Hooks modellieren 123

CloudFormation Hooks Benutzerhandbuch

 private void assertResponse(final HookProgressEvent<CallbackContext> response,
 final HookStatus expectedStatus, final String expectedErrorMsg) {
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(expectedStatus);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getMessage()).isNotNull();
 assertThat(response.getMessage()).isEqualTo(expectedErrorMsg);
 }

 private HookTargetModel createHookTargetModel(final Object resourceProperties,
 final Object previousResourceProperties) {
 return HookTargetModel.of(
 ImmutableMap.of(
 "ResourceProperties", resourceProperties,
 "PreviousResourceProperties", previousResourceProperties
)
);
 }

 @SuppressWarnings("SameParameterValue")
 private AwsS3Bucket buildAwsS3Bucket(
 final String bucketName,
 final ServerSideEncryptionRule ...serverSideEncryptionRules
) {
 return AwsS3Bucket.builder()
 .bucketName(bucketName)
 .bucketEncryption(
 BucketEncryption.builder()
 .serverSideEncryptionConfiguration(
 Arrays.asList(serverSideEncryptionRules)
).build()
).build();
 }

 private ServerSideEncryptionRule buildServerSideEncryptionRule(final String
 encryptionAlgorithm) {
 return ServerSideEncryptionRule.builder()
 .bucketKeyEnabled(true)
 .serverSideEncryptionByDefault(
 ServerSideEncryptionByDefault.builder()
 .sSEAlgorithm(encryptionAlgorithm)
 .build()

Hooks modellieren 124

CloudFormation Hooks Benutzerhandbuch

).build();
 }
}

Implementierung des preDelete Handlers

Implementieren Sie einen preDelete Handler, der vor den Löschvorgängen für alle angegebenen
Ziele im Handler initiiert. Der preDelete Handler erreicht Folgendes:

• Für eine AWS::S3::Bucket Ressource wird der Hook nur erfolgreich sein, wenn Folgendes
zutrifft:

• Überprüft, ob das Konto nach dem Löschen der Ressource über die erforderlichen
Mindestressourcen für Beschwerden verfügt.

• Die Mindestmenge an erforderlichen Ressourcen für Beschwerden ist in der Typkonfiguration
des Hooks festgelegt.

Codierung des preDelete Handlers

1. Öffnen Sie in Ihrem IDE die PreDeleteHookHandler.java Datei im src/main/java/com/
mycompany/testing/mytesthook Ordner.

2. Ersetzen Sie den gesamten Inhalt der PreDeleteHookHandler.java Datei durch den
folgenden Code.

package com.mycompany.testing.mytesthook;

import com.google.common.annotations.VisibleForTesting;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3BucketTargetModel;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueueTargetModel;
import org.apache.commons.lang3.StringUtils;
import org.apache.commons.lang3.math.NumberUtils;
import software.amazon.awssdk.services.cloudformation.CloudFormationClient;
import
 software.amazon.awssdk.services.cloudformation.model.CloudFormationException;
import
 software.amazon.awssdk.services.cloudformation.model.DescribeStackResourceRequest;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.Bucket;

Hooks modellieren 125

CloudFormation Hooks Benutzerhandbuch

import software.amazon.awssdk.services.s3.model.S3Exception;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesResponse;
import software.amazon.awssdk.services.sqs.model.QueueAttributeName;
import software.amazon.awssdk.services.sqs.model.SqsException;
import software.amazon.cloudformation.exceptions.CfnGeneralServiceException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ProxyClient;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;
import
 software.amazon.cloudformation.proxy.hook.targetmodel.ResourceHookTargetModel;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Objects;
import java.util.stream.Collectors;

public class PreDeleteHookHandler extends BaseHookHandlerStd {

 private ProxyClient<S3Client> s3Client;
 private ProxyClient<SqsClient> sqsClient;

 @Override
 protected ProgressEvent<HookTargetModel, CallbackContext>
 handleS3BucketRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<S3Client> proxyClient,
 final TypeConfigurationModel typeConfiguration
) {
 final HookContext hookContext = request.getHookContext();
 final String targetName = hookContext.getTargetName();
 if (!AwsS3Bucket.TYPE_NAME.equals(targetName)) {

Hooks modellieren 126

CloudFormation Hooks Benutzerhandbuch

 throw new RuntimeException(String.format("Request target type [%s] is
 not 'AWS::S3::Bucket'", targetName));
 }
 this.s3Client = proxyClient;

 final String encryptionAlgorithm =
 typeConfiguration.getEncryptionAlgorithm();
 final int minBuckets =
 NumberUtils.toInt(typeConfiguration.getMinBuckets());

 final ResourceHookTargetModel<AwsS3Bucket> targetModel =
 hookContext.getTargetModel(AwsS3BucketTargetModel.class);
 final List<String> buckets = listBuckets().stream()
 .filter(b -> !StringUtils.equals(b,
 targetModel.getResourceProperties().getBucketName()))
 .collect(Collectors.toList());

 final List<String> compliantBuckets = new ArrayList<>();
 for (final String bucket : buckets) {
 if (getBucketSSEAlgorithm(bucket).contains(encryptionAlgorithm)) {
 compliantBuckets.add(bucket);
 }

 if (compliantBuckets.size() >= minBuckets) {
 return ProgressEvent.<HookTargetModel, CallbackContext>builder()
 .status(OperationStatus.SUCCESS)
 .message("Successfully invoked PreDeleteHookHandler for
 target: AWS::S3::Bucket")
 .build();
 }
 }

 return ProgressEvent.<HookTargetModel, CallbackContext>builder()
 .status(OperationStatus.FAILED)
 .errorCode(HandlerErrorCode.NonCompliant)
 .message(String.format("Failed to meet minimum of [%d] encrypted
 buckets.", minBuckets))
 .build();
 }

 @Override
 protected ProgressEvent<HookTargetModel, CallbackContext>
 handleSqsQueueRequest(
 final AmazonWebServicesClientProxy proxy,

Hooks modellieren 127

CloudFormation Hooks Benutzerhandbuch

 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<SqsClient> proxyClient,
 final TypeConfigurationModel typeConfiguration
) {
 final HookContext hookContext = request.getHookContext();
 final String targetName = hookContext.getTargetName();
 if (!AwsSqsQueue.TYPE_NAME.equals(targetName)) {
 throw new RuntimeException(String.format("Request target type [%s] is
 not 'AWS::SQS::Queue'", targetName));
 }
 this.sqsClient = proxyClient;
 final int minQueues = NumberUtils.toInt(typeConfiguration.getMinQueues());

 final ResourceHookTargetModel<AwsSqsQueue> targetModel =
 hookContext.getTargetModel(AwsSqsQueueTargetModel.class);

 final String queueName =
 Objects.toString(targetModel.getResourceProperties().get("QueueName"), null);

 String targetQueueUrl = null;
 if (queueName != null) {
 try {
 targetQueueUrl = sqsClient.injectCredentialsAndInvokeV2(
 GetQueueUrlRequest.builder().queueName(
 queueName
).build(),
 sqsClient.client()::getQueueUrl
).queueUrl();
 } catch (SqsException e) {
 log(String.format("Error while calling GetQueueUrl API for queue
 name [%s]: %s", queueName, e.getMessage()));
 }
 } else {
 log("Queue name is empty, attempting to get queue's physical ID");
 try {
 final ProxyClient<CloudFormationClient> cfnClient =
 proxy.newProxy(ClientBuilder::createCloudFormationClient);
 targetQueueUrl = cfnClient.injectCredentialsAndInvokeV2(
 DescribeStackResourceRequest.builder()
 .stackName(hookContext.getTargetLogicalId())

 .logicalResourceId(hookContext.getTargetLogicalId())
 .build(),

Hooks modellieren 128

CloudFormation Hooks Benutzerhandbuch

 cfnClient.client()::describeStackResource
).stackResourceDetail().physicalResourceId();
 } catch (CloudFormationException e) {
 log(String.format("Error while calling DescribeStackResource API
 for queue name: %s", e.getMessage()));
 }
 }

 // Creating final variable for the filter lambda
 final String finalTargetQueueUrl = targetQueueUrl;

 final List<String> compliantQueues = new ArrayList<>();

 String nextToken = null;
 do {
 final ListQueuesRequest req =
 Translator.createListQueuesRequest(nextToken);
 final ListQueuesResponse res =
 sqsClient.injectCredentialsAndInvokeV2(req, sqsClient.client()::listQueues);
 final List<String> queueUrls = res.queueUrls().stream()
 .filter(q -> !StringUtils.equals(q, finalTargetQueueUrl))
 .collect(Collectors.toList());

 for (final String queueUrl : queueUrls) {
 if (isQueueEncrypted(queueUrl)) {
 compliantQueues.add(queueUrl);
 }

 if (compliantQueues.size() >= minQueues) {
 return ProgressEvent.<HookTargetModel,
 CallbackContext>builder()
 .status(OperationStatus.SUCCESS)
 .message("Successfully invoked PreDeleteHookHandler for
 target: AWS::SQS::Queue")
 .build();
 }
 nextToken = res.nextToken();
 }
 } while (nextToken != null);

 return ProgressEvent.<HookTargetModel, CallbackContext>builder()
 .status(OperationStatus.FAILED)
 .errorCode(HandlerErrorCode.NonCompliant)

Hooks modellieren 129

CloudFormation Hooks Benutzerhandbuch

 .message(String.format("Failed to meet minimum of [%d] encrypted
 queues.", minQueues))
 .build();
 }

 private List<String> listBuckets() {
 try {
 return
 s3Client.injectCredentialsAndInvokeV2(Translator.createListBucketsRequest(),
 s3Client.client()::listBuckets)
 .buckets()
 .stream()
 .map(Bucket::name)
 .collect(Collectors.toList());
 } catch (S3Exception e) {
 throw new CfnGeneralServiceException("Error while calling S3
 ListBuckets API", e);
 }
 }

 @VisibleForTesting
 Collection<String> getBucketSSEAlgorithm(final String bucket) {
 try {
 return
 s3Client.injectCredentialsAndInvokeV2(Translator.createGetBucketEncryptionRequest(bucket),
 s3Client.client()::getBucketEncryption)
 .serverSideEncryptionConfiguration()
 .rules()
 .stream()
 .filter(r ->
 Objects.nonNull(r.applyServerSideEncryptionByDefault()))
 .map(r ->
 r.applyServerSideEncryptionByDefault().sseAlgorithmAsString())
 .collect(Collectors.toSet());
 } catch (S3Exception e) {
 return new HashSet<>();
 }
 }

 @VisibleForTesting
 boolean isQueueEncrypted(final String queueUrl) {
 try {
 final GetQueueAttributesRequest request =
 GetQueueAttributesRequest.builder()

Hooks modellieren 130

CloudFormation Hooks Benutzerhandbuch

 .queueUrl(queueUrl)
 .attributeNames(QueueAttributeName.KMS_MASTER_KEY_ID)
 .build();
 final String kmsKeyId = sqsClient.injectCredentialsAndInvokeV2(request,
 sqsClient.client()::getQueueAttributes)
 .attributes()
 .get(QueueAttributeName.KMS_MASTER_KEY_ID);

 return StringUtils.isNotBlank(kmsKeyId);
 } catch (SqsException e) {
 throw new CfnGeneralServiceException("Error while calling SQS
 GetQueueAttributes API", e);
 }
 }
}

Den preDelete Handler aktualisieren

1. Öffnen Sie in Ihrem IDE die PreDeleteHookHandler.java Datei im src/main/java/com/
mycompany/testing/mytesthook Ordner.

2. Ersetzen Sie den gesamten Inhalt der PreDeleteHookHandler.java Datei durch den
folgenden Code.

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.Mockito;
import org.mockito.junit.jupiter.MockitoExtension;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.Bucket;
import software.amazon.awssdk.services.s3.model.GetBucketEncryptionRequest;
import software.amazon.awssdk.services.s3.model.GetBucketEncryptionResponse;
import software.amazon.awssdk.services.s3.model.ListBucketsRequest;
import software.amazon.awssdk.services.s3.model.ListBucketsResponse;
import software.amazon.awssdk.services.s3.model.S3Exception;

Hooks modellieren 131

CloudFormation Hooks Benutzerhandbuch

import software.amazon.awssdk.services.s3.model.ServerSideEncryptionByDefault;
import software.amazon.awssdk.services.s3.model.ServerSideEncryptionConfiguration;
import software.amazon.awssdk.services.s3.model.ServerSideEncryptionRule;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesResponse;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlResponse;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesResponse;
import software.amazon.awssdk.services.sqs.model.QueueAttributeName;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.stream.Collectors;

import static org.mockito.ArgumentMatchers.any;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.never;
import static org.mockito.Mockito.times;
import static org.mockito.Mockito.verify;
import static org.mockito.Mockito.when;

@ExtendWith(MockitoExtension.class)
public class PreDeleteHookHandlerTest extends AbstractTestBase {

 @Mock private S3Client s3Client;
 @Mock private SqsClient sqsClient;
 @Mock private Logger logger;

 @BeforeEach
 public void setup() {
 s3Client = mock(S3Client.class);
 sqsClient = mock(SqsClient.class);
 logger = mock(Logger.class);
 }

Hooks modellieren 132

CloudFormation Hooks Benutzerhandbuch

 @Test
 public void handleRequest_awsS3BucketSuccess() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<Bucket> bucketList = ImmutableList.of(
 Bucket.builder().name("bucket1").build(),
 Bucket.builder().name("bucket2").build(),
 Bucket.builder().name("toBeDeletedBucket").build(),
 Bucket.builder().name("bucket3").build(),
 Bucket.builder().name("bucket4").build(),
 Bucket.builder().name("bucket5").build()
);
 final ListBucketsResponse mockResponse =
 ListBucketsResponse.builder().buckets(bucketList).build();

 when(s3Client.listBuckets(any(ListBucketsRequest.class))).thenReturn(mockResponse);
 when(s3Client.getBucketEncryption(any(GetBucketEncryptionRequest.class)))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256", "aws:kms"))
 .thenThrow(S3Exception.builder().message("No Encrypt").build())
 .thenReturn(buildGetBucketEncryptionResponse("aws:kms"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"));
 setServiceClient(s3Client);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .encryptionAlgorithm("AES256")
 .minBuckets("3")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::S3::Bucket")
 .targetModel(
 createHookTargetModel(
 AwsS3Bucket.builder()
 .bucketName("toBeDeletedBucket")
 .build()
)
)
 .build())

Hooks modellieren 133

CloudFormation Hooks Benutzerhandbuch

 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(s3Client,
 times(5)).getBucketEncryption(any(GetBucketEncryptionRequest.class));
 verify(handler, never()).getBucketSSEAlgorithm("toBeDeletedBucket");

 assertResponse(response, OperationStatus.SUCCESS, "Successfully invoked
 PreDeleteHookHandler for target: AWS::S3::Bucket");
 }

 @Test
 public void handleRequest_awsSqsQueueSuccess() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<String> queueUrls = ImmutableList.of(
 "https://queue1.queue",
 "https://queue2.queue",
 "https://toBeDeletedQueue.queue",
 "https://queue3.queue",
 "https://queue4.queue",
 "https://queue5.queue"
);

 when(sqsClient.getQueueUrl(any(GetQueueUrlRequest.class)))
 .thenReturn(GetQueueUrlResponse.builder().queueUrl("https://
toBeDeletedQueue.queue").build());
 when(sqsClient.listQueues(any(ListQueuesRequest.class)))

 .thenReturn(ListQueuesResponse.builder().queueUrls(queueUrls).build());
 when(sqsClient.getQueueAttributes(any(GetQueueAttributesRequest.class)))

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())

Hooks modellieren 134

CloudFormation Hooks Benutzerhandbuch

 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build());
 setServiceClient(sqsClient);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .minQueues("3")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::SQS::Queue")
 .targetModel(
 createHookTargetModel(
 ImmutableMap.of("QueueName", "toBeDeletedQueue")
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(sqsClient,
 times(5)).getQueueAttributes(any(GetQueueAttributesRequest.class));
 verify(handler, never()).isQueueEncrypted("toBeDeletedQueue");

 assertResponse(response, OperationStatus.SUCCESS, "Successfully invoked
 PreDeleteHookHandler for target: AWS::SQS::Queue");
 }

 @Test
 public void handleRequest_awsS3BucketFailed() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<Bucket> bucketList = ImmutableList.of(
 Bucket.builder().name("bucket1").build(),
 Bucket.builder().name("bucket2").build(),
 Bucket.builder().name("toBeDeletedBucket").build(),

Hooks modellieren 135

CloudFormation Hooks Benutzerhandbuch

 Bucket.builder().name("bucket3").build(),
 Bucket.builder().name("bucket4").build(),
 Bucket.builder().name("bucket5").build()
);
 final ListBucketsResponse mockResponse =
 ListBucketsResponse.builder().buckets(bucketList).build();

 when(s3Client.listBuckets(any(ListBucketsRequest.class))).thenReturn(mockResponse);
 when(s3Client.getBucketEncryption(any(GetBucketEncryptionRequest.class)))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256", "aws:kms"))
 .thenThrow(S3Exception.builder().message("No Encrypt").build())
 .thenReturn(buildGetBucketEncryptionResponse("aws:kms"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"));
 setServiceClient(s3Client);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .encryptionAlgorithm("AES256")
 .minBuckets("10")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::S3::Bucket")
 .targetModel(
 createHookTargetModel(
 AwsS3Bucket.builder()
 .bucketName("toBeDeletedBucket")
 .build()
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(s3Client,
 times(5)).getBucketEncryption(any(GetBucketEncryptionRequest.class));
 verify(handler, never()).getBucketSSEAlgorithm("toBeDeletedBucket");

Hooks modellieren 136

CloudFormation Hooks Benutzerhandbuch

 assertResponse(response, OperationStatus.FAILED, "Failed to meet minimum of
 [10] encrypted buckets.");
 }

 @Test
 public void handleRequest_awsSqsQueueFailed() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<String> queueUrls = ImmutableList.of(
 "https://queue1.queue",
 "https://queue2.queue",
 "https://toBeDeletedQueue.queue",
 "https://queue3.queue",
 "https://queue4.queue",
 "https://queue5.queue"
);

 when(sqsClient.getQueueUrl(any(GetQueueUrlRequest.class)))
 .thenReturn(GetQueueUrlResponse.builder().queueUrl("https://
toBeDeletedQueue.queue").build());
 when(sqsClient.listQueues(any(ListQueuesRequest.class)))

 .thenReturn(ListQueuesResponse.builder().queueUrls(queueUrls).build());
 when(sqsClient.getQueueAttributes(any(GetQueueAttributesRequest.class)))

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build());
 setServiceClient(sqsClient);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .minQueues("10")

Hooks modellieren 137

CloudFormation Hooks Benutzerhandbuch

 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::SQS::Queue")
 .targetModel(
 createHookTargetModel(
 ImmutableMap.of("QueueName", "toBeDeletedQueue")
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(sqsClient,
 times(5)).getQueueAttributes(any(GetQueueAttributesRequest.class));
 verify(handler, never()).isQueueEncrypted("toBeDeletedQueue");

 assertResponse(response, OperationStatus.FAILED, "Failed to meet minimum of
 [10] encrypted queues.");
 }

 private GetBucketEncryptionResponse buildGetBucketEncryptionResponse(final
 String ...sseAlgorithm) {
 return buildGetBucketEncryptionResponse(
 Arrays.stream(sseAlgorithm)
 .map(a ->
 ServerSideEncryptionRule.builder().applyServerSideEncryptionByDefault(
 ServerSideEncryptionByDefault.builder()
 .sseAlgorithm(a)
 .build()
).build()
)
 .collect(Collectors.toList())
);
 }

 private GetBucketEncryptionResponse buildGetBucketEncryptionResponse(final
 Collection<ServerSideEncryptionRule> rules) {
 return GetBucketEncryptionResponse.builder()
 .serverSideEncryptionConfiguration(

Hooks modellieren 138

CloudFormation Hooks Benutzerhandbuch

 ServerSideEncryptionConfiguration.builder().rules(
 rules
).build()
).build();
 }
}

Modellieren von benutzerdefinierten CloudFormation Hooks mit Python

Die Modellierung von benutzerdefinierten CloudFormation Hooks beinhaltet die Erstellung eines
Schemas, das den Hook, seine Eigenschaften und seine Attribute definiert. Dieses Tutorial führt Sie
durch die Modellierung benutzerdefinierter Hooks mit Python.

Schritt 1: Generieren Sie das Hook-Projektpaket

Generieren Sie Ihr Hook-Projektpaket. Das CloudFormation CLI erstellt leere Handler-Funktionen, die
bestimmten Hook-Aktionen im Ziellebenszyklus entsprechen, wie in der Hook-Spezifikation definiert.

cfn generate

Der Befehl gibt die folgende Ausgabe zurück.

Generated files for MyCompany::Testing::MyTestHook

Note

Stellen Sie sicher, dass Ihre Lambda-Laufzeiten up-to-date die Verwendung einer veralteten
Version vermeiden. Weitere Informationen finden Sie unter Lambda-Laufzeiten für
Ressourcentypen und Hooks aktualisieren.

Schritt 2: Hook-Handler hinzufügen

Fügen Sie Ihren eigenen Hook-Handler-Laufzeitcode zu den Handlern hinzu, die Sie implementieren
möchten. Sie können beispielsweise den folgenden Code für die Protokollierung hinzufügen.

LOG.setLevel(logging.INFO)
LOG.info("Internal testing Hook triggered for target: " +
 request.hookContext.targetName);

Hooks modellieren 139

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/runtime-update.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/runtime-update.html

CloudFormation Hooks Benutzerhandbuch

Das CloudFormation CLI generiert die src/models.py Datei aus demKonfigurationsschema.

Example models.py

import sys
from dataclasses import dataclass
from inspect import getmembers, isclass
from typing import (
 AbstractSet,
 Any,
 Generic,
 Mapping,
 MutableMapping,
 Optional,
 Sequence,
 Type,
 TypeVar,
)

from cloudformation_cli_python_lib.interface import (
 BaseModel,
 BaseHookHandlerRequest,
)
from cloudformation_cli_python_lib.recast import recast_object
from cloudformation_cli_python_lib.utils import deserialize_list

T = TypeVar("T")

def set_or_none(value: Optional[Sequence[T]]) -> Optional[AbstractSet[T]]:
 if value:
 return set(value)
 return None

@dataclass
class HookHandlerRequest(BaseHookHandlerRequest):
 pass

@dataclass
class TypeConfigurationModel(BaseModel):
 limitSize: Optional[str]
 cidr: Optional[str]

Hooks modellieren 140

CloudFormation Hooks Benutzerhandbuch

 encryptionAlgorithm: Optional[str]

 @classmethod
 def _deserialize(
 cls: Type["_TypeConfigurationModel"],
 json_data: Optional[Mapping[str, Any]],
) -> Optional["_TypeConfigurationModel"]:
 if not json_data:
 return None
 return cls(
 limitSize=json_data.get("limitSize"),
 cidr=json_data.get("cidr"),
 encryptionAlgorithm=json_data.get("encryptionAlgorithm"),
)

_TypeConfigurationModel = TypeConfigurationModel

Schritt 3: Implementieren Sie Hook-Handler

Mit den generierten Python-Datenklassen können Sie die Handler schreiben, die die Funktionalität
des Hooks tatsächlich implementieren. In diesem Beispiel implementieren Sie die preDelete
Aufrufpunkte preCreatepreUpdate, und für die Handler.

Themen

• Implementieren Sie den Handler preCreate

• Implementieren Sie den preUpdate Handler

• Implementieren Sie den preDelete Handler

• Implementieren Sie einen Hook-Handler

Implementieren Sie den Handler preCreate

Der preCreate Handler überprüft die serverseitigen Verschlüsselungseinstellungen für eine
AWS::S3::Bucket Oder-RessourceAWS::SQS::Queue.

• Für eine AWS::S3::Bucket Ressource ist der Hook nur erfolgreich, wenn Folgendes zutrifft.

• Die Amazon S3 S3-Bucket-Verschlüsselung ist eingestellt.

• Der Amazon S3 S3-Bucket-Schlüssel ist für den Bucket aktiviert.

Hooks modellieren 141

CloudFormation Hooks Benutzerhandbuch

• Der für den Amazon S3 S3-Bucket festgelegte Verschlüsselungsalgorithmus ist der richtige
erforderliche Algorithmus.

• Die AWS Key Management Service Schlüssel-ID ist festgelegt.

• Für eine AWS::SQS::Queue Ressource wird der Hook nur erfolgreich sein, wenn Folgendes
zutrifft.

• Die AWS Key Management Service Schlüssel-ID ist gesetzt.

Implementieren Sie den preUpdate Handler

Implementieren Sie einen preUpdate Handler, der vor den Aktualisierungsoperationen für alle
angegebenen Ziele im Handler initiiert. Der preUpdate Handler erreicht Folgendes:

• Für eine AWS::S3::Bucket Ressource wird der Hook nur erfolgreich sein, wenn Folgendes
zutrifft:

• Der Bucket-Verschlüsselungsalgorithmus für einen Amazon S3 S3-Bucket wurde nicht geändert.

Implementieren Sie den preDelete Handler

Implementieren Sie einen preDelete Handler, der vor den Löschvorgängen für alle angegebenen
Ziele im Handler initiiert. Der preDelete Handler erreicht Folgendes:

• Für eine AWS::S3::Bucket Ressource wird der Hook nur erfolgreich sein, wenn Folgendes
zutrifft:

• Überprüft, ob nach dem Löschen der Ressource die mindestens erforderlichen konformen
Ressourcen im Konto vorhanden sind.

• Die erforderliche Mindestmenge an konformen Ressourcen ist in der Konfiguration des Hooks
festgelegt.

Implementieren Sie einen Hook-Handler

1. Öffnen Sie in Ihrem IDE die handlers.py Datei, die sich im src Ordner befindet.

2. Ersetzen Sie den gesamten Inhalt der handlers.py Datei durch den folgenden Code.

Example handlers.py

import logging

Hooks modellieren 142

CloudFormation Hooks Benutzerhandbuch

from typing import Any, MutableMapping, Optional
import botocore

from cloudformation_cli_python_lib import (
 BaseHookHandlerRequest,
 HandlerErrorCode,
 Hook,
 HookInvocationPoint,
 OperationStatus,
 ProgressEvent,
 SessionProxy,
 exceptions,
)

from .models import HookHandlerRequest, TypeConfigurationModel

Use this logger to forward log messages to CloudWatch Logs.
LOG = logging.getLogger(__name__)
TYPE_NAME = "MyCompany::Testing::MyTestHook"

LOG.setLevel(logging.INFO)

hook = Hook(TYPE_NAME, TypeConfigurationModel)
test_entrypoint = hook.test_entrypoint

def _validate_s3_bucket_encryption(
 bucket: MutableMapping[str, Any], required_encryption_algorithm: str
) -> ProgressEvent:
 status = None
 message = ""
 error_code = None

 if bucket:
 bucket_name = bucket.get("BucketName")

 bucket_encryption = bucket.get("BucketEncryption")
 if bucket_encryption:
 server_side_encryption_rules = bucket_encryption.get(
 "ServerSideEncryptionConfiguration"
)
 if server_side_encryption_rules:
 for rule in server_side_encryption_rules:
 bucket_key_enabled = rule.get("BucketKeyEnabled")

Hooks modellieren 143

CloudFormation Hooks Benutzerhandbuch

 if bucket_key_enabled:
 server_side_encryption_by_default = rule.get(
 "ServerSideEncryptionByDefault"
)

 encryption_algorithm =
 server_side_encryption_by_default.get(
 "SSEAlgorithm"
)
 kms_key_id = server_side_encryption_by_default.get(
 "KMSMasterKeyID"
) # "KMSMasterKeyID" is name of the property for an
 AWS::S3::Bucket

 if encryption_algorithm == required_encryption_algorithm:
 if encryption_algorithm == "aws:kms" and not
 kms_key_id:
 status = OperationStatus.FAILED
 message = f"KMS Key ID not set for bucket with
 name: f{bucket_name}"
 else:
 status = OperationStatus.SUCCESS
 message = f"Successfully invoked
 PreCreateHookHandler for AWS::S3::Bucket with name: {bucket_name}"
 else:
 status = OperationStatus.FAILED
 message = f"SSE Encryption Algorithm is incorrect for
 bucket with name: {bucket_name}"
 else:
 status = OperationStatus.FAILED
 message = f"Bucket key not enabled for bucket with name:
 {bucket_name}"

 if status == OperationStatus.FAILED:
 break
 else:
 status = OperationStatus.FAILED
 message = f"No SSE Encryption configurations for bucket with name:
 {bucket_name}"
 else:
 status = OperationStatus.FAILED
 message = (
 f"Bucket Encryption not enabled for bucket with name:
 {bucket_name}"

Hooks modellieren 144

CloudFormation Hooks Benutzerhandbuch

)
 else:
 status = OperationStatus.FAILED
 message = "Resource properties for S3 Bucket target model are empty"

 if status == OperationStatus.FAILED:
 error_code = HandlerErrorCode.NonCompliant

 return ProgressEvent(status=status, message=message, errorCode=error_code)

def _validate_sqs_queue_encryption(queue: MutableMapping[str, Any]) ->
 ProgressEvent:
 if not queue:
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message="Resource properties for SQS Queue target model are empty",
 errorCode=HandlerErrorCode.NonCompliant,
)
 queue_name = queue.get("QueueName")

 kms_key_id = queue.get(
 "KmsMasterKeyId"
) # "KmsMasterKeyId" is name of the property for an AWS::SQS::Queue
 if not kms_key_id:
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message=f"Server side encryption turned off for queue with name:
 {queue_name}",
 errorCode=HandlerErrorCode.NonCompliant,
)

 return ProgressEvent(
 status=OperationStatus.SUCCESS,
 message=f"Successfully invoked PreCreateHookHandler for
 targetAWS::SQS::Queue with name: {queue_name}",
)

@hook.handler(HookInvocationPoint.CREATE_PRE_PROVISION)
def pre_create_handler(
 session: Optional[SessionProxy],
 request: HookHandlerRequest,
 callback_context: MutableMapping[str, Any],

Hooks modellieren 145

CloudFormation Hooks Benutzerhandbuch

 type_configuration: TypeConfigurationModel,
) -> ProgressEvent:
 target_name = request.hookContext.targetName
 if "AWS::S3::Bucket" == target_name:
 return _validate_s3_bucket_encryption(
 request.hookContext.targetModel.get("resourceProperties"),
 type_configuration.encryptionAlgorithm,
)
 elif "AWS::SQS::Queue" == target_name:
 return _validate_sqs_queue_encryption(
 request.hookContext.targetModel.get("resourceProperties")
)
 else:
 raise exceptions.InvalidRequest(f"Unknown target type: {target_name}")

def _validate_bucket_encryption_rules_not_updated(
 resource_properties, previous_resource_properties
) -> ProgressEvent:
 bucket_encryption_configs = resource_properties.get("BucketEncryption",
 {}).get(
 "ServerSideEncryptionConfiguration", []
)
 previous_bucket_encryption_configs = previous_resource_properties.get(
 "BucketEncryption", {}
).get("ServerSideEncryptionConfiguration", [])

 if len(bucket_encryption_configs) != len(previous_bucket_encryption_configs):
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message=f"Current number of bucket encryption configs does not
 match previous. Current has {str(len(bucket_encryption_configs))} configs while
 previously there were {str(len(previous_bucket_encryption_configs))} configs",
 errorCode=HandlerErrorCode.NonCompliant,
)

 for i in range(len(bucket_encryption_configs)):
 current_encryption_algorithm = (
 bucket_encryption_configs[i]
 .get("ServerSideEncryptionByDefault", {})
 .get("SSEAlgorithm")
)
 previous_encryption_algorithm = (
 previous_bucket_encryption_configs[i]

Hooks modellieren 146

CloudFormation Hooks Benutzerhandbuch

 .get("ServerSideEncryptionByDefault", {})
 .get("SSEAlgorithm")
)

 if current_encryption_algorithm != previous_encryption_algorithm:
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message=f"Bucket Encryption algorithm can not be changed once
 set. The encryption algorithm was changed to {current_encryption_algorithm} from
 {previous_encryption_algorithm}.",
 errorCode=HandlerErrorCode.NonCompliant,
)

 return ProgressEvent(
 status=OperationStatus.SUCCESS,
 message="Successfully invoked PreUpdateHookHandler for target:
 AWS::SQS::Queue",
)

def _validate_queue_encryption_not_disabled(
 resource_properties, previous_resource_properties
) -> ProgressEvent:
 if previous_resource_properties.get(
 "KmsMasterKeyId"
) and not resource_properties.get("KmsMasterKeyId"):
 return ProgressEvent(
 status=OperationStatus.FAILED,
 errorCode=HandlerErrorCode.NonCompliant,
 message="Queue encryption can not be disable",
)
 else:
 return ProgressEvent(status=OperationStatus.SUCCESS)

@hook.handler(HookInvocationPoint.UPDATE_PRE_PROVISION)
def pre_update_handler(
 session: Optional[SessionProxy],
 request: BaseHookHandlerRequest,
 callback_context: MutableMapping[str, Any],
 type_configuration: MutableMapping[str, Any],
) -> ProgressEvent:
 target_name = request.hookContext.targetName
 if "AWS::S3::Bucket" == target_name:

Hooks modellieren 147

CloudFormation Hooks Benutzerhandbuch

 resource_properties =
 request.hookContext.targetModel.get("resourceProperties")
 previous_resource_properties = request.hookContext.targetModel.get(
 "previousResourceProperties"
)

 return _validate_bucket_encryption_rules_not_updated(
 resource_properties, previous_resource_properties
)
 elif "AWS::SQS::Queue" == target_name:
 resource_properties =
 request.hookContext.targetModel.get("resourceProperties")
 previous_resource_properties = request.hookContext.targetModel.get(
 "previousResourceProperties"
)

 return _validate_queue_encryption_not_disabled(
 resource_properties, previous_resource_properties
)
 else:
 raise exceptions.InvalidRequest(f"Unknown target type: {target_name}")

Fahren Sie mit dem nächsten Thema, Einen benutzerdefinierten Hook registrieren mit
CloudFormation, fort.

Einen benutzerdefinierten Hook registrieren mit CloudFormation

Sobald Sie einen benutzerdefinierten Hook erstellt haben, müssen Sie ihn registrieren,
CloudFormation damit Sie ihn verwenden können. In diesem Abschnitt erfahren Sie, wie Sie Ihren
Hook für die Verwendung in Ihrem verpacken und registrieren AWS-Konto.

Einen Hook verpacken (Java)

Wenn Sie Ihren Hook mit Java entwickelt haben, verwenden Sie Maven, um ihn zu verpacken.

Führen Sie im Verzeichnis Ihres Hook-Projekts den folgenden Befehl aus, um Ihren Hook zu
erstellen, Komponententests auszuführen und Ihr Projekt als JAR Datei zu verpacken, mit der Sie
Ihren Hook an die CloudFormation Registry senden können.

mvn clean package

Hooks registrieren 148

CloudFormation Hooks Benutzerhandbuch

Registrieren Sie einen benutzerdefinierten Hook

Um einen Hook zu registrieren

1. (Optional) Konfigurieren Sie Ihren AWS-Region Standardnamen aufus-west-2, indem Sie
configureVorgang.

$ aws configure
AWS Access Key ID [None]: <Your Access Key ID>
AWS Secret Access Key [None]: <Your Secret Key>
Default region name [None]: us-west-2
Default output format [None]: json

2. (Optional) Der folgende Befehl erstellt und verpackt Ihr Hook-Projekt, ohne es zu registrieren.

$ cfn submit --dry-run

3. Registrieren Sie Ihren Hook mit dem CloudFormation CLI submitBetrieb.

$ cfn submit --set-default

Der Befehl gibt den folgenden Befehl zurück.

{‘ProgressStatus’: ‘COMPLETE’}

Ergebnisse: Sie haben Ihren Hook erfolgreich registriert.

Überprüfe, ob Hooks in deinem Konto zugänglich sind

Vergewissere dich, dass dein Hook in dir AWS-Konto und in den Regionen, in denen du ihn
eingereicht hast, verfügbar ist.

1. Um deinen Hook zu verifizieren, verwende den list-typesBefehl, um Ihren neu registrierten Hook
aufzulisten und eine zusammenfassende Beschreibung zurückzugeben.

$ aws cloudformation list-types

Der Befehl gibt die folgende Ausgabe zurück und zeigt Ihnen auch öffentlich verfügbare Hooks,
die Sie in Ihren Regionen AWS-Konto und Regionen aktivieren können.

Hooks registrieren 149

https://docs.aws.amazon.com/cli/latest/reference/configure/
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-submit.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html

CloudFormation Hooks Benutzerhandbuch

{
 "TypeSummaries": [
 {
 "Type": "HOOK",
 "TypeName": "MyCompany::Testing::MyTestHook",
 "DefaultVersionId": "00000001",
 "TypeArn": "arn:aws:cloudformation:us-west-2:ACCOUNT_ID/type/hook/
MyCompany-Testing-MyTestHook",
 "LastUpdated": "2021-08-04T23:00:03.058000+00:00",
 "Description": "Verifies S3 bucket and SQS queues properties before
 creating or updating"
 }
]
}

2. Rufen Sie das TypeArn aus der list-type Ausgabe für Ihren Hook ab und speichern Sie es.

export HOOK_TYPE_ARN=arn:aws:cloudformation:us-west-2:ACCOUNT_ID/type/hook/
MyCompany-Testing-MyTestHook

Informationen zum Veröffentlichen von Hooks für den öffentlichen Gebrauch finden Sie unterHooks
für den öffentlichen Gebrauch veröffentlichen.

Hooks konfigurieren

Nachdem Sie Ihren Hook entwickelt und registriert haben, können Sie Ihren Hook in Ihrem
konfigurieren, AWS-Konto indem Sie ihn in der Registry veröffentlichen.

• Um einen Hook in Ihrem Konto zu konfigurieren, verwenden Sie SetTypeConfigurationOperation.
Diese Operation aktiviert die Eigenschaften des Hooks, die im properties Schemaabschnitt
des Hooks definiert sind. Im folgenden Beispiel ist die minBuckets Eigenschaft 1 in der
Konfiguration auf gesetzt.

Note

Indem Sie Hooks in Ihrem Konto aktivieren, autorisieren Sie einen Hook, die von Ihnen
AWS-Konto definierten Berechtigungen zu verwenden. CloudFormation entfernt nicht
benötigte Berechtigungen, bevor du deine Berechtigungen an den Hook weitergibst.
CloudFormation empfiehlt Kunden oder Hook-Benutzern, die Hook-Berechtigungen zu

Hooks registrieren 150

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_SetTypeConfiguration.html

CloudFormation Hooks Benutzerhandbuch

überprüfen und sich darüber im Klaren zu sein, welche Berechtigungen die Hooks haben
dürfen, bevor Sie Hooks in Ihrem Konto aktivieren.

Geben Sie die Konfigurationsdaten für Ihre registrierte Hook-Erweiterung im selben Konto an und
AWS-Region.

$ aws cloudformation set-type-configuration --region us-west-2
 --configuration '{"CloudFormationConfiguration":{"HookConfiguration":
{"HookInvocationStatus":"ENABLED","FailureMode":"FAIL","Properties":{"minBuckets":
 "1","minQueues": "1", "encryptionAlgorithm": "aws:kms"}}}}'
 --type-arn $HOOK_TYPE_ARN

Important

Damit Ihr Hook die Konfiguration Ihres Stacks proaktiv überprüfen kann, müssen Sie
ENABLED in dem HookInvocationStatus HookConfiguration Abschnitt, nachdem
der Hook registriert und in Ihrem Konto aktiviert wurde, den Wert auf setzen.

Zugriff AWS APIs in Handlern

Wenn Ihr Hooks AWS API in einem seiner Handler einen verwendet, erstellt der CFN - CLI
automatisch eine Vorlage für eine IAM Ausführungsrolle,. hook-role.yaml Die hook-role.yaml
Vorlage basiert auf den Berechtigungen, die für jeden Handler im Abschnitt des Handlers des Hook-
Schemas angegeben sind. Wenn das --role-arn Flag während des generateBei der Operation
wird die Rolle in diesem Stack bereitgestellt und als Ausführungsrolle für den Hook verwendet.

Weitere Informationen finden Sie unter Zugreifen AWS APIs von einem Ressourcentyp aus.

Vorlage hook-role.yaml

Note

Wenn Sie sich dafür entscheiden, Ihre eigene Ausführungsrolle zu erstellen,
empfehlen wir dringend, das Prinzip der geringsten Rechte anzuwenden, indem
Sie nur die Liste zulassen und. hooks.cloudformation.amazonaws.com
resources.cloudformation.amazonaws.com

Hooks registrieren 151

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-generate.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-develop.html#resource-type-develop-executionrole

CloudFormation Hooks Benutzerhandbuch

Die folgende Vorlage verwendet IAM die SQS Berechtigungen Amazon S3 und Amazon.

AWSTemplateFormatVersion: 2010-09-09
Description: >
 This CloudFormation template creates a role assumed by CloudFormation during
 Hook operations on behalf of the customer.
Resources:
 ExecutionRole:
 Type: 'AWS::IAM::Role'
 Properties:
 MaxSessionDuration: 8400
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - resources.cloudformation.amazonaws.com
 - hooks.cloudformation.amazonaws.com
 Action: 'sts:AssumeRole'
 Condition:
 StringEquals:
 aws:SourceAccount: !Ref AWS::AccountId
 StringLike:
 aws:SourceArn: !Sub arn:${AWS::Partition}:cloudformation:
${AWS::Region}:${AWS::AccountId}:type/hook/MyCompany-Testing-MyTestHook/*
 Path: /
 Policies:
 - PolicyName: HookTypePolicy
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action:
 - 's3:GetEncryptionConfiguration'
 - 's3:ListBucket'
 - 's3:ListAllMyBuckets'
 - 'sqs:GetQueueAttributes'
 - 'sqs:GetQueueUrl'
 - 'sqs:ListQueues'
 Resource: '*'
Outputs:
 ExecutionRoleArn:
 Value: !GetAtt

Hooks registrieren 152

CloudFormation Hooks Benutzerhandbuch

 - ExecutionRole
 - Arn

Testen Sie einen benutzerdefinierten Hook in Ihrem AWS-Konto

Nachdem Sie Ihre Handler-Funktionen codiert haben, die einem Aufrufpunkt entsprechen, ist es an
der Zeit, Ihren benutzerdefinierten Hook auf einem CloudFormation Stack zu testen.

Der Hook-Fehlermodus ist auf eingestellt, FAIL wenn die CloudFormation Vorlage keinen S3-Bucket
mit den folgenden Eigenschaften bereitgestellt hat:

• Die Amazon S3 S3-Bucket-Verschlüsselung ist eingestellt.

• Der Amazon S3 S3-Bucket-Schlüssel ist für den Bucket aktiviert.

• Der für den Amazon S3 S3-Bucket festgelegte Verschlüsselungsalgorithmus ist der richtige
erforderliche Algorithmus.

• Die AWS Key Management Service Schlüssel-ID ist festgelegt.

Erstellen Sie im folgenden Beispiel eine Vorlage, die my-failed-bucket-stack.yml mit dem
Stack-Namen aufgerufen wird und bei der my-hook-stack die Stack-Konfiguration fehlschlägt und
beendet wird, bevor die Ressource bereitgestellt wird.

Testen von Hooks durch Bereitstellung eines Stacks

Beispiel 1: Um einen Stack bereitzustellen

Stellen Sie einen nicht konformen Stack bereit

1. Verfassen Sie eine Vorlage, die einen S3-Bucket spezifiziert. Beispiel, my-failed-bucket-
stack.yml.

AWSTemplateFormatVersion: 2010-09-09
Resources:
 S3Bucket:
 Type: AWS::S3::Bucket
 Properties: {}

2. Erstellen Sie einen Stack und geben Sie Ihre Vorlage im AWS Command Line Interface (AWS
CLI) an. Geben Sie im folgenden Beispiel den Stacknamen als my-hook-stack und den
Vorlagennamen als anmy-failed-bucket-stack.yml.

Hooks testen 153

CloudFormation Hooks Benutzerhandbuch

$ aws cloudformation create-stack \
 --stack-name my-hook-stack \
 --template-body file://my-failed-bucket-stack.yml

3. (Optional) Zeigen Sie Ihren Stack-Fortschritt an, indem Sie Ihren Stack-Namen angeben. Geben
Sie im folgenden Beispiel den Stack-Namen anmy-hook-stack.

$ aws cloudformation describe-stack-events \
 --stack-name my-hook-stack

Verwenden Sie den describe-stack-events Vorgang, um den Hook-Fehler beim Erstellen
des Buckets zu überprüfen. Im Folgenden finden Sie ein Beispiel für die Ausgabe des Befehls.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
hook-stack/2c693970-f57e-11eb-a0fb-061a2a83f0b9",
 "EventId": "S3Bucket-CREATE_FAILED-2021-08-04T23:47:03.305Z",
 "StackName": "my-hook-stack",
 "LogicalResourceId": "S3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:47:03.305000+00:00",
 "ResourceStatus": "CREATE_FAILED",
 "ResourceStatusReason": "The following hook(s) failed:
 [MyCompany::Testing::MyTestHook]",
 "ResourceProperties": "{}",
 "ClientRequestToken": "Console-CreateStack-abe71ac2-ade4-
a762-0499-8d34d91d6a92"
 },
 ...
]
}

Ergebnisse: Der Hook-Aufruf hat die Stack-Konfiguration nicht bestanden und die Ressource
konnte nicht bereitgestellt werden.

Hooks testen 154

CloudFormation Hooks Benutzerhandbuch

Verwenden Sie eine CloudFormation Vorlage, um die Hook-Validierung zu bestehen

1. Um einen Stack zu erstellen und die Hook-Validierung zu bestehen, aktualisieren Sie die Vorlage
so, dass Ihre Ressource einen verschlüsselten S3-Bucket verwendet. In diesem Beispiel wird die
Vorlage verwendetmy-encrypted-bucket-stack.yml.

AWSTemplateFormatVersion: 2010-09-09
Description: |
 This CloudFormation template provisions an encrypted S3 Bucket
Resources:
 EncryptedS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub encryptedbucket-${AWS::Region}-${AWS::AccountId}
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: !Ref EncryptionKey
 BucketKeyEnabled: true
 EncryptionKey:
 Type: AWS::KMS::Key
 DeletionPolicy: Retain
 Properties:
 Description: KMS key used to encrypt the resource type artifacts
 EnableKeyRotation: true
 KeyPolicy:
 Version: 2012-10-17
 Statement:
 - Sid: Enable full access for owning account
 Effect: Allow
 Principal:
 AWS: !Ref AWS::AccountId
 Action: 'kms:*'
 Resource: '*'
Outputs:
 EncryptedBucketName:
 Value: !Ref EncryptedS3Bucket

Hooks testen 155

CloudFormation Hooks Benutzerhandbuch

Note

Hooks werden nicht für übersprungene Ressourcen aufgerufen.

2. Erstelle einen Stapel und spezifiziere deine Vorlage. In diesem Beispiel lautet der Stack-
Namemy-encrypted-bucket-stack.

$ aws cloudformation create-stack \
 --stack-name my-encrypted-bucket-stack \
 --template-body file://my-encrypted-bucket-stack.yml \

3. (Optional) Zeigen Sie Ihren Stack-Fortschritt an, indem Sie den Stack-Namen angeben.

$ aws cloudformation describe-stack-events \
 --stack-name my-encrypted-bucket-stack

Verwenden Sie den describe-stack-events Befehl, um die Antwort anzuzeigen. Im
Folgenden finden Sie ein Beispiel für den describe-stack-events-Befehl.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_COMPLETE-2021-08-04T23:23:20.973Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:23:20.973000+00:00",
 "ResourceStatus": "CREATE_COMPLETE",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {

Hooks testen 156

CloudFormation Hooks Benutzerhandbuch

 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_IN_PROGRESS-2021-08-04T23:22:59.410Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:59.410000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Resource creation Initiated",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-6516081f-c1f2-4bfe-a0f0-cefa28679994",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:58.349000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Hook invocations complete. Resource creation
 initiated",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 ...
]
}

Ergebnisse: Der Stack wurde CloudFormation erfolgreich erstellt. Die Logik des Hooks
überprüfte vor der Bereitstellung der AWS::S3::Bucket Ressource, ob die Ressource
serverseitige Verschlüsselung enthielt.

Hooks testen 157

CloudFormation Hooks Benutzerhandbuch

Beispiel 2: Um einen Stack bereitzustellen

Stellen Sie einen nicht konformen Stack bereit

1. Verfassen Sie eine Vorlage, die einen S3-Bucket spezifiziert. Zum Beispiel aes256-
bucket.yml.

AWSTemplateFormatVersion: 2010-09-09
Description: |
 This CloudFormation template provisions an encrypted S3 Bucket
Resources:
 EncryptedS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub encryptedbucket-${AWS::Region}-${AWS::AccountId}
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: AES256
 BucketKeyEnabled: true
Outputs:
 EncryptedBucketName:
 Value: !Ref EncryptedS3Bucket

2. Erstellen Sie einen Stack und geben Sie Ihre Vorlage im an AWS CLI. Geben Sie im folgenden
Beispiel den Stacknamen als my-hook-stack und den Vorlagennamen als anaes256-
bucket.yml.

$ aws cloudformation create-stack \
 --stack-name my-hook-stack \
 --template-body file://aes256-bucket.yml

3. (Optional) Zeigen Sie Ihren Stack-Fortschritt an, indem Sie Ihren Stack-Namen angeben. Geben
Sie im folgenden Beispiel den Stack-Namen anmy-hook-stack.

$ aws cloudformation describe-stack-events \
 --stack-name my-hook-stack

Verwenden Sie den describe-stack-events Vorgang, um den Hook-Fehler beim Erstellen
des Buckets zu überprüfen. Im Folgenden finden Sie ein Beispiel für die Ausgabe des Befehls.

Hooks testen 158

CloudFormation Hooks Benutzerhandbuch

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
hook-stack/2c693970-f57e-11eb-a0fb-061a2a83f0b9",
 "EventId": "S3Bucket-CREATE_FAILED-2021-08-04T23:47:03.305Z",
 "StackName": "my-hook-stack",
 "LogicalResourceId": "S3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:47:03.305000+00:00",
 "ResourceStatus": "CREATE_FAILED",
 "ResourceStatusReason": "The following hook(s) failed:
 [MyCompany::Testing::MyTestHook]",
 "ResourceProperties": "{}",
 "ClientRequestToken": "Console-CreateStack-abe71ac2-ade4-
a762-0499-8d34d91d6a92"
 },
 ...
]
}

Ergebnisse: Der Hook-Aufruf hat die Stack-Konfiguration nicht bestanden und die Ressource
konnte nicht bereitgestellt werden. Der Stack ist aufgrund der falsch konfigurierten S3-Bucket-
Verschlüsselung fehlgeschlagen. Die Konfiguration vom Typ Hook erfordert, aws:kms solange
dieser Bucket verwendet wirdAES256.

Verwenden Sie eine CloudFormation Vorlage, um die Hook-Validierung zu bestehen

1. Um einen Stack zu erstellen und die Hook-Validierung zu bestehen, aktualisieren Sie die Vorlage
so, dass Ihre Ressource einen verschlüsselten S3-Bucket verwendet. In diesem Beispiel wird die
Vorlage verwendetkms-bucket-and-queue.yml.

AWSTemplateFormatVersion: 2010-09-09
Description: |
 This CloudFormation template provisions an encrypted S3 Bucket
Resources:
 EncryptedS3Bucket:
 Type: AWS::S3::Bucket

Hooks testen 159

CloudFormation Hooks Benutzerhandbuch

 Properties:
 BucketName: !Sub encryptedbucket-${AWS::Region}-${AWS::AccountId}
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: !Ref EncryptionKey
 BucketKeyEnabled: true
 EncryptedQueue:
 Type: AWS::SQS::Queue
 Properties:
 QueueName: !Sub encryptedqueue-${AWS::Region}-${AWS::AccountId}
 KmsMasterKeyId: !Ref EncryptionKey
 EncryptionKey:
 Type: AWS::KMS::Key
 DeletionPolicy: Retain
 Properties:
 Description: KMS key used to encrypt the resource type artifacts
 EnableKeyRotation: true
 KeyPolicy:
 Version: 2012-10-17
 Statement:
 - Sid: Enable full access for owning account
 Effect: Allow
 Principal:
 AWS: !Ref AWS::AccountId
 Action: 'kms:*'
 Resource: '*'
Outputs:
 EncryptedBucketName:
 Value: !Ref EncryptedS3Bucket
 EncryptedQueueName:
 Value: !Ref EncryptedQueue

Note

Hooks werden nicht für übersprungene Ressourcen aufgerufen.

2. Erstelle einen Stapel und spezifiziere deine Vorlage. In diesem Beispiel lautet der Stack-
Namemy-encrypted-bucket-stack.

$ aws cloudformation create-stack \

Hooks testen 160

CloudFormation Hooks Benutzerhandbuch

 --stack-name my-encrypted-bucket-stack \
 --template-body file://kms-bucket-and-queue.yml

3. (Optional) Zeigen Sie Ihren Stack-Fortschritt an, indem Sie den Stack-Namen angeben.

$ aws cloudformation describe-stack-events \
 --stack-name my-encrypted-bucket-stack

Verwenden Sie den describe-stack-events Befehl, um die Antwort anzuzeigen. Im
Folgenden finden Sie ein Beispiel für den describe-stack-events-Befehl.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_COMPLETE-2021-08-04T23:23:20.973Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:23:20.973000+00:00",
 "ResourceStatus": "CREATE_COMPLETE",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_IN_PROGRESS-2021-08-04T23:22:59.410Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:59.410000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",

Hooks testen 161

CloudFormation Hooks Benutzerhandbuch

 "ResourceStatusReason": "Resource creation Initiated",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-6516081f-c1f2-4bfe-a0f0-cefa28679994",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:58.349000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Hook invocations complete. Resource creation
 initiated",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 ...
]
}

Ergebnisse: Der Stack wurde CloudFormation erfolgreich erstellt. Die Logik des Hooks
überprüfte vor der Bereitstellung der AWS::S3::Bucket Ressource, ob die Ressource
serverseitige Verschlüsselung enthielt.

Einen benutzerdefinierten Hook aktualisieren

Durch die Aktualisierung eines benutzerdefinierten Hooks können Revisionen im Hook in der
CloudFormation Registrierung verfügbar gemacht werden.

Um einen benutzerdefinierten Hook zu aktualisieren, reichen Sie Ihre Änderungen an die
CloudFormation Registry über CloudFormation CLI submitOperation.

$ cfn submit

Hooks aktualisieren 162

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-submit.html

CloudFormation Hooks Benutzerhandbuch

Um die Standardversion Ihres Hooks in Ihrem Konto anzugeben, verwenden Sie den set-type-default-
versionBefehl und geben Sie den Typ, den Typnamen und die Versions-ID an.

$ aws cloudformation set-type-default-version \
 --type HOOK \
 --type-name MyCompany::Testing::MyTestHook \
 --version-id 00000003

Um Informationen über die Versionen eines Hooks abzurufen, verwenden Sie list-type-versions.

$ aws cloudformation list-type-versions \
 --type HOOK \
 --type-name "MyCompany::Testing::MyTestHook"

Einen benutzerdefinierten Hook von der Registrierung abmelden
CloudFormation

Wenn Sie einen benutzerdefinierten Hook deregistrieren, wird die Erweiterung oder
Erweiterungsversion als DEPRECATED in der CloudFormation Registrierung markiert, wodurch sie
nicht mehr aktiv verwendet werden kann. Sobald der benutzerdefinierte Hook veraltet ist, kann er
nicht mehr in einem Vorgang verwendet werden. CloudFormation

Note

Bevor Sie den Hook deregistrieren, müssen Sie alle vorherigen aktiven Versionen dieser
Erweiterung einzeln abmelden. Weitere Informationen finden Sie unter DeregisterType.

Um einen Hook zu deregistrieren, verwenden Sie den deregister-typeOperation und spezifizieren Sie
Ihren Hook. ARN

$ aws cloudformation deregister-type \
 --arn HOOK_TYPE_ARN

Dieser Befehl erzeugt keine Ausgabe.

Hooks deregistrieren 163

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-default-version.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-default-version.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-type-versions.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DeregisterType.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deregister-type.html

CloudFormation Hooks Benutzerhandbuch

Hooks für den öffentlichen Gebrauch veröffentlichen

Um einen öffentlichen Hook eines Drittanbieters zu entwickeln, entwickeln Sie Ihren Hook als private
Erweiterung. Dann in jedem, AWS-Region in dem Sie die Erweiterung öffentlich verfügbar machen
möchten:

1. Registrieren Sie Ihren Hook als private Erweiterung in der CloudFormation Registrierung.

2. Testen Sie Ihren Hook, um sicherzustellen, dass er alle erforderlichen Voraussetzungen für die
Veröffentlichung in der CloudFormation Registrierung erfüllt.

3. Veröffentlichen Sie Ihren Hook in der CloudFormation Registry.

Note

Bevor Sie eine Erweiterung in einer bestimmten Region veröffentlichen, müssen
Sie sich zunächst als Herausgeber von Erweiterungen in dieser Region registrieren.
Informationen dazu, wie Sie dies in mehreren Regionen gleichzeitig tun können, finden
Sie im CloudFormation CLIBenutzerhandbuch unter Veröffentlichen von Erweiterungen
StackSets in mehreren Regionen.

Nachdem Sie Ihren Hook entwickelt und registriert haben, können Sie ihn allgemeinen
CloudFormation Benutzern öffentlich zugänglich machen, indem Sie ihn als öffentliche Erweiterung
eines Drittanbieters in der CloudFormation Registry veröffentlichen.

Öffentliche Hooks von Drittanbietern ermöglichen es Ihnen, CloudFormation Benutzern die
Möglichkeit zu geben, die Konfiguration von AWS Ressourcen vor der Bereitstellung proaktiv zu
überprüfen. Wie bei privaten Hooks werden öffentliche Hooks genauso behandelt wie alle von Within
veröffentlichten AWS Hooks. CloudFormation

In der Registry veröffentlichte Hooks sind für alle CloudFormation Benutzer in der Region sichtbar,
AWS-Regionen in der sie veröffentlicht wurden. Benutzer können Ihre Erweiterung dann in ihrem
Konto aktivieren, sodass sie in ihren Vorlagen verwendet werden kann. Weitere Informationen finden
Sie im CloudFormation Benutzerhandbuch unter Verwenden von öffentlichen Erweiterungen von
Drittanbietern aus der CloudFormation Registrierung.

Hooks veröffentlichen 164

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension-stacksets.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension-stacksets.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry-public.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry-public.html

CloudFormation Hooks Benutzerhandbuch

Testen eines benutzerdefinierten Hooks für den öffentlichen Gebrauch

Um Ihren registrierten benutzerdefinierten Hook zu veröffentlichen, muss er alle für ihn definierten
Testanforderungen erfüllen. Im Folgenden finden Sie eine Liste der Anforderungen, die erforderlich
sind, bevor Sie Ihren benutzerdefinierten Hook als Erweiterung eines Drittanbieters veröffentlichen.

Jeder Handler und jedes Ziel werden zweimal getestet. Einmal für SUCCESS und einmal fürFAILED.

• Für den SUCCESS Antwortfall:

• Der Status muss seinSUCCESS.

• Darf keinen Fehlercode zurückgeben.

• Falls angegeben, sollte die Rückrufverzögerung auf 0 Sekunden gesetzt werden.

• Für den FAILED Antwortfall:

• Der Status muss seinFAILED.

• Muss einen Fehlercode zurückgeben.

• Es muss eine Nachricht als Antwort vorliegen.

• Falls angegeben, sollte die Rückrufverzögerung auf 0 Sekunden gesetzt werden.

• Für den IN_PROGRESS Antwortfall:

• Darf keinen Fehlercode zurückgeben.

• ResultDas Feld darf nicht als Antwort gesetzt werden.

Angabe von Eingabedaten für die Verwendung in Vertragstests

Standardmäßig CloudFormation führt der Vertragstests mithilfe von Eingabeeigenschaften durch,
die aus den Mustern generiert wurden, die Sie in Ihrem Hook-Schema definieren. Die meisten
Hooks sind jedoch so komplex, dass die Eingabeeigenschaften für die vorherige Erstellung oder
Aktualisierung von Provisioning-Stacks ein Verständnis der bereitgestellten Ressource erfordern.
Um dieses Problem zu lösen, können Sie die Eingabe angeben, die das Unternehmen bei der
Durchführung seiner CloudFormation Vertragstests verwendet.

CloudFormation bietet Ihnen zwei Möglichkeiten, die Eingabedaten anzugeben, die bei der
Durchführung von Vertragstests verwendet werden sollen:

• Überschreibt die Datei

Hooks veröffentlichen 165

CloudFormation Hooks Benutzerhandbuch

Die Verwendung einer overrides Datei bietet eine einfache Möglichkeit, Eingabedaten für
bestimmte Eigenschaften anzugebenpreCreate, die CloudFormation während preUpdate und
bei preDelete Betriebstests verwendet werden können.

• Eingabedateien

Sie können auch mehrere input Dateien verwenden, um Eingabedaten für den Vertragstest
anzugeben, wenn:

• Sie möchten oder müssen unterschiedliche Eingabedaten für Erstellungs-, Aktualisierungs- und
Löschvorgänge oder ungültige Daten für Tests angeben.

• Sie möchten mehrere verschiedene Eingabedatensätze angeben.

Eingabedaten mithilfe einer Override-Datei angeben

Das Folgende ist ein Beispiel für die Eingabedaten von Amazon S3 Hook unter Verwendung der
overrides Datei.

{
 "CREATE_PRE_PROVISION": {
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 }
 },
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "/QueueName": "MyQueueContract",
 "/KmsMasterKeyId": "hellocontract"
 }
 }
 },
 "UPDATE_PRE_PROVISION": {

Hooks veröffentlichen 166

CloudFormation Hooks Benutzerhandbuch

 "AWS::S3::Bucket": {
 "resourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "previousResourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 }
 }
 },
 "INVALID_UPDATE_PRE_PROVISION": {
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "AES256"
 }
 }
]
 },
 "previousResourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [

Hooks veröffentlichen 167

CloudFormation Hooks Benutzerhandbuch

 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 }
 }
 },
 "INVALID": {
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "/QueueName": "MyQueueContract",
 "/KmsMasterKeyId": "KMS-KEY-ARN"
 }
 }
 }
}

Angeben von Eingabedaten mithilfe von Eingabedateien

Verwenden Sie input Dateien, um verschiedene Arten von Eingabedaten anzugeben, die verwendet
werden CloudFormation sollen: preCreate Eingabe, preUpdate Eingabe und ungültige Eingabe.
Jede Art von Daten wird in einer separaten Datei angegeben. Sie können auch mehrere Sätze von
Eingabedaten für Vertragstests angeben.

Um input Dateien anzugeben, die CloudFormation bei Vertragstests verwendet werden sollen,
fügen Sie dem Stammverzeichnis Ihres Hooks-Projekts einen inputs Ordner hinzu. Fügen Sie dann
Ihre Eingabedateien hinzu.

Geben Sie an, welche Art von Eingabedaten eine Datei enthält, indem Sie die folgenden
Namenskonventionen verwenden, wobei eine Ganzzahl nsteht:

• inputs_n_pre_create.json: Verwenden Sie Dateien mit preCreate Handlern, um Eingaben
für die Erstellung der Ressource anzugeben.

• inputs_n_pre_update.json: Verwenden Sie Dateien mit preUpdate Handlern, um Eingaben
für die Aktualisierung der Ressource anzugeben.

• inputs_n_pre_delete.json: Verwenden Sie Dateien mit preDelete Handlern, um Eingaben
für das Löschen der Ressource anzugeben.

Hooks veröffentlichen 168

CloudFormation Hooks Benutzerhandbuch

• inputs_n_invalid.json: Zur Angabe ungültiger Eingaben zum Testen.

Um mehrere Sätze von Eingabedaten für Vertragstests anzugeben, erhöhen Sie die Ganzzahl
in den Dateinamen, um Ihre Eingabedatensätze zu ordnen. Ihr erster Satz von Eingabedateien
sollte beispielsweise den Namen inputs_1_pre_create.jsoninputs_1_pre_update.json,
und inputs_1_pre_invalid.json haben. Ihr nächster Satz würde den Namen
inputs_2_pre_create.json inputs_2_pre_update.jsoninputs_2_pre_invalid.json,
und usw. tragen.

Jede Eingabedatei ist eine JSON Datei, die nur die Ressourceneigenschaften enthält, die beim
Testen verwendet werden sollen.

Das Folgende ist ein Beispielverzeichnis inputs für die Amazon S3 Angabe von Eingabedaten
mithilfe von Eingabedateien.

inputs_1_pre_create.json

Das Folgende ist ein Beispiel für den inputs_1_pre_create.json Vertragstest.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "AccessControl": "BucketOwnerFullControl",
 "AnalyticsConfigurations": [],
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 },
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "QueueName": "MyQueue",
 "KmsMasterKeyId": "KMS-KEY-ARN"

Hooks veröffentlichen 169

CloudFormation Hooks Benutzerhandbuch

 }
 }
}

inputs_1_pre_update.json

Das Folgende ist ein Beispiel für den inputs_1_pre_update.json Vertragstest.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 },
 "previousResourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 }
}

Hooks veröffentlichen 170

CloudFormation Hooks Benutzerhandbuch

inputs_1_invalid.json

Das Folgende ist ein Beispiel für den inputs_1_invalid.json Vertragstest.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "AccessControl": "BucketOwnerFullControl",
 "AnalyticsConfigurations": [],
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "ServerSideEncryptionByDefault": {
 "SSEAlgorithm": "AES256"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 },
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "NotValid": "The property of this resource is not valid."
 }
 }
}

inputs_1_invalid_pre_update.json

Das Folgende ist ein Beispiel für den inputs_1_invalid_pre_update.json Vertragstest.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "AES256"
 }

Hooks veröffentlichen 171

CloudFormation Hooks Benutzerhandbuch

 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 },
 "previousResourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 }
}

Weitere Informationen finden Sie im CloudFormation CLIBenutzerhandbuch unter Erweiterungen
veröffentlichen, um sie der Öffentlichkeit zugänglich zu machen.

Schema-Syntaxreferenz für CloudFormation Hooks

In diesem Abschnitt wird die Syntax des Schemas beschrieben, das Sie zur Entwicklung von
CloudFormation Hooks verwenden.

Ein Hook beinhaltet eine Hook-Spezifikation, die durch ein JSON-Schema und Hook-Handler
dargestellt wird. Der erste Schritt bei der Erstellung eines benutzerdefinierten Hooks besteht darin,
ein Schema zu modellieren, das den Hook, seine Eigenschaften und seine Attribute definiert. Wenn
Sie ein benutzerdefiniertes Hook-Projekt mit dem CloudFormation initCLI-Befehl initialisieren, wird
eine Hook-Schemadatei für Sie erstellt. Verwenden Sie diese Schemadatei als Ausgangspunkt für die
Definition der Form und Semantik Ihres benutzerdefinierten Hooks.

Schemasyntax

Das folgende Schema ist die Struktur für einen Hook.

Schemasyntax 172

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-init.html

CloudFormation Hooks Benutzerhandbuch

{
"typeName": "string",
 "description": "string",
 "sourceUrl": "string",
 "documentationUrl": "string",
 "definitions": {
 "definitionName": {
 . . .
 }
 },
 "typeConfiguration": {
 "properties": {
 "propertyName": {
 "description": "string",
 "type": "string",
 . . .
 },
 },
 "required": [
 "propertyName"
 . . .
],
 "additionalProperties": false
 },
 "handlers": {
 "preCreate": {
 "targetNames": [
],
 "permissions": [
]
 },
 "preUpdate": {
 "targetNames": [
],
 "permissions": [
]
 },
 "preDelete": {
 "targetNames": [
],
 "permissions": [
]
 }

Schemasyntax 173

CloudFormation Hooks Benutzerhandbuch

 },
 "additionalProperties": false
}

typeName

Der eindeutige Name für Ihren Hook. Gibt einen dreiteiligen Namespace für Ihren Hook an, mit
dem empfohlenen Muster von. Organization::Service::Hook

Note

Die folgenden Organisations-Namespaces sind reserviert und können nicht in Ihren Hook-
Typnamen verwendet werden:

• Alexa

• AMZN

• Amazon

• ASK

• AWS

• Custom

• Dev

Erforderlich: Ja

Muster: ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

Minimum: 10

Maximum: 196

description

Eine kurze Beschreibung des Hooks, der in der Konsole angezeigt wird. CloudFormation

Erforderlich: Ja

sourceUrl

Die URL des Quellcodes für den Hook, falls öffentlich.

Required: No

Schemasyntax 174

CloudFormation Hooks Benutzerhandbuch

Maximum: 4096

documentationUrl

Die URL einer Seite mit detaillierter Dokumentation für den Hook.

Erforderlich: Ja

Muster: ^https\:\/\/[0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])(\:[0-9]*)*([\?/#].*)?$

Maximum: 4096

Note

Obwohl das Hook-Schema vollständige und genaue Eigenschaftsbeschreibungen
enthalten sollte, können Sie die documentationURL Eigenschaft verwenden, um
Benutzern weitere Details, einschließlich Beispiele, Anwendungsfälle und andere
detaillierte Informationen, zur Verfügung zu stellen.

definitions

Verwenden Sie den definitions Block, um gemeinsam genutzte Hook-Eigenschaftsschemas
bereitzustellen.

Es wird als bewährte Methode angesehen, diesen definitions Abschnitt zur Definition von
Schemaelementen zu verwenden, die an mehreren Stellen in Ihrem Hook-Schema verwendet
werden können. Sie können dann einen JSON-Zeiger verwenden, um an den entsprechenden
Stellen in Ihrem Hook-Typschema auf dieses Element zu verweisen.

Required: No

typeConfiguration

Die Definition der Konfigurationsdaten eines Hooks.

Erforderlich: Ja

properties

Die Eigenschaften des Hooks. Alle Eigenschaften eines Hooks müssen im Schema ausgedrückt
werden. Ordnen Sie die Eigenschaften des Hook-Schemas den Konfigurationseigenschaften des
Hook-Typs zu.

Schemasyntax 175

CloudFormation Hooks Benutzerhandbuch

Note

Verschachtelte Eigenschaften sind nicht zulässig. Definieren Sie stattdessen alle
verschachtelten Eigenschaften im definitions Element und verwenden Sie einen $ref
Zeiger, um sie in der gewünschten Eigenschaft zu referenzieren.

Die folgenden Eigenschaften werden derzeit unterstützt:

• default— Der Standardwert der Eigenschaft.

• description— Eine Beschreibung der Immobilie.

• pattern— Ein Regex-Muster, das zur Validierung der Eingabe verwendet wird.

• type— Der akzeptierte Typ der Eigenschaft.

additionalProperties

muss additionalProperties auf false festgelegt sein. Alle Eigenschaften eines Hooks
müssen im Schema ausgedrückt werden: Beliebige Eingaben sind nicht erlaubt.

Erforderlich: Ja

Gültige Werte: false

handlers

Handler spezifizieren die Operationen, die den im Schema definierten Hook initiieren
können, wie z. B. Hook-Aufrufpunkte. Beispielsweise wird ein preUpdate Handler vor den
Aktualisierungsvorgängen für alle angegebenen Ziele im Handler aufgerufen.

Zulässige Werte: preCreate | preUpdate | preDelete

Note

Für den Handler muss mindestens ein Wert angegeben werden.

Important

Stack-Operationen, die zum Status von führen, rufen UpdateCleanup keinen Hook auf.
In den folgenden beiden Szenarien wird beispielsweise der preDelete Handler des
Hooks nicht aufgerufen:

Schemasyntax 176

CloudFormation Hooks Benutzerhandbuch

• Der Stack wird aktualisiert, nachdem eine Ressource aus der Vorlage entfernt wurde.

• eine Ressource mit dem Aktualisierungstyp „Ersatz“ wird gelöscht.

targetNames

Ein String-Array mit Typnamen, auf die Hook abzielt. Wenn ein preCreate
Handler beispielsweise ein AWS::S3::Bucket Ziel hat, wird der Hook während der
Vorbereitstellungsphase für Amazon S3 S3-Buckets ausgeführt.

• TargetName

Geben Sie mindestens einen Zielnamen für jeden implementierten Handler an.

Muster: ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

Minimum: 1

Erforderlich: Ja

Warning

Dynamische Referenzen von SSM SecureString und Secrets Manager werden nicht
aufgelöst, bevor sie an Hooks übergeben werden.

permissions

Ein Zeichenkettenarray, das die AWS Berechtigungen angibt, die zum Aufrufen des Handlers
erforderlich sind.

Erforderlich: Ja

additionalProperties

muss additionalProperties auf false festgelegt sein. Alle Eigenschaften eines Hooks
müssen im Schema ausgedrückt werden: Beliebige Eingaben sind nicht erlaubt.

Erforderlich: Ja

Gültige Werte: false

Schemasyntax 177

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html#update-replacement

CloudFormation Hooks Benutzerhandbuch

Beispiele für Hooks-Schemas

Beispiel 1

Die exemplarischen Vorgehensweisen für Java und Python verwenden das folgende Codebeispiel.
Im Folgenden finden Sie eine Beispielstruktur für einen Hook namens. mycompany-testing-
mytesthook.json

{
 "typeName":"MyCompany::Testing::MyTestHook",
 "description":"Verifies S3 bucket and SQS queues properties before create and
 update",
 "sourceUrl":"https://mycorp.com/my-repo.git",
 "documentationUrl":"https://mycorp.com/documentation",
 "typeConfiguration":{
 "properties":{
 "minBuckets":{
 "description":"Minimum number of compliant buckets",
 "type":"string"
 },
 "minQueues":{
 "description":"Minimum number of compliant queues",
 "type":"string"
 },
 "encryptionAlgorithm":{
 "description":"Encryption algorithm for SSE",
 "default":"AES256",
 "type":"string",
 "pattern": "[a-zA-Z]*[1-9]"
 }
 },
 "required":[

],
 "additionalProperties":false
 },
 "handlers":{
 "preCreate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

Schemasyntax 178

CloudFormation Hooks Benutzerhandbuch

]
 },
 "preUpdate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preDelete":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[
 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetEncryptionConfiguration",
 "sqs:ListQueues",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl"
]
 }
 },
 "additionalProperties":false
}

Beispiel 2

Das folgende Beispiel ist ein Schema, das STACK und CHANGE_SET for verwendet, targetNames
um auf eine Stack-Vorlage und einen Change-Set-Vorgang abzuzielen.

{
 "typeName":"MyCompany::Testing::MyTestHook",
 "description":"Verifies Stack and Change Set properties before create and update",
 "sourceUrl":"https://mycorp.com/my-repo.git",
 "documentationUrl":"https://mycorp.com/documentation",
 "typeConfiguration":{
 "properties":{
 "minBuckets":{

Schemasyntax 179

CloudFormation Hooks Benutzerhandbuch

 "description":"Minimum number of compliant buckets",
 "type":"string"
 },
 "minQueues":{
 "description":"Minimum number of compliant queues",
 "type":"string"
 },
 "encryptionAlgorithm":{
 "description":"Encryption algorithm for SSE",
 "default":"AES256",
 "type":"string",
 "pattern": "[a-zA-Z]*[1-9]"
 }
 },
 "required":[
],
 "additionalProperties":false
 },
 "handlers":{
 "preCreate":{
 "targetNames":[
 "STACK",
 "CHANGE_SET"
],
 "permissions":[
]
 },
 "preUpdate":{
 "targetNames":[
 "STACK"
],
 "permissions":[
]
 },
 "preDelete":{
 "targetNames":[
 "STACK"
],
 "permissions":[

]
 }
 },
 "additionalProperties":false

Schemasyntax 180

CloudFormation Hooks Benutzerhandbuch

}

Schemasyntax 181

CloudFormation Hooks Benutzerhandbuch

CloudFormation Hooks deaktivieren und aktivieren

In diesem Thema wird beschrieben, wie Sie einen Hook deaktivieren und dann wieder aktivieren, um
vorübergehend zu verhindern, dass er in Ihrem Konto aktiv ist. Das Deaktivieren von Hooks kann
nützlich sein, wenn Sie ein Problem untersuchen müssen, ohne dass Hooks stören.

Deaktiviere und aktiviere einen Hook in deinem Konto (Konsole)

Um einen Hook in deinem Konto zu deaktivieren

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com/cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm aus, AWS-Region wo sich der
Hook befindet.

3. Wählen Sie im Navigationsbereich Hooks aus.

4. Wählen Sie den Namen des Hooks, den Sie deaktivieren möchten.

5. Wählen Sie auf der Seite mit den Hook-Details rechts neben dem Namen des Hooks die
Schaltfläche Deaktivieren.

6. Wenn Sie zur Bestätigung aufgefordert werden, wählen Sie Hook deaktivieren.

Um einen zuvor deaktivierten Hook erneut zu aktivieren

1. Melden Sie sich bei https://console.aws.amazon.com/cloudformation an AWS-
Managementkonsole und öffnen Sie die CloudFormation Konsole.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm aus, AWS-Region wo sich der
Hook befindet.

3. Wählen Sie im Navigationsbereich Hooks aus.

4. Wählen Sie den Namen des Hooks, den Sie aktivieren möchten.

5. Wählen Sie auf der Seite mit den Hook-Details rechts neben dem Namen des Hooks die
Schaltfläche Aktivieren.

6. Wenn Sie zur Bestätigung aufgefordert werden, wählen Sie Hook aktivieren.

Deaktiviere und aktiviere einen Hook (Konsole) 182

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

CloudFormation Hooks Benutzerhandbuch

Deaktiviere und aktiviere einen Hook in deinem Konto (AWS CLI)

Important

Die AWS CLI Befehle zum Deaktivieren und Aktivieren von Hooks ersetzen die gesamte
Hook-Konfiguration durch die in der --configuration Option angegebenen Werte. Um
unbeabsichtigte Änderungen zu vermeiden, müssen Sie bei der Ausführung dieser Befehle
alle vorhandenen Einstellungen angeben, die Sie beibehalten möchten. Um die aktuellen
Konfigurationsdaten anzuzeigen, verwenden Sie den describe-typeBefehl.

Um einen Hook zu deaktivieren

Verwenden Sie Folgendes set-type-configurationBefehl und AngabeDISABLED,
HookInvocationStatus wie der Hook deaktiviert werden soll. Ersetzen Sie die Platzhalter durch
Ihre spezifischen Werte.

aws cloudformation set-type-configuration \
 --configuration "{"CloudFormationConfiguration":{"HookConfiguration":
{"HookInvocationStatus": "DISABLED", "FailureMode": "FAIL",
 "TargetOperations": ["STACK","RESOURCE","CHANGE_SET"], "Properties":{}}}}" \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Um einen zuvor deaktivierten Hook wieder zu aktivieren

Verwenden Sie Folgendes set-type-configurationBefehl und AngabeENABLED, um
HookInvocationStatus den Hook wieder zu aktivieren. Ersetzen Sie die Platzhalter durch Ihre
spezifischen Werte.

aws cloudformation set-type-configuration \
 --configuration "{"CloudFormationConfiguration":{"HookConfiguration":
{"HookInvocationStatus": "ENABLED", "FailureMode": "FAIL",
 "TargetOperations": ["STACK","RESOURCE","CHANGE_SET"], "Properties":{}}}}" \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Weitere Informationen finden Sie unter Syntaxreferenz für das Hook-Konfigurationsschema.

Deaktiviere und aktiviere einen Hook (AWS CLI) 183

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html

CloudFormation Hooks Benutzerhandbuch

Aufrufergebnisse für CloudFormation Hooks anzeigen
In diesem Thema wird beschrieben, wie Sie Aufrufergebnisse für CloudFormation Hooks anzeigen.
Durch die Anzeige der Aufrufergebnisse können Sie besser verstehen, wie Hooks Ihre Ressourcen
bewerten, und alle Probleme lösen, die bei der Überprüfung einer Ressource durch Hooks festgestellt
werden.

Aufrufe sind spezifische Fälle, in denen Ihre Validierungslogik (unabhängig davon, ob es sich um eine
AWS Control Tower proaktive Steuerung, eine Guard-Regel oder eine Lambda-Funktion handelt)
während des Lebenszyklus einer Ressource ausgeführt wird.

Aufrufergebnisse in der Konsole anzeigen

Sie können Aufrufergebnisse in der Konsole auf drei Arten anzeigen: über die Seite mit der Aufruf-
Zusammenfassung, über die Aufrufhistorien für einzelne Hooks oder über einzelne Stack-Ereignisse
für stapelspezifische Aufrufe.

Ergebnisse für alle Hooks anzeigen

Die Seite mit der Zusammenfassung der Aufrufe bietet einen umfassenden Überblick über alle Hook-
Aufrufe in Ihrem Konto und Ihrer Region in den letzten 90 Tagen.

Um die Ergebnisse für alle Hooks anzuzeigen

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com/cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm den Ort aus, AWS-Region an dem
Sie Hook-Aufrufe anzeigen möchten.

3. Wählen Sie im Navigationsbereich die Option Aufrufübersicht aus.

4. Auf der Seite wird eine Liste aller Hook-Aufrufe der letzten 90 Tage angezeigt, darunter:

• Aufruf-ID

• Haken

• Target

• Modus (WarnoderFail)

• Ergebnis (Warning,Pass,Failed,In progress)

Aufrufergebnisse anzeigen (Konsole) 184

https://console.aws.amazon.com/cloudformation/

CloudFormation Hooks Benutzerhandbuch

• Uhrzeit des Aufrufs

• Nachricht zum Ergebnis

5. Sie können die Liste mithilfe der Suchleiste oben in der Tabelle filtern, um nach bestimmten
Aufrufen zu suchen.

6. Wählen Sie einen bestimmten Aufruf aus, um weitere Details zum Aufrufergebnis anzuzeigen,
einschließlich Anleitungen zur Behebung fehlgeschlagener Hook-Aufrufe.

Den Aufrufverlauf für einzelne Hooks anzeigen

Sie können die Aufrufergebnisse auch in den Aufruflisten einzelner Hooks einsehen.

Um Hook-Aufrufe für einen bestimmten Hook anzuzeigen

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com /cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm den Ort aus, AWS-Region an dem
Sie Hook-Aufrufe anzeigen möchten.

3. Wählen Sie im Navigationsbereich Hooks aus.

4. Wählen Sie den Hook aus, für den Sie Hook-Aufrufe anzeigen möchten.

5. Wählen Sie einen bestimmten Aufruf aus, um weitere Details zum Aufrufergebnis anzuzeigen,
einschließlich Anleitungen zur Behebung fehlgeschlagener Hook-Aufrufe.

Ergebnisse für stapelspezifische Aufrufe anzeigen

Sie können die Aufrufergebnisse für einen bestimmten Stack auch auf der Seite Stack-Ereignisse
anzeigen.

Um Hook-Aufrufe für einen bestimmten Stack anzuzeigen

1. Melden Sie sich bei der an AWS-Managementkonsole und öffnen Sie die CloudFormation
Konsole unter https://console.aws.amazon.com /cloudformation.

2. Wählen Sie in der Navigationsleiste oben auf dem Bildschirm den Ort aus, an AWS-Region dem
der Stack-Vorgang stattgefunden hat.

3. Wählen Sie im Navigationsbereich Stacks aus.

4. Wählen Sie den Stack aus, für den Sie Hook-Aufrufe anzeigen möchten.

Den Aufrufverlauf für einzelne Hooks anzeigen 185

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

CloudFormation Hooks Benutzerhandbuch

5. Wählen Sie den Tab Stack-Ereignisse.

6. Suchen Sie in der Ereignisliste in der Spalte Statusgrund nach Ereignissen, bei denen die Hook-
Aufrufe abgeschlossen sind.

7. Informationen zu bestimmten Hook-Aufrufen finden Sie in der Spalte Hook-Aufrufe und wählen
Sie den unterstrichenen Text aus, um ein Popup-Fenster mit detaillierteren Informationen zu
öffnen.

Note

Um ausgeblendete Spalten anzuzeigen, wählen Sie das Zahnradsymbol in der oberen
rechten Ecke des Abschnitts, um das Einstellungsfenster zu öffnen, aktualisieren Sie die
Einstellungen nach Bedarf und wählen Sie Bestätigen.

Rufen Sie die Ergebnisse des Aufrufs auf, indem Sie AWS CLI

Verwenden Sie den list-hook-resultsBefehl, um Informationen über Hook-Aufrufe abzurufen. Dieser
Befehl unterstützt die folgenden Filteroptionen:

• Ruft alle Hook-Aufrufergebnisse ab (keine Parameter erforderlich)

• Nach Hook ARN filtern (verwenden--type-arn)

• Nach Hook-ARN und Status filtern (verwenden --type-arn und--status)

• Suchen Sie nach bestimmten Zielen (verwenden Sie --target-type und--target-id)

Ergebnisse filtern nach Hook ARN

Der folgende Befehl listet alle Hook-Aufrufergebnisse für einen bestimmten Hook auf.

aws cloudformation list-hook-results \
 --type-arn arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook \
 --region us-west-2

Beispielausgabe:

{

Aufrufergebnisse anzeigen ()AWS CLI 186

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-hook-results.html

CloudFormation Hooks Benutzerhandbuch

 "HookResults": [
 {
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook",
 "HookResultId": "59ef501c-0ac4-47c0-a193-e071cabf748d",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "HookExecutionTarget": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
stack/39f29d10-73ed-11f0-abc1-0affdfe4aebb",
 "InvokedAt": "2025-08-08T00:18:39.651Z",
 "FailureMode": "WARN",
 "HookStatusReason": "...",
 "InvocationPoint": "PRE_PROVISION",
 "Status": "HOOK_COMPLETE_FAILED"
 },
 ...
]
}

Eine Beschreibung der Felder in der Antwort finden Sie HookResultSummaryin der AWS
CloudFormation API-Referenz.

Ergebnisse nach Hook-ARN und Status filtern

Um nach einem gemeinsamen Status unter den Ergebnissen zu filtern, geben Sie die --status
Option im Befehl an. Folgende sind gültige Werte:

• HOOK_IN_PROGRESS: Der Hook läuft gerade.

• HOOK_COMPLETE_SUCCEEDED: Der Hook wurde erfolgreich abgeschlossen.

• HOOK_COMPLETE_FAILED: Der Hook wurde abgeschlossen, aber die Validierung ist
fehlgeschlagen.

• HOOK_FAILED: Der Hook ist bei der Ausführung auf einen Fehler gestoßen.

aws cloudformation list-hook-results \
 --type-arn arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook \
 --status HOOK_COMPLETE_FAILED \
 --region us-west-2

Beispielausgabe:

Aufrufergebnisse anzeigen ()AWS CLI 187

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_HookResultSummary.html

CloudFormation Hooks Benutzerhandbuch

{
 "HookResults": [
 {
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook",
 "HookResultId": "59ef501c-0ac4-47c0-a193-e071cabf748d",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "HookExecutionTarget": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
stack/39f29d10-73ed-11f0-abc1-0affdfe4aebb",
 "InvokedAt": "2025-08-08T00:18:39.651Z",
 "FailureMode": "WARN",
 "HookStatusReason": "...",
 "InvocationPoint": "PRE_PROVISION",
 "Status": "HOOK_COMPLETE_FAILED"
 },
 ...
]
}

Eine Beschreibung der Felder in der Antwort finden Sie HookResultSummaryin der AWS
CloudFormation API-Referenz.

Filtern Sie die Ergebnisse nach Zieltyp und Ziel-ID

Der folgende Befehl listet alle Hook-Aufrufergebnisse für eine bestimmte Cloud Control API-
Anforderung auf.

aws cloudformation list-hook-results \
 --target-type CLOUD_CONTROL \
 --target-id d417b05b-9eff-46ef-b164-08c76aec1801 \
 --region us-west-2

Beispielausgabe:

{
 "HookResults": [
 {
 "TargetType": "CLOUD_CONTROL",
 "TargetId": "d417b05b-9eff-46ef-b164-08c76aec1801",
 "HookResults": [
 {

Aufrufergebnisse anzeigen ()AWS CLI 188

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_HookResultSummary.html

CloudFormation Hooks Benutzerhandbuch

 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook",
 "HookResultId": "4e7f4766-d8fe-44e5-8587-5b327a148abe",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "FailureMode": "WARN",
 "HookStatusReason": "...",
 "InvocationPoint": "PRE_PROVISION",
 "Status": "HOOK_COMPLETE_FAILED"
 },
 ...
]
 }
]
}

Eine Beschreibung der Felder in der Antwort finden Sie HookResultSummaryin der AWS
CloudFormation API-Referenz.

Rufen Sie detaillierte Ergebnisse für einen bestimmten Aufruf ab

Verwenden Sie den get-hook-resultBefehl, um detaillierte Informationen zu einem bestimmten
Hook-Aufruf abzurufen, einschließlich Anmerkungen mit Ergebnissen der Konformitätsprüfung und
Anleitungen zur Problembehebung.

aws cloudformation get-hook-result \
 --hook-result-id 59ef501c-0ac4-47c0-a193-e071cabf748d \
 --region us-west-2

Beispielausgabe:

{
 "HookResultId": "59ef501c-0ac4-47c0-a193-e071cabf748d",
 "InvocationPoint": "PRE_PROVISION",
 "FailureMode": "WARN",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook",
 "Status": "HOOK_COMPLETE_FAILED",
 "HookStatusReason": "Hook completed with failed validations",
 "InvokedAt": "2025-08-08T00:18:39.651Z",

Aufrufergebnisse anzeigen ()AWS CLI 189

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_HookResultSummary.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/get-hook-result.html

CloudFormation Hooks Benutzerhandbuch

 "Target": {
 "TargetType": "RESOURCE",
 "TargetTypeName": "AWS::S3::Bucket",
 "TargetId": "my-s3-bucket",
 "Action": "CREATE"
 },
 "Annotations": [
 {
 "AnnotationName": "BlockPublicAccessCheck",
 "Status": "FAILED",
 "StatusMessage": "Bucket does not block public access",
 "RemediationMessage": "Enable block public access settings on the S3 bucket",
 "SeverityLevel": "HIGH"
 },
 {
 "AnnotationName": "BucketEncryptionCheck",
 "Status": "PASSED",
 "StatusMessage": "Bucket has encryption configured correctly"
 }
]
}

Eine Beschreibung der Felder in der Antwort finden Sie GetHookResultin der AWS CloudFormation
API-Referenz.

Aufrufergebnisse anzeigen ()AWS CLI 190

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

CloudFormation Hooks Benutzerhandbuch

Syntaxreferenz für das Hook-Konfigurationsschema
In diesem Abschnitt wird die Schemasyntax beschrieben, die zur Konfiguration von Hooks verwendet
wird. CloudFormation verwendet dieses Konfigurationsschema zur Laufzeit, wenn ein Hook in einem
AWS-Konto aufgerufen wird.

Damit Ihr Hook die Konfiguration Ihres Stacks proaktiv überprüfen kann, setzen Sie den Wert
HookInvocationStatus auf, ENABLED nachdem der Hook in Ihrem Konto registriert und aktiviert
wurde.

Themen

• Eigenschaften des Hook-Konfigurationsschemas

• Beispiele für die Hook-Konfiguration

• CloudFormation Hooks Filter auf Stapelebene

• CloudFormation Hooks zielen auf Filter ab

• Verwendung von Platzhaltern mit Hook-Zielnamen

Note

Die maximale Datenmenge, die die Konfiguration eines Hooks speichern kann, beträgt
300 KB. Dies gilt zusätzlich zu allen Einschränkungen, die dem Configuration
Anforderungsparameter des SetTypeConfigurationVorgangs auferlegt werden.

Eigenschaften des Hook-Konfigurationsschemas

Das folgende Schema ist die Struktur für ein Hook-Konfigurationsschema.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": ["STACK"],
 "FailureMode": "FAIL",
 "EncryptionConfiguration": {
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/abc-123"
 },

Eigenschaften des Hook-Konfigurationsschemas 191

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_SetTypeConfiguration.html

CloudFormation Hooks Benutzerhandbuch

 "Properties": {
 ...
 }
 }
 }
}

HookConfiguration

Die Hook-Konfiguration unterstützt die Aktivierung oder Deaktivierung von Hooks auf Stack-
Ebene, Fehlermodi und Hook-Eigenschaftswerte.

Die Hook-Konfiguration unterstützt die folgenden Eigenschaften.

HookInvocationStatus

Gibt an, ob der Hook ENABLED oder istDISABLED.

Gültige Werte: ENABLED | DISABLED

TargetOperations

Gibt die Liste der Operationen an, gegen die der Hook ausgeführt wird. Weitere Informationen
finden Sie unter Hook-Ziele.

Zulässige Werte: STACK | RESOURCE | CHANGE_SET | CLOUD_CONTROL

TargetStacks

Aus Gründen der Abwärtskompatibilität verfügbar. Verwenden Sie HookInvocationStatus
stattdessen.

Wenn der Modus auf eingestellt istALL, gilt der Hook für alle Stacks in Ihrem Konto während
einesCREATE,UPDATE, oder DELETE Ressourcenvorgangs.

Wenn der Modus auf eingestellt istNONE, gilt der Hook nicht für Stacks in deinem Konto.

Gültige Werte: ALL | NONE

FailureMode

In diesem Feld wird dem Dienst mitgeteilt, wie Hook-Fehler behandelt werden sollen.

• Wenn der Modus auf FAIL eingestellt ist und der Hook fehlschlägt, beendet die
Fehlkonfiguration die Bereitstellung von Ressourcen und führt ein Rollback des Stacks
durch.

Eigenschaften des Hook-Konfigurationsschemas 192

CloudFormation Hooks Benutzerhandbuch

• Wenn der Modus auf eingestellt ist WARN und der Hook fehlschlägt, ermöglicht die
Warnkonfiguration, dass die Bereitstellung mit einer Warnmeldung fortgesetzt wird.

Gültige Werte: FAIL | WARN

EncryptionConfiguration

Gibt Verschlüsselungseinstellungen für Hook-Annotationsdaten an.

KmsKeyId

Der Alias, Alias-ARN, die Schlüssel-ID oder der Schlüssel-ARN des symmetrischen AWS
KMS Verschlüsselungsschlüssels, der zur Verschlüsselung von Hook-Annotationsdaten
verwendet wird. Weitere Informationen finden Sie KeyIdin den Dokumenten. AWS KMS

Bevor Sie Hooks mit vom Kunden verwalteten AWS KMS Schlüsseln erstellen können,
muss Ihr Benutzer oder Ihre Rolle über AWS KMS Berechtigungen für DescribeKey und
verfügenGenerateDataKey. Weitere Informationen finden Sie unter AWS KMS wichtige
Richtlinien und Berechtigungen für die Verschlüsselung von CloudFormation Hooks-
Ergebnissen im Ruhezustand.

Properties

Gibt die Eigenschaften der Hook-Laufzeit an. Diese sollten der Form der Eigenschaften
entsprechen, die vom Hooks-Schema unterstützt werden.

Beispiele für die Hook-Konfiguration

Beispiele für die Konfiguration von Hooks aus finden Sie in den folgenden Abschnitten: AWS CLI

• Aktiviere einen proaktiven, steuerungsbasierten Hook ()AWS CLI

• Aktiviere einen Guard Hook (AWS CLI)

• Aktiviere einen Lambda-Hook ()AWS CLI

CloudFormation Hooks Filter auf Stapelebene

Sie können Ihren CloudFormation Hooks Filter auf Stack-Ebene hinzufügen, um bestimmte Stacks
auf der Grundlage von Stacknamen und Rollen als Ziel festzulegen. Dies ist nützlich in Fällen, in
denen Sie mehrere Stacks mit denselben Ressourcentypen haben, der Hook jedoch für bestimmte
Stacks vorgesehen ist.

Beispiele für die Hook-Konfiguration 193

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html#API_DescribeKey_RequestParameters

CloudFormation Hooks Benutzerhandbuch

Dieser Abschnitt erklärt, wie diese Filter funktionieren, und enthält Beispiele, denen Sie folgen
können.

Die Grundstruktur einer Hook-Konfiguration ohne Filterung auf Stack-Ebene sieht wie folgt aus:

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE",
 "DELETE"
]
 }
 }
 }
}

Weitere Informationen zur HookConfiguration Syntax finden Sie unterSyntaxreferenz für das
Hook-Konfigurationsschema.

Um Filter auf Stapelebene zu verwenden, fügen Sie einen StackFilters Schlüssel unter
hinzuHookConfiguration.

Der StackFilters Schlüssel hat ein erforderliches Mitglied und zwei optionale Mitglieder.

• FilteringCriteria (Erforderlich)

• StackNames (optional)

• StackRoles (optional)

Die StackRoles Eigenschaften StackNames oder sind optional. Sie müssen jedoch mindestens
eine der Eigenschaften angeben.

Filter auf Stapelebene 194

CloudFormation Hooks Benutzerhandbuch

Wenn Sie einen Hook erstellen, der auf Cloud Control-API-Operationen abzielt, werden alle Filter auf
Stack-Ebene ignoriert.

FilteringCriteria

FilteringCriteriaist ein erforderlicher Parameter, der das Filterverhalten angibt. Er kann
entweder auf ALL oder gesetzt werdenANY.

• ALLruft den Hook auf, wenn alle Filter übereinstimmen.

• ANYruft den Hook auf, wenn ein Filter zutrifft.

StackNames

Verwenden Sie die folgende JSON-Struktur, um einen oder mehrere Stacknamen als Filter in Ihrer
Hooks-Konfiguration anzugeben:

"StackNames": {
 "Include": [
 "string"
],
 "Exclude": [
 "string"
]
}

Sie müssen eine der folgenden Eigenschaften angeben:

• Include: Liste der Stack-Namen, die aufgenommen werden sollen. Nur die in dieser Liste
angegebenen Stacks rufen den Hook auf.

• Typ: Zeichenfolgen-Array

• Max. Anzahl Artikel: 50

• Mindestanzahl Artikel: 1

• Exclude: Liste der auszuschließenden Stack-Namen. Alle Stacks außer den hier aufgeführten
rufen den Hook auf.

• Typ: Zeichenfolgen-Array

• Max. Anzahl Artikel: 50

• Mindestanzahl Artikel: 1

FilteringCriteria 195

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

CloudFormation Hooks Benutzerhandbuch

Jeder Stackname in den Exclude Arrays Include und muss die folgenden Muster- und
Längenanforderungen erfüllen:

• Pattern: ^[a-zA-Z][-a-zA-Z0-9]*$

• Max. Länge: 128

StackNamesunterstützt konkrete Stapelnamen und vollständigen Platzhalterabgleich. Beispiele für
die Verwendung von Platzhaltern finden Sie unter. Verwendung von Platzhaltern mit Hook-Zielnamen

StackRoles

Verwenden Sie die folgende JSON-Struktur, um eine oder mehrere IAM-Rollen als Filter in Ihrer
Hook-Konfiguration anzugeben:

"StackRoles": {
 "Include": [
 "string"
],
 "Exclude": [
 "string"
]
}

Sie müssen eine der folgenden Eigenschaften angeben:

• Include: Liste der IAM-Rollen für ARNs die Zielstapel, die diesen Rollen zugeordnet sind. Nur
Stack-Operationen, die von diesen Rollen initiiert wurden, rufen den Hook auf.

• Typ: Zeichenfolgen-Array

• Max. Anzahl Artikel: 50

• Mindestanzahl Artikel: 1

• Exclude: Liste der IAM-Rollen ARNs für Stacks, die Sie ausschließen möchten. Der Hook wird
für alle Stacks aufgerufen, mit Ausnahme der Stacks, die von den angegebenen Rollen initiiert
wurden.

• Typ: Zeichenfolgen-Array

• Max. Anzahl Artikel: 50

• Mindestanzahl Artikel: 1

StackRoles 196

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-servicerole.html

CloudFormation Hooks Benutzerhandbuch

Jede Stack-Rolle in den Exclude Arrays Include und muss die folgenden Muster- und
Längenanforderungen erfüllen:

• Pattern: arn:.+:iam::[0-9]{12}:role/.+

• Max. Länge: 256

StackRoleserlaubt Platzhalterzeichen in den folgenden ARN-Syntaxabschnitten:

• partition

• account-id

• resource-id

Beispiele für die Verwendung von Platzhaltern in den Abschnitten zur ARN-Syntax finden Sie
unterVerwendung von Platzhaltern mit Hook-Zielnamen.

Include und Exclude

Jeder Filter (StackNamesundStackRoles) hat eine Include Liste und eine Exclude Liste.
StackNamesAls Beispiel: Der Hook wird nur für die Stacks aufgerufen, die in Include der Liste
angegeben sind. Wenn Stacknamen nur in der Exclude Liste angegeben sind, wird der Hook nur für
Stacks aufgerufen, die nicht in der Liste enthalten sind. Exclude Wenn Include sowohl als auch
angegeben Exclude sind, zielt der Hook auf das ab, was in der Include Liste steht, und nicht auf
das, was in der Exclude Liste steht.

Nehmen wir zum Beispiel an, Sie haben vier Stapel: A, B, C und D.

• "Include": ["A","B"]Der Hook wird auf A und B aufgerufen.

• "Exclude": ["B"]Der Hook wird auf A, C und D aufgerufen.

• "Include": ["A","B","C"], "Exclude": ["A","D"]Der Hook wird auf B und C
aufgerufen.

• "Include": ["A","B","C"], "Exclude": ["A”,"B","C"]Der Hook wird auf keinem
Stack aufgerufen.

Include und Exclude 197

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html#arns-syntax

CloudFormation Hooks Benutzerhandbuch

Beispiele für Filter auf Stapelebene

Dieser Abschnitt enthält Beispiele, denen Sie folgen können, um Filter auf Stack-Ebene für
CloudFormation Hooks zu erstellen.

Beispiel 1: Fügen Sie bestimmte Stacks hinzu

Das folgende Beispiel spezifiziert eine Include Liste. Der Hook wird nur für Stacks mit dem Namen
stack-test-1 und stack-test-2 aufgerufen. stack-test-3

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 }
 }
 }
 }
}

Beispiel 2: Schließen Sie bestimmte Stacks aus

Wenn die Stack-Namen stattdessen zur Exclude Liste hinzugefügt werden, wird der Hook für jeden
Stack aufgerufen, der nicht benannt iststack-test-1, stack-test-2 oder. stack-test-3

{
 "CloudFormationConfiguration": {

Beispiele für Filter auf Stack-Ebene 198

CloudFormation Hooks Benutzerhandbuch

 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Exclude": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 }
 }
 }
 }
}

Beispiel 3: Kombination von Include und Exclude

Wenn Include keine Exclude Listen angegeben sind, wird der Hook nur für die Stapel in der Liste
aufgerufenInclude, die nicht in der Exclude Liste enthalten sind. Im folgenden Beispiel wird der
Hook nur bei aufgerufen. stack-test-3

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-1",

Beispiele für Filter auf Stack-Ebene 199

CloudFormation Hooks Benutzerhandbuch

 "stack-test-2",
 "stack-test-3"
],
 "Exclude": [
 "stack-test-1",
 "stack-test-2"
]
 }
 }
 }
 }
}

Beispiel 4: Kombinieren von Stacknamen und Rollen mit Kriterien ALL

Der folgende Hook enthält drei Stack-Namen und eine Stack-Rolle. Da der als angegeben
FilteringCriteria istALL, wird der Hook nur für Stacks aufgerufen, die sowohl einen passenden
Stacknamen als auch die passende Stack-Rolle haben.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 },
 "StackRoles": {
 "Include": ["arn:aws:iam::123456789012:role/hook-role"]
 }
 }
 }

Beispiele für Filter auf Stack-Ebene 200

CloudFormation Hooks Benutzerhandbuch

 }
}

Beispiel 5: Kombinieren von Stacknamen und Rollen mit Kriterien ANY

Der folgende Hook enthält drei Stack-Namen und eine Stack-Rolle. Da der als angegeben
FilteringCriteria istANY, wird der Hook für Stapel aufgerufen, die entweder einen passenden
Stacknamen oder die passende Stack-Rolle haben.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ANY",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 },
 "StackRoles": {
 "Include": ["arn:aws:iam::123456789012:role/hook-role"]
 }
 }
 }
 }
}

CloudFormation Hooks zielen auf Filter ab

Dieses Thema enthält Anleitungen zur Konfiguration von Zielfiltern für CloudFormation Hooks.
Sie können Zielfilter verwenden, um detaillierter zu steuern, wann und auf welchen Ressourcen
Ihr Hook aufgerufen wird. Du kannst Filter konfigurieren, die von der einfachen Ausrichtung auf

Zielfilter 201

CloudFormation Hooks Benutzerhandbuch

Ressourcentypen bis hin zu komplexeren Kombinationen von Ressourcentypen, Aktionen und
Aufrufpunkten reichen.

Um einen oder mehrere Stack-Namen als Filter in Ihrer Hooks-Konfiguration anzugeben, fügen Sie
einen TargetFilters Schlüssel unter HookConfiguration hinzu.

TargetFiltersunterstützt die folgenden Eigenschaften.

Actions

Ein Zeichenkettenarray, das die Aktionen angibt, auf die abgezielt werden soll. Ein Beispiel finden
Sie unter Beispiel 1: Einfacher Zielfilter.

Zulässige Werte: CREATE | UPDATE | DELETE

Note

Für RESOURCESTACK, und CLOUD_CONTROL Ziele sind alle Zielaktionen anwendbar. Für
CHANGE_SET Ziele ist nur die CREATE Aktion anwendbar. Weitere Informationen finden
Sie unter Hook-Ziele.

InvocationPoints

Ein Zeichenkettenarray, das angibt, dass der Aufruf auf das Ziel zeigt.

Gültige Werte: PRE_PROVISION

TargetNames

Ein Zeichenkettenarray, das die Namen der zu adressierenden Ressourcentypen angibt,
AWS::S3::Bucket z. B.

Zielnamen unterstützen konkrete Zielnamen und vollständigen Platzhalterabgleich. Weitere
Informationen finden Sie unter Verwendung von Platzhaltern mit Hook-Zielnamen.

Muster: ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

Maximum: 50

Targets

Ein Objekt-Array, das die Liste der Ziele angibt, die für die Zielfilterung verwendet werden sollen.

Zielfilter 202

CloudFormation Hooks Benutzerhandbuch

Jedes Ziel im Ziel-Array hat die folgenden Eigenschaften.

Actions

Die Aktion für das angegebene Ziel.

Zulässige Werte: CREATE | UPDATE | DELETE

InvocationPoints

Der Aufrufpunkt für das angegebene Ziel.

Gültige Werte: PRE_PROVISION

TargetNames

Der Name des Ressourcentyps, auf den abgezielt werden soll.

Note

Sie können nicht gleichzeitig das Targets Objekt-Array und das TargetNames Actions
,- oder InvocationPoints -Array einschließen. Wenn Sie diese drei Elemente und
verwenden möchtenTargets, müssen Sie sie in das Targets Objekt-Array aufnehmen. Ein
Beispiel finden Sie unter Beispiel 2: Verwenden des Targets Objekt-Arrays.

Beispiele für Zielfilter

Dieser Abschnitt enthält Beispiele, denen Sie folgen können, um Zielfilter für CloudFormation Hooks
zu erstellen.

Beispiel 1: Einfacher Zielfilter

Um einen grundlegenden Zielfilter zu erstellen, der sich auf bestimmte Ressourcentypen
konzentriert, verwenden Sie das TargetFilters Objekt mit dem Actions Array. Die folgende
Zielfilterkonfiguration ruft den Hook für alle CreateUpdate, und Delete Aktionen für die
angegebenen Zieloperationen (in diesem Fall RESOURCE sowohl als auch für STACK Operationen)
auf.

{

Beispiele für Zielfilter 203

CloudFormation Hooks Benutzerhandbuch

 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "TargetFilters": {
 "Actions": [
 "Create",
 "Update",
 "Delete"
]
 }
 }
 }
}

Beispiel 2: Verwenden des Targets Objekt-Arrays

Für erweiterte Filter können Sie das Targets Objekt-Array verwenden, um bestimmte
Kombinationen aus Ziel, Aktion und Aufrufpunkt aufzulisten. Diese folgende Zielfilterkonfiguration
ruft den Hook vor CREATE und UPDATE Aktionen für S3-Buckets und DynamoDB-Tabellen. Sie gilt
sowohl für Operationen als auch. STACK RESOURCE

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "TargetFilters": {
 "Targets": [
 {
 "TargetName": "AWS::S3::Bucket",
 "Action": "CREATE",
 "InvocationPoint": "PRE_PROVISION"

Beispiele für Zielfilter 204

CloudFormation Hooks Benutzerhandbuch

 },
 {
 "TargetName": "AWS::S3::Bucket",
 "Action": "UPDATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::DynamoDB::Table",
 "Action": "CREATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::DynamoDB::Table",
 "Action": "UPDATE",
 "InvocationPoint": "PRE_PROVISION"
 }
]
 }
 }
 }
}

Verwendung von Platzhaltern mit Hook-Zielnamen

Sie können Platzhalter als Teil des Zielnamens verwenden. Sie können Platzhalterzeichen (*und?)
in Ihren Hook-Zielnamen verwenden. Das Sternchen (*) steht für eine beliebige Kombination von
Zeichen. Das Fragezeichen (?) steht für ein beliebiges einzelnes Zeichen. Sie können mehrere * ?
UND-Zeichen in einem Zielnamen verwenden.

Example : Beispiele für Platzhalter für Zielnamen in Hook-Schemas

Das folgende Beispiel zielt auf alle Ressourcentypen ab, die von Amazon S3 unterstützt werden.

{
...
 "handlers": {
 "preCreate": {
 "targetNames": [
 "AWS::S3::*"
],
 "permissions": []
 }

Verwenden von Platzhaltern 205

CloudFormation Hooks Benutzerhandbuch

 }
...
}

Das folgende Beispiel entspricht allen Ressourcentypen mit“Bucket"im Namen.

{
...
 "handlers": {
 "preCreate": {
 "targetNames": [
 "AWS::*::Bucket*"
],
 "permissions": []
 }
 }
...
}

Das AWS::*::Bucket* könnte zu einem der folgenden konkreten Ressourcentypen führen:

• AWS::Lightsail::Bucket

• AWS::S3::Bucket

• AWS::S3::BucketPolicy

• AWS::S3Outpost::Bucket

• AWS::S3Outpost::BucketPolicy

Example : Beispiele für Platzhalter für Zielnamen in Hook-Konfigurationsschemas

Die folgende Beispielkonfiguration ruft den Hook für CREATE Operationen auf allen Amazon S3 S3-
Ressourcentypen und für UPDATE Operationen auf allen benannten Tabellenressourcentypen wie
AWS::DynamobDB::Table oder AWS::Glue::Table auf.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "TargetStacks": "ALL",
 "FailureMode": "FAIL",
 "Properties": {},

Verwenden von Platzhaltern 206

CloudFormation Hooks Benutzerhandbuch

 "TargetFilters":{
 "Targets": [
 {
 "TargetName": "AWS::S3::*",
 "Action": "CREATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::*::Table",
 "Action": "UPDATE",
 "InvocationPoint": "PRE_PROVISION"
 }
]
 }
 }
 }
}

Die folgende Beispielkonfiguration ruft die Hook for CREATE - und UPDATE -Operationen für alle
Amazon S3 S3-Ressourcentypen sowie die UPDATE Operationen für CREATE und für alle benannten
Tabellenressourcentypen wie AWS::DynamobDB::Table oder AWS::Glue::Table auf.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "TargetStacks": "ALL",
 "FailureMode": "FAIL",
 "Properties": {},
 "TargetFilters":{
 "TargetNames": [
 "AWS::S3::*",
 "AWS::*::Table"
],
 "Actions": [
 "CREATE",
 "UPDATE"
],
 "InvocationPoints": [
 "PRE_PROVISION"
]
 }
 }
 }

Verwenden von Platzhaltern 207

CloudFormation Hooks Benutzerhandbuch

}

Example : Include spezifische Stapel

Das folgende Beispiel spezifiziert eine Include Liste. Der Hook wird nur aufgerufen, wenn der
Stackname mit stack-test- beginnt.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-*"
]
 }
 }
 }
 }
}

Example : Exclude spezifische Stapel

Das folgende Beispiel spezifiziert eine Exclude Liste. Der Hook wird für jeden Stack aufgerufen, der
nicht mit stack-test- beginnt.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],

Verwenden von Platzhaltern 208

CloudFormation Hooks Benutzerhandbuch

 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Exclude": [
 "stack-test-*"
]
 }
 }
 }
 }
}

Example : Kombinieren Include und Exclude für bestimmte Stapel

Wenn Include und Exclude -Listen angegeben sind, wird der Hook nur für Stapel aufgerufen,
Include die in der Liste übereinstimmen und nicht in der Liste übereinstimmen. Exclude Im
folgenden Beispiel wird der Hook für alle Stapel aufgerufen, die mit beginnen, mit stack-test-
Ausnahme der Stapel mit dem Namen, und. stack-test-1 stack-test-2 stack-test-3

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-*"
],
 "Exclude": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 }

Verwenden von Platzhaltern 209

CloudFormation Hooks Benutzerhandbuch

 }
 }
 }
}

Example : spezifische Rollen Include

Das folgende Beispiel spezifiziert eine Include Liste mit zwei Platzhaltermustern. Der erste Eintrag
führt den Hook für jede Rolle aus, die mit hook-role in any partition und account-id beginnt.
Der zweite Eintrag führt any für jede Rolle in einer beliebigen Rolle auspartition, die zu gehört
account-id123456789012.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackRoles": {
 "Include": [
 "arn:*:iam::*:role/hook-role*",
 "arn:*:iam::123456789012:role/*
]
 }
 }
 }
 }
}

Example : Exclude spezifische Rollen

Das folgende Beispiel spezifiziert eine Exclude Liste mit zwei Platzhaltermustern. Beim ersten
Eintrag wird die Hook-Ausführung übersprungen, wenn eine Rolle exempt in ihrem Namen eine
beliebige partition und eine beliebige hat. account-id Der zweite Eintrag überspringt die Hook-
Ausführung, wenn eine Rolle, die zu account-id 123456789012 gehört, zusammen mit der Stack-
Operation verwendet wird.

Verwenden von Platzhaltern 210

CloudFormation Hooks Benutzerhandbuch

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackRoles": {
 "Exclude": [
 "arn:*:iam::*:role/*exempt*",
 "arn:*:iam::123456789012:role/*
]
 }
 }
 }
 }
}

Example : ARN-Muster kombinieren Include und Exclude für bestimmte Rollen

Wenn Include und Exclude -Listen angegeben sind, wird der Hook nur für Stacks aufgerufen,
die mit Rollen verwendet werden, die denen entsprechenInclude, die nicht in der Exclude
Liste übereinstimmen. Im folgenden Beispiel wird der Hook bei Stack-Operationen mit einem
beliebigenpartition, und role Namen aufgerufenaccount-id, es sei denn, die Rolle gehört zu.
account-id 123456789012

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {

Verwenden von Platzhaltern 211

CloudFormation Hooks Benutzerhandbuch

 "FilteringCriteria": "ALL",
 "StackRoles": {
 "Include": [
 "arn:*:iam::*:role/*"
],
 "Exclude": [
 "arn:*:iam::123456789012:role/*"
]
 }
 }
 }
 }
}

Example : Kombiniert Stacknamen und Rollen mit allen Kriterien

Der folgende Hook enthält einen Platzhalter für Stacknamen und einen Platzhalter für Stack-Rollen.
Da der als angegeben FilteringCriteria istALL, wird der Hook nur für Stacks aufgerufen, die
sowohl das Matching als auch das Matching enthalten. StackName StackRoles

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-*"
]
 },
 "StackRoles": {
 "Include": ["arn:*:iam::*:role/hook-role*"]
 }
 }
 }
 }

Verwenden von Platzhaltern 212

CloudFormation Hooks Benutzerhandbuch

}

Example : Kombiniert StackNames und StackRoles mit beliebigen Kriterien

Der folgende Hook enthält einen Platzhalter für Stacknamen und einen Platzhalter für Stack-Rollen.
Da der als angegeben FilteringCriteria istANY, wird der Hook für den Stack aufgerufen, der
entweder Matching oder Matching StackNames hat. StackRoles

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ANY",
 "StackNames": {
 "Include": [
 "stack-test-*"
]
 },
 "StackRoles": {
 "Include": ["arn:*:iam::*:role/hook-role*"]
 }
 }
 }
 }
}

Verwenden von Platzhaltern 213

CloudFormation Hooks Benutzerhandbuch

Hooks mithilfe von CloudFormation Vorlagen erstellen

Diese Seite enthält Links zu CloudFormation Beispielvorlagen und technischen Referenzthemen für
Hooks.

Indem Sie CloudFormation Vorlagen zum Erstellen von Hooks verwenden, können Sie Ihre Vorlage
wiederverwenden, um Ihre Hooks konsistent und wiederholt einzurichten. Dieser Ansatz ermöglicht
es Ihnen, Ihre Hooks einmal zu definieren und dann dieselben Hooks immer wieder in mehreren
AWS-Konten Regionen bereitzustellen.

CloudFormation bietet die folgenden speziellen Ressourcentypen für die Guard- und Lambda-Hook-
Erstellung.

Aufgabe Lösung Links

Erstellen Sie
einen Guard-Hoo
k

Verwenden Sie den AWS::Clou
dFormation::GuardHook
Ressourcentyp, um einen Guard
Hook zu erstellen und zu aktivieren.

Beispielvorlage

Technische Referenz

Erstellen Sie
einen Lambda-
Hook

Verwenden Sie den AWS::Clou
dFormation::LambdaHook
Ressourcentyp, um einen Lambda-
Hook zu erstellen und zu aktivieren.

Beispielvorlage

Technische Referenz

CloudFormation bietet auch die folgenden Ressourcentypen, die Sie in Ihren Stack-Vorlagen für die
benutzerdefinierte Hook-Erstellung verwenden können.

Aufgabe Lösung Links

Registriere einen
Hook

Verwenden Sie den AWS::Clou
dFormation::HookVersion
Ressourcentyp, um eine neue
oder erste Version eines benutzerd
efinierten Hooks in der CloudForm

Mustervorlagen

Technische Referenz

214

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-guardhook.html#aws-resource-cloudformation-guardhook--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-guardhook.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-lambdahook.html#aws-resource-cloudformation-lambdahook--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-lambdahook.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookversion.html#aws-resource-cloudformation-hookversion--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookversion.html

CloudFormation Hooks Benutzerhandbuch

Aufgabe Lösung Links

ation Registrierung zu veröffent
lichen.

Stellen Sie die
Konfiguration
des Hooks ein

Verwenden Sie den AWS::Clou
dFormation::HookTy
peConfig Ressourcentyp, um
die Konfiguration eines benutzerd
efinierten Hooks anzugeben.

Mustervorlagen

Technische Referenz

Stellen Sie die
Standardversion
des Hooks ein

Verwenden Sie den AWS::Clou
dFormation::HookDe
faultVersion Ressource
ntyp, um die Standardversion
eines benutzerdefinierten Hooks
anzugeben.

Mustervorlagen

Technische Referenz

Registrieren Sie
Ihr Konto als
Herausgeber

Verwenden Sie den AWS::Clou
dFormation::Publisher
Ressourcentyp, um Ihr Konto als
Herausgeber von öffentlichen
Erweiterungen (Hooks, Module und
Ressourcentypen) in der CloudForm
ation Registrierung zu registrieren.

Technische Referenz

Veröffentlichen
Sie einen Hook
öffentlich

Verwenden Sie den AWS::Clou
dFormation::Public
TypeVersion Ressourcentyp,
um einen registrierten benutzerd
efinierten Hook als öffentlichen Hook
eines Drittanbieters zu testen und zu
veröffentlichen.

Technische Referenz

215

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hooktypeconfig.html#aws-resource-cloudformation-hooktypeconfig--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hooktypeconfig.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookdefaultversion.html#aws-resource-cloudformation-hookdefaultversion--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookdefaultversion.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-publisher.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-publictypeversion.html

CloudFormation Hooks Benutzerhandbuch

Aufgabe Lösung Links

Aktiviere öffentlic
he Hooks von
Drittanbietern

Der AWS::CloudFormatio
n::TypeActivation Ressource
ntyp arbeitet mit dem AWS::Clou
dFormation::HookTy
peConfig Ressourcentyp
zusammen, um einen öffentlichen,
benutzerdefinierten Hook eines
Drittanbieters in Ihrem Konto zu
aktivieren.

Technische Referenz

216

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-typeactivation.html

CloudFormation Hooks Benutzerhandbuch

Erteilen Sie IAM-Berechtigungen für Hooks CloudFormation

Standardmäßig ist ein brandneuer Benutzer in Ihrem Bereich AWS-Konto nicht berechtigt, Hooks
mithilfe der AWS-Managementkonsole, AWS Command Line Interface (AWS CLI) oder AWS API zu
verwalten. Um Benutzern Berechtigungen zu erteilen, kann ein IAM-Administrator IAM-Richtlinien
erstellen. Der Administrator kann dann die IAM-Richtlinien zu Rollen hinzufügen, und Benutzer
können die Rollen annehmen.

Verwenden Sie die Richtlinienbeispiele in diesem Thema, um Ihre eigenen benutzerdefinierten IAM-
Richtlinien zu erstellen, um Benutzern Berechtigungen für die Arbeit mit Hooks zu erteilen.

Informationen zum Erstellen einer identitätsbasierten IAM-Richtlinie mithilfe dieser Beispieldokumente
zu JSON-Richtlinien finden Sie im IAM-Benutzerhandbuch unter Definieren benutzerdefinierter IAM-
Berechtigungen mit vom Kunden verwalteten Richtlinien.

In diesem Thema werden die Berechtigungen behandelt, die für Folgendes erforderlich sind:

• Hooks verwalten — Hooks in Ihrem Konto erstellen, ändern und deaktivieren.

• Hooks öffentlich veröffentlichen — Registriere, teste und veröffentliche deine benutzerdefinierten
Hooks, um sie öffentlich in der CloudFormation Registry verfügbar zu machen.

• Aufrufergebnisse anzeigen — Greifen Sie auf die Ergebnisse von Hook-Aufrufen in Ihrem Konto zu
und fragen Sie sie ab.

• Details zu einem Aufrufergebnis anzeigen — Greifen Sie auf detaillierte Informationen und
Anleitungen zur Problembehebung für ein bestimmtes Hook-Aufrufergebnis in Ihrem Konto zu.

Während Sie Ihre IAM-Richtlinien erstellen, finden Sie die Dokumentation zu allen Aktionen,
Ressourcen und Bedingungsschlüsseln, die mit dem cloudformation Servicepräfix verknüpft
sind, im CloudFormation Abschnitt Aktionen, Ressourcen und Bedingungsschlüssel für der Service
Authorization Reference.

Themen

• Erlauben Sie einem Benutzer, Hooks zu verwalten

• Erlauben Sie einem Benutzer, benutzerdefinierte Hooks öffentlich zu veröffentlichen

• Erlauben Sie einem Benutzer, die Ergebnisse von Hook-Aufrufen einzusehen

• Erlaubt einem Benutzer, detaillierte Ergebnisse des Hook-Aufrufs anzuzeigen

217

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudformation.html

CloudFormation Hooks Benutzerhandbuch

• AWS KMS wichtige Richtlinien und Berechtigungen für die Verschlüsselung von CloudFormation
Hooks-Ergebnissen im Ruhezustand

Erlauben Sie einem Benutzer, Hooks zu verwalten

Wenn Sie Benutzern die Verwaltung von Erweiterungen, einschließlich Hooks, ermöglichen möchten,
ohne sie in der CloudFormation Registrierung veröffentlichen zu können, können Sie das folgende
Beispiel für eine IAM-Richtlinie verwenden.

Important

Die Aufrufe ActivateType und die SetTypeConfiguration API arbeiten zusammen,
um Hooks in Ihrem Konto zu erstellen. Wenn Sie einem Benutzer die Erlaubnis erteilen, die
SetTypeConfiguration API aufzurufen, gewähren Sie ihm automatisch die Möglichkeit,
bestehende Hooks zu ändern und zu deaktivieren. Sie können Berechtigungen auf
Ressourcenebene nicht verwenden, um den Zugriff auf diesen API-Aufruf einzuschränken.
Stellen Sie daher sicher, dass Sie diese Berechtigung nur autorisierten Benutzern in Ihrem
Konto gewähren.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ActivateType",
 "cloudformation:DescribeType",
 "cloudformation:ListTypes",
 "cloudformation:SetTypeConfiguration"
],
 "Resource": "*"
 }
]
}

Erlauben Sie einem Benutzer, Hooks zu verwalten 218

CloudFormation Hooks Benutzerhandbuch

Benutzer, die Hooks verwalten, benötigen möglicherweise einige entsprechende Berechtigungen,
zum Beispiel:

• Um proaktive Kontrollen aus dem Control Catalog in der CloudFormation Konsole anzeigen
zu können, muss der Benutzer über die controlcatalog:ListControls entsprechende
Berechtigung in einer IAM-Richtlinie verfügen.

• Um benutzerdefinierte Hooks als private Erweiterungen in der CloudFormation Registrierung zu
registrieren, muss der Benutzer über die cloudformation:RegisterType entsprechende
Berechtigung in einer IAM-Richtlinie verfügen.

Erlauben Sie einem Benutzer, benutzerdefinierte Hooks öffentlich
zu veröffentlichen

Das folgende Beispiel für eine IAM-Richtlinie konzentriert sich speziell auf
Veröffentlichungsfunktionen. Verwenden Sie diese Richtlinie, wenn Sie Benutzern die Möglichkeit
geben müssen, Erweiterungen, einschließlich Hooks, öffentlich in der CloudFormation Registrierung
verfügbar zu machen.

Important

Wenn Sie Hooks öffentlich veröffentlichen, werden sie anderen zur Verfügung gestellt
AWS-Konten. Stellen Sie sicher, dass nur autorisierte Benutzer über diese Berechtigungen
verfügen und dass veröffentlichte Erweiterungen den Qualitäts- und Sicherheitsstandards
Ihres Unternehmens entsprechen.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribePublisher",
 "cloudformation:DescribeTypeRegistration",
 "cloudformation:ListTypes",

Erlauben Sie einem Benutzer, benutzerdefinierte Hooks öffentlich zu veröffentlichen 219

CloudFormation Hooks Benutzerhandbuch

 "cloudformation:ListTypeVersions",
 "cloudformation:PublishType",
 "cloudformation:RegisterPublisher",
 "cloudformation:RegisterType",
 "cloudformation:TestType"
],
 "Resource": "*"
 }
]
}

Erlauben Sie einem Benutzer, die Ergebnisse von Hook-Aufrufen
einzusehen

Die IAM-Berechtigungen, die zum Anzeigen der Ergebnisse von Hook-Aufrufen erforderlich sind,
ändern sich je nach Art der angeforderten Informationen.

Listet die Ergebnisse von Hook-Aufrufen auf

Um die Ergebnisse von Hook-Aufrufen aufzulisten, benötigen Benutzer je nach der gestellten API-
Anfrage unterschiedliche Berechtigungen.

• Um Berechtigungen zum Abrufen aller Hook-Ergebnisse, Ergebnisse für einen bestimmten Hook
oder Ergebnisse für einen bestimmten Hook und Aufrufstatus zu erteilen, müssen Sie Zugriff auf
die cloudformation:ListAllHookResults Aktion gewähren.

• Um durch Angabe eines Hook-Ziels Berechtigungen zum Anfordern von Ergebnissen zu erteilen,
müssen Sie Zugriff auf die cloudformation:ListHookResults Aktion gewähren. Diese
Berechtigung ermöglicht es dem API-Aufrufer, beim Aufrufen ListHookResults die TargetId
Parameter TargetType und anzugeben.

Im Folgenden finden Sie ein Beispiel für eine grundlegende Berechtigungsrichtlinie für die Auflistung
von Hook-Aufrufergebnissen. IAM-Identitäten (Benutzer oder Rollen) mit dieser Richtlinie sind
berechtigt, alle Aufrufergebnisse unter Verwendung aller verfügbaren Parameterkombinationen
anzufordern.

Erlauben Sie einem Benutzer, die Ergebnisse von Hook-Aufrufen einzusehen 220

CloudFormation Hooks Benutzerhandbuch

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ListAllHookResults",
 "cloudformation:ListHookResults"
],
 "Resource": "*"
 }
]
}

Steuern Sie, welche Änderungssätze angegeben werden können

Das folgende Beispiel für eine IAM-Richtlinie gewährt der cloudformation:ListHookResults
Aktion die Erlaubnis, Ergebnisse anzufordern, indem das Ziel des Hooks angegeben wird. Sie
verweigert jedoch auch die Aktion, wenn es sich bei dem Ziel um einen benannten Änderungssatz
handelt. example-changeset

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ListHookResults"
],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "cloudformation:ListHookResults"
],

Listet die Ergebnisse von Hook-Aufrufen auf 221

CloudFormation Hooks Benutzerhandbuch

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudformation:ChangeSetName": "example-changeset"
 }
 }
 }
]
}

Steuert, welche Hooks angegeben werden können

Die folgende Beispiel-IAM-Richtlinie gewährt der cloudformation:ListAllHookResults Aktion
zum Anfordern von Aufrufergebnissen nur dann Berechtigungen, wenn der ARN des Hooks in der
Anfrage angegeben ist. Es verweigert die Aktion für einen bestimmten Hook-ARN.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ListAllHookResults"
],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "cloudformation:ListAllHookResults"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "cloudformation:TypeArn": "true"
 }
 }
 },
 {

Listet die Ergebnisse von Hook-Aufrufen auf 222

CloudFormation Hooks Benutzerhandbuch

 "Effect": "Deny",
 "Action": [
 "cloudformation:ListAllHookResults"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "cloudformation:TypeArn": "arn:aws:cloudformation:us-
east-1:123456789012:type/hook/MyCompany-MyHook"
 }
 }
 }
]
}

Erlaubt einem Benutzer, detaillierte Ergebnisse des Hook-Aufrufs
anzuzeigen

Um Berechtigungen zum Anzeigen der detaillierten Ergebnisse eines bestimmten Hook-
Aufrufs zu erteilen, müssen Sie Zugriff auf die cloudformation:GetHookResult Aktion
gewähren. Mit dieser Berechtigung können Benutzer detaillierte Informationen und Anleitungen zur
Problembehebung für ein bestimmtes Hook-Aufrufergebnis abrufen. Weitere Informationen finden Sie
unter GetHookResult in der AWS CloudFormation -API-Referenz.

Das folgende Beispiel für eine IAM-Richtlinie gewährt Berechtigungen für die Aktion.
cloudformation:GetHookResult

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:GetHookResult"
],
 "Resource": "*"
 }
]
}

Erlaubt einem Benutzer, detaillierte Ergebnisse des Hook-Aufrufs anzuzeigen 223

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

CloudFormation Hooks Benutzerhandbuch

Note

Sie können Hooks so konfigurieren, dass detaillierte Aufrufergebnisse, die in der Cloud
gespeichert sind, mit Ihren eigenen Schlüsseln verschlüsselt werden. AWS KMS
Informationen zum Einrichten der Schlüsselrichtlinie und der IAM-Berechtigungen, die Sie
benötigen, wenn Sie einen vom Kunden verwalteten Schlüssel für die Verschlüsselung
verwenden, finden Sie unter. AWS KMS wichtige Richtlinien und Berechtigungen für die
Verschlüsselung von CloudFormation Hooks-Ergebnissen im Ruhezustand

AWS KMS wichtige Richtlinien und Berechtigungen für die
Verschlüsselung von CloudFormation Hooks-Ergebnissen im
Ruhezustand

In diesem Thema wird beschrieben, wie Sie die AWS KMS wichtigsten Richtlinien und
Berechtigungen einrichten, die Sie benötigen, wenn Sie einen vom Kunden verwalteten Schlüssel
für die Verschlüsselung von Hooks-Annotationsdaten angeben, der über die API verfügbar ist.
GetHookResult

Note

CloudFormation Hooks benötigt keine zusätzliche Autorisierung, um die Standardeinstellung
zum Verschlüsseln von Annotationsdaten in Ihrem Konto AWS-eigener Schlüssel zu
verwenden.

Themen

• Übersicht

• Verwendung des Verschlüsselungskontextes zur Steuerung des Zugriffs auf den vom Kunden
verwalteten Schlüssel

• Kundenverwaltete KMS-Schlüsselrichtlinie

• KMS-Berechtigungen für die SetTypeConfiguration API

• KMS-Berechtigungen für GetHookResult API

AWS KMS wichtige Richtlinien und Berechtigungen 224

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

CloudFormation Hooks Benutzerhandbuch

Übersicht

Folgendes AWS KMS keys kann zum Verschlüsseln von Hook-Annotationsdaten verwendet werden:

• AWS-eigener Schlüssel— CloudFormation Verwendet standardmäßig an, AWS-eigener Schlüssel
um Daten zu verschlüsseln. Sie können ihre Verwendung nicht einsehen, verwalten AWS-
eigene Schlüssel, verwenden oder überprüfen. Sie müssen jedoch keine explizite Konfiguration
vornehmen, um den Schlüssel zu schützen, der zur Verschlüsselung Ihrer Daten verwendet wird.
AWS-eigene Schlüssel werden kostenlos zur Verfügung gestellt (keine monatlichen Gebühren oder
Nutzungsgebühren). Sofern Sie nicht verpflichtet sind, den Verschlüsselungsschlüssel, der Ihre
Annotationsdaten schützt, zu überprüfen oder zu kontrollieren, AWS-eigener Schlüssel ist an eine
gute Wahl.

• Vom Kunden verwalteter Schlüssel — CloudFormation unterstützt die Verwendung eines
symmetrischen, vom Kunden verwalteten Schlüssels, den Sie selbst erstellen, besitzen und
verwalten, um eine zweite Verschlüsselungsebene zur bestehenden hinzuzufügen. AWS-eigener
Schlüssel AWS KMS Gebühren fallen an. Weitere Informationen finden Sie unter Erstellen von
Schlüsseln im AWS Key Management Service -Entwicklerhandbuch. Um Ihren Schlüssel zu
verwalten, verwenden Sie das AWS Key Management Service (AWS KMS) in der AWS KMS
Konsole AWS CLI, das oder die AWS KMS API. Weitere Informationen finden Sie im AWS Key
Management Service -Entwicklerhandbuch.

Sie können vom Kunden verwaltete Schlüssel konfigurieren, wenn Sie Hooks erstellen und
aktualisieren. Wenn Sie Ihren vom Kunden verwalteten Schlüssel bereitstellen, CloudFormation
verwendet er diesen Schlüssel, um die Annotationsdaten zu verschlüsseln, bevor sie gespeichert
werden. Wenn später während des GetHookResult API-Vorgangs auf die Annotationsdaten
zugegriffen wird, werden sie CloudFormation automatisch entschlüsselt. Informationen zur
Konfiguration Ihres Verschlüsselungsschlüssels für Hooks finden Sie unter. Syntaxreferenz für das
Hook-Konfigurationsschema

Important

Beachten Sie, dass die KmsKeyId Option zur Angabe eines vom Kunden verwalteten
Schlüssels derzeit nur verfügbar ist, wenn Sie den AWS CLI zur Konfiguration Ihres Hooks
verwenden.

Übersicht 225

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://console.aws.amazon.com/kms
https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

CloudFormation Hooks Benutzerhandbuch

Verwendung des Verschlüsselungskontextes zur Steuerung des Zugriffs auf
den vom Kunden verwalteten Schlüssel

CloudFormation Hooks schließt bei jedem Speicher- und Abrufvorgang von Anmerkungen
automatisch den Verschlüsselungskontext ein. Auf diese Weise können Sie in Ihrer Schlüsselrichtlinie
Bedingungen für den Verschlüsselungskontext festlegen, um sicherzustellen, dass der Schlüssel nur
für bestimmte Hooks verwendet werden kann:

• kms:EncryptionContext:aws:cloudformation:hooks:service— Stellt sicher, dass der
Schlüssel nur vom CloudFormation Hooks-Dienst verwendet wird.

• kms:EncryptionContext:aws:cloudformation:account-id— Verhindert die
kontoübergreifende Verwendung von Schlüsseln, indem Ihre AWS-Konto ID abgeglichen wird.

• kms:EncryptionContext:aws:cloudformation:arn— Beschränken Sie die Verwendung
mithilfe von ARN-Mustern auf bestimmte Hooks.

Diese Bedingungen bieten zusätzlichen Schutz vor verwirrten stellvertretenden Angriffen, indem sie
die verschlüsselten Daten kryptografisch an den spezifischen Hook-Kontext binden.

Kundenverwaltete KMS-Schlüsselrichtlinie

Wenn Sie Ihren vom Kunden verwalteten Schlüssel erstellen, müssen Sie dessen Schlüsselrichtlinie
definieren, damit der CloudFormation Hooks-Service Operationen ausführen AWS KMS kann.
Wenn Sie die folgende wichtige Richtlinie verwenden möchten, ersetzen Sie sie durch Ihre eigenen
Informationen. placeholder values

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableIAMUserDescribeKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "cloudformation.us-east-1.amazonaws.com"

Verschlüsselungskontext 226

CloudFormation Hooks Benutzerhandbuch

 }
 }
 },
 {
 "Sid": "EnableIAMUserGenerateDataKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "cloudformation.us-east-1.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:hooks:service":
 "hooks.cloudformation.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:account-id": "111122223333"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:cloudformation:arn":
 "arn:aws:cloudformation:*:111122223333:hook/*"
 }
 }
 },
 {
 "Sid": "EnableIAMUserDecrypt",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "cloudformation.us-east-1.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AllowHooksServiceDescribeKey",
 "Effect": "Allow",
 "Principal": {
 "Service": "hooks.cloudformation.amazonaws.com"
 },

Kundenverwaltete KMS-Schlüsselrichtlinie 227

CloudFormation Hooks Benutzerhandbuch

 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "StringLike": {
 "aws:SourceArn": "arn:aws:cloudformation:*:111122223333:hook/*"
 }
 }
 },
 {
 "Sid": "AllowHooksService",
 "Effect": "Allow",
 "Principal": {
 "Service": "hooks.cloudformation.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333",
 "kms:EncryptionContext:aws:cloudformation:hooks:service":
 "hooks.cloudformation.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:account-id": "111122223333"
 },
 "StringLike": {
 "aws:SourceArn": "arn:aws:cloudformation:*:111122223333:hook/*",
 "kms:EncryptionContext:aws:cloudformation:arn":
 "arn:aws:cloudformation:*:111122223333:hook/*"
 }
 }
 }
]
}

Diese Richtlinie gewährt sowohl den IAM-Rollen (die ersten drei Anweisungen) als auch
dem CloudFormation Hooks-Dienst (die letzten beiden Anweisungen) Berechtigungen. Der
kms:ViaService Bedingungsschlüssel stellt sicher, dass der KMS-Schlüssel nur über verwendet

Kundenverwaltete KMS-Schlüsselrichtlinie 228

CloudFormation Hooks Benutzerhandbuch

werden kann CloudFormation, wodurch direkte KMS-API-Aufrufe verhindert werden. Die wichtigsten
Operationen sind:

• kms:DescribeKey— Validiert wichtige Eigenschaften und Metadaten. Dieser Vorgang erfolgt in
separaten Anweisungen, da er nicht unter Bedingungen des Verschlüsselungskontextes verwendet
werden kann.

• kms:GenerateDataKey— Generiert Datenverschlüsselungsschlüssel zum Verschlüsseln
von Anmerkungen vor dem Speichern. Dieser Vorgang beinhaltet Bedingungen für den
Verschlüsselungskontext für die bereichsbezogene Zugriffskontrolle.

• kms:Decrypt— Entschlüsselt zuvor verschlüsselte Annotationsdaten. Für IAM-Rollen beinhaltet
dies die Bedingung. kms:ViaService Für den Dienstprinzipal beinhaltet dies Bedingungen für
den Verschlüsselungskontext.

Die Schlüssel aws:SourceAccount und die aws:SourceArn Bedingungsschlüssel bieten
den primären Schutz vor verworrenen stellvertretenden Angriffen. Die Bedingungen für den
Verschlüsselungskontext bieten zusätzliche Überprüfungsebenen. Weitere Informationen finden
Sie im AWS Key Management Service Entwicklerhandbuch unter Verwenden aws:SourceArn oder
aws:SourceAccount Zuweisen von Schlüsseln.

Important

Rollen zur Hook-Ausführung benötigen keine AWS KMS Berechtigungen. Der
CloudFormation Hooks-Dienstprinzipal führt alle AWS KMS Operationen aus.

KMS-Berechtigungen für die SetTypeConfiguration API

CloudFormation Überprüft während des SetTypeConfigurationAPI-Aufrufs die
Benutzerberechtigungen zur Verschlüsselung von Annotationsdaten mit dem angegebenen
Schlüssel. AWS KMS Fügen Sie dem Benutzer oder der Rolle, die die Verschlüsselung mithilfe der
API konfiguriert, die folgende IAM-Richtlinie hinzu. SetTypeConfiguration arn:aws:kms:us-
east-1:123456789012:key/abc-123Ersetzen Sie es durch den ARN Ihres vom Kunden
verwalteten Schlüssels.

{
 "Version": "2012-10-17",
 "Statement": [

KMS-Berechtigungen für die SetTypeConfiguration API 229

https://docs.aws.amazon.com/kms/latest/developerguide/least-privilege.html#least-privilege-source-arn
https://docs.aws.amazon.com/kms/latest/developerguide/least-privilege.html#least-privilege-source-arn
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_SetTypeConfiguration.html

CloudFormation Hooks Benutzerhandbuch

 {
 "Effect": "Allow",
 "Action": "cloudformation:SetTypeConfiguration",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "kms:DescribeKey",
 "Resource": "arn:aws:kms:us-east-1:123456789012:key/abc-123"
 },
 {
 "Effect": "Allow",
 "Action": "kms:GenerateDataKey",
 "Resource": "arn:aws:kms:us-east-1:123456789012:key/abc-123",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:cloudformation:hooks:service":
 "hooks.cloudformation.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:account-id": "123456789012"
 },
 "StringLike": {
 "kms:EncryptionContext:aws:cloudformation:arn":
 "arn:aws:cloudformation:*:123456789012:hook/*"
 }
 }
 }
]
}

KMS-Berechtigungen für GetHookResult API

Um Hooks aufrufen GetHookResultzu können, die Ihren vom Kunden verwalteten Schlüssel
verwenden, müssen Benutzer über die kms:Decrypt Berechtigung für diesen Schlüssel verfügen.
Fügen Sie dem Benutzer oder der Rolle, die den Anruf tätigen GetHookResult soll, die folgende
IAM-Richtlinie hinzu. arn:aws:kms:us-east-1:123456789012:key/abc-123Ersetzen Sie es
durch den ARN Ihres vom Kunden verwalteten Schlüssels.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

KMS-Berechtigungen für GetHookResult API 230

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

CloudFormation Hooks Benutzerhandbuch

 "Action": "cloudformation:GetHookResult",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws:kms:us-east-1:123456789012:key/abc-123"
 }
]
}

KMS-Berechtigungen für GetHookResult API 231

CloudFormation Hooks Benutzerhandbuch

Dokumentenverlauf für das CloudFormation Hooks-
Benutzerhandbuch

In der folgenden Tabelle werden die wichtigen Änderungen an der Dokumentation seit der letzten
Version von CloudFormation Hooks beschrieben. Um Benachrichtigungen über Aktualisierungen
dieser Dokumentation zu erhalten, können Sie einen RSS-Feed abonnieren.

• Letzte Aktualisierung der Dokumentation: 4. September 2025.

Änderung Beschreibung Datum

Detaillierte Ergebnisse der
Konformitätsprüfung

Hooks unterstützen jetzt
Anmerkungen, die detaillie
rte Ergebnisse der Konformit
ätsprüfungen und Anleitung
en zur Problembehebung für
jede evaluierte Ressource
enthalten. Sehen Sie sich
diese detaillierten Überprüfu
ngsergebnisse über die
CloudFormation Konsole oder
den get-hook-result CLI-
Befehl an.

13. November 2025

Proaktive Kontrollen als Hooks Sie können jetzt proaktive,
steuerungsbasierte Hooks
über die CloudFormation
Konsole oder CLI mit den
Befehlen activate-type
und set-type-configura
tion aktivieren. Sie können
diese Hooks so konfiguri
eren, dass sie spezifische
proaktive Kontrollen im AWS
Control Tower Control Catalog

4. September 2025

232

CloudFormation Hooks Benutzerhandbuch

anwenden, um Ressourcen
während CREATE und UPDATE
im Betrieb zu bewerten.

Zusammenfassung des
Hooks-Aufrufs

Sie können jetzt Informati
onen zu Hook-Aufrufen über
die CloudFormation Konsole
abrufen oder den list-
hook-results CLI-Befehl
verwenden, um Aufrufdetails
programmgesteuert abzurufen
. Sie können die list-hook
-results Ergebnisse
jetzt auch nach Hook- oder
Aufrufstatus filtern, um sich auf
relevante Aufrufe zu konzentri
eren.

4. September 2025

Hooks auf Stack-Ebene Hooks werden jetzt auf Stack-
Ebene unterstützt, sodass
Kunden CloudFormation
Hooks verwenden können, um
neue Vorlagen zu evaluiere
n und möglicherweise den
Fortgang von Stack-Ope
rationen zu blockieren.

13. November 2024

233

CloudFormation Hooks Benutzerhandbuch

AWS -Cloud-Control- API
Integration von Hooks

Hooks sind jetzt in die Cloud
Control API integriert, sodass
Kunden CloudFormation
Hooks verwenden können,
um die Konfiguration von
Ressourcen vor der Bereitste
llung proaktiv zu überprüfe
n. Wenn nicht konforme
Ressourcen gefunden
werden, schlägt der Hook
entweder den Vorgang fehl
und verhindert, dass die
Ressourcen bereitgestellt
werden, oder er gibt eine
Warnung aus und ermöglicht
die Fortsetzung des Bereitste
llungsvorgangs.

13. November 2024

234

CloudFormation Hooks Benutzerhandbuch

AWS CloudFormation Guard
Hooks

AWS CloudFormation Guard
ist eine domänenspezifische
Open-Source-Sprache (DSL)
für allgemeine Zwecke, die
Sie zum Verfassen verwenden
können. policy-as-code Guard
Hooks kann die Cloud Control-
API und CloudFormation
-Operationen auswerten
, um die Konfiguration der
Ressourcen vor der Bereitste
llung zu überprüfen. Wenn
nicht konforme Ressourcen
gefunden werden, schlägt der
Hook entweder den Vorgang
fehl und verhindert, dass die
Ressourcen bereitgestellt
werden, oder er gibt eine
Warnung aus und ermöglicht
die Fortsetzung des Bereitste
llungsvorgangs.

13. November 2024

AWS Lambda Hooks AWS CloudFormation Mit
Lambda Hooks können Sie
API-Operationen auswerten
CloudFormation und Cloud
Control anhand Ihres eigenen
benutzerdefinierten Codes
durchführen. Ihr Hook kann
den Fortgang eines Vorgangs
blockieren oder eine Warnung
an den Anrufer ausgeben,
sodass der Vorgang fortgeset
zt werden kann.

13. November 2024

235

CloudFormation Hooks Benutzerhandbuch

Hooks Benutzerhandbuch Erste Version des CloudForm
ation Hooks-Benutzerhand
buchs. Zu den Updates
gehören eine neue Einführun
g, eine Komplettlösung für die
ersten Schritte, Konzepte und
Terminologie, Filterung auf
Stapelebene und aktualisierte
Themen zu Voraussetzungen,
Einrichtung und CloudForm
ation Hooks-Entwicklung.

8. Dezember 2023

236

CloudFormation Hooks Benutzerhandbuch

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich
infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

ccxxxvii

	CloudFormation
	Table of Contents
	Was sind CloudFormation Hooks?
	Hook-Implementierungsoptionen
	AWS Control Tower proaktive Kontrollen
	Regeln schützen
	Lambda-Funktionen
	Benutzerdefinierte Hooks

	CloudFormation Hooks erstellen und verwalten
	CloudFormation Hooks-Konzepte
	Hook
	Fehlermodus
	Hook-Ziele
	Zielaktionen
	Anmerkungen
	Hook-Handler
	Timeout- und Wiederholungslimits

	AWS Control Tower proaktive Kontrollen als Hooks
	AWS CLI Befehle für die Arbeit mit Hooks
	Aktivieren eines proaktiven kontrollbasierten Hooks in Ihrem Konto
	Aktivieren Sie einen proaktiven, steuerungsbasierten Hook (Konsole)
	Aktiviere einen proaktiven, steuerungsbasierten Hook ()AWS CLI

	Löschen Sie proaktive, auf Kontrollen basierende Hooks in Ihrem Konto
	Löschen Sie einen proaktiven, auf Steuerung basierenden Hook in Ihrem Konto (Konsole)
	Lösche einen proaktiven, auf Steuerung basierenden Hook in deinem Konto ()AWS CLI

	Schutzhaken
	AWS CLI Befehle für die Arbeit mit Guard Hooks
	Schreiben Sie Guard-Regeln, um Ressourcen für Guard Hooks auszuwerten
	Guard-Regeln für den Ressourcenbetrieb
	Syntax der Guard-Ressourceneingabe
	Beispiel für die Eingabe eines Guard-Ressourcenvorgangs
	Regeln für Ressourcenänderungen schützen

	Stack Operation Guard-Regeln
	Guard Stack-Eingabesyntax
	Beispiel für die Eingabe einer Guard-Stack-Operation
	Regeln für Stack-Änderungen schützen

	Ändern Sie die festgelegten Operation-Guard-Regeln
	Eingabesyntax des Guard-Änderungssatzes
	Beispiel für die Eingabe einer Guard-Change-Set-Operation
	Schutzregel für Change-Set-Operationen

	Bereiten Sie sich darauf vor, einen Guard-Hook zu erstellen
	Erstellen Sie eine Ausführungsrolle für einen Guard Hook
	Erforderliche Berechtigungen

	Aktiviere einen Guard Hook in deinem Konto
	Aktiviere einen Guard Hook (Konsole)
	Aktiviere einen Guard Hook (AWS CLI)
	Zugehörige Ressourcen

	Sehen Sie sich die Logs für die Guard Hooks in Ihrem Konto an
	Guard Hook-Protokolle in der Amazon S3 S3-Konsole anzeigen

	Löschen Sie Guard Hooks in Ihrem Konto
	Löschen Sie einen Guard Hook in Ihrem Konto (Konsole)
	Lösche einen Guard Hook in deinem Konto (AWS CLI)

	Lambda-Hook
	AWS CLI Befehle für die Arbeit mit Lambda Hooks
	Erstellen Sie Lambda-Funktionen, um Ressourcen für Lambda Hooks auszuwerten
	Entwicklung eines Lambda-Hooks
	Eingabe anfordern
	Eingabe der Antwort
	Beispiele

	Evaluierung von Ressourcenoperationen mit Lambda Hooks
	Eingabesyntax für Lambda-Hook-Ressourcen
	Beispiel für eine Eingabe zur Änderung der Lambda-Hook-Ressource
	Beispiel für eine Lambda-Funktion für Ressourcenoperationen

	Auswertung von Stack-Operationen mit Lambda Hooks
	Lambda Hook-Stack-Eingabesyntax
	Beispiel für eine Lambda-Hook-Stack-Änderungseingabe
	Beispiel für eine Lambda-Funktion für Stack-Operationen

	Evaluierung von Change-Set-Vorgängen mit Lambda Hooks
	Lambda Hook Change Set-Eingabesyntax
	Beispiel für eine Lambda-Hook-Change-Set-Änderungseingabe
	Beispiel für eine Lambda-Funktion für Change-Set-Operationen

	Bereiten Sie sich darauf vor, einen Lambda-Hook zu erstellen
	Erstellen Sie eine Ausführungsrolle für einen Lambda-Hook
	Erforderliche Berechtigungen

	Aktiviere einen Lambda Hook in deinem Konto
	Aktiviere einen Lambda Hook (Konsole)
	Aktiviere einen Lambda-Hook ()AWS CLI
	Zugehörige Ressourcen

	Logs für die Lambda Hooks in Ihrem Konto anzeigen
	Lambda Hook-Logs in der Lambda-Konsole anzeigen

	Löschen Sie Lambda Hooks in Ihrem Konto
	Löschen Sie einen Lambda Hook in Ihrem Konto (Konsole)
	Lösche einen Lambda Hook in deinem Konto ()AWS CLI

	Entwicklung benutzerdefinierter Hooks mit der CloudFormation CLI
	Voraussetzungen für die Entwicklung benutzerdefinierter CloudFormation Hooks
	Berechtigungen für die Entwicklung von Hooks
	Richten Sie eine Entwicklungsumgebung für Hooks ein

	Initiieren eines benutzerdefinierten CloudFormation Hooks-Projekts
	Modellieren von benutzerdefinierten CloudFormation Hooks
	Modellieren von benutzerdefinierten CloudFormation Hooks mit Java
	Schritt 1: Fügen Sie Projektabhängigkeiten hinzu
	Hook-Projektabhängigkeiten (pom.xml)

	Schritt 2: Generieren Sie das Hook-Projektpaket
	Schritt 3: Hook-Handler hinzufügen
	Schritt 4: Implementieren Sie Hook-Handler
	Codierung des API Client Builders
	Codierung des API Request Makers
	Implementierung des Hilfscodes
	Implementierung des Basis-Handlers
	Implementierung des preCreate Handlers
	Codierung des preCreate Handlers
	Der preCreate Test wird aktualisiert
	Implementierung des preUpdate Handlers
	Codierung des preUpdate Handlers
	Der preUpdate Test wird aktualisiert
	Implementierung des preDelete Handlers
	Codierung des preDelete Handlers
	Den preDelete Handler aktualisieren

	Modellieren von benutzerdefinierten CloudFormation Hooks mit Python
	Schritt 1: Generieren Sie das Hook-Projektpaket
	Schritt 2: Hook-Handler hinzufügen
	Schritt 3: Implementieren Sie Hook-Handler
	Implementieren Sie den Handler preCreate
	Implementieren Sie den preUpdate Handler
	Implementieren Sie den preDelete Handler
	Implementieren Sie einen Hook-Handler

	Einen benutzerdefinierten Hook registrieren mit CloudFormation
	Einen Hook verpacken (Java)
	Registrieren Sie einen benutzerdefinierten Hook
	Überprüfe, ob Hooks in deinem Konto zugänglich sind
	Hooks konfigurieren

	Zugriff AWS APIs in Handlern
	Vorlage hook-role.yaml

	Testen Sie einen benutzerdefinierten Hook in Ihrem AWS-Konto
	Testen von Hooks durch Bereitstellung eines Stacks
	Beispiel 1: Um einen Stack bereitzustellen
	Beispiel 2: Um einen Stack bereitzustellen

	Einen benutzerdefinierten Hook aktualisieren
	Einen benutzerdefinierten Hook von der Registrierung abmelden CloudFormation
	Hooks für den öffentlichen Gebrauch veröffentlichen
	Testen eines benutzerdefinierten Hooks für den öffentlichen Gebrauch
	Angabe von Eingabedaten für die Verwendung in Vertragstests
	Eingabedaten mithilfe einer Override-Datei angeben
	Angeben von Eingabedaten mithilfe von Eingabedateien

	Schema-Syntaxreferenz für CloudFormation Hooks
	Schemasyntax
	Beispiele für Hooks-Schemas

	CloudFormation Hooks deaktivieren und aktivieren
	Deaktiviere und aktiviere einen Hook in deinem Konto (Konsole)
	Deaktiviere und aktiviere einen Hook in deinem Konto (AWS CLI)

	Aufrufergebnisse für CloudFormation Hooks anzeigen
	Aufrufergebnisse in der Konsole anzeigen
	Ergebnisse für alle Hooks anzeigen
	Den Aufrufverlauf für einzelne Hooks anzeigen
	Ergebnisse für stapelspezifische Aufrufe anzeigen

	Rufen Sie die Ergebnisse des Aufrufs auf, indem Sie AWS CLI

	Syntaxreferenz für das Hook-Konfigurationsschema
	Eigenschaften des Hook-Konfigurationsschemas
	Beispiele für die Hook-Konfiguration
	CloudFormation Hooks Filter auf Stapelebene
	FilteringCriteria
	StackNames
	StackRoles
	Include und Exclude
	Beispiele für Filter auf Stapelebene
	Beispiel 1: Fügen Sie bestimmte Stacks hinzu
	Beispiel 2: Schließen Sie bestimmte Stacks aus
	Beispiel 3: Kombination von Include und Exclude
	Beispiel 4: Kombinieren von Stacknamen und Rollen mit Kriterien ALL
	Beispiel 5: Kombinieren von Stacknamen und Rollen mit Kriterien ANY

	CloudFormation Hooks zielen auf Filter ab
	Beispiele für Zielfilter
	Beispiel 1: Einfacher Zielfilter
	Beispiel 2: Verwenden des Targets Objekt-Arrays

	Verwendung von Platzhaltern mit Hook-Zielnamen

	Hooks mithilfe von CloudFormation Vorlagen erstellen
	Erteilen Sie IAM-Berechtigungen für Hooks CloudFormation
	Erlauben Sie einem Benutzer, Hooks zu verwalten
	Erlauben Sie einem Benutzer, benutzerdefinierte Hooks öffentlich zu veröffentlichen
	Erlauben Sie einem Benutzer, die Ergebnisse von Hook-Aufrufen einzusehen
	Listet die Ergebnisse von Hook-Aufrufen auf
	Steuern Sie, welche Änderungssätze angegeben werden können
	Steuert, welche Hooks angegeben werden können

	Erlaubt einem Benutzer, detaillierte Ergebnisse des Hook-Aufrufs anzuzeigen
	AWS KMS wichtige Richtlinien und Berechtigungen für die Verschlüsselung von CloudFormation Hooks-Ergebnissen im Ruhezustand
	Übersicht
	Verwendung des Verschlüsselungskontextes zur Steuerung des Zugriffs auf den vom Kunden verwalteten Schlüssel
	Kundenverwaltete KMS-Schlüsselrichtlinie
	KMS-Berechtigungen für die SetTypeConfiguration API
	KMS-Berechtigungen für GetHookResult API

	Dokumentenverlauf für das CloudFormation Hooks-Benutzerhandbuch
	

