
Entwicklerhandbuch

AWS Encryption SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK: Entwicklerhandbuch

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Marken und Handelsmarken von Amazon dürfen nicht in einer Weise in Verbindung mit nicht von
Amazon stammenden Produkten oder Services verwendet werden, die geeignet ist, die Kunden zu
verwirren oder Amazon in einer Weise herabzusetzen oder zu diskreditieren. Alle anderen Marken,
die nicht Eigentum von Amazon sind, sind Eigentum ihrer jeweiligen Inhaber, die mit Amazon
verbunden oder nicht verbunden oder von Amazon gesponsert oder nicht gesponsert sein können.

AWS Encryption SDK Entwicklerhandbuch

Table of Contents
Was ist der AWS Encryption SDK? ... 1

Entwickelt in Open-Source-Repositorien ... 2
Kompatibilität mit Verschlüsselungsbibliotheken und -services .. 3
Support und Wartung .. 4
Mehr lernen .. 5
Senden von Feedback .. 6
Konzepte .. 6

Umschlagverschlüsselung ... 7
Datenschlüssel .. 9
Schlüssel zum Umschließen ... 10
Schlüsselanhänger und Hauptschlüsselanbieter .. 11
Verschlüsselungskontext ... 12
Verschlüsselte Nachricht .. 14
Algorithmen-Paket ... 15
Manager von kryptographischen Materialien .. 15
Symmetrische und asymmetrische Verschlüsselung ... 16
Wichtiges Engagement ... 16
Verpflichtungspolitik .. 18
Digitale Signaturen .. 20

Wie das SDK funktioniert .. 21
Wie AWS Encryption SDK verschlüsselt der Daten ... 22
Wie AWS Encryption SDK entschlüsselt der eine verschlüsselte Nachricht 22

Unterstützte Algorithmen-Pakete ... 23
Empfohlen: AES-GCM mit Schlüsselableitung, Signierung und Schlüsselzusage 24
Andere unterstützte Algorithmen-Pakete .. 25

Interagieren mit AWS KMS .. 27
Bewährte Methoden ... 29
Konfigurieren des SDKs ... 34

Auswahl einer Programmiersprache ... 34
Auswahl von Schlüsseln zum Umbrechen .. 35
Verwenden Sie mehrere Regionen AWS KMS keys .. 36
Auswahl einer Algorithmus-Suite ... 58
Beschränkung verschlüsselter Datenschlüssel ... 70
Einen Discovery-Filter erstellen ... 77

iii

AWS Encryption SDK Entwicklerhandbuch

Verschlüsselungskontexte erforderlich .. 80
Festlegung einer Verpflichtungspolitik ... 88
Arbeiten mit Streaming-Daten ... 88
Zwischenspeichern von Datenschlüsseln .. 89

Wichtige Geschäfte .. 90
Terminologie und Konzepte von Key Stores .. 90
Implementieren der geringsten Berechtigungen ... 91
Einen Schlüsselspeicher erstellen ... 92
Schlüsselspeicheraktionen konfigurieren .. 93

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen .. 95
Erstellen Sie Zweigschlüssel ... 99
Drehe deinen aktiven Filialschlüssel ... 103

Schlüsselringe ... 106
Funktionsweise von Schlüsselbunden ... 106
Schlüsselbund-Kompatibilität ... 108

Unterschiedliche Anforderungen für Verschlüsselungsschlüsselringe 109
Kompatible Schlüsselbunde und Masterschlüssel-Anbieter ... 109

AWS KMS Schlüsselringe ... 112
AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger .. 113
Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund 114
Einen Schlüsselbund erstellen AWS KMS ... 115
Verwenden eines Discovery-Schlüsselbunds AWS KMS ... 131
Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 138

AWS KMS Hierarchische Schlüsselanhänger ... 147
Funktionsweise .. 149
Voraussetzungen .. 152
Erforderliche Berechtigungen ... 152
Wählen Sie einen Cache .. 153
Erstellen Sie einen hierarchischen Schlüsselbund ... 166

AWS KMS ECDH-Schlüsselanhänger ... 174
Erforderliche Berechtigungen für AWS KMS ECDH-Schlüsselanhänger 176
Einen ECDH-Schlüsselbund AWS KMS erstellen .. 176
Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen ... 184

Unformatierte AES-Schlüsselbunde .. 190
Unformatierte RSA-Schlüsselbunde .. 198
Raw ECDH Schlüsselanhänger ... 208

iv

AWS Encryption SDK Entwicklerhandbuch

Einen RAW-ECDH-Schlüsselbund erstellen ... 209
Multi-Schlüsselbunde ... 227

Programmiersprachen .. 238
C ... 238

Installation ... 239
Verwenden des C SDK .. 240
Beispiele .. 245

.NET ... 254
Installieren und Erstellen .. 256
Debugging ... 256
Beispiele .. 257

Go ... 266
Voraussetzungen .. 267
Installation ... 267

Java .. 267
Voraussetzungen .. 268
Installation ... 269
Beispiele .. 270

JavaScript .. 284
Kompatibilität ... 285
Installation ... 287
Module ... 288
Beispiele .. 291

Python .. 300
Voraussetzungen .. 300
Installation ... 301
Beispiele .. 302

Rust .. 309
Voraussetzungen .. 310
Installation ... 311
Beispiele .. 311

Befehlszeilenschnittstelle ... 314
Installieren der -CLI .. 315
Die CLI verwenden ... 318
Beispiele .. 333
Syntax und Parameterreferenz ... 359

v

AWS Encryption SDK Entwicklerhandbuch

Versionen .. 373
Datenschlüssel-Caching ... 377

Das Datenschlüssel-Caching verwenden .. 378
Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step 379
Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 387

Festlegen von Cache-Sicherheitsschwellenwerten ... 403
Weitere Informationen zum Datenschlüssel-Caching ... 405

Wie das Datenschlüssel-Caching funktioniert .. 405
Erstellen eines Cache für kryptografische Materialien ... 409
Erstellen eines Managers von kryptographischen Materialien, der Caching verwendet 410
Was befinde sich in einem Datenschlüssel-Cache-Eintrag? .. 411
Verschlüsselungskontext: Wie Cache-Einträge ausgewählt werden 412
Benutzt meine Anwendung zwischengespeicherte Datenschlüssel? 412

Beispiel für das Datenschlüssel-Caching .. 413
Lokale Cache-Ergebnisse ... 414
Beispiel-Code .. 415
CloudFormation Vorlage ... 427

Versionen von AWS Encryption SDK .. 442
C ... 443
C#/.NET ... 444
Befehlszeilenschnittstelle (CLI) .. 444
Java .. 447
Go ... 449
JavaScript .. 450
Python .. 451
Rust .. 453
Versionsdetails ... 453

Versionen vor 1.7. x ... 454
Version 1.7. x .. 454
Version 2.0. x .. 457
Version 2.2. x .. 459
Version 2.3. x .. 460

Migrieren Sie Ihre AWS Encryption SDK ... 461
Wie migriert und implementiert man ... 463

Phase 1: Aktualisieren Sie Ihre Anwendung auf die neueste Version 1. x-Version 463
Phase 2: Aktualisieren Sie Ihre Anwendung auf die neueste Version 465

vi

AWS Encryption SDK Entwicklerhandbuch

Aktualisierung der AWS KMS Hauptschlüsselanbieter ... 466
Umstellung auf den strikten Modus .. 467
In den Discovery-Modus migrieren ... 471

AWS KMS Schlüsselanhänger aktualisieren ... 474
Festlegung Ihrer Verpflichtungspolitik ... 477

Wie legen Sie Ihre Verpflichtungsrichtlinie fest .. 478
Fehlerbehebung bei der Migration auf die neuesten Versionen ... 490

Veraltete oder entfernte Objekte .. 491
Konfigurationskonflikt: Verpflichtungsrichtlinie und Algorithmus-Suite 491
Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretext ... 492
Die Überprüfung der Schlüsselzusage ist fehlgeschlagen ... 493
Andere Verschlüsselungsfehler .. 493
Andere Fehler bei der Entschlüsselung ... 493
Überlegungen zum Rollback .. 494

Häufig gestellte Fragen .. 495
Wie AWS Encryption SDK unterscheidet sich das von dem AWS SDKs? 495
Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3 S3-
Verschlüsselungsclient? ... 496
Welche kryptografischen Algorithmen werden vom AWS Encryption SDK unterstützt und
welcher ist der Standard? ... 497
Wie wird der Initialisierungsvektor (IV) generiert und wo wird er gespeichert? 497
Wie werden die einzelnen Datenschlüssel generiert, verschlüsselt und entschlüsselt? 498
Wie kann ich nachverfolgen, welche Datenschlüssel zum Verschlüsseln meiner Daten
verwendet wurden? ... 498
Wie AWS Encryption SDK speichern sie verschlüsselte Datenschlüssel mit ihren
verschlüsselten Daten? ... 498
Wie viel Mehraufwand verursacht das AWS Encryption SDK Nachrichtenformat für meine
verschlüsselten Daten? ... 499
Kann ich meinen eigenen Masterschlüsselanbieter verwenden? ... 499
Kann ich Daten mit mehr als einem Wrapping Key verschlüsseln? ... 499
Welche Datentypen kann ich mit dem verschlüsseln? AWS Encryption SDK 500
Wie werden Streams AWS Encryption SDK verschlüsselt und entschlüsselt input/output (I/
O)? ... 500

Referenz ... 502
Nachrichtenformat – Referenz ... 502

Header-Struktur ... 503

vii

AWS Encryption SDK Entwicklerhandbuch

Textstruktur ... 512
Footer-Struktur .. 517

Nachrichtenformat – Beispiele ... 518
Gerahmte Daten (Nachrichtenformat, Version 1) ... 519
Frame-Daten (Nachrichtenformat, Version 2) .. 522
Daten ohne Frames (Nachrichtenformat, Version 1) ... 524

Text-AAD – Referenz .. 528
Algorithmen – Referenz ... 530
Initialisierungsvektor – Referenz .. 535
AWS KMS Technische Details zum hierarchischen Schlüsselbund ... 536

Dokumentverlauf ... 538
Neueste Aktualisierungen .. 538
Frühere Aktualisierungen ... 541

... dxliii

viii

AWS Encryption SDK Entwicklerhandbuch

Was ist der AWS Encryption SDK?
Die AWS Encryption SDK ist eine clientseitige Verschlüsselungsbibliothek, die darauf ausgelegt
ist, das Verschlüsseln und Entschlüsseln von Daten unter Verwendung von Branchenstandards
und bewährten Methoden zu gestalten. Es ermöglicht Ihnen, sich auf die Kernfunktionalität Ihrer
Anwendung zu konzentrieren und nicht darauf, wie Sie Ihre Daten am besten verschlüsseln und
entschlüsseln können. Das AWS Encryption SDK wird unter der Apache 2.0-Lizenz kostenlos zur
Verfügung gestellt.

Das AWS Encryption SDK beantwortet Fragen wie die folgenden für Sie:

• Welche Verschlüsselungsalgorithmus sollte ich verwenden?

• Wie oder in welchem Modus sollte ich diesen Algorithmus verwenden?

• Wie kann ich den Verschlüsselungsschlüssel generieren?

• Wie kann ich den Verschlüsselungsschlüssel schützen, und wo sollte ich ihn speichern?

• Wie kann ich meine verschlüsselten Daten portierbar machen?

• Wie kann ich sicherstellen, dass der beabsichtigte Empfänger meine verschlüsselten Daten lesen
kann?

• Wie kann ich sicherstellen, dass meine verschlüsselten Daten zwischen dem Schreiben und dem
Lesen nicht verändert werden?

• Wie verwende ich die Datenschlüssel, die AWS KMS zurückgegeben werden?

Mit dem AWS Encryption SDK definieren Sie einen Hauptschlüsselanbieter oder einen
Schlüsselbund, der festlegt, welche Wrapping-Schlüssel Sie zum Schutz Ihrer Daten verwenden.
Anschließend verschlüsseln und entschlüsseln Sie Ihre Daten mit einfachen Methoden, die von der
bereitgestellt werden. AWS Encryption SDK Das AWS Encryption SDK erledigt den Rest.

Ohne das AWS Encryption SDK investieren Sie möglicherweise mehr Aufwand in die Entwicklung
einer Verschlüsselungslösung als in die Kernfunktionalität Ihrer Anwendung. The AWS Encryption
SDK beantwortet diese Fragen, indem es die folgenden Informationen bereitstellt.

Eine Standard-Implementierung, die die bewährten Methoden der Kryptografie befolgt

Standardmäßig AWS Encryption SDK generiert das einen eindeutigen Datenschlüssel für jedes
verschlüsselte Datenobjekt. Dies entspricht den bewährten Methoden der Kryptografie, eindeutige
Datenschlüsseln für jede Verschlüsselungsoperation zu verwenden.

1

AWS Encryption SDK Entwicklerhandbuch

Der AWS Encryption SDK verschlüsselt Ihre Daten mithilfe eines sicheren, authentifizierten,
symmetrischen Schlüsselalgorithmus. Weitere Informationen finden Sie unter the section called
“Unterstützte Algorithmen-Pakete”.

Ein Framework zum Schutz von Datenschlüsseln durch Wrapping Keys

Das AWS Encryption SDK schützt die Datenschlüssel, die Ihre Daten verschlüsseln,
indem sie unter einem oder mehreren Wrapping-Schlüsseln verschlüsseln. Durch die
Bereitstellung eines Frameworks zum Verschlüsseln von Datenschlüsseln mit mehr als einem
Umschließungsschlüssel AWS Encryption SDK trägt das dazu bei, dass Ihre verschlüsselten
Daten portabel sind.

Verschlüsseln Sie beispielsweise Daten mit einem Eingang AWS KMS und AWS KMS key einem
Schlüssel aus Ihrem lokalen HSM. Sie können einen der Wrapping-Schlüssel verwenden, um die
Daten zu entschlüsseln, falls einer nicht verfügbar ist oder der Anrufer nicht berechtigt ist, beide
Schlüssel zu verwenden.

Eine formatierte Nachricht, die verschlüsselte Datenschlüssel mit den verschlüsselten Daten
speichert

Der AWS Encryption SDK speichert die verschlüsselten Daten und den verschlüsselten
Datenschlüssel zusammen in einer verschlüsselten Nachricht, die ein definiertes Datenformat
verwendet. Das bedeutet, dass Sie die Datenschlüssel, die Ihre Daten verschlüsseln, nicht
nachverfolgen oder schützen müssen, da dies für Sie AWS Encryption SDK erledigt wird.

Für einige Sprachimplementierungen von ist ein AWS SDK AWS Encryption SDK erforderlich, für das
AWS Encryption SDK ist jedoch kein AWS-Konto und es ist auch von keinem AWS Dienst abhängig.
Sie benötigen ein AWS-Konto nur, wenn Sie es AWS KMS keyszum Schutz Ihrer Daten verwenden
möchten.

Entwickelt in Open-Source-Repositorien

Das AWS Encryption SDK wurde in Open-Source-Repositorien am entwickelt. GitHub Sie können
diese Repositorien verwenden, um den Code einzusehen, Probleme zu lesen und einzureichen sowie
Informationen zu finden, die für Ihre Sprachimplementierung spezifisch sind.

• AWS-Verschlüsselungs-SDK for C — aws-encryption-sdk-c

• AWS Encryption SDK für.NET — .NET-Verzeichnis des aws-encryption-sdk Repositorys.

• AWS Verschlüsselung CLI — aws-encryption-sdk-cli

Entwickelt in Open-Source-Repositorien 2

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

• AWS-Verschlüsselungs-SDK for Java — aws-encryption-sdk-java

• AWS-Verschlüsselungs-SDK for JavaScript — aws-encryption-sdk-javascript

• AWS-Verschlüsselungs-SDK for Python — aws-encryption-sdk-python

• AWS Encryption SDK für Rust — Rust-Verzeichnis des aws-encryption-sdk Repositorys.

• AWS Encryption SDK für Go — Go-Verzeichnis des aws-encryption-sdk Repositorys

Kompatibilität mit Verschlüsselungsbibliotheken und -services

Das AWS Encryption SDK wird in mehreren Programmiersprachen unterstützt. Alle
Sprachimplementierungen sind interoperabel. Sie können mit einer Sprachimplementierung
verschlüsseln und mit einer anderen entschlüsseln. Die Interoperabilität ist möglicherweise von
Spracheinschränkungen abhängig. Wenn dies der Fall ist, werden diese Einschränkungen im
Thema zur Sprachimplementierung beschrieben. Außerdem müssen Sie beim Verschlüsseln und
Entschlüsseln kompatible Schlüsselbünde oder Masterschlüssel und Masterschlüsselanbieter
verwenden. Details hierzu finden Sie unter the section called “Schlüsselbund-Kompatibilität”.

Sie können jedoch AWS Encryption SDK nicht mit anderen Bibliotheken zusammenarbeiten. Da
jede Bibliothek verschlüsselte Daten in einem anderen Format zurückgibt, können Sie nicht mit einer
Bibliothek verschlüsseln und mit einer anderen entschlüsseln.

DynamoDB -Verschlüsselungsclient und die clientseitige Amazon-S3-Verschlüsselung

Die mit dem DynamoDB Encryption Client oder der clientseitigen Amazon S3 S3-Verschlüsselung
verschlüsselten Daten AWS Encryption SDK können nicht entschlüsselt werden. Diese
Bibliotheken können die zurückgesendete verschlüsselte Nachricht nicht entschlüsseln. AWS
Encryption SDK

AWS Key Management Service (AWS KMS)

Sie AWS Encryption SDK können Datenschlüssel verwenden AWS KMS keys, um Ihre Daten zu
schützen, einschließlich KMS-Schlüssel für mehrere Regionen. Sie können die beispielsweise so
konfigurieren, AWS Encryption SDK dass Ihre Daten unter einem oder mehreren AWS KMS keys
in Ihrem verschlüsselt werden. AWS-Konto Sie müssen jedoch den verwenden, AWS Encryption
SDK um diese Daten zu entschlüsseln.

Der Chiffretext, den die Verschlüsselungs- oder Operationen zurückgeben, AWS Encryption SDK
kann nicht AWS KMS entschlüsselt werden. ReEncrypt Ebenso kann der AWS KMSDecrypt-
Vorgang die zurückgesendete verschlüsselte Nachricht nicht entschlüsseln. AWS Encryption SDK

Kompatibilität mit Verschlüsselungsbibliotheken und -services 3

https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Encryption SDK Entwicklerhandbuch

Der AWS Encryption SDK unterstützt nur KMS-Schlüssel mit symmetrischer Verschlüsselung.
Sie können keinen asymmetrischen KMS-Schlüssel für die Verschlüsselung oder Anmeldung
in verwenden. AWS Encryption SDK Das AWS Encryption SDK generiert eigene ECDSA-
Signaturschlüssel für Algorithmen-Pakete, die Nachrichten signieren.

Support und Wartung

Das AWS Encryption SDK verwendet dieselbe Wartungsrichtlinie wie das AWS SDK und die Tools,
einschließlich der Versionierungs- und Lebenszyklusphasen. Als bewährte Methode empfehlen wir,
dass Sie die neueste verfügbare Version von AWS Encryption SDK für Ihre Programmiersprache
verwenden und ein Upgrade durchführen, sobald neue Versionen veröffentlicht werden. Wenn für
eine Version wesentliche Änderungen erforderlich sind, z. B. das Upgrade von AWS Encryption
SDK Versionen vor 1.7. x auf Versionen 2.0. x und später stellen wir detaillierte Anweisungen zur
Verfügung, um Ihnen zu helfen.

Jede Programmiersprachenimplementierung von AWS Encryption SDK wird in einem separaten
GitHub Open-Source-Repository entwickelt. Der Lebenszyklus und die Supportphase jeder Version
variieren wahrscheinlich je nach Repositorium. Beispielsweise AWS Encryption SDK könnte
sich eine bestimmte Version von in einer Programmiersprache in der Phase der allgemeinen
Verfügbarkeit (vollständiger Support) befinden, die end-of-support Phase jedoch in einer anderen
Programmiersprache. Wir empfehlen, wann immer möglich eine vollständig unterstützte Version zu
verwenden und Versionen zu vermeiden, die nicht mehr unterstützt werden.

Informationen zur Lebenszyklusphase von AWS Encryption SDK Versionen für Ihre
Programmiersprache finden Sie in der SUPPORT_POLICY.rst Datei in den einzelnen AWS
Encryption SDK Repositorys.

• AWS-Verschlüsselungs-SDK for C — Support_Policy.rst

• AWS Encryption SDK für .NET — Support_Policy.rst

• AWS Verschlüsselungs-CLI — Support_Policy.rst

• AWS-Verschlüsselungs-SDK for Java — Support_Policy.rst

• AWS-Verschlüsselungs-SDK for JavaScript — Support_Policy.rst

• AWS-Verschlüsselungs-SDK for Python — Support_Policy.rst

Weitere Informationen finden Sie unter Versionen von AWS Encryption SDK und AWS SDKs und in
den Wartungsrichtlinien für Tools im Tools-Referenzhandbuch. AWS SDKs

Support und Wartung 4

https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-dafny/blob/mainline/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-java/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-python/blob/master/SUPPORT_POLICY.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS Encryption SDK Entwicklerhandbuch

Mehr lernen

Weitere Informationen zur Verschlüsselung AWS Encryption SDK und zur clientseitigen
Verschlüsselung finden Sie in diesen Quellen.

• Hilfe zu den Begriffen und Konzepten in diesem SDK finden Sie unter Konzepte in der AWS
Encryption SDK.

• Richtlinien für bewährte Verfahren finden Sie unter. Bewährte Methoden für AWS Encryption SDK

• Weitere Information zur Funktionsweise dieses SDK finden Sie unter Wie das SDK funktioniert.

• Beispiele zur Konfiguration von Optionen in der finden Sie AWS Encryption SDK unterKonfiguration
der AWS Encryption SDK.

• Detaillierte technische Informationen finden Sie unter Referenz.

• Die technischen Spezifikationen für finden Sie in der AWS Encryption SDK Spezifikation unter
GitHub. AWS Encryption SDK

• Antworten auf Ihre Fragen zur Nutzung des AWS Encryption SDK Crypto Tools Discussion Forum
finden Sie im AWS Crypto Tools Discussion Forum.

Für Informationen über Implementierungen von AWS Encryption SDK in verschiedenen
Programmiersprachen.

• C: Siehe AWS-Verschlüsselungs-SDK for C die AWS Encryption SDK C-Dokumentation und das
aws-encryption-sdk-cRepository unter GitHub.

• C#/.NET: Siehe AWS Encryption SDK für .NET und das aws-encryption-sdk-netVerzeichnis des
Repositorys ist aktiviert. aws-encryption-sdk GitHub

• Befehlszeilenschnittstelle: SieheAWS Encryption SDK Befehlszeilenschnittstelle, Lesen Sie die
Dokumentation für die AWS Encryption CLI und das aws-encryption-sdk-cliRepository auf GitHub.

• Java: SieheAWS-Verschlüsselungs-SDK for Java, das AWS Encryption SDK Javadoc und das
aws-encryption-sdk-javaRepository ist aktiviert. GitHub

JavaScript: Siehe the section called “JavaScript” und das aws-encryption-sdk-javascriptRepository
ist aktiviert. GitHub

• Python: Siehe AWS-Verschlüsselungs-SDK for Python die AWS Encryption SDK Python-
Dokumentation und das aws-encryption-sdk-pythonRepository unter GitHub.

Mehr lernen 5

https://github.com/awslabs/aws-encryption-sdk-specification/
https://forums.aws.amazon.com/forum.jspa?forumID=302
https://aws.github.io/aws-encryption-sdk-c/html/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK Entwicklerhandbuch

Senden von Feedback

Wir freuen uns über Ihr Feedback! Wenn Sie eine Frage oder einen Kommentar haben oder ein
Problem melden möchten, verwenden Sie bitte die folgenden Ressourcen.

• Wenn Sie eine potenzielle Sicherheitslücke in der entdecken AWS Encryption SDK,
benachrichtigen Sie bitte den AWS Sicherheitsdienst. Schaffen Sie kein öffentliches GitHub
Problem.

• Um Feedback zu geben AWS Encryption SDK, reichen Sie ein Problem im GitHub Repository für
die von Ihnen verwendete Programmiersprache ein.

• Verwenden Sie die Feedback-Links auf dieser Seite, um Feedback zu dieser Dokumentation zu
geben. Sie können auch ein Problem melden oder zu aws-encryption-sdk-docsdem Open-Source-
Repository für diese Dokumentation beitragen. GitHub

Konzepte in der AWS Encryption SDK

In diesem Abschnitt werden die in der AWS Encryption SDK verwendeten Konzepte vorgestellt und
ein Glossar sowie eine Referenz bereitgestellt. Es soll Ihnen helfen, zu verstehen, wie das AWS
Encryption SDK funktioniert und mit welchen Begriffen wir es beschreiben.

Benötigen Sie Hilfe?

• Erfahren Sie, wie die Umschlagverschlüsselung AWS Encryption SDK verwendet, um Ihre Daten
zu schützen.

• Erfahren Sie mehr über die Elemente der Umschlagverschlüsselung: die Datenschlüssel, die Ihre
Daten schützen, und die Umhüllungsschlüssel, die Ihre Datenschlüssel schützen.

• Erfahren Sie mehr über die Schlüsselanhänger und Hauptschlüsselanbieter, die bestimmen,
welche Wrap-Schlüssel Sie verwenden.

• Erfahren Sie mehr über den Verschlüsselungskontext, der Ihrem Verschlüsselungsprozess
Integrität verleiht. Es ist optional, aber es ist eine bewährte Methode, die wir empfehlen.

• Erfahren Sie mehr über die verschlüsselte Nachricht, die von den Verschlüsselungsmethoden
zurückgegeben wird.

• Dann sind Sie bereit, das AWS Encryption SDK in Ihrer bevorzugten Programmiersprache zu
verwenden.

Senden von Feedback 6

https://aws.amazon.com/security/vulnerability-reporting/
https://github.com/awsdocs/aws-encryption-sdk-docs

AWS Encryption SDK Entwicklerhandbuch

Themen

• Umschlagverschlüsselung

• Datenschlüssel

• Schlüssel zum Umschließen

• Schlüsselanhänger und Hauptschlüsselanbieter

• Verschlüsselungskontext

• Verschlüsselte Nachricht

• Algorithmen-Paket

• Manager von kryptographischen Materialien

• Symmetrische und asymmetrische Verschlüsselung

• Wichtiges Engagement

• Verpflichtungspolitik

• Digitale Signaturen

Umschlagverschlüsselung

Die Sicherheit Ihrer verschlüsselten Daten hängt teilweise vom Schutz des Datenschlüssels ab,
der sie entschlüsseln kann. Eine akzeptierte bewährte Methode zum Schutz des Datenschlüssels
ist seine Verschlüsselung. Dazu benötigen Sie einen weiteren Verschlüsselungsschlüssel, der
als Schlüsselverschlüsselungsschlüssel oder Wrapping-Schlüssel bezeichnet wird. Die Praxis,
Datenschlüssel mit einem Wrapping-Schlüssel zu verschlüsseln, wird als Envelope-Verschlüsselung
bezeichnet.

Schutz von Datenschlüsseln

Die AWS Encryption SDK verschlüsselt jede Nachricht mit einem eindeutigen Datenschlüssel.
Anschließend verschlüsselt es den Datenschlüssel unter dem von Ihnen angegebenen Wrapping-
Schlüssel. Es speichert den verschlüsselten Datenschlüssel zusammen mit den verschlüsselten
Daten in der verschlüsselten Nachricht, die es zurückgibt.

Um Ihren Wrapping-Schlüssel anzugeben, verwenden Sie einen Schlüsselbund oder einen
Master-Key-Anbieter.

Umschlagverschlüsselung 7

AWS Encryption SDK Entwicklerhandbuch

Verschlüsseln derselben Daten unter mehreren Wrapping Keys

Sie können den Datenschlüssel unter mehreren Umschließungsschlüsseln verschlüsseln.
Möglicherweise möchten Sie unterschiedliche Umschließungsschlüssel für verschiedene Benutzer
oder Umschließungsschlüssel unterschiedlichen Typs oder an verschiedenen Speicherorten
bereitstellen. Jeder der Umschließungsschlüssel verschlüsselt denselben Datenschlüssel.
Der AWS Encryption SDK speichert alle verschlüsselten Datenschlüssel zusammen mit den
verschlüsselten Daten in der verschlüsselten Nachricht.

Um die Daten zu entschlüsseln, müssen Sie einen Umschließungsschlüssel angeben, mit dem
einer der verschlüsselten Datenschlüssel entschlüsselt werden kann.

Umschlagverschlüsselung 8

AWS Encryption SDK Entwicklerhandbuch

Kombination der Stärken mehrerer Algorithmen

Um Ihre Daten zu verschlüsseln, AWS Encryption SDK verwendet der standardmäßig
eine ausgeklügelte Algorithmussuite mit symmetrischer AES-GCM-Verschlüsselung, einer
Schlüsselableitungsfunktion (HKDF) und Signierung. Um den Datenschlüssel zu verschlüsseln,
können Sie einen symmetrischen oder asymmetrischen Verschlüsselungsalgorithmus angeben,
der Ihrem Wrapping-Schlüssel entspricht.

Im Allgemeinen sind symmetrische Schlüsselverschlüsselungsalgorithmen schneller und
erzeugen kleinere Verschlüsselungstexte als eine asymmetrische Verschlüsselung oder eine
Verschlüsselung mit öffentlichem Schlüssel. Algorithmen mit öffentlichem Schlüssel unterstützen
jedoch eine inhärente Rollentrennung und eine einfachere Schlüsselverwaltung. Um beide
Stärken zu kombinieren, können Sie Ihre Daten mit symmetrischer Schlüsselverschlüsselung
verschlüsseln und anschließend den Datenschlüssel mit Public-Key-Verschlüsselung
verschlüsseln.

Datenschlüssel

Ein Datenschlüssel ist ein Verschlüsselungsschlüssel, den das AWS Encryption SDK verwendet,
um Ihre Daten zu verschlüsseln. Jeder Datenschlüssel ist ein Byte-Array, das die Anforderungen
für kryptografische Schlüssel erfüllt. Sofern Sie nicht das Zwischenspeichern von Datenschlüsseln
verwenden, AWS Encryption SDK verwendet der einen eindeutigen Datenschlüssel, um jede
Nachricht zu verschlüsseln.

Sie müssen Datenschlüssel nicht spezifizieren, generieren, implementieren, erweitern, schützen
oder verwenden. Das AWS Encryption SDK übernimmt diese Aufgabe für Sie, wenn Sie die Ver- und
Entschlüsselungsoperationen aufrufen.

Um Ihre Datenschlüssel zu schützen, werden sie mit einem oder mehreren AWS Encryption SDK
Schlüsselschlüsseln verschlüsselt, die als Wrapping Keys oder Master Keys bezeichnet werden.
Nachdem der Ihre Klartext-Datenschlüssel AWS Encryption SDK verwendet hat, um Ihre Daten zu
verschlüsseln, werden sie so schnell wie möglich aus dem Speicher entfernt. Die verschlüsselten
Datenschlüssel werden dann mit den verschlüsselten Daten in der verschlüsselten Nachricht
gespeichert, die die Verschlüsselungsoperationen zurückgibt. Details hierzu finden Sie unter the
section called “Wie das SDK funktioniert”.

Datenschlüssel 9

AWS Encryption SDK Entwicklerhandbuch

Tip

In der AWS Encryption SDK unterscheiden wir Datenschlüssel von
Datenverschlüsselungsschlüsseln. Mehrere der unterstützten Algorithmen-Pakete,
einschließlich des Standardpakets, verwenden eine Schlüsselableitungsfunktion,
die verhindert, dass der Datenschlüssel seine kryptografische Grenze erreicht. Die
Schlüsselableitungsfunktion nimmt den Datenschlüssel als Eingabe entgegen und gibt einen
Datenverschlüsselungsschlüssel zurück, mit dem die Daten letztlich verschlüsselt werden.
Aus diesem Grund sagen wir oft, dass die Daten „unter“ einem Datenschlüssel verschlüsselt
werden, statt „von“ dem Datenschlüssel.

Jeder verschlüsselte Datenschlüssel enthält Metadaten, einschließlich der Kennung des Wrapping-
Schlüssels, mit dem er verschlüsselt wurde. Diese Metadaten erleichtern es den, gültige Wrapping-
Schlüssel beim Entschlüsseln AWS Encryption SDK zu identifizieren.

Schlüssel zum Umschließen

Ein Wrapping Key ist ein Schlüssel zur AWS Encryption SDK Verschlüsselung des Datenschlüssels,
mit dem Ihre Daten verschlüsselt werden. Jeder Klartext-Datenschlüssel kann mit einem
oder mehreren Umschließungsschlüsseln verschlüsselt werden. Sie legen fest, welche
Umschließungsschlüssel zum Schutz Ihrer Daten verwendet werden, wenn Sie einen Schlüsselbund
oder einen Hauptschlüsselanbieter konfigurieren.

Note

Wrapping Key bezieht sich auf die Schlüssel in einem Schlüsselbund oder einem
Hauptschlüsselanbieter. Der Hauptschlüssel ist normalerweise der MasterKey Klasse
zugeordnet, die Sie instanziieren, wenn Sie einen Hauptschlüsselanbieter verwenden.

Der AWS Encryption SDK unterstützt mehrere häufig verwendete Wrapping-Schlüssel, wie z. B. AWS
Key Management Service (AWS KMS) symmetrische Schlüssel AWS KMS keys(einschließlich KMS-
Schlüssel für mehrere Regionen), AES-GCM-Rohschlüssel (Advanced Encryption Standard/Galois
Counter Mode) und RSA-Rohschlüssel. Sie können auch Ihre eigenen Wrapping-Schlüssel erweitern
oder implementieren.

Schlüssel zum Umschließen 10

https://en.wikipedia.org/wiki/Key_derivation_function
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie die Envelope-Verschlüsselung verwenden, müssen Sie Ihre Wrapping-Schlüssel vor
unbefugtem Zugriff schützen. Sie können dies auf eine der folgenden Arten tun:

• Verwenden Sie einen Webservice, der für diesen Zweck vorgesehen ist, wie z. B. AWS Key
Management Service (AWS KMS).

• Verwenden Sie ein Hardwaresicherheitsmodul (HSM), wie z. B. die Angebote von AWS CloudHSM.

• Verwenden Sie andere wichtige Verwaltungstools und -dienste.

Wenn Sie kein Schlüsselverwaltungssystem haben, empfehlen wir AWS KMS. Das AWS Encryption
SDK lässt sich integrieren AWS KMS , um Ihnen zu helfen, Ihre Verpackungsschlüssel zu schützen
und zu verwenden. Für das AWS Encryption SDK ist jedoch kein AWS Service erforderlich AWS .

Schlüsselanhänger und Hauptschlüsselanbieter

Um die Wrapping-Schlüssel anzugeben, die Sie für die Verschlüsselung und Entschlüsselung
verwenden, verwenden Sie einen Schlüsselbund oder einen Hauptschlüsselanbieter. Sie können
die von ihm bereitgestellten Schlüsselringe und Hauptschlüsselanbieter verwenden oder Ihre
AWS Encryption SDK eigenen Implementierungen entwerfen. Der AWS Encryption SDK stellt
Schlüsselringe und Hauptschlüsselanbieter bereit, die je nach Spracheinschränkungen miteinander
kompatibel sind. Details hierzu finden Sie unter Schlüsselbund-Kompatibilität.

Ein Schlüsselbund generiert, verschlüsselt und entschlüsselt Datenschlüssel. Wenn Sie einen
Schlüsselbund definieren, können Sie die Umschließungsschlüssel angeben, mit denen Ihre
Datenschlüssel verschlüsselt werden. Die meisten Schlüsselbunde spezifizieren mindestens
einen Umschließungsschlüssel oder einen Dienst, der Schlüssel zum Umschließen bereitstellt
und schützt. Sie können auch einen Schlüsselbund ohne Umschließungsschlüssel oder einen
komplexeren Schlüsselbund mit zusätzlichen Konfigurationsoptionen definieren. Hilfe bei der Auswahl
und Verwendung der von definierten Schlüsselbunden AWS Encryption SDK finden Sie unter.
Schlüsselringe

Schlüsselringe werden in den folgenden Programmiersprachen unterstützt:

• AWS-Verschlüsselungs-SDK for C

• AWS-Verschlüsselungs-SDK for JavaScript

• AWS Encryption SDK für .NET

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

Schlüsselanhänger und Hauptschlüsselanbieter 11

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Encryption SDK Entwicklerhandbuch

• Ausführung 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen
Abhängigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Ein Hauptschlüsselanbieter ist eine Alternative zu einem Schlüsselbund. Der Hauptschlüsselanbieter
gibt die von Ihnen angegebenen Wrapping-Schlüssel (oder Hauptschlüssel) zurück. Jeder
Masterschlüssel ist einem Masterschlüssel-Anbieter zugeordnet, aber ein Masterschlüssel-Anbieter
stellt in der Regel mehrere Masterschlüssel bereit. Master-Key-Anbieter werden in Java, Python und
der AWS Encryption CLI unterstützt.

Sie müssen einen Schlüsselbund (oder einen Hauptschlüsselanbieter) für die Verschlüsselung
angeben. Sie können denselben Schlüsselbund (oder Hauptschlüsselanbieter) oder einen anderen
für die Entschlüsselung angeben. Bei der Verschlüsselung AWS Encryption SDK verwendet der
alle von Ihnen angegebenen Umschließungsschlüssel, um den Datenschlüssel zu verschlüsseln.
Beim Entschlüsseln AWS Encryption SDK verwendet der nur die von Ihnen angegebenen
Umschließungsschlüssel, um einen verschlüsselten Datenschlüssel zu entschlüsseln. Die Angabe
von Umschließungsschlüsseln für die Entschlüsselung ist optional, hat sich aber bewährt. AWS
Encryption SDK

Einzelheiten zum Angeben von Schlüsseln zum Umschließen von Schlüsseln finden Sie
unterAuswahl von Schlüsseln zum Umbrechen.

Verschlüsselungskontext

Um die Sicherheit Ihrer kryptographischen Operationen zu verbessern, fügen Sie einen
Verschlüsselungskontext in alle Anfragen zur Verschlüsselung von Daten ein. Die Verwendung
eines Verschlüsselungskontexts ist optional, aber wir empfehlen dies als bewährte Methode für die
Kryptografie.

Ein Verschlüsselungskontext ist eine Gruppe von Name-Wert-Paaren mit willkürlichen, nicht
geheimen, zusätzlich authentifizierten Daten. Der Verschlüsselungskontext kann beliebige Daten
enthalten, aber er besteht in der Regel aus Daten, die für die Protokollierung und Verfolgung
nützlich sind, wie z. B. Daten über den Dateityp, den Zweck oder das Eigentum. Wenn Sie Daten
verschlüsseln, wird der Verschlüsselungskontext kryptografisch an die verschlüsselten Daten
gebunden, sodass derselbe Verschlüsselungskontext zur Entschlüsselung der Daten benötigt
wird. Das AWS Encryption SDK enthält den Verschlüsselungskontext als Klartext im Header der
verschlüsselten Nachricht, die es zurückgibt.

Verschlüsselungskontext 12

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Der verwendete Verschlüsselungskontext besteht aus dem von Ihnen angegebenen
Verschlüsselungskontext und einem öffentlichen key pair, das der Cryptographic Materials
Manager (CMM) hinzufügt. AWS Encryption SDK Genauer gesagt: Wann immer Sie einen
Verschlüsselungsalgorithmus mit Signatur verwenden, fügt der CMM ein Name-Wert-Paar zum
Verschlüsselungskontext hinzu, der aus einem reservierten Namen, aws-crypto-public-key
und einem Wert besteht, der den öffentlichen Verifizierungsschlüssel darstellt. Der aws-crypto-
public-key Name im Verschlüsselungskontext ist für den reserviert AWS Encryption SDK und
kann nicht als Name in einem anderen Paar im Verschlüsselungskontext verwendet werden. Weitere
Informationen finden Sie unter AAD in Nachrichtenformat – Referenz.

Der folgende Beispiel-Verschlüsselungskontext besteht aus zwei Verschlüsselungskontext-Paaren,
die in der Anfrage angegeben werden, und dem öffentlichen Schlüsselpaar, das der (CMM) hinzufügt.

"Purpose"="Test", "Department"="IT", aws-crypto-public-key=<public key>

Zum Entschlüsseln der Daten übergeben Sie die verschlüsselte Nachricht. Da der den
Verschlüsselungskontext aus dem verschlüsselten Nachrichtenheader extrahieren AWS
Encryption SDK kann, müssen Sie den Verschlüsselungskontext nicht separat angeben. Der
Verschlüsselungskontext kann jedoch helfen zu bestätigen, dass Sie die richtige verschlüsselte
Nachricht entschlüsselt wurde.

• Wenn Sie in der AWS Encryption SDK -Befehlszeilenschnittstelle einen Verschlüsselungskontext
in einem Entschlüsselungsbefehl angeben, überprüft die CLI, dass die Werte im
Verschlüsselungskontext der verschlüsselten Nachricht vorhanden sind, bevor sie die Klartextdaten
zurückgibt.

• In anderen Programmiersprachenimplementierungen umfasst die Entschlüsselungsantwort
den Verschlüsselungskontext und die Klartextdaten. Die Entschlüsselungsfunktion in Ihrer
Anwendung sollte immer überprüfen, ob der Verschlüsselungskontext in der decrypt-Antwort den
Verschlüsselungskontext in der Verschlüsselungsanfrage (oder einer Teilmenge) enthält, bevor sie
die Klartextdaten zurückgibt.

Note

Die folgenden Versionen unterstützen den erforderlichen Verschlüsselungskontext
CMM, den Sie verwenden können, um einen Verschlüsselungskontext für alle
Verschlüsselungsanforderungen vorzuschreiben.

Verschlüsselungskontext 13

AWS Encryption SDK Entwicklerhandbuch

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen
Abhängigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Wenn Sie einen Verschlüsselungskontext wählen, denken Sie daran, dass dies kein Geheimnis ist.
Der Verschlüsselungskontext wird im Klartext im Header der verschlüsselten Nachricht angezeigt,
die AWS Encryption SDK zurückgegeben wird. Wenn Sie verwenden AWS Key Management
Service, kann der Verschlüsselungskontext auch im Klartext in Prüfaufzeichnungen und Protokollen
erscheinen, z. B. AWS CloudTrail

Beispiele für das Einreichen und Überprüfen eines Verschlüsselungskontextes in Ihrem Code finden
Sie in den Beispielen für Ihre bevorzugte Programmiersprache.

Verschlüsselte Nachricht

Wenn Sie Daten mit dem verschlüsseln AWS Encryption SDK, wird eine verschlüsselte Nachricht
zurückgegeben.

Eine verschlüsselte Nachricht ist eine übertragbare, formatierte Datenstruktur, die die verschlüsselten
Daten zusammen mit verschlüsselten Kopien der Datenschlüssel, der Algorithmus-ID und optional
einem Verschlüsselungskontext und einer digitalen Signatur enthält. Verschlüsselungsoperationen im
AWS Encryption SDK geben eine verschlüsselte Nachricht zurück, und Entschlüsselungsoperationen
nehmen eine verschlüsselte Nachricht als Eingabe entgegen.

Die Kombination der verschlüsselten Daten und ihrer verschlüsselten Datenschlüssel rationalisiert
den Entschlüsselungsvorgang und befreit Sie von der Notwendigkeit, verschlüsselte Datenschlüssel
unabhängig von den verschlüsselten Daten zu speichern und zu verwalten.

Technische Informationen über die verschlüsselte Nachricht finden Sie unter Verschlüsseltes
Nachrichtenformat.

Verschlüsselte Nachricht 14

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Algorithmen-Paket

Der AWS Encryption SDK verwendet eine Algorithmus-Suite, um die Daten in der
verschlüsselten Nachricht zu verschlüsseln und zu signieren, die bei den Verschlüsselungs- und
Entschlüsselungsvorgängen zurückgegeben werden. Das AWS Encryption SDK unterstützt mehrere
Algorithmen-Pakete. Alle unterstützten Pakete verwenden Advanced Encryption Standard (AES) als
primären Algorithmus und kombinieren ihn mit anderen Algorithmen und Werten.

Das AWS Encryption SDK legt eine empfohlene Algorithmussuite als Standard für alle
Verschlüsselungsvorgänge fest. Die Vorgabe kann sich ändern, wenn sich Standards und bewährte
Methoden verbessern. Sie können bei Anfragen zur Verschlüsselung von Daten oder bei der
Erstellung eines Cryptographic Materials Manager (CMM) eine alternative Algorithmus-Suite
angeben. Sofern für Ihre Situation jedoch keine Alternative erforderlich ist, empfiehlt es sich, die
Standardeinstellung zu verwenden. Die aktuelle Standardeinstellung ist AES-GCM mit einer HMAC-
basierten extract-and-expand Schlüsselableitungsfunktion (HKDF), Key Commitment, einer ECDSA-
Signatur (Elliptic Curve Digital Signature Algorithm) und einem 256-Bit-Verschlüsselungsschlüssel.

Wenn Ihre Anwendung eine hohe Leistung erfordert und die Benutzer, die Daten verschlüsseln,
und diejenigen, die Daten entschlüsseln, gleichermaßen vertrauenswürdig sind, sollten Sie
erwägen, eine Algorithmus-Suite ohne digitale Signatur anzugeben. Wir empfehlen jedoch dringend
eine Algorithmussuite, die Schlüsselzusage und eine Funktion zur Schlüsselableitung umfasst.
Algorithmus-Suiten ohne diese Funktionen werden nur aus Gründen der Abwärtskompatibilität
unterstützt.

Manager von kryptographischen Materialien

Der Cryptographic Materials Manager (CMM) stellt die kryptografischen Materialien zusammen,
die zum Verschlüsseln und Entschlüsseln von Daten verwendet werden. Die kryptografischen
Materialien umfassen Klartext- und verschlüsselte Datenschlüssel und einen optionalen Nachrichten-
Signaturschlüssel. Sie interagieren nie direkt mit dem CMM. Die Ver- und Entschlüsselungsmethoden
übernehmen das für Sie.

Sie können das Standard-CMM oder das von ihm bereitgestellte Cache-CMM verwenden oder ein
AWS Encryption SDK benutzerdefiniertes CMM schreiben. Und Sie können ein CMM angeben,
das ist jedoch nicht erforderlich. Wenn Sie einen Schlüsselbund oder einen Hauptschlüsselanbieter
angeben, AWS Encryption SDK erstellt dieser ein Standard-CMM für Sie. Das Standard-CMM ruft die
Ver- oder Entschlüsselungsmaterialien von dem Schlüsselbund oder Hauptschlüsselanbieter ab, den
Sie angeben. Dabei könnte es sich um einen Aufruf eines kryptographischen Dienstes handeln, z. B.
AWS Key Management Service (AWS KMS).

Algorithmen-Paket 15

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK Entwicklerhandbuch

Da das CMM als Bindeglied zwischen dem AWS Encryption SDK und einem Schlüsselbund (oder
Hauptschlüsselanbieter) fungiert, ist es ein idealer Ort für Anpassungen und Erweiterungen, z. B. zur
Unterstützung der Richtliniendurchsetzung und Zwischenspeicherung. Das AWS Encryption SDK
bietet ein CMM für die Zwischenspeicherung von Datenschlüsseln.

Symmetrische und asymmetrische Verschlüsselung

Bei der symmetrischen Verschlüsselung wird derselbe Schlüssel zum Verschlüsseln und
Entschlüsseln von Daten verwendet.

Asymmetrische Verschlüsselung verwendet ein mathematisch verwandtes Datenschlüsselpaar. Ein
Schlüssel des Paares verschlüsselt die Daten; nur der andere Schlüssel im Paar kann die Daten
entschlüsseln.

Der AWS Encryption SDK verwendet die Envelope-Verschlüsselung. Es verschlüsselt Ihre Daten
mit einem symmetrischen Datenschlüssel. Es verschlüsselt den symmetrischen Datenschlüssel
mit einem oder mehreren symmetrischen oder asymmetrischen Wrapping-Schlüsseln. Es gibt eine
verschlüsselte Nachricht zurück, die die verschlüsselten Daten und mindestens eine verschlüsselte
Kopie des Datenschlüssels enthält.

Verschlüsseln Ihrer Daten (symmetrische Verschlüsselung)

Um Ihre Daten zu verschlüsseln, AWS Encryption SDK verwendet der einen symmetrischen
Datenschlüssel und eine Algorithmussuite, die einen symmetrischen Verschlüsselungsalgorithmus
enthält. Um die Daten zu entschlüsseln, AWS Encryption SDK verwendet der denselben
Datenschlüssel und dieselbe Algorithmussuite.

Verschlüsselung Ihres Datenschlüssels (symmetrische oder asymmetrische Verschlüsselung)

Der Schlüsselbund oder Hauptschlüsselanbieter, den Sie für einen Verschlüsselungs- und
Entschlüsselungsvorgang angeben, bestimmt, wie der symmetrische Datenschlüssel ver- und
entschlüsselt wird. Sie können einen Schlüsselbund- oder Hauptschlüsselanbieter wählen, der
symmetrische Verschlüsselung verwendet, z. B. einen AWS KMS Schlüsselbund, oder einen
Anbieter, der asymmetrische Verschlüsselung verwendet, z. B. einen RSA-Rohschlüsselbund
oder. JceMasterKey

Wichtiges Engagement

Das AWS Encryption SDK unterstützt Key Commitment (manchmal auch als Robustheit
bezeichnet), eine Sicherheitseigenschaft, die garantiert, dass jeder Chiffretext nur in einen einzigen

Symmetrische und asymmetrische Verschlüsselung 16

AWS Encryption SDK Entwicklerhandbuch

Klartext entschlüsselt werden kann. Zu diesem Zweck garantiert Key Commitment, dass nur der
Datenschlüssel, mit dem Ihre Nachricht verschlüsselt wurde, zur Entschlüsselung verwendet wird.
Das Verschlüsseln und Entschlüsseln mit Key Commitment ist eine AWS Encryption SDK bewährte
Methode.

Die meisten modernen symmetrischen Chiffren (einschließlich AES) verschlüsseln Klartext
unter einem einzigen geheimen Schlüssel, z. B. dem eindeutigen Datenschlüssel, mit dem jede
Klartextnachricht verschlüsselt wird AWS Encryption SDK . Beim Entschlüsseln dieser Daten mit
demselben Datenschlüssel wird ein Klartext zurückgegeben, der mit dem Original identisch ist. Die
Entschlüsselung mit einem anderen Schlüssel schlägt normalerweise fehl. Es ist jedoch möglich,
einen Chiffretext unter zwei verschiedenen Schlüsseln zu entschlüsseln. In seltenen Fällen ist es
möglich, einen Schlüssel zu finden, der einige Byte Chiffretext in einen anderen, aber dennoch
verständlichen Klartext entschlüsseln kann.

Der verschlüsselt AWS Encryption SDK immer jede Klartext-Nachricht unter einem eindeutigen
Datenschlüssel. Es kann diesen Datenschlüssel unter mehreren Umschließungsschlüsseln
(oder Hauptschlüsseln) verschlüsseln, aber die Umschließungsschlüssel verschlüsseln immer
denselben Datenschlüssel. Dennoch kann eine ausgeklügelte, manuell erstellte verschlüsselte
Nachricht tatsächlich unterschiedliche Datenschlüssel enthalten, von denen jeder mit einem
anderen Umschließungsschlüssel verschlüsselt ist. Entschlüsselt beispielsweise ein Benutzer die
verschlüsselte Nachricht, wird 0x0 (falsch) zurückgegeben, während ein anderer Benutzer, der
dieselbe verschlüsselte Nachricht entschlüsselt, 0x1 (wahr) erhält.

Um dieses Szenario zu verhindern, AWS Encryption SDK unterstützt der Key Commitment
beim Verschlüsseln und Entschlüsseln. Beim AWS Encryption SDK Verschlüsseln einer
Nachricht mit Schlüsselzusage wird der eindeutige Datenschlüssel, der den Chiffretext erzeugt
hat, kryptografisch an die Schlüsselverbindungszeichenfolge gebunden, eine nicht geheime
Datenschlüssel-ID. Anschließend speichert es die Schlüsselbestätigungszeichenfolge in den
Metadaten der verschlüsselten Nachricht. Beim Entschlüsseln einer Nachricht mit Schlüsselzusage
wird AWS Encryption SDK überprüft, ob der Datenschlüssel der einzige Schlüssel für diese
verschlüsselte Nachricht ist. Wenn die Überprüfung des Datenschlüssels fehlschlägt, schlägt der
Entschlüsselungsvorgang fehl.

Die Support für Key Commitment wurde in Version 1.7 eingeführt. x, das Nachrichten mit Key
Commitment entschlüsseln kann, aber nicht mit Key Commitment verschlüsselt. Sie können diese
Version verwenden, um die Fähigkeit zur Entschlüsselung von Chiffretext mit Schlüsselbindung
vollständig auszuschöpfen. Version 2.0. x beinhaltet volle Unterstützung für Key Commitment.
Standardmäßig verschlüsselt und entschlüsselt es nur mit Key Commitment. Dies ist eine ideale

Wichtiges Engagement 17

AWS Encryption SDK Entwicklerhandbuch

Konfiguration für Anwendungen, die keinen Chiffretext entschlüsseln müssen, der mit früheren
Versionen von verschlüsselt wurde. AWS Encryption SDK

Obwohl das Verschlüsseln und Entschlüsseln mit Schlüsselbindung eine bewährte Methode ist,
überlassen wir Ihnen die Entscheidung, wann es verwendet wird, und Sie können das Tempo, in dem
Sie es einführen, anpassen. Ab Version 1.7. x AWS Encryption SDK unterstützt eine Commitment-
Richtlinie, die die standardmäßige Algorithmussuite festlegt und die Anzahl der Algorithmus-
Suiten einschränkt, die verwendet werden können. Diese Richtlinie legt fest, ob Ihre Daten mit
Schlüsselbindung ver- oder entschlüsselt werden.

Key Commitment führt zu einer etwas größeren (+ 30 Byte) verschlüsselten Nachricht und die
Verarbeitung nimmt mehr Zeit in Anspruch. Wenn Ihre Anwendung sehr empfindlich auf Größe oder
Leistung reagiert, können Sie sich dafür entscheiden, die Schlüsselzuweisung zu deaktivieren. Aber
tun Sie das nur, wenn Sie müssen.

Weitere Informationen zur Migration auf Versionen 1.7. x und 2.0. x, einschließlich ihrer wichtigsten
Commitment-Funktionen, sieheMigrieren Sie Ihre AWS Encryption SDK. Technische Informationen
zu den wichtigsten Verpflichtungen finden Sie unter the section called “Algorithmen – Referenz”
undthe section called “Nachrichtenformat – Referenz”.

Verpflichtungspolitik

Eine Commitment-Richtlinie ist eine Konfigurationseinstellung, die bestimmt, ob Ihre Anwendung
mit Key Commitment ver- oder entschlüsselt wird. Das Verschlüsseln und Entschlüsseln mit Key
Commitment ist eine bewährte Methode.AWS Encryption SDK

Die Verpflichtungspolitik hat drei Werte.

Note

Möglicherweise müssen Sie horizontal oder vertikal scrollen, um die gesamte Tabelle zu
sehen.

Verpflichtungspolitik 18

AWS Encryption SDK Entwicklerhandbuch

Verbindungspolitische Werte

Wert Verschlüsselt mit
Schlüsselzusage

Verschlüsselt
ohne Schlüssel
bindung

Entschlüsselt
mit Schlüssel
bindung

Entschlüsselt
ohne Schlüssel
bindung

ForbidEnc
ryptAllowDecrypt

RequireEn
cryptAllo
wDecrypt

RequireEn
cryptRequ
ireDecrypt

Die Richtlinieneinstellung für Verpflichtungen wurde in AWS Encryption SDK Version 1.7 eingeführt.
x. Es ist in allen unterstützten Programmiersprachen gültig.

• ForbidEncryptAllowDecryptentschlüsselt mit oder ohne Key Commitment, verschlüsselt aber
nicht mit Key Commitment. Dieser Wert wurde in Version 1.7 eingeführt. x wurde entwickelt, um
alle Hosts, auf denen Ihre Anwendung ausgeführt wird, darauf vorzubereiten, mit Key Commitment
zu entschlüsseln, bevor sie jemals auf einen mit Key Commitment verschlüsselten Chiffretext
stoßen.

• RequireEncryptAllowDecryptverschlüsselt immer mit Key Commitment. Es kann mit oder
ohne Schlüsselbindung entschlüsselt werden. Dieser Wert wurde in Version 2.0 eingeführt. x,
ermöglicht es Ihnen, mit der Verschlüsselung mit Schlüsselzusage zu beginnen, ältere Chiffretexte
aber trotzdem ohne Schlüsselbindung zu entschlüsseln.

• RequireEncryptRequireDecryptverschlüsselt und entschlüsselt nur mit Schlüsselzusage.
Dieser Wert ist der Standardwert für Version 2.0. x. Verwenden Sie diesen Wert, wenn Sie sicher
sind, dass alle Ihre Chiffretexte mit Schlüsselbindung verschlüsselt sind.

Die Richtlinieneinstellung „Commitment“ bestimmt, welche Algorithmus-Suites Sie verwenden
können. Ab Version 1.7. x, der AWS Encryption SDK unterstützt Algorithmus-Suites für Key

Verpflichtungspolitik 19

AWS Encryption SDK Entwicklerhandbuch

Commitment; mit und ohne Signierung. Wenn Sie eine Algorithmus-Suite angeben, die mit Ihrer
Commitment-Richtlinie in Konflikt steht, wird ein Fehler AWS Encryption SDK zurückgegeben.

Hilfe bei der Festlegung Ihrer Verpflichtungsrichtlinie finden Sie unterFestlegung Ihrer
Verpflichtungspolitik.

Digitale Signaturen

Die AWS Encryption SDK verschlüsselt Ihre Daten mithilfe eines authentifizierten
Verschlüsselungsalgorithmus, AES-GCM, und der Entschlüsselungsprozess überprüft die Integrität
und Authentizität einer verschlüsselten Nachricht ohne Verwendung einer digitalen Signatur. Da
AES-GCM jedoch symmetrische Schlüssel verwendet, kann jeder, der den zur Entschlüsselung
des Chiffretextes verwendeten Datenschlüssel entschlüsseln kann, auch manuell einen neuen
verschlüsselten Chiffretext erstellen, was zu potenziellen Sicherheitsbedenken führen kann.
Wenn Sie beispielsweise einen AWS KMS key als Umschließungsschlüssel verwenden, könnte
ein Benutzer mit entsprechenden Berechtigungen verschlüsselte Chiffretexte erstellen, ohne ihn
anzurufen. kms:Decrypt kms:Encrypt

Um dieses Problem zu vermeiden, AWS Encryption SDK unterstützt der das Hinzufügen einer
ECDSA-Signatur (Elliptic Curve Digital Signature Algorithm) am Ende verschlüsselter Nachrichten.
Wenn eine Signaturalgorithmus-Suite verwendet wird, AWS Encryption SDK generiert sie für jede
verschlüsselte Nachricht ein temporäres Paar aus privatem Schlüssel und öffentlichem Schlüssel.
Der AWS Encryption SDK speichert den öffentlichen Schlüssel im Verschlüsselungskontext des
Datenschlüssels und verwirft den privaten Schlüssel. Dadurch wird sichergestellt, dass niemand eine
weitere Signatur erstellen kann, die mit dem öffentlichen Schlüssel verifiziert wird. Der Algorithmus
bindet den öffentlichen Schlüssel als zusätzliche authentifizierte Daten im Nachrichtenkopf an den
verschlüsselten Datenschlüssel und verhindert so, dass Benutzer, die nur Nachrichten entschlüsseln
können, den öffentlichen Schlüssel ändern oder die Signaturüberprüfung beeinträchtigen.

Die Signaturüberprüfung führt zu erheblichen Leistungseinbußen bei der Entschlüsselung. Wenn
die Benutzer, die Daten verschlüsseln, und die Benutzer, die Daten entschlüsseln, gleichermaßen
vertrauenswürdig sind, sollten Sie erwägen, eine Algorithmussuite zu verwenden, die das Signieren
nicht beinhaltet.

Digitale Signaturen 20

AWS Encryption SDK Entwicklerhandbuch

Note

Wenn der Schlüsselbund oder der Zugriff auf das kryptografische Umhüllungsmaterial nicht
zwischen Verschlüsselern und Entschlüsselern unterscheidet, bieten digitale Signaturen
keinen kryptografischen Wert.

AWS KMS Schlüsselbunde, einschließlich des asymmetrischen RSA-Schlüsselbunds, können
auf der Grundlage von AWS KMS Schlüssel- und IAM-Richtlinien zwischen Verschlüsselern und
Entschlüsselern unterscheiden. AWS KMS

Aufgrund ihres kryptografischen Charakters können die folgenden Schlüsselbunde nicht zwischen
Verschlüsselern und Entschlüsselern unterscheiden:

• AWS KMS Hierarchischer Schlüsselbund

• AWS KMS ECDH-Schlüsselanhänger

• Unformatierter AES-Schlüsselbund

• Unformatierter RSA-Schlüsselbund

• Roher ECDH-Schlüsselanhänger

So AWS Encryption SDK funktioniert das

In den Workflows in diesem Abschnitt wird erklärt, wie Daten AWS Encryption SDK verschlüsselt
und verschlüsselte Nachrichten entschlüsselt werden. In diesen Workflows wird der grundlegende
Prozess unter Verwendung der Standardfunktionen beschrieben. Einzelheiten zur Definition und
Verwendung benutzerdefinierter Komponenten finden Sie im GitHub Repository für jede unterstützte
Sprachimplementierung.

Der AWS Encryption SDK verwendet Umschlagverschlüsselung, um Ihre Daten zu schützen.
Jede Nachricht wird unter einem eindeutigen Datenschlüssel verschlüsselt. Anschließend wird
der Datenschlüssel mit den von Ihnen angegebenen Wrapping-Schlüsseln verschlüsselt. Um die
verschlüsselte Nachricht zu entschlüsseln, AWS Encryption SDK verwendet der die von Ihnen
angegebenen Umschließungsschlüssel, um mindestens einen verschlüsselten Datenschlüssel zu
entschlüsseln. Dann kann es den Chiffretext entschlüsseln und eine Klartext-Nachricht zurückgeben.

Benötigen Sie Hilfe mit der Terminologie, die wir in der verwenden? AWS Encryption SDK Siehe the
section called “Konzepte”.

Wie das SDK funktioniert 21

AWS Encryption SDK Entwicklerhandbuch

Wie AWS Encryption SDK verschlüsselt der Daten

Das AWS Encryption SDK stellt Methoden zur Verschlüsselung von Zeichenketten, Byte-
Arrays und Byte-Streams bereit. Codebeispiele finden Sie im Thema Beispiele in den einzelnen
Programmiersprachen Abschnitten.

1. Erstellen Sie einen Schlüsselbund (oder einen Hauptschlüsselanbieter), der die
Umschließungsschlüssel angibt, die Ihre Daten schützen.

2. Übergeben Sie den Schlüsselbund und die Klartextdaten an eine Verschlüsselungsmethode. Wir
empfehlen, einen optionalen, nicht geheimen Verschlüsselungskontext zu verwenden.

3. Die Verschlüsselungsmethode fragt den Schlüsselbund nach Verschlüsselungsmaterial. Der
Schlüsselbund gibt eindeutige Datenverschlüsselungsschlüssel für die Nachricht zurück: einen
Klartext-Datenschlüssel und eine Kopie dieses Datenschlüssels, der mit jedem der angegebenen
Umschließungsschlüssel verschlüsselt wurde.

4. Die Verschlüsselungsmethode verwendet den Klartext-Datenschlüssel, um die Daten
zu verschlüsseln, und verwirft dann den Klartext-Datenschlüssel. Wenn Sie einen
Verschlüsselungskontext angeben (eine AWS Encryption SDK bewährte Methode), bindet die
Verschlüsselungsmethode den Verschlüsselungskontext kryptografisch an die verschlüsselten
Daten.

5. Die Verschlüsselungsmethode gibt eine verschlüsselte Nachricht zurück, die die verschlüsselten
Daten, die verschlüsselten Datenschlüssel und andere Metadaten, einschließlich des
Verschlüsselungskontextes, falls Sie einen verwendet haben, enthält.

Wie AWS Encryption SDK entschlüsselt der eine verschlüsselte Nachricht

Das AWS Encryption SDK bietet Methoden, mit denen die verschlüsselte Nachricht entschlüsselt
und Klartext zurückgegeben wird. Codebeispiele finden Sie im Thema Beispiele in den einzelnen
Programmiersprachen Abschnitten.

Der Schlüsselbund (oder der Hauptschlüsselanbieter), der die verschlüsselte Nachricht
entschlüsselt, muss mit dem Schlüsselbund kompatibel sein, der zum Verschlüsseln der Nachricht
verwendet wurde. Einer seiner Wrapping-Schlüssel muss in der Lage sein, einen verschlüsselten
Datenschlüssel in der verschlüsselten Nachricht zu entschlüsseln. Hinweise zur Kompatibilität mit
Schlüsselringen und Hauptschlüsselanbietern finden Sie unter. the section called “Schlüsselbund-
Kompatibilität”

Wie AWS Encryption SDK verschlüsselt der Daten 22

AWS Encryption SDK Entwicklerhandbuch

1. Erstellen Sie einen Schlüsselbund oder einen Hauptschlüsselanbieter mit Wrap-Schlüsseln, der
Ihre Daten entschlüsseln kann. Sie können denselben Schlüsselbund verwenden, den Sie für die
Verschlüsselungsmethode bereitgestellt haben, oder einen anderen.

2. Übergeben Sie die verschlüsselte Nachricht und den Schlüsselbund an eine
Entschlüsselungsmethode.

3. Bei der Entschlüsselungsmethode wird der Schlüsselbund oder der Hauptschlüsselanbieter
aufgefordert, einen der verschlüsselten Datenschlüssel in der verschlüsselten Nachricht zu
entschlüsseln. Es übergibt Informationen aus der verschlüsselten Nachricht, einschließlich der
verschlüsselten Datenschlüssel.

4. Der Schlüsselbund verwendet seinen Umhüllungsschlüssel zum Entschlüsseln einer der
verschlüsselten Datenschlüssel. Wenn sie erfolgreich ist, enthält die Antwort den Klartext-
Datenschlüssel. Wenn keiner der vom Schlüsselbund oder Hauptschlüsselanbieter angegebenen
Umschließungsschlüssel einen verschlüsselten Datenschlüssel entschlüsseln kann, schlägt der
Entschlüsselungsaufruf fehl.

5. Die Entschlüsselungsmethode verwendet den Klartext-Datenschlüssel, um die Daten zu
entschlüsseln, verwirft den Klartext-Datenschlüssel und gibt die Klartextdaten zurück.

Unterstützte Algorithmus-Suiten in der AWS Encryption SDK

Ein Algorithmen-Paket ist eine Sammlung von kryptografischen Algorithmen und zugehörigen
Werten. Kryptografische Systeme verwenden die Algorithmen-Implementierung, um die
Verschlüsselungstext-Nachricht zu generieren.

Die AWS Encryption SDK Algorithmus-Suite verwendet den Advanced Encryption Standard
(AES) -Algorithmus im Galois/Counter Mode (GCM), auch bekannt als AES-GCM, zur
Verschlüsselung von Rohdaten. Der AWS Encryption SDK unterstützt 256-Bit-, 192-Bit- und 128-Bit-
Verschlüsselungsschlüssel. Die Länge des Initialisierungsvektors (IV) beträgt immer 12 Bytes. Die
Länge des Authentifizierungs-Tags beträgt immer 16 Bytes.

Standardmäßig AWS Encryption SDK verwendet der eine Algorithmussuite mit AES-GCM mit einer
HMAC-basierten extract-and-expand Schlüsselableitungsfunktion (HKDF), Signierung und einem
256-Bit-Verschlüsselungsschlüssel. Wenn die Commitment-Richtlinie Key Commitment erfordert,
AWS Encryption SDK wählt der eine Algorithmus-Suite aus, die auch Key Commitment unterstützt.
Andernfalls wählt er eine Algorithmus-Suite mit Schlüsselableitung und -signierung, aber nicht mit
Key Commitment.

Unterstützte Algorithmen-Pakete 23

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK Entwicklerhandbuch

Empfohlen: AES-GCM mit Schlüsselableitung, Signierung und
Schlüsselzusage

Der AWS Encryption SDK empfiehlt eine Algorithmussuite, die einen AES-GCM-
Verschlüsselungsschlüssel ableitet, indem sie der HMAC-basierten Schlüsselableitungsfunktion
(HKDF) einen 256-Bit-Datenverschlüsselungsschlüssel zur Verfügung stellt. extract-and-expand
Das AWS Encryption SDK fügt eine ECDSA-Signatur (Elliptic Curve Digital Signature Algorithm)
hinzu. Zur Unterstützung von Key Commitment leitet diese Algorithmus-Suite auch eine Key-
Commitment-Zeichenfolge ab — eine nicht geheime Datenschlüssel-ID —, die in den Metadaten
der verschlüsselten Nachricht gespeichert wird. Diese Schlüsselbestätigungszeichenfolge wird
ebenfalls über HKDF abgeleitet, wobei ein Verfahren verwendet wird, das dem Ableiten des
Datenverschlüsselungsschlüssels ähnelt.

AWS Encryption SDK Algorithmus-Suite

Verschlüs
selungsal
gorithmus

Länge des
Datenvers
chlüsselu
ngsschlüssels (in
Bit)

Schlüssel
ableitung
salgorithmus

Signatur-
Algorithmus

Wichtiges
Engagement

AES-GCM 256 HKDF mit
SHA-384

ECDSA mit
P-384 und
SHA-384

HKDF mit
SHA-512

Das HKDF hilft Ihnen, die versehentliche Wiederverwendung eines Datenverschlüsselungsschlüssels
zu vermeiden und reduziert das Risiko einer übermäßigen Verwendung eines Datenschlüssels.

Zum Signieren verwendet diese Algorithmussuite ECDSA mit einem kryptografischen
Hashfunktionsalgorithmus (SHA-384). ECDSA wird standardmäßig verwendet, auch wenn es nicht
in der Richtlinie für den zugrundeliegenden Masterschlüssel angegeben ist. Durch das Signieren
von Nachrichten wird überprüft, ob der Nachrichtenabsender berechtigt war, Nachrichten zu
verschlüsseln, und gewährleistet die Nichtabstreitbarkeit. Sie ist besonders nützlich, wenn die
Berechtigungsrichtlinie für einen Masterschlüssel es einer Gruppe von Benutzern erlaubt, Daten zu
verschlüsseln, und einer anderen Gruppe von Benutzern, Daten zu entschlüsseln.

Algorithmus-Suites mit Schlüsselbindung stellen sicher, dass jeder Chiffretext nur in einen Klartext
entschlüsselt wird. Dazu überprüfen sie die Identität des Datenschlüssels, der als Eingabe für den

Empfohlen: AES-GCM mit Schlüsselableitung, Signierung und Schlüsselzusage 24

AWS Encryption SDK Entwicklerhandbuch

Verschlüsselungsalgorithmus verwendet wird. Bei der Verschlüsselung leiten diese Algorithmus-
Suites eine Schlüssel-Commitment-Zeichenfolge ab. Vor der Entschlüsselung überprüfen sie, ob der
Datenschlüssel mit der Zeichenfolge für die Schlüsselzusage übereinstimmt. Ist dies nicht der Fall,
schlägt der Entschlüsselungsaufruf fehl.

Andere unterstützte Algorithmen-Pakete

Der AWS Encryption SDK unterstützt aus Gründen der Abwärtskompatibilität die folgenden
alternativen Algorithmus-Suiten. Im Allgemeinen empfehlen wir diese Algorithmen-Pakete nicht. Wir
sind uns jedoch bewusst, dass das Signieren die Leistung erheblich beeinträchtigen kann. Deshalb
bieten wir für diese Fälle eine Suite mit Schlüsselableitung an. Für Anwendungen, die größere
Leistungseinbußen eingehen müssen, bieten wir weiterhin Suiten an, denen es an Signierung,
Schlüsselbindung und Schlüsselableitung mangelt.

AES-GCM ohne grundlegende Verpflichtung

Algorithmus-Suites ohne Schlüsselbindung validieren den Datenschlüssel vor der
Entschlüsselung nicht. Daher können diese Algorithmus-Suiten einen einzelnen Chiffretext
in verschiedene Klartext-Nachrichten entschlüsseln. Da jedoch Algorithmus-Suiten mit
Schlüsselbindung eine etwas größere (+30 Byte) verschlüsselte Nachricht erzeugen und ihre
Verarbeitung länger dauert, sind sie möglicherweise nicht für jede Anwendung die beste Wahl.

Die AWS Encryption SDK unterstützt eine Algorithmus-Suite mit Schlüsselableitung,
Schlüsselzusage und Signierung sowie eine Suite mit Schlüsselableitung und Schlüsselzusage,
aber ohne Signierung. Wir raten davon ab, eine Algorithmus-Suite ohne Schlüsselbindung zu
verwenden. Wenn Sie müssen, empfehlen wir eine Algorithmus-Suite mit Schlüsselableitung
und Schlüsselzusage, aber ohne Signierung. Wenn Ihr Anwendungsleistungsprofil jedoch die
Verwendung einer Algorithmussuite unterstützt, ist die Verwendung einer Algorithmussuite mit
Schlüsselbindung, Schlüsselableitung und Signierung eine bewährte Methode.

AES-GCM ohne Signierung

Algorithmus-Suiten ohne Signatur fehlt die ECDSA-Signatur, die für Authentizität und
Unwiderlegbarkeit sorgt. Verwenden Sie diese Suiten nur, wenn die Benutzer, die Daten
verschlüsseln, und die Benutzer, die Daten entschlüsseln, gleichermaßen vertrauenswürdig sind.

Wenn Sie eine Algorithmus-Suite ohne Signatur verwenden, empfehlen wir Ihnen, eine Suite mit
Schlüsselableitung und Schlüsselbindung zu wählen.

Andere unterstützte Algorithmen-Pakete 25

AWS Encryption SDK Entwicklerhandbuch

AES-GCM ohne Schlüsselableitung

Algorithmus-Suiten ohne Schlüsselableitung verwenden den Datenverschlüsselungsschlüssel
als AES-GCM-Verschlüsselungsschlüssel, anstatt eine Schlüsselableitungsfunktion zur Ableitung
eines eindeutigen Schlüssels zu verwenden. Wir raten davon ab, diese Suite zur Generierung von
Chiffretext zu verwenden, sie unterstützt sie jedoch aus Kompatibilitätsgründen. AWS Encryption
SDK

Weitere Informationen darüber, wie diese Pakete in der Bibliothek dargestellt und verwendet werden,
finden Sie unter the section called “Algorithmen – Referenz”.

Andere unterstützte Algorithmen-Pakete 26

AWS Encryption SDK Entwicklerhandbuch

Verwenden von AWS Encryption SDK with AWS KMS
Um das verwenden zu können AWS Encryption SDK, müssen Sie Schlüsselringe oder
Hauptschlüsselanbieter mit umschließenden Schlüsseln konfigurieren. Wenn Sie keine
Schlüsselinfrastruktur haben, empfehlen wir die Verwendung von AWS Key Management Service
(AWS KMS). Viele der Codebeispiele in der AWS Encryption SDK erfordern eine AWS KMS key.

Für die Interaktion mit AWS KMS dem AWS Encryption SDK ist das AWS SDK für Ihre bevorzugte
Programmiersprache erforderlich. Die AWS Encryption SDK Client-Bibliothek arbeitet mit der
zusammen AWS SDKs , um Masterschlüssel zu unterstützen, die in gespeichert sind AWS KMS.

Um sich auf die AWS Encryption SDK Verwendung von vorzubereiten AWS KMS

1. Erstelle ein AWS-Konto. Wie das geht, erfahren Sie unter Wie erstelle und aktiviere ich ein neues
Amazon Web Services Services-Konto? im AWS Knowledge Center.

2. Erstellen Sie eine symmetrische Verschlüsselung AWS KMS key. Hilfe finden Sie unter Creating
Keys im AWS Key Management Service Developer Guide.

Tip

Um das AWS KMS key programmgesteuert zu verwenden, benötigen Sie die Schlüssel-
ID oder den Amazon-Ressourcennamen (ARN) von. AWS KMS key Hilfe bei der Suche
nach der ID oder dem ARN eines AWS KMS keyfinden Sie unter Finding the Key ID and
ARN im AWS Key Management Service Developer Guide.

3. Generieren Sie eine Zugriffsschlüssel-ID und einen Sicherheitszugriffsschlüssel. Sie können
entweder die Zugriffsschlüssel-ID und den geheimen Zugriffsschlüssel für einen IAM-Benutzer
verwenden oder Sie können die verwenden, AWS Security Token Service um eine neue Sitzung
mit temporären Sicherheitsanmeldeinformationen zu erstellen, die eine Zugriffsschlüssel-ID,
einen geheimen Zugriffsschlüssel und ein Sitzungstoken enthalten. Aus Sicherheitsgründen
empfehlen wir, temporäre Anmeldeinformationen anstelle der langfristigen Anmeldeinformationen
zu verwenden, die Ihren IAM-Benutzer- oder AWS (Root-) Benutzerkonten zugeordnet sind.

Informationen zum Erstellen eines IAM-Benutzers mit einem Zugriffsschlüssel finden Sie unter
Creating IAM Users Guide im IAM-Benutzerhandbuch.

Informationen zum Generieren temporärer Sicherheitsanmeldedaten finden Sie unter Temporäre
Sicherheitsanmeldeinformationen anfordern im IAM-Benutzerhandbuch.

27

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS Encryption SDK Entwicklerhandbuch

4. Geben Sie Ihre AWS Anmeldeinformationen anhand der Anweisungen in AWS SDK für
JavaAWS SDK für JavaScript, AWS SDK für Python (Boto)oder AWS SDK für C++(für C) sowie
anhand der Zugriffsschlüssel-ID und des geheimen Zugriffsschlüssels ein, die Sie in Schritt 3
generiert haben. Wenn Sie temporäre Anmeldeinformationen generiert haben, müssen Sie auch
das Sitzungstoken angeben.

Dieses Verfahren ermöglicht es AWS SDKs , Anfragen AWS für Sie zu signieren. Bei den
Codebeispielen in AWS Encryption SDK that interact with wird AWS KMS davon ausgegangen,
dass Sie diesen Schritt abgeschlossen haben.

5. Laden Sie das herunter und installieren Sie es AWS Encryption SDK. Weitere Informationen über
die Installation finden Sie in den Anweisungen für die Programmiersprache, die Sie verwenden
möchten.

28

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#guide-configuration
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html

AWS Encryption SDK Entwicklerhandbuch

Bewährte Methoden für AWS Encryption SDK
Das AWS Encryption SDK soll Ihnen den Schutz Ihrer Daten mithilfe von Industriestandards und
Best Practices erleichtern. Während viele bewährte Methoden als Standardwerte für Sie ausgewählt
wurden, sind einige Methoden optional, werden jedoch empfohlen, wann immer dies praktikabel ist.

Verwenden Sie die neueste Version

Wenn Sie mit der Verwendung von beginnen AWS Encryption SDK, verwenden Sie die neueste
Version, die in Ihrer bevorzugten Programmiersprache angeboten wird. Wenn Sie das verwendet
haben AWS Encryption SDK, führen Sie so bald wie möglich ein Upgrade auf die jeweils neueste
Version durch. Dadurch wird sichergestellt, dass Sie die empfohlene Konfiguration verwenden und
neue Sicherheitseigenschaften zum Schutz Ihrer Daten nutzen. Einzelheiten zu den unterstützten
Versionen, einschließlich Anleitungen zur Migration und Bereitstellung, finden Sie unter Support
und Wartung undVersionen von AWS Encryption SDK.

Wenn eine neue Version Elemente in Ihrem Code als veraltet markiert, ersetzen Sie sie so
schnell wie möglich. Veraltete Versionen und Codekommentare empfehlen in der Regel eine gute
Alternative.

Um umfangreiche Upgrades einfacher und weniger fehleranfällig zu machen, bieten wir
gelegentlich eine temporäre Version oder eine Übergangsversion an. Verwenden Sie diese
Versionen und die dazugehörige Dokumentation, um sicherzustellen, dass Sie Ihre Anwendung
aktualisieren können, ohne Ihren Produktionsablauf zu unterbrechen.

Verwenden Sie Standardwerte

Der AWS Encryption SDK entwirft bewährte Verfahren in seine Standardwerte. Verwenden Sie
sie wann immer möglich. Für Fälle, in denen die Standardeinstellung nicht praktikabel ist, bieten
wir Alternativen an, z. B. Algorithmus-Suiten ohne Signatur. Wir bieten auch fortgeschrittenen
Benutzern Möglichkeiten zur Anpassung, z. B. benutzerdefinierte Schlüsselanhänger, Master-
Key-Anbieter und Manager für kryptografisches Material (). CMMs Verwenden Sie diese
erweiterten Alternativen mit Vorsicht und lassen Sie Ihre Auswahl, wann immer möglich, von
einem Sicherheitsingenieur überprüfen.

Verwenden Sie einen Verschlüsselungskontext

Um die Sicherheit Ihrer kryptografischen Operationen zu verbessern, fügen Sie allen Anfragen
zur Verschlüsselung von Daten einen Verschlüsselungskontext mit einem aussagekräftigen
Wert hinzu. Die Verwendung eines Verschlüsselungskontexts ist optional, aber wir empfehlen

29

AWS Encryption SDK Entwicklerhandbuch

dies als bewährte Methode für die Kryptografie. Ein Verschlüsselungskontext stellt zusätzliche
authentifizierte Daten (AAD) für die authentifizierte Verschlüsselung in der bereit. AWS Encryption
SDK Der Verschlüsselungskontext ist zwar nicht geheim, kann Ihnen aber dabei helfen, die
Integrität und Authentizität Ihrer verschlüsselten Daten zu schützen.

In der AWS Encryption SDK geben Sie nur beim Verschlüsseln einen Verschlüsselungskontext
an. Beim Entschlüsseln AWS Encryption SDK verwendet der den Verschlüsselungskontext im
Header der verschlüsselten Nachricht, die AWS Encryption SDK zurückgegeben wird. Bevor
Ihre Anwendung Klartextdaten zurückgibt, stellen Sie sicher, dass der Verschlüsselungskontext,
den Sie zum Verschlüsseln der Nachricht verwendet haben, in dem Verschlüsselungskontext
enthalten ist, der zum Entschlüsseln der Nachricht verwendet wurde. Einzelheiten finden Sie in
den Beispielen in Ihrer Programmiersprache.

Wenn Sie die Befehlszeilenschnittstelle verwenden, AWS Encryption SDK überprüft die den
Verschlüsselungskontext für Sie.

Schützen Sie Ihre Wrapping-Schlüssel

Der AWS Encryption SDK generiert einen eindeutigen Datenschlüssel, um jede Klartextnachricht
zu verschlüsseln. Anschließend verschlüsselt es den Datenschlüssel mit den von Ihnen
bereitgestellten Wrapping-Schlüsseln. Wenn Ihre Verpackungsschlüssel verloren gehen oder
gelöscht werden, können Ihre verschlüsselten Daten nicht wiederhergestellt werden. Wenn Ihre
Schlüssel nicht gesichert sind, sind Ihre Daten möglicherweise gefährdet.

Verwenden Sie Wrapping Keys, die durch eine sichere Schlüsselinfrastruktur geschützt sind,
wie z. B. AWS Key Management Service(AWS KMS). Verwenden Sie bei der Verwendung von
AES- oder RSA-Rohschlüsseln eine Zufallsquelle und einen dauerhaften Speicher, der Ihren
Sicherheitsanforderungen entspricht. Das Generieren und Speichern von Schlüsseln in einem
Hardware-Sicherheitsmodul (HSM) oder einem Dienst, der z. B. Folgendes bereitstellt HSMs AWS
CloudHSM, ist eine bewährte Methode.

Verwenden Sie die Autorisierungsmechanismen Ihrer Schlüsselinfrastruktur, um den Zugriff auf
Ihre Wrapping Keys auf die Benutzer zu beschränken, die ihn benötigen. Implementieren Sie
bewährte Verfahren, wie z. B. die geringste Rechtevergabe. Verwenden Sie bei der Verwendung
wichtige Richtlinien und IAM-Richtlinien, die bewährte Verfahren umsetzen. AWS KMS keys

Geben Sie Ihre Wrapping-Schlüssel an

Es hat sich immer bewährt, Ihre Umschließungsschlüssel sowohl beim Entschlüsseln als auch
beim Verschlüsseln explizit anzugeben. Wenn Sie das tun, AWS Encryption SDK verwendet

30

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices

AWS Encryption SDK Entwicklerhandbuch

der nur die Schlüssel, die Sie angeben. Durch diese Vorgehensweise wird sichergestellt, dass
Sie nur die von Ihnen beabsichtigten Verschlüsselungsschlüssel verwenden. Beim AWS KMS
Umschließen von Schlüsseln wird auch die Leistung verbessert, da verhindert wird, dass Sie
versehentlich Schlüssel in einer anderen Region AWS-Konto oder in einer anderen Region
verwenden oder versuchen, Schlüssel zu entschlüsseln, zu deren Verwendung Sie nicht
berechtigt sind.

Bei der Verschlüsselung müssen Sie bei den mitgelieferten Schlüsselbändern und
Hauptschlüsselanbietern angeben, dass Sie Schlüssel AWS Encryption SDK einschließen.
Sie verwenden alle und nur die von Ihnen angegebenen Verpackungsschlüssel. Bei
der Verschlüsselung und Entschlüsselung mit RAW-AES-Schlüsselbunden, RSA-
Rohschlüsselbändern und Schlüsseln müssen Sie außerdem Wrapping-Schlüssel angeben.
JCEMaster

Bei der Entschlüsselung mit AWS KMS Schlüsselbunden und Hauptschlüsselanbietern müssen
Sie jedoch keine Wrap-Schlüssel angeben. Sie AWS Encryption SDK können die Schlüssel-ID
aus den Metadaten des verschlüsselten Datenschlüssels abrufen. Die Angabe von Schlüsseln
zum Umschließen von Schlüsseln ist jedoch eine bewährte Methode, die wir empfehlen.

Um diese bewährte Methode bei der Arbeit mit Schlüsseln AWS KMS zum Umschließen von
Schlüsseln zu unterstützen, empfehlen wir Folgendes:

• Verwenden Sie AWS KMS Schlüsselringe, die das Umbrechen von Schlüsseln spezifizieren.
Beim Verschlüsseln und Entschlüsseln verwenden diese Schlüsselbunde nur die von Ihnen
angegebenen Umschließungsschlüssel.

• Verwenden Sie bei der Verwendung von AWS KMS Hauptschlüsseln und
Hauptschlüsselanbietern die in Version 1.7 eingeführten Konstruktoren im strikten Modus.
x der AWS Encryption SDK. Sie erstellen Anbieter, die nur mit den von Ihnen angegebenen
Wrapping-Schlüsseln ver- und entschlüsseln. Konstruktoren für Hauptschlüsselanbieter, die
immer mit einem beliebigen Wrapping-Schlüssel entschlüsseln, sind in Version 1.7 veraltet. x
und in Version 2.0 gelöscht. x.

Wenn es nicht praktikabel ist, Schlüssel für die Entschlüsselung anzugeben AWS KMS , können
Sie Discovery-Anbieter verwenden. Die AWS Encryption SDK in C und C JavaScript unterstützen
AWS KMS Discovery-Schlüsselringe. Master-Key-Anbieter mit einem Discovery-Modus sind für
Java und Python in den Versionen 1.7 verfügbar. x und höher. Diese Discovery-Anbieter, die
nur für die Entschlüsselung mit AWS KMS Umschließungsschlüsseln verwendet werden, weisen
ausdrücklich an, jeden Umschließungsschlüssel AWS Encryption SDK zu verwenden, mit dem ein
Datenschlüssel verschlüsselt wurde.

31

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie einen Discovery-Anbieter verwenden müssen, verwenden Sie dessen Discovery-
Filterfunktionen, um die Anzahl der verwendeten Schlüssel einzuschränken. Beispielsweise
verwendet der AWS KMS regionale Discovery-Schlüsselbund nur die Wrapping-Schlüssel in
einem bestimmten AWS-Region Bereich. Sie können AWS KMS Schlüsselanhänger und AWS
KMS Hauptschlüsselanbieter auch so konfigurieren, dass sie nur bestimmte Wrapping-Schlüssel
verwenden. AWS-Konten Verwenden Sie außerdem wie immer Schlüsselrichtlinien und IAM-
Richtlinien, um den Zugriff auf Ihre AWS KMS Wrapping Keys zu kontrollieren.

Verwenden Sie digitale Signaturen

Es hat sich bewährt, beim Signieren eine Algorithmus-Suite zu verwenden. Digitale Signaturen
verifizieren, dass der Nachrichtenabsender autorisiert war, die Nachricht zu senden, und schützen
die Integrität der Nachricht. Alle Versionen AWS Encryption SDK verwenden standardmäßig
Algorithmus-Suites mit Signierung.

Wenn Ihre Sicherheitsanforderungen keine digitalen Signaturen beinhalten, können Sie eine
Algorithmus-Suite ohne digitale Signaturen auswählen. Wir empfehlen jedoch die Verwendung
digitaler Signaturen, insbesondere wenn eine Benutzergruppe Daten verschlüsselt und eine
andere Benutzergruppe diese Daten entschlüsselt.

Verwenden Sie eine wichtige Verpflichtung

Es hat sich bewährt, die Sicherheitsfunktion Key Commitment zu verwenden. Durch
die Überprüfung der Identität des eindeutigen Datenschlüssels, mit dem Ihre Daten
verschlüsselt wurden, wird verhindert, dass Sie Chiffretext entschlüsseln, der zu mehr als einer
Klartextnachricht führen könnte.

Das AWS Encryption SDK bietet ab Version 2.0 volle Unterstützung für das Verschlüsseln
und Entschlüsseln mit Key Commitment. x. Standardmäßig werden alle Ihre Nachrichten mit
Schlüsselbindung ver- und entschlüsselt. Version 1.7. x von ihnen AWS Encryption SDK kann
Chiffretexte mit Schlüsselbindung entschlüsseln. Es wurde entwickelt, um Benutzern früherer
Versionen bei der Bereitstellung von Version 2.0 zu helfen. x erfolgreich.

Die Support für Key Commitment umfasst neue Algorithmus-Suites und ein neues
Nachrichtenformat, das einen Chiffretext erzeugt, der nur 30 Byte größer ist als ein Chiffretext
ohne Schlüsselzusage. Das Design minimiert die Auswirkungen auf die Leistung, sodass die
meisten Benutzer die Vorteile von Key Commitment nutzen können. Wenn Ihre Anwendung sehr
empfindlich auf Größe und Leistung reagiert, können Sie die Richtlinieneinstellung Commitment
verwenden, um Key Commitment zu deaktivieren oder die unverbindliche Entschlüsselung von
Nachrichten AWS Encryption SDK zu gestatten, aber tun Sie dies nur, wenn Sie müssen.

32

AWS Encryption SDK Entwicklerhandbuch

Beschränken Sie die Anzahl der verschlüsselten Datenschlüssel

Es hat sich bewährt, die Anzahl der verschlüsselten Datenschlüssel in Nachrichten, die Sie
entschlüsseln, zu begrenzen, insbesondere in Nachrichten aus nicht vertrauenswürdigen Quellen.
Das Entschlüsseln einer Nachricht mit zahlreichen verschlüsselten Datenschlüsseln, die Sie nicht
entschlüsseln können, kann zu längeren Verzögerungen führen, Kosten in die Höhe treiben, Ihre
Anwendung und andere, die Ihr Konto gemeinsam nutzen, drosseln und möglicherweise Ihre
wichtige Infrastruktur erschöpfen. Ohne Einschränkungen kann eine verschlüsselte Nachricht bis
zu 65.535 (2^16 — 1) verschlüsselte Datenschlüssel enthalten. Details hierzu finden Sie unter
Beschränkung verschlüsselter Datenschlüssel.

Weitere Informationen zu den AWS Encryption SDK Sicherheitsfunktionen, die diesen bewährten
Methoden zugrunde liegen, finden Sie unter Verbesserte clientseitige Verschlüsselung: Explizite
KeyIds und zentrale Verpflichtung im Sicherheitsblog.AWS

33

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Entwicklerhandbuch

Konfiguration der AWS Encryption SDK

Das AWS Encryption SDK ist so konzipiert, dass es einfach zu bedienen ist. Obwohl es AWS
Encryption SDK mehrere Konfigurationsoptionen gibt, wurden die Standardwerte sorgfältig
ausgewählt, damit sie für die meisten Anwendungen praktisch und sicher sind. Möglicherweise
müssen Sie jedoch Ihre Konfiguration anpassen, um die Leistung zu verbessern, oder Sie müssen
eine benutzerdefinierte Funktion in Ihr Design aufnehmen.

Lesen Sie sich bei der Konfiguration Ihrer Implementierung die AWS Encryption SDK bewährten
Methoden durch und implementieren Sie so viele wie möglich.

Themen

• Auswahl einer Programmiersprache

• Auswahl von Schlüsseln zum Umbrechen

• Verwenden Sie mehrere Regionen AWS KMS keys

• Auswahl einer Algorithmus-Suite

• Beschränkung verschlüsselter Datenschlüssel

• Einen Discovery-Filter erstellen

• Konfiguration des erforderlichen Verschlüsselungskontextes (CMM)

• Festlegung einer Verpflichtungspolitik

• Arbeiten mit Streaming-Daten

• Zwischenspeichern von Datenschlüsseln

Auswahl einer Programmiersprache

Das AWS Encryption SDK ist in mehreren Programmiersprachen verfügbar. Die
Sprachimplementierungen sind so konzipiert, dass sie vollständig interoperabel sind und dieselben
Funktionen bieten, obwohl sie möglicherweise auf unterschiedliche Weise implementiert werden. In
der Regel verwenden Sie die Bibliothek, die mit Ihrer Anwendung kompatibel ist. Sie können jedoch
eine Programmiersprache für eine bestimmte Implementierung auswählen. Wenn Sie beispielsweise
lieber mit Schlüsselanhängern arbeiten, können Sie den AWS-Verschlüsselungs-SDK for C oder den
AWS-Verschlüsselungs-SDK for JavaScript wählen.

Auswahl einer Programmiersprache 34

AWS Encryption SDK Entwicklerhandbuch

Auswahl von Schlüsseln zum Umbrechen
Der AWS Encryption SDK generiert einen eindeutigen symmetrischen Datenschlüssel, um
jede Nachricht zu verschlüsseln. Sofern Sie das Zwischenspeichern von Datenschlüsseln nicht
verwenden, müssen Sie die Datenschlüssel nicht konfigurieren, verwalten oder verwenden. Das AWS
Encryption SDK erledigt das für Sie.

Sie müssen jedoch einen oder mehrere Wrapping-Schlüssel auswählen, um jeden Datenschlüssel
zu verschlüsseln. Der AWS Encryption SDK unterstützt symmetrische AES-Schlüssel und
asymmetrische RSA-Schlüssel in verschiedenen Größen. Es unterstützt auch AWS Key
Management Service(AWS KMS) symmetrische Verschlüsselung. AWS KMS keys Sie sind für die
Sicherheit und Haltbarkeit Ihrer Wrapping-Schlüssel verantwortlich. Wir empfehlen Ihnen daher,
einen Verschlüsselungsschlüssel in einem Hardware-Sicherheitsmodul oder einem wichtigen
Infrastrukturdienst zu verwenden, wie AWS KMS z.

Um Ihre Wrapping-Schlüssel für die Verschlüsselung und Entschlüsselung anzugeben, verwenden
Sie einen Schlüsselbund (C, Java JavaScript, .NET und Python) oder einen Hauptschlüsselanbieter
(Java, Python, AWS Encryption CLI). Sie können einen Wrapping-Schlüssel oder mehrere
Wrapping-Schlüssel desselben oder verschiedener Typen angeben. Wenn Sie mehrere
Umschließungsschlüssel verwenden, um einen Datenschlüssel zu umschließen, verschlüsselt jeder
Umschließungsschlüssel eine Kopie desselben Datenschlüssels. Die verschlüsselten Datenschlüssel
(einer pro Umschließungsschlüssel) werden zusammen mit den verschlüsselten Daten in der
verschlüsselten Nachricht gespeichert, die AWS Encryption SDK zurückgegeben wird. Um die
Daten zu entschlüsseln, AWS Encryption SDK müssen sie zuerst einen Ihrer Verpackungsschlüssel
verwenden, um einen verschlüsselten Datenschlüssel zu entschlüsseln.

Um AWS KMS key in einem Schlüsselbund oder einem Hauptschlüsselanbieter anzugeben,
verwenden Sie eine unterstützte AWS KMS Schlüssel-ID. Einzelheiten zu den Schlüsselbezeichnern
für einen AWS KMS Schlüssel finden Sie unter Schlüsselkennungen im AWS Key Management
Service Entwicklerhandbuch.

• Bei der Verschlüsselung mit der AWS-Verschlüsselungs-SDK for Java, AWS-Verschlüsselungs-
SDK for JavaScript AWS-Verschlüsselungs-SDK for Python, oder der AWS Encryption CLI können
Sie jede gültige Schlüssel-ID (Schlüssel-ID, Schlüssel-ARN, Aliasname oder Alias-ARN) für einen
KMS-Schlüssel verwenden. Bei der Verschlüsselung mit dem AWS-Verschlüsselungs-SDK for C
können Sie nur eine Schlüssel-ID oder einen Schlüssel-ARN verwenden.

Wenn Sie beim Verschlüsseln einen Aliasnamen oder Alias-ARN für einen KMS-Schlüssel
angeben, AWS Encryption SDK speichert der den Schlüssel-ARN, der derzeit mit diesem Alias

Auswahl von Schlüsseln zum Umbrechen 35

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Entwicklerhandbuch

verknüpft ist; der Alias wird nicht gespeichert. Änderungen am Alias wirken sich nicht auf den KMS-
Schlüssel aus, der zum Entschlüsseln Ihrer Datenschlüssel verwendet wird.

• Bei der Entschlüsselung im strikten Modus (in dem Sie bestimmte Wrapping-Schlüssel angeben)
müssen Sie zur Identifizierung AWS KMS keys einen Schlüssel-ARN verwenden. Diese
Anforderung gilt für alle Sprachenimplementierungen des AWS Encryption SDK.

Wenn Sie mit einem AWS KMS Schlüsselbund verschlüsseln, AWS Encryption SDK speichert der
den Schlüssel ARN von AWS KMS key in den Metadaten des verschlüsselten Datenschlüssels. Bei
der Entschlüsselung im strikten Modus AWS Encryption SDK überprüft der, ob derselbe Schlüssel-
ARN im Schlüsselbund (oder Hauptschlüsselanbieter) erscheint, bevor er versucht, den Wrapping-
Schlüssel zum Entschlüsseln des verschlüsselten Datenschlüssels zu verwenden. Wenn Sie eine
andere Schlüssel-ID verwenden, AWS Encryption SDK wird sie weder erkannt noch verwendet
AWS KMS key, auch wenn sich die Kennungen auf denselben Schlüssel beziehen.

Um einen AES-Rohschlüssel oder ein RSA-Rohschlüsselpaar als Umschließungsschlüssel in einem
Schlüsselbund anzugeben, müssen Sie einen Namespace und einen Namen angeben. In einem
Hauptschlüsselanbieter Provider ID entspricht der dem Namespace und der Key ID entspricht
dem Namen. Beim Entschlüsseln müssen Sie für jeden Rohverpackungsschlüssel genau denselben
Namespace und denselben Namen verwenden wie beim Verschlüsseln. Wenn Sie einen anderen
Namespace oder Namen verwenden, AWS Encryption SDK wird der Wrapping-Schlüssel nicht
erkannt oder verwendet, auch wenn das Schlüsselmaterial identisch ist.

Verwenden Sie mehrere Regionen AWS KMS keys

Sie können AWS Key Management Service (AWS KMS) Schlüssel mit mehreren Regionen
verwenden, um Schlüssel in der einzuschließen. AWS Encryption SDK Wenn Sie mit einem
Schlüssel für mehrere Regionen in einem verschlüsseln AWS-Region, können Sie mit einem
zugehörigen Schlüssel für mehrere Regionen in einem anderen verschlüsseln. AWS-Region Die
Support für Schlüssel mit mehreren Regionen wurde in Version 2.3 eingeführt. x der Version AWS
Encryption SDK und Version 3.0. x der AWS Encryption CLI.

AWS KMS Schlüssel für mehrere Regionen bestehen aus AWS KMS keys verschiedenen
Schlüsseln AWS-Regionen , die dasselbe Schlüsselmaterial und dieselbe Schlüssel-ID haben.
Sie können diese verwandten Schlüssel so verwenden, als ob es sich um denselben Schlüssel
in verschiedenen Regionen handeln würde. Schlüssel mit mehreren Regionen unterstützen
gängige Notfallwiederherstellungs- und Sicherungsszenarien, bei denen die Verschlüsselung
in einer Region und die Entschlüsselung in einer anderen Region erforderlich ist, ohne dass

Verwenden Sie mehrere Regionen AWS KMS keys 36

AWS Encryption SDK Entwicklerhandbuch

ein regionsübergreifender Anruf erforderlich ist. AWS KMSInformationen zu Schlüsseln für
mehrere Regionen finden Sie unter Verwenden von Schlüsseln für mehrere Regionen im
Entwicklerhandbuch.AWS Key Management Service

Zur Unterstützung von Schlüsseln für mehrere Regionen AWS Encryption SDK umfasst dies
Schlüsselringe, die AWS KMS mehrere Regionen berücksichtigen, und Hauptschlüsselanbieter.
Das neue multi-Region-aware Symbol in jeder Programmiersprache unterstützt sowohl Schlüssel für
einzelne Regionen als auch Schlüssel für mehrere Regionen.

• Bei Schlüsseln mit nur einer Region verhält sich das multi-Region-aware Symbol genauso wie der
Schlüsselbund für einzelne Regionen und der AWS KMS Hauptschlüsselanbieter. Es versucht,
Chiffretext nur mit dem Schlüssel für eine einzelne Region zu entschlüsseln, mit dem die Daten
verschlüsselt wurden.

• Bei Schlüsseln mit mehreren Regionen versucht das multi-Region-aware Symbol, Chiffretext mit
demselben Schlüssel für mehrere Regionen zu entschlüsseln, mit dem die Daten verschlüsselt
wurden, oder mit dem zugehörigen Replikatschlüssel für mehrere Regionen in der von Ihnen
angegebenen Region.

In den multi-Region-aware Schlüsselbunden und Hauptschlüsselanbietern, die mehr als einen
KMS-Schlüssel verwenden, können Sie mehrere Schlüssel für eine Region und mehrere Regionen
angeben. Sie können jedoch nur einen Schlüssel aus jedem Satz verwandter Replikatschlüssel für
mehrere Regionen angeben. Wenn Sie mehr als einen Schlüsselbezeichner mit derselben Schlüssel-
ID angeben, schlägt der Konstruktoraufruf fehl.

Sie können auch einen Schlüssel für mehrere Regionen zusammen mit den standardmäßigen AWS
KMS Schlüsselanhängern und Hauptschlüsselanbietern für einzelne Regionen verwenden. Zum
Verschlüsseln und Entschlüsseln müssen Sie jedoch denselben Schlüssel für mehrere Regionen
in derselben Region verwenden. Die Schlüsselringe für einzelne Regionen und die Anbieter von
Masterschlüsseln versuchen, Chiffretext nur mit den Schlüsseln zu entschlüsseln, mit denen die
Daten verschlüsselt wurden.

Die folgenden Beispiele zeigen, wie Daten mithilfe von Schlüsseln für mehrere Regionen sowie mit
den neuen Schlüsselbändern und Masterschlüsselanbietern ver- und entschlüsselt werden. multi-
Region-aware In diesen Beispielen werden Daten in der us-east-1 Region verschlüsselt und
die Daten in der Region mithilfe verwandter multiregionaler Replikatschlüssel in us-west-2 jeder
Region entschlüsselt. Bevor Sie diese Beispiele ausführen, ersetzen Sie den ARN-Beispielschlüssel
für mehrere Regionen durch einen gültigen Wert aus Ihrem AWS-Konto.

Verwenden Sie mehrere Regionen AWS KMS keys 37

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key

AWS Encryption SDK Entwicklerhandbuch

C

Um mit einem Schlüssel für mehrere Regionen zu verschlüsseln, verwenden Sie die
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() Methode, um den
Schlüsselbund zu instanziieren. Geben Sie einen Schlüssel für mehrere Regionen an.

Dieses einfache Beispiel enthält keinen Verschlüsselungskontext. Ein Beispiel, das einen
Verschlüsselungskontext in C verwendet, finden Sie unterVerschlüsseln und Entschlüsseln von
Zeichenfolgen.

Ein vollständiges Beispiel finden Sie unter kms_multi_region_keys.cpp im AWS-Verschlüsselungs-
SDK for C Repository unter GitHub.

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
 Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder().Build(mrk_us_east_1);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
 AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Encrypt the data
 * aws_cryptosdk_session_process_full is designed for non-streaming data
 */
aws_cryptosdk_session_process_full(
 session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext,
 plaintext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

Verwenden Sie mehrere Regionen AWS KMS keys 38

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Entwicklerhandbuch

C# / .NET

Um mit einem Schlüssel für mehrere Regionen in der Region USA Ost (Nord-Virginia) (us-east-1)
zu verschlüsseln, instanziieren Sie ein CreateAwsKmsMrkKeyringInput Objekt mit einer
Schlüssel-ID für den Schlüssel für mehrere Regionen und einem Client für die angegebene
Region. AWS KMS Verwenden Sie dann die Methode, um den Schlüsselbund zu erstellen.
CreateAwsKmsMrkKeyring()

Die CreateAwsKmsMrkKeyring() Methode erstellt einen Schlüsselbund mit genau
einem Schlüssel für mehrere Regionen. Verwenden Sie die Methode, um mit mehreren
Schlüsseln zu verschlüsseln, einschließlich eines Schlüssels für mehrere Regionen.
CreateAwsKmsMrkMultiKeyring()

Ein vollständiges Beispiel finden Sie unter AwsKmsMrkKeyringExample.cs im AWS Encryption
SDK for.NET-Repository unter. GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1
string mrkUSEast1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Create the keyring
// You can specify the Region or get the Region from the key ARN
var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEast1),
 KmsKeyId = mrkUSEast1
};
var mrkEncryptKeyring =
 materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()

Verwenden Sie mehrere Regionen AWS KMS keys 39

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

{
 {"purpose", "test"}
};

// Encrypt your plaintext data.
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = mrkEncryptKeyring,
 EncryptionContext = encryptionContext
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

In diesem Beispiel wird die hello.txt Datei unter einem Schlüssel für mehrere Regionen in der
Region us-east-1 verschlüsselt. Da das Beispiel einen Schlüssel-ARN mit einem Region-Element
angibt, verwendet dieses Beispiel nicht das Region-Attribut des --wrapping-keys Parameters.

Wenn die Schlüssel-ID des Wrapping-Schlüssels keine Region angibt, können Sie das Region-
Attribut von verwenden, --wrapping-keys um die Region anzugeben, z. --wrapping-keys
key=$keyID region=us-east-1 B.

Encrypt with a multi-Region KMS key in us-east-1 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEast1=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab

$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$mrkUSEast1 \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

Java

Um mit einem Schlüssel für mehrere Regionen zu verschlüsseln, instanziieren Sie einen
AwsKmsMrkAwareMasterKeyProvider und geben Sie einen Schlüssel für mehrere Regionen
an.

Verwenden Sie mehrere Regionen AWS KMS keys 40

AWS Encryption SDK Entwicklerhandbuch

Ein vollständiges Beispiel finden Sie im Repository unter
BasicMultiRegionKeyEncryptionExample.java. AWS-Verschlüsselungs-SDK for Java GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1
final String mrkUSEast1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1
final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
 AwsKmsMrkAwareMasterKeyProvider
 .builder()
 .buildStrict(mrkUSEast1);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose",
 "Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult =
 crypto.encryptData(
 kmsMrkProvider,
 encryptionContext,
 sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

JavaScript Browser

Um mit einem Schlüssel für mehrere Regionen zu verschlüsseln, verwenden Sie die
buildAwsKmsMrkAwareStrictMultiKeyringBrowser() Methode, um den Schlüsselbund
zu erstellen, und geben Sie einen Schlüssel für mehrere Regionen an.

Ein vollständiges Beispiel finden Sie unter kms_multi_region_simple.ts im Repository unter. AWS-
Verschlüsselungs-SDK for JavaScript GitHub

Verwenden Sie mehrere Regionen AWS KMS keys 41

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Entwicklerhandbuch

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import {
 buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* Instantiate an AWS KMS client
 * The AWS-Verschlüsselungs-SDK for JavaScript gets the Region from the key ARN
 */
const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey =
 'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Instantiate the keyring */
const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({
 generatorKeyId: multiRegionUsEastKey,
 clientProvider,
 })

/* Set the encryption context */
const context = {
 purpose: 'test',
 }

Verwenden Sie mehrere Regionen AWS KMS keys 42

AWS Encryption SDK Entwicklerhandbuch

/* Test data to encrypt */
const cleartext = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, {
 encryptionContext: context,
 })

JavaScript Node.js

Um mit einem Schlüssel für mehrere Regionen zu verschlüsseln, verwenden Sie die Methode,
um den Schlüsselbund zu erstellen, und geben Sie einen Schlüssel für mehrere Regionen an.
buildAwsKmsMrkAwareStrictMultiKeyringNode()

Ein vollständiges Beispiel finden Sie unter kms_multi_region_simple.ts im Repository unter. AWS-
Verschlüsselungs-SDK for JavaScript GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
 * Specify a multi-Region key in us-east-1
 */
const multiRegionUsEastKey =
 'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
 generatorKeyId: multiRegionUsEastKey,
 })

/* Specify an encryption context */
const context = {
 purpose: 'test',

Verwenden Sie mehrere Regionen AWS KMS keys 43

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK Entwicklerhandbuch

 }

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, {
 encryptionContext: context,
 })

Python

Um mit einem Schlüssel für mehrere Regionen zu verschlüsseln, verwenden Sie
die Methode und geben Sie einen Schlüssel für AWS KMS mehrere Regionen an.
MRKAwareStrictAwsKmsMasterKeyProvider()

Ein vollständiges Beispiel finden Sie unter mrk_aware_kms_provider.py im AWS-
Verschlüsselungs-SDK for Python Repository unter. GitHub

* Encrypt with a multi-Region KMS key in us-east-1 Region

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider
in strict mode
strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
 key_ids=[mrk_us_east_1]
)

Set the encryption context
encryption_context = {
 "purpose": "test"
 }

Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt(
 source=source_plaintext,
 encryption_context=encryption_context,
 key_provider=strict_mrk_key_provider
)

Verwenden Sie mehrere Regionen AWS KMS keys 44

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Verschieben Sie als Nächstes Ihren Chiffretext in die us-west-2 Region. Sie müssen den
Chiffretext nicht erneut verschlüsseln.

Um den Chiffretext im strikten Modus in der us-west-2 Region zu entschlüsseln, instanziieren Sie
das multi-Region-aware Symbol mit dem Schlüssel ARN des zugehörigen Multi-Region-Schlüssels in
der Region. us-west-2 Wenn Sie den Schlüssel-ARN eines zugehörigen Multi-Region-Schlüssels in
einer anderen Region angeben (einschließlichus-east-1, wo er verschlüsselt wurde), ruft das multi-
Region-aware Symbol diesen Schlüssel regionsübergreifend auf. AWS KMS key

Bei der Entschlüsselung im strikten Modus benötigt das multi-Region-aware Symbol einen Schlüssel-
ARN. Es akzeptiert nur einen Schlüssel-ARN aus jedem Satz verwandter Schlüssel für mehrere
Regionen.

Bevor Sie diese Beispiele ausführen, ersetzen Sie den ARN-Beispielschlüssel für mehrere Regionen
durch einen gültigen Wert aus Ihrem AWS-Konto.

C

Um im strikten Modus mit einem Schlüssel für mehrere Regionen zu entschlüsseln, verwenden
Sie die Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() Methode, um
den Schlüsselbund zu instanziieren. Geben Sie den zugehörigen Schlüssel für mehrere Regionen
in der lokalen Region (us-west-2) an.

Ein vollständiges Beispiel finden Sie unter kms_multi_region_keys.cpp im AWS-Verschlüsselungs-
SDK for C Repository unter. GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
 Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder().Build(mrk_us_west_2);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
 AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

Verwenden Sie mehrere Regionen AWS KMS keys 45

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_session_set_commitment_policy(session,
 COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext
 * aws_cryptosdk_session_process_full is designed for non-streaming data
 */
aws_cryptosdk_session_process_full(
 session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
 ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

Um im strikten Modus mit einem einzigen Schlüssel für mehrere Regionen zu entschlüsseln,
verwenden Sie dieselben Konstruktoren und Methoden, mit denen Sie die Eingabe
zusammengestellt und den Schlüsselbund für die Verschlüsselung erstellt haben. Instanziieren
Sie ein CreateAwsKmsMrkKeyringInput Objekt mit dem Schlüssel-ARN eines zugehörigen
Multiregions-Schlüssels und einem AWS KMS Client für die Region USA West (Oregon)
(us-west-2). Verwenden Sie dann die CreateAwsKmsMrkKeyring() Methode, um einen
Schlüsselbund für mehrere Regionen mit einem KMS-Schlüssel für mehrere Regionen zu
erstellen.

Ein vollständiges Beispiel finden Sie unter AwsKmsMrkKeyringExample.cs im for.NET-Repository
unter AWS Encryption SDK . GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Specify the key ARN of the multi-Region key in us-west-2
string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

Verwenden Sie mehrere Regionen AWS KMS keys 46

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the keyring input
// You can specify the Region or get the Region from the key ARN
var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 KmsKeyId = mrkUSWest2
};

// Create the multi-Region keyring
var mrkDecryptKeyring =
 materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = mrkDecryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Um mit dem zugehörigen Multiregion-Schlüssel in der Region us-west-2 zu entschlüsseln,
verwenden Sie das Schlüsselattribut des --wrapping-keys Parameters, um seinen Schlüssel-
ARN anzugeben.

Decrypt with a related multi-Region KMS key in us-west-2 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$mrkUSWest2 \
 --commitment-policy require-encrypt-require-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

Verwenden Sie mehrere Regionen AWS KMS keys 47

AWS Encryption SDK Entwicklerhandbuch

Java

Um im strikten Modus zu entschlüsseln, instanziieren Sie einen
AwsKmsMrkAwareMasterKeyProvider und geben Sie den zugehörigen Schlüssel für mehrere
Regionen in der lokalen Region (us-west-2) an.

Ein vollständiges Beispiel finden Sie unter .java im Repository
unterBasicMultiRegionKeyEncryptionExample. AWS-Verschlüsselungs-SDK for Java GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in
 the Region field.
String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Use the multi-Region method to create the master key provider
// in strict mode
AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
 AwsKmsMrkAwareMasterKeyProvider.builder()
 .buildStrict(mrkUSWest2);

// Decrypt your ciphertext
CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData(
 kmsMrkProvider,
 ciphertext);
byte[] decrypted = decryptResult.getResult();

JavaScript Browser

Um im strikten Modus zu entschlüsseln, verwenden Sie die
buildAwsKmsMrkAwareStrictMultiKeyringBrowser() Methode, um den Schlüsselbund
zu erstellen, und geben Sie den zugehörigen Schlüssel für mehrere Regionen in der lokalen
Region (us-west-2) an.

Ein vollständiges Beispiel finden Sie unter kms_multi_region_simple.ts im Repository unter. AWS-
Verschlüsselungs-SDK for JavaScript GitHub

Verwenden Sie mehrere Regionen AWS KMS keys 48

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Entwicklerhandbuch

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import {
 buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* Instantiate an AWS KMS client
 * The AWS-Verschlüsselungs-SDK for JavaScript gets the Region from the key ARN
 */
const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey =
 'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Instantiate the keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({
 generatorKeyId: multiRegionUsWestKey,
 clientProvider,
 })

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

Verwenden Sie mehrere Regionen AWS KMS keys 49

AWS Encryption SDK Entwicklerhandbuch

JavaScript Node.js

Um im strikten Modus zu entschlüsseln, verwenden Sie die
buildAwsKmsMrkAwareStrictMultiKeyringNode() Methode, um den Schlüsselbund zu
erstellen, und geben Sie den zugehörigen Schlüssel für mehrere Regionen in der lokalen Region
(us-west-2) an.

Ein vollständiges Beispiel finden Sie unter kms_multi_region_simple.ts im Repository unter. AWS-
Verschlüsselungs-SDK for JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the client
const { decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
 * Specify a multi-Region key in us-west-2
 */
const multiRegionUsWestKey =
 'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
 generatorKeyId: multiRegionUsWestKey,
 })

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

Um im strikten Modus zu entschlüsseln, verwenden Sie die Methode, um den
Hauptschlüsselanbieter zu erstellen. MRKAwareStrictAwsKmsMasterKeyProvider() Geben
Sie den zugehörigen Schlüssel für mehrere Regionen in der lokalen Region (us-west-2) an.

Ein vollständiges Beispiel finden Sie unter mrk_aware_kms_provider.py im AWS-
Verschlüsselungs-SDK for Python Repository unter. GitHub

Verwenden Sie mehrere Regionen AWS KMS keys 50

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Decrypt with a related multi-Region KMS key in us-west-2 Region

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Related multi-Region keys have the same key ID. Their key ARNs differs only in the
 Region field
mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider
in strict mode
strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
 key_ids=[mrk_us_west_2]
)

Decrypt your ciphertext
plaintext, _ = client.decrypt(
 source=ciphertext,
 key_provider=strict_mrk_key_provider
)

Sie können auch im Discovery-Modus mit Schlüsseln für AWS KMS mehrere Regionen
entschlüsseln. Beim Entschlüsseln im Discovery-Modus geben Sie keine an. AWS KMS
keys(Informationen zu Schlüsselanhängern für die AWS KMS Erkennung einzelner Regionen finden
Sie unter.) Verwenden eines Discovery-Schlüsselbunds AWS KMS

Wenn Sie mit einem Schlüssel für mehrere Regionen verschlüsselt haben, versucht das multi-
Region-aware Symbol im Erkennungsmodus, mithilfe eines zugehörigen Regionsschlüssels
in der lokalen Region zu entschlüsseln. Wenn keine vorhanden ist, schlägt der Anruf fehl.
Im Erkennungsmodus versucht der nicht, den Schlüssel für mehrere Regionen, der für die
Verschlüsselung verwendet AWS Encryption SDK wird, regionsübergreifend aufzurufen.

Note

Wenn Sie im Discovery-Modus ein multi-Region-aware Symbol verwenden, um Daten zu
verschlüsseln, schlägt der Verschlüsselungsvorgang fehl.

Verwenden Sie mehrere Regionen AWS KMS keys 51

AWS Encryption SDK Entwicklerhandbuch

Das folgende Beispiel zeigt, wie im Discovery-Modus mit dem multi-Region-aware Symbol
entschlüsselt wird. Da Sie kein angeben AWS KMS key, AWS Encryption SDK muss die Region aus
einer anderen Quelle abgerufen werden. Wenn möglich, geben Sie die lokale Region explizit an.
Andernfalls AWS Encryption SDK ruft der die lokale Region aus der Region ab, die im AWS SDK für
Ihre Programmiersprache konfiguriert ist.

Bevor Sie diese Beispiele ausführen, ersetzen Sie die Beispielkonto-ID und den Multi-Region-
Schlüssel ARN durch gültige Werte aus Ihrem AWS-Konto.

C

Um im Discovery-Modus mit einem Schlüssel für mehrere Regionen zu entschlüsseln,
verwenden Sie die Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder()
Methode, um den Schlüsselbund zu erstellen, und die Methode, um den
Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder() Discovery-Filter zu
erstellen. Um die lokale Region anzugeben, definieren Sie a ClientConfiguration und geben
Sie sie im Client an. AWS KMS

Ein vollständiges Beispiel finden Sie unter kms_multi_region_keys.cpp im AWS-Verschlüsselungs-
SDK for C Repository unter GitHub.

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct a discovery filter for the account and partition. The
 * filter is optional, but it's a best practice that we recommend.
 */
const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter
 =

 Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder(partition).AddAccount(account_id).Build();

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client =

Verwenden Sie mehrere Regionen AWS KMS keys 52

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Entwicklerhandbuch

 Aws::MakeShared<Aws::KMS::KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =
 Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder()
 .WithKmsClient(kms_client)
 .BuildDiscovery(region, discovery_filter);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
 AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext
 * aws_cryptosdk_session_process_full is designed for non-streaming data
 */
aws_cryptosdk_session_process_full(
 session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
 ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

Um einen multi-Region-aware Discovery-Schlüsselbund in für.NET zu erstellen, instanziieren
Sie ein CreateAwsKmsMrkDiscoveryKeyringInput Objekt, das einen AWS KMS Client
für ein bestimmtes Objekt verwendet AWS-Region, und einen optionalen Discovery-Filter,
der KMS-Schlüssel auf eine bestimmte AWS Partition und ein bestimmtes Konto beschränkt.
AWS Encryption SDK Rufen Sie dann die CreateAwsKmsMrkDiscoveryKeyring()
Methode mit dem Eingabeobjekt auf. Ein vollständiges Beispiel finden Sie unter
AwsKmsMrkDiscoveryKeyringExample.cs im AWS Encryption SDK for.NET-Repository unter
GitHub.

Um einen multi-Region-aware Discovery-Schlüsselbund für mehrere zu erstellen AWS-Region,
verwenden Sie die CreateAwsKmsMrkDiscoveryMultiKeyring() Methode, um einen
Mehrfachschlüsselbund zu erstellen, oder verwenden Sie die Methode, um mehrere multi-Region-
aware Discovery-Schlüsselbunde CreateAwsKmsMrkDiscoveryKeyring() zu erstellen
und sie dann mit der CreateMultiKeyring() Methode zu einem Mehrfachschlüsselbund zu
kombinieren.

Verwenden Sie mehrere Regionen AWS KMS keys 53

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

Ein Beispiel finden Sie unter .cs. AwsKmsMrkDiscoveryMultiKeyringExample

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

List<string> account = new List<string> { "111122223333" };

// Instantiate the discovery filter
DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()
{
 AccountIds = account,
 Partition = "aws"
}

// Create the keyring
var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 DiscoveryFilter = mrkDiscoveryFilter
};
var mrkDiscoveryKeyring =
 materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = mrkDiscoveryKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Verwenden Sie das Discovery-Attribut des Parameters, um im Discovery-Modus zu entschlüsseln.
--wrapping-keys Die Attribute discovery-account und discovery-partition erstellen einen
Discovery-Filter, der optional, aber empfohlen wird.

Verwenden Sie mehrere Regionen AWS KMS keys 54

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryMultiKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

Um die Region anzugeben, enthält dieser Befehl das Regionsattribut des Parameters. --
wrapping-keys

Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys discovery=true \
 discovery-account=111122223333 \
 discovery-partition=aws \
 region=us-west-2 \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

Java

Verwenden Sie den builder().withDiscoveryMrkRegion Parameter, um die lokale Region
anzugeben. Andernfalls AWS Encryption SDK ruft der die lokale Region aus der Region ab, die in
der konfiguriert ist AWS SDK für Java.

Ein vollständiges Beispiel finden Sie unter DiscoveryMultiRegionDecryptionExample.java im AWS-
Verschlüsselungs-SDK for Java Repository unter GitHub.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider =
 AwsKmsMrkAwareMasterKeyProvider
 .builder()
 .withDiscoveryMrkRegion(Region.US_WEST_2)
 .buildDiscovery(discoveryFilter);

// Decrypt your ciphertext
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto

Verwenden Sie mehrere Regionen AWS KMS keys 55

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryMultiRegionDecryptionExample.java

AWS Encryption SDK Entwicklerhandbuch

 .decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

Verwenden Sie die Methode, um im Discovery-Modus mit einem
symmetrischen Schlüssel für mehrere Regionen zu entschlüsseln.
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser()

Ein vollständiges Beispiel finden Sie unter kms_multi_region_discovery.ts im Repository unter.
AWS-Verschlüsselungs-SDK for JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
 AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */
const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser({
 client,
 discoveryFilter,
 })

Verwenden Sie mehrere Regionen AWS KMS keys 56

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts

AWS Encryption SDK Entwicklerhandbuch

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

JavaScript Node.js

Verwenden Sie die Methode, um im Discovery-Modus mit einem
symmetrischen Schlüssel für mehrere Regionen zu entschlüsseln.
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode()

Ein vollständiges Beispiel finden Sie unter kms_multi_region_discovery.ts im Repository unter.
AWS-Verschlüsselungs-SDK for JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
 AwsKmsMrkAwareSymmetricDiscoveryKeyringNode,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-node'

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */
const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({
 client,
 discoveryFilter,
 })

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Verwenden Sie mehrere Regionen AWS KMS keys 57

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_discovery.ts

AWS Encryption SDK Entwicklerhandbuch

Python

Verwenden Sie die Methode, um im Discovery-Modus mit einem Schlüssel für mehrere Regionen
zu entschlüsseln. MRKAwareDiscoveryAwsKmsMasterKeyProvider()

Ein vollständiges Beispiel finden Sie unter mrk_aware_kms_provider.py im AWS-
Verschlüsselungs-SDK for Python Repository unter. GitHub

Decrypt in discovery mode with a multi-Region KMS key

Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

Create the discovery filter and specify the region
decrypt_kwargs = dict(
 discovery_filter=DiscoveryFilter(account_ids="111122223333",
 partition="aws"),
 discovery_region="us-west-2",
)

Use the multi-Region method to create the master key provider
in discovery mode
mrk_discovery_key_provider =
 MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

Decrypt your ciphertext
plaintext, _ = client.decrypt(
 source=ciphertext,
 key_provider=mrk_discovery_key_provider
)

Auswahl einer Algorithmus-Suite

Die AWS Encryption SDK unterstützt mehrere symmetrische und asymmetrische
Verschlüsselungsalgorithmen zur Verschlüsselung Ihrer Datenschlüssel unter den von Ihnen
angegebenen Wrapping-Schlüsseln. Wenn diese Datenschlüssel jedoch zur Verschlüsselung
Ihrer Daten verwendet werden, wird AWS Encryption SDK standardmäßig eine empfohlene
Algorithmussuite verwendet, die den AES-GCM-Algorithmus mit Schlüsselableitung, digitalen
Signaturen und Schlüsselbindung verwendet. Obwohl die standardmäßige Algorithmussuite
wahrscheinlich für die meisten Anwendungen geeignet ist, können Sie auch eine alternative

Auswahl einer Algorithmus-Suite 58

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Algorithmussuite wählen. Einige Vertrauensmodelle würden beispielsweise durch eine Algorithmus-
Suite ohne digitale Signaturen erfüllt. Hinweise zu den von der AWS Encryption SDK unterstützten
Algorithmus-Suites finden Sie unterUnterstützte Algorithmus-Suiten in der AWS Encryption SDK.

Die folgenden Beispiele zeigen Ihnen, wie Sie beim Verschlüsseln eine alternative Algorithmus-
Suite auswählen. In diesen Beispielen wird eine empfohlene AES-GCM-Algorithmussuite mit
Schlüsselableitung und Schlüsselzusage ausgewählt, jedoch ohne digitale Signaturen. Wenn Sie mit
einer Algorithmus-Suite verschlüsseln, die keine digitalen Signaturen enthält, verwenden Sie beim
Entschlüsseln den Entschlüsselungsmodus „Nur ohne Vorzeichen“. Dieser Modus schlägt fehl, wenn
er auf einen signierten Chiffretext trifft, und ist vor allem bei der Streaming-Entschlüsselung nützlich.

C

Um eine alternative Algorithmus-Suite in der anzugeben AWS-Verschlüsselungs-
SDK for C, müssen Sie explizit ein CMM erstellen. Verwenden Sie dann die
aws_cryptosdk_default_cmm_set_alg_id mit dem CMM und der ausgewählten
Algorithmus-Suite.

/* Specify an algorithm suite without signing */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* To set an alternate algorithm suite, create an cryptographic
 materials manager (CMM) explicitly
 */
struct aws_cryptosdk_cmm *cmm =
 aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY);

/* Construct the session with the CMM,
 then release the CMM reference
 */
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc,
 AWS_CRYPTOSDK_ENCRYPT, cmm);

Auswahl einer Algorithmus-Suite 59

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data
 Use aws_cryptosdk_session_process_full with non-streaming data
 */
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
 session,
 ciphertext,
 ciphertext_buf_sz,
 &ciphertext_len,
 plaintext,
 plaintext_len)) {
 aws_cryptosdk_session_destroy(session);
 return AWS_OP_ERR;
}

Verwenden Sie beim Entschlüsseln von Daten, die ohne digitale Signaturen verschlüsselt wurden.
AWS_CRYPTOSDK_DECRYPT_UNSIGNED Dies führt dazu, dass die Entschlüsselung fehlschlägt,
wenn signierter Chiffretext gefunden wird.

/* Decrypt unsigned streaming data */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* Create a session for decrypting with the AWS KMS keyring
 Then release the keyring reference
 */
struct aws_cryptosdk_session *session =

 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED,
 kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

if (!session) {
 return AWS_OP_ERR;
}

/* Limit encrypted data keys */

Auswahl einer Algorithmus-Suite 60

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1);

/* Decrypt
 Use aws_cryptosdk_session_process_full with non-streaming data
 */
 if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
 session,
 plaintext,
 plaintext_buf_sz,
 &plaintext_len,
 ciphertext,
 ciphertext_len)) {
 aws_cryptosdk_session_destroy(session);
 return AWS_OP_ERR;
}

C# / .NET

Um eine alternative Algorithmus-Suite in AWS Encryption SDK für.NET anzugeben, geben Sie
die AlgorithmSuiteId Eigenschaft eines Objekts an. EncryptInput Die AWS Encryption SDK
für .NET enthält Konstanten, anhand derer Sie Ihre bevorzugte Algorithmussuite identifizieren
können.

AWS Encryption SDK Für .NET gibt es keine Methode zur Erkennung von signiertem Chiffretext
bei der Streaming-Entschlüsselung, da diese Bibliothek keine Streaming-Daten unterstützt.

// Specify an algorithm suite without signing

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Create the keyring
var keyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};
var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data

Auswahl einer Algorithmus-Suite 61

https://github.com/aws/aws-encryption-sdk/blob/mainline/AwsEncryptionSDK/runtimes/net/Generated/AwsEncryptionSdk/EncryptInput.cs
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs

AWS Encryption SDK Entwicklerhandbuch

var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = keyring,
 AlgorithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

Bei der Verschlüsselung der hello.txt Datei verwendet dieses Beispiel den --algorithm
Parameter, um eine Algorithmussuite ohne digitale Signaturen anzugeben.

Specify an algorithm suite without signing

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt \
 --output hello.txt.encrypted \
 --decode

Bei der Entschlüsselung verwendet dieses Beispiel den --decrypt-unsigned Parameter.
Dieser Parameter wird empfohlen, um sicherzustellen, dass Sie unsignierten Chiffretext
entschlüsseln, insbesondere mit der CLI, die immer Eingabe und Ausgabe streamt.

Decrypt unsigned streaming data

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt-unsigned \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --max-encrypted-data-keys 1 \
 --commitment-policy require-encrypt-require-decrypt \
 --encryption-context purpose=test \

Auswahl einer Algorithmus-Suite 62

AWS Encryption SDK Entwicklerhandbuch

 --metadata-output ~/metadata \
 --output .

Java

Verwenden Sie die Methode, um eine alternative Algorithmus-Suite anzugeben.
AwsCrypto.builder().withEncryptionAlgorithm() Dieses Beispiel spezifiziert eine
alternative Algorithmussuite ohne digitale Signaturen.

// Specify an algorithm suite without signing

// Instantiate the client
AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
 .build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Create an encryption context to identify this ciphertext
 Map<String, String> encryptionContext = Collections.singletonMap("Example",
 "FileStreaming");

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
 masterKeyProvider,
 sourcePlaintext,
 encryptionContext);
byte[] ciphertext = encryptResult.getResult();

Verwenden Sie beim Streamen von Daten zur Entschlüsselung diese
createUnsignedMessageDecryptingStream() Methode, um sicherzustellen, dass der
gesamte Chiffretext, den Sie entschlüsseln, nicht signiert ist.

// Decrypt unsigned streaming data

// Instantiate the client

Auswahl einer Algorithmus-Suite 63

AWS Encryption SDK Entwicklerhandbuch

AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .withMaxEncryptedDataKeys(1)
 .build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Decrypt the encrypted message
FileInputStream in = new FileInputStream(srcFile + ".encrypted");
CryptoInputStream<KmsMasterKey> decryptingStream =
 crypto.createUnsignedMessageDecryptingStream(masterKeyProvider, in);

// Return the plaintext data
// Write the plaintext data to disk
FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
IOUtils.copy(decryptingStream, out);
decryptingStream.close();

JavaScript Browser

Um eine alternative Algorithmussuite anzugeben, verwenden Sie den suiteId Parameter mit
einem Enum-Wert. AlgorithmSuiteIdentifier

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Encrypt your plaintext data
const { result } = await encrypt(keyring, cleartext, { suiteId:
 AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
 encryptionContext: context, })

Auswahl einer Algorithmus-Suite 64

AWS Encryption SDK Entwicklerhandbuch

Verwenden Sie beim Entschlüsseln die decrypt Standardmethode. AWS-Verschlüsselungs-
SDK for JavaScript hat im Browser keinen decrypt-unsigned Modus, weil der Browser kein
Streaming unterstützt.

// Decrypt unsigned streaming data

// Instantiate the client
const { decrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)

JavaScript Node.js

Um eine alternative Algorithmus-Suite anzugeben, verwenden Sie den suiteId Parameter mit
einem AlgorithmSuiteIdentifier Enum-Wert.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data
const { result } = await encrypt(keyring, cleartext, { suiteId:
 AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
 encryptionContext: context, })

Verwenden decryptUnsignedMessage Sie Stream, wenn Sie Daten entschlüsseln, die ohne
digitale Signaturen verschlüsselt wurden. Diese Methode schlägt fehl, wenn sie auf signierten
Chiffretext trifft.

Auswahl einer Algorithmus-Suite 65

AWS Encryption SDK Entwicklerhandbuch

// Decrypt unsigned streaming data

// Instantiate the client
const { decryptUnsignedMessageStream } =
 buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message
const outputStream =
 createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Python

Um einen alternativen Verschlüsselungsalgorithmus anzugeben, verwenden Sie den algorithm
Parameter mit einem Algorithm Enum-Wert.

Specify an algorithm suite without signing

Instantiate a client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,
 max_encrypted_data_keys=1)

Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[aws_kms_key]
)

Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt(
 algorithm=Algorithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext,
 key_provider=kms_key_provider
)

Auswahl einer Algorithmus-Suite 66

AWS Encryption SDK Entwicklerhandbuch

Verwenden Sie beim Entschlüsseln von Nachrichten, die ohne digitale Signaturen verschlüsselt
wurden, den decrypt-unsigned Streaming-Modus, insbesondere beim Entschlüsseln während
des Streamings.

Decrypt unsigned streaming data

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,
 max_encrypted_data_keys=1)

Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[aws_kms_key]
)

Decrypt with decrypt-unsigned
with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename,
 "wb") as plaintext:
 with client.stream(mode="decrypt-unsigned",
 source=ciphertext,
 key_provider=master_key_provider) as decryptor:
 for chunk in decryptor:
 plaintext.write(chunk)

Verify that the encryption context
assert all(
 pair in decryptor.header.encryption_context.items() for pair in
 encryptor.header.encryption_context.items()
)
return ciphertext_filename, cycled_plaintext_filename

Rust

Um eine alternative Algorithmus-Suite AWS Encryption SDK für Rust anzugeben, geben Sie die
algorithm_suite_id Eigenschaft in Ihrer Verschlüsselungsanfrage an.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Auswahl einer Algorithmus-Suite 67

AWS Encryption SDK Entwicklerhandbuch

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aws_smithy_types::Blob::new(AESWrappingKey))
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
 .plaintext(plaintext)
 .keyring(raw_aes_keyring.clone())
 .encryption_context(encryption_context.clone())
 .algorithm_suite_id(AlgAes256GcmHkdfSha512CommitKey)
 .send()
 .await?;

Go

import (
 "context"

Auswahl einer Algorithmus-Suite 68

AWS Encryption SDK Entwicklerhandbuch

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "AES_256_012"

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: key,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)

Auswahl einer Algorithmus-Suite 69

AWS Encryption SDK Entwicklerhandbuch

if err != nil {
 panic(err)
}

// Encrypt your plaintext data
algorithmSuiteId := mpltypes.ESDKAlgorithmSuiteIdAlgAes256GcmHkdfSha512CommitKey
res, err := encryptionClient.Encrypt(context.Background(), esdktypes.EncryptInput{
 Plaintext: []byte(exampleText),
 EncryptionContext: encryptionContext,
 Keyring: aesKeyring,
 AlgorithmSuiteId: &algorithmSuiteId,
})
if err != nil {
 panic(err)
}

Beschränkung verschlüsselter Datenschlüssel

Sie können die Anzahl der verschlüsselten Datenschlüssel in einer verschlüsselten Nachricht
einschränken. Diese bewährte Methode kann Ihnen helfen, einen falsch konfigurierten Schlüsselbund
beim Verschlüsseln oder einen bösartigen Chiffretext beim Entschlüsseln zu erkennen. Es verhindert
auch unnötige, teure und potenziell erschöpfende Zugriffe auf Ihre Schlüsselinfrastruktur. Die
Einschränkung verschlüsselter Datenschlüssel ist am wertvollsten, wenn Sie Nachrichten aus einer
nicht vertrauenswürdigen Quelle entschlüsseln.

Obwohl die meisten verschlüsselten Nachrichten einen verschlüsselten Datenschlüssel für jeden
bei der Verschlüsselung verwendeten Umschließungsschlüssel haben, kann eine verschlüsselte
Nachricht bis zu 65.535 verschlüsselte Datenschlüssel enthalten. Ein böswilliger Akteur könnte eine
verschlüsselte Nachricht mit Tausenden von verschlüsselten Datenschlüsseln erstellen, von denen
keiner entschlüsselt werden kann. In der Folge AWS Encryption SDK würde versucht werden, jeden
verschlüsselten Datenschlüssel zu entschlüsseln, bis alle verschlüsselten Datenschlüssel in der
Nachricht aufgebraucht sind.

Verwenden Sie den MaxEncryptedDataKeys Parameter, um die Anzahl der verschlüsselten
Datenschlüssel einzuschränken. Dieser Parameter ist ab Version 1.9 für alle unterstützten
Programmiersprachen verfügbar. x und 2.2. x der AWS Encryption SDK. Es ist optional und gültig
beim Verschlüsseln und Entschlüsseln. In den folgenden Beispielen werden Daten entschlüsselt, die

Beschränkung verschlüsselter Datenschlüssel 70

AWS Encryption SDK Entwicklerhandbuch

mit drei verschiedenen Wrapping-Schlüsseln verschlüsselt wurden. Der MaxEncryptedDataKeys
Wert ist auf 3 festgelegt.

C

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn1, { key_arn2, key_arn3 });

/* Create a session */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
 kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);

/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session,
 plaintext_output,
 plaintext_buf_sz_output,
 &plaintext_len_output,
 ciphertext_input,
 ciphertext_len_input,
 &ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C# / .NET

Um die Anzahl der verschlüsselten Datenschlüssel im AWS Encryption SDK für .NET
einzuschränken, instanziieren Sie einen Client für AWS Encryption SDK für.NET und setzen Sie
seinen optionalen MaxEncryptedDataKeys Parameter auf den gewünschten Wert. Rufen Sie
dann die Decrypt() Methode auf der AWS Encryption SDK konfigurierten Instanz auf.

// Decrypt with limited data keys

Beschränkung verschlüsselter Datenschlüssel 71

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the material providers
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
 MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
var createKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};
var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = decryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$key_arn1 key=$key_arn2 key=$key_arn3 \
 --buffer \
 --max-encrypted-data-keys 3 \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Beschränkung verschlüsselter Datenschlüssel 72

AWS Encryption SDK Entwicklerhandbuch

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()
 .withMaxEncryptedDataKeys(3)
 .build();

// Create an AWS KMS master key provider
final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(keyArn1, keyArn2, keyArn3);

// Decrypt
final CryptoResult<byte[], KmsMasterKey> decryptResult =
 crypto.decryptData(keyProvider, ciphertext)

JavaScript Browser

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}
const clientProvider = getClient(KMS, {
 credentials: { accessKeyId, secretAccessKey, sessionToken }
})

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
 clientProvider,
 keyIds: [keyArn1, keyArn2, keyArn3],
})

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

Beschränkung verschlüsselter Datenschlüssel 73

AWS Encryption SDK Entwicklerhandbuch

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
 keyIds: [keyArn1, keyArn2, keyArn3],
})

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(
 key_ids=[key_arn1, key_arn2, key_arn3])

Decrypt
plaintext, header = client.decrypt(source=ciphertext,
 key_provider=master_key_provider)

Rust

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
let esdk_config = AwsEncryptionSdkConfig::builder()
 .max_encrypted_data_keys(max_encrypted_data_keys)
 .build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Generate `max_encrypted_data_keys` raw AES keyrings to use with your keyring
let mut raw_aes_keyrings: Vec<KeyringRef> = vec![];

assert!(max_encrypted_data_keys > 0, "max_encrypted_data_keys MUST be greater than
 0");

Beschränkung verschlüsselter Datenschlüssel 74

AWS Encryption SDK Entwicklerhandbuch

let mut i = 0;
while i < max_encrypted_data_keys {
 let aes_key_bytes = generate_aes_key_bytes();

 let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

 raw_aes_keyrings.push(raw_aes_keyring);
 i += 1;
}

// Create a Multi Keyring with `max_encrypted_data_keys` AES Keyrings
let generator_keyring = raw_aes_keyrings.remove(0);

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(generator_keyring)
 .child_keyrings(raw_aes_keyrings)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client with limited encrypted data keys

Beschränkung verschlüsselter Datenschlüssel 75

AWS Encryption SDK Entwicklerhandbuch

encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{
 MaxEncryptedDataKeys: &maxEncryptedDataKeys,
})
if err != nil {
 panic(err)
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Generate `maxEncryptedDataKeys` raw AES keyrings to use with your keyring
rawAESKeyrings := make([]mpltypes.IKeyring, 0, maxEncryptedDataKeys)
var i int64 = 0
for i < maxEncryptedDataKeys {
 key, err := generate256KeyBytesAES()
 if err != nil {
 panic(err)
 }
 aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: key,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
 }
 aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)
 if err != nil {
 panic(err)
 }
 rawAESKeyrings = append(rawAESKeyrings, aesKeyring)
 i++
}

// Create a Multi Keyring with `max_encrypted_data_keys` AES Keyrings
createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
 Generator: rawAESKeyrings[0],
 ChildKeyrings: rawAESKeyrings[1:],

Beschränkung verschlüsselter Datenschlüssel 76

AWS Encryption SDK Entwicklerhandbuch

}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
 createMultiKeyringInput)
if err != nil {
 panic(err)
}

Einen Discovery-Filter erstellen

Beim Entschlüsseln von Daten, die mit KMS-Schlüsseln verschlüsselt wurden, hat es sich bewährt,
im strikten Modus zu entschlüsseln, d. h., die verwendeten Wrapping-Schlüssel auf die von
Ihnen angegebenen zu beschränken. Bei Bedarf können Sie jedoch auch im Discovery-Modus
entschlüsseln, in dem Sie keine Umschließungsschlüssel angeben. In diesem Modus AWS KMS
kann der verschlüsselte Datenschlüssel mithilfe des KMS-Schlüssels, mit dem er verschlüsselt
wurde, entschlüsselt werden, unabhängig davon, wem dieser KMS-Schlüssel gehört oder wer Zugriff
darauf hat.

Wenn Sie im Discovery-Modus entschlüsseln müssen, empfehlen wir, immer einen Discovery-Filter
zu verwenden, der die KMS-Schlüssel, die verwendet werden können, auf diejenigen beschränkt, die
sich in einer bestimmten Partition befinden AWS-Konto . Der Discovery-Filter ist optional, hat sich
aber bewährt.

Verwenden Sie die folgende Tabelle, um den Partitionswert für Ihren Discovery-Filter zu ermitteln.

Region Partition

AWS-Regionen aws

Regionen in China aws-cn

AWS GovCloud (US) Regions aws-us-gov

Die Beispiele in diesem Abschnitt zeigen, wie Sie einen Discovery-Filter erstellen. Bevor Sie den
Code verwenden, ersetzen Sie die Beispielwerte durch gültige Werte für die Partition AWS-Konto
und.

Einen Discovery-Filter erstellen 77

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Encryption SDK Entwicklerhandbuch

C

Vollständige Beispiele finden Sie in der Datei kms_discovery.cpp in der AWS-Verschlüsselungs-
SDK for C.

/* Create a discovery filter for an AWS account and partition */

const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter
 =

 Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder(partition).AddAccount(account_id).Build();

C# / .NET

Ein vollständiges Beispiel finden Sie unter DiscoveryFilterExample.cs im AWS Encryption SDK
für.NET.

// Create a discovery filter for an AWS account and partition

List<string> account = new List<string> { "111122223333" };

DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()
{
 AccountIds = account,
 Partition = "aws"
}

AWS Encryption CLI

Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys discovery=true \
 discovery-account=111122223333 \
 discovery-partition=aws \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \

Einen Discovery-Filter erstellen 78

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs

AWS Encryption SDK Entwicklerhandbuch

 --output .

Java

Ein vollständiges Beispiel finden Sie unter DiscoveryDecryptionExample.java in der. AWS-
Verschlüsselungs-SDK for Java

// Create a discovery filter for an AWS account and partition

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

JavaScript (Node and Browser)

Vollständige Beispiele finden Sie unter kms_filtered_discovery.ts (Node.js) und
kms_multi_region_discovery.ts (Browser) im. AWS-Verschlüsselungs-SDK for JavaScript

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {
 accountIDs: ['111122223333'],
 partition: 'aws',
}

Python

Ein vollständiges Beispiel finden Sie unter AWS-Verschlüsselungs-SDK for Python
discovery_kms_provider.py in der.

Create the discovery filter and specify the region
decrypt_kwargs = dict(
 discovery_filter=DiscoveryFilter(account_ids="111122223333",
 partition="aws"),
 discovery_region="us-west-2",
)

Rust

let discovery_filter = DiscoveryFilter::builder()
 .account_ids(vec![111122223333.to_string()])
 .partition("aws".to_string())
 .build()?;

Einen Discovery-Filter erstellen 79

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Go

import (
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
)

discoveryFilter := mpltypes.DiscoveryFilter{
 AccountIds: []string{111122223333},
 Partition: "aws",
}

Konfiguration des erforderlichen Verschlüsselungskontextes (CMM)
Sie können den erforderlichen Verschlüsselungskontext CMM verwenden, um
Verschlüsselungskontexte für Ihre kryptografischen Operationen vorzuschreiben.
Ein Verschlüsselungskontext ist ein Satz nicht geheimer Schlüssel-Wert-Paare. Der
Verschlüsselungskontext ist kryptografisch an die verschlüsselten Daten gebunden, sodass
derselbe Verschlüsselungskontext erforderlich ist, um das Feld zu entschlüsseln. Wenn Sie
den erforderlichen Verschlüsselungskontext CMM verwenden, können Sie einen oder mehrere
erforderliche Verschlüsselungskontextschlüssel (erforderliche Schlüssel) angeben, die in allen
Verschlüsselungs- und Entschlüsselungsaufrufen enthalten sein müssen.

Note

Der erforderliche Verschlüsselungskontext CMM wird nur von den folgenden Versionen
unterstützt:

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen
Abhängigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Wenn Sie Daten mit dem erforderlichen Verschlüsselungskontext CMM verschlüsseln,
können Sie sie nur mit einer dieser unterstützten Versionen entschlüsseln.

Verschlüsselungskontexte erforderlich 80

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Beim Verschlüsseln AWS Encryption SDK wird überprüft, ob alle erforderlichen
Verschlüsselungskontextschlüssel in dem von Ihnen angegebenen Verschlüsselungskontext
enthalten sind. Das AWS Encryption SDK signiert die von Ihnen angegebenen
Verschlüsselungskontexte. Nur die Schlüssel-Wert-Paare, bei denen es sich nicht um erforderliche
Schlüssel handelt, werden serialisiert und im Klartext-Format im Header der verschlüsselten
Nachricht gespeichert, die der Verschlüsselungsvorgang zurückgibt.

Beim Entschlüsseln müssen Sie einen Verschlüsselungskontext angeben, der alle Schlüssel-Wert-
Paare enthält, die die erforderlichen Schlüssel darstellen. Der AWS Encryption SDK verwendet
diesen Verschlüsselungskontext und die im Header der verschlüsselten Nachricht gespeicherten
Schlüssel-Wert-Paare, um den ursprünglichen Verschlüsselungskontext zu rekonstruieren, den Sie
beim Verschlüsselungsvorgang angegeben haben. Wenn der ursprüngliche Verschlüsselungskontext
AWS Encryption SDK nicht rekonstruiert werden kann, schlägt der Entschlüsselungsvorgang fehl.
Wenn Sie ein Schlüssel-Wert-Paar angeben, das den erforderlichen Schlüssel mit einem falschen
Wert enthält, kann die verschlüsselte Nachricht nicht entschlüsselt werden. Sie müssen dasselbe
Schlüssel-Wert-Paar angeben, das bei Encrypt angegeben wurde.

Important

Überlegen Sie sich sorgfältig, welche Werte Sie für die erforderlichen Schlüssel in Ihrem
Verschlüsselungskontext wählen. Sie müssen in der Lage sein, dieselben Schlüssel und die
entsprechenden Werte beim Entschlüsseln erneut anzugeben. Wenn Sie die erforderlichen
Schlüssel nicht reproduzieren können, kann die verschlüsselte Nachricht nicht entschlüsselt
werden.

In den folgenden Beispielen wird ein AWS KMS Schlüsselbund mit dem erforderlichen
Verschlüsselungskontext CMM initialisiert.

C# / .NET

var encryptionContext = new Dictionary<string, string>()
{
 {"encryption", "context"},
 {"is not", "secret"},
 {"but adds", "useful metadata"},
 {"that can help you", "be confident that"},
 {"the data you are handling", "is what you think it is"}
};

Verschlüsselungskontexte erforderlich 81

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = kmsKey
};

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{
 UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new
 CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}),
 // If you pass in a keyring but no underlying cmm, it will result in a failure
 because only cmm is supported.
 RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)
};

// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

Java

// Instantiate the AWS Encryption SDK
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

// Create your encryption context
final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");
encryptionContext.put("is not", "secret");
encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");

// Create a list of required encryption contexts

Verschlüsselungskontexte erforderlich 82

AWS Encryption SDK Entwicklerhandbuch

final List<String> requiredEncryptionContextKeys = Arrays.asList("encryption",
 "context");

// Create the keyring
final MaterialProviders materialProviders = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder()
 .kmsKeyId(keyArn)
 .kmsClient(KmsClient.create())
 .build();
IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =
 materialProviders.CreateDefaultCryptographicMaterialsManager(
 CreateDefaultCryptographicMaterialsManagerInput.builder()
 .keyring(kmsKeyring)
 .build()
);
ICryptographicMaterialsManager requiredCMM =
 materialProviders.CreateRequiredEncryptionContextCMM(
 CreateRequiredEncryptionContextCMMInput.builder()
 .requiredEncryptionContextKeys(requiredEncryptionContextKeys)
 .underlyingCMM(cmm)
 .build()
);

Python

Um das CMM AWS-Verschlüsselungs-SDK for Python mit dem erforderlichen
Verschlüsselungskontext zu verwenden, müssen Sie auch die Material Providers Library (MPL)
verwenden.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Create your encryption context
encryption_context: Dict[str, str] = {
 "key1": "value1",
 "key2": "value2",

Verschlüsselungskontexte erforderlich 83

AWS Encryption SDK Entwicklerhandbuch

 "requiredKey1": "requiredValue1",
 "requiredKey2": "requiredValue2"
}

Create a list of required encryption context keys
required_encryption_context_keys: List[str] = ["requiredKey1", "requiredKey2"]

Instantiate the material providers library
mpl: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS keyring
 keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
 kms_key_id=kms_key_id,
 kms_client=boto3.client('kms', region_name="us-west-2")
)
kms_keyring: IKeyring = mpl.create_aws_kms_keyring(keyring_input)

Create the required encryption context CMM
underlying_cmm: ICryptographicMaterialsManager = \
 mpl.create_default_cryptographic_materials_manager(
 CreateDefaultCryptographicMaterialsManagerInput(
 keyring=kms_keyring
)
)

required_ec_cmm: ICryptographicMaterialsManager = \
 mpl.create_required_encryption_context_cmm(
 CreateRequiredEncryptionContextCMMInput(
 required_encryption_context_keys=required_encryption_context_keys,
 underlying_cmm=underlying_cmm,
)
)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client

Verschlüsselungskontexte erforderlich 84

AWS Encryption SDK Entwicklerhandbuch

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([
 ("key1".to_string(), "value1".to_string()),
 ("key2".to_string(), "value2".to_string()),
 ("requiredKey1".to_string(), "requiredValue1".to_string()),
 ("requiredKey2".to_string(), "requiredValue2".to_string()),
]);

// Create a list of required encryption context keys
let required_encryption_context_keys: Vec<String> = vec![
 "requiredKey1".to_string(),
 "requiredKey2".to_string(),
];

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
 input=kms_multi_keyring_input
)

// Create the required encryption context CMM
let underlying_cmm = mpl
 .create_default_cryptographic_materials_manager()
 .keyring(kms_keyring)
 .send()
 .await?;

let required_ec_cmm = mpl
 .create_required_encryption_context_cmm()
 .underlying_cmm(underlying_cmm.clone())

Verschlüsselungskontexte erforderlich 85

AWS Encryption SDK Entwicklerhandbuch

 .required_encryption_context_keys(required_encryption_context_keys)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = defaultKmsKeyRegion
})

// Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",

Verschlüsselungskontexte erforderlich 86

AWS Encryption SDK Entwicklerhandbuch

}

// Create a list of required encryption context keys
requiredEncryptionContextKeys := []string{}
requiredEncryptionContextKeys = append(requiredEncryptionContextKeys,
 "requiredKey1", "requiredKey2")

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create the AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: utils.GetDefaultKMSKeyId(),
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
 awsKmsKeyringInput)
if err != nil {
 panic(err)
}

// Create the required encryption context CMM
underlyingCMM, err :=
 matProv.CreateDefaultCryptographicMaterialsManager(context.Background(),
 mpltypes.CreateDefaultCryptographicMaterialsManagerInput{Keyring: awsKmsKeyring})
if err != nil {
 panic(err)
}
requiredEncryptionContextInput := mpltypes.CreateRequiredEncryptionContextCMMInput{
 UnderlyingCMM: underlyingCMM,
 RequiredEncryptionContextKeys: requiredEncryptionContextKeys,
}
requiredEC, err := matProv.CreateRequiredEncryptionContextCMM(context.Background(),
 requiredEncryptionContextInput)
if err != nil {
 panic(err)
}

Verschlüsselungskontexte erforderlich 87

AWS Encryption SDK Entwicklerhandbuch

Festlegung einer Verpflichtungspolitik
Eine Commitment-Richtlinie ist eine Konfigurationseinstellung, die bestimmt, ob Ihre Anwendung
mit Key Commitment ver- oder entschlüsselt wird. Das Verschlüsseln und Entschlüsseln mit Key
Commitment ist eine bewährte Methode.AWS Encryption SDK

Die Festlegung und Anpassung Ihrer Verpflichtungsrichtlinie ist ein wichtiger Schritt bei der Migration
von Versionen 1.7. x und frühere Versionen von AWS Encryption SDK auf Version 2.0. x und später.
Dieser Fortschritt wird im Thema Migration ausführlich erklärt.

Der Standardwert der Verpflichtungsrichtlinie in den neuesten Versionen von AWS Encryption
SDK (ab Version 2.0). x),RequireEncryptRequireDecrypt, ist für die meisten Situationen
ideal. Wenn Sie jedoch Chiffretext entschlüsseln müssen, der ohne Schlüsselbindung
verschlüsselt wurde, müssen Sie Ihre Verpflichtungsrichtlinie möglicherweise auf ändern.
RequireEncryptAllowDecrypt Beispiele dafür, wie Sie in jeder Programmiersprache eine
Commitment-Richtlinie einrichten, finden Sie unter. Festlegung Ihrer Verpflichtungspolitik

Arbeiten mit Streaming-Daten
Beachten Sie beim Streamen von Daten zur Entschlüsselung, dass der entschlüsselte Klartext AWS
Encryption SDK zurückgibt, nachdem die Integritätsprüfungen abgeschlossen sind, aber bevor die
digitale Signatur verifiziert wurde. Um sicherzustellen, dass Sie erst dann Klartext zurückgeben oder
verwenden, wenn die Signatur verifiziert ist, empfehlen wir, den gestreamten Klartext zu puffern, bis
der gesamte Entschlüsselungsprozess abgeschlossen ist.

Dieses Problem tritt nur auf, wenn Sie Chiffretext zur Entschlüsselung streamen und nur, wenn Sie
eine Algorithmussuite verwenden, z. B. die Standard-Algorithmussuite, die digitale Signaturen enthält.

Um die Pufferung zu vereinfachen, enthalten einige AWS Encryption SDK Sprachimplementierungen,
z. B. AWS-Verschlüsselungs-SDK for JavaScript in Node.js, eine Pufferfunktion als Teil
der Entschlüsselungsmethode. Die AWS Encryption CLI, die immer Eingabe und Ausgabe
streamt, hat in Version 1.9 einen --buffer Parameter eingeführt. x und 2.2. x. In anderen
Sprachimplementierungen können Sie vorhandene Pufferfunktionen verwenden. (AWS Encryption
SDK Für .NET wird Streaming nicht unterstützt.)

Wenn Sie eine Algorithmus-Suite ohne digitale Signaturen verwenden, stellen Sie sicher, dass Sie
die decrypt-unsigned Funktion in jeder Sprachimplementierung verwenden. Diese Funktion
entschlüsselt Chiffretext, schlägt jedoch fehl, wenn signierter Chiffretext gefunden wird. Details hierzu
finden Sie unter Auswahl einer Algorithmus-Suite.

Festlegung einer Verpflichtungspolitik 88

AWS Encryption SDK Entwicklerhandbuch

Zwischenspeichern von Datenschlüsseln

Im Allgemeinen wird von der Wiederverwendung von Datenschlüsseln abgeraten, AWS Encryption
SDK bietet jedoch eine Option zum Zwischenspeichern von Datenschlüsseln, die eine eingeschränkte
Wiederverwendung von Datenschlüsseln ermöglicht. Durch das Zwischenspeichern von
Datenschlüsseln kann die Leistung einiger Anwendungen verbessert und die Anzahl der Zugriffe auf
Ihre wichtige Infrastruktur reduziert werden. Bevor Sie das Zwischenspeichern von Datenschlüsseln
in der Produktion verwenden, passen Sie die Sicherheitsschwellenwerte an und testen Sie, ob die
Vorteile die Nachteile der Wiederverwendung von Datenschlüsseln überwiegen.

Zwischenspeichern von Datenschlüsseln 89

AWS Encryption SDK Entwicklerhandbuch

Wichtige Geschäfte in der AWS Encryption SDK
In der AWS Encryption SDK ist ein Schlüsselspeicher eine Amazon DynamoDB-Tabelle, die
hierarchische Daten speichert, die vom hierarchischen Schlüsselbund verwendet werden.AWS KMS
Der Schlüsselspeicher trägt dazu bei, die Anzahl der Aufrufe zu reduzieren, die Sie tätigen müssen,
um kryptografische Operationen mit AWS KMS dem hierarchischen Schlüsselbund durchzuführen.

Der Schlüsselspeicher bleibt erhalten und verwaltet die Zweigschlüssel, die der
hierarchische Schlüsselbund für die Umschlagverschlüsselung und den Schutz von
Datenverschlüsselungsschlüsseln verwendet. Der Schlüsselspeicher speichert den aktiven Branch-
Schlüssel und alle vorherigen Versionen des Branch-Schlüssels. Der aktive Zweigschlüssel ist
die neueste Version des Zweigschlüssels. Der hierarchische Schlüsselbund verwendet für jede
Verschlüsselungsanforderung einen eindeutigen Datenverschlüsselungsschlüssel und verschlüsselt
jeden Datenverschlüsselungsschlüssel mit einem eindeutigen Umschließungsschlüssel, der vom
aktiven Filialschlüssel abgeleitet wird. Der hierarchische Schlüsselbund hängt von der Hierarchie ab,
die zwischen aktiven Zweigschlüsseln und ihren abgeleiteten Umschließungsschlüsseln festgelegt
wurde.

Terminologie und Konzepte von Key Stores

Key Store (Schlüsselspeicher)

Die DynamoDB-Tabelle, die hierarchische Daten wie Verzweigungsschlüssel und Beacon-
Schlüssel persistiert.

Stammschlüssel

Ein KMS-Schlüssel mit symmetrischer Verschlüsselung, der die Filialschlüssel und Beacon-
Schlüssel in Ihrem Schlüsselspeicher generiert und schützt.

Filialschlüssel

Ein Datenschlüssel, der wiederverwendet wird, um einen eindeutigen Verpackungsschlüssel
für die Umschlagverschlüsselung abzuleiten. Sie können mehrere Zweigschlüssel in einem
Schlüsselspeicher erstellen, aber für jeden Zweigschlüssel kann jeweils nur eine aktive Version
des Zweigschlüssels vorhanden sein. Der aktive Zweigschlüssel ist die neueste Version des
Zweigschlüssels.

Verzweigungsschlüssel werden AWS KMS keys mithilfe der GenerateDataKeyWithoutPlaintext
Operation kms: abgeleitet.

Terminologie und Konzepte von Key Stores 90

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Entwicklerhandbuch

Schlüssel umschließen

Ein eindeutiger Datenschlüssel, der zur Verschlüsselung des bei Verschlüsselungsvorgängen
verwendeten Datenverschlüsselungsschlüssels verwendet wird.

Wrapping-Schlüssel werden von Zweigschlüsseln abgeleitet. Weitere Informationen zur
Schlüsselableitung finden Sie unter Technische Details zum AWS KMS hierarchischen
Schlüsselbund.

Schlüssel zur Datenverschlüsselung

Ein Datenschlüssel, der bei Verschlüsselungsvorgängen verwendet wird. Der hierarchische
Schlüsselbund verwendet für jede Verschlüsselungsanforderung einen eindeutigen
Datenverschlüsselungsschlüssel.

Implementieren der geringsten Berechtigungen
Bei der Verwendung eines Schlüsselspeichers und AWS KMS hierarchischer Schlüsselbunde
empfehlen wir, dass Sie dem Prinzip der geringsten Rechte folgen, indem Sie die folgenden Rollen
definieren:

Schlüsselspeicher-Administrator

Schlüsselspeicheradministratoren sind für die Erstellung und Verwaltung des Schlüsselspeichers
und der Filialschlüssel verantwortlich, die dieser speichert und schützt. Key-Store-Administratoren
sollten die einzigen Benutzer mit Schreibberechtigungen für die Amazon DynamoDB-Tabelle
sein, die als Ihr Schlüsselspeicher dient. Sie sollten die einzigen Benutzer sein, die Zugriff auf
privilegierte Administratoroperationen wie CreateKeyund haben. VersionKey Sie können diese
Operationen nur ausführen, wenn Sie Ihre Schlüsselspeicher-Aktionen statisch konfigurieren.

CreateKeyist eine privilegierte Operation, die Ihrer Schlüsselspeicher-Zulassungsliste einen
neuen KMS-Schlüssel-ARN hinzufügen kann. Mit diesem KMS-Schlüssel können neue aktive
Zweigschlüssel erstellt werden. Wir empfehlen, den Zugriff auf diesen Vorgang einzuschränken,
da ein KMS-Schlüssel, der einmal dem Zweigschlüsselspeicher hinzugefügt wurde, nicht gelöscht
werden kann.

Schlüsselspeicher-Benutzer

In den meisten Anwendungsfällen interagiert der Schlüsselspeicher-Benutzer beim Verschlüsseln,
Entschlüsseln, Signieren und Überprüfen von Daten nur über den hierarchischen Schlüsselbund
mit dem Schlüsselspeicher. Daher benötigen sie nur Leseberechtigungen für die Amazon

Implementieren der geringsten Berechtigungen 91

AWS Encryption SDK Entwicklerhandbuch

DynamoDB-Tabelle, die als Ihr Schlüsselspeicher dient. Key-Store-Benutzer sollten nur Zugriff
auf die Verwendungsvorgänge benötigen, die kryptografische Operationen ermöglichen,
wieGetActiveBranchKey, undGetBranchKeyVersion. GetBeaconKey Sie benötigen keine
Berechtigungen, um die von ihnen verwendeten Branch-Schlüssel zu erstellen oder zu verwalten.

Sie können Verwendungsvorgänge ausführen, wenn Ihre Schlüsselspeicher-Aktionen
statisch konfiguriert sind oder wenn sie für die Erkennung konfiguriert sind. Sie können
keine Administratoroperationen (CreateKeyundVersionKey) ausführen, wenn Ihre
Schlüsselspeicher-Aktionen für die Erkennung konfiguriert sind.

Wenn Ihr Filialschlüsselspeicheradministrator mehrere KMS-Schlüssel in Ihrem
Zweigschlüsselspeicher zugelassen hat, empfehlen wir Ihren Schlüsselspeicher-Benutzern,
ihre Schlüsselspeicher-Aktionen für die Erkennung so zu konfigurieren, dass ihr hierarchischer
Schlüsselbund mehrere KMS-Schlüssel verwenden kann.

Einen Schlüsselspeicher erstellen

Bevor Sie Branch-Schlüssel erstellen oder einen AWS KMS hierarchischen Schlüsselbund
verwenden können, müssen Sie Ihren Schlüsselspeicher erstellen, eine Amazon DynamoDB-Tabelle,
die Ihre Branch-Schlüssel verwaltet und schützt.

Important

Löschen Sie nicht die DynamoDB-Tabelle, in der Ihre Branch-Schlüssel gespeichert sind.
Wenn Sie diese Tabelle löschen, können Sie keine Daten entschlüsseln, die mit dem
hierarchischen Schlüsselbund verschlüsselt wurden.

Folgen Sie den Verfahren zum Erstellen einer Tabelle im Amazon DynamoDB Developer Guide und
verwenden Sie dabei die folgenden erforderlichen Zeichenkettenwerte für den Partitionsschlüssel und
den Sortierschlüssel.

Partitionsschlüssel Sortierschlüssel

Basistabelle branch-key-id type

Einen Schlüsselspeicher erstellen 92

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS Encryption SDK Entwicklerhandbuch

Name des logischen Schlüsselspeichers

Bei der Benennung der DynamoDB-Tabelle, die als Schlüsselspeicher dient, ist es wichtig, den
logischen Schlüsselspeicher-Namen, den Sie bei der Konfiguration Ihrer Schlüsselspeicheraktionen
angeben, sorgfältig zu berücksichtigen. Der Name des logischen Schlüsselspeichers dient als
Kennung für Ihren Schlüsselspeicher und kann nicht geändert werden, nachdem er ursprünglich vom
ersten Benutzer definiert wurde. Sie müssen in Ihren Schlüsselspeicher-Aktionen immer denselben
logischen Schlüsselspeicher-Namen angeben.

Es muss eine one-to-one Zuordnung zwischen dem DynamoDB-Tabellennamen und dem Namen
des logischen Schlüsselspeichers bestehen. Der Name des logischen Schlüsselspeichers
ist kryptografisch an alle in der Tabelle gespeicherten Daten gebunden, um DynamoDB-
Wiederherstellungsvorgänge zu vereinfachen. Der Name des logischen Schlüsselspeichers kann
sich zwar von Ihrem DynamoDB-Tabellennamen unterscheiden, wir empfehlen jedoch dringend,
Ihren DynamoDB-Tabellennamen als logischen Schlüsselspeichername anzugeben. Falls sich
Ihr Tabellenname nach dem Wiederherstellen Ihrer DynamoDB-Tabelle aus einer Sicherung
ändert, kann der Name des logischen Schlüsselspeichers dem neuen DynamoDB-Tabellennamen
zugeordnet werden, um sicherzustellen, dass der hierarchische Schlüsselbund weiterhin auf Ihren
Schlüsselspeicher zugreifen kann.

Nehmen Sie keine vertraulichen oder sensiblen Informationen in den Namen Ihres logischen
Schlüsselspeichers auf. Der Name des logischen Schlüsselspeichers wird in AWS KMS CloudTrail
Ereignissen im Klartext als. tablename

Nächste Schritte

1. the section called “Schlüsselspeicheraktionen konfigurieren”

2. the section called “Erstellen Sie Zweigschlüssel”

3. Erstellen Sie einen AWS KMS hierarchischen Schlüsselbund

Schlüsselspeicheraktionen konfigurieren

Schlüsselspeicher-Aktionen bestimmen, welche Operationen Ihre Benutzer ausführen können
und wie ihr AWS KMS hierarchischer Schlüsselbund die KMS-Schlüssel verwendet, die in
Ihrem Schlüsselspeicher zugelassen sind. Das AWS Encryption SDK unterstützt die folgenden
Schlüsselspeicher-Aktionskonfigurationen.

Schlüsselspeicheraktionen konfigurieren 93

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Encryption SDK Entwicklerhandbuch

Statisch

Wenn Sie Ihren Schlüsselspeicher statisch konfigurieren, kann der Schlüsselspeicher nur
den KMS-Schlüssel verwenden, der dem KMS-Schlüssel-ARN zugeordnet ist, den Sie
kmsConfiguration bei der Konfiguration Ihrer Schlüsselspeicheraktionen angeben. Eine
Ausnahme wird ausgelöst, wenn beim Erstellen, Versionieren oder Abrufen eines Zweigschlüssels
auf einen anderen KMS-Schlüssel-ARN gestoßen wird.

Sie können einen KMS-Schlüssel für mehrere Regionen in Ihrem angebenkmsConfiguration,
aber der gesamte ARN des Schlüssels, einschließlich der Region, wird in den vom KMS-Schlüssel
abgeleiteten Zweigschlüsseln beibehalten. Sie können keinen Schlüssel in einer anderen Region
angeben. Sie müssen exakt denselben Schlüssel für mehrere Regionen angeben, damit die Werte
übereinstimmen.

Wenn Sie Ihre Schlüsselspeicher-Aktionen statisch konfigurieren, können Sie
Verwendungsvorgänge (GetActiveBranchKeyGetBranchKeyVersion,GetBeaconKey)
und Verwaltungsvorgänge (CreateKeyundVersionKey) ausführen. CreateKeyist eine
privilegierte Operation, die Ihrer Schlüsselspeicher-Zulassungsliste einen neuen KMS-Schlüssel-
ARN hinzufügen kann. Mit diesem KMS-Schlüssel können neue aktive Zweigschlüssel erstellt
werden. Wir empfehlen, den Zugriff auf diesen Vorgang einzuschränken, da ein KMS-Schlüssel,
der einmal dem Schlüsselspeicher hinzugefügt wurde, nicht gelöscht werden kann.

Erkennung

Wenn Sie Ihre Schlüsselspeicheraktionen für die Erkennung konfigurieren, kann der
Schlüsselspeicher jeden AWS KMS key ARN verwenden, der in Ihrem Schlüsselspeicher
zugelassen ist. Es wird jedoch eine Ausnahme ausgelöst, wenn ein KMS-Schlüssel mit mehreren
Regionen gefunden wird und die Region im ARN des Schlüssels nicht mit der Region des
verwendeten AWS KMS Clients übereinstimmt.

Wenn Sie Ihren Schlüsselspeicher für die Erkennung konfigurieren, können Sie keine
administrativen Operationen wie CreateKey und VersionKey ausführen. Sie können nur die
Verwendungsvorgänge ausführen, die Verschlüsselungs-, Entschlüsselungs-, Signierungs- und
Überprüfungsvorgänge ermöglichen. Weitere Informationen finden Sie unter the section called
“Implementieren der geringsten Berechtigungen”.

Schlüsselspeicheraktionen konfigurieren 94

AWS Encryption SDK Entwicklerhandbuch

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen

Bevor Sie Ihre Schlüsselspeicher-Aktionen konfigurieren, stellen Sie sicher, dass die folgenden
Voraussetzungen erfüllt sind.

• Ermitteln Sie, welche Operationen Sie ausführen müssen. Weitere Informationen finden Sie unter
the section called “Implementieren der geringsten Berechtigungen”.

• Wählen Sie einen Namen für den logischen Schlüsselspeicher

Es muss eine one-to-one Zuordnung zwischen dem DynamoDB-Tabellennamen und dem Namen
des logischen Schlüsselspeichers bestehen. Der Name des logischen Schlüsselspeichers
ist kryptografisch an alle in der Tabelle gespeicherten Daten gebunden, um DynamoDB-
Wiederherstellungsvorgänge zu vereinfachen. Er kann nicht geändert werden, nachdem er
ursprünglich vom ersten Benutzer definiert wurde. Sie müssen in Ihren Schlüsselspeicheraktionen
immer denselben logischen Schlüsselspeicher-Namen angeben. Weitere Informationen finden Sie
unter logical key store name.

Statische Konfiguration

Im folgenden Beispiel werden Schlüsselspeicheraktionen statisch konfiguriert. Sie müssen den
Namen der DynamoDB-Tabelle angeben, die als Ihr Schlüsselspeicher dient, einen logischen Namen
für den Schlüsselspeicher und den KMS-Schlüssel-ARN, der einen KMS-Schlüssel mit symmetrischer
Verschlüsselung identifiziert.

Note

Berücksichtigen Sie sorgfältig den KMS-Schlüssel-ARN, den Sie bei der statischen
Konfiguration Ihres Schlüsselspeicherdienstes angeben. Der CreateKey Vorgang fügt den
KMS-Schlüssel ARN zu Ihrer Zulassungsliste für den Branch Key Store hinzu. Sobald ein
KMS-Schlüssel dem Branch-Schlüsselspeicher hinzugefügt wurde, kann er nicht gelöscht
werden.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen 95

AWS Encryption SDK Entwicklerhandbuch

 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .kmsKeyArn(kmsKeyArn)
 .build())
 .build()).build();

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
 var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = kmsConfig,
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
 config=KeyStoreConfig(
 ddb_client=ddb_client,
 ddb_table_name=key_store_name,
 logical_key_store_name=logical_key_store_name,
 kms_client=kms_client,
 kms_configuration=KMSConfigurationKmsKeyArn(
 value=kms_key_id
),
)
)

Rust

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let key_store_config = KeyStoreConfig::builder()
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen 96

AWS Encryption SDK Entwicklerhandbuch

 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)
 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
 .build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Go

import (
 keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"
 keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"
)

kmsConfig := keystoretypes.KMSConfigurationMemberkmsKeyArn{
 Value: kmsKeyArn,
}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
 DdbTableName: keyStoreTableName,
 KmsConfiguration: &kmsConfig,
 LogicalKeyStoreName: logicalKeyStoreName,
 DdbClient: ddbClient,
 KmsClient: kmsClient,
})
if err != nil {
 panic(err)
}

Discovery-Konfiguration

Im folgenden Beispiel werden Schlüsselspeicheraktionen für die Erkennung konfiguriert. Sie müssen
den Namen der DynamoDB-Tabelle, die als Ihr Schlüsselspeicher dient, und einen logischen
Schlüsselspeicher-Namen angeben.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen 97

AWS Encryption SDK Entwicklerhandbuch

 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .discovery(Discovery.builder().build())
 .build())
 .build()).build();

C# / .NET

var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
 config=KeyStoreConfig(
 ddb_client=ddb_client,
 ddb_table_name=key_store_name,
 logical_key_store_name=logical_key_store_name,
 kms_client=kms_client,
 kms_configuration=KMSConfigurationDiscovery(
 value=Discovery()
),
)
)

Rust

let key_store_config = KeyStoreConfig::builder()
 .kms_client(kms_client)
 .ddb_client(ddb_client)
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)

 .kms_configuration(KmsConfiguration::Discovery(Discovery::builder().build()?))

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen 98

AWS Encryption SDK Entwicklerhandbuch

 .build()?;

Go

import (
 keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"
 keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"
)

kmsConfig := keystoretypes.KMSConfigurationMemberdiscovery{}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
 DdbTableName: keyStoreName,
 KmsConfiguration: &kmsConfig,
 LogicalKeyStoreName: logicalKeyStoreName,
 DdbClient: ddbClient,
 KmsClient: kmsClient,
})
if err != nil {
 panic(err)
}

Erstellen Sie einen aktiven Filialschlüssel

Ein Verzweigungsschlüssel ist ein Datenschlüssel AWS KMS key , der von einem abgeleitet ist und
den der AWS KMS hierarchische Schlüsselbund verwendet, um die Anzahl der Aufrufe zu reduzieren.
AWS KMS Der aktive Zweigschlüssel ist die neueste Version des Zweigschlüssels. Der hierarchische
Schlüsselbund generiert für jede Verschlüsselungsanforderung einen eindeutigen Datenschlüssel
und verschlüsselt jeden Datenschlüssel mit einem eindeutigen Umschließungsschlüssel, der vom
aktiven Zweigschlüssel abgeleitet wird.

Um einen neuen aktiven Zweigschlüssel zu erstellen, müssen Sie Ihre Schlüsselspeicher-Aktionen
statisch konfigurieren. CreateKeyist eine privilegierte Operation, die den in Ihrer Konfiguration
für Schlüsselspeicheraktionen angegebenen KMS-Schlüssel-ARN zu Ihrer Schlüsselspeicher-
Zulassungsliste hinzufügt. Anschließend wird der KMS-Schlüssel verwendet, um den neuen aktiven
Branch-Schlüssel zu generieren. Wir empfehlen, den Zugriff auf diesen Vorgang einzuschränken,
da ein KMS-Schlüssel, der einmal zum Schlüsselspeicher hinzugefügt wurde, nicht gelöscht werden
kann.

Erstellen Sie Zweigschlüssel 99

AWS Encryption SDK Entwicklerhandbuch

Sie können einen KMS-Schlüssel in Ihrem Schlüsselspeicher zulassen, oder Sie können mehrere
KMS-Schlüssel zulassen, indem Sie den KMS-Schlüssel-ARN, den Sie in Ihrer Konfiguration für
Schlüsselspeicher-Aktionen angeben, aktualisieren und erneut aufrufenCreateKey. Wenn Sie
mehrere KMS-Schlüssel auf die Zulassungsliste setzen, sollten Ihre Schlüsselspeicher-Benutzer
ihre Schlüsselspeicher-Aktionen für die Erkennung so konfigurieren, dass sie alle Schlüssel auf
der Zulassungsliste im Schlüsselspeicher verwenden können, auf die sie Zugriff haben. Weitere
Informationen finden Sie unter the section called “Schlüsselspeicheraktionen konfigurieren”.

Erforderliche -Berechtigungen

Um Branch-Schlüssel zu erstellen, benötigen Sie die ReEncrypt Berechtigungen kms:
GenerateDataKeyWithoutPlaintext und kms: für den KMS-Schlüssel, der in Ihren Schlüsselspeicher-
Aktionen angegeben ist.

Erstellen Sie einen Zweigschlüssel

Der folgende Vorgang erstellt einen neuen aktiven Branch-Schlüssel unter Verwendung des KMS-
Schlüssels, den Sie in Ihrer Konfiguration für Schlüsselspeicher-Aktionen angegeben haben, und fügt
den aktiven Branch-Schlüssel zur DynamoDB-Tabelle hinzu, die als Ihr Schlüsselspeicher dient.

Wenn Sie aufrufenCreateKey, können Sie wählen, ob Sie die folgenden optionalen Werte angeben
möchten.

• branchKeyIdentifier: definiert ein benutzerdefiniertesbranch-key-id.

Um einen benutzerdefinierten zu erstellenbranch-key-id, müssen Sie dem
encryptionContext Parameter auch einen zusätzlichen Verschlüsselungskontext hinzufügen.

• encryptionContext: definiert einen optionalen Satz nicht geheimer Schlüssel-Wert-Paare, der
zusätzliche authentifizierte Daten (AAD) in dem Verschlüsselungskontext bereitstellt, der im kms: -
Aufruf enthalten ist. GenerateDataKeyWithoutPlaintext

Dieser zusätzliche Verschlüsselungskontext wird mit dem Präfix angezeigt. aws-crypto-ec:

Java

final Map<String, String> additionalEncryptionContext =
 Collections.singletonMap("Additional Encryption Context for",
 "custom branch key id");

 final String BranchKey = keystore.CreateKey(

Erstellen Sie Zweigschlüssel 100

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Entwicklerhandbuch

 CreateKeyInput.builder()
 .branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
 .encryptionContext(additionalEncryptionContext) //OPTIONAL

 .build()).branchKeyIdentifier();

C# / .NET

var additionalEncryptionContext = new Dictionary<string, string>();
 additionalEncryptionContext.Add("Additional Encryption Context for", "custom
 branch key id");

 var branchKeyId = keystore.CreateKey(new CreateKeyInput
 {
 BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
 EncryptionContext = additionalEncryptionContext // OPTIONAL
 });

Python

additional_encryption_context = {"Additional Encryption Context for": "custom branch
 key id"}

branch_key_id: str = keystore.create_key(
 CreateKeyInput(
 branch_key_identifier = "custom-branch-key-id", # OPTIONAL
 encryption_context = additional_encryption_context, # OPTIONAL
)
)

Rust

let additional_encryption_context = HashMap::from([
 ("Additional Encryption Context for".to_string(), "custom branch key
 id".to_string())
]);

let branch_key_id = keystore.create_key()
 .branch_key_identifier("custom-branch-key-id") // OPTIONAL
 .encryption_context(additional_encryption_context) // OPTIONAL
 .send()
 .await?

Erstellen Sie Zweigschlüssel 101

AWS Encryption SDK Entwicklerhandbuch

 .branch_key_identifier
 .unwrap();

Go

encryptionContext := map[string]string{
 "Additional Encryption Context for": "custom branch key id",
}

branchKey, err := keyStore.CreateKey(context.Background(),
 keystoretypes.CreateKeyInput{
 BranchKeyIdentifier: &customBranchKeyId,
 EncryptionContext: additional_encryption_context,
})
if err != nil {
 return "", err
}

Zunächst generiert die CreateKey Operation die folgenden Werte.

• Ein Universally Unique Identifier (UUID) der Version 4 für branch-key-id (sofern Sie keinen
benutzerdefinierten Namen angegeben haben). branch-key-id

• Eine UUID der Version 4 für die Branch Key-Version

• A timestamp im Datums- und Uhrzeitformat nach ISO 8601 in koordinierter Weltzeit (UTC).

Dann ruft der CreateKey Vorgang kms: GenerateDataKeyWithoutPlaintext mit der folgenden
Anforderung auf.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : "type",
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 },
 "KeyId": "the KMS key ARN you specified in your key store actions",
 "NumberOfBytes": "32"

Erstellen Sie Zweigschlüssel 102

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Entwicklerhandbuch

 }

Als Nächstes ruft der CreateKey Vorgang kms: ReEncrypt auf, um einen aktiven Datensatz für den
Branch-Schlüssel zu erstellen, indem der Verschlüsselungskontext aktualisiert wird.

Zuletzt ruft der CreateKey Vorgang ddb: TransactWriteItems auf, um ein neues Element zu
schreiben, das den Verzweigungsschlüssel in der Tabelle, die Sie in Schritt 2 erstellt haben,
beibehält. Das Element hat die folgenden Attribute.

{
 "branch-key-id" : branch-key-id,
 "type" : "branch:ACTIVE",
 "enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
 "version": "branch:version:the branch key version UUID",
 "create-time" : "timestamp",
 "kms-arn" : "the KMS key ARN you specified in Step 1",
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 }

Drehe deinen aktiven Filialschlüssel

Für jeden Filialschlüssel kann es jeweils nur eine aktive Version geben. In der Regel wird jede aktive
Version des Zweigschlüssels verwendet, um mehrere Anfragen zu erfüllen. Sie kontrollieren jedoch,
in welchem Umfang aktive Zweigschlüssel wiederverwendet werden, und bestimmen, wie oft der
aktive Zweigschlüssel rotiert wird.

Zweigschlüssel werden nicht zur Verschlüsselung von Klartext-Datenschlüsseln verwendet.
Sie werden verwendet, um die eindeutigen Wrapping-Schlüssel abzuleiten, mit denen Klartext-
Datenschlüssel verschlüsselt werden. Bei der Ableitung von Schlüsseln wird ein einzigartiger
32-Byte-Wrapping-Schlüssel mit 28 Byte Zufälligkeit erzeugt. Das bedeutet, dass aus einem
Zweigschlüssel mehr als 79 Oktillionen oder 2.96 einzigartige Wrapping-Schlüssel abgeleitet werden
können, bevor es zu einem kryptografischen Verschleiß kommt. Trotz dieses sehr geringen Risikos
der Datenerschöpfung müssen Sie Ihre aktiven Filialschlüssel möglicherweise aufgrund von
Geschäfts- oder Vertragsbestimmungen oder behördlichen Vorschriften wechseln.

Die aktive Version des Zweigschlüssels bleibt aktiv, bis Sie ihn rotieren. Frühere Versionen des
aktiven Zweigschlüssels werden nicht zur Ausführung von Verschlüsselungsvorgängen verwendet
und können auch nicht zum Ableiten neuer Umschließungsschlüssel verwendet werden. Sie können

Drehe deinen aktiven Filialschlüssel 103

https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS Encryption SDK Entwicklerhandbuch

jedoch weiterhin abgefragt werden und stellen Umschließungsschlüssel zur Verfügung, um die
Datenschlüssel zu entschlüsseln, die sie verschlüsselt haben, während sie aktiv waren.

Erforderliche Berechtigungen

Um Zweigschlüssel rotieren zu können, benötigen Sie die ReEncrypt Berechtigungen
kms: GenerateDataKeyWithoutPlaintext und kms: für den KMS-Schlüssel, der in Ihren
Schlüsselspeicheraktionen angegeben ist.

Rotiert einen aktiven Zweigschlüssel

Verwenden Sie die VersionKey Operation, um Ihren aktiven Zweigschlüssel zu drehen.
Wenn Sie den aktiven Abzweigschlüssel rotieren, wird ein neuer Abzweigschlüssel erstellt, der
die vorherige Version ersetzt. Das branch-key-id ändert sich nicht, wenn Sie den aktiven
Abzweigschlüssel drehen. Sie müssen den Schlüssel angebenbranch-key-id, der den aktuell
aktiven Abzweigschlüssel identifiziert, wenn Sie anrufenVersionKey.

Java

keystore.VersionKey(
 VersionKeyInput.builder()
 .branchKeyIdentifier("branch-key-id")
 .build()
);

C# / .NET

 keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Python

keystore.version_key(
 VersionKeyInput(
 branch_key_identifier=branch_key_id
)
)

Rust

keystore.version_key()
 .branch_key_identifier(branch_key_id)

Drehe deinen aktiven Filialschlüssel 104

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK Entwicklerhandbuch

 .send()
 .await?;

Go

_, err = keyStore.VersionKey(context.Background(), keystoretypes.VersionKeyInput{
 BranchKeyIdentifier: branchKeyId,
})
if err != nil {
 return err
}

Drehe deinen aktiven Filialschlüssel 105

AWS Encryption SDK Entwicklerhandbuch

Schlüsselringe
Unterstützte Programmiersprachenimplementierungen verwenden Schlüsselringe zur
Verschlüsselung von Umschlägen. Schlüsselbunde generieren, verschlüsseln und entschlüsseln
Datenschlüssel. Schlüsselringe bestimmen die Quelle der eindeutigen Datenschlüssel, die jede
Nachricht schützen, und der Umschließungsschlüssel, die diesen Datenschlüssel verschlüsseln.
Sie geben bei der Verschlüsselung einen Schlüsselbund und bei der Entschlüsselung denselben
oder einen anderen Schlüsselbund an. Sie können die vom SDK bereitgestellten Schlüsselbunde
verwenden oder Ihren eigenen kompatiblen, benutzerdefinierten Schlüsselbunde schreiben.

Sie können jeden Schlüsselbund einzeln verwenden oder Schlüsselbunde in einen Multi-
Schlüsselbund kombinieren. Obwohl die meisten Schlüsselbunde Datenschlüssel generieren,
verschlüsseln und entschlüsseln können, können Sie einen Schlüsselbund erstellen, der nur eine
bestimmte Operation ausführt, wie z. B. einen Schlüsselbund, der nur Datenschlüssel generiert.
Dieser Schlüsselbund kann dann in Kombination mit anderen verwendet werden.

Wir empfehlen Ihnen, einen Schlüsselbund zu verwenden, der Ihre Wrapping-Schlüssel schützt
und kryptografische Operationen innerhalb einer sicheren Grenze ausführt, wie z. B. den AWS
KMS Schlüsselbund, der diesen Never Never Leave () AWS KMS keys unverschlüsselt verwendet.
AWS Key Management ServiceAWS KMS Sie können auch einen Schlüsselbund schreiben,
bei dem Schlüssel zum Umschließen von Schlüsseln verwendet werden, die in Ihren Hardware-
Sicherheitsmodulen (HSMs) gespeichert oder durch andere Master-Key-Dienste geschützt sind.
Weitere Informationen finden Sie im Thema Schlüsselbundschnittstelle in der AWS Encryption SDK -
Spezifikation.

Schlüsselringe spielen die Rolle der Hauptschlüssel und Hauptschlüsselanbieter, die in anderen
Programmiersprachenimplementierungen verwendet werden. Wenn Sie unterschiedliche
Sprachimplementierungen von verwenden, um Ihre Daten AWS Encryption SDK zu
verschlüsseln und zu entschlüsseln, stellen Sie sicher, dass Sie kompatible Schlüsselringe und
Hauptschlüsselanbieter verwenden. Details hierzu finden Sie unter Schlüsselbund-Kompatibilität.

In diesem Thema wird erklärt, wie Sie die Schlüsselbundfunktion von verwenden AWS Encryption
SDK und wie Sie einen Schlüsselbund auswählen.

Funktionsweise von Schlüsselbunden
Wenn Sie Daten verschlüsseln, AWS Encryption SDK fragt der den Schlüsselbund nach
Verschlüsselungsmaterial. Der Schlüsselbund gibt einen Klartext-Datenschlüssel und eine Kopie des

Funktionsweise von Schlüsselbunden 106

https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md

AWS Encryption SDK Entwicklerhandbuch

Datenschlüssels zurück, der durch die einzelnen Schlüssel im Schlüsselbund verschlüsselt wird. Der
AWS Encryption SDK verwendet den Klartext-Schlüssel, um die Daten zu verschlüsseln, und zerstört
dann den Klartext-Datenschlüssel. Anschließend wird eine verschlüsselte Nachricht AWS Encryption
SDK zurückgegeben, die die verschlüsselten Datenschlüssel und die verschlüsselten Daten enthält.

Wenn Sie Daten entschlüsseln, können Sie denselben Schlüsselbund verwenden, den Sie zum
Verschlüsseln der Daten verwendet haben, oder einen anderen. Um die Daten zu entschlüsseln,
muss ein Entschlüsselungsschlüsselbund mindestens einen Umschließungsschlüssel im
Schlüsselbund enthalten (oder Zugriff darauf haben).

Der AWS Encryption SDK übergibt die verschlüsselten Datenschlüssel aus der verschlüsselten
Nachricht an den Schlüsselbund und fordert den Schlüsselbund auf, einen davon zu entschlüsseln.
Der Schlüsselbund verwendet seine Umhüllungsschlüssel zum Entschlüsseln eines der
verschlüsselten Datenschlüssel und gibt einen Klartext-Datenschlüssel zurück. Das AWS
Encryption SDK entschlüsselt die Daten mithilfe des Klartext-Datenschlüssels. Wenn keiner der
Umhüllungsschlüssel im Schlüsselbund einen der verschlüsselten Datenschlüssel entschlüsseln
kann, schlägt der Entschlüsselungsvorgang fehl.

Funktionsweise von Schlüsselbunden 107

AWS Encryption SDK Entwicklerhandbuch

Sie können einen einzelnen Schlüsselbund verwenden oder Schlüsselbunde desselben Typs oder
eines anderen Typs in einem Multi-Schlüsselbund kombinieren. Wenn Sie Daten verschlüsseln, gibt
der Multi-Schlüsselbund eine Kopie des Datenschlüssels zurück, der von allen Umhüllungsschlüsseln
in allen Schlüsselbunden verschlüsselt wurde, aus denen der Multi-Schlüsselbund besteht. Sie
können die Daten mithilfe eines Schlüsselbundes entschlüsseln, wobei jeder der Schlüssel im
Mehrfachschlüsselbund eingeschlossen ist.

Schlüsselbund-Kompatibilität

Obwohl die verschiedenen Sprachimplementierungen von einige architektonische Unterschiede
AWS Encryption SDK aufweisen, sind sie vollständig kompatibel und unterliegen sprachlichen
Einschränkungen. Sie können Ihre Daten mit einer Sprachimplementierung verschlüsseln und
mit jeder anderen Sprachimplementierung entschlüsseln. Sie müssen jedoch dieselben oder
entsprechende Wrapping-Schlüssel verwenden, um Ihre Datenschlüssel zu verschlüsseln und zu
entschlüsseln. Informationen zu Spracheinschränkungen finden Sie im Thema zu den einzelnen
Sprachimplementierungen, z. B. the section called “Kompatibilität” im AWS-Verschlüsselungs-SDK
for JavaScript Thema.

Schlüsselbund-Kompatibilität 108

AWS Encryption SDK Entwicklerhandbuch

Schlüsselringe werden in den folgenden Programmiersprachen unterstützt:

• AWS-Verschlüsselungs-SDK for C

• AWS-Verschlüsselungs-SDK for JavaScript

• AWS Encryption SDK für .NET

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen
Abhängigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

• AWS Encryption SDK für Rust

• AWS Encryption SDK für Go

Unterschiedliche Anforderungen für Verschlüsselungsschlüsselringe

In anderen AWS Encryption SDK Sprachimplementierungen als dem AWS-Verschlüsselungs-
SDK for C müssen alle Schlüssel in einem Verschlüsselungsschlüsselbund (oder einem
Masterschlüsselbund) oder einem Masterschlüsselanbieter in der Lage sein, den Datenschlüssel
zu verschlüsseln. Wenn ein Umschließungsschlüssel nicht verschlüsselt werden kann, schlägt die
Verschlüsselungsmethode fehl. Daher muss der Anrufer über die erforderlichen Berechtigungen
für alle Schlüssel im Schlüsselbund verfügen. Wenn Sie einen Discovery-Schlüsselbund
verwenden, um Daten allein oder in einem Mehrfachschlüsselbund zu verschlüsseln, schlägt der
Verschlüsselungsvorgang fehl.

Die Ausnahme ist der AWS-Verschlüsselungs-SDK for C, bei dem der Verschlüsselungsvorgang
einen standardmäßigen Erkennungsschlüsselbund ignoriert, aber fehlschlägt, wenn Sie einen
Erkennungsschlüsselbund mit mehreren Regionen angeben, allein oder in einem Schlüsselbund mit
mehreren Schlüsselbunden.

Kompatible Schlüsselbunde und Masterschlüssel-Anbieter

Die folgende Tabelle zeigt, welche Hauptschlüssel und Hauptschlüsselanbieter mit den mitgelieferten
Schlüsselbunden kompatibel sind. AWS Encryption SDK Geringfügige Inkompatibilitäten aufgrund
von Spracheinschränkungen werden im Thema über die Sprachimplementierung beschrieben.

Schlüsselbund: Hauptschlüsselanbieter:

AWS KMS Schlüsselring KMSMasterSchlüssel (Java)

Unterschiedliche Anforderungen für Verschlüsselungsschlüsselringe 109

https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKey.html

AWS Encryption SDK Entwicklerhandbuch

Schlüsselbund: Hauptschlüsselanbieter:

KMSMasterKeyProvider (Java)

KMSMasterSchlüssel (Python)

KMSMasterKeyProvider (Python)

Note

Die AWS-Verschlüsselungs-SDK for Python und enthalten
AWS-Verschlüsselungs-SDK for Java keinen Hauptschlüssel
oder Hauptschlüsselanbieter, was dem AWS KMS regionalen
Discovery-Schlüsselbund entspricht.

AWS KMS Hierarchi
scher Schlüsselbund

Wird von den folgenden Programmiersprachen und Versionen
unterstützt:

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn
es mit der optionalen Abhängigkeit der Cryptographic Material
Providers Library (MPL) verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

AWS KMS ECDH-Schl
üsselanhänger

Wird von den folgenden Programmiersprachen und Versionen
unterstützt:

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn
es mit der optionalen Abhängigkeit der Cryptographic Material
Providers Library (MPL) verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Kompatible Schlüsselbunde und Masterschlüssel-Anbieter 110

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKeyProvider.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html#aws_encryption_sdk.key_providers.kms.KMSMasterKeyProvider
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Schlüsselbund: Hauptschlüsselanbieter:

Unformatierter AES-
Schlüsselbund

Wenn sie mit symmetrischen Verschlüsselungsschlüsseln verwendet
werden:
JceMasterKey(Java)

RawMasterKey(Python)

Unformatierter RSA-
Schlüsselbund

Wenn sie mit asymmetrischen Verschlüsselungsschlüsseln verwendet
werden:
JceMasterKey(Java)

RawMasterKey(Python)

Note

Der Raw RSA-Schlüsselbund unterstützt keine asymmetri
schen KMS-Schlüssel. Wenn Sie asymmetrische RSA-KMS-
Schlüssel verwenden möchten, Version 4. x of the AWS
Encryption SDK für .NET unterstützt AWS KMS Schlüssel
ringe, die symmetrische Verschlüsselung (SYMMETRIC
_DEFAULT) oder asymmetrisches RSA verwenden. AWS
KMS keys

Roher ECDH-Schl
üsselbund

Wird von den folgenden Programmiersprachen und Versionen
unterstützt:

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn
es mit der optionalen Abhängigkeit der Cryptographic Material
Providers Library (MPL) verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Kompatible Schlüsselbunde und Masterschlüssel-Anbieter 111

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

AWS KMS Schlüsselringe

Ein AWS KMS Schlüsselbund wird verwendet, AWS KMS keysum Datenschlüssel zu generieren, zu
verschlüsseln und zu entschlüsseln. AWS Key Management Service (AWS KMS) schützt Ihre KMS-
Schlüssel und führt kryptografische Operationen innerhalb der FIPS-Grenze durch. Wir empfehlen,
wann immer möglich einen AWS KMS Schlüsselbund oder einen Schlüsselbund mit ähnlichen
Sicherheitseigenschaften zu verwenden.

Alle Programmiersprachenimplementierungen, die Schlüsselringe unterstützen, unterstützen
Schlüsselbunde, die AWS KMS KMS-Schlüssel mit symmetrischer Verschlüsselung verwenden. Die
folgenden Programmiersprachenimplementierungen unterstützen auch AWS KMS Schlüsselringe, die
asymmetrische RSA-KMS-Schlüssel verwenden:

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen Abhängigkeit
der Cryptographic Material Providers Library (MPL) verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Wenn Sie versuchen, in einer anderen Sprachimplementierung einen asymmetrischen KMS-
Schlüssel in einen Verschlüsselungsschlüsselbund aufzunehmen, schlägt der Verschlüsselungsaufruf
fehl. Wenn Sie ihn in einen Schlüsselbund für die Entschlüsselung aufnehmen, wird er ignoriert.

Ab Version 2.3 können Sie einen Schlüssel AWS KMS mit mehreren Regionen in einem AWS KMS
Schlüsselbund oder einem Hauptschlüsselanbieter verwenden. x der Version AWS Encryption
SDK und Version 3.0. x der AWS Encryption CLI. Einzelheiten und Beispiele zur Verwendung des
multi-Region-aware Symbols finden Sie unterVerwenden Sie mehrere Regionen AWS KMS keys.
Informationen zu Schlüsseln für mehrere Regionen finden Sie unter Verwenden von Schlüsseln für
mehrere Regionen im AWS Key Management Service Entwicklerhandbuch.

Note

Alle Erwähnungen von KMS-Schlüsselanhängern im AWS Encryption SDK beziehen sich auf
Schlüsselringe. AWS KMS

AWS KMS Schlüsselringe 112

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK Entwicklerhandbuch

AWS KMS Bei Schlüsselanhängern gibt es zwei Arten von Wickelschlüsseln:

• Generatorschlüssel: Generiert einen Klartext-Datenschlüssel und verschlüsselt ihn. Ein
Schlüsselbund, der Daten verschlüsselt, muss einen Generatorschlüssel haben.

• Zusätzliche Schlüssel: Verschlüsselt den Klartext-Datenschlüssel, den der Generatorschlüssel
generiert hat. AWS KMS Schlüsselbunde können null oder mehr zusätzliche Schlüssel haben.

Sie müssen über einen Generatorschlüssel verfügen, um Nachrichten zu verschlüsseln. Wenn
ein AWS KMS Schlüsselbund nur einen KMS-Schlüssel hat, wird dieser Schlüssel verwendet,
um den Datenschlüssel zu generieren und zu verschlüsseln. Bei der Entschlüsselung ist der
Generatorschlüssel optional, und die Unterscheidung zwischen Generatorschlüsseln und
zusätzlichen Schlüsseln wird ignoriert.

Wie alle Schlüsselanhänger können AWS KMS Schlüsselringe unabhängig voneinander oder in
einem Mehrfachschlüsselbund mit anderen Schlüsselanhängern desselben oder eines anderen Typs
verwendet werden.

Themen

• AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger

• Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

• Einen Schlüsselbund erstellen AWS KMS

• Verwenden eines Discovery-Schlüsselbunds AWS KMS

• Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund

AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger

Das benötigt AWS Encryption SDK kein AWS-Konto und es hängt auch nicht von einem ab. AWS-
Service Um einen AWS KMS Schlüsselbund verwenden zu können, benötigen Sie jedoch eine AWS-
Konto und die folgenden Mindestberechtigungen für AWS KMS keys den Schlüsselbund.

• Um mit einem AWS KMS Schlüsselbund zu verschlüsseln, benötigen Sie die kms:
GenerateDataKey -Berechtigung für den Generatorschlüssel. Sie benötigen die kms:Encrypt-
Berechtigung für alle zusätzlichen Schlüssel im Schlüsselbund. AWS KMS

• Um mit einem AWS KMS Schlüsselbund zu entschlüsseln, benötigen Sie die kms:Decrypt-
Berechtigung für mindestens einen Schlüssel im Schlüsselbund. AWS KMS

AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger 113

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Encryption SDK Entwicklerhandbuch

• Um mit einem Mehrfachschlüsselbund zu verschlüsseln, der aus Schlüsselbunden besteht,
benötigen Sie die kms-Berechtigung für den AWS KMS Generatorschlüssel im Generator-
Schlüsselbund. GenerateDataKey Sie benötigen die kms:Encrypt-Berechtigung für alle anderen
Schlüssel in allen anderen Schlüsselbunden. AWS KMS

• Um mit einem asymmetrischen AWS KMS RSA-Schlüsselbund zu verschlüsseln, benötigen Sie
kms: GenerateDataKey oder kms:Encrypt nicht, da Sie bei der Erstellung des Schlüsselbunds das
Material der öffentlichen Schlüssel angeben müssen, das Sie für die Verschlüsselung verwenden
möchten. Bei der Verschlüsselung mit diesem Schlüsselbund werden keine Anrufe getätigt. AWS
KMS Um mit einem asymmetrischen AWS KMS RSA-Schlüsselbund zu entschlüsseln, benötigen
Sie die kms:Decrypt-Berechtigung.

Ausführliche Informationen zu den Berechtigungen für finden Sie unter KMS-Schlüsselzugriff AWS
KMS keys und -berechtigungen im Entwicklerhandbuch.AWS Key Management Service

Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Ein AWS KMS Schlüsselbund kann einen oder mehrere enthalten. AWS KMS keys Um
AWS KMS key in einem AWS KMS Schlüsselbund eine anzugeben, verwenden Sie eine
unterstützte AWS KMS Schlüssel-ID. Die Schlüsselbezeichner, die Sie zur Identifizierung eines
AWS KMS key in einem Schlüsselbund verwenden können, variieren je nach Vorgang und
Sprachimplementierung. Einzelheiten zu den Schlüsselbezeichnern für einen AWS KMS key finden
Sie unter Schlüsselkennungen im Entwicklerhandbuch.AWS Key Management Service

Es hat sich bewährt, die spezifischste Schlüssel-ID zu verwenden, die für Ihre Aufgabe praktikabel ist.

• In einem Verschlüsselungsschlüsselbund für können Sie einen Schlüssel-ARN oder Alias-ARN
verwenden AWS-Verschlüsselungs-SDK for C, um KMS-Schlüssel zu identifizieren. In allen
anderen Sprachimplementierungen können Sie eine Schlüssel-ID, einen Schlüssel-ARN, einen
Aliasnamen oder einen Alias-ARN verwenden, um Daten zu verschlüsseln.

• In einem Entschlüsselungsschlüsselbund müssen Sie einen Schlüssel-ARN verwenden, um AWS
KMS keys zu identifizieren. Diese Anforderung gilt für alle Sprachenimplementierungen des AWS
Encryption SDK. Details hierzu finden Sie unter Auswahl von Schlüsseln zum Umbrechen.

• In einem Schlüsselbund, der für die Verschlüsselung und Entschlüsselung verwendet wird, müssen
Sie einen Schlüssel-ARN verwenden, um AWS KMS keys zu identifizieren. Diese Anforderung gilt
für alle Sprachenimplementierungen des AWS Encryption SDK.

Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund 114

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie einen Aliasnamen oder Alias-ARN für einen KMS-Schlüssel in einem
Verschlüsselungsschlüsselbund angeben, speichert der Verschlüsselungsvorgang den Schlüssel-
ARN, der derzeit mit dem Alias verknüpft ist, in den Metadaten des verschlüsselten Datenschlüssels.
Der Alias wird nicht gespeichert. Änderungen am Alias wirken sich nicht auf den KMS-Schlüssel aus,
der zum Entschlüsseln Ihrer verschlüsselten Datenschlüssel verwendet wird.

Einen Schlüsselbund erstellen AWS KMS

Sie können jeden AWS KMS Schlüsselbund mit einem AWS KMS key oder mehreren
Schlüsselbändern AWS KMS keys im selben oder einem anderen AWS-Konten und konfigurieren.
AWS-Regionen Dabei AWS KMS keys muss es sich um einen KMS-Schlüssel mit symmetrischer
Verschlüsselung (SYMMETRIC_DEFAULT) oder um einen asymmetrischen RSA-KMS-Schlüssel
handeln. Sie können auch einen KMS-Schlüssel mit symmetrischer Verschlüsselung für mehrere
Regionen verwenden. Sie können einen oder mehrere AWS KMS Schlüsselbunde in einem
Mehrfachschlüsselbund verwenden.

Sie können einen AWS KMS Schlüsselbund erstellen, der Daten ver- und entschlüsselt, oder
Sie können AWS KMS Schlüsselbunde speziell zum Verschlüsseln oder Entschlüsseln erstellen.
Wenn Sie einen AWS KMS Schlüsselbund zum Verschlüsseln von Daten erstellen, müssen Sie
einen Generatorschlüssel angeben. Dieser wird verwendet, um einen Klartext-Datenschlüssel zu
generieren und AWS KMS key diesen zu verschlüsseln. Der Datenschlüssel hat mathematisch
nichts mit dem KMS-Schlüssel zu tun. Wenn Sie möchten, können Sie dann weitere angeben,
AWS KMS keys die denselben Klartext-Datenschlüssel verschlüsseln. Um ein durch diesen
Schlüsselbund geschütztes verschlüsseltes Feld zu entschlüsseln, muss der von Ihnen verwendete
Entschlüsselungsschlüsselbund mindestens einen der im Schlüsselbund AWS KMS keys definierten
Werte enthalten, oder nein. AWS KMS keys(Ein AWS KMS Schlüsselbund ohne AWS KMS keys wird
als Discovery-Schlüsselbund bezeichnet.)AWS KMS

In anderen AWS Encryption SDK Sprachimplementierungen als dem müssen alle Schlüssel
AWS-Verschlüsselungs-SDK for C, die in einen Verschlüsselungsschlüsselbund oder einen
Mehrfachschlüsselbund eingeschlossen werden, in der Lage sein, den Datenschlüssel zu
verschlüsseln. Wenn ein Wrapping-Schlüssel nicht verschlüsselt werden kann, schlägt die
Verschlüsselungsmethode fehl. Daher muss der Anrufer über die erforderlichen Berechtigungen
für alle Schlüssel im Schlüsselbund verfügen. Wenn Sie einen Discovery-Schlüsselbund
verwenden, um Daten allein oder in einem Mehrfachschlüsselbund zu verschlüsseln, schlägt der
Verschlüsselungsvorgang fehl. Die Ausnahme ist der AWS-Verschlüsselungs-SDK for C, bei dem
der Verschlüsselungsvorgang einen standardmäßigen Erkennungsschlüsselbund ignoriert, aber

Einen Schlüsselbund erstellen AWS KMS 115

AWS Encryption SDK Entwicklerhandbuch

fehlschlägt, wenn Sie einen Erkennungsschlüsselbund mit mehreren Regionen angeben, allein oder
in einem Schlüsselbund mit mehreren Schlüsselbunden.

In den folgenden Beispielen wird ein AWS KMS Schlüsselbund mit einem Generatorschlüssel und
einem zusätzlichen Schlüssel erstellt. Sowohl der Generatorschlüssel als auch der Zusatzschlüssel
sind KMS-Schlüssel mit symmetrischer Verschlüsselung. In diesen Beispielen wird der Schlüssel
verwendet ARNs, um die KMS-Schlüssel zu identifizieren. Dies ist eine bewährte Methode für AWS
KMS Schlüsselringe, die zur Verschlüsselung verwendet werden, und eine Voraussetzung für AWS
KMS Schlüsselringe, die zur Entschlüsselung verwendet werden. Details hierzu finden Sie unter
Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund.

C

Um einen AWS KMS key in einem Verschlüsselungsschlüsselbund in der zu identifizieren AWS-
Verschlüsselungs-SDK for C, geben Sie einen Schlüssel-ARN oder Alias-ARN an. In einem
Entschlüsselungsschlüsselbund müssen Sie einen Schlüssel-ARN verwenden. Details hierzu
finden Sie unter Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund.

Ein vollständiges Beispiel finden Sie unter string.cpp.

const char * generator_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

struct aws_cryptosdk_keyring *kms_encrypt_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(generator_key,{additional_key});

C# / .NET

Verwenden Sie die Methode, um einen Schlüsselbund mit einem oder mehreren KMS-Schlüsseln
im AWS Encryption SDK für.NET zu erstellen. CreateAwsKmsMultiKeyring() In diesem
Beispiel werden zwei AWS KMS Schlüssel verwendet. Verwenden Sie nur den Generator
Parameter, um einen KMS-Schlüssel anzugeben. Der KmsKeyIds Parameter, der zusätzliche
KMS-Schlüssel angibt, ist optional.

Die Eingabe für diesen Schlüsselbund benötigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient für jede Region, die durch einen
KMS-Schlüssel im Schlüsselbund repräsentiert wird. Befindet sich der KMS-Schlüssel, der durch
den Wert des Generator Parameters identifiziert wird, beispielsweise in der Region USA West

Einen Schlüsselbund erstellen AWS KMS 116

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Entwicklerhandbuch

(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient für die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen müssen, verwenden Sie die
CreateAwsKmsKeyring() Methode.

Wenn Sie im für.NET einen Schlüsselbund AWS KMS key AWS Encryption SDK für die
Verschlüsselung angeben, können Sie eine beliebige gültige Schlüssel-ID verwenden: eine
Schlüssel-ID, einen Schlüssel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur
Identifizierung von AWS KMS keys in einem AWS KMS Schlüsselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Im folgenden Beispiel wird Version 4 verwendet. x von AWS Encryption SDK für .NET und die
CreateAwsKmsKeyring() Methode zum Anpassen des AWS KMS Clients.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput
{
 Generator = generatorKey,
 KmsKeyIds = additionalKeys
};

var kmsEncryptKeyring = mpl.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

JavaScript Browser

Wenn Sie in der einen Schlüsselbund AWS KMS key für die Verschlüsselung angeben AWS-
Verschlüsselungs-SDK for JavaScript, können Sie eine beliebige gültige Schlüssel-ID verwenden:
eine Schlüssel-ID, einen Schlüssel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur
Identifizierung von AWS KMS keys in einem AWS KMS Schlüsselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie können die

Einen Schlüsselbund erstellen AWS KMS 117

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

Ein vollständiges Beispiel finden Sie unter kms_simple.ts im Repository unter. AWS-
Verschlüsselungs-SDK for JavaScript GitHub

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })
const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({
 clientProvider,
 generatorKeyId,
 keyIds: [additionalKey]
})

JavaScript Node.js

Wenn Sie in der einen Schlüsselbund AWS KMS key für die Verschlüsselung angeben AWS-
Verschlüsselungs-SDK for JavaScript, können Sie eine beliebige gültige Schlüssel-ID verwenden:
eine Schlüssel-ID, einen Schlüssel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur
Identifizierung von AWS KMS keys in einem AWS KMS Schlüsselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

Einen Schlüsselbund erstellen AWS KMS 118

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

Ein vollständiges Beispiel finden Sie unter kms_simple.ts im Repository unter. AWS-
Verschlüsselungs-SDK for JavaScript GitHub

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({
 generatorKeyId,
 keyIds: [additionalKey]
})

Java

Verwenden Sie die Methode, um einen Schlüsselbund mit einem oder mehreren Schlüsseln zu
erstellen. AWS KMS CreateAwsKmsMultiKeyring() In diesem Beispiel werden zwei KMS-
Schlüssel verwendet. Verwenden Sie nur den generator Parameter, um einen KMS-Schlüssel
anzugeben. Der kmsKeyIds Parameter, der zusätzliche KMS-Schlüssel angibt, ist optional.

Die Eingabe für diesen Schlüsselbund benötigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient für jede Region, die durch einen
KMS-Schlüssel im Schlüsselbund repräsentiert wird. Befindet sich der KMS-Schlüssel, der durch
den Wert des Generator Parameters identifiziert wird, beispielsweise in der Region USA West
(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient für die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen müssen, verwenden Sie die
CreateAwsKmsKeyring() Methode.

Wenn Sie in der einen Schlüsselbund AWS KMS key für die Verschlüsselung angeben AWS-
Verschlüsselungs-SDK for Java, können Sie eine beliebige gültige Schlüssel-ID verwenden:
eine Schlüssel-ID, einen Schlüssel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur

Einen Schlüsselbund erstellen AWS KMS 119

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

Identifizierung von AWS KMS keys in einem AWS KMS Schlüsselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Ein vollständiges Beispiel finden Sie unter BasicEncryptionKeyringExample.java im AWS-
Verschlüsselungs-SDK for Java Repository unter. GitHub

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder().build();
final MaterialProviders materialProviders = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");
// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder()
 .generator(generatorKey)
 .kmsKeyIds(additionalKey)
 .build();
final IKeyring kmsKeyring =
 materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Python

Verwenden Sie die Methode, um einen Schlüsselbund mit einem oder mehreren AWS KMS
Schlüsseln zu erstellen. create_aws_kms_multi_keyring() In diesem Beispiel werden zwei
KMS-Schlüssel verwendet. Verwenden Sie nur den generator Parameter, um einen KMS-
Schlüssel anzugeben. Der kms_key_ids Parameter, der zusätzliche KMS-Schlüssel angibt, ist
optional.

Die Eingabe für diesen Schlüsselbund benötigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient für jede Region, die durch einen
KMS-Schlüssel im Schlüsselbund repräsentiert wird. Befindet sich der KMS-Schlüssel, der durch
den Wert des generator Parameters identifiziert wird, beispielsweise in der Region USA West
(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient für die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen müssen, verwenden Sie die
create_aws_kms_keyring() Methode.

Einen Schlüsselbund erstellen AWS KMS 120

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/BasicEncryptionKeyringExample.java

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie in der einen Schlüsselbund AWS KMS key für die Verschlüsselung angeben AWS-
Verschlüsselungs-SDK for Python, können Sie eine beliebige gültige Schlüssel-ID verwenden:
eine Schlüssel-ID, einen Schlüssel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur
Identifizierung von AWS KMS keys in einem AWS KMS Schlüsselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Im folgenden Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Ein vollständiges Beispiel
finden Sie unter aws_kms_multi_keyring_example.py im AWS-Verschlüsselungs-SDK for Python
Repository unter. GitHub

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS keyring
kms_multi_keyring_input: CreateAwsKmsMultiKeyringInput =
 CreateAwsKmsMultiKeyringInput(
 generator="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 kms_key_ids="arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
)

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
 input=kms_multi_keyring_input
)

Einen Schlüsselbund erstellen AWS KMS 121

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/aws_kms_multi_keyring_example.py

AWS Encryption SDK Entwicklerhandbuch

Rust

Verwenden Sie die create_aws_kms_multi_keyring() Methode, um einen Schlüsselbund
mit einem oder mehreren AWS KMS Schlüsseln zu erstellen. In diesem Beispiel werden zwei
KMS-Schlüssel verwendet. Verwenden Sie nur den generator Parameter, um einen KMS-
Schlüssel anzugeben. Der kms_key_ids Parameter, der zusätzliche KMS-Schlüssel angibt, ist
optional.

Die Eingabe für diesen Schlüsselbund benötigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient für jede Region, die durch einen
KMS-Schlüssel im Schlüsselbund repräsentiert wird. Befindet sich der KMS-Schlüssel, der durch
den Wert des generator Parameters identifiziert wird, beispielsweise in der Region USA West
(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient für die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen müssen, verwenden Sie die
create_aws_kms_keyring() Methode.

Wenn Sie im AWS KMS key for Rust einen Schlüsselbund für eine Verschlüsselung angeben,
können Sie eine beliebige gültige Schlüssel-ID verwenden: eine Schlüssel-ID, einen Schlüssel-
ARN, einen Aliasnamen oder einen Alias-ARN. AWS Encryption SDK Hilfe zur Identifizierung von
AWS KMS keys in einem AWS KMS Schlüsselbund finden Sie unter. Identifizierung AWS KMS
keys in einem AWS KMS Schlüsselbund

Im folgenden Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Ein vollständiges Beispiel finden
Sie unter aws_kms_keyring_example.rs im Rust-Verzeichnis des Repositorys auf. aws-encryption-
sdk GitHub

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),

Einen Schlüsselbund erstellen AWS KMS 122

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs

AWS Encryption SDK Entwicklerhandbuch

 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

kms_multi_keyring: IKeyring = mpl.create_aws_kms_multi_keyring(
 input=kms_multi_keyring_input
)

Go

Verwenden Sie die Methode, um einen Schlüsselbund mit einem oder mehreren Schlüsseln zu
erstellen. AWS KMS create_aws_kms_multi_keyring() In diesem Beispiel werden zwei
KMS-Schlüssel verwendet. Verwenden Sie nur den generator Parameter, um einen KMS-
Schlüssel anzugeben. Der kms_key_ids Parameter, der zusätzliche KMS-Schlüssel angibt, ist
optional.

Die Eingabe für diesen Schlüsselbund benötigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient für jede Region, die durch einen
KMS-Schlüssel im Schlüsselbund repräsentiert wird. Befindet sich der KMS-Schlüssel, der durch
den Wert des generator Parameters identifiziert wird, beispielsweise in der Region USA West
(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient für die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen müssen, verwenden Sie die
create_aws_kms_keyring() Methode.

Wenn Sie in AWS KMS key for Go einen Schlüsselbund für eine Verschlüsselung angeben,
können Sie eine beliebige gültige Schlüssel-ID verwenden: eine Schlüssel-ID, einen Schlüssel-
ARN, einen Aliasnamen oder einen Alias-ARN. AWS Encryption SDK Hilfe zur Identifizierung von

Einen Schlüsselbund erstellen AWS KMS 123

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

AWS KMS keys in einem AWS KMS Schlüsselbund finden Sie unter. Identifizierung AWS KMS
keys in einem AWS KMS Schlüsselbund

Im folgenden Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create the AWS KMS keyring
awsKmsMultiKeyringInput := mpltypes.CreateAwsKmsMultiKeyringInput{

Einen Schlüsselbund erstellen AWS KMS 124

AWS Encryption SDK Entwicklerhandbuch

 Generator: "&arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 KmsKeyIds: []string{"arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"},
}
awsKmsMultiKeyring, err := matProv.CreateAwsKmsMultiKeyring(context.Background(),
 awsKmsMultiKeyringInput)

Das unterstützt AWS Encryption SDK auch AWS KMS Schlüsselringe, die asymmetrische RSA-
KMS-Schlüssel verwenden. Asymmetrische AWS KMS RSA-Schlüsselringe können nur ein key pair
enthalten.

Um mit einem asymmetrischen AWS KMS RSA-Schlüsselbund zu verschlüsseln, benötigen Sie
kms: GenerateDataKey oder kms:Encrypt nicht, da Sie bei der Erstellung des Schlüsselbunds das
Material der öffentlichen Schlüssel angeben müssen, das Sie für die Verschlüsselung verwenden
möchten. Bei der Verschlüsselung mit diesem Schlüsselbund werden keine Anrufe getätigt. AWS
KMS Um mit einem asymmetrischen AWS KMS RSA-Schlüsselbund zu entschlüsseln, benötigen Sie
die kms:Decrypt-Berechtigung.

Note

Um einen AWS KMS Schlüsselbund zu erstellen, der asymmetrische RSA-KMS-Schlüssel
verwendet, müssen Sie eine der folgenden Programmiersprachenimplementierungen
verwenden:

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen
Abhängigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

In den folgenden Beispielen CreateAwsKmsRsaKeyring wird die Methode verwendet, um einen
AWS KMS Schlüsselbund mit einem asymmetrischen RSA-KMS-Schlüssel zu erstellen. Um einen
asymmetrischen AWS KMS RSA-Schlüsselbund zu erstellen, geben Sie die folgenden Werte an.

Einen Schlüsselbund erstellen AWS KMS 125

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

• kmsClient: einen neuen Client erstellen AWS KMS

• kmsKeyID: der Schlüssel-ARN, der Ihren asymmetrischen RSA-KMS-Schlüssel identifiziert

• publicKey: eine Datei ByteBuffer aus einer UTF-8-codierten PEM-Datei, die den öffentlichen
Schlüssel des Schlüssels darstellt, an den Sie übergeben haben kmsKeyID

• encryptionAlgorithm: Der Verschlüsselungsalgorithmus muss oder sein
RSAES_OAEP_SHA_256 RSAES_OAEP_SHA_1

C# / .NET

Um einen asymmetrischen AWS KMS RSA-Schlüsselbund zu erstellen, müssen Sie den
öffentlichen Schlüssel und den privaten Schlüssel ARN aus Ihrem asymmetrischen RSA-KMS-
Schlüssel angeben. Der öffentliche Schlüssel muss PEM-codiert sein. Im folgenden Beispiel wird
ein AWS KMS Schlüsselbund mit einem asymmetrischen RSA-Schlüsselpaar erstellt.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsRsaKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = AWS KMS RSA private key ARN,
 PublicKey = publicKey,
 EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Java

Um einen asymmetrischen AWS KMS RSA-Schlüsselbund zu erstellen, müssen Sie den
öffentlichen Schlüssel und den privaten Schlüssel ARN aus Ihrem asymmetrischen RSA-KMS-
Schlüssel angeben. Der öffentliche Schlüssel muss PEM-codiert sein. Im folgenden Beispiel wird
ein AWS KMS Schlüsselbund mit einem asymmetrischen RSA-Schlüsselpaar erstellt.

// Instantiate the AWS Encryption SDK and material providers

Einen Schlüsselbund erstellen AWS KMS 126

AWS Encryption SDK Entwicklerhandbuch

final AwsCrypto crypto = AwsCrypto.builder()
 // Specify algorithmSuite without asymmetric signing here
 //
 // ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"),
 // ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"),
 // ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"),
 // ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x0114"),
 // ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256("0x0146"),
 // ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178")

 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256)
 .build();

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a KMS RSA keyring.
// This keyring takes in:
// - kmsClient
// - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key
// - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public
// key for the key passed into kmsKeyId
// - encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
 CreateAwsKmsRsaKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .kmsKeyId(rsaKeyArn)
 .publicKey(publicKey)
 .encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
 .build();
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Python

Um einen asymmetrischen AWS KMS RSA-Schlüsselbund zu erstellen, müssen Sie den
öffentlichen Schlüssel und den privaten Schlüssel ARN aus Ihrem asymmetrischen RSA-KMS-
Schlüssel angeben. Der öffentliche Schlüssel muss PEM-codiert sein. Im folgenden Beispiel wird
ein AWS KMS Schlüsselbund mit einem asymmetrischen RSA-Schlüsselpaar erstellt.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(

Einen Schlüsselbund erstellen AWS KMS 127

AWS Encryption SDK Entwicklerhandbuch

 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS keyring
keyring_input: CreateAwsKmsRsaKeyringInput = CreateAwsKmsRsaKeyringInput(
 public_key="public_key",
 kms_key_id="kms_key_id",
 encryption_algorithm="RSAES_OAEP_SHA_256",
 kms_client=kms_client
)

kms_rsa_keyring: IKeyring = mat_prov.create_aws_kms_rsa_keyring(
 input=keyring_input
)

Rust

Um einen asymmetrischen AWS KMS RSA-Schlüsselbund zu erstellen, müssen Sie den
öffentlichen Schlüssel und den privaten Schlüssel ARN aus Ihrem asymmetrischen RSA-KMS-
Schlüssel angeben. Der öffentliche Schlüssel muss PEM-codiert sein. Im folgenden Beispiel wird
ein AWS KMS Schlüsselbund mit einem asymmetrischen RSA-Schlüsselpaar erstellt.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

Einen Schlüsselbund erstellen AWS KMS 128

AWS Encryption SDK Entwicklerhandbuch

let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_rsa_keyring = mpl
 .create_aws_kms_rsa_keyring()
 .kms_key_id(kms_key_id)
 .public_key(aws_smithy_types::Blob::new(public_key))

 .encryption_algorithm(aws_sdk_kms::types::EncryptionAlgorithmSpec::RsaesOaepSha256)
 .kms_client(kms_client)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

Einen Schlüsselbund erstellen AWS KMS 129

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create the AWS KMS keyring
awsKmsRSAKeyringInput := mpltypes.CreateAwsKmsRsaKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: kmsKeyID,
 PublicKey: kmsPublicKey,
 EncryptionAlgorithm: kmstypes.EncryptionAlgorithmSpecRsaesOaepSha256,
}
awsKmsRSAKeyring, err := matProv.CreateAwsKmsRsaKeyring(context.Background(),
 awsKmsRSAKeyringInput)
if err != nil {
 panic(err)
}

Einen Schlüsselbund erstellen AWS KMS 130

AWS Encryption SDK Entwicklerhandbuch

Verwenden eines Discovery-Schlüsselbunds AWS KMS

Beim Entschlüsseln empfiehlt es sich, die Umschließungsschlüssel anzugeben, die sie verwenden
AWS Encryption SDK können. Um dieser bewährten Methode zu folgen, sollten Sie einen
Schlüsselbund für die AWS KMS Entschlüsselung verwenden, der die Anzahl der AWS KMS
Umschließungsschlüssel auf die von Ihnen angegebenen beschränkt. Sie können jedoch auch einen
AWS KMS Discovery-Schlüsselbund erstellen, d. h. einen Schlüsselbund, der keine AWS KMS
Schlüssel zum Umschließen von Schlüsseln festlegt.

Der AWS Encryption SDK bietet einen AWS KMS Standard-Discovery-Schlüsselbund und
einen Discovery-Schlüsselbund für Schlüssel mit mehreren Regionen. AWS KMS Hinweise zur
Verwendung von Regionsschlüsseln mit dem finden Sie unter. AWS Encryption SDKVerwenden Sie
mehrere Regionen AWS KMS keys

Da er keine Umschließungsschlüssel angibt, kann ein Discovery-Schlüsselbund keine Daten
verschlüsseln. Wenn Sie einen Discovery-Schlüsselbund verwenden, um Daten allein oder in
einem Mehrfachschlüsselbund zu verschlüsseln, schlägt der Verschlüsselungsvorgang fehl. Die
Ausnahme ist der AWS-Verschlüsselungs-SDK for C, bei dem der Verschlüsselungsvorgang
einen standardmäßigen Erkennungsschlüsselbund ignoriert, aber fehlschlägt, wenn Sie einen
Erkennungsschlüsselbund mit mehreren Regionen angeben, allein oder in einem Schlüsselbund mit
mehreren Schlüsselbunden.

Bei der Entschlüsselung können Sie mithilfe eines Discovery-Schlüsselbunds die AWS Encryption
SDK Entschlüsselung eines beliebigen verschlüsselten Datenschlüssels unter Verwendung des
verschlüsselten Schlüssels anfordern AWS KMS , unabhängig davon, wem dieser gehört oder wer
Zugriff AWS KMS key darauf hat. AWS KMS key Der Anruf ist nur erfolgreich, wenn der Anrufer über
die entsprechende Berechtigung verfügt. kms:Decrypt AWS KMS key

Important

Wenn Sie einen AWS KMS Discovery-Schlüsselbund in einen Mehrschlüsselbund
für die Entschlüsselung aufnehmen, setzt der Discovery-Schlüsselbund alle KMS-
Schlüsseleinschränkungen außer Kraft, die durch andere Schlüsselbunde im
Mehrfachschlüsselbund festgelegt wurden. Der Mehrfachschlüsselbund verhält sich wie sein
am wenigsten restriktiver Schlüsselbund. Ein AWS KMS Discovery-Schlüsselbund hat keine
Auswirkung auf die Verschlüsselung, wenn er alleine oder in einem Mehrfachschlüsselbund
verwendet wird.

Verwenden eines Discovery-Schlüsselbunds AWS KMS 131

AWS Encryption SDK Entwicklerhandbuch

Der AWS Encryption SDK bietet der Einfachheit halber einen AWS KMS Discovery-Schlüsselbund.
Wir empfehlen jedoch aus folgenden Gründen, dass Sie nach Möglichkeit einen beschränkteren
Schlüsselbund verwenden.

• Authentizität — Ein AWS KMS Discovery-Schlüsselbund kann jeden Schlüsselbund verwenden
AWS KMS key , der zum Verschlüsseln eines Datenschlüssels in der verschlüsselten Nachricht
verwendet wurde, nur damit der Anrufer berechtigt ist, diesen Schlüssel zum Entschlüsseln zu
verwenden. AWS KMS key Dies ist möglicherweise nicht der AWS KMS key , den der Anrufer
verwenden möchte. Beispielsweise könnte einer der verschlüsselten Datenschlüssel unter einer
weniger sicheren Methode verschlüsselt worden sein AWS KMS key , die jeder verwenden kann.

• Latenz und Leistung — Ein AWS KMS Discovery-Schlüsselbund ist möglicherweise merklich
langsamer als andere Schlüsselbunde, da er AWS Encryption SDK versucht, alle verschlüsselten
Datenschlüssel zu entschlüsseln, einschließlich der Schlüssel, die AWS KMS keys in anderen
Regionen verschlüsselt wurden, AWS-Konten und der Anrufer nicht berechtigt ist, diese für AWS
KMS keys die Entschlüsselung zu verwenden.

Wenn Sie einen Discovery-Schlüsselbund verwenden, empfehlen wir die Verwendung eines
Discovery-Filters, um die KMS-Schlüssel, die verwendet werden können, auf diejenigen in
bestimmten Partitionen zu beschränken. AWS-Konten Discovery-Filter werden in den Versionen
1.7 unterstützt. x und später von AWS Encryption SDK. Hilfe bei der Suche nach Ihrer Konto-ID und
Partition finden Sie unter Ihre AWS-Konto Identifikatoren und das ARN-Format in der Allgemeine
AWS-Referenz.

Der folgende Code instanziiert einen AWS KMS Discovery-Schlüsselbund mit einem
Erkennungsfilter, der die KMS-Schlüssel, die er verwenden AWS Encryption SDK kann, auf
diejenigen in der aws Partition und im Beispielkonto 111122223333 beschränkt.

Bevor Sie diesen Code verwenden, ersetzen Sie die Beispiel AWS-Konto - und Partitionswerte durch
gültige Werte für Ihre Partition und. AWS-Konto Wenn sich Ihre KMS-Schlüssel in China Regionen
befinden, verwenden Sie den aws-cn Partitionswert. Wenn sich Ihre KMS-Schlüssel befinden AWS
GovCloud (US) Regions, verwenden Sie den aws-us-gov Partitionswert. Verwenden Sie für alle
anderen AWS-Regionen den aws Partitionswert.

C

Ein vollständiges Beispiel finden Sie unter kms_discovery.cpp.

std::shared_ptr<KmsKeyring::> discovery_filter(

Verwenden eines Discovery-Schlüsselbunds AWS KMS 132

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Entwicklerhandbuch

 KmsKeyring::DiscoveryFilter::Builder("aws")
 .AddAccount("111122223333")
 .Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()
 .BuildDiscovery(discovery_filter));

C# / .NET

Im folgenden Beispiel wird Version 4 verwendet. x von AWS Encryption SDK für .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key
var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 DiscoveryFilter = new DiscoveryFilter()
 {
 AccountIds = account,
 Partition = "aws"
 }
};

var kmsDiscoveryKeyring =
 mpl.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

JavaScript Browser

JavaScriptIn müssen Sie die Discovery-Eigenschaft explizit angeben.

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugebenREQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

Verwenden eines Discovery-Schlüsselbunds AWS KMS 133

AWS Encryption SDK Entwicklerhandbuch

import {
 KmsKeyringBrowser,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, {
 discovery,
 discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
})

JavaScript Node.js

JavaScriptIn müssen Sie die Discovery-Eigenschaft explizit angeben.

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugebenREQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const discovery = true

const keyring = new KmsKeyringNode({
 discovery,

Verwenden eines Discovery-Schlüsselbunds AWS KMS 134

AWS Encryption SDK Entwicklerhandbuch

 discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_region)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS discovery keyring

Verwenden eines Discovery-Schlüsselbunds AWS KMS 135

AWS Encryption SDK Entwicklerhandbuch

discovery_keyring_input: CreateAwsKmsDiscoveryKeyringInput =
 CreateAwsKmsDiscoveryKeyringInput(
 kms_client=kms_client,
 discovery_filter=DiscoveryFilter(
 account_ids=[aws_account_id],
 partition="aws"
)
)

discovery_keyring: IKeyring = mat_prov.create_aws_kms_discovery_keyring(
 input=discovery_keyring_input
)

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create a AWS KMS client.
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .account_ids(vec![aws_account_id.to_string()])
 .partition("aws".to_string())
 .build()?;

// Create the AWS KMS discovery keyring
let discovery_keyring = mpl
 .create_aws_kms_discovery_keyring()
 .kms_client(kms_client.clone())
 .discovery_filter(discovery_filter)
 .send()
 .await?;

Verwenden eines Discovery-Schlüsselbunds AWS KMS 136

AWS Encryption SDK Entwicklerhandbuch

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

Verwenden eines Discovery-Schlüsselbunds AWS KMS 137

AWS Encryption SDK Entwicklerhandbuch

 panic(err)
}

// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
 AccountIds: []string{kmsKeyAccountID},
 Partition: "aws",
}
awsKmsDiscoveryKeyringInput := mpltypes.CreateAwsKmsDiscoveryKeyringInput{
 KmsClient: kmsClient,
 DiscoveryFilter: &discoveryFilter,
}
awsKmsDiscoveryKeyring, err :=
 matProv.CreateAwsKmsDiscoveryKeyring(context.Background(),
 awsKmsDiscoveryKeyringInput)
if err != nil {
 panic(err)
}

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund

Ein AWS KMS Regional Discovery-Schlüsselbund ist ein Schlüsselbund, der ARNs die KMS-
Schlüssel nicht spezifiziert. Stattdessen ermöglicht es die Entschlüsselung AWS Encryption SDK ,
wobei insbesondere nur die KMS-Schlüssel verwendet werden. AWS-Regionen

Bei der Entschlüsselung mit einem AWS KMS regionalen Discovery-Schlüsselbund werden alle
verschlüsselten Datenschlüssel AWS Encryption SDK entschlüsselt, die unter einem AWS KMS
key der angegebenen Zeichen verschlüsselt wurden. AWS-Region Um erfolgreich zu sein, muss
der Aufrufer über kms:Decrypt Berechtigungen für mindestens einen der angegebenen Schlüssel
verfügen AWS-Region , AWS KMS keys der einen Datenschlüssel verschlüsselt hat.

Wie andere Discovery-Schlüsselringe hat auch der regionale Discovery-Schlüsselbund keine
Auswirkung auf die Verschlüsselung. Er funktioniert nur beim Entschlüsseln verschlüsselter
Nachrichten. Wenn Sie einen Regional Discovery-Schlüsselbund in einem Mehrfachschlüsselbund
verwenden, der zum Verschlüsseln und Entschlüsseln verwendet wird, ist dieser nur beim
Entschlüsseln wirksam. Wenn Sie einen Schlüsselbund für die Erkennung mehrerer Regionen
verwenden, um Daten allein oder in einem Schlüsselbund zu verschlüsseln, schlägt der
Verschlüsselungsvorgang fehl.

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 138

AWS Encryption SDK Entwicklerhandbuch

Important

Wenn Sie einen AWS KMS regionalen Discovery-Schlüsselbund in einen Schlüsselbund für
die Entschlüsselung mit mehreren Schlüsseln aufnehmen, setzt der regionale Discovery-
Schlüsselbund alle KMS-Schlüsseleinschränkungen außer Kraft, die durch andere
Schlüsselbunde im Mehrfachschlüsselbund festgelegt wurden. Der Mehrfachschlüsselbund
verhält sich wie sein am wenigsten restriktiver Schlüsselbund. Ein AWS KMS Discovery-
Schlüsselbund hat keine Auswirkung auf die Verschlüsselung, wenn er alleine oder in einem
Mehrfachschlüsselbund verwendet wird.

Der regionale Discovery-Schlüsselbund bei AWS-Verschlüsselungs-SDK for C Versuchen, nur
mit KMS-Schlüsseln in der angegebenen Region zu entschlüsseln. Wenn Sie einen Discovery-
Schlüsselbund in AWS-Verschlüsselungs-SDK for JavaScript und AWS Encryption SDK für.NET
verwenden, konfigurieren Sie die Region auf dem Client. AWS KMS Bei diesen AWS Encryption SDK
Implementierungen AWS KMS werden KMS-Schlüssel nicht nach Region gefiltert, allerdings schlägt
eine Entschlüsselungsanforderung für KMS-Schlüssel außerhalb der angegebenen Region fehl.

Wenn Sie einen Discovery-Schlüsselbund verwenden, empfehlen wir die Verwendung eines
Discovery-Filters, um die bei der Entschlüsselung verwendeten KMS-Schlüssel auf die in den
angegebenen Partitionen verwendeten KMS-Schlüssel zu beschränken. AWS-Konten Discovery-
Filter werden in den Versionen 1.7 unterstützt. x und später von AWS Encryption SDK.

Der folgende Code erstellt beispielsweise einen AWS KMS regionalen Discovery-Schlüsselbund mit
einem Discovery-Filter. Dieser Schlüsselbund beschränkt die Anzahl der AWS Encryption SDK KMS-
Schlüssel im Konto 111122223333 in der Region USA West (Oregon) (us-west-2).

C

Weitere Informationen zum Anzeigen dieses Schlüsselbunds und der create_kms_client-
Methode in einem funktionierenden Beispiel finden Sie unter kms_discovery.cpp.

std::shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
 KmsKeyring::DiscoveryFilter::Builder("aws")
 .AddAccount("111122223333")
 .Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 139

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Entwicklerhandbuch

 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter));

C# / .NET

AWS Encryption SDK Für .NET gibt es keinen eigenen Schlüsselbund für die regionale
Erkennung. Sie können jedoch verschiedene Techniken verwenden, um die bei der
Entschlüsselung verwendeten KMS-Schlüssel auf eine bestimmte Region zu beschränken.

Die effizienteste Methode, die Regionen in einem Discovery-Schlüsselbund einzuschränken,
ist die Verwendung eines multi-Region-aware Discovery-Schlüsselbunds, auch wenn Sie die
Daten nur mit Schlüsseln aus einer Region verschlüsselt haben. Wenn Schlüssel mit nur einer
Region gefunden werden, verwendet der multi-Region-aware Schlüsselbund keine Funktionen für
mehrere Regionen.

Der von der CreateAwsKmsMrkDiscoveryKeyring() Methode zurückgegebene
Schlüsselbund filtert KMS-Schlüssel vor dem Aufruf nach Region. AWS KMS Sie sendet AWS
KMS nur dann eine Entschlüsselungsanforderung an, wenn der verschlüsselte Datenschlüssel mit
einem KMS-Schlüssel in der Region verschlüsselt wurde, die durch den Region Parameter im
Objekt angegeben wurde. CreateAwsKmsMrkDiscoveryKeyringInput

In den folgenden Beispielen wird Version 4 verwendet. x von AWS Encryption SDK für .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter
{
 AccountIds = account,
 Partition = "aws"
};

var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 Region = RegionEndpoint.USWest2,
 DiscoveryFilter = filter
};

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 140

AWS Encryption SDK Entwicklerhandbuch

var kmsRegionalDiscoveryKeyring =
 mpl.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

Sie können KMS-Schlüssel auch auf einen bestimmten Wert beschränken, AWS-
Region indem Sie eine Region in Ihrer Instanz des AWS KMS Clients angeben
(AmazonKeyManagementServiceClient). Diese Konfiguration ist jedoch weniger effizient und
potenziell kostspieliger als die Verwendung eines multi-Region-aware Discovery-Schlüsselbunds.
Anstatt KMS-Schlüssel vor dem Aufrufen nach Region zu filtern AWS KMS, ruft AWS KMS
for.NET jeden verschlüsselten Datenschlüssel auf (bis er einen entschlüsselt) und beschränkt sich
darauf, die verwendeten KMS-Schlüssel auf AWS KMS die angegebene Region zu beschränken.
AWS Encryption SDK

Im folgenden Beispiel wird Version 4 verwendet. x von AWS Encryption SDK für .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// Create the discovery filter,
// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 DiscoveryFilter = new DiscoveryFilter()
 {
 AccountIds = account,
 Partition = "aws"
 }
};

var kmsRegionalDiscoveryKeyring =
 mlp.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 141

https://docs.aws.amazon.com/sdkfornet/v4/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html

AWS Encryption SDK Entwicklerhandbuch

verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
 discovery,
 discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

JavaScript Node.js

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

Einen Überblick über diesen Schlüsselbund und die limitRegions Funktion finden Sie in einem
funktionierenden Beispiel unter kms_regional_discovery.ts.

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 142

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_regional_discovery.ts

AWS Encryption SDK Entwicklerhandbuch

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
 clientProvider,
 discovery,
 discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .regions("us-west-2")
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_region)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 143

AWS Encryption SDK Entwicklerhandbuch

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS regional discovery keyring
regional_discovery_keyring_input: CreateAwsKmsMrkDiscoveryKeyringInput = \
 CreateAwsKmsMrkDiscoveryKeyringInput(
 kms_client=kms_client,
 region=mrk_replica_decrypt_region,
 discovery_filter=DiscoveryFilter(
 account_ids=[111122223333],
 partition="aws"
)
)

 regional_discovery_keyring: IKeyring =
 mat_prov.create_aws_kms_mrk_discovery_keyring(
 input=regional_discovery_keyring_input
)

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 144

AWS Encryption SDK Entwicklerhandbuch

// Create an AWS KMS client
let decrypt_kms_config = aws_sdk_kms::config::Builder::from(&sdk_config)
 .region(Region::new(mrk_replica_decrypt_region.clone()))
 .build();
let decrypt_kms_client = aws_sdk_kms::Client::from_conf(decrypt_kms_config);

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .account_ids(vec![aws_account_id.to_string()])
 .partition("aws".to_string())
 .build()?;

// Create the regional discovery keyring
let discovery_keyring = mpl
 .create_aws_kms_mrk_discovery_keyring()
 .kms_client(decrypt_kms_client)
 .region(mrk_replica_decrypt_region)
 .discovery_filter(discovery_filter)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 145

AWS Encryption SDK Entwicklerhandbuch

 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
 AccountIds: []string{awsAccountID},
 Partition: "aws",
}

// Create the regional discovery keyring
awsKmsMrkDiscoveryInput := mpltypes.CreateAwsKmsMrkDiscoveryKeyringInput{
 KmsClient: kmsClient,
 Region: alternateRegionMrkKeyRegion,
 DiscoveryFilter: &discoveryFilter,
}
awsKmsMrkDiscoveryKeyring, err :=
 matProv.CreateAwsKmsMrkDiscoveryKeyring(context.Background(),
 awsKmsMrkDiscoveryInput)
if err != nil {
 panic(err)
}

Die exportiert AWS-Verschlüsselungs-SDK for JavaScript auch eine Funktion für Node.js und
den Browser. excludeRegions Diese Funktion erstellt einen AWS KMS Regional Discovery-

Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund 146

AWS Encryption SDK Entwicklerhandbuch

Schlüsselbund, der bestimmte Regionen AWS KMS keys auslässt. Im folgenden Beispiel wird ein
AWS KMS regionaler Discovery-Schlüsselbund erstellt, der AWS KMS keys im Konto 111122223333
in allen Konten AWS-Region außer US East (Nord-Virginia) (us-east-1) verwendet werden kann.

Für AWS-Verschlüsselungs-SDK for C gibt es keine analoge Methode, aber Sie können eine
implementieren, indem Sie eine benutzerdefinierte Methode erstellen. ClientSupplier

Dieses Beispiel zeigt den Code für Node.js.

const discovery = true
const clientProvider = excludeRegions(['us-east-1'], getKmsClient)
const keyring = new KmsKeyringNode({
 clientProvider,
 discovery,
 discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
})

AWS KMS Hierarchische Schlüsselanhänger

Mit dem AWS KMS hierarchischen Schlüsselbund können Sie Ihre kryptografischen Materialien
mit einem KMS-Schlüssel mit symmetrischer Verschlüsselung schützen, ohne AWS KMS
jedes Mal anrufen zu müssen, wenn Sie Daten ver- oder entschlüsseln. Es ist eine gute Wahl
für Anwendungen, bei denen die Anzahl der Aufrufe minimiert werden muss AWS KMS,
und für Anwendungen, die kryptografisches Material wiederverwenden können, ohne ihre
Sicherheitsanforderungen zu verletzen.

Der hierarchische Schlüsselbund ist eine Lösung zum Zwischenspeichern von kryptografischem
Material, die die Anzahl der AWS KMS Aufrufe reduziert, indem AWS KMS geschützte Branch-
Schlüssel verwendet werden, die in einer Amazon DynamoDB-Tabelle gespeichert sind,
und anschließend das bei Verschlüsselungs- und Entschlüsselungsvorgängen verwendete
Zweigschlüsselmaterial lokal zwischengespeichert wird. Die DynamoDB-Tabelle dient als
Schlüsselspeicher für die Verwaltung und den Schutz von Zweigschlüsseln. Sie speichert den
aktiven Branch-Schlüssel und alle vorherigen Versionen des Branch-Schlüssels. Der aktive
Zweigschlüssel ist die neueste Version des Zweigschlüssels. Der hierarchische Schlüsselbund
verwendet einen eindeutigen Datenschlüssel, um jede Nachricht zu verschlüsseln, verschlüsselt
jeden Datenverschlüsselungsschlüssel für jede Verschlüsselungsanforderung und verschlüsselt
jeden Datenverschlüsselungsschlüssel mit einem eindeutigen Umschließungsschlüssel, der vom
aktiven Branch-Schlüssel abgeleitet wird. Der hierarchische Schlüsselbund hängt von der Hierarchie

AWS KMS Hierarchische Schlüsselanhänger 147

https://github.com/aws/aws-encryption-sdk-c/blob/master/aws-encryption-sdk-cpp/include/aws/cryptosdk/cpp/kms_keyring.h#L157

AWS Encryption SDK Entwicklerhandbuch

ab, die zwischen aktiven Zweigschlüsseln und ihren abgeleiteten Umschließungsschlüsseln
eingerichtet wurde.

Der hierarchische Schlüsselbund verwendet in der Regel jede Version des Zweigschlüssels, um
mehrere Anfragen zu erfüllen. Sie kontrollieren jedoch, in welchem Umfang aktive Zweigschlüssel
wiederverwendet werden, und bestimmen, wie oft der aktive Zweigschlüssel rotiert wird. Die aktive
Version des Abzweigschlüssels bleibt aktiv, bis Sie ihn drehen. Frühere Versionen des aktiven
Zweigschlüssels werden nicht zur Ausführung von Verschlüsselungsvorgängen verwendet, sie
können jedoch weiterhin abgefragt und bei Entschlüsselungsvorgängen verwendet werden.

Wenn Sie den hierarchischen Schlüsselbund instanziieren, erstellt er einen lokalen Cache. Sie geben
ein Cache-Limit an, das die maximale Zeitspanne definiert, für die die Branch-Schlüsselmaterialien
im lokalen Cache gespeichert werden, bevor sie ablaufen und aus dem Cache entfernt werden.
Der hierarchische Schlüsselbund führt einen AWS KMS Aufruf durch, um den Zweigschlüssel
zu entschlüsseln und die Zweigschlüsselmaterialien zusammenzustellen, wenn a zum ersten
Mal in einem Vorgang angegeben branch-key-id wird. Anschließend werden die Materialien
der Verzweigungsschlüssel im lokalen Cache gespeichert und für alle Verschlüsselungs- und
Entschlüsselungsvorgänge, die dies spezifizieren, wiederverwendet, bis das Cache-Limit abläuft.
branch-key-id Das Speichern von Zweigschlüsselmaterialien im lokalen Cache reduziert die
Anzahl der Aufrufe. AWS KMS Stellen Sie sich zum Beispiel ein Cache-Limit von 15 Minuten
vor. Wenn Sie 10.000 Verschlüsselungsvorgänge innerhalb dieses Cache-Limits ausführen,
müsste der herkömmliche AWS KMS Schlüsselbund 10.000 AWS KMS Aufrufe tätigen, um 10.000
Verschlüsselungsvorgänge zu erfüllen. Wenn Sie einen aktiven Schlüsselbund habenbranch-
key-id, muss der hierarchische Schlüsselbund nur einen AWS KMS Aufruf tätigen, um 10.000
Verschlüsselungsvorgänge abzuwickeln.

Der lokale Cache trennt Verschlüsselungsmaterialien von Entschlüsselungsmaterialien. Die
Verschlüsselungsmaterialien werden aus dem aktiven Zweigschlüssel zusammengesetzt und
für alle Verschlüsselungsvorgänge wiederverwendet, bis das Cache-Limit abgelaufen ist. Die
Entschlüsselungsmaterialien werden aus der Zweigschlüssel-ID und der Version zusammengestellt,
die in den Metadaten des verschlüsselten Felds identifiziert wurden, und sie werden für alle
Entschlüsselungsvorgänge im Zusammenhang mit der Branch-Schlüssel-ID und -version
wiederverwendet, bis das Cache-Limit abläuft. Im lokalen Cache können mehrere Versionen
desselben Zweigschlüssels gleichzeitig gespeichert werden. Wenn der lokale Cache für die
Verwendung von konfiguriert istbranch key ID supplier, kann er auch Zweigschlüsselmaterial von
mehreren aktiven Zweigschlüsseln gleichzeitig speichern.

AWS KMS Hierarchische Schlüsselanhänger 148

AWS Encryption SDK Entwicklerhandbuch

Note

Alle Erwähnungen des Begriffs „Hierarchischer Schlüsselbund“ in der AWS Encryption SDK
beziehen sich auf den AWS KMS hierarchischen Schlüsselbund.

Kompatibilität mit Programmiersprachen

Der hierarchische Schlüsselbund wird von den folgenden Programmiersprachen und Versionen
unterstützt:

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen MPL-
Abhängigkeit verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Themen

• Funktionsweise

• Voraussetzungen

• Erforderliche Berechtigungen

• Wählen Sie einen Cache

• Erstellen Sie einen hierarchischen Schlüsselbund

Funktionsweise

In den folgenden exemplarischen Vorgehensweisen wird beschrieben, wie der hierarchische
Schlüsselbund Verschlüsselungs- und Entschlüsselungsmaterialien zusammenstellt. Außerdem
werden die verschiedenen Aufrufe beschrieben, die der Schlüsselbund für Verschlüsselungs-
und Entschlüsselungsvorgänge vornimmt. Technische Einzelheiten zur Ableitung von Schlüsseln
und zur Verschlüsselung von Klartext-Datenschlüsseln finden Sie unter Technische Details zum
hierarchischen Schlüsselbund.AWS KMS

Verschlüsseln und signieren

Funktionsweise 149

AWS Encryption SDK Entwicklerhandbuch

In der folgenden exemplarischen Vorgehensweise wird beschrieben, wie der hierarchische
Schlüsselbund Verschlüsselungsmaterialien zusammenstellt und daraus einen eindeutigen
Umschließungsschlüssel ableitet.

1. Die Verschlüsselungsmethode fragt den hierarchischen Schlüsselbund nach
Verschlüsselungsmaterialien. Der Schlüsselbund generiert einen Klartext-Datenschlüssel und
überprüft dann, ob sich im lokalen Cache gültiges Verzweigungsmaterial für die Generierung des
Wrapping-Schlüssels befindet. Wenn gültiges Schlüsselmaterial für die Zweige vorhanden ist,
fährt der Schlüsselbund mit Schritt 4 fort.

2. Wenn kein gültiges Material für Zweigschlüssel vorhanden ist, fragt der hierarchische
Schlüsselbund den Schlüsselspeicher nach dem aktiven Zweigschlüssel ab.

a. Der Schlüsselspeicher ruft AWS KMS zur Entschlüsselung des aktiven Zweigschlüssels
auf und gibt den aktiven Zweigschlüssel im Klartext zurück. Daten, die den aktiven
Zweigschlüssel identifizieren, werden serialisiert, um zusätzliche authentifizierte Daten
(AAD) beim Entschlüsselungsaufruf von bereitzustellen. AWS KMS

b. Der Schlüsselspeicher gibt den Klartext-Zweigschlüssel und die ihn identifizierenden Daten
zurück, z. B. die Version des Zweigschlüssels.

3. Der hierarchische Schlüsselbund stellt die Schlüsselmaterialien der Zweige zusammen (die
Version mit dem Zweigschlüssel im Klartext und der Zweigschlüsselversion) und speichert eine
Kopie davon im lokalen Cache.

4. Der hierarchische Schlüsselbund leitet aus dem Klartext-Verzweigungsschlüssel und einem
16-Byte-Zufallssalz einen eindeutigen Umbruchschlüssel ab. Er verwendet den abgeleiteten
Umschließungsschlüssel, um eine Kopie des Klartext-Datenschlüssels zu verschlüsseln.

Die Verschlüsselungsmethode verwendet die Verschlüsselungsmaterialien, um die Daten zu
verschlüsseln. Weitere Informationen finden Sie unter So werden AWS Encryption SDK Daten
verschlüsselt.

Entschlüsseln und verifizieren

In der folgenden exemplarischen Vorgehensweise wird beschrieben, wie der hierarchische
Schlüsselbund Entschlüsselungsmaterialien zusammenstellt und den verschlüsselten Datenschlüssel
entschlüsselt.

1. Die Entschlüsselungsmethode identifiziert den verschlüsselten Datenschlüssel aus der
verschlüsselten Nachricht und leitet ihn an den hierarchischen Schlüsselbund weiter.

Funktionsweise 150

AWS Encryption SDK Entwicklerhandbuch

2. Der hierarchische Schlüsselbund deserialisiert Daten, die den verschlüsselten Datenschlüssel
identifizieren, einschließlich der Version des Zweigschlüssels, des 16-Byte-Salts und anderer
Informationen, die beschreiben, wie der Datenschlüssel verschlüsselt wurde.

Weitere Informationen finden Sie unter AWS KMS Technische Details zum hierarchischen
Schlüsselbund.

3. Mit dem hierarchischen Schlüsselbund wird geprüft, ob sich im lokalen Cache gültiges
Zweigschlüsselmaterial befindet, das mit der in Schritt 2 identifizierten Version des
Zweigschlüssels übereinstimmt. Wenn gültiges Schlüsselmaterial für die Zweige vorhanden ist,
fährt der Schlüsselbund mit Schritt 6 fort.

4. Wenn kein gültiges Material für Zweigschlüssel vorhanden ist, fragt der hierarchische
Schlüsselbund den Schlüsselspeicher nach dem Zweigschlüssel ab, der mit der in Schritt 2
identifizierten Version des Zweigschlüssels übereinstimmt.

a. Der Schlüsselspeicher ruft AWS KMS zur Entschlüsselung des Zweigschlüssels auf und
gibt den aktiven Zweigschlüssel im Klartext zurück. Daten, die den aktiven Zweigschlüssel
identifizieren, werden serialisiert, um zusätzliche authentifizierte Daten (AAD) beim
Entschlüsselungsaufruf von bereitzustellen. AWS KMS

b. Der Schlüsselspeicher gibt den Klartext-Zweigschlüssel und die ihn identifizierenden Daten
zurück, z. B. die Version des Zweigschlüssels.

5. Der hierarchische Schlüsselbund stellt die Schlüsselmaterialien der Zweige zusammen (die
Version mit dem Zweigschlüssel im Klartext und der Zweigschlüsselversion) und speichert eine
Kopie davon im lokalen Cache.

6. Der hierarchische Schlüsselbund verwendet die zusammengestellten Zweigschlüsselmaterialien
und das in Schritt 2 identifizierte 16-Byte-Salt, um den eindeutigen Wrapping-Schlüssel zu
reproduzieren, mit dem der Datenschlüssel verschlüsselt wurde.

7. Der hierarchische Schlüsselbund verwendet den reproduzierten Wrapping-Schlüssel, um den
Datenschlüssel zu entschlüsseln, und gibt den Klartext-Datenschlüssel zurück.

Die Entschlüsselungsmethode verwendet die Entschlüsselungsmaterialien und den Klartext-
Datenschlüssel, um die verschlüsselte Nachricht zu entschlüsseln. Weitere Informationen finden Sie
unter So AWS Encryption SDK entschlüsselt der eine verschlüsselte Nachricht.

Funktionsweise 151

AWS Encryption SDK Entwicklerhandbuch

Voraussetzungen

Bevor Sie einen hierarchischen Schlüsselbund erstellen und verwenden, stellen Sie sicher, dass die
folgenden Voraussetzungen erfüllt sind.

• Sie oder Ihr Schlüsselspeicheradministrator haben einen Schlüsselspeicher und mindestens einen
aktiven Zweigschlüssel erstellt.

• Sie haben Ihre Schlüsselspeicheraktionen konfiguriert.

Note

Wie Sie Ihre Schlüsselspeicher-Aktionen konfigurieren, bestimmt, welche Operationen Sie
ausführen können und welche KMS-Schlüssel der hierarchische Schlüsselbund verwenden
kann. Weitere Informationen finden Sie unter Schlüsselspeicher-Aktionen.

• Sie verfügen über die erforderlichen AWS KMS Berechtigungen, um auf den Schlüsselspeicher und
die Zweigschlüssel zuzugreifen und diese zu verwenden. Weitere Informationen finden Sie unter
the section called “Erforderliche Berechtigungen”.

• Sie haben die unterstützten Cachetypen überprüft und den Cachetyp konfiguriert, der Ihren
Anforderungen am besten entspricht. Weitere Informationen finden Sie unter the section called
“Wählen Sie einen Cache”

Erforderliche Berechtigungen

Der benötigt AWS Encryption SDK keinen AWS-Konto und hängt auch nicht von einem ab AWS-
Service. Um einen hierarchischen Schlüsselbund verwenden zu können, benötigen Sie jedoch
mindestens die folgenden Mindestberechtigungen für die symmetrische (n) Verschlüsselung AWS
KMS key(en) in Ihrem Schlüsselspeicher. AWS-Konto

• Um Daten mit dem hierarchischen Schlüsselbund zu ver- und entschlüsseln, benötigen Sie
kms:Decrypt.

• Um Zweigschlüssel zu erstellen und zu rotieren, benötigen Sie kms: und kms:.
GenerateDataKeyWithoutPlaintext ReEncrypt

Weitere Informationen zur Steuerung des Zugriffs auf Ihre Filialschlüssel und Ihren Schlüsselspeicher
finden Sie unterthe section called “Implementieren der geringsten Berechtigungen”.

Voraussetzungen 152

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Entwicklerhandbuch

Wählen Sie einen Cache

Durch den hierarchischen Schlüsselbund wird die Anzahl der Aufrufe reduziert, AWS KMS indem
die bei Verschlüsselungs- und Entschlüsselungsvorgängen verwendeten Filialschlüsselmaterialien
lokal zwischengespeichert werden. Bevor Sie Ihren hierarchischen Schlüsselbund erstellen, müssen
Sie entscheiden, welche Art von Cache Sie verwenden möchten. Sie können den Standard-Cache
verwenden oder den Cache an Ihre Bedürfnisse anpassen.

Der hierarchische Schlüsselbund unterstützt die folgenden Cachetypen:

• the section called “Standard-Cache”

• the section called “MultiThreaded Cache”

• the section called “StormTracking Zwischenspeicher”

• the section called “Gemeinsam genutzter Cache”

Important

Alle unterstützten Cachetypen sind für die Unterstützung von Multithread-Umgebungen
konzipiert.
In Kombination mit dem unterstützt der AWS-Verschlüsselungs-SDK for Python hierarchische
Schlüsselbund jedoch keine Multithread-Umgebungen. Weitere Informationen finden Sie
in der Python-Datei README.rst im -library-Repository unteraws-cryptographic-material-
providers. GitHub

Standard-Cache

Für die meisten Benutzer erfüllt der Standard-Cache ihre Threading-Anforderungen. Der Standard-
Cache ist so konzipiert, dass er Umgebungen mit hohem Multithreading-Anteil unterstützt. Wenn ein
Eintrag für Branch-Schlüssel-Materialien abläuft, verhindert der Standard-Cache den Aufruf mehrerer
Threads, AWS KMS indem ein Thread 10 Sekunden im Voraus darüber informiert wird, dass der
Eintrag für Branch-Schlüssel-Materialien abläuft. Dadurch wird sichergestellt, dass nur ein Thread
eine Anfrage AWS KMS zur Aktualisierung des Caches sendet.

Standard und StormTracking Caches unterstützen dasselbe Threading-Modell, aber Sie müssen nur
die Eingangskapazität angeben, um den Standard-Cache verwenden zu können. Für detailliertere
Cache-Anpassungen verwenden Sie den. the section called “StormTracking Zwischenspeicher”

Wählen Sie einen Cache 153

https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main

AWS Encryption SDK Entwicklerhandbuch

Sofern Sie nicht die Anzahl der Materialeinträge für Branch Key anpassen möchten, die im
lokalen Cache gespeichert werden können, müssen Sie bei der Erstellung des hierarchischen
Schlüsselbunds keinen Cachetyp angeben. Wenn Sie keinen Cachetyp angeben, verwendet der
hierarchische Schlüsselbund den Standard-Cachetyp und legt die Eintragskapazität auf 1000 fest.

Um den Standard-Cache anzupassen, geben Sie die folgenden Werte an:

• Eintragskapazität: Schränkt die Anzahl der Einträge für wichtige Materialien der Branche ein, die im
lokalen Cache gespeichert werden können.

Java

.cache(CacheType.builder()
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())

C# / .NET

CacheType defaultCache = new CacheType
{
 Default = new DefaultCache{EntryCapacity = 100}
};

Python

default_cache = CacheTypeDefault(
 value=DefaultCache(
 entry_capacity=100
)
)

Rust

let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

Wählen Sie einen Cache 154

AWS Encryption SDK Entwicklerhandbuch

Go

cache := mpltypes.CacheTypeMemberDefault{
 Value: mpltypes.DefaultCache{
 EntryCapacity: 100,
 },
 }

MultiThreaded Cache

Der MultiThreaded Cache kann sicher in Multithread-Umgebungen verwendet werden, bietet jedoch
keine Funktionen zur Minimierung AWS KMS von Amazon DynamoDB DynamoDB-Aufrufen. Daher
werden alle Threads gleichzeitig benachrichtigt, wenn ein Eintrag für wichtige Materialien in einer
Branche abläuft. Dies kann zu mehreren AWS KMS Aufrufen führen, um den Cache zu aktualisieren.

Um den MultiThreaded Cache zu verwenden, geben Sie die folgenden Werte an:

• Eintragskapazität: Beschränkt die Anzahl der Einträge für Branch-Schlüsselmaterialien, die im
lokalen Cache gespeichert werden können.

• Größe des Endstücks des Eintrags: Definiert die Anzahl der Einträge, die beschnitten werden
müssen, wenn die Eingangskapazität erreicht ist.

Java

.cache(CacheType.builder()
 .MultiThreaded(MultiThreadedCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .build())

C# / .NET

CacheType multithreadedCache = new CacheType
{
 MultiThreaded = new MultiThreadedCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1
 }

Wählen Sie einen Cache 155

AWS Encryption SDK Entwicklerhandbuch

};

Python

multithreaded_cache = CacheTypeMultiThreaded(
 value=MultiThreadedCache(
 entry_capacity=100,
 entry_pruning_tail_size=1
)
)

Rust

CacheType::MultiThreaded(
 MultiThreadedCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .build()?)

Go

var entryPruningTailSize int32 = 1
 cache := mpltypes.CacheTypeMemberMultiThreaded{
 Value: mpltypes.MultiThreadedCache{
 EntryCapacity: 100,
 EntryPruningTailSize: &entryPruningTailSize,
 },
 }

StormTracking Zwischenspeicher

Der StormTracking Cache ist so konzipiert, dass er Umgebungen mit vielen Threads unterstützt.
Wenn ein Eintrag für Branch-Schlüssel-Materialien abläuft, verhindert der StormTracking Cache den
Aufruf mehrerer Threads, AWS KMS indem ein Thread im Voraus darüber informiert wird, dass der
Eintrag für Branch-Schlüssel-Materialien abläuft. Dadurch wird sichergestellt, dass nur ein Thread
eine Anfrage AWS KMS zur Aktualisierung des Caches sendet.

Um den StormTracking Cache zu verwenden, geben Sie die folgenden Werte an:

Wählen Sie einen Cache 156

AWS Encryption SDK Entwicklerhandbuch

• Eintragskapazität: Beschränkt die Anzahl der Einträge für Branch-Schlüsselmaterialien, die im
lokalen Cache gespeichert werden können.

Standardwert: 1000 Einträge

• Größe des Eintrags zum Beschneiden: Definiert die Anzahl der Einträge für wichtige Materialien in
der Branche, die gleichzeitig beschnitten werden sollen.

Standardwert: 1 Eintrag

• Übergangszeit: Definiert die Anzahl der Sekunden vor Ablauf, nach der versucht wird, die
wichtigsten Materialien der Branche zu aktualisieren.

Standardwert: 10 Sekunden

• Verlängerungsintervall: Definiert die Anzahl der Sekunden zwischen Versuchen, die
Schlüsselmaterialien der Filiale zu aktualisieren.

Standardwert: 1 Sekunde

• Fan-out: Definiert die Anzahl der gleichzeitigen Versuche, die wichtigsten Materialien der Filiale zu
aktualisieren.

Standardwert: 20 Versuche

• In Flight Time to Live (TTL): Definiert die Anzahl der Sekunden, bis beim Versuch, die
Schlüsselmaterialien der Filiale zu aktualisieren, ein Timeout auftritt. Jedes Mal, wenn
der Cache als Antwort auf eine zurückkehrt NoSuchEntryGetCacheEntry, gilt dieser
Verzweigungsschlüssel als aktiv, bis derselbe Schlüssel zusammen mit einem PutCache Eintrag
geschrieben wird.

Standardwert: 10 Sekunden

• Sleep: Definiert die Anzahl der Millisekunden, die ein Thread in den Ruhezustand versetzen soll,
wenn der fanOut Wert überschritten wird.

Standardwert: 20 Millisekunden

Java

.cache(CacheType.builder()
 .StormTracking(StormTrackingCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)

Wählen Sie einen Cache 157

AWS Encryption SDK Entwicklerhandbuch

 .gracePeriod(10)
 .graceInterval(1)
 .fanOut(20)
 .inFlightTTL(10)
 .sleepMilli(20)
 .build())

C# / .NET

CacheType stormTrackingCache = new CacheType
{
 StormTracking = new StormTrackingCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1,
 FanOut = 20,
 GraceInterval = 1,
 GracePeriod = 10,
 InFlightTTL = 10,
 SleepMilli = 20
 }
};

Python

storm_tracking_cache = CacheTypeStormTracking(
 value=StormTrackingCache(
 entry_capacity=100,
 entry_pruning_tail_size=1,
 fan_out=20,
 grace_interval=1,
 grace_period=10,
 in_flight_ttl=10,
 sleep_milli=20
)
)

Rust

CacheType::StormTracking(
 StormTrackingCache::builder()
 .entry_capacity(100)

Wählen Sie einen Cache 158

AWS Encryption SDK Entwicklerhandbuch

 .entry_pruning_tail_size(1)
 .grace_period(10)
 .grace_interval(1)
 .fan_out(20)
 .in_flight_ttl(10)
 .sleep_milli(20)
 .build()?)

Go

var entryPruningTailSize int32 = 1
 cache := mpltypes.CacheTypeMemberStormTracking{
 Value: mpltypes.StormTrackingCache{
 EntryCapacity: 100,
 EntryPruningTailSize: &entryPruningTailSize,
 GraceInterval: 1,
 GracePeriod: 10,
 FanOut: 20,
 InFlightTTL: 10,
 SleepMilli: 20,
 },
 }

Gemeinsam genutzter Cache

Standardmäßig erstellt der hierarchische Schlüsselbund jedes Mal, wenn Sie den Schlüsselbund
instanziieren, einen neuen lokalen Cache. Der Shared Cache kann jedoch dabei helfen,
Speicherplatz zu sparen, indem er es Ihnen ermöglicht, einen Cache für mehrere hierarchische
Schlüsselbunde gemeinsam zu nutzen. Anstatt für jeden hierarchischen Schlüsselbund, den Sie
instanziieren, einen neuen Cache für kryptografisches Material zu erstellen, speichert der Shared
Cache nur einen Cache im Arbeitsspeicher, der von allen hierarchischen Schlüsselbunden verwendet
werden kann, die auf ihn verweisen. Der gemeinsam genutzte Cache trägt zur Optimierung
der Speichernutzung bei, indem verhindert wird, dass kryptografisches Material in mehreren
Schlüsselbunden doppelt vorhanden ist. Stattdessen können die hierarchischen Schlüsselbunde auf
denselben zugrunde liegenden Cache zugreifen, wodurch der Gesamtspeicherbedarf reduziert wird.

Wenn Sie Ihren Shared Cache erstellen, definieren Sie immer noch den Cachetyp. Sie können einen
the section called “Standard-Cache”the section called “MultiThreaded Cache”, oder the section
called “StormTracking Zwischenspeicher” als Cachetyp angeben oder einen beliebigen kompatiblen
benutzerdefinierten Cache ersetzen.

Wählen Sie einen Cache 159

AWS Encryption SDK Entwicklerhandbuch

Partitionen

Ein einziger gemeinsam genutzter Cache kann von mehreren hierarchischen Schlüsselbunden
verwendet werden. Wenn Sie einen hierarchischen Schlüsselbund mit einem gemeinsam
genutzten Cache erstellen, können Sie eine optionale Partitions-ID definieren. Die Partitions-ID
unterscheidet, welcher hierarchische Schlüsselbund in den Cache schreibt. Wenn zwei hierarchische
Schlüsselbunde auf dieselbe Partitions-ID und dieselbe Zweigschlüssel-ID verweisenlogical key
store name, teilen sich die beiden Schlüsselbunde dieselben Cache-Einträge im Cache. Wenn Sie
zwei hierarchische Schlüsselbunde mit demselben Shared Cache, aber unterschiedlicher Partition
IDs erstellen, greift jeder Schlüsselbund nur auf die Cache-Einträge von der eigenen zugewiesenen
Partition innerhalb des Shared Caches zu. Die Partitionen dienen als logische Unterteilungen
innerhalb des gemeinsam genutzten Caches, sodass jeder hierarchische Schlüsselbund unabhängig
auf seiner eigenen zugewiesenen Partition betrieben werden kann, ohne die in der anderen Partition
gespeicherten Daten zu beeinträchtigen.

Wenn Sie beabsichtigen, die Cache-Einträge in einer Partition wiederzuverwenden oder
gemeinsam zu nutzen, müssen Sie Ihre eigene Partitions-ID definieren. Wenn Sie die Partitions-
ID an Ihren hierarchischen Schlüsselbund übergeben, kann der Schlüsselbund die Cache-
Einträge wiederverwenden, die bereits im Shared Cache vorhanden sind, anstatt die Branch-
Schlüsselmaterialien erneut abrufen und autorisieren zu müssen. Wenn Sie keine Partitions-ID
angeben, wird dem Schlüsselbund bei jeder Instanziierung des hierarchischen Schlüsselbunds
automatisch eine eindeutige Partitions-ID zugewiesen.

Die folgenden Verfahren veranschaulichen, wie ein gemeinsam genutzter Cache mit dem Standard-
Cachetyp erstellt und an einen hierarchischen Schlüsselbund übergeben wird.

1. Erstellen Sie einen CryptographicMaterialsCache (CMC) mithilfe der Material Providers
Library (MPL).

Java

// Instantiate the MPL
final MaterialProviders matProv =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a CacheType object for the Default cache

Wählen Sie einen Cache 160

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

final CacheType cache =
 CacheType.builder()
 .Default(DefaultCache.builder().entryCapacity(100).build())
 .build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
 CreateCryptographicMaterialsCacheInput.builder()
 .cache(cache)
 .build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
 matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C# / .NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
 CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
 materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Python

Instantiate the MPL
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create a CacheType object for the default cache
cache: CacheType = CacheTypeDefault(
 value=DefaultCache(
 entry_capacity=100,
)
)

Wählen Sie einen Cache 161

AWS Encryption SDK Entwicklerhandbuch

Create a CMC using the default cache
cryptographic_materials_cache_input = CreateCryptographicMaterialsCacheInput(
 cache=cache,
)

shared_cryptographic_materials_cache =
 mat_prov.create_cryptographic_materials_cache(
 cryptographic_materials_cache_input
)

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
 create_cryptographic_materials_cache()
 .cache(cache)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
)

// Instantiate the MPL
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

Wählen Sie einen Cache 162

AWS Encryption SDK Entwicklerhandbuch

if err != nil {
 panic(err)
}

// Create a CacheType object for the default cache
cache := mpltypes.CacheTypeMemberDefault{
 Value: mpltypes.DefaultCache{
 EntryCapacity: 100,
 },
}

// Create a CMC using the default cache
cmcCacheInput := mpltypes.CreateCryptographicMaterialsCacheInput{
 Cache: &cache,
}
sharedCryptographicMaterialsCache, err :=
 matProv.CreateCryptographicMaterialsCache(context.Background(), cmcCacheInput)
if err != nil {
 panic(err)
}

2. Erstellen Sie ein CacheType Objekt für den Shared Cache.

Übergeben sharedCryptographicMaterialsCache Sie das, was Sie in Schritt 1 erstellt
haben, an das neue CacheType Objekt.

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
 CacheType.builder()
 .Shared(sharedCryptographicMaterialsCache)
 .build();

C# / .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Python

Create a CacheType object for the shared_cryptographic_materials_cache

Wählen Sie einen Cache 163

AWS Encryption SDK Entwicklerhandbuch

shared_cache: CacheType = CacheTypeShared(
 value=shared_cryptographic_materials_cache
)

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
 CacheType::Shared(shared_cryptographic_materials_cache);

Go

// Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache :=
 mpltypes.CacheTypeMemberShared{sharedCryptographicMaterialsCache}

3. Übergeben Sie das sharedCache Objekt aus Schritt 2 an Ihren hierarchischen Schlüsselbund.

Wenn Sie einen hierarchischen Schlüsselbund mit einem gemeinsam genutzten Cache erstellen,
können Sie optional a definieren, um Cache-Einträge für mehrere hierarchische Schlüsselbunde
gemeinsam partitionID zu nutzen. Wenn Sie keine Partitions-ID angeben, weist der
hierarchische Schlüsselbund dem Schlüsselbund automatisch eine eindeutige Partitions-ID zu.

Note

Ihre hierarchischen Schlüsselbunde verwenden dieselben Cacheeinträge in einem
gemeinsam genutzten Cache, wenn Sie zwei oder mehr Schlüsselbunde erstellen, die
auf dieselbe Partitions-ID und Verzweigungsschlüssel-ID verweisen. logical key store
name Wenn Sie nicht möchten, dass sich mehrere Schlüsselbunde dieselben Cache-
Einträge teilen, müssen Sie für jeden hierarchischen Schlüsselbund eine eindeutige
Partitions-ID verwenden.

Im folgenden Beispiel wird ein hierarchischer Schlüsselbund mit einem und einem branch key ID
supplier Cache-Limit von 600 Sekunden erstellt. Weitere Informationen zu den Werten, die in der
folgenden hierarchischen Schlüsselbundkonfiguration definiert sind, finden Sie unter. the section
called “Erstellen Sie einen hierarchischen Schlüsselbund”

Wählen Sie einen Cache 164

AWS Encryption SDK Entwicklerhandbuch

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(sharedCache)
 .partitionID(partitionID)
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 Cache = sharedCache,
 TtlSeconds = 600,
 PartitionId = partitionID
};
var keyring =
 materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Python

Create the Hierarchical keyring
keyring_input: CreateAwsKmsHierarchicalKeyringInput =
 CreateAwsKmsHierarchicalKeyringInput(
 key_store=keystore,
 branch_key_id_supplier=branch_key_id_supplier,
 ttl_seconds=600,
 cache=shared_cache,
 partition_id=partition_id
)

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(

Wählen Sie einen Cache 165

AWS Encryption SDK Entwicklerhandbuch

 input=keyring_input
)

Rust

// Create the Hierarchical keyring
let keyring1 = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store1)
 .branch_key_id(branch_key_id.clone())
 // CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
 clone it to
 // pass it to different Hierarchical Keyrings, it will still point to the
 same
 // underlying cache, and increment the reference count accordingly.
 .cache(shared_cache.clone())
 .ttl_seconds(600)
 .partition_id(partition_id.clone())
 .send()
 .await?;

Go

// Create the Hierarchical keyring
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
 KeyStore: keyStore1,
 BranchKeyId: &branchKeyId,
 TtlSeconds: 600,
 Cache: &shared_cache,
 PartitionId: &partitionId,
}
keyring, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
 hkeyringInput)
if err != nil {
 panic(err)
}

Erstellen Sie einen hierarchischen Schlüsselbund

Um einen hierarchischen Schlüsselbund zu erstellen, müssen Sie die folgenden Werte angeben:

Erstellen Sie einen hierarchischen Schlüsselbund 166

AWS Encryption SDK Entwicklerhandbuch

• Ein Name für den Schlüsselspeicher

Der Name der DynamoDB-Tabelle, die Sie oder Ihr Schlüsselspeicheradministrator als
Schlüsselspeicher erstellt haben.

•

Ein Cache-Limit für die Gültigkeitsdauer (Time to Live, TTL)

Die Zeitspanne in Sekunden, in der ein Eintrag für Branch-Schlüsselmaterialien im lokalen Cache
verwendet werden kann, bevor er abläuft. Das Cache-Limit TTL bestimmt, wie oft der Client anruft,
AWS KMS um die Verwendung der Branch-Schlüssel zu autorisieren. Dieser Wert muss größer als
null sein. Nach Ablauf des Cache-Limits TTL wird der Eintrag nicht mehr bearbeitet und aus dem
lokalen Cache entfernt.

• Eine Schlüssel-ID für eine Zweigstelle

Sie können den entweder statisch konfigurierenbranch-key-id, der einen einzelnen
aktiven Zweigschlüssel in Ihrem Schlüsselspeicher identifiziert, oder einen Lieferanten für die
Zweigschlüssel-ID angeben.

Der Anbieter der Zweigschlüssel-ID bestimmt anhand der im Verschlüsselungskontext
gespeicherten Felder, welcher Filialschlüssel zum Entschlüsseln eines Datensatzes erforderlich ist.

Wir empfehlen dringend, für Mehrmandantendatenbanken, bei denen jeder Mandant über einen
eigenen Branch-Schlüssel verfügt, einen Branch-Schlüssel-ID-Anbieter zu verwenden. Sie
können den Anbieter für die Branch-Schlüssel-ID verwenden, um einen benutzerfreundlichen
Namen für Ihren Branch-Schlüssel IDs zu erstellen, damit Sie die richtige Branch-Schlüssel-ID
für einen bestimmten Mandanten leicht erkennen können. Mit dem Anzeigenamen können Sie
beispielsweise auf einen Zweigschlüssel als tenant1 statt auf verweisenb3f61619-4d35-48ad-
a275-050f87e15122.

Für Entschlüsselungsvorgänge können Sie entweder einen einzelnen hierarchischen
Schlüsselbund statisch konfigurieren, um die Entschlüsselung auf einen einzelnen Mandanten zu
beschränken, oder Sie können den Branch-Schlüssel-ID-Anbieter verwenden, um zu ermitteln,
welcher Mandant für die Entschlüsselung eines Datensatzes verantwortlich ist.

• (Optional) Ein Cache

Erstellen Sie einen hierarchischen Schlüsselbund 167

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie Ihren Cachetyp oder die Anzahl der Einträge für Branch-Schlüsselmaterialien, die im
lokalen Cache gespeichert werden können, anpassen möchten, geben Sie den Cachetyp und die
Eintragskapazität an, wenn Sie den Schlüsselbund initialisieren.

Der hierarchische Schlüsselbund unterstützt die folgenden Cachetypen: Standard, MultiThreaded,
StormTracking und Shared. Weitere Informationen und Beispiele zur Definition der einzelnen
Cachetypen finden Sie unter. the section called “Wählen Sie einen Cache”

Wenn Sie keinen Cache angeben, verwendet der hierarchische Schlüsselbund automatisch den
Standard-Cachetyp und legt die Eintragskapazität auf 1000 fest.

• (Optional) Eine Partitions-ID

Wenn Sie die angebenthe section called “Gemeinsam genutzter Cache”, können Sie optional eine
Partitions-ID definieren. Die Partitions-ID unterscheidet, welcher hierarchische Schlüsselbund
in den Cache schreibt. Wenn Sie beabsichtigen, die Cache-Einträge in einer Partition
wiederzuverwenden oder gemeinsam zu nutzen, müssen Sie Ihre eigene Partitions-ID definieren.
Sie können eine beliebige Zeichenfolge für die Partitions-ID angeben. Wenn Sie keine Partitions-
ID angeben, wird dem Schlüsselbund bei der Erstellung automatisch eine eindeutige Partitions-ID
zugewiesen.

Weitere Informationen finden Sie unter Partitions.

Note

Ihre hierarchischen Schlüsselbunde verwenden dieselben Cache-Einträge in einem
gemeinsam genutzten Cache, wenn Sie zwei oder mehr Schlüsselbunde erstellen, die auf
dieselbe Partitions-ID und Verzweigungsschlüssel-ID verweisen. logical key store name
Wenn Sie nicht möchten, dass sich mehrere Schlüsselbunde dieselben Cache-Einträge
teilen, müssen Sie für jeden hierarchischen Schlüsselbund eine eindeutige Partitions-ID
verwenden.

• (Optional) Eine Liste von Grant-Tokens

Wenn Sie den Zugriff auf den KMS-Schlüssel in Ihrem hierarchischen Schlüsselbund mit Grants
steuern, müssen Sie bei der Initialisierung des Schlüsselbunds alle erforderlichen Grant-Token
angeben.

Erstellen Sie einen hierarchischen Schlüsselbund 168

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Entwicklerhandbuch

Erstellen Sie einen hierarchischen Schlüsselbund mit einer statischen Zweigschlüssel-ID

Die folgenden Beispiele zeigen, wie Sie einen hierarchischen Schlüsselbund mit einer statischen
Zweigschlüssel-ID, derthe section called “Standard-Cache”, und einem Cache-Limit von 600
Sekunden erstellen.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyId(branch-key-id)
 .ttlSeconds(600)
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyId = branch-key-id,
 TtlSeconds = 600
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
 CreateAwsKmsHierarchicalKeyringInput(
 key_store=keystore,
 branch_key_id=branch_key_id,
 ttl_seconds=600
)

Erstellen Sie einen hierarchischen Schlüsselbund 169

AWS Encryption SDK Entwicklerhandbuch

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
 input=keyring_input
)

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store.clone())
 .branch_key_id(branch_key_id)
 .ttl_seconds(600)
 .send()
 .await?;

Go

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
 KeyStore: keyStore,
 BranchKeyId: &branchKeyID,
 TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
 hkeyringInput)
if err != nil {
 panic(err)
}

Erstellen Sie einen hierarchischen Schlüsselbund mit einem Lieferanten für die Zweigschlüssel-ID

Die folgenden Verfahren zeigen, wie Sie einen hierarchischen Schlüsselbund mit einem
Branchenschlüssel-ID-Lieferanten erstellen.

1. Erstellen Sie einen Lieferanten für die Zweigschlüssel-ID

Erstellen Sie einen hierarchischen Schlüsselbund 170

AWS Encryption SDK Entwicklerhandbuch

Im folgenden Beispiel werden benutzerfreundliche Namen für zwei Branch-Schlüssel und
Aufrufe CreateDynamoDbEncryptionBranchKeyIdSupplier zur Erstellung eines Branch-
Schlüssel-ID-Lieferanten erstellt.

Java

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
 private static String branchKeyIdForTenant1;
 private static String branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this.branchKeyIdForTenant1 = tenant1Id;
 this.branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
 .DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
 .build();
final BranchKeyIdSupplier branchKeyIdSupplier =
 ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
 .ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenant1, branch-key-ID-tenant2))
 .build()).branchKeyIdSupplier();

C# / .NET

// Create friendly names for each branch-key-id
 class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
 private String _branchKeyIdForTenant1;
 private String _branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this._branchKeyIdForTenant1 = tenant1Id;
 this._branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
 {

Erstellen Sie einen hierarchischen Schlüsselbund 171

AWS Encryption SDK Entwicklerhandbuch

 DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenant1, branch-key-ID-tenant2)
 }).BranchKeyIdSupplier;

Python

Create branch key ID supplier that maps the branch key ID to a friendly name
branch_key_id_supplier: IBranchKeyIdSupplier = ExampleBranchKeyIdSupplier(
 tenant_1_id=branch_key_id_a,
 tenant_2_id=branch_key_id_b,
)

Rust

// Create branch key ID supplier that maps the branch key ID to a friendly name
let branch_key_id_supplier = ExampleBranchKeyIdSupplier::new(
 &branch_key_id_a,
 &branch_key_id_b
);

Go

// Create branch key ID supplier that maps the branch key ID to a friendly name
keySupplier := branchKeySupplier{branchKeyA: branchKeyA, branchKeyB: branchKeyB}

2. Erstellen Sie einen hierarchischen Schlüsselbund

In den folgenden Beispielen wird ein hierarchischer Schlüsselbund mit dem in Schritt 1 erstellten
Branch-Schlüssel-ID-Lieferanten, einem Cache-Limit von 600 Sekunden und einer maximalen
Cachegröße von 1000 initialisiert.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)

Erstellen Sie einen hierarchischen Schlüsselbund 172

AWS Encryption SDK Entwicklerhandbuch

 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 100 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
 CreateAwsKmsHierarchicalKeyringInput(
 key_store=keystore,
 branch_key_id_supplier=branch_key_id_supplier,
 ttl_seconds=600,
 cache=CacheTypeDefault(
 value=DefaultCache(
 entry_capacity=100
)
),
)

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
 input=keyring_input

Erstellen Sie einen hierarchischen Schlüsselbund 173

AWS Encryption SDK Entwicklerhandbuch

)

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store.clone())
 .branch_key_id_supplier(branch_key_id_supplier)
 .ttl_seconds(600)
 .send()
 .await?;

Go

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
 KeyStore: keyStore,
 BranchKeyIdSupplier: &keySupplier,
 TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
 hkeyringInput)
if err != nil {
 panic(err)
}

AWS KMS ECDH-Schlüsselanhänger

Ein AWS KMS ECDH-Schlüsselbund verwendet eine asymmetrische Schlüsselvereinbarung, AWS
KMS keysum einen gemeinsamen symmetrischen Wrapping-Schlüssel zwischen zwei Parteien
abzuleiten. Zunächst verwendet der Schlüsselbund den Schlüsselvereinbarungsalgorithmus Elliptic
Curve Diffie-Hellman (ECDH), um ein gemeinsames Geheimnis aus dem privaten Schlüssel im
KMS-Schlüsselpaar des Absenders und dem öffentlichen Schlüssel des Empfängers abzuleiten.
Anschließend leitet der Schlüsselbund anhand des gemeinsamen geheimen Schlüssels den
gemeinsamen Wrapping-Schlüssel ab, der Ihre Datenverschlüsselungsschlüssel schützt. Die
Schlüsselableitungsfunktion, die (KDF_CTR_HMAC_SHA384) AWS Encryption SDK verwendet,

AWS KMS ECDH-Schlüsselanhänger 174

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html

AWS Encryption SDK Entwicklerhandbuch

um den gemeinsamen Wrapping-Schlüssel abzuleiten, entspricht den NIST-Empfehlungen für die
Schlüsselableitung.

Die Funktion zur Schlüsselableitung gibt 64 Byte an Schlüsselmaterial zurück. Um sicherzustellen,
dass beide Parteien das richtige Schlüsselmaterial verwenden, AWS Encryption SDK verwendet der
die ersten 32 Byte als Commitment-Schlüssel und die letzten 32 Byte als gemeinsamen Wrapping-
Schlüssel. Wenn der Schlüsselbund beim Entschlüsseln nicht denselben Commitment-Schlüssel
und denselben gemeinsamen Wrapping-Schlüssel reproduzieren kann, die im Chiffretext der
Nachrichtenkopfzeile gespeichert sind, schlägt der Vorgang fehl. Wenn Sie beispielsweise Daten
mit einem Schlüsselbund verschlüsseln, der mit Alices privatem Schlüssel und Bobs öffentlichem
Schlüssel konfiguriert ist, reproduziert ein Schlüsselbund, der mit Bobs privatem Schlüssel und
Alices öffentlichem Schlüssel konfiguriert ist, denselben Commitment-Schlüssel und gemeinsamen
Wrapping-Schlüssel und kann die Daten entschlüsseln. Wenn Bobs öffentlicher Schlüssel nicht von
einem KMS-Schlüsselpaar stammt, kann Bob einen Raw ECDH-Schlüsselbund erstellen, um die
Daten zu entschlüsseln.

Der AWS KMS ECDH-Schlüsselbund verschlüsselt Daten mit einem symmetrischen Schlüssel unter
Verwendung von AES-GCM. Der Datenschlüssel wird dann mit dem abgeleiteten gemeinsamen
Wrapping-Schlüssel unter Verwendung von AES-GCM umhüllt. Jeder AWS KMS ECDH-
Schlüsselbund kann nur einen gemeinsamen Wrapping-Schlüssel haben, aber Sie können mehrere
AWS KMS ECDH-Schlüsselanhänger, einzeln oder zusammen mit anderen Schlüsselbunden, in
einen Mehrfachschlüsselbund aufnehmen.

Kompatibilität mit Programmiersprachen

Der AWS KMS ECDH-Schlüsselbund wurde in Version 1.5.0 der Cryptographic Material Providers
Library (MPL) eingeführt und wird von den folgenden Programmiersprachen und Versionen
unterstützt:

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen MPL-
Abhängigkeit verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Themen

AWS KMS ECDH-Schlüsselanhänger 175

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

• Erforderliche Berechtigungen für AWS KMS ECDH-Schlüsselanhänger

• Einen ECDH-Schlüsselbund AWS KMS erstellen

• Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen

Erforderliche Berechtigungen für AWS KMS ECDH-Schlüsselanhänger

Für das AWS Encryption SDK ist kein AWS Konto erforderlich und es ist auch nicht von einem
Dienst abhängig. AWS Um einen AWS KMS ECDH-Schlüsselbund verwenden zu können, benötigen
Sie jedoch ein AWS Konto und die folgenden Mindestberechtigungen für AWS KMS keys den
Schlüsselbund. Die Berechtigungen variieren je nachdem, welches Schlüsselvereinbarungsschema
Sie verwenden.

• Um Daten mithilfe des KmsPrivateKeyToStaticPublicKey Schlüsselvereinbarungsschemas
zu verschlüsseln und zu entschlüsseln, benötigen Sie kms: GetPublicKey und kms:
DeriveSharedSecret auf dem asymmetrischen KMS-Schlüsselpaar des Absenders. Wenn
Sie den DER-codierten öffentlichen Schlüssel des Absenders direkt angeben, wenn Sie Ihren
Schlüsselbund instanziieren, benötigen Sie nur die kms: DeriveSharedSecret -Berechtigung für das
asymmetrische KMS-Schlüsselpaar des Absenders.

• Um Daten mithilfe des KmsPublicKeyDiscovery Schlüsselvereinbarungsschemas zu
entschlüsseln, benötigen Sie die GetPublicKey Berechtigungen kms: DeriveSharedSecret und kms:
für das angegebene asymmetrische KMS-Schlüsselpaar.

Einen ECDH-Schlüsselbund AWS KMS erstellen

Um einen AWS KMS ECDH-Schlüsselbund zu erstellen, der Daten ver- und entschlüsselt, müssen
Sie das Schlüsselvereinbarungsschema verwenden. KmsPrivateKeyToStaticPublicKey Um
einen AWS KMS ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren,
geben Sie die folgenden KmsPrivateKeyToStaticPublicKey Werte an:

• ID des Absenders AWS KMS key

Muss ein von NIST empfohlenes asymmetrisches KMS-Schlüsselpaar mit elliptischer Kurve
(ECC) mit einem Wert von identifizieren. KeyUsage KEY_AGREEMENT Der private Schlüssel des
Absenders wird verwendet, um den gemeinsamen geheimen Schlüssel abzuleiten.

• (Optional) Der öffentliche Schlüssel des Absenders

Erforderliche Berechtigungen für AWS KMS ECDH-Schlüsselanhänger 176

https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Encryption SDK Entwicklerhandbuch

Muss ein DER-codierter öffentlicher X.509-Schlüssel sein, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert.

Die AWS KMS GetPublicKeyOperation gibt den öffentlichen Schlüssel eines asymmetrischen KMS-
Schlüsselpaars im erforderlichen DER-codierten Format zurück.

Um die Anzahl der AWS KMS Anrufe zu reduzieren, die Ihr Schlüsselbund tätigt, können Sie
den öffentlichen Schlüssel des Absenders direkt angeben. Wenn kein Wert für den öffentlichen
Schlüssel des Absenders angegeben wird, ruft der Schlüsselbund auf, AWS KMS um den
öffentlichen Schlüssel des Absenders abzurufen.

• Der öffentliche Schlüssel des Empfängers

Sie müssen den DER-codierten öffentlichen X.509-Schlüssel des Empfängers, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert, angeben.

Die AWS KMS GetPublicKeyOperation gibt den öffentlichen Schlüssel eines asymmetrischen KMS-
Schlüsselpaars im erforderlichen DER-codierten Format zurück.

• Kurvenspezifikation

Identifiziert die Spezifikation für elliptische Kurven in den angegebenen Schlüsselpaaren. Sowohl
die Schlüsselpaare des Absenders als auch des Empfängers müssen dieselbe Kurvenspezifikation
haben.

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Optional) Eine Liste von Grant-Tokens

Wenn Sie den Zugriff auf den KMS-Schlüssel in Ihrem AWS KMS ECDH-Schlüsselbund mit Grants
steuern, müssen Sie bei der Initialisierung des Schlüsselbunds alle erforderlichen Grant-Token
angeben.

C# / .NET

Im folgenden Beispiel wird ein AWS KMS ECDH-Schlüsselbund mit dem KMS-Schlüssel des
Absenders, dem öffentlichen Schlüssel des Absenders und dem öffentlichen Schlüssel des
Empfängers erstellt. In diesem Beispiel wird der optionale SenderPublicKey Parameter
verwendet, um den öffentlichen Schlüssel des Absenders bereitzustellen. Wenn Sie den
öffentlichen Schlüssel des Absenders nicht angeben, ruft der Schlüsselbund auf, AWS KMS um

Einen ECDH-Schlüsselbund AWS KMS erstellen 177

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Entwicklerhandbuch

den öffentlichen Schlüssel des Absenders abzurufen. Sowohl die Schlüsselpaare des Absenders
als auch des Empfängers befinden sich auf der ECC_NIST_P256 Kurve.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
 {
 SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 SenderPublicKey = BobPublicKey,
 RecipientPublicKey = AlicePublicKey
 }
};

var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

Im folgenden Beispiel wird ein AWS KMS ECDH-Schlüsselbund mit dem KMS-Schlüssel des
Absenders, dem öffentlichen Schlüssel des Absenders und dem öffentlichen Schlüssel des
Empfängers erstellt. In diesem Beispiel wird der optionale senderPublicKey Parameter
verwendet, um den öffentlichen Schlüssel des Absenders bereitzustellen. Wenn Sie den
öffentlichen Schlüssel des Absenders nicht angeben, ruft der Schlüsselbund auf, AWS KMS um
den öffentlichen Schlüssel des Absenders abzurufen. Sowohl die Schlüsselpaare des Absenders
als auch des Empfängers befinden sich auf der ECC_NIST_P256 Kurve.

// Retrieve public keys

Einen ECDH-Schlüsselbund AWS KMS erstellen 178

AWS Encryption SDK Entwicklerhandbuch

// Must be DER-encoded X.509 public keys
ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
 ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
 final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput.builder()
 .senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
 .senderPublicKey(BobPublicKey)
 .recipientPublicKey(AlicePublicKey)
 .build()).build()).build();

Python

Im folgenden Beispiel wird ein AWS KMS ECDH-Schlüsselbund mit dem KMS-Schlüssel des
Absenders, dem öffentlichen Schlüssel des Absenders und dem öffentlichen Schlüssel des
Empfängers erstellt. In diesem Beispiel wird der optionale senderPublicKey Parameter
verwendet, um den öffentlichen Schlüssel des Absenders bereitzustellen. Wenn Sie den
öffentlichen Schlüssel des Absenders nicht angeben, ruft der Schlüsselbund auf, AWS KMS um
den öffentlichen Schlüssel des Absenders abzurufen. Sowohl die Schlüsselpaare des Absenders
als auch des Empfängers befinden sich auf der ECC_NIST_P256 Kurve.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateAwsKmsEcdhKeyringInput,
 KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey,
 KmsPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(

Einen ECDH-Schlüsselbund AWS KMS erstellen 179

AWS Encryption SDK Entwicklerhandbuch

 config=MaterialProvidersConfig()
)

Retrieve public keys
Must be DER-encoded X.509 public keys
bob_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
alice_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321")

Create the AWS KMS ECDH static keyring
sender_keyring_input = CreateAwsKmsEcdhKeyringInput(
 kms_client = boto3.client('kms', region_name="us-west-2"),
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme =
 KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput(
 sender_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 sender_public_key = bob_public_key,
 recipient_public_key = alice_public_key,

)
)
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(sender_keyring_input)

Rust

Im folgenden Beispiel wird ein AWS KMS ECDH-Schlüsselbund mit dem KMS-Schlüssel des
Absenders, dem öffentlichen Schlüssel des Absenders und dem öffentlichen Schlüssel des
Empfängers erstellt. In diesem Beispiel wird der optionale sender_public_key Parameter
verwendet, um den öffentlichen Schlüssel des Absenders bereitzustellen. Wenn Sie den
öffentlichen Schlüssel des Absenders nicht angeben, ruft der Schlüsselbund auf, AWS KMS um
den öffentlichen Schlüssel des Absenders abzurufen.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

Einen ECDH-Schlüsselbund AWS KMS erstellen 180

AWS Encryption SDK Entwicklerhandbuch

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content_recipient =
 parse(public_key_file_content_recipient)?;
let public_key_recipient_utf8_bytes =
 parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
 KmsPrivateKeyToStaticPublicKeyInput::builder()
 .sender_kms_identifier(arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
 // Must be a UTF8 DER-encoded X.509 public key
 .sender_public_key(public_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let kms_ecdh_static_configuration =
 KmsEcdhStaticConfigurations::KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;

Einen ECDH-Schlüsselbund AWS KMS erstellen 181

AWS Encryption SDK Entwicklerhandbuch

let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring
let kms_ecdh_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client)
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

Einen ECDH-Schlüsselbund AWS KMS erstellen 182

AWS Encryption SDK Entwicklerhandbuch

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Retrieve public keys
// Must be DER-encoded X.509 keys
publicKeySender, err := utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameSender)
if err != nil {
 panic(err)
}
publicKeyRecipient, err :=
 utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameRecipient)
if err != nil {
 panic(err)
}

// Create KmsPrivateKeyToStaticPublicKeyInput
kmsEcdhStaticConfigurationInput := mpltypes.KmsPrivateKeyToStaticPublicKeyInput{
 RecipientPublicKey: publicKeyRecipient,
 SenderKmsIdentifier: arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
 SenderPublicKey: publicKeySender,
}
kmsEcdhStaticConfiguration :=
 &mpltypes.KmsEcdhStaticConfigurationsMemberKmsPrivateKeyToStaticPublicKey{
 Value: kmsEcdhStaticConfigurationInput,
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create AWS KMS ECDH keyring
awsKmsEcdhKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: kmsEcdhStaticConfiguration,
 KmsClient: kmsClient,

Einen ECDH-Schlüsselbund AWS KMS erstellen 183

AWS Encryption SDK Entwicklerhandbuch

}
awsKmsEcdhKeyring, err := matProv.CreateAwsKmsEcdhKeyring(context.Background(),
 awsKmsEcdhKeyringInput)
if err != nil {
 panic(err)
}

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen

Beim Entschlüsseln empfiehlt es sich, die Schlüssel anzugeben, die sie verwenden können. AWS
Encryption SDK Um dieser bewährten Methode zu folgen, verwenden Sie einen AWS KMS ECDH-
Schlüsselbund mit dem KmsPrivateKeyToStaticPublicKey Schlüsselvereinbarungsschema.
Sie können jedoch auch einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen, d. h. einen
AWS KMS ECDH-Schlüsselbund, der jede Nachricht entschlüsseln kann, bei der der öffentliche
Schlüssel des angegebenen KMS-Schlüsselpaars mit dem öffentlichen Schlüssel des Empfängers
übereinstimmt, der im Nachrichtenchiffretext gespeichert ist.

Important

Wenn Sie Nachrichten mithilfe des KmsPublicKeyDiscovery
Schlüsselvereinbarungsschemas entschlüsseln, akzeptieren Sie alle öffentlichen Schlüssel,
unabhängig davon, wem sie gehören.

Um einen AWS KMS ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren,
geben Sie die KmsPublicKeyDiscovery folgenden Werte an:

• ID des Empfängers AWS KMS key

Muss ein von NIST empfohlenes asymmetrisches KMS-Schlüsselpaar mit elliptischer Kurve (ECC)
mit einem Wert von identifizieren. KeyUsage KEY_AGREEMENT

• Spezifikation der Kurve

Identifiziert die elliptische Kurvenspezifikation im KMS-Schlüsselpaar des Empfängers.

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Optional) Eine Liste von Grant-Tokens

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen 184

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie den Zugriff auf den KMS-Schlüssel in Ihrem AWS KMS ECDH-Schlüsselbund mit Grants
steuern, müssen Sie bei der Initialisierung des Schlüsselbunds alle erforderlichen Grant-Token
angeben.

C# / .NET

Im folgenden Beispiel wird ein AWS KMS ECDH-Discovery-Schlüsselbund mit einem KMS-
Schlüsselpaar auf der ECC_NIST_P256 Kurve erstellt. Sie müssen über die DeriveSharedSecret
Berechtigungen kms: GetPublicKey und kms: für das angegebene KMS-Schlüsselpaar verfügen.
Dieser Schlüsselbund kann jede Nachricht entschlüsseln, bei der der öffentliche Schlüssel
des angegebenen KMS-Schlüsselpaars mit dem öffentlichen Schlüssel des Empfängers
übereinstimmt, der im Nachrichtenchiffretext gespeichert ist.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
 {
 RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = discoveryConfiguration
};
var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

Im folgenden Beispiel wird ein AWS KMS ECDH-Discovery-Schlüsselbund mit einem KMS-
Schlüsselpaar auf der ECC_NIST_P256 Kurve erstellt. Sie müssen über die DeriveSharedSecret
Berechtigungen kms: GetPublicKey und kms: für das angegebene KMS-Schlüsselpaar verfügen.
Dieser Schlüsselbund kann jede Nachricht entschlüsseln, bei der der öffentliche Schlüssel

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen 185

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Entwicklerhandbuch

des angegebenen KMS-Schlüsselpaars mit dem öffentlichen Schlüssel des Empfängers
übereinstimmt, der im Nachrichtenchiffretext gespeichert ist.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput.builder()
 .recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321").build()
).build())
 .build();

Python

Im folgenden Beispiel wird ein AWS KMS ECDH-Discovery-Schlüsselbund mit einem KMS-
Schlüsselpaar auf der ECC_NIST_P256 Kurve erstellt. Sie müssen über die DeriveSharedSecret
Berechtigungen kms: GetPublicKey und kms: für das angegebene KMS-Schlüsselpaar verfügen.
Dieser Schlüsselbund kann jede Nachricht entschlüsseln, bei der der öffentliche Schlüssel
des angegebenen KMS-Schlüsselpaars mit dem öffentlichen Schlüssel des Empfängers
übereinstimmt, der im Nachrichtenchiffretext gespeichert ist.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateAwsKmsEcdhKeyringInput,
 KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery,
 KmsPublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS ECDH discovery keyring
create_keyring_input = CreateAwsKmsEcdhKeyringInput(

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen 186

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Entwicklerhandbuch

 kms_client = boto3.client('kms', region_name="us-west-2"),
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme = KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput(
 recipient_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
)
)
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(create_keyring_input)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
 KmsPublicKeyDiscoveryInput::builder()
 .recipient_kms_identifier(ecc_recipient_key_arn)
 .build()?;

let kms_ecdh_discovery_static_configuration =
 KmsEcdhStaticConfigurations::KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_input);

// Instantiate the material providers library

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen 187

AWS Encryption SDK Entwicklerhandbuch

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring
let kms_ecdh_discovery_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client.clone())
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_discovery_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen 188

AWS Encryption SDK Entwicklerhandbuch

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Create KmsPublicKeyDiscoveryInput
kmsEcdhDiscoveryStaticConfigurationInput := mpltypes.KmsPublicKeyDiscoveryInput{
 RecipientKmsIdentifier: eccRecipientKeyArn,
}
kmsEcdhDiscoveryStaticConfiguration :=
 &mpltypes.KmsEcdhStaticConfigurationsMemberKmsPublicKeyDiscovery{
 Value: kmsEcdhDiscoveryStaticConfigurationInput,
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create AWS KMS ECDH discovery keyring
awsKmsEcdhDiscoveryKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: kmsEcdhDiscoveryStaticConfiguration,
 KmsClient: kmsClient,
}
awsKmsEcdhDiscoveryKeyring, err :=
 matProv.CreateAwsKmsEcdhKeyring(context.Background(),
 awsKmsEcdhDiscoveryKeyringInput)
if err != nil {
 panic(err)
}

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen 189

AWS Encryption SDK Entwicklerhandbuch

Unformatierte AES-Schlüsselbunde

AWS Encryption SDK Damit können Sie einen symmetrischen AES-Schlüssel verwenden,
den Sie als Umschließungsschlüssel angeben, der Ihren Datenschlüssel schützt. Sie müssen
das Schlüsselmaterial generieren, speichern und schützen, vorzugsweise in einem Hardware-
Sicherheitsmodul (HSM) oder einem Schlüsselverwaltungssystem. Verwenden Sie einen RAW-AES-
Schlüsselbund, wenn Sie den Wrap-Schlüssel bereitstellen und die Datenschlüssel lokal oder offline
verschlüsseln müssen.

Der Raw AES-Schlüsselbund verschlüsselt Daten mithilfe des AES-GCM-Algorithmus und
eines Wrapping-Schlüssels, den Sie als Byte-Array angeben. Sie können in jedem Raw-
AES-Schlüsselbund nur einen Wrap-Schlüssel angeben, aber Sie können mehrere Raw
AES-Schlüsselanhänger, allein oder zusammen mit anderen Schlüsselbunden, in einen
Mehrfachschlüsselbund aufnehmen.

Der Raw-AES-Schlüsselbund entspricht der Klasse in der und der JceMasterKeyKlasse in der
AWS-Verschlüsselungs-SDK for Java und interagiert mit ihnen, AWS-Verschlüsselungs-SDK for
Python wenn sie mit AES-Verschlüsselungsschlüsseln verwendet werden. RawMasterKey Sie
können Ihrer Daten mit einer Programmiersprachen-Implementierung verschlüsseln und mit jeder
beliebigen anderen Sprachenimplementierung unter Verwendung desselben Umhüllungsschlüssels
entschlüsseln. Details hierzu finden Sie unter Schlüsselbund-Kompatibilität.

Wichtige Namespaces und Namen

Um den AES-Schlüssel in einem Schlüsselbund zu identifizieren, verwendet der Raw AES-
Schlüsselbund einen Schlüsselnamespace und einen Schlüsselnamen, die Sie angeben.
Diese Werte sind nicht geheim. Sie erscheinen im Klartext in der Kopfzeile der verschlüsselten
Nachricht, die der Verschlüsselungsvorgang zurückgibt. Wir empfehlen, für Ihr HSM- oder
Schlüsselverwaltungssystem einen Schlüsselnamespace und einen Schlüsselnamen zu verwenden,
der den AES-Schlüssel in diesem System identifiziert.

Note

Der Schlüsselnamespace und der Schlüsselname entsprechen den Feldern Provider-ID (oder
Provider) und Key-ID in den Feldern und. JceMasterKey RawMasterKey
Die Felder AWS-Verschlüsselungs-SDK for C und AWS Encryption SDK für .NET reservieren
den aws-kms Schlüsselnamespace-Wert für KMS-Schlüssel. Verwenden Sie diesen

Unformatierte AES-Schlüsselbunde 190

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Entwicklerhandbuch

Namespace-Wert nicht in einem Raw AES- oder Raw RSA-Schlüsselbund mit diesen
Bibliotheken.

Wenn Sie verschiedene Schlüsselringe zum Verschlüsseln und Entschlüsseln einer bestimmten
Nachricht erstellen, sind die Namespace- und Namenswerte entscheidend. Wenn der
Schlüsselnamespace und der Schlüsselname im Schlüsselbund für die Entschlüsselung nicht exakt
und unter Berücksichtigung der Groß- und Kleinschreibung mit dem Schlüsselnamespace und dem
Schlüsselnamen im Verschlüsselungsschlüsselbund übereinstimmen, wird der Schlüsselbund nicht
verwendet, auch wenn die Schlüsselmaterial-Bytes identisch sind.

Sie könnten beispielsweise einen RAW-AES-Schlüsselbund mit Schlüsselnamespace und
Schlüsselname definieren. HSM_01 AES_256_012 Anschließend verwenden Sie diesen
Schlüsselbund, um einige Daten zu verschlüsseln. Um diese Daten zu entschlüsseln, erstellen Sie
einen RAW-AES-Schlüsselbund mit demselben Schlüsselnamespace, demselben Schlüsselnamen
und demselben Schlüsselmaterial.

Die folgenden Beispiele zeigen, wie Sie einen Raw AES-Schlüsselbund erstellen. Die
AESWrappingKey Variable steht für das von Ihnen bereitgestellte Schlüsselmaterial.

C

Um einen Raw AES-Schlüsselbund in der zu instanziieren, verwenden Sie AWS-
Verschlüsselungs-SDK for C. aws_cryptosdk_raw_aes_keyring_new() Ein vollständiges
Beispiel finden Sie unter raw_aes_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");

struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
 alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key,
 wrapping_key_len);

C# / .NET

Verwenden Sie die Methode, um einen Raw-AES-Schlüsselbund für.NET zu erstellen. AWS
Encryption SDK materialProviders.CreateRawAesKeyring() Ein vollständiges Beispiel
finden Sie unter Raw AESKeyring Example.cs.

Unformatierte AES-Schlüsselbunde 191

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

Im folgenden Beispiel wird Version 4 verwendet. x von AWS Encryption SDK für .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
 material.
// In production, use key material from a secure source.
var aesWrappingKey = new
 MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 WrappingKey = aesWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

Das AWS-Verschlüsselungs-SDK for JavaScript im Browser bezieht seine kryptografischen
Primitive von der WebCryptoAPI. Bevor Sie den Schlüsselbund erstellen, müssen Sie ihn
verwenden, RawAesKeyringWebCrypto.importCryptoKey() um das Rohschlüsselmaterial
in das Backend zu importieren. WebCrypto Dadurch wird sichergestellt, dass der Schlüsselbund
vollständig ist, obwohl alle Aufrufe asynchron sind. WebCrypto

Verwenden Sie dann die Methode, um einen Raw AES-Schlüsselbund zu instanziieren.
RawAesKeyringWebCrypto() Sie müssen den AES-Wrapping-Algorithmus („Wrapping Suite“)
auf der Grundlage der Länge Ihres Schlüsselmaterials angeben. Ein vollständiges Beispiel finden
Sie unter aes_simple.ts (Browser). JavaScript

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer

Unformatierte AES-Schlüsselbunde 192

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK Entwicklerhandbuch

verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

import {
 RawAesWrappingSuiteIdentifier,
 RawAesKeyringWebCrypto,
 synchronousRandomValues,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

const wrappingSuite =
 RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */
const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey(
 rawAesKey,
 wrappingSuite
)

const rawAesKeyring = new RawAesKeyringWebCrypto({
 keyName,
 keyNamespace,
 wrappingSuite,
 aesWrappingKey
})

JavaScript Node.js

Um einen Raw AES-Schlüsselbund in der Datei AWS-Verschlüsselungs-SDK for JavaScript
für Node.js zu instanziieren, erstellen Sie eine Instanz der Klasse. RawAesKeyringNode Sie
müssen den AES-Wrapping-Algorithmus („Wrapping Suite“) auf der Grundlage der Länge Ihres
Schlüsselmaterials angeben. Ein vollständiges Beispiel finden Sie unter aes_simple.ts (Node.js).
JavaScript

Unformatierte AES-Schlüsselbunde 193

https://github.com/aws/aws-encryption-sdk-javascript//blob/master/modules/example-node/src/aes_simple.ts

AWS Encryption SDK Entwicklerhandbuch

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

import {
 RawAesKeyringNode,
 buildClient,
 CommitmentPolicy,
 RawAesWrappingSuiteIdentifier,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite =
 RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

const rawAesKeyring = new RawAesKeyringNode({
 keyName,
 keyNamespace,
 aesWrappingKey,
 wrappingSuite,
})

Java

Um einen Raw AES-Schlüsselbund in der zu instanziieren, verwenden Sie AWS-
Verschlüsselungs-SDK for Java. matProv.CreateRawAesKeyring()

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()

Unformatierte AES-Schlüsselbunde 194

AWS Encryption SDK Entwicklerhandbuch

 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Python

Das folgende Beispiel instanziiert den AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Ein vollständiges Beispiel finden Sie unter
raw_aes_keyring_example.py im AWS-Verschlüsselungs-SDK for Python Repository unter.
GitHub

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "AES_256_012"

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create Raw AES keyring
keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 wrapping_key=AESWrappingKey,
 wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
)

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(

Unformatierte AES-Schlüsselbunde 195

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_aes_keyring_example.py

AWS Encryption SDK Entwicklerhandbuch

 input=keyring_input
)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aws_smithy_types::Blob::new(AESWrappingKey))
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Go

import (
 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

Unformatierte AES-Schlüsselbunde 196

AWS Encryption SDK Entwicklerhandbuch

 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
//Instantiate the AWS Encryption SDK client.
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}
// Define the key namespace and key name
var keyNamespace = "A managed aes keys"
var keyName = "My 256-bit AES wrapping key"

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}
// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}
// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: aesWrappingKey,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)
if err != nil {
 panic(err)
}

Unformatierte AES-Schlüsselbunde 197

AWS Encryption SDK Entwicklerhandbuch

Unformatierte RSA-Schlüsselbunde

Der Raw RSA-Schlüsselbund führt eine asymmetrische Verschlüsselung und Entschlüsselung
von Datenschlüsseln im lokalen Speicher mit öffentlichen und privaten RSA-Schlüsseln durch,
die Sie bereitstellen. Sie müssen den privaten Schlüssel generieren, speichern und schützen,
vorzugsweise in einem Hardware-Sicherheitsmodul (HSM) oder einem Schlüsselverwaltungssystem.
Die Verschlüsselungsfunktion verschlüsselt den Datenschlüssel unter dem öffentlichen RSA-
Schlüssel. Die Entschlüsselungsfunktion entschlüsselt den Datenschlüssel mithilfe des privaten
Schlüssels. Sie können aus mehreren RSA-Padding-Modi auswählen.

Ein unformatierter RSA-Schlüsselbund, der verschlüsselt und entschlüsselt, muss ein
asymmetrisches öffentliches und privates Schlüsselpaar enthalten. Sie können Daten jedoch
mit einem Raw RSA Keyring verschlüsseln, der nur über einen öffentlichen Schlüssel verfügt,
und Sie können Daten mit einem Raw RSA Schlüsselbund entschlüsseln, der nur über einen
privaten Schlüssel verfügt. Sie können einen beliebigen Raw RSA-Schlüsselbund in einen
Mehrfachschlüsselbund aufnehmen. Wenn Sie einen Raw RSA-Schlüsselbund mit einem öffentlichen
und einem privaten Schlüssel konfigurieren, stellen Sie sicher, dass sie Teil desselben key
pair sind. In einigen Sprachimplementierungen von AWS Encryption SDK wird kein Raw RSA-
Schlüsselbund mit Schlüsseln aus verschiedenen Paaren erstellt. Andere verlassen sich darauf, dass
Sie überprüfen, ob Ihre Schlüssel von demselben key pair stammen.

Der Raw RSA Keyring entspricht in the und the JceMasterKey AWS-Verschlüsselungs-SDK for
Java in und arbeitet mit ihnen zusammen, AWS-Verschlüsselungs-SDK for Python wenn sie
mit RawMasterKeyasymmetrischen RSA-Verschlüsselungsschlüsseln verwendet werden. Sie
können Ihrer Daten mit einer Programmiersprachen-Implementierung verschlüsseln und mit jeder
beliebigen anderen Sprachenimplementierung unter Verwendung desselben Umhüllungsschlüssels
entschlüsseln. Details hierzu finden Sie unter Schlüsselbund-Kompatibilität.

Note

Der Raw RSA-Schlüsselbund unterstützt keine asymmetrischen KMS-Schlüssel. Wenn
Sie asymmetrische RSA-KMS-Schlüssel verwenden möchten, unterstützen die folgenden
Programmiersprachen AWS KMS Schlüsselringe, die asymmetrische RSA verwenden: AWS
KMS keys

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

Unformatierte RSA-Schlüsselbunde 198

https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Entwicklerhandbuch

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen
Abhängigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Wenn Sie Daten mit einem RSA-RSA-Schlüsselbund verschlüsseln, der den öffentlichen
Schlüssel eines RSA-KMS-Schlüssels enthält, können AWS Encryption SDK weder AWS
KMS der RSA-KMS-Schlüssel noch diesen entschlüsseln. Sie können den privaten Schlüssel
eines AWS KMS asymmetrischen KMS-Schlüssels nicht in einen Raw RSA-Schlüsselbund
exportieren. Der AWS KMS Entschlüsselungsvorgang kann die verschlüsselte Nachricht, die
zurückgegeben wird, nicht entschlüsseln. AWS Encryption SDK

Achten Sie beim Erstellen eines RSA-Schlüsselbunds in der darauf AWS-Verschlüsselungs-SDK for
C, dass Sie den Inhalt der PEM-Datei, die jeden Schlüssel enthält, als Null-terminierte C-Zeichenfolge
angeben, nicht als Pfad oder Dateiname. Achten Sie beim Erstellen eines unformatierten RSA-
Schlüsselbunds in JavaScript auf mögliche Inkompatibilität mit anderen Sprachenimplementierungen.

Namespaces und Namen

Um das RSA-Schlüsselmaterial in einem Schlüsselbund zu identifizieren, verwendet der RSA-RSA-
Schlüsselbund einen Schlüsselnamespace und einen Schlüsselnamen, die Sie angeben. Diese
Werte sind nicht geheim. Sie erscheinen im Klartext in der Kopfzeile der verschlüsselten Nachricht,
die der Verschlüsselungsvorgang zurückgibt. Wir empfehlen, den Schlüsselnamespace und den
Schlüsselnamen zu verwenden, die das RSA-Schlüsselpaar (oder seinen privaten Schlüssel) in Ihrem
HSM oder Schlüsselverwaltungssystem identifizieren.

Note

Der Schlüsselnamespace und der Schlüsselname entsprechen den Feldern Provider-ID (oder
Provider) und Key-ID in den Feldern und. JceMasterKey RawMasterKey
Der AWS-Verschlüsselungs-SDK for C reserviert den aws-kms Schlüsselnamespace-Wert
für KMS-Schlüssel. Verwenden Sie ihn nicht in einem Raw AES Keyring oder Raw RSA
Keyring mit dem. AWS-Verschlüsselungs-SDK for C

Wenn Sie verschiedene Schlüsselbunde zum Verschlüsseln und Entschlüsseln einer bestimmten
Nachricht erstellen, sind der Namespace und die Namenswerte entscheidend. Wenn der

Unformatierte RSA-Schlüsselbunde 199

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Schlüsselnamespace und der Schlüsselname im Entschlüsselungsschlüsselbund nicht exakt
und unter Berücksichtigung der Groß- und Kleinschreibung für den Schlüsselnamespace
und den Schlüsselnamen im Verschlüsselungsschlüsselbund übereinstimmen, wird der
Entschlüsselungsschlüsselbund nicht verwendet, auch wenn die Schlüssel aus demselben key pair
stammen.

Der Schlüsselnamespace und der Schlüsselname des Schlüsselmaterials in den Verschlüsselungs-
und Entschlüsselungsschlüsselbunden müssen identisch sein, unabhängig davon, ob der
Schlüsselbund den öffentlichen RSA-Schlüssel, den privaten RSA-Schlüssel oder beide
Schlüssel im key pair enthält. Nehmen wir beispielsweise an, Sie verschlüsseln Daten mit einem
RSA-Rohschlüsselbund für einen öffentlichen RSA-Schlüssel mit Schlüsselnamespace und
Schlüsselname. HSM_01 RSA_2048_06 Um diese Daten zu entschlüsseln, erstellen Sie einen RSA-
Rohschlüsselbund mit dem privaten Schlüssel (oder key pair) und demselben Schlüsselnamespace
und Namen.

Padding-Modus

Sie müssen einen Füllmodus für RSA-Rohschlüsselringe angeben, die für die Verschlüsselung und
Entschlüsselung verwendet werden, oder Funktionen Ihrer Sprachimplementierung verwenden, die
ihn für Sie spezifizieren.

Der AWS Encryption SDK unterstützt die folgenden Füllmodi, die den Einschränkungen der
jeweiligen Sprache unterliegen. Wir empfehlen einen OAEP-Padding-Modus, insbesondere OAEP
mit SHA-256 und mit SHA-256 Padding. MGF1 Der Padding-Modus wird nur aus Gründen der
Abwärtskompatibilität unterstützt. PKCS1

• OAEP mit SHA-1 und mit SHA-1 Padding MGF1

• OAEP mit SHA-256 und mit SHA-256-Padding MGF1

• OAEP mit SHA-384 und mit SHA-384-Padding MGF1

• OAEP mit SHA-512 und mit SHA-512-Padding MGF1

• PKCS1 v1.5 Polsterung

Die folgenden Beispiele zeigen, wie Sie einen RSA-Rohschlüsselbund mit dem öffentlichen
und privaten Schlüssel eines RSA-Schlüsselpaars und den OAEP mit SHA-256 und dem
SHA-256-Padding-Modus erstellen. MGF1 Die Variablen und stellen das von Ihnen bereitgestellte
Hauptmaterial dar. RSAPublicKey RSAPrivateKey

Unformatierte RSA-Schlüsselbunde 200

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS Encryption SDK Entwicklerhandbuch

C

Um einen RSA-Schlüsselbund in Raw zu erstellen AWS-Verschlüsselungs-SDK for C, verwenden
Sie. aws_cryptosdk_raw_rsa_keyring_new

Achten Sie beim Aufbau eines Raw RSA-Schlüsselbunds in der darauf AWS-Verschlüsselungs-
SDK for C, dass Sie den Inhalt der PEM-Datei, die jeden Schlüssel enthält, als Null-terminierte C-
Zeichenfolge angeben, nicht als Pfad oder Dateiname. Ein vollständiges Beispiel finden Sie unter
raw_rsa_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new(
 alloc,
 key_namespace,
 key_name,
 private_key_from_pem,
 public_key_from_pem,
 AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C# / .NET

Verwenden Sie die Methode, um einen Raw RSA-Schlüsselbund in für.NET zu instanziieren. AWS
Encryption SDK materialProviders.CreateRawRsaKeyring() Ein vollständiges Beispiel
finden Sie unter Raw Example.cs. RSAKeyring

Das folgende Beispiel verwendet Version 4. x von AWS Encryption SDK für .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files
var publicKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

Unformatierte RSA-Schlüsselbunde 201

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
 PublicKey = publicKey,
 PrivateKey = privateKey
};

// Create the keyring
var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

JavaScript Browser

Das AWS-Verschlüsselungs-SDK for JavaScript im Browser bezieht seine kryptografischen
Primitive aus der WebCryptoBibliothek. Bevor Sie den Schlüsselbund erstellen, müssen Sie das
Rohschlüsselmaterial verwenden importPublicKey() und/oder importPrivateKey() in das
Backend importieren. WebCrypto Dadurch wird sichergestellt, dass der Schlüsselbund vollständig
ist, obwohl alle Aufrufe asynchron sind. WebCrypto Das Objekt, das die Importmethoden
verwenden, beinhaltet den Wrapping-Algorithmus und seinen Padding-Modus.

Verwenden Sie nach dem Import des Schlüsselmaterials die RawRsaKeyringWebCrypto()
Methode, um den Schlüsselbund zu instanziieren. Beachten Sie bei der Erstellung eines
RSA-Schlüsselbundes in Raw die mögliche JavaScript Inkompatibilität mit anderen
Sprachimplementierungen.

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

Ein vollständiges Beispiel finden Sie unter rsa_simple.ts (Browser). JavaScript

import {
 RsaImportableKey,
 RawRsaKeyringWebCrypto,
 buildClient,
 CommitmentPolicy,

Unformatierte RSA-Schlüsselbunde 202

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/rsa_simple.ts

AWS Encryption SDK Entwicklerhandbuch

} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey(
 privateRsaJwKKey
)

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey(
 publicRsaJwKKey
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048_06'

const keyring = new RawRsaKeyringWebCrypto({
 keyName,
 keyNamespace,
 publicKey,
 privateKey,
})

JavaScript Node.js

Um einen RSA-Schlüsselbund in Node.js zu instanziieren, erstellen Sie eine neue Instanz der
Klasse AWS-Verschlüsselungs-SDK for JavaScript . RawRsaKeyringNode Der wrapKey
Parameter enthält den öffentlichen Schlüssel. Der unwrapKey Parameter enthält den privaten
Schlüssel. Der RawRsaKeyringNode Konstruktor berechnet einen Standard-Füllmodus für Sie,
obwohl Sie einen bevorzugten Füllmodus angeben können.

Beachten Sie bei der Erstellung eines RSA-Schlüsselanhängers die mögliche Inkompatibilität mit
JavaScript anderen Sprachimplementierungen.

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

Ein vollständiges Beispiel finden Sie unter rsa_simple.ts (Node.js). JavaScript

Unformatierte RSA-Schlüsselbunde 203

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/rsa_simple.ts

AWS Encryption SDK Entwicklerhandbuch

import {
 RawRsaKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048_06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey,
 rsaPrivateKey})

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
 .keyName("RSA_2048_06")
 .keyNamespace("HSM_01")
 .paddingScheme(PaddingScheme.OAEP_SHA256_MGF1)
 .publicKey(RSAPublicKey)
 .privateKey(RSAPrivateKey)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Python

Im folgenden Beispiel wird der Client mit der Standard-Commitment-Richtlinie instanziiert AWS
Encryption SDK . REQUIRE_ENCRYPT_REQUIRE_DECRYPT Ein vollständiges Beispiel finden Sie
unter raw_rsa_keyring_example.py im AWS-Verschlüsselungs-SDK for Python Repository unter.
GitHub

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "RSA_2048_06"

Instantiate the material providers

Unformatierte RSA-Schlüsselbunde 204

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_rsa_keyring_example.py

AWS Encryption SDK Entwicklerhandbuch

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create Raw RSA keyring
keyring_input: CreateRawRsaKeyringInput = CreateRawRsaKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 padding_scheme=PaddingScheme.OAEP_SHA256_MGF1,
 public_key=RSAPublicKey,
 private_key=RSAPrivateKey
)

raw_rsa_keyring: IKeyring = mat_prov.create_raw_rsa_keyring(
 input=keyring_input
)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "RSA_2048_06";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw RSA keyring
let raw_rsa_keyring = mpl

Unformatierte RSA-Schlüsselbunde 205

AWS Encryption SDK Entwicklerhandbuch

 .create_raw_rsa_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .padding_scheme(PaddingScheme::OaepSha256Mgf1)
 .public_key(aws_smithy_types::Blob::new(RSAPublicKey))
 .private_key(aws_smithy_types::Blob::new(RSAPrivateKey))
 .send()
 .await?;

Go

// Instantiate the material providers library
matProv, err :=
 awscryptographymaterialproviderssmithygenerated.NewClient(awscryptographymaterialproviderssmithygeneratedtypes.MaterialProvidersConfig{})

// Create Raw RSA keyring
rsaKeyRingInput :=
 awscryptographymaterialproviderssmithygeneratedtypes.CreateRawRsaKeyringInput{
 KeyName: "rsa",
 KeyNamespace: "rsa-keyring",
 PaddingScheme:
 awscryptographymaterialproviderssmithygeneratedtypes.PaddingSchemePkcs1,
 PublicKey: pem.EncodeToMemory(publicKeyBlock),
 PrivateKey: pem.EncodeToMemory(privateKeyBlock),
}

rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
 rsaKeyRingInput)

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

Unformatierte RSA-Schlüsselbunde 206

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create Raw RSA keyring
rsaKeyRingInput := mpltypes.CreateRawRsaKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 PaddingScheme: mpltypes.PaddingSchemeOaepSha512Mgf1,
 PublicKey: (RSAPublicKey),
 PrivateKey: (RSAPrivateKey),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
 rsaKeyRingInput)
if err != nil {
 panic(err)
}

Unformatierte RSA-Schlüsselbunde 207

AWS Encryption SDK Entwicklerhandbuch

Raw ECDH Schlüsselanhänger

Der Raw ECDH-Schlüsselbund verwendet die von Ihnen angegebenen Paare aus öffentlichem und
privatem Schlüssel mit elliptischer Kurve, um einen gemeinsamen Wrapping-Schlüssel zwischen
zwei Parteien abzuleiten. Zunächst leitet der Schlüsselbund mithilfe des privaten Schlüssels des
Absenders, des öffentlichen Schlüssels des Empfängers und des Schlüsselvereinbarungsalgorithmus
Elliptic Curve Diffie-Hellman (ECDH) ein gemeinsames Geheimnis ab. Anschließend leitet der
Schlüsselbund anhand des gemeinsamen geheimen Schlüssels den gemeinsamen Wrapping-
Schlüssel ab, der Ihre Datenverschlüsselungsschlüssel schützt. Die Schlüsselableitungsfunktion,
die (KDF_CTR_HMAC_SHA384) AWS Encryption SDK verwendet, um den gemeinsamen Wrapping-
Schlüssel abzuleiten, entspricht den NIST-Empfehlungen für die Schlüsselableitung.

Die Funktion zur Schlüsselableitung gibt 64 Byte an Schlüsselmaterial zurück. Um sicherzustellen,
dass beide Parteien das richtige Schlüsselmaterial verwenden, AWS Encryption SDK verwendet der
die ersten 32 Byte als Commitment-Schlüssel und die letzten 32 Byte als gemeinsamen Wrapping-
Schlüssel. Wenn der Schlüsselbund beim Entschlüsseln nicht denselben Commitment-Schlüssel
und denselben gemeinsamen Wrapping-Schlüssel reproduzieren kann, die im Chiffretext der
Nachrichtenkopfzeile gespeichert sind, schlägt der Vorgang fehl. Wenn Sie beispielsweise Daten
mit einem Schlüsselbund verschlüsseln, der mit Alices privatem Schlüssel und Bobs öffentlichem
Schlüssel konfiguriert ist, reproduziert ein Schlüsselbund, der mit Bobs privatem Schlüssel und
Alices öffentlichem Schlüssel konfiguriert ist, denselben Commitment-Schlüssel und gemeinsamen
Wrapping-Schlüssel und kann die Daten entschlüsseln. Wenn Bobs öffentlicher Schlüssel aus einem
AWS KMS key Paar stammt, kann Bob einen AWS KMS ECDH-Schlüsselbund erstellen, um die
Daten zu entschlüsseln.

Der Raw ECDH-Schlüsselbund verschlüsselt Daten mit einem symmetrischen Schlüssel
unter Verwendung von AES-GCM. Der Datenschlüssel wird dann mit dem abgeleiteten
gemeinsamen Wrapping-Schlüssel unter Verwendung von AES-GCM umhüllt. Jeder Raw ECDH-
Schlüsselbund kann nur einen gemeinsamen Wrap-Schlüssel haben, aber Sie können mehrere
Raw ECDH-Schlüsselanhänger, einzeln oder zusammen mit anderen Schlüsselbunden, in einen
Mehrfachschlüsselbund aufnehmen.

Sie sind dafür verantwortlich, Ihre privaten Schlüssel zu generieren, zu speichern und zu schützen,
vorzugsweise in einem Hardware-Sicherheitsmodul (HSM) oder einem Schlüsselverwaltungssystem.
Die Schlüsselpaare des Absenders und des Empfängers müssen sich auf derselben elliptischen
Kurve befinden. Das AWS Encryption SDK unterstützt die folgenden Spezifikationen für elliptische
Kurven:

Raw ECDH Schlüsselanhänger 208

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK Entwicklerhandbuch

• ECC_NIST_P256

• ECC_NIST_P384

• ECC_NIST_P512

Kompatibilität mit Programmiersprachen

Der Raw ECDH-Schlüsselbund wurde in Version 1.5.0 der Cryptographic Material Providers Library
(MPL) eingeführt und wird von den folgenden Programmiersprachen und Versionen unterstützt:

• Version 3. x der AWS-Verschlüsselungs-SDK for Java

• Ausführung 4. x von AWS Encryption SDK für .NET

• Version 4. x von AWS-Verschlüsselungs-SDK for Python, wenn es mit der optionalen MPL-
Abhängigkeit verwendet wird.

• Version 1. x von der AWS Encryption SDK für Rust

• Version 0.1. x oder höher von AWS Encryption SDK for Go

Einen RAW-ECDH-Schlüsselbund erstellen

Der Raw ECDH-Schlüsselbund unterstützt drei wichtige Vereinbarungsschemata:, und.
RawPrivateKeyToStaticPublicKey EphemeralPrivateKeyToStaticPublicKey
PublicKeyDiscovery Das von Ihnen gewählte Schlüsselvereinbarungsschema bestimmt,
welche kryptografischen Operationen Sie ausführen können und wie die Schlüsselmaterialien
zusammengestellt werden.

Themen

• RawPrivateKeyToStaticPublicKey

• EphemeralPrivateKeyToStaticPublicKey

• PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Verwenden Sie das RawPrivateKeyToStaticPublicKey Schlüsselvereinbarungsschema,
um den privaten Schlüssel des Absenders und den öffentlichen Schlüssel des Empfängers im
Schlüsselbund statisch zu konfigurieren. Dieses Schlüsselvereinbarungsschema kann Daten ver- und
entschlüsseln.

Einen RAW-ECDH-Schlüsselbund erstellen 209

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Um einen RAW-ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren,
RawPrivateKeyToStaticPublicKey geben Sie die folgenden Werte an:

• Der private Schlüssel des Absenders

Sie müssen den PEM-codierten privaten Schlüssel des Absenders (PKCS #8 PrivateKeyInfo -
Strukturen) gemäß der Definition in RFC 5958 angeben.

• Der öffentliche Schlüssel des Empfängers

Sie müssen den DER-codierten öffentlichen X.509-Schlüssel des Empfängers, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert, angeben.

Sie können den öffentlichen Schlüssel eines KMS-Schlüsselpaars mit asymmetrischer
Schlüsselvereinbarung oder den öffentlichen Schlüssel eines außerhalb von AWS generierten key
pair angeben.

• Spezifikation der Kurve

Identifiziert die Spezifikation für elliptische Kurven in den angegebenen Schlüsselpaaren. Sowohl
die Schlüsselpaare des Absenders als auch des Empfängers müssen dieselbe Kurvenspezifikation
haben.

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var BobPrivateKey = new MemoryStream(new byte[] { });
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH static keyring
 var staticConfiguration = new RawEcdhStaticConfigurations()
 {
 RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
 {
 SenderStaticPrivateKey = BobPrivateKey,
 RecipientPublicKey = AlicePublicKey
 }
 };

Einen RAW-ECDH-Schlüsselbund erstellen 210

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Entwicklerhandbuch

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = staticConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Das folgende Java-Beispiel verwendet das RawPrivateKeyToStaticPublicKey
Schlüsselvereinbarungsschema, um den privaten Schlüssel des Absenders und den öffentlichen
Schlüssel des Empfängers statisch zu konfigurieren. Beide Schlüsselpaare befinden sich auf der
ECC_NIST_P256 Kurve.

private static void StaticRawKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair senderKeys = GetRawEccKey();
 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH static keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .RawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput.builder()
 // Must be a PEM-encoded private key

 .senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
 // Must be a DER-encoded X.509 public key

 .recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
 .build()
)
 .build()
).build();

Einen RAW-ECDH-Schlüsselbund erstellen 211

AWS Encryption SDK Entwicklerhandbuch

 final IKeyring staticKeyring =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Python

Das folgende Python-Beispiel verwendet das
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey
Schlüsselvereinbarungsschema, um den privaten Schlüssel des Absenders und den öffentlichen
Schlüssel des Empfängers statisch zu konfigurieren. Beide Schlüsselpaare befinden sich auf der
ECC_NIST_P256 Kurve.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateRawEcdhKeyringInput,
 RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey,
 RawPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Must be a PEM-encoded private key
bob_private_key = get_private_key_bytes()
Must be a DER-encoded X.509 public key
alice_public_key = get_public_key_bytes()

Create the raw ECDH static keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme =
 RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput(
 sender_static_private_key = bob_private_key,
 recipient_public_key = alice_public_key,
)
)
)

Einen RAW-ECDH-Schlüsselbund erstellen 212

AWS Encryption SDK Entwicklerhandbuch

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

Das folgende Python-Beispiel verwendet das raw_ecdh_static_configuration
Schlüsselvereinbarungsschema, um den privaten Schlüssel des Absenders und den öffentlichen
Schlüssel des Empfängers statisch zu konfigurieren. Beide Schlüsselpaare müssen sich auf
derselben Kurve befinden.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Create keyring input
let raw_ecdh_static_configuration_input =
 RawPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .sender_static_private_key(private_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let raw_ecdh_static_configuration =
 RawEcdhStaticConfigurations::RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring
let raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()

Einen RAW-ECDH-Schlüsselbund erstellen 213

AWS Encryption SDK Entwicklerhandbuch

 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(raw_ecdh_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create your encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Create keyring input
rawEcdhStaticConfigurationInput := mpltypes.RawPrivateKeyToStaticPublicKeyInput{
 SenderStaticPrivateKey: privateKeySender,
 RecipientPublicKey: publicKeyRecipient,
}
rawECDHStaticConfiguration :=
 &mpltypes.RawEcdhStaticConfigurationsMemberRawPrivateKeyToStaticPublicKey{
 Value: rawEcdhStaticConfigurationInput,

Einen RAW-ECDH-Schlüsselbund erstellen 214

AWS Encryption SDK Entwicklerhandbuch

}
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: rawECDHStaticConfiguration,
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create raw ECDH static keyring
rawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
 rawEcdhKeyRingInput)
if err != nil {
 panic(err)
}

EphemeralPrivateKeyToStaticPublicKey

Mit dem Schlüsselvereinbarungsschema konfigurierte
EphemeralPrivateKeyToStaticPublicKey Schlüsselringe erstellen lokal ein neues key pair
und leiten für jeden Verschlüsselungsaufruf einen eindeutigen gemeinsamen Wrapping-Schlüssel ab.

Dieses Schlüsselvereinbarungsschema kann nur Nachrichten verschlüsseln. Um
Nachrichten zu entschlüsseln, die mit dem EphemeralPrivateKeyToStaticPublicKey
Schlüsselvereinbarungsschema verschlüsselt wurden, müssen Sie ein Discovery-
Schlüsselvereinbarungsschema verwenden, das mit dem öffentlichen Schlüssel desselben
Empfängers konfiguriert ist. Zum Entschlüsseln können Sie einen RAW-ECDH-Schlüsselbund
mit dem PublicKeyDiscoverySchlüsselvereinbarungsalgorithmus verwenden, oder, falls
der öffentliche Schlüssel des Empfängers aus einem KMS-Schlüsselpaar mit asymmetrischer
Schlüsselvereinbarung stammt, können Sie einen AWS KMS ECDH-Schlüsselbund mit dem
Schlüsselvereinbarungsschema verwenden. KmsPublicKeyDiscovery

Um einen Raw-ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren, geben
Sie die folgenden Werte anEphemeralPrivateKeyToStaticPublicKey:

• Der öffentliche Schlüssel des Empfängers

Einen RAW-ECDH-Schlüsselbund erstellen 215

AWS Encryption SDK Entwicklerhandbuch

Sie müssen den DER-codierten öffentlichen X.509-Schlüssel des Empfängers, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert, angeben.

Sie können den öffentlichen Schlüssel eines KMS-Schlüsselpaars mit asymmetrischer
Schlüsselvereinbarung oder den öffentlichen Schlüssel eines außerhalb von AWS generierten key
pair angeben.

• Spezifikation der Kurve

Identifiziert die Spezifikation für elliptische Kurven im angegebenen öffentlichen Schlüssel.

Beim Verschlüsseln erstellt der Schlüsselbund ein neues key pair auf der angegebenen Kurve und
verwendet den neuen privaten Schlüssel und den angegebenen öffentlichen Schlüssel, um einen
gemeinsamen Wrapping-Schlüssel abzuleiten.

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
Schlüsselvereinbarungsschema erstellt. EphemeralPrivateKeyToStaticPublicKey Beim
Verschlüsseln erstellt der Schlüsselbund lokal auf der angegebenen ECC_NIST_P256 Kurve ein
neues key pair.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH ephemeral keyring
 var ephemeralConfiguration = new RawEcdhStaticConfigurations()
 {
 EphemeralPrivateKeyToStaticPublicKey = new
 EphemeralPrivateKeyToStaticPublicKeyInput
 {
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,

Einen RAW-ECDH-Schlüsselbund erstellen 216

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Entwicklerhandbuch

 KeyAgreementScheme = ephemeralConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
EphemeralPrivateKeyToStaticPublicKey Schlüsselvereinbarungsschema erstellt. Beim
Verschlüsseln erstellt der Schlüsselbund lokal auf der angegebenen ECC_NIST_P256 Kurve ein
neues key pair.

private static void EphemeralRawEcdhKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 ByteBuffer recipientPublicKey = getPublicKeyBytes();

 // Create the Raw ECDH ephemeral keyring
 final CreateRawEcdhKeyringInput ephemeralInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .EphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput.builder()
 .recipientPublicKey(recipientPublicKey)
 .build()
)
 .build()
).build();

 final IKeyring ephemeralKeyring =
 materialProviders.CreateRawEcdhKeyring(ephemeralInput);
}

Python

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey

Einen RAW-ECDH-Schlüsselbund erstellen 217

AWS Encryption SDK Entwicklerhandbuch

Schlüsselvereinbarungsschema erstellt. Beim Verschlüsseln erstellt der Schlüsselbund lokal auf
der angegebenen ECC_NIST_P256 Kurve ein neues key pair.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateRawEcdhKeyringInput,
 RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey,
 EphemeralPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Your get_public_key_bytes must return a DER-encoded X.509 public key
recipient_public_key = get_public_key_bytes()

Create the raw ECDH ephemeral private key keyring
ephemeral_input = CreateRawEcdhKeyringInput(
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme =
 RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput(
 recipient_public_key = recipient_public_key,
)
)
)

keyring = mat_prov.create_raw_ecdh_keyring(ephemeral_input)

Rust

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
ephemeral_raw_ecdh_static_configuration Schlüsselvereinbarungsschema erstellt.
Beim Verschlüsseln erstellt der Schlüsselbund lokal auf der angegebenen Kurve ein neues key
pair.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Einen RAW-ECDH-Schlüsselbund erstellen 218

AWS Encryption SDK Entwicklerhandbuch

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Load public key from UTF-8 encoded PEM files into a DER encoded public key.
let public_key_file_content =
 std::fs::read_to_string(Path::new(EXAMPLE_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content = parse(public_key_file_content)?;
let public_key_recipient_utf8_bytes = parsed_public_key_file_content.contents();

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
 EphemeralPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let ephemeral_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring
let ephemeral_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
 .send()
 .await?;

Go

import (

Einen RAW-ECDH-Schlüsselbund erstellen 219

AWS Encryption SDK Entwicklerhandbuch

 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create your encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Load public key from UTF-8 encoded PEM files into a DER encoded public key
publicKeyRecipient, err := LoadPublicKeyFromPEM(eccPublicKeyFileNameRecipient)
if err != nil {
 panic(err)
}

// Create EphemeralPrivateKeyToStaticPublicKeyInput
ephemeralRawEcdhStaticConfigurationInput :=
 mpltypes.EphemeralPrivateKeyToStaticPublicKeyInput{
 RecipientPublicKey: publicKeyRecipient,
}
ephemeralRawECDHStaticConfiguration :=
 mpltypes.RawEcdhStaticConfigurationsMemberEphemeralPrivateKeyToStaticPublicKey{
 Value: ephemeralRawEcdhStaticConfigurationInput,
 }

// Instantiate the material providers library

Einen RAW-ECDH-Schlüsselbund erstellen 220

AWS Encryption SDK Entwicklerhandbuch

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create raw ECDH ephemeral private key keyring
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: &ephemeralRawECDHStaticConfiguration,
}
ecdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
 rawEcdhKeyRingInput)
if err != nil {
 panic(err)
}

PublicKeyDiscovery

Beim Entschlüsseln empfiehlt es sich, die Umschließungsschlüssel anzugeben, die sie verwenden
können. AWS Encryption SDK Um dieser bewährten Methode zu folgen, verwenden Sie einen
ECDH-Schlüsselbund, der sowohl den privaten Schlüssel eines Absenders als auch den
öffentlichen Schlüssel des Empfängers angibt. Sie können jedoch auch einen Raw ECDH
Discovery-Schlüsselbund erstellen, d. h. einen Raw ECDH-Schlüsselbund, der jede Nachricht
entschlüsseln kann, bei der der angegebene öffentliche Schlüssel mit dem öffentlichen Schlüssel
des Empfängers übereinstimmt, der im Chiffretext der Nachricht gespeichert ist. Dieses
Schlüsselvereinbarungsschema kann nur Nachrichten entschlüsseln.

Important

Wenn Sie Nachrichten mithilfe des PublicKeyDiscovery Schlüsselvereinbarungsschemas
entschlüsseln, akzeptieren Sie alle öffentlichen Schlüssel, unabhängig davon, wem sie
gehören.

Um einen Raw-ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren, geben
Sie die PublicKeyDiscovery folgenden Werte an:

• Statischer privater Schlüssel des Empfängers

Einen RAW-ECDH-Schlüsselbund erstellen 221

AWS Encryption SDK Entwicklerhandbuch

Sie müssen den PEM-codierten privaten Schlüssel des Empfängers (PKCS #8 PrivateKeyInfo -
Strukturen) gemäß der Definition in RFC 5958 angeben.

• Spezifikation der Kurve

Identifiziert die Spezifikation für elliptische Kurven im angegebenen privaten Schlüssel. Sowohl die
Schlüsselpaare des Absenders als auch des Empfängers müssen dieselbe Kurvenspezifikation
haben.

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

Im folgenden Beispiel wird ein Raw ECDH-Schlüsselbund mit dem PublicKeyDiscovery
Schlüsselvereinbarungsschema erstellt. Dieser Schlüsselbund kann jede Nachricht entschlüsseln,
bei der der öffentliche Schlüssel des angegebenen privaten Schlüssels mit dem öffentlichen
Schlüssel des Empfängers übereinstimmt, der im Chiffretext der Nachricht gespeichert ist.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePrivateKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH discovery keyring
 var discoveryConfiguration = new RawEcdhStaticConfigurations()
 {
 PublicKeyDiscovery = new PublicKeyDiscoveryInput
 {
 RecipientStaticPrivateKey = AlicePrivateKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = discoveryConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Einen RAW-ECDH-Schlüsselbund erstellen 222

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2

AWS Encryption SDK Entwicklerhandbuch

Java

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
Schlüsselvereinbarungsschema erstellt. PublicKeyDiscovery Dieser Schlüsselbund kann jede
Nachricht entschlüsseln, bei der der öffentliche Schlüssel des angegebenen privaten Schlüssels
mit dem öffentlichen Schlüssel des Empfängers übereinstimmt, der im Chiffretext der Nachricht
gespeichert ist.

private static void RawEcdhDiscovery() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH discovery keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .PublicKeyDiscovery(
 PublicKeyDiscoveryInput.builder()
 // Must be a PEM-encoded private key

 .recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring publicKeyDiscovery =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Python

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
Schlüsselvereinbarungsschema erstellt.
RawEcdhStaticConfigurationsPublicKeyDiscovery Dieser Schlüsselbund kann jede

Einen RAW-ECDH-Schlüsselbund erstellen 223

AWS Encryption SDK Entwicklerhandbuch

Nachricht entschlüsseln, bei der der öffentliche Schlüssel des angegebenen privaten Schlüssels
mit dem öffentlichen Schlüssel des Empfängers übereinstimmt, der im Chiffretext der Nachricht
gespeichert ist.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateRawEcdhKeyringInput,
 RawEcdhStaticConfigurationsPublicKeyDiscovery,
 PublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Your get_private_key_bytes must return a PEM-encoded private key
recipient_private_key = get_private_key_bytes()

Create the raw ECDH discovery keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme = RawEcdhStaticConfigurationsPublicKeyDiscovery(
 PublicKeyDiscoveryInput(
 recipient_static_private_key = recipient_private_key,
)
)
)

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
Schlüsselvereinbarungsschema erstellt. discovery_raw_ecdh_static_configuration
Dieser Schlüsselbund kann jede Nachricht entschlüsseln, bei der der öffentliche Schlüssel des
angegebenen privaten Schlüssels mit dem öffentlichen Schlüssel des Empfängers übereinstimmt,
der im Chiffretext der Nachricht gespeichert ist.

// Instantiate the AWS Encryption SDK client and material providers library

Einen RAW-ECDH-Schlüsselbund erstellen 224

AWS Encryption SDK Entwicklerhandbuch

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Load keys from UTF-8 encoded PEM files.
let mut file = File::open(Path::new(EXAMPLE_ECC_PRIVATE_KEY_FILENAME_RECIPIENT))?;
let mut private_key_recipient_utf8_bytes = Vec::new();
file.read_to_end(&mut private_key_recipient_utf8_bytes)?;

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
 PublicKeyDiscoveryInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .recipient_static_private_key(private_key_recipient_utf8_bytes)
 .build()?;

let discovery_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_input);

// Create raw ECDH discovery private key keyring
let discovery_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(discovery_raw_ecdh_static_configuration)
 .send()
 .await?;

Einen RAW-ECDH-Schlüsselbund erstellen 225

AWS Encryption SDK Entwicklerhandbuch

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create your encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Load keys from UTF-8 encoded PEM files.
privateKeyRecipient, err := os.ReadFile(eccPrivateKeyFileNameRecipient)
if err != nil {
 panic(err)
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create PublicKeyDiscoveryInput
discoveryRawEcdhStaticConfigurationInput := mpltypes.PublicKeyDiscoveryInput{

Einen RAW-ECDH-Schlüsselbund erstellen 226

AWS Encryption SDK Entwicklerhandbuch

 RecipientStaticPrivateKey: privateKeyRecipient,
}

discoveryRawEcdhStaticConfiguration :=
 &mpltypes.RawEcdhStaticConfigurationsMemberPublicKeyDiscovery{
 Value: discoveryRawEcdhStaticConfigurationInput,
}

// Create raw ECDH discovery private key keyring
discoveryRawEcdhKeyringInput := mpltypes.CreateRawEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: discoveryRawEcdhStaticConfiguration,
}

discoveryRawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
 discoveryRawEcdhKeyringInput)
if err != nil {
 panic(err)
}

Multi-Schlüsselbunde

Sie können Schlüsselbunde zu einem Multi-Schlüsselbund kombinieren. Ein Multi-Schlüsselbund
ist ein Schlüsselbund, der aus einem oder mehreren einzelnen Schlüsselbunden desselben oder
eines anderen Typs besteht. Das hat den gleichen Effekt wie die Verwendung von mehreren
Schlüsselbunden in einer Reihe. Wenn Sie einen Multi-Schlüsselbund verwenden, um Daten zu
verschlüsseln, können alle Umhüllungsschlüssel in einem seiner Schlüsselbunde diese Daten
entschlüsseln.

Wenn Sie einen Multi-Schlüsselbund erstellen, um Daten zu verschlüsseln, geben Sie einen
der Schlüsselbunde als Generator-Schlüsselbund an. Alle anderen Schlüsselbunde werden
als untergeordnete Schlüsselbunde bezeichnet. Der Generator-Schlüsselbund generiert und
verschlüsselt den Klartext-Datenschlüssel. Anschließend verschlüsseln alle Umhüllungsschlüssel
in den untergeordneten Schlüsselbunden den gleichen Klartext-Datenschlüssel. Der Multi-
Schlüsselbund gibt den Klartext-Datenschlüssel und einen verschlüsselten Datenschlüssel für jeden
Umhüllungsschlüssel im Multi-Schlüsselbund zurück. Wenn der Generator-Schlüsselbund ein KMS-
Schlüsselbund ist, generiert und verschlüsselt der Generatorschlüssel im AWS KMS Schlüsselbund
den Klartext-Schlüssel. Anschließend verschlüsseln alle zusätzlichen Schlüssel AWS KMS keys

Multi-Schlüsselbunde 227

AWS Encryption SDK Entwicklerhandbuch

im AWS KMS Schlüsselbund und alle Schlüssel in allen untergeordneten Schlüsselbunden im
Mehrfachschlüsselbund denselben Klartext-Schlüssel.

Wenn Sie einen Mehrfachschlüsselbund ohne Generatorschlüsselbund erstellen, können Sie ihn
eigenständig zum Entschlüsseln von Daten verwenden, aber nicht zum Verschlüsseln. Oder wenn
Sie bei Verschlüsselungsvorgängen einen Mehrfachschlüsselbund ohne Generatorschlüsselbund
verwenden möchten, können Sie ihn als untergeordneten Schlüsselbund in einem anderen
Schlüsselbund angeben. Ein Mehrfachschlüsselbund ohne Generator-Schlüsselbund kann nicht als
Generator-Schlüsselbund in einem anderen Schlüsselbund mit mehreren Schlüsseln bezeichnet
werden.

Beim Entschlüsseln versucht der AWS Encryption SDK anhand der Schlüsselbunde, einen der
verschlüsselten Datenschlüssel zu entschlüsseln. Die Schlüsselbunde werden in der Reihenfolge
aufgerufen, in der sie im Multi-Schlüsselbund angegeben sind. Die Verarbeitung stoppt, sobald ein
Schlüssel in einem Schlüsselbund einen verschlüsselten Datenschlüssel entschlüsseln kann.

Ab Version 1.7. x, wenn ein verschlüsselter Datenschlüssel unter einem AWS Key Management
Service (AWS KMS) -Schlüsselbund (oder einem Hauptschlüsselanbieter) verschlüsselt wird,
übergibt der AWS Encryption SDK immer den Schlüssel-ARN von AWS KMS key an den KeyId
Parameter der AWS KMS Decrypt-Operation. Dies ist eine AWS KMS bewährte Methode, die
sicherstellt, dass Sie den verschlüsselten Datenschlüssel mit dem Wrapping-Schlüssel entschlüsseln,
den Sie verwenden möchten.

Ein funktionierendes Beispiel für einen Multi-Schlüsselbund finden Sie unter:

• C: multi_keyring.cpp

• C#/.NET: .cs MultiKeyringExample

• JavaScript Node.js: multi_keyring.ts

• JavaScript Browser: multi_keyring.ts

• Java MultiKeyringExample: .java

• Python: multi_keyring_example.py

Zum Erstellen eines Multi-Schlüsselbunds müssen Sie zuerst die untergeordneten Schlüsselbunde
instanziieren. In diesem Beispiel verwenden wir einen AWS KMS Schlüsselbund und einen
Raw AES-Schlüsselbund, aber Sie können jeden unterstützten Schlüsselbund in einem
Mehrfachschlüsselbund kombinieren.

Multi-Schlüsselbunde 228

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/multi_keyring.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/MultiKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/MultiKeyringExample.java
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/multi_keyring_example.py

AWS Encryption SDK Entwicklerhandbuch

C

/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(example_key);

// Define a Raw AES keyring. For details, see raw_aes_keyring.c */
struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
 alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key,
 AWS_CRYPTOSDK_AES256);

C# / .NET

// Define an AWS KMS keyring. For details, see AwsKmsKeyringExample.cs.
var kmsKeyring = materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

// Define a Raw AES keyring. For details, see RawAESKeyringExample.cs.
var aesKeyring = materialProviders.CreateRawAesKeyring(createAesKeyringInput);

JavaScript Browser

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 RawAesKeyringWebCrypto,
 RawAesWrappingSuiteIdentifier,
 MultiKeyringWebCrypto,
 buildClient,
 CommitmentPolicy,
 synchronousRandomValues,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Multi-Schlüsselbunde 229

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

const clientProvider = getClient(KMS, { credentials })

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace,
 wrappingSuite, masterKey })

JavaScript Node.js

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

import {
 MultiKeyringNode,
 KmsKeyringNode,
 RawAesKeyringNode,
 RawAesWrappingSuiteIdentifier,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite,
 unencryptedMasterKey })

Java

// Define the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()

Multi-Schlüsselbunde 230

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/raw-aes-keyring-node/src/raw_aes_keyring_node.ts

AWS Encryption SDK Entwicklerhandbuch

 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateRawAesKeyringInput createRawAesKeyringInput =
 CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Python

Im folgenden Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie instanziiert,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create the AWS KMS keyring
kms_client = boto3.client('kms', region_name="us-west-2")

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

kms_keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
 generator=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
 kms_client=kms_client
)

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
 input=kms_keyring_input
)

Create Raw AES keyring
key_name_space = "HSM_01"

Multi-Schlüsselbunde 231

AWS Encryption SDK Entwicklerhandbuch

key_name = "AES_256_012"

raw_aes_keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 wrapping_key=AESWrappingKey,
 wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
)

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
 input=raw_aes_keyring_input
)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

// Create a Raw AES keyring
let key_namespace: &str = "my-key-namespace";
let key_name: &str = "my-aes-key-name";

let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)

Multi-Schlüsselbunde 232

AWS Encryption SDK Entwicklerhandbuch

 .key_namespace(key_namespace)
 .wrapping_key(aws_smithy_types::Blob::new(AESWrappingKey))
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

Multi-Schlüsselbunde 233

AWS Encryption SDK Entwicklerhandbuch

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
 awsKmsKeyringInput)
if err != nil {
 panic(err)
}

// Create a Raw AES keyring
var keyNamespace = "my-key-namespace"
var keyName = "my-aes-key-name"

aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: AESWrappingKey,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)

Erstellen Sie als Nächstes den Multi-Schlüsselbund und geben Sie seinen Generator-Schlüsselbund
an, falls vorhanden. In diesem Beispiel erstellen wir einen Mehrfachschlüsselbund, bei dem
der Schlüsselbund der AWS KMS Generatorschlüsselbund und der AES-Schlüsselbund der
untergeordnete Schlüsselbund ist.

C

Im Multi-Schlüsselbund-Konstruktor in C geben Sie nur den Generator-Schlüsselbund an.

struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc,
 kms_keyring);

Verwenden Sie die aws_cryptosdk_multi_keyring_add_child-Methode, um einen
untergeordneten Schlüsselbund zu Ihrem Multi-Schlüsselbund hinzuzufügen. Sie müssen die
Methode einmal für jeden untergeordneten Schlüsselbund aufrufen, den Sie hinzufügen.

Multi-Schlüsselbunde 234

AWS Encryption SDK Entwicklerhandbuch

// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);

C# / .NET

Mit CreateMultiKeyringInput dem.NET-Konstruktor können Sie einen Generator-
Schlüsselbund und untergeordnete Schlüsselanhänger definieren. Das resultierende
CreateMultiKeyringInput Objekt ist unveränderlich.

var createMultiKeyringInput = new CreateMultiKeyringInput
{
 Generator = kmsKeyring,
 ChildKeyrings = new List<IKeyring>() {aesKeyring}
};

var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);

JavaScript Browser

JavaScript Mehrfachschlüsselringe sind unveränderlich. Mit dem Konstruktor für JavaScript
mehrere Schlüsselbunde können Sie den Generator-Schlüsselbund und mehrere untergeordnete
Schlüsselringe angeben.

const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children:
 [aesKeyring]);

JavaScript Node.js

JavaScript Schlüsselanhänger mit mehreren Schlüsseln sind unveränderlich. Mit dem Konstruktor
für JavaScript mehrere Schlüsselbunde können Sie den Generator-Schlüsselbund und mehrere
untergeordnete Schlüsselringe angeben.

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children:
 [aesKeyring]);

Multi-Schlüsselbunde 235

AWS Encryption SDK Entwicklerhandbuch

Java

Mit dem CreateMultiKeyringInput Java-Konstruktor können Sie einen Generator-
Schlüsselbund und untergeordnete Schlüsselringe definieren. Das resultierende
createMultiKeyringInput Objekt ist unveränderlich.

final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(awsKmsMrkMultiKeyring)
 .childKeyrings(Collections.singletonList(rawAesKeyring))
 .build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Python

multi_keyring_input: CreateMultiKeyringInput = CreateMultiKeyringInput(
 generator=kms_keyring,
 child_keyrings=[raw_aes_keyring]
)

multi_keyring: IKeyring = mat_prov.create_multi_keyring(
 input=multi_keyring_input
)

Rust

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(kms_keyring.clone())
 .child_keyrings(vec![raw_aes_keyring.clone()])
 .send()
 .await?;

Go

createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
 Generator: awsKmsKeyring,
 ChildKeyrings: []mpltypes.IKeyring{rawAESKeyring},
 }
 multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
 createMultiKeyringInput)
 if err != nil {

Multi-Schlüsselbunde 236

AWS Encryption SDK Entwicklerhandbuch

 panic(err)
 }

Jetzt können Sie mit dem Multi-Schlüsselbund Daten ver- und entschlüsseln.

Multi-Schlüsselbunde 237

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK Programmiersprachen

Das AWS Encryption SDK ist für die folgenden Programmiersprachen verfügbar. Alle
Sprachimplementierungen sind interoperabel. Sie können mit einer Sprachimplementierung
verschlüsseln und mit einer anderen entschlüsseln. Die Interoperabilität ist möglicherweise von
Spracheinschränkungen abhängig. Wenn dies der Fall ist, werden diese Einschränkungen im
Thema zur Sprachimplementierung beschrieben. Außerdem müssen Sie beim Verschlüsseln und
Entschlüsseln kompatible Schlüsselbünde oder Masterschlüssel und Masterschlüsselanbieter
verwenden. Details hierzu finden Sie unter the section called “Schlüsselbund-Kompatibilität”.

Themen

• AWS-Verschlüsselungs-SDK for C

• AWS Encryption SDK für .NET

• AWS Encryption SDK für Go

• AWS-Verschlüsselungs-SDK for Java

• AWS-Verschlüsselungs-SDK for JavaScript

• AWS-Verschlüsselungs-SDK for Python

• AWS Encryption SDK für Rust

• AWS Encryption SDK Befehlszeilenschnittstelle

AWS-Verschlüsselungs-SDK for C

Die AWS-Verschlüsselungs-SDK for C stellt eine clientseitige Verschlüsselungsbibliothek
für Entwickler bereit, die Anwendungen in C schreiben. Sie dient auch als Grundlage für
Implementierungen von AWS Encryption SDK in höheren Programmiersprachen.

Wie alle Implementierungen von bietet sie erweiterte AWS Encryption SDK Datenschutzfunktionen.
AWS-Verschlüsselungs-SDK for C Dazu gehören die Envelope-Verschlüsselung, zusätzliche
authentifizierte Daten (AAD) und Algorithmen-Pakete mit sicherem, authentifiziertem, symmetrischem
Schlüssel, wie z. B. 256-Bit-AES-GCM mit Schlüsselableitung und Signatur.

Alle sprachspezifischen Implementierungen von sind vollständig interoperabel. AWS Encryption SDK
Beispielsweise können Sie Daten mit der verschlüsseln AWS-Verschlüsselungs-SDK for C und mit
jeder unterstützten Sprachimplementierung entschlüsseln, einschließlich der AWS Encryption CLI.

C 238

AWS Encryption SDK Entwicklerhandbuch

Das AWS-Verschlüsselungs-SDK for C erfordert die Interaktion AWS SDK für C++ mit AWS Key
Management Service ()AWS KMS. Sie müssen es nur verwenden, wenn Sie den optionalen AWS
KMS Schlüsselbund verwenden. Das erfordert AWS KMS jedoch AWS Encryption SDK keinen
anderen AWS Dienst.

Weitere Informationen

• Einzelheiten zur Programmierung mit dem AWS-Verschlüsselungs-SDK for C finden Sie in den
C-Beispielen, den Beispielen im aws-encryption-sdk-c Repository auf GitHub und in der AWS-
Verschlüsselungs-SDK for C API-Dokumentation.

• Eine Erläuterung zur Verwendung von AWS-Verschlüsselungs-SDK for C zum Verschlüsseln von
Daten, sodass Sie sie in mehreren Bereichen entschlüsseln können AWS-Regionen, finden Sie
unter Wie entschlüsselt man Chiffretexte in mehreren Regionen mit dem in C AWS Encryption SDK
im Sicherheitsblog. AWS

Themen

• Installation des AWS-Verschlüsselungs-SDK for C

• Mit dem AWS-Verschlüsselungs-SDK for C

• AWS-Verschlüsselungs-SDK for C Beispiele

Installation des AWS-Verschlüsselungs-SDK for C

Installieren Sie die neueste Version von AWS-Verschlüsselungs-SDK for C.

Note

Alle AWS-Verschlüsselungs-SDK for C Versionen vor 2.0.0 befinden sich in der end-of-
supportPhase.
Sie können sicher von Version 2.0 aus aktualisieren. x und höher auf die neueste Version
von AWS-Verschlüsselungs-SDK for C ohne Code- oder Datenänderungen. In Version 2.0
wurden jedoch neue Sicherheitsfunktionen eingeführt. x sind nicht abwärtskompatibel. Um
von Versionen vor 1.7 zu aktualisieren. x auf Version 2.0. x und höher, Sie müssen zuerst auf
die neueste Version 1 aktualisieren. x-Version von AWS-Verschlüsselungs-SDK for C. Details
hierzu finden Sie unter Migrieren Sie Ihre AWS Encryption SDK.

Installation 239

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

Eine ausführliche Anleitung zur Installation und Erstellung von finden Sie AWS-Verschlüsselungs-
SDK for C in der README-Datei des aws-encryption-sdk-cRepositorys. Es enthält Anweisungen zum
Erstellen auf Amazon Linux-, Ubuntu-, macOS- und Windows-Plattformen.

Bevor Sie beginnen, entscheiden Sie, ob Sie AWS KMS Schlüsselringe in der AWS Encryption
SDK verwenden möchten. Wenn Sie einen AWS KMS Schlüsselbund verwenden, müssen Sie den
installieren. AWS SDK für C++ Das AWS SDK ist für die Interaktion mit AWS Key Management
Service(AWS KMS) erforderlich. Wenn Sie AWS KMS Schlüsselringe verwenden, werden diese AWS
Encryption SDK verwendet, AWS KMS um die Verschlüsselungsschlüssel zu generieren und zu
schützen, die Ihre Daten schützen.

Sie müssen den nicht installieren, AWS SDK für C++ wenn Sie einen anderen Schlüsselbundtyp
verwenden, z. B. einen RAW-AES-Schlüsselbund, einen RSA-Rohschlüsselbund oder einen
Mehrfachschlüsselbund ohne Schlüsselbund. AWS KMS Wenn Sie jedoch einen unformatierten
Schlüsselbund verwenden, müssen Sie Ihre eigenen Rawrap-Schlüssel generieren und schützen.

Wenn Sie Probleme mit Ihrer Installation haben, melden Sie ein Problem im aws-encryption-
sdk-c Repository oder verwenden Sie einen der Feedback-Links auf dieser Seite.

Mit dem AWS-Verschlüsselungs-SDK for C

In diesem Thema werden einige der Funktionen von erläutert AWS-Verschlüsselungs-SDK for C , die
in anderen Programmiersprachenimplementierungen nicht unterstützt werden.

Die Beispiele in diesem Abschnitt zeigen, wie Version 2.0 verwendet wird. x und später von AWS-
Verschlüsselungs-SDK for C. Beispiele, die frühere Versionen verwenden, finden Sie in der Release-
Liste des aws-encryption-sdk-c Repository-Repositorys unter GitHub.

Einzelheiten zur Programmierung mit dem AWS-Verschlüsselungs-SDK for C finden Sie in den
C-Beispielen, den Beispielen im aws-encryption-sdk-c Repository unter GitHub und in der AWS-
Verschlüsselungs-SDK for C API-Dokumentation.

Weitere Informationen finden Sie auch unter: Schlüsselringe.

Themen

• Muster zum Ver- und Entschlüsseln von Daten

• Referenzzählung

Verwenden des C SDK 240

https://github.com/aws/aws-encryption-sdk-c/#readme
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/aws/aws-encryption-sdk-c/issues
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/

AWS Encryption SDK Entwicklerhandbuch

Muster zum Ver- und Entschlüsseln von Daten

Wenn Sie den verwenden AWS-Verschlüsselungs-SDK for C, folgen Sie einem ähnlichen Muster:
Erstellen Sie einen Schlüsselbund, erstellen Sie ein CMM, das den Schlüsselbund verwendet,
erstellen Sie eine Sitzung, die das CMM (und den Schlüsselbund) verwendet, und verarbeiten Sie
dann die Sitzung.

1. Lädt Fehlerzeichenfolgen.

Rufen Sie die aws_cryptosdk_load_error_strings() Methode in Ihrem C- oder C++-Code
auf. Sie lädt Fehlerinformationen, die für das Debuggen sehr nützlich sind.

Sie müssen es nur einmal aufrufen, z. B. in Ihrer main Methode.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

2. Erstellen Sie einen Schlüsselbund.

Konfigurieren Sie Ihren Schlüsselbund mit dem Umhüllungsschlüssel, den Sie verwenden
möchten, um Ihre Daten zu verschlüsseln. In diesem Beispiel wird ein AWS KMS Schlüsselbund
mit einem Schlüsselbund verwendet AWS KMS key, aber Sie können stattdessen jeden
beliebigen Schlüsselbund verwenden.

Um einen AWS KMS key in einem Verschlüsselungsschlüsselbund in der zu identifizieren AWS-
Verschlüsselungs-SDK for C, geben Sie einen Schlüssel-ARN oder Alias-ARN an. In einem
Entschlüsselungsschlüsselbund müssen Sie einen Schlüssel-ARN verwenden. Details hierzu
finden Sie unter Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund.

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(KEY_ARN);

3. Erstellen Sie eine Sitzung.

In der verwenden Sie eine Sitzung AWS-Verschlüsselungs-SDK for C, um eine einzelne Klartext-
Nachricht zu verschlüsseln oder eine einzelne Chiffretext-Nachricht zu entschlüsseln, unabhängig
von ihrer Größe. Die Sitzung behält den Status der Nachricht während der Verarbeitung.

Verwenden des C SDK 241

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

Konfigurieren Sie Ihre Sitzung mit einem Allocator, einem Schlüsselbund und einem Modus:
AWS_CRYPTOSDK_ENCRYPT oder AWS_CRYPTOSDK_DECRYPT. Wenn Sie den Modus der Sitzung
ändern müssen, verwenden Sie die aws_cryptosdk_session_reset-Methode.

Wenn Sie eine Sitzung mit einem Schlüsselbund erstellen, erstellt der AWS-Verschlüsselungs-
SDK for C automatisch einen standardmäßigen Cryptographic Materials Manager (CMM) für Sie.
Sie müssen dieses Objekt nicht erstellen, pflegen oder zerstören.

Beispiel: Die folgende Sitzung verwendet den Allocator und den Schlüsselbund, der in Schritt 1
definiert wurde. Wenn Sie Daten verschlüsseln, lautet der Modus AWS_CRYPTOSDK_ENCRYPT.

struct aws_cryptosdk_session * session =
 aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
 kms_keyring);

4. Verschlüsseln oder entschlüsseln Sie die Daten.

Um die Daten in der Sitzung zu verarbeiten, verwenden Sie die
aws_cryptosdk_session_process-Methode. Wenn der Eingabepuffer groß
genug ist, um den gesamten Klartext aufzunehmen, und der Ausgabepuffer groß
genug ist, um den gesamten Chiffretext aufzunehmen, können Sie aufrufen.
aws_cryptosdk_session_process_full Wenn Sie jedoch Streaming-Daten
verarbeiten müssen, können Sie aws_cryptosdk_session_process in einer
Schleife aufrufen. Ein Beispiel finden Sie im Beispiel file_streaming.cpp. Das
aws_cryptosdk_session_process_full ist in den AWS Encryption SDK Versionen 1.9
eingeführt. x und 2.2. x.

Wenn die Sitzung für das Verschlüsseln von Daten konfiguriert ist, beschreiben die Klartextfelder
die Eingabe und die Verschlüsselungstext-Felder die Ausgabe. Das plaintext-Feld enthält
die Nachricht, die Sie verschlüsseln möchten, und das ciphertext-Feld ruft die verschlüsselte
Nachricht ab, die die Verschlüsselungsmethode zurückgibt.

/* Encrypting data */
aws_cryptosdk_session_process_full(session,
 ciphertext,
 ciphertext_buffer_size,
 &ciphertext_length,
 plaintext,
 plaintext_length)

Verwenden des C SDK 242

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/file_streaming.cpp

AWS Encryption SDK Entwicklerhandbuch

Wenn die Sitzung für das Entschlüsseln von Daten konfiguriert ist, beschreiben die
Verschlüsselungstext-Felder die Eingabe und die Klartextfelder die Ausgabe. Das ciphertext-
Feld enthält die verschlüsselte Nachricht, die die Verschlüsselungsmethode zurückgegeben
hat, und das plaintext-Feld ruft die Klartextnachricht ab, die die Entschlüsselungsmethode
zurückgibt.

Um die Daten zu entschlüsseln, rufen Sie die aws_cryptosdk_session_process_full-
Methode auf.

/* Decrypting data */
aws_cryptosdk_session_process_full(session,
 plaintext,
 plaintext_buffer_size,
 &plaintext_length,
 ciphertext,
 ciphertext_length)

Referenzzählung

Um Lecks im Arbeitsspeicher zu verhindern, müssen Sie Ihre Referenzen an alle Objekte freigeben,
die Sie erstellen, wenn Sie mit diesen fertig sind. Andernfalls erhalten Sie Lecks im Arbeitsspeicher.
Das SDK bietet Methoden, um diese Aufgabe zu vereinfachen.

Wenn Sie ein übergeordnetes Objekt mit einem der folgenden untergeordneten Objekte erstellen,
erhält und behält das übergeordnete Objekt einen Verweis auf das untergeordnete Objekt wie folgt
bei:

• Ein Schlüsselbund, z. B. das Erstellen einer Sitzung mit einem Schlüsselbund

• Ein standardmäßiger Cryptographic Materials Manager (CMM), z. B. das Erstellen einer Sitzung
oder ein benutzerdefiniertes CMM mit einem Standard-CMM

• Ein Datenschlüssel-Cache, z. B. das Erstellen eines Caching-CMM mit einem Schlüsselbund und
Cache

Wenn Sie keinen unabhängigen Verweis auf das untergeordnete Objekt benötigen, können Sie den
Verweis auf das untergeordnete Objekt freigeben, sobald Sie das übergeordnete Objekt erstellen.
Der verbleibende Verweis auf das untergeordnete Objekt wird freigegeben, wenn das übergeordnete
Objekt zerstört wird. Durch dieses Muster wird sichergestellt, dass Sie die Referenz auf jedes Objekt

Verwenden des C SDK 243

AWS Encryption SDK Entwicklerhandbuch

nur so lange wie nötig behalten. Es kommt auch nicht zu einem Leck im Arbeitsspeicher aufgrund von
nicht freigegebenen Referenzen.

Sie sind nur dafür verantwortlich, Verweise auf die untergeordneten Objekte freizugeben, die Sie
explizit erstellen. Sie sind nicht verantwortlich für die Verwaltung von Verweisen auf Objekte, die
das SDK für Sie erstellt. Wenn das SDK ein Objekt erstellt, z. B. das Standard-CMM, das die
aws_cryptosdk_caching_cmm_new_from_keyring Methode einer Sitzung hinzufügt, verwaltet
das SDK die Erstellung und Zerstörung des Objekts und seiner Verweise.

Wenn Sie im folgenden Beispiel eine Sitzung mit einem Schlüsselbund erstellen, erhält die Sitzung
einen Verweis auf den Schlüsselbund und behält diesen Verweis bei, bis die Sitzung zerstört wird.
Wenn Sie keinen zusätzlichen Verweis auf den Schlüsselbund beibehalten müssen, können Sie
die aws_cryptosdk_keyring_release-Methode verwenden, um das Schlüsselbundobjekt
freizugeben, sobald die Sitzung erstellt wird. Diese Methode verringert die Referenzanzahl für
den Schlüsselbund. Der Verweis der Sitzung auf den Schlüsselbund wird freigegeben, wenn Sie
aws_cryptosdk_session_destroy aufrufen, um die Sitzung zu zerstören.

// The session gets a reference to the keyring.
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring
 object.
aws_cryptosdk_keyring_release(keyring);

Für komplexere Aufgaben, wie die Wiederverwendung eines Schlüsselbunds für mehrere Sitzungen
oder die Angabe einer Algorithmus-Suite in einem CMM, müssen Sie möglicherweise einen
unabhängigen Verweis auf das Objekt beibehalten. Wenn ja, rufen Sie die Freigabemethoden nicht
sofort auf. Geben Sie stattdessen Ihre Referenzen frei, wenn Sie die Objekte nicht mehr verwenden,
zusätzlich zum Löschen der Sitzung.

Diese Methode zur Referenzzählung funktioniert auch, wenn Sie eine alternative Methode verwenden
CMMs, z. B. das CMM für die Zwischenspeicherung von Datenschlüsseln. Wenn Sie ein Cache-
CMM aus einem Cache und einem Schlüsselbund erstellen, erhält das Caching-CMM einen
Verweis auf beide Objekte. Sofern Sie sie nicht für eine andere Aufgabe benötigen, können Sie Ihre
unabhängigen Verweise auf den Cache und den Schlüsselbund freigeben, sobald das Caching-CMM
erstellt ist. Wenn Sie dann eine Sitzung mit dem Caching-CMM erstellen, können Sie Ihren Verweis
auf das Caching-CMM freigeben.

Verwenden des C SDK 244

AWS Encryption SDK Entwicklerhandbuch

Beachten Sie, dass Sie nur für die Freigabe von Verweisen auf Objekte verantwortlich sind, die Sie
explizit erstellen. Objekte, die die Methoden für Sie erstellen, wie z. B. das Standard-CMM, das dem
Caching-CMM zugrunde liegt, werden von der Methode verwaltet.

/ Create the caching CMM from a cache and a keyring.
struct aws_cryptosdk_cmm *caching_cmm =
 aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60,
 AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

// Create a session with the caching CMM.
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator,
 AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

// ...

aws_cryptosdk_session_destroy(session);

AWS-Verschlüsselungs-SDK for C Beispiele

Die folgenden Beispiele zeigen Ihnen, wie Sie mit AWS-Verschlüsselungs-SDK for C dem Daten ver-
und entschlüsseln können.

Die Beispiele in diesem Abschnitt zeigen, wie die Versionen 2.0 verwendet werden. x und später von
AWS-Verschlüsselungs-SDK for C. Beispiele, die frühere Versionen verwenden, finden Sie in der
Release-Liste des aws-encryption-sdk-c Repository-Repositorys unter GitHub.

Wenn Sie das installieren und erstellen AWS-Verschlüsselungs-SDK for C, ist der Quellcode für diese
und andere Beispiele im examples Unterverzeichnis enthalten, und sie werden kompiliert und in
das build Verzeichnis integriert. Sie finden sie auch im Unterverzeichnis für Beispiele des aws-
encryption-sdk-cRepositorys unter. GitHub

Themen

• Verschlüsseln und Entschlüsseln von Zeichenfolgen

Beispiele 245

https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/

AWS Encryption SDK Entwicklerhandbuch

Verschlüsseln und Entschlüsseln von Zeichenfolgen

Das folgende Beispiel zeigt Ihnen, wie Sie mit dem eine AWS-Verschlüsselungs-SDK for C
Zeichenfolge ver- und entschlüsseln können.

Dieses Beispiel zeigt den AWS KMS Schlüsselbund, eine Art von Schlüsselbund, der ein AWS
KMS key in AWS Key Management Service (AWS KMS) verwendet, um Datenschlüssel zu
generieren und zu verschlüsseln. Das Beispiel enthält in C++ geschriebenen Code. Das AWS-
Verschlüsselungs-SDK for C erfordert den Aufruf AWS SDK für C++ , AWS KMS wenn AWS KMS
Schlüsselbunde verwendet werden. Wenn Sie einen Schlüsselbund verwenden, der nicht interagiert
AWS KMS, wie z. B. einen RAW-AES-Schlüsselbund, einen RSA-Rohschlüsselbund oder einen
Mehrfachschlüsselbund, der keinen Schlüsselbund enthält, ist der nicht erforderlich. AWS KMS AWS
SDK für C++

Hilfe bei der Erstellung eines finden Sie unter Creating Keys im AWS KMS key Developer
Guide.AWS Key Management Service Hilfe zur Identifizierung von AWS KMS keys in einem
AWS KMS Schlüsselbund finden Sie unterIdentifizierung AWS KMS keys in einem AWS KMS
Schlüsselbund.

Das vollständige Codebeispiel finden Sie unter: string.cpp

Themen

• Verschlüsseln einer Zeichenfolge

• Entschlüsseln einer Zeichenfolge

Verschlüsseln einer Zeichenfolge

Im ersten Teil dieses Beispiels wird ein Schlüsselbund mit einem AWS KMS Schlüsselbund
verwendet, AWS KMS key um eine Klartext-Zeichenfolge zu verschlüsseln.

Schritt 1. Lädt Fehlerzeichenfolgen.

Rufen Sie die aws_cryptosdk_load_error_strings() Methode in Ihrem C- oder C++-Code
auf. Sie lädt Fehlerinformationen, die für das Debuggen sehr nützlich sind.

Sie müssen es nur einmal aufrufen, z. B. in Ihrer main Methode.

/* Load error strings for debugging */

Beispiele 246

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_load_error_strings();

Schritt 2: Konstruieren Sie den Schlüsselbund.

Erstellen Sie einen AWS KMS Schlüsselbund für die Verschlüsselung. Der Schlüsselbund in
diesem Beispiel ist mit einem Schlüsselbund konfiguriert AWS KMS key, aber Sie können einen
AWS KMS Schlüsselbund mit mehreren AWS KMS keys, auch AWS KMS keys in verschiedenen
AWS-Regionen Konten, konfigurieren.

Um einen AWS KMS key in einem Verschlüsselungsschlüsselbund in der zu identifizieren AWS-
Verschlüsselungs-SDK for C, geben Sie einen Schlüssel-ARN oder Alias-ARN an. In einem
Entschlüsselungsschlüsselbund müssen Sie einen Schlüssel-ARN verwenden. Details hierzu
finden Sie unter Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund.

Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Wenn Sie einen Schlüsselbund mit mehreren Schlüsselbunden erstellen AWS KMS keys, geben
Sie den Schlüssel an, der AWS KMS key zur Generierung und Verschlüsselung des Klartext-
Datenschlüssels verwendet wird, sowie ein optionales Array von zusätzlichen Schlüsseln, AWS
KMS keys die denselben Klartext-Datenschlüssel verschlüsseln. In diesem Fall geben Sie nur den
Generator an. AWS KMS key

Ersetzen Sie vor Ausführung dieses Codes den ARN des Beispiel-Schlüssels durch einen
gültigen.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

Schritt 3: Erstellen Sie eine Sitzung.

Erstellen Sie eine Sitzung mithilfe des Allocators, eines Modus-Enumerators und des
Schlüsselbunds.

Jede Sitzung erfordert eine Modus: entweder AWS_CRYPTOSDK_ENCRYPT zum Verschlüsseln
oder AWS_CRYPTOSDK_DECRYPT zum Entschlüsseln. Um den Modus einer vorhandenen Sitzung
zu ändern, verwenden Sie die aws_cryptosdk_session_reset-Methode.

Beispiele 247

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

Nach dem Erstellen einer Sitzung mit dem Schlüsselbund können Sie Ihre Referenz auf den
Schlüsselbund unter Verwendung der Methode, die das SDK bietet, freigeben. Die Sitzung behält
während ihrer Lebensdauer einen Verweis auf das Schlüsselbundobjekt bei. Verweise auf den
Schlüsselbund und die Sitzungsobjekte werden freigegeben, wenn Sie die Sitzung zerstören.
Diese Referenzzähltechnik hilft, Lecks im Arbeitsspeicher zu verhindern, und sorgt dafür, dass die
Objekte nicht freigegeben werden, während sie verwendet werden.

struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT,
 kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Schritt 4: Legen Sie den Verschlüsselungskontext fest.

Ein Verschlüsselungskontext ist eine Art zufälliger, nicht geheimer, zusätzlich authentifizierter
Daten. Wenn Sie bei Encrypt einen Verschlüsselungskontext angeben, bindet der
Verschlüsselungskontext AWS Encryption SDK kryptografisch an den Chiffretext, sodass derselbe
Verschlüsselungskontext zum Entschlüsseln der Daten erforderlich ist. Die Verwendung eines
Verschlüsselungskontexts ist optional, aber wir empfehlen dies als eine bewährte Methode.

Erstellen Sie zuerst eine Hash-Tabelle, die die Zeichenfolgen des Verschlüsselungskontexts
enthält.

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key1, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value1, "String");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_key1, (void *)enc_ctx_value1, &was_created)
aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

Rufen Sie einen veränderlichen Zeiger auf den Verschlüsselungskontext in der Sitzung ab.
Verwenden Sie anschließend die aws_cryptosdk_enc_ctx_clone-Funktion zum Kopieren

Beispiele 248

AWS Encryption SDK Entwicklerhandbuch

des Verschlüsselungskontexts in die Sitzung. Halten Sie die Kopie in my_enc_ctx, damit Sie den
Wert nach der Entschlüsselung der Daten validieren können.

Der Verschlüsselungskontext ist Teil der Sitzung, nicht ein Parameter, der an die Sitzungs-
Verarbeitungsfunktion übergeben wird. Dadurch wird sichergestellt, dass derselbe
Verschlüsselungskontext für jedes Segment einer Nachricht verwendet wird, auch wenn die
Sitzungs-Verarbeitungsfunktion mehrmals aufgerufen wird, um die gesamte Nachricht zu
verschlüsseln.

struct aws_hash_table *session_enc_ctx =
 aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)

Schritt 5: Verschlüsseln Sie die Zeichenfolge.

Verwenden Sie zum Verschlüsseln der Klartext-Zeichenfolge die
aws_cryptosdk_session_process_full-Methode, wobei sich die Sitzung im
Verschlüsselungsmodus befinden muss. Diese Methode wurde in Version 1.9 eingeführt.
AWS Encryption SDK x und 2.2. x ist für die Verschlüsselung und Entschlüsselung
ohne Streaming konzipiert. Um Streaming-Daten zu verarbeiten, rufen Sie den
aws_cryptosdk_session_process in einer Schleife auf.

Beim Verschlüsseln sind die Klartextfelder Eingabefelder. Die Verschlüsselungstext-Felder sind
Ausgabefelder. Wenn die Verarbeitung abgeschlossen ist, enthält das ciphertext_output-
Feld die verschlüsselte Nachricht, einschließlich des tatsächlichen Verschlüsselungstexts,
der verschlüsselten Datenschlüssel und des Verschlüsselungskontexts. Sie können diese
verschlüsselte Nachricht entschlüsseln, indem Sie die AWS Encryption SDK für jede unterstützte
Programmiersprache verwenden.

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
 ciphertext_output,
 ciphertext_buf_sz_output,
 &ciphertext_len_output,
 plaintext_input,
 plaintext_len_input)) {
 aws_cryptosdk_session_destroy(session);
 return 8;

Beispiele 249

AWS Encryption SDK Entwicklerhandbuch

}

Schritt 6: Bereinigen Sie die Sitzung.

Im letzten Schritt wird die Sitzung einschließlich der Verweise auf das CMM und den
Schlüsselbund gelöscht.

Wenn Sie es vorziehen, die Sitzung nicht zu zerstören, können Sie die Sitzung mit demselben
Schlüsselbund und CMM wiederverwenden, um die Zeichenfolge zu entschlüsseln oder um
andere Nachrichten zu verschlüsseln oder zu entschlüsseln. Um die Sitzung zum Entschlüsseln
zu verwenden, wenden Sie die aws_cryptosdk_session_reset-Methode an, um den Modus
in AWS_CRYPTOSDK_DECRYPT zu ändern.

Entschlüsseln einer Zeichenfolge

Im zweiten Teil dieses Beispiels wird eine verschlüsselte Nachricht entschlüsselt, die den
Verschlüsselungstext der ursprünglichen Zeichenfolge enthält.

Schritt 1: Fehlerzeichenfolgen laden.

Rufen Sie die aws_cryptosdk_load_error_strings() Methode in Ihrem C- oder C++-Code
auf. Sie lädt Fehlerinformationen, die für das Debuggen sehr nützlich sind.

Sie müssen es nur einmal aufrufen, z. B. in Ihrer main Methode.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Schritt 2: Konstruieren Sie den Schlüsselbund.

Wenn Sie Daten entschlüsseln AWS KMS, übergeben Sie die verschlüsselte Nachricht, die die
Verschlüsselungs-API zurückgegeben hat. Die Decrypt-API akzeptiert keine Eingabe. AWS
KMS key AWS KMS Verwendet stattdessen dasselbe AWS KMS key zum Entschlüsseln des
Chiffretextes, mit dem es ihn verschlüsselt hat. AWS Encryption SDK Mit können Sie jedoch einen
AWS KMS Schlüsselbund angeben, bei dem die Option Verschlüsseln und Entschlüsseln aktiviert
ist. AWS KMS keys

Beim Entschlüsseln können Sie einen Schlüsselbund konfigurieren, der nur den enthält
AWS KMS keys , den Sie zum Entschlüsseln der verschlüsselten Nachricht verwenden
möchten. Möglicherweise möchten Sie einen Schlüsselbund erstellen, der nur den enthält

Beispiele 250

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Encryption SDK Entwicklerhandbuch

AWS KMS key , der von einer bestimmten Rolle in Ihrer Organisation verwendet wird. Der
AWS Encryption SDK wird niemals einen verwenden, es AWS KMS key sei denn, er ist im
Entschlüsselungsschlüsselbund enthalten. Wenn das SDK die verschlüsselten Datenschlüssel
nicht mithilfe des AWS KMS keys von Ihnen angegebenen Schlüsselbunds entschlüsseln kann,
entweder weil keiner der Schlüssel AWS KMS keys im Schlüsselbund zum Verschlüsseln
eines der Datenschlüssel verwendet wurde oder weil der Anrufer nicht berechtigt ist, den
Schlüssel AWS KMS keys im Schlüsselbund zum Entschlüsseln zu verwenden, schlägt der
Entschlüsselungsaufruf fehl.

Wenn Sie AWS KMS key für eine Entschlüsselung einen Schlüsselbund angeben, müssen
Sie seinen Schlüssel-ARN verwenden. Alias ARNs sind nur in Schlüsselbunden für die
Verschlüsselung zulässig. Hilfe zur Identifizierung von AWS KMS keys in einem AWS
KMS Schlüsselbund finden Sie unter. Identifizierung AWS KMS keys in einem AWS KMS
Schlüsselbund

In diesem Beispiel geben wir einen Schlüsselbund an, der mit demselben konfiguriert ist, der zur
Verschlüsselung der Zeichenfolge AWS KMS key verwendet wurde. Ersetzen Sie vor Ausführung
dieses Codes den ARN des Beispiel-Schlüssels durch einen gültigen.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

Schritt 3: Erstellen Sie eine Sitzung.

Erstellen Sie eine Sitzung unter Verwendung des Allocators und des Schlüsselbunds. Zum
Konfigurieren der Sitzung für die Entschlüsselung konfigurieren Sie die Sitzung mit dem
AWS_CRYPTOSDK_DECRYPT-Modus.

Nach dem Erstellen einer Sitzung mit einem Schlüsselbund können Sie Ihre Referenz auf den
Schlüsselbund unter Verwendung der Methode, die das SDK bietet, freigeben. Die Sitzung behält
während ihrer Lebensdauer einen Verweis auf das Schlüsselbundobjekt bei und sowohl die
Sitzung als auch der Schlüsselbund werden freigegeben, wenn Sie die Sitzung zerstören. Diese
Referenzzähltechnik hilft, Lecks im Arbeitsspeicher zu verhindern, und sorgt dafür, dass die
Objekte nicht freigegeben werden, während sie verwendet werden.

struct aws_cryptosdk_session *session =

Beispiele 251

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
 kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Schritt 4: Entschlüsseln Sie die Zeichenfolge.

Verwenden Sie zum Entschlüsseln der Zeichenfolge die
aws_cryptosdk_session_process_full-Methode mit der Sitzung, die für die
Entschlüsselung konfiguriert ist. Diese Methode wurde in den AWS Encryption SDK
Versionen 1.9 eingeführt. x und 2.2. x ist für die Verschlüsselung und Entschlüsselung
ohne Streaming konzipiert. Um Streaming-Daten zu verarbeiten, rufen Sie den
aws_cryptosdk_session_process in einer Schleife auf.

Beim Entschlüsseln sind die Verschlüsselungstext-Felder Eingabefelder. Die Klartextfelder sind
Ausgabefelder. Das ciphertext_input-Feld enthält die verschlüsselte Nachricht, die die
Verschlüsselungsmethode zurückgegeben hat. Wenn die Verarbeitung abgeschlossen ist, enthält
das plaintext_output-Feld die Klartext-Zeichenfolge (entschlüsselt).

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
 plaintext_output,
 plaintext_buf_sz_output,
 &plaintext_len_output,
 ciphertext_input,
 ciphertext_len_input)) {
 aws_cryptosdk_session_destroy(session);
 return 13;
}

Schritt 5: Überprüfen Sie den Verschlüsselungskontext.

Stellen Sie sicher, dass der tatsächliche Verschlüsselungskontext — der, der zum Entschlüsseln
der Nachricht verwendet wurde — den Verschlüsselungskontext enthält, den Sie beim
Verschlüsseln der Nachricht angegeben haben. Der tatsächliche Verschlüsselungskontext kann
zusätzliche Paare enthalten, da der Manager von kryptographischen Materialien (CMM) Paare
zum angegebenen Verschlüsselungskontext hinzufügen kann, bevor die Nachricht verschlüsselt
wird.

Beispiele 252

AWS Encryption SDK Entwicklerhandbuch

In der müssen Sie beim Entschlüsseln keinen Verschlüsselungskontext angeben AWS-
Verschlüsselungs-SDK for C, da der Verschlüsselungskontext in der verschlüsselten Nachricht
enthalten ist, die das SDK zurückgibt. Aber bevor sie die Klartext-Nachricht zurückgibt, sollte Ihre
Entschlüsselungsfunktion überprüfen, dass alle Paare im angegebenen Verschlüsselungskontext
in dem Verschlüsselungskontext erscheinen, der zum Entschlüsseln der Nachricht verwendet
wurde.

Rufen Sie zuerst einen schreibgeschützten Zeiger auf die Hash-Tabelle in der Sitzung ab.
Diese Hash-Tabelle enthält den Verschlüsselungskontext, der zum Entschlüsseln der Nachricht
verwendet wurde.

const struct aws_hash_table *session_enc_ctx =
 aws_cryptosdk_session_get_enc_ctx_ptr(session);

Durchlaufen Sie anschließend den Verschlüsselungskontext in der my_enc_ctx-Hash-Tabelle,
die Sie beim Verschlüsseln kopiert haben. Überprüfen Sie, dass alle Paare in der my_enc_ctx-
Hash-Tabelle, die zum Verschlüsseln verwendet wurde, in der session_enc_ctx-Hash-Tabelle
erscheinen, die zur Entschlüsselung verwendet wurde. Wenn ein Schlüssel nicht vorhanden ist
oder dieser Schlüssel einen anderen Wert hat, beenden Sie die Verarbeitung und schreiben Sie
eine Fehlermeldung.

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx); !
aws_hash_iter_done(&iter);
 aws_hash_iter_next(&iter)) {
 struct aws_hash_element *session_enc_ctx_kv_pair;
 aws_hash_table_find(session_enc_ctx, iter.element.key,
 &session_enc_ctx_kv_pair)

 if (!session_enc_ctx_kv_pair ||
 !aws_string_eq(
 (struct aws_string *)iter.element.value, (struct aws_string
 *)session_enc_ctx_kv_pair->value)) {
 fprintf(stderr, "Wrong encryption context!\n");
 abort();
 }
}

Beispiele 253

AWS Encryption SDK Entwicklerhandbuch

Schritt 6: Bereinigen Sie die Sitzung.

Nachdem Sie den Verschlüsselungskontext überprüft haben, können Sie die Sitzung löschen
oder wiederverwenden. Wenn Sie die Sitzung neu konfigurieren müssen, verwenden Sie die
aws_cryptosdk_session_reset Methode.

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK für .NET

Die AWS Encryption SDK for .NET ist eine clientseitige Verschlüsselungsbibliothek für Entwickler, die
Anwendungen in C# und anderen .NET-Programmiersprachen schreiben. Sie wird unter Windows,
macOS und Linux unterstützt.

Note

Version 4.0.0 von AWS Encryption SDK für .NET weicht von der Nachrichtenspezifikation
ab. AWS Encryption SDK Aus diesem Grund können Nachrichten, die mit Version 4.0.0
verschlüsselt wurden, nur mit Version 4.0.0 oder höher von for.NET entschlüsselt werden.
AWS Encryption SDK Sie können mit keiner anderen Programmiersprachenimplementierung
entschlüsselt werden.
Version 4.0.1 von AWS Encryption SDK for .NET schreibt Nachrichten gemäß
der AWS Encryption SDK Nachrichtenspezifikation und ist mit anderen
Programmiersprachenimplementierungen interoperabel. Standardmäßig kann Version
4.0.1 Nachrichten lesen, die mit Version 4.0.0 verschlüsselt wurden. Wenn Sie jedoch mit
Version 4.0.0 verschlüsselte Nachrichten nicht entschlüsseln möchten, können Sie die
NetV4_0_0_RetryPolicyEigenschaft so angeben, dass der Client diese Nachrichten nicht
lesen kann. Weitere Informationen finden Sie in den Versionshinweisen zu Version 4.0.1 im
Repository unter. aws-encryption-sdk GitHub

Das AWS Encryption SDK für.NET unterscheidet sich von einigen anderen
Programmiersprachenimplementierungen AWS Encryption SDK in folgenden Punkten:

• Keine Unterstützung für das Zwischenspeichern von Datenschlüsseln

.NET 254

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/NetV4_0_0Example.cs
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1

AWS Encryption SDK Entwicklerhandbuch

Note

Version 4. x of the AWS Encryption SDK for .NET unterstützt den AWS KMS
hierarchischen Schlüsselbund, eine alternative Lösung zum Zwischenspeichern
kryptografischer Materialien.

• Keine Unterstützung für Streaming-Daten

• Keine Protokollierung oder Stack-Traces von AWS Encryption SDK für.NET

• Benötigt den AWS SDK für .NET

Das AWS Encryption SDK für .NET enthält alle Sicherheitsfunktionen, die in Version 2.0 eingeführt
wurden. x und höher von anderen Sprachimplementierungen von. AWS Encryption SDK Wenn Sie
jedoch for.NET verwenden, AWS Encryption SDK um Daten zu entschlüsseln, die mit einer Version
vor 2.0 verschlüsselt wurden. x-Version einer anderen Sprachimplementierung von AWS Encryption
SDK, möglicherweise müssen Sie Ihre Verpflichtungsrichtlinie anpassen. Details hierzu finden Sie
unter Wie legen Sie Ihre Verpflichtungsrichtlinie fest.

Die AWS Encryption SDK für.NET-Version ist ein Produkt von AWS Encryption SDK In Dafny, einer
formalen Überprüfungssprache, in der Sie Spezifikationen, den Code zu ihrer Implementierung
und die Beweise, um sie zu testen, schreiben. Das Ergebnis ist eine Bibliothek, die die Funktionen
von AWS Encryption SDK in einem Framework implementiert, das die funktionale Korrektheit
gewährleistet.

Weitere Informationen

• Beispiele für die Konfiguration von Optionen in der AWS Encryption SDK, z. B. die Angabe
einer alternativen Algorithmussuite, die Beschränkung verschlüsselter Datenschlüssel und die
Verwendung von Schlüsseln für AWS KMS mehrere Regionen, finden Sie unter. Konfiguration der
AWS Encryption SDK

• Einzelheiten zur Programmierung mit dem AWS Encryption SDK für.NET finden Sie im aws-
encryption-sdk-netVerzeichnis des aws-encryption-sdk Repositorys unter GitHub.

Themen

• Installation von AWS Encryption SDK für.NET

• Debuggen des AWS Encryption SDK für .NET

.NET 255

https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/

AWS Encryption SDK Entwicklerhandbuch

• AWS Encryption SDK für .NET-Beispiele

Installation von AWS Encryption SDK für.NET

Das AWS Encryption SDK für .NET ist als AWS.Cryptography.EncryptionSDKPaket in verfügbar
NuGet. Einzelheiten zur Installation und Erstellung von AWS Encryption SDK für.NET finden Sie in
der Datei README.md im Repository. aws-encryption-sdk-net

Version 3.x

Ausführung 3. x of the AWS Encryption SDK für .NET unterstützt .NET Framework 4.5.2 — 4.8
nur unter Windows. Es unterstützt .NET Core 3.0+ und .NET 5.0 und höher auf allen unterstützten
Betriebssystemen.

Version 4.x

Ausführung 4. x of the AWS Encryption SDK für .NET unterstützt .NET 6.0 und .NET Framework
net48 und höher.

AWS Encryption SDK Für .NET sind die Schlüssel SDK für .NET auch dann erforderlich, wenn Sie
nicht AWS Key Management Service (AWS KMS) verwenden. Es ist mit dem NuGet Paket installiert.
Sofern Sie jedoch keine AWS KMS Schlüssel verwenden, benötigt AWS Encryption SDK für.NET
keine AWS Anmeldeinformationen und keine Interaktion mit einem AWS Dienst. AWS-Konto Hilfe
beim Einrichten eines AWS Kontos finden Sie bei Bedarf unterVerwenden von AWS Encryption SDK
with AWS KMS.

Debuggen des AWS Encryption SDK für .NET

Das AWS Encryption SDK für .NET generiert keine Protokolle. Ausnahmen im AWS Encryption SDK
für.NET erzeugen eine Ausnahmemeldung, aber keine Stack-Traces.

Um Ihnen beim Debuggen zu helfen, stellen Sie sicher, dass Sie die SDK für .NET Anmeldung bei
aktivieren. Die Protokolle und Fehlermeldungen von SDK für .NET können Ihnen helfen, Fehler, die
in der auftreten, SDK für .NET von denen in AWS Encryption SDK für.NET zu unterscheiden. Hilfe
zur SDK für .NET Protokollierung finden Sie AWSLoggingim AWS SDK für .NET Entwicklerhandbuch.
(Um das Thema zu lesen, erweitern Sie den Abschnitt Öffnen, um .NET Framework-Inhalte
anzuzeigen.)

Installieren und Erstellen 256

https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/#readme
https://docs.aws.amazon.com/sdk-for-net/v4/developer-guide/net-dg-config-other.html#config-setting-awslogging

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK für .NET-Beispiele

Die folgenden Beispiele zeigen die grundlegenden Codierungsmuster, die Sie beim Programmieren
mit dem AWS Encryption SDK für .NET verwenden. Insbesondere instanziieren Sie die Bibliothek
AWS Encryption SDK und die Material Provider-Bibliothek. Bevor Sie dann jede Methode
aufrufen, instanziieren Sie ein Objekt, das die Eingabe für die Methode definiert. Dies ist dem
Codierungsmuster sehr ähnlich, das Sie in der verwenden. SDK für .NET

Beispiele für die Konfiguration von Optionen in der AWS Encryption SDK, z. B. die Angabe einer
alternativen Algorithmussuite, die Beschränkung verschlüsselter Datenschlüssel und die Verwendung
von Schlüsseln für AWS KMS mehrere Regionen, finden Sie unterKonfiguration der AWS Encryption
SDK.

Weitere Beispiele AWS Encryption SDK für die Programmierung mit für.NET finden Sie in den
Beispielen im aws-encryption-sdk-net Verzeichnis des aws-encryption-sdk Repositorys
unter GitHub.

Verschlüsseln von Daten im AWS Encryption SDK für.NET

Dieses Beispiel zeigt das grundlegende Muster für die Verschlüsselung von Daten. Es verschlüsselt
eine kleine Datei mit Datenschlüsseln, die durch einen AWS KMS Umschließungsschlüssel geschützt
sind.

Schritt 1: Instanziieren Sie die Bibliothek AWS Encryption SDK und die Materiallieferantenbibliothek.

Beginnen Sie mit der Instanziierung der Bibliothek AWS Encryption SDK und der
Materiallieferantenbibliothek. Sie verwenden die Methoden in, AWS Encryption SDK um Daten
zu verschlüsseln und zu entschlüsseln. Sie verwenden die Methoden in der Materialanbieter-
Bibliothek, um die Schlüsselbunde zu erstellen, die angeben, welche Schlüssel Ihre Daten
schützen.

Die Art AWS Encryption SDK und Weise, wie Sie die Material Provider-Bibliothek instanziieren,
unterscheidet sich zwischen Version 3. x und 4. x von AWS Encryption SDK für .NET. Alle
folgenden Schritte sind für beide Versionen 3 identisch. x und 4. x von AWS Encryption SDK
für .NET.

Version 3.x

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();

Beispiele 257

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples

AWS Encryption SDK Entwicklerhandbuch

var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Schritt 2: Erstellen Sie ein Eingabeobjekt für den Schlüsselbund.

Jede Methode, die einen Schlüsselbund erstellt, hat eine entsprechende Eingabeobjektklasse.
Um beispielsweise das Eingabeobjekt für die CreateAwsKmsKeyring() Methode zu erstellen,
erstellen Sie eine Instanz der CreateAwsKmsKeyringInput Klasse.

Obwohl die Eingabe für diesen Schlüsselbund keinen Generatorschlüssel spezifiziert, ist
der einzelne KMS-Schlüssel, der durch den KmsKeyId Parameter angegeben wird, der
Generatorschlüssel. Er generiert und verschlüsselt den Datenschlüssel, der die Daten
verschlüsselt.

Dieses Eingabeobjekt benötigt einen AWS KMS Client für den AWS-Region
KMS-Schlüssel. Um einen AWS KMS Client zu erstellen, instanziieren Sie die
AmazonKeyManagementServiceClient Klasse in der. SDK für .NET Wenn Sie den
AmazonKeyManagementServiceClient() Konstruktor ohne Parameter aufrufen, wird ein
Client mit den Standardwerten erstellt.

In einem AWS KMS Schlüsselbund, der AWS Encryption SDK für die Verschlüsselung mit
für.NET verwendet wird, können Sie die KMS-Schlüssel anhand der Schlüssel-ID, des Schlüssel-
ARN, des Aliasnamens oder des Alias-ARN identifizieren. In einem AWS KMS Schlüsselbund,
der zum Entschlüsseln verwendet wird, müssen Sie einen Schlüssel-ARN verwenden, um
jeden KMS-Schlüssel zu identifizieren. Wenn Sie Ihren Verschlüsselungsschlüsselbund für die
Entschlüsselung wiederverwenden möchten, verwenden Sie eine ARN-Schlüssel-ID für alle KMS-
Schlüssel.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object

Beispiele 258

AWS Encryption SDK Entwicklerhandbuch

var kmsKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};

Schritt 3: Erstellen Sie den Schlüsselbund.

Um den Schlüsselbund zu erstellen, rufen Sie die Schlüsselbundmethode mit dem Schlüsselbund-
Eingabeobjekt auf. In diesem Beispiel wird die CreateAwsKmsKeyring() Methode verwendet,
die nur einen KMS-Schlüssel benötigt.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Schritt 4: Definieren Sie einen Verschlüsselungskontext.

Ein Verschlüsselungskontext ist ein optionales, aber dringend empfohlenes Element
kryptografischer Operationen in der AWS Encryption SDK. Sie können ein oder mehrere nicht
geheime Schlüssel-Wert-Paare definieren.

Note

Mit Version 4. x of the AWS Encryption SDK für .NET, Sie können in allen
Verschlüsselungsanforderungen mit dem erforderlichen Verschlüsselungskontext CMM
einen Verschlüsselungskontext angeben.

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
 {"purpose", "test"}
};

Schritt 5: Erstellen Sie das Eingabeobjekt für die Verschlüsselung.

Bevor Sie die Encrypt() Methode aufrufen, erstellen Sie eine Instanz der EncryptInput
Klasse.

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt");

Beispiele 259

AWS Encryption SDK Entwicklerhandbuch

// Define the encrypt input
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = keyring,
 EncryptionContext = encryptionContext
};

Schritt 6: Verschlüsseln Sie den Klartext.

Verwenden Sie die Encrypt() Methode von AWS Encryption SDK , um den Klartext mit dem
von Ihnen definierten Schlüsselbund zu verschlüsseln.

Die EncryptOutput Encrypt() Methode gibt Methoden zum Abrufen der verschlüsselten
Nachricht (Ciphertext), den Verschlüsselungskontext und die Algorithmus-Suite an.

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

Schritt 7: Holen Sie sich die verschlüsselte Nachricht.

Die Decrypt() Methode in AWS Encryption SDK for .NET verwendet das Ciphertext Mitglied
der EncryptOutput Instanz.

Das Ciphertext Mitglied des EncryptOutput Objekts ist die verschlüsselte Nachricht, ein
portables Objekt, das die verschlüsselten Daten, die verschlüsselten Datenschlüssel und die
Metadaten einschließlich des Verschlüsselungskontextes enthält. Sie können die verschlüsselte
Nachricht sicher für einen längeren Zeitraum speichern oder sie an die Decrypt() Methode zur
Wiederherstellung des Klartextes weiterleiten.

var encryptedMessage = encryptOutput.Ciphertext;

Entschlüsselung im strikten Modus in für.NET AWS Encryption SDK

Bewährte Methoden empfehlen, dass Sie die Schlüssel angeben, die Sie zum Entschlüsseln von
Daten verwenden. Diese Option wird als strikter Modus bezeichnet. Der AWS Encryption SDK
verwendet nur die KMS-Schlüssel, die Sie in Ihrem Schlüsselbund angeben, um den Chiffretext zu
entschlüsseln. Die Schlüssel in Ihrem Entschlüsselungsschlüsselbund müssen mindestens einen der
Schlüssel enthalten, mit denen die Daten verschlüsselt wurden.

Beispiele 260

AWS Encryption SDK Entwicklerhandbuch

Dieses Beispiel zeigt das grundlegende Muster der Entschlüsselung im strikten Modus mit dem AWS
Encryption SDK für.NET.

Schritt 1: Instanziieren Sie die Bibliothek AWS Encryption SDK und die Material Provider-Bibliothek.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Schritt 2: Erstellen Sie das Eingabeobjekt für Ihren Schlüsselbund.

Um die Parameter für die Schlüsselbundmethode anzugeben, erstellen Sie ein Eingabeobjekt.
Jede Schlüsselbundmethode in der AWS Encryption SDK für.NET hat ein entsprechendes
Eingabeobjekt. Da in diesem Beispiel die CreateAwsKmsKeyring() Methode verwendet wird,
um den Schlüsselbund zu erstellen, wird die CreateAwsKmsKeyringInput Klasse für die
Eingabe instanziiert.

In einem Schlüsselbund für die Entschlüsselung müssen Sie einen Schlüssel-ARN verwenden,
um KMS-Schlüssel zu identifizieren.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};

Schritt 3: Erstellen Sie den Schlüsselbund.

Um den Schlüsselbund für die Entschlüsselung zu erstellen, werden in diesem Beispiel die
CreateAwsKmsKeyring() Methode und das Schlüsselbund-Eingabeobjekt verwendet.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Schritt 4: Erstellen Sie das Eingabeobjekt für die Entschlüsselung.

Um das Eingabeobjekt für die Decrypt() Methode zu erstellen, instanziieren Sie die Klasse.
DecryptInput

Beispiele 261

AWS Encryption SDK Entwicklerhandbuch

Der Ciphertext Parameter des DecryptInput() Konstruktors verwendet das Ciphertext
Mitglied des EncryptOutput Objekts, das die Encrypt() Methode zurückgegeben hat. Die
Ciphertext Eigenschaft stellt die verschlüsselte Nachricht dar, die die verschlüsselten Daten,
verschlüsselten Datenschlüssel und Metadaten enthält, die zum Entschlüsseln der Nachricht AWS
Encryption SDK benötigt werden.

Mit Version 4. x von AWS Encryption SDK für .NET können Sie den optionalen
EncryptionContext Parameter verwenden, um Ihren Verschlüsselungskontext in der
Decrypt() Methode anzugeben.

Verwenden Sie den EncryptionContext Parameter, um zu überprüfen, ob der beim
Verschlüsseln verwendete Verschlüsselungskontext in dem Verschlüsselungskontext enthalten
ist, der zum Entschlüsseln des Chiffretextes verwendet wird. Dadurch werden Paare zum
Verschlüsselungskontext AWS Encryption SDK hinzugefügt, einschließlich der digitalen Signatur,
wenn Sie eine Algorithmussuite mit Signierung verwenden, z. B. die Standard-Algorithmussuite.

var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput
{
 Ciphertext = encryptedMessage,
 Keyring = keyring,
 EncryptionContext = encryptionContext // OPTIONAL
};

Schritt 5: Entschlüsseln Sie den Chiffretext.

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Schritt 6: Überprüfen Sie den Verschlüsselungskontext — Version 3. x

Die Decrypt() Methode der Version 3. x von AWS Encryption SDK for .NET benötigt keinen
Verschlüsselungskontext. Es ruft die Verschlüsselungskontextwerte aus den Metadaten in der
verschlüsselten Nachricht ab. Bevor Sie den Klartext zurückgeben oder verwenden, sollten Sie
jedoch überprüfen, ob der Verschlüsselungskontext, der zum Entschlüsseln des Chiffretextes
verwendet wurde, den Verschlüsselungskontext enthält, den Sie bei der Verschlüsselung
angegeben haben.

Stellen Sie sicher, dass der beim Verschlüsseln verwendete Verschlüsselungskontext in dem
Verschlüsselungskontext enthalten ist, der zum Entschlüsseln des Chiffretextes verwendet wurde.

Beispiele 262

AWS Encryption SDK Entwicklerhandbuch

Das AWS Encryption SDK fügt dem Verschlüsselungskontext Paare hinzu, einschließlich der
digitalen Signatur, wenn Sie eine Algorithmussuite mit Signierung verwenden, z. B. die Standard-
Algorithmussuite.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
 decryptContextValue)
 || !decryptContextValue.Equals(contextValue))
{
 throw new Exception("Encryption context does not match expected values");
}

Entschlüsseln mit einem Discovery-Schlüsselbund im für.NET AWS Encryption SDK

Anstatt die KMS-Schlüssel für die Entschlüsselung anzugeben, können Sie einen AWS KMS
Discovery-Schlüsselbund angeben. Dabei handelt es sich um einen Schlüsselbund, der keine KMS-
Schlüssel angibt. Mit einem Discovery-Schlüsselbund können die Daten mit dem KMS-Schlüssel,
der sie verschlüsselt hat, AWS Encryption SDK entschlüsselt werden, sofern der Anrufer über die
Entschlüsselungsberechtigung für den Schlüssel verfügt. Für bewährte Methoden sollten Sie einen
Erkennungsfilter hinzufügen, der die KMS-Schlüssel, die verwendet werden können, auf diejenigen
beschränkt, die insbesondere AWS-Konten für eine bestimmte Partition verwendet werden können.

Der AWS Encryption SDK für.NET bietet einen einfachen Discovery-Schlüsselbund, für den
ein AWS KMS Client erforderlich ist, und einen Discovery-Mehrfachschlüsselbund, für den Sie
einen oder mehrere Schlüssel angeben müssen. AWS-Regionen Sowohl der Client als auch die
Regionen beschränken die Anzahl der KMS-Schlüssel, die zum Entschlüsseln der verschlüsselten
Nachricht verwendet werden können. Die Eingabeobjekte für beide Schlüsselbunde verwenden den
empfohlenen Erkennungsfilter.

Das folgende Beispiel zeigt das Muster für die Entschlüsselung von Daten mit einem AWS KMS
Discovery-Schlüsselbund und einem Discovery-Filter.

Schritt 1: Instanziieren Sie die Bibliothek AWS Encryption SDK und die Materiallieferantenbibliothek.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());

Beispiele 263

AWS Encryption SDK Entwicklerhandbuch

var mpl = new MaterialProviders(new MaterialProvidersConfig());

Schritt 2: Erstellen Sie das Eingabeobjekt für den Schlüsselbund.

Um die Parameter für die Schlüsselbundmethode anzugeben, erstellen Sie
ein Eingabeobjekt. Jede Schlüsselbundmethode in der AWS Encryption SDK
für.NET hat ein entsprechendes Eingabeobjekt. Da in diesem Beispiel die
CreateAwsKmsDiscoveryKeyring() Methode verwendet wird, um den Schlüsselbund zu
erstellen, wird die CreateAwsKmsDiscoveryKeyringInput Klasse für die Eingabe instanziiert.

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 DiscoveryFilter = new DiscoveryFilter()
 {
 AccountIds = accounts,
 Partition = "aws"
 }
};

Schritt 3: Erstellen Sie den Schlüsselbund.

Um den Schlüsselbund für die Entschlüsselung zu erstellen, werden in diesem Beispiel die
CreateAwsKmsDiscoveryKeyring() Methode und das Schlüsselbund-Eingabeobjekt
verwendet.

var discoveryKeyring =
 materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

Schritt 4: Erstellen Sie das Eingabeobjekt für die Entschlüsselung.

Um das Eingabeobjekt für die Decrypt() Methode zu erstellen, instanziieren Sie die Klasse.
DecryptInput Der Wert des Ciphertext Parameters ist das Ciphertext Mitglied des
EncryptOutput Objekts, das die Encrypt() Methode zurückgibt.

Mit Version 4. x von AWS Encryption SDK für .NET können Sie den optionalen
EncryptionContext Parameter verwenden, um Ihren Verschlüsselungskontext in der
Decrypt() Methode anzugeben.

Beispiele 264

AWS Encryption SDK Entwicklerhandbuch

Verwenden Sie den EncryptionContext Parameter, um zu überprüfen, ob der beim
Verschlüsseln verwendete Verschlüsselungskontext in dem Verschlüsselungskontext enthalten
ist, der zum Entschlüsseln des Chiffretextes verwendet wird. Dadurch werden Paare zum
Verschlüsselungskontext AWS Encryption SDK hinzugefügt, einschließlich der digitalen Signatur,
wenn Sie eine Algorithmussuite mit Signierung verwenden, z. B. die Standard-Algorithmussuite.

var ciphertext = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = discoveryKeyring,
 EncryptionContext = encryptionContext // OPTIONAL

};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Schritt 5: Überprüfen Sie den Verschlüsselungskontext — Version 3. x

Die Decrypt() Methode der Version 3. x von AWS Encryption SDK for .NET nimmt keinen
Verschlüsselungskontext anDecrypt(). Es ruft die Verschlüsselungskontextwerte aus
den Metadaten in der verschlüsselten Nachricht ab. Bevor Sie den Klartext zurückgeben
oder verwenden, sollten Sie jedoch überprüfen, ob der Verschlüsselungskontext, der zum
Entschlüsseln des Chiffretextes verwendet wurde, den Verschlüsselungskontext enthält, den Sie
bei der Verschlüsselung angegeben haben.

Stellen Sie sicher, dass der beim Verschlüsseln verwendete Verschlüsselungskontext in dem
Verschlüsselungskontext enthalten ist, der zum Entschlüsseln des Chiffretextes verwendet wurde.
Das AWS Encryption SDK fügt dem Verschlüsselungskontext Paare hinzu, einschließlich der
digitalen Signatur, wenn Sie eine Algorithmussuite mit Signierung verwenden, z. B. die Standard-
Algorithmussuite.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
 decryptContextValue)
 || !decryptContextValue.Equals(contextValue))
{

Beispiele 265

AWS Encryption SDK Entwicklerhandbuch

 throw new Exception("Encryption context does not match expected values");
}

AWS Encryption SDK für Go

In diesem Thema wird erklärt, wie Sie AWS Encryption SDK for Go installieren und verwenden.
Einzelheiten zur Programmierung mit AWS Encryption SDK for Go finden Sie unter dem Go-
Verzeichnis des aws-encryption-sdk Repositorys unter GitHub.

Das AWS Encryption SDK for Go unterscheidet sich von einigen anderen
Programmiersprachenimplementierungen AWS Encryption SDK in folgenden Punkten:

• Keine Unterstützung für das Zwischenspeichern von Datenschlüsseln. AWS Encryption SDK For
Go unterstützt jedoch den AWS KMS hierarchischen Schlüsselbund, eine alternative Lösung zum
Zwischenspeichern kryptografischer Materialien.

• Keine Unterstützung für Streaming-Daten

The AWS Encryption SDK for Go enthält alle Sicherheitsfunktionen, die in den Versionen 2.0
eingeführt wurden. x und höher von anderen Sprachimplementierungen von. AWS Encryption SDK
Wenn Sie jedoch AWS Encryption SDK for Go verwenden, um Daten zu entschlüsseln, die mit einer
Version vor 2.0 verschlüsselt wurden. x-Version einer anderen Sprachimplementierung von AWS
Encryption SDK, möglicherweise müssen Sie Ihre Verpflichtungspolitik anpassen. Details hierzu
finden Sie unter Wie legen Sie Ihre Verpflichtungsrichtlinie fest.

AWS Encryption SDK For Go ist ein Produkt von AWS Encryption SDK In Dafny, einer formalen
Bestätigungssprache, in der Sie Spezifikationen, den Code zu ihrer Implementierung und die
Beweise, um sie zu testen, schreiben. Das Ergebnis ist eine Bibliothek, die die Funktionen von AWS
Encryption SDK in einem Framework implementiert, das die funktionale Korrektheit gewährleistet.

Weitere Informationen

• Beispiele für die Konfiguration von Optionen in der AWS Encryption SDK, z. B. die Angabe
einer alternativen Algorithmussuite, die Beschränkung verschlüsselter Datenschlüssel und die
Verwendung von Schlüsseln für AWS KMS mehrere Regionen, finden Sie unter. Konfiguration der
AWS Encryption SDK

• Beispiele zur Konfiguration und Verwendung von AWS Encryption SDK for Go finden Sie in den
Go-Beispielen im aws-encryption-sdk Repository unter GitHub.

Go 266

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/examples

AWS Encryption SDK Entwicklerhandbuch

Themen

• Voraussetzungen

• Installation

Voraussetzungen

Stellen Sie vor der Installation von AWS Encryption SDK for Go sicher, dass Sie die folgenden
Voraussetzungen erfüllen.

Eine unterstützte Version von Go

Go 1.23 oder höher ist AWS Encryption SDK für for Go erforderlich.

Weitere Informationen zum Herunterladen und Installieren von Go finden Sie unter Go-Installation.

Installation

Installieren Sie die neueste Version von AWS Encryption SDK for Go. Einzelheiten zur Installation
und Erstellung von AWS Encryption SDK for Go finden Sie in der Datei README.md im Go-
Verzeichnis des aws-encryption-sdk Repositorys unter. GitHub

Installieren der neuesten Version

• Installieren Sie das for Go AWS Encryption SDK

go get github.com/aws/aws-encryption-sdk/releases/go/encryption-sdk@latest

• Installieren Sie die Cryptographic Material Providers Library (MPL)

go get github.com/aws/aws-cryptographic-material-providers-library/releases/go/mpl

AWS-Verschlüsselungs-SDK for Java

In diesem Thema wird erklärt, wie das AWS-Verschlüsselungs-SDK for Java installiert und verwendet
wird. Einzelheiten zur Programmierung mit dem AWS-Verschlüsselungs-SDK for Java finden Sie im
aws-encryption-sdk-javaRepository unter GitHub. Eine API-Dokumentation finden Sie im Javadoc für
das AWS-Verschlüsselungs-SDK for Java.

Voraussetzungen 267

https://go.dev/doc/install
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/README.md
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/

AWS Encryption SDK Entwicklerhandbuch

Themen

• Voraussetzungen

• Installation

• AWS-Verschlüsselungs-SDK for Java Beispiele

Voraussetzungen

Stellen Sie vor der Installation von sicher AWS-Verschlüsselungs-SDK for Java, dass Sie die
folgenden Voraussetzungen erfüllen.

Eine Java-Entwicklungsumgebung

Sie benötigen Java 8 oder höher. Klicken Sie auf der Oracle-Website auf Java SE Downloads und
laden und installieren Sie anschließend das Java SE Development Kit (JDK).

Wenn Sie das Oracle JDK verwenden, müssen Sie auch die Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files herunterladen und installieren.

Bouncy Castle

Das AWS-Verschlüsselungs-SDK for Java erfordert Bouncy Castle.

• AWS-Verschlüsselungs-SDK for Java Versionen 1.6.1 und höher verwenden Bouncy Castle,
um kryptografische Objekte zu serialisieren und zu deserialisieren. Sie können Bouncy Castle
oder Bouncy Castle FIPS verwenden, um diese Anforderung zu erfüllen. Hilfe zur Installation
und Konfiguration von Bouncy Castle FIPS finden Sie in der BC FIPS-Dokumentation,
insbesondere in den Benutzerhandbüchern und den Sicherheitsrichtlinien. PDFs

• Frühere Versionen von AWS-Verschlüsselungs-SDK for Java verwenden die Kryptografie-API
von Bouncy Castle für Java. Diese Anforderung wird nur von Nicht-FIPS Bouncy Castle erfüllt.

Wenn Sie Bouncy Castle nicht haben, gehen Sie zu Bouncy Castle für Java herunterladen, um
die Anbieterdatei herunterzuladen, die Ihrem JDK entspricht. Sie können auch Apache Maven
verwenden, um das Artefakt für den Standard-Bouncy Castle-Anbieter (bcprov-ext-jdk15on) oder
das Artefakt für Bouncy Castle FIPS (bc-fips) abzurufen.

AWS SDK für Java

Version 3. x der AWS-Verschlüsselungs-SDK for Java erfordert das AWS SDK for Java 2.x, auch
wenn Sie keine AWS KMS Schlüsselringe verwenden.

Voraussetzungen 268

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation/
https://bouncycastle.org/download/bouncy-castle-java/
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips

AWS Encryption SDK Entwicklerhandbuch

Ausführung 2. x oder früher von benötigt AWS-Verschlüsselungs-SDK for Java das nicht
AWS SDK für Java. Die AWS SDK für Java ist jedoch erforderlich, um AWS Key Management
Service(AWS KMS) als Hauptschlüsselanbieter zu verwenden. Ab AWS-Verschlüsselungs-SDK
for Java Version 2.4.0 AWS-Verschlüsselungs-SDK for Java unterstützt der sowohl Version 1.x
als auch 2.x von. AWS SDK für Java AWS Encryption SDK Der Code für AWS SDK für Java
1.x und 2.x ist interoperabel. Sie können beispielsweise Daten mit AWS Encryption SDK Code
verschlüsseln, der 1.x unterstützt, und sie mit Code entschlüsseln, der AWS SDK für Java 1.x
unterstützt AWS SDK for Java 2.x (oder umgekehrt). Versionen vor 2.4.0 AWS-Verschlüsselungs-
SDK for Java unterstützen nur 1.x. AWS SDK für Java Hinweise zur Aktualisierung Ihrer Version
von finden Sie unter AWS Encryption SDK. Migrieren Sie Ihre AWS Encryption SDK

Wenn Sie Ihren AWS-Verschlüsselungs-SDK for Java Code von AWS SDK für Java 1.x auf
aktualisieren AWS SDK for Java 2.x, ersetzen Sie Verweise auf die AWSKMSSchnittstelle in AWS
SDK für Java 1.x durch Verweise auf die KmsClientSchnittstelle in. AWS SDK for Java 2.xDas
AWS-Verschlüsselungs-SDK for Java unterstützt die Schnittstelle nicht. KmsAsyncClient
Aktualisieren Sie außerdem Ihren Code, sodass die AWS KMS zugehörigen Objekte im
kmssdkv2 Namespace statt im kms Namespace verwendet werden.

Verwenden Sie Apache Maven AWS SDK für Java, um das zu installieren.

• Um das gesamte AWS SDK für Java als Abhängigkeit zu importieren, deklarieren Sie es in Ihrer
pom.xml-Datei.

• Um eine Abhängigkeit nur für das AWS KMS Modul in AWS SDK für Java 1.x zu erstellen,
folgen Sie den Anweisungen zur Angabe bestimmter Module und setzen Sie den artifactId
Wert auf. aws-java-sdk-kms

• Um eine Abhängigkeit nur für das AWS KMS Modul in AWS SDK für Java 2.x zu erstellen,
folgen Sie den Anweisungen zur Angabe bestimmter Module. Stellen Sie „groupIdbis“
software.amazon.awssdk und „artifactIdBiskms“ ein.

Weitere Änderungen finden Sie unter Was ist der Unterschied zwischen AWS SDK für Java 1.x
und 2.x im AWS SDK for Java 2.x Entwicklerhandbuch.

In den Java-Beispielen im AWS Encryption SDK Developer Guide wird der verwendet. AWS SDK
for Java 2.x

Installation

Installieren Sie die neueste Version von AWS-Verschlüsselungs-SDK for Java.

Installation 269

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html

AWS Encryption SDK Entwicklerhandbuch

Note

Alle AWS-Verschlüsselungs-SDK for Java Versionen vor 2.0.0 befinden sich in der end-of-
supportPhase.
Sie können sicher von Version 2.0 aus aktualisieren. x und höher auf die neueste Version
von AWS-Verschlüsselungs-SDK for Java ohne Code- oder Datenänderungen. In Version 2.0
wurden jedoch neue Sicherheitsfunktionen eingeführt. x sind nicht abwärtskompatibel. Um
von Versionen vor 1.7 zu aktualisieren. x auf Version 2.0. x und höher, Sie müssen zuerst
auf die neueste Version 1 aktualisieren. x-Version von AWS Encryption SDK. Details hierzu
finden Sie unter Migrieren Sie Ihre AWS Encryption SDK.

Sie können das AWS-Verschlüsselungs-SDK for Java auf folgende Weise installieren.

manuell

Um das aws-encryption-sdk-java GitHubRepository zu installieren AWS-Verschlüsselungs-SDK
for Java, klonen oder laden Sie es herunter.

Verwenden von Apache Maven

Das AWS-Verschlüsselungs-SDK for Java ist über Apache Maven mit der folgenden
Abhängigkeitsdefinition verfügbar.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-encryption-sdk-java</artifactId>
 <version>3.0.0</version>
</dependency>

Nachdem Sie das SDK installiert haben, schauen Sie sich zunächst den Java-Beispielcode in diesem
Handbuch und das Javadoc an. GitHub

AWS-Verschlüsselungs-SDK for Java Beispiele

Die folgenden Beispiele zeigen Ihnen, wie Sie mit AWS-Verschlüsselungs-SDK for Java dem Daten
ver- und entschlüsseln können. Diese Beispiele zeigen, wie Version 3 verwendet wird. x und später
von AWS-Verschlüsselungs-SDK for Java. Version 3. x von AWS-Verschlüsselungs-SDK for Java
benötigt die AWS SDK for Java 2.x. Version 3. x von AWS-Verschlüsselungs-SDK for Java ersetzt

Beispiele 270

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-java/
https://maven.apache.org/
https://aws.github.io/aws-encryption-sdk-java/

AWS Encryption SDK Entwicklerhandbuch

die Hauptschlüsselanbieter durch Schlüsselringe. Beispiele, die frühere Versionen verwenden, finden
Sie in der Release-Liste des aws-encryption-sdk-javaRepositorys unter GitHub.

Themen

• Verschlüsseln und Entschlüsseln von Zeichenfolgen

• Verschlüsseln und Entschlüsseln von Byte-Streams

• Verschlüsseln und Entschlüsseln von Bytestreams mit einem Mehrfachschlüsselbund

Verschlüsseln und Entschlüsseln von Zeichenfolgen

Das folgende Beispiel zeigt Ihnen, wie Sie Version 3 verwenden. x der AWS-Verschlüsselungs-
SDK for Java zum Verschlüsseln und Entschlüsseln von Zeichenketten. Bevor Sie die Zeichenfolge
verwenden, konvertieren Sie sie in ein Byte-Array.

In diesem Beispiel wird ein AWS KMS Schlüsselbund verwendet. Wenn Sie mit einem AWS KMS
Schlüsselbund verschlüsseln, können Sie eine Schlüssel-ID, einen Schlüssel-ARN, einen Aliasnamen
oder einen Alias-ARN verwenden, um die KMS-Schlüssel zu identifizieren. Beim Entschlüsseln
müssen Sie einen Schlüssel-ARN verwenden, um KMS-Schlüssel zu identifizieren.

Wenn Sie die encryptData()-Methode aufrufen, wird eine verschlüsselte Nachricht
(CryptoResult) zurückgegeben, die den Verschlüsselungstext, die verschlüsselten Datenschlüssel
und den Verschlüsselungskontext enthält. Wenn Sie CryptoResult auf dem getResult-Objekt
aufrufen, gibt es eine Base-64-codierte Zeichenfolgenversion der verschlüsselten Nachricht zurück,
die Sie an die decryptData()-Methode übergeben können.

In ähnlicher Weise enthält das decryptData() zurückgegebene CryptoResult Objekt beim
Aufrufen die Klartextnachricht und eine AWS KMS key ID. Bevor Ihre Anwendung den Klartext
zurückgibt, stellen Sie sicher, dass die AWS KMS key ID und der Verschlüsselungskontext in der
verschlüsselten Nachricht den Erwartungen entsprechen.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import software.amazon.cryptography.materialproviders.IKeyring;

Beispiele 271

https://github.com/aws/aws-encryption-sdk-java/releases
https://github.com/aws/aws-encryption-sdk-java/

AWS Encryption SDK Entwicklerhandbuch

import software.amazon.cryptography.materialproviders.MaterialProviders;
import
 software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;

/**
 * Encrypts and then decrypts data using an AWS KMS Keyring.
 *
 * <p>Arguments:
 *
 *
 * Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS
 customer master
 * key (CMK), see 'Viewing Keys' at
 * http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
 *
 */
public class BasicEncryptionKeyringExample {

 private static final byte[] EXAMPLE_DATA = "Hello
 World".getBytes(StandardCharsets.UTF_8);

 public static void main(final String[] args) {
 final String keyArn = args[0];

 encryptAndDecryptWithKeyring(keyArn);
 }

 public static void encryptAndDecryptWithKeyring(final String keyArn) {
 // 1. Instantiate the SDK
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with a
 committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`

Beispiele 272

AWS Encryption SDK Entwicklerhandbuch

 // or `AwsCrypto.standard()`.
 final AwsCrypto crypto =
 AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 // 2. Create the AWS KMS keyring.
 // This example creates a multi keyring, which automatically creates the KMS
 client.
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build();
 final IKeyring kmsKeyring =
 materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

 // 3. Create an encryption context
 // We recommend using an encryption context whenever possible
 // to protect integrity. This sample uses placeholder values.
 // For more information see:
 // blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management
 final Map<String, String> encryptionContext =
 Collections.singletonMap("ExampleContextKey", "ExampleContextValue");

 // 4. Encrypt the data
 final CryptoResult<byte[], ?> encryptResult =
 crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext);
 final byte[] ciphertext = encryptResult.getResult();

 // 5. Decrypt the data
 final CryptoResult<byte[], ?> decryptResult =
 crypto.decryptData(
 kmsKeyring,
 ciphertext,
 // Verify that the encryption context in the result contains the
 // encryption context supplied to the encryptData method
 encryptionContext);

 // 6. Verify that the decrypted plaintext matches the original plaintext
 assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA);
 }

Beispiele 273

AWS Encryption SDK Entwicklerhandbuch

}

Verschlüsseln und Entschlüsseln von Byte-Streams

Das folgende Beispiel zeigt Ihnen, wie Sie AWS Encryption SDK Bytestreams verschlüsseln und
entschlüsseln können.

In diesem Beispiel wird ein Raw AES-Schlüsselbund verwendet.

Bei der Verschlüsselung verwendet dieses Beispiel die
AwsCrypto.builder() .withEncryptionAlgorithm() Methode, um eine
Algorithmussuite ohne digitale Signaturen anzugeben. Bei der Entschlüsselung
wird in diesem Beispiel die Methode verwendet, um sicherzustellen, dass der
Chiffretext nicht signiert ist. createUnsignedMessageDecryptingStream() Die
createUnsignedMessageDecryptingStream() Methode schlägt fehl, wenn sie auf einen
Chiffretext mit einer digitalen Signatur trifft.

Wenn Sie mit der Standard-Algorithmus-Suite verschlüsseln, die digitale Signaturen enthält,
verwenden Sie stattdessen die createDecryptingStream() Methode, wie im nächsten Beispiel
gezeigt.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoAlgorithm;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.util.IOUtils;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import software.amazon.cryptography.materialproviders.model.AesWrappingAlg;
import software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;

Beispiele 274

AWS Encryption SDK Entwicklerhandbuch

import java.security.SecureRandom;
import java.util.Collections;
import java.util.Map;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

/**
 * <p>
 * Encrypts and then decrypts a file under a random key.
 *
 * <p>
 * Arguments:
 *
 * Name of file containing plaintext data to encrypt
 *
 *
 * <p>
 * This program demonstrates using a standard Java {@link SecretKey} object as a {@link
 IKeyring} to
 * encrypt and decrypt streaming data.
 */
public class FileStreamingKeyringExample {
 private static String srcFile;

 public static void main(String[] args) throws IOException {
 srcFile = args[0];

 // In this example, we generate a random key. In practice,
 // you would get a key from an existing store
 SecretKey cryptoKey = retrieveEncryptionKey();

 // Create a Raw Aes Keyring using the random key and an AES-GCM encryption
 algorithm
 final MaterialProviders materialProviders = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateRawAesKeyringInput keyringInput =
 CreateRawAesKeyringInput.builder()
 .wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded()))
 .keyNamespace("Example")
 .keyName("RandomKey")
 .wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAG16)
 .build();

Beispiele 275

AWS Encryption SDK Entwicklerhandbuch

 IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput);

 // Instantiate the SDK.
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with
 a committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 // This example encrypts with an algorithm suite that doesn't include signing
 for faster decryption,
 // since this use case assumes that the contexts that encrypt and decrypt are
 equally trusted.
 final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
 .build();

 // Create an encryption context to identify the ciphertext
 Map<String, String> context = Collections.singletonMap("Example",
 "FileStreaming");

 // Because the file might be too large to load into memory, we stream the data,
 instead of
 //loading it all at once.
 FileInputStream in = new FileInputStream(srcFile);
 CryptoInputStream<JceMasterKey> encryptingStream =
 crypto.createEncryptingStream(keyring, in, context);

 FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
 IOUtils.copy(encryptingStream, out);
 encryptingStream.close();
 out.close();

 // Decrypt the file. Verify the encryption context before returning the
 plaintext.
 // Since the data was encrypted using an unsigned algorithm suite, use the
 recommended

Beispiele 276

AWS Encryption SDK Entwicklerhandbuch

 // createUnsignedMessageDecryptingStream method, which only accepts unsigned
 messages.
 in = new FileInputStream(srcFile + ".encrypted");
 CryptoInputStream<JceMasterKey> decryptingStream =
 crypto.createUnsignedMessageDecryptingStream(keyring, in);
 // Does it contain the expected encryption context?
 if
 (!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Example")))
 {
 throw new IllegalStateException("Bad encryption context");
 }

 // Write the plaintext data to disk.
 out = new FileOutputStream(srcFile + ".decrypted");
 IOUtils.copy(decryptingStream, out);
 decryptingStream.close();
 out.close();
 }

 /**
 * In practice, this key would be saved in a secure location.
 * For this demo, we generate a new random key for each operation.
 */
 private static SecretKey retrieveEncryptionKey() {
 SecureRandom rnd = new SecureRandom();
 byte[] rawKey = new byte[16]; // 128 bits
 rnd.nextBytes(rawKey);
 return new SecretKeySpec(rawKey, "AES");
 }
}

Verschlüsseln und Entschlüsseln von Bytestreams mit einem Mehrfachschlüsselbund

Das folgende Beispiel zeigt Ihnen, wie Sie den AWS Encryption SDK mit einem
Mehrfachschlüsselbund verwenden. Wenn Sie einen Multi-Schlüsselbund verwenden, um Daten
zu verschlüsseln, können alle Umhüllungsschlüssel in einem seiner Schlüsselbunde diese Daten
entschlüsseln. In diesem Beispiel werden ein AWS KMS Schlüsselbund und ein Raw RSA-
Schlüsselbund als untergeordnete Schlüsselanhänger verwendet.

In diesem Beispiel wird mit der Standard-Algorithmussuite verschlüsselt, die eine digitale Signatur
enthält. Beim Streaming AWS Encryption SDK gibt der Klartext nach Integritätsprüfungen, aber bevor
die digitale Signatur verifiziert wurde, frei. Um zu vermeiden, dass der Klartext verwendet wird, bis

Beispiele 277

AWS Encryption SDK Entwicklerhandbuch

die Signatur verifiziert ist, puffert dieses Beispiel den Klartext und schreibt ihn erst auf die Festplatte,
wenn die Entschlüsselung und Überprüfung abgeschlossen sind.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoOutputStream;
import com.amazonaws.util.IOUtils;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import
 software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.CreateMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.CreateRawRsaKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;
import software.amazon.cryptography.materialproviders.model.PaddingScheme;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.nio.ByteBuffer;
import java.security.GeneralSecurityException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.util.Collections;

/**
 * <p>
 * Encrypts a file using both AWS KMS Key and an asymmetric key pair.
 *
 * <p>
 * Arguments:
 *
 * Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key,
 * see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html
 *
 * Name of file containing plaintext data to encrypt

Beispiele 278

AWS Encryption SDK Entwicklerhandbuch

 *
 * <p>
 * You might use AWS Key Management Service (AWS KMS) for most encryption and
 decryption operations, but
 * still want the option of decrypting your data offline independently of AWS KMS. This
 sample
 * demonstrates one way to do this.
 * <p>
 * The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair
 * so that either key alone can decrypt it. You might commonly use the AWS KMS key for
 decryption. However,
 * at any time, you can use the private RSA key to decrypt the ciphertext independent
 of AWS KMS.
 * <p>
 * This sample uses the RawRsaKeyring to generate a RSA public-private key pair
 * and saves the key pair in memory. In practice, you would store the private key in a
 secure offline
 * location, such as an offline HSM, and distribute the public key to your development
 team.
 */
public class EscrowedEncryptKeyringExample {
 private static ByteBuffer publicEscrowKey;
 private static ByteBuffer privateEscrowKey;

 public static void main(final String[] args) throws Exception {
 // This sample generates a new random key for each operation.
 // In practice, you would distribute the public key and save the private key in
 secure
 // storage.
 generateEscrowKeyPair();

 final String kmsArn = args[0];
 final String fileName = args[1];

 standardEncrypt(kmsArn, fileName);
 standardDecrypt(kmsArn, fileName);

 escrowDecrypt(fileName);
 }

 private static void standardEncrypt(final String kmsArn, final String fileName)
 throws Exception {
 // Encrypt with the KMS key and the escrowed public key
 // 1. Instantiate the SDK

Beispiele 279

AWS Encryption SDK Entwicklerhandbuch

 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with
 a committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 // 2. Create the AWS KMS keyring.
 // This example creates a multi keyring, which automatically creates the KMS
 client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder()
 .generator(kmsArn)
 .build();
 IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

 // 3. Create the Raw Rsa Keyring with Public Key.
 final CreateRawRsaKeyringInput encryptingKeyringInput =
 CreateRawRsaKeyringInput.builder()
 .keyName("Escrow")
 .keyNamespace("Escrow")
 .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1)
 .publicKey(publicEscrowKey)
 .build();
 IKeyring rsaPublicKeyring =
 matProv.CreateRawRsaKeyring(encryptingKeyringInput);

 // 4. Create the multi-keyring.
 final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(kmsKeyring)
 .childKeyrings(Collections.singletonList(rsaPublicKeyring))
 .build();
 IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Beispiele 280

AWS Encryption SDK Entwicklerhandbuch

 // 5. Encrypt the file
 // To simplify this code example, we omit the encryption context. Production
 code should always
 // use an encryption context.
 final FileInputStream in = new FileInputStream(fileName);
 final FileOutputStream out = new FileOutputStream(fileName + ".encrypted");
 final CryptoOutputStream<?> encryptingStream =
 crypto.createEncryptingStream(multiKeyring, out);

 IOUtils.copy(in, encryptingStream);
 in.close();
 encryptingStream.close();
 }

 private static void standardDecrypt(final String kmsArn, final String fileName)
 throws Exception {
 // Decrypt with the AWS KMS key and the escrow public key.

 // 1. Instantiate the SDK.
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with
 a committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 // 2. Create the AWS KMS keyring.
 // This example creates a multi keyring, which automatically creates the KMS
 client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder()
 .generator(kmsArn)
 .build();

Beispiele 281

AWS Encryption SDK Entwicklerhandbuch

 IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

 // 3. Create the Raw Rsa Keyring with Public Key.
 final CreateRawRsaKeyringInput encryptingKeyringInput =
 CreateRawRsaKeyringInput.builder()
 .keyName("Escrow")
 .keyNamespace("Escrow")
 .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1)
 .publicKey(publicEscrowKey)
 .build();
 IKeyring rsaPublicKeyring =
 matProv.CreateRawRsaKeyring(encryptingKeyringInput);

 // 4. Create the multi-keyring.
 final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(kmsKeyring)
 .childKeyrings(Collections.singletonList(rsaPublicKeyring))
 .build();
 IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

 // 5. Decrypt the file
 // To simplify this code example, we omit the encryption context. Production
 code should always
 // use an encryption context.
 final FileInputStream in = new FileInputStream(fileName + ".encrypted");
 final FileOutputStream out = new FileOutputStream(fileName + ".decrypted");
 // Since we are using a signing algorithm suite, we avoid streaming decryption
 directly to the output file,
 // to ensure that the trailing signature is verified before writing any
 untrusted plaintext to disk.
 final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream();
 final CryptoOutputStream<?> decryptingStream =
 crypto.createDecryptingStream(multiKeyring, plaintextBuffer);
 IOUtils.copy(in, decryptingStream);
 in.close();
 decryptingStream.close();
 final ByteArrayInputStream plaintextReader = new
 ByteArrayInputStream(plaintextBuffer.toByteArray());
 IOUtils.copy(plaintextReader, out);
 out.close();
 }

 private static void escrowDecrypt(final String fileName) throws Exception {

Beispiele 282

AWS Encryption SDK Entwicklerhandbuch

 // You can decrypt the stream using only the private key.
 // This method does not call AWS KMS.

 // 1. Instantiate the SDK
 final AwsCrypto crypto = AwsCrypto.standard();

 // 2. Create the Raw Rsa Keyring with Private Key.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateRawRsaKeyringInput encryptingKeyringInput =
 CreateRawRsaKeyringInput.builder()
 .keyName("Escrow")
 .keyNamespace("Escrow")
 .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1)
 .publicKey(publicEscrowKey)
 .privateKey(privateEscrowKey)
 .build();
 IKeyring escrowPrivateKeyring =
 matProv.CreateRawRsaKeyring(encryptingKeyringInput);

 // 3. Decrypt the file
 // To simplify this code example, we omit the encryption context. Production
 code should always
 // use an encryption context.
 final FileInputStream in = new FileInputStream(fileName + ".encrypted");
 final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed");
 final CryptoOutputStream<?> decryptingStream =
 crypto.createDecryptingStream(escrowPrivateKeyring, out);
 IOUtils.copy(in, decryptingStream);
 in.close();
 decryptingStream.close();

 }

 private static void generateEscrowKeyPair() throws GeneralSecurityException {
 final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA");
 kg.initialize(4096); // Escrow keys should be very strong
 final KeyPair keyPair = kg.generateKeyPair();
 publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic());
 privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate());

 }

Beispiele 283

AWS Encryption SDK Entwicklerhandbuch

}

AWS-Verschlüsselungs-SDK for JavaScript

Die wurde AWS-Verschlüsselungs-SDK for JavaScript entwickelt, um Entwicklern, die
Webbrowseranwendungen in Node.js JavaScript oder Webserveranwendungen schreiben, eine
clientseitige Verschlüsselungsbibliothek zur Verfügung zu stellen.

Wie alle Implementierungen von AWS-Verschlüsselungs-SDK for JavaScript bietet sie erweiterte
Datenschutzfunktionen. AWS Encryption SDK Dazu gehören die Envelope-Verschlüsselung,
zusätzliche authentifizierte Daten (AAD) und Algorithmen-Pakete mit sicherem, authentifiziertem,
symmetrischem Schlüssel, wie z. B. 256-Bit-AES-GCM mit Schlüsselableitung und Signatur.

Alle sprachspezifischen Implementierungen von AWS Encryption SDK sind so konzipiert, dass
sie interoperabel sind und den Einschränkungen der Sprache unterliegen. Einzelheiten zu den
Spracheinschränkungen für finden Sie unter. JavaScript the section called “Kompatibilität”

Weitere Informationen

• Einzelheiten zur Programmierung mit dem AWS-Verschlüsselungs-SDK for JavaScript finden Sie
im aws-encryption-sdk-javascriptRepository unter GitHub.

• Programmierbeispiele finden Sie unter the section called “Beispiele” und in den Modulen example-
browser und example-node im Repository. aws-encryption-sdk-javascript

• Ein Beispiel aus der Praxis für die Verwendung von AWS-Verschlüsselungs-SDK for JavaScript
zum Verschlüsseln von Daten in einer Webanwendung finden Sie im Sicherheitsblog unter How to
enable encryption in a browser with the and Node.js. AWS-Verschlüsselungs-SDK for JavaScript
AWS

Themen

• Kompatibilität der AWS-Verschlüsselungs-SDK for JavaScript

• Installation des AWS-Verschlüsselungs-SDK for JavaScript

• Module in der AWS-Verschlüsselungs-SDK for JavaScript

• AWS-Verschlüsselungs-SDK for JavaScript Beispiele

JavaScript 284

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/

AWS Encryption SDK Entwicklerhandbuch

Kompatibilität der AWS-Verschlüsselungs-SDK for JavaScript

Das AWS-Verschlüsselungs-SDK for JavaScript ist so konzipiert, dass es mit anderen
Sprachimplementierungen von interoperabel ist. AWS Encryption SDKIn den meisten Fällen
können Sie Daten mit der verschlüsseln AWS-Verschlüsselungs-SDK for JavaScript und mit
jeder anderen Sprachimplementierung entschlüsseln, einschließlich der AWS Encryption SDK
Befehlszeilenschnittstelle. Und Sie können das verwenden, um verschlüsselte Nachrichten AWS-
Verschlüsselungs-SDK for JavaScript zu entschlüsseln, die von anderen Sprachimplementierungen
von erzeugt wurden. AWS Encryption SDK

Wenn Sie das AWS-Verschlüsselungs-SDK for JavaScript verwenden, müssen Sie sich jedoch
einiger Kompatibilitätsprobleme in der JavaScript Sprachimplementierung und in Webbrowsern
bewusst sein.

Wenn Sie verschiedene Sprachimplementierungen verwenden, sollten Sie außerdem darauf achten,
kompatible Hauptschlüsselanbieter, Hauptschlüssel und Schlüsselringe zu konfigurieren. Details
hierzu finden Sie unter Schlüsselbund-Kompatibilität.

AWS-Verschlüsselungs-SDK for JavaScript Kompatibilität

Die JavaScript Implementierung von AWS Encryption SDK unterscheidet sich von anderen
Sprachimplementierungen in folgenden Punkten:

• Der Verschlüsselungsvorgang von AWS-Verschlüsselungs-SDK for JavaScript gibt keinen
Chiffretext ohne Frame zurück. Der entschlüsselt jedoch gerahmten und ungerahmten Chiffretext,
der von anderen Sprachimplementierungen von zurückgegeben AWS-Verschlüsselungs-SDK for
JavaScript wird. AWS Encryption SDK

• Ab Node.js-Version 12.9.0 unterstützt Node.js die folgenden RSA-Schlüsselumhüllungsoptionen:

• OAEP mit,, oder SHA1 SHA256 SHA384 SHA512

• OAEP mit und mit SHA1 MGF1 SHA1

• PKCS1v15

• Vor Version 12.9.0 unterstützt Node.js nur die folgenden RSA-Schlüsselumhüllungsoptionen:

• OAEP mit und mit SHA1 MGF1 SHA1

• PKCS1v15

Kompatibilität 285

AWS Encryption SDK Entwicklerhandbuch

Browserkompatibilität

Einige Webbrowser unterstützen keine grundlegenden kryptografischen Operationen, die für das
AWS-Verschlüsselungs-SDK for JavaScript erforderlich sind. Sie können einige der fehlenden
Operationen ausgleichen, indem Sie einen Fallback für die WebCrypto API konfigurieren, die der
Browser implementiert.

Webbrowser-Einschränkungen

Die folgenden Einschränkungen gelten für alle Webbrowser:

• Die WebCrypto API unterstützt das Umschließen von PKCS1v15 Schlüsseln nicht.

• Browser unterstützen keine 192-Bit-Schlüssel.

Erforderliche kryptografische Operationen

Das AWS-Verschlüsselungs-SDK for JavaScript erfordert die folgenden Operationen in
Webbrowsern. Wenn ein Browser diese Operationen nicht unterstützt, ist er nicht mit dem AWS-
Verschlüsselungs-SDK for JavaScript kompatibel.

• Der Browser muss crypto.getRandomValues() enthalten, was eine Methode zum
Generieren kryptografisch zufälliger Werte ist. Informationen zu den unterstützten
crypto.getRandomValues() Webbrowser-Versionen finden Sie unter Kann ich Krypto
verwenden. getRandomValues()? .

Erforderlicher Fallback

Das AWS-Verschlüsselungs-SDK for JavaScript erfordert die folgenden Bibliotheken und
Operationen in Webbrowsern. Wenn Sie einen Webbrowser unterstützen, der diese Anforderungen
nicht erfüllt, müssen Sie einen Fallback konfigurieren. Andernfalls schlagen Versuche fehl, das AWS-
Verschlüsselungs-SDK for JavaScript mit dem Browser zu verwenden.

• Die WebCrypto API, die grundlegende kryptografische Operationen in Webanwendungen ausführt,
ist nicht für alle Browser verfügbar. Weitere Informationen zu den Webbrowser-Versionen, die
Web-Kryptografie unterstützen, finden Sie unter Kann ich Web-Kryptografie verwenden?.

• Moderne Versionen des Safari-Webbrowsers unterstützen keine AES-GCM-Verschlüsselung
von Null Byte, was erforderlich ist. AWS Encryption SDK Wenn der Browser die WebCrypto API
implementiert, AES-GCM aber nicht zum Verschlüsseln von Null Byte verwenden kann, AWS-

Kompatibilität 286

https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=cryptography

AWS Encryption SDK Entwicklerhandbuch

Verschlüsselungs-SDK for JavaScript verwendet er die Fallback-Bibliothek nur für die Null-Byte-
Verschlüsselung. Er verwendet die API für alle anderen Operationen. WebCrypto

Um einen Fallback für eine der Einschränkungen zu konfigurieren, fügen Sie die folgenden
Anweisungen zu Ihrem Code hinzu. Geben Sie in der Funktion configureFallback eine Bibliothek
an, die die fehlenden Funktionen unterstützt. Im folgenden Beispiel wird die Microsoft Research
JavaScript Cryptography Library (msrcrypto) verwendet, Sie können sie jedoch durch eine
kompatible Bibliothek ersetzen. Ein vollständiges Beispiel finden Sie unter fallback.ts.

import { configureFallback } from '@aws-crypto/client-browser'
configureFallback(msrCrypto)

Installation des AWS-Verschlüsselungs-SDK for JavaScript

Das AWS-Verschlüsselungs-SDK for JavaScript besteht aus einer Sammlung voneinander
abhängiger Module. Einige der Module sind nur Sammlungen von Modulen, die für die
Zusammenarbeit konzipiert sind. Einige Module sind so konzipiert, dass sie unabhängig voneinander
arbeiten. Für alle Implementierungen sind einige Module erforderlich, einige andere werden nur für
spezielle Fälle benötigt. Informationen zu den Modulen im Verzeichnis finden Sie unter Module in der
AWS-Verschlüsselungs-SDK for JavaScript und die README.md Datei in den einzelnen Modulen im
aws-encryption-sdk-javascriptProjektarchiv unter GitHub. AWS Encryption SDK JavaScript

Note

Alle AWS-Verschlüsselungs-SDK for JavaScript Versionen vor 2.0.0 befinden sich in der end-
of-supportPhase.
Sie können sicher von Version 2.0 aus aktualisieren. x und höher auf die neueste Version von
AWS-Verschlüsselungs-SDK for JavaScript ohne Code- oder Datenänderungen. In Version
2.0 wurden jedoch neue Sicherheitsfunktionen eingeführt. x sind nicht abwärtskompatibel.
Um von Versionen vor 1.7 zu aktualisieren. x auf Version 2.0. x und höher, Sie müssen
zuerst auf die neueste Version 1 aktualisieren. x-Version von AWS-Verschlüsselungs-SDK for
JavaScript. Details hierzu finden Sie unter Migrieren Sie Ihre AWS Encryption SDK.

Um die Module zu installieren, verwenden Sie den npm-Paketmanager.

Installation 287

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/web-crypto-backend/src/backend-factory.ts#L78
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/fallback.ts
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.npmjs.com/get-npm

AWS Encryption SDK Entwicklerhandbuch

Verwenden Sie beispielsweise den folgenden Befehl, um das client-node Modul zu installieren,
das alle Module enthält, die Sie mit der AWS-Verschlüsselungs-SDK for JavaScript Datei Node.js
programmieren müssen.

npm install @aws-crypto/client-node

Verwenden Sie den folgenden Befehl, um das client-browser Modul zu installieren, das
alle Module enthält, mit denen Sie AWS-Verschlüsselungs-SDK for JavaScript im Browser
programmieren müssen.

npm install @aws-crypto/client-browser

Praktische Beispiele für die AWS-Verschlüsselungs-SDK for JavaScript Verwendung von finden Sie
in den Beispielen unter example-node und in den example-browser Modulen im aws-encryption-
sdk-javascriptRepository unter GitHub.

Module in der AWS-Verschlüsselungs-SDK for JavaScript

Die Module im AWS-Verschlüsselungs-SDK for JavaScript machen es einfach, den Code zu
installieren, den Sie für Ihre Projekte benötigen.

Module für JavaScript Node.js

client-node

Enthält alle Module, mit denen Sie AWS-Verschlüsselungs-SDK for JavaScript in Node.js
programmieren müssen.

caching-materials-manager-node

Exportiert Funktionen, die die Funktion zum Zwischenspeichern von Datenschlüsseln AWS-
Verschlüsselungs-SDK for JavaScript in Node.js unterstützen.

decrypt-node

Exportiert Funktionen, die verschlüsselte Nachrichten entschlüsseln und verifizieren, die Daten
und Datenströme darstellen. Im client-node-Modul enthalten.

encrypt-node

Exportiert Funktionen, die verschiedene Datentypen verschlüsseln und signieren. Im client-
node-Modul enthalten.

Module 288

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-node

AWS Encryption SDK Entwicklerhandbuch

example-node

Exportiert funktionierende Beispiele für die Programmierung mit dem AWS-Verschlüsselungs-SDK
for JavaScript in Node.js. Enthält ein Beispiel für verschiedene Arten von Schlüsselbunden und
verschiedene Arten von Daten.

hkdf-node

Exportiert eine HMAC-basierte Key Derivation Function (HKDF), die AWS-Verschlüsselungs-
SDK for JavaScript in Node.js in bestimmten Algorithmus-Suites verwendet wird. Die AWS-
Verschlüsselungs-SDK for JavaScript im Browser verwendet die native HKDF-Funktion in der API.
WebCrypto

integration-node

Definiert Tests, die überprüfen, ob die AWS-Verschlüsselungs-SDK for JavaScript in Node.js
enthaltene Datei mit anderen Sprachimplementierungen von kompatibel ist. AWS Encryption SDK

kms-keyring-node

Exportiert Funktionen, die AWS KMS Schlüsselringe in Node.js unterstützen.

raw-aes-keyring-node

Exportiert Funktionen, die Unformatierte AES-Schlüsselbunde in Node.js unterstützen.

raw-rsa-keyring-node

Exportiert Funktionen, die Unformatierte RSA-Schlüsselbunde in Node.js unterstützen.

Module für Browser JavaScript

client-browser

Enthält alle Module, mit denen Sie AWS-Verschlüsselungs-SDK for JavaScript im Browser
programmieren müssen.

caching-materials-manager-browser

Exportiert Funktionen, die die Funktion zum Zwischenspeichern von Datenschlüsseln JavaScript
im Browser unterstützen.

decrypt-browser

Exportiert Funktionen, die verschlüsselte Nachrichten entschlüsseln und verifizieren, die Daten
und Datenströme darstellen.

Module 289

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/hkdf-node
https://en.wikipedia.org/wiki/HKDF
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-browser

AWS Encryption SDK Entwicklerhandbuch

encrypt-browser

Exportiert Funktionen, die verschiedene Datentypen verschlüsseln und signieren.

example-browser

Arbeitsbeispiele für die Programmierung mit dem AWS-Verschlüsselungs-SDK for JavaScript im
Browser. Enthält Beispiele für verschiedene Arten von Schlüsselbunden und verschiedene Arten
von Daten.

integration-browser

Definiert Tests, die überprüfen, ob das AWS-Verschlüsselungs-SDK for Java Skript im Browser
mit anderen Sprachimplementierungen von kompatibel ist. AWS Encryption SDK

kms-keyring-browser

Exportiert Funktionen, die AWS KMS Schlüsselringe im Browser unterstützen.

raw-aes-keyring-browser

Exportiert Funktionen, die Unformatierte AES-Schlüsselbunde im Browser unterstützen.

raw-rsa-keyring-browser

Exportiert Funktionen, die Unformatierte RSA-Schlüsselbunde im Browser unterstützen.

Module für alle Implementierungen

cache-material

Unterstützt die Datenschlüssel-Caching-Funktion. Stellt Code für die Zusammenstellung der
kryptografischen Materialien bereit, die mit jedem Datenschlüssel zwischengespeichert werden.

kms-keyring

Exportiert Funktionen, die KMS-Schlüsselbunde unterstützen.

material-management

Implementiert den Manager von kryptographischen Materialien (CMM).

raw-keyring

Exportiert Funktionen, die für unformatierte AES- und RSA-Schlüsselbunde erforderlich sind.

serialize

Exportiert Funktionen, die das SDK verwendet, um seine Ausgabe zu serialisieren.

Module 290

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/cache-material
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/material-management
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/serialize

AWS Encryption SDK Entwicklerhandbuch

web-crypto-backend

Exportiert Funktionen, die die WebCrypto API AWS-Verschlüsselungs-SDK for JavaScript im
Browser verwenden.

AWS-Verschlüsselungs-SDK for JavaScript Beispiele

Die folgenden Beispiele zeigen Ihnen, wie Sie mit dem AWS-Verschlüsselungs-SDK for JavaScript
Daten verschlüsseln und entschlüsseln.

Weitere Beispiele für die Verwendung der Module AWS-Verschlüsselungs-SDK for JavaScript in
den Modulen example-node und example-browser im Repository finden Sie unter. aws-encryption-
sdk-javascript GitHub Diese Beispielmodule werden nicht installiert, wenn Sie die Module client-
browser oder client-node installieren.

Die vollständigen Codebeispiele anzeigen: Knoten: kms_simple.ts, Browser: kms_simple.ts

Themen

• AWS KMS Daten mit einem Schlüsselbund verschlüsseln

• Daten mit einem Schlüsselbund entschlüsseln AWS KMS

AWS KMS Daten mit einem Schlüsselbund verschlüsseln

Das folgende Beispiel zeigt Ihnen, wie Sie mit dem eine kurze Zeichenfolge AWS-Verschlüsselungs-
SDK for JavaScript oder ein Byte-Array verschlüsseln und entschlüsseln können.

Dieses Beispiel zeigt einen AWS KMS Schlüsselbund, eine Art von Schlüsselbund, der AWS KMS
key zum Generieren und Verschlüsseln von Datenschlüsseln verwendet wird. Hilfe bei der Erstellung
eines AWS KMS key finden Sie unter Creating Keys im AWS Key Management Service Developer
Guide. Hilfe bei der Identifizierung von AWS KMS keys in einem AWS KMS Schlüsselbund finden Sie
unter Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Schritt 1: Legen Sie die Verpflichtungsrichtlinie fest.

Ab Version 1.7. x von AWS-Verschlüsselungs-SDK for JavaScript, Sie können die Commitment-
Richtlinie festlegen, wenn Sie die neue buildClient Funktion aufrufen, die einen
AWS Encryption SDK Client instanziiert. Die buildClient Funktion verwendet einen
Aufzählungswert, der Ihre Commitment-Richtlinie darstellt. Sie gibt aktualisierte decrypt

Beispiele 291

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/web-crypto-backend
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK Entwicklerhandbuch

Funktionen encrypt und Funktionen zurück, die Ihre Verpflichtungsrichtlinie beim Verschlüsseln
und Entschlüsseln durchsetzen.

In den folgenden Beispielen wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

JavaScript Browser

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Schritt 2: Konstruieren Sie den Schlüsselbund.

Erstellen Sie einen AWS KMS Schlüsselbund für die Verschlüsselung.

Bei der Verschlüsselung mit einem AWS KMS Schlüsselbund müssen Sie einen
Generatorschlüssel angeben, d. h. einen, der verwendet wird AWS KMS key , um den Klartext-
Datenschlüssel zu generieren und zu verschlüsseln. Sie können auch null oder mehr zusätzliche

Beispiele 292

AWS Encryption SDK Entwicklerhandbuch

Schlüssel angeben, die denselben Klartext-Datenschlüssel verschlüsseln. Der Schlüsselbund
gibt den Klartext-Datenschlüssel und eine verschlüsselte Kopie dieses Datenschlüssels für jeden
AWS KMS key im Schlüsselbund zurück, einschließlich des Generatorschlüssels. Um die Daten
zu entschlüsseln, müssen Sie einen der verschlüsselten Datenschlüssel entschlüsseln.

Um den Schlüsselbund AWS KMS keys für die Verschlüsselung in der anzugeben AWS-
Verschlüsselungs-SDK for JavaScript, können Sie eine beliebige unterstützte Schlüssel-ID
verwenden. AWS KMS In diesem Beispiel wird ein Generatorschlüssel verwendet, der durch
seinen Alias-ARN identifiziert wird, und ein zusätzlicher Schlüssel, der durch einen Schlüssel-ARN
identifiziert wird.

Note

Wenn Sie Ihren AWS KMS Schlüsselbund für die Entschlüsselung wiederverwenden
möchten, müssen Sie den Schlüssel verwenden, um ihn AWS KMS keys im
Schlüsselbund ARNs zu identifizieren.

Bevor Sie diesen Code ausführen, ersetzen Sie die Beispielbezeichner durch gültige AWS KMS
key Bezeichner. Sie müssen über die erforderlichen Berechtigungen verfügen, um die AWS KMS
keys im Schlüsselbund zu verwenden.

JavaScript Browser

Geben Sie zunächst Ihre Anmeldeinformationen im Browser ein. Die AWS-Verschlüsselungs-
SDK for JavaScript Beispiele verwenden das Webpack. DefinePlugin, wodurch die Credential-
Konstanten durch Ihre tatsächlichen Anmeldeinformationen ersetzt werden. Sie können jedoch
jede Methode verwenden, um Ihre Anmeldeinformationen anzugeben. Verwenden Sie dann
die Anmeldeinformationen, um einen AWS KMS Client zu erstellen.

declare const credentials: {accessKeyId: string, secretAccessKey:string,
 sessionToken:string }

const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken
 }
})

Beispiele 293

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Entwicklerhandbuch

Geben Sie als Nächstes den Schlüssel und den Zusatzschlüssel AWS KMS keys für den
Generator an. Erstellen Sie dann einen AWS KMS Schlüsselbund mit dem AWS KMS Client
und dem AWS KMS keys.

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyId, keyIds })

JavaScript Node.js

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

Schritt 3: Stellen Sie den Verschlüsselungskontext ein.

Ein Verschlüsselungskontext ist eine Art zufälliger, nicht geheimer, zusätzlich authentifizierter
Daten. Wenn Sie bei Encrypt einen Verschlüsselungskontext angeben, bindet der
Verschlüsselungskontext AWS Encryption SDK kryptografisch an den Chiffretext, sodass derselbe
Verschlüsselungskontext zum Entschlüsseln der Daten erforderlich ist. Die Verwendung eines
Verschlüsselungskontexts ist optional, aber wir empfehlen dies als eine bewährte Methode.

Erstellen Sie ein einfaches Objekt, das die Verschlüsselungskontextpaare enthält. Der Schlüssel
und der Wert in jedem Paar müssen eine Zeichenfolge sein.

JavaScript Browser

const context = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2'
}

JavaScript Node.js

const context = {
 stage: 'demo',
 purpose: 'simple demonstration app',

Beispiele 294

AWS Encryption SDK Entwicklerhandbuch

 origin: 'us-west-2'
}

Schritt 4: Verschlüsseln Sie die Daten.

Um die Klartextdaten zu verschlüsseln, rufen Sie die encrypt-Funktion auf. Übergeben Sie den
AWS KMS Schlüsselbund, die Klartextdaten und den Verschlüsselungskontext.

Die encrypt-Funktion gibt eine verschlüsselte Nachricht (result) zurück, die die
verschlüsselten Daten, die verschlüsselten Datenschlüssel und wichtige Metadaten enthält,
einschließlich des Verschlüsselungskontexts und der Signatur.

Sie können diese verschlüsselte Nachricht entschlüsseln, indem Sie das AWS Encryption SDK für
jede unterstützte Programmiersprache verwenden.

JavaScript Browser

const plaintext = new Uint8Array([1, 2, 3, 4, 5])

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
 context })

JavaScript Node.js

const plaintext = 'asdf'

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
 context })

Daten mit einem Schlüsselbund entschlüsseln AWS KMS

Sie können den verwenden AWS-Verschlüsselungs-SDK for JavaScript , um die verschlüsselte
Nachricht zu entschlüsseln und die Originaldaten wiederherzustellen.

In diesem Beispiel entschlüsseln wir die Daten, die wir im the section called “AWS KMS Daten mit
einem Schlüsselbund verschlüsseln”-Beispiel verschlüsselt haben.

Schritt 1: Legen Sie die Verpflichtungsrichtlinie fest.

Ab Version 1.7. x von AWS-Verschlüsselungs-SDK for JavaScript, Sie können die Commitment-
Richtlinie festlegen, wenn Sie die neue buildClient Funktion aufrufen, die einen

Beispiele 295

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK Client instanziiert. Die buildClient Funktion verwendet einen
Aufzählungswert, der Ihre Commitment-Richtlinie darstellt. Sie gibt aktualisierte decrypt
Funktionen encrypt und Funktionen zurück, die Ihre Verpflichtungsrichtlinie beim Verschlüsseln
und Entschlüsseln durchsetzen.

In den folgenden Beispielen wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie können die
auch verwendenbuildClient, um die Anzahl der verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“Beschränkung verschlüsselter Datenschlüssel”.

JavaScript Browser

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Schritt 2: Konstruieren Sie den Schlüsselbund.

Um die Daten zu entschlüsseln, übergeben Sie die verschlüsselte Nachricht (result), die die
encrypt-Funktion zurückgegeben hat. Die verschlüsselte Nachricht enthält die verschlüsselten

Beispiele 296

AWS Encryption SDK Entwicklerhandbuch

Daten, die verschlüsselten Datenschlüssel und wichtige Metadaten, einschließlich des
Verschlüsselungskontexts und der Signatur.

Sie müssen beim Entschlüsseln auch einen AWS KMS Schlüsselbund angeben. Sie können
denselben Schlüsselbund verwenden, der zum Verschlüsseln der Daten verwendet wurde,
oder einen anderen Schlüsselbund. Um erfolgreich zu sein, muss mindestens einer der
AWS KMS key Schlüsselbunde im Entschlüsselungsschlüsselbund in der Lage sein, einen
der verschlüsselten Datenschlüssel in der verschlüsselten Nachricht zu entschlüsseln. Da
keine Datenschlüssel generiert werden, müssen Sie keinen Generatorschlüssel in einem
Entschlüsselungsschlüsselbund angeben. Wenn Sie dies tun, werden der Generatorschlüssel und
zusätzliche Schlüssel auf die gleiche Weise behandelt.

Um einen Schlüsselbund AWS KMS key für eine Entschlüsselung in der anzugeben AWS-
Verschlüsselungs-SDK for JavaScript, müssen Sie den Schlüssel ARN verwenden. Andernfalls
AWS KMS key wird der nicht erkannt. Hilfe bei der Identifizierung von AWS KMS keys in einem
AWS KMS Schlüsselbund finden Sie unter Identifizierung AWS KMS keys in einem AWS KMS
Schlüsselbund

Note

Wenn Sie denselben Schlüsselbund zum Verschlüsseln und Entschlüsseln verwenden,
verwenden Sie den Schlüssel, um den AWS KMS keys Schlüssel im Schlüsselbund ARNs
zu identifizieren.

In diesem Beispiel erstellen wir einen Schlüsselbund, der nur einen der im
Verschlüsselungsschlüsselbund enthaltenen Schlüssel enthält. AWS KMS keys Ersetzen Sie vor
Ausführung dieses Codes den ARN des Beispiel-Schlüssels durch einen gültigen. Sie müssen
über die kms:Decrypt-Berechtigung für den AWS KMS key verfügen.

JavaScript Browser

Geben Sie zunächst Ihre Anmeldeinformationen im Browser ein. Die AWS-Verschlüsselungs-
SDK for JavaScript Beispiele verwenden das Webpack. DefinePlugin, wodurch die Credential-
Konstanten durch Ihre tatsächlichen Anmeldeinformationen ersetzt werden. Sie können jedoch
jede Methode verwenden, um Ihre Anmeldeinformationen anzugeben. Verwenden Sie dann
die Anmeldeinformationen, um einen AWS KMS Client zu erstellen.

declare const credentials: {accessKeyId: string, secretAccessKey:string,
 sessionToken:string }

Beispiele 297

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Entwicklerhandbuch

const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken
 }
})

Erstellen Sie als Nächstes mithilfe des AWS KMS Clients einen AWS KMS Schlüsselbund.
In diesem Beispiel wird nur einer der Schlüsselbunde AWS KMS keys aus dem
Verschlüsselungsschlüsselbund verwendet.

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })

JavaScript Node.js

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringNode({ keyIds })

Schritt 3: Entschlüsseln Sie die Daten.

Rufen Sie als Nächstes die decrypt-Funktion auf. Übergeben Sie den gerade erstellten
Entschlüsselungsschlüsselbund (keyring) und die verschlüsselte Nachricht, die die encrypt-
Funktion zurückgegeben hat (result). Der AWS Encryption SDK verwendet den Schlüsselbund,
um einen der verschlüsselten Datenschlüssel zu entschlüsseln. Dann verwendet es den Klartext-
Datenschlüssel, um die Daten zu entschlüsseln.

Wenn der Aufruf erfolgreich ist, enthält das plaintext-Feld die Klartextdaten (entschlüsselt).
Das messageHeader-Feld enthält Metadaten über den Entschlüsselungsprozess, einschließlich
des Verschlüsselungskontexts, der zum Entschlüsseln der Daten verwendet wurde.

JavaScript Browser

const { plaintext, messageHeader } = await decrypt(keyring, result)

Beispiele 298

AWS Encryption SDK Entwicklerhandbuch

JavaScript Node.js

const { plaintext, messageHeader } = await decrypt(keyring, result)

Schritt 4: Überprüfen Sie den Verschlüsselungskontext.

Der Verschlüsselungskontext, der zum Entschlüsseln der Daten verwendet wurde,
ist im Nachrichten-Header (messageHeader) enthalten, den die decrypt-Funktion
zurückgibt. Bevor Ihre Anwendung die Klartextdaten zurückgibt, stellen Sie sicher,
dass der Verschlüsselungskontext, den Sie beim Verschlüsseln angegeben haben, im
Verschlüsselungskontext enthalten ist, der bei der Entschlüsselung verwendet wurde. Eine
Nichtübereinstimmung kann darauf hindeuten, dass die Daten manipuliert wurden oder dass Sie
nicht den richtigen Verschlüsselungstext entschlüsselt haben.

Bei der Überprüfung des Verschlüsselungskontexts ist keine genaue Übereinstimmung
erforderlich. Wenn Sie einen Verschlüsselungsalgorithmus mit Signatur verwenden, fügt
der Manager von kryptographischen Materialien (CMM) den öffentlichen Signaturschlüssel
zum Verschlüsselungskontext hinzu, bevor die Nachricht verschlüsselt wird. Aber alle
Verschlüsselungskontextpaare, die Sie übermittelt haben, sollten in den zurückgegebenen
Verschlüsselungskontext aufgenommen werden.

Holen Sie sich zuerst den Verschlüsselungskontext aus dem Nachrichten-Header. Stellen
Sie dann sicher, dass jedes Schlüssel-Wert-Paar im ursprünglichen Verschlüsselungskontext
(context) mit einem Schlüssel-Wert-Paar im zurückgegebenen Verschlüsselungskontext
(encryptionContext) übereinstimmt.

JavaScript Browser

const { encryptionContext } = messageHeader

Object
 .entries(context)
 .forEach(([key, value]) => {
 if (encryptionContext[key] !== value) throw new Error('Encryption Context
 does not match expected values')
})

JavaScript Node.js

const { encryptionContext } = messageHeader

Beispiele 299

AWS Encryption SDK Entwicklerhandbuch

Object
 .entries(context)
 .forEach(([key, value]) => {
 if (encryptionContext[key] !== value) throw new Error('Encryption Context
 does not match expected values')
})

Wenn die Verschlüsselungskontext-Prüfung erfolgreich ist, können Sie die Klartextdaten
zurückgeben.

AWS-Verschlüsselungs-SDK for Python

In diesem Thema wird erklärt, wie das AWS-Verschlüsselungs-SDK for Python installiert und
verwendet wird. Einzelheiten zur Programmierung mit dem AWS-Verschlüsselungs-SDK for Python
finden Sie im aws-encryption-sdk-pythonRepository unter GitHub. Eine API-Dokumentation finden Sie
in Read the Docs.

Themen

• Voraussetzungen

• Installation

• AWS-Verschlüsselungs-SDK for Python Beispielcode

Voraussetzungen

Stellen Sie vor der Installation von sicher AWS-Verschlüsselungs-SDK for Python, dass Sie die
folgenden Voraussetzungen erfüllen.

Eine unterstützte Version von Python

Python 3.8 oder höher ist für die AWS-Verschlüsselungs-SDK for Python Versionen 3.2.0 und
höher erforderlich.

Note

Die AWS Cryptographic Material Providers Library (MPL) ist eine optionale Abhängigkeit
für die in Version 4 AWS-Verschlüsselungs-SDK for Python eingeführte. x. Wenn Sie die
MPL installieren möchten, müssen Sie Python 3.11 oder höher verwenden.

Python 300

https://github.com/aws/aws-encryption-sdk-python/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Frühere Versionen von AWS Encryption SDK unterstützen Python 2.7 und Python 3.4 und höher,
wir empfehlen jedoch, dass Sie die neueste Version von verwenden AWS Encryption SDK.

Weitere Informationen zum Download von Python finden Sie unter Python-Downloads.

Das pip-Installationstool for Python

pipist in Python 3.6 und späteren Versionen enthalten, obwohl Sie es möglicherweise
aktualisieren möchten. Weitere Informationen zum Aktualisieren oder Installieren pip finden Sie
in der pip Dokumentation unter Installation.

Installation

Installieren Sie die neueste Version von AWS-Verschlüsselungs-SDK for Python.

Note

Alle AWS-Verschlüsselungs-SDK for Python Versionen vor 3.0.0 befinden sich in der end-of-
supportPhase.
Sie können sicher von Version 2.0 aus aktualisieren. x und höher auf die neueste Version
von AWS Encryption SDK ohne Code- oder Datenänderungen. In Version 2.0 wurden jedoch
neue Sicherheitsfunktionen eingeführt. x sind nicht abwärtskompatibel. Um von Versionen
vor 1.7 zu aktualisieren. x auf Version 2.0. x und höher, Sie müssen zuerst auf die neueste
Version 1 aktualisieren. x-Version von AWS Encryption SDK. Details hierzu finden Sie unter
Migrieren Sie Ihre AWS Encryption SDK.

Verwenden Sie, pip um die zu installieren AWS-Verschlüsselungs-SDK for Python, wie in den
folgenden Beispielen gezeigt.

Installieren der neuesten Version

pip install "aws-encryption-sdk[MPL]"

Das [MPL] Suffix installiert die AWS Cryptographic Material Providers Library (MPL). Die MPL
enthält Konstrukte zum Verschlüsseln und Entschlüsseln Ihrer Daten. Die MPL ist eine optionale
Abhängigkeit für die in Version 4 AWS-Verschlüsselungs-SDK for Python eingeführte. x. Wir
empfehlen dringend, die MPL zu installieren. Wenn Sie jedoch nicht beabsichtigen, die MPL zu
verwenden, können Sie das Suffix weglassen. [MPL]

Installation 301

https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Weitere Informationen zur Verwendung von pip für die Installation und die Aktualisierung von Paketen
finden Sie unter Pakete installieren.

Das AWS-Verschlüsselungs-SDK for Python erfordert die Kryptografie-Bibliothek (pyca/cryptography)
auf allen Plattformen. Alle Versionen von installieren und erstellen die Bibliothek pip automatisch
unter Windows. cryptography pip8.1 und höher werden automatisch cryptography auf Linux
installiert und erstellt. Wenn Sie eine frühere Version von verwenden pip und Ihre Linux-Umgebung
nicht über die Tools verfügt, die zum Erstellen der cryptography Bibliothek erforderlich sind,
müssen Sie sie installieren. Weitere Informationen finden Sie unter Erstellen von Kryptographie unter
Linux.

In den Versionen 1.10.0 und 2.5.0 liegt die AWS-Verschlüsselungs-SDK for Python
Kryptografieabhängigkeit zwischen 2.5.0 und 3.3.2. Andere Versionen von AWS-Verschlüsselungs-
SDK for Python installieren die neueste Version der Kryptografie. Wenn Sie eine neuere Version der
Kryptografie als 3.3.2 benötigen, empfehlen wir Ihnen, die neueste Hauptversion von zu verwenden.
AWS-Verschlüsselungs-SDK for Python

Die neueste Entwicklungsversion von finden Sie im AWS-Verschlüsselungs-SDK for Pythonaws-
encryption-sdk-pythonRepository unter. GitHub

Schauen Sie sich nach der AWS-Verschlüsselungs-SDK for Python Installation von zunächst den
Python-Beispielcode in diesem Handbuch an.

AWS-Verschlüsselungs-SDK for Python Beispielcode

Die folgenden Beispiele zeigen Ihnen, wie Sie mit AWS-Verschlüsselungs-SDK for Python dem Daten
ver- und entschlüsseln können.

Die Beispiele in diesem Abschnitt zeigen, wie Sie Version 4 verwenden. x von AWS-
Verschlüsselungs-SDK for Python mit der optionalen Bibliotheksabhängigkeit von Cryptographic
Material Providers (aws-cryptographic-material-providers). Um Beispiele zu sehen, die
frühere Versionen verwenden, oder Installationen ohne die Material Providers Library (MPL), suchen
Sie Ihre Version in der Releases-Liste des aws-encryption-sdk-pythonRepositorys unter. GitHub

Wenn Sie Version 4 verwenden. x von der AWS-Verschlüsselungs-SDK for Python mit der MPL, es
verwendet Schlüsselringe, um die Umschlagverschlüsselung durchzuführen. Das AWS Encryption
SDK stellt Schlüsselbunde bereit, die mit den Hauptschlüsselanbietern kompatibel sind, die Sie in
früheren Versionen verwendet haben. Weitere Informationen finden Sie unter the section called
“Schlüsselbund-Kompatibilität”. Beispiele für die Migration von Master-Key-Anbietern zu Keyrings
finden Sie unter Migrationsbeispiele im Repository auf; aws-encryption-sdk-python GitHub

Beispiele 302

https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-python/releases
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration

AWS Encryption SDK Entwicklerhandbuch

Themen

• Verschlüsseln und Entschlüsseln von Zeichenfolgen

• Verschlüsseln und Entschlüsseln von Byte-Streams

Verschlüsseln und Entschlüsseln von Zeichenfolgen

Das folgende Beispiel zeigt Ihnen, wie Sie Zeichenketten verschlüsseln und entschlüsseln
können. AWS Encryption SDK In diesem Beispiel wird ein AWS KMS Schlüsselbund mit einem
symmetrischen KMS-Schlüssel verwendet.

In diesem Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-Richtlinie
instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Weitere Informationen finden Sie unter the
section called “Festlegung Ihrer Verpflichtungspolitik”.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
"""
This example sets up the KMS Keyring

The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and
decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input
 EXAMPLE_DATA
with an encryption context. This example also includes some sanity checks for
 demonstration:
1. Ciphertext and plaintext data are not the same
2. Encryption context is correct in the decrypted message header
3. Decrypted plaintext value matches EXAMPLE_DATA
These sanity checks are for demonstration in the example only. You do not need these in
 your code.

AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings
of the same or a different type.

"""

import boto3
from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring
from typing import Dict # noqa pylint: disable=wrong-import-order

Beispiele 303

AWS Encryption SDK Entwicklerhandbuch

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

EXAMPLE_DATA: bytes = b"Hello World"

def encrypt_and_decrypt_with_keyring(
 kms_key_id: str
):
 """Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring.

 Usage: encrypt_and_decrypt_with_keyring(kms_key_id)
 :param kms_key_id: KMS Key identifier for the KMS key you want to use for
 encryption and
 decryption of your data keys.
 :type kms_key_id: string

 """
 # 1. Instantiate the encryption SDK client.
 # This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 # which enforces that this client only encrypts using committing algorithm suites
 and enforces
 # that this client will only decrypt encrypted messages that were created with a
 committing
 # algorithm suite.
 # This is the default commitment policy if you were to build the client as
 # `client = aws_encryption_sdk.EncryptionSDKClient()`.
 client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

 # 2. Create a boto3 client for KMS.
 kms_client = boto3.client('kms', region_name="us-west-2")

 # 3. Optional: create encryption context.
 # Remember that your encryption context is NOT SECRET.
 encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",

Beispiele 304

AWS Encryption SDK Entwicklerhandbuch

 }

 # 4. Create your keyring
 mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

 keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
 kms_key_id=kms_key_id,
 kms_client=kms_client
)

 kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
 input=keyring_input
)

 # 5. Encrypt the data with the encryptionContext.
 ciphertext, _ = client.encrypt(
 source=EXAMPLE_DATA,
 keyring=kms_keyring,
 encryption_context=encryption_context
)

 # 6. Demonstrate that the ciphertext and plaintext are different.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert ciphertext != EXAMPLE_DATA, \
 "Ciphertext and plaintext data are the same. Invalid encryption"

 # 7. Decrypt your encrypted data using the same keyring you used on encrypt.
 plaintext_bytes, _ = client.decrypt(
 source=ciphertext,
 keyring=kms_keyring,
 # Provide the encryption context that was supplied to the encrypt method
 encryption_context=encryption_context,
)

 # 8. Demonstrate that the decrypted plaintext is identical to the original
 plaintext.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert plaintext_bytes == EXAMPLE_DATA, \

Beispiele 305

AWS Encryption SDK Entwicklerhandbuch

 "Decrypted plaintext should be identical to the original plaintext. Invalid
 decryption"

Verschlüsseln und Entschlüsseln von Byte-Streams

Das folgende Beispiel zeigt Ihnen, wie Sie Bytestreams AWS Encryption SDK verschlüsseln und
entschlüsseln können. In diesem Beispiel wird ein Raw AES-Schlüsselbund verwendet.

In diesem Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-Richtlinie
instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Weitere Informationen finden Sie unter the
section called “Festlegung Ihrer Verpflichtungspolitik”.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
"""
This example demonstrates file streaming for encryption and decryption.

File streaming is useful when the plaintext or ciphertext file/data is too large to
 load into
memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of
 loading it
all at once in memory. In this example, we demonstrate file streaming for encryption
 and decryption
using a Raw AES keyring. However, you can use any keyring with streaming.

This example creates a Raw AES Keyring and then encrypts an input stream from the file
`plaintext_filename` with an encryption context to an output (encrypted) file
 `ciphertext_filename`.
It then decrypts the ciphertext from `ciphertext_filename` to a new file
 `decrypted_filename`.
This example also includes some sanity checks for demonstration:
1. Ciphertext and plaintext data are not the same
2. Encryption context is correct in the decrypted message header
3. Decrypted plaintext value matches EXAMPLE_DATA
These sanity checks are for demonstration in the example only. You do not need these in
 your code.

See raw_aes_keyring_example.py in the same directory for another raw AES keyring
 example
in the AWS Encryption SDK for Python.
"""
import filecmp
import secrets

Beispiele 306

AWS Encryption SDK Entwicklerhandbuch

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg,
 CreateRawAesKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring
from typing import Dict # noqa pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_and_decrypt_with_keyring(
 plaintext_filename: str,
 ciphertext_filename: str,
 decrypted_filename: str
):
 """Demonstrate a streaming encrypt/decrypt cycle.

 Usage: encrypt_and_decrypt_with_keyring(plaintext_filename
 ciphertext_filename
 decrypted_filename)
 :param plaintext_filename: filename of the plaintext data
 :type plaintext_filename: string
 :param ciphertext_filename: filename of the ciphertext data
 :type ciphertext_filename: string
 :param decrypted_filename: filename of the decrypted data
 :type decrypted_filename: string
 """
 # 1. Instantiate the encryption SDK client.
 # This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 # which enforces that this client only encrypts using committing algorithm suites
 and enforces
 # that this client will only decrypt encrypted messages that were created with a
 committing
 # algorithm suite.
 # This is the default commitment policy if you were to build the client as
 # `client = aws_encryption_sdk.EncryptionSDKClient()`.
 client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

 # 2. The key namespace and key name are defined by you.

Beispiele 307

AWS Encryption SDK Entwicklerhandbuch

 # and are used by the Raw AES keyring to determine
 # whether it should attempt to decrypt an encrypted data key.
 key_name_space = "Some managed raw keys"
 key_name = "My 256-bit AES wrapping key"

 # 3. Optional: create encryption context.
 # Remember that your encryption context is NOT SECRET.
 encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
 }

 # 4. Generate a 256-bit AES key to use with your keyring.
 # In practice, you should get this key from a secure key management system such as
 an HSM.

 # Here, the input to secrets.token_bytes() = 32 bytes = 256 bits
 static_key = secrets.token_bytes(32)

 # 5. Create a Raw AES keyring
 # We choose to use a raw AES keyring, but any keyring can be used with streaming.
 mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

 keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 wrapping_key=static_key,
 wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
)

 raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
 input=keyring_input
)

 # 6. Encrypt the data stream with the encryptionContext
 with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as
 ct_file:
 with client.stream(
 mode='e',

Beispiele 308

AWS Encryption SDK Entwicklerhandbuch

 source=pt_file,
 keyring=raw_aes_keyring,
 encryption_context=encryption_context
) as encryptor:
 for chunk in encryptor:
 ct_file.write(chunk)

 # 7. Demonstrate that the ciphertext and plaintext are different.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \
 "Ciphertext and plaintext data are the same. Invalid encryption"

 # 8. Decrypt your encrypted data stream using the same keyring you used on
 encrypt.
 with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as
 pt_file:
 with client.stream(
 mode='d',
 source=ct_file,
 keyring=raw_aes_keyring,
 encryption_context=encryption_context
) as decryptor:
 for chunk in decryptor:
 pt_file.write(chunk)

 # 10. Demonstrate that the decrypted plaintext is identical to the original
 plaintext.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert filecmp.cmp(plaintext_filename, decrypted_filename), \
 "Decrypted plaintext should be identical to the original plaintext. Invalid
 decryption"

AWS Encryption SDK für Rust

In diesem Thema wird erklärt, wie Sie AWS Encryption SDK for Rust installieren und verwenden.
Einzelheiten zur Programmierung mit dem AWS Encryption SDK für Rust finden Sie im Rust-
Verzeichnis des aws-encryption-sdk Repositorys unter GitHub.

The AWS Encryption SDK for Rust unterscheidet sich von einigen anderen
Programmiersprachenimplementierungen AWS Encryption SDK in folgenden Punkten:

Rust 309

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/

AWS Encryption SDK Entwicklerhandbuch

• Keine Unterstützung für das Zwischenspeichern von Datenschlüsseln. Der AWS Encryption SDK
für Rust unterstützt jedoch den AWS KMS hierarchischen Schlüsselbund, eine alternative Lösung
zum Zwischenspeichern kryptografischer Materialien.

• Keine Unterstützung für Streaming-Daten

The AWS Encryption SDK for Rust enthält alle Sicherheitsfunktionen, die in den Versionen 2.0
eingeführt wurden. x und höher von anderen Sprachimplementierungen von. AWS Encryption SDK
Wenn Sie jedoch AWS Encryption SDK for Rust verwenden, um Daten zu entschlüsseln, die mit einer
Version vor 2.0 verschlüsselt wurden. x-Version einer anderen Sprachimplementierung von AWS
Encryption SDK, möglicherweise müssen Sie Ihre Commitment-Richtlinie anpassen. Details hierzu
finden Sie unter Wie legen Sie Ihre Verpflichtungsrichtlinie fest.

Die AWS Encryption SDK for Rust ist ein Produkt von AWS Encryption SDK In Dafny, einer formalen
Bestätigungssprache, in der Sie Spezifikationen, den Code zu ihrer Implementierung und die
Beweise, um sie zu testen, schreiben. Das Ergebnis ist eine Bibliothek, die die Funktionen von AWS
Encryption SDK in einem Framework implementiert, das die funktionale Korrektheit gewährleistet.

Weitere Informationen

• Beispiele für die Konfiguration von Optionen in der AWS Encryption SDK, z. B. die Angabe
einer alternativen Algorithmussuite, die Beschränkung verschlüsselter Datenschlüssel und die
Verwendung von Schlüsseln für AWS KMS mehrere Regionen, finden Sie unter. Konfiguration der
AWS Encryption SDK

• Beispiele zur Konfiguration und Verwendung von AWS Encryption SDK for Rust finden Sie in den
Rust-Beispielen im aws-encryption-sdk Repository unter GitHub.

Themen

• Voraussetzungen

• Installation

• AWS Encryption SDK für Rust-Beispielcode

Voraussetzungen

Stellen Sie vor der Installation von AWS Encryption SDK for Rust sicher, dass Sie die folgenden
Voraussetzungen erfüllen.

Voraussetzungen 310

https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples

AWS Encryption SDK Entwicklerhandbuch

Installieren Sie Rust und Cargo

Installieren Sie die aktuelle stabile Version von Rust mit Rustup.

Weitere Informationen zum Herunterladen und Installieren von Rustup finden Sie in den
Installationsverfahren in The Cargo Book.

Installation

The AWS Encryption SDK for Rust ist als Kiste auf aws-esdkCrates.io erhältlich. Einzelheiten zur
Installation und Erstellung von AWS Encryption SDK for Rust finden Sie in der README.md im
Repository unter. aws-encryption-sdk GitHub

Sie können das AWS Encryption SDK für Rust auf folgende Weise installieren.

manuell

Um das AWS Encryption SDK für Rust zu installieren, klonen oder laden Sie das aws-encryption-
sdk GitHub Repository herunter.

Verwenden von Crates.io

Führen Sie den folgenden Cargo-Befehl in Ihrem Projektverzeichnis aus:

cargo add aws-esdk

Oder fügen Sie Ihrer Cargo.toml die folgende Zeile hinzu:

aws-esdk = "<version>"

AWS Encryption SDK für Rust-Beispielcode

Die folgenden Beispiele zeigen die grundlegenden Codierungsmuster, die Sie beim Programmieren
mit dem AWS Encryption SDK für Rust verwenden. Insbesondere instanziieren Sie die Bibliothek
AWS Encryption SDK und die Material Provider-Bibliothek. Bevor Sie die einzelnen Methoden
aufrufen, instanziieren Sie dann das Objekt, das die Eingabe für die Methode definiert.

Beispiele für die Konfiguration von Optionen in der AWS Encryption SDK, wie z. B. die Angabe einer
alternativen Algorithmus-Suite und die Beschränkung verschlüsselter Datenschlüssel, finden Sie in
den Rust-Beispielen im aws-encryption-sdk Repository unter. GitHub

Installation 311

https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-esdk
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/

AWS Encryption SDK Entwicklerhandbuch

Verschlüsseln und Entschlüsseln von Daten in der AWS Encryption SDK für Rust

Dieses Beispiel zeigt das grundlegende Muster für das Verschlüsseln und Entschlüsseln von Daten.
Es verschlüsselt eine kleine Datei mit Datenschlüsseln, die durch einen AWS KMS Wrapping-
Schlüssel geschützt sind.

Schritt 1: Instanziieren Sie die. AWS Encryption SDK

Sie verwenden die Methoden in, AWS Encryption SDK um Daten zu verschlüsseln und zu
entschlüsseln.

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Schritt 2: Erstellen Sie einen AWS KMS Client.

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

Optional: Erstellen Sie Ihren Verschlüsselungskontext.

let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

Schritt 3: Instanziieren Sie die Material Provider-Bibliothek.

Sie verwenden die Methoden in der Material Provider-Bibliothek, um die Schlüsselbunde zu
erstellen, die angeben, welche Schlüssel Ihre Daten schützen.

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Beispiele 312

AWS Encryption SDK Entwicklerhandbuch

Schritt 4: Erstellen Sie einen AWS KMS Schlüsselbund.

Um den Schlüsselbund zu erstellen, rufen Sie die Schlüsselbundmethode mit dem Schlüsselbund-
Eingabeobjekt auf. In diesem Beispiel wird die create_aws_kms_keyring() Methode
verwendet und ein KMS-Schlüssel angegeben.

let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

Schritt 5: Verschlüsseln Sie den Klartext.

let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
 .plaintext(plaintext)
 .keyring(kms_keyring.clone())
 .encryption_context(encryption_context.clone())
 .send()
 .await?;

let ciphertext = encryption_response
 .ciphertext
 .expect("Unable to unwrap ciphertext from encryption response");

Schritt 6: Entschlüsseln Sie Ihre verschlüsselten Daten mit demselben Schlüsselbund, den Sie beim
Verschlüsseln verwendet haben.

let decryption_response = esdk_client.decrypt()
 .ciphertext(ciphertext)
 .keyring(kms_keyring)
 // Provide the encryption context that was supplied to the encrypt method
 .encryption_context(encryption_context)
 .send()
 .await?;

let decrypted_plaintext = decryption_response
 .plaintext

Beispiele 313

AWS Encryption SDK Entwicklerhandbuch

 .expect("Unable to unwrap plaintext from decryption
 response");

AWS Encryption SDK Befehlszeilenschnittstelle
Die AWS Encryption SDK Befehlszeilenschnittstelle (AWS Encryption CLI) ermöglicht es Ihnen,
Daten interaktiv AWS Encryption SDK an der Befehlszeile und in Skripten zu verschlüsseln und zu
entschlüsseln. Sie benötigen keine Kryptographie- oder Programmierkenntnisse.

Note

Versionen der AWS Encryption CLI vor 4.0.0 befinden sich in der end-of-supportPhase.
Sie können problemlos von Version 2.1 aus aktualisieren. x und höher auf die neueste
Version der AWS Encryption CLI ohne Code- oder Datenänderungen. In Version 2.1 wurden
jedoch neue Sicherheitsfunktionen eingeführt. x sind nicht abwärtskompatibel. Um von
Version 1.7 zu aktualisieren. x oder früher, Sie müssen zuerst auf die neueste Version 1
aktualisieren. x-Version der AWS Encryption CLI. Details hierzu finden Sie unter Migrieren
Sie Ihre AWS Encryption SDK.
Neue Sicherheitsfunktionen wurden ursprünglich in den AWS Encryption CLI Versionen 1.7
veröffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Wie alle Implementierungen von bietet die AWS Encryption SDK AWS Encryption CLI erweiterte
Datenschutzfunktionen. Dazu gehören Umschlagverschlüsselung, zusätzliche authentifizierte Daten
(AAD) und sichere, authentifizierte, symmetrische Schlüsselalgorithmen wie 256-Bit-AES-GCM mit
Schlüsselableitung, Schlüsselzusage und Signierung.

Die AWS Verschlüsselungs-CLI basiert auf der AWS-Verschlüsselungs-SDK for Pythonund wird
unter Linux, macOS und Windows unterstützt. Sie können Befehle und Skripts zum Verschlüsseln
und Entschlüsseln Ihrer Daten in Ihrer bevorzugten Shell unter Linux oder macOS, in einem
Befehlszeilenfenster (cmd.exe) unter Windows und in einer PowerShell Konsole auf jedem System
ausführen.

Alle sprachspezifischen Implementierungen von AWS Encryption SDK, einschließlich der AWS
Encryption CLI, sind interoperabel. Sie können beispielsweise Daten mit der verschlüsseln AWS-
Verschlüsselungs-SDK for Javaund mit der AWS Encryption CLI entschlüsseln.

Befehlszeilenschnittstelle 314

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html

AWS Encryption SDK Entwicklerhandbuch

Dieses Thema stellt die AWS Encryption CLI vor, erklärt, wie sie installiert und verwendet wird,
und enthält mehrere Beispiele, die Ihnen den Einstieg erleichtern. Einen schnellen Start finden
Sie unter So verschlüsseln und entschlüsseln Sie Ihre Daten mit der AWS Encryption CLI im AWS
Sicherheitsblog. Ausführlichere Informationen finden Sie unter Read The Docs und entwickeln Sie
gemeinsam mit uns die AWS Encryption CLI im aws-encryption-sdk-cliRepository am GitHub.

Leistung

Die AWS Encryption CLI basiert auf dem AWS-Verschlüsselungs-SDK for Python. Jedes Mal,
wenn Sie die CLI ausführen, starten Sie eine neue Instance der Python-Laufzeitumgebung. Um
die Leistung zu verbessern, verwenden Sie nach Möglichkeit einen einzigen Befehl anstelle einer
Reihe unabhängiger Befehle. Führen Sie beispielsweise einen Befehl aus, der die Dateien in einem
Verzeichnis rekursiv verarbeitet, anstatt separate Befehle für jede Datei auszuführen.

Themen

• Installation der AWS Encryption SDK Befehlszeilenschnittstelle

• So verwenden Sie die AWS Encryption CLI

• Beispiele für die AWS Encryption CLI

• AWS Encryption SDK CLI Syntax und Parameterreferenz

• Versionen der AWS Encryption CLI

Installation der AWS Encryption SDK Befehlszeilenschnittstelle

In diesem Thema wird erklärt, wie die AWS Encryption CLI installiert wird. Ausführliche Informationen
finden Sie im aws-encryption-sdk-cliRepository unter GitHub und in der Dokumentation.

Themen

• Installieren der Voraussetzungen

• Installation und Aktualisierung der AWS Encryption CLI

Installieren der Voraussetzungen

Die AWS Encryption CLI basiert auf dem AWS-Verschlüsselungs-SDK for Python. Um die AWS
Encryption CLI zu installieren, benötigen Sie Python und pip das Python-Paketverwaltungstool.
Python und pip stehen auf allen unterstützten Plattformen zur Verfügung.

Installieren Sie die folgenden Voraussetzungen, bevor Sie die AWS Encryption CLI installieren:

Installieren der -CLI 315

https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Entwicklerhandbuch

Python

Python 3.8 oder höher ist für die AWS Encryption CLI Versionen 4.2.0 und höher erforderlich.

Frühere Versionen der AWS Encryption CLI unterstützen Python 2.7 und 3.4 und höher, wir
empfehlen jedoch, die neueste Version der AWS Encryption CLI zu verwenden.

Python ist in den meisten Linux- und macOS-Installationen enthalten, Sie müssen jedoch auf
Python 3.6 oder höher aktualisieren. Wir empfehlen Ihnen, die neueste Version von Python zu
verwenden. Unter Windows müssen Sie Python installieren; es ist standardmäßig nicht installiert.
Informationen zum Herunterladen und Installieren von Python finden Sie unter Python-Downloads.

Um festzustellen, ob Python installiert ist, geben Sie in der Befehlszeile Folgendes ein.

python

Um die Python-Version zu überprüfen, verwenden Sie den Parameter -V (Großbuchstabe V).

python -V

Unter Windows fügen Sie nach der Installation von Python den Pfad zur Python.exe Datei zum
Wert der Umgebungsvariablen Path hinzu.

Standardmäßig ist Python im Verzeichnis All Users oder in einem Benutzerprofilverzeichnis
($home oder %userprofile%) im Unterverzeichnis AppData\Local\Programs\Python
installiert. Um den Speicherort der Datei Python.exe auf Ihrem System zu finden, überprüfen
Sie einen der folgenden Registrierungsschlüssel. Sie können es verwenden PowerShell , um die
Registrierung zu durchsuchen.

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
-or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath

pip

pip ist der Python-Paketmanager. Um die AWS Encryption CLI und ihre Abhängigkeiten zu
installieren, benötigen Sie pip 8.1 oder höher. Informationen zum Installieren und Aktualisieren
von pip finden Sie unter Installation in der pip-Dokumentation.

Auf Linux-Installationen können pip Versionen vor 8.1 die Kryptografiebibliothek, die die
AWS Encryption CLI benötigt, nicht erstellen. Wenn Sie Ihre pip Version nicht aktualisieren

Installieren der -CLI 316

https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installing/

AWS Encryption SDK Entwicklerhandbuch

möchten, können Sie die Build-Tools separat installieren. Weitere Informationen finden Sie unter
Kryptographie unter Linux.

AWS Command Line Interface

Das AWS Command Line Interface (AWS CLI) ist nur erforderlich, wenn Sie AWS KMS keys in
AWS Key Management Service (AWS KMS) mit der AWS Encryption CLI verwenden. Wenn Sie
einen anderen Hauptschlüsselanbieter verwenden, AWS CLI ist der nicht erforderlich.

Für die Verwendung AWS KMS keys mit der AWS Encryption CLI müssen Sie den installieren
und konfigurieren AWS CLI. Die Konfiguration stellt die Anmeldeinformationen, die Sie zur
Authentifizierung verwenden, für die AWS Encryption CLI zur AWS KMS Verfügung.

Installation und Aktualisierung der AWS Encryption CLI

Installieren Sie die neueste Version der AWS Encryption CLI. Wenn Sie die AWS Encryption CLI
pip zur Installation verwenden, werden automatisch die Bibliotheken installiert, die die CLI benötigt,
einschließlich der AWS-Verschlüsselungs-SDK for PythonPython-Kryptografiebibliothek und der AWS
SDK für Python (Boto3).

Note

Versionen der AWS Encryption CLI vor 4.0.0 befinden sich in der end-of-supportPhase.
Sie können problemlos von Version 2.1 aus aktualisieren. x und höher auf die neueste
Version der AWS Encryption CLI ohne Code- oder Datenänderungen. In Version 2.1 wurden
jedoch neue Sicherheitsfunktionen eingeführt. x sind nicht abwärtskompatibel. Um von
Version 1.7 zu aktualisieren. x oder früher, Sie müssen zuerst auf die neueste Version 1
aktualisieren. x-Version der AWS Encryption CLI. Details hierzu finden Sie unter Migrieren
Sie Ihre AWS Encryption SDK.
Neue Sicherheitsfunktionen wurden ursprünglich in den AWS Encryption CLI Versionen 1.7
veröffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Um die neueste Version der AWS Encryption CLI zu installieren

pip install aws-encryption-sdk-cli

Installieren der -CLI 317

https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

Um auf die neueste Version der AWS Encryption CLI zu aktualisieren

pip install --upgrade aws-encryption-sdk-cli

Um die Versionsnummern Ihrer AWS Encryption CLI zu finden und AWS Encryption SDK

aws-encryption-cli --version

In der Ausgabe werden die Versionsnummern beider Bibliotheken aufgeführt.

aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0

Um auf die neueste Version der AWS Encryption CLI zu aktualisieren

pip install --upgrade aws-encryption-sdk-cli

Durch die Installation der AWS Encryption CLI wird auch die neueste Version von installiert AWS
SDK für Python (Boto3), sofern sie nicht bereits installiert ist. Wenn Boto3 installiert ist, überprüft das
Installationsprogramm die Boto3-Version und aktualisiert sie bei Bedarf.

Um Ihre installierte Version von Boto3 zu finden

pip show boto3

Um auf die neueste Version von Boto3 zu aktualisieren

pip install --upgrade boto3

Informationen zur Installation der Version der AWS Encryption CLI, die sich derzeit in der Entwicklung
befindet, finden Sie im aws-encryption-sdk-cliRepository unter GitHub.

Weitere Informationen zur Verwendung von pip für die Installation und die Aktualisierung von
Python-Paketen finden Sie in der pip-Dokumentation.

So verwenden Sie die AWS Encryption CLI

In diesem Thema wird erklärt, wie die Parameter in der AWS Encryption CLI verwendet werden.
Beispiele finden Sie unter Beispiele für die AWS Encryption CLI. Eine vollständige Dokumentation

Die CLI verwenden 318

https://github.com/aws/aws-encryption-sdk-cli/
https://pip.pypa.io/en/stable/quickstart/

AWS Encryption SDK Entwicklerhandbuch

finden Sie in Read the Docs. Die in diesen Beispielen gezeigte Syntax bezieht sich auf AWS
Encryption CLI Version 2.1. x und höher.

Note

Versionen der AWS Encryption CLI vor 4.0.0 befinden sich in der end-of-supportPhase.
Sie können problemlos von Version 2.1 aus aktualisieren. x und höher auf die neueste
Version der AWS Encryption CLI ohne Code- oder Datenänderungen. In Version 2.1 wurden
jedoch neue Sicherheitsfunktionen eingeführt. x sind nicht abwärtskompatibel. Um von
Version 1.7 zu aktualisieren. x oder früher, Sie müssen zuerst auf die neueste Version 1
aktualisieren. x-Version der AWS Encryption CLI. Details hierzu finden Sie unter Migrieren
Sie Ihre AWS Encryption SDK.
Neue Sicherheitsfunktionen wurden ursprünglich in den AWS Encryption CLI Versionen 1.7
veröffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Ein Beispiel zur Verwendung der Sicherheitsfunktion, die verschlüsselte Datenschlüssel einschränkt,
finden Sie unterBeschränkung verschlüsselter Datenschlüssel.

Ein Beispiel, das zeigt, wie Schlüssel für AWS KMS mehrere Regionen verwendet werden, finden Sie
unterVerwenden Sie mehrere Regionen AWS KMS keys.

Themen

• Daten verschlüsseln und entschlüsseln

• Wie spezifiziert man Wrapping-Schlüssel

• Eingaben bereitstellen

• Den Ausgabespeicherort festlegen

• Einen Verschlüsselungskontext verwenden

• Wie spezifiziert man eine Verpflichtungsrichtlinie

• Parameter in einer Konfigurationsdatei speichern

Die CLI verwenden 319

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

Daten verschlüsseln und entschlüsseln

Die AWS Verschlüsselungs-CLI verwendet die Funktionen von AWS Encryption SDK , um das
sichere Verschlüsseln und Entschlüsseln von Daten zu vereinfachen.

Note

Der --master-keys Parameter ist in Version 1.8 veraltet. x der AWS Encryption CLI und
wurde in Version 2.1 entfernt. x. Verwenden Sie stattdessen den --wrapping-keys-
Parameter. Ab Version 2.1. x, der --wrapping-keys Parameter ist beim Verschlüsseln und
Entschlüsseln erforderlich. Details hierzu finden Sie unter AWS Encryption SDK CLI Syntax
und Parameterreferenz.

• Wenn Sie Daten in der AWS Encryption CLI verschlüsseln, geben Sie Ihre Klartextdaten und
einen Wrapping-Schlüssel (oder Hauptschlüssel) an, z. B. ein AWS KMS key in AWS Key
Management Service (AWS KMS). Wenn Sie einen benutzerdefinierten Hauptschlüsselanbieter
verwenden, müssen Sie auch den Anbieter angeben. Außerdem geben Sie Ausgabespeicherorte
für die verschlüsselte Nachricht und für Metadaten über die Verschlüsselungsoperation an. Ein
Verschlüsselungskontext ist optional, wird aber empfohlen.

In Version 1.8. x, der --commitment-policy Parameter ist erforderlich, wenn Sie den --
wrapping-keys Parameter verwenden; andernfalls ist er nicht gültig. Ab Version 2.1. x, der --
commitment-policy Parameter ist optional, wird aber empfohlen.

aws-encryption-cli --encrypt --input myPlaintextData \
 --wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
 --output myEncryptedMessage \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt

Die AWS Encryption CLI verschlüsselt Ihre Daten unter einem eindeutigen Datenschlüssel.
Anschließend verschlüsselt sie den Datenschlüssel unter den von Ihnen angegebenen Wrapping-
Schlüsseln. Sie gibt eine verschlüsselte Nachricht und Metadaten über die Operation zurück.
Die verschlüsselte Nachricht enthält Ihre verschlüsselten Daten (verschlüsselter Text) und eine
verschlüsselte Kopie des Datenschlüssels. Sie müssen sich nicht um die Speicherung, Verwaltung
oder den Verlust des Datenschlüssels kümmern.

Die CLI verwenden 320

AWS Encryption SDK Entwicklerhandbuch

• Wenn Sie Daten entschlüsseln, übergeben Sie Ihre verschlüsselte Nachricht, den optionalen
Verschlüsselungskontext und den Speicherort für die Klartextausgabe und die Metadaten. Sie
geben auch die Wrapping-Schlüssel an, die die AWS Encryption CLI zum Entschlüsseln der
Nachricht verwenden kann, oder teilen der AWS Encryption CLI mit, dass sie alle Wrapping-
Schlüssel verwenden kann, die die Nachricht verschlüsselt haben.

Ab Version 1.8. x, der --wrapping-keys Parameter ist beim Entschlüsseln optional, wird aber
empfohlen. Ab Version 2.1. x, der --wrapping-keys Parameter ist beim Verschlüsseln und
Entschlüsseln erforderlich.

Beim Entschlüsseln können Sie das Schlüsselattribut des --wrapping-keys Parameters
verwenden, um die Wrapping-Schlüssel anzugeben, mit denen Ihre Daten entschlüsselt werden.
Die Angabe eines AWS KMS Umschließungsschlüssels beim Entschlüsseln ist optional, hat sich
jedoch bewährt, um zu verhindern, dass Sie einen Schlüssel verwenden, den Sie nicht verwenden
wollten. Wenn Sie einen benutzerdefinierten Hauptschlüsselanbieter verwenden, müssen Sie den
Anbieter und den Wrapping-Schlüssel angeben.

Wenn Sie das Schlüsselattribut nicht verwenden, müssen Sie das Discovery-Attribut des --
wrapping-keys Parameters auf setzentrue, sodass die AWS Encryption CLI mit einem
beliebigen Wrapping-Schlüssel, der die Nachricht verschlüsselt hat, entschlüsseln kann.

Es hat sich bewährt, den --max-encrypted-data-keys Parameter zu verwenden,
um zu verhindern, dass eine falsch formatierte Nachricht mit einer übermäßigen Anzahl
verschlüsselter Datenschlüssel entschlüsselt wird. Geben Sie die erwartete Anzahl verschlüsselter
Datenschlüssel (einen für jeden bei der Verschlüsselung verwendeten Wrapping-Schlüssel) oder
einen angemessenen Höchstwert (z. B. 5) an. Details hierzu finden Sie unter Beschränkung
verschlüsselter Datenschlüssel.

Der --buffer Parameter gibt erst dann Klartext zurück, wenn alle Eingaben verarbeitet wurden,
einschließlich der Überprüfung der digitalen Signatur, falls eine vorhanden ist.

Der --decrypt-unsigned Parameter entschlüsselt Chiffretext und stellt sicher, dass
Nachrichten vor der Entschlüsselung unsigniert sind. Verwenden Sie diesen Parameter, wenn
Sie den --algorithm Parameter verwendet und eine Algorithmussuite ohne digitale Signatur
zum Verschlüsseln von Daten ausgewählt haben. Wenn der Chiffretext signiert ist, schlägt die
Entschlüsselung fehl.

Die CLI verwenden 321

AWS Encryption SDK Entwicklerhandbuch

Sie können --decrypt oder --decrypt-unsigned für die Entschlüsselung verwenden, aber
nicht beide.

aws-encryption-cli --decrypt --input myEncryptedMessage \
 --wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
 --output myPlaintextData \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt

Die AWS Encryption CLI verwendet den Wrapping-Schlüssel, um den Datenschlüssel in der
verschlüsselten Nachricht zu entschlüsseln. Anschließend verwendet sie den Datenschlüssel zum
Entschlüsseln Ihrer Daten. Sie gibt Ihre Klartextdaten und Metadaten über die Operation zurück.

Wie spezifiziert man Wrapping-Schlüssel

Wenn Sie Daten in der AWS Encryption CLI verschlüsseln, müssen Sie mindestens einen Wrapping-
Schlüssel (oder Masterschlüssel) angeben. Sie können AWS KMS keys in AWS Key Management
Service (AWS KMS), Wrapping Keys von einem benutzerdefinierten Masterkey-Anbieter oder
beides verwenden. Der Kundenmasterschlüssel-Anbieter kann ein beliebiger kompatibler Python-
Masterschlüssel-Anbieter sein.

Um das Umschließen von Schlüsseln in den Versionen 1.8 anzugeben. x und höher verwenden
Sie den --wrapping-keys Parameter (-w). Der Wert dieses Parameters ist eine Sammlung von
Attributen mit dem attribute=value Format. Welche Attribute Sie verwenden, hängt von dem
Masterschlüssel-Anbieter und dem Befehl ab.

• AWS KMS. In Verschlüsselungsbefehlen müssen Sie einen --wrapping-keys Parameter mit
einem Schlüsselattribut angeben. Ab Version 2.1. x, der --wrapping-keys Parameter ist auch
für Entschlüsselungsbefehle erforderlich. Bei der Entschlüsselung muss der --wrapping-keys
Parameter ein Schlüsselattribut oder ein Erkennungsattribut mit einem Wert von true (aber nicht
beiden) haben. Andere Attribute sind optional.

• Kundenmasterschlüssel-Anbieter. Sie müssen in jedem Befehl einen --wrapping-keys
Parameter angeben. Der Parameterwert muss key- und provider-Attribute besitzen.

Die CLI verwenden 322

AWS Encryption SDK Entwicklerhandbuch

Sie können mehrere --wrapping-keys Parameter und mehrere Schlüsselattribute in denselben
Befehl aufnehmen.

Umschließen von Schlüsselparameterattributen

Der Wert des --wrapping-keys-Parameters besteht aus den folgenden Attributen und ihren
Werten. Ein --wrapping-keys Parameter (oder --master-keys Parameter) ist in allen
Verschlüsselungsbefehlen erforderlich. Ab Version 2.1. x, der --wrapping-keys Parameter ist
auch beim Entschlüsseln erforderlich.

Wenn ein Attributname oder Wert Leerzeichen oder Sonderzeichen enthält, schließen Sie den
Namen und den Wert in Anführungszeichen ein. Beispiel, --wrapping-keys key=12345
"provider=my cool provider".

Schlüssel: Geben Sie einen Wrapping-Schlüssel an

Verwenden Sie das Schlüsselattribut, um einen Umschließungsschlüssel zu identifizieren. Bei der
Verschlüsselung kann es sich bei dem Wert um einen beliebigen Schlüsselbezeichner handeln,
den der Hauptschlüsselanbieter erkennt.

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

In einem Verschlüsselungsbefehl müssen Sie mindestens ein Schlüsselattribut und einen
Schlüsselwert angeben. Verwenden Sie mehrere Schlüsselattribute, um Ihren Datenschlüssel
unter mehreren Wrapping-Schlüsseln zu verschlüsseln.

aws-encryption-cli --encrypt --wrapping-keys
 key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d

In Verschlüsselungsbefehlen, die verwenden AWS KMS keys, kann der Wert von key die
Schlüssel-ID, der zugehörige Schlüssel-ARN, ein Aliasname oder ein Alias-ARN sein.
Dieser Verschlüsselungsbefehl beispielsweise verwendet einen Alias-ARN im Wert des key-
Attributs. Einzelheiten zu den Schlüsselbezeichnern für eine AWS KMS key finden Sie unter
Schlüsselkennungen im AWS Key Management Service Entwicklerhandbuch.

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

In Entschlüsselungsbefehlen, die einen Kundenmasterschlüssel-Anbieter verwenden, müssen die
key- und provider-Attribute angegeben werden.

Die CLI verwenden 323

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Entwicklerhandbuch

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101'

In Decrypt-Befehlen, die verwenden AWS KMS, können Sie das Schlüsselattribut verwenden,
um das für die Entschlüsselung AWS KMS keys zu verwendende Objekt anzugeben, oder
das Discovery-Attribut mit dem Wert vontrue, sodass die AWS Encryption CLI jedes Attribut
verwenden kann AWS KMS key , das zum Verschlüsseln der Nachricht verwendet wurde. Wenn
Sie einen angeben AWS KMS key, muss es sich um einen der Wrapping-Schlüssel handeln, die
zum Verschlüsseln der Nachricht verwendet wurden.

Die Angabe des Umschließungsschlüssels ist eine AWS Encryption SDK bewährte Methode. Es
stellt sicher, dass Sie das verwenden, AWS KMS key was Sie verwenden möchten.

In einem Decrypt-Befehl muss der Wert des Schlüsselattributs ein Schlüssel-ARN sein.

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Discovery: Verwenden Sie AWS KMS key bei der Entschlüsselung einen beliebigen

Wenn Sie die AWS KMS keys Verwendung beim Entschlüsseln nicht einschränken müssen,
können Sie das Discovery-Attribut mit dem Wert von verwenden. true Ein Wert von true
ermöglicht es der AWS Encryption CLI, die Nachricht mit jedem zu entschlüsseln, der AWS KMS
key die Nachricht verschlüsselt hat. Wenn Sie kein Discovery-Attribut angeben, ist Discovery
false (Standard). Das Discovery-Attribut ist nur in Entschlüsselungsbefehlen gültig und nur,
wenn die Nachricht mit AWS KMS keys verschlüsselt wurde.

Das Discovery-Attribut mit dem Wert von true ist eine Alternative zur Verwendung des
Schlüsselattributs zur AWS KMS keys Spezifizierung. Beim Entschlüsseln einer mit AWS
KMS keys verschlüsselten Nachricht muss jeder --wrapping-keys Parameter über ein
Schlüsselattribut oder ein Erkennungsattribut mit einem Wert vontrue, aber nicht über beide
verfügen.

Wenn Discovery den Wert true hat, empfiehlt es sich, die Attribute discovery-partition und
discovery-account zu verwenden, um die AWS KMS keys Verwendung auf die von Ihnen
angegebenen Attribute zu beschränken. AWS-Konten Im folgenden Beispiel ermöglichen die
Discovery-Attribute der AWS Encryption CLI, jedes AWS KMS key der angegebenen Werte zu
verwenden AWS-Konten.

Die CLI verwenden 324

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

aws-encryption-cli --decrypt --wrapping-keys \
 discovery=true \
 discovery-partition=aws \
 discovery-account=111122223333 \
 discovery-account=444455556666

Anbieter: Geben Sie den Hauptschlüsselanbieter an

Das provider-Attribut identifiziert den Masterschlüssel-Anbieter. Der Standardwert ist aws-kms
und steht für AWS KMS. Wenn Sie einen anderen Masterschlüsselanbieter verwenden, ist das
provider-Attribut nicht erforderlich.

--wrapping-keys key=12345 provider=my_custom_provider

Weitere Informationen zur Verwendung von benutzerdefinierten (Nicht-AWS KMS)
Hauptschlüsselanbietern finden Sie im Thema Erweiterte Konfiguration in der README-Datei für
das AWS Encryption CLI-Repository.

Region: Geben Sie ein AWS-Region

Verwenden Sie das Regionsattribut, um die AWS-Region von einem anzugeben AWS KMS
key. Dieses Attribut ist nur in Verschlüsselungsbefehlen und nur dann gültig, wenn der
Masterschlüssel-Anbieter AWS KMS ist.

--encrypt --wrapping-keys key=alias/primary-key region=us-east-2

AWS Verschlüsselungs-CLI-Befehle verwenden AWS-Region das, was im Schlüsselattributwert
angegeben ist, wenn es eine Region enthält, z. B. einen ARN. Wenn der Schlüsselwert a angibt
AWS-Region, wird das Regionsattribut ignoriert.

Das region-Attribut hat Vorrang vor allen anderen Regionsangaben. Wenn Sie kein
Regionsattribut verwenden, verwenden die Befehle der AWS Encryption CLI das in Ihrem AWS
CLI benannten Profil, falls vorhanden, oder in Ihrem Standardprofil AWS-Region angegebene.

Profil: Angabe eines benannten Profils

Verwenden Sie das Profilattribut, um ein AWS CLI benanntes Profil anzugeben. Benannte Profile
können Anmeldeinformationen und eine enthalten AWS-Region. Dieses Attribut ist nur gültig,
wenn der Masterschlüssel-Anbieter AWS KMS ist.

--wrapping-keys key=alias/primary-key profile=admin-1

Die CLI verwenden 325

https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK Entwicklerhandbuch

Sie können das profile-Attribut verwenden, um alternative Anmeldeinformationen in Ver- und
Entschlüsselungsbefehlen anzugeben. In einem Verschlüsselungsbefehl verwendet die AWS
Verschlüsselungs-CLI das AWS-Region im benannten Profil nur, wenn der Schlüsselwert keine
Region enthält und kein Regionsattribut vorhanden ist. Bei einem Entschlüsselungsbefehl wird
das AWS-Region im Namen angegebene Profil ignoriert.

Wie spezifiziert man mehrere Wrapping-Schlüssel

Sie können in jedem Befehl mehrere Umbruchschlüssel (oder Hauptschlüssel) angeben.

Wenn Sie mehr als einen Umschließungsschlüssel angeben, generiert und verschlüsselt der erste
Umschließungsschlüssel den Datenschlüssel, der zur Verschlüsselung Ihrer Daten verwendet
wird. Die anderen Umschließungsschlüssel verschlüsseln denselben Datenschlüssel. Die daraus
resultierende verschlüsselte Nachricht enthält die verschlüsselten Daten („Chiffretext“) und eine
Sammlung verschlüsselter Datenschlüssel, von denen einer mit jedem Umschließungsschlüssel
verschlüsselt wird. Jeder Wrapping kann einen verschlüsselten Datenschlüssel entschlüsseln und
anschließend die Daten entschlüsseln.

Es gibt zwei Möglichkeiten, mehrere Wrapping-Schlüssel anzugeben:

• Schließen Sie mehrere Schlüsselattribute in den --wrapping-keys Parameterwert ein.

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio

• Verwendung von mehreren --wrapping-keys-Parametern im selben Befehl. Verwenden Sie
diese Syntax, wenn die von Ihnen angegebenen Attributwerte nicht für alle Wrapping-Schlüssel im
Befehl gelten.

--wrapping-keys region=us-east-2 key=alias/test_key \
--wrapping-keys region=us-west-1 key=alias/test_key

Das Discovery-Attribut mit einem Wert von true ermöglicht es der AWS Encryption CLI AWS
KMS key , jedes Attribut zu verwenden, das die Nachricht verschlüsselt hat. Wenn Sie mehrere
--wrapping-keys Parameter in demselben Befehl verwenden, werden durch die Verwendung

Die CLI verwenden 326

AWS Encryption SDK Entwicklerhandbuch

eines discovery=true beliebigen --wrapping-keys Parameters die Grenzwerte des
Schlüsselattributs in anderen --wrapping-keys Parametern effektiv außer Kraft gesetzt.

Im folgenden Befehl begrenzt beispielsweise das Schlüsselattribut im ersten --wrapping-
keys Parameter die AWS Verschlüsselungs-CLI auf den angegebenen Wert AWS KMS key. Das
Discovery-Attribut im zweiten --wrapping-keys Parameter ermöglicht es der AWS Encryption
CLI jedoch, jedes AWS KMS key der angegebenen Konten zum Entschlüsseln der Nachricht zu
verwenden.

aws-encryption-cli --decrypt \
 --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
 --wrapping-keys discovery=true \
 discovery-partition=aws \
 discovery-account=111122223333 \
 discovery-account=444455556666

Eingaben bereitstellen

Der Verschlüsselungsvorgang in der AWS Encryption CLI verwendet Klartextdaten als Eingabe
und gibt eine verschlüsselte Nachricht zurück. Die Entschlüsselungsoperation übernimmt eine
verschlüsselte Nachricht als Eingabe und gibt Klartextdaten zurück.

Der --input Parameter (-i), der der AWS Encryption CLI mitteilt, wo sich die Eingabe befindet, ist
in allen AWS Encryption CLI-Befehlen erforderlich.

Sie können Eingaben wie folgt bereitstellen:

• Über eine Datei.

--input myData.txt

• Unter Verwendung eines Dateinamenmusters.

--input testdir/*.xml

• Unter Verwendung eines Verzeichnisses oder Verzeichnisnamenmusters. Wenn die Eingabe ein
Verzeichnis ist, muss der --recursive-Parameter (-r, -R) angegeben werden.

--input testdir --recursive

Die CLI verwenden 327

AWS Encryption SDK Entwicklerhandbuch

• Eingabe an den Befehl weiterleiten (stdin). Einen Wert von - für den --input-Parameter
verwenden. (Der Parameter --input ist immer erforderlich.)

echo 'Hello World' | aws-encryption-cli --encrypt --input -

Den Ausgabespeicherort festlegen

Der --output Parameter teilt der AWS Encryption CLI mit, wohin die Ergebnisse des
Verschlüsselungs- oder Entschlüsselungsvorgangs geschrieben werden sollen. Es ist in jedem AWS
Encryption CLI-Befehl erforderlich. Die AWS Encryption CLI erstellt für jede Eingabedatei im Vorgang
eine neue Ausgabedatei.

Wenn eine Ausgabedatei bereits existiert, gibt die AWS Encryption CLI standardmäßig eine Warnung
aus und überschreibt dann die Datei. Um ein Überschreiben zu verhindern, verwenden Sie den
Parameter --interactive, der Sie vor dem Überschreiben zur Bestätigung auffordert, oder --no-
overwrite, der die Eingabe überspringt, wenn die Ausgabe ein Überschreiben verursachen würde.
Um die Überschreibwarnung zu unterdrücken, verwenden Sie --quiet. Um Fehler und Warnungen
aus der AWS Encryption CLI zu erfassen, verwenden Sie den 2>&1 Umleitungsoperator, um sie in
den Ausgabestrom zu schreiben.

Note

Befehle, die Ausgabedateien überschreiben, löschen zunächst die Ausgabedatei. Wenn der
Befehl fehlschlägt, ist die Ausgabedatei möglicherweise bereits gelöscht.

Sie können den Ausgabespeicherort auf verschiedene Arten wählen.

• Angabe eines Dateinamens. Wenn Sie einen Pfad zur Datei angeben, müssen alle Verzeichnisse
im Pfad vorhanden sein, bevor der Befehl ausgeführt wird.

--output myEncryptedData.txt

• Angabe eines Verzeichnisses. Die Ausgabeverzeichnis muss vorhanden sein, bevor der Befehl
ausgeführt wird.

Wenn die Eingabe Unterverzeichnisse enthält, erzeugt der Befehl die Unterverzeichnisse unter
dem angegebenen Verzeichnis.

Die CLI verwenden 328

AWS Encryption SDK Entwicklerhandbuch

--output Test

Wenn der Ausgabespeicherort ein Verzeichnis (ohne Dateinamen) ist, erstellt die AWS
Encryption CLI Ausgabedateinamen auf der Grundlage der Eingabedateinamen plus einem
Suffix. Verschlüsselungsoperationen fügen dem Eingabedateinamen .encrypted hinzu,
Entschlüsselungsoperationen fügen .decrypted hinzu. Mit dem Parameter --suffix ändern
Sie das Suffix.

Wenn Sie z. B. file.txt verschlüsseln, erstellt der Verschlüsselungsbefehl
file.txt.encrypted. Wenn Sie file.txt.encrypted entschlüsseln, erstellt der
Entschlüsselungsbefehl file.txt.encrypted.decrypted.

• In die Befehlszeile schreiben (stdout). Geben Sie einen Wert von - für den --output-Parameter
ein. Sie können --output -verwenden , um die Ausgabe an einen anderen Befehl oder ein
Programm weiterzuleiten.

--output -

Einen Verschlüsselungskontext verwenden

Mit der AWS Encryption CLI können Sie einen Verschlüsselungskontext für Befehle zum
Verschlüsseln und Entschlüsseln bereitstellen. Es ist nicht erforderlich, aber eine bewährte Methoden
für die Kryptografie, die wir empfehlen.

Ein Verschlüsselungskontext ist eine Art zufälliger, nicht geheimer zusätzlicher authentifizierter
Daten. In der AWS Encryption CLI besteht der Verschlüsselungskontext aus einer Sammlung
von name=value Paaren. Sie können beliebigen Inhalt in den Paaren verwenden, einschließlich
Informationen über die Dateien, Daten, die Ihnen helfen, den Verschlüsselungsvorgang in Protokollen
zu finden, oder Daten, die Sie für Ihre Berechtigungen oder Richtlinien benötigen.

In einem Verschlüsselungsbefehl

Der Verschlüsselungskontext, den Sie in einem Verschlüsselungsbefehl angeben, sowie alle weiteren
Paare, die vom CMM hinzugefügt werden, sind kryptographisch an die verschlüsselten Daten
gebunden. Er ist außerdem (in Klartext) in der verschlüsselten Nachricht enthalten, die den Befehl

Die CLI verwenden 329

AWS Encryption SDK Entwicklerhandbuch

zurückgibt. Wenn Sie einen verwenden AWS KMS key, kann der Verschlüsselungskontext auch im
Klartext in Prüfaufzeichnungen und Protokollen erscheinen, wie AWS CloudTrail z.

Das folgende Beispiel zeigt einen Verschlüsselungskontext mit drei name=value-Paaren.

--encryption-context purpose=test dept=IT class=confidential

In einem Entschlüsselungsbefehl

In einem Entschlüsselungsbefehl hilft Ihnen der Verschlüsselungskontext zu bestätigen, dass Sie die
richtige verschlüsselte Nachricht entschlüsseln.

Sie müssen in einem Entschlüsselungsbefehl keinen Verschlüsselungskontext angeben, auch wenn
beim Verschlüsseln ein Verschlüsselungskontext verwendet wurde. In diesem Fall überprüft die AWS
Encryption CLI jedoch, ob jedes Element im Verschlüsselungskontext des Decrypt-Befehls mit einem
Element im Verschlüsselungskontext der verschlüsselten Nachricht übereinstimmt. Wenn ein Element
nicht übereinstimmt, schlägt der Entschlüsselungsbefehl fehl.

Beispielsweise entschlüsselt der folgende Befehl die verschlüsselte Nachricht nur, wenn ihr
Verschlüsselungskontext dept=IT enthält.

aws-encryption-cli --decrypt --encryption-context dept=IT ...

Ein Verschlüsselungskontext ist ein wichtiger Teil Ihrer Sicherheitsstrategie. Wenn Sie jedoch einen
Verschlüsselungskontext wählen, denken Sie jedoch daran, dass seine Werte nicht geheim sind.
Nehmen Sie keine vertraulichen Daten in den Verschlüsselungskontext auf.

So geben Sie einen Verschlüsselungskontext an

• Verwenden Sie in einem encrypt-Befehl den --encryption-context-Parameter mit einem
oder mehreren name=value-Paaren. Verwenden Sie ein Leerzeichen, um die einzelnen Paare zu
trennen.

--encryption-context name=value [name=value] ...

• In einem decrypt-Befehl kann der --encryption-context-Parameterwert name=value-Paare,
name-Elemente (ohne Werte) oder eine Kombination aus beidem enthalten.

--encryption-context name[=value] [name] [name=value] ...

Die CLI verwenden 330

AWS Encryption SDK Entwicklerhandbuch

Wenn der name oder value in einem name=value-Paar Leerzeichen oder Sonderzeichen enthält,
schließen Sie gesamte Paar in Anführungszeichen ein.

--encryption-context "department=software engineering" "AWS-Region=us-west-2"

Dieser Entschlüsselungsbefehl enthält beispielsweise einen Verschlüsselungskontext mit zwei
Paaren, purpose=test und dept=23.

aws-encryption-cli --encrypt --encryption-context purpose=test dept=23 ...

Dieser Entschlüsselungsbefehl würde erfolgreich ausgeführt. Der Verschlüsselungskontext in den
einzelnen Befehlen ist eine Teilmenge des ursprünglichen Verschlüsselungskontexts.

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs
aws-encryption-cli --decrypt --encryption-context dept purpose=test ...

Diese Verschlüsselungsbefehle würden jedoch fehlschlagen. Der Verschlüsselungskontext in der
verschlüsselten Nachricht enthält nicht die angegebenen Elemente.

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

Wie spezifiziert man eine Verpflichtungsrichtlinie

Verwenden Sie den --commitment-policyParameter, um die Commitment-Richtlinie für den
Befehl festzulegen. Dieser Parameter wurde in Version 1.8 eingeführt. x. Es ist gültig für Befehle
zum Verschlüsseln und Entschlüsseln. Die von Ihnen festgelegte Verpflichtungsrichtlinie ist nur für
den Befehl gültig, in dem sie vorkommt. Wenn Sie keine Commitment-Richtlinie für einen Befehl
festlegen, verwendet die AWS Encryption CLI den Standardwert.

Mit dem folgenden Parameterwert wird die Commitment-Richtlinie beispielsweise auf festgelegt.
Dabei wird immer mit Key Commitment verschlüsseltrequire-encrypt-allow-decrypt,
Chiffretext, der mit oder ohne Key Commitment verschlüsselt wurde, jedoch entschlüsselt.

Die CLI verwenden 331

AWS Encryption SDK Entwicklerhandbuch

--commitment-policy require-encrypt-allow-decrypt

Parameter in einer Konfigurationsdatei speichern

Sie können Zeit sparen und Tippfehler vermeiden, indem Sie häufig verwendete AWS Encryption
CLI-Parameter und -Werte in Konfigurationsdateien speichern.

Eine Konfigurationsdatei ist eine Textdatei, die Parameter und Werte für einen AWS Encryption
CLI-Befehl enthält. Wenn Sie in einem AWS Encryption CLI-Befehl auf eine Konfigurationsdatei
verweisen, wird die Referenz durch die Parameter und Werte in der Konfigurationsdatei ersetzt.
Der Effekt ist der gleiche, als ob Sie den Dateiinhalt in der Befehlszeile eingegeben. Eine
Konfigurationsdatei kann einen beliebigen Namen haben und sich in einem beliebigen Verzeichnis
befinden, auf das der aktuelle Benutzer zugreifen kann.

Die folgende Beispielkonfigurationsdatei,key.conf, gibt zwei AWS KMS keys in verschiedenen
Regionen an.

--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

Um die Konfigurationsdatei in einem Befehl zu verwenden, stellen sie dem Dateinamen ein At-
Zeichen (@) voraus. Verwenden Sie in einer PowerShell Konsole ein Backtick-Zeichen, um das At-
Zeichen (`@) zu maskieren.

Dieser Beispielbefehl verwendet die Datei key.conf in einem Verschlüsselungsbefehl.

Bash

$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir

PowerShell

PS C:\> aws-encryption-cli -e `@key.conf -i .\Hello.txt -o .\TestDir

Konfigurationsdateiregeln

Für die Verwendung von Konfigurationsdateien gelten die folgenden Regeln:

Die CLI verwenden 332

AWS Encryption SDK Entwicklerhandbuch

• Sie können mehrere Parameter in jede Konfigurationsdatei aufnehmen und in beliebiger
Reihenfolge auflisten. Listen Sie jeden Parameter mit seinen Werten (falls vorhanden) in einer
separaten Zeile auf.

• Verwenden Sie # zum Hinzufügen eines Kommentars für eine ganze oder einen Teil einer Zeile.

• Sie können Verweise auf andere Konfigurationsdateien aufnehmen. Verwenden Sie kein Backtick,
um dem @ Zeichen zu entkommen, auch nicht in. PowerShell

• Wenn Sie Anführungszeichen in einer Konfigurationsdatei verwenden, kann sich der angegebene
Text nicht über mehrere Zeilen erstrecken.

Dies ist beispielsweise der Inhalt einer encrypt.conf-Beispieldatei.

Archive Files
--encrypt
--output /archive/logs
--recursive
--interactive
--encryption-context class=unclassified dept=IT
--suffix # No suffix
--metadata-output ~/metadata
@caching.conf # Use limited caching

Sie können auch mehrere Konfigurationsdateien in einem Befehl angeben. Dieser Beispielbefehl
verwendet die Konfigurationsdateien encrypt.conf und master-keys.conf.

Bash

$ aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf

PowerShell

PS C:\> aws-encryption-cli -i $home\Test*.log `@encrypt.conf `@master-keys.conf

Weiter: Probieren Sie die Beispiele für die AWS Verschlüsselungs-CLI aus

Beispiele für die AWS Encryption CLI

Verwenden Sie die folgenden Beispiele, um die AWS Encryption CLI auf der von Ihnen bevorzugten
Plattform auszuprobieren. Weitere Informationen zum Master-Schlüssel und anderen Parametern

Beispiele 333

AWS Encryption SDK Entwicklerhandbuch

finden Sie unter So verwenden Sie die AWS Encryption CLI. Informationen zum schnellen Einstieg
finden Sie unter AWS Encryption SDK CLI Syntax und Parameterreferenz.

Note

Die folgenden Beispiele verwenden die Syntax für AWS Encryption CLI Version 2.1. x.
Neue Sicherheitsfunktionen wurden ursprünglich in den AWS Encryption CLI Versionen 1.7
veröffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Ein Beispiel zur Verwendung der Sicherheitsfunktion, die verschlüsselte Datenschlüssel einschränkt,
finden Sie unterBeschränkung verschlüsselter Datenschlüssel.

Ein Beispiel zur Verwendung von Schlüsseln für AWS KMS mehrere Regionen finden Sie
unterVerwenden Sie mehrere Regionen AWS KMS keys.

Themen

• Verschlüsseln einer Datei

• Entschlüsseln einer Datei

• Alle Dateien in einem Verzeichnis verschlüsseln

• Alle Dateien in einem Verzeichnis entschlüsseln

• Verschlüsseln und Entschlüsseln in der Befehlszeile

• Verwenden mehrerer Hauptschlüssel

• Verschlüsseln und Entschlüsseln in Skripts

• Verwenden von Datenschlüssel-Caching

Verschlüsseln einer Datei

In diesem Beispiel wird die AWS Encryption CLI verwendet, um den Inhalt der hello.txt Datei zu
verschlüsseln, die eine Zeichenfolge „Hello World“ enthält.

Wenn Sie einen Verschlüsselungsbefehl für eine Datei ausführen, ruft die AWS Encryption CLI den
Inhalt der Datei ab, generiert einen eindeutigen Datenschlüssel, verschlüsselt den Dateiinhalt unter
dem Datenschlüssel und schreibt dann die verschlüsselte Nachricht in eine neue Datei.

Beispiele 334

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

Der erste Befehl speichert den Schlüssel ARN von AWS KMS key in der $keyArn Variablen.
Wenn Sie mit einem verschlüsseln AWS KMS key, können Sie es anhand einer Schlüssel-ID,
eines Schlüssel-ARN, eines Aliasnamens oder eines Alias-ARN identifizieren. Einzelheiten zu den
Schlüsselkennungen für eine AWS KMS key finden Sie unter Schlüsselkennungen im AWS Key
Management Service Entwicklerhandbuch.

Der zweite Befehl verschlüsselt den Dateiinhalt. Der Befehl verwendet den Parameter --encrypt,
um die Operation anzugeben, und den Parameter --input, um die zu verschlüsselnde Datei
anzugeben. Der --wrapping-keysParameter und das erforderliche Schlüsselattribut weisen den
Befehl an, den durch den Schlüssel AWS KMS key repräsentierten ARN zu verwenden.

Der Befehl verwendet den --metadata-output-Parameter, um eine Textdatei für die Metadaten
über die Verschlüsselungsoperation anzugeben. Als bewährte Methode verwendet der Befehl den --
encryption-context-Parameter, um einen Verschlüsselungskontext anzugeben.

Dieser Befehl verwendet den --commitment-policyParameter auch, um die Commitment-
Richtlinie explizit festzulegen. In Version 1.8. x, dieser Parameter ist erforderlich, wenn Sie den --
wrapping-keys Parameter verwenden. Ab Version 2.1. x, der --commitment-policy Parameter
ist optional, wird aber empfohlen.

Der Wert des --output-Parameters, ein Punkt (.), weist den Befehl an, die Ausgabedatei in das
aktuelle Verzeichnis zu speichern.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt \
 --output .

PowerShell

To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

Beispiele 335

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Entwicklerhandbuch

PS C:\> aws-encryption-cli --encrypt `
 --input Hello.txt `
 --wrapping-keys key=$keyArn `
 --metadata-output $home\Metadata.txt `
 --commitment-policy require-encrypt-require-decrypt `
 --encryption-context purpose=test `
 --output .

Wenn der Verschlüsselungsbefehl erfolgreich ausgeführt wird, erfolgt keine Ausgabe. Um
festzustellen, ob der Befehl erfolgreich ausgeführt wurde, überprüfen Sie den booleschen Wert in der
Variablen $?. Wenn der Befehl erfolgreich ist, $? ist der Wert von 0 (Bash) oder True (PowerShell).
Wenn der Befehl fehlschlägt, $? ist der Wert von ungleich Null (Bash) oder (). False PowerShell

Bash

$ echo $?
0

PowerShell

PS C:\> $?
True

Sie können auch einen Verzeichnisauflistungsbefehl ausführen, um zu überprüfen, ob der
Verschlüsselungsbefehl eine neue Datei erstellt hat, hello.txt.encrypted. Da der Befehl encrypt
keinen Dateinamen für die Ausgabe spezifizierte, schrieb die AWS Encryption CLI die Ausgabe
in eine Datei mit demselben Namen wie die Eingabedatei plus einem .encrypted Suffix. Um
ein anderes Suffix zu verwenden oder das Suffix wegzulassen, verwenden Sie den --suffix-
Parameter.

Die Datei hello.txt.encrypted enthält eine verschlüsselte Nachricht, die den
Verschlüsselungstext der hello.txt-Datei enthält, eine verschlüsselte Kopie des Datenschlüssels
und zusätzlichen Metadaten, einschließlich des Verschlüsselungskontexts.

Bash

$ ls

Beispiele 336

AWS Encryption SDK Entwicklerhandbuch

hello.txt hello.txt.encrypted

PowerShell

PS C:\> dir

 Directory: C:\TestCLI

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

Entschlüsseln einer Datei

In diesem Beispiel wird die AWS Encryption CLI verwendet, um den Inhalt der
Hello.txt.encrypted Datei zu entschlüsseln, die im vorherigen Beispiel verschlüsselt wurde.

Der Entschlüsselungsbefehl verwendet den Parameter --decrypt, um die Operation anzugeben,
und den Parameter --input, um die zu entschlüsselnde Datei anzugeben. Der Wert des --output
-Parameters ist ein Punkt, der das aktuelle Verzeichnis darstellt.

Der --wrapping-keys Parameter mit einem Schlüsselattribut gibt den Wrapping-Schlüssel an, der
zum Entschlüsseln der verschlüsselten Nachricht verwendet wird. Bei Entschlüsselungsbefehlen mit
AWS KMS keys muss der Wert des Schlüsselattributs ein Schlüssel-ARN sein. Der --wrapping-
keys Parameter ist in einem Entschlüsselungsbefehl erforderlich. Wenn Sie verwenden AWS KMS
keys, können Sie das Schlüsselattribut verwenden, um das AWS KMS keys Entschlüsselungsattribut
anzugeben, oder das Discovery-Attribut mit einem Wert von true (aber nicht beide). Wenn Sie einen
benutzerdefinierten Hauptschlüsselanbieter verwenden, sind die Schlüssel - und Anbieterattribute
erforderlich.

Der --commitment-policyParameter ist ab Version 2.1 optional. x, aber es wird empfohlen.
Wenn Sie es explizit verwenden, wird Ihre Absicht deutlich, auch wenn Sie den Standardwert
angebenrequire-encrypt-require-decrypt.

Der Parameter --encryption-context ist optional im Entschlüsselungsbefehl, auch dann,
wenn im Verschlüsselungsbefehl ein Verschlüsselungskontext angegeben ist. In diesem Fall
verwendet der Entschlüsselungsbefehl denselben Verschlüsselungskontext wie denjenigen, der im
Verschlüsselungsbefehl angegeben wurde. Vor dem Entschlüsseln überprüft die AWS Encryption

Beispiele 337

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

CLI, ob der Verschlüsselungskontext in der verschlüsselten Nachricht ein purpose=test Paar
enthält. Wenn dies nicht der Fall ist, schlägt der Entschlüsselungsbefehl fehl.

Der --metadata-output-Parameter gibt eine Datei für Metadaten über die
Entschlüsselungsoperation an. Der Wert des --output-Parameters, ein Punkt (.), weist den Befehl
an, die Ausgabedatei in das aktuelle Verzeichnis zu schreiben.

Es hat sich bewährt, den --max-encrypted-data-keys Parameter zu verwenden, um zu
verhindern, dass eine falsch formatierte Nachricht mit einer übermäßigen Anzahl verschlüsselter
Datenschlüssel entschlüsselt wird. Geben Sie die erwartete Anzahl verschlüsselter Datenschlüssel
(einen für jeden bei der Verschlüsselung verwendeten Wrapping-Schlüssel) oder einen
angemessenen Höchstwert (z. B. 5) an. Details hierzu finden Sie unter Beschränkung verschlüsselter
Datenschlüssel.

Der --buffer gibt Klartext erst zurück, nachdem alle Eingaben verarbeitet wurden, einschließlich
der Überprüfung der digitalen Signatur, falls eine vorhanden ist.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --commitment-policy require-encrypt-require-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt `
 --input Hello.txt.encrypted `
 --wrapping-keys key=$keyArn `

Beispiele 338

AWS Encryption SDK Entwicklerhandbuch

 --commitment-policy require-encrypt-require-decrypt `
 --encryption-context purpose=test `
 --metadata-output $home\Metadata.txt `
 --max-encrypted-data-keys 1 `
 --buffer `
 --output .

Wenn der Entschlüsselungsbefehl erfolgreich ausgeführt wird, erfolgt keine Ausgabe. Um
festzustellen, ob der Befehl erfolgreich ausgeführt wurde, rufen Sie den Wert der Variablen $?
ab. Sie können auch einen Verzeichnisauflistungsbefehl ausführen, um zu überprüfen, ob der
Verschlüsselungsbefehl eine neue Datei erstellt mit dem Suffix .decrypted erstellt hat. Um
den Klartextinhalt anzuzeigen, verwenden Sie einen Befehl, um den Dateiinhalt abzurufen, wie
beispielsweise cat oder Get-Content.

Bash

$ ls
hello.txt hello.txt.encrypted hello.txt.encrypted.decrypted

$ cat hello.txt.encrypted.decrypted
Hello World

PowerShell

PS C:\> dir

 Directory: C:\TestCLI

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/17/2017 1:01 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted
-a---- 9/17/2017 1:08 PM 11 Hello.txt.encrypted.decrypted

PS C:\> Get-Content Hello.txt.encrypted.decrypted
Hello World

Beispiele 339

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content

AWS Encryption SDK Entwicklerhandbuch

Alle Dateien in einem Verzeichnis verschlüsseln

In diesem Beispiel wird die AWS Encryption CLI verwendet, um den Inhalt aller Dateien in einem
Verzeichnis zu verschlüsseln.

Wenn sich ein Befehl auf mehrere Dateien auswirkt, verarbeitet die AWS Encryption CLI jede Datei
einzeln. Sie ruft den Dateiinhalt ab, ruft einen eindeutigen Datenschlüssel für die Datei aus dem
Master-Schlüssel ab, verschlüsselt den Inhalt der Datei unter dem Datenschlüssel und schreibt
die Ergebnisse in eine neue Datei im Ausgabeverzeichnis. Aus diesem Grund können Sie die
Ausgabedateien unabhängig voneinander entschlüsseln.

Diese Auflistung des TestDir-Verzeichnisses zeigt die Klartext-Dateien, die wir verschlüsseln
möchten.

Bash

$ ls testdir
cool-new-thing.py hello.txt employees.csv

PowerShell

PS C:\> dir C:\TestDir

 Directory: C:\TestDir

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/12/2017 3:11 PM 2139 cool-new-thing.py
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:44 PM 46 Employees.csv

Der erste Befehl speichert den Amazon-Ressourcennamen (ARN) von AWS KMS key in der
$keyArn Variablen.

Der zweite Befehl verschlüsselt den Inhalt von Dateien im TestDir-Verzeichnis und schreibt
die Dateien mit dem verschlüsselten Inhalt in das TestEnc-Verzeichnis. Wenn das TestEnc-
Verzeichnis nicht vorhanden ist, schlägt der Befehl fehl. Da der Eingabespeicherort ein Verzeichnis
ist, muss der --recursive-Parameter angegeben werden.

Beispiele 340

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Encryption SDK Entwicklerhandbuch

Der --wrapping-keysParameter und das erforderliche Schlüsselattribut geben den
zu verwendenden Wrapping-Schlüssel an. Der Verschlüsselungsbefehl umfasst einen
Verschlüsselungskontext, dept=IT. Wenn Sie einen Verschlüsselungskontext in einem Befehl
angeben, der mehrere Dateien verschlüsselt, wird für alle Dateien derselbe Verschlüsselungskontext
verwendet.

Der Befehl hat auch einen --metadata-output Parameter, der der AWS Encryption CLI mitteilt,
wo die Metadaten zu den Verschlüsselungsvorgängen geschrieben werden sollen. Die AWS
Encryption CLI schreibt einen Metadatensatz für jede verschlüsselte Datei.

Das --commitment-policy parameterist ab Version 2.1 optional. x, aber es wird empfohlen.
Wenn der Befehl oder das Skript fehlschlägt, weil ein Chiffretext nicht entschlüsselt werden kann,
kann Ihnen die Richtlinieneinstellung „Explizite Commitment“ dabei helfen, das Problem schnell zu
erkennen.

Wenn der Befehl abgeschlossen ist, schreibt die AWS Encryption CLI die verschlüsselten Dateien in
das TestEnc Verzeichnis, gibt aber keine Ausgabe zurück.

Der letzte Befehl listet die Dateien im Verzeichnis TestEnc auf. Es gibt eine Ausgabedatei des
verschlüsselten Inhalts für jede Eingabedatei mit Klartext-Inhalt. Da der Befehl kein alternatives
Suffix angegeben hat, hat der Verschlüsselungsbefehl .encrypted an jeden der jede der
Eingabedateinamen angefügt.

Bash

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input testdir --recursive\
 --wrapping-keys key=$keyArn \
 --encryption-context dept=IT \
 --commitment-policy require-encrypt-require-decrypt \
 --metadata-output ~/metadata \
 --output testenc

$ ls testenc
cool-new-thing.py.encrypted employees.csv.encrypted hello.txt.encrypted

Beispiele 341

AWS Encryption SDK Entwicklerhandbuch

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
PS C:\> $keyArn = arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt `
 --input .\TestDir --recursive `
 --wrapping-keys key=$keyArn `
 --encryption-context dept=IT `
 --commitment-policy require-encrypt-require-decrypt `
 --metadata-output .\Metadata\Metadata.txt `
 --output .\TestEnc

PS C:\> dir .\TestEnc

 Directory: C:\TestEnc

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted
-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Alle Dateien in einem Verzeichnis entschlüsseln

In diesem Beispiel werden alle Dateien in einem Verzeichnis entschlüsselt. Es beginnt mit den
Dateien im Verzeichnis TestEnc, die im vorherigen Beispiel verschlüsselt wurden.

Bash

$ ls testenc
cool-new-thing.py.encrypted hello.txt.encrypted employees.csv.encrypted

PowerShell

PS C:\> dir C:\TestEnc

 Directory: C:\TestEnc

Beispiele 342

AWS Encryption SDK Entwicklerhandbuch

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted
-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Dieser Entschlüsselungsbefehl entschlüsselt alle Dateien im TestEnc Verzeichnis und schreibt
die Klartextdateien in das Verzeichnis. TestDec Der --wrapping-keys Parameter mit einem
Schlüsselattribut und einem Schlüssel-ARN-Wert teilt der AWS Encryption CLI mit, welche AWS
KMS keys zum Entschlüsseln der Dateien verwendet werden soll. Der Befehl verwendet den --
interactive Parameter, um die AWS Encryption CLI anzuweisen, Sie vor dem Überschreiben
einer Datei mit demselben Namen zu fragen.

Dieser Befehl verwendet auch den Verschlüsselungskontext, die bereitgestellt wurde, als die Dateien
verschlüsselt wurden. Beim Entschlüsseln mehrerer Dateien überprüft die AWS Encryption CLI den
Verschlüsselungskontext jeder Datei. Wenn die Überprüfung des Verschlüsselungskontextes für
eine Datei fehlschlägt, lehnt die AWS Encryption CLI die Datei ab, schreibt eine Warnung, zeichnet
den Fehler in den Metadaten auf und fährt dann mit der Überprüfung der verbleibenden Dateien
fort. Wenn die AWS Encryption CLI eine Datei aus einem anderen Grund nicht entschlüsseln kann,
schlägt der gesamte Entschlüsselungsbefehl sofort fehl.

In diesem Beispiel enthalten die verschlüsselten Nachrichten in allen Eingabedateien das
Verschlüsselungskontextelement dept=IT. Wenn Sie jedoch Nachrichten mit unterschiedlichen
Verschlüsselungskontexten entschlüsseln, können Sie möglicherweise immer noch einen
Teil des Verschlüsselungskontexts überprüfen. Hatten beispielsweise einige Nachrichten den
Verschlüsselungskontext dept=finance, andere hatten dept=IT, könnten Sie überprüfen, ob der
Verschlüsselungskontext immer einen dept-Namen enthält, ohne den Wert anzugeben. Wenn Sie
spezifischer vorgehen möchten, können Sie die Dateien in separaten Befehlen entschlüsseln.

Die Entschlüsselungsbefehl gibt keine Ausgabe zurück, aber Sie können einen
Verzeichnislistenbefehl verwenden, um zu prüfen, ob der Befehl neue Dateien mit dem Suffix
.decrypted erstellt hat. Um den Klartextinhalt anzuzeigen, verwenden Sie einen Befehl, um den
Dateiinhalt abzurufen.

Bash

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Beispiele 343

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

$ aws-encryption-cli --decrypt \
 --input testenc --recursive \
 --wrapping-keys key=$keyArn \
 --encryption-context dept=IT \
 --commitment-policy require-encrypt-require-decrypt \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output testdec --interactive

$ ls testdec
cool-new-thing.py.encrypted.decrypted hello.txt.encrypted.decrypted
 employees.csv.encrypted.decrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt `
 --input C:\TestEnc --recursive `
 --wrapping-keys key=$keyArn `
 --encryption-context dept=IT `
 --commitment-policy require-encrypt-require-decrypt `
 --metadata-output $home\Metadata.txt `
 --max-encrypted-data-keys 1 `
 --buffer `
 --output C:\TestDec --interactive

PS C:\> dir .\TestDec

 Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 10/8/2017 4:57 PM 2139 cool-new-
thing.py.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 46 Employees.csv.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 11 Hello.txt.encrypted.decrypted

Beispiele 344

AWS Encryption SDK Entwicklerhandbuch

Verschlüsseln und Entschlüsseln in der Befehlszeile

Diese Beispiele zeigen Ihnen, wie Sie Eingaben an Befehle übergeben (stdin) und Ausgaben in die
Befehlszeile schreiben (stdout). Sie erklären, wie stdin und stdout in einem Befehl dargestellt werden,
und wie die eingebauten Base64-Codierungstools verwendet werden, um zu verhindern, dass die
Shell Nicht-ASCII-Zeichen falsch interpretiert.

Dieses Beispiel übergibt eine Klartext-Zeichenfolge an einen Verschlüsselungsbefehl und speichert
die verschlüsselte Nachricht in einer Variablen. Dann übergibt es die verschlüsselte Nachricht in der
Variablen an einen Entschlüsselungsbefehl, der seine Ausgabe in die Pipeline schreibt (stdout).

Das Beispiel besteht aus drei Befehlen:

• Der erste Befehl speichert den Schlüssel ARN von AWS KMS key in der $keyArn Variablen.

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

• Der zweite Befehl übergibt die ZeichenfolgeHello Worldan den Verschlüsselungsbefehl weiter
und speichert das Ergebnis in der Variablen $encrypted.

Die --output Parameter --input und sind in allen AWS Encryption CLI-Befehlen erforderlich.
Um anzugeben, dass eine Eingabe dem Befehl übergeben wird (stdin), verwenden Sie einen
Bindestrich (-) für den Wert des --input-Parameters. Um die Ausgabe in die Befehlszeile zu
senden (stdout), verwenden Sie einen Bindestrich für den Wert des --output-Parameters.

Der --encode-Parameter bewirkt, dass die Ausgabe mit Base64 codiert wird, bevor sie
zurückgegeben wird. Dadurch wird verhindert, dass die Shell interpretiert die Nicht-ASCII-Zeichen
in der verschlüsselten Nachricht falsch interpretiert.

Da dieser Befehl ist nur ein Machbarkeitsnachweist ist, lassen wir den Verschlüsselungskontext
weg und unterdrücken die Metadaten (-S).

Beispiele 345

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

Bash

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \
 --input - --output - --
encode \
 --wrapping-keys key=
$keyArn)

PowerShell

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S `
 --input - --output - --
encode `
 --wrapping-keys key=
$keyArn

• Der dritte Befehl übergibt die verschlüsselte Nachricht in der Variablen $encrypted an den
Entschlüsselungsbefehl.

Dieser Entschlüsselungsbefehl verwendet --input -, um anzugeben, dass die Eingabe aus der
Pipeline (stdin) kommt, und --output -, um die Ausgabe in die Pipeline zu senden (stdout). (Der
Eingabeparameter verwendet den Speicherort der Eingabe, nicht die tatsächlich eingegebenen
Bytes, Sie können also die Variable $encrypted nicht als Wert des --input-Parameters
verwenden.)

In diesem Beispiel wird das Discovery-Attribut des --wrapping-keys Parameters verwendet,
damit die AWS Encryption CLI jedes beliebige AWS KMS key zum Entschlüsseln der Daten
verwenden kann. Es gibt keine Verpflichtungsrichtlinie an, daher wird der Standardwert für Version
2.1 verwendet. x und später,require-encrypt-require-decrypt.

Da die Ausgabe verschlüsselt und dann codiert wurde, verwendet der Entschlüsselungsbefehl den
--decode-Parameter zum Decodieren der mit Base64 codierten Eingabe, bevor sie entschlüsselt
wird. Sie können auch den --decode-Parameter verwenden, um mit Base64 codierte Eingaben zu
decodieren, bevor sie verschlüsselt werden.

Auch hier lässt der Befehl den Verschlüsselungskontext weg und unterdrückt die Metadaten (-S).

Beispiele 346

AWS Encryption SDK Entwicklerhandbuch

Bash

$ echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true
 --input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true
 --input - --output - --decode --buffer -S
Hello World

Sie können die Ver- und Entschlüsselungsoperationen auch in einem einzigen Befehl ohne die
dazwischenliegende Variable durchführen.

Wie im vorherigen Beispiel haben die Parameter --input und --output einen --Wert, und der
Befehl verwendet den --encode-Parameter, um die Ausgabe zu codieren, und den --decode
Parameter, um die Eingabe zu decodieren.

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ echo 'Hello World' |
 aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |
 aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S
Hello World

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> 'Hello World' |
 aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |

Beispiele 347

AWS Encryption SDK Entwicklerhandbuch

 aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input
 - --output - --decode -S
Hello World

Verwenden mehrerer Hauptschlüssel

Dieses Beispiel zeigt, wie mehrere Masterschlüssel beim Verschlüsseln und Entschlüsseln von Daten
in der AWS Encryption CLI verwendet werden.

Wenn Sie mehrere Master-Schlüssel verwenden, um Daten zu verschlüsseln, kann einer der Master-
Schlüssel verwendet werden, um die Daten zu entschlüsseln. Diese Strategie stellt sicher, dass Sie
die Daten entschlüsseln können, selbst wenn einer der Master-Schlüssel nicht verfügbar ist. Wenn
Sie die verschlüsselten Daten in mehreren speichern AWS-Regionen, können Sie mit dieser Strategie
einen Hauptschlüssel in derselben Region verwenden, um die Daten zu entschlüsseln.

Wenn Sie mit mehreren Master-Schlüsseln verschlüsseln, spielt der erste Master-Schlüssel eine
spezielle Rolle. Er generiert den Datenschlüssel, der zum Verschlüsseln der Daten verwendet wird.
Die verbleibenden Master-Schlüssel verschlüsseln den Klartext-Datenschlüssel. Die resultierende
verschlüsselte Nachricht enthält die verschlüsselten Daten und eine Sammlung von verschlüsselten
Datenschlüsseln, einen für jeden Master-Schlüssel. Obwohl der erste Master-Schlüssel den
Datenschlüssel generiert hat, kann jeder der Master-Schlüssel einen der Datenschlüssel
entschlüsseln, der verwendet werden kann, um die Daten zu entschlüsseln.

Verschlüsselung mit drei Hauptschlüsseln

In diesem Beispielbefehl werden drei Umschließungsschlüssel verwendet, um die Finance.log
Datei zu verschlüsseln, jeweils einen von dreien. AWS-Regionen

Er schreibt die verschlüsselte Nachricht in das Verzeichnis Archive. Der Befehl verwendet den
--suffix -Parameter ohne Wert, um das Suffix zu unterdrücken, sodass die Eingabe- und
Ausgabedateinamen gleich sind.

Der Befehl verwendet den --wrapping-keys-Parameter mit drei Schlüsselattributen. Sie können
auch mehrere --wrapping-keys-Parameter im selben Befehl verwenden.

Um die Protokolldatei zu verschlüsseln, fordert die AWS Encryption CLI den ersten Wrapping-
Schlüssel in der Liste auf$key1, den Datenschlüssel zu generieren, mit dem sie die Daten
verschlüsselt. Anschließend verwendet sie jeden der anderen Umschließungsschlüssel, um eine
Klartextkopie desselben Datenschlüssels zu verschlüsseln. Die verschlüsselte Nachricht in der
Ausgabedatei enthält alle drei verschlüsselten Datenschlüssel.

Beispiele 348

AWS Encryption SDK Entwicklerhandbuch

Bash

$ key1=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d

$ aws-encryption-cli --encrypt --input /logs/finance.log \
 --output /archive --suffix \
 --encryption-context class=log \
 --metadata-output ~/metadata \
 --wrapping-keys key=$key1 key=$key2 key=$key3

PowerShell

PS C:\> $key1 = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef'
PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d'

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log `
 --output D:\Archive --suffix `
 --encryption-context class=log `
 --metadata-output $home\Metadata.txt `
 --wrapping-keys key=$key1 key=$key2 key=$key3

Dieser Befehl entschlüsselt die verschlüsselte Kopie der Datei Finance.log und schreibt sie in eine
Finance.log.clear-Datei im Verzeichnis Finance. Um Daten zu entschlüsseln, die unter drei
verschlüsselt wurden AWS KMS keys, können Sie dieselben drei AWS KMS keys oder eine beliebige
Teilmenge davon angeben. In diesem Beispiel wird nur eine der Optionen angegeben. AWS KMS
keys

Verwenden Sie das Schlüsselattribut des --wrapping-keys Parameters, AWS KMS keys um der
AWS Encryption CLI mitzuteilen, welche zum Entschlüsseln Ihrer Daten verwendet werden soll. Bei
der Entschlüsselung mit AWS KMS keys muss der Wert des Schlüsselattributs ein Schlüssel-ARN
sein.

Beispiele 349

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

Sie benötigen die Berechtigung, die Decrypt-API auf dem von AWS KMS keys Ihnen angegebenen
Computer aufzurufen. Weitere Informationen finden Sie unter Authentifizierung und Zugriffskontrolle
für AWS KMS.

Als bewährte Methode wird in diesen Beispielen der --max-encrypted-data-keys Parameter
verwendet, um zu verhindern, dass eine falsch formatierte Nachricht mit einer übermäßigen
Anzahl verschlüsselter Datenschlüssel entschlüsselt wird. Obwohl in diesem Beispiel nur ein
Wrapping-Schlüssel für die Entschlüsselung verwendet wird, hat die verschlüsselte Nachricht
drei (3) verschlüsselte Datenschlüssel, einen für jeden der drei beim Verschlüsseln verwendeten
Wrapping-Schlüssel. Geben Sie die erwartete Anzahl verschlüsselter Datenschlüssel oder einen
angemessenen Höchstwert an, z. B. 5. Wenn Sie einen Höchstwert unter 3 angeben, schlägt der
Befehl fehl. Details hierzu finden Sie unter Beschränkung verschlüsselter Datenschlüssel.

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \
 --wrapping-keys key=$key1 \
 --output /finance --suffix '.clear' \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 3 \
 --buffer \
 --encryption-context class=log

PowerShell

PS C:\> aws-encryption-cli --decrypt `
 --input D:\Archive\Finance.log `
 --wrapping-keys key=$key1 `
 --output D:\Finance --suffix '.clear' `
 --metadata-output .\Metadata\Metadata.txt `
 --max-encrypted-data-keys 3 `
 --buffer `
 --encryption-context class=log

Verschlüsseln und Entschlüsseln in Skripts

Dieses Beispiel zeigt, wie die AWS Encryption CLI in Skripten verwendet wird. Sie können
Skripte schreiben, die nur Daten verschlüsseln und entschlüsseln, oder Skripts, die als Teil eines
Datenverwaltungsprozesses verschlüsseln oder entschlüsseln.

Beispiele 350

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK Entwicklerhandbuch

In diesem Beispiel ruft das Skript eine Sammlung von Protokolldateien ab, komprimiert sie,
verschlüsselt sie und kopiert dann die verschlüsselten Dateien in einen Amazon S3 S3-Bucket.
Dieses Skript verarbeitet jede Datei einzeln, sodass Sie sie unabhängig voneinander entschlüsseln
und erweitern können.

Wenn Sie Dateien komprimieren und verschlüsseln, stellen Sie sicher, dass Sie sie komprimieren,
bevor Sie sie verschlüsseln. Ordnungsgemäß verschlüsselte Daten können nicht komprimiert werden.

Warning

Seien Sie vorsichtig, wenn Sie Daten komprimieren, die Geheimnisse oder Daten enthalten,
die von böswilligen Angreifern kontrolliert werden könnten. Die endgültige Größe der
komprimierten Daten verrät möglicherweise versehentlich vertrauliche Informationen über
ihren Inhalt.

Bash

Continue running even if an operation fails.
set +e

dir=$1
encryptionContext=$2
s3bucket=$3
s3folder=$4
masterKeyProvider="aws-kms"
metadataOutput="/tmp/metadata-$(date +%s)"

compress(){
 gzip -qf $1
}

encrypt(){
 # -e encrypt
 # -i input
 # -o output
 # --metadata-output unique file for metadata
 # -m masterKey read from environment variable
 # -c encryption context read from the second argument.
 # -v be verbose

Beispiele 351

AWS Encryption SDK Entwicklerhandbuch

 aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output
 ${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c
 "${encryptionContext}" -v
}

s3put (){
 # copy file argument 1 to s3 location passed into the script.
 aws s3 cp ${1} ${s3bucket}/${s3folder}
}

Validate all required arguments are present.
if ["${dir}"] && ["${encryptionContext}"] && ["${s3bucket}"] &&
 ["${s3folder}"] && ["${masterKey}"]; then

Is $dir a valid directory?
test -d "${dir}"
if [$? -ne 0]; then
 echo "Input is not a directory; exiting"
 exit 1
fi

Iterate over all the files in the directory, except *gz and *encrypted (in case of
 a re-run).
for f in $(find ${dir} -type f \(-name "*" ! -name *.gz ! -name *encrypted \));
 do
 echo "Working on $f"
 compress ${f}
 encrypt ${f}.gz
 rm -f ${f}.gz
 s3put ${f}.gz.encrypted
done;
else
 echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>"
 echo " and ENV var \$masterKey must be set"
 exit 255
fi

PowerShell

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive
Param
(

Beispiele 352

AWS Encryption SDK Entwicklerhandbuch

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String[]]
 $FilePath,

 [Parameter()]
 [Switch]
 $Recurse,

 [Parameter(Mandatory=$true)]
 [String]
 $wrappingKeyID,

 [Parameter()]
 [String]
 $masterKeyProvider = 'aws-kms',

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String]
 $ZipDirectory,

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String]
 $EncryptDirectory,

 [Parameter()]
 [String]
 $EncryptionContext,

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String]
 $MetadataDirectory,

 [Parameter(Mandatory)]
 [ValidateScript({Test-S3Bucket -BucketName $_})]
 [String]
 $S3Bucket,

 [Parameter()]
 [String]
 $S3BucketFolder

Beispiele 353

AWS Encryption SDK Entwicklerhandbuch

)

BEGIN {}
PROCESS {
 if ($files = dir $FilePath -Recurse:$Recurse)
 {

 # Step 1: Compress
 foreach ($file in $files)
 {
 $fileName = $file.Name
 try
 {
 Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -
DestinationPath $ZipDirectory\$filename.zip
 }
 catch
 {
 Write-Error "Zip failed on $file.FullName"
 }

 # Step 2: Encrypt
 if (-not (Test-Path "$ZipDirectory\$filename.zip"))
 {
 Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip"
 }
 else
 {
 # 2>&1 captures command output
 $err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip" `
 -o $EncryptDirectory `
 -m key=$wrappingKeyID provider=
$masterKeyProvider `
 -c $EncryptionContext `
 --metadata-output $MetadataDirectory `
 -v) 2>&1

 # Check error status
 if ($? -eq $false)
 {
 # Write the error
 $err
 }
 elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted")

Beispiele 354

AWS Encryption SDK Entwicklerhandbuch

 {
 # Step 3: Write to S3 bucket
 if ($S3BucketFolder)
 {
 Write-S3Object -BucketName $S3Bucket -File
 "$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted"

 }
 else
 {
 Write-S3Object -BucketName $S3Bucket -File
 "$EncryptDirectory\$fileName.zip.encrypted"
 }
 }
 }
 }
 }
}

Verwenden von Datenschlüssel-Caching

Dieses Beispiel verwendet das Datenschlüssel-Caching in einem Befehl, der eine große Anzahl von
Dateien verschlüsselt.

Standardmäßig generiert die AWS Encryption CLI (und andere Versionen von AWS Encryption SDK)
einen eindeutigen Datenschlüssel für jede Datei, die sie verschlüsselt. Obwohl die Verwendung eines
eindeutigen Datenschlüssels für jede Operation ist eine bewährte Methode in der Kryptografie ist, ist
eine begrenzte Wiederverwendung von Datenschlüsseln in einigen Situationen akzeptabel. Falls Sie
ein Datenschlüssel-Caching in Betracht ziehen, beraten Sie sich mit einem Sicherheitstechniker,um
die Sicherheitsanforderungen Ihrer Anwendung zu verstehen und die für Sie geeigneten
Sicherheitsbarrieren zu bestimmen.

In diesem Beispiel beschleunigt das Datenschlüssel-Caching die Verschlüsselungsoperation, indem
sie die Frequenz der Anfragen an den Masterschlüssel-Anbieter reduziert.

Der Befehl in diesem Beispiel verschlüsselt ein großes Verzeichnis mit mehreren
Unterverzeichnissen, die insgesamt ungefähr 800 kleine Protokolldateien enthalten. Der erste Befehl
speichert den ARN des AWS KMS key in einer keyARN-Variablen. Der zweite Befehl verschlüsselt
alle Dateien im Eingabeverzeichnis (rekursiv) und schreibt sie in ein Archiv-Verzeichnis. Der Befehl
verwendet den --suffix -Parameter, um das .archive-Suffix anzugeben.

Beispiele 355

AWS Encryption SDK Entwicklerhandbuch

Der --caching-Parameter aktiviert das Datenschlüssel-Caching. Die Attribut capacity, das die
Anzahl der Datenschlüssel im Cache begrenzt, wird auf 1 gesetzt, da die serielle Dateiverarbeitung
nie mehr als einen Datenschlüssel gleichzeitig verwendet. Das Attribut max_age, mit dem festgelegt
wird, wie lange der Datenschlüssel im Cache verwendet werden kann, ist auf 10 Sekunden
eingestellt.

Das optionale Attribut max_messages_encrypted ist auf 10 Nachrichten festgelegt, sodass eine
einzelner Datenschlüssel nie verwendet werden kann, um mehr als 10 Dateien zu verschlüsseln.
Die Begrenzung der Anzahl der von einem Datenschlüssel verschlüsselten Dateien reduziert die
Anzahl der Dateien, die in dem unwahrscheinlichen Fall betroffen wären, wenn ein Datenschlüssel
kompromittiert wird.

Um diesen Befehl für von Ihrem Betriebssystem generierte Protokolldateien auszuführen, müssen Sie
möglicherweise Administratorberechtigungen besitzen (sudo in Linux; Als Administrator ausführen in
Windows).

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input /var/log/httpd --recursive \
 --output ~/archive --suffix .archive \
 --wrapping-keys key=$keyArn \
 --encryption-context class=log \
 --suppress-metadata \
 --caching capacity=1 max_age=10 max_messages_encrypted=10

PowerShell

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive' `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata `

Beispiele 356

AWS Encryption SDK Entwicklerhandbuch

 --caching capacity=1 max_age=10
 max_messages_encrypted=10

Um die Wirkung der Zwischenspeicherung von Datenschlüsseln zu testen, wird in diesem Beispiel
das Cmdlet Measure-Command in verwendet. PowerShell Wenn Sie dieses Beispiel ohne
Datenschlüssel-Caching ausführen, dauert seine Ausführung etwa 25 Sekunden. Dieser Prozess
generiert einen neuen Datenschlüssel für jede Datei im Verzeichnis.

PS C:\> Measure-Command {aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive'
 `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata }

Days : 0
Hours : 0
Minutes : 0
Seconds : 25
Milliseconds : 453
Ticks : 254531202
TotalDays : 0.000294596298611111
TotalHours : 0.00707031116666667
TotalMinutes : 0.42421867
TotalSeconds : 25.4531202
TotalMilliseconds : 25453.1202

Das Datenschlüssel-Caching beschleunigt das Verfahren, auch wenn Sie die einzelnen
Datenschlüssel auf maximal 10 Dateien begrenzen. Der Befehl benötigt jetzt weniger als 12
Sekunden und reduziert die Anzahl der Aufrufe des Masterschlüssel-Anbieter auf ein Zehntel des
ursprünglichen Werts.

PS C:\> Measure-Command {aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive'
 `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata `

Beispiele 357

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command

AWS Encryption SDK Entwicklerhandbuch

 --caching capacity=1 max_age=10
 max_messages_encrypted=10}

Days : 0
Hours : 0
Minutes : 0
Seconds : 11
Milliseconds : 813
Ticks : 118132640
TotalDays : 0.000136727592592593
TotalHours : 0.00328146222222222
TotalMinutes : 0.196887733333333
TotalSeconds : 11.813264
TotalMilliseconds : 11813.264

Wenn Sie die max_messages_encrypted-Einschränkung weglassen, werden alle Dateien
unter demselben Datenschlüssel verschlüsselt. Diese Änderung erhöht das Risiko einer
Wiederverwendung von Datenschlüsseln, ohne den Prozess sehr wesentlich schneller zu machen.
Sie reduziert jedoch die Anzahl der Aufrufe des Masterschlüssel-Anbieters auf 1.

PS C:\> Measure-Command {aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive'
 `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata `
 --caching capacity=1 max_age=10}

Days : 0
Hours : 0
Minutes : 0
Seconds : 10
Milliseconds : 252
Ticks : 102523367
TotalDays : 0.000118661304398148
TotalHours : 0.00284787130555556
TotalMinutes : 0.170872278333333
TotalSeconds : 10.2523367
TotalMilliseconds : 10252.3367

Beispiele 358

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK CLI Syntax und Parameterreferenz

Dieses Thema enthält Syntaxdiagramme und kurze Parameterbeschreibungen, die Ihnen bei der
Verwendung des AWS Encryption SDK Command Line Interface (CLI, Befehlszeilenschnittstelle)
helfen. Hilfe zum Umschließen von Schlüsseln und anderen Parametern finden Sie unterSo
verwenden Sie die AWS Encryption CLI. Beispiele finden Sie unter Beispiele für die AWS Encryption
CLI. Eine vollständige Dokumentation finden Sie in Read the Docs.

Themen

• AWS Verschlüsselungs-CLI-Syntax

• AWS Befehlszeilenparameter der Verschlüsselungs-CLI

• Erweiterte Parameter

AWS Verschlüsselungs-CLI-Syntax

Diese Syntaxdiagramme von AWS Encryption CLI zeigen die Syntax für jede Aufgabe, die Sie mit der
AWS Encryption CLI ausführen. Sie stellen die empfohlene Syntax in AWS Encryption CLI Version
2.1 dar. x und höher.

Neue Sicherheitsfunktionen wurden ursprünglich in den AWS Encryption CLI Versionen 1.7
veröffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Note

Sofern in der Parameterbeschreibung nichts anderes angegeben ist, kann jeder Parameter
oder jedes Attribut in jedem Befehl nur einmal verwendet werden.
Wenn Sie ein Attribut verwenden, das ein Parameter nicht unterstützt, ignoriert die AWS
Encryption CLI dieses nicht unterstützte Attribut ohne Warnung oder Fehler.

Hilfe anfordern

Um die vollständige AWS Encryption CLI-Syntax mit Parameterbeschreibungen zu erhalten,
verwenden Sie --help oder-h.

aws-encryption-cli (--help | -h)

Syntax und Parameterreferenz 359

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

Die Version abrufen

Um die Versionsnummer Ihrer AWS Encryption CLI-Installation abzurufen, verwenden Sie--
version. Geben Sie unbedingt die Version an, wenn Sie Fragen stellen, Probleme melden oder
Tipps zur Verwendung der AWS Encryption CLI geben.

aws-encryption-cli --version

Daten verschlüsseln

Das folgende Syntaxdiagramm zeigt die Parameter, die ein encrypt-Befehl verwendet.

aws-encryption-cli --encrypt
 --input <input> [--recursive] [--decode]
 --output <output> [--interactive] [--no-overwrite] [--suffix
 [<suffix>]] [--encode]
 --wrapping-keys [--wrapping-keys] ...
 key=<keyID> [key=<keyID>] ...
 [provider=<provider-name>] [region=<aws-region>]
 [profile=<aws-profile>]
 --metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
 [--commitment-policy <commitment-policy>]
 [--encryption-context <encryption_context> [<encryption_context>
 ...]]
 [--max-encrypted-data-keys <integer>]
 [--algorithm <algorithm_suite>]
 [--caching <attributes>]
 [--frame-length <length>]
 [-v | -vv | -vvv | -vvvv]
 [--quiet]

Daten entschlüsseln

Das folgende Syntaxdiagramm zeigt die Parameter, die ein decrypt-Befehl verwendet.

In Version 1.8. x, der --wrapping-keys Parameter ist beim Entschlüsseln optional, wird
aber empfohlen. Ab Version 2.1. x, der --wrapping-keys Parameter ist beim Verschlüsseln
und Entschlüsseln erforderlich. Denn Sie können das Schlüsselattribut verwenden AWS KMS
keys, um Wrapping-Schlüssel anzugeben (Best Practice) oder das Discovery-Attribut auf
festlegentrue, wodurch die Wrapping-Schlüssel, die die AWS Encryption CLI verwenden kann,
nicht eingeschränkt werden.

Syntax und Parameterreferenz 360

AWS Encryption SDK Entwicklerhandbuch

aws-encryption-cli --decrypt (or [--decrypt-unsigned])
 --input <input> [--recursive] [--decode]
 --output <output> [--interactive] [--no-overwrite] [--suffix
 [<suffix>]] [--encode]
 --wrapping-keys [--wrapping-keys] ...
 [key=<keyID>] [key=<keyID>] ...
 [discovery={true|false}] [discovery-partition=<aws-partition-
name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>] ...]
 [provider=<provider-name>] [region=<aws-region>]
 [profile=<aws-profile>]
 --metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
 [--commitment-policy <commitment-policy>]
 [--encryption-context <encryption_context> [<encryption_context>
 ...]]
 [--buffer]
 [--max-encrypted-data-keys <integer>]
 [--caching <attributes>]
 [--max-length <length>]
 [-v | -vv | -vvv | -vvvv]
 [--quiet]

Konfigurationsdateien verwenden

Sie können auf Konfigurationsdateien verweisen, die Parameter und deren Werte enthalten. Dies
ist gleichwertig mit der Eingabe der Parameter und Werte im Befehl. Ein Beispiel finden Sie unter
Parameter in einer Konfigurationsdatei speichern.

aws-encryption-cli @<configuration_file>

In a PowerShell console, use a backtick to escape the @.
aws-encryption-cli `@<configuration_file>

AWS Befehlszeilenparameter der Verschlüsselungs-CLI

Diese Liste enthält eine grundlegende Beschreibung der Befehlsparameter von AWS Encryption CLI.
Eine vollständige Beschreibung finden Sie in der aws-encryption-sdk-cliDokumentation.

Syntax und Parameterreferenz 361

http://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Entwicklerhandbuch

--encrypt (-e)

Verschlüsselt die Eingabedaten. Jeder Befehl muss einen --encrypt--decrypt, oder oder --
decrypt-unsigned -Parameter haben.

--decrypt (-d)

Entschlüsselt die Eingabedaten. Jeder Befehl muss einen --encrypt--decrypt, oder --
decrypt-unsigned -Parameter haben.

--decrypt-unsigned [Eingeführt in Version 1.9. x und 2.2. x]

Der --decrypt-unsigned Parameter entschlüsselt Chiffretext und stellt sicher, dass
Nachrichten vor der Entschlüsselung unsigniert sind. Verwenden Sie diesen Parameter, wenn
Sie den --algorithm Parameter verwendet und eine Algorithmussuite ohne digitale Signatur
zum Verschlüsseln von Daten ausgewählt haben. Wenn der Chiffretext signiert ist, schlägt die
Entschlüsselung fehl.

Sie können --decrypt oder --decrypt-unsigned für die Entschlüsselung verwenden, aber
nicht beide.

--wrapping-keys (-w) [Eingeführt in Version 1.8. x]

Gibt die Wrapping-Schlüssel (oder Hauptschlüssel) an, die bei Verschlüsselungs- und
Entschlüsselungsvorgängen verwendet werden. Sie können in jedem Befehl mehrere --
wrapping-keys Parameter verwenden.

Ab Version 2.1. x, der --wrapping-keys Parameter ist für Befehle zum Verschlüsseln und
Entschlüsseln erforderlich. In Version 1.8. x, Verschlüsselungsbefehle erfordern --wrapping-
keys entweder einen --master-keys Oder-Parameter. In Version 1.8. x decrypt-Befehle, ein
--wrapping-keys Parameter ist optional, wird aber empfohlen.

Wenn Sie einen benutzerdefinierten Hauptschlüsselanbieter verwenden, benötigen Befehle zum
Verschlüsseln und Entschlüsseln Schlüssel - und Anbieterattribute. Bei der Verwendung von
AWS KMS keys Verschlüsselungsbefehlen ist ein Schlüsselattribut erforderlich. Für Befehle zum
Entschlüsseln ist ein Schlüsselattribut oder ein Erkennungsattribut mit einem Wert von true
(aber nicht beiden) erforderlich. Es hat sich bewährt, das Schlüsselattribut beim Entschlüsseln
zu verwenden.AWS Encryption SDK Dies ist besonders wichtig, wenn Sie Stapel unbekannter
Nachrichten entschlüsseln, z. B. Nachrichten in einem Amazon S3 S3-Bucket oder einer Amazon
SQS SQS-Warteschlange.

Syntax und Parameterreferenz 362

AWS Encryption SDK Entwicklerhandbuch

Ein Beispiel, das zeigt, wie Sie Schlüssel mit AWS KMS mehreren Regionen als Schlüssel zum
Umschließen von Schlüsseln verwenden können, finden Sie unter. Verwenden Sie mehrere
Regionen AWS KMS keys

Attribute: Der Wert des --wrapping-keys-Parameters besteht aus den folgenden Attributen.
Das Format ist attribute_name=value.

Schlüssel

Identifiziert den Umbruchschlüssel, der bei dem Vorgang verwendet wurde. Das Format ist ein
key= ID-Paar. Sie können mehrere key-Attribute in jedem --wrapping-keys-Parameterwert
angeben.

• Befehle verschlüsseln: Alle Verschlüsselungsbefehle erfordern das Schlüsselattribut.
Wenn Sie einen Befehl AWS KMS key in an encrypt verwenden, kann der Wert des
Schlüsselattributs eine Schlüssel-ID, ein Schlüssel-ARN, ein Aliasname oder ein Alias-
ARN sein. Eine Beschreibung der AWS KMS Schlüsselkennungen finden Sie unter
Schlüsselkennungen im AWS Key Management Service Entwicklerhandbuch.

• Befehle entschlüsseln: Beim Entschlüsseln mit AWS KMS keys erfordert der --wrapping-
keys Parameter ein Schlüsselattribut mit einem Schlüssel-ARN-Wert oder ein Discovery-
Attribut mit einem Wert von true (aber nicht beide). Die Verwendung des Schlüsselattributs
ist eine AWS Encryption SDK bewährte Methode. Bei der Entschlüsselung mit einem
benutzerdefinierten Hauptschlüsselanbieter ist das Schlüsselattribut erforderlich.

Note

Um einen AWS KMS Wrapping-Schlüssel in einem Decrypt-Befehl anzugeben,
muss der Wert des Schlüsselattributs ein Schlüssel-ARN sein. Wenn Sie eine
Schlüssel-ID, einen Aliasnamen oder einen Alias-ARN verwenden, erkennt die AWS
Encryption CLI den Wrapping-Schlüssel nicht.

Sie können mehrere key-Attribute in jedem --wrapping-keys-Parameterwert angeben.
Alle Anbieter -, Regions - und Profilattribute in einem --wrapping-keys Parameter gelten
jedoch für alle Schlüssel, die in diesem Parameterwert enthalten sind. Verwenden Sie
mehrere --wrapping-keys Parameter im Befehl, um Wrapping Keys mit unterschiedlichen
Attributwerten anzugeben.

Syntax und Parameterreferenz 363

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

Entdeckung

Ermöglicht der AWS Encryption CLI, beliebige AWS KMS key zum Entschlüsseln der
Nachricht zu verwenden. Der Erkennungswert kann true oder false sein. Der Standardwert
ist false. Das Discovery-Attribut ist nur in Entschlüsselungsbefehlen gültig und nur, wenn der
Hauptschlüsselanbieter dies AWS KMS tut.

Bei der Entschlüsselung mit AWS KMS keys erfordert der --wrapping-keys Parameter ein
Schlüsselattribut oder ein Discovery-Attribut mit einem Wert von true (aber nicht beiden).
Wenn Sie das Schlüsselattribut verwenden, können Sie ein Erkennungsattribut mit dem Wert
von verwendenfalse, um die Erkennung explizit abzulehnen.

• False(Standard) — Wenn das Discovery-Attribut nicht angegeben ist oder sein Wert
istfalse, entschlüsselt die AWS Encryption CLI die Nachricht nur unter Verwendung
des durch das Schlüsselattribut des --wrapping-keys Parameters AWS KMS keys
angegebenen. Wenn Sie bei der Erkennung kein Schlüsselattribut angebenfalse, schlägt
der Entschlüsselungsbefehl fehl. Dieser Wert unterstützt eine bewährte Methode für die
AWS Verschlüsselungs-CLI.

• True— Wenn der Wert des Discovery-Attributs isttrue, ruft die AWS Encryption CLI
die AWS KMS keys From-Metadaten in der verschlüsselten Nachricht ab und verwendet
diese, AWS KMS keys um die Nachricht zu entschlüsseln. Das Discovery-Attribut mit dem
Wert von true verhält sich wie Versionen der AWS Encryption CLI vor Version 1.8. x, das
es Ihnen nicht erlaubte, beim Entschlüsseln einen Wrapping-Schlüssel anzugeben. Ihre
Absicht, einen zu verwenden, AWS KMS key ist jedoch ausdrücklich. Wenn Sie bei der
Erkennung ein Schlüsselattribut angebentrue, schlägt der Entschlüsselungsbefehl fehl.

Der true Wert kann dazu führen, dass die AWS Encryption CLI AWS KMS keys in
verschiedenen AWS-Konten Regionen verwendet wird oder AWS KMS keys dass versucht
wird, eine Verwendung zu verwenden, für die der Benutzer nicht autorisiert ist.

Wenn Discovery aktiviert isttrue, empfiehlt es sich, die Attribute discovery-partition und
discovery-account zu verwenden, um die Verwendung auf die von Ihnen AWS KMS keys
angegebenen Attribute zu beschränken. AWS-Konten

Discovery-Konto

Beschränkt die für die Entschlüsselung AWS KMS keys verwendeten Werte auf die
angegebenen Werte. AWS-Konto Der einzig gültige Wert für dieses Attribut ist eine AWS-
Konto ID.

Syntax und Parameterreferenz 364

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

AWS Encryption SDK Entwicklerhandbuch

Dieses Attribut ist optional und nur in Entschlüsselungsbefehlen gültig, bei AWS KMS keys
denen das Discovery-Attribut auf gesetzt true und das Discovery-Partition-Attribut angegeben
ist.

Jedes Discovery-Account-Attribut benötigt nur eine AWS-Konto ID, aber Sie können mehrere
Discovery-Account-Attribute in demselben Parameter angeben. --wrapping-keys Alle in
einem bestimmten --wrapping-keys Parameter angegebenen Konten müssen sich in der
angegebenen Partition befinden. AWS

Discovery-Partition

Gibt die AWS Partition für die Konten im Attribut discovery-account an. Sein Wert muss eine
AWS Partition sein, z. B. awsaws-cn, oder. aws-gov-cloud Weitere Informationen finden
Sie unter Amazon Resource Names in der Allgemeine AWS-Referenz.

Dieses Attribut ist erforderlich, wenn Sie das Attribut discovery-account verwenden. Sie
können in jedem Parameter nur ein Discovery-Partition-Attribut angeben. --wrapping keys
Verwenden Sie AWS-Konten einen zusätzlichen --wrapping-keys Parameter, um mehrere
Partitionen anzugeben.

provider

Identifiziert den Masterschlüssel-Anbieter. Das Format ist ein provider= ID-Paar. Der
Standardwert aws-kms steht für. AWS KMS Dieses Attribut ist nur erforderlich, wenn der
Hauptschlüsselanbieter dies nicht tut. AWS KMS

Region

Identifiziert den AWS-Region von einem AWS KMS key. Dieses Attribut ist nur gültig für AWS
KMS keys. Es wird nur verwendet, wenn die key-ID keine Region angibt, andernfalls wird es
ignoriert. Wenn es verwendet wird, überschreibt es die Standardregion im AWS CLI namens
profile.

Profil

Identifiziert ein AWS CLI benanntes Profil. Dieses Attribut ist nur gültig für AWS KMS keys. Die
Region im Profil wird nur verwendet, wenn die key-ID keine Region angibt und es kein region-
Attribut im Befehl gibt.

--input (-i)

Gibt den Speicherort der zu ver- oder entschlüsselnden Daten an. Dieser Parameter muss
angegeben werden. Der Wert kann ein Pfad zu einer Datei oder einem Verzeichnis oder ein
Dateinamenmuster sein. Wenn Sie Eingaben an den Befehl weiterleiten (stdin), verwenden Sie -.

Syntax und Parameterreferenz 365

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK Entwicklerhandbuch

Wenn die Eingabe nicht vorhanden ist, wird der Befehl fehlerfrei ohne Fehlermeldung oder
Warnung ausgeführt.

--recursive (-r, -R)

Führt die Operation für Dateien im Eingabeverzeichnis und seinen Unterverzeichnissen aus.
Dieser Parameter ist erforderlich, wenn der Wert von --input ein Verzeichnis ist.

--decode

Decodiert Base64-codierte Eingaben.

Wenn Sie eine Nachricht entschlüsseln, die verschlüsselt und dann codiert wurde, müssen Sie
die Nachricht decodieren, bevor Sie sie entschlüsseln. Dieser Parameter erledigt dies für Sie.

Wenn Sie beispielsweise den --encode-Parameter in einem Verschlüsselungsbefehl
verwendet haben, verwenden Sie den --decode-Parameter in dem entsprechenden
Entschlüsselungsbefehl. Sie können diesen Parameter auch verwenden, um mit Base64
codierte Eingaben zu decodieren, bevor Sie sie verschlüsseln.

--output (-o)

Gibt einen Zielspeicherort für die Ausgabe an. Dieser Parameter muss angegeben werden. Der
Wert kann ein Dateiname oder ein vorhandenes Verzeichnis sein, oder - sein, womit die Ausgabe
in die Befehlszeile geschrieben wird (stdout).

Wenn das angegebene Ausgabeverzeichnis nicht vorhanden ist, schlägt der Befehl fehl. Wenn die
Eingabe Unterverzeichnisse enthält, reproduziert die AWS Encryption CLI die Unterverzeichnisse
unter dem von Ihnen angegebenen Ausgabeverzeichnis.

Standardmäßig überschreibt die AWS Encryption CLI Dateien mit demselben Namen. Dieses
Verhalten ändern Sie mit den Parametern --interactive oder --no-overwrite. Um die
Überschreibwarnung zu unterdrücken, verwenden Sie den Parameter --quiet.

Note

Wenn ein Befehl, der eine Ausgabedatei überschreiben würde, fehlschlägt, ist die
Ausgabedatei bereits gelöscht.

--interactive

Informiert Sie, bevor die Datei überschrieben wird.

Syntax und Parameterreferenz 366

AWS Encryption SDK Entwicklerhandbuch

--no-overwrite

Überschreibt keine Dateien. Wenn die Ausgabedatei existiert, überspringt die AWS Encryption
CLI stattdessen die entsprechende Eingabe.

--Suffix

Gibt ein benutzerdefiniertes Dateinamensuffix für Dateien an, die die AWS Encryption CLI
erstellt. Wenn Sie kein Suffix angeben wollen, verwenden Sie den Parameter ohne Wert (--
suffix).

Wenn der --output-Parameter keinen Dateinamen angibt, hat der Ausgabedateiname
standardmäßig den gleichen Namen wie die Eingabedatei, jedoch mit dem Suffix. Das Suffix
für Verschlüsselungsbefehle ist .encrypted. Das Suffix für Entschlüsselungsbefehle ist
.decrypted.

--encode

Wendet die Base64-Codierung (binär in Text) auf die Ausgabe an. Die Kodierung verhindert,
dass das Shell-Host-Programm Nicht-ASCII-Zeichen im Ausgabetext falsch interpretiert.

Verwenden Sie diesen Parameter, wenn Sie eine verschlüsselte Ausgabe nach stdout
(--output -) schreiben, insbesondere in einer PowerShell Konsole, auch wenn Sie die
Ausgabe an einen anderen Befehl weiterleiten oder sie in einer Variablen speichern.

--metadata-output

Gibt einen Speicherort für Metadaten über die kryptografischen Operationen an. Geben Sie einen
Pfad und einen Dateinamen ein. Wenn das Verzeichnis nicht vorhanden ist, schlägt der Befehl
fehl. Um die Metadaten in die Befehlszeile zu schreiben (stdout), verwenden Sie -.

Sie können die Befehlsausgabe (--output) und Metadatenausgaben (--metadata-output)
nicht im selben Befehl auf stdout schreiben. Auch wenn der Wert von --input oder --output
ein Verzeichnis (ohne Dateinamen) ist, können Sie die Metadatenausgabe nicht in das gleiche
Verzeichnis oder in ein Unterverzeichnis dieses Verzeichnisses schreiben.

Wenn Sie eine vorhandene Datei angeben, hängt die AWS Encryption CLI standardmäßig neue
Metadatensätze an jeden Inhalt der Datei an. Mit dieser Funktion können Sie eine einzige Datei
erstellen, die die Metadaten für alle Ihre kryptografischen Operationen enthält. Um den Inhalt einer
bestehenden Datei zu überschreiben, verwenden Sie den --overwrite-metadata-Parameter.

Die AWS Encryption CLI gibt für jeden Verschlüsselungs- oder Entschlüsselungsvorgang, den der
Befehl ausführt, einen JSON-formatierten Metadatensatz zurück. Jeder Metadatensatz enthält die

Syntax und Parameterreferenz 367

AWS Encryption SDK Entwicklerhandbuch

vollständigen Pfade zur Ein- und Ausgabedatei, den Verschlüsselungskontext, das Algorithmen-
Paket und andere praktische Informationen, anhand derer Sie die Operation überprüfen und
sicherstellen können, ob sie Ihren Sicherheitsstandards entspricht.

--overwrite-metadata

Überschreibt den Inhalt in der Metadaten-Ausgabedatei. Standardmäßig fügt der --
metadata-output-Parameter Metadaten an vorhandenen Inhalt der Datei an.

--suppress-metadata (-S)

Unterdrückt die Metadaten über die Verschlüsselungs- oder Entschlüsselungsoperation.

--commitment-policy

Gibt die Commitment-Richtlinie für Befehle zum Verschlüsseln und Entschlüsseln an. Die
Commitment-Richtlinie bestimmt, ob Ihre Nachricht mit der Sicherheitsfunktion Key Commitment
ver- oder entschlüsselt wird.

Der --commitment-policy Parameter wurde in Version 1.8 eingeführt. x. Es ist gültig für
Befehle zum Verschlüsseln und Entschlüsseln.

In Version 1.8. x, die AWS Encryption CLI verwendet die forbid-encrypt-allow-decrypt
Commitment-Richtlinie für alle Verschlüsselungs- und Entschlüsselungsvorgänge. Wenn Sie
den --wrapping-keys Parameter in einem Verschlüsselungs- oder Entschlüsselungsbefehl
verwenden, ist ein --commitment-policy Parameter mit dem forbid-encrypt-allow-
decrypt Wert erforderlich. Wenn Sie den --wrapping-keys Parameter nicht verwenden,
ist der --commitment-policy Parameter ungültig. Wenn Sie eine Verpflichtungsrichtlinie
festlegen, wird ausdrücklich verhindert, dass sich Ihre Verpflichtungsrichtlinie automatisch ändert,
require-encrypt-require-decrypt wenn Sie auf Version 2.1 aktualisieren. x

Ab Version 2.1. x, alle Werte der Verpflichtungspolitik werden unterstützt. Der --commitment-
policy Parameter ist optional und der Standardwert istrequire-encrypt-require-
decrypt.

Dieser Parameter hat die folgenden Werte:

• forbid-encrypt-allow-decrypt— Mit Schlüsselzusage kann nicht verschlüsselt werden.
Es kann Chiffretexte entschlüsseln, die mit oder ohne Schlüsselbindung verschlüsselt wurden.

In Version 1.8. x, das ist der einzig gültige Wert. Die AWS Encryption CLI verwendet die
forbid-encrypt-allow-decrypt Commitment-Richtlinie für alle Verschlüsselungs- und
Entschlüsselungsvorgänge.

Syntax und Parameterreferenz 368

AWS Encryption SDK Entwicklerhandbuch

• require-encrypt-allow-decrypt— Verschlüsselt nur mit Schlüsselzusage. Entschlüsselt
mit und ohne Schlüsselbindung. Dieser Wert wurde in Version 2.1 eingeführt. x.

• require-encrypt-require-decrypt(Standard) — Verschlüsselt und entschlüsselt nur mit
Schlüsselzusage. Dieser Wert wurde in Version 2.1 eingeführt. x. Dies ist der Standardwert in
den Versionen 2.1. x und später. Mit diesem Wert entschlüsselt die AWS Encryption CLI keinen
Chiffretext, der mit früheren Versionen von verschlüsselt wurde. AWS Encryption SDK

Ausführliche Informationen zur Festlegung Ihrer Verpflichtungsrichtlinie finden Sie unter. Migrieren
Sie Ihre AWS Encryption SDK

--encryption-context (-c)

Gibt einen Verschlüsselungskontext für die Operation an. Dieser Parameter ist nicht erforderlich,
wird jedoch empfohlen.

• In einem --encrypt -Befehl geben Sie ein oder mehrere name=value Paare an. Verwenden
Sie Leerzeichen, um die zu trennen.

• Geben Sie in einem --decrypt Befehl name=value Paare, name Elemente ohne Werte oder
beides ein.

Wenn der name oder value in einem name=value-Paar Leerzeichen oder Sonderzeichen
enthält, schließen Sie gesamte Paar in Anführungszeichen ein. Beispiel, --encryption-
context "department=software development".

--buffer (-b) [Eingeführt in Version 1.9. x und 2.2. x]

Gibt Klartext erst zurück, nachdem alle Eingaben verarbeitet wurden, einschließlich der
Überprüfung der digitalen Signatur, falls eine vorhanden ist.

-- max-encrypted-data-keys [Eingeführt in Version 1.9. x und 2.2. x]

Gibt die maximale Anzahl verschlüsselter Datenschlüssel in einer verschlüsselten Nachricht an.
Dieser Parameter ist optional.

Gültige Werte sind 1 — 65.535. Wenn Sie diesen Parameter weglassen, erzwingt die AWS
Encryption CLI kein Maximum. Eine verschlüsselte Nachricht kann bis zu 65.535 (2^16 — 1)
verschlüsselte Datenschlüssel enthalten.

Sie können diesen Parameter in Verschlüsselungsbefehlen verwenden, um eine falsch formatierte
Nachricht zu verhindern. Sie können ihn in Entschlüsselungsbefehlen verwenden, um bösartige
Nachrichten zu erkennen und zu verhindern, dass Nachrichten mit zahlreichen verschlüsselten

Syntax und Parameterreferenz 369

AWS Encryption SDK Entwicklerhandbuch

Datenschlüsseln, die Sie nicht entschlüsseln können, entschlüsselt werden. Einzelheiten und ein
Beispiel finden Sie unter Beschränkung verschlüsselter Datenschlüssel.

--help (-h)

Gibt Verwendung und Syntax in der Befehlszeile aus.

--version

Ruft die Version der AWS Encryption CLI ab.

-v | -vv | -vvv | -vvvv

Zeigt ausführliche Informationen, Warnungen und Debugging-Nachrichten an. Die Details in der
Ausgabe nehmen mit der Anzahl der v im Parameter zu. Die detaillierteste Einstellung (-vvvv)
gibt Daten auf Debugging-Ebene von der AWS Encryption CLI und allen von ihr verwendeten
Komponenten zurück.

--quiet (-q)

Unterdrückt Warnmeldungen, z. B. die Nachricht, die angezeigt wird, wenn Sie eine Ausgabedatei
überschreiben.

--master-keys (-m) [Veraltet]

Note

Der Parameter --master-keys ist in 1.8 veraltet. x und wurde in Version 2.1 entfernt. x.
Verwenden Sie stattdessen den Parameter --wrapping-keys.

Gibt die in Ver- und Entschlüsselungsoperationen verwendeten Masterschlüssel an. Sie können in
einem Befehl mehrere Masterschlüsselparameter verwenden.

Der --master-keys-Parameter muss in Verschlüsselungsbefehle angegeben werden. Er ist in
Entschlüsselungsbefehlen nur erforderlich, wenn Sie einen benutzerdefinierten (nicht-AWS KMS)
Hauptschlüsselanbieter verwenden.

Attribute: Der Wert des --master-keys-Parameters besteht aus den folgenden Attributen. Das
Format ist attribute_name=value.

Schlüssel

Identifiziert den Wrapping-Schlüssel, der bei dem Vorgang verwendet wurde. Das Format ist
ein key= ID-Paar. Das keyAttribut muss in allen Verschlüsselungsbefehlen angegeben werden.

Syntax und Parameterreferenz 370

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie einen Befehl AWS KMS key in an encrypt verwenden, kann der Wert des
Schlüsselattributs eine Schlüssel-ID, ein Schlüssel-ARN, ein Aliasname oder ein Alias-ARN
sein. Einzelheiten zu AWS KMS Schlüsselkennungen finden Sie unter Schlüsselkennungen im
Entwicklerhandbuch.AWS Key Management Service

Das Schlüsselattribut ist in Entschlüsselungsbefehlen erforderlich, wenn dies beim
Hauptschlüsselanbieter nicht der Fall ist. AWS KMS Das Schlüsselattribut ist in Befehlen nicht
zulässig, die Daten entschlüsseln, die unter einem verschlüsselt wurden. AWS KMS key

Sie können mehrere key-Attribute in jedem --master-keys-Parameterwert angeben. Die
provider-, region- und profile-Attribute gelten jedoch für alle Masterschlüssel im Parameterwert.
Um Masterschlüssel mit unterschiedlichen Attributwerten anzugeben, verwenden Sie mehrere
--master-keys-Parameter im Befehl.

provider

Identifiziert den Masterschlüssel-Anbieter. Das Format ist ein provider= ID-Paar. Der
Standardwert aws-kms steht für. AWS KMS Dieses Attribut ist nur erforderlich, wenn der
Hauptschlüsselanbieter dies nicht tut. AWS KMS

Region

Identifiziert den AWS-Region von einem AWS KMS key. Dieses Attribut ist nur gültig für AWS
KMS keys. Es wird nur verwendet, wenn die key-ID keine Region angibt, andernfalls wird es
ignoriert. Wenn es verwendet wird, überschreibt es die Standardregion im AWS CLI namens
profile.

Profil

Identifiziert ein AWS CLI benanntes Profil. Dieses Attribut ist nur gültig für AWS KMS keys. Die
Region im Profil wird nur verwendet, wenn die key-ID keine Region angibt und es kein region-
Attribut im Befehl gibt.

Erweiterte Parameter

--algorithm

Gibt ein alternatives Algorithmen-Paket an. Dieser Parameter ist optional und nur in
Verschlüsselungsbefehlen gültig.

Wenn Sie diesen Parameter weglassen, verwendet die AWS Encryption CLI eine der
Standard-Algorithmus-Suiten für die in Version 1.8 AWS Encryption SDK eingeführte. x. Beide

Syntax und Parameterreferenz 371

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK Entwicklerhandbuch

Standardalgorithmen verwenden AES-GCM mit einer HKDF -, einer ECDSA-Signatur und einem
256-Bit-Verschlüsselungsschlüssel. Man verwendet Key Commitment, man nicht. Die Wahl der
Standard-Algorithmus-Suite wird durch die Commitment-Richtlinie für den Befehl bestimmt.

Die Standard-Algorithmus-Suiten werden für die meisten Verschlüsselungsvorgänge empfohlen.
Eine Liste gültiger Werte finden Sie unter den Werten für den algorithm-Parameter in Read the
Docs.

--frame-length

Erstellt die Ausgabe mit angegebenen Frame-Länge. Dieser Parameter ist optional und nur in
Verschlüsselungsbefehlen gültig.

Geben Sie einen Wert in Bytes ein. Gültige Werte sind 0 und 1 — 2^31 - 1. Ein Wert von 0 steht
für Daten ohne Frame. Die Standardeinstellung ist 4096 (Byte).

Note

Verwenden Sie nach Möglichkeit gerahmte Daten. Das AWS Encryption SDK
unterstützt Daten ohne Frames nur für die Verwendung in älteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK können immer noch nicht gerahmten
Chiffretext generieren. Alle unterstützten Sprachimplementierungen können gerahmten
und ungerahmten Chiffretext entschlüsseln.

--max-length

Gibt die maximale Frame-Größe (oder die maximale Inhaltslänge für Nachrichten ohne Frame)
in Bytes an, die aus verschlüsselten Nachrichten gelesen werden. Dieser Parameter ist optional
und nur in Entschlüsselungsbefehlen gültig. Es wurde entwickelt, um Sie vor der Entschlüsselung
extrem großer bösartiger Verschlüsselungstexte zu schützen.

Geben Sie einen Wert in Bytes ein. Wenn Sie diesen Parameter weglassen, wird die Framegröße
beim AWS Encryption SDK Entschlüsseln nicht begrenzt.

--caching

Aktiviert das Datenschlüssel-Caching, womit Datenschlüssel wiederverwendet werden können,
statt für jede Eingabedatei einen neuen Datenschüssel zu generieren. Dieser Parameter
unterstützt ein erweitertes Szenario. Lesen Sie unbedingt die Dokumentation zum Datenschlüssel-
Caching, bevor Sie diese Funktion verwenden.

Syntax und Parameterreferenz 372

https://en.wikipedia.org/wiki/HKDF
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution

AWS Encryption SDK Entwicklerhandbuch

Der --caching-Parameter hat die folgenden Attribute.

capacity (erforderlich)

Legt die maximale Anzahl der Einträge im Cache fest.

Der minimale Wert beträgt 1. Es gibt keinen Höchstwert.

max_age (erforderlich)

Ermitteln Sie, wie lange Cache-Einträge in Sekunden verwendet werden, und zwar ab dem
Zeitpunkt, zu dem sie dem Cache hinzugefügt werden.

Geben Sie einen Wert größer als 0 ein. Es gibt keinen Höchstwert.

max_messages_encrypted (optional)

Legt die maximale Anzahl der Nachrichten fest, die ein im Cache befindlicher Eintrag
verschlüsseln kann.

Gültige Werte sind 1 — 2^32. Der Standardwert ist 2^32 (Nachrichten).

max_bytes_encrypted (optional)

Legt die maximale Anzahl der Bytes fest, die ein im Cache befindlicher Eintrag verschlüsseln
kann.

Gültige Werte sind 0 und 1 — 2^63 - 1. Der Standardwert ist 2^63 - 1 (Nachrichten). Bei
einem Wert von 0 können Sie Datenschlüssel-Caching nur verwenden, wenn Sie leere
Nachrichtenzeichenfolgen verschlüsseln.

Versionen der AWS Encryption CLI

Wir empfehlen, die neueste Version der AWS Encryption CLI zu verwenden.

Note

Versionen der AWS Encryption CLI vor 4.0.0 befinden sich in der end-of-supportPhase.
Sie können problemlos von Version 2.1 aus aktualisieren. x und höher auf die neueste
Version der AWS Encryption CLI ohne Code- oder Datenänderungen. In Version 2.1 wurden
jedoch neue Sicherheitsfunktionen eingeführt. x sind nicht abwärtskompatibel. Um von
Version 1.7 zu aktualisieren. x oder früher, Sie müssen zuerst auf die neueste Version 1
aktualisieren. x-Version der AWS Encryption CLI. Details hierzu finden Sie unter Migrieren
Sie Ihre AWS Encryption SDK.

Versionen 373

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

Neue Sicherheitsfunktionen wurden ursprünglich in den AWS Encryption CLI Versionen 1.7
veröffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Hinweise zu wichtigen Versionen von finden Sie unterVersionen von AWS Encryption SDK. AWS
Encryption SDK

Welche Version verwende ich?

Wenn Sie mit der AWS Encryption CLI noch nicht vertraut sind, verwenden Sie die neueste Version.

Um Daten zu entschlüsseln, die mit einer Version AWS Encryption SDK vor Version 1.7 verschlüsselt
wurden. x, migrieren Sie zuerst auf die neueste Version der AWS Encryption CLI. Nehmen Sie alle
empfohlenen Änderungen vor, bevor Sie auf Version 2.1 aktualisieren. x oder später. Details hierzu
finden Sie unter Migrieren Sie Ihre AWS Encryption SDK.

Weitere Informationen

• Ausführliche Informationen zu den Änderungen und Anleitungen für die Migration zu diesen neuen
Versionen finden Sie unterMigrieren Sie Ihre AWS Encryption SDK.

• Eine Beschreibung der neuen AWS Encryption CLI-Parameter und -Attribute finden Sie unterAWS
Encryption SDK CLI Syntax und Parameterreferenz.

In den folgenden Listen werden die Änderungen an der AWS Encryption CLI in Version 1.8
beschrieben. x und 2.1. x.

Ausführung 1.8. x Änderungen an der AWS Encryption CLI

• Verwirft den Parameter. --master-keys Verwenden Sie stattdessen den --wrapping-keys-
Parameter.

• Fügt den Parameter --wrapping-keys () -w hinzu. Er unterstützt alle Attribute des --master-
keys Parameters. Außerdem werden die folgenden optionalen Attribute hinzugefügt, die nur beim
Entschlüsseln mit AWS KMS keys gültig sind.

• Entdeckung

• Discovery-Partition

Versionen 374

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

• Discovery-Konto

Für benutzerdefinierte Hauptschlüsselanbieter benötigen -decrypt Befehle --encrypt und -
entweder einen --wrapping-keys Parameter oder einen --master-keys Parameter (aber
nicht beide). Außerdem AWS KMS keys erfordert ein --encrypt Befehl mit entweder einen --
wrapping-keys Parameter oder einen --master-keys Parameter (aber nicht beides).

In einem --decrypt Befehl mit AWS KMS keys ist der --wrapping-keys Parameter optional,
wird aber empfohlen, da er in Version 2.1 erforderlich ist. x. Wenn Sie es verwenden, müssen Sie
entweder das identifizierende Attribut oder das Discovery-Attribut mit einem Wert von true (aber
nicht beide) angeben.

• Fügt den --commitment-policy Parameter hinzu. Der einzige gültige Wert ist forbid-
encrypt-allow-decrypt. Die forbid-encrypt-allow-decrypt Commitment-Richtlinie
wird in allen Befehlen zum Verschlüsseln und Entschlüsseln verwendet.

In Version 1.8. x, wenn Sie den --wrapping-keys Parameter verwenden, ist ein --
commitment-policy Parameter mit dem forbid-encrypt-allow-decrypt Wert
erforderlich. Wenn Sie den Wert explizit festlegen, wird verhindert, dass Ihre Verpflichtungsrichtlinie
automatisch geändert wird, require-encrypt-require-decrypt wenn Sie auf Version 2.1
aktualisieren. x.

Ausführung 2.1. x Änderungen an der AWS Encryption CLI

• Entfernt den --master-keys Parameter. Verwenden Sie stattdessen den --wrapping-keys-
Parameter.

• Der --wrapping-keys Parameter ist in allen Befehlen zum Verschlüsseln und Entschlüsseln
erforderlich. Sie müssen entweder ein Schlüsselattribut oder ein Erkennungsattribut mit dem Wert
true (aber nicht beide) angeben.

• Der --commitment-policy Parameter unterstützt die folgenden Werte. Details hierzu finden Sie
unter Festlegung Ihrer Verpflichtungspolitik.

• forbid-encrypt-allow-decrypt

• require-encrypt-allow-decrypt

• require-encrypt-require decrypt (Standard)

• Der --commitment-policy Parameter ist in Version 2.1 optional. x. Der Standardwert ist
require-encrypt-require-decrypt.

Versionen 375

AWS Encryption SDK Entwicklerhandbuch

Ausführung 1.9. x und 2.2. x Änderungen an der AWS Encryption CLI

• Fügt den --decrypt-unsigned Parameter hinzu. Details hierzu finden Sie unter Version 2.2. x.

• Fügt den --buffer Parameter hinzu. Details hierzu finden Sie unter Version 2.2. x.

• Fügt den --max-encrypted-data-keys Parameter hinzu. Details hierzu finden Sie unter
Beschränkung verschlüsselter Datenschlüssel.

Version 3.0. x Änderungen an der AWS Encryption CLI

• Fügt Unterstützung für Schlüssel AWS KMS mit mehreren Regionen hinzu. Details hierzu finden
Sie unter Verwenden Sie mehrere Regionen AWS KMS keys.

Versionen 376

AWS Encryption SDK Entwicklerhandbuch

Datenschlüssel-Caching
Das Datenschlüssel-Caching speichert Datenschlüssel und zugehörige kryptographische Materialien
in einem Cache. Wenn Sie Daten ver- oder entschlüsseln, AWS Encryption SDK sucht der nach
einem passenden Datenschlüssel im Cache. Wenn eine Übereinstimmung gefunden wird, wird
der im Cache gespeicherte Datenschlüssel verwendet, statt einen neuen zu generieren. Das
Datenschlüssel-Caching kann die Leistung verbessern, die Kosten senken und Ihnen helfen,
innerhalb der Service-Limits zu bleiben, wenn Ihre Anwendung größer wird.

Ihre Anwendung kann vom Datenschlüssel-Caching profitieren, wenn:

• Sie Datenschlüssel wiederverwenden kann.

• Sie zahlreiche Datenschlüssel generiert.

• Ihre kryptografischen Operationen unakzeptabel langsam, teuer, begrenzt oder ressourcen-intensiv
sind.

Durch das Zwischenspeichern kann die Nutzung kryptografischer Dienste wie () reduziert werden.
AWS Key Management Service AWS KMS Wenn Sie Ihr AWS KMS requests-per-secondLimit
erreichen, kann Caching helfen. Ihre Anwendung kann zwischengespeicherte Schlüssel verwenden,
um einige Ihrer Datenschlüsselanforderungen zu bearbeiten, anstatt sie aufzurufen. AWS KMS(Sie
können auch im AWS Support Center einen Fall erstellen, um das Limit für Ihr Konto zu erhöhen.)

Das AWS Encryption SDK hilft Ihnen dabei, Ihren Datenschlüssel-Cache zu erstellen und
zu verwalten. Es bietet einen lokalen Cache und einen Caching Cryptographic Materials
Manager (Caching CMM), der mit dem Cache interagiert und die von Ihnen festgelegten
Sicherheitsschwellenwerte durchsetzt. Durch die Kombination dieser Komponenten profitieren
Sie von der Effizienz der Wiederverwendung von Datenschlüsseln bei gleichzeitiger Wahrung der
Sicherheit Ihres Systems.

Das Zwischenspeichern von Datenschlüsseln ist eine optionale Funktion von, die Sie mit Vorsicht
verwenden sollten. AWS Encryption SDK Standardmäßig AWS Encryption SDK generiert der für
jeden Verschlüsselungsvorgang einen neuen Datenschlüssel. Diese Technik unterstützt bewährte
kryptografische Methoden gegen eine übermäßige Wiederverwendung von Datenschlüsseln. Im
Allgemeinen sollten Sie das Datenschlüssel-Caching nur dann verwenden, wenn es erforderlich
ist, um Ihre Leistungsziele zu erfüllen. Verwenden Sie dann die Sicherheitsschwellenwerte für das
Datenschlüssel-Caching, um sicherzustellen, dass Sie die minimale Menge an Caching verwenden,
die zur Erreichung Ihrer Kosten- und Leistungsziele erforderlich ist.

377

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/

AWS Encryption SDK Entwicklerhandbuch

Version 3. x of the unterstützt AWS-Verschlüsselungs-SDK for Java nur das Caching-CMM mit
der alten Master-Key-Provider-Schnittstelle, nicht die Keyring-Schnittstelle. Allerdings Version 4.
x von AWS Encryption SDK für .NET, Version 3. x von der AWS-Verschlüsselungs-SDK for Java,
Version 4. x der AWS-Verschlüsselungs-SDK for Python, Version 1. x von AWS Encryption SDK für
Rust und Version 0.1. x oder höher von AWS Encryption SDK for Go unterstützen den AWS KMS
hierarchischen Schlüsselbund, eine alternative Lösung zum Zwischenspeichern kryptografischer
Materialien. Mit dem hierarchischen Schlüsselbund verschlüsselte Inhalte können nur mit dem AWS
KMS hierarchischen Schlüsselbund entschlüsselt werden. AWS KMS

Eine ausführliche Erläuterung dieser Sicherheitsaspekte finden Sie im Sicherheits-Blog unter AWS
Encryption SDK: So entscheiden Sie, ob das Zwischenspeichern von Datenschlüsseln für Ihre
Anwendung geeignet ist. AWS

Themen

• Das Datenschlüssel-Caching verwenden

• Festlegen von Cache-Sicherheitsschwellenwerten

• Weitere Informationen zum Datenschlüssel-Caching

• Beispiel für das Datenschlüssel-Caching

Das Datenschlüssel-Caching verwenden

In diesem Thema erfahren Sie, wie Sie das Datenschlüssel-Caching in Ihrer Anwendung verwenden.
Es führt Sie Schritt für Schritt durch den Vorgang. Anschließend kombiniert es die Schritte in einem
einfachen Beispiel, das das Datenschüssel-Caching in einer Operation zum Verschlüsseln einer
Zeichenfolge verwendet.

Die Beispiele in diesem Abschnitt zeigen, wie Version 2.0 verwendet wird. x und später von AWS
Encryption SDK. Beispiele, die frühere Versionen verwenden, finden Sie in der Release-Liste des
GitHub Repositorys für Ihre Programmiersprache nach Ihrer Version.

Vollständige und getestete Beispiele für die Verwendung von Datenschlüssel-Caching in finden Sie
AWS Encryption SDK unter:

• C/C++: caching_cmm.cpp

• Java: SimpleDataKeyCachingExample .java

• JavaScript Browser: caching_cmm.ts

• JavaScript Node.js: caching_cmm.ts

Das Datenschlüssel-Caching verwenden 378

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts

AWS Encryption SDK Entwicklerhandbuch

• Python: data_key_caching_basic.py

AWS Encryption SDK Für .NET wird das Zwischenspeichern von Datenschlüsseln nicht unterstützt.

Themen

• Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step

• Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge

Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step

Diese step-by-step Anweisungen zeigen Ihnen, wie Sie die Komponenten erstellen, die Sie für die
Implementierung des Zwischenspeichers von Datenschlüsseln benötigen.

• Erstellen Sie einen Datenschlüssel-Cache. In diesen Beispielen verwenden wir den lokalen Cache,
den der AWS Encryption SDK bereitstellt. Wir beschränken den Cache auf zehn Datenschlüssel.

C

// Cache capacity (maximum number of entries) is required
size_t cache_capacity = 10;
struct aws_allocator *allocator = aws_default_allocator();

struct aws_cryptosdk_materials_cache *cache =
 aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

Java

Das folgende Beispiel verwendet Version 2. x der AWS-Verschlüsselungs-SDK for Java.
Ausführung 3. x of the AWS-Verschlüsselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlüsseln. Mit Version 3. x, Sie können auch den AWS KMS
hierarchischen Schlüsselbund verwenden, eine alternative Lösung zum Zwischenspeichern
kryptografischer Materialien.

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);

Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step 379

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK Entwicklerhandbuch

JavaScript Browser

const capacity = 10

const cache = getLocalCryptographicMaterialsCache(capacity)

JavaScript Node.js

const capacity = 10

const cache = getLocalCryptographicMaterialsCache(capacity)

Python

Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

• Erstellen Sie einen Hauptschlüsselanbieter (Java und Python) oder einen Schlüsselbund (C und
JavaScript). In diesen Beispielen wird ein Hauptschlüsselanbieter AWS Key Management Service
(AWS KMS) oder ein kompatibler AWS KMS Schlüsselbund verwendet.

C

// Create an AWS KMS keyring
// The input is the Amazon Resource Name (ARN)
// of an AWS KMS key
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(kms_key_arn);

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlüsselungs-SDK for
Java. Ausführung 3. x of the AWS-Verschlüsselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlüsseln. Mit Version 3. x, Sie können auch den AWS KMS

Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step 380

AWS Encryption SDK Entwicklerhandbuch

hierarchischen Schlüsselbund verwenden, eine alternative Lösung zum Zwischenspeichern
kryptografischer Materialien.

// Create an AWS KMS master key provider
// The input is the Amazon Resource Name (ARN)
// of an AWS KMS key
MasterKeyProvider<KmsMasterKey> keyProvider =
 KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn);

JavaScript Browser

Im Browser müssen Sie Ihre Anmeldeinformationen sicher injizieren. In diesem Beispiel
werden Anmeldeinformationen in einem Webpack (kms.webpack.config) definiert, mit dem
Anmeldeinformationen zur Laufzeit aufgelöst werden. Es erstellt eine AWS KMS Client-
Provider-Instanz aus einem AWS KMS Client und den Anmeldeinformationen. Wenn es dann
den Schlüsselbund erstellt, übergibt es den Client-Provider zusammen mit dem () an den
Konstruktor. AWS KMS key generatorKeyId)

const { accessKeyId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken
 }
 })

/* Create an AWS KMS keyring
 * You must configure the AWS KMS keyring with at least one AWS KMS key
* The input is the Amazon Resource Name (ARN)
 */ of an AWS KMS key
const keyring = new KmsKeyringBrowser({
 clientProvider,
 generatorKeyId,
 keyIds,
 })

JavaScript Node.js

/* Create an AWS KMS keyring

Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step 381

AWS Encryption SDK Entwicklerhandbuch

 * The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

Python

Create an AWS KMS master key provider
The input is the Amazon Resource Name (ARN)
of an AWS KMS key
key_provider =
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

• Erstellen Sie einen Manager für kryptografische Materialien zum Zwischenspeichern (Caching
CMM).

Ordnen Sie Ihr Caching-CMM Ihrem Cache und Ihrem Hauptschlüsselanbieter oder Schlüsselbund
zu. Legen Sie dann die Schwellenwerte für die Cache-Sicherheit auf dem Cache-CMM fest.

C

In der AWS-Verschlüsselungs-SDK for C können Sie ein Caching-CMM aus einem zugrunde
liegenden CMM, z. B. dem Standard-CMM, oder aus einem Schlüsselbund erstellen. In diesem
Beispiel wird der Caching-CMM aus einem Schlüsselbund erstellt.

Nachdem Sie das Caching-CMM erstellt haben, können Sie Ihre Verweise auf den
Schlüsselbund und den Cache freigeben. Details hierzu finden Sie unter the section called
“Referenzzählung”.

// Create the caching CMM
// Set the partition ID to NULL.
// Set the required maximum age value to 60 seconds.
struct aws_cryptosdk_cmm *caching_cmm =
 aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL,
 60, AWS_TIMESTAMP_SECS);

// Add an optional message threshold

Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step 382

AWS Encryption SDK Entwicklerhandbuch

// The cached data key will not be used for more than 10 messages.
aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlüsselungs-SDK
for Java. Ausführung 3. x of the unterstützt AWS-Verschlüsselungs-SDK for Java kein
Zwischenspeichern von Datenschlüsseln, aber es unterstützt den AWS KMS hierarchischen
Schlüsselbund, eine alternative Lösung zum Zwischenspeichern kryptografischer Materialien.

/*
 * Security thresholds
 * Max entry age is required.
 * Max messages (and max bytes) per entry are optional
 */
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10;

//Create a caching CMM
CryptoMaterialsManager cachingCmm =
 CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
 .withCache(cache)
 .withMaxAge(MAX_ENTRY_AGE_SECONDS,
 TimeUnit.SECONDS)
 .withMessageUseLimit(MAX_ENTRY_MSGS)
 .build();

JavaScript Browser

/*
 * Security thresholds
 * Max age (in milliseconds) is required.
 * Max messages (and max bytes) per entry are optional.
 */
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */

Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step 383

AWS Encryption SDK Entwicklerhandbuch

const cachingCmm = new WebCryptoCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 maxAge,
 maxMessagesEncrypted
})

JavaScript Node.js

/*
 * Security thresholds
 * Max age (in milliseconds) is required.
 * Max messages (and max bytes) per entry are optional.
 */
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new NodeCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 maxAge,
 maxMessagesEncrypted
})

Python

Security thresholds
Max entry age is required.
Max messages (and max bytes) per entry are optional
#
MAX_ENTRY_AGE_SECONDS = 60.0
MAX_ENTRY_MESSAGES = 10

Create a caching CMM
caching_cmm = CachingCryptoMaterialsManager(
 master_key_provider=key_provider,
 cache=cache,
 max_age=MAX_ENTRY_AGE_SECONDS,
 max_messages_encrypted=MAX_ENTRY_MESSAGES
)

Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step 384

AWS Encryption SDK Entwicklerhandbuch

Das ist alles. Lassen Sie sie dann den Cache für Sie AWS Encryption SDK verwalten oder fügen Sie
Ihre eigene Cache-Verwaltungslogik hinzu.

Wenn Sie das Zwischenspeichern von Datenschlüsseln in einem Aufruf zum Verschlüsseln
oder Entschlüsseln von Daten verwenden möchten, geben Sie Ihr Caching-CMM anstelle eines
Hauptschlüsselanbieters oder eines anderen CMM an.

Note

Wenn Sie Datenströme oder Daten unbekannter Größe verschlüsseln, stellen Sie sicher,
dass Sie die Datengröße in der Anfrage angeben. Beim AWS Encryption SDK Verschlüsseln
von Daten unbekannter Größe wird kein Datenschlüssel-Caching verwendet.

C

In der AWS-Verschlüsselungs-SDK for C erstellen Sie eine Sitzung mit dem Caching-CMM und
verarbeiten dann die Sitzung.

Standardmäßig werden Datenschlüssel AWS Encryption SDK nicht zwischengespeichert,
wenn die Nachrichtengröße unbekannt und unbegrenzt ist. Um eine Zwischenspeicherung
zuzulassen, wenn Sie die genaue Datengröße nicht kennen, verwenden Sie die
aws_cryptosdk_session_set_message_bound-Methode, um eine maximale Größe für
die Nachricht festzulegen. Legen Sie die Grenze größer als die geschätzte Nachrichtengröße
fest. Wenn die tatsächliche Nachrichtengröße die Grenze überschreitet, schlägt die
Verschlüsselungsoperation fehl.

/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
 caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process(
 session, output_buffer, output_capacity, &output_produced,
 input_buffer, input_len, &input_consumed);

/* Release your references to the caching CMM and the session. */

Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step 385

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlüsselungs-SDK for
Java. Ausführung 3. x of the AWS-Verschlüsselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlüsseln. Mit Version 3. x, Sie können auch den AWS KMS
hierarchischen Schlüsselbund verwenden, eine alternative Lösung zum Zwischenspeichern
kryptografischer Materialien.

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser

const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

Wenn Sie das CMM für die Zwischenspeicherung in der Datei AWS-Verschlüsselungs-SDK for
JavaScript für Node.js verwenden, benötigt die encrypt Methode die Länge des Klartextes.
Wenn Sie sie nicht angeben, wird der Datenschlüssel nicht zwischengespeichert. Wenn Sie eine
Länge angeben, aber die von Ihnen bereitgestellten Klartextdaten diese Länge überschreiten,
schlägt die Verschlüsselungsoperation fehl. Wenn Sie die genaue Länge des Klartextes nicht
kennen, z. B. beim Streamen von Daten, geben Sie den größten erwarteten Wert an.

const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength:
 plaintext.length })

Python

Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

When the call to encrypt specifies a caching CMM,
the encryption operation uses the data key cache
#
encrypted_message, header = client.encrypt(

Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step 386

AWS Encryption SDK Entwicklerhandbuch

 source=plaintext_source,
 materials_manager=caching_cmm
)

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge

Dieses einfache Codebeispiel verwendet das Datenschlüssel-Caching beim Verschlüsseln einer
Zeichenfolge. Sie kombiniert den Code aus der step-by-step Prozedur zu Testcode, den Sie
ausführen können.

Das Beispiel erstellt einen lokalen Cache und einen Hauptschlüsselanbieter oder Schlüsselbund für
einen AWS KMS key. Anschließend werden der lokale Cache und der Hauptschlüsselanbieter oder
der Schlüsselbund verwendet, um ein Caching-CMM mit entsprechenden Sicherheitsschwellenwerten
zu erstellen. In Java und Python spezifiziert die Verschlüsselungsanforderung das Caching-CMM, die
zu verschlüsselnden Klartextdaten und einen Verschlüsselungskontext. In C wird der Caching-CMM
in der Sitzung angegeben und die Sitzung wird für die Verschlüsselungsanfrage bereitgestellt.

Um diese Beispiele auszuführen, müssen Sie den Amazon-Ressourcennamen (ARN) eines angeben
AWS KMS key. Stellen Sie sicher, dass Sie die Berechtigung für die Verwendung des AWS KMS key
zum Generieren eines Datenschlüssels besitzen.

Ausführlichere Beispiele aus der Praxis für die Erstellung und Verwendung eines Datenschlüssel-
Caches finden Sie unterBeispielcode für das Zwischenspeichern von Datenschlüsseln.

C

/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use
 * this file except in compliance with the License. A copy of the License is
 * located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing permissions and
 * limitations under the License.
 */

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 387

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users

AWS Encryption SDK Entwicklerhandbuch

#include <aws/cryptosdk/cache.h>
#include <aws/cryptosdk/cpp/kms_keyring.h>
#include <aws/cryptosdk/session.h>

void encrypt_with_caching(
 uint8_t *ciphertext, // output will go here (assumes ciphertext_capacity
 bytes already allocated)
 size_t *ciphertext_len, // length of output will go here
 size_t ciphertext_capacity,
 const char *kms_key_arn,
 int max_entry_age,
 int cache_capacity) {
 const uint64_t MAX_ENTRY_MSGS = 100;

 struct aws_allocator *allocator = aws_default_allocator();

 // Load error strings for debugging
 aws_cryptosdk_load_error_strings();

 // Create a keyring
 struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(kms_key_arn);

 // Create a cache
 struct aws_cryptosdk_materials_cache *cache =
 aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

 // Create a caching CMM
 struct aws_cryptosdk_cmm *caching_cmm =
 aws_cryptosdk_caching_cmm_new_from_keyring(
 allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);
 if (!caching_cmm) abort();

 if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS))
 abort();

 // Create a session
 struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
 caching_cmm);
 if (!session) abort();

 // Encryption context

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 388

AWS Encryption SDK Entwicklerhandbuch

 struct aws_hash_table *enc_ctx =
 aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);
 if (!enc_ctx) abort();
 AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");
 AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");
 if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL))
 abort();

 // Plaintext data to be encrypted
 const char *my_data = "My plaintext data";
 size_t my_data_len = strlen(my_data);
 if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();

 // When the session uses a caching CMM, the encryption operation uses the data
 key cache
 // specified in the caching CMM.
 size_t bytes_read;
 if (aws_cryptosdk_session_process(
 session,
 ciphertext,
 ciphertext_capacity,
 ciphertext_len,
 (const uint8_t *)my_data,
 my_data_len,
 &bytes_read))
 abort();
 if (!aws_cryptosdk_session_is_done(session) || bytes_read != my_data_len)
 abort();

 aws_cryptosdk_session_destroy(session);
 aws_cryptosdk_cmm_release(caching_cmm);
 aws_cryptosdk_materials_cache_release(cache);
 aws_cryptosdk_keyring_release(kms_keyring);
}

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlüsselungs-SDK for
Java. Ausführung 3. x of the AWS-Verschlüsselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlüsseln. Mit Version 3. x, Sie können auch den AWS KMS
hierarchischen Schlüsselbund verwenden, eine alternative Lösung zum Zwischenspeichern
kryptografischer Materialien.

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 389

AWS Encryption SDK Entwicklerhandbuch

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.examples;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoMaterialsManager;
import com.amazonaws.encryptionsdk.MasterKeyProvider;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.CryptoMaterialsCache;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import java.nio.charset.StandardCharsets;
import java.util.Collections;
import java.util.Map;
import java.util.concurrent.TimeUnit;

/**
 * <p>
 * Encrypts a string using an &KMS; key and data key caching
 *
 * <p>
 * Arguments:
 *
 * KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,
 * see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/
developerguide/find-cmk-id-arn.html
 * Max entry age: Maximum time (in seconds) that a cached entry can be used
 * Cache capacity: Maximum number of entries in the cache
 *
 */
public class SimpleDataKeyCachingExample {

 /*
 * Security thresholds
 * Max entry age is required.
 * Max messages (and max bytes) per data key are optional
 */
 private static final int MAX_ENTRY_MSGS = 100;

 public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int
 cacheCapacity) {

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 390

AWS Encryption SDK Entwicklerhandbuch

 // Plaintext data to be encrypted
 byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);

 // Encryption context
 // Most encrypted data should have an associated encryption context
 // to protect integrity. This sample uses placeholder values.
 // For more information see:
 // blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-
Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management
 final Map<String, String> encryptionContext =
 Collections.singletonMap("purpose", "test");

 // Create a master key provider
 MasterKeyProvider<KmsMasterKey> keyProvider =
 KmsMasterKeyProvider.builder()
 .buildStrict(kmsKeyArn);

 // Create a cache
 CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);

 // Create a caching CMM
 CryptoMaterialsManager cachingCmm =

 CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
 .withCache(cache)
 .withMaxAge(maxEntryAge, TimeUnit.SECONDS)
 .withMessageUseLimit(MAX_ENTRY_MSGS)
 .build();

 // When the call to encryptData specifies a caching CMM,
 // the encryption operation uses the data key cache
 final AwsCrypto encryptionSdk = AwsCrypto.standard();
 return encryptionSdk.encryptData(cachingCmm, myData,
 encryptionContext).getResult();
 }
}

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/* This is a simple example of using a caching CMM with a KMS keyring

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 391

AWS Encryption SDK Entwicklerhandbuch

 * to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.
 */

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 buildClient,
 CommitmentPolicy,
 WebCryptoCachingMaterialsManager,
 getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-browser'
import { toBase64 } from '@aws-sdk/util-base64-browser'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 * which enforces that this client only encrypts using committing algorithm suites
 * and enforces that this client
 * will only decrypt encrypted messages
 * that were created with a committing algorithm suite.
 * This is the default commitment policy
 * if you build the client with `buildClient()`.
 */
const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* This is injected by webpack.
 * The webpack.DefinePlugin or @aws-sdk/karma-credential-loader will replace the
 values when bundling.
 * The credential values are pulled from @aws-sdk/credential-provider-node
 * Use any method you like to get credentials into the browser.
 * See kms.webpack.config
 */
declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* This is done to facilitate testing. */
export async function testCachingCMMExample() {
 /* This example uses an &KMS; keyring. The generator key in a &KMS; keyring
 generates and encrypts the data key.

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 392

AWS Encryption SDK Entwicklerhandbuch

 * The caller needs kms:GenerateDataKey permission on the &KMS; key in
 generatorKeyId.
 */
 const generatorKeyId =
 'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt'

 /* Adding additional KMS keys that can decrypt.
 * The caller must have kms:Encrypt permission for every &KMS; key in keyIds.
 * You might list several keys in different AWS Regions.
 * This allows you to decrypt the data in any of the represented Regions.
 * In this example, the generator key
 * and the additional key are actually the same &KMS; key.
 * In `generatorId`, this &KMS; key is identified by its alias ARN.
 * In `keyIds`, this &KMS; key is identified by its key ARN.
 * In practice, you would specify different &KMS; keys,
 * or omit the `keyIds` parameter.
 * This is *only* to demonstrate how the &KMS; key ARNs are configured.
 */
 const keyIds = [
 'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f',
]

 /* Need a client provider that will inject correct credentials.
 * The credentials here are injected by webpack from your environment bundle is
 created
 * The credential values are pulled using @aws-sdk/credential-provider-node.
 * See kms.webpack.config
 * You should inject your credential into the browser in a secure manner
 * that works with your application.
 */
 const { accessKeyId, secretAccessKey, sessionToken } = credentials

 /* getClient takes a KMS client constructor
 * and optional configuration values.
 * The credentials can be injected here,
 * because browsers do not have a standard credential discovery process the way
 Node.js does.
 */
 const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken,
 },

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 393

AWS Encryption SDK Entwicklerhandbuch

 })

 /* You must configure the KMS keyring with your &KMS; keys */
 const keyring = new KmsKeyringBrowser({
 clientProvider,
 generatorKeyId,
 keyIds,
 })

 /* Create a cache to hold the data keys (and related cryptographic material).
 * This example uses the local cache provided by the Encryption SDK.
 * The `capacity` value represents the maximum number of entries
 * that the cache can hold.
 * To make room for an additional entry,
 * the cache evicts the oldest cached entry.
 * Both encrypt and decrypt requests count independently towards this threshold.
 * Entries that exceed any cache threshold are actively removed from the cache.
 * By default, the SDK checks one item in the cache every 60 seconds (60,000
 milliseconds).
 * To change this frequency, pass in a `proactiveFrequency` value
 * as the second parameter. This value is in milliseconds.
 */
 const capacity = 100
 const cache = getLocalCryptographicMaterialsCache(capacity)

 /* The partition name lets multiple caching CMMs share the same local
 cryptographic cache.
 * By default, the entries for each CMM are cached separately. However, if you
 want these CMMs to share the cache,
 * use the same partition name for both caching CMMs.
 * If you don't supply a partition name, the Encryption SDK generates a random
 name for each caching CMM.
 * As a result, sharing elements in the cache MUST be an intentional operation.
 */
 const partition = 'local partition name'

 /* maxAge is the time in milliseconds that an entry will be cached.
 * Elements are actively removed from the cache.
 */
 const maxAge = 1000 * 60

 /* The maximum number of bytes that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest practical value.

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 394

AWS Encryption SDK Entwicklerhandbuch

 */
 const maxBytesEncrypted = 100

 /* The maximum number of messages that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest practical value.
 */
 const maxMessagesEncrypted = 10

 const cachingCMM = new WebCryptoCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 partition,
 maxAge,
 maxBytesEncrypted,
 maxMessagesEncrypted,
 })

 /* Encryption context is a *very* powerful tool for controlling
 * and managing access.
 * When you pass an encryption context to the encrypt function,
 * the encryption context is cryptographically bound to the ciphertext.
 * If you don't pass in the same encryption context when decrypting,
 * the decrypt function fails.
 * The encryption context is ***not*** secret!
 * Encrypted data is opaque.
 * You can use an encryption context to assert things about the encrypted data.
 * The encryption context helps you to determine
 * whether the ciphertext you retrieved is the ciphertext you expect to decrypt.
 * For example, if you are are only expecting data from 'us-west-2',
 * the appearance of a different AWS Region in the encryption context can indicate
 malicious interference.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context
 *
 * Also, cached data keys are reused ***only*** when the encryption contexts
 passed into the functions are an exact case-sensitive match.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context
 */
 const encryptionContext = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2',

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 395

AWS Encryption SDK Entwicklerhandbuch

 }

 /* Find data to encrypt. */
 const plainText = new Uint8Array([1, 2, 3, 4, 5])

 /* Encrypt the data.
 * The caching CMM only reuses data keys
 * when it know the length (or an estimate) of the plaintext.
 * However, in the browser,
 * you must provide all of the plaintext to the encrypt function.
 * Therefore, the encrypt function in the browser knows the length of the
 plaintext
 * and does not accept a plaintextLength option.
 */
 const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })

 /* Log the plain text
 * only for testing and to show that it works.
 */
 console.log('plainText:', plainText)
 document.write('</br>plainText:' + plainText + '</br>')

 /* Log the base64-encoded result
 * so that you can try decrypting it with another AWS Encryption SDK
 implementation.
 */
 const resultBase64 = toBase64(result)
 console.log(resultBase64)
 document.write(resultBase64)

 /* Decrypt the data.
 * NOTE: This decrypt request will not use the data key
 * that was cached during the encrypt operation.
 * Data keys for encrypt and decrypt operations are cached separately.
 */
 const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

 /* Grab the encryption context so you can verify it. */
 const { encryptionContext: decryptedContext } = messageHeader

 /* Verify the encryption context.
 * If you use an algorithm suite with signing,
 * the Encryption SDK adds a name-value pair to the encryption context that
 contains the public key.

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 396

AWS Encryption SDK Entwicklerhandbuch

 * Because the encryption context might contain additional key-value pairs,
 * do not include a test that requires that all key-value pairs match.
 * Instead, verify that the key-value pairs that you supplied to the `encrypt`
 function are included in the encryption context that the `decrypt` function
 returns.
 */
 Object.entries(encryptionContext).forEach(([key, value]) => {
 if (decryptedContext[key] !== value)
 throw new Error('Encryption Context does not match expected values')
 })

 /* Log the clear message
 * only for testing and to show that it works.
 */
 document.write('</br>Decrypted:' + plaintext)
 console.log(plaintext)

 /* Return the values to make testing easy. */
 return { plainText, plaintext }
}

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
 NodeCachingMaterialsManager,
 getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-node'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 * which enforces that this client only encrypts using committing algorithm suites
 * and enforces that this client
 * will only decrypt encrypted messages
 * that were created with a committing algorithm suite.
 * This is the default commitment policy
 * if you build the client with `buildClient()`.
 */

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 397

AWS Encryption SDK Entwicklerhandbuch

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

export async function cachingCMMNodeSimpleTest() {
 /* An &KMS; key is required to generate the data key.
 * You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.
 */
 const generatorKeyId =
 'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt'

 /* Adding alternate &KMS; keys that can decrypt.
 * Access to kms:Encrypt is required for every &KMS; key in keyIds.
 * You might list several keys in different AWS Regions.
 * This allows you to decrypt the data in any of the represented Regions.
 * In this example, the generator key
 * and the additional key are actually the same &KMS; key.
 * In `generatorId`, this &KMS; key is identified by its alias ARN.
 * In `keyIds`, this &KMS; key is identified by its key ARN.
 * In practice, you would specify different &KMS; keys,
 * or omit the `keyIds` parameter.
 * This is *only* to demonstrate how the &KMS; key ARNs are configured.
 */
 const keyIds = [
 'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f',
]

 /* The &KMS; keyring must be configured with the desired &KMS; keys
 * This example passes the keyring to the caching CMM
 * instead of using it directly.
 */
 const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

 /* Create a cache to hold the data keys (and related cryptographic material).
 * This example uses the local cache provided by the Encryption SDK.
 * The `capacity` value represents the maximum number of entries
 * that the cache can hold.
 * To make room for an additional entry,
 * the cache evicts the oldest cached entry.
 * Both encrypt and decrypt requests count independently towards this threshold.
 * Entries that exceed any cache threshold are actively removed from the cache.
 * By default, the SDK checks one item in the cache every 60 seconds (60,000
 milliseconds).
 * To change this frequency, pass in a `proactiveFrequency` value

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 398

AWS Encryption SDK Entwicklerhandbuch

 * as the second parameter. This value is in milliseconds.
 */
 const capacity = 100
 const cache = getLocalCryptographicMaterialsCache(capacity)

 /* The partition name lets multiple caching CMMs share the same local
 cryptographic cache.
 * By default, the entries for each CMM are cached separately. However, if you
 want these CMMs to share the cache,
 * use the same partition name for both caching CMMs.
 * If you don't supply a partition name, the Encryption SDK generates a random
 name for each caching CMM.
 * As a result, sharing elements in the cache MUST be an intentional operation.
 */
 const partition = 'local partition name'

 /* maxAge is the time in milliseconds that an entry will be cached.
 * Elements are actively removed from the cache.
 */
 const maxAge = 1000 * 60

 /* The maximum amount of bytes that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest value possible.
 */
 const maxBytesEncrypted = 100

 /* The maximum number of messages that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest value possible.
 */
 const maxMessagesEncrypted = 10

 const cachingCMM = new NodeCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 partition,
 maxAge,
 maxBytesEncrypted,
 maxMessagesEncrypted,
 })

 /* Encryption context is a *very* powerful tool for controlling
 * and managing access.

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 399

AWS Encryption SDK Entwicklerhandbuch

 * When you pass an encryption context to the encrypt function,
 * the encryption context is cryptographically bound to the ciphertext.
 * If you don't pass in the same encryption context when decrypting,
 * the decrypt function fails.
 * The encryption context is ***not*** secret!
 * Encrypted data is opaque.
 * You can use an encryption context to assert things about the encrypted data.
 * The encryption context helps you to determine
 * whether the ciphertext you retrieved is the ciphertext you expect to decrypt.
 * For example, if you are are only expecting data from 'us-west-2',
 * the appearance of a different AWS Region in the encryption context can indicate
 malicious interference.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context
 *
 * Also, cached data keys are reused ***only*** when the encryption contexts
 passed into the functions are an exact case-sensitive match.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context
 */
 const encryptionContext = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2',
 }

 /* Find data to encrypt. A simple string. */
 const cleartext = 'asdf'

 /* Encrypt the data.
 * The caching CMM only reuses data keys
 * when it know the length (or an estimate) of the plaintext.
 * If you do not know the length,
 * because the data is a stream
 * provide an estimate of the largest expected value.
 *
 * If your estimate is smaller than the actual plaintext length
 * the AWS Encryption SDK will throw an exception.
 *
 * If the plaintext is not a stream,
 * the AWS Encryption SDK uses the actual plaintext length
 * instead of any length you provide.
 */
 const { result } = await encrypt(cachingCMM, cleartext, {

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 400

AWS Encryption SDK Entwicklerhandbuch

 encryptionContext,
 plaintextLength: 4,
 })

 /* Decrypt the data.
 * NOTE: This decrypt request will not use the data key
 * that was cached during the encrypt operation.
 * Data keys for encrypt and decrypt operations are cached separately.
 */
 const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

 /* Grab the encryption context so you can verify it. */
 const { encryptionContext: decryptedContext } = messageHeader

 /* Verify the encryption context.
 * If you use an algorithm suite with signing,
 * the Encryption SDK adds a name-value pair to the encryption context that
 contains the public key.
 * Because the encryption context might contain additional key-value pairs,
 * do not include a test that requires that all key-value pairs match.
 * Instead, verify that the key-value pairs that you supplied to the `encrypt`
 function are included in the encryption context that the `decrypt` function
 returns.
 */
 Object.entries(encryptionContext).forEach(([key, value]) => {
 if (decryptedContext[key] !== value)
 throw new Error('Encryption Context does not match expected values')
 })

 /* Return the values so the code can be tested. */
 return { plaintext, result, cleartext, messageHeader }
}

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You
may not use this file except in compliance with the License. A copy of
the License is located at

http://aws.amazon.com/apache2.0/

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 401

AWS Encryption SDK Entwicklerhandbuch

or in the "license" file accompanying this file. This file is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
"""Example of encryption with data key caching."""
import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):
 """Encrypts a string using an &KMS; key and data key caching.

 :param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key
 :param float max_age_in_cache: Maximum time in seconds that a cached entry can
 be used
 :param int cache_capacity: Maximum number of entries to retain in cache at once
 """
 # Data to be encrypted
 my_data = "My plaintext data"

 # Security thresholds
 # Max messages (or max bytes per) data key are optional
 MAX_ENTRY_MESSAGES = 100

 # Create an encryption context
 encryption_context = {"purpose": "test"}

 # Set up an encryption client with an explicit commitment policy. Note that if
 you do not explicitly choose a
 # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.
 client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

 # Create a master key provider for the &KMS; key
 key_provider =
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

 # Create a local cache
 cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)

 # Create a caching CMM
 caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager(
 master_key_provider=key_provider,
 cache=cache,

Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge 402

AWS Encryption SDK Entwicklerhandbuch

 max_age=max_age_in_cache,
 max_messages_encrypted=MAX_ENTRY_MESSAGES,
)

 # When the call to encrypt data specifies a caching CMM,
 # the encryption operation uses the data key cache specified
 # in the caching CMM
 encrypted_message, _header = client.encrypt(
 source=my_data, materials_manager=caching_cmm,
 encryption_context=encryption_context
)

 return encrypted_message

Festlegen von Cache-Sicherheitsschwellenwerten

Wenn Sie das Zwischenspeichern von Datenschlüsseln implementieren, müssen Sie die
Sicherheitsschwellenwerte konfigurieren, die das Caching-CMM durchsetzt.

Die Sicherheitsschwellenwerte helfen Ihnen, die Verwendungsdauer jedes im Cache gespeicherten
Datenschlüssels und die Menge der unter jedem Datenschlüssel geschützten Daten zu begrenzen.
Das Caching-CMM gibt zwischengespeicherte Datenschlüssel nur zurück, wenn der Cacheeintrag
allen Sicherheitsschwellenwerten entspricht. Wenn der Cache-Eintrag einen vorgegebenen
Schwellenwert überschreitet, wird der Eintrag für die aktuelle Operation nicht verwendet und so bald
wie möglich aus dem Cache entfernt. Die erste Verwendung der einzelnen Datenschlüssel (vor dem
Caching) ist davon ausgenommen.

Verwenden Sie als Regel die minimale Menge an Caching, die erforderlich ist, um Ihre Kosten- und
Leistungsziele zu erreichen.

Es speichert AWS Encryption SDK nur Datenschlüssel im Cache, die mithilfe einer
Schlüsselableitungsfunktion verschlüsselt wurden. Außerdem richtet es Obergrenzen für einige
Schwellenwerte ein. Diese Einschränkungen stellen sicher, dass Datenschlüssel nicht über ihre
kryptografischen Obergrenzen hinaus wiederverwendet werden. Da Ihre Klartext-Datenschlüssel
jedoch im Cache gespeichert werden (standardmäßig im Arbeitsspeicher), sollten Sie versuchen,
die Zeit zu minimieren, wie lange die Schlüssel gespeichert werden. Versuchen Sie auch, die
Datenmenge zu begrenzen, die offengelegt werden könnte, wenn ein Schlüssel verletzt wird.

Festlegen von Cache-Sicherheitsschwellenwerten 403

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Entwicklerhandbuch

Beispiele für die Festlegung von Cache-Sicherheitsschwellenwerten finden Sie unter AWS Encryption
SDK: So entscheiden Sie, ob das Zwischenspeichern von Datenschlüsseln für Ihre Anwendung
geeignet ist im Sicherheits-Blog. AWS

Note

Der Caching-CMM erzwingt alle folgenden Schwellenwerte. Wenn Sie keinen optionalen Wert
angeben, verwendet der Caching-CMM den Standardwert.
Um das Zwischenspeichern von Datenschlüsseln vorübergehend zu deaktivieren, AWS
Encryption SDK bieten die Java- und Python-Implementierungen von einen Null-Cache für
kryptografische Materialien (Null-Cache). Der Null-Cache gibt einen Fehler für alle GET-
Anfragen zurück und reagiert nicht auf PUT-Anfragen. Wir empfehlen Ihnen die Verwendung
des Null-Cache, anstatt die Cache-Kapazität oder den Sicherheitsschwellenwert auf 0 zu
setzen. Weitere Informationen finden Sie im Null-Cache in Java und Python.

Höchstalter (erforderlich)

Legt fest, wie lange ein im Cache gespeicherter Eintrag verwendet werden kann, beginnend ab
dem Zeitpunkt, zu dem er hinzugefügt wurde. Dieser Wert ist erforderlich. Geben Sie einen Wert
größer als 0 ein. Der maximale Alterswert wird dadurch AWS Encryption SDK nicht begrenzt.

Alle Sprachimplementierungen von AWS Encryption SDK definieren das maximale Alter in
Sekunden, mit Ausnahme von AWS-Verschlüsselungs-SDK for JavaScript, das Millisekunden
verwendet.

Verwenden Sie das kürzeste Intervall, bei dem Ihre Anwendung noch vom Cache profitieren
kann. Sie können die maximale Altersgrenze wie eine Schlüsselrotationsrichtlinie verwenden.
Verwenden Sie sie, um die Wiederverwendung von Datenschlüsseln einzuschränken, die
Offenlegung von kryptographischem Material zu minimieren und Datenschlüssel zu entfernen,
deren Richtlinien sich möglicherweise geändert haben, während sie im Cache gespeichert waren.

Maximale Anzahl verschlüsselter Nachrichten (optional)

Gibt die maximale Anzahl der Nachrichten an, die ein im Cache gespeicherter Datenschlüssel
verschlüsseln kann. Dieser Wert ist optional. Geben Sie einen Wert zwischen 1 und 2^32
Nachrichten ein. Der Standardwert beträgt 2^32 Nachrichten

Stellen Sie die Anzahl der durch jeden im Cache gespeicherten Schlüssel geschützten
Nachrichten so ein, dass sie groß genug ist, um Nutzen aus der Wiederverwendung zu erhalten,

Festlegen von Cache-Sicherheitsschwellenwerten 404

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/caching/NullCryptoMaterialsCache.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.caches.null.html

AWS Encryption SDK Entwicklerhandbuch

aber klein genug, um die Anzahl der Nachrichten zu begrenzen, die bei einer Gefährdung eines
Schlüssels offengelegt werden könnten.

Maximale Anzahl verschlüsselter Bytes (optional)

Gibt die maximale Anzahl der Bytes an, die ein im Cache gespeicherter Datenschlüssel
verschlüsseln kann. Dieser Wert ist optional. Geben Sie einen Wert zwischen 0 und 2^63 - 1 ein.
Der Standardwert lautet 2^63 - 1. Bei einem Wert von 0 können Sie Datenschlüssel-Caching nur
verwenden, wenn Sie leere Nachrichtenzeichenfolgen verschlüsseln.

Die Bytes in der aktuellen Anfrage sind bei der Auswertung dieses Schwellenwerts enthalten.
Wenn die verarbeiteten Bytes plus die aktuellen Bytes den Schwellenwert überschreiten, wird der
im Cache gespeicherte Datenschlüssel aus dem Cache entfernt, auch wenn er bei einer kleineren
Anfrage verwendet werden hätte können.

Weitere Informationen zum Datenschlüssel-Caching

Für die meisten Anwendungen ist die Standard-Implementierung des Datenschlüssel-Cachings
ausreichend, ohne dass benutzerdefinierter Code geschrieben werden muss. Dieser Abschnitt
beschreibt die Standard-Implementierung und einige Details zu Optionen.

Themen

• Wie das Datenschlüssel-Caching funktioniert

• Erstellen eines Cache für kryptografische Materialien

• Erstellen eines Managers von kryptographischen Materialien, der Caching verwendet

• Was befinde sich in einem Datenschlüssel-Cache-Eintrag?

• Verschlüsselungskontext: Wie Cache-Einträge ausgewählt werden

• Benutzt meine Anwendung zwischengespeicherte Datenschlüssel?

Wie das Datenschlüssel-Caching funktioniert

Wenn Sie Datenschlüssel-Caching in einer Anfrage verwenden, um Daten zu verschlüsseln oder
zu entschlüsseln, sucht das AWS Encryption SDK zuerst im Cache nach einem Datenschlüssel,
der der Anfrage entspricht. Wenn es eine gültige Übereinstimmung findet, verwendet es den
zwischengespeicherten Datenschlüssel, um die Daten zu verschlüsseln. Andernfalls erzeugt es einen
neuen Datenschlüssel, genau wie ohne den Cache.

Weitere Informationen zum Datenschlüssel-Caching 405

AWS Encryption SDK Entwicklerhandbuch

Das Datenschlüssel-Caching wird nicht für Daten unbekannter Größe verwendet, wie z. B.
gestreamte Daten. Auf diese Weise kann das Caching-CMM den Schwellenwert für die maximale
Bytezahl ordnungsgemäß durchsetzen. Um dieses Verhalten zu vermeiden, fügen Sie der
Verschlüsselungsanfrage die Nachrichtengröße hinzu.

Beim Zwischenspeichern von Datenschlüsseln wird zusätzlich zu einem Cache ein Caching-Manager
für kryptografisches Material (Caching CMM) verwendet. Der Caching-CMM ist ein spezialisierter
Cryptographic Materials Manager (CMM), der mit einem Cache und einem zugrunde liegenden
CMM interagiert. (Wenn Sie einen Hauptschlüsselanbieter oder einen Schlüsselbund angeben, AWS
Encryption SDK erstellt dieser ein Standard-CMM für Sie.) Das zwischengespeicherte CMM speichert
die Datenschlüssel, die das zugrunde liegende CMM zurückgibt. Das Cache-CMM setzt auch die von
Ihnen festgelegten Cache-Sicherheitsschwellenwerte durch.

Um zu verhindern, dass der falsche Datenschlüssel aus dem Cache ausgewählt wird, setzen
alle kompatiblen Zwischenspeicherungen CMMs voraus, dass die folgenden Eigenschaften der
zwischengespeicherten kryptografischen Materialien mit der Materialanforderung übereinstimmen.

• Algorithmen-Paket

• Verschlüsselungskontext (auch, wenn dieser leer ist)

• Partitionsname (eine Zeichenfolge, die das Caching-CMM identifiziert)

• (Nur Entschlüsselung) Verschlüsselte Datenschlüssel

Note

Die AWS Encryption SDK Zwischenspeicherung von Datenschlüsseln erfolgt nur dann, wenn
die Algorithmus-Suite eine Funktion zur Schlüsselableitung verwendet.

Die folgenden Workflows zeigen, wie eine Anforderung zum Verschlüsseln von Daten mit und
ohne Datenschlüssel-Caching verarbeitet wird. Sie zeigen, wie die von Ihnen erstellten Caching-
Komponenten, einschließlich des Caches und des Caching-CMM, dabei verwendet werden.

Verschlüsseln von Daten ohne Caching

So rufen Sie Verschlüsselungsmaterialien ohne Caching ab:

1. Eine Anwendung fordert sie auf, Daten AWS Encryption SDK zu verschlüsseln.

Wie das Datenschlüssel-Caching funktioniert 406

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Entwicklerhandbuch

Die Anfrage spezifiziert einen Hauptschlüsselanbieter oder einen Schlüsselbund. Das AWS
Encryption SDK erstellt ein Standard-CMM, das mit Ihrem Hauptschlüsselanbieter oder
Schlüsselbund interagiert.

2. Der AWS Encryption SDK fragt das CMM nach Verschlüsselungsmaterial (besorgen Sie sich
kryptografisches Material).

3. Das CMM fragt seinen Schlüsselbund (C und JavaScript) oder seinen Hauptschlüsselanbieter
(Java und Python) nach kryptografischem Material. Dies kann einen Aufruf eines kryptografischen
Dienstes wie () beinhalten. AWS Key Management Service AWS KMS Das CMM gibt die
Verschlüsselungsmaterialien an den zurück. AWS Encryption SDK

4. Der AWS Encryption SDK verwendet den Klartext-Datenschlüssel, um die Daten zu verschlüsseln.
Es speichert die verschlüsselten Daten und verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht, die an den Benutzer zurückgegeben wird.

Verschlüsseln von Daten mit Caching

So rufen Sie Verschlüsselungsmaterialien mit Datenschlüssel-Caching ab:

1. Eine Anwendung fordert sie auf, Daten AWS Encryption SDK zu verschlüsseln.

Wie das Datenschlüssel-Caching funktioniert 407

AWS Encryption SDK Entwicklerhandbuch

Die Anforderung spezifiziert einen Caching Cryptographic Materials Manager (Caching CMM), der
einem zugrunde liegenden Cryptographic Materials Manager (CMM) zugeordnet ist. Wenn Sie
einen Hauptschlüsselanbieter oder einen Schlüsselbund angeben, erstellt dieser ein Standard-
CMM für Sie AWS Encryption SDK .

2. Das SDK fragt den angegebenen Caching-CMM nach Verschlüsselungsmaterialien.

3. Das Caching-CMM fordert Verschlüsselungsmaterial aus dem Cache an.

a. Wenn der Cache eine Übereinstimmung findet, aktualisiert er das Alter und die
Verwendungswerte des entsprechenden Cache-Eintrags und gibt die zwischengespeicherten
Verschlüsselungsmaterialien an das zwischengespeicherte CMM zurück.

Wenn der Cache-Eintrag seinen Sicherheitsschwellenwerten entspricht, gibt ihn das Cache-
CMM an das SDK zurück. Andernfalls weist es den Cache an, den Eintrag zu entfernen, und
geht so vor, als gäbe es keine Übereinstimmung.

b. Wenn der Cache keine gültige Übereinstimmung findet, fordert das Cache-CMM das zugrunde
liegende CMM auf, einen neuen Datenschlüssel zu generieren.

Das zugrunde liegende CMM bezieht die kryptografischen Materialien von seinem
Schlüsselbund (C und JavaScript) oder seinem Hauptschlüsselanbieter (Java und Python).
Dabei könnte es sich um einen Aufruf eines Dienstes handeln, z. B. AWS Key Management
Service. Das zugrunde liegende CMM gibt die Klartext- und verschlüsselten Kopien des
Datenschlüssels an das zwischengespeicherte CMM zurück.

Das Caching-CMM speichert die neuen Verschlüsselungsmaterialien im Cache.

4. Das zwischengespeicherte CMM gibt die Verschlüsselungsmaterialien an den zurück. AWS
Encryption SDK

5. Der AWS Encryption SDK verwendet den Klartext-Datenschlüssel, um die Daten zu verschlüsseln.
Es speichert die verschlüsselten Daten und verschlüsselten Datenschlüssel in einer
verschlüsselten Nachricht, die an den Benutzer zurückgegeben wird.

Wie das Datenschlüssel-Caching funktioniert 408

AWS Encryption SDK Entwicklerhandbuch

Erstellen eines Cache für kryptografische Materialien

Der AWS Encryption SDK definiert die Anforderungen an einen Cache für kryptografisches Material,
der beim Zwischenspeichern von Datenschlüsseln verwendet wird. Er stellt auch einen lokalen
Cache bereit, bei dem es sich um einen konfigurierbaren LRU-Cache (In-Memory-Cache, Least
Recently Used) handelt. Um eine Instanz des lokalen Caches zu erstellen, verwenden Sie den
LocalCryptoMaterialsCache Konstruktor in Java und Python, die getLocalCryptographic
MaterialsCache Funktion in JavaScript oder den aws_cryptosdk_materials_cache_local_new
Konstruktor in C.

Der lokale Cache enthält Logik für die grundlegende Cacheverwaltung, einschließlich des
Hinzufügens, Entfernens und Abgleichs zwischengespeicherter Einträge sowie der Verwaltung des
Caches. Sie müssen keine benutzerdefinierte Cache-Verwaltungslogik schreiben. Sie können den
lokalen Cache unverändert verwenden, ihn anpassen oder durch einen beliebigen kompatiblen
Cache ersetzen.

Wenn Sie einen lokalen Cache erstellen, legen Sie dessen Kapazität fest, d. h. die maximale Anzahl
von Einträgen, die der Cache aufnehmen kann. Diese Einstellung hilft Ihnen, einen effizienten Cache
mit begrenzter Wiederverwendung von Datenschlüsseln zu entwerfen.

Erstellen eines Cache für kryptografische Materialien 409

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29
https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29

AWS Encryption SDK Entwicklerhandbuch

Der AWS-Verschlüsselungs-SDK for Java und der stellt AWS-Verschlüsselungs-SDK for Python
außerdem einen Null-Cache für kryptografisches Material bereit (NullCryptoMaterialsCache). Der
NullCryptoMaterialsCache gibt für alle GET Operationen einen Fehlschlag zurück und reagiert
nicht auf PUT Operationen. Sie können das während der NullCryptoMaterialsCache Testphase
verwenden oder um das Caching in einer Anwendung, die Caching-Code enthält, vorübergehend zu
deaktivieren.

In der AWS Encryption SDK ist jeder Cache für kryptografisches Material einem Caching-Manager
für kryptografische Materialien (Caching CMM) zugeordnet. Das CMM für die Zwischenspeicherung
ruft Datenschlüssel aus dem Cache ab, legt Datenschlüssel in den Cache und setzt die von Ihnen
festgelegten Sicherheitsschwellenwerte durch. Wenn Sie ein Caching-CMM erstellen, geben Sie den
Cache an, den es verwendet, und den zugrunde liegenden CMM oder Hauptschlüsselanbieter, der
die zwischengespeicherten Datenschlüssel generiert.

Erstellen eines Managers von kryptographischen Materialien, der Caching
verwendet

Um das Zwischenspeichern von Datenschlüsseln zu aktivieren, erstellen Sie einen Cache und
einen Caching-Manager für kryptografische Materialien (Caching-CMM). Anschließend geben Sie
in Ihren Anfragen zum Verschlüsseln oder Entschlüsseln von Daten statt eines standardmäßigen
Cryptographic Materials Manager (CMM), eines Masterschlüsselanbieters oder eines Schlüsselbunds
einen CMM für die Zwischenspeicherung an.

Es gibt zwei Arten von. CMMs Beide rufen Datenschlüssel (und verwandtes kryptografisches
Material) ab, aber auf unterschiedliche Weise, wie folgt:

• Ein CMM ist mit einem Schlüsselbund (C oder JavaScript) oder einem Hauptschlüsselanbieter
(Java und Python) verknüpft. Wenn das SDK das CMM nach Materialien zur Verschlüsselung
oder Entschlüsselung fragt, ruft das CMM die Materialien von seinem Schlüsselbund oder
Hauptschlüsselanbieter ab. In Java und Python verwendet der CMM die Masterschlüssel zum
Generieren, Verschlüsseln oder Entschlüsseln der Datenschlüssel. In C und C generiert und
JavaScript verschlüsselt der Schlüsselbund die kryptografischen Materialien und gibt sie zurück.

• Ein Cache-CMM ist einem Cache, z. B. einem lokalen Cache, und einem zugrunde liegenden CMM
zugeordnet. Wenn das SDK den Cache-CMM nach kryptografischem Material fragt, versucht das
Caching-CMM, diese aus dem Cache abzurufen. Wenn es keine Übereinstimmung finden kann,
fragt das Cache-CMM das zugrundeliegende CMM nach den Materialien. Anschließend speichert
er die neuen kryptografischen Materialien im Cache, bevor er sie an den Aufrufer zurückgibt.

Erstellen eines Managers von kryptographischen Materialien, der Caching verwendet 410

AWS Encryption SDK Entwicklerhandbuch

Das CMM für die Zwischenspeicherung setzt außerdem Sicherheitsschwellenwerte durch, die Sie
für jeden Cache-Eintrag festlegen. Da die Sicherheitsschwellenwerte im Cache-CMM festgelegt und
von diesem durchgesetzt werden, können Sie jeden kompatiblen Cache verwenden, auch wenn der
Cache nicht für vertrauliches Material konzipiert ist.

Was befinde sich in einem Datenschlüssel-Cache-Eintrag?

Das Datenschlüssel-Caching speichert Datenschlüssel und zugehörige kryptographische
Materialien in einem Cache. Jeder Eintrag enthält die folgenden Elemente. Diese Informationen sind
möglicherweise hilfreich, wenn Sie entscheiden, ob Sie die Funktion zum Zwischenspeichern von
Datenschlüsseln verwenden möchten, und wenn Sie Sicherheitsschwellenwerte in einem Caching
Cryptographic Materials Manager (Caching CMM) festlegen.

Im Cache gespeicherte Einträge für Verschlüsselungsanfragen

Die Einträge, die einem Datenschlüssel-Cache durch eine Verschlüsselungsoperation hinzugefügt
werden, umfassen folgende Elemente:

• Klartext-Datenschlüssel

• Verschlüsselte Datenschlüssel (einen oder mehrere)

• Verschlüsselungskontext

• Nachrichtensignaturschlüssel (falls verwendet)

• Algorithmen-Paket

• Metadaten, einschließlich Nutzungszähler für die Durchsetzung von Sicherheitsschwellenwerten

Im Cache gespeicherte Einträge für Entschlüsselungsanfragen

Die Einträge, die einem Datenschlüssel-Cache durch eine Entschlüsselungsoperation hinzugefügt
werden, umfassen folgende Elemente:

• Klartext-Datenschlüssel

• Signaturverifizierungsschlüssel (falls verwendet)

• Metadaten, einschließlich Nutzungszähler für die Durchsetzung von Sicherheitsschwellenwerten

Was befinde sich in einem Datenschlüssel-Cache-Eintrag? 411

AWS Encryption SDK Entwicklerhandbuch

Verschlüsselungskontext: Wie Cache-Einträge ausgewählt werden

Sie können in jeder Anfrage zur Verschlüsselung von Daten einen Verschlüsselungskontext angeben.
Der Verschlüsselungskontext spielt eine spezielle Rolle beim Datenschlüssel-Caching. Damit können
Sie Untergruppen von Datenschlüsseln in Ihrem Cache erstellen, auch wenn die Datenschlüssel aus
demselben CMM für die Zwischenspeicherung stammen.

Ein Verschlüsselungskontext ist eine Gruppe von Schlüssel/Wert-Paaren mit zufälligen, nicht
geheimen Daten. Bei der Entschlüsselung wird der Verschlüsselungskontext kryptographisch an die
verschlüsselten Daten, sodass derselbe Verschlüsselungskontext zur Entschlüsselung der Daten
benötigt wird. In der AWS Encryption SDK wird der Verschlüsselungskontext in der verschlüsselten
Nachricht mit den verschlüsselten Daten und Datenschlüsseln gespeichert.

Wenn Sie einen Datenschlüssel-Cache verwenden, können Sie auch den Verschlüsselungskontext
verwenden, um bestimmte im Cache gespeicherte Datenschlüssel für Ihre Verschlüsselungsvorgänge
auszuwählen. Der Verschlüsselungskontext wird im Cache-Eintrag mit dem Datenschlüssel
gespeichert (er ist Teil der Cache-Eintrag-ID). Im Cache gespeicherte Datenschlüssel werden nur
wiederverwendet, wenn ihre Verschlüsselungskontexte übereinstimmen. Wenn Sie bestimmte
Datenschlüssel für eine Verschlüsselungsanfrage wiederverwenden möchten, geben Sie den
gleichen Verschlüsselungskontext an. Wenn Sie diese Datenschlüssel vermeiden möchten, geben
Sie einen anderen Verschlüsselungskontext an.

Der Verschlüsselungskontext ist immer optional, wird aber empfohlen. Wenn Sie in Ihrer Anfrage
keinen Verschlüsselungskontext angeben, wird ein leerer Verschlüsselungskontext in die Cache-
Eintrag-ID aufgenommen und jeder Anfrage zugeordnet.

Benutzt meine Anwendung zwischengespeicherte Datenschlüssel?

Das Datenschlüssel-Caching ist eine Optimierungsstrategie, die für bestimmte Anwendungen
und Workloads sehr effektiv ist. Da es jedoch ein gewisses Risiko mit sich bringt, ist es wichtig zu
bestimmen, wie effektiv es für Ihre Situation ist, und dann zu entscheiden, ob der Nutzen die Risiken
überwiegt.

Da das Datenschlüssel-Caching Datenschlüssel wiederverwendet, ist der offensichtlichste Effekt
die Verringerung der Anzahl der Aufrufe, um neue Datenschlüssel zu generieren. Wenn das
Zwischenspeichern von Datenschlüsseln implementiert ist, wird AWS Encryption SDK die AWS KMS
GenerateDataKey Operation nur aufgerufen, um den ursprünglichen Datenschlüssel zu erstellen,
und wenn der Cache fehlt. Das Caching verbessert jedoch die Leistung nur in Anwendungen, die

Verschlüsselungskontext: Wie Cache-Einträge ausgewählt werden 412

AWS Encryption SDK Entwicklerhandbuch

zahlreiche Datenschlüssel mit den gleichen Eigenschaften generieren, einschließlich des gleichen
Verschlüsselungskontexts und des gleichen Algorithmen-Pakets.

Um festzustellen, ob Ihre Implementierung von tatsächlich Datenschlüssel aus dem Cache
verwendet, probieren Sie die folgenden Techniken aus. AWS Encryption SDK

• Überprüfen Sie in den Protokollen Ihrer Master-Key-Infrastruktur die Häufigkeit von Aufrufen zur
Erstellung neuer Datenschlüssel. Wenn das Datenschlüssel-Caching wirksam ist, sollte die Anzahl
der Aufrufe zum Erstellen neuer Schlüssel spürbar fallen. Wenn Sie beispielsweise einen AWS
KMS Hauptschlüsselanbieter oder einen Schlüsselbund verwenden, suchen Sie in den CloudTrail
Protokollen nach GenerateDataKeyAnrufen.

• Vergleichen Sie die verschlüsselten Nachrichten, die das AWS Encryption SDK als Antwort
auf verschiedene Verschlüsselungsanforderungen zurückgibt. Wenn Sie beispielsweise den
verwenden AWS-Verschlüsselungs-SDK for Java, vergleichen Sie das ParsedCiphertextObjekt
aus verschiedenen Verschlüsselungsaufrufen. Vergleichen Sie in der AWS-Verschlüsselungs-
SDK for JavaScript den Inhalt der encryptedDataKeys Eigenschaft von. MessageHeader
Wenn Datenschlüssel wiederverwendet werden, sind die verschlüsselten Datenschlüssel in der
verschlüsselten Nachricht identisch.

Beispiel für das Datenschlüssel-Caching

In diesem Beispiel wird das Zwischenspeichern von Datenschlüsseln mit einem lokalen Cache
verwendet, um eine Anwendung zu beschleunigen, in der von mehreren Geräten generierte Daten
verschlüsselt und in verschiedenen Regionen gespeichert werden.

In diesem Szenario generieren mehrere Datenproduzenten Daten, verschlüsseln sie und
schreiben in jeder Region in einen Kinesis-Stream. AWS LambdaFunktionen (Verbraucher)
entschlüsseln die Streams und schreiben Klartextdaten in eine DynamoDB-Tabelle in der Region.
Datenproduzenten und -verbraucher verwenden den AWS Encryption SDK und einen AWS KMS
Hauptschlüsselanbieter. Um die Anzahl der Aufrufe an KMS zu reduzieren, verfügt jeder Hersteller
und Verbraucher über einen eigenen lokalen Cache.

Den Quellcode für diese Beispiele finden Sie in Java und Python. Das Beispiel enthält auch eine
CloudFormation Vorlage, die die Ressourcen für die Beispiele definiert.

Beispiel für das Datenschlüssel-Caching 413

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/

AWS Encryption SDK Entwicklerhandbuch

Lokale Cache-Ergebnisse

Die folgende Tabelle zeigt, dass ein lokaler Cache die Gesamtzahl der Aufrufe an KMS (pro Sekunde
pro Region) in diesem Beispiel auf 1% seines ursprünglichen Werts reduziert.

Produzentenanfragen

Anforderungen pro Sekunde pro Client

Datenschl
üssele

Datenschl
üssel

Gesamt (pro
Region)

Clients pro
Region

Durchschn
ittliche
Anfragen pro

Lokale Cache-Ergebnisse 414

AWS Encryption SDK Entwicklerhandbuch

generieren
(us-west-2)

verschlüsseln
(eu-central-1)

Sekunde pro
Region.

Kein Cache 1 1 1 500 500

Lokaler
Cache

1 RPS/100
Anwendung
en

1 RPS/100
Anwendung
en

1 RPS/100
Anwendung
en

500 5

Konsumentenanfragen

Anforderungen pro Sekunde pro Client

Datenschl
üssel
entschlüsseln

Produzenten Gesamt

Client pro
Region

Durchschn
ittliche
Anfragen pro
Sekunde pro
Region.

Kein Cache 1 RPS pro
Produzent

500 500 2 1.000

Lokaler
Cache

1 RPS pro
Produzent
/100
Anwendung
en

500 5 2 10

Beispielcode für das Zwischenspeichern von Datenschlüsseln

Dieses Codebeispiel erstellt eine einfache Implementierung von Datenschlüssel-Caching mit einem
lokalen Cache in Java und Python. Der Code erstellt zwei Instanzen eines lokalen Caches: eine
für Datenproduzenten, die Daten verschlüsseln, und eine weitere für Datenverbraucher (AWS
Lambda Funktionen), die Daten entschlüsseln. Einzelheiten zur Implementierung von Datenschlüssel-
Caching in den einzelnen Sprachen finden Sie in der Javadoc - und Python-Dokumentation für. AWS
Encryption SDK

Das Zwischenspeichern von Datenschlüsseln ist für alle Programmiersprachen verfügbar, die von
unterstützt werden. AWS Encryption SDK

Beispiel-Code 415

https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/

AWS Encryption SDK Entwicklerhandbuch

Vollständige und getestete Beispiele für die Verwendung von Datenschlüssel-Caching in finden Sie
unter AWS Encryption SDK:

• C/C++: caching_cmm.cpp

• Java: SimpleDataKeyCachingExample .java

• JavaScript Browser: caching_cmm.ts

• JavaScript Node.js: caching_cmm.ts

• Python: data_key_caching_basic.py

Produzent

Der Producer ruft eine Map ab, konvertiert sie in JSON, verwendet sie, um sie AWS Encryption SDK
zu verschlüsseln, und überträgt den Chiffretext-Datensatz jeweils in einen Kinesis-Stream. AWS-
Region

Der Code definiert einen Manager für kryptografisches Material im Cache (Caching CMM) und ordnet
ihn einem lokalen Cache und einem zugrunde liegenden Hauptschlüsselanbieter zu.AWS KMS Das
zwischengespeicherte CMM speichert die Datenschlüssel (und das zugehörige kryptografische
Material) des Hauptschlüsselanbieters zwischen. Außerdem interagiert sie mit dem Cache im Namen
des SDK und erzwingt die von Ihnen festgelegten Sicherheitsschwellenwerte.

Da beim Aufruf der Verschlüsselungsmethode ein CMM angegeben wird, das zwischengespeichert
wird, und nicht ein regulärer Cryptographic Materials Manager (CMM) oder Hauptschlüsselanbieter,
wird bei der Verschlüsselung das Zwischenspeichern von Datenschlüsseln verwendet.

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlüsselungs-SDK for
Java. Ausführung 3. x of the AWS-Verschlüsselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlüsseln. Mit Version 3. x, Sie können auch den AWS KMS
hierarchischen Schlüsselbund verwenden, eine alternative Lösung zum Zwischenspeichern
kryptografischer Materialien.

/*
 * Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use
 this file except
 * in compliance with the License. A copy of the License is located at

Beispiel-Code 416

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py
https://aws.amazon.com/kinesis/streams/

AWS Encryption SDK Entwicklerhandbuch

 *
 * http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed on an
 "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
 * specific language governing permissions and limitations under the License.
 */
package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.MasterKeyProvider;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import com.amazonaws.encryptionsdk.multi.MultipleProviderFactory;
import com.amazonaws.util.json.Jackson;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.kinesis.KinesisClient;
import software.amazon.awssdk.services.kms.KmsClient;

/**
 * Pushes data to Kinesis Streams in multiple Regions.
 */
public class MultiRegionRecordPusher {

 private static final long MAX_ENTRY_AGE_MILLISECONDS = 300000;
 private static final long MAX_ENTRY_USES = 100;
 private static final int MAX_CACHE_ENTRIES = 100;
 private final String streamName_;
 private final ArrayList<KinesisClient> kinesisClients_;

Beispiel-Code 417

AWS Encryption SDK Entwicklerhandbuch

 private final CachingCryptoMaterialsManager cachingMaterialsManager_;
 private final AwsCrypto crypto_;

 /**
 * Creates an instance of this object with Kinesis clients for all target
 Regions and a cached
 * key provider containing KMS master keys in all target Regions.
 */
 public MultiRegionRecordPusher(final Region[] regions, final String
 kmsAliasName,
 final String streamName) {
 streamName_ = streamName;
 crypto_ = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();
 kinesisClients_ = new ArrayList<>();

 AwsCredentialsProvider credentialsProvider =
 DefaultCredentialsProvider.builder().build();

 // Build KmsMasterKey and AmazonKinesisClient objects for each target region
 List<KmsMasterKey> masterKeys = new ArrayList<>();
 for (Region region : regions) {
 kinesisClients_.add(KinesisClient.builder()
 .credentialsProvider(credentialsProvider)
 .region(region)
 .build());

 KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder()
 .defaultRegion(region)
 .builderSupplier(() ->
 KmsClient.builder().credentialsProvider(credentialsProvider))
 .buildStrict(kmsAliasName)
 .getMasterKey(kmsAliasName);

 masterKeys.add(regionMasterKey);
 }

 // Collect KmsMasterKey objects into single provider and add cache
 MasterKeyProvider<?> masterKeyProvider =
 MultipleProviderFactory.buildMultiProvider(
 KmsMasterKey.class,
 masterKeys
);

Beispiel-Code 418

AWS Encryption SDK Entwicklerhandbuch

 cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()
 .withMasterKeyProvider(masterKeyProvider)
 .withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
 .withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
 .withMessageUseLimit(MAX_ENTRY_USES)
 .build();
 }

 /**
 * JSON serializes and encrypts the received record data and pushes it to all
 target streams.
 */
 public void putRecord(final Map<Object, Object> data) {
 String partitionKey = UUID.randomUUID().toString();
 Map<String, String> encryptionContext = new HashMap<>();
 encryptionContext.put("stream", streamName_);

 // JSON serialize data
 String jsonData = Jackson.toJsonString(data);

 // Encrypt data
 CryptoResult<byte[], ?> result = crypto_.encryptData(
 cachingMaterialsManager_,
 jsonData.getBytes(),
 encryptionContext
);
 byte[] encryptedData = result.getResult();

 // Put records to Kinesis stream in all Regions
 for (KinesisClient regionalKinesisClient : kinesisClients_) {
 regionalKinesisClient.putRecord(builder ->
 builder.streamName(streamName_)
 .data(SdkBytes.fromByteArray(encryptedData))
 .partitionKey(partitionKey));
 }
 }
}

Python

"""
Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Beispiel-Code 419

AWS Encryption SDK Entwicklerhandbuch

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
 file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
 IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
specific language governing permissions and limitations under the License.
"""
import json
import uuid

from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider,
 CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy
from aws_encryption_sdk.key_providers.kms import KMSMasterKey
import boto3

class MultiRegionRecordPusher(object):
 """Pushes data to Kinesis Streams in multiple Regions."""
 CACHE_CAPACITY = 100
 MAX_ENTRY_AGE_SECONDS = 300.0
 MAX_ENTRY_MESSAGES_ENCRYPTED = 100

 def __init__(self, regions, kms_alias_name, stream_name):
 self._kinesis_clients = []
 self._stream_name = stream_name

 # Set up EncryptionSDKClient
 _client =
 EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

 # Set up KMSMasterKeyProvider with cache
 _key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name)

 # Add MasterKey and Kinesis client for each Region
 for region in regions:
 self._kinesis_clients.append(boto3.client('kinesis',
 region_name=region))
 regional_master_key = KMSMasterKey(

Beispiel-Code 420

AWS Encryption SDK Entwicklerhandbuch

 client=boto3.client('kms', region_name=region),
 key_id=kms_alias_name
)
 _key_provider.add_master_key_provider(regional_master_key)

 cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY)
 self._materials_manager = CachingCryptoMaterialsManager(
 master_key_provider=_key_provider,
 cache=cache,
 max_age=self.MAX_ENTRY_AGE_SECONDS,
 max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED
)

 def put_record(self, record_data):
 """JSON serializes and encrypts the received record data and pushes it to
 all target streams.

 :param dict record_data: Data to write to stream
 """
 # Kinesis partition key to randomize write load across stream shards
 partition_key = uuid.uuid4().hex

 encryption_context = {'stream': self._stream_name}

 # JSON serialize data
 json_data = json.dumps(record_data)

 # Encrypt data
 encrypted_data, _header = _client.encrypt(
 source=json_data,
 materials_manager=self._materials_manager,
 encryption_context=encryption_context
)

 # Put records to Kinesis stream in all Regions
 for client in self._kinesis_clients:
 client.put_record(
 StreamName=self._stream_name,
 Data=encrypted_data,
 PartitionKey=partition_key
)

Beispiel-Code 421

AWS Encryption SDK Entwicklerhandbuch

Konsument

Der Datenverbraucher ist eine AWS LambdaFunktion, die durch Kinesis-Ereignisse ausgelöst wird.
Es entschlüsselt und deserialisiert jeden Datensatz und schreibt den Klartext-Datensatz in eine
Amazon DynamoDB-Tabelle in derselben Region.

Wie der Herstellercode ermöglicht auch der Verbrauchercode das Zwischenspeichern von
Datenschlüsseln, indem er bei Aufrufen der Entschlüsselungsmethode einen Caching Cryptographic
Materials Manager (Caching CMM) verwendet.

Der Java-Code erstellt einen Hauptschlüsselanbieter im strikten Modus mit einem bestimmten Wert.
AWS KMS key Der strikte Modus ist beim Entschlüsseln nicht erforderlich, hat sich aber bewährt. Der
Python-Code verwendet den Discovery-Modus, der es ermöglicht, jeden Wrapping-Schlüssel zu AWS
Encryption SDK verwenden, der einen Datenschlüssel verschlüsselt hat, um ihn zu entschlüsseln.

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlüsselungs-SDK for
Java. Ausführung 3. x of the AWS-Verschlüsselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlüsseln. Mit Version 3. x, Sie können auch den AWS KMS
hierarchischen Schlüsselbund verwenden, eine alternative Lösung zum Zwischenspeichern
kryptografischer Materialien.

Dieser Code erstellt einen Hauptschlüsselanbieter für die Entschlüsselung im strikten Modus. Er
AWS Encryption SDK kann nur den von AWS KMS keys Ihnen angegebenen verwenden, um Ihre
Nachricht zu entschlüsseln.

/*
 * Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use
 this file except
 * in compliance with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed on an
 "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
 * specific language governing permissions and limitations under the License.
 */

Beispiel-Code 422

https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/dynamodb/

AWS Encryption SDK Entwicklerhandbuch

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
import com.amazonaws.util.BinaryUtils;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;
import software.amazon.awssdk.enhanced.dynamodb.TableSchema;

/**
 * Decrypts all incoming Kinesis records and writes records to DynamoDB.
 */
public class LambdaDecryptAndWrite {

 private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000;
 private static final int MAX_CACHE_ENTRIES = 100;
 private final CachingCryptoMaterialsManager cachingMaterialsManager_;
 private final AwsCrypto crypto_;
 private final DynamoDbTable<Item> table_;

 /**
 * Because the cache is used only for decryption, the code doesn't set the max
 bytes or max
 * message security thresholds that are enforced only on on data keys used for
 encryption.
 */
 public LambdaDecryptAndWrite() {
 String kmsKeyArn = System.getenv("CMK_ARN");
 cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

 .withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn))
 .withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
 .withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)

Beispiel-Code 423

AWS Encryption SDK Entwicklerhandbuch

 .build();

 crypto_ = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 String tableName = System.getenv("TABLE_NAME");
 DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build();
 table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class));
 }

 /**
 * @param event
 * @param context
 */
 public void handleRequest(KinesisEvent event, Context context)
 throws UnsupportedEncodingException {
 for (KinesisEventRecord record : event.getRecords()) {
 ByteBuffer ciphertextBuffer = record.getKinesis().getData();
 byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer);

 // Decrypt and unpack record
 CryptoResult<byte[], ?> plaintextResult =
 crypto_.decryptData(cachingMaterialsManager_,
 ciphertext);

 // Verify the encryption context value
 String streamArn = record.getEventSourceARN();
 String streamName = streamArn.substring(streamArn.indexOf("/") + 1);
 if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) {
 throw new IllegalStateException("Wrong Encryption Context!");
 }

 // Write record to DynamoDB
 String jsonItem = new String(plaintextResult.getResult(),
 StandardCharsets.UTF_8);
 System.out.println(jsonItem);
 table_.putItem(Item.fromJSON(jsonItem));
 }
 }

 private static class Item {

Beispiel-Code 424

AWS Encryption SDK Entwicklerhandbuch

 static Item fromJSON(String jsonText) {
 // Parse JSON and create new Item
 return new Item();
 }
 }
}

Python

Dieser Python-Code wird mit einem Master-Key-Anbieter im Discovery-Modus entschlüsselt. Es
ermöglicht die AWS Encryption SDK Verwendung eines beliebigen Umschließungsschlüssels, der
einen Datenschlüssel verschlüsselt hat, um ihn zu entschlüsseln. Der strikte Modus, in dem Sie
die Umschließungsschlüssel angeben, die für die Entschlüsselung verwendet werden können, ist
eine bewährte Methode.

"""
Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
 file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
 IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
specific language governing permissions and limitations under the License.
"""
import base64
import json
import logging
import os

from aws_encryption_sdk import EncryptionSDKClient,
 DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager,
 LocalCryptoMaterialsCache, CommitmentPolicy
import boto3

_LOGGER = logging.getLogger(__name__)
_is_setup = False
CACHE_CAPACITY = 100

Beispiel-Code 425

AWS Encryption SDK Entwicklerhandbuch

MAX_ENTRY_AGE_SECONDS = 600.0

def setup():
 """Sets up clients that should persist across Lambda invocations."""
 global encryption_sdk_client
 encryption_sdk_client =
 EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

 global materials_manager
 key_provider = DiscoveryAwsKmsMasterKeyProvider()
 cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY)

 # Because the cache is used only for decryption, the code doesn't set
 # the max bytes or max message security thresholds that are enforced
 # only on on data keys used for encryption.
 materials_manager = CachingCryptoMaterialsManager(
 master_key_provider=key_provider,
 cache=cache,
 max_age=MAX_ENTRY_AGE_SECONDS
)
 global table
 table_name = os.environ.get('TABLE_NAME')
 table = boto3.resource('dynamodb').Table(table_name)
 global _is_setup
 _is_setup = True

def lambda_handler(event, context):
 """Decrypts all incoming Kinesis records and writes records to DynamoDB."""
 _LOGGER.debug('New event:')
 _LOGGER.debug(event)
 if not _is_setup:
 setup()
 with table.batch_writer() as batch:
 for record in event.get('Records', []):
 # Record data base64-encoded by Kinesis
 ciphertext = base64.b64decode(record['kinesis']['data'])

 # Decrypt and unpack record
 plaintext, header = encryption_sdk_client.decrypt(
 source=ciphertext,
 materials_manager=materials_manager
)
 item = json.loads(plaintext)

Beispiel-Code 426

AWS Encryption SDK Entwicklerhandbuch

 # Verify the encryption context value
 stream_name = record['eventSourceARN'].split('/', 1)[1]
 if stream_name != header.encryption_context['stream']:
 raise ValueError('Wrong Encryption Context!')

 # Write record to DynamoDB
 batch.put_item(Item=item)

Beispiel für das Zwischenspeichern von Datenschlüsseln: Vorlage
CloudFormation

Diese CloudFormation Vorlage richtet alle erforderlichen AWS Ressourcen ein, um das Beispiel für
das Zwischenspeichern von Datenschlüsseln zu reproduzieren.

JSON

{
 "Parameters": {
 "SourceCodeBucket": {
 "Type": "String",
 "Description": "S3 bucket containing Lambda source code zip files"
 },
 "PythonLambdaS3Key": {
 "Type": "String",
 "Description": "S3 key containing Python Lambda source code zip file"
 },
 "PythonLambdaObjectVersionId": {
 "Type": "String",
 "Description": "S3 version id for S3 key containing Python Lambda source
 code zip file"
 },
 "JavaLambdaS3Key": {
 "Type": "String",
 "Description": "S3 key containing Python Lambda source code zip file"
 },
 "JavaLambdaObjectVersionId": {
 "Type": "String",
 "Description": "S3 version id for S3 key containing Python Lambda source
 code zip file"

CloudFormation Vorlage 427

AWS Encryption SDK Entwicklerhandbuch

 },
 "KeyAliasSuffix": {
 "Type": "String",
 "Description": "Suffix to use for KMS key Alias (ie: alias/
KeyAliasSuffix)"
 },
 "StreamName": {
 "Type": "String",
 "Description": "Name to use for Kinesis Stream"
 }
 },
 "Resources": {
 "InputStream": {
 "Type": "AWS::Kinesis::Stream",
 "Properties": {
 "Name": {
 "Ref": "StreamName"
 },
 "ShardCount": 2
 }
 },
 "PythonLambdaOutputTable": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "id",
 "AttributeType": "S"
 }
],
 "KeySchema": [
 {
 "AttributeName": "id",
 "KeyType": "HASH"
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 1,
 "WriteCapacityUnits": 1
 }
 }
 },
 "PythonLambdaRole": {
 "Type": "AWS::IAM::Role",

CloudFormation Vorlage 428

AWS Encryption SDK Entwicklerhandbuch

 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"
],
 "Policies": [
 {
 "PolicyName": "PythonLambdaAccess",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:BatchWriteItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}*"
 }
 },

CloudFormation Vorlage 429

AWS Encryption SDK Entwicklerhandbuch

 {
 "Effect": "Allow",
 "Action": [
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",
 "kinesis:DescribeStream",
 "kinesis:ListStreams"
],
 "Resource": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 }
 }
]
 }
 }
]
 }
 },
 "PythonLambdaFunction": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Description": "Python consumer",
 "Runtime": "python2.7",
 "MemorySize": 512,
 "Timeout": 90,
 "Role": {
 "Fn::GetAtt": [
 "PythonLambdaRole",
 "Arn"
]
 },
 "Handler":
 "aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler",
 "Code": {
 "S3Bucket": {
 "Ref": "SourceCodeBucket"
 },
 "S3Key": {
 "Ref": "PythonLambdaS3Key"
 },
 "S3ObjectVersion": {
 "Ref": "PythonLambdaObjectVersionId"
 }

CloudFormation Vorlage 430

AWS Encryption SDK Entwicklerhandbuch

 },
 "Environment": {
 "Variables": {
 "TABLE_NAME": {
 "Ref": "PythonLambdaOutputTable"
 }
 }
 }
 }
 },
 "PythonLambdaSourceMapping": {
 "Type": "AWS::Lambda::EventSourceMapping",
 "Properties": {
 "BatchSize": 1,
 "Enabled": true,
 "EventSourceArn": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 },
 "FunctionName": {
 "Ref": "PythonLambdaFunction"
 },
 "StartingPosition": "TRIM_HORIZON"
 }
 },
 "JavaLambdaOutputTable": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "id",
 "AttributeType": "S"
 }
],
 "KeySchema": [
 {
 "AttributeName": "id",
 "KeyType": "HASH"
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 1,
 "WriteCapacityUnits": 1
 }

CloudFormation Vorlage 431

AWS Encryption SDK Entwicklerhandbuch

 }
 },
 "JavaLambdaRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"
],
 "Policies": [
 {
 "PolicyName": "JavaLambdaAccess",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:BatchWriteItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": {

CloudFormation Vorlage 432

AWS Encryption SDK Entwicklerhandbuch

 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}*"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",
 "kinesis:DescribeStream",
 "kinesis:ListStreams"
],
 "Resource": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 }
 }
]
 }
 }
]
 }
 },
 "JavaLambdaFunction": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Description": "Java consumer",
 "Runtime": "java8",
 "MemorySize": 512,
 "Timeout": 90,
 "Role": {
 "Fn::GetAtt": [
 "JavaLambdaRole",
 "Arn"
]
 },
 "Handler":
 "com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite::handleRequest",
 "Code": {
 "S3Bucket": {
 "Ref": "SourceCodeBucket"
 },
 "S3Key": {
 "Ref": "JavaLambdaS3Key"

CloudFormation Vorlage 433

AWS Encryption SDK Entwicklerhandbuch

 },
 "S3ObjectVersion": {
 "Ref": "JavaLambdaObjectVersionId"
 }
 },
 "Environment": {
 "Variables": {
 "TABLE_NAME": {
 "Ref": "JavaLambdaOutputTable"
 },
 "CMK_ARN": {
 "Fn::GetAtt": [
 "RegionKinesisCMK",
 "Arn"
]
 }
 }
 }
 }
 },
 "JavaLambdaSourceMapping": {
 "Type": "AWS::Lambda::EventSourceMapping",
 "Properties": {
 "BatchSize": 1,
 "Enabled": true,
 "EventSourceArn": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 },
 "FunctionName": {
 "Ref": "JavaLambdaFunction"
 },
 "StartingPosition": "TRIM_HORIZON"
 }
 },
 "RegionKinesisCMK": {
 "Type": "AWS::KMS::Key",
 "Properties": {
 "Description": "Used to encrypt data passing through Kinesis Stream
 in this region",
 "Enabled": true,
 "KeyPolicy": {
 "Version": "2012-10-17",
 "Statement": [

CloudFormation Vorlage 434

AWS Encryption SDK Entwicklerhandbuch

 {
 "Effect": "Allow",
 "Principal": {
 "AWS": {
 "Fn::Sub": "arn:aws:iam::${AWS::AccountId}:root"
 }
 },
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey",
 "kms:CreateAlias",
 "kms:DeleteAlias",
 "kms:DescribeKey",
 "kms:DisableKey",
 "kms:EnableKey",
 "kms:PutKeyPolicy",
 "kms:ScheduleKeyDeletion",
 "kms:UpdateAlias",
 "kms:UpdateKeyDescription"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 {
 "Fn::GetAtt": [
 "PythonLambdaRole",
 "Arn"
]
 },
 {
 "Fn::GetAtt": [
 "JavaLambdaRole",
 "Arn"
]
 }
]
 },
 "Action": "kms:Decrypt",
 "Resource": "*"
 }
]

CloudFormation Vorlage 435

AWS Encryption SDK Entwicklerhandbuch

 }
 }
 },
 "RegionKinesisCMKAlias": {
 "Type": "AWS::KMS::Alias",
 "Properties": {
 "AliasName": {
 "Fn::Sub": "alias/${KeyAliasSuffix}"
 },
 "TargetKeyId": {
 "Ref": "RegionKinesisCMK"
 }
 }
 }
 }
}

YAML

Parameters:
 SourceCodeBucket:
 Type: String
 Description: S3 bucket containing Lambda source code zip files
 PythonLambdaS3Key:
 Type: String
 Description: S3 key containing Python Lambda source code zip file
 PythonLambdaObjectVersionId:
 Type: String
 Description: S3 version id for S3 key containing Python Lambda source code
 zip file
 JavaLambdaS3Key:
 Type: String
 Description: S3 key containing Python Lambda source code zip file
 JavaLambdaObjectVersionId:
 Type: String
 Description: S3 version id for S3 key containing Python Lambda source code
 zip file
 KeyAliasSuffix:
 Type: String
 Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)'
 StreamName:
 Type: String
 Description: Name to use for Kinesis Stream

CloudFormation Vorlage 436

AWS Encryption SDK Entwicklerhandbuch

Resources:
 InputStream:
 Type: AWS::Kinesis::Stream
 Properties:
 Name: !Ref StreamName
 ShardCount: 2
 PythonLambdaOutputTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 -
 AttributeName: id
 AttributeType: S
 KeySchema:
 -
 AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 1
 WriteCapacityUnits: 1
 PythonLambdaRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
 Policies:
 -
 PolicyName: PythonLambdaAccess
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action:
 - dynamodb:DescribeTable
 - dynamodb:BatchWriteItem

CloudFormation Vorlage 437

AWS Encryption SDK Entwicklerhandbuch

 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}
 -
 Effect: Allow
 Action:
 - dynamodb:PutItem
 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}*
 -
 Effect: Allow
 Action:
 - kinesis:GetRecords
 - kinesis:GetShardIterator
 - kinesis:DescribeStream
 - kinesis:ListStreams
 Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 PythonLambdaFunction:
 Type: AWS::Lambda::Function
 Properties:
 Description: Python consumer
 Runtime: python2.7
 MemorySize: 512
 Timeout: 90
 Role: !GetAtt PythonLambdaRole.Arn
 Handler:
 aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler
 Code:
 S3Bucket: !Ref SourceCodeBucket
 S3Key: !Ref PythonLambdaS3Key
 S3ObjectVersion: !Ref PythonLambdaObjectVersionId
 Environment:
 Variables:
 TABLE_NAME: !Ref PythonLambdaOutputTable
 PythonLambdaSourceMapping:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 BatchSize: 1
 Enabled: true
 EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 FunctionName: !Ref PythonLambdaFunction
 StartingPosition: TRIM_HORIZON
 JavaLambdaOutputTable:

CloudFormation Vorlage 438

AWS Encryption SDK Entwicklerhandbuch

 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 -
 AttributeName: id
 AttributeType: S
 KeySchema:
 -
 AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 1
 WriteCapacityUnits: 1
 JavaLambdaRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
 Policies:
 -
 PolicyName: JavaLambdaAccess
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action:
 - dynamodb:DescribeTable
 - dynamodb:BatchWriteItem
 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}
 -
 Effect: Allow
 Action:
 - dynamodb:PutItem

CloudFormation Vorlage 439

AWS Encryption SDK Entwicklerhandbuch

 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}*
 -
 Effect: Allow
 Action:
 - kinesis:GetRecords
 - kinesis:GetShardIterator
 - kinesis:DescribeStream
 - kinesis:ListStreams
 Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 JavaLambdaFunction:
 Type: AWS::Lambda::Function
 Properties:
 Description: Java consumer
 Runtime: java8
 MemorySize: 512
 Timeout: 90
 Role: !GetAtt JavaLambdaRole.Arn
 Handler:
 com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite::handleRequest
 Code:
 S3Bucket: !Ref SourceCodeBucket
 S3Key: !Ref JavaLambdaS3Key
 S3ObjectVersion: !Ref JavaLambdaObjectVersionId
 Environment:
 Variables:
 TABLE_NAME: !Ref JavaLambdaOutputTable
 CMK_ARN: !GetAtt RegionKinesisCMK.Arn
 JavaLambdaSourceMapping:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 BatchSize: 1
 Enabled: true
 EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 FunctionName: !Ref JavaLambdaFunction
 StartingPosition: TRIM_HORIZON
 RegionKinesisCMK:
 Type: AWS::KMS::Key
 Properties:
 Description: Used to encrypt data passing through Kinesis Stream in this
 region
 Enabled: true

CloudFormation Vorlage 440

AWS Encryption SDK Entwicklerhandbuch

 KeyPolicy:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 AWS: !Sub arn:aws:iam::${AWS::AccountId}:root
 Action:
 # Data plane actions
 - kms:Encrypt
 - kms:GenerateDataKey
 # Control plane actions
 - kms:CreateAlias
 - kms:DeleteAlias
 - kms:DescribeKey
 - kms:DisableKey
 - kms:EnableKey
 - kms:PutKeyPolicy
 - kms:ScheduleKeyDeletion
 - kms:UpdateAlias
 - kms:UpdateKeyDescription
 Resource: '*'
 -
 Effect: Allow
 Principal:
 AWS:
 - !GetAtt PythonLambdaRole.Arn
 - !GetAtt JavaLambdaRole.Arn
 Action: kms:Decrypt
 Resource: '*'
 RegionKinesisCMKAlias:
 Type: AWS::KMS::Alias
 Properties:
 AliasName: !Sub alias/${KeyAliasSuffix}
 TargetKeyId: !Ref RegionKinesisCMK

CloudFormation Vorlage 441

AWS Encryption SDK Entwicklerhandbuch

Versionen von AWS Encryption SDK

Die AWS Encryption SDK Sprachimplementierungen verwenden semantische Versionierung,
damit Sie den Umfang der Änderungen in den einzelnen Versionen leichter erkennen können. Eine
Änderung der Hauptversionsnummer, z. B. 1. x. x bis 2. x. x steht für eine grundlegende Änderung,
die wahrscheinlich Codeänderungen und eine geplante Bereitstellung erfordert. Wichtige Änderungen
in einer neuen Version wirken sich möglicherweise nicht auf jeden Anwendungsfall aus. Lesen Sie in
den Versionshinweisen nach, ob Sie davon betroffen sind. Eine Änderung in einer Nebenversion, wie
z. B. x. x auf x .2. x ist immer abwärtskompatibel, kann aber veraltete Elemente enthalten.

Verwenden Sie nach Möglichkeit die neueste Version von AWS Encryption SDK in der von Ihnen
gewählten Programmiersprache. Die Wartungs- und Supportrichtlinien für jede Version unterscheiden
sich je nach Implementierung der Programmiersprache. Einzelheiten zu den unterstützten Versionen
in Ihrer bevorzugten Programmiersprache finden Sie in der SUPPORT_POLICY.rst Datei im
zugehörigen GitHubRepository.

Wenn Upgrades neue Funktionen beinhalten, die eine spezielle Konfiguration erfordern, um
Verschlüsselungs- oder Entschlüsselungsfehler zu vermeiden, stellen wir eine Zwischenversion und
detaillierte Anweisungen zu deren Verwendung zur Verfügung. Zum Beispiel Versionen 1.7. x und
1.8. x sind als Übergangsversionen konzipiert, mit denen Sie ein Upgrade von Versionen vor 1.7
durchführen können. x auf Versionen 2.0. x und später. Details hierzu finden Sie unter Migrieren Sie
Ihre AWS Encryption SDK.

Note

Das X in einer Versionsnummer steht für einen beliebigen Patch der Haupt- und
Nebenversion. Zum Beispiel Version 1.7. x steht für alle Versionen, die mit 1.7 beginnen,
einschließlich 1.7.1 und 1.7.9.
Neue Sicherheitsfunktionen wurden ursprünglich in den AWS Encryption CLI Versionen 1.7
veröffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Die folgenden Tabellen bieten einen Überblick über die wichtigsten Unterschiede zwischen den
unterstützten Versionen von AWS Encryption SDK für die einzelnen Programmiersprachen.

442

https://semver.org/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

C

Eine ausführliche Beschreibung aller Änderungen finden Sie in der Datei CHANGELOG.md im aws-
encryption-sdk-cRepository unter. GitHub

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

1,0 Erstversion.1.x

1,7 Updates für AWS
Encryption SDK , die
Benutzern früherer
Versionen helfen,
auf Versionen 2.0
zu aktualisieren. x
und später. Weitere
Informationen finden
Sie in Version 1.7. x.

End-of-Support Phase

2.0 Aktualisierungen der
AWS Encryption SDK.
Weitere Informati
onen finden Sie unter
Version 2.0. x.

2.2 Verbesserungen am
Prozess der Nachricht
enentschlüsselung.

2.x

2.3 Fügt Unterstützung
für Schlüssel AWS
KMS mit mehreren
Regionen hinzu.

Allgemeine Verfügbar
keit (GA)

C 443

https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

C#/.NET

Eine ausführliche Beschreibung aller Änderungen finden Sie in der Datei CHANGELOG.md im
Repository unter. aws-encryption-sdk-net GitHub

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

3.x 3.1.0 Erstversion. Ende des Supports

Version 3.x von AWS
Encryption SDK
für.NET hat das Ende
des Support erreicht.
Bitte führen Sie ein
Upgrade auf 4.x
durch.

4.x 4,0 Integriert die Unterstüt
zung für den AWS
KMS hierarchischen
Schlüsselbund,
den erforderlichen
Verschlüsselungsko
ntext (CMM) und
asymmetrische RSA-
Schlüsselringe. AWS
KMS

Allgemeine Verfügbar
keit (GA)

Befehlszeilenschnittstelle (CLI)

Eine ausführliche Beschreibung aller Änderungen finden Sie unter Versionen der AWS Encryption
CLI und in der Datei Changelog.rst im Repository auf. aws-encryption-sdk-cli GitHub

C#/.NET 444

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

1,0 Erstversion.1.x

1,7 Updates für AWS
Encryption SDK , die
Benutzern früherer
Versionen helfen,
auf Versionen 2.0
zu aktualisieren. x
und später. Weitere
Informationen finden
Sie in Version 1.7. x.

End-of-Support Phase

2.0 Aktualisierungen der
AWS Encryption SDK.
Weitere Informati
onen finden Sie unter
Version 2.0. x.

2.x

2.1 Entfernt den --
discovery
Parameter und
ersetzt ihn durch das
discovery Attribut
des --wrapping-
keys Parameters.

Version 2.1.0 der
AWS Encryption CLI
entspricht Version 2.0
in anderen Programmi
ersprachen.

End-of-Support Phase

Befehlszeilenschnittstelle (CLI) 445

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

2.2 Verbesserungen am
Prozess der Nachricht
enentschlüsselung.

3.x 3.0 Fügt Unterstützung
für Schlüssel AWS
KMS mit mehreren
Regionen hinzu.

End-of-Support Phase

4,0 Die AWS Encryptio
n CLI unterstützt
Python 2 oder Python
3.4 nicht mehr. Ab
Hauptversion 4. x der
AWS Encryption CLI,
nur Python 3.5 oder
höher wird unterstützt.

4.1 Die AWS Encryption
CLI unterstützt Python
3.5 nicht mehr. Ab
Version 4.1. x der
AWS Encryption CLI,
nur Python 3.6 oder
höher wird unterstützt.

4.x

4.2 Die AWS Encryption
CLI unterstützt Python
3.6 nicht mehr. Ab
Version 4.2. x der
AWS Encryption CLI,
nur Python 3.7 oder
höher wird unterstützt.

Allgemeine Verfügbar
keit (GA)

Befehlszeilenschnittstelle (CLI) 446

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

Java
Eine ausführliche Beschreibung aller Änderungen finden Sie in der Datei Changelog.rst im Repository
unter. aws-encryption-sdk-java GitHub

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

1,0 Erstversion.

1.3 Integriert die Unterstüt
zung für den Manager
für kryptografische
Materialien und das
Zwischenspeichern
von Datenschlüsseln.
Auf die determini
stische IV-Generation
umgestellt.

1.6.1 Verwirft und
AwsCrypto
.encryptS
tring() und
ersetzt sie durch
AwsCrypto
.decryptS
tring() und.
AwsCrypto
.encryptD
ata() AwsCrypto
.decryptData()

1.x

1,7 Updates für, AWS
Encryption SDK die
Benutzern früherer
Versionen beim

End-of-Support Phase

Java 447

https://github.com/aws/aws-encryption-sdk-java/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-java/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

Upgrade auf Version
2.0 helfen. x und
später. Weitere
Informationen finden
Sie in Version 1.7. x.

2.0 Aktualisierungen der
AWS Encryption SDK.
Weitere Informati
onen finden Sie unter
Version 2.0. x.

2.2 Verbesserungen am
Prozess der Nachricht
enentschlüsselung.

2.3 Fügt Unterstützung
für Schlüssel AWS
KMS mit mehreren
Regionen hinzu.

2.x

2.4 Fügt Unterstützung
für AWS SDK for Java
2.x hinzu.

Allgemeine Verfügbar
keit (GA)

Version 2.x von
AWS-Verschlüsselun
gs-SDK for Java
wird 2024 in den
Wartungsmodus
wechseln.

Java 448

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

3.x 3.0 Integriert die AWS-
Verschlüsselungs-
SDK for Java in die
Material Providers
Library (MPL).

Integriert die Unterstüt
zung für symmetris
che und asymmetri
sche AWS KMS RSA-
Schlüsselringe, AWS
KMS ECDH-Schl
üsselringe, AWS
KMS hierarchische
Schlüsselringe, Raw
AES-Schlüsselanhän
ger, Raw RSA-Schlü
sselanhänger, Raw
ECDH-Schlüsselring
e, Multi-Keyrings und
den erforderlichen
Verschlüsselungsko
ntext CMM.

Allgemeine Verfügbar
keit (GA)

Go

Eine detaillierte Beschreibung aller Änderungen finden Sie in der Datei CHANGELOG.md im Go-
Verzeichnis des aws-encryption-sdkRepositorys. GitHub

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

0.1. x 0.1.0 Erstversion. Allgemeine Verfügbar
keit (GA)

Go 449

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

JavaScript

Eine ausführliche Beschreibung aller Änderungen finden Sie in der Datei CHANGELOG.md im aws-
encryption-sdk-javascriptRepository unter. GitHub

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

1,0 Erstversion.1.x

1,7 Updates für AWS
Encryption SDK , die
Benutzern früherer
Versionen helfen,
auf Versionen 2.0
zu aktualisieren. x
und später. Weitere
Informationen finden
Sie in Version 1.7. x.

End-of-Support Phase

2.0 Aktualisierungen der
AWS Encryption SDK.
Weitere Informati
onen finden Sie unter
Version 2.0. x.

2.2 Verbesserungen des
Entschlüsselungspr
ozesses für Nachricht
en.

2.x

2.3 Fügt Unterstützung
für Schlüssel AWS
KMS mit mehreren
Regionen hinzu.

End-of-Support Phase

JavaScript 450

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

3.x 3.0 Entfernt die CI-
Abdeckung für Knoten
10. Führt ein Upgrade
der Abhängigkeiten
durch, sodass Knoten
8 und Knoten 10
nicht mehr unterstützt
werden.

Wartung

Der Support für
Version 3.x von AWS-
Verschlüsselungs-
SDK for JavaScript
endet am 17. Januar
2024.

4.x 4,0 Erfordert Version
3 der AWS-Versc
hlüsselungs-SDK for
JavaScript s, kms-
client um den
AWS KMS Schlüssel
bund verwenden zu
können.

Allgemeine Verfügbar
keit (GA)

Python

Eine ausführliche Beschreibung aller Änderungen finden Sie in der Datei Changelog.rst im Repository
unter. aws-encryption-sdk-python GitHub

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

1,0 Erstversion.1.x

1.3 Integriert die Unterstüt
zung für den Manager
für kryptografische
Materialien und das
Zwischenspeichern
von Datenschlüsseln.
Auf die determini

End-of-Support Phase

Python 451

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-python/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-python/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

stische IV-Generation
umgestellt.

1,7 Updates für AWS
Encryption SDK , die
Benutzern früherer
Versionen beim
Upgrade auf Version
2.0 helfen. x und
später. Weitere
Informationen finden
Sie in Version 1.7. x.

2.0 Aktualisierungen der
AWS Encryption SDK.
Weitere Informati
onen finden Sie unter
Version 2.0. x.

2.2 Verbesserungen des
Entschlüsselungspr
ozesses für Nachricht
en.

2.x

2.3 Fügt Unterstützung
für Schlüssel AWS
KMS mit mehreren
Regionen hinzu.

End-of-Support Phase

Python 452

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

3.x 3.0 Das unterstützt
Python 2 oder Python
3.4 nicht AWS-Versc
hlüsselungs-SDK
for Python mehr. Ab
Hauptversion 3. x
von der AWS-Versc
hlüsselungs-SDK for
Python, nur Python
3.5 oder höher wird
unterstützt.

Allgemeine Verfügbar
keit (GA)

4.x 4,0 Integriert die AWS-
Verschlüsselungs-
SDK for Python in die
Material Providers
Library (MPL).

Allgemeine Verfügbar
keit (GA)

Rust
Eine detaillierte Beschreibung aller Änderungen finden Sie in der Datei CHANGELOG.md im Rust-
Verzeichnis des Repositorys auf aws-encryption-sdk. GitHub

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

1.x 1,0 Erstversion. Allgemeine Verfügbar
keit (GA)

Versionsdetails
In der folgenden Liste werden die Hauptunterschiede zwischen den unterstützten Versionen von
beschrieben AWS Encryption SDK.

Themen

Rust 453

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

• Versionen vor 1.7. x

• Version 1.7. x

• Version 2.0. x

• Version 2.2. x

• Version 2.3. x

Versionen vor 1.7. x

Note

Alle 1. x. x Versionen von AWS Encryption SDK befinden sich in der end-of-supportPhase.
Aktualisieren Sie so schnell wie möglich auf die neueste verfügbare Version von AWS
Encryption SDK für Ihre Programmiersprache. Um ein Upgrade von einer AWS Encryption
SDK Version vor 1.7 durchzuführen. x, Sie müssen zuerst auf 1.7 aktualisieren. x. Details
hierzu finden Sie unter Migrieren Sie Ihre AWS Encryption SDK.

Versionen von AWS Encryption SDK früher als 1.7. x bieten wichtige Sicherheitsfunktionen, darunter
Verschlüsselung mit dem Advanced Encryption Standard Algorithm in Galois/Counter Mode (AES-
GCM), eine HMAC-basierte extract-and-expand Schlüsselableitungsfunktion (HKDF), Signierung und
einen 256-Bit-Verschlüsselungsschlüssel. Diese Versionen unterstützen jedoch nicht die von uns
empfohlenen Best Practices, einschließlich Key Commitment.

Version 1.7. x

Note

Alle 1. x. x Versionen von AWS Encryption SDK befinden sich in der end-of-supportPhase.

Version 1.7. x wurde entwickelt, um Benutzern früherer Versionen von das Upgrade AWS Encryption
SDK auf Version 2.0 zu erleichtern. x und später. Wenn Sie mit dem noch nicht vertraut sind AWS
Encryption SDK, können Sie diese Version überspringen und mit der neuesten verfügbaren Version
in Ihrer Programmiersprache beginnen.

Version 1.7. x ist vollständig abwärtskompatibel; es führt keine grundlegenden Änderungen ein
und ändert auch nicht das Verhalten von. AWS Encryption SDK Es ist auch vorwärtskompatibel; es

Versionen vor 1.7. x 454

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

ermöglicht Ihnen, Ihren Code so zu aktualisieren, dass er mit Version 2.0 kompatibel ist. x. Es enthält
neue Funktionen, aktiviert sie jedoch nicht vollständig. Und es erfordert Konfigurationswerte, die
verhindern, dass Sie sofort alle neuen Funktionen übernehmen, bis Sie bereit sind.

Version 1.7. x beinhaltet die folgenden Änderungen:

AWS KMS Aktualisierungen des Master Key Providers (erforderlich)

Version 1.7. x führt neue Konstruktoren für AWS-Verschlüsselungs-SDK for Java und ein AWS-
Verschlüsselungs-SDK for Python , die explizit AWS KMS Master-Key-Anbieter entweder im
strikten Modus oder im Discovery-Modus erstellen. Diese Version fügt ähnliche Änderungen an
der AWS Encryption SDK Befehlszeilenschnittstelle (CLI) hinzu. Details hierzu finden Sie unter
Aktualisierung der AWS KMS Hauptschlüsselanbieter.

• Im strikten Modus benötigen AWS KMS Hauptschlüsselanbieter eine Liste von Wrapping-
Schlüsseln, und sie verschlüsseln und entschlüsseln nur mit den von Ihnen angegebenen
Wrapping-Schlüsseln. Dies ist eine AWS Encryption SDK bewährte Methode, mit der
sichergestellt wird, dass Sie die Umschließungsschlüssel verwenden, die Sie verwenden
möchten.

• Im Discovery-Modus AWS KMS akzeptieren Master-Key-Anbieter keine Wrap-Schlüssel.
Sie können sie nicht zum Verschlüsseln verwenden. Beim Entschlüsseln können sie einen
beliebigen Umschließungsschlüssel verwenden, um einen verschlüsselten Datenschlüssel zu
entschlüsseln. Sie können jedoch die für die Entschlüsselung verwendeten Wrapping-Schlüssel
auf diese beschränken. AWS-Konten Die Kontofilterung ist optional, aber es ist eine bewährte
Methode, die wir empfehlen.

Die Konstruktoren, die frühere Versionen von AWS KMS Master-Key-Providern erstellen,
sind in Version 1.7 veraltet. x und wurde in Version 2.0 entfernt. x. Diese Konstruktoren
instanziieren Masterschlüsselanbieter, die mit den von Ihnen angegebenen Wrapping-
Schlüsseln verschlüsseln. Sie entschlüsseln jedoch verschlüsselte Datenschlüssel mithilfe
des Umschließungsschlüssels, mit dem sie verschlüsselt wurden, ohne Rücksicht auf die
angegebenen Umschließungsschlüssel. Benutzer können unbeabsichtigt Nachrichten mit
Umschließungsschlüsseln entschlüsseln, die sie nicht verwenden wollen, auch AWS KMS keys in
anderen AWS-Konten Regionen.

An den Konstruktoren für AWS KMS Hauptschlüssel wurden keine Änderungen vorgenommen.
Beim Verschlüsseln und Entschlüsseln verwenden die AWS KMS Hauptschlüssel nur die, AWS
KMS key die Sie angeben.

Version 1.7. x 455

AWS Encryption SDK Entwicklerhandbuch

AWS KMS Aktualisierungen des Schlüsselbundes (optional)

Version 1.7. x fügt den AWS-Verschlüsselungs-SDK for JavaScript Implementierungen AWS-
Verschlüsselungs-SDK for C und einen neuen Filter hinzu, der die AWS KMS Erkennung von
Schlüsselanhängern auf bestimmte Bereiche beschränkt. AWS-Konten Dieser neue Kontofilter
ist optional, aber er ist eine bewährte Methode, die wir empfehlen. Details hierzu finden Sie unter
AWS KMS Schlüsselanhänger aktualisieren.

Es wurden keine Änderungen an den Konstruktoren für AWS KMS Schlüsselanhänger
vorgenommen. AWS KMS Standardschlüsselringe verhalten sich im strikten Modus wie
Hauptschlüsselanbieter. AWS KMS Discovery-Schlüsselringe werden explizit im Discovery-Modus
erstellt.

Übergabe einer Schlüssel-ID an Decrypt AWS KMS

Ab Version 1.7. x, wenn verschlüsselte Datenschlüssel entschlüsselt werden, gibt der AWS KMS
key in seinen Aufrufen der AWS KMS Decrypt-Operation AWS Encryption SDK immer an. Der
AWS Encryption SDK ruft den Schlüssel-ID-Wert für AWS KMS key aus den Metadaten in jedem
verschlüsselten Datenschlüssel ab. Für diese Funktion sind keine Codeänderungen erforderlich.

Die Angabe der Schlüssel-ID von AWS KMS key ist nicht erforderlich, um Chiffretext zu
entschlüsseln, der mit einem KMS-Schlüssel mit symmetrischer Verschlüsselung verschlüsselt
wurde, ist jedoch eine bewährte Methode.AWS KMS Wie bei der Angabe von Wrapping Keys in
Ihrem Schlüsselanbieter wird bei dieser Vorgehensweise sichergestellt, dass AWS KMS nur mit
dem Wrapping-Schlüssel entschlüsselt wird, den Sie verwenden möchten.

Entschlüsseln Sie Chiffretext mit Schlüsselbindung

Version 1.7. x kann Chiffretext entschlüsseln, der mit oder ohne Schlüsselbindung verschlüsselt
wurde. Es kann jedoch keinen Chiffretext mit Schlüsselbindung verschlüsseln. Mit dieser
Eigenschaft können Sie Anwendungen vollständig bereitstellen, die mit Key Commitment
verschlüsselten Chiffretext entschlüsseln können, bevor sie jemals auf einen solchen Chiffretext
stoßen. Da diese Version Nachrichten entschlüsselt, die ohne Schlüsselbindung verschlüsselt
wurden, müssen Sie keinen Chiffretext erneut verschlüsseln.

Um dieses Verhalten zu implementieren, Version 1.7. x enthält eine neue
Konfigurationseinstellung für Commitment-Richtlinien, die festlegt, ob sie mit Key Commitment
ver- oder entschlüsseln AWS Encryption SDK können. In Version 1.7. x, der einzig gültige Wert
für die Commitment-RichtlinieForbidEncryptAllowDecrypt, wird bei allen Verschlüsselungs-
und Entschlüsselungsvorgängen verwendet. Dieser Wert verhindert, dass der AWS Encryption

Version 1.7. x 456

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId

AWS Encryption SDK Entwicklerhandbuch

SDK mit einer der neuen Algorithmus-Suiten verschlüsselt wird, die Key Commitment beinhalten.
Er ermöglicht die AWS Encryption SDK Entschlüsselung von Chiffretext mit und ohne
Schlüsselbindung.

In Version 1.7 gibt es zwar nur einen gültigen Wert für die Verpflichtungspolitik. x, wir verlangen,
dass Sie diesen Wert explizit festlegen können, wenn Sie den in dieser Version APIs eingeführten
neuen Wert verwenden. Wenn Sie den Wert explizit festlegen, wird verhindert, dass sich Ihre
Verpflichtungsrichtlinie automatisch ändert, require-encrypt-require-decrypt wenn Sie
auf Version 2.1 aktualisieren. x. Stattdessen können Sie Ihre Verpflichtungspolitik schrittweise
migrieren.

Algorithmus-Suiten mit hohem Engagement

Version 1.7. x enthält zwei neue Algorithmus-Suiten, die Key Commitment unterstützen.
Eine beinhaltet das Signieren, die andere nicht. Wie bereits früher unterstützte Algorithmus-
Suiten beinhalten diese beiden neuen Algorithmus-Suiten Verschlüsselung mit AES-GCM,
einen 256-Bit-Verschlüsselungsschlüssel und eine HMAC-basierte extract-and-expand
Schlüsselableitungsfunktion (HKDF).

Die standardmäßige Algorithmussuite, die für die Verschlüsselung verwendet wird, ändert sich
jedoch nicht. Diese Algorithmus-Suiten wurden zu Version 1.7 hinzugefügt. x, um Ihre Anwendung
für die Verwendung in den Versionen 2.0 vorzubereiten. x und später.

Änderungen an der CMM-Implementierung

Version 1.7. x führt Änderungen an der Standardschnittstelle des Cryptographic Materials
Manager (CMM) ein, um die Schlüsselübergabe zu unterstützen. Diese Änderung wirkt sich nur
auf Sie aus, wenn Sie ein benutzerdefiniertes CMM geschrieben haben. Einzelheiten finden Sie in
der API-Dokumentation oder im GitHub Repository für Ihre Programmiersprache.

Version 2.0. x

Ausführung 2.0. x unterstützt die neuen Sicherheitsfunktionen AWS Encryption SDK, die in
der angeboten werden, einschließlich spezifizierter Wrapping Keys und Key Commitment. Zur
Unterstützung dieser Funktionen, Version 2.0. x enthält wichtige Änderungen für frühere Versionen
von AWS Encryption SDK. Sie können sich auf diese Änderungen vorbereiten, indem Sie Version
1.7 bereitstellen. x. Ausführung 2.0. x enthält alle neuen Funktionen, die in Version 1.7 eingeführt
wurden. x mit den folgenden Ergänzungen und Änderungen.

Version 2.0. x 457

AWS Encryption SDK Entwicklerhandbuch

Note

Version 2. x. x der AWS-Verschlüsselungs-SDK for Python, AWS-Verschlüsselungs-SDK for
JavaScript, und die AWS Encryption CLI befinden sich in der end-of-supportPhase.
Informationen zur Unterstützung und Wartung dieser AWS Encryption SDK Version in
Ihrer bevorzugten Programmiersprache finden Sie in der SUPPORT_POLICY.rst Datei im
zugehörigen GitHubRepository.

AWS KMS Hauptschlüsselanbieter

Die ursprünglichen Konstruktoren des AWS KMS Hauptschlüsselanbieters, die in Version 1.7
veraltet waren. x wurden in Version 2.0 entfernt. x. Sie müssen AWS KMS Master-Key-Anbieter
explizit im strikten Modus oder im Discovery-Modus erstellen.

Verschlüsseln und entschlüsseln Sie Chiffretext mit Schlüsselzusage

Version 2.0. x kann Chiffretext mit oder ohne Schlüsselbindung ver- und entschlüsseln. Sein
Verhalten wird durch die Richtlinieneinstellung „Commitment“ bestimmt. Standardmäßig
verschlüsselt es immer mit Key Commitment und entschlüsselt nur Chiffretext, der mit Key
Commitment verschlüsselt wurde. Sofern Sie die Verpflichtungsrichtlinie nicht ändern, AWS
Encryption SDK werden Chiffretexte, die mit einer früheren Version von, einschließlich Version
1.7, verschlüsselt wurden, nicht entschlüsselt. AWS Encryption SDKx.

Important

Standardmäßig Version 2.0. x entschlüsselt keinen Chiffretext, der ohne Schlüsselbindung
verschlüsselt wurde. Wenn Ihre Anwendung möglicherweise auf einen Chiffretext
stößt, der ohne Schlüsselzuweisung verschlüsselt wurde, legen Sie einen Wert für die
Commitment-Richtlinie mit fest. AllowDecrypt

In Version 2.0. x, die Richtlinieneinstellung für Verpflichtungen hat drei gültige Werte:

• ForbidEncryptAllowDecrypt— Sie AWS Encryption SDK können nicht mit dem Schlüssel
verschlüsseln. Es kann Chiffretexte entschlüsseln, die mit oder ohne Schlüsselbindung
verschlüsselt wurden.

• RequireEncryptAllowDecrypt— Sie AWS Encryption SDK müssen mit Schlüsselbindung
verschlüsseln. Es kann Chiffretexte entschlüsseln, die mit oder ohne Schlüsselbindung
verschlüsselt wurden.

Version 2.0. x 458

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

• RequireEncryptRequireDecrypt(Standard) — Sie AWS Encryption SDK müssen mit
Schlüsselzuweisung verschlüsseln. Es entschlüsselt nur Chiffretexte mit Schlüsselbindung.

Wenn Sie von einer früheren Version von auf Version 2.0 migrieren. AWS Encryption SDK x,
setzen Sie die Commitment-Richtlinie auf einen Wert, der sicherstellt, dass Sie alle vorhandenen
Chiffretexte entschlüsseln können, auf die Ihre Anwendung stoßen könnte. Sie werden diese
Einstellung wahrscheinlich im Laufe der Zeit anpassen.

Version 2.2. x

Integriert die Unterstützung für digitale Signaturen und die Beschränkung verschlüsselter
Datenschlüssel.

Note

Version 2. x. x der AWS-Verschlüsselungs-SDK for Python, AWS-Verschlüsselungs-SDK for
JavaScript, und die AWS Encryption CLI befinden sich in der end-of-supportPhase.
Informationen zur Unterstützung und Wartung dieser AWS Encryption SDK Version in
Ihrer bevorzugten Programmiersprache finden Sie in der SUPPORT_POLICY.rst Datei im
zugehörigen GitHubRepository.

Digitale Signaturen

Um den Umgang mit digitalen Signaturen beim Entschlüsseln zu verbessern, AWS Encryption
SDK umfasst das die folgenden Funktionen:

• Nicht-Streaming-Modus — gibt Klartext erst zurück, nachdem alle Eingaben verarbeitet
wurden, einschließlich der Überprüfung der digitalen Signatur, falls vorhanden. Diese
Funktion verhindert, dass Sie vor der Überprüfung der digitalen Signatur Klartext verwenden.
Verwenden Sie diese Funktion immer dann, wenn Sie mit digitalen Signaturen verschlüsselte
Daten entschlüsseln (die standardmäßige Algorithmussuite). Da die AWS Encryption CLI
beispielsweise Daten immer im Streaming-Modus verarbeitet, sollten Sie den - -buffer
Parameter verwenden, wenn Sie Chiffretext mit digitalen Signaturen entschlüsseln.

• Entschlüsselungsmodus nur unsigniert — diese Funktion entschlüsselt nur unsignierten
Chiffretext. Wenn bei der Entschlüsselung eine digitale Signatur im Chiffretext gefunden
wird, schlägt der Vorgang fehl. Verwenden Sie diese Funktion, um zu verhindern, dass

Version 2.2. x 459

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

unbeabsichtigt Klartext aus signierten Nachrichten verarbeitet wird, bevor die Signatur überprüft
wird.

Beschränkung verschlüsselter Datenschlüssel

Sie können die Anzahl der verschlüsselten Datenschlüssel in einer verschlüsselten Nachricht
einschränken. Mit dieser Funktion können Sie beim Verschlüsseln einen falsch konfigurierten
Hauptschlüsselanbieter oder einen falsch konfigurierten Schlüsselbund oder beim Entschlüsseln
einen bösartigen Chiffretext erkennen.

Sie sollten verschlüsselte Datenschlüssel einschränken, wenn Sie Nachrichten aus einer nicht
vertrauenswürdigen Quelle entschlüsseln. Dadurch werden unnötige, teure und potenziell
erschöpfende Zugriffe auf Ihre Schlüsselinfrastruktur verhindert.

Version 2.3. x

Fügt Unterstützung für Schlüssel AWS KMS mit mehreren Regionen hinzu. Details hierzu finden Sie
unter Verwenden Sie mehrere Regionen AWS KMS keys.

Note

Die AWS Encryption CLI unterstützt ab Version 3.0 Schlüssel für mehrere Regionen. x.
Ausführung 2. x. x der AWS-Verschlüsselungs-SDK for Python, AWS-Verschlüsselungs-SDK
for JavaScript, und die AWS Encryption CLI befinden sich in der end-of-supportPhase.
Informationen zur Unterstützung und Wartung dieser AWS Encryption SDK Version in
Ihrer bevorzugten Programmiersprache finden Sie in der SUPPORT_POLICY.rst Datei im
zugehörigen GitHubRepository.

Version 2.3. x 460

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

Migrieren Sie Ihre AWS Encryption SDK
Das AWS Encryption SDK unterstützt mehrere interoperable
Programmiersprachenimplementierungen, von denen jede in einem Open-Source-Repository am
entwickelt wurde. GitHub Als bewährte Methode empfehlen wir, dass Sie AWS Encryption SDK für
jede Sprache die neueste Version von verwenden.

Sie können problemlos ein Upgrade von Version 2.0 durchführen. x oder höher von AWS Encryption
SDK auf die neueste Version. Allerdings die 2.0. Die X-Version von AWS Encryption SDK führt
wichtige neue Sicherheitsfunktionen ein, von denen einige grundlegende Änderungen darstellen. Um
ein Upgrade von Versionen vor 1.7 durchzuführen. x auf Versionen 2.0. x und höher, Sie müssen
zuerst auf die neueste Version 1 aktualisieren. x-Version. Die Themen in diesem Abschnitt sollen
Ihnen helfen, die Änderungen zu verstehen, die richtige Version für Ihre Anwendung auszuwählen
und sicher und erfolgreich auf die neuesten Versionen von zu migrieren AWS Encryption SDK.

Informationen zu wichtigen Versionen von finden Sie unterVersionen von AWS Encryption SDK. AWS
Encryption SDK

Important

Führen Sie kein direktes Upgrade von einer Version vor 1.7 durch. x auf Version 2.0. x oder
höher, ohne zuerst auf die neueste Version 1 aktualisiert zu haben. x-Version. Wenn Sie
direkt auf Version 2.0 aktualisieren. x oder höher und alle neuen Funktionen sofort aktivieren,
können Chiffretext, der unter älteren Versionen von verschlüsselt wurde, AWS Encryption
SDK nicht entschlüsseln. AWS Encryption SDK

Note

Die früheste Version von AWS Encryption SDK für .NET ist Version 3.0. x. Alle Versionen
von AWS Encryption SDK für .NET unterstützen die in 2.0 eingeführten bewährten
Sicherheitsmethoden. x der AWS Encryption SDK. Sie können sicher auf die neueste Version
aktualisieren, ohne Code- oder Datenänderungen vornehmen zu müssen.
AWS Verschlüsselungs-CLI: Verwenden Sie beim Lesen dieses Migrationshandbuchs die
Version 1.7. x Migrationsanweisungen für AWS Encryption CLI 1.8. x und verwende 2.0.
x Migrationsanweisungen für AWS Encryption CLI 2.1. x. Details hierzu finden Sie unter
Versionen der AWS Encryption CLI.

461

AWS Encryption SDK Entwicklerhandbuch

Neue Sicherheitsfunktionen wurden ursprünglich in den AWS Encryption CLI Versionen 1.7
veröffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Neuer Benutzer

Wenn Sie mit dem noch nicht vertraut sind AWS Encryption SDK, installieren Sie die neueste
Version von AWS Encryption SDK für Ihre Programmiersprache. Die Standardwerte aktivieren alle
Sicherheitsfunktionen von AWS Encryption SDK, einschließlich Verschlüsselung mit Signierung,
Schlüsselableitung und Schlüsselzusage. des AWS Encryption SDK

Aktuelle Benutzer

Wir empfehlen Ihnen, so bald wie möglich ein Upgrade von Ihrer aktuellen Version auf
die neueste verfügbare Version durchzuführen. Alles 1. X-Versionen von AWS Encryption
SDK befinden sich in der end-of-support Phase, ebenso wie spätere Versionen in einigen
Programmiersprachen. Einzelheiten zum Support- und Wartungsstatus von AWS Encryption SDK
in Ihrer Programmiersprache finden Sie unterSupport und Wartung.

AWS Encryption SDK Versionen 2.0. x und höher bieten neue Sicherheitsfunktionen zum
Schutz Ihrer Daten. AWS Encryption SDK Version 2.0 jedoch. x beinhaltet grundlegende
Änderungen, die nicht abwärtskompatibel sind. Um einen sicheren Übergang zu gewährleisten,
sollten Sie zunächst von Ihrer aktuellen Version auf die neueste Version 1 migrieren. x in Ihrer
Programmiersprache. Wann dein letzter 1. Die x-Version ist vollständig implementiert und
funktioniert erfolgreich. Sie können sicher auf die Versionen 2.0 migrieren. x und später. Dieser
zweistufige Prozess ist besonders für verteilte Anwendungen von entscheidender Bedeutung.

Weitere Informationen zu den AWS Encryption SDK Sicherheitsfunktionen, die diesen Änderungen
zugrunde liegen, finden Sie im Sicherheitsblog unter Verbesserte clientseitige Verschlüsselung:
Explizite KeyIds und zentrale Verpflichtung.AWS

Benötigen Sie Hilfe bei der Verwendung von mit dem? AWS-Verschlüsselungs-SDK for Java AWS
SDK for Java 2.x Siehe Voraussetzungen.

Themen

• Wie migriert und implementiert man AWS Encryption SDK

462

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Entwicklerhandbuch

• Aktualisierung der AWS KMS Hauptschlüsselanbieter

• AWS KMS Schlüsselanhänger aktualisieren

• Festlegung Ihrer Verpflichtungspolitik

• Fehlerbehebung bei der Migration auf die neuesten Versionen

Wie migriert und implementiert man AWS Encryption SDK

Bei der Migration von einer AWS Encryption SDK Version vor 1.7. x auf Version 2.0. x oder
höher, Sie müssen sicher auf Verschlüsselung mit Schlüsselbindung umsteigen. Andernfalls
wird Ihre Anwendung auf Chiffretexte stoßen, die sie nicht entschlüsseln kann. Wenn Sie AWS
KMS Hauptschlüsselanbieter verwenden, müssen Sie auf neue Konstruktoren aktualisieren, die
Hauptschlüsselanbieter im strikten Modus oder im Discovery-Modus erstellen.

Note

Dieses Thema richtet sich an Benutzer, die von früheren Versionen von AWS Encryption SDK
auf Version 2.0 migrieren. x oder höher. Wenn Sie mit dem noch nicht vertraut sind AWS
Encryption SDK, können Sie sofort damit beginnen, die neueste verfügbare Version mit den
Standardeinstellungen zu verwenden.

Um eine kritische Situation zu vermeiden, in der Sie den Chiffretext, den Sie lesen müssen, nicht
entschlüsseln können, empfehlen wir, die Migration und Bereitstellung in mehreren verschiedenen
Phasen durchzuführen. Stellen Sie sicher, dass jede Phase abgeschlossen und vollständig
bereitgestellt ist, bevor Sie mit der nächsten Phase beginnen. Dies ist besonders wichtig für verteilte
Anwendungen mit mehreren Hosts.

Phase 1: Aktualisieren Sie Ihre Anwendung auf die neueste Version 1. x-
Version

Auf die neueste Version aktualisieren 1. x-Version für Ihre Programmiersprache. Testen Sie
sorgfältig, implementieren Sie Ihre Änderungen und stellen Sie sicher, dass das Update auf alle
Zielhosts übertragen wurde, bevor Sie mit Phase 2 beginnen.

Wie migriert und implementiert man 463

AWS Encryption SDK Entwicklerhandbuch

Important

Vergewissern Sie sich, dass Ihre neueste Version 1 x-Version ist Version 1.7. x oder höher
von AWS Encryption SDK.

Das letzte 1. x-Versionen von AWS Encryption SDK sind abwärtskompatibel mit älteren
Versionen von AWS Encryption SDK und aufwärtskompatibel mit Versionen 2.0. x und später.
Sie enthalten die neuen Funktionen, die in Version 2.0 enthalten sind. x, enthalten jedoch sichere
Standardeinstellungen, die für diese Migration entwickelt wurden. Sie ermöglichen es Ihnen, Ihre
AWS KMS Hauptschlüsselanbieter bei Bedarf zu aktualisieren und die vollständige Implementierung
mit Algorithmus-Suiten durchzuführen, die Chiffretext mit Schlüsselbindung entschlüsseln können.

• Ersetzen Sie veraltete Elemente, einschließlich Konstruktoren für ältere Hauptschlüsselanbieter.
AWS KMS Stellen Sie in Python sicher, dass Sie Verfallswarnungen aktivieren. Codeelemente, die
in der neuesten Version veraltet sind. x-Versionen wurden aus den Versionen 2.0 entfernt. x und
später.

• Legen Sie Ihre Verpflichtungspolitik ausdrücklich auf festForbidEncryptAllowDecrypt. Dies ist
zwar der einzig gültige Wert in der letzten Version 1. X-Versionen, diese Einstellung ist erforderlich,
wenn Sie die in dieser Version APIs eingeführten verwenden. Dadurch wird verhindert, dass Ihre
Anwendung bei der Migration auf Version 2.0 verschlüsselten Chiffretext zurückweist, der ohne
Schlüsselzuweisung verschlüsselt wurde. x und höher. Details hierzu finden Sie unter the section
called “Festlegung Ihrer Verpflichtungspolitik”.

• Wenn Sie AWS KMS Hauptschlüsselanbieter verwenden, müssen Sie Ihre älteren
Hauptschlüsselanbieter auf Masterschlüsselanbieter aktualisieren, die den strikten Modus und
den Erkennungsmodus unterstützen. Dieses Update ist für die AWS-Verschlüsselungs-SDK for
Java AWS-Verschlüsselungs-SDK for Python, und die AWS Encryption CLI erforderlich. Wenn Sie
Master-Key-Anbieter im Discovery-Modus verwenden, empfehlen wir Ihnen, den Discovery-Filter
zu implementieren, der die verwendeten Wrapping-Schlüssel auf diese beschränkt AWS-Konten.
Dieses Update ist optional, aber es ist eine bewährte Methode, die wir empfehlen. Details hierzu
finden Sie unter Aktualisierung der AWS KMS Hauptschlüsselanbieter.

• Wenn Sie AWS KMS Erkennungsschlüsselringe verwenden, empfehlen wir Ihnen, einen
Erkennungsfilter einzubauen, der die bei der Entschlüsselung verwendeten Wrapping-
Schlüssel auf bestimmte Schlüssel beschränkt. AWS-Konten Dieses Update ist optional, aber
es ist eine bewährte Methode, die wir empfehlen. Details hierzu finden Sie unter AWS KMS
Schlüsselanhänger aktualisieren.

Phase 1: Aktualisieren Sie Ihre Anwendung auf die neueste Version 1. x-Version 464

https://docs.python.org/3/library/warnings.html

AWS Encryption SDK Entwicklerhandbuch

Phase 2: Aktualisieren Sie Ihre Anwendung auf die neueste Version

Nach der Bereitstellung der neuesten Version 1. Die x-Version wurde erfolgreich auf allen Hosts
installiert. Sie können ein Upgrade auf die Versionen 2.0 durchführen. x und später. Version 2.0. x
enthält wichtige Änderungen für alle früheren Versionen von AWS Encryption SDK. Wenn Sie jedoch
die in Phase 1 empfohlenen Codeänderungen vornehmen, können Sie Fehler bei der Migration zur
neuesten Version vermeiden.

Stellen Sie vor dem Update auf die neueste Version sicher, dass Ihre Verpflichtungsrichtlinie
durchgängig auf eingestellt istForbidEncryptAllowDecrypt. Abhängig
von Ihrer Datenkonfiguration können Sie dann in Ihrem eigenen Tempo zur
Standardeinstellung migrieren RequireEncryptAllowDecrypt und dann zur
StandardeinstellungRequireEncryptRequireDecrypt. Wir empfehlen eine Reihe von
Übergangsschritten wie das folgende Muster.

1. Beginnen Sie mit Ihrer Verpflichtungspolitik, die auf eingestellt
istForbidEncryptAllowDecrypt. Der AWS Encryption SDK kann Nachrichten mit Key
Commitment entschlüsseln, verschlüsselt aber noch nicht mit Key Commitment.

2. Wenn Sie bereit sind, aktualisieren Sie Ihre Verpflichtungsrichtlinie auf.
RequireEncryptAllowDecrypt Das AWS Encryption SDK beginnt mit der Verschlüsselung
Ihrer Daten mit Schlüsselverpflichtung. Es kann Chiffretext mit und ohne Schlüsselbindung
entschlüsseln.

Bevor Sie Ihre Verpflichtungsrichtlinie auf aktualisieren, vergewissern Sie
sichRequireEncryptAllowDecrypt, dass Ihre neueste Version 1. Die X-Version wird auf allen
Hosts bereitgestellt, einschließlich der Hosts aller Anwendungen, die den von Ihnen erstellten
Chiffretext entschlüsseln. Versionen der Vorgängerversion AWS Encryption SDK vor Version 1.7. x
kann Nachrichten, die mit Key Commitment verschlüsselt wurden, nicht entschlüsseln.

Dies ist auch ein guter Zeitpunkt, um Ihrer Anwendung Metriken hinzuzufügen, mit denen Sie
messen können, ob Sie immer noch Chiffretext ohne Schlüsselbindung verarbeiten. Auf diese
Weise können Sie feststellen, wann es sicher ist, Ihre Richtlinieneinstellung für Verpflichtungen
zu aktualisieren. RequireEncryptRequireDecrypt Für einige Anwendungen, z. B. solche,
die Nachrichten in einer Amazon SQS SQS-Warteschlange verschlüsseln, kann dies bedeuten,
dass lange genug gewartet wird, bis der gesamte in alten Versionen verschlüsselte Chiffretext
erneut verschlüsselt oder gelöscht wurde. Für andere Anwendungen, wie z. B. verschlüsselte S3-
Objekte, müssen Sie möglicherweise alle Objekte herunterladen, erneut verschlüsseln und erneut
hochladen.

Phase 2: Aktualisieren Sie Ihre Anwendung auf die neueste Version 465

AWS Encryption SDK Entwicklerhandbuch

3. Wenn Sie sicher sind, dass Sie keine Nachrichten ohne Schlüsselbindung verschlüsselt haben,
können Sie Ihre Verpflichtungsrichtlinie auf aktualisieren. RequireEncryptRequireDecrypt
Dieser Wert stellt sicher, dass Ihre Daten immer mit Schlüsselbindung ver- und entschlüsselt
werden. Diese Einstellung ist die Standardeinstellung, sodass Sie sie nicht explizit festlegen
müssen. Wir empfehlen sie jedoch. Eine explizite Einstellung erleichtert das Debuggen und
mögliche Rollbacks, die erforderlich sein könnten, wenn Ihre Anwendung auf Chiffretext stößt, der
ohne Schlüsselbindung verschlüsselt wurde.

Aktualisierung der AWS KMS Hauptschlüsselanbieter

Um auf die neueste Version zu migrieren 1. x-Version von AWS Encryption SDK und dann
auf Version 2.0. x oder höher, Sie müssen ältere AWS KMS Hauptschlüsselanbieter durch
Hauptschlüsselanbieter ersetzen, die explizit im strikten Modus oder Discovery-Modus erstellt
wurden. Ältere Hauptschlüsselanbieter sind in Version 1.7 veraltet. x und wurde in Version
2.0 entfernt. x. Diese Änderung ist für Anwendungen und Skripts erforderlich, die die AWS-
Verschlüsselungs-SDK for JavaAWS-Verschlüsselungs-SDK for Python, und die AWS Encryption CLI
verwenden. Die Beispiele in diesem Abschnitt zeigen Ihnen, wie Sie Ihren Code aktualisieren.

Note

Schalten Sie in Python Verfallswarnungen ein. Auf diese Weise können Sie die Teile Ihres
Codes identifizieren, die Sie aktualisieren müssen.

Wenn Sie einen AWS KMS Hauptschlüssel (keinen Hauptschlüsselanbieter) verwenden, können Sie
diesen Schritt überspringen. AWS KMS Hauptschlüssel sind nicht veraltet oder wurden nicht entfernt.
Sie verschlüsseln und entschlüsseln nur mit den von Ihnen angegebenen Wrapping-Schlüsseln.

Die Beispiele in diesem Abschnitt konzentrieren sich auf die Elemente Ihres Codes, die Sie ändern
müssen. Ein vollständiges Beispiel für den aktualisierten Code finden Sie im Abschnitt Beispiele des
GitHub Repositorys für Ihre Programmiersprache. Außerdem verwenden diese Beispiele in der Regel
Schlüssel ARNs zur Darstellung AWS KMS keys. Wenn Sie einen Hauptschlüsselanbieter für die
Verschlüsselung erstellen, können Sie einen beliebigen gültigen AWS KMS Schlüsselbezeichner
verwenden, um einen AWS KMS key darzustellen. Wenn Sie einen Hauptschlüsselanbieter für die
Entschlüsselung erstellen, müssen Sie einen Schlüssel-ARN verwenden.

Erfahren Sie mehr über Migration

Aktualisierung der AWS KMS Hauptschlüsselanbieter 466

https://docs.python.org/3/library/warnings.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Entwicklerhandbuch

Informationen zur Einrichtung Ihrer Verpflichtungsrichtlinie finden Sie für alle AWS Encryption SDK
Benutzer unterthe section called “Festlegung Ihrer Verpflichtungspolitik”.

Für AWS-Verschlüsselungs-SDK for JavaScript Benutzer AWS-Verschlüsselungs-SDK for C und
Benutzer finden Sie weitere Informationen zu einem optionalen Update für Schlüsselanhänger inAWS
KMS Schlüsselanhänger aktualisieren.

Themen

• Umstellung auf den strikten Modus

• In den Discovery-Modus migrieren

Umstellung auf den strikten Modus

Nach dem Update auf die neueste Version 1. x-Version von AWS Encryption SDK, ersetzen Sie Ihre
alten Hauptschlüsselanbieter durch Hauptschlüsselanbieter im strikten Modus. Im strikten Modus
müssen Sie die Wrapping-Schlüssel angeben, die beim Verschlüsseln und Entschlüsseln verwendet
werden sollen. Der AWS Encryption SDK verwendet nur die von Ihnen angegebenen Wrapping-
Schlüssel. Veraltete Hauptschlüsselanbieter können Daten mit jedem entschlüsseln AWS KMS key ,
der einen Datenschlüssel verschlüsselt hat, auch AWS KMS keys in verschiedenen AWS-Konten
Regionen.

Master-Key-Anbieter im strikten Modus wurden in Version 1.7 eingeführt. AWS Encryption SDK x. Sie
ersetzen ältere Master-Key-Anbieter, die in 1.7 veraltet sind. x und in 2.0 entfernt. x. Die Verwendung
von Master-Key-Anbietern im strikten Modus ist eine AWS Encryption SDK bewährte Methode.

Der folgende Code erstellt einen Hauptschlüsselanbieter im strikten Modus, den Sie zum
Verschlüsseln und Entschlüsseln verwenden können.

Java

Dieses Beispiel stellt Code in einer Anwendung dar, die die Version 1.6.2 oder früher von
verwendet. AWS-Verschlüsselungs-SDK for Java

In diesem Code wird die KmsMasterKeyProvider.builder() Methode verwendet, um
einen AWS KMS Hauptschlüsselanbieter zu instanziieren, der einen AWS KMS key als
Umschließungsschlüssel verwendet.

// Create a master key provider

Umstellung auf den strikten Modus 467

AWS Encryption SDK Entwicklerhandbuch

// Replace the example key ARN with a valid one
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .withKeysForEncryption(awsKmsKey)
 .build();

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.7 verwendet. x oder
höher von AWS-Verschlüsselungs-SDK for Java . Ein vollständiges Beispiel finden Sie unter
BasicEncryptionExample.java.

Die im vorherigen Beispiel verwendeten Builder.withKeysForEncryption() Methoden
Builder.build() und sind in Version 1.7 veraltet. x und wurden aus Version 2.0 entfernt. x.

Um auf einen Master-Key-Anbieter im strikten Modus zu aktualisieren, ersetzt dieser Code Aufrufe
veralteter Methoden durch einen Aufruf der neuen Builder.buildStrict() Methode. In
diesem Beispiel wird eine AWS KMS key als Schlüssel für den Zeilenumbruch angegeben, aber
die Builder.buildStrict() Methode kann auch eine Liste mit mehreren verwenden. AWS
KMS keys

// Create a master key provider in strict mode
// Replace the example key ARN with a valid one from your AWS-Konto.
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

Python

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.4.1 von verwendet. AWS-
Verschlüsselungs-SDK for Python Dieser Code verwendetKMSMasterKeyProvider, was in
Version 1.7 veraltet ist. x und wurde aus Version 2.0 entfernt. x. Bei der Entschlüsselung wird
jeder verwendet, der einen Datenschlüssel verschlüsselt hat AWS KMS key , unabhängig von
dem, was AWS KMS keys Sie angeben.

Beachten Sie, dass dies nicht veraltet KMSMasterKey ist oder entfernt wurde. Beim
Verschlüsseln und Entschlüsseln werden nur die von Ihnen angegebenen verwendet. AWS KMS
key

Umstellung auf den strikten Modus 468

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java

AWS Encryption SDK Entwicklerhandbuch

Create a master key provider
Replace the example key ARN with a valid one
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvider(
 key_ids=[key_1, key_2]
)

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.7 verwendet. x von AWS-
Verschlüsselungs-SDK for Python. Ein vollständiges Beispiel finden Sie unter basic_encryption.py.

Um auf einen Master-Key-Anbieter im strikten Modus zu aktualisieren, ersetzt
dieser Code den Aufruf von KMSMasterKeyProvider() durch einen Aufruf
vonStrictAwsKmsMasterKeyProvider().

Create a master key provider in strict mode
Replace the example key ARNs with valid values from your AWS-Konto
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[key_1, key_2]
)

AWS Encryption CLI

Dieses Beispiel zeigt, wie mit der AWS Encryption CLI Version 1.1.7 oder früher ver- und
entschlüsselt wird.

In Version 1.1.7 und früher geben Sie beim Verschlüsseln einen oder mehrere Hauptschlüssel
(oder Wrapping-Schlüssel) an, z. B. einen. AWS KMS key Beim Entschlüsseln können Sie
keine Umschließungsschlüssel angeben, es sei denn, Sie verwenden einen benutzerdefinierten
Hauptschlüsselanbieter. Die AWS Encryption CLI kann jeden Wrapping-Schlüssel verwenden, der
einen Datenschlüssel verschlüsselt hat.

\\ Replace the example key ARN with a valid one

Umstellung auf den strikten Modus 469

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/basic_encryption.py

AWS Encryption SDK Entwicklerhandbuch

$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --master-keys key=$keyArn \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Dieses Beispiel zeigt, wie mit der AWS Encryption CLI Version 1.7 ver- und entschlüsselt wird. x
oder höher. Vollständige Beispiele finden Sie unterBeispiele für die AWS Encryption CLI.

Der --master-keys Parameter ist in Version 1.7 veraltet. x und wurde in Version 2.0 entfernt. x.
Er wurde durch den --wrapping-keys Parameter by ersetzt, der für Befehle zum Verschlüsseln
und Entschlüsseln erforderlich ist. Dieser Parameter unterstützt den strikten Modus und den
Erkennungsmodus. Der strikte Modus ist eine AWS Encryption SDK bewährte Methode, mit der
sichergestellt wird, dass Sie den gewünschten Umbruchschlüssel verwenden.

Um auf den strikten Modus umzusteigen, verwenden Sie das Schlüsselattribut des --wrapping-
keys Parameters, um beim Verschlüsseln und Entschlüsseln einen Umschließungsschlüssel
anzugeben.

\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext

Umstellung auf den strikten Modus 470

AWS Encryption SDK Entwicklerhandbuch

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

In den Discovery-Modus migrieren

Ab Version 1.7. x, es hat sich bewährt AWS Encryption SDK , den strikten Modus für AWS KMS
Hauptschlüsselanbieter zu verwenden, d. h., beim Verschlüsseln und Entschlüsseln anzugeben,
dass Schlüssel eingeschlossen werden. Sie müssen beim Verschlüsseln immer Wrapping-Schlüssel
angeben. Es gibt jedoch Situationen, in denen die Angabe ARNs des Schlüssels AWS KMS
keys für die Entschlüsselung nicht praktikabel ist. Wenn Sie beispielsweise AWS KMS keys beim
Verschlüsseln Aliase zur Identifizierung verwenden, verlieren Sie den Vorteil von Aliasen, wenn
Sie beim Entschlüsseln den Schlüssel angeben müssen. ARNs Da sich Hauptschlüsselanbieter
im Erkennungsmodus wie die ursprünglichen Hauptschlüsselanbieter verhalten, können Sie sie
außerdem vorübergehend als Teil Ihrer Migrationsstrategie verwenden und später im strikten Modus
auf Hauptschlüsselanbieter umsteigen.

In solchen Fällen können Sie Hauptschlüsselanbieter im Erkennungsmodus verwenden. Bei
diesen Hauptschlüsselanbietern können Sie keine Schlüssel angeben, sodass Sie sie nicht
zum Verschlüsseln verwenden können. Bei der Entschlüsselung können sie jeden beliebigen
Umschließungsschlüssel verwenden, mit dem ein Datenschlüssel verschlüsselt wurde. Im Gegensatz
zu älteren Hauptschlüsselanbietern, die sich genauso verhalten, werden sie jedoch explizit im
Discovery-Modus erstellt. Wenn Sie Master-Key-Anbieter im Discovery-Modus verwenden, können
Sie die Anzahl der Wrapping-Schlüssel, die verwendet werden können, auf bestimmte Schlüssel
beschränken AWS-Konten. Dieser Erkennungsfilter ist optional, aber es handelt sich um eine
bewährte Methode, die wir empfehlen. Informationen zu AWS Partitionen und Konten finden Sie unter
Amazon Resource Names in der Allgemeine AWS-Referenz.

In den folgenden Beispielen werden ein AWS KMS Master-Key-Provider im Strict-Modus für
die Verschlüsselung und ein AWS KMS Master-Key-Provider im Discovery-Modus für die
Entschlüsselung erstellt. Der Hauptschlüsselanbieter im Erkennungsmodus verwendet einen
Erkennungsfilter, um die für die Entschlüsselung verwendeten Schlüssel auf die aws Partition und
auf ein bestimmtes Beispiel zu beschränken. AWS-Konten Obwohl der Kontofilter in diesem sehr
einfachen Beispiel nicht erforderlich ist, ist er eine bewährte Methode, die sehr nützlich ist, wenn eine
Anwendung Daten verschlüsselt und eine andere Anwendung die Daten entschlüsselt.

In den Discovery-Modus migrieren 471

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Encryption SDK Entwicklerhandbuch

Java

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.7 verwendet. x oder
höher von AWS-Verschlüsselungs-SDK for Java. Ein vollständiges Beispiel finden Sie unter
DiscoveryDecryptionExample.java.

Um einen Hauptschlüsselanbieter im strikten Modus für die Verschlüsselung zu
instanziieren, verwendet dieses Beispiel die Methode. Builder.buildStrict() Um einen
Hauptschlüsselanbieter im Discovery-Modus für die Entschlüsselung zu instanziieren, wird die
Methode verwendet. Builder.buildDiscovery() Die Builder.buildDiscovery()
Methode verwendet eine, DiscoveryFilter die den Wert AWS Encryption SDK auf AWS KMS
keys in der angegebenen AWS Partition und den angegebenen Konten begrenzt.

// Create a master key provider in strict mode for encrypting
// Replace the example alias ARN with a valid one from your AWS-Konto.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting
// Replace the example account IDs with valid values.
DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.asList("111122223333",
 "444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder()
 .buildDiscovery(accounts);

Python

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.7 verwendet. x oder höher
von AWS-Verschlüsselungs-SDK for Python . Ein vollständiges Beispiel finden Sie unter
discovery_kms_provider.py.

Um einen Hauptschlüsselanbieter im strikten Modus für die Verschlüsselung zu
erstellen, verwendet StrictAwsKmsMasterKeyProvider dieses Beispiel. Um einen
Hauptschlüsselanbieter im Discovery-Modus für die Entschlüsselung zu erstellen, wird
DiscoveryAwsKmsMasterKeyProvider with a verwendet, DiscoveryFilter das den
Wert AWS Encryption SDK auf AWS KMS keys in der angegebenen AWS Partition und den
angegebenen Konten begrenzt.

In den Discovery-Modus migrieren 472

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Create a master key provider in strict mode
Replace the example key ARN and alias ARNs with valid values from your AWS-Konto.
key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
key_2 = "arn:aws:kms:us-
west-2:444455556666:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[key_1, key_2]
)

Create a master key provider in discovery mode for decrypting
Replace the example account IDs with valid values
accounts = DiscoveryFilter(
 partition="aws",
 account_ids=["111122223333", "444455556666"]
)
aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvider(
 discovery_filter=accounts
)

AWS Encryption CLI

Dieses Beispiel zeigt, wie mit der AWS Encryption CLI Version 1.7 ver- und entschlüsselt wird.
x oder höher. Ab Version 1.7. x, der --wrapping-keys Parameter ist beim Verschlüsseln und
Entschlüsseln erforderlich. Der --wrapping-keys Parameter unterstützt den Strict-Modus und
den Discovery-Modus. Vollständige Beispiele finden Sie unterthe section called “Beispiele”.

Bei der Verschlüsselung gibt dieses Beispiel einen Umschließungsschlüssel an, der erforderlich
ist. Beim Entschlüsseln wird explizit der Erkennungsmodus ausgewählt, indem das discovery
Attribut des --wrapping-keys Parameters mit dem Wert von verwendet wird. true

Um die Anzahl der Schlüssel, die im Discovery-Modus verwendet werden AWS Encryption SDK
können, auf bestimmte Schlüssel zu beschränken AWS-Konten, werden in diesem Beispiel
die discovery-account Attribute discovery-partition und des --wrapping-keys
Parameters verwendet. Diese optionalen Attribute sind nur gültig, wenn das discovery Attribut
auf gesetzt isttrue. Sie müssen die discovery-account Attribute discovery-partition
und zusammen verwenden. Keines der Attribute ist alleine gültig.

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

In den Discovery-Modus migrieren 473

AWS Encryption SDK Entwicklerhandbuch

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyAlias \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys discovery=true \
 discovery-partition=aws \
 discovery-account=111122223333 \
 discovery-account=444455556666 \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

AWS KMS Schlüsselanhänger aktualisieren

Die AWS KMS Schlüsselbunde im AWS-Verschlüsselungs-SDK for C, im AWS Encryption SDK
für.NET und im AWS-Verschlüsselungs-SDK for JavaScriptunterstützen bewährte Methoden, da Sie
beim Verschlüsseln und Entschlüsseln angeben können, dass Schlüssel umschlossen werden. Wenn
Sie einen AWS KMS Discovery-Schlüsselbund erstellen, tun Sie dies explizit.

Note

Die früheste Version von AWS Encryption SDK für .NET ist Version 3.0. x. Alle Versionen
von AWS Encryption SDK für .NET unterstützen die in 2.0 eingeführten bewährten
Sicherheitsmethoden. x der AWS Encryption SDK. Sie können sicher auf die neueste Version
aktualisieren, ohne Code- oder Datenänderungen vornehmen zu müssen.

Wenn Sie auf die neueste Version aktualisieren 1. X-Version von AWS Encryption SDK, Sie können
einen Erkennungsfilter verwenden, um die Anzahl der Schlüssel, die ein AWS KMS Discovery-
Schlüsselbund oder ein AWS KMS regionaler Discovery-Schlüsselbund beim Entschlüsseln

AWS KMS Schlüsselanhänger aktualisieren 474

AWS Encryption SDK Entwicklerhandbuch

verwendet, auf bestimmte Schlüssel zu beschränken. AWS-KontenDas Filtern eines Discovery-
Schlüsselbunds ist eine bewährte Methode. AWS Encryption SDK

Die Beispiele in diesem Abschnitt zeigen Ihnen, wie Sie den Discovery-Filter zu einem AWS KMS
regionalen Discovery-Schlüsselbund hinzufügen.

Erfahren Sie mehr über Migration

Informationen zur Einrichtung Ihrer Verpflichtungsrichtlinie finden Sie für alle AWS Encryption SDK
Benutzer unterthe section called “Festlegung Ihrer Verpflichtungspolitik”.

Informationen zu einem erforderlichen Update für AWS-Verschlüsselungs-SDK for Java Master-Key-
Anbieter finden Sie für Benutzer von, und AWS Encryption CLI unterthe section called “Aktualisierung
der AWS KMS Hauptschlüsselanbieter”. AWS-Verschlüsselungs-SDK for Python

Möglicherweise haben Sie Code wie den folgenden in Ihrer Anwendung. In diesem Beispiel wird ein
AWS KMS regionaler Discovery-Schlüsselbund erstellt, für den nur Schlüssel in der Region USA
West (Oregon) (us-west-2) verwendet werden können. Dieses Beispiel stellt Code in AWS Encryption
SDK Versionen vor 1.7 dar. x. In den Versionen 1.7 ist es jedoch weiterhin gültig. x und später.

C

struct aws_cryptosdk_keyring *kms_regional_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()
 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })

JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

AWS KMS Schlüsselanhänger aktualisieren 475

AWS Encryption SDK Entwicklerhandbuch

Ab Version 1.7. x, Sie können jedem Discovery-Schlüsselbund einen AWS KMS Discovery-
Filter hinzufügen. Dieser Erkennungsfilter beschränkt den Wert AWS KMS keys , den er für die
Entschlüsselung verwenden AWS Encryption SDK kann, auf diejenigen in der angegebenen Partition
und den angegebenen Konten. Bevor Sie diesen Code verwenden, ändern Sie gegebenenfalls die
Partition und ersetzen Sie das Beispielkonto IDs durch ein gültiges Konto.

C

Ein vollständiges Beispiel finden Sie unter kms_discovery.cpp.

std::shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
 KmsKeyring::DiscoveryFilter::Builder("aws")
 .AddAccount("111122223333")
 .AddAccount("444455556666")
 .Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()

 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter));

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
 discovery,
 discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
 'aws' }
})

JavaScript Node.js

Ein vollständiges Beispiel finden Sie unter kms_filtered_discovery.ts.

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
 clientProvider,

AWS KMS Schlüsselanhänger aktualisieren 476

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts

AWS Encryption SDK Entwicklerhandbuch

 discovery,
 discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
 'aws' }
})

Festlegung Ihrer Verpflichtungspolitik
Key Commitment stellt sicher, dass Ihre verschlüsselten Daten immer im gleichen Klartext
entschlüsselt werden. Um diese Sicherheitseigenschaft ab Version 1.7 bereitzustellen. x
AWS Encryption SDK verwendet neue Algorithmus-Suiten mit hohem Engagement. Um
festzustellen, ob Ihre Daten mit Key Commitment ver- und entschlüsselt werden, verwenden Sie
die Konfigurationseinstellung der Commitment-Richtlinie. Das Verschlüsseln und Entschlüsseln von
Daten mit Key Commitment ist eine AWS Encryption SDK bewährte Methode.

Die Festlegung einer verbindlichen Richtlinie ist ein wichtiger Bestandteil des zweiten Schritts
im Migrationsprozess — der Migration von der letzten Version 1. x Versionen der beiden AWS
Encryption SDK Versionen 2.0. x und später. Nachdem Sie Ihre Verpflichtungsrichtlinie festgelegt
und geändert haben, sollten Sie Ihre Anwendung gründlich testen, bevor Sie sie in der Produktion
einsetzen. Hinweise zur Migration finden Sie unterWie migriert und implementiert man AWS
Encryption SDK.

Die Richtlinieneinstellung „Commitment“ hat in den Versionen 2.0 drei gültige Werte. x und später. In
der letzten 1. x-Versionen (beginnend mit Version 1.7. x), ForbidEncryptAllowDecrypt ist nur
gültig.

• ForbidEncryptAllowDecrypt— Sie AWS Encryption SDK können nicht mit Schlüsselzusage
verschlüsseln. Es kann Chiffretexte entschlüsseln, die mit oder ohne Schlüsselbindung
verschlüsselt wurden.

In der letzten Version 1. x-Versionen, dies ist der einzig gültige Wert. Es stellt sicher, dass
Sie erst dann mit Key Commitment verschlüsseln, wenn Sie vollständig bereit sind, mit Key
Commitment zu entschlüsseln. Wenn Sie den Wert explizit festlegen, wird verhindert, dass sich
Ihre Verpflichtungsrichtlinie automatisch ändert, require-encrypt-require-decrypt wenn
Sie auf Version 2.0 aktualisieren. x oder später. Stattdessen können Sie Ihre Verpflichtungspolitik
schrittweise migrieren.

• RequireEncryptAllowDecrypt— Das verschlüsselt AWS Encryption SDK immer mit
Schlüsselzusage. Es kann Chiffretexte entschlüsseln, die mit oder ohne Schlüsselbindung
verschlüsselt wurden. Dieser Wert wurde in Version 2.0 hinzugefügt. x.

Festlegung Ihrer Verpflichtungspolitik 477

AWS Encryption SDK Entwicklerhandbuch

• RequireEncryptRequireDecrypt— Der verschlüsselt und entschlüsselt AWS Encryption
SDK immer mit Schlüsselbindung. Dieser Wert wurde in Version 2.0 hinzugefügt. x. Dies ist der
Standardwert in den Versionen 2.0. x und später.

In der letzten 1. x-Versionen, der einzig gültige Wert der Verpflichtungspolice
istForbidEncryptAllowDecrypt. Nach der Migration auf Version 2.0. x oder später können
Sie Ihre Verpflichtungsrichtlinie schrittweise ändern, sobald Sie bereit sind. Aktualisieren Sie Ihre
Verpflichtungsrichtlinie RequireEncryptRequireDecrypt erst, wenn Sie sicher sind, dass Sie
keine Nachrichten ohne Schlüsselbindung verschlüsselt haben.

Diese Beispiele zeigen Ihnen, wie Sie Ihre Verpflichtungsrichtlinie in der neuesten Version
festlegen. x-Versionen und in den Versionen 2.0. x und später. Die Technik hängt von Ihrer
Programmiersprache ab.

Erfahren Sie mehr über Migration

Informationen zu AWS-Verschlüsselungs-SDK for Java den erforderlichen Änderungen an den AWS
Hauptschlüsselanbietern finden Sie unter, und die Encryption CLIthe section called “Aktualisierung
der AWS KMS Hauptschlüsselanbieter”. AWS-Verschlüsselungs-SDK for Python

Informationen zu einem optionalen Update für AWS-Verschlüsselungs-SDK for C Schlüsselanhänger
finden Sie unterAWS KMS Schlüsselanhänger aktualisieren. AWS-Verschlüsselungs-SDK for
JavaScript

Wie legen Sie Ihre Verpflichtungsrichtlinie fest

Die Methode, mit der Sie Ihre Verpflichtungspolitik festlegen, unterscheidet sich je nach
Sprachimplementierung geringfügig. Diese Beispiele zeigen Ihnen, wie das geht. Bevor Sie Ihre
Verpflichtungspolitik ändern, überprüfen Sie den mehrstufigen Ansatz unterWie migriert und
implementiert man.

C

Ab Version 1.7. x von AWS-Verschlüsselungs-SDK for C, Sie verwenden die
aws_cryptosdk_session_set_commitment_policy Funktion, um die
Verpflichtungsrichtlinie für Ihre Verschlüsselungs- und Entschlüsselungssitzungen festzulegen.
Die von Ihnen festgelegte Commitment-Richtlinie gilt für alle Verschlüsselungs- und
Entschlüsselungsvorgänge, die in dieser Sitzung aufgerufen werden.

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 478

AWS Encryption SDK Entwicklerhandbuch

Die aws_cryptosdk_session_new_from_cmm Funktionen
aws_cryptosdk_session_new_from_keyring und sind in Version
1.7 veraltet. x und in Version 2.0 entfernt. x. Diese Funktionen werden
durch aws_cryptosdk_session_new_from_cmm_2 Funktionen
aws_cryptosdk_session_new_from_keyring_2 und ersetzt, die eine Sitzung zurückgeben.

Wenn Sie das aws_cryptosdk_session_new_from_keyring_2 und
aws_cryptosdk_session_new_from_cmm_2 in der letzten Version verwenden 1. x-
Versionen, Sie müssen die aws_cryptosdk_session_set_commitment_policy Funktion
mit dem COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT Commitment-Policy-
Wert aufrufen. In den Versionen 2.0. x und höher ist der Aufruf dieser Funktion optional und
akzeptiert alle gültigen Werte. Die Standard-Commitment-Richtlinie für Versionen 2.0. x und höher
istCOMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Ein vollständiges Beispiel finden Sie unter string.cpp.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Create an AWS KMS keyring */
const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session =
 aws_cryptosdk_session_new_from_keyring_2(
 alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session,
 COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

...
/* Encrypt your data */

size_t plaintext_consumed_output;
aws_cryptosdk_session_process(encrypt_session,
 ciphertext_output,
 ciphertext_buf_sz_output,
 ciphertext_len_output,

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 479

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Entwicklerhandbuch

 plaintext_input,
 plaintext_len_input,
 &plaintext_consumed_output)
...

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);
struct aws_cryptosdk_session *decrypt_session =
 *aws_cryptosdk_session_new_from_keyring_2(
 alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session,
 COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Decrypt your ciphertext */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(decrypt_session,
 plaintext_output,
 plaintext_buf_sz_output,
 plaintext_len_output,
 ciphertext_input,
 ciphertext_len_input,
 &ciphertext_consumed_output)

C# / .NET

Der require-encrypt-require-decrypt Wert ist die Standard-Commitment-Richtlinie in
allen Versionen von AWS Encryption SDK für.NET. Sie können es als bewährte Methode explizit
festlegen, dies ist jedoch nicht erforderlich. Wenn Sie jedoch AWS Encryption SDK for .NET
verwenden, um Chiffretext zu entschlüsseln, der mit einer anderen Sprachimplementierung
von AWS Encryption SDK Without Key Commitment verschlüsselt wurde, müssen Sie den
Wert der Commitment-Richtlinie auf oder ändern. REQUIRE_ENCRYPT_ALLOW_DECRYPT
FORBID_ENCRYPT_ALLOW_DECRYPT Andernfalls schlagen Versuche, den Chiffretext zu
entschlüsseln, fehl.

Im AWS Encryption SDK für.NET legen Sie die Commitment-Richtlinie für eine Instanz von fest.
AWS Encryption SDK Instanziieren Sie ein AwsEncryptionSdkConfig Objekt mit einem
CommitmentPolicy Parameter und verwenden Sie das Konfigurationsobjekt, um die Instanz zu
erstellen. AWS Encryption SDK Rufen Sie dann die Decrypt() Methoden Encrypt() und der
konfigurierten AWS Encryption SDK Instanz auf.

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 480

AWS Encryption SDK Entwicklerhandbuch

In diesem Beispiel wird die Commitment-Richtlinie auf festgelegtrequire-encrypt-allow-
decrypt.

// Instantiate the material providers
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
 CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

var encryptionContext = new Dictionary<string, string>()
{
 {"purpose", "test"}encryptionSdk
};

var createKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};
var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = keyring,
 EncryptionContext = encryptionContext
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 481

AWS Encryption SDK Entwicklerhandbuch

 Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Verwenden Sie den --commitment-policy Parameter, um eine Commitment-Richtlinie in der
AWS Encryption CLI festzulegen. Dieser Parameter wurde in Version 1.8 eingeführt. x.

In der letzten 1. X-Version, wenn Sie den --wrapping-keys Parameter in einem --encrypt
--decrypt OR-Befehl verwenden, ist ein --commitment-policy Parameter mit dem
forbid-encrypt-allow-decrypt Wert erforderlich. Andernfalls ist der --commitment-
policy Parameter ungültig.

In den Versionen 2.1. x und höher ist der --commitment-policy Parameter optional
und hat standardmäßig den require-encrypt-require-decrypt Wert, der keinen
Chiffretext ver- oder entschlüsselt, der ohne Schlüsselzuweisung verschlüsselt wurde. Wir
empfehlen jedoch, dass Sie die Commitment-Richtlinie explizit für alle Verschlüsselungs- und
Entschlüsselungsanfragen festlegen, um die Wartung und Fehlerbehebung zu erleichtern.

In diesem Beispiel wird die Commitment-Richtlinie festgelegt. Außerdem wird der --
wrapping-keys Parameter verwendet, der den --master-keys Parameter ab Version
1.8 ersetzt. x. Details hierzu finden Sie unter the section called “Aktualisierung der AWS KMS
Hauptschlüsselanbieter”. Vollständige Beispiele finden Sie unterBeispiele für die AWS Encryption
CLI.

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --commitment-policy forbid-encrypt-allow-decrypt \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 482

AWS Encryption SDK Entwicklerhandbuch

 --commitment-policy forbid-encrypt-allow-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Java

Ab Version 1.7. x von AWS-Verschlüsselungs-SDK for Java, Sie legen die Commitment-
Richtlinie für Ihre Instanz von festAwsCrypto, dem Objekt, das den AWS Encryption SDK
Client darstellt. Diese Commitment-Richtlinieneinstellung gilt für alle Verschlüsselungs- und
Entschlüsselungsvorgänge, die auf diesem Client aufgerufen werden.

Der AwsCrypto() Konstruktor ist in der neuesten Version 1 veraltet. x-Versionen von AWS-
Verschlüsselungs-SDK for Java und wurden in Version 2.0 entfernt. x. Es wird durch eine
neue Builder Klasse, eine Builder.withCommitmentPolicy() Methode und den
CommitmentPolicy Aufzählungstyp ersetzt.

In der letzten 1. x-Versionen, die Builder Klasse benötigt die
Builder.withCommitmentPolicy() Methode und das
CommitmentPolicy.ForbidEncryptAllowDecrypt Argument. Ab Version 2.0.
x, die Builder.withCommitmentPolicy() Methode ist optional; der Standardwert
istCommitmentPolicy.RequireEncryptRequireDecrypt.

Ein vollständiges Beispiel finden Sie unter SetCommitmentPolicyExample.java.

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.ForbidEncryptAllowDecrypt)
 .build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
 masterKeyProvider,
 sourcePlaintext,
 encryptionContext);

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 483

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SetCommitmentPolicyExample.java

AWS Encryption SDK Entwicklerhandbuch

byte[] ciphertext = encryptResult.getResult();

// Decrypt your ciphertext
CryptoResult<byte[], KmsMasterKey> decryptResult = crypto.decryptData(
 masterKeyProvider,
 ciphertext);
byte[] decrypted = decryptResult.getResult();

JavaScript

Ab Version 1.7. x von AWS-Verschlüsselungs-SDK for JavaScript, Sie können die Commitment-
Richtlinie festlegen, wenn Sie die neue buildClient Funktion aufrufen, die einen
AWS Encryption SDK Client instanziiert. Die buildClient Funktion verwendet einen
Aufzählungswert, der Ihre Commitment-Richtlinie darstellt. Sie gibt aktualisierte decrypt
Funktionen encrypt und Funktionen zurück, die Ihre Verpflichtungsrichtlinie beim Verschlüsseln
und Entschlüsseln durchsetzen.

In der letzten Version 1. x-Versionen, die buildClient Funktion benötigt das
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT Argument. Ab Version
2.0. x, das Argument der Commitment-Richtlinie ist optional und der Standardwert
istCommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Der Code für Node.js und der Browser sind für diesen Zweck identisch, außer dass der Browser
eine Anweisung benötigt, um Anmeldeinformationen festzulegen.

Im folgenden Beispiel werden Daten mit einem AWS KMS Schlüsselbund
verschlüsselt. Die neue buildClient Funktion setzt die Commitment-Richtlinie
aufFORBID_ENCRYPT_ALLOW_DECRYPT, den Standardwert in der letzten Version 1. x Versionen.
Das Upgrade encrypt und die decrypt Funktionen, die buildClient zurückgegeben werden,
setzen die von Ihnen festgelegte Verpflichtungsrichtlinie durch.

import { buildClient } from '@aws-crypto/client-node'
const { encrypt, decrypt } =
 buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create an AWS KMS keyring
const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']
const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 484

AWS Encryption SDK Entwicklerhandbuch

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext:
 context })

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

Ab Version 1.7. x von AWS-Verschlüsselungs-SDK for Python, Sie legen die Commitment-
Richtlinie für Ihre Instanz von festEncryptionSDKClient, einem neuen Objekt, das den AWS
Encryption SDK Client darstellt. Die von Ihnen festgelegte Commitment-Richtlinie gilt für alle
decrypt Aufrufe encrypt und Aufrufe, die diese Instanz des Clients verwenden.

In der letzten Version 1. X-Versionen, der EncryptionSDKClient Konstruktor benötigt
den CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT Aufzählungswert. Ab
Version 2.0. x, das Argument der Commitment-Richtlinie ist optional und der Standardwert
istCommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

In diesem Beispiel wird der neue EncryptionSDKClient Konstruktor verwendet und die
Commitment-Richtlinie auf 1.7 gesetzt. x Standardwert. Der Konstruktor instanziiert einen Client,
der den darstellt. AWS Encryption SDK Wenn Sie die stream Methoden encryptdecrypt, oder
auf diesem Client aufrufen, setzen sie die von Ihnen festgelegte Commitment-Richtlinie durch. In
diesem Beispiel wird auch der neue Konstruktor für die StrictAwsKmsMasterKeyProvider
Klasse verwendet, der festlegt, AWS KMS keys wann verschlüsselt und entschlüsselt werden soll.

Ein vollständiges Beispiel finden Sie unter set_commitment.py.

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[aws_kms_key]
)

Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt(
 source=source_plaintext,

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 485

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/set_commitment.py

AWS Encryption SDK Entwicklerhandbuch

 encryption_context=encryption_context,
 master_key_provider=aws_kms_strict_master_key_provider
)

Decrypt your ciphertext
decrypted, decrypt_header = client.decrypt(
 source=ciphertext,
 master_key_provider=aws_kms_strict_master_key_provider
)

Rust

Der require-encrypt-require-decrypt Wert ist die Standard-Commitment-Richtlinie
in allen Versionen von AWS Encryption SDK for Rust. Sie können es als bewährte Methode
explizit festlegen, aber es ist nicht erforderlich. Wenn Sie jedoch AWS Encryption SDK for Rust
verwenden, um Chiffretext zu entschlüsseln, der mit einer Implementierung von AWS Encryption
SDK Without Key Commitment in einer anderen Sprache verschlüsselt wurde, müssen Sie
den Richtlinienwert Commitment auf oder ändern. REQUIRE_ENCRYPT_ALLOW_DECRYPT
FORBID_ENCRYPT_ALLOW_DECRYPT Andernfalls schlagen Versuche, den Chiffretext zu
entschlüsseln, fehl.

In der AWS Encryption SDK für Rust legen Sie die Commitment-Richtlinie für eine Instanz von
fest. AWS Encryption SDK Instanziieren Sie ein AwsEncryptionSdkConfig Objekt mit einem
comitment_policy Parameter und verwenden Sie das Konfigurationsobjekt, um die Instanz zu
erstellen. AWS Encryption SDK Rufen Sie dann die Decrypt() Methoden Encrypt() und der
konfigurierten AWS Encryption SDK Instanz auf.

In diesem Beispiel wird die Commitment-Richtlinie auf festgelegtforbid-encrypt-allow-
decrypt.

// Configure the commitment policy on the AWS Encryption SDK instance
let esdk_config = AwsEncryptionSdkConfig::builder()
 .commitment_policy(ForbidEncryptAllowDecrypt)
 .build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 486

AWS Encryption SDK Entwicklerhandbuch

// Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
 .plaintext(plaintext)
 .keyring(kms_keyring.clone())
 .encryption_context(encryption_context.clone())
 .send()
 .await?;

// Decrypt your ciphertext
let decryption_response = esdk_client.decrypt()
 .ciphertext(ciphertext)
 .keyring(kms_keyring)
 // Provide the encryption context that was supplied to the encrypt method
 .encryption_context(encryption_context)
 .send()
 .await?;

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 487

AWS Encryption SDK Entwicklerhandbuch

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
commitPolicyForbidEncryptAllowDecrypt :=
 mpltypes.ESDKCommitmentPolicyForbidEncryptAllowDecrypt
encryptionClient, err :=
 client.NewClient(esdktypes.AwsEncryptionSdkConfig{CommitmentPolicy:
 &commitPolicyForbidEncryptAllowDecrypt})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 488

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
 awsKmsKeyringInput)
if err != nil {
 panic(err)
}

// Encrypt your plaintext data
res, err := forbidEncryptClient.Encrypt(context.Background(),
 esdktypes.EncryptInput{
 Plaintext: []byte(exampleText),
 EncryptionContext: encryptionContext,
 Keyring: awsKmsKeyring,
})
if err != nil {
 panic(err)
}

// Decrypt your ciphertext
decryptOutput, err := forbidEncryptClient.Decrypt(context.Background(),
 esdktypes.DecryptInput{
 Ciphertext: res.Ciphertext,
 EncryptionContext: encryptionContext,
 Keyring: awsKmsKeyring,
})
if err != nil {
 panic(err)
}

Wie legen Sie Ihre Verpflichtungsrichtlinie fest 489

AWS Encryption SDK Entwicklerhandbuch

Fehlerbehebung bei der Migration auf die neuesten Versionen

Bevor Sie Ihre Anwendung auf Version 2.0 aktualisieren. x oder höher von AWS Encryption SDK,
aktualisieren Sie auf die neueste Version 1. x-Version von AWS Encryption SDK und stellen Sie sie
vollständig bereit. Auf diese Weise können Sie die meisten Fehler vermeiden, die beim Update auf
Version 2.0 auftreten können. x und später. Eine ausführliche Anleitung, einschließlich Beispielen,
finden Sie unterMigrieren Sie Ihre AWS Encryption SDK.

Important

Vergewissern Sie sich, dass Ihr neuestes 1. x-Version ist Version 1.7. x oder höher von AWS
Encryption SDK.

Note

AWS Encryption CLI: Verweise in diesem Handbuch auf Version 1.7. x der Angaben AWS
Encryption SDK beziehen sich auf Version 1.8. x der AWS Encryption CLI. Verweise in
diesem Handbuch auf Version 2.0. x davon AWS Encryption SDK gelten für 2.1. x der AWS
Encryption CLI.
Neue Sicherheitsfunktionen wurden ursprünglich in den AWS Encryption CLI Versionen 1.7
veröffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Dieses Thema soll Ihnen helfen, die häufigsten Fehler zu erkennen und zu beheben, auf die Sie
möglicherweise stoßen.

Themen

• Veraltete oder entfernte Objekte

• Konfigurationskonflikt: Verpflichtungsrichtlinie und Algorithmus-Suite

• Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretext

• Die Überprüfung der Schlüsselzusage ist fehlgeschlagen

• Andere Verschlüsselungsfehler

• Andere Fehler bei der Entschlüsselung

Fehlerbehebung bei der Migration auf die neuesten Versionen 490

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

• Überlegungen zum Rollback

Veraltete oder entfernte Objekte

Version 2.0. x enthält mehrere grundlegende Änderungen, darunter das Entfernen älterer
Konstruktoren, Methoden, Funktionen und Klassen, die in Version 1.7 veraltet waren. x. Um
Compilerfehler, Importfehler, Syntaxfehler und Fehler, dass das Symbol nicht gefunden wurde
(abhängig von Ihrer Programmiersprache) zu vermeiden, aktualisieren Sie zuerst auf die neueste
Version 1. x-Version von AWS Encryption SDK für Ihre Programmiersprache. (Dies muss Version 1.7
sein. x oder später.) Bei Verwendung der neuesten Version 1. In der X-Version können Sie beginnen,
die Ersatzelemente zu verwenden, bevor die ursprünglichen Symbole entfernt werden.

Wenn Sie auf Version 2.0 aktualisieren müssen. x oder später, konsultieren Sie sofort das Changelog
für Ihre Programmiersprache und ersetzen Sie die alten Symbole durch die Symbole, die im
Changelog empfohlen werden.

Konfigurationskonflikt: Verpflichtungsrichtlinie und Algorithmus-Suite

Wenn Sie eine Algorithmus-Suite angeben, die mit Ihrer Commitment-Richtlinie in Konflikt steht,
schlägt der Verschlüsselungsaufruf mit einem Konfigurationskonfliktfehler fehl.

Um diese Art von Fehler zu vermeiden, geben Sie keine Algorithmus-Suite an. Standardmäßig
AWS Encryption SDK wählt der den sichersten Algorithmus aus, der mit Ihrer Verpflichtungspolitik
kompatibel ist. Wenn Sie jedoch eine Algorithmus-Suite angeben müssen, z. B. eine Suite ohne
Signatur, stellen Sie sicher, dass Sie eine Algorithmus-Suite wählen, die mit Ihrer Commitment-
Richtlinie kompatibel ist.

Verpflichtungspolitik Kompatible Algorithmus-Suiten

ForbidEncryptAllowDecrypt Jede Algorithmus-Suite ohne Schlüssel
bindung, wie zum Beispiel:
AES_256_GCM_IV12_TAG16_HKDF
_SHA384_ECDSA_P384 (03 78) (mit
Signatur)

AES_256_GCM_IV12_TAG16_HKDF
_SHA256 (01 78) (ohne Unterschrift)

Veraltete oder entfernte Objekte 491

AWS Encryption SDK Entwicklerhandbuch

Verpflichtungspolitik Kompatible Algorithmus-Suiten

RequireEncryptAllowDecrypt

RequireEncryptRequireDecrypt

Jede Algorithmus-Suite mit Schlüsselverpflich
tung, wie zum Beispiel:
AES_256_GCM_HKDF_SHA512_COM
MIT_KEY_ECDSA_P384 (05 78) (mit
Signatur)

AES_256_GCM_HKDF_SHA512_COM
MIT_KEY (04 78) (ohne Unterschrift)

Wenn dieser Fehler auftritt, obwohl Sie keine Algorithmus-Suite angegeben haben, wurde die
Algorithmus-Suite, die den Konflikt verursacht, möglicherweise von Ihrem Cryptographic Materials
Manager (CMM) ausgewählt. Das Standard-CMM wählt keine widersprüchliche Algorithmus-
Suite aus, wohl aber ein benutzerdefiniertes CMM. Hilfe finden Sie in der Dokumentation zu Ihrem
benutzerdefinierten CMM.

Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretext

Die RequireEncryptRequireDecryptCommitment-Richtlinie erlaubt es nicht, eine Nachricht
AWS Encryption SDK zu entschlüsseln, die ohne Schlüsselzusage verschlüsselt wurde. Wenn Sie
den bitten, eine Nachricht ohne Schlüsselübergabe AWS Encryption SDK zu entschlüsseln, wird ein
Konfigurationskonfliktfehler zurückgegeben.

Um diesen Fehler zu vermeiden, sollten Sie vor der RequireEncryptRequireDecrypt
Festlegung der Commitment-Richtlinie sicherstellen, dass alle Chiffretexte, die ohne
Schlüsselzuweisung verschlüsselt wurden, mit Key Commitment entschlüsselt und erneut
verschlüsselt werden oder von einer anderen Anwendung verarbeitet werden. Wenn Sie auf diesen
Fehler stoßen, können Sie einen Fehler für den widersprüchlichen Chiffretext zurückgeben oder Ihre
Verpflichtungsrichtlinie vorübergehend auf ändern. RequireEncryptAllowDecrypt

Wenn dieser Fehler auftritt, weil Sie auf Version 2.0 aktualisiert haben. x oder höher von einer
Version vor 1.7. x ohne vorher auf die neueste Version aktualisiert zu haben 1. x-Version (Version
1.7). x oder höher), erwägen Sie, auf die neueste Version 1 zurückzukehren. x-Version und
Bereitstellung dieser Version auf allen Hosts vor dem Upgrade auf Version 2.0. x oder höher. Weitere
Informationen dazu finden Sie unter Wie migriert und implementiert man AWS Encryption SDK.

Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretext 492

AWS Encryption SDK Entwicklerhandbuch

Die Überprüfung der Schlüsselzusage ist fehlgeschlagen

Wenn Sie Nachrichten entschlüsseln, die mit Key Commitment verschlüsselt wurden, erhalten Sie
möglicherweise die Fehlermeldung Key Commitment Validation failed. Dies weist darauf hin, dass der
Entschlüsselungsaufruf fehlgeschlagen ist, weil ein Datenschlüssel in einer verschlüsselten Nachricht
nicht mit dem eindeutigen Datenschlüssel für die Nachricht identisch ist. Durch die Überprüfung des
Datenschlüssels während der Entschlüsselung schützt Sie die Schlüsselzusage davor, eine Nachricht
zu entschlüsseln, die zu mehr als einem Klartext führen könnte.

Dieser Fehler weist darauf hin, dass die verschlüsselte Nachricht, die Sie zu entschlüsseln
versuchten, nicht von der zurückgegeben wurde. AWS Encryption SDK Es kann sich um eine manuell
erstellte Nachricht oder um das Ergebnis einer Datenbeschädigung handeln. Wenn dieser Fehler
auftritt, kann Ihre Anwendung die Nachricht zurückweisen und die Verarbeitung neuer Nachrichten
fortsetzen oder beenden.

Andere Verschlüsselungsfehler

Die Verschlüsselung kann aus mehreren Gründen fehlschlagen. Sie können einen AWS KMS
Discovery-Schlüsselbund oder einen Hauptschlüsselanbieter im Discovery-Modus nicht verwenden,
um eine Nachricht zu verschlüsseln.

Stellen Sie sicher, dass Sie einen Schlüsselbund oder einen Hauptschlüsselanbieter angeben, der
Schlüssel umschließt, den Sie für die Verschlüsselung verwenden dürfen. Hilfe zu Berechtigungen für
finden Sie unter Schlüsselrichtlinie anzeigen und Zugriff auf eine bestimmen AWS KMS key im AWS
Key Management Service Entwicklerhandbuch. AWS KMS keys

Andere Fehler bei der Entschlüsselung

Wenn Ihr Versuch, eine verschlüsselte Nachricht zu entschlüsseln, fehlschlägt, bedeutet dies, dass
Sie keinen der verschlüsselten Datenschlüssel in der Nachricht entschlüsseln AWS Encryption SDK
konnten (oder wollten).

Wenn Sie einen Schlüsselbund oder einen Hauptschlüsselanbieter verwendet haben, der Wrapping
Keys spezifiziert, AWS Encryption SDK verwendet dieser nur die von Ihnen angegebenen Wrapping
Keys. Vergewissern Sie sich, dass Sie die beabsichtigten Umschließungsschlüssel verwenden und
dass Sie für mindestens einen der Umschließungsschlüssel kms:Decrypt berechtigt sind. Wenn
Sie die Nachricht als Fallback verwenden AWS KMS keys, können Sie versuchen, die Nachricht mit
einem AWS KMS Discovery-Schlüsselbund oder einem Hauptschlüsselanbieter im Discovery-Modus

Die Überprüfung der Schlüsselzusage ist fehlgeschlagen 493

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html

AWS Encryption SDK Entwicklerhandbuch

zu entschlüsseln. Wenn der Vorgang erfolgreich ist, überprüfen Sie vor der Rückgabe des Klartextes,
ob der Schlüssel, der zum Entschlüsseln der Nachricht verwendet wurde, vertrauenswürdig ist.

Überlegungen zum Rollback

Wenn Ihre Anwendung Daten nicht ver- oder entschlüsseln kann, können Sie das Problem in der
Regel beheben, indem Sie die Codesymbole, Schlüsselringe, Hauptschlüsselanbieter oder die
Verpflichtungsrichtlinie aktualisieren. In einigen Fällen können Sie jedoch entscheiden, dass es am
besten ist, Ihre Anwendung auf eine frühere Version von zurückzusetzen. AWS Encryption SDK

Wenn Sie ein Rollback durchführen müssen, tun Sie dies mit Vorsicht. Versionen AWS Encryption
SDK vor 1.7. x kann Chiffretext, der mit Key Commitment verschlüsselt wurde, nicht entschlüsseln.

• Ein Rollback von der neuesten Version wird rückgängig gemacht 1. Die X-Version auf eine
frühere Version von AWS Encryption SDK ist im Allgemeinen sicher. Möglicherweise müssen Sie
Änderungen, die Sie an Ihrem Code vorgenommen haben, rückgängig machen, um Symbole und
Objekte zu verwenden, die in früheren Versionen nicht unterstützt wurden.

• Sobald Sie in Version 2.0 mit der Verschlüsselung mit Key Commitment begonnen haben (indem
Sie Ihre Commitment-Richtlinie auf einstellenRequireEncryptAllowDecrypt). x oder höher
können Sie zu Version 1.7 zurückkehren. x, aber nicht zu einer früheren Version. Versionen der
AWS Encryption SDK Vorgängerversionen vor 1.7. x kann Chiffretext, der mit Key Commitment
verschlüsselt wurde, nicht entschlüsseln.

Wenn Sie versehentlich die Verschlüsselung mit Schlüsselzusage aktivieren, bevor alle Hosts
mit Schlüsselzusage entschlüsseln können, ist es möglicherweise am besten, mit dem Rollout
fortzufahren, anstatt ein Rollback durchzuführen. Wenn Nachrichten vorübergehend sind oder
gefahrlos gelöscht werden können, sollten Sie ein Rollback mit Verlust von Nachrichten in Betracht
ziehen. Wenn ein Rollback erforderlich ist, sollten Sie in Betracht ziehen, ein Tool zu schreiben, das
alle Nachrichten entschlüsselt und erneut verschlüsselt.

Überlegungen zum Rollback 494

AWS Encryption SDK Entwicklerhandbuch

Häufig gestellte Fragen
Häufig gestellte Fragen

• Wie AWS Encryption SDK unterscheidet sich das von dem AWS SDKs?

• Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3 S3-Verschlüsselungsclient?

• Welche kryptografischen Algorithmen werden vom AWS Encryption SDK unterstützt und welcher
ist der Standard?

• Wie wird der Initialisierungsvektor (IV) generiert und wo wird er gespeichert?

• Wie werden die einzelnen Datenschlüssel generiert, verschlüsselt und entschlüsselt?

• Wie kann ich nachverfolgen, welche Datenschlüssel zum Verschlüsseln meiner Daten verwendet
wurden?

• Wie AWS Encryption SDK speichern sie verschlüsselte Datenschlüssel mit ihren verschlüsselten
Daten?

• Wie viel Mehraufwand verursacht das AWS Encryption SDK Nachrichtenformat für meine
verschlüsselten Daten?

• Kann ich meinen eigenen Masterschlüsselanbieter verwenden?

• Kann ich Daten mit mehr als einem Wrapping Key verschlüsseln?

• Welche Datentypen kann ich mit dem verschlüsseln? AWS Encryption SDK

• Wie werden Streams AWS Encryption SDK verschlüsselt und entschlüsselt input/output (I/O)?

Wie AWS Encryption SDK unterscheidet sich das von dem AWS
SDKs?

AWS SDKsSie bieten Bibliotheken für die Interaktion mit Amazon Web Services (AWS),
einschließlich AWS Key Management Service (AWS KMS). Für einige Sprachimplementierungen von
AWS Encryption SDK, z. B. AWS Encryption SDK für .NET, ist das AWS SDK immer in derselben
Programmiersprache erforderlich. Für andere Sprachimplementierungen ist das entsprechende AWS
SDK nur erforderlich, wenn Sie AWS KMS Schlüssel in Ihren Schlüsselbunden oder Master-Key-
Anbietern verwenden. Einzelheiten finden Sie im Thema zu Ihrer Programmiersprache unter. AWS
Encryption SDK Programmiersprachen

Sie können den verwenden, AWS SDKs um mit ihnen zu interagieren AWS KMS, einschließlich
der Verschlüsselung und Entschlüsselung kleiner Datenmengen (bis zu 4.096 Byte mit einem

Wie AWS Encryption SDK unterscheidet sich das von dem AWS SDKs? 495

https://aws.amazon.com/tools/

AWS Encryption SDK Entwicklerhandbuch

symmetrischen Verschlüsselungsschlüssel) und der Generierung von Datenschlüsseln für die
clientseitige Verschlüsselung. Wenn Sie jedoch einen Datenschlüssel generieren, müssen Sie
den gesamten Verschlüsselungs- und Entschlüsselungsprozess verwalten, einschließlich der
Verschlüsselung Ihrer Daten mit dem Datenschlüssel außerhalb von AWS KMS, der sicheren
Löschung des Klartext-Datenschlüssels, der Speicherung des verschlüsselten Datenschlüssels und
der anschließenden Entschlüsselung des Datenschlüssels und der Entschlüsselung Ihrer Daten. Der
erledigt diesen Vorgang für Sie. AWS Encryption SDK

Die AWS Encryption SDK stellt eine Bibliothek bereit, die Daten unter Verwendung von
Industriestandards und bewährten Methoden ver- und entschlüsselt. Sie generiert den
Datenschlüssel, verschlüsselt ihn unter den von Ihnen angegebenen Wrapping-Schlüsseln und gibt
eine verschlüsselte Nachricht zurück, ein portables Datenobjekt, das die verschlüsselten Daten und
die verschlüsselten Datenschlüssel enthält, die Sie zum Entschlüsseln benötigen. Wenn es an der
Zeit ist, zu entschlüsseln, übergeben Sie die verschlüsselte Nachricht und mindestens einen der
Umschließungsschlüssel (optional), und das AWS Encryption SDK gibt Ihre Klartextdaten zurück.

Sie können die Schlüssel AWS KMS keys als Wrapping Keys verwenden AWS Encryption SDK,
dies ist jedoch nicht erforderlich. Sie können die von Ihnen generierten Verschlüsselungsschlüssel
und die von Ihrem Schlüsselmanager oder dem lokalen Hardware-Sicherheitsmodul generierten
Verschlüsselungsschlüssel verwenden. Sie können das verwenden, AWS Encryption SDK auch wenn
Sie kein AWS Konto haben.

Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3
S3-Verschlüsselungsclient?

Der Amazon S3-Verschlüsselungsclient im AWS SDKs ermöglicht die Verschlüsselung und
Entschlüsselung von Daten, die Sie in Amazon Simple Storage Service (Amazon S3) speichern.
Diese Clients sind eng mit Amazon S3 verbunden und nur für die Verwendung mit dort gespeicherten
Daten vorgesehen.

Das AWS Encryption SDK bietet Verschlüsselung und Entschlüsselung für Daten, die Sie überall
speichern können. Der AWS Encryption SDK und der Amazon S3 S3-Verschlüsselungsclient sind
nicht kompatibel, da sie Chiffretexte mit unterschiedlichen Datenformaten erzeugen.

Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3 S3-Verschlüsselungsclient? 496

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html

AWS Encryption SDK Entwicklerhandbuch

Welche kryptografischen Algorithmen werden vom AWS Encryption
SDK unterstützt und welcher ist der Standard?

Der AWS Encryption SDK verwendet den symmetrischen Algorithmus Advanced Encryption
Standard (AES) im Galois/Counter Modus (GCM), auch bekannt als AES-GCM, um Ihre Daten zu
verschlüsseln. Sie können aus mehreren symmetrischen und asymmetrischen Algorithmen wählen,
um die Datenschlüssel zu verschlüsseln, mit denen Ihre Daten verschlüsselt werden.

Für AES-GCM ist AES-GCM die Standardalgorithmussuite mit einem 256-Bit-Schlüssel, Key
Derivation (HKDF), digitalen Signaturen und Key Commitment. AWS Encryption SDK unterstützt
außerdem 192-Bit- und 128-Bit-Verschlüsselungsschlüssel und Verschlüsselungsalgorithmen ohne
digitale Signaturen und Schlüsselbindung.

Die Länge des Initialisierungsvektors (IV) ist immer 12 Bytes; die Länge des Authentifizierungs-Tags
ist immer 16 Bytes. Standardmäßig verwendet das SDK den Datenschlüssel als Eingabe für die
HMAC-basierte Schlüsselableitungsfunktion (HKDF) zur Ableitung des extract-and-expand AES-
GCM-Verschlüsselungsschlüssels und fügt außerdem eine ECDSA-Signatur (Elliptic Curve Digital
Signature Algorithm) hinzu.

Weitere Informationen zum Auswählen des Algorithmus finden Sie unter Unterstützte Algorithmen-
Pakete.

Weitere Informationen zu den unterstützten Algorithmen finden Sie unter Algorithmen – Referenz.

Wie wird der Initialisierungsvektor (IV) generiert und wo wird er
gespeichert?

Das AWS Encryption SDK verwendet eine deterministische Methode, um für jeden Frame einen
anderen IV-Wert zu erstellen. Dieses Verfahren garantiert, dass IVs sich innerhalb einer Nachricht
niemals wiederholen. (Vor Version 1.3.0 von AWS-Verschlüsselungs-SDK for Java and the generierte
der AWS-Verschlüsselungs-SDK for Python AWS Encryption SDK nach dem Zufallsprinzip einen
eindeutigen IV-Wert für jeden Frame.)

Die IV wird in der verschlüsselten Nachricht gespeichert, die der AWS Encryption SDK
zurückgibt. Weitere Informationen hierzu finden Sie unter AWS Encryption SDK Referenz zum
Nachrichtenformat.

Welche kryptografischen Algorithmen werden vom AWS Encryption SDK unterstützt und welcher ist der
Standard?

497

AWS Encryption SDK Entwicklerhandbuch

Wie werden die einzelnen Datenschlüssel generiert, verschlüsselt
und entschlüsselt?

Die Methode hängt vom verwendeten Schlüsselbund oder Hauptschlüsselanbieter ab.

Die AWS KMS Schlüsselringe und Hauptschlüsselanbieter AWS Encryption SDK verwenden den
AWS KMS GenerateDataKeyAPI-Vorgang, um jeden Datenschlüssel zu generieren und ihn unter
seinem Wrapping-Schlüssel zu verschlüsseln. Um Kopien des Datenschlüssels unter zusätzlichen
KMS-Schlüsseln zu verschlüsseln, verwenden sie den AWS KMS Vorgang Encrypt. Um die
Datenschlüssel zu entschlüsseln, verwenden sie den Vorgang Decrypt AWS KMS . Einzelheiten
finden Sie unter AWS KMS Schlüsselbund in der AWS Encryption SDK Spezifikation unter. GitHub

Andere Schlüsselbunde generieren den Datenschlüssel und verschlüsseln und entschlüsseln mit
bewährten Methoden für jede Programmiersprache. Einzelheiten finden Sie in der Spezifikation des
Schlüsselbundes oder Hauptschlüsselanbieters im Abschnitt Framework der Spezifikation unter.
AWS Encryption SDK GitHub

Wie kann ich nachverfolgen, welche Datenschlüssel zum
Verschlüsseln meiner Daten verwendet wurden?

Das AWS Encryption SDK erledigt das für Sie. Wenn Sie Daten verschlüsseln, verschlüsselt das SDK
den Datenschlüssel und speichert den verschlüsselten Schlüssel zusammen mit den verschlüsselten
Daten in der verschlüsselten Nachricht, die es zurückgibt. Wenn Sie Daten entschlüsseln, extrahiert
das AWS Encryption SDK den verschlüsselten Datenschlüssel aus der verschlüsselten Nachricht,
entschlüsselt ihn und verwendet ihn dann zur Entschlüsselung der Daten.

Wie AWS Encryption SDK speichern sie verschlüsselte
Datenschlüssel mit ihren verschlüsselten Daten?

Die Verschlüsselungsoperationen geben wiederum eine verschlüsselte Nachricht AWS Encryption
SDK zurück, eine einzelne Datenstruktur, die die verschlüsselten Daten und ihre verschlüsselten
Datenschlüssel enthält. Das Nachrichtenformat besteht aus mindestens zwei Teilen: einem
Header und einem Text. Der Nachrichten-Header enthält die verschlüsselten Datenschlüssel
sowie Informationen darüber, wie der Nachrichtentext gebildet wird. Der Nachrichtentext enthält
die verschlüsselten Daten. Wenn die Algorithmus-Suite eine digitale Signatur enthält, umfasst das

Wie werden die einzelnen Datenschlüssel generiert, verschlüsselt und entschlüsselt? 498

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/aws-kms/aws-kms-keyring.md
https://github.com/awslabs/aws-encryption-sdk-specification/tree/master/framework

AWS Encryption SDK Entwicklerhandbuch

Nachrichtenformat eine Fußzeile, die die Signatur enthält. Weitere Informationen finden Sie unter
AWS Encryption SDK Referenz zum Nachrichtenformat.

Wie viel Mehraufwand verursacht das AWS Encryption SDK
Nachrichtenformat für meine verschlüsselten Daten?

Die Höhe des zusätzlichen Mehraufwands AWS Encryption SDK hängt von mehreren Faktoren ab,
unter anderem von den folgenden:

• Der Größe der Klartextdaten

• Welche der unterstützten Algorithmen verwendet werden

• Ob zusätzliche authentifizierte Daten (AAD) bereitgestellt werden, und von der Länge dieser AAD

• Die Anzahl und Art der Wrapping Keys oder Masterkeys

• Der Framegröße (wenn Daten mit Frame verwendet werden)

Wenn Sie den AWS Encryption SDK mit seiner Standardkonfiguration verwenden (einen AWS
KMS key als Umschließungsschlüssel (oder Hauptschlüssel), kein AAD, Daten ohne Frames und
einen Verschlüsselungsalgorithmus mit Signierung), beträgt der Overhead ungefähr 600 Byte. Im
Allgemeinen können Sie davon ausgehen, dass das AWS Encryption SDK einen Overhead von
1 KB oder weniger verursacht, wobei die bereitgestellten AAD nicht berücksichtigt sind. Weitere
Informationen finden Sie unter AWS Encryption SDK Referenz zum Nachrichtenformat.

Kann ich meinen eigenen Masterschlüsselanbieter verwenden?

Ja. Die Implementierungsdetails hängen davon ab, welche der unterstützten Programmiersprachen
Sie verwenden. In allen unterstützten Sprachen können Sie jedoch benutzerdefinierte Manager für
kryptografische Materialien (MsCMMs), Hauptschlüsselanbieter, Schlüsselringe, Hauptschlüssel und
Schlüssel zum Umschließen von Schlüsseln definieren.

Kann ich Daten mit mehr als einem Wrapping Key verschlüsseln?

Ja. Sie können den Datenschlüssel mit zusätzlichen Umschließungsschlüsseln (oder
Hauptschlüsseln) verschlüsseln, um Redundanz zu gewährleisten, wenn sich der Schlüssel in einer
anderen Region befindet oder für die Entschlüsselung nicht verfügbar ist.

Wie viel Mehraufwand verursacht das AWS Encryption SDK Nachrichtenformat für meine verschlüsselten
Daten?

499

AWS Encryption SDK Entwicklerhandbuch

Um Daten unter mehreren Umschließungsschlüsseln zu verschlüsseln, erstellen Sie einen
Schlüsselbund oder einen Hauptschlüsselanbieter mit mehreren Umschließungsschlüsseln. Wenn
Sie mit Schlüsselbunden arbeiten, können Sie einen einzelnen Schlüsselbund mit mehreren
Umhüllungsschlüsseln oder einen Multi-Schlüsselbund erstellen.

Wenn Sie Daten mit mehreren Umschließungsschlüsseln verschlüsseln, AWS Encryption SDK
verwendet der einen Umschließungsschlüssel, um einen Klartext-Datenschlüssel zu generieren.
Der Datenschlüssel ist eindeutig und hat mathematisch nichts mit dem Umschließungsschlüssel zu
tun. Die Operation gibt den Klartext-Datenschlüssel und eine Kopie des Datenschlüssels zurück,
die durch den Umschließungsschlüssel verschlüsselt wurde. Anschließend verschlüsselt die
Verschlüsselungsmethode den Datenschlüssel mit den anderen Umschließungsschlüsseln. Die
resultierende verschlüsselte Nachricht enthält die verschlüsselten Daten und einen verschlüsselten
Datenschlüssel für jeden Umschließungsschlüssel.

Die verschlüsselte Nachricht kann mit einem der beim Verschlüsselungsvorgang verwendeten
Wrapping-Schlüssel entschlüsselt werden. Der AWS Encryption SDK verwendet einen
Umschließungsschlüssel, um einen verschlüsselten Datenschlüssel zu entschlüsseln. Anschließend
verwendet es den Klartext-Datenschlüssel, um die Daten zu entschlüsseln.

Welche Datentypen kann ich mit dem verschlüsseln? AWS
Encryption SDK

Die meisten Programmiersprachenimplementierungen von AWS Encryption SDK können Rohbytes
(Byte-Arrays), I/O Streams (Byte-Streams) und Zeichenketten verschlüsseln. Das AWS Encryption
SDK für.NET unterstützt keine Streams. I/O Wir stellen Beispielcode für jede der unterstützten
Programmiersprachen zur Verfügung.

Wie werden Streams AWS Encryption SDK verschlüsselt und
entschlüsselt input/output (I/O)?

Der AWS Encryption SDK erstellt einen verschlüsselnden oder entschlüsselnden Stream, der einen
zugrunde liegenden Stream umschließt. I/O Der verschlüsselnde oder entschlüsselnde Stream führt
bei einem Lese- oder Schreibaufruf eine kryptographische Operation durch. Beispielsweise kann er
Klartextdaten aus dem zugrundeliegenden Stream lesen und verschlüsseln, bevor er das Ergebnis
zurückgibt. Oder er kann Verschlüsselungstext aus einem zugrundeliegenden Stream lesen und
entschlüsseln, bevor er das Ergebnis zurückgibt. Wir stellen Beispielcode zum Verschlüsseln und

Welche Datentypen kann ich mit dem verschlüsseln? AWS Encryption SDK 500

AWS Encryption SDK Entwicklerhandbuch

Entschlüsseln von Streams für jede der unterstützten Programmiersprachen bereit, die Streaming
unterstützen.

Der AWS Encryption SDK für.NET unterstützt I/O keine Streams.

Wie werden Streams AWS Encryption SDK verschlüsselt und entschlüsselt input/output (I/O)? 501

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK Referenz

Die Informationen auf dieser Seite stellen eine Referenz für die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlüsselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlüsselungsbibliothek erstellen, benötigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstützten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Die Spezifikation, die die Elemente einer ordnungsgemäßen AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Der AWS Encryption SDK verwendet die unterstützten Algorithmen, um eine einzelne Datenstruktur
oder Nachricht zurückzugeben, die verschlüsselte Daten und die entsprechenden verschlüsselten
Datenschlüssel enthält. Die folgenden Themen erläutern die Algorithmen und die Datenstruktur.
Verwenden Sie diese Informationen zum Erstellen von Bibliotheken, die Verschlüsselungstexte lesen
und schreiben können, die mit diesem SDK kompatibel sind.

Themen

• AWS Encryption SDK Referenz zum Nachrichtenformat

• AWS Encryption SDK Beispiele für Nachrichtenformate

• Text – Zusätzliche authentifizierte Daten (AAD) – Referenz für das AWS Encryption SDK

• AWS Encryption SDK Referenz zu Algorithmen

• AWS Encryption SDK Referenz zum Initialisierungsvektor

• AWS KMS Technische Details zum hierarchischen Schlüsselbund

AWS Encryption SDK Referenz zum Nachrichtenformat

Die Informationen auf dieser Seite stellen eine Referenz für die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlüsselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlüsselungsbibliothek erstellen, benötigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstützten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Nachrichtenformat – Referenz 502

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Entwicklerhandbuch

Die Spezifikation, die die Elemente einer ordnungsgemäßen AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Die Verschlüsselungsoperationen AWS Encryption SDK geben eine einzelne Datenstruktur oder eine
verschlüsselte Nachricht zurück, die die verschlüsselten Daten (Chiffretext) und alle verschlüsselten
Datenschlüssel enthält. Um diese Datenstruktur zu verstehen, oder zum Erstellen von Bibliotheken,
die sie lesen und schreiben können, müssen Sie das Nachrichtenformat verstehen.

Das Nachrichtenformat besteht aus mindestens zwei Teilen: einem Header und einem Text. In
einigen Fällen enthält das Nachrichtenformat einen dritten Teil, einen Footer. Das Nachrichtenformat
definiert eine sortierte Reihenfolge von Bytes in Netzwerk-Bytereihenfolge, auch als Big-Endian-
Format bezeichnet. Das Nachrichtenformat beginnt mit dem Header, gefolgt vom Text, gefolgt vom
Footer (falls vorhanden).

Die von The unterstützten Algorithmus-Suiten AWS Encryption SDK verwenden eine von
zwei Versionen im Nachrichtenformat. Algorithmus-Suiten ohne Schlüsselbindung verwenden
das Nachrichtenformat Version 1. Algorithmus-Suites mit Key Commitment verwenden das
Nachrichtenformat Version 2.

Themen

• Header-Struktur

• Textstruktur

• Footer-Struktur

Header-Struktur

Der Nachrichten-Header enthält den verschlüsselten Datenschlüssel sowie Informationen darüber,
wie der Nachrichtentext gebildet wird. In der folgenden Tabelle werden die Felder beschrieben,
die den Header in den Nachrichtenformat-Versionen 1 und 2 bilden. Die Byte werden in der
angegebenen Reihenfolge angehängt.

Der Wert Nicht vorhanden gibt an, dass das Feld in dieser Version des Nachrichtenformats nicht
vorhanden ist. Fettgedruckter Text weist auf Werte hin, die in jeder Version unterschiedlich sind.

Header-Struktur 503

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Entwicklerhandbuch

Note

Möglicherweise müssen Sie horizontal oder vertikal scrollen, um alle Daten in dieser Tabelle
anzuzeigen.

Header-Struktur

Feld Nachrichtenformat Version 1

Länge (Bytes)

Nachrichtenformat Version 2

Länge (Bytes)

Version 1 1

Type 1 Nicht vorhanden

Algorithm ID 2 2

Message ID 16 32

AAD Length 2

Wenn der Verschlüsselungsko
ntext leer ist, ist der Wert des
2-Byte-Felds AAD-Länge 0.

2

Wenn der Verschlüsselungsko
ntext leer ist, ist der Wert des
2-Byte-Felds AAD-Länge 0.

AAD Variable. Die Länge dieses
Felds wird in den vorherigen
2 Byte angezeigt (Feld AAD-
Länge).

Wenn der Verschlüsselungsko
ntext leer ist, gibt es keine
AAD-Feld im Header.

Variable. Die Länge dieses
Felds wird in den vorherigen
2 Byte angezeigt (Feld AAD-
Länge).

Wenn der Verschlüsselungsko
ntext leer ist, gibt es keine
AAD-Feld im Header.

Encrypted Data Key Count 2 2

Encrypted Data Key(s) Variable. Abhängig von der
Anzahl der verschlüsselten

Variable. Abhängig von der
Anzahl der verschlüsselten

Header-Struktur 504

AWS Encryption SDK Entwicklerhandbuch

Feld Nachrichtenformat Version 1

Länge (Bytes)

Nachrichtenformat Version 2

Länge (Bytes)

Datenschlüssel und ihrer
jeweiligen Länge.

Datenschlüssel und ihrer
jeweiligen Länge.

Content Type 1 1

Reserved 4 Nicht vorhanden

IV Length 1 Nicht anwesend

Frame Length 4 4

Algorithm Suite Data Nicht anwesend Variabel. Wird durch den
Algorithmus bestimmt, der die
Nachricht generiert hat.

Header Authentication Variable. Wird durch den
Algorithmus bestimmt, der die
Nachricht generiert hat.

Variable. Wird durch den
Algorithmus bestimmt, der die
Nachricht generiert hat.

Ausführung

Die Version dieses Nachrichtenformats. Die Version ist entweder 1 oder 2 als Byte 01 oder 02 in
hexadezimaler Schreibweise codiert

Geben Sie ein

Der Typ dieses Nachrichtenformats. Der Typ gibt die Art der Struktur an. Der einzige unterstützte
Typ wird als vom Kunden authentifizierte verschlüsselte Daten beschrieben. Sein Typwert ist 128,
kodiert als Byte 80 im Hexadezimalformat.

Dieses Feld ist im Nachrichtenformat Version 2 nicht vorhanden.

Algorithmus-ID

Eine ID für den verwendeten Algorithmus. Dies ist ein 2-Byte-Wert, interpretiert als vorzeichenlose
16-Bit-Ganzzahl. Weitere Informationen die Algorithmen finden Sie unter AWS Encryption SDK
Referenz zu Algorithmen.

Header-Struktur 505

AWS Encryption SDK Entwicklerhandbuch

Nachrichten-ID

Ein zufällig generierter Wert, der die Nachricht identifiziert. Die Nachrichten-ID:

• Identifiziert die verschlüsselte Nachricht eindeutig.

• Bindet den Nachrichten-Header schwach an den Nachrichtentext.

• Stellt einen Mechanismus zur sicheren Wiederverwendung eines Datenschlüssels für mehrere
verschlüsselte Nachrichten bereit.

• Schützt vor versehentlicher Wiederverwendung eines Datenschlüssels oder der Abnutzung von
Schlüsseln im AWS Encryption SDK.

Dieser Wert beträgt 128 Bit im Nachrichtenformat Version 1 und 256 Bit in Version 2.

AAD-Länge

Die Länge der zusätzliche authentifizierten Daten (AAD, Additional Authenticated Data). Es
handelt sich um einen 2-Byte-Wert, interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die
Anzahl der Bytes angibt, die die AAD enthalten.

Wenn der Verschlüsselungskontext leer ist, ist der Wert des Felds AAD-Länge 0.

AAD

Die zusätzlich authentifizierten Daten (Additional Authenticated Data, ADD). Bei den AAD
handelt es sich um eine Codierung der Verschlüsselungskontexts, ein Array mit Schlüssel-Wert-
Paaren, wobei jeder Schlüssel und jeder Wert eine Zeichenfolge mit UTF-8-Zeichen ist. Der
Verschlüsselungskontext wird eine Bytefolge umgewandelt und für den AAD-Wert verwendet.
Wenn der Verschlüsselungskontext leer ist, gibt es keine AAD-Feld im Header.

Wenn die Algorithmen mit Signatur verwendet werden, muss der Verschlüsselungskontext
das Schlüssel-Wert-Paar {'aws-crypto-public-key', Qtxt} enthalten. Qtxt stellt den
elliptischen Kurvenpunkt Q dar, komprimiert gemäß SEC 1 Version 2.0 und dann base64-kodiert.
Der Verschlüsselungskontext kann zusätzliche Werte enthalten, aber die maximale Länge der
konstruierten AAD beträgt 2 ^ 16 – 1 Byte.

In der folgenden Tabelle sind die Felder beschrieben, die die AAD bilden. Schlüssel-Wert-Paare
werden dem Schlüssel nach in aufsteigender Reihenfolge gemäß UTF-8-Zeichencode sortiert. Die
Byte werden in der angegebenen Reihenfolge angehängt.

Header-Struktur 506

http://www.secg.org/sec1-v2.pdf

AWS Encryption SDK Entwicklerhandbuch

AAD-Struktur

Feld Länge (Bytes)

Key-Value Pair Count 2

Key Length 2

Key Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Schlüsse
llänge).

Value Length 2

Value Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Wertläng
e).

Anzahl der Schlüssel-Wert-Paare

Die Anzahl der Schlüssel-Wert-Paare in den AAD. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Schlüssel-Wert-Paare in
den AAD angibt. Die maximale Anzahl der Schlüssel-Wert-Paare in den AAD ist 2^16 - 1.

Wenn es keinen Verschlüsselungskontext gibt oder der Verschlüsselungskontext leer ist, ist
dieses Feld nicht in der AAD-Struktur vorhanden.

Länge des Schlüssels

Die Länge des Schlüssels für das Schlüssel-Wert-Paar. Es handelt sich um einen 2-Byte-
Wert, interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den
Schlüssel enthalten.

Schlüssel

Der Schlüssel für das Schlüssel-Wert-Paar. Dies ist eine Folge UTF-8-kodierter Bytes.

Wert Länge

Die Länge des Werts für das Schlüssel-Wert-Paar. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den Wert
enthalten.

Header-Struktur 507

AWS Encryption SDK Entwicklerhandbuch

Wert

Der Wert für das Schlüssel-Wert-Paar. Dies ist eine Folge UTF-8-kodierter Bytes.

Anzahl verschlüsselter Datenschlüssel

Die Anzahl der verschlüsselten Datenschlüssel. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der verschlüsselten
Datenschlüssel angibt. Die maximale Anzahl verschlüsselter Datenschlüssel in jeder Nachricht
beträgt 65.535 (2^16 — 1).

Verschlüsselte Datenschlüssel

Eine Folge von verschlüsselten Datenschlüsseln. Die Länge der Folge wird durch die Anzahl der
verschlüsselten Datenschlüssel und ihre jeweilige Länge bestimmt. Die Folge enthält mindestens
einen verschlüsselten Datenschlüssel.

In der folgenden Tabelle sind die Felder beschrieben, die die verschlüsselten Datenschlüssel
bilden. Die Byte werden in der angegebenen Reihenfolge angehängt.

Struktur der verschlüsselten Datenschlüssel

Feld Länge (Bytes)

Key Provider ID Length 2

Key Provider ID Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Länge der
Schlüsselanbieter-ID).

Key Provider Information Length 2

Key Provider Information Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Länge der
Schlüsselanbieterinformation).

Encrypted Data Key Length 2

Encrypted Data Key Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Länge des
verschlüsselten Datenschlüssels).

Header-Struktur 508

AWS Encryption SDK Entwicklerhandbuch

Länge der Schlüsselanbieter-ID

Die Länge der Schlüsselanbieter-ID. Es handelt sich um einen 2-Byte-Wert, interpretiert als
vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die die Schlüsselanbieter-ID
enthalten.

ID des Schlüsselanbieters

Die Schlüsselanbieter-ID. Wird verwendet, um den Anbieter des verschlüsselten
Datenschlüssels anzugeben, und ist auf Erweiterbarkeit ausgelegt.

Länge der Informationen zum Schlüsselanbieter

Die Länge der Schlüsselanbieterinformation. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die die
Schlüsselanbieterinformation enthalten.

Informationen zu den wichtigsten Anbietern

Die Schlüsselanbieterinformation. Wird durch den Schlüsselanbieter bestimmt.

Wenn der Hauptschlüsselanbieter AWS KMS ist oder Sie einen AWS KMS Schlüsselbund
verwenden, enthält dieser Wert den Amazon-Ressourcennamen (ARN) von. AWS KMS key

Länge des verschlüsselten Datenschlüssels

Die Länge des verschlüsselten Datenschlüssels. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den
verschlüsselten Datenschlüssel enthalten.

Verschlüsselter Datenschlüssel

Der verschlüsselte Datenschlüssel. Dies ist der vom Schlüsselanbieter verschlüsselte
Datenverschlüsselungsschlüssel.

Art des Inhalts

Der Typ der verschlüsselten Daten, entweder ungerahmt oder gerahmt.

Note

Verwenden Sie nach Möglichkeit gerahmte Daten. Das AWS Encryption SDK
unterstützt Daten ohne Frames nur für die Verwendung in älteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK können immer noch nicht gerahmten

Header-Struktur 509

AWS Encryption SDK Entwicklerhandbuch

Chiffretext generieren. Alle unterstützten Sprachimplementierungen können gerahmten
und ungerahmten Chiffretext entschlüsseln.

Frame-Daten werden in gleich lange Teile aufgeteilt; jeder Teil wird separat verschlüsselt. Inhalt
mit Frame ist Typ 2, kodiert als Byte 02 im Hexadezimalformat.

Daten ohne Frames werden nicht aufgeteilt, sondern sind ein einziger verschlüsselter Blob. Inhalt
ohne Frame ist Typ 1, kodiert als Byte 01 im Hexadezimalformat.

Reserviert

Eine reservierte Folge aus 4 Bytes. Der Wert muss 0 sein. Es ist kodiert als die Bytes 00 00 00
00 im Hexadezimalformat (d. h. eine 4-Byte-Folge einer 32-Bit-Ganzzahl mit dem Wert 0).

Dieses Feld ist im Nachrichtenformat Version 2 nicht vorhanden.

IV Länge

Die Länge des Initialisierungsvektors (IV). Es handelt sich um einen 1-Byte-Wert, interpretiert als
vorzeichenlose 8-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den IV enthalten. Dieser Wert
wird durch den IV-Byte-Wert des Algorithmus bestimmt, der die Nachricht generiert hat.

Dieses Feld ist in Version 2 des Nachrichtenformats nicht vorhanden, das nur Algorithmus-Suites
unterstützt, die deterministische IV-Werte im Nachrichtenkopf verwenden.

Länge des Frames

Die Länge jedes Frames mit gerahmten Daten. Es handelt sich um einen 4-Byte-Wert, der als 32-
Bit-Ganzzahl ohne Vorzeichen interpretiert wird und die Anzahl der Byte in jedem Frame angibt.
Wenn die Daten nicht gerahmt sind, d. h. wenn der Wert des Content Type Felds 1 ist, muss
dieser Wert 0 sein.

Note

Verwenden Sie nach Möglichkeit gerahmte Daten. Das AWS Encryption SDK
unterstützt Daten ohne Frames nur für die Verwendung in älteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK können immer noch nicht gerahmten
Chiffretext generieren. Alle unterstützten Sprachimplementierungen können gerahmten
und ungerahmten Chiffretext entschlüsseln.

Header-Struktur 510

AWS Encryption SDK Entwicklerhandbuch

Daten der Algorithm Suite

Zusätzliche Daten, die der Algorithmus benötigt, der die Nachricht generiert hat. Die Länge und
der Inhalt werden durch den Algorithmus bestimmt. Ihre Länge könnte 0 sein.

Dieses Feld ist im Nachrichtenformat Version 1 nicht vorhanden.

Header-Authentifizierung

Die Header-Authentifizierung wird durch den Algorithmus bestimmt, der die Meldung generiert
hat. Die Header-Authentifizierung wird unter Verwendung des kompletten Headers berechnet. Sie
besteht aus einem IV und einem Authentifizierungs-Tag. Die Byte werden in der angegebenen
Reihenfolge angehängt.

Struktur der Header-Authentifizierung

Feld Länge in Version 1.0 (Byte) Länge in Version 2.0 (Byte)

IV Variable. Wird durch den IV-
Byte-Wert des Algorithmus
bestimmt, der die Nachricht
generiert hat.

N/A

Authentication Tag Variable. Wird durch den
Authentifizierungs-Tag-
Byte-Wert des Algorithmus
bestimmt, die die Nachricht
generiert hat.

Variable. Wird durch den
Authentifizierungs-Tag-
Byte-Wert des Algorithmus
bestimmt, die die Nachricht
generiert hat.

IV

Der Initialisierungsvektor (IV) zur Berechnung des Header-Authentifizierungs-Tags.

Dieses Feld ist im Header der Nachrichtenformatversion 2 nicht vorhanden. Nachrichtenformat
Version 2 unterstützt nur Algorithmus-Suites, die deterministische IV-Werte im Nachrichtenkopf
verwenden.

Authentifizierungs-Tag

Die Authentifizierungswert für den Header. Es wird verwendet, um den gesamten Inhalt des
Headers zu authentifizieren.

Header-Struktur 511

AWS Encryption SDK Entwicklerhandbuch

Textstruktur

Der Nachrichtentext enthält die verschlüsselten Daten, den sogenannten Verschlüsselungstext.
Die Struktur des Textes hängt vom Inhaltstyp ab (mit oder ohne Frame). Die folgenden Abschnitte
beschreiben das Format des Nachrichtentexts für jeden Inhaltstyp. Die Struktur des Nachrichtentexts
ist in den Nachrichtenformat-Versionen 1 und 2 dieselbe.

Themen

• Daten ohne Frame

• Daten mit Frame

Daten ohne Frame

Daten ohne Frame werden in einem einzigen Blob mit einer eindeutigen IV und Text-AAD
verschlüsselt.

Note

Verwenden Sie nach Möglichkeit gerahmte Daten. Das AWS Encryption SDK
unterstützt Daten ohne Frames nur für die Verwendung in älteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK können immer noch nicht gerahmten
Chiffretext generieren. Alle unterstützten Sprachimplementierungen können gerahmten und
ungerahmten Chiffretext entschlüsseln.

In der folgenden Tabelle sind die Felder beschrieben, die Daten ohne Frame bilden. Die Byte werden
in der angegebenen Reihenfolge angehängt.

Struktur von Text ohne Frame

Feld Länge, in Bytes

IV Variable. Gleich dem im IV Length-Byte des
Headers angegebenen Wert.

Encrypted Content Length 8

Textstruktur 512

AWS Encryption SDK Entwicklerhandbuch

Feld Länge, in Bytes

Encrypted Content Variable. Gleich dem Wert, der in den vorherige
n 8 Bytes angegeben ist (Länge des verschlüs
selten Inhalts).

Authentication Tag Variable. Wird durch die verwendete Algorithm
us-Implementierung bestimmt.

IV

Der Initialisierungsvektor (IV) für die Verwendung mit dem Verschlüsselungsalgorithmus.

Länge des verschlüsselten Inhalts

Die Länge des verschlüsselten Inhalts oder Verschlüsselungstext. Es handelt sich um einen 8-
Byte-Wert, interpretiert als vorzeichenlose 64-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die
den verschlüsselten Inhalt enthalten.

Technisch ist der maximal zulässige Wert 2 ^ 63 – 1 oder 8 Exbibytes (8 EiB). In der Praxis ist
der maximale Wert jedoch 2 ^ 36 – 32 oder 64 Gibibyte (64 GiB), aufgrund von Einschränkungen
durch die implementierten Algorithmen.

Note

Die Java-Implementierung dieses SDK schränkt diesen Wert weiter auf 2 ^ 31 – 1 oder 2
Gibibyte (2 GiB) ein, aufgrund von Einschränkungen in der Sprache.

Verschlüsselter Inhalt

Der verschlüsselte Inhalt (Verschlüsselungstext), wie vom Verschlüsselungsalgorithmus
zurückgegeben.

Authentifizierungs-Tag

Die Authentifizierungswert für den Text. Er wird verwendet, um den Nachrichtentext zu
authentifizieren.

Textstruktur 513

AWS Encryption SDK Entwicklerhandbuch

Daten mit Frame

Bei Daten mit Frame werden die Klartextdaten in gleichlange Teile unterteilt, die als Frames
bezeichnet werden. Das AWS Encryption SDK verschlüsselt jeden Frame separat mit einem
eindeutigen IV- und Body-AAD.

Note

Verwenden Sie nach Möglichkeit gerahmte Daten. Das AWS Encryption SDK
unterstützt Daten ohne Frames nur für die Verwendung in älteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK können immer noch nicht gerahmten
Chiffretext generieren. Alle unterstützten Sprachimplementierungen können gerahmten und
ungerahmten Chiffretext entschlüsseln.

Die Frame-Länge, d. h. die Länge des verschlüsselten Inhalts im Frame, kann für jede Nachricht
unterschiedlich sein. Die maximale Anzahl von Bytes in einem Frame ist 2 ^ 32 – 1. Die maximale
Anzahl von Frames in einer Nachricht ist 2 ^ 32 – 1.

Es gibt zwei Arten von Frames: reguläre und abschließende. Jede Nachricht muss aus einem
abschließenden Frame bestehen oder einen enthalten.

Alle regulären Frames in einer Nachricht haben die gleiche Frame-Länge. Der abschließende Frame
kann eine andere Frame-Länge haben.

Die Zusammensetzung der Frames in Daten mit Frame variiert je nach Länge des verschlüsselten
Inhalts.

• Entspricht der Framelänge — Wenn die Länge des verschlüsselten Inhalts mit der Framelänge
der regulären Frames übereinstimmt, kann die Nachricht aus einem regulären Frame bestehen,
der die Daten enthält, gefolgt von einem letzten Frame mit der Länge Null (0). Oder die Nachricht
kann nur aus einem abschließenden Frame bestehen, der die Daten enthält. In diesem Fall hat der
abschließende Frame die gleiche Frame-Länge wie die regulären Frames.

• Vielfaches der Framelänge — Wenn die Länge des verschlüsselten Inhalts ein exaktes Vielfaches
der Framelänge der regulären Frames ist, kann die Nachricht in einem regulären Frame enden,
der die Daten enthält, gefolgt von einem letzten Frame mit einer Länge von Null (0). Oder die
Nachricht kann in einem abschließenden Frame enden, der die Daten enthält. In diesem Fall hat
der abschließende Frame die gleiche Frame-Länge wie die regulären Frames.

Textstruktur 514

AWS Encryption SDK Entwicklerhandbuch

• Kein Vielfaches der Framelänge — Wenn die Länge des verschlüsselten Inhalts kein exaktes
Vielfaches der Framelänge der regulären Frames ist, enthält der letzte Frame die verbleibenden
Daten. Die Frame-Länge des abschließenden Frames ist kleiner als die Frame-Länge der
regulären Frames.

• Weniger als die Framelänge — Wenn die Länge des verschlüsselten Inhalts kleiner als die
Framelänge der regulären Frames ist, besteht die Nachricht aus einem letzten Frame, der alle
Daten enthält. Die Frame-Länge des abschließenden Frames ist kleiner als die Frame-Länge der
regulären Frames.

In den folgenden Tabellen sind die Felder beschrieben, die die Frames bilden. Die Byte werden in der
angegebenen Reihenfolge angehängt.

Textstruktur mit Frame, regulärer Frame

Feld Länge, in Bytes

Sequence Number 4

IV Variable. Gleich dem im IV Length-Byte des
Headers angegebenen Wert.

Encrypted Content Variable. Gleich dem im Frame Length des
Headers angegebenen Wert.

Authentication Tag Variable. Wird durch den verwendeten
Algorithmus bestimmt, wie im Algorithm ID des
Headers spezifiziert.

Sequenznummer

Die Frame-Folgenummer. Dies ist ein inkrementeller Zähler für den Frame. Dies ist ein 4-Byte-
Wert, interpretiert als vorzeichenlose 32-Bit-Ganzzahl.

Daten mit Frame müssen mit der Folgenummer 1 beginnen. Nachfolgende Frames müssen sich
in der richtigen Reihenfolge befinden ein Inkrement von 1 gegenüber dem vorherigen Frame
enthalten. Andernfalls wird der Entschlüsselungsprozess angehalten und eine Fehlermeldung
ausgegeben.

Textstruktur 515

AWS Encryption SDK Entwicklerhandbuch

IV

Der Initialisierungsvektor (IV) für den Frame. Das SDK nutzt eine deterministische Methode für die
Konstruktion eines jeweils anderen IV für jeden Frame in der Nachricht. Seine Länge wird durch
die verwendete Algorithmus-Folge bestimmt.

Verschlüsselter Inhalt

Der verschlüsselte Inhalt (Verschlüsselungstext) für den Frame, wie vom
Verschlüsselungsalgorithmus zurückgegeben.

Authentifizierungs-Tag

Die Authentifizierungswert für den Frame. Er wird verwendet, um den gesamten Frame zu
authentifizieren.

Textstruktur mit Frame, abschließender Frame

Feld Länge, in Bytes

Sequence Number End 4

Sequence Number 4

IV Variable. Gleich dem im IV Length-Byte des
Headers angegebenen Wert.

Encrypted Content Length 4

Encrypted Content Variable. Gleich dem Wert, der in den vorherige
n 4 Bytes angegeben ist (Länge des verschlüs
selten Inhalts).

Authentication Tag Variable. Wird durch den verwendeten
Algorithmus bestimmt, wie im Algorithm ID des
Headers spezifiziert.

Ende der Sequenznummer

Ein Indikator für den abschließenden Frame. Der Wert wird als die 4 Bytes FF FF FF FF im
Hexadezimalformat kodiert.

Textstruktur 516

AWS Encryption SDK Entwicklerhandbuch

Sequenznummer

Die Frame-Folgenummer. Dies ist ein inkrementeller Zähler für den Frame. Dies ist ein 4-Byte-
Wert, interpretiert als vorzeichenlose 32-Bit-Ganzzahl.

Daten mit Frame müssen mit der Folgenummer 1 beginnen. Nachfolgende Frames müssen sich
in der richtigen Reihenfolge befinden ein Inkrement von 1 gegenüber dem vorherigen Frame
enthalten. Andernfalls wird der Entschlüsselungsprozess angehalten und eine Fehlermeldung
ausgegeben.

IV

Der Initialisierungsvektor (IV) für den Frame. Das SDK nutzt eine deterministische Methode für die
Konstruktion eines jeweils anderen IV für jeden Frame in der Nachricht. Die Länge der IV-Länge
wird durch die Algorithmus-Folge angegeben.

Länge des verschlüsselten Inhalts

Die Länge des verschlüsselten Inhalts. Es handelt sich um einen 4-Byte-Wert, interpretiert als
vorzeichenlose 32-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den verschlüsselten Inhalt
für den Frame enthalten.

Verschlüsselter Inhalt

Der verschlüsselte Inhalt (Verschlüsselungstext) für den Frame, wie vom
Verschlüsselungsalgorithmus zurückgegeben.

Authentifizierungs-Tag

Die Authentifizierungswert für den Frame. Er wird verwendet, um den gesamten Frame zu
authentifizieren.

Footer-Struktur

Wenn die Algorithmen mit Signatur verwendet werden, enthält das Nachrichtenformat einen Footer.
Die Fußzeile der Nachricht enthält eine digitale Signatur, die anhand des Nachrichtenkopfs und des
Nachrichtentexts berechnet wird. In der folgenden Tabelle sind die Felder des Footers beschrieben.
Die Byte werden in der angegebenen Reihenfolge angehängt. Die Struktur der Nachrichtenfußzeile
ist in den Nachrichtenformat-Versionen 1 und 2 dieselbe.

Footer-Struktur 517

AWS Encryption SDK Entwicklerhandbuch

Footer-Struktur

Feld Länge, in Bytes

Signature Length 2

Signature Variable. Gleich dem Wert, der in den vorherige
n 2 Bytes angegeben ist (Signaturlänge).

Länge der Signatur

Die Länge der Signatur. Es handelt sich um einen 2-Byte-Wert, interpretiert als vorzeichenlose 16-
Bit-Ganzzahl, die die Anzahl der Bytes angibt, die die Signatur enthalten.

Signatur

Die Signatur

AWS Encryption SDK Beispiele für Nachrichtenformate

Die Informationen auf dieser Seite stellen eine Referenz für die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlüsselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlüsselungsbibliothek erstellen, benötigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstützten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Die Spezifikation, die die Elemente einer ordnungsgemäßen AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Die folgenden Themen zeigen Beispiele für das AWS Encryption SDK Nachrichtenformat. Jedes
Beispiel zeigt die Rohbytes im Hexadezimalformat, gefolgt von einer Beschreibung, wofür diese Bytes
stehen.

Themen

• Gerahmte Daten (Nachrichtenformat, Version 1)

• Frame-Daten (Nachrichtenformat, Version 2)

Nachrichtenformat – Beispiele 518

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Entwicklerhandbuch

• Daten ohne Frames (Nachrichtenformat, Version 1)

Gerahmte Daten (Nachrichtenformat, Version 1)

Das folgende Beispiel zeigt das Nachrichtenformat für Frame-Daten im Nachrichtenformat Version 1.

+--------+
| Header |
+--------+
01 Version (1.0)
80 Type (128, customer authenticated encrypted
 data)
0378 Algorithm ID (see Algorithmen – Referenz)
6E7C0FBD 4DF4A999 717C22A2 DDFE1A27 Message ID (random 128-bit value)
008E AAD Length (142)
0004 AAD Key-Value Pair Count (4)
0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("0This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("1an")
000A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632D6B65 79
0044 AAD Key-Value Pair 4, Value Length (68)
416A4173 7569326F 7430364C 4B77715A AAD Key-Value Pair 4, Value
 ("AjAsui2ot06LKwqZXDJnU/Aqc2vD+0OkpOZ1cc8Tg2qd7rs5aLTg7lvfUEW/86+/5w==")
58444A6E 552F4171 63327644 2B304F6B
704F5A31 63633854 67327164 37727335
614C5467 376C7666 5545572F 38362B2F
35773D3D
0002 EncryptedDataKeyCount (2)
0007 Encrypted Data Key 1, Key Provider ID Length
 (7)

Gerahmte Daten (Nachrichtenformat, Version 1) 519

AWS Encryption SDK Entwicklerhandbuch

6177732D 6B6D73 Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004B Encrypted Data Key 1, Key Provider
 Information Length (75)
61726E3A 6177733A 6B6D733A 75732D77 Encrypted Data Key 1, Key Provider
 Information ("arn:aws:kms:us-west-2:111122223333:key/715c0818-5825-4245-
a755-138a6d9a11e6")
6573742D 323A3131 31313232 32323333
33333A6B 65792F37 31356330 3831382D
35383235 2D343234 352D6137 35352D31
33386136 64396131 316536
00A7 Encrypted Data Key 1, Encrypted Data Key
 Length (167)
01010200 7857A1C1 F7370545 4ECA7C83 Encrypted Data Key 1, Encrypted Data Key
956C4702 23DCE8D7 16C59679 973E3CED
02A4EF29 7F000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C3F F02C897B
7A12EB19 8BF2D802 0110803B 24003D1F
A5474FBC 392360B5 CB9997E0 6A17DE4C
A6BD7332 6BF86DAB 60D8CCB8 8295DBE9
4707E356 ADA3735A 7C52D778 B3135A47
9F224BF9 E67E87
0007 Encrypted Data Key 2, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 2, Key Provider ID ("aws-
kms")
004E Encrypted Data Key 2, Key Provider
 Information Length (78)
61726E3A 6177733A 6B6D733A 63612D63 Encrypted Data Key 2, Key Provider
 Information ("arn:aws:kms:ca-central-1:111122223333:key/9b13ca4b-afcc-46a8-aa47-
be3435b423ff")
656E7472 616C2D31 3A313131 31323232
32333333 333A6B65 792F3962 31336361
34622D61 6663632D 34366138 2D616134
372D6265 33343335 62343233 6666
00A7 Encrypted Data Key 2, Encrypted Data Key
 Length (167)
01010200 78FAFFFB D6DE06AF AC72F79B Encrypted Data Key 2, Encrypted Data Key
0E57BD87 3F60F4E6 FD196144 5A002C94
AF787150 69000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086

Gerahmte Daten (Nachrichtenformat, Version 1) 520

AWS Encryption SDK Entwicklerhandbuch

48016503 04012E30 11040C36 CD985E12
D218B674 5BBC6102 0110803B 0320E3CD
E470AA27 DEAB660B 3E0CE8E0 8B1A89E4
57DCC69B AAB1294F 21202C01 9A50D323
72EBAAFD E24E3ED8 7168E0FA DB40508F
556FBD58 9E621C
02 Content Type (2, framed data)
00000000 Reserved
0C IV Length (12)
00000100 Frame Length (256)
4ECBD5C0 9899CA65 923D2347 IV
0B896144 0CA27950 CA571201 4DA58029 Authentication Tag
+------+
| Body |
+------+
00000001 Frame 1, Sequence Number (1)
6BD3FE9C ADBCB213 5B89E8F1 Frame 1, IV
1F6471E0 A51AF310 10FA9EF6 F0C76EDF Frame 1, Encrypted Content
F5AFA33C 7D2E8C6C 9C5D5175 A212AF8E
FBD9A0C3 C6E3FB59 C125DBF2 89AC7939
BDEE43A8 0F00F49E ACBBD8B2 1C785089
A90DB923 699A1495 C3B31B50 0A48A830
201E3AD9 1EA6DA14 7F6496DB 6BC104A4
DEB7F372 375ECB28 9BF84B6D 2863889F
CB80A167 9C361C4B 5EC07438 7A4822B4
A7D9D2CC 5150D414 AF75F509 FCE118BD
6D1E798B AEBA4CDB AD009E5F 1A571B77
0041BC78 3E5F2F41 8AF157FD 461E959A
BB732F27 D83DC36D CC9EBC05 00D87803
57F2BB80 066971C2 DEEA062F 4F36255D
E866C042 E1382369 12E9926B BA40E2FC
A820055F FB47E428 41876F14 3B6261D9
5262DB34 59F5D37E 76E46522 E8213640
04EE3CC5 379732B5 F56751FA 8E5F26AD Frame 1, Authentication Tag
00000002 Frame 2, Sequence Number (2)
F1140984 FF25F943 959BE514 Frame 2, IV
216C7C6A 2234F395 F0D2D9B9 304670BF Frame 2, Encrypted Content
A1042608 8A8BCB3F B58CF384 D72EC004
A41455B4 9A78BAC9 36E54E68 2709B7BD
A884C1E1 705FF696 E540D297 446A8285
23DFEE28 E74B225A 732F2C0C 27C6BDA2
7597C901 65EF3502 546575D4 6D5EBF22
1FF787AB 2E38FD77 125D129C 43D44B96
778D7CEE 3C36625F FF3A985C 76F7D320

Gerahmte Daten (Nachrichtenformat, Version 1) 521

AWS Encryption SDK Entwicklerhandbuch

ED70B1F3 79729B47 E7D9B5FC 02FCE9F5
C8760D55 7779520A 81D54F9B EC45219D
95941F7E 5CBAEAC8 CEC13B62 1464757D
AC65B6EF 08262D74 44670624 A3657F7F
2A57F1FD E7060503 AC37E197 2F297A84
DF1172C2 FA63CF54 E6E2B9B6 A86F582B
3B16F868 1BBC5E4D 0B6919B3 08D5ABCF
FECDC4A4 8577F08B 99D766A1 E5545670
A61F0A3B A3E45A84 4D151493 63ECA38F Frame 2, Authentication Tag
FFFFFFFF Final Frame, Sequence Number End
00000003 Final Frame, Sequence Number (3)
35F74F11 25410F01 DD9E04BF Final Frame, IV
0000008E Final Frame, Encrypted Content Length (142)
F7A53D37 2F467237 6FBD0B57 D1DFE830 Final Frame, Encrypted Content
B965AD1F A910AA5F 5EFFFFF4 BC7D431C
BA9FA7C4 B25AF82E 64A04E3A A0915526
88859500 7096FABB 3ACAD32A 75CFED0C
4A4E52A3 8E41484D 270B7A0F ED61810C
3A043180 DF25E5C5 3676E449 0986557F
C051AD55 A437F6BC 139E9E55 6199FD60
6ADC017D BA41CDA4 C9F17A83 3823F9EC
B66B6A5A 80FDB433 8A48D6A4 21CB
811234FD 8D589683 51F6F39A 040B3E3B Final Frame, Authentication Tag
+--------+
| Footer |
+--------+
0066 Signature Length (102)
30640230 085C1D3C 63424E15 B2244448 Signature
639AED00 F7624854 F8CF2203 D7198A28
758B309F 5EFD9D5D 2E07AD0B 467B8317
5208B133 02301DF7 2DFC877A 66838028
3C6A7D5E 4F8B894E 83D98E7C E350F424
7E06808D 0FE79002 E24422B9 98A0D130
A13762FF 844D

Frame-Daten (Nachrichtenformat, Version 2)

Das folgende Beispiel zeigt das Nachrichtenformat für Frame-Daten im Nachrichtenformat Version 2.

+--------+
| Header |
+--------+
02 Version (2.0)

Frame-Daten (Nachrichtenformat, Version 2) 522

AWS Encryption SDK Entwicklerhandbuch

0578 Algorithm ID (see Algorithms reference)
122747eb 21dfe39b 38631c61 7fad7340
cc621a30 32a11cc3 216d0204 fd148459 Message ID (random 256-bit value)
008e AAD Length (142)
0004 AAD Key-Value Pair Count (4)
0005 AAD Key-Value Pair 1, Key Length (5)
30546869 73 AAD Key-Value Pair 1, Key ("0This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616e AAD Key-Value Pair 2, Key ("1an")
000a AAD Key-Value Pair 2, Value Length (10)
656e6372 79707469 6f6e AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636f6e 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616d 706c65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732d 63727970 746f2d70 75626c69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632d6b65 79
0044 AAD Key-Value Pair 4, Value Length (68)
41746733 72703845 41345161 36706669 AAD Key-Value Pair 4, Value
 ("QXRnM3JwOEVBNFFhNnBmaTk3MUlTNTk3NHpOMnlZWE5vSmtwRHFPc0dIYkVaVDRqME5OMlFkRStmbTFVY01WdThnPT0=")
39373149 53353937 347a4e32 7959584e
6f4a6b70 44714f73 47486245 5a54346a
304e4e32 5164452b 666d3155 634d5675
38673d3d
0001 Encrypted Data Key Count (1)
0007 Encrypted Data Key 1, Key Provider ID Length
 (7)
6177732d 6b6d73 Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004b Encrypted Data Key 1, Key Provider
 Information Length (75)
61726e3a 6177733a 6b6d733a 75732d77 Encrypted Data Key 1, Key
 Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537ef1-
d8dc-4780-9f5a-55776cbb2f7f")
6573742d 323a3635 38393536 36303038
33333a6b 65792f62 33353337 6566312d
64386463 2d343738 302d3966 35612d35
35373736 63626232 663766
00a7 Encrypted Data Key 1, Encrypted Data Key
 Length (167)

Frame-Daten (Nachrichtenformat, Version 2) 523

AWS Encryption SDK Entwicklerhandbuch

01010100 7840f38c 275e3109 7416c107 Encrypted Data Key 1, Encrypted Data Key
29515057 1964ada3 ef1c21e9 4c8ba0bd
bc9d0fb4 14000000 7e307c06 092a8648
86f70d01 0706a06f 306d0201 00306806
092a8648 86f70d01 0701301e 06096086
48016503 04012e30 11040c39 32d75294
06063803 f8460802 0110803b 2a46bc23
413196d2 903bf1d7 3ed98fc8 a94ac6ed
e00ee216 74ec1349 12777577 7fa052a5
ba62e9e4 f2ac8df6 bcb1758f 2ce0fb21
cc9ee5c9 7203bb
02 Content Type (2, framed data)
00001000 Frame Length (4096)
05cd035b 29d5499d 4587570b 87502afe Algorithm Suite Data (key commitment)
634f7b2c c3df2aa9 88a10105 4a2c7687
76cb339f 2536741f 59a1c202 4f2594ab Authentication Tag
+------+
| Body |
+------+
ffffffff Final Frame, Sequence Number End
00000001 Final Frame, Sequence Number (1)
00000000 00000000 00000001 Final Frame, IV
00000009 Final Frame, Encrypted Content Length (9)
fa6e39c6 02927399 3e Final Frame, Encrypted Content
f683a564 405d68db eeb0656c d57c9eb0 Final Frame, Authentication Tag
+--------+
| Footer |
+--------+
0067 Signature Length (103)
30650230 2a1647ad 98867925 c1712e8f Signature
ade70b3f 2a2bc3b8 50eb91ef 56cfdd18
967d91d8 42d92baf 357bba48 f636c7a0
869cade2 023100aa ae12d08f 8a0afe85
e5054803 110c9ed8 11b2e08a c4a052a9
074217ea 3b01b660 534ac921 bf091d12
3657e2b0 9368bd

Daten ohne Frames (Nachrichtenformat, Version 1)

Das folgende Beispiel zeigt das Nachrichtenformat für Daten ohne Frame.

Daten ohne Frames (Nachrichtenformat, Version 1) 524

AWS Encryption SDK Entwicklerhandbuch

Note

Verwenden Sie nach Möglichkeit gerahmte Daten. Das AWS Encryption SDK
unterstützt Daten ohne Frames nur für die Verwendung in älteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK können immer noch nicht gerahmten
Chiffretext generieren. Alle unterstützten Sprachimplementierungen können gerahmten und
ungerahmten Chiffretext entschlüsseln.

+--------+
| Header |
+--------+
01 Version (1.0)
80 Type (128, customer authenticated encrypted
 data)
0378 Algorithm ID (see Algorithmen – Referenz)
B8929B01 753D4A45 C0217F39 404F70FF Message ID (random 128-bit value)
008E AAD Length (142)
0004 AAD Key-Value Pair Count (4)
0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("0This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("1an")
000A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632D6B65 79
0044 AAD Key-Value Pair 4, Value Length (68)
41734738 67473949 6E4C5075 3136594B AAD Key-Value Pair 4, Value
 ("AsG8gG9InLPu16YKlqXTOD+nykG8YqHAhqecj8aXfD2e5B4gtVE73dZkyClA+rAMOQ==")
6C715854 4F442B6E 796B4738 59714841
68716563 6A386158 66443265 35423467
74564537 33645A6B 79436C41 2B72414D
4F513D3D

Daten ohne Frames (Nachrichtenformat, Version 1) 525

AWS Encryption SDK Entwicklerhandbuch

0002 Encrypted Data Key Count (2)
0007 Encrypted Data Key 1, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004B Encrypted Data Key 1, Key Provider
 Information Length (75)
61726E3A 6177733A 6B6D733A 75732D77 Encrypted Data Key 1, Key Provider
 Information ("arn:aws:kms:us-west-2:111122223333:key/715c0818-5825-4245-
a755-138a6d9a11e6")
6573742D 323A3131 31313232 32323333
33333A6B 65792F37 31356330 3831382D
35383235 2D343234 352D6137 35352D31
33386136 64396131 316536
00A7 Encrypted Data Key 1, Encrypted Data Key
 Length (167)
01010200 7857A1C1 F7370545 4ECA7C83 Encrypted Data Key 1, Encrypted Data Key
956C4702 23DCE8D7 16C59679 973E3CED
02A4EF29 7F000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C28 4116449A
0F2A0383 659EF802 0110803B B23A8133
3A33605C 48840656 C38BCB1F 9CCE7369
E9A33EBE 33F46461 0591FECA 947262F3
418E1151 21311A75 E575ECC5 61A286E0
3E2DEBD5 CB005D
0007 Encrypted Data Key 2, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 2, Key Provider ID ("aws-
kms")
004E Encrypted Data Key 2, Key Provider
 Information Length (78)
61726E3A 6177733A 6B6D733A 63612D63 Encrypted Data Key 2, Key Provider
 Information ("arn:aws:kms:ca-central-1:111122223333:key/9b13ca4b-afcc-46a8-aa47-
be3435b423ff")
656E7472 616C2D31 3A313131 31323232
32333333 333A6B65 792F3962 31336361
34622D61 6663632D 34366138 2D616134
372D6265 33343335 62343233 6666
00A7 Encrypted Data Key 2, Encrypted Data Key
 Length (167)
01010200 78FAFFFB D6DE06AF AC72F79B Encrypted Data Key 2, Encrypted Data Key
0E57BD87 3F60F4E6 FD196144 5A002C94

Daten ohne Frames (Nachrichtenformat, Version 1) 526

AWS Encryption SDK Entwicklerhandbuch

AF787150 69000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040CB2 A820D0CC
76616EF2 A6B30D02 0110803B 8073D0F1
FDD01BD9 B0979082 099FDBFC F7B13548
3CC686D7 F3CF7C7A CCC52639 122A1495
71F18A46 80E2C43F A34C0E58 11D05114
2A363C2A E11397
01 Content Type (1, nonframed data)
00000000 Reserved
0C IV Length (12)
00000000 Frame Length (0, nonframed data)
734C1BBE 032F7025 84CDA9D0 IV
2C82BB23 4CBF4AAB 8F5C6002 622E886C Authentication Tag
+------+
| Body |
+------+
D39DD3E5 915E0201 77A4AB11 IV
00000000 0000028E Encrypted Content Length (654)
E8B6F955 B5F22FE4 FD890224 4E1D5155 Encrypted Content
5871BA4C 93F78436 1085E4F8 D61ECE28
59455BD8 D76479DF C28D2E0B BDB3D5D3
E4159DFE C8A944B6 685643FC EA24122B
6766ECD5 E3F54653 DF205D30 0081D2D8
55FCDA5B 9F5318BC F4265B06 2FE7C741
C7D75BCC 10F05EA5 0E2F2F40 47A60344
ECE10AA7 559AF633 9DE2C21B 12AC8087
95FE9C58 C65329D1 377C4CD7 EA103EC1
31E4F48A 9B1CC047 EE5A0719 704211E5
B48A2068 8060DF60 B492A737 21B0DB21
C9B21A10 371E6179 78FAFB0B BAAEC3F4
9D86E334 701E1442 EA5DA288 64485077
54C0C231 AD43571A B9071925 609A4E59
B8178484 7EB73A4F AAE46B26 F5B374B8
12B0000C 8429F504 936B2492 AAF47E94
A5BA804F 7F190927 5D2DF651 B59D4C2F
A15D0551 DAEBA4AF 2060D0D5 CB1DA4E6
5E2034DB 4D19E7CD EEA6CF7E 549C86AC
46B2C979 AB84EE12 202FD6DF E7E3C09F
C2394012 AF20A97E 369BCBDA 62459D3E
C6FFB914 FEFD4DE5 88F5AFE1 98488557
1BABBAE4 BE55325E 4FB7E602 C1C04BEE
F3CB6B86 71666C06 6BF74E1B 0F881F31

Daten ohne Frames (Nachrichtenformat, Version 1) 527

AWS Encryption SDK Entwicklerhandbuch

B731839B CF711F6A 84CA95F5 958D3B44
E3862DF6 338E02B5 C345CFF8 A31D54F3
6920AA76 0BF8E903 552C5A04 917CCD11
D4E5DF5C 491EE86B 20C33FE1 5D21F0AD
6932E67C C64B3A26 B8988B25 CFA33E2B
63490741 3AB79D60 D8AEFBE9 2F48E25A
978A019C FE49EE0A 0E96BF0D D6074DDB
66DFF333 0E10226F 0A1B219C BE54E4C2
2C15100C 6A2AA3F1 88251874 FDC94F6B
9247EF61 3E7B7E0D 29F3AD89 FA14A29C
76E08E9B 9ADCDF8C C886D4FD A69F6CB4
E24FDE26 3044C856 BF08F051 1ADAD329
C4A46A1E B5AB72FE 096041F1 F3F3571B
2EAFD9CB B9EB8B83 AE05885A 8F2D2793
1E3305D9 0C9E2294 E8AD7E3B 8E4DEC96
6276C5F1 A3B7E51E 422D365D E4C0259C
50715406 822D1682 80B0F2E5 5C94
65B2E942 24BEEA6E A513F918 CCEC1DE3 Authentication Tag
+--------+
| Footer |
+--------+
0067 Signature Length (103)
30650230 7229DDF5 B86A5B64 54E4D627 Signature
CBE194F1 1CC0F8CF D27B7F8B F50658C0
BE84B355 3CED1721 A0BE2A1B 8E3F449E
1BEB8281 023100B2 0CB323EF 58A4ACE3
1559963B 889F72C3 B15D1700 5FB26E61
331F3614 BC407CEE B86A66FA CBF74D9E
34CB7E4B 363A38

Text – Zusätzliche authentifizierte Daten (AAD) – Referenz für das
AWS Encryption SDK

Die Informationen auf dieser Seite stellen eine Referenz für die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlüsselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlüsselungsbibliothek erstellen, benötigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstützten Programmi
ersprachen finden Sie unter. Programmiersprachen

Text-AAD – Referenz 528

AWS Encryption SDK Entwicklerhandbuch

Die Spezifikation, die die Elemente einer ordnungsgemäßen AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Sie müssen zusätzliche authentifizierte Daten (AAD) für den AES-GCM-Algorithmus für jede
kryptografische Operation angeben. Dies gilt für Textdaten mit und ohne Frame. Weitere
Informationen zu AAD und seiner Verwendung im Galois/Counter Modus (GCM) finden Sie unter
Empfehlungen für Block Cipher Modes of Operations: Galois/Counter Mode (GCM) und GMAC.

In der folgenden Tabelle sind die Felder beschrieben, die die Text-AAD bilden. Die Byte werden in
der angegebenen Reihenfolge angehängt.

Struktur der Text-AAD

Feld Länge, in Bytes

Message ID 16

Body AAD Content Variable. Weitere Informationen finden Sie
unter Text-AAD-Inhalt in der folgenden Liste.

Sequence Number 4

Content Length 8

Nachrichten-ID

Der gleiche Message ID-Wert, wie der im Nachrichten-Header festgelegte Wert.

AAD-Inhalt des Hauptteils

Ein UTF-8-kodierter Wert, abhängig von der Art der verwendeten Textdaten.

Für Daten ohne Frame verwenden Sie den Wert AWSKMSEncryptionClient Single Block.

Für reguläre Frames in Daten mit Frame verwenden Sie den Wert AWSKMSEncryptionClient
Frame.

Für den abschließenden Frame in Daten mit Frame verwenden Sie den Wert
AWSKMSEncryptionClient Final Frame.

Text-AAD – Referenz 529

https://github.com/awslabs/aws-encryption-sdk-specification/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

AWS Encryption SDK Entwicklerhandbuch

Sequenznummer

Ein 4-Byte-Wert, interpretiert als vorzeichenlose 32-Bit-Ganzzahl.

Für Daten mit Frame ist dies die Frame-Folgenummer.

Für Daten ohne Frame verwenden Sie den Wert 1, kodiert als die 4 Bytes 00 00 00 01 im
Hexadezimalformat.

Länge des Inhalts

Die Länge der Klartextdaten in Bytes, die dem Algorithmus zur Verschlüsselung zur Verfügung
gestellt werden. Dies ist ein 8-Byte-Wert, interpretiert als vorzeichenlose 64-Bit-Ganzzahl.

AWS Encryption SDK Referenz zu Algorithmen

Die Informationen auf dieser Seite stellen eine Referenz für die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlüsselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlüsselungsbibliothek erstellen, benötigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstützten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Die Spezifikation, die die Elemente einer ordnungsgemäßen AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Wenn Sie Ihre eigene Bibliothek erstellen, die Chiffretexte lesen und schreiben kann, die mit dem
kompatibel sind AWS Encryption SDK, müssen Sie verstehen, wie die unterstützten Algorithmus-
Suites zur Verschlüsselung von Rohdaten AWS Encryption SDK implementiert.

Die AWS Encryption SDK unterstützt die folgenden Algorithmus-Suiten. Alle AES-GCM-
Algorithmus-Suiten verfügen über einen 12-Byte-Initialisierungsvektor und ein 16-Byte-AES-GCM-
Authentifizierungs-Tag. Die Standard-Algorithmus-Suite variiert je nach Version und ausgewählter
Key Commitment-Richtlinie. AWS Encryption SDK Einzelheiten finden Sie unter Commitment-
Richtlinie und Algorithmus-Suite.

Algorithmen – Referenz 530

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK Algorithmus-Suiten

Algorithm
us-ID

Version
im
Nachricht
enformat

Verschlüs
selungsal
gorithmus

Länge
des
Datenschl
üssels
(Bits)

Schlüssel
ableitung
salgorith
mus

Signatur-
Algorithm
us

Algorithm
us für
Schlüssel
zusagen

Datenläng
e der
Algorithm
Suite
(Byte)

05 78 0x02 AES-
GCM

256 HKDF mit
SHA-512

ECDSA
mit P-384
und
SHA-384

HKDF mit
SHA-512

32
(wichtigs
te
Verpflich
tung)

04 78 0x02 AES-
GCM

256 HKDF mit
SHA-512

Keine HKDF mit
SHA-512

32
(wichtigs
te
Verpflich
tung)

03 78 0x01 AES-
GCM

256 HKDF mit
SHA-384

ECDSA
mit P-384
und
SHA-384

Keine N/A

03 46 0x01 AES-
GCM

192 HKDF mit
SHA-384

ECDSA
mit P-384
und
SHA-384

Keine N/A

02 14 0x01 AES-
GCM

128 HKDF mit
SHA-256

ECDSA
mit P-256
und
SHA-256

Keine N/A

01 78 0x01 AES-
GCM

256 HKDF mit
SHA-256

Keine Keine N/A

Algorithmen – Referenz 531

AWS Encryption SDK Entwicklerhandbuch

Algorithm
us-ID

Version
im
Nachricht
enformat

Verschlüs
selungsal
gorithmus

Länge
des
Datenschl
üssels
(Bits)

Schlüssel
ableitung
salgorith
mus

Signatur-
Algorithm
us

Algorithm
us für
Schlüssel
zusagen

Datenläng
e der
Algorithm
Suite
(Byte)

01 46 0x01 AES-
GCM

192 HKDF mit
SHA-256

Keine Keine N/A

01 14 0x01 AES-
GCM

128 HKDF mit
SHA-256

Keine Keine N/A

00 78 0x01 AES-
GCM

256 Keine Keine Keine N/A

00 46 0x01 AES-
GCM

192 Keine Keine Keine N/A

00 14 0x01 AES-
GCM

128 Keine Keine Keine N/A

Algorithmus-ID

Ein 2-Byte-Hexadezimalwert, der eine Algorithmusimplementierung eindeutig identifiziert. Dieser
Wert wird im Nachrichtenkopf des Chiffretextes gespeichert.

Version im Nachrichtenformat

Die Version des Nachrichtenformats. Algorithmus-Suites mit Key Commitment verwenden das
Nachrichtenformat Version 2 (0x02). Algorithmus-Suites ohne Schlüsselzusage verwenden das
Nachrichtenformat Version 1 (0x01).

Datenlänge der Algorithmus-Suite

Die Länge der für die Algorithmus-Suite spezifischen Daten in Byte. Dieses Feld wird nur im
Nachrichtenformat Version 2 (0x02) unterstützt. Im Nachrichtenformat Version 2 (0x02) werden
diese Daten im Algorithm suite data Feld des Nachrichtenkopfs angezeigt. Algorithmus-
Suites, die Key Commitment unterstützen, verwenden 32 Byte für die Key-Commitment-
Zeichenfolge. Weitere Informationen finden Sie in dieser Liste unter Key Commitment-
Algorithmus.

Algorithmen – Referenz 532

AWS Encryption SDK Entwicklerhandbuch

Länge des Datenschlüssels

Die Länge des Datenschlüssels in Bits. Der AWS Encryption SDK unterstützt 256-Bit-, 192-Bit-
und 128-Bit-Schlüssel. Der Datenschlüssel wird durch einen Schlüsselbund oder Hauptschlüssel
generiert.

In einigen Implementierungen wird dieser Datenschlüssel als Eingabe für eine HMAC-basierte
extract-and-expand Schlüsselableitungsfunktion (HKDF) verwendet. Die Ausgabe des HKDF
wird als Datenverschlüsselungsschlüssel im Verschlüsselungsalgorithmus verwendet. Weitere
Informationen finden Sie in dieser Liste unter Algorithmus zur Schlüsselableitung.

Verschlüsselungsalgorithmus

Der Name und der Modus des verwendeten Verschlüsselungsalgorithmus. Algorithmus-
Suiten AWS Encryption SDK verwenden den Advanced Encryption Standard (AES) -
Verschlüsselungsalgorithmus mit Galois/Counter Modus (GCM).

Algorithmus für Schlüsselzusagen

Der Algorithmus, der zur Berechnung der Key-Commitment-Zeichenfolge verwendet wurde. Die
Ausgabe wird im Algorithm suite data Feld des Nachrichtenkopfs gespeichert und dient zur
Validierung des Datenschlüssels für Key Commitment.

Eine technische Erläuterung des Hinzufügens von Key Commitment zu einer Algorithmus-Suite
finden Sie unter Key Committing AEADs in Cryptology ePrint Archive.

Schlüsselableitungsalgorithmus

Die HMAC-basierte extract-and-expand Schlüsselableitungsfunktion (HKDF), die zur Ableitung
des Datenverschlüsselungsschlüssels verwendet wird. Die AWS Encryption SDK verwendet das
in RFC 5869 definierte HKDF.

Algorithmus-Suiten ohne Schlüsselbindung (Algorithmus-ID —) 01xx 03xx

• Die verwendete Hash-Funktion ist je nach Algorithmus-Suite entweder SHA-384 oder SHA-256.

• Für den Extraktionsschritt:

• Es wird kein Salt verwendet. Gemäß dem RFC ist das Salz auf eine Folge von Nullen gesetzt.
Die Länge der Zeichenfolge entspricht der Länge der Hashfunktionsausgabe, die 48 Byte für
SHA-384 und 32 Byte für SHA-256 beträgt.

• Das Eingabematerial ist der Datenschlüssel aus dem Schlüsselbund oder dem
Hauptschlüsselanbieter.

Algorithmen – Referenz 533

https://eprint.iacr.org/2020/1153
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS Encryption SDK Entwicklerhandbuch

• Für den Expansionsschritt:

• Der pseudozufällige Eingabeschlüssel ist die Ausgabe aus dem Extraktionsschritt.

• Die Eingabeinformationen sind eine Verkettung der Algorithmus-ID und der Nachrichten-ID (in
dieser Reihenfolge).

• Die Länge des Ausgabe-Keying-Materials entspricht der Länge des Datenschlüssels.
Diese Ausgabe wird als Datenverschlüsselungsschlüssel im Verschlüsselungsalgorithmus
verwendet.

Algorithmus-Suiten mit Schlüsselbindung (Algorithmus-ID 04xx und05xx)

• Die verwendete Hash-Funktion ist SHA-512.

• Für den Extraktionsschritt:

• Der Salt ist ein kryptografischer 256-Bit-Zufallswert. Im Nachrichtenformat Version 2 (0x02)
wird dieser Wert im Feld gespeichert. MessageID

• Bei der ersten Eingabe handelt es sich um den Datenschlüssel aus dem Schlüsselbund oder
dem Hauptschlüsselanbieter.

• Für den Expansionsschritt:

• Der pseudozufällige Eingabeschlüssel ist die Ausgabe aus dem Extraktionsschritt.

• Die Schlüsselbezeichnung besteht aus den UTF-8-kodierten Bytes der DERIVEKEY
Zeichenfolge in Big-Endian-Byte-Reihenfolge.

• Die Eingabeinformationen sind eine Verkettung der Algorithmus-ID und der
Schlüsselbezeichnung (in dieser Reihenfolge).

• Die Länge des Ausgabe-Keying-Materials entspricht der Länge des Datenschlüssels.
Diese Ausgabe wird als Datenverschlüsselungsschlüssel im Verschlüsselungsalgorithmus
verwendet.

Version im Nachrichtenformat

Die Version des Nachrichtenformats, das mit der Algorithmussuite verwendet wird. Details hierzu
finden Sie unter Nachrichtenformat – Referenz.

Signatur-Algorithmus

Der Signaturalgorithmus, der verwendet wird, um eine digitale Signatur über dem Chiffretext-
Header und dem Hauptteil zu generieren. Der AWS Encryption SDK verwendet den Elliptic Curve
Digital Signature Algorithm (ECDSA) mit den folgenden Besonderheiten:

• Die verwendete elliptische Kurve die P-384- oder P-256-Kurve, wie durch die Algorithmus-ID
angegeben. Diese Kurven sind in Digital Signature Standard (DSS) (FIPS PUB 186-4) definiert.

Algorithmen – Referenz 534

http://doi.org/10.6028/NIST.FIPS.186-4

AWS Encryption SDK Entwicklerhandbuch

• Die verwendete Hash-Funktion ist SHA-384 (mit der P-384-Kurve) oder SHA-256 (mit der
P-256-Kurve).

AWS Encryption SDK Referenz zum Initialisierungsvektor

Die Informationen auf dieser Seite stellen eine Referenz für die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlüsselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlüsselungsbibliothek erstellen, benötigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstützten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Die Spezifikation, die die Elemente einer ordnungsgemäßen AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Der AWS Encryption SDK stellt die Initialisierungsvektoren (IVs) bereit, die von allen unterstützten
Algorithmus-Suiten benötigt werden. Das SDK verwendet Frame-Folgenummern, um einen IV zu
konstruieren, sodass keine zwei Frames in derselben Nachricht denselben IV haben können.

Jeder 96-Bit- (12-Byte-)IV besteht aus zwei Big-Endian-Byte-Arrays, die in der folgenden Reihenfolge
verkettet sind:

• 64 Bits: 0 (für eine zukünftige Nutzung reserviert)

• 32 Bits: Frame-Folgenummer. Für das Header-Authentifizierungs-Tag besteht dieser Wert aus
lauter Nullen.

Vor der Einführung der Zwischenspeicherung von Datenschlüsseln verwendeten sie AWS Encryption
SDK immer einen neuen Datenschlüssel, um jede Nachricht zu verschlüsseln, und alle wurden
nach dem Zufallsprinzip generiert. IVs Zufällig generierte Schlüssel IVs waren kryptografisch
sicher, da Datenschlüssel nie wiederverwendet wurden. Als das SDK das Zwischenspeichern von
Datenschlüsseln einführte, bei dem Datenschlüssel bewusst wiederverwendet werden, haben wir die
Art und Weise geändert, wie das SDK generiert. IVs

Die Verwendung von deterministischen IVs Methoden, die sich innerhalb einer Nachricht nicht
wiederholen können, erhöht die Anzahl der Aufrufe, die sicher unter einem einzigen Datenschlüssel
ausgeführt werden können, erheblich. Darüber hinaus verwenden im Cache gespeichert

Initialisierungsvektor – Referenz 535

https://github.com/awslabs/aws-encryption-sdk-specification/
https://en.wikipedia.org/wiki/Initialization_vector

AWS Encryption SDK Entwicklerhandbuch

Datenschlüssel immer einen Algorithmus mit einer Schlüsselableitungsfunktion. Die Verwendung
einer deterministischen IV mit einer Funktion zur Ableitung von Pseudozufallsschlüsseln zur Ableitung
von Verschlüsselungsschlüsseln aus einem Datenschlüssel ermöglicht die Verschlüsselung von 2^32
Nachrichten, ohne die kryptografischen Grenzen AWS Encryption SDK zu überschreiten.

AWS KMS Technische Details zum hierarchischen Schlüsselbund

Der AWS KMS hierarchische Schlüsselbund verwendet einen eindeutigen Datenschlüssel, um
jede Nachricht zu verschlüsseln, und verschlüsselt jeden Datenschlüssel mit einem eindeutigen
Umschließungsschlüssel, der von einem aktiven Zweigschlüssel abgeleitet wird. Er verwendet eine
Schlüsselableitung im Zählermodus mit einer Pseudozufallsfunktion mit HMAC SHA-256, um den 32-
Byte-Wrapping-Schlüssel mit den folgenden Eingaben abzuleiten.

• Ein zufälliges 16-Byte-Salz

• Der aktive Zweigschlüssel

• Der UTF-8-kodierte Wert für die Schlüsselanbieter-ID "“ aws-kms-hierarchy

Der hierarchische Schlüsselbund verwendet den abgeleiteten Wrapping-Schlüssel, um eine Kopie
des Klartext-Datenschlüssels mithilfe von AES-GCM-256 mit einem 16-Byte-Authentifizierungs-Tag
und den folgenden Eingaben zu verschlüsseln.

• Der abgeleitete Wrapping-Schlüssel wird als AES-GCM-Verschlüsselungsschlüssel verwendet

• Der Datenschlüssel wird als AES-GCM-Nachricht verwendet

• Ein zufälliger 12-Byte-Initialisierungsvektor (IV) wird als AES-GCM IV verwendet

• Zusätzliche authentifizierte Daten (AAD), die die folgenden serialisierten Werte enthalten.

Wert Länge in Byte Interpretiert als

"aws-kms-hierarchy" 17 UTF-8-kodiert

Die Kennung des Zweigschl
üssels

Variable UTF-8-kodiert

Die Version des Zweigschl
üssels

16 UTF-8-kodiert

AWS KMS Technische Details zum hierarchischen Schlüsselbund 536

https://en.wikipedia.org/wiki/Key_derivation_function
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS Encryption SDK Entwicklerhandbuch

Wert Länge in Byte Interpretiert als

Verschlüsselungskontext Variable UTF-8-kodierte Schlüssel-
Wert-Paare

AWS KMS Technische Details zum hierarchischen Schlüsselbund 537

AWS Encryption SDK Entwicklerhandbuch

Dokumentenverlauf für das AWS Encryption SDK Developer
Guide
In diesem Thema werden wichtige Aktualisierungen im AWS Encryption SDK -Entwicklerhandbuch
beschrieben.

Themen

• Neueste Aktualisierungen

• Frühere Aktualisierungen

Neueste Aktualisierungen
Die folgende Tabelle beschreibt signifikante Änderungen an dieser Dokumentation seit November
2017. Neben den hier aufgelisteten größeren Änderungen aktualisieren wir die Dokumentation
regelmäßig überarbeitet, um Beschreibungen und Beispiele zu verbessern und Ihre Rückmeldungen
zu berücksichtigen. Wenn Sie über wichtige Änderungen benachrichtigt werden möchten, abonnieren
Sie den RSS-Feed.

Änderung Beschreibung Datum

Allgemeine Verfügbarkeit Dokumentation für den AWS
KMS ECDH-Schlüsselbund
und den Raw ECDH-Schl
üsselbund hinzugefügt.

17. Juni 2024

AWS-Verschlüsselungs-SDK
for Java Version 3.x

Integriert die Bibliothek AWS-
Verschlüsselungs-SDK
for Java mit den Materiala
nbietern. Integriert die
Unterstützung für Schlüssel
ringe und den erforderlichen
Verschlüsselungskontext
CMM.

6. Dezember 2023

AWS Encryption SDK für.NET-
Version 4.x

Integriert die Unterstützung für
den AWS KMS hierarchischen

12. Oktober 2023

Neueste Aktualisierungen 538

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html

AWS Encryption SDK Entwicklerhandbuch

Schlüsselbund, den erforderl
ichen Verschlüsselungskontext
(CMM) und asymmetrische
RSA-Schlüsselringe. AWS
KMS

Allgemeine Verfügbarkeit Einführung der Unterstützung
für AWS Encryption SDK
für.NET.

17. Mai 2022

Änderung der Dokumentation Ersetzen Sie den AWS Key
Management Service Begriff
Customer Master Key (CMK)
durch AWS KMS keyeinen
KMS-Schlüssel.

30. August 2021

Allgemeine Verfügbarkeit Unterstützung für hinzugefü
gt AWS Key Managemen
t Service. (AWS KMS)
Schlüssel für mehrere
Regionen. Schlüssel mit
mehreren Regionen sind
unterschiedliche AWS KMS
Schlüssel AWS-Regionen , die
synonym verwendet werden
können, da sie dieselbe
Schlüssel-ID und dasselbe
Schlüsselmaterial haben.

8. Juni 2021

Allgemeine Verfügbarkeit Die Dokumentation zum
verbesserten Entschlüs
selungsprozess von Nachricht
en wurde hinzugefügt und
aktualisiert.

11. Mai 2021

Neueste Aktualisierungen 539

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#master-key
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/configure.html#config-mrks
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#digital-sigs

AWS Encryption SDK Entwicklerhandbuch

Allgemeine Verfügbarkeit Die Dokumentation für die
allgemein verfügbare Version
von AWS Encryption CLI
Version 1.8 wurde hinzugefü
gt und aktualisiert. x als
Ersatz für AWS Encryption
CLI Version 1.7. x und AWS
Encryption CLI 2.1. x als
Ersatz für AWS Encryption CLI
2.0. x.

27. Oktober 2020

Allgemeine Verfügbarkeit Die Dokumentation für
die allgemein verfügbare
Version der AWS Encryptio
n SDK Versionen 1.7 wurde
hinzugefügt und aktualisiert. x
und 2.0. x, einschließlich eines
Best-Practices-Leitfadens,
eines Migrationsleitfade
ns, aktualisierter Konzepte,
aktualisierter Themen zu
Programmiersprachen, einer
aktualisierten Referenz
zu Algorithm Suites, einer
aktualisierten Referenz
zum Nachrichtenformat und
einem neuen Beispiel für ein
Nachrichtenformat.

24. September 2020

Allgemeine Verfügbarkeit Dokumentation zur allgemein
en Verfügbarkeitsversion des
AWS-Verschlüsselungs-SDK
for JavaScript wurde hinzugefü
gt und aktualisiert.

1. Oktober 2019

Neueste Aktualisierungen 540

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html

AWS Encryption SDK Entwicklerhandbuch

Vorschauversion Dokumentation der öffentlic
hen Beta-Version des AWS-
Verschlüsselungs-SDK for
JavaScript wurde hinzugefügt
und aktualisiert.

21. Juni 2019

Allgemeine Verfügbarkeit Dokumentation zur allgemein
en Verfügbarkeitsversion des
AWS-Verschlüsselungs-SDK
for C wurde hinzugefügt und
aktualisiert.

16. Mai 2019

Vorschauversion Dokumentation der Vorversio
n des AWS-Verschlüsselungs-
SDK for C wurde hinzugefügt.

5. Februar 2019

Neue Veröffentlichung Dokumentation der Befehlsze
ilenschnittstelle für das AWS
Encryption SDK hinzugefügt.

20. November 2017

Frühere Aktualisierungen

In der folgenden Tabelle werden wichtige Änderungen am AWS Encryption SDK Developer Guide vor
November 2017 beschrieben.

Änderung Beschreibung Datum

Neue Version Zusätzliches Datenschlüssel-
Caching Kapitel für die neue
Funktion.

Es wurde das the section
called “Initialisierungsvektor –
Referenz” Thema hinzugefü
gt, in dem erklärt wird, dass
das SDK nicht mehr zufällig
generiert IVs , sondern IVs

31. Juli 2017

Frühere Aktualisierungen 541

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html

AWS Encryption SDK Entwicklerhandbuch

Änderung Beschreibung Datum

deterministisch konstruiert
wurde.

Das the section called
“Konzepte” Thema zur
Erläuterung von Konzepten
, einschließlich des neuen
Managers für kryptografische
Materialien, wurde hinzugefü
gt.

Aktualisierung Erweiterung der Nachricht
enformat – Referenz-
Dokumentation in einen
neuen AWS Encryption SDK
Referenz-Abschnitt.

Es wurde ein Abschnitt über
die AWS Encryption SDK
Unterstützte Algorithmen-
Pakete hinzugefügt.

21. März 2017

Neue Version Das unterstützt AWS
Encryption SDK jetzt zusätzlic
h zu die Python Programmi
erspracheJava.

21. März 2017

Erstversion Erste Version der AWS
Encryption SDK und dieser
Dokumentation.

22. März 2016

Frühere Aktualisierungen 542

AWS Encryption SDK Entwicklerhandbuch

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich
infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

dxliii

	AWS Encryption SDK
	Table of Contents
	Was ist der AWS Encryption SDK?
	Entwickelt in Open-Source-Repositorien
	Kompatibilität mit Verschlüsselungsbibliotheken und -services
	Support und Wartung
	Mehr lernen
	Senden von Feedback
	Konzepte in der AWS Encryption SDK
	Umschlagverschlüsselung
	Datenschlüssel
	Schlüssel zum Umschließen
	Schlüsselanhänger und Hauptschlüsselanbieter
	Verschlüsselungskontext
	Verschlüsselte Nachricht
	Algorithmen-Paket
	Manager von kryptographischen Materialien
	Symmetrische und asymmetrische Verschlüsselung
	Wichtiges Engagement
	Verpflichtungspolitik
	Digitale Signaturen

	So AWS Encryption SDK funktioniert das
	Wie AWS Encryption SDK verschlüsselt der Daten
	Wie AWS Encryption SDK entschlüsselt der eine verschlüsselte Nachricht

	Unterstützte Algorithmus-Suiten in der AWS Encryption SDK
	Empfohlen: AES-GCM mit Schlüsselableitung, Signierung und Schlüsselzusage
	Andere unterstützte Algorithmen-Pakete

	Verwenden von AWS Encryption SDK with AWS KMS
	Bewährte Methoden für AWS Encryption SDK
	Konfiguration der AWS Encryption SDK
	Auswahl einer Programmiersprache
	Auswahl von Schlüsseln zum Umbrechen
	Verwenden Sie mehrere Regionen AWS KMS keys
	Auswahl einer Algorithmus-Suite
	Beschränkung verschlüsselter Datenschlüssel
	Einen Discovery-Filter erstellen
	Konfiguration des erforderlichen Verschlüsselungskontextes (CMM)
	Festlegung einer Verpflichtungspolitik
	Arbeiten mit Streaming-Daten
	Zwischenspeichern von Datenschlüsseln

	Wichtige Geschäfte in der AWS Encryption SDK
	Terminologie und Konzepte von Key Stores
	Implementieren der geringsten Berechtigungen
	Einen Schlüsselspeicher erstellen
	Schlüsselspeicheraktionen konfigurieren
	Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen
	Statische Konfiguration
	Discovery-Konfiguration

	Erstellen Sie einen aktiven Filialschlüssel
	Drehe deinen aktiven Filialschlüssel

	Schlüsselringe
	Funktionsweise von Schlüsselbunden
	Schlüsselbund-Kompatibilität
	Unterschiedliche Anforderungen für Verschlüsselungsschlüsselringe
	Kompatible Schlüsselbunde und Masterschlüssel-Anbieter

	AWS KMS Schlüsselringe
	AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger
	Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund
	Einen Schlüsselbund erstellen AWS KMS
	Verwenden eines Discovery-Schlüsselbunds AWS KMS
	Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund

	AWS KMS Hierarchische Schlüsselanhänger
	Funktionsweise
	Voraussetzungen
	Erforderliche Berechtigungen
	Wählen Sie einen Cache
	Standard-Cache
	MultiThreaded Cache
	StormTracking Zwischenspeicher
	Gemeinsam genutzter Cache

	Erstellen Sie einen hierarchischen Schlüsselbund
	Erstellen Sie einen hierarchischen Schlüsselbund mit einer statischen Zweigschlüssel-ID
	Erstellen Sie einen hierarchischen Schlüsselbund mit einem Lieferanten für die Zweigschlüssel-ID

	AWS KMS ECDH-Schlüsselanhänger
	Erforderliche Berechtigungen für AWS KMS ECDH-Schlüsselanhänger
	Einen ECDH-Schlüsselbund AWS KMS erstellen
	Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen

	Unformatierte AES-Schlüsselbunde
	Unformatierte RSA-Schlüsselbunde
	Raw ECDH Schlüsselanhänger
	Einen RAW-ECDH-Schlüsselbund erstellen
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	Multi-Schlüsselbunde

	AWS Encryption SDK Programmiersprachen
	AWS-Verschlüsselungs-SDK for C
	Installation des AWS-Verschlüsselungs-SDK for C
	Mit dem AWS-Verschlüsselungs-SDK for C
	Muster zum Ver- und Entschlüsseln von Daten
	Referenzzählung

	AWS-Verschlüsselungs-SDK for C Beispiele
	Verschlüsseln und Entschlüsseln von Zeichenfolgen
	Verschlüsseln einer Zeichenfolge
	Entschlüsseln einer Zeichenfolge

	AWS Encryption SDK für .NET
	Installation von AWS Encryption SDK für.NET
	Debuggen des AWS Encryption SDK für .NET
	AWS Encryption SDK für .NET-Beispiele
	Verschlüsseln von Daten im AWS Encryption SDK für.NET
	Entschlüsselung im strikten Modus in für.NET AWS Encryption SDK
	Entschlüsseln mit einem Discovery-Schlüsselbund im für.NET AWS Encryption SDK

	AWS Encryption SDK für Go
	Voraussetzungen
	Installation

	AWS-Verschlüsselungs-SDK for Java
	Voraussetzungen
	Installation
	AWS-Verschlüsselungs-SDK for Java Beispiele
	Verschlüsseln und Entschlüsseln von Zeichenfolgen
	Verschlüsseln und Entschlüsseln von Byte-Streams
	Verschlüsseln und Entschlüsseln von Bytestreams mit einem Mehrfachschlüsselbund

	AWS-Verschlüsselungs-SDK for JavaScript
	Kompatibilität der AWS-Verschlüsselungs-SDK for JavaScript
	AWS-Verschlüsselungs-SDK for JavaScript Kompatibilität
	Browserkompatibilität

	Installation des AWS-Verschlüsselungs-SDK for JavaScript
	Module in der AWS-Verschlüsselungs-SDK for JavaScript
	Module für JavaScript Node.js
	Module für Browser JavaScript
	Module für alle Implementierungen

	AWS-Verschlüsselungs-SDK for JavaScript Beispiele
	AWS KMS Daten mit einem Schlüsselbund verschlüsseln
	Daten mit einem Schlüsselbund entschlüsseln AWS KMS

	AWS-Verschlüsselungs-SDK for Python
	Voraussetzungen
	Installation
	AWS-Verschlüsselungs-SDK for Python Beispielcode
	Verschlüsseln und Entschlüsseln von Zeichenfolgen
	Verschlüsseln und Entschlüsseln von Byte-Streams

	AWS Encryption SDK für Rust
	Voraussetzungen
	Installation
	AWS Encryption SDK für Rust-Beispielcode
	Verschlüsseln und Entschlüsseln von Daten in der AWS Encryption SDK für Rust

	AWS Encryption SDK Befehlszeilenschnittstelle
	Installation der AWS Encryption SDK Befehlszeilenschnittstelle
	Installieren der Voraussetzungen
	Installation und Aktualisierung der AWS Encryption CLI

	So verwenden Sie die AWS Encryption CLI
	Daten verschlüsseln und entschlüsseln
	Wie spezifiziert man Wrapping-Schlüssel
	Umschließen von Schlüsselparameterattributen
	Wie spezifiziert man mehrere Wrapping-Schlüssel

	Eingaben bereitstellen
	Den Ausgabespeicherort festlegen
	Einen Verschlüsselungskontext verwenden
	Wie spezifiziert man eine Verpflichtungsrichtlinie
	Parameter in einer Konfigurationsdatei speichern

	Beispiele für die AWS Encryption CLI
	Verschlüsseln einer Datei
	Entschlüsseln einer Datei
	Alle Dateien in einem Verzeichnis verschlüsseln
	Alle Dateien in einem Verzeichnis entschlüsseln
	Verschlüsseln und Entschlüsseln in der Befehlszeile
	Verwenden mehrerer Hauptschlüssel
	Verschlüsseln und Entschlüsseln in Skripts
	Verwenden von Datenschlüssel-Caching

	AWS Encryption SDK CLI Syntax und Parameterreferenz
	AWS Verschlüsselungs-CLI-Syntax
	AWS Befehlszeilenparameter der Verschlüsselungs-CLI
	Erweiterte Parameter

	Versionen der AWS Encryption CLI
	Ausführung 1.8. x Änderungen an der AWS Encryption CLI
	Ausführung 2.1. x Änderungen an der AWS Encryption CLI
	Ausführung 1.9. x und 2.2. x Änderungen an der AWS Encryption CLI
	Version 3.0. x Änderungen an der AWS Encryption CLI

	Datenschlüssel-Caching
	Das Datenschlüssel-Caching verwenden
	Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step
	Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge

	Festlegen von Cache-Sicherheitsschwellenwerten
	Weitere Informationen zum Datenschlüssel-Caching
	Wie das Datenschlüssel-Caching funktioniert
	Verschlüsseln von Daten ohne Caching
	Verschlüsseln von Daten mit Caching

	Erstellen eines Cache für kryptografische Materialien
	Erstellen eines Managers von kryptographischen Materialien, der Caching verwendet
	Was befinde sich in einem Datenschlüssel-Cache-Eintrag?
	Verschlüsselungskontext: Wie Cache-Einträge ausgewählt werden
	Benutzt meine Anwendung zwischengespeicherte Datenschlüssel?

	Beispiel für das Datenschlüssel-Caching
	Lokale Cache-Ergebnisse
	Beispielcode für das Zwischenspeichern von Datenschlüsseln
	Produzent
	Konsument

	Beispiel für das Zwischenspeichern von Datenschlüsseln: Vorlage CloudFormation

	Versionen von AWS Encryption SDK
	C
	C#/.NET
	Befehlszeilenschnittstelle (CLI)
	Java
	Go
	JavaScript
	Python
	Rust
	Versionsdetails
	Versionen vor 1.7. x
	Version 1.7. x
	Version 2.0. x
	Version 2.2. x
	Version 2.3. x

	Migrieren Sie Ihre AWS Encryption SDK
	Wie migriert und implementiert man AWS Encryption SDK
	Phase 1: Aktualisieren Sie Ihre Anwendung auf die neueste Version 1. x-Version
	Phase 2: Aktualisieren Sie Ihre Anwendung auf die neueste Version

	Aktualisierung der AWS KMS Hauptschlüsselanbieter
	Umstellung auf den strikten Modus
	In den Discovery-Modus migrieren

	AWS KMS Schlüsselanhänger aktualisieren
	Festlegung Ihrer Verpflichtungspolitik
	Wie legen Sie Ihre Verpflichtungsrichtlinie fest

	Fehlerbehebung bei der Migration auf die neuesten Versionen
	Veraltete oder entfernte Objekte
	Konfigurationskonflikt: Verpflichtungsrichtlinie und Algorithmus-Suite
	Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretext
	Die Überprüfung der Schlüsselzusage ist fehlgeschlagen
	Andere Verschlüsselungsfehler
	Andere Fehler bei der Entschlüsselung
	Überlegungen zum Rollback

	Häufig gestellte Fragen
	Wie AWS Encryption SDK unterscheidet sich das von dem AWS SDKs?
	Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3 S3-Verschlüsselungsclient?
	Welche kryptografischen Algorithmen werden vom AWS Encryption SDK unterstützt und welcher ist der Standard?
	Wie wird der Initialisierungsvektor (IV) generiert und wo wird er gespeichert?
	Wie werden die einzelnen Datenschlüssel generiert, verschlüsselt und entschlüsselt?
	Wie kann ich nachverfolgen, welche Datenschlüssel zum Verschlüsseln meiner Daten verwendet wurden?
	Wie AWS Encryption SDK speichern sie verschlüsselte Datenschlüssel mit ihren verschlüsselten Daten?
	Wie viel Mehraufwand verursacht das AWS Encryption SDK Nachrichtenformat für meine verschlüsselten Daten?
	Kann ich meinen eigenen Masterschlüsselanbieter verwenden?
	Kann ich Daten mit mehr als einem Wrapping Key verschlüsseln?
	Welche Datentypen kann ich mit dem verschlüsseln? AWS Encryption SDK
	Wie werden Streams AWS Encryption SDK verschlüsselt und entschlüsselt input/output (I/O)?

	AWS Encryption SDK Referenz
	AWS Encryption SDK Referenz zum Nachrichtenformat
	Header-Struktur
	Textstruktur
	Daten ohne Frame
	Daten mit Frame

	Footer-Struktur

	AWS Encryption SDK Beispiele für Nachrichtenformate
	Gerahmte Daten (Nachrichtenformat, Version 1)
	Frame-Daten (Nachrichtenformat, Version 2)
	Daten ohne Frames (Nachrichtenformat, Version 1)

	Text – Zusätzliche authentifizierte Daten (AAD) – Referenz für das AWS Encryption SDK
	AWS Encryption SDK Referenz zu Algorithmen
	AWS Encryption SDK Referenz zum Initialisierungsvektor
	AWS KMS Technische Details zum hierarchischen Schlüsselbund

	Dokumentenverlauf für das AWS Encryption SDK Developer Guide
	Neueste Aktualisierungen
	Frühere Aktualisierungen

	

