adws

Entwicklerhandbuch

AWS Encryption SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK: Entwicklerhandbuch

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Marken und Handelsmarken von Amazon diirfen nicht in einer Weise in Verbindung mit nicht von
Amazon stammenden Produkten oder Services verwendet werden, die geeignet ist, die Kunden zu
verwirren oder Amazon in einer Weise herabzusetzen oder zu diskreditieren. Alle anderen Marken,
die nicht Eigentum von Amazon sind, sind Eigentum ihrer jeweiligen Inhaber, die mit Amazon
verbunden oder nicht verbunden oder von Amazon gesponsert oder nicht gesponsert sein kbnnen.

AWS Encryption SDK Entwicklerhandbuch

Table of Contents

Was ist der AWS ENCryption SDK? ...ttt e e e e e e e e e aaaaaaaeees 1
Entwickelt in Open-Source-REPOSItONIENuuiuiiiiiiiiee e 2
Kompatibilitat mit Verschllisselungsbibliotheken und -servicesccccoooviiiiiiiiiiiiiccee e, 3
10 o) oo) a U] aTo BAVF= Ty (U1 oV PP PEPPPPPP 4
=T o =T o =T o PSP 5
Senden VON FEEADACK ... e e e e e e 6
(0] 012> o (SRS 6

UMSChIagVversChlUSSEIUNGo e e e e e e e e e e e e e e aeeanes 7
DatenSCRIUSSEI ... e e e e e e e e e e e e e e e e et e e e et r e e nen s 9
Schlissel Zzum UmSChIIEIREN ... e e e e e e e e e e e e e s 10
Schlisselanhanger und Hauptschllsselanbieter ..o 11
VersChlUsSEIUNGSKONTEXLvui e e e e e e e a e e e 12
Verschlisselte NaChriChtooo e e e eeeeeeees 14
AlGOortNMEN-PakKelo e e e e e aaaean 15
Manager von kryptographischen Materialien ... 15
Symmetrische und asymmetrische VerschlUsselungciiiiiiiiiiiiiiiiiicieeeeee, 16
Wichtiges ENgagement 16
VerpflichtuNGSPOIItIKoooiiee eeeaaaaaes 18
Digitale SIgNatUrenccoooiiiii e et aaaaaaaaaas 20
Wie das SDK fUNKLONIEM ..o e e e e e e e e e e e e s annnnes 21
Wie AWS Encryption SDK verschllsselt der Daten ..., 22
Wie AWS Encryption SDK entschlisselt der eine verschlisselte Nachricht 22
Unterstltzte AlGorithmen-Paketeoo oo 23
Empfohlen: AES-GCM mit Schlisselableitung, Signierung und Schllisselzusage 24
Andere unterstltzte Algorithmen-Pakete ..o e 25

Interagieren mit AWS KIMIS ...t e e e e e e e e e e e e e e e e e e e as 27

Bewahrte MethOden ... eeeeeeenennnnnnnnas 29

KoNfIQURIEIEN dES SDKS ...t e e ettt s e e e e e e e e e e e aaaaaeaaeeeees 34
Auswahl einer ProgrammierSpracheooi oo e e e e 34
Auswahl von Schltsseln zum Umbrechenooo e 35
Verwenden Sie mehrere Regionen AWS KMS KEYScouvviiiiiiuiiiiiiiee e 36
Auswahl einer AlGOrithMUS-SUILEccccoiiiiiiii e 58
Beschrankung verschlisselter DatensChlUSSEluuiiiiiiiiiiiii e 70
Einen Discovery-Filter erstellen 77

AWS Encryption SDK Entwicklerhandbuch

Verschlisselungskontexte erforderliChueeiiiiiiiiii e 80
Festlegung einer VerpflichtungSpolitiKeeuueeiiiiieei e 88
Arbeiten mit Streaming-Daten ... ————————— 88
Zwischenspeichern von DatenschlUSSeln ... 89
WiChtige GESCRAME ... e e e e e e e e e e e e e e eeees 90
Terminologie und Konzepte von Ky SEOreSoovviiiiiiiiiiiiiiie e 90
Implementieren der geringsten Berechtigungen ... 91
Einen Schllsselspeicher €rstelleneeeeueiiiiiiiii e 92
Schlisselspeicheraktionen KonfiQUIEren ... e 93
Konfigurieren Sie Ihre Schllisselspeicher-AKtonen ... 95
Erstellen Sie ZWEIGSCRIUSSEuuueeiiieee it e e e e e e e 99
Drehe deinen aktiven FilialSChIUSSEIuueeeie e 103
SCRIUSSEINNQE ...ttt et et e e e e e e e e e e et ettt et e et e e st e e e eeaeaaaaaaaaaeeeeeeeeeessnne 106
Funktionsweise von SchlUSSeIDUNAENcooiiiiiiiiiee e 106
Schllsselbund-Kompatibilitat ... 108
Unterschiedliche Anforderungen flir Verschlisselungsschlisselringeccccoeeeeieeeiinenna.n. 109
Kompatible Schlisselbunde und Masterschlissel-Anbieteroovvviiiiiiiiiiiiiii 109
AWS KMS SCRIUSSEINNGE ...t e e e e as 112
AWS KMS Erforderliche Berechtigungen fir Schllisselanhangerccccoooeeiiiiiiii. 113
Identifizierung AWS KMS keys in einem AWS KMS Schlisselbundcccoooeinnnn, 114
Einen Schllsselbund erstellen AWS KMS ... 115
Verwenden eines Discovery-Schllisselbunds AWS KMS ... 131
Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund ... 138
AWS KMS Hierarchische SchllUsselanh@ngeruuuiiiiiiiiiiiiiiieeceeeeeeeeeee e 147
FUNKLHONSWEISE ... e e e e e e e e e e e e et ettt e e et te e e e e e e e e e e e aaaaaaens 149
Vo] =10 E1ST= v U g o =T o PPN 152
Erforderliche BereChtiQUNQeNn ..ot e e e eeaaaaaees 152
WaEhlen Sie €iNEN CACNEuuiiiiiiiiiiiieie e e e e e e e e e e e e e e e e nnnnes 153
Erstellen Sie einen hierarchischen Schllsselbund ... 166
AWS KMS ECDH-SchIUSSEIanNaNGErccocoiiiiiii et e e e eeeeaaaaans 174
Erforderliche Berechtigungen fir AWS KMS ECDH-Schllsselanhangerc..oooo 176
Einen ECDH-Schlisselbund AWS KMS erstellencooeiiiiiieieiiiiiiiiiiiiieeeeeeee e 176
Einen AWS KMS ECDH-Discovery-Schlisselbund erstellencccooooiiviiiicccceeeen, 184
Unformatierte AES-SChIUSSEIDUNAEooooiiiiiiiiiiee e 190
Unformatierte RSA-SchIUSSEIbUNAE ... 198
Raw ECDH SchllUsSElannanger ...ttt e e 208

AWS Encryption SDK Entwicklerhandbuch

Einen RAW-ECDH-Schllsselbund erstellen ... 209
MUItI-SChIUSSEIDUNTE ... eeeeaseaees 227
ProgrammierSPraChiEno e e 238
O SEEPPPRR 238
T TS 2= 11 =1 (o o SR 239
Verwenden deS € SDK ... e e e e e e e e e e e e ——— 240
LTI 01 T= LSRRI 245
N SRR 254
Installieren Und Erstellenoo oo 256

[7=Y o T8 o o 1 e PSSP 256
LTI 01 T= LSRRI 257
T USRS 266
Vo] = TUE1ST= v U g o =T o PSPPI 267

T 1S 2= 11 =1 (T o SR 267
= 1 - TSP 267
Vo] =10 E1ST= v U g o =T o PPN 268

T 1S 2= 11 =1 (T o SR 269
LTI 01 T= LSRRI 270
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 284
(0T 0] 0X=1 1] o111 = | (PRSPPI 285

T 1S 2= 11 =1 (T o SR 287
11T Yo L1 PSSP 288
LTI 01 T= [SRR 291
Y 1 T o PP 300
Vo] =10 E1ST= v U g o =T o PPN 300

T 1S 2= 11 =1 (o o SR 301
LTI 01 T= LSRR 302
] O PSESERRPRR 309
Vo] =10 E1ST= v U g o =T o PPN 310

T 1S 2= 11 =1 (o o SR 311
LTI 01 T= [SRR 311
BefehlszeillenNSChNILISTEIIEoevvieeeeee e e e e eeaaaaens 314
INSTAIlIErEN AEI =CLI ..ot e e e e e e e e e as 315
Die CLI VEIWENAEN ...t e b e e e as 318
LTI 01 T= [USSP 333
Syntax und Parameterreferenz ... 359

AWS Encryption SDK Entwicklerhandbuch

RV =T €51 o] =] o P 373
DatenscChlUSSEI-CacChingcoooiiiiiieee ettt e e e e e e e e e aaaaaaaaes 377
Das Datenschllissel-Caching VErWENAENovvviiiiiiiiieieie e 378
Verwenden der Zwischenspeicherung von Datenschlisseln: Step-by-stepcennnn. 379
Beispiel flr das Datenschllissel-Caching: Verschlisseln einer Zeichenfolge 387
Festlegen von Cache-Sicherheitsschwellenwerten ..., 403
Weitere Informationen zum Datenschlissel-Cachingccccoooveiiiiiiiiiiiiii, 405
Wie das Datenschlissel-Caching funktioniert ... 405
Erstellen eines Cache fir kryptografische Materialienccccoiiiii, 409
Erstellen eines Managers von kryptographischen Materialien, der Caching verwendet 410
Was befinde sich in einem Datenschliissel-Cache-Eintrag?ooovvviiiiiiiiiiiiiieee, 411
Verschlisselungskontext: Wie Cache-Eintrage ausgewahlt werdenccooeiiiiiniinnn, 412
Benutzt meine Anwendung zwischengespeicherte Datenschllssel? ..., 412
Beispiel fur das Datenschllissel-Cachingooouuuiiiiiiiiiiiiie 413
Lokale CacChe-ErgebniSSEuuuuuuiiiiiii i e e e e e e e e 414
BEISPIEI-COUE ...t e e e e e e e e e et ————————————— 415
CloudFormation VOrIAgeccoooiiiiiieeeeeeeee ettt 427
Versionen von AWS ENCryption SDK ..o e 442
O SEEPPPRRR 443
L0 8 1 | RPN 444
BefehlszeilenschnittStelle (CLI)uuueeeeeiieee e e e e e e e e e e e e e e e e eeeeaenes 444
= - O 447
T USRS 449
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 450
Y 1 T o PP 451
] O PSESERRPRR 453
RV o] TS =3 = P PPPPPRPRRR 453
RV £ o] 0 =T o Yo T e AR PSP 454

[V A=Y €1 o o I R A PPPUPRSRR 454

[V =T 51 o o 2 O R P PPPPPRSRTR 457
VEBISION 2.2, X ettt e e oo oo et e e e et oo et ettt ee et eee ittt eaaasa e e e e e e e e e e e e e e e eaeeeeeeeeeeeeeeeenrnrnnnnns 459

[V AT €51 o o I TR PPPRPRRRTR 460
Migrieren Sie |hre AWS ENcCryption SDKoeeeiiiiiiiiiee e a e 461
Wie migriert und implementiert Man ... 463
Phase 1: Aktualisieren Sie Ihre Anwendung auf die neueste Version 1. x-Version 463
Phase 2: Aktualisieren Sie Ihre Anwendung auf die neueste Versioncccceeeennnen. 465

Vi

AWS Encryption SDK Entwicklerhandbuch

Aktualisierung der AWS KMS Hauptschllsselanbietercccccoooiiiiiiiiiiieee 466
Umstellung auf den strikten MOAUS ... 467
In den Discovery-Modus MIGFIEIENciii it e e e e e e e e e eeennnans 471
AWS KMS Schlisselanha@nger aktualiSierenooooooeiiiiiiiiiiiiicieeee e 474
Festlegung lhrer VerpflichtungSpolitiKueeeiiiiiiii e 477
Wie legen Sie lhre Verpflichtungsrichtlinie festccccooiiiiii e, 478
Fehlerbehebung bei der Migration auf die neuesten Versionenccooovvviiiicciiccceeeee e, 490
Veraltete oder entfernte ObJeKeoooiiiiiiieeie e 491
Konfigurationskonflikt: Verpflichtungsrichtlinie und Algorithmus-Suitec.cc 491
Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretextcccccooeiiiii 492
Die Uberpriifung der Schliisselzusage ist fehlgeschlagenccooovooioeeeeceeceeeeeeeeeeen 493
Andere VerschlUsselungsfehler ... 493
Andere Fehler bei der ENtSChIUSSEIUNGueiiiiiiii e 493
Uberlegungen ZUmM ROIDACKoieieeeeeee oottt 494
HAUfIg geSIEItE Fragenoooeeeeeeeeeeeee e e e e e e e e e e e e as 495
Wie AWS Encryption SDK unterscheidet sich das von dem AWS SDKS?ooovvriiiiiiiiinnnnnn. 495
Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3 S3-
VersChlUsSEIUNGSCIENT?t e e e e e e e e e e e e e e aaeeeeeeees 496
Welche kryptografischen Algorithmen werden vom AWS Encryption SDK untersttitzt und
welcher ist der STaNAard?o 497
Wie wird der Initialisierungsvektor (IV) generiert und wo wird er gespeichert?cccccc.ooe. 497
Wie werden die einzelnen Datenschlissel generiert, verschlisselt und entschlisselt? 498
Wie kann ich nachverfolgen, welche Datenschlissel zum Verschllsseln meiner Daten
VEIWENAET WUIMENT ...ttt ettt et e e e e e e e e e e e e e s s nnnebbaeeeeeeeeeaeaeeeesaaaannnns 498
Wie AWS Encryption SDK speichern sie verschlisselte Datenschlissel mit ihren
VErSChIUSSEItEN Daten?ot e e e e e e e e e e e e e e aeeeeeeeeaaannnes 498
Wie viel Mehraufwand verursacht das AWS Encryption SDK Nachrichtenformat flir meine
VErsSChIUSSEItEN Daten?ot e e e e e e e e e e e e e aeeeeeeeaaanannes 499
Kann ich meinen eigenen Masterschllisselanbieter verwenden?cccoiriiiie, 499
Kann ich Daten mit mehr als einem Wrapping Key verschllisseln?cccccoeeiiiiiiiiiiiiiiiinnn, 499
Welche Datentypen kann ich mit dem verschlisseln? AWS Encryption SDKcccccevvnnn. 500
Wie werden Streams AWS Encryption SDK verschlisselt und entschlisselt input/output (I/
) PR 500
=) 1= =Y V4RO 502
Nachrichtenformat — REfErenzoooo i 502
[(== Lo [=T o 1 U (] O REERRRRRRR 503

Vii

AWS Encryption SDK Entwicklerhandbuch

=301 (] PP 512

o T0) (=T g U1« (| SRR 517
Nachrichtenformat — BEISPIEIEoooiimiiieeecee e 518
Gerahmte Daten (Nachrichtenformat, Version 1)cccooieiiiiiiiiiiiii 519
Frame-Daten (Nachrichtenformat, Version 2)uuuiiiiiiiiiiiiieeeeeeeee 522
Daten ohne Frames (Nachrichtenformat, Version 1)oeuuviiiiiiiiiiiiiieeeeeeeei, 524
TEXE-AAD — REFEIENZttt e e e e e e e e e e e e et e e e e e e aeaeeeaesaaanas 528
Algorithmen — REFEIENZ ..o e e e e e e e e e e e e e e 530
Initialisierungsvektor — REfEIENZcccooo oot 535
AWS KMS Technische Details zum hierarchischen Schllsselbundcccooieiiiiiin, 536
Do) (0 41T 1 AT =Y = T RSO 538
Neueste AKLUALISIENUNGENovui it e e e e e e e e e e e et e e e e e eeennaeaees 538
Frihere AKIUAIISIEIUNGEN ... e e e e e e e e e ea e e e e e eeeannans 541
... dxliii

viii

AWS Encryption SDK Entwicklerhandbuch

Was ist der AWS Encryption SDK?

Die AWS Encryption SDK ist eine clientseitige Verschlisselungsbibliothek, die darauf ausgelegt
ist, das Verschlusseln und Entschlisseln von Daten unter Verwendung von Branchenstandards
und bewahrten Methoden zu gestalten. Es ermdglicht Ihnen, sich auf die Kernfunktionalitat Ihrer
Anwendung zu konzentrieren und nicht darauf, wie Sie Ihre Daten am besten verschllsseln und
entschlisseln kdnnen. Das AWS Encryption SDK wird unter der Apache 2.0-Lizenz kostenlos zur
Verfligung gestellt.

Das AWS Encryption SDK beantwortet Fragen wie die folgenden fir Sie:

» Welche Verschlisselungsalgorithmus sollte ich verwenden?

» Wie oder in welchem Modus sollte ich diesen Algorithmus verwenden?

* Wie kann ich den Verschlisselungsschliissel generieren?

» Wie kann ich den Verschliusselungsschliissel schitzen, und wo sollte ich ihn speichern?
« Wie kann ich meine verschlisselten Daten portierbar machen?

» Wie kann ich sicherstellen, dass der beabsichtigte Empfanger meine verschlisselten Daten lesen
kann?

* Wie kann ich sicherstellen, dass meine verschlisselten Daten zwischen dem Schreiben und dem
Lesen nicht verandert werden?

» Wie verwende ich die Datenschlussel, die AWS KMS zurtickgegeben werden?

Mit dem AWS Encryption SDK definieren Sie einen Hauptschllsselanbieter oder einen

Schlusselbund, der festlegt, welche Wrapping-Schlissel Sie zum Schutz Ihrer Daten verwenden.

AnschlielRend verschlisseln und entschlusseln Sie Ihre Daten mit einfachen Methoden, die von der
bereitgestellt werden. AWS Encryption SDK Das AWS Encryption SDK erledigt den Rest.

Ohne das AWS Encryption SDK investieren Sie moglicherweise mehr Aufwand in die Entwicklung
einer Verschlisselungslosung als in die Kernfunktionalitat Inrer Anwendung. The AWS Encryption
SDK beantwortet diese Fragen, indem es die folgenden Informationen bereitstellt.

Eine Standard-Implementierung, die die bewahrten Methoden der Kryptografie befolgt

Standardmafig AWS Encryption SDK generiert das einen eindeutigen Datenschlissel fur jedes
verschlusselte Datenobjekt. Dies entspricht den bewahrten Methoden der Kryptografie, eindeutige
DatenschlUsseln fir jede Verschllisselungsoperation zu verwenden.

AWS Encryption SDK Entwicklerhandbuch

Der AWS Encryption SDK verschlisselt Ihre Daten mithilfe eines sicheren, authentifizierten,
symmetrischen Schliisselalgorithmus. Weitere Informationen finden Sie unter the section called
“‘Unterstutzte Algorithmen-Pakete”.

Ein Framework zum Schutz von Datenschlisseln durch Wrapping Keys

Das AWS Encryption SDK schitzt die Datenschlissel, die Ihre Daten verschlisseln,

indem sie unter einem oder mehreren Wrapping-Schlisseln verschlisseln. Durch die
Bereitstellung eines Frameworks zum Verschlisseln von Datenschlisseln mit mehr als einem
UmschlieRungsschlissel AWS Encryption SDK tragt das dazu bei, dass lhre verschlisselten
Daten portabel sind.

Verschlisseln Sie beispielsweise Daten mit einem Eingang AWS KMS und AWS KMS key einem
Schlissel aus Ihrem lokalen HSM. Sie kénnen einen der Wrapping-Schlissel verwenden, um die
Daten zu entschlisseln, falls einer nicht verfligbar ist oder der Anrufer nicht berechtigt ist, beide
Schlissel zu verwenden.

Eine formatierte Nachricht, die verschlisselte Datenschlissel mit den verschllsselten Daten
speichert

Der AWS Encryption SDK speichert die verschlisselten Daten und den verschlisselten
Datenschlissel zusammen in einer verschlisselten Nachricht, die ein definiertes Datenformat
verwendet. Das bedeutet, dass Sie die Datenschlissel, die Ihre Daten verschlisseln, nicht
nachverfolgen oder schitzen missen, da dies fur Sie AWS Encryption SDK erledigt wird.

Fur einige Sprachimplementierungen von ist ein AWS SDK AWS Encryption SDK erforderlich, flr das
AWS Encryption SDK ist jedoch kein AWS-Konto und es ist auch von keinem AWS Dienst abhangig.
Sie bendtigen ein AWS-Konto nur, wenn Sie es AWS KMS keyszum Schutz lhrer Daten verwenden
mochten.

Entwickelt in Open-Source-Repositorien

Das AWS Encryption SDK wurde in Open-Source-Repositorien am entwickelt. GitHub Sie kénnen
diese Repositorien verwenden, um den Code einzusehen, Probleme zu lesen und einzureichen sowie
Informationen zu finden, die flr Ihre Sprachimplementierung spezifisch sind.

» AWS-Verschlisselungs-SDK for C — aws-encryption-sdk-c

* AWS Encryption SDK flur.NET — .NET-Verzeichnis des aws-encryption-sdk Repositorys.

« AWS Verschlisselung CLI — aws-encryption-sdk-cli

Entwickelt in Open-Source-Repositorien 2

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

* AWS-Verschlusselungs-SDK for Java — aws-encryption-sdk-java

» AWS-Verschlisselungs-SDK for JavaScript — aws-encryption-sdk-javascript

» AWS-Verschlisselungs-SDK for Python — aws-encryption-sdk-python

* AWS Encryption SDK fiir Rust — Rust-Verzeichnis des aws-encryption-sdk Repositorys.

AWS Encryption SDK fiir Go — Go-Verzeichnis des aws-encryption-sdk Repositorys

Kompatibilitat mit VerschlUsselungsbibliotheken und -services

Das AWS Encryption SDK wird in mehreren Programmiersprachen unterstitzt. Alle
Sprachimplementierungen sind interoperabel. Sie kénnen mit einer Sprachimplementierung

verschlisseln und mit einer anderen entschlisseln. Die Interoperabilitat ist moglicherweise von
Spracheinschrankungen abhangig. Wenn dies der Fall ist, werden diese Einschrankungen im
Thema zur Sprachimplementierung beschrieben. AuRerdem muissen Sie beim Verschlisseln und
Entschllisseln kompatible Schllisselblinde oder Masterschliissel und Masterschliisselanbieter
verwenden. Details hierzu finden Sie unter the section called “Schlisselbund-Kompatibilitat”.

Sie kénnen jedoch AWS Encryption SDK nicht mit anderen Bibliotheken zusammenarbeiten. Da
jede Bibliothek verschliisselte Daten in einem anderen Format zurlickgibt, kénnen Sie nicht mit einer
Bibliothek verschlisseln und mit einer anderen entschlusseln.

DynamoDB -Verschllsselungsclient und die clientseitige Amazon-S3-Verschlisselung

Die mit dem DynamoDB Encryption Client oder der clientseitigen Amazon S3 S3-Verschllsselung
verschlisselten Daten AWS Encryption SDK kénnen nicht entschlisselt werden. Diese
Bibliotheken kénnen die zurtickgesendete verschlisselte Nachricht nicht entschlisseln. AWS
Encryption SDK

AWS Key Management Service (AWS KMS)

Sie AWS Encryption SDK kénnen Datenschlussel verwenden AWS KMS keys, um |hre Daten zu
schitzen, einschlielBlich KMS-Schlissel fir mehrere Regionen. Sie kdnnen die beispielsweise so
konfigurieren, AWS Encryption SDK dass lhre Daten unter einem oder mehreren AWS KMS keys
in Ihrem verschlusselt werden. AWS-Konto Sie mussen jedoch den verwenden, AWS Encryption
SDK um diese Daten zu entschlisseln.

Der Chiffretext, den die Verschlisselungs- oder Operationen zurtickgeben, AWS Encryption SDK
kann nicht AWS KMS entschlusselt werden. ReEncrypt Ebenso kann der AWS KMSDecrypt-
Vorgang die zurlickgesendete verschlisselte Nachricht nicht entschlisseln. AWS Encryption SDK

Kompatibilitdt mit Verschlisselungsbibliotheken und -services 3

https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Encryption SDK Entwicklerhandbuch

Der AWS Encryption SDK unterstitzt nur KMS-Schlissel mit symmetrischer Verschlisselung.
Sie kénnen keinen asymmetrischen KMS-Schlussel fur die Verschlisselung oder Anmeldung
in verwenden. AWS Encryption SDK Das AWS Encryption SDK generiert eigene ECDSA-
Signaturschlissel fur Algorithmen-Pakete, die Nachrichten signieren.

Support und Wartung

Das AWS Encryption SDK verwendet dieselbe Wartungsrichtlinie wie das AWS SDK und die Tools,
einschlieBlich der Versionierungs- und Lebenszyklusphasen. Als bewahrte Methode empfehlen wir,

dass Sie die neueste verfligbare Version von AWS Encryption SDK fir Ihre Programmiersprache
verwenden und ein Upgrade durchfiihren, sobald neue Versionen verodffentlicht werden. Wenn fir
eine Version wesentliche Anderungen erforderlich sind, z. B. das Upgrade von AWS Encryption

SDK Versionen vor 1.7. x auf Versionen 2.0. x und spater stellen wir detaillierte Anweisungen zur

Verfligung, um lhnen zu helfen.

Jede Programmiersprachenimplementierung von AWS Encryption SDK wird in einem separaten
GitHub Open-Source-Repository entwickelt. Der Lebenszyklus und die Supportphase jeder Version
variieren wahrscheinlich je nach Repositorium. Beispielsweise AWS Encryption SDK kénnte

sich eine bestimmte Version von in einer Programmiersprache in der Phase der allgemeinen
Verflgbarkeit (vollstandiger Support) befinden, die end-of-support Phase jedoch in einer anderen
Programmiersprache. Wir empfehlen, wann immer méglich eine vollstandig unterstltzte Version zu
verwenden und Versionen zu vermeiden, die nicht mehr unterstutzt werden.

Informationen zur Lebenszyklusphase von AWS Encryption SDK Versionen fir Ihre
Programmiersprache finden Sie in der SUPPORT_POLICY.zxst Dateiin den einzelnen AWS
Encryption SDK Repositorys.

* AWS-Verschlisselungs-SDK for C — Support_Policy.rst
* AWS Encryption SDK fur .NET — Support_Policy.rst

* AWS Verschlisselungs-CLI — Support_Policy.rst

* AWS-Verschlisselungs-SDK for Java — Support_Policy.rst

* AWS-Verschlisselungs-SDK for JavaScript — Support_Policy.rst

* AWS-Verschlisselungs-SDK for Python — Support_Policy.rst

Weitere Informationen finden Sie unter Versionen von AWS Encryption SDK und AWS SDKs und in

den Wartungsrichtlinien flr Tools im Tools-Referenzhandbuch. AWS SDKs

Support und Wartung 4

https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-dafny/blob/mainline/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-java/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-python/blob/master/SUPPORT_POLICY.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS Encryption SDK Entwicklerhandbuch

Mehr lernen

Weitere Informationen zur Verschlisselung AWS Encryption SDK und zur clientseitigen

Verschlisselung finden Sie in diesen Quellen.

Hilfe zu den Begriffen und Konzepten in diesem SDK finden Sie unter Konzepte in der AWS
Encryption SDK.

Richtlinien flr bewahrte Verfahren finden Sie unter. Bewahrte Methoden fur AWS Encryption SDK

Weitere Information zur Funktionsweise dieses SDK finden Sie unter Wie das SDK funktioniert.

Beispiele zur Konfiguration von Optionen in der finden Sie AWS Encryption SDK unterKonfiguration
der AWS Encryption SDK.

Detaillierte technische Informationen finden Sie unter Referenz.

Die technischen Spezifikationen fur finden Sie in der AWS Encryption SDK Spezifikation unter
GitHub. AWS Encryption SDK

Antworten auf Ihre Fragen zur Nutzung des AWS Encryption SDK Crypto Tools Discussion Forum
finden Sie im AWS Crypto Tools Discussion Forum.

Fir Informationen Gber Implementierungen von AWS Encryption SDK in verschiedenen

Programmiersprachen.

C: Siehe AWS-Verschliusselungs-SDK for C die AWS Encryption SDK C-Dokumentation und das
aws-encryption-sdk-cRepository unter GitHub.

C#/.NET: Siehe AWS Encryption SDK fur .NET und das aws-encryption-sdk-netVerzeichnis des
Repositorys ist aktiviert. aws-encryption-sdk GitHub

Befehlszeilenschnittstelle: SieheAWS Encryption SDK Befehlszeilenschnittstelle, Lesen Sie die
Dokumentation fir die AWS Encryption CLI und das aws-encryption-sdk-cliRepository auf GitHub.

Java: SieheAWS-Verschlisselungs-SDK for Java, das AWS Encryption SDK Javadoc und das
aws-encryption-sdk-javaRepository ist aktiviert. GitHub

JavaScript: Siehe the section called “JavaScript” und das aws-encryption-sdk-javascriptRepository
ist aktiviert. GitHub

Python: Siehe AWS-Verschlisselungs-SDK for Python die AWS Encryption SDK Python-
Dokumentation und das aws-encryption-sdk-pythonRepository unter GitHub.

Mehr lernen 5

https://github.com/awslabs/aws-encryption-sdk-specification/
https://forums.aws.amazon.com/forum.jspa?forumID=302
https://aws.github.io/aws-encryption-sdk-c/html/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK Entwicklerhandbuch

Senden von Feedback

Wir freuen uns Uber lhr Feedback! Wenn Sie eine Frage oder einen Kommentar haben oder ein

Problem melden méchten, verwenden Sie bitte die folgenden Ressourcen.

Wenn Sie eine potenzielle Sicherheitslicke in der entdecken AWS Encryption SDK,
benachrichtigen Sie bitte den AWS Sicherheitsdienst. Schaffen Sie kein 6ffentliches GitHub
Problem.

Um Feedback zu geben AWS Encryption SDK, reichen Sie ein Problem im GitHub Repository fir
die von Ihnen verwendete Programmiersprache ein.

Verwenden Sie die Feedback-Links auf dieser Seite, um Feedback zu dieser Dokumentation zu
geben. Sie kdnnen auch ein Problem melden oder zu aws-encryption-sdk-docsdem Open-Source-
Repository fur diese Dokumentation beitragen. GitHub

Konzepte in der AWS Encryption SDK

In diesem Abschnitt werden die in der AWS Encryption SDK verwendeten Konzepte vorgestellt und

ein Glossar sowie eine Referenz bereitgestellt. Es soll lhnen helfen, zu verstehen, wie das AWS
Encryption SDK funktioniert und mit welchen Begriffen wir es beschreiben.

Bendtigen Sie Hilfe?

Erfahren Sie, wie die Umschlagverschlisselung AWS Encryption SDK verwendet, um lhre Daten

zu schutzen.

Erfahren Sie mehr Uber die Elemente der Umschlagverschliisselung: die Datenschlissel, die Ihre
Daten schutzen, und die Umhullungsschlussel, die lhre Datenschltssel schutzen.

Erfahren Sie mehr Uber die Schlusselanhanger und Hauptschlisselanbieter, die bestimmen,
welche Wrap-Schlissel Sie verwenden.

Erfahren Sie mehr Uber den Verschlisselungskontext, der Ihrem Verschlisselungsprozess
Integritat verleiht. Es ist optional, aber es ist eine bewahrte Methode, die wir empfehlen.

Erfahren Sie mehr Uber die verschlisselte Nachricht, die von den Verschlisselungsmethoden

zurickgegeben wird.

Dann sind Sie bereit, das AWS Encryption SDK in Ihrer bevorzugten Programmiersprache zu
verwenden.

Senden von Feedback

https://aws.amazon.com/security/vulnerability-reporting/
https://github.com/awsdocs/aws-encryption-sdk-docs

AWS Encryption SDK Entwicklerhandbuch

Themen

* Umschlagverschlisselung

» Datenschliissel

* Schlussel zum Umschliel3en

» Schlisselanhanger und Hauptschllisselanbieter

* VerschlUsselungskontext

* Verschlisselte Nachricht

» Algorithmen-Paket

* Manager von kryptographischen Materialien

* Symmetrische und asymmetrische Verschlisselung

* Wichtiges Engagement

» Verpflichtungspolitik

» Digitale Signaturen

Umschlagverschlisselung

Die Sicherheit Ihrer verschliisselten Daten hangt teilweise vom Schutz des Datenschliissels ab,

der sie entschlisseln kann. Eine akzeptierte bewahrte Methode zum Schutz des Datenschliissels
ist seine Verschlisselung. Dazu benétigen Sie einen weiteren Verschllisselungsschlissel, der

als Schlusselverschlisselungsschlissel oder Wrapping-Schlissel bezeichnet wird. Die Praxis,
Datenschlissel mit einem Wrapping-Schllssel zu verschllisseln, wird als Envelope-Verschllisselung
bezeichnet.

Schutz von Datenschliisseln

Die AWS Encryption SDK verschlisselt jede Nachricht mit einem eindeutigen Datenschlissel.
AnschlielRend verschlisselt es den Datenschlissel unter dem von lhnen angegebenen Wrapping-
Schlissel. Es speichert den verschliisselten Datenschlissel zusammen mit den verschlisselten
Daten in der verschlisselten Nachricht, die es zurlckgibt.

Um Ihren Wrapping-Schlissel anzugeben, verwenden Sie einen Schltsselbund oder einen
Master-Key-Anbieter.

Umschlagverschlisselung 7

AWS Encryption SDK Entwicklerhandbuch

P DATA Q-g fa}

: s
Data key Plaintext Algorithm Ciphertext B
data suite
Encrypted

Message

P P 0-3

Wrapping key Data key

5

Encrypted
data key

Encryption
algorithm

VerschlUsseln derselben Daten unter mehreren Wrapping Keys

Sie kdnnen den Datenschlissel unter mehreren UmschlieBungsschlisseln verschlisseln.
Moglicherweise méchten Sie unterschiedliche UmschlieBungsschlissel fur verschiedene Benutzer

oder UmschlieBungsschlissel unterschiedlichen Typs oder an verschiedenen Speicherorten
bereitstellen. Jeder der UmschlieRungsschlissel verschlisselt denselben Datenschlissel.
Der AWS Encryption SDK speichert alle verschlisselten Datenschlissel zusammen mit den

verschlisselten Daten in der verschlisselten Nachricht.

Um die Daten zu entschlisseln, missen Sie einen UmschlieBungsschlissel angeben, mit dem
einer der verschlusselten Datenschlussel entschlusselt werden kann.

P

Wrapping
key A

K

.-

Encrypted
data key

o

Wrapping
key B

L
Data key
Encrypted
data key

P

Wrapping
key C

il

o~

Encrypted
data key

Umschlagverschlisselung

AWS Encryption SDK Entwicklerhandbuch

Kombination der Starken mehrerer Algorithmen

Um Ihre Daten zu verschlisseln, AWS Encryption SDK verwendet der standardmafig

eine ausgekligelte Algorithmussuite mit symmetrischer AES-GCM-Verschlisselung, einer
Schlisselableitungsfunktion (HKDF) und Signierung. Um den Datenschlissel zu verschlisseln,
kénnen Sie einen symmetrischen oder asymmetrischen Verschlisselungsalgorithmus angeben,
der lhrem Wrapping-Schliissel entspricht.

Im Allgemeinen sind symmetrische Schlisselverschlisselungsalgorithmen schneller und
erzeugen kleinere Verschllisselungstexte als eine asymmetrische Verschlisselung oder eine
Verschlisselung mit 6ffentlichem Schlissel. Algorithmen mit 6ffentlichem Schllissel unterstitzen
jedoch eine inharente Rollentrennung und eine einfachere Schlisselverwaltung. Um beide
Starken zu kombinieren, kdnnen Sie lhre Daten mit symmetrischer Schlisselverschlisselung
verschlisseln und anschlieRend den Datenschlissel mit Public-Key-Verschllisselung
verschlusseln.

Datenschlussel

Ein Datenschlissel ist ein Verschlisselungsschlissel, den das AWS Encryption SDK verwendet,
um lhre Daten zu verschlisseln. Jeder Datenschlissel ist ein Byte-Array, das die Anforderungen
fur kryptografische Schlissel erfiillt. Sofern Sie nicht das Zwischenspeichern von Datenschlisseln
verwenden, AWS Encryption SDK verwendet der einen eindeutigen Datenschlissel, um jede
Nachricht zu verschlusseln.

Sie missen Datenschlissel nicht spezifizieren, generieren, implementieren, erweitern, schiitzen
oder verwenden. Das AWS Encryption SDK tbernimmt diese Aufgabe fir Sie, wenn Sie die Ver- und
Entschllisselungsoperationen aufrufen.

Um Ihre Datenschlissel zu schitzen, werden sie mit einem oder mehreren AWS Encryption SDK
Schlisselschlisseln verschlisselt, die als Wrapping Keys oder Master Keys bezeichnet werden.
Nachdem der lhre Klartext-Datenschlissel AWS Encryption SDK verwendet hat, um lhre Daten zu
verschlisseln, werden sie so schnell wie mdglich aus dem Speicher entfernt. Die verschllisselten
Datenschlissel werden dann mit den verschlusselten Daten in der verschlisselten Nachricht
gespeichert, die die Verschliisselungsoperationen zurlickgibt. Details hierzu finden Sie unter the
section called “Wie das SDK funktioniert”.

Datenschlissel 9

AWS Encryption SDK Entwicklerhandbuch

® Tip
In der AWS Encryption SDK unterscheiden wir Datenschlissel von
Datenverschlisselungsschlisseln. Mehrere der unterstutzten Algorithmen-Pakete,
einschlieBlich des Standardpakets, verwenden eine Schlisselableitungsfunktion,
die verhindert, dass der Datenschlissel seine kryptografische Grenze erreicht. Die
Schlisselableitungsfunktion nimmt den Datenschlissel als Eingabe entgegen und gibt einen
Datenverschlisselungsschlussel zurtck, mit dem die Daten letztlich verschltsselt werden.
Aus diesem Grund sagen wir oft, dass die Daten ,unter“ einem Datenschlissel verschlisselt
werden, statt ,von“ dem Datenschlissel.

Jeder verschlisselte Datenschlissel enthalt Metadaten, einschlieRlich der Kennung des Wrapping-
Schlissels, mit dem er verschlisselt wurde. Diese Metadaten erleichtern es den, giiltige Wrapping-
Schlissel beim Entschlisseln AWS Encryption SDK zu identifizieren.

Schlussel zum Umschlief3en

Ein Wrapping Key ist ein Schlissel zur AWS Encryption SDK Verschlisselung des Datenschlissels,
mit dem |hre Daten verschlisselt werden. Jeder Klartext-Datenschlissel kann mit einem

oder mehreren UmschlieBungsschlisseln verschlisselt werden. Sie legen fest, welche
UmschlieBungsschlissel zum Schutz Ihrer Daten verwendet werden, wenn Sie einen Schlisselbund
oder einen Hauptschlisselanbieter konfigurieren.

® Note

Wrapping Key bezieht sich auf die Schllssel in einem Schllisselbund oder einem
HauptschlUsselanbieter. Der Hauptschlissel ist normalerweise der MasterKey Klasse
zugeordnet, die Sie instanziieren, wenn Sie einen Hauptschlisselanbieter verwenden.

Der AWS Encryption SDK unterstitzt mehrere haufig verwendete Wrapping-Schlissel, wie z. B. AWS
Key Management Service (AWS KMS) symmetrische Schlissel AWS KMS keys(einschlieRlich KMS-
Schlussel fur mehrere Regionen), AES-GCM-Rohschlissel (Advanced Encryption Standard/Galois
Counter Mode) und RSA-Rohschlissel. Sie kbnnen auch lhre eigenen Wrapping-Schlissel erweitern
oder implementieren.

Schliissel zum UmschlieRen 10

https://en.wikipedia.org/wiki/Key_derivation_function
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie die Envelope-Verschlisselung verwenden, missen Sie Ihre Wrapping-Schlissel vor
unbefugtem Zugriff schiitzen. Sie kénnen dies auf eine der folgenden Arten tun:

+ Verwenden Sie einen Webservice, der fur diesen Zweck vorgesehen ist, wie z. B. AWS Key
Management Service (AWS KMS).

* Verwenden Sie ein Hardwaresicherheitsmodul (HSM), wie z. B. die Angebote von AWS CloudHSM.

» Verwenden Sie andere wichtige Verwaltungstools und -dienste.

Wenn Sie kein Schlisselverwaltungssystem haben, empfehlen wir AWS KMS. Das AWS Encryption
SDK lasst sich integrieren AWS KMS , um Ihnen zu helfen, lhre Verpackungsschlissel zu schiitzen
und zu verwenden. Fur das AWS Encryption SDK ist jedoch kein AWS Service erforderlich AWS .

Schlusselanhanger und Hauptschlisselanbieter

Um die Wrapping-Schlissel anzugeben, die Sie fiir die Verschlisselung und Entschlisselung
verwenden, verwenden Sie einen Schlisselbund oder einen Hauptschliisselanbieter. Sie kénnen
die von ihm bereitgestellten Schllisselringe und Hauptschllsselanbieter verwenden oder |hre

AWS Encryption SDK eigenen Implementierungen entwerfen. Der AWS Encryption SDK stellt
Schlisselringe und Hauptschlisselanbieter bereit, die je nach Spracheinschrankungen miteinander
kompatibel sind. Details hierzu finden Sie unter Schlisselbund-Kompatibilitat.

Ein Schlisselbund generiert, verschlisselt und entschlisselt Datenschlissel. Wenn Sie einen
Schlisselbund definieren, kénnen Sie die Umschliellungsschlissel angeben, mit denen |hre
Datenschlissel verschlisselt werden. Die meisten Schllisselbunde spezifizieren mindestens

einen UmschlieRungsschlissel oder einen Dienst, der Schllissel zum Umschlie3en bereitstellt

und schitzt. Sie kénnen auch einen Schlisselbund ohne UmschlieRungsschllissel oder einen
komplexeren Schlisselbund mit zusatzlichen Konfigurationsoptionen definieren. Hilfe bei der Auswahl
und Verwendung der von definierten Schlisselbunden AWS Encryption SDK finden Sie unter.
Schlisselringe

Schlisselringe werden in den folgenden Programmiersprachen unterstitzt:

* AWS-Verschlisselungs-SDK for C
» AWS-Verschlisselungs-SDK for JavaScript
» AWS Encryption SDK fir .NET

» Version 3. x der AWS-Verschlisselungs-SDK for Java

Schlisselanhanger und Hauptschliisselanbieter 11

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Encryption SDK Entwicklerhandbuch

 Ausfiihrung 4. x von AWS-Verschliisselungs-SDK for Python, wenn es mit der optionalen
Abhangigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

» Version 1. x von der AWS Encryption SDK fiir Rust
» Version 0.1. x oder héher von AWS Encryption SDK for Go

Ein Hauptschlisselanbieter ist eine Alternative zu einem Schliisselbund. Der Hauptschllsselanbieter
gibt die von lhnen angegebenen Wrapping-Schltissel (oder Hauptschlissel) zurtick. Jeder
MasterschlUssel ist einem Masterschllissel-Anbieter zugeordnet, aber ein Masterschllissel-Anbieter
stellt in der Regel mehrere Masterschlussel bereit. Master-Key-Anbieter werden in Java, Python und
der AWS Encryption CLI unterstitzt.

Sie mussen einen Schlisselbund (oder einen Hauptschllisselanbieter) fur die Verschlisselung
angeben. Sie kdnnen denselben Schlisselbund (oder Hauptschllisselanbieter) oder einen anderen
fur die Entschlisselung angeben. Bei der Verschlisselung AWS Encryption SDK verwendet der
alle von Ihnen angegebenen UmschlieRungsschlissel, um den Datenschlissel zu verschlisseln.
Beim Entschlisseln AWS Encryption SDK verwendet der nur die von lhnen angegebenen
Umschlielungsschlissel, um einen verschlisselten Datenschlissel zu entschlUsseln. Die Angabe
von UmschlieRungsschlisseln fur die Entschlisselung ist optional, hat sich aber bewahrt. AWS
Encryption SDK

Einzelheiten zum Angeben von Schlisseln zum Umschlieen von Schlisseln finden Sie
unterAuswahl von Schlisseln zum Umbrechen.

Verschlisselungskontext

Um die Sicherheit Ihrer kryptographischen Operationen zu verbessern, fligen Sie einen
Verschlisselungskontext in alle Anfragen zur Verschllisselung von Daten ein. Die Verwendung
eines Verschlisselungskontexts ist optional, aber wir empfehlen dies als bewahrte Methode fiir die
Kryptografie.

Ein Verschlusselungskontext ist eine Gruppe von Name-Wert-Paaren mit willklrlichen, nicht
geheimen, zusatzlich authentifizierten Daten. Der Verschlisselungskontext kann beliebige Daten
enthalten, aber er besteht in der Regel aus Daten, die fur die Protokollierung und Verfolgung
natzlich sind, wie z. B. Daten uUber den Dateityp, den Zweck oder das Eigentum. Wenn Sie Daten
verschlusseln, wird der Verschlisselungskontext kryptografisch an die verschlisselten Daten
gebunden, sodass derselbe Verschllisselungskontext zur Entschlisselung der Daten bendtigt
wird. Das AWS Encryption SDK enthalt den Verschlisselungskontext als Klartext im Header der
verschlisselten Nachricht, die es zurtckgibt.

Verschliusselungskontext 12

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Der verwendete Verschlisselungskontext besteht aus dem von Ihnen angegebenen
Verschlisselungskontext und einem 6ffentlichen key pair, das der Cryptographic Materials

Manager (CMM) hinzuftigt. AWS Encryption SDK Genauer gesagt: Wann immer Sie einen
Verschliusselungsalgorithmus mit Signatur verwenden, figt der CMM ein Name-Wert-Paar zum
Verschlisselungskontext hinzu, der aus einem reservierten Namen, aws-crypto-public-key
und einem Wert besteht, der den 6ffentlichen Verifizierungsschlissel darstellt. Der aws-crypto-
public-key Name im Verschlisselungskontext ist fir den reserviert AWS Encryption SDK und
kann nicht als Name in einem anderen Paar im Verschlusselungskontext verwendet werden. Weitere
Informationen finden Sie unter AAD in Nachrichtenformat — Referenz.

Der folgende Beispiel-Verschllisselungskontext besteht aus zwei Verschlisselungskontext-Paaren,
die in der Anfrage angegeben werden, und dem 6ffentlichen Schllsselpaar, das der (CMM) hinzuflgt.

"Purpose"="Test", "Department"="IT", aws-crypto-public-key=<public key>

Zum Entschlisseln der Daten Ubergeben Sie die verschlisselte Nachricht. Da der den
Verschlisselungskontext aus dem verschllisselten Nachrichtenheader extrahieren AWS
Encryption SDK kann, missen Sie den Verschlisselungskontext nicht separat angeben. Der
Verschlisselungskontext kann jedoch helfen zu bestatigen, dass Sie die richtige verschliisselte
Nachricht entschlisselt wurde.

* Wenn Sie in der AWS Encryption SDK -Befehlszeilenschnittstelle einen Verschliisselungskontext
in einem Entschlisselungsbefehl angeben, tberprift die CLI, dass die Werte im
Verschlusselungskontext der verschlisselten Nachricht vorhanden sind, bevor sie die Klartextdaten
zuruckgibt.

* In anderen Programmiersprachenimplementierungen umfasst die Entschlisselungsantwort
den Verschlisselungskontext und die Klartextdaten. Die Entschlisselungsfunktion in lhrer
Anwendung sollte immer Uberprifen, ob der Verschllisselungskontext in der decrypt-Antwort den
Verschlisselungskontext in der Verschlisselungsanfrage (oder einer Teilmenge) enthalt, bevor sie
die Klartextdaten zurtckgibt.

® Note

Die folgenden Versionen unterstlitzen den erforderlichen Verschlisselungskontext
CMM, den Sie verwenden kénnen, um einen Verschllsselungskontext fir alle
Verschlisselungsanforderungen vorzuschreiben.

Verschliisselungskontext 13

AWS Encryption SDK Entwicklerhandbuch

» Version 3. x der AWS-Verschlisselungs-SDK for Java
 Ausfiihrung 4. x von AWS Encryption SDK fir .NET

» Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn es mit der optionalen
Abhangigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

» Version 1. x von der AWS Encryption SDK fiir Rust

Version 0.1. x oder héher von AWS Encryption SDK for Go

Wenn Sie einen Verschlisselungskontext wahlen, denken Sie daran, dass dies kein Geheimnis ist.
Der Verschlisselungskontext wird im Klartext im Header der verschlisselten Nachricht angezeigt,
die AWS Encryption SDK zurtickgegeben wird. Wenn Sie verwenden AWS Key Management
Service, kann der Verschlisselungskontext auch im Klartext in Prifaufzeichnungen und Protokollen
erscheinen, z. B. AWS CloudTrail

Beispiele fiir das Einreichen und Uberpriifen eines Verschliisselungskontextes in lnrem Code finden
Sie in den Beispielen fur Ihre bevorzugte Programmiersprache.

Verschlusselte Nachricht

Wenn Sie Daten mit dem verschlisseln AWS Encryption SDK, wird eine verschlisselte Nachricht
zurickgegeben.

Eine verschlUsselte Nachricht ist eine Ubertragbare, formatierte Datenstruktur, die die verschlusselten
Daten zusammen mit verschlisselten Kopien der Datenschlissel, der Algorithmus-ID und optional
einem Verschlisselungskontext und einer digitalen Signatur enthalt. Verschliisselungsoperationen im
AWS Encryption SDK geben eine verschlisselte Nachricht zurlick, und Entschlisselungsoperationen
nehmen eine verschlisselte Nachricht als Eingabe entgegen.

Die Kombination der verschlisselten Daten und ihrer verschlisselten Datenschlissel rationalisiert
den Entschlisselungsvorgang und befreit Sie von der Notwendigkeit, verschliisselte Datenschlissel
unabhangig von den verschlisselten Daten zu speichern und zu verwalten.

Technische Informationen Uber die verschlisselte Nachricht finden Sie unter Verschlisseltes
Nachrichtenformat.

Verschliisselte Nachricht 14

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Algorithmen-Paket

Der AWS Encryption SDK verwendet eine Algorithmus-Suite, um die Daten in der

verschlusselten Nachricht zu verschlisseln und zu signieren, die bei den Verschlisselungs- und
Entschlusselungsvorgangen zurickgegeben werden. Das AWS Encryption SDK unterstitzt mehrere
Algorithmen-Pakete. Alle unterstutzten Pakete verwenden Advanced Encryption Standard (AES) als
primaren Algorithmus und kombinieren ihn mit anderen Algorithmen und Werten.

Das AWS Encryption SDK legt eine empfohlene Algorithmussuite als Standard far alle
Verschlusselungsvorgange fest. Die Vorgabe kann sich andern, wenn sich Standards und bewahrte
Methoden verbessern. Sie kdnnen bei Anfragen zur Verschlisselung von Daten oder bei der
Erstellung eines Cryptographic Materials Manager (CMM) eine alternative Algorithmus-Suite

angeben. Sofern fur Ihre Situation jedoch keine Alternative erforderlich ist, empfiehlt es sich, die
Standardeinstellung zu verwenden. Die aktuelle Standardeinstellung ist AES-GCM mit einer HMAC-
basierten extract-and-expand Schlusselableitungsfunktion (HKDF), Key Commitment, einer ECDSA-

Signatur (Elliptic Curve Digital Signature Algorithm) und einem 256-Bit-Verschllsselungsschlissel.

Wenn lhre Anwendung eine hohe Leistung erfordert und die Benutzer, die Daten verschlisseln,
und diejenigen, die Daten entschlisseln, gleichermalien vertrauenswirdig sind, sollten Sie
erwagen, eine Algorithmus-Suite ohne digitale Signatur anzugeben. Wir empfehlen jedoch dringend
eine Algorithmussuite, die Schlisselzusage und eine Funktion zur Schlisselableitung umfasst.
Algorithmus-Suiten ohne diese Funktionen werden nur aus Griinden der Abwartskompatibilitat
unterstutzt.

Manager von kryptographischen Materialien

Der Cryptographic Materials Manager (CMM) stellt die kryptografischen Materialien zusammen,

die zum Verschlusseln und Entschlisseln von Daten verwendet werden. Die kryptografischen
Materialien umfassen Klartext- und verschlisselte Datenschlissel und einen optionalen Nachrichten-
Signaturschlissel. Sie interagieren nie direkt mit dem CMM. Die Ver- und Entschlisselungsmethoden
Ubernehmen das fur Sie.

Sie kdnnen das Standard-CMM oder das von ihm bereitgestellte Cache-CMM verwenden oder ein
AWS Encryption SDK benutzerdefiniertes CMM schreiben. Und Sie kdnnen ein CMM angeben,

das ist jedoch nicht erforderlich. Wenn Sie einen Schlisselbund oder einen Hauptschlisselanbieter
angeben, AWS Encryption SDK erstellt dieser ein Standard-CMM fur Sie. Das Standard-CMM ruft die
Ver- oder Entschlisselungsmaterialien von dem Schlusselbund oder Hauptschlisselanbieter ab, den
Sie angeben. Dabei kdnnte es sich um einen Aufruf eines kryptographischen Dienstes handeln, z. B.
AWS Key Management Service (AWS KMS).

Algorithmen-Paket 15

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK Entwicklerhandbuch

Da das CMM als Bindeglied zwischen dem AWS Encryption SDK und einem Schlisselbund (oder
Hauptschlisselanbieter) fungiert, ist es ein idealer Ort flir Anpassungen und Erweiterungen, z. B. zur
Unterstitzung der Richtliniendurchsetzung und Zwischenspeicherung. Das AWS Encryption SDK
bietet ein CMM flr die Zwischenspeicherung von Datenschlisseln.

Symmetrische und asymmetrische Verschlisselung

Bei der symmetrischen Verschlisselung wird derselbe Schlissel zum Verschlisseln und
Entschlisseln von Daten verwendet.

Asymmetrische Verschlisselung verwendet ein mathematisch verwandtes Datenschlisselpaar. Ein
Schlissel des Paares verschlisselt die Daten; nur der andere Schlissel im Paar kann die Daten
entschlisseln.

Der AWS Encryption SDK verwendet die Envelope-Verschlisselung. Es verschlisselt Ihre Daten
mit einem symmetrischen Datenschlussel. Es verschlisselt den symmetrischen Datenschlussel
mit einem oder mehreren symmetrischen oder asymmetrischen Wrapping-Schlisseln. Es gibt eine
verschlusselte Nachricht zurtick, die die verschlisselten Daten und mindestens eine verschlisselte

Kopie des Datenschllssels enthalt.

Verschlusseln lhrer Daten (symmetrische Verschlisselung)

Um lhre Daten zu verschlisseln, AWS Encryption SDK verwendet der einen symmetrischen
DatenschlUssel und eine Algorithmussuite, die einen symmetrischen Verschlisselungsalgorithmus
enthalt. Um die Daten zu entschlisseln, AWS Encryption SDK verwendet der denselben
Datenschlissel und dieselbe Algorithmussuite.

Verschlisselung lhres Datenschliissels (symmetrische oder asymmetrische Verschlisselung)

Der Schliisselbund oder Hauptschliisselanbieter, den Sie flir einen Verschlisselungs- und
EntschlUsselungsvorgang angeben, bestimmt, wie der symmetrische Datenschlissel ver- und
entschlisselt wird. Sie kdnnen einen Schliisselbund- oder Hauptschllisselanbieter wahlen, der
symmetrische Verschlisselung verwendet, z. B. einen AWS KMS Schlisselbund, oder einen
Anbieter, der asymmetrische Verschlisselung verwendet, z. B. einen RSA-Rohschlisselbund

oder. JceMasterKey

Wichtiges Engagement

Das AWS Encryption SDK unterstitzt Key Commitment (manchmal auch als Robustheit
bezeichnet), eine Sicherheitseigenschaft, die garantiert, dass jeder Chiffretext nur in einen einzigen

Symmetrische und asymmetrische Verschllsselung 16

AWS Encryption SDK Entwicklerhandbuch

Klartext entschlisselt werden kann. Zu diesem Zweck garantiert Key Commitment, dass nur der
Datenschlussel, mit dem Ihre Nachricht verschlusselt wurde, zur Entschltisselung verwendet wird.
Das Verschliisseln und Entschlisseln mit Key Commitment ist eine AWS Encryption SDK bewahrte
Methode.

Die meisten modernen symmetrischen Chiffren (einschliel3lich AES) verschlisseln Klartext

unter einem einzigen geheimen Schlissel, z. B. dem eindeutigen Datenschlissel, mit dem jede
Klartextnachricht verschlisselt wird AWS Encryption SDK . Beim Entschllisseln dieser Daten mit
demselben Datenschlissel wird ein Klartext zurlickgegeben, der mit dem Original identisch ist. Die

Entschlisselung mit einem anderen Schlissel schlagt normalerweise fehl. Es ist jedoch maéglich,
einen Chiffretext unter zwei verschiedenen Schllsseln zu entschlisseln. In seltenen Fallen ist es
mdglich, einen Schlissel zu finden, der einige Byte Chiffretext in einen anderen, aber dennoch
verstandlichen Klartext entschlisseln kann.

Der verschlusselt AWS Encryption SDK immer jede Klartext-Nachricht unter einem eindeutigen
Datenschlissel. Es kann diesen Datenschlissel unter mehreren UmschlieRungsschlisseln

(oder Hauptschlusseln) verschlisseln, aber die UmschlieRungsschlissel verschlisseln immer
denselben Datenschlissel. Dennoch kann eine ausgekligelte, manuell erstellte verschlusselte
Nachricht tatsachlich unterschiedliche Datenschlissel enthalten, von denen jeder mit einem
anderen Umschliel3ungsschlissel verschlisselt ist. EntschlUsselt beispielsweise ein Benutzer die
verschlusselte Nachricht, wird 0x0 (falsch) zurickgegeben, wahrend ein anderer Benutzer, der
dieselbe verschlusselte Nachricht entschlisselt, 0x1 (wahr) erhalt.

Um dieses Szenario zu verhindern, AWS Encryption SDK unterstlitzt der Key Commitment

beim Verschlisseln und Entschlisseln. Beim AWS Encryption SDK Verschlisseln einer

Nachricht mit Schllisselzusage wird der eindeutige Datenschliissel, der den Chiffretext erzeugt

hat, kryptografisch an die Schlisselverbindungszeichenfolge gebunden, eine nicht geheime
Datenschlissel-ID. AnschlieRend speichert es die Schlisselbestatigungszeichenfolge in den
Metadaten der verschllsselten Nachricht. Beim Entschlisseln einer Nachricht mit Schllisselzusage
wird AWS Encryption SDK Uberprift, ob der Datenschllssel der einzige Schlissel fur diese
verschliisselte Nachricht ist. Wenn die Uberpriifung des Datenschliissels fehlschlagt, schlagt der
Entschllsselungsvorgang fehl.

Die Support fir Key Commitment wurde in Version 1.7 eingefihrt. x, das Nachrichten mit Key
Commitment entschlisseln kann, aber nicht mit Key Commitment verschlisselt. Sie kdnnen diese
Version verwenden, um die Fahigkeit zur Entschlisselung von Chiffretext mit Schlisselbindung
vollstandig auszuschdpfen. Version 2.0. x beinhaltet volle Unterstitzung fir Key Commitment.
Standardmafig verschlisselt und entschlisselt es nur mit Key Commitment. Dies ist eine ideale

Wichtiges Engagement 17

AWS Encryption SDK Entwicklerhandbuch

Konfiguration fir Anwendungen, die keinen Chiffretext entschllisseln missen, der mit friiheren
Versionen von verschlisselt wurde. AWS Encryption SDK

Obwohl das Verschlisseln und Entschliisseln mit Schlisselbindung eine bewahrte Methode ist,
Uberlassen wir lhnen die Entscheidung, wann es verwendet wird, und Sie kénnen das Tempo, in dem
Sie es einflhren, anpassen. Ab Version 1.7. x AWS Encryption SDK untersttitzt eine Commitment-
Richtlinie, die die standardmafige Algorithmussuite festlegt und die Anzahl der Algorithmus-

Suiten einschrankt, die verwendet werden kénnen. Diese Richtlinie legt fest, ob Ihre Daten mit
Schlisselbindung ver- oder entschlisselt werden.

Key Commitment flihrt zu einer etwas groleren (+ 30 Byte) verschlusselten Nachricht und die
Verarbeitung nimmt mehr Zeit in Anspruch. Wenn lhre Anwendung sehr empfindlich auf Gro3e oder
Leistung reagiert, kbnnen Sie sich daflir entscheiden, die Schllisselzuweisung zu deaktivieren. Aber
tun Sie das nur, wenn Sie missen.

Weitere Informationen zur Migration auf Versionen 1.7. x und 2.0. x, einschliellich ihrer wichtigsten
Commitment-Funktionen, sieheMigrieren Sie lhre AWS Encryption SDK. Technische Informationen
zu den wichtigsten Verpflichtungen finden Sie unter the section called “Algorithmen — Referenz”
undthe section called “Nachrichtenformat — Referenz”.

Verpflichtungspolitik

Eine Commitment-Richtlinie ist eine Konfigurationseinstellung, die bestimmt, ob Ihre Anwendung
mit Key Commitment ver- oder entschlusselt wird. Das Verschlisseln und Entschlisseln mit Key
Commitment ist eine bewahrte Methode.AWS Encryption SDK

Die Verpflichtungspolitik hat drei Werte.

® Note

Mdglicherweise missen Sie horizontal oder vertikal scrollen, um die gesamte Tabelle zu
sehen.

Verpflichtungspolitik 18

AWS Encryption SDK Entwicklerhandbuch

Verbindungspolitische Werte

Wert Verschllsselt mit VerschlUsselt EntschlUsselt EntschlUsselt

Schliisselzusage ohne Schlissel mit Schlissel ohne Schlissel
bindung bindung bindung

ForbidEnc

ryptAllowDecrypt

RequireEn

cryptAllo

wDecrypt

RequireEn

cryptRequ

ireDecrypt

Die Richtlinieneinstellung fur Verpflichtungen wurde in AWS Encryption SDK Version 1.7 eingefuhrt.

X.

Es ist in allen unterstutzten Programmiersprachen gultig.

ForbidEncryptAllowDecryptentschlisselt mit oder onne Key Commitment, verschlisselt aber
nicht mit Key Commitment. Dieser Wert wurde in Version 1.7 eingefuhrt. x wurde entwickelt, um
alle Hosts, auf denen Ihre Anwendung ausgefihrt wird, darauf vorzubereiten, mit Key Commitment
zu entschlisseln, bevor sie jemals auf einen mit Key Commitment verschlisselten Chiffretext
stolRen.

RequireEncryptAllowDecryptverschlisseltimmer mit Key Commitment. Es kann mit oder
ohne Schlisselbindung entschlisselt werden. Dieser Wert wurde in Version 2.0 eingefuhrt. x,
ermoglicht es Ihnen, mit der Verschlisselung mit Schlisselzusage zu beginnen, altere Chiffretexte
aber trotzdem ohne Schlisselbindung zu entschlisseln.

RequireEncryptRequireDecryptverschlisselt und entschlisselt nur mit Schlisselzusage.
Dieser Wert ist der Standardwert flir Version 2.0. x. Verwenden Sie diesen Wert, wenn Sie sicher
sind, dass alle lhre Chiffretexte mit Schllisselbindung verschliisselt sind.

Die Richtlinieneinstellung ,Commitment* bestimmt, welche Algorithmus-Suites Sie verwenden
kénnen. Ab Version 1.7. x, der AWS Encryption SDK unterstitzt Algorithmus-Suites fur Key

Verpflichtungspolitik 19

AWS Encryption SDK Entwicklerhandbuch

Commitment; mit und ohne Signierung. Wenn Sie eine Algorithmus-Suite angeben, die mit Ihrer
Commitment-Richtlinie in Konflikt steht, wird ein Fehler AWS Encryption SDK zurlickgegeben.

Hilfe bei der Festlegung Ihrer Verpflichtungsrichtlinie finden Sie unterFestlegung Ihrer
Verpflichtungspolitik.

Digitale Signaturen

Die AWS Encryption SDK verschlisselt Ihre Daten mithilfe eines authentifizierten
Verschlisselungsalgorithmus, AES-GCM, und der Entschlisselungsprozess Uberprift die Integritat
und Authentizitat einer verschlisselten Nachricht ohne Verwendung einer digitalen Signatur. Da
AES-GCM jedoch symmetrische Schlissel verwendet, kann jeder, der den zur Entschlisselung
des Chiffretextes verwendeten Datenschllissel entschliisseln kann, auch manuell einen neuen
verschlisselten Chiffretext erstellen, was zu potenziellen Sicherheitsbedenken flihren kann.

Wenn Sie beispielsweise einen AWS KMS key als UmschlielBungsschliissel verwenden, kénnte
ein Benutzer mit entsprechenden Berechtigungen verschlisselte Chiffretexte erstellen, ohne ihn
anzurufen. kms :Decrypt kms:Encrypt

Um dieses Problem zu vermeiden, AWS Encryption SDK unterstitzt der das Hinzufligen einer
ECDSA-Signatur (Elliptic Curve Digital Signature Algorithm) am Ende verschlisselter Nachrichten.
Wenn eine Signaturalgorithmus-Suite verwendet wird, AWS Encryption SDK generiert sie fur jede
verschllsselte Nachricht ein temporares Paar aus privatem Schlissel und 6ffentlichem Schlissel.
Der AWS Encryption SDK speichert den 6ffentlichen Schltssel im Verschlisselungskontext des
Datenschlissels und verwirft den privaten Schlissel. Dadurch wird sichergestellt, dass niemand eine
weitere Signatur erstellen kann, die mit dem 6ffentlichen SchlUssel verifiziert wird. Der Algorithmus
bindet den 6ffentlichen Schlissel als zuséatzliche authentifizierte Daten im Nachrichtenkopf an den
verschlisselten Datenschlissel und verhindert so, dass Benutzer, die nur Nachrichten entschlisseln
koénnen, den o6ffentlichen Schltissel &ndern oder die Signaturiberprifung beeintrachtigen.

Die Signaturtberprifung fuhrt zu erheblichen Leistungseinbul3en bei der Entschlisselung. Wenn
die Benutzer, die Daten verschliusseln, und die Benutzer, die Daten entschlisseln, gleichermalen
vertrauenswirdig sind, sollten Sie erwagen, eine Algorithmussuite zu verwenden, die das Signieren
nicht beinhaltet.

Digitale Signaturen 20

AWS Encryption SDK Entwicklerhandbuch

® Note

Wenn der Schlisselbund oder der Zugriff auf das kryptografische Umhillungsmaterial nicht
zwischen Verschlisselern und Entschlisselern unterscheidet, bieten digitale Signaturen
keinen kryptografischen Wert.

AWS KMS Schlisselbunde, einschlie3lich des asymmetrischen RSA-Schlisselbunds, kénnen
auf der Grundlage von AWS KMS Schlissel- und IAM-Richtlinien zwischen Verschlisselern und
Entschlisselern unterscheiden. AWS KMS

Aufgrund ihres kryptografischen Charakters kénnen die folgenden Schllisselbunde nicht zwischen
Verschlusselern und Entschlisselern unterscheiden:

 AWS KMS Hierarchischer Schliisselbund
AWS KMS ECDH-Schliisselanhanger

Unformatierter AES-Schliisselbund

Unformatierter RSA-Schlisselbund
Roher ECDH-Schlisselanhanger

So AWS Encryption SDK funktioniert das

In den Workflows in diesem Abschnitt wird erklart, wie Daten AWS Encryption SDK verschlisselt

und verschlusselte Nachrichten entschlusselt werden. In diesen Workflows wird der grundlegende

Prozess unter Verwendung der Standardfunktionen beschrieben. Einzelheiten zur Definition und
Verwendung benutzerdefinierter Komponenten finden Sie im GitHub Repository fur jede unterstitzte
Sprachimplementierung.

Der AWS Encryption SDK verwendet Umschlagverschlisselung, um lhre Daten zu schitzen.

Jede Nachricht wird unter einem eindeutigen Datenschlissel verschlisselt. Anschliel3end wird

der Datenschlissel mit den von Ihnen angegebenen Wrapping-Schlisseln verschliusselt. Um die
verschlusselte Nachricht zu entschlisseln, AWS Encryption SDK verwendet der die von lhnen
angegebenen UmschlieRungsschlissel, um mindestens einen verschlisselten Datenschlissel zu
entschlisseln. Dann kann es den Chiffretext entschlisseln und eine Klartext-Nachricht zurtickgeben.

Bendtigen Sie Hilfe mit der Terminologie, die wir in der verwenden? AWS Encryption SDK Siehe the
section called “Konzepte”.

Wie das SDK funktioniert 21

AWS Encryption SDK Entwicklerhandbuch

Wie AWS Encryption SDK verschlusselt der Daten

Das AWS Encryption SDK stellt Methoden zur Verschlisselung von Zeichenketten, Byte-
Arrays und Byte-Streams bereit. Codebeispiele finden Sie im Thema Beispiele in den einzelnen
Programmiersprachen Abschnitten.

1. Erstellen Sie einen Schlusselbund (oder einen Hauptschlisselanbieter), der die
UmschlieBungsschlissel angibt, die lhre Daten schitzen.

2. Ubergeben Sie den Schliisselbund und die Klartextdaten an eine Verschlisselungsmethode. Wir
empfehlen, einen optionalen, nicht geheimen Verschliisselungskontext zu verwenden.

3. Die Verschlusselungsmethode fragt den Schlisselbund nach Verschlisselungsmaterial. Der
Schlisselbund gibt eindeutige Datenverschliisselungsschlissel fur die Nachricht zurlick: einen
Klartext-Datenschllssel und eine Kopie dieses DatenschlUssels, der mit jedem der angegebenen
UmschlieBungsschlissel verschlisselt wurde.

4. Die Verschlusselungsmethode verwendet den Klartext-Datenschllssel, um die Daten
zu verschlisseln, und verwirft dann den Klartext-Datenschliissel. Wenn Sie einen
Verschlisselungskontext angeben (eine AWS Encryption SDK bewahrte Methode), bindet die
Verschlisselungsmethode den Verschlisselungskontext kryptografisch an die verschliisselten
Daten.

5. Die Verschlisselungsmethode gibt eine verschlusselte Nachricht zurtick, die die verschlisselten
Daten, die verschlisselten Datenschliissel und andere Metadaten, einschliel3lich des
Verschlisselungskontextes, falls Sie einen verwendet haben, enthalt.

Wie AWS Encryption SDK entschlisselt der eine verschliusselte Nachricht

Das AWS Encryption SDK bietet Methoden, mit denen die verschlisselte Nachricht entschlisselt
und Klartext zurlickgegeben wird. Codebeispiele finden Sie im Thema Beispiele in den einzelnen
Programmiersprachen Abschnitten.

Der Schlusselbund (oder der Hauptschlisselanbieter), der die verschllisselte Nachricht
entschlisselt, muss mit dem Schllsselbund kompatibel sein, der zum Verschliisseln der Nachricht
verwendet wurde. Einer seiner Wrapping-Schlissel muss in der Lage sein, einen verschlisselten

DatenschlUssel in der verschlUsselten Nachricht zu entschlisseln. Hinweise zur Kompatibilitat mit
Schlisselringen und Hauptschlisselanbietern finden Sie unter. the section called “Schlisselbund-
Kompatibilitat”

Wie AWS Encryption SDK verschliisselt der Daten 22

AWS Encryption SDK Entwicklerhandbuch

1. Erstellen Sie einen Schlisselbund oder einen Hauptschllsselanbieter mit Wrap-Schlisseln, der
Ihre Daten entschlisseln kann. Sie kdnnen denselben Schlliisselbund verwenden, den Sie flr die
Verschlusselungsmethode bereitgestellt haben, oder einen anderen.

2. Ubergeben Sie die verschliisselte Nachricht und den Schliisselbund an eine
Entschlisselungsmethode.

3. Bei der Entschliisselungsmethode wird der Schlisselbund oder der Hauptschlisselanbieter
aufgefordert, einen der verschlisselten Datenschlissel in der verschllisselten Nachricht zu
entschlisseln. Es Gbergibt Informationen aus der verschlisselten Nachricht, einschliel3lich der
verschllsselten Datenschlissel.

4. Der Schlisselbund verwendet seinen Umhillungsschliissel zum Entschliisseln einer der
verschlisselten Datenschlissel. Wenn sie erfolgreich ist, enthalt die Antwort den Klartext-
Datenschlissel. Wenn keiner der vom Schllisselbund oder Hauptschlisselanbieter angegebenen
UmschlieBungsschlissel einen verschlisselten Datenschlissel entschlisseln kann, schlagt der
Entschlisselungsaufruf fehl.

5. Die Entschlusselungsmethode verwendet den Klartext-Datenschlissel, um die Daten zu
entschlisseln, verwirft den Klartext-Datenschlissel und gibt die Klartextdaten zurick.

Unterstlutzte Algorithmus-Suiten in der AWS Encryption SDK

Ein Algorithmen-Paket ist eine Sammlung von kryptografischen Algorithmen und zugehdrigen
Werten. Kryptografische Systeme verwenden die Algorithmen-Implementierung, um die
Verschlusselungstext-Nachricht zu generieren.

Die AWS Encryption SDK Algorithmus-Suite verwendet den Advanced Encryption Standard

(AES) -Algorithmus im Galois/Counter Mode (GCM), auch bekannt als AES-GCM, zur
Verschlisselung von Rohdaten. Der AWS Encryption SDK unterstutzt 256-Bit-, 192-Bit- und 128-Bit-
Verschlisselungsschlissel. Die Lange des Initialisierungsvektors (1V) betragt immer 12 Bytes. Die
Lange des Authentifizierungs-Tags betragt immer 16 Bytes.

Standardmaflig AWS Encryption SDK verwendet der eine Algorithmussuite mit AES-GCM mit einer
HMAC-basierten extract-and-expand SchlUsselableitungsfunktion (HKDF), Signierung und einem
256-Bit-Verschliusselungsschlissel. Wenn die Commitment-Richtlinie Key Commitment erfordert,
AWS Encryption SDK wahlt der eine Algorithmus-Suite aus, die auch Key Commitment unterstitzt.
Andernfalls wahlt er eine Algorithmus-Suite mit Schlisselableitung und -signierung, aber nicht mit
Key Commitment.

Unterstitzte Algorithmen-Pakete 23

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK Entwicklerhandbuch

Empfohlen: AES-GCM mit Schlusselableitung, Signierung und
Schlusselzusage

Der AWS Encryption SDK empfiehlt eine Algorithmussuite, die einen AES-GCM-
Verschlisselungsschlissel ableitet, indem sie der HMAC-basierten Schllisselableitungsfunktion
(HKDF) einen 256-Bit-Datenverschlisselungsschlissel zur Verfligung stellt. extract-and-expand
Das AWS Encryption SDK fugt eine ECDSA-Signatur (Elliptic Curve Digital Signature Algorithm)
hinzu. Zur Unterstitzung von Key Commitment leitet diese Algorithmus-Suite auch eine Key-
Commitment-Zeichenfolge ab — eine nicht geheime Datenschlissel-ID —, die in den Metadaten
der verschlisselten Nachricht gespeichert wird. Diese Schlisselbestatigungszeichenfolge wird
ebenfalls Uber HKDF abgeleitet, wobei ein Verfahren verwendet wird, das dem Ableiten des
Datenverschlisselungsschlissels ahnelt.

AWS Encryption SDK Algorithmus-Suite

Verschlis Lange des Schlissel Signatur- Wichtiges
selungsal Datenvers ableitung Algorithmus Engagement
gorithmus chlisselu salgorithmus

ngsschlissels (in

Bit)
AES-GCM 256 HKDF mit ECDSA mit HKDF mit

SHA-384 P-384 und SHA-512
SHA-384

Das HKDF hilft Ihnen, die versehentliche Wiederverwendung eines Datenverschlisselungsschliissels
zu vermeiden und reduziert das Risiko einer ibermafligen Verwendung eines Datenschlissels.

Zum Signieren verwendet diese Algorithmussuite ECDSA mit einem kryptografischen
Hashfunktionsalgorithmus (SHA-384). ECDSA wird standardmal3ig verwendet, auch wenn es nicht
in der Richtlinie fir den zugrundeliegenden Masterschllssel angegeben ist. Durch das Signieren
von Nachrichten wird Uberprtift, ob der Nachrichtenabsender berechtigt war, Nachrichten zu
verschlisseln, und gewahrleistet die Nichtabstreitbarkeit. Sie ist besonders nutzlich, wenn die
Berechtigungsrichtlinie flir einen Masterschllssel es einer Gruppe von Benutzern erlaubt, Daten zu
verschlisseln, und einer anderen Gruppe von Benutzern, Daten zu entschlisseln.

Algorithmus-Suites mit Schlisselbindung stellen sicher, dass jeder Chiffretext nur in einen Klartext
entschllUsselt wird. Dazu Uberprufen sie die Identitdt des Datenschllissels, der als Eingabe fiir den

Empfohlen: AES-GCM mit Schliisselableitung, Signierung und Schlisselzusage 24

AWS Encryption SDK Entwicklerhandbuch

Verschlusselungsalgorithmus verwendet wird. Bei der Verschllisselung leiten diese Algorithmus-
Suites eine Schlissel-Commitment-Zeichenfolge ab. Vor der Entschlisselung tberprifen sie, ob der
Datenschlissel mit der Zeichenfolge flir die Schllsselzusage Ubereinstimmt. Ist dies nicht der Fall,
schlagt der Entschlisselungsaufruf fehl.

Andere unterstitzte Algorithmen-Pakete

Der AWS Encryption SDK unterstltzt aus Griinden der Abwartskompatibilitat die folgenden
alternativen Algorithmus-Suiten. Im Allgemeinen empfehlen wir diese Algorithmen-Pakete nicht. Wir
sind uns jedoch bewusst, dass das Signieren die Leistung erheblich beeintrachtigen kann. Deshalb
bieten wir fur diese Falle eine Suite mit Schlisselableitung an. Fir Anwendungen, die grofere
Leistungseinbulien eingehen missen, bieten wir weiterhin Suiten an, denen es an Signierung,
Schlisselbindung und Schlisselableitung mangelt.

AES-GCM ohne grundlegende Verpflichtung

Algorithmus-Suites ohne Schllisselbindung validieren den Datenschlissel vor der
Entschlisselung nicht. Daher kénnen diese Algorithmus-Suiten einen einzelnen Chiffretext

in verschiedene Klartext-Nachrichten entschliisseln. Da jedoch Algorithmus-Suiten mit
Schlusselbindung eine etwas grolere (+30 Byte) verschlisselte Nachricht erzeugen und ihre
Verarbeitung langer dauert, sind sie moglicherweise nicht fir jede Anwendung die beste Wahl.

Die AWS Encryption SDK unterstitzt eine Algorithmus-Suite mit Schlisselableitung,
Schlisselzusage und Signierung sowie eine Suite mit Schllisselableitung und Schliisselzusage,
aber ohne Signierung. Wir raten davon ab, eine Algorithmus-Suite ohne Schlisselbindung zu
verwenden. Wenn Sie missen, empfehlen wir eine Algorithmus-Suite mit Schlisselableitung
und Schllsselzusage, aber ohne Signierung. Wenn Ilhr Anwendungsleistungsprofil jedoch die
Verwendung einer Algorithmussuite unterstutzt, ist die Verwendung einer Algorithmussuite mit
Schlisselbindung, Schlisselableitung und Signierung eine bewahrte Methode.

AES-GCM ohne Signierung

Algorithmus-Suiten ohne Signatur fehlt die ECDSA-Signatur, die flr Authentizitat und
Unwiderlegbarkeit sorgt. Verwenden Sie diese Suiten nur, wenn die Benutzer, die Daten
verschlisseln, und die Benutzer, die Daten entschlisseln, gleichermalien vertrauenswirdig sind.

Wenn Sie eine Algorithmus-Suite ohne Signatur verwenden, empfehlen wir Ihnen, eine Suite mit
Schlisselableitung und Schllsselbindung zu wahlen.

Andere unterstltzte Algorithmen-Pakete 25

AWS Encryption SDK Entwicklerhandbuch

AES-GCM ohne Schllsselableitung

Algorithmus-Suiten ohne Schlisselableitung verwenden den Datenverschlisselungsschlissel
als AES-GCM-Verschlisselungsschlissel, anstatt eine Schllisselableitungsfunktion zur Ableitung
eines eindeutigen Schlissels zu verwenden. Wir raten davon ab, diese Suite zur Generierung von

Chiffretext zu verwenden, sie unterstitzt sie jedoch aus Kompatibilitatsgrinden. AWS Encryption
SDK

Weitere Informationen dartber, wie diese Pakete in der Bibliothek dargestellt und verwendet werden,
finden Sie unter the section called “Algorithmen — Referenz”.

Andere unterstltzte Algorithmen-Pakete 26

AWS Encryption SDK Entwicklerhandbuch

Verwenden von AWS Encryption SDK with AWS KMS

Um das verwenden zu kdnnen AWS Encryption SDK, missen Sie Schlusselringe oder
HauptschlUsselanbieter mit umschlieRenden Schlisseln konfigurieren. Wenn Sie keine
Schlusselinfrastruktur haben, empfehlen wir die Verwendung von AWS Key Management Service
(AWS KMS). Viele der Codebeispiele in der AWS Encryption SDK erfordern eine AWS KMS key.

Fir die Interaktion mit AWS KMS dem AWS Encryption SDK ist das AWS SDK fir lhre bevorzugte
Programmiersprache erforderlich. Die AWS Encryption SDK Client-Bibliothek arbeitet mit der
zusammen AWS SDKs , um Masterschlissel zu unterstitzen, die in gespeichert sind AWS KMS.

Um sich auf die AWS Encryption SDK Verwendung von vorzubereiten AWS KMS

1. Erstelle ein AWS-Konto. Wie das geht, erfahren Sie unter Wie erstelle und aktiviere ich ein neues
Amazon Web Services Services-Konto? im AWS Knowledge Center.

2. Erstellen Sie eine symmetrische Verschlisselung AWS KMS key. Hilfe finden Sie unter Creating
Keys im AWS Key Management Service Developer Guide.

® Tip
Um das AWS KMS key programmgesteuert zu verwenden, bendtigen Sie die Schlussel-
ID oder den Amazon-Ressourcennamen (ARN) von. AWS KMS key Hilfe bei der Suche
nach der ID oder dem ARN eines AWS KMS keyfinden Sie unter Finding the Key ID and
ARN im AWS Key Management Service Developer Guide.

3. Generieren Sie eine Zugriffsschlissel-ID und einen Sicherheitszugriffsschlissel. Sie kbnnen
entweder die Zugriffsschllssel-ID und den geheimen Zugriffsschllssel fur einen IAM-Benutzer
verwenden oder Sie kdnnen die verwenden, AWS Security Token Service um eine neue Sitzung
mit temporaren Sicherheitsanmeldeinformationen zu erstellen, die eine Zugriffsschlissel-ID,
einen geheimen Zugriffsschlissel und ein Sitzungstoken enthalten. Aus Sicherheitsgriinden
empfehlen wir, temporare Anmeldeinformationen anstelle der langfristigen Anmeldeinformationen
zu verwenden, die lhren IAM-Benutzer- oder AWS (Root-) Benutzerkonten zugeordnet sind.

Informationen zum Erstellen eines IAM-Benutzers mit einem Zugriffsschllssel finden Sie unter
Creating IAM Users Guide im IAM-Benutzerhandbuch.

Informationen zum Generieren temporérer Sicherheitsanmeldedaten finden Sie unter Temporare
Sicherheitsanmeldeinformationen anfordern im IAM-Benutzerhandbuch.

27

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS Encryption SDK Entwicklerhandbuch

4.

Geben Sie Ihre AWS Anmeldeinformationen anhand der Anweisungen in AWS SDK fur
JavaAWS SDK fur JavaScript, AWS SDK flr Python (Boto)oder AWS SDK fiir C++(flir C) sowie
anhand der Zugriffsschlissel-ID und des geheimen Zugriffsschliissels ein, die Sie in Schritt 3
generiert haben. Wenn Sie temporare Anmeldeinformationen generiert haben, missen Sie auch
das Sitzungstoken angeben.

Dieses Verfahren ermdéglicht es AWS SDKs , Anfragen AWS fiir Sie zu signieren. Bei den
Codebeispielen in AWS Encryption SDK that interact with wird AWS KMS davon ausgegangen,
dass Sie diesen Schritt abgeschlossen haben.

Laden Sie das herunter und installieren Sie es AWS Encryption SDK. Weitere Informationen Gber
die Installation finden Sie in den Anweisungen fir die Programmiersprache, die Sie verwenden
mochten.

28

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#guide-configuration
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html

AWS Encryption SDK Entwicklerhandbuch

Bewahrte Methoden fur AWS Encryption SDK

Das AWS Encryption SDK soll Innen den Schutz lhrer Daten mithilfe von Industriestandards und
Best Practices erleichtern. Wahrend viele bewahrte Methoden als Standardwerte fir Sie ausgewahlt
wurden, sind einige Methoden optional, werden jedoch empfohlen, wann immer dies praktikabel ist.

Verwenden Sie die neueste Version

Wenn Sie mit der Verwendung von beginnen AWS Encryption SDK, verwenden Sie die neueste
Version, die in lhrer bevorzugten Programmiersprache angeboten wird. Wenn Sie das verwendet

haben AWS Encryption SDK, flhren Sie so bald wie moglich ein Upgrade auf die jeweils neueste
Version durch. Dadurch wird sichergestellt, dass Sie die empfohlene Konfiguration verwenden und
neue Sicherheitseigenschaften zum Schutz lhrer Daten nutzen. Einzelheiten zu den unterstitzten
Versionen, einschliel3lich Anleitungen zur Migration und Bereitstellung, finden Sie unter Support
und Wartung undVersionen von AWS Encryption SDK.

Wenn eine neue Version Elemente in Ihrem Code als veraltet markiert, ersetzen Sie sie so
schnell wie moglich. Veraltete Versionen und Codekommentare empfehlen in der Regel eine gute
Alternative.

Um umfangreiche Upgrades einfacher und weniger fehleranféllig zu machen, bieten wir
gelegentlich eine temporare Version oder eine Ubergangsversion an. Verwenden Sie diese
Versionen und die dazugehdrige Dokumentation, um sicherzustellen, dass Sie lhre Anwendung
aktualisieren kdnnen, ohne lhren Produktionsablauf zu unterbrechen.

Verwenden Sie Standardwerte

Der AWS Encryption SDK entwirft bewahrte Verfahren in seine Standardwerte. Verwenden Sie
sie wann immer moglich. Fur Falle, in denen die Standardeinstellung nicht praktikabel ist, bieten
wir Alternativen an, z. B. Algorithmus-Suiten ohne Signatur. Wir bieten auch fortgeschrittenen
Benutzern Moéglichkeiten zur Anpassung, z. B. benutzerdefinierte Schllisselanhanger, Master-
Key-Anbieter und Manager flr kryptografisches Material (). CMMs Verwenden Sie diese
erweiterten Alternativen mit Vorsicht und lassen Sie lhre Auswahl, wann immer méglich, von
einem Sicherheitsingenieur Uberprifen.

Verwenden Sie einen Verschlisselungskontext

Um die Sicherheit lhrer kryptografischen Operationen zu verbessern, fugen Sie allen Anfragen
zur Verschlusselung von Daten einen Verschlusselungskontext mit einem aussagekraftigen

Wert hinzu. Die Verwendung eines Verschllsselungskontexts ist optional, aber wir empfehlen

29

AWS Encryption SDK Entwicklerhandbuch

dies als bewahrte Methode flir die Kryptografie. Ein Verschlisselungskontext stellt zusatzliche
authentifizierte Daten (AAD) fur die authentifizierte Verschllsselung in der bereit. AWS Encryption
SDK Der Verschlisselungskontext ist zwar nicht geheim, kann Ihnen aber dabei helfen, die
Integritat und Authentizitat Ihrer verschlisselten Daten zu schutzen.

In der AWS Encryption SDK geben Sie nur beim Verschlisseln einen Verschlisselungskontext
an. Beim Entschlusseln AWS Encryption SDK verwendet der den Verschlusselungskontext im
Header der verschlisselten Nachricht, die AWS Encryption SDK zurlickgegeben wird. Bevor
Ihre Anwendung Klartextdaten zurtickgibt, stellen Sie sicher, dass der Verschlisselungskontext,
den Sie zum Verschlisseln der Nachricht verwendet haben, in dem Verschlisselungskontext
enthalten ist, der zum Entschlisseln der Nachricht verwendet wurde. Einzelheiten finden Sie in
den Beispielen in Ihrer Programmiersprache.

Wenn Sie die Befehlszeilenschnittstelle verwenden, AWS Encryption SDK Uberprtift die den
Verschlisselungskontext fur Sie.

Schitzen Sie Ihre Wrapping-Schlissel

Der AWS Encryption SDK generiert einen eindeutigen Datenschlissel, um jede Klartextnachricht
zu verschlusseln. AnschlieRend verschlisselt es den Datenschlussel mit den von lhnen
bereitgestellten Wrapping-Schlisseln. Wenn |hre Verpackungsschlissel verloren gehen oder
geldscht werden, konnen lhre verschlisselten Daten nicht wiederhergestellt werden. Wenn |hre
Schlussel nicht gesichert sind, sind lhre Daten moglicherweise gefahrdet.

Verwenden Sie Wrapping Keys, die durch eine sichere Schlisselinfrastruktur geschuitzt sind,

wie z. B. AWS Key Management Service(AWS KMS). Verwenden Sie bei der Verwendung von
AES- oder RSA-Rohschlisseln eine Zufallsquelle und einen dauerhaften Speicher, der Ihren
Sicherheitsanforderungen entspricht. Das Generieren und Speichern von Schlisseln in einem
Hardware-Sicherheitsmodul (HSM) oder einem Dienst, der z. B. Folgendes bereitstellt HSMs AWS
CloudHSM, ist eine bewahrte Methode.

Verwenden Sie die Autorisierungsmechanismen |hrer Schlisselinfrastruktur, um den Zugriff auf
Ihre Wrapping Keys auf die Benutzer zu beschranken, die ihn bendtigen. Implementieren Sie
bewahrte Verfahren, wie z. B. die geringste Rechtevergabe. Verwenden Sie bei der Verwendung
wichtige Richtlinien und IAM-Richtlinien, die bewahrte Verfahren umsetzen. AWS KMS keys

Geben Sie |hre Wrapping-Schlissel an

Es hat sich immer bewahrt, Ihre UmschlieRungsschlissel sowohl beim Entschlisseln als auch
beim Verschlusseln explizit anzugeben. Wenn Sie das tun, AWS Encryption SDK verwendet

30

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices

AWS Encryption SDK Entwicklerhandbuch

der nur die Schlissel, die Sie angeben. Durch diese Vorgehensweise wird sichergestellt, dass
Sie nur die von lhnen beabsichtigten Verschlisselungsschliissel verwenden. Beim AWS KMS
Umschlieen von Schlisseln wird auch die Leistung verbessert, da verhindert wird, dass Sie
versehentlich Schlissel in einer anderen Region AWS-Konto oder in einer anderen Region
verwenden oder versuchen, Schlissel zu entschlisseln, zu deren Verwendung Sie nicht
berechtigt sind.

Bei der Verschlisselung missen Sie bei den mitgelieferten Schlisselbandern und
Hauptschlisselanbietern angeben, dass Sie Schlissel AWS Encryption SDK einschliel3en.
Sie verwenden alle und nur die von lhnen angegebenen Verpackungsschlissel. Bei

der Verschlisselung und Entschlisselung mit RAW-AES-Schlisselbunden, RSA-
Rohschlisselbandern und Schlisseln missen Sie auerdem Wrapping-Schlissel angeben.
JCEMaster

Bei der Entschlisselung mit AWS KMS Schlisselbunden und Hauptschlisselanbietern mussen
Sie jedoch keine Wrap-SchlUssel angeben. Sie AWS Encryption SDK kdnnen die Schlissel-1D
aus den Metadaten des verschlusselten Datenschlussels abrufen. Die Angabe von Schlisseln
zum UmschlieRen von Schlisseln ist jedoch eine bewahrte Methode, die wir empfehlen.

Um diese bewahrte Methode bei der Arbeit mit Schlisseln AWS KMS zum Umschlie3en von

Schlusseln zu unterstutzen, empfehlen wir Folgendes:

* Verwenden Sie AWS KMS SchlUsselringe, die das Umbrechen von Schllsseln spezifizieren.
Beim Verschlusseln und Entschlisseln verwenden diese Schlisselbunde nur die von Ihnen
angegebenen UmschlieRungsschlissel.

» Verwenden Sie bei der Verwendung von AWS KMS Hauptschlisseln und
HauptschlUsselanbietern die in Version 1.7 eingefihrten Konstruktoren im strikten Modus.

x der AWS Encryption SDK. Sie erstellen Anbieter, die nur mit den von Ihnen angegebenen
Wrapping-Schlusseln ver- und entschlisseln. Konstruktoren fur Hauptschlisselanbieter, die
immer mit einem beliebigen Wrapping-Schllissel entschlisseln, sind in Version 1.7 veraltet. x
und in Version 2.0 gel6scht. x.

Wenn es nicht praktikabel ist, Schllssel fur die Entschlisselung anzugeben AWS KMS , kdnnen
Sie Discovery-Anbieter verwenden. Die AWS Encryption SDK in C und C JavaScript unterstitzen
AWS KMS Discovery-Schlusselringe. Master-Key-Anbieter mit einem Discovery-Modus sind flr

Java und Python in den Versionen 1.7 verfiugbar. x und héher. Diese Discovery-Anbieter, die

nur fur die Entschlisselung mit AWS KMS UmschlieRungsschlisseln verwendet werden, weisen
ausdrucklich an, jeden UmschlieBungsschlissel AWS Encryption SDK zu verwenden, mit dem ein
Datenschlussel verschlisselt wurde.

31

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie einen Discovery-Anbieter verwenden missen, verwenden Sie dessen Discovery-
Filterfunktionen, um die Anzahl der verwendeten Schlissel einzuschranken. Beispielsweise
verwendet der AWS KMS regionale Discovery-Schlisselbund nur die Wrapping-Schlissel in
einem bestimmten AWS-Region Bereich. Sie kbnnen AWS KMS Schllisselanhanger und AWS
KMS Hauptschliusselanbieter auch so konfigurieren, dass sie nur bestimmte Wrapping-Schlissel
verwenden. AWS-Konten Verwenden Sie aulderdem wie immer Schlisselrichtlinien und IAM-
Richtlinien, um den Zugriff auf Inre AWS KMS Wrapping Keys zu kontrollieren.

Verwenden Sie digitale Signaturen

Es hat sich bewahrt, beim Signieren eine Algorithmus-Suite zu verwenden. Digitale Signaturen

verifizieren, dass der Nachrichtenabsender autorisiert war, die Nachricht zu senden, und schiitzen
die Integritat der Nachricht. Alle Versionen AWS Encryption SDK verwenden standardmallig
Algorithmus-Suites mit Signierung.

Wenn lhre Sicherheitsanforderungen keine digitalen Signaturen beinhalten, kdnnen Sie eine
Algorithmus-Suite ohne digitale Signaturen auswahlen. Wir empfehlen jedoch die Verwendung
digitaler Signaturen, insbesondere wenn eine Benutzergruppe Daten verschlisselt und eine
andere Benutzergruppe diese Daten entschlisselt.

Verwenden Sie eine wichtige Verpflichtung

Es hat sich bewahrt, die Sicherheitsfunktion Key Commitment zu verwenden. Durch

die Uberpriifung der Identitit des eindeutigen Datenschliissels, mit dem Ihre Daten
verschlisselt wurden, wird verhindert, dass Sie Chiffretext entschlisseln, der zu mehr als einer
Klartextnachricht fihren kdnnte.

Das AWS Encryption SDK bietet ab Version 2.0 volle Unterstlitzung flr das Verschlisseln
und Entschlusseln mit Key Commitment. x. StandardmaRig werden alle Ihre Nachrichten mit
Schlisselbindung ver- und entschlisselt. Version 1.7. x von ihnen AWS Encryption SDK kann
Chiffretexte mit Schliisselbindung entschliisseln. Es wurde entwickelt, um Benutzern friherer

Versionen bei der Bereitstellung von Version 2.0 zu helfen. x erfolgreich.

Die Support fir Key Commitment umfasst neue Algorithmus-Suites und ein neues
Nachrichtenformat, das einen Chiffretext erzeugt, der nur 30 Byte groRer ist als ein Chiffretext
ohne Schlisselzusage. Das Design minimiert die Auswirkungen auf die Leistung, sodass die
meisten Benutzer die Vorteile von Key Commitment nutzen kénnen. Wenn lhre Anwendung sehr
empfindlich auf GroRe und Leistung reagiert, kdnnen Sie die Richtlinieneinstellung Commitment
verwenden, um Key Commitment zu deaktivieren oder die unverbindliche Entschlisselung von
Nachrichten AWS Encryption SDK zu gestatten, aber tun Sie dies nur, wenn Sie mussen.

32

AWS Encryption SDK Entwicklerhandbuch

Beschranken Sie die Anzahl der verschliisselten Datenschlissel

Es hat sich bewahrt, die Anzahl der verschlisselten Datenschlissel in Nachrichten, die Sie

entschlisseln, zu begrenzen, insbesondere in Nachrichten aus nicht vertrauenswirdigen Quellen.

Das Entschliisseln einer Nachricht mit zahlreichen verschlisselten Datenschliisseln, die Sie nicht
entschlisseln kdnnen, kann zu langeren Verzdégerungen fuhren, Kosten in die Hohe treiben, lhre
Anwendung und andere, die Ihr Konto gemeinsam nutzen, drosseln und madglicherweise lhre
wichtige Infrastruktur erschépfen. Ohne Einschrankungen kann eine verschlisselte Nachricht bis
zu 65.535 (216 — 1) verschlisselte Datenschlissel enthalten. Details hierzu finden Sie unter
Beschrankung verschlusselter Datenschlissel.

Weitere Informationen zu den AWS Encryption SDK Sicherheitsfunktionen, die diesen bewahrten
Methoden zugrunde liegen, finden Sie unter Verbesserte clientseitige Verschlisselung: Explizite
Keylds und zentrale Verpflichtung im Sicherheitsblog. AWS

33

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Entwicklerhandbuch

Konfiguration der AWS Encryption SDK

Das AWS Encryption SDK ist so konzipiert, dass es einfach zu bedienen ist. Obwohl es AWS
Encryption SDK mehrere Konfigurationsoptionen gibt, wurden die Standardwerte sorgfaltig
ausgewabhlt, damit sie fir die meisten Anwendungen praktisch und sicher sind. Moglicherweise
mussen Sie jedoch lhre Konfiguration anpassen, um die Leistung zu verbessern, oder Sie mussen
eine benutzerdefinierte Funktion in Ihr Design aufnehmen.

Lesen Sie sich bei der Konfiguration lhrer Implementierung die AWS Encryption SDK bewahrten
Methoden durch und implementieren Sie so viele wie moglich.

Themen

* Auswahl einer Programmiersprache

* Auswahl von Schliisseln zum Umbrechen

* Verwenden Sie mehrere Regionen AWS KMS keys

* Auswahl einer Algorithmus-Suite

» Beschrankung verschlusselter Datenschlissel

» Einen Discovery-Filter erstellen

» Konfiguration des erforderlichen Verschlisselungskontextes (CMM)

» Festlegung einer Verpflichtungspolitik

* Arbeiten mit Streaming-Daten

» Zwischenspeichern von Datenschlisseln

Auswahl einer Programmiersprache

Das AWS Encryption SDK ist in mehreren Programmiersprachen verfigbar. Die

Sprachimplementierungen sind so konzipiert, dass sie vollstandig interoperabel sind und dieselben
Funktionen bieten, obwohl sie mdglicherweise auf unterschiedliche Weise implementiert werden. In
der Regel verwenden Sie die Bibliothek, die mit Ihrer Anwendung kompatibel ist. Sie kdnnen jedoch
eine Programmiersprache fur eine bestimmte Implementierung auswahlen. Wenn Sie beispielsweise
lieber mit Schlisselanhangern arbeiten, kdnnen Sie den AWS-Verschlisselungs-SDK for C oder den

AWS-Verschlisselungs-SDK for JavaScript wahlen.

Auswahl einer Programmiersprache 34

AWS Encryption SDK Entwicklerhandbuch

Auswahl von Schlusseln zum Umbrechen

Der AWS Encryption SDK generiert einen eindeutigen symmetrischen Datenschlissel, um
jede Nachricht zu verschlisseln. Sofern Sie das Zwischenspeichern von Datenschlisseln nicht

verwenden, mussen Sie die Datenschlissel nicht konfigurieren, verwalten oder verwenden. Das AWS
Encryption SDK erledigt das fiur Sie.

Sie mussen jedoch einen oder mehrere Wrapping-Schlissel auswahlen, um jeden Datenschlissel
zu verschlisseln. Der AWS Encryption SDK unterstitzt symmetrische AES-Schlissel und
asymmetrische RSA-Schlissel in verschiedenen Grolien. Es unterstitzt auch AWS Key
Management Service(AWS KMS) symmetrische Verschlisselung. AWS KMS keys Sie sind fur die
Sicherheit und Haltbarkeit Ihrer Wrapping-Schlissel verantwortlich. Wir empfehlen lhnen daher,

einen Verschlusselungsschlissel in einem Hardware-Sicherheitsmodul oder einem wichtigen
Infrastrukturdienst zu verwenden, wie AWS KMS z.

Um Ihre Wrapping-Schlussel fur die Verschlisselung und Entschlisselung anzugeben, verwenden
Sie einen Schlusselbund (C, Java JavaScript, .NET und Python) oder einen Hauptschlisselanbieter
(Java, Python, AWS Encryption CLI). Sie kdnnen einen Wrapping-Schlissel oder mehrere
Wrapping-Schliussel desselben oder verschiedener Typen angeben. Wenn Sie mehrere
UmschlieRungsschliussel verwenden, um einen Datenschlissel zu umschliel3en, verschlusselt jeder
UmschlieRungsschliussel eine Kopie desselben Datenschlissels. Die verschlisselten Datenschlissel
(einer pro UmschlieRungsschliussel) werden zusammen mit den verschlisselten Daten in der
verschlusselten Nachricht gespeichert, die AWS Encryption SDK zurtiickgegeben wird. Um die

Daten zu entschlusseln, AWS Encryption SDK mussen sie zuerst einen lhrer Verpackungsschlissel
verwenden, um einen verschlisselten Datenschlissel zu entschlisseln.

Um AWS KMS key in einem Schlisselbund oder einem Hauptschlisselanbieter anzugeben,
verwenden Sie eine unterstitzte AWS KMS Schlussel-ID. Einzelheiten zu den Schlisselbezeichnern
fur einen AWS KMS Schlissel finden Sie unter Schltisselkennungen im AWS Key Management
Service Entwicklerhandbuch.

» Bei der Verschliusselung mit der AWS-Verschliusselungs-SDK for Java, AWS-Verschlisselungs-
SDK for JavaScript AWS-Verschlisselungs-SDK for Python, oder der AWS Encryption CLI kbnnen
Sie jede gultige Schlussel-ID (Schlussel-ID, Schlissel-ARN, Aliasname oder Alias-ARN) flr einen
KMS-Schlissel verwenden. Bei der Verschlusselung mit dem AWS-Verschlisselungs-SDK for C
kénnen Sie nur eine SchlUssel-ID oder einen Schlussel-ARN verwenden.

Wenn Sie beim Verschlisseln einen Aliasnamen oder Alias-ARN flr einen KMS-Schlissel
angeben, AWS Encryption SDK speichert der den Schlissel-ARN, der derzeit mit diesem Alias

Auswahl von Schliisseln zum Umbrechen 35

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Entwicklerhandbuch

verkniipft ist; der Alias wird nicht gespeichert. Anderungen am Alias wirken sich nicht auf den KMS-
Schlissel aus, der zum Entschlisseln lhrer Datenschlissel verwendet wird.

» Bei der Entschlisselung im strikten Modus (in dem Sie bestimmte Wrapping-Schlissel angeben)
mussen Sie zur Identifizierung AWS KMS keys einen Schlissel-ARN verwenden. Diese
Anforderung gilt fur alle Sprachenimplementierungen des AWS Encryption SDK.

Wenn Sie mit einem AWS KMS Schlisselbund verschlusseln, AWS Encryption SDK speichert der
den Schlissel ARN von AWS KMS key in den Metadaten des verschlisselten Datenschlissels. Bei
der Entschlisselung im strikten Modus AWS Encryption SDK Uberprift der, ob derselbe Schlissel-
ARN im Schlusselbund (oder Hauptschlisselanbieter) erscheint, bevor er versucht, den Wrapping-
Schlussel zum Entschlisseln des verschlisselten Datenschlissels zu verwenden. Wenn Sie eine
andere Schlissel-ID verwenden, AWS Encryption SDK wird sie weder erkannt noch verwendet
AWS KMS key, auch wenn sich die Kennungen auf denselben Schlussel beziehen.

Um einen AES-RohschlUssel oder ein RSA-Rohschlisselpaar als UmschlieRungsschlissel in einem
Schlusselbund anzugeben, mussen Sie einen Namespace und einen Namen angeben. In einem
Hauptschlisselanbieter Provider ID entspricht der dem Namespace und der Key ID entspricht
dem Namen. Beim Entschlisseln missen Sie fir jeden Rohverpackungsschlissel genau denselben

Namespace und denselben Namen verwenden wie beim Verschlisseln. Wenn Sie einen anderen
Namespace oder Namen verwenden, AWS Encryption SDK wird der Wrapping-Schlissel nicht
erkannt oder verwendet, auch wenn das Schllisselmaterial identisch ist.

Verwenden Sie mehrere Regionen AWS KMS keys

Sie kbnnen AWS Key Management Service (AWS KMS) Schllssel mit mehreren Regionen
verwenden, um Schlussel in der einzuschlieien. AWS Encryption SDK Wenn Sie mit einem
Schlussel fur mehrere Regionen in einem verschlisseln AWS-Region, kdnnen Sie mit einem
zugehdrigen Schlussel fir mehrere Regionen in einem anderen verschlisseln. AWS-Region Die
Support fur Schlissel mit mehreren Regionen wurde in Version 2.3 eingefuhrt. x der Version AWS
Encryption SDK und Version 3.0. x der AWS Encryption CLI.

AWS KMS Schlissel fir mehrere Regionen bestehen aus AWS KMS keys verschiedenen
Schlisseln AWS-Regionen , die dasselbe Schliisselmaterial und dieselbe Schlissel-ID haben.
Sie kdnnen diese verwandten Schllssel so verwenden, als ob es sich um denselben Schlissel
in verschiedenen Regionen handeln wirde. Schlissel mit mehreren Regionen unterstitzen
gangige Notfallwiederherstellungs- und Sicherungsszenarien, bei denen die Verschllisselung
in einer Region und die Entschlisselung in einer anderen Region erforderlich ist, ohne dass

Verwenden Sie mehrere Regionen AWS KMS keys 36

AWS Encryption SDK Entwicklerhandbuch

ein regionsubergreifender Anruf erforderlich ist. AWS KMSInformationen zu Schlisseln fur
mehrere Regionen finden Sie unter Verwenden von Schlisseln fur mehrere Regionen im
Entwicklerhandbuch.AWS Key Management Service

Zur Unterstitzung von Schlisseln fir mehrere Regionen AWS Encryption SDK umfasst dies
Schlusselringe, die AWS KMS mehrere Regionen berlicksichtigen, und Hauptschlisselanbieter.

Das neue multi-Region-aware Symbol in jeder Programmiersprache unterstiitzt sowohl Schlissel fur
einzelne Regionen als auch Schlissel fir mehrere Regionen.

» Bei Schlusseln mit nur einer Region verhalt sich das multi-Region-aware Symbol genauso wie der
Schlisselbund flr einzelne Regionen und der AWS KMS Hauptschlisselanbieter. Es versucht,
Chiffretext nur mit dem Schlissel flr eine einzelne Region zu entschlisseln, mit dem die Daten
verschlusselt wurden.

» Bei Schliusseln mit mehreren Regionen versucht das multi-Region-aware Symbol, Chiffretext mit
demselben Schlissel fir mehrere Regionen zu entschliisseln, mit dem die Daten verschlisselt
wurden, oder mit dem zugehoérigen Replikatschlissel flir mehrere Regionen in der von lhnen
angegebenen Region.

In den multi-Region-aware Schllisselbunden und Hauptschlisselanbietern, die mehr als einen
KMS-Schlissel verwenden, kdnnen Sie mehrere Schllissel fir eine Region und mehrere Regionen
angeben. Sie kdnnen jedoch nur einen Schlissel aus jedem Satz verwandter Replikatschliissel flr
mehrere Regionen angeben. Wenn Sie mehr als einen Schliisselbezeichner mit derselben Schlissel-
ID angeben, schlagt der Konstruktoraufruf fehl.

Sie kénnen auch einen Schlissel fir mehrere Regionen zusammen mit den standardmaRigen AWS
KMS Schliisselanhangern und Hauptschlisselanbietern flr einzelne Regionen verwenden. Zum
Verschlisseln und Entschlisseln missen Sie jedoch denselben Schliissel flir mehrere Regionen

in derselben Region verwenden. Die Schllsselringe fiir einzelne Regionen und die Anbieter von
Masterschlisseln versuchen, Chiffretext nur mit den Schlisseln zu entschliisseln, mit denen die
Daten verschlUsselt wurden.

Die folgenden Beispiele zeigen, wie Daten mithilfe von Schllsseln fir mehrere Regionen sowie mit
den neuen Schliusselbandern und Masterschlisselanbietern ver- und entschlisselt werden. multi-
Region-aware In diesen Beispielen werden Daten in der us-east-1 Region verschlisselt und

die Daten in der Region mithilfe verwandter multiregionaler Replikatschllssel in us-west-2 jeder
Region entschlisselt. Bevor Sie diese Beispiele ausfihren, ersetzen Sie den ARN-Beispielschlissel
fur mehrere Regionen durch einen gultigen Wert aus Ihrem AWS-Konto.

Verwenden Sie mehrere Regionen AWS KMS keys 37

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key

AWS Encryption SDK Entwicklerhandbuch

C

Um mit einem Schlissel fur mehrere Regionen zu verschlisseln, verwenden Sie die
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder () Methode, um den
Schlusselbund zu instanziieren. Geben Sie einen Schlissel fur mehrere Regionen an.

Dieses einfache Beispiel enthalt keinen Verschlisselungskontext. Ein Beispiel, das einen

Verschlisselungskontext in C verwendet, finden Sie unterVerschlisseln und Entschlisseln von
Zeichenfolgen.

Ein vollstandiges Beispiel finden Sie unter kms_multi_region_keys.cpp im AWS-Verschllsselungs-
SDK for C Repository unter GitHub.

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder().Build(mrk_us_east_1);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Encrypt the data
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext,
plaintext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

Verwenden Sie mehrere Regionen AWS KMS keys 38

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Entwicklerhandbuch

C#/.NET

Um mit einem Schlissel fur mehrere Regionen in der Region USA Ost (Nord-Virginia) (us-east-1)
zu verschlusseln, instanziieren Sie ein CreateAwsKmsMrkKeyringInput Objekt mit einer
Schlussel-ID fur den Schlissel fir mehrere Regionen und einem Client fir die angegebene
Region. AWS KMS Verwenden Sie dann die Methode, um den Schlisselbund zu erstellen.
CreateAwsKmsMrkKeyring()

Die CreateAwsKmsMrkKeyring() Methode erstellt einen Schlisselbund mit genau
einem SchllUssel fur mehrere Regionen. Verwenden Sie die Methode, um mit mehreren
Schlisseln zu verschlisseln, einschliel3lich eines Schllssels flir mehrere Regionen.
CreateAwsKmsMrkMultiKeyring()

Ein vollstandiges Beispiel finden Sie unter AwsKmsMrkKeyringExample.cs im AWS Encryption
SDK for.NET-Repository unter. GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

string mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Create the keyring

// You can specify the Region or get the Region from the key ARN

var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEastl),
KmsKeyId = mrkUSEastl

};

var mrkEncryptKeyring =

materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()

Verwenden Sie mehrere Regionen AWS KMS keys 39

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

{

{"purpose", "test"}
i

// Encrypt your plaintext data.
var encryptInput = new EncryptInput

{
Plaintext = plaintext,
Keyring = mrkEncryptKeyring,
EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

In diesem Beispiel wird die hello.txt Datei unter einem Schlissel fir mehrere Regionen in der
Region us-east-1 verschlisselt. Da das Beispiel einen Schllissel-ARN mit einem Region-Element
angibt, verwendet dieses Beispiel nicht das Region-Attribut des --wrapping-keys Parameters.

Wenn die Schlissel-ID des Wrapping-Schlissels keine Region angibt, kdnnen Sie das Region-
Attribut von verwenden, --wrapping-keys um die Region anzugeben, z. --wrapping-keys
key=$keyID region=us-east-1B.

Encrypt with a multi-Region KMS key in us-east-1 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEastl=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$mrkUSEastl \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

Java

Um mit einem SchlUssel fur mehrere Regionen zu verschlisseln, instanziieren Sie einen
AwsKmsMrkAwareMasterKeyProvider und geben Sie einen Schlissel fir mehrere Regionen
an.

Verwenden Sie mehrere Regionen AWS KMS keys 40

AWS Encryption SDK Entwicklerhandbuch

Ein vollstandiges Beispiel finden Sie im Repository unter
BasicMultiRegionKeyEncryptionExample.java. AWS-Verschlisselungs-SDK for Java GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

final String mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1
final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider
.builder()
.buildStrict(mrkUSEastl);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose",
"Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult =
crypto.encryptData(
kmsMrkProvider,
encryptionContext,
sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

JavaScript Browser

Um mit einem SchlUssel fur mehrere Regionen zu verschlisseln, verwenden Sie die
buildAwsKmsMrkAwareStrictMultiKeyringBrowser () Methode, um den Schlisselbund
zu erstellen, und geben Sie einen Schllissel fir mehrere Regionen an.

Ein vollstandiges Beispiel finden Sie unter kms_multi_region_simple.ts im Repository unter. AWS-
Verschlusselungs-SDK for JavaScript GitHub

Verwenden Sie mehrere Regionen AWS KMS keys 41

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Entwicklerhandbuch

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The AWS-Verschliisselungs-SDK for JavaScript gets the Region from the key ARN
*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({
generatorKeyId: multiRegionUsEastKey,
clientProvider,

1)

/* Set the encryption context */
const context = {
purpose: 'test',

Verwenden Sie mehrere Regionen AWS KMS keys 42

AWS Encryption SDK Entwicklerhandbuch

/* Test data to encrypt */
const cleartext = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, {
encryptionContext: context,

1)

JavaScript Node.js

Um mit einem SchlUssel fiir mehrere Regionen zu verschlisseln, verwenden Sie die Methode,
um den Schlisselbund zu erstellen, und geben Sie einen Schllssel fir mehrere Regionen an.
buildAwsKmsMrkAwareStrictMultiKeyringNode()

Ein vollstandiges Beispiel finden Sie unter kms_multi_region_simple.ts im Repository unter. AWS-
Verschlisselungs-SDK for JavaScript GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region
import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-east-1
*/
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsEastKey,
1)

/* Specify an encryption context */
const context = {
purpose: 'test',

Verwenden Sie mehrere Regionen AWS KMS keys 43

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK Entwicklerhandbuch

}

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, {
encryptionContext: context,

1)

Python

Um mit einem SchlUssel fur mehrere Regionen zu verschlisseln, verwenden Sie
die Methode und geben Sie einen Schlissel fir AWS KMS mehrere Regionen an.
MRKAwareStrictAwsKmsMasterKeyProvider()

Ein vollstandiges Beispiel finden Sie unter mrk_aware_kms_provider.py im AWS-
Verschlisselungs-SDK for Python Repository unter. GitHub

* Encrypt with a multi-Region KMS key in us-east-1 Region

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R

Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_east_1]

Set the encryption context
encryption_context = {
"purpose": "test"

Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
key_provider=strict_mrk_key_provider

Verwenden Sie mehrere Regionen AWS KMS keys 44

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Verschieben Sie als Nachstes lhren Chiffretext in die us-west-2 Region. Sie missen den
Chiffretext nicht erneut verschlisseln.

Um den Chiffretext im strikten Modus in der us-west -2 Region zu entschlisseln, instanziieren Sie
das multi-Region-aware Symbol mit dem Schlissel ARN des zugehérigen Multi-Region-Schllssels in
der Region. us-west-2 Wenn Sie den Schlissel-ARN eines zugehdrigen Multi-Region-Schlussels in
einer anderen Region angeben (einschliel3lichus-east-1, wo er verschliusselt wurde), ruft das multi-
Region-aware Symbol diesen Schllissel regionsubergreifend auf. AWS KMS key

Bei der Entschlisselung im strikten Modus benétigt das multi-Region-aware Symbol einen Schlissel-
ARN. Es akzeptiert nur einen Schlissel-ARN aus jedem Satz verwandter Schlissel fir mehrere
Regionen.

Bevor Sie diese Beispiele ausflihren, ersetzen Sie den ARN-Beispielschliissel fir mehrere Regionen
durch einen gultigen Wert aus lhrem AWS-Konto.

C

Um im strikten Modus mit einem Schllssel fir mehrere Regionen zu entschlisseln, verwenden
Sie die Aws: :Cryptosdk: : KmsMrkAwareSymmetricKeyring: :Builder () Methode, um
den Schlusselbund zu instanziieren. Geben Sie den zugehorigen Schllussel fur mehrere Regionen
in der lokalen Region (us-west-2) an.

Ein vollstandiges Beispiel finden Sie unter kms_multi_region_keys.cpp im AWS-Verschlisselungs-
SDK for C Repository unter. GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Buildexr().Build(mrk_us_west_2);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

Verwenden Sie mehrere Regionen AWS KMS keys 45

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_session_set_commitment_policy(session,
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET

Um im strikten Modus mit einem einzigen Schlissel fur mehrere Regionen zu entschlisseln,
verwenden Sie dieselben Konstruktoren und Methoden, mit denen Sie die Eingabe
zusammengestellt und den Schlisselbund fir die Verschllsselung erstellt haben. Instanziieren
Sie ein CreateAwsKmsMrkKeyringInput Objekt mit dem Schlissel-ARN eines zugehorigen
Multiregions-Schlissels und einem AWS KMS Client fur die Region USA West (Oregon)
(us-west-2). Verwenden Sie dann die CreateAwsKmsMrkKeyring() Methode, um einen
Schlisselbund flir mehrere Regionen mit einem KMS-Schlissel flir mehrere Regionen zu
erstellen.

Ein vollstandiges Beispiel finden Sie unter AwsKmsMrkKeyringExample.cs im for. NET-Repository
unter AWS Encryption SDK . GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();
// Specify the key ARN of the multi-Region key in us-west-2

string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

Verwenden Sie mehrere Regionen AWS KMS keys 46

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the keyring input

// You can specify the Region or get the Region from the key ARN

var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
KmsKeyId = mrkUSWest2

i

// Create the multi-Region keyring
var mrkDecryptKeyring =
materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = mrkDecryptKeyring
i
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Um mit dem zugehdrigen Multiregion-Schlissel in der Region us-west-2 zu entschlisseln,
verwenden Sie das Schlisselattribut des --wrapping-keys Parameters, um seinen Schllssel-
ARN anzugeben.

Decrypt with a related multi-Region KMS key in us-west-2 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$mrkUSwest2 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output

Verwenden Sie mehrere Regionen AWS KMS keys 47

AWS Encryption SDK Entwicklerhandbuch

Java

Um im strikten Modus zu entschlisseln, instanziieren Sie einen
AwsKmsMrkAwareMasterKeyProvider und geben Sie den zugehdrigen Schllssel fir mehrere
Regionen in der lokalen Region (us-west-2) an.

Ein vollstandiges Beispiel finden Sie unter .java im Repository
unterBasicMultiRegionKeyEncryptionExample. AWS-Verschlisselungs-SDK for Java GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in
the Region field.

String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab";

// Use the multi-Region method to create the master key provider

// in strict mode

AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =

AwsKmsMrkAwareMasterKeyProvider.buildexr()
.buildStrict(mrkUSWest2);

// Decrypt your ciphertext

CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData(
kmsMrkProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

JavaScript Browser

Um im strikten Modus zu entschlisseln, verwenden Sie die
buildAwsKmsMrkAwareStrictMultiKeyringBrowser () Methode, um den Schlisselbund
zu erstellen, und geben Sie den zugehorigen Schlussel fur mehrere Regionen in der lokalen
Region (us-west-2) an.

Ein vollstandiges Beispiel finden Sie unter kms_multi_region_simple.ts im Repository unter. AWS-

Verschlisselungs-SDK for JavaScript GitHub

Verwenden Sie mehrere Regionen AWS KMS keys 48

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Entwicklerhandbuch

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The AWS-Verschliisselungs-SDK for JavaScript gets the Region from the key ARN
*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({
generatorKeyId: multiRegionUsWestKey,
clientProvider,

1)

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

Verwenden Sie mehrere Regionen AWS KMS keys 49

AWS Encryption SDK Entwicklerhandbuch

JavaScript Node.js

Um im strikten Modus zu entschliisseln, verwenden Sie die
buildAwsKmsMrkAwareStrictMultiKeyringNode() Methode, um den Schlisselbund zu
erstellen, und geben Sie den zugehdrigen Schllssel fur mehrere Regionen in der lokalen Region
(us-west-2) an.

Ein vollstandiges Beispiel finden Sie unter kms_multi_region_simple.ts im Repository unter. AWS-

Verschlisselungs-SDK for JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */
import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the client

const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-west-2
*/
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsWestKey,
1)

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

Um im strikten Modus zu entschlisseln, verwenden Sie die Methode, um den
Hauptschlisselanbieter zu erstellen. MRKAwareStrictAwsKmsMasterKeyProvider () Geben
Sie den zugehdrigen Schllssel fir mehrere Regionen in der lokalen Region (us-west-2) an.

Ein vollstandiges Beispiel finden Sie unter mrk_aware_kms_provider.py im AWS-
Verschlisselungs-SDK for Python Repository unter. GitHub

Verwenden Sie mehrere Regionen AWS KMS keys 50

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Decrypt with a related multi-Region KMS key in us-west-2 Region

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R

Related multi-Region keys have the same key ID. Their key ARNs differs only in the
Region field

mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider/(
key_ids=[mrk_us_west_2]

Decrypt your ciphertext

plaintext, _ = client.decrypt(
source=ciphertext,
key_provider=strict_mrk_key_provider

Sie kénnen auch im Discovery-Modus mit Schlisseln fir AWS KMS mehrere Regionen
entschlisseln. Beim Entschlisseln im Discovery-Modus geben Sie keine an. AWS KMS
keys(Informationen zu Schllsselanhangern fir die AWS KMS Erkennung einzelner Regionen finden
Sie unter.) Verwenden eines Discovery-Schlisselbunds AWS KMS

Wenn Sie mit einem Schllissel fir mehrere Regionen verschlisselt haben, versucht das multi-
Region-aware Symbol im Erkennungsmodus, mithilfe eines zugehdrigen Regionsschlissels
in der lokalen Region zu entschlisseln. Wenn keine vorhanden ist, schlagt der Anruf fehl.

Im Erkennungsmodus versucht der nicht, den Schllissel fir mehrere Regionen, der fur die
Verschlisselung verwendet AWS Encryption SDK wird, regionstbergreifend aufzurufen.

(® Note

Wenn Sie im Discovery-Modus ein multi-Region-aware Symbol verwenden, um Daten zu
verschlisseln, schlagt der Verschlisselungsvorgang fehl.

Verwenden Sie mehrere Regionen AWS KMS keys 51

AWS Encryption SDK Entwicklerhandbuch

Das folgende Beispiel zeigt, wie im Discovery-Modus mit dem multi-Region-aware Symbol
entschlisselt wird. Da Sie kein angeben AWS KMS key, AWS Encryption SDK muss die Region aus
einer anderen Quelle abgerufen werden. Wenn mdglich, geben Sie die lokale Region explizit an.
Andernfalls AWS Encryption SDK ruft der die lokale Region aus der Region ab, die im AWS SDK fur
Ihre Programmiersprache konfiguriert ist.

Bevor Sie diese Beispiele ausfuhren, ersetzen Sie die Beispielkonto-ID und den Multi-Region-
Schlussel ARN durch gultige Werte aus lhrem AWS-Konto.

C

Um im Discovery-Modus mit einem Schlissel fur mehrere Regionen zu entschlisseln,

verwenden Sie die Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Buildex()
Methode, um den Schlisselbund zu erstellen, und die Methode, um den

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder () Discovery-Filter zu
erstellen. Um die lokale Region anzugeben, definieren Sie a ClientConfiguration und geben
Sie sie im Client an. AWS KMS

Ein vollstandiges Beispiel finden Sie unter kms_multi_region_keys.cpp im AWS-Verschlisselungs-
SDK for C Repository unter GitHub.

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct a discovery filter for the account and partition. The
* filter is optional, but it's a best practice that we recommend.

*/
const char *account_id = "111122223333";
const char *partition = "aws";

const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter::Builder(partition).AddAccount(account_id).Buil

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client =

Verwenden Sie mehrere Regionen AWS KMS keys 52

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Entwicklerhandbuch

Aws: :MakeShared<Aws: :KMS: :KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder()
WithKmsClient(kms_client)
.BuildDiscovery(region, discovery_filter);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET

Um einen multi-Region-aware Discovery-Schlisselbund in flr.NET zu erstellen, instanziieren
Sie ein CreateAwsKmsMrkDiscoveryKeyringInput Objekt, das einen AWS KMS Client
fur ein bestimmtes Objekt verwendet AWS-Region, und einen optionalen Discovery-Filter,
der KMS-SchlUssel auf eine bestimmte AWS Partition und ein bestimmtes Konto beschrankt.
AWS Encryption SDK Rufen Sie dann die CreateAwsKmsMrkDiscoveryKeyring()
Methode mit dem Eingabeobjekt auf. Ein vollstandiges Beispiel finden Sie unter
AwsKmsMrkDiscoveryKeyringExample.cs im AWS Encryption SDK for.NET-Repository unter
GitHub.

Um einen multi-Region-aware Discovery-Schliisselbund flir mehrere zu erstellen AWS-Region,
verwenden Sie die CreateAwsKmsMrkDiscoveryMultiKeyring() Methode, um einen
Mehrfachschlisselbund zu erstellen, oder verwenden Sie die Methode, um mehrere multi-Region-
aware Discovery-Schllsselbunde CreateAwsKmsMrkDiscoveryKeyring() zu erstellen

und sie dann mit der CreateMultiKeyring() Methode zu einem Mehrfachschlisselbund zu
kombinieren.

Verwenden Sie mehrere Regionen AWS KMS keys 53

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

Ein Beispiel finden Sie unter .cs. AwsKmsMrkDiscoveryMultiKeyringExample

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();
List<string> account = new List<string> { "111122223333" },;

// Instantiate the discovery filter
DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()

{
AccountIds = account,
Partition = "aws"

// Create the keyring

var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = mrkDiscoveryFilter

};

var mrkDiscoveryKeyring =

materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = mrkDiscoveryKeyring
I
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Verwenden Sie das Discovery-Attribut des Parameters, um im Discovery-Modus zu entschlisseln.
--wrapping-keys Die Attribute discovery-account und discovery-partition erstellen einen
Discovery-Filter, der optional, aber empfohlen wird.

Verwenden Sie mehrere Regionen AWS KMS keys 54

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryMultiKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

Um die Region anzugeben, enthalt dieser Befehl das Regionsattribut des Parameters. - -
wrapping-keys

Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \
region=us-west-2 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

--output .

Java

Verwenden Sie den builder().withDiscoveryMrkRegion Parameter, um die lokale Region
anzugeben. Andernfalls AWS Encryption SDK ruft der die lokale Region aus der Region ab, die in
der konfiguriert ist AWS SDK fur Java.

Ein vollstandiges Beispiel finden Sie unter DiscoveryMultiRegionDecryptionExample.java im AWS-
Verschlisselungs-SDK for Java Repository unter GitHub.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider =
AwsKmsMrkAwareMasterKeyProvider
.builder()
.withDiscoveryMrkRegion(Region.US_WEST_2)
.buildDiscovery(discoveryFilter);

// Decrypt your ciphertext
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto

Verwenden Sie mehrere Regionen AWS KMS keys 55

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryMultiRegionDecryptionExample.java

AWS Encryption SDK Entwicklerhandbuch

.decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

Verwenden Sie die Methode, um im Discovery-Modus mit einem
symmetrischen Schllssel fir mehrere Regionen zu entschlisseln.
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowsexr ()

Ein vollstandiges Beispiel finden Sie unter kms_multi_region_discovery.ts im Repository unter.
AWS-Verschlisselungs-SDK for JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser({
client,
discoveryFilter,

1)

Verwenden Sie mehrere Regionen AWS KMS keys 56

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts

AWS Encryption SDK Entwicklerhandbuch

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

JavaScript Node.js

Verwenden Sie die Methode, um im Discovery-Modus mit einem
symmetrischen Schllussel fur mehrere Regionen zu entschlisseln.
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode()

Ein vollstandiges Beispiel finden Sie unter kms_multi_region_discovery.ts im Repository unter.
AWS-Verschlisselungs-SDK for JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode,
buildClient,
CommitmentPolicy,
KMS,

} from 'e@aws-crypto/client-node'

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({
client,
discoveryFilter,

1)

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Verwenden Sie mehrere Regionen AWS KMS keys 57

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_discovery.ts

AWS Encryption SDK

Entwicklerhandbuch

Python

Verwenden Sie die Methode, um im Discovery-Modus mit einem Schlussel fir mehrere Regionen

zu entschlisseln. MRKAwareDiscoveryAwsKmsMasterKeyProvider ()

Ein vollstandiges Beispiel finden Sie unter mrk_aware_kms_provider.py im AWS-
Verschlisselungs-SDK for Python Repository unter. GitHub

Decrypt in discovery mode with a multi-Region KMS key

Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

Create the discovery filter and specify the region
decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",
partition="aws"),
discovery_region="us-west-2",

Use the multi-Region method to create the master key provider

in discovery mode

mrk_discovery_key_provider =
MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

Decrypt your ciphertext
plaintext, _ = client.decrypt(

source=ciphertext,
key_provider=mrk_discovery_key_provider

Auswahl einer Algorithmus-Suite

Die AWS Encryption SDK unterstitzt mehrere symmetrische und asymmetrische

VerschllUsselungsalgorithmen zur Verschlusselung Ihrer Datenschlissel unter den von lhnen

angegebenen Wrapping-Schlisseln. Wenn diese Datenschlussel jedoch zur Verschlisselung

Ihrer Daten verwendet werden, wird AWS Encryption SDK standardmalRig eine empfohlene

Algorithmussuite verwendet, die den AES-GCM-Algorithmus mit Schllisselableitung, digitalen

Signaturen und SchlUsselbindung verwendet. Obwohl die standardmafige Algorithmussuite

wahrscheinlich fur die meisten Anwendungen geeignet ist, kdbnnen Sie auch eine alternative

Auswabhl einer Algorithmus-Suite

58

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Algorithmussuite wahlen. Einige Vertrauensmodelle wirden beispielsweise durch eine Algorithmus-
Suite ohne digitale Signaturen erflllt. Hinweise zu den von der AWS Encryption SDK unterstitzten
Algorithmus-Suites finden Sie unterUnterstutzte Algorithmus-Suiten in der AWS Encryption SDK.

Die folgenden Beispiele zeigen Ihnen, wie Sie beim Verschlisseln eine alternative Algorithmus-
Suite auswahlen. In diesen Beispielen wird eine empfohlene AES-GCM-Algorithmussuite mit
Schlusselableitung und Schlisselzusage ausgewahlt, jedoch ohne digitale Signaturen. Wenn Sie mit
einer Algorithmus-Suite verschlisseln, die keine digitalen Signaturen enthalt, verwenden Sie beim
Entschlisseln den Entschlisselungsmodus ,Nur ohne Vorzeichen®. Dieser Modus schlagt fehl, wenn
er auf einen signierten Chiffretext trifft, und ist vor allem bei der Streaming-Entschlisselung nutzlich.

C

Um eine alternative Algorithmus-Suite in der anzugeben AWS-Verschlisselungs-
SDK for C, missen Sie explizit ein CMM erstellen. Verwenden Sie dann die
aws_cryptosdk_default_cmm_set_alg_id mit dem CMM und der ausgewahlten
Algorithmus-Suite.

/* Specify an algorithm suite without signing */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* To set an alternate algorithm suite, create an cryptographic
materials manager (CMM) explicitly
*/
struct aws_cryptosdk_cmm *cmm =
aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY);

/* Construct the session with the CMM,
then release the CMM reference
*/
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc,
AWS_CRYPTOSDK_ENCRYPT, cmm);

Auswahl einer Algorithmus-Suite 59

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data
Use aws_cryptosdk_session_process_full with non-streaming data

*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
ciphertext,

ciphertext_buf_sz,

&ciphertext_len,

plaintext,

plaintext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

Verwenden Sie beim Entschllsseln von Daten, die ohne digitale Signaturen verschlisselt wurden.
AWS_CRYPTOSDK_DECRYPT_UNSIGNED Dies fuhrt dazu, dass die Entschllsselung fehlschlagt,
wenn signierter Chiffretext gefunden wird.

/* Decrypt unsigned streaming data */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create a session for decrypting with the AWS KMS keyring
Then release the keyring reference
*/

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED,
kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);

if (!session) {

return AWS_OP_ERR;

/* Limit encrypted data keys */

Auswahl einer Algorithmus-Suite 60

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1);

/* Decrypt
Use aws_cryptosdk_session_process_full with non-streaming data
*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
plaintext,

plaintext_buf_sz,

&plaintext_len,

ciphertext,

ciphertext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

C#/ .NET

Um eine alternative Algorithmus-Suite in AWS Encryption SDK fir.NET anzugeben, geben Sie
die AlgorithmSuiteId Eigenschaft eines Objekts an. Encryptinput Die AWS Encryption SDK
fur .NET enthalt Konstanten, anhand derer Sie Ihre bevorzugte Algorithmussuite identifizieren
kénnen.

AWS Encryption SDK Fir .NET gibt es keine Methode zur Erkennung von signiertem Chiffretext
bei der Streaming-Entschliisselung, da diese Bibliothek keine Streaming-Daten unterstitzt.

// Specify an algorithm suite without signing

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Create the keyring
var keyringInput = new CreateAwsKmsKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn
};

var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data

Auswahl einer Algorithmus-Suite 61

https://github.com/aws/aws-encryption-sdk/blob/mainline/AwsEncryptionSDK/runtimes/net/Generated/AwsEncryptionSdk/EncryptInput.cs
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs

AWS Encryption SDK Entwicklerhandbuch

var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

AlgoxrithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
i

var encryptOutput = encryptionSdk.Encrypt(encxyptInput);

AWS Encryption CLI

Bei der Verschlisselung der hello. txt Datei verwendet dieses Beispiel den --algorithm
Parameter, um eine Algorithmussuite ohne digitale Signaturen anzugeben.

Specify an algorithm suite without signing

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output hello.txt.encrypted \
--decode

Bei der Entschliisselung verwendet dieses Beispiel den --decrypt-unsigned Parameter.
Dieser Parameter wird empfohlen, um sicherzustellen, dass Sie unsignierten Chiffretext
entschlisseln, insbesondere mit der CLI, die immer Eingabe und Ausgabe streamt.

Decrypt unsigned streaming data

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt-unsigned \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--max-encrypted-data-keys 1 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \

Auswahl einer Algorithmus-Suite 62

AWS Encryption SDK Entwicklerhandbuch

--metadata-output ~/metadata \
--output .

Java

Verwenden Sie die Methode, um eine alternative Algorithmus-Suite anzugeben.
AwsCrypto.builder().withEncryptionAlgorithm() Dieses Beispiel spezifiziert eine
alternative Algorithmussuite ohne digitale Signaturen.

// Specify an algorithm suite without signing

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withEncxryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create an encryption context to identify this ciphertext
Map<String, String> encryptionContext = Collections.singletonMap("Example",
"FileStreaming");

// Encrypt your plaintext data

CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
masterKeyProvider,
sourcePlaintext,
encryptionContext);

byte[] ciphertext = encryptResult.getResult();

Verwenden Sie beim Streamen von Daten zur Entschlisselung diese
createUnsignedMessageDecryptingStream() Methode, um sicherzustellen, dass der
gesamte Chiffretext, den Sie entschllisseln, nicht signiert ist.

// Decrypt unsigned streaming data

// Instantiate the client

Auswahl einer Algorithmus-Suite 63

AWS Encryption SDK Entwicklerhandbuch

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withMaxEncryptedDataKeys(1)

.build();

// Create a master key provider in strict mode

String awsKmsKey = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Decrypt the encrypted message

FileInputStream in = new FileInputStream(srcFile + ".encrypted");
CryptoInputStream<KmsMasterKey> decryptingStream =
crypto.createUnsignedMessageDecryptingStream(masterKeyProvider, in);

// Return the plaintext data

// Write the plaintext data to disk

FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
I0Utils.copy(decryptingStream, out);

decryptingStream.close();

JavaScript Browser

Um eine alternative Algorithmussuite anzugeben, verwenden Sie den suiteId Parameter mit
einem Enum-Wert. AlgorithmSuiteIdentifier

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

Auswahl einer Algorithmus-Suite 64

AWS Encryption SDK Entwicklerhandbuch

Verwenden Sie beim Entschlisseln die decrypt Standardmethode. AWS-Verschllsselungs-
SDK for JavaScript hat im Browser keinen decrypt-unsigned Modus, weil der Browser kein
Streaming unterstitzt.

// Decrypt unsigned streaming data

// Instantiate the client
const { decrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)

JavaScript Node.js

Um eine alternative Algorithmus-Suite anzugeben, verwenden Sie den suiteId Parameter mit
einem AlgorithmSuiteIdentifier Enum-Wert.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

Verwenden decryptUnsignedMessage Sie Stream, wenn Sie Daten entschlisseln, die ohne
digitale Signaturen verschlisselt wurden. Diese Methode schlagt fehl, wenn sie auf signierten
Chiffretext trifft.

Auswahl einer Algorithmus-Suite 65

AWS Encryption SDK Entwicklerhandbuch

// Decrypt unsigned streaming data

// Instantiate the client
const { decryptUnsignedMessageStream } =
buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message
const outputStream =
createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Python

Um einen alternativen Verschllisselungsalgorithmus anzugeben, verwenden Sie den algorithm
Parameter mit einem Algorithm Enum-Wert.

Specify an algorithm suite without signing

Instantiate a client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F
max_encrypted_data_keys=1)

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt(
algorithm=Algoxithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext,
key_provider=kms_key_provider

)

Auswahl einer Algorithmus-Suite 66

AWS Encryption SDK Entwicklerhandbuch

Verwenden Sie beim Entschlisseln von Nachrichten, die ohne digitale Signaturen verschlisselt
wurden, den decrypt-unsigned Streaming-Modus, insbesondere beim Entschlisseln wahrend
des Streamings.

Decrypt unsigned streaming data

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F
max_encrypted_data_keys=1)

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Decrypt with decrypt-unsigned
with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename,
"wb") as plaintext:
with client.stream(mode="decxypt-unsigned"”,
source=ciphertext,
key_provider=master_key_provider) as decryptor:
for chunk in decryptor:
plaintext.write(chunk)

Verify that the encryption context
assert all(

pair in decryptor.header.encryption_context.items() for pair in
encryptor.header.encryption_context.items()

)

return ciphertext_filename, cycled_plaintext_filename

Rust

Um eine alternative Algorithmus-Suite AWS Encryption SDK fur Rust anzugeben, geben Sie die
algorithm_suite_id Eigenschaft in Ihrer Verschlisselungsanfrage an.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Auswahl einer Algorithmus-Suite 67

AWS Encryption SDK Entwicklerhandbuch

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(raw_aes_keyring.clone())
.encryption_context(encryption_context.clone())
.algorithm_suite_id(AlgAes256GcmHkdfSha512CommitKey)
.send()
.await?;

Go

import (
"context"

Auswahl einer Algorithmus-Suite 68

AWS Encryption SDK Entwicklerhandbuch

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)
// Instantiate the AWS Encryption SDK client

encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {
panic(err)

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "AES_256_012"

// Optional: Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)

Auswahl einer Algorithmus-Suite 69

AWS Encryption SDK Entwicklerhandbuch

if err !'= nil {
panic(err)

// Encrypt your plaintext data
algorithmSuiteId := mpltypes.ESDKAlgorithmSuiteIdAlgAes256GcmHkdfSha512CommitKey
res, err := encryptionClient.Encrypt(context.Background(), esdktypes.EncryptInput{

Plaintext: [1byte(exampleText),
EncryptionContext: encryptionContext,
Keyring: aesKeyring,
AlgoxrithmSuiteId: &algoxrithmSuiteld,
1)
if err !'= nil {
panic(err)
}

Beschrankung verschlusselter Datenschlussel

Sie kdnnen die Anzahl der verschlisselten Datenschlissel in einer verschlisselten Nachricht
einschranken. Diese bewahrte Methode kann lhnen helfen, einen falsch konfigurierten Schltisselbund
beim Verschlisseln oder einen bdsartigen Chiffretext beim Entschlisseln zu erkennen. Es verhindert
auch unnétige, teure und potenziell erschépfende Zugriffe auf Ihre Schlisselinfrastruktur. Die
Einschrankung verschlisselter Datenschlissel ist am wertvollsten, wenn Sie Nachrichten aus einer
nicht vertrauenswirdigen Quelle entschlisseln.

Obwohl die meisten verschlisselten Nachrichten einen verschllisselten Datenschlissel fir jeden
bei der Verschlisselung verwendeten UmschlieRungsschliissel haben, kann eine verschlisselte
Nachricht bis zu 65.535 verschlUsselte Datenschliussel enthalten. Ein boswilliger Akteur konnte eine
verschlusselte Nachricht mit Tausenden von verschlusselten Datenschlusseln erstellen, von denen
keiner entschlisselt werden kann. In der Folge AWS Encryption SDK wirde versucht werden, jeden
verschlusselten Datenschlussel zu entschlisseln, bis alle verschlisselten Datenschlissel in der
Nachricht aufgebraucht sind.

Verwenden Sie den MaxEncryptedDataKeys Parameter, um die Anzahl der verschlisselten
DatenschlUssel einzuschranken. Dieser Parameter ist ab Version 1.9 fur alle unterstitzten
Programmiersprachen verfugbar. x und 2.2. x der AWS Encryption SDK. Es ist optional und guiltig
beim Verschlisseln und Entschlisseln. In den folgenden Beispielen werden Daten entschlisselt, die

Beschrankung verschlisselter Datenschlissel 70

AWS Encryption SDK Entwicklerhandbuch

mit drei verschiedenen Wrapping-Schlisseln verschlisselt wurden. Der MaxEncryptedDataKeys
Wert ist auf 3 festgelegt.

C

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arnl, { key_arn2, key_arn3 });

/* Create a session */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);

/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session,
plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C#/ .NET

Um die Anzahl der verschlisselten Datenschlissel im AWS Encryption SDK fir .NET
einzuschranken, instanziieren Sie einen Client fir AWS Encryption SDK fiur.NET und setzen Sie
seinen optionalen MaxEncryptedDataKeys Parameter auf den gewilinschten Wert. Rufen Sie
dann die Decrypt () Methode auf der AWS Encryption SDK konfigurierten Instanz auf.

// Decrypt with limited data keys

Beschrankung verschlisselter Datenschlissel 71

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;
var createKeyringInput = new CreateAwsKmsKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn
};

var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = decryptKeyring
I
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$key_arnl key=%$key_arn2 key=$key_arn3 \
--buffer \
--max-encrypted-data-keys 3 \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output

Beschrankung verschlisselter Datenschlissel 72

AWS Encryption SDK Entwicklerhandbuch

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()
.withMaxEncryptedDataKeys(3)
.build();

// Create an AWS KMS master key provider
final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.builder()
.buildStrict(keyArnl, keyArn2, keyArn3);

// Decrypt
final CryptoResult<byte[], KmsMasterKey> decryptResult =
crypto.decryptData(keyProvider, ciphertext)

JavaScript Browser

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string
}
const clientProvider = getClient(KMS, {
credentials: { accessKeyld, secretAccessKey, sessionToken }

1)

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
clientProvider,
keyIds: [keyArnl, keyArn2, keyArn3],
1))

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

Beschrankung verschlisselter Datenschlissel 73

AWS Encryption SDK Entwicklerhandbuch

// Create an AWS KMS keyring

const keyring = new KmsKeyringBrowser({
keyIds: [keyArnl, keyArn2, keyArn3],

1)

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(
key_ids=[key_arnl, key_arn2, key_arn3])

Decrypt
plaintext, header = client.decrypt(source=ciphertext,
key_provider=master_key_provider)

Rust

// Instantiate the AWS Encryption SDK client with limited encrypted data keys

let esdk_config = AwsEncryptionSdkConfig::builder()
.max_encrypted_data_keys(max_encrypted_data_keys)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Generate “max_encrypted_data_keys raw AES keyrings to use with your keyring
let mut raw_aes_keyrings: Vec<KeyringRef> = vec![];

assert!(max_encrypted_data_keys > @, "max_encrypted_data_keys MUST be greater than
0");

Beschrankung verschlisselter Datenschlissel 74

AWS Encryption SDK

Entwicklerhandbuch

Go

let mut i = 0;
while i < max_encrypted_data_keys {
let aes_key_bytes = generate_aes_key_bytes();

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aes_key_bytes)
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

raw_aes_keyrings.push(raw_aes_keyring);
i+=1;

// Create a Multi Keyring with “max_encrypted_data_keys ™ AES Keyrings
let generator_keyring = raw_aes_keyrings.remove(Q);

let multi_keyring = mpl
.create_multi_keyring()
.generator(generator_keyring)
.child_keyrings(raw_aes_keyrings)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client with limited encrypted data keys

Beschrankung verschlisselter Datenschlissel

75

AWS Encryption SDK Entwicklerhandbuch

encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{
MaxEncryptedDataKeys: &maxEncryptedDataKeys,

1)

if err != nil {
panic(err)

}

// Define the key namespace and key name
var keyNamespace = "HSM_0Q1"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Generate 'maxEncryptedDataKeys™ raw AES keyrings to use with your keyring
rawAESKeyrings := make([]Jmpltypes.IKeyring, @, maxEncryptedDataKeys)
var i int64 = 0
for i < maxEncryptedDataKeys {
key, err := generate256KeyBytesAES()
if err !'= nil {
panic(err)
}
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagl6,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err != nil {
panic(err)
}
rawAESKeyrings = append(rawAESKeyrings, aesKeyring)
1++

// Create a Multi Keyring with “max_encrypted_data_keys® AES Keyrings
createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: rawAESKeyrings[0],
ChildKeyrings: rawAESKeyrings[1:],

Beschrankung verschlisselter Datenschlissel

76

AWS Encryption SDK Entwicklerhandbuch

}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err != nil {
panic(err)
}

Einen Discovery-Filter erstellen

Beim Entschllisseln von Daten, die mit KMS-Schllisseln verschlisselt wurden, hat es sich bewéahrt,
im strikten Modus zu entschlisseln, d. h., die verwendeten Wrapping-Schlissel auf die von

Ihnen angegebenen zu beschranken. Bei Bedarf kdnnen Sie jedoch auch im Discovery-Modus
entschlisseln, in dem Sie keine UmschlieRungsschlissel angeben. In diesem Modus AWS KMS
kann der verschlisselte Datenschlissel mithilfe des KMS-Schlissels, mit dem er verschlisselt
wurde, entschlisselt werden, unabhangig davon, wem dieser KMS-Schlissel gehért oder wer Zugriff
darauf hat.

Wenn Sie im Discovery-Modus entschlisseln mussen, empfehlen wir, immer einen Discovery-Filter
zu verwenden, der die KMS-SchliUssel, die verwendet werden kdnnen, auf diejenigen beschrankt, die
sich in einer bestimmten Partition befinden AWS-Konto . Der Discovery-Filter ist optional, hat sich
aber bewahrt.

Verwenden Sie die folgende Tabelle, um den Partitionswert flr Ihren Discovery-Filter zu ermitteln.

Region Partition
AWS-Regionen aws
Regionen in China aws-cn
AWS GovCloud (US) Regions aws-us-gov

Die Beispiele in diesem Abschnitt zeigen, wie Sie einen Discovery-Filter erstellen. Bevor Sie den
Code verwenden, ersetzen Sie die Beispielwerte durch glltige Werte flr die Partition AWS-Konto
und.

Einen Discovery-Filter erstellen 77

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Encryption SDK Entwicklerhandbuch

C

Vollstandige Beispiele finden Sie in der Datei kms_discovery.cpp in der AWS-Verschllsselungs-
SDK for C.

/* Create a discovery filter for an AWS account and partition */

const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder(partition).AddAccount(account_id).Buil

C#/ .NET

Ein vollstandiges Beispiel finden Sie unter DiscoveryFilterExample.cs im AWS Encryption SDK
fur.NET.

// Create a discovery filter for an AWS account and partition
List<string> account = new List<string> { "111122223333" };

DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()
{

AccountIds = account,

Partition = "aws"

AWS Encryption CLI

Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

Einen Discovery-Filter erstellen 78

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs

AWS Encryption SDK Entwicklerhandbuch

--output .

Java

Ein vollstandiges Beispiel finden Sie unter DiscoveryDecryptionExample.java in der. AWS-

Verschlisselungs-SDK for Java

// Create a discovery filter for an AWS account and partition

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

JavaScript (Node and Browser)

Vollstandige Beispiele finden Sie unter kms_filtered_discovery.ts (Node.js) und

kms_multi_region_discovery.ts (Browser) im. AWS-Verschlisselungs-SDK for JavaScript

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {

accountIDs: ['111122223333'],

partition: '

aws',

Python

Ein vollstadndiges Beispiel finden Sie unter AWS-Verschliusselungs-SDK for Python
discovery_kms_provider.py in der.

Create the discovery filter and specify the region
decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",
partition="aws"),
discovery_region="us-west-2",

Rust

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![111122223333.to_string()])
.partition("aws".to_string())
.build()?;

Einen Discovery-Filter erstellen 79

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Go

import (
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

)

discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{111122223333},
Partition: "aws",

}

Konfiguration des erforderlichen Verschllisselungskontextes (CMM)

Sie kénnen den erforderlichen Verschlisselungskontext CMM verwenden, um
Verschliusselungskontexte fur Ihre kryptografischen Operationen vorzuschreiben.

Ein Verschlusselungskontext ist ein Satz nicht geheimer Schlissel-Wert-Paare. Der
Verschlisselungskontext ist kryptografisch an die verschlisselten Daten gebunden, sodass
derselbe Verschlisselungskontext erforderlich ist, um das Feld zu entschlisseln. Wenn Sie
den erforderlichen Verschlisselungskontext CMM verwenden, kénnen Sie einen oder mehrere
erforderliche Verschlisselungskontextschlissel (erforderliche Schllssel) angeben, die in allen
Verschlisselungs- und Entschlisselungsaufrufen enthalten sein missen.

(® Note

Der erforderliche Verschlisselungskontext CMM wird nur von den folgenden Versionen
unterstutzt:

* Version 3. x der AWS-Verschlisselungs-SDK for Java
 Ausfiihrung 4. x von AWS Encryption SDK fur .NET

* Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn es mit der optionalen
Abhangigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

» Version 0.1. x oder héher von AWS Encryption SDK for Go

Wenn Sie Daten mit dem erforderlichen Verschlisselungskontext CMM verschlisseln,
konnen Sie sie nur mit einer dieser unterstitzten Versionen entschlisseln.

Verschlisselungskontexte erforderlich 80

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Beim Verschlisseln AWS Encryption SDK wird Uberprft, ob alle erforderlichen
Verschlusselungskontextschlissel in dem von Ihnen angegebenen Verschllisselungskontext
enthalten sind. Das AWS Encryption SDK signiert die von Ihnen angegebenen
Verschlisselungskontexte. Nur die Schlissel-Wert-Paare, bei denen es sich nicht um erforderliche
Schlissel handelt, werden serialisiert und im Klartext-Format im Header der verschlisselten
Nachricht gespeichert, die der Verschlisselungsvorgang zurickgibt.

Beim Entschlisseln missen Sie einen Verschlisselungskontext angeben, der alle Schlissel-Wert-
Paare enthalt, die die erforderlichen Schlissel darstellen. Der AWS Encryption SDK verwendet
diesen Verschlisselungskontext und die im Header der verschlisselten Nachricht gespeicherten
Schlussel-Wert-Paare, um den urspringlichen Verschlisselungskontext zu rekonstruieren, den Sie
beim Verschlisselungsvorgang angegeben haben. Wenn der urspringliche Verschlisselungskontext
AWS Encryption SDK nicht rekonstruiert werden kann, schlagt der Entschllsselungsvorgang fehl.
Wenn Sie ein Schlissel-Wert-Paar angeben, das den erforderlichen Schllissel mit einem falschen
Wert enthalt, kann die verschlisselte Nachricht nicht entschlisselt werden. Sie missen dasselbe
Schlussel-Wert-Paar angeben, das bei Encrypt angegeben wurde.

/A Important

Uberlegen Sie sich sorgféltig, welche Werte Sie fiir die erforderlichen Schliissel in Ihrem
Verschlisselungskontext wahlen. Sie mussen in der Lage sein, dieselben Schlissel und die
entsprechenden Werte beim Entschlisseln erneut anzugeben. Wenn Sie die erforderlichen
Schlissel nicht reproduzieren kdnnen, kann die verschlisselte Nachricht nicht entschlisselt
werden.

In den folgenden Beispielen wird ein AWS KMS Schliisselbund mit dem erforderlichen
Verschlisselungskontext CMM initialisiert.

C#/ .NET

var encryptionContext = new Dictionary<string, string>()

{

{"encryption", "context"},

{"is not", "secret"},

{"but adds", "useful metadata"},

{"that can help you", "be confident that"},

{"the data you are handling", "is what you think it is"}
};

Verschlisselungskontexte erforderlich 81

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = kmsKey

i

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{

UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new
CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}),

// If you pass in a keyring but no underlying cmm, it will result in a failure
because only cmm is supported.

RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)

i

// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

Java

// Instantiate the AWS Encryption SDK
final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Create your encryption context

final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");

encryptionContext.put("is not", "secret");

encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");

// Create a list of required encryption contexts

Verschlisselungskontexte erforderlich 82

AWS Encryption SDK Entwicklerhandbuch

final List<String> requiredEncryptionContextKeys = Arrays.aslList("encryption",
"context");

// Create the keyring

final MaterialProviders materialProviders = MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder()
.kmsKeyId(keyArn)
.kmsClient(KmsClient.create())
.build();

IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =
materialProviders.CreateDefaultCryptographicMaterialsManagexr(
CreateDefaultCryptographicMaterialsManagerInput.builder()
.keyring(kmsKeyring)
.build()
);
ICryptographicMaterialsManager requiredCMM =
materialProviders.CreateRequiredEncryptionContextCMM(
CreateRequiredEncryptionContextCMMInput.buildexr()
.requiredEncryptionContextKeys(requiredEncryptionContextKeys)
.underlyingCMM(cmm)
Lbuild()
);

Python

Um das CMM AWS-Verschlisselungs-SDK for Python mit dem erforderlichen
Verschlisselungskontext zu verwenden, mussen Sie auch die Material Providers Library (MPL)
verwenden.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create your encryption context
encryption_context: Dict[str, str] = {
"keyl": "valuel",
"key2": "value2",

Verschlisselungskontexte erforderlich 83

AWS Encryption SDK Entwicklerhandbuch

"requiredKeyl": "requiredValuel",
"requiredKey2": "requiredValue2"

Create a list of required encryption context keys
required_encryption_context_keys: List[str] = ["requiredKeyl", "requiredKey2"]

Instantiate the material providers library
mpl: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=boto3.client('kms', region_name="us-west-2")

)

kms_keyring: IKeyring = mpl.create_aws_kms_keyring(keyring_input)

Create the required encryption context CMM
underlying_cmm: ICryptographicMaterialsManager = \
mpl.create_default_cryptographic_materials_managex(
CreateDefaultCryptographicMaterialsManagerInput(
keyring=kms_keyring

required_ec_cmm: ICryptographicMaterialsManager = \
mpl.create_required_encryption_context_cmm(
CreateRequiredEncryptionContextCMMInput(
required_encryption_context_keys=required_encryption_context_keys,
underlying_cmm=underlying_cmm,

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client

Verschlisselungskontexte erforderlich 84

AWS Encryption SDK Entwicklerhandbuch

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Create your encryption context

let encryption_context = HashMap::from([
("keyl".to_string(), "valuel".to_string()),
("key2".to_string(), "value2".to_string()),
("requiredKeyl".to_string(), "requiredValuel".to_string()),
("requiredKey2".to_string(), "requiredValue2".to_string()),

1);

// Create a list of required encryption context keys

let required_encryption_context_keys: Vec<String> = vec![
"requiredKeyl".to_string(),
"requiredKey2".to_string(),

1;

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

// Create the required encryption context CMM

let underlying_cmm = mpl
.create_default_cryptographic_materials_manager()
.keyring(kms_keyring)
.send()
.await?;

let required_ec_cmm = mpl
.create_required_encryption_context_cmm()
.underlying_cmm(underlying_cmm.clone())

Verschlisselungskontexte erforderlich 85

AWS Encryption SDK Entwicklerhandbuch

Go

.required_encryption_context_keys(required_encryption_context_keys)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = defaultKmsKeyRegion

1))
// Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

Verschlisselungskontexte erforderlich 86

AWS Encryption SDK Entwicklerhandbuch

}

// Create a list of required encryption context keys

requiredEncryptionContextKeys := []string{}

requiredEncryptionContextKeys = append(requiredEncryptionContextKeys,
"requiredKeyl", "requiredKey2")

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create the AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: utils.GetDefaultKMSKeyId(),
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Create the required encryption context CMM
underlyingCMM, err :=
matProv.CreateDefaultCryptographicMaterialsManager(context.Background(),
mpltypes.CreateDefaultCryptographicMaterialsManagerInput{Keyring: awsKmsKeyring})
if err !'= nil {
panic(err)
}
requiredEncryptionContextInput := mpltypes.CreateRequiredEncryptionContextCMMInput{
UnderlyingCMM: underlyingCMM,
RequiredEncryptionContextKeys: requiredEncryptionContextKeys,

}
requiredEC, err := matProv.CreateRequiredEncryptionContextCMM(context.Background(),
requiredEncryptionContextInput)
if err != nil {
panic(err)
}

Verschlisselungskontexte erforderlich 87

AWS Encryption SDK Entwicklerhandbuch

Festlegung einer Verpflichtungspolitik

Eine Commitment-Richtlinie ist eine Konfigurationseinstellung, die bestimmt, ob Ihre Anwendung
mit Key Commitment ver- oder entschlisselt wird. Das Verschlisseln und Entschlisseln mit Key
Commitment ist eine bewahrte Methode.AWS Encryption SDK

Die Festlegung und Anpassung lhrer Verpflichtungsrichtlinie ist ein wichtiger Schritt bei der Migration
von Versionen 1.7. x und frihere Versionen von AWS Encryption SDK auf Version 2.0. x und spater.
Dieser Fortschritt wird im Thema Migration ausfuhrlich erklart.

Der Standardwert der Verpflichtungsrichtlinie in den neuesten Versionen von AWS Encryption
SDK (ab Version 2.0). x),RequireEncryptRequireDecrypt, ist fir die meisten Situationen
ideal. Wenn Sie jedoch Chiffretext entschliisseln missen, der ohne Schlisselbindung
verschlisselt wurde, missen Sie lhre Verpflichtungsrichtlinie méglicherweise auf andern.
RequireEncryptAllowDecrypt Beispiele dafir, wie Sie in jeder Programmiersprache eine
Commitment-Richtlinie einrichten, finden Sie unter. Festlegung Ihrer Verpflichtungspolitik

Arbeiten mit Streaming-Daten

Beachten Sie beim Streamen von Daten zur Entschlisselung, dass der entschlisselte Klartext AWS
Encryption SDK zuriickgibt, nachdem die Integritatspriifungen abgeschlossen sind, aber bevor die
digitale Signatur verifiziert wurde. Um sicherzustellen, dass Sie erst dann Klartext zuriickgeben oder
verwenden, wenn die Signatur verifiziert ist, empfehlen wir, den gestreamten Klartext zu puffern, bis
der gesamte EntschlUsselungsprozess abgeschlossen ist.

Dieses Problem tritt nur auf, wenn Sie Chiffretext zur Entschlisselung streamen und nur, wenn Sie
eine Algorithmussuite verwenden, z. B. die Standard-Algorithmussuite, die digitale Signaturen enthalt.

Um die Pufferung zu vereinfachen, enthalten einige AWS Encryption SDK Sprachimplementierungen,
z. B. AWS-Verschlisselungs-SDK for JavaScript in Node.js, eine Pufferfunktion als Teil

der Entschlisselungsmethode. Die AWS Encryption CLI, die immer Eingabe und Ausgabe

streamt, hat in Version 1.9 einen --buffer Parameter eingefiihrt. x und 2.2. x. In anderen
Sprachimplementierungen kénnen Sie vorhandene Pufferfunktionen verwenden. (AWS Encryption
SDK Fur .NET wird Streaming nicht unterstutzt.)

Wenn Sie eine Algorithmus-Suite ohne digitale Signaturen verwenden, stellen Sie sicher, dass Sie
die decrypt-unsigned Funktion in jeder Sprachimplementierung verwenden. Diese Funktion
entschlisselt Chiffretext, schlagt jedoch fehl, wenn signierter Chiffretext gefunden wird. Details hierzu
finden Sie unter Auswahl einer Algorithmus-Suite.

Festlegung einer Verpflichtungspolitik 88

AWS Encryption SDK Entwicklerhandbuch

Zwischenspeichern von Datenschlisseln

Im Allgemeinen wird von der Wiederverwendung von Datenschlisseln abgeraten, AWS Encryption
SDK bietet jedoch eine Option zum Zwischenspeichern von Datenschlisseln, die eine eingeschrankte
Wiederverwendung von Datenschlisseln ermdglicht. Durch das Zwischenspeichern von
Datenschlisseln kann die Leistung einiger Anwendungen verbessert und die Anzahl der Zugriffe auf
Ihre wichtige Infrastruktur reduziert werden. Bevor Sie das Zwischenspeichern von Datenschlisseln
in der Produktion verwenden, passen Sie die Sicherheitsschwellenwerte an und testen Sie, ob die
Vorteile die Nachteile der Wiederverwendung von Datenschlisseln Gberwiegen.

Zwischenspeichern von Datenschllsseln 89

AWS Encryption SDK Entwicklerhandbuch

Wichtige Geschafte in der AWS Encryption SDK

In der AWS Encryption SDK ist ein Schllsselspeicher eine Amazon DynamoDB-Tabelle, die
hierarchische Daten speichert, die vom hierarchischen Schlisselbund verwendet werden. AWS KMS
Der Schlisselspeicher tragt dazu bei, die Anzahl der Aufrufe zu reduzieren, die Sie tatigen missen,
um kryptografische Operationen mit AWS KMS dem hierarchischen Schliisselbund durchzufiihren.

Der Schlusselspeicher bleibt erhalten und verwaltet die Zweigschlissel, die der

hierarchische Schllisselbund fir die Umschlagverschlisselung und den Schutz von
Datenverschlisselungsschlisseln verwendet. Der Schllsselspeicher speichert den aktiven Branch-
Schlussel und alle vorherigen Versionen des Branch-Schlissels. Der aktive Zweigschlissel ist

die neueste Version des Zweigschlissels. Der hierarchische Schlisselbund verwendet fir jede
Verschlisselungsanforderung einen eindeutigen Datenverschlisselungsschlissel und verschlisselt
jeden Datenverschlisselungsschlissel mit einem eindeutigen UmschlieBungsschlissel, der vom
aktiven Filialschlissel abgeleitet wird. Der hierarchische Schlisselbund héngt von der Hierarchie ab,
die zwischen aktiven Zweigschlisseln und ihren abgeleiteten Umschliel3ungsschliisseln festgelegt
wurde.

Terminologie und Konzepte von Key Stores

Key Store (Schllsselspeicher)

Die DynamoDB-Tabelle, die hierarchische Daten wie Verzweigungsschliussel und Beacon-
Schlussel persistiert.

Stammschlissel

Ein KMS-Schlissel mit symmetrischer Verschlisselung, der die Filialschlissel und Beacon-
Schlussel in Threm Schlusselspeicher generiert und schutzt.

Filialschliissel

Ein DatenschlUssel, der wiederverwendet wird, um einen eindeutigen Verpackungsschlussel
fur die Umschlagverschlisselung abzuleiten. Sie kdnnen mehrere Zweigschlissel in einem
Schlisselspeicher erstellen, aber fir jeden Zweigschlissel kann jeweils nur eine aktive Version
des Zweigschlussels vorhanden sein. Der aktive Zweigschlussel ist die neueste Version des
Zweigschlussels.

Verzweigungsschlissel werden AWS KMS keys mithilfe der GenerateDataKeyWithoutPlaintext
Operation kms: abgeleitet.

Terminologie und Konzepte von Key Stores 90

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Entwicklerhandbuch

Schlissel umschlielRen

Ein eindeutiger Datenschllssel, der zur Verschlisselung des bei Verschlisselungsvorgangen
verwendeten Datenverschlisselungsschlissels verwendet wird.

Wrapping-Schlissel werden von Zweigschlisseln abgeleitet. Weitere Informationen zur
Schlisselableitung finden Sie unter Technische Details zum AWS KMS hierarchischen

Schliusselbund.

Schlissel zur Datenverschlisselung

Ein DatenschlUssel, der bei Verschlisselungsvorgangen verwendet wird. Der hierarchische
Schlusselbund verwendet fir jede Verschllisselungsanforderung einen eindeutigen
Datenverschlisselungsschlissel.

Implementieren der geringsten Berechtigungen

Bei der Verwendung eines Schlisselspeichers und AWS KMS hierarchischer Schltisselbunde
empfehlen wir, dass Sie dem Prinzip der geringsten Rechte folgen, indem Sie die folgenden Rollen
definieren:

Schlisselspeicher-Administrator

Schlusselspeicheradministratoren sind fur die Erstellung und Verwaltung des Schlisselspeichers
und der Filialschlissel verantwortlich, die dieser speichert und schitzt. Key-Store-Administratoren
sollten die einzigen Benutzer mit Schreibberechtigungen fur die Amazon DynamoDB-Tabelle
sein, die als Ihr Schlusselspeicher dient. Sie sollten die einzigen Benutzer sein, die Zugriff auf
privilegierte Administratoroperationen wie CreateKeyund haben. VersionKey Sie kénnen diese
Operationen nur ausfiihren, wenn Sie lhre Schlisselspeicher-Aktionen statisch konfigurieren.

CreateKeyist eine privilegierte Operation, die Ihrer Schlisselspeicher-Zulassungsliste einen
neuen KMS-Schlissel-ARN hinzufiigen kann. Mit diesem KMS-Schlissel kdnnen neue aktive
Zweigschlussel erstellt werden. Wir empfehlen, den Zugriff auf diesen Vorgang einzuschranken,
da ein KMS-Schlissel, der einmal dem Zweigschlisselspeicher hinzugefligt wurde, nicht geléscht
werden kann.

Schlisselspeicher-Benutzer

In den meisten Anwendungsféllen interagiert der Schlisselspeicher-Benutzer beim Verschlusseln,
Entschliisseln, Signieren und Uberpriifen von Daten nur iiber den hierarchischen Schliisselbund
mit dem SchllUsselspeicher. Daher bendtigen sie nur Leseberechtigungen fur die Amazon

Implementieren der geringsten Berechtigungen 91

AWS Encryption SDK Entwicklerhandbuch

DynamoDB-Tabelle, die als Ihr Schllsselspeicher dient. Key-Store-Benutzer sollten nur Zugriff
auf die Verwendungsvorgange bendétigen, die kryptografische Operationen erméglichen,
wieGetActiveBranchKey, undGetBranchKeyVersion. GetBeaconKey Sie benétigen keine
Berechtigungen, um die von ihnen verwendeten Branch-SchllUssel zu erstellen oder zu verwalten.

Sie kénnen Verwendungsvorgange ausflihren, wenn lhre Schllisselspeicher-Aktionen
statisch konfiguriert sind oder wenn sie fiir die Erkennung konfiguriert sind. Sie kénnen
keine Administratoroperationen (CreateKeyundVersionKey) ausfuhren, wenn lhre

Schlusselspeicher-Aktionen fur die Erkennung konfiguriert sind.

Wenn |hr Filialschlisselspeicheradministrator mehrere KMS-Schlissel in lhrem
Zweigschlisselspeicher zugelassen hat, empfehlen wir Ihren Schlisselspeicher-Benutzern,
ihre Schlisselspeicher-Aktionen flr die Erkennung so zu konfigurieren, dass ihr hierarchischer
Schlusselbund mehrere KMS-Schlissel verwenden kann.

Einen Schlusselspeicher erstellen

Bevor Sie Branch-SchlUssel erstellen oder einen AWS KMS hierarchischen Schliisselbund
verwenden kdnnen, mussen Sie |hren Schllsselspeicher erstellen, eine Amazon DynamoDB-Tabelle,
die Ihre Branch-Schlissel verwaltet und schutzt.

/A Important

Léschen Sie nicht die DynamoDB-Tabelle, in der lhre Branch-Schllissel gespeichert sind.
Wenn Sie diese Tabelle [6schen, kdnnen Sie keine Daten entschliisseln, die mit dem
hierarchischen Schliisselbund verschliisselt wurden.

Folgen Sie den Verfahren zum Erstellen einer Tabelle im Amazon DynamoDB Developer Guide und
verwenden Sie dabei die folgenden erforderlichen Zeichenkettenwerte flr den Partitionsschlissel und
den Sortierschlissel.

Partitionsschlissel Sortierschliissel

Basistabelle branch-key-id type

Einen Schlisselspeicher erstellen 92

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS Encryption SDK Entwicklerhandbuch

Name des logischen Schlisselspeichers

Bei der Benennung der DynamoDB-Tabelle, die als Schliisselspeicher dient, ist es wichtig, den
logischen Schlisselspeicher-Namen, den Sie bei der Konfiguration lhrer Schlusselspeicheraktionen
angeben, sorgfaltig zu berlcksichtigen. Der Name des logischen Schllsselspeichers dient als
Kennung fir lhren Schlisselspeicher und kann nicht geandert werden, nachdem er urspriinglich vom
ersten Benutzer definiert wurde. Sie mussen in lhren Schlisselspeicher-Aktionen immer denselben

logischen Schlisselspeicher-Namen angeben.

Es muss eine one-to-one Zuordnung zwischen dem DynamoDB-Tabellennamen und dem Namen
des logischen Schllsselspeichers bestehen. Der Name des logischen Schlisselspeichers

ist kryptografisch an alle in der Tabelle gespeicherten Daten gebunden, um DynamoDB-
Wiederherstellungsvorgange zu vereinfachen. Der Name des logischen Schllsselspeichers kann
sich zwar von lhrem DynamoDB-Tabellennamen unterscheiden, wir empfehlen jedoch dringend,
Ihren DynamoDB-Tabellennamen als logischen Schlisselspeichername anzugeben. Falls sich

Ihr Tabellenname nach dem Wiederherstellen Ihrer DynamoDB-Tabelle aus einer Sicherung
andert, kann der Name des logischen Schllisselspeichers dem neuen DynamoDB-Tabellennamen

zugeordnet werden, um sicherzustellen, dass der hierarchische Schllisselbund weiterhin auf Ihren
Schlisselspeicher zugreifen kann.

Nehmen Sie keine vertraulichen oder sensiblen Informationen in den Namen lhres logischen
Schlusselspeichers auf. Der Name des logischen Schlisselspeichers wird in AWS KMS CloudTrail
Ereignissen im Klartext als. tablename

Nachste Schritte

1. the section called “SchlUsselspeicheraktionen konfigurieren”

2. the section called “Erstellen Sie Zweigschlissel”

3. Erstellen Sie einen AWS KMS hierarchischen Schlisselbund

SchlUsselspeicheraktionen konfigurieren

Schlisselspeicher-Aktionen bestimmen, welche Operationen |hre Benutzer ausflihren kénnen
und wie ihr AWS KMS hierarchischer Schliisselbund die KMS-Schlissel verwendet, die in
Ihrem Schllsselspeicher zugelassen sind. Das AWS Encryption SDK unterstitzt die folgenden
Schlisselspeicher-Aktionskonfigurationen.

Schlusselspeicheraktionen konfigurieren 93

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Encryption SDK Entwicklerhandbuch

Statisch

Wenn Sie Ihren Schliisselspeicher statisch konfigurieren, kann der Schllisselspeicher nur

den KMS-Schlissel verwenden, der dem KMS-Schlissel-ARN zugeordnet ist, den Sie
kmsConfiguration bei der Konfiguration lhrer Schllsselspeicheraktionen angeben. Eine
Ausnahme wird ausgeldst, wenn beim Erstellen, Versionieren oder Abrufen eines Zweigschlissels
auf einen anderen KMS-Schlissel-ARN gestof3en wird.

Sie kénnen einen KMS-Schlissel fliir mehrere Regionen in lhrem angebenkmsConfiguration,
aber der gesamte ARN des Schlissels, einschliellich der Region, wird in den vom KMS-Schlissel
abgeleiteten Zweigschlisseln beibehalten. Sie konnen keinen Schllssel in einer anderen Region
angeben. Sie missen exakt denselben Schlissel fiir mehrere Regionen angeben, damit die Werte
Ubereinstimmen.

Wenn Sie Ihre Schlisselspeicher-Aktionen statisch konfigurieren, kbnnen Sie
Verwendungsvorgange (GetActiveBranchKeyGetBranchKeyVersion,GetBeaconKey)
und Verwaltungsvorgange (CreateKeyundVersionKey) ausfuhren. CreateKeyist eine
privilegierte Operation, die Ihrer Schlisselspeicher-Zulassungsliste einen neuen KMS-Schlissel-
ARN hinzufigen kann. Mit diesem KMS-Schlussel kdnnen neue aktive Zweigschlissel erstellt
werden. Wir empfehlen, den Zugriff auf diesen Vorgang einzuschranken, da ein KMS-SchlUssel,
der einmal dem SchlUsselspeicher hinzugeflgt wurde, nicht geléscht werden kann.

Erkennung

Wenn Sie Ihre Schlusselspeicheraktionen fur die Erkennung konfigurieren, kann der
Schlusselspeicher jeden AWS KMS key ARN verwenden, der in lhrem Schlisselspeicher
zugelassen ist. Es wird jedoch eine Ausnahme ausgelost, wenn ein KMS-Schlissel mit mehreren
Regionen gefunden wird und die Region im ARN des Schlissels nicht mit der Region des
verwendeten AWS KMS Clients Ubereinstimmt.

Wenn Sie Ihren Schlisselspeicher fur die Erkennung konfigurieren, kdnnen Sie keine
administrativen Operationen wie CreateKey und VersionKey ausfuhren. Sie kénnen nur die
Verwendungsvorgange ausflihren, die Verschlisselungs-, Entschliisselungs-, Signierungs- und
Uberpriifungsvorgénge ermoglichen. Weitere Informationen finden Sie unter the section called

‘Implementieren der geringsten Berechtigungen”.

Schlusselspeicheraktionen konfigurieren 94

AWS Encryption SDK Entwicklerhandbuch

Konfigurieren Sie lhre Schllsselspeicher-Aktionen

Bevor Sie lhre Schllisselspeicher-Aktionen konfigurieren, stellen Sie sicher, dass die folgenden
Voraussetzungen erfillt sind.

« Ermitteln Sie, welche Operationen Sie ausfihren missen. Weitere Informationen finden Sie unter
the section called “Implementieren der geringsten Berechtigungen”.

« Wahlen Sie einen Namen fur den logischen Schlisselspeicher

Es muss eine one-to-one Zuordnung zwischen dem DynamoDB-Tabellennamen und dem Namen
des logischen SchllUsselspeichers bestehen. Der Name des logischen Schlisselspeichers

ist kryptografisch an alle in der Tabelle gespeicherten Daten gebunden, um DynamoDB-
Wiederherstellungsvorgange zu vereinfachen. Er kann nicht geédndert werden, nachdem er
ursprunglich vom ersten Benutzer definiert wurde. Sie miussen in lhren Schlisselspeicheraktionen
immer denselben logischen Schllisselspeicher-Namen angeben. Weitere Informationen finden Sie
unter logical key store name.

Statische Konfiguration

Im folgenden Beispiel werden Schlisselspeicheraktionen statisch konfiguriert. Sie mussen den
Namen der DynamoDB-Tabelle angeben, die als Ihr Schlisselspeicher dient, einen logischen Namen
fur den Schlusselspeicher und den KMS-Schlissel-ARN, der einen KMS-Schlissel mit symmetrischer
VerschlUsselung identifiziert.

(® Note

Berucksichtigen Sie sorgfaltig den KMS-Schliussel-ARN, den Sie bei der statischen
Konfiguration Ihres Schlisselspeicherdienstes angeben. Der CreateKey Vorgang fiigt den
KMS-Schlissel ARN zu lhrer Zulassungsliste fir den Branch Key Store hinzu. Sobald ein
KMS-Schlissel dem Branch-Schlisselspeicher hinzugefligt wurde, kann er nicht geléscht
werden.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.builder()
.ddbClient(DynamoDbClient.create())

Konfigurieren Sie lhre Schliisselspeicher-Aktionen 95

AWS Encryption SDK Entwicklerhandbuch

.ddbTableName(keyStoreName)
.logicalKeyStoreName(logicalKeyStoreName)
.kmsClient(KmsClient.create())
.kmsConfiguration(KMSConfiguration.builder()
.kmsKeyArn(kmsKeyArn)
.build())
.build()).build();

C#/ .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = kmsConfig,
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName

};

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationKmsKeyArn(
value=kms_key_id

),

Rust

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let key_store_config = KeyStoreConfig::builder()
.kms_client(aws_sdk_kms::Client: :new(&sdk_config))
.ddb_client(aws_sdk_dynamodb: :Client: :new(&sdk_config))

Konfigurieren Sie |hre Schliisselspeicher-Aktionen 96

AWS Encryption SDK Entwicklerhandbuch

.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_store_name)
.kms_configuration(KmsConfiguration: :KmsKeyArn(kms_key_arn.to_string()))
.build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

keystoretypes '"github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes™"

)

kmsConfig := keystoretypes.KMSConfigurationMemberkmsKeyArn{
Value: kmsKeyArn,

}

keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
DdbTableName: keyStoreTableName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

1))

if err !'= nil {
panic(err)

}

Discovery-Konfiguration

Im folgenden Beispiel werden Schliisselspeicheraktionen flir die Erkennung konfiguriert. Sie miissen
den Namen der DynamoDB-Tabelle, die als lhr Schllisselspeicher dient, und einen logischen
Schlisselspeicher-Namen angeben.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.builder()
.ddbClient(DynamoDbClient.create())
.ddbTableName(keyStoreName)

Konfigurieren Sie lhre Schliisselspeicher-Aktionen 97

AWS Encryption SDK Entwicklerhandbuch

.logicalKeyStoreName(logicalKeyStoreName)

.kmsClient(KmsClient.create())

.kmsConfiguration(KMSConfiguration.builder()
.discovery(Discovery.builder().build())
.build())

.build()).build();

C#/.NET

var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName
};

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationDiscovery/(
value=Discovery()

),

Rust

let key_store_config = KeyStoreConfig::builder()
.kms_client(kms_client)
.ddb_client(ddb_client)
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key store_name)

.kms_configuration(KmsConfiguration: :Discovery(Discovery::builder().build()?))

Konfigurieren Sie |hre Schliisselspeicher-Aktionen 98

AWS Encryption SDK Entwicklerhandbuch

.build()?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"

)

kmsConfig := keystoretypes.KMSConfigurationMemberdiscovery{}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{

DdbTableName: keyStoreName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

)

if err !'= nil {
panic(err)

}

Erstellen Sie einen aktiven Filialschlussel

Ein Verzweigungsschlussel ist ein Datenschlissel AWS KMS key , der von einem abgeleitet ist und
den der AWS KMS hierarchische Schliusselbund verwendet, um die Anzahl der Aufrufe zu reduzieren.
AWS KMS Der aktive Zweigschlussel ist die neueste Version des Zweigschlissels. Der hierarchische
Schlusselbund generiert fur jede Verschllisselungsanforderung einen eindeutigen Datenschltssel
und verschlusselt jeden Datenschlissel mit einem eindeutigen UmschlieBungsschlissel, der vom
aktiven ZweigschlUssel abgeleitet wird.

Um einen neuen aktiven Zweigschlissel zu erstellen, missen Sie lhre Schlisselspeicher-Aktionen
statisch konfigurieren. CreateKeyist eine privilegierte Operation, die den in lhrer Konfiguration

fur Schlusselspeicheraktionen angegebenen KMS-Schlissel-ARN zu lhrer Schlisselspeicher-
Zulassungsliste hinzufugt. Anschliel3end wird der KMS-Schlissel verwendet, um den neuen aktiven

Branch-Schlussel zu generieren. Wir empfehlen, den Zugriff auf diesen Vorgang einzuschranken,
da ein KMS-Schlussel, der einmal zum Schlisselspeicher hinzugefugt wurde, nicht geléscht werden
kann.

Erstellen Sie Zweigschliissel 99

AWS Encryption SDK Entwicklerhandbuch

Sie kénnen einen KMS-Schlussel in lhrem Schllisselspeicher zulassen, oder Sie kbnnen mehrere
KMS-Schlissel zulassen, indem Sie den KMS-Schlissel-ARN, den Sie in Ihrer Konfiguration fir
Schlusselspeicher-Aktionen angeben, aktualisieren und erneut aufrufenCreateKey. Wenn Sie
mehrere KMS-Schlissel auf die Zulassungsliste setzen, sollten lhre Schlisselspeicher-Benutzer
ihre Schlisselspeicher-Aktionen flr die Erkennung so konfigurieren, dass sie alle Schlissel auf
der Zulassungsliste im Schlisselspeicher verwenden kénnen, auf die sie Zugriff haben. Weitere
Informationen finden Sie unter the section called “Schllsselspeicheraktionen konfigurieren”.

Erforderliche -Berechtigungen

Um Branch-Schlissel zu erstellen, bendétigen Sie die ReEncrypt Berechtigungen kms:
GenerateDataKeyWithoutPlaintext und kms: fir den KMS-Schlissel, der in Ihren Schllisselspeicher-
Aktionen angegeben ist.

Erstellen Sie einen Zweigschlissel

Der folgende Vorgang erstellt einen neuen aktiven Branch-Schllissel unter Verwendung des KMS-
SchlUssels, den Sie in Ihrer Konfiguration fur Schlisselspeicher-Aktionen angegeben haben, und fugt

den aktiven Branch-Schllssel zur DynamoDB-Tabelle hinzu, die als Ihr Schlisselspeicher dient.

Wenn Sie aufrufenCreateKey, kdnnen Sie wahlen, ob Sie die folgenden optionalen Werte angeben
mdchten.

* branchKeyIdentifier: definiert ein benutzerdefiniertesbranch-key-id.

Um einen benutzerdefinierten zu erstellenbranch-key-id, missen Sie dem
encryptionContext Parameter auch einen zusatzlichen Verschlisselungskontext hinzufigen.

* encryptionContext: definiert einen optionalen Satz nicht geheimer Schlissel-Wert-Paare, der

zusatzliche authentifizierte Daten (AAD) in dem Verschlisselungskontext bereitstellt, der im kms: -
Aufruf enthalten ist. GenerateDataKeyWithoutPlaintext

Dieser zusatzliche Verschlisselungskontext wird mit dem Préafix angezeigt. aws-crypto-ec:

Java

final Map<String, String> additionalEncryptionContext =
Collections.singletonMap("Additional Encryption Context for",
"custom branch key id");

final String BranchKey = keystore.CreateKey(

Erstellen Sie Zweigschliissel 100

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Entwicklerhandbuch

CreateKeyInput.builder()
.branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
.encryptionContext(additionalEncryptionContext) //OPTIONAL

.build()).branchKeyIdentifier();

C#/ .NET

var additionalEncryptionContext = new Dictionary<string, string>();
additionalEncryptionContext.Add("Additional Encryption Context for", "custom
branch key id");

var branchKeyId = keystore.CreateKey(new CreateKeyInput
{
BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
EncryptionContext = additionalEncryptionContext // OPTIONAL
1)

Python

additional_encryption_context = {"Additional Encryption Context for": "custom branch
key id"}

branch_key_id: str = keystore.create_key(
CreateKeyInput(
branch_key_identifier = "custom-branch-key-id", # OPTIONAL
encryption_context = additional_encryption_context, # OPTIONAL

Rust

let additional_encryption_context = HashMap::from([

("Additional Encryption Context for".to_string(), "custom branch key
id".to_string())
1);

let branch_key_id = keystore.create_key()
.branch_key_identifier("custom-branch-key-id") // OPTIONAL
.encryption_context(additional_encryption_context) // OPTIONAL
.send()
.await?

Erstellen Sie Zweigschliissel 101

AWS Encryption SDK Entwicklerhandbuch

Go

.branch_key_identifier

.unwrap();
encryptionContext := map[string]string{

"Additional Encryption Context for'": "custom branch key id",
}

branchKey, err := keyStore.CreateKey(context.Background(),
keystoretypes.CreateKeyInput{
BranchKeyIdentifier: &customBranchKeyId,

EncryptionContext: additional_encryption_context,
1)
if err !'= nil {

return "", err
}

Zunachst generiert die CreateKey Operation die folgenden Werte.

 Ein Universally Unique Identifier (UUID) der Version 4 fir branch-key-id (sofern Sie keinen
benutzerdefinierten Namen angegeben haben). branch-key-id

* Eine UUID der Version 4 fur die Branch Key-Version

* A timestamp im Datums- und Uhrzeitformat nach ISO 8601 in koordinierter Weltzeit (UTC).

Dann ruft der CreateKey Vorgang kms: GenerateDataKeyWithoutPlaintext mit der folgenden
Anforderung auf.

"EncryptionContext": {
"branch-key-id" : "branch-key-id",
"type" : "type",
"create-time" : "timestamp",
"logical-key-store-name" : "the logical table name for your key store",
"kms-arn" : the KMS key ARN,
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"
1,
"KeyId": "the KMS key ARN you specified in your key store actions",
"NumberOfBytes": "32"

Erstellen Sie Zweigschliissel 102

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Entwicklerhandbuch

}

Als Nachstes ruft der CreateKey Vorgang kms: ReEncrypt auf, um einen aktiven Datensatz flr den
Branch-Schlussel zu erstellen, indem der Verschlusselungskontext aktualisiert wird.

Zuletzt ruft der CreateKey Vorgang ddb: TransactWriteltems auf, um ein neues Element zu
schreiben, das den Verzweigungsschlissel in der Tabelle, die Sie in Schritt 2 erstellt haben,

beibehalt. Das Element hat die folgenden Attribute.

"branch-key-id" : branch-key-id,

"type" : "branch:ACTIVE",

"enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
"version": "branch:version:the branch key version UUID",

"create-time" : "timestamp",

"kms-arn" : "the KMS key ARN you specified in Step 1",

"hierarchy-version" : "1",

"aws-crypto-ec:contextKey": "contextValue"

Drehe deinen aktiven Filialschlussel

Fur jeden Filialschlissel kann es jeweils nur eine aktive Version geben. In der Regel wird jede aktive
Version des Zweigschlissels verwendet, um mehrere Anfragen zu erflllen. Sie kontrollieren jedoch,
in welchem Umfang aktive Zweigschliissel wiederverwendet werden, und bestimmen, wie oft der
aktive Zweigschlussel rotiert wird.

Zweigschlussel werden nicht zur Verschlisselung von Klartext-Datenschlisseln verwendet.

Sie werden verwendet, um die eindeutigen Wrapping-Schlissel abzuleiten, mit denen Klartext-
Datenschlissel verschlisselt werden. Bei der Ableitung von Schlisseln wird ein einzigartiger
32-Byte-Wrapping-Schliussel mit 28 Byte Zufalligkeit erzeugt. Das bedeutet, dass aus einem
Zweigschlussel mehr als 79 Oktillionen oder 2.9 einzigartige Wrapping-Schlissel abgeleitet werden
konnen, bevor es zu einem kryptografischen Verschleils kommt. Trotz dieses sehr geringen Risikos
der Datenerschopfung missen Sie lhre aktiven Filialschlissel moglicherweise aufgrund von
Geschéfts- oder Vertragsbestimmungen oder behordlichen Vorschriften wechseln.

Die aktive Version des Zweigschlussels bleibt aktiv, bis Sie ihn rotieren. Frihere Versionen des
aktiven ZweigschlUssels werden nicht zur Ausfihrung von Verschlisselungsvorgédngen verwendet
und kénnen auch nicht zum Ableiten neuer UmschlieRungsschlissel verwendet werden. Sie kdnnen

Drehe deinen aktiven Filialschliissel 103

https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS Encryption SDK Entwicklerhandbuch

jedoch weiterhin abgefragt werden und stellen UmschlieBungsschlissel zur Verfigung, um die
Datenschlissel zu entschliisseln, die sie verschliisselt haben, wahrend sie aktiv waren.

Erforderliche Berechtigungen

Um Zweigschlissel rotieren zu kénnen, bendtigen Sie die ReEncrypt Berechtigungen
kms: GenerateDataKeyWithoutPlaintext und kms: flr den KMS-Schlissel, der in lhren
Schlisselspeicheraktionen angegeben ist.

Rotiert einen aktiven Zweigschlissel

Verwenden Sie die VersionKey Operation, um |lhren aktiven Zweigschlissel zu drehen.

Wenn Sie den aktiven Abzweigschlissel rotieren, wird ein neuer Abzweigschlissel erstellt, der
die vorherige Version ersetzt. Das branch-key-1id &ndert sich nicht, wenn Sie den aktiven
Abzweigschlissel drehen. Sie missen den Schlissel angebenbranch-key-id, der den aktuell
aktiven Abzweigschlussel identifiziert, wenn Sie anrufenVersionKey.

Java

keystore.VersionKey(
VersionKeyInput.builder()
.branchKeyIdentifier("branch-key-id")
.build()
g

C#/ .NET
keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});
Python

keystore.version_key(
VersionKeyInput(
branch_key_identifier=branch_key_id

Rust

keystore.version_key()
.branch_key_identifier(branch_key_id)

Drehe deinen aktiven Filialschliissel 104

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK Entwicklerhandbuch

.send()
.await?;

Go

_, err = keyStore.VersionKey(context.Background(), keystoretypes.VersionKeyInput{
BranchKeyIdentifier: branchKeyId,

)

if err != nil {
return err

}

Drehe deinen aktiven Filialschlissel 105

AWS Encryption SDK Entwicklerhandbuch

SchlUsselringe

Unterstltzte Programmiersprachenimplementierungen verwenden SchlUsselringe zur

Verschlusselung von Umschlagen. Schliisselbunde generieren, verschlisseln und entschlisseln
Datenschlissel. Schlisselringe bestimmen die Quelle der eindeutigen Datenschlissel, die jede
Nachricht schutzen, und der Umschlie3ungsschlussel, die diesen Datenschliussel verschlusseln.
Sie geben bei der Verschlisselung einen Schllisselbund und bei der Entschliisselung denselben
oder einen anderen Schlisselbund an. Sie kénnen die vom SDK bereitgestellten Schlisselbunde
verwenden oder |hren eigenen kompatiblen, benutzerdefinierten Schllisselbunde schreiben.

Sie kénnen jeden Schlisselbund einzeln verwenden oder Schlisselbunde in einen Multi-
Schlusselbund kombinieren. Obwohl die meisten Schlisselbunde Datenschlissel generieren,
verschlisseln und entschlisseln kdnnen, kénnen Sie einen Schlisselbund erstellen, der nur eine

bestimmte Operation ausfuhrt, wie z. B. einen Schlisselbund, der nur Datenschlussel generiert.
Dieser Schlusselbund kann dann in Kombination mit anderen verwendet werden.

Wir empfehlen Ihnen, einen Schlisselbund zu verwenden, der lhre Wrapping-Schltssel schitzt

und kryptografische Operationen innerhalb einer sicheren Grenze ausfihrt, wie z. B. den AWS

KMS Schlisselbund, der diesen Never Never Leave () AWS KMS keys unverschlisselt verwendet.
AWS Key Management ServiceAWS KMS Sie kdnnen auch einen Schlisselbund schreiben,

bei dem Schlussel zum Umschlief3en von Schlisseln verwendet werden, die in Ihren Hardware-
Sicherheitsmodulen (HSMs) gespeichert oder durch andere Master-Key-Dienste geschitzt sind.
Weitere Informationen finden Sie im Thema SchltUsselbundschnittstelle in der AWS Encryption SDK -
Spezifikation.

Schlisselringe spielen die Rolle der Hauptschllssel und Hauptschltsselanbieter, die in anderen

Programmiersprachenimplementierungen verwendet werden. Wenn Sie unterschiedliche
Sprachimplementierungen von verwenden, um Ihre Daten AWS Encryption SDK zu
verschlisseln und zu entschlisseln, stellen Sie sicher, dass Sie kompatible Schlisselringe und
HauptschlUsselanbieter verwenden. Details hierzu finden Sie unter Schlisselbund-Kompatibilitat.

In diesem Thema wird erklart, wie Sie die Schlisselbundfunktion von verwenden AWS Encryption
SDK und wie Sie einen Schlisselbund auswahlen.

Funktionsweise von Schllusselbunden

Wenn Sie Daten verschlisseln, AWS Encryption SDK fragt der den Schlusselbund nach
Verschlisselungsmaterial. Der Schlusselbund gibt einen Klartext-Datenschlissel und eine Kopie des

Funktionsweise von Schliisselbunden 106

https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md

AWS Encryption SDK Entwicklerhandbuch

DatenschliUssels zurlick, der durch die einzelnen Schllissel im Schlisselbund verschlisselt wird. Der
AWS Encryption SDK verwendet den Klartext-Schliissel, um die Daten zu verschlisseln, und zerstort
dann den Klartext-Datenschlissel. AnschlieRend wird eine verschlisselte Nachricht AWS Encryption
SDK zuruckgegeben, die die verschlusselten Datenschlissel und die verschlisselten Daten enthalt.

AWS Encryption SDK

Cryptographic Materials Manager (CMM)

| A
_ p Plaintext data key

Get encryption

materials
‘ Encrypted data keys
k

Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3

Wenn Sie Daten entschlisseln, kdnnen Sie denselben Schlisselbund verwenden, den Sie zum
Verschlisseln der Daten verwendet haben, oder einen anderen. Um die Daten zu entschlisseln,
muss ein Entschlisselungsschlisselbund mindestens einen Umschliel3ungsschliissel im
Schlisselbund enthalten (oder Zugriff darauf haben).

Der AWS Encryption SDK Ubergibt die verschliisselten Datenschlissel aus der verschlisselten
Nachricht an den Schliisselbund und fordert den Schliisselbund auf, einen davon zu entschlisseln.
Der Schlisselbund verwendet seine Umhullungsschlissel zum Entschliisseln eines der
verschlisselten Datenschlissel und gibt einen Klartext-Datenschlissel zurtick. Das AWS
Encryption SDK entschlisselt die Daten mithilfe des Klartext-Datenschllssels. Wenn keiner der
Umhillungsschlissel im Schlisselbund einen der verschlisselten Datenschlissel entschlisseln
kann, schlagt der Entschliisselungsvorgang fehl.

Funktionsweise von Schliisselbunden 107

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK

Cryptographic Materials Manager (CMM)
| A

Get decryption

materials Encrypted data keys *

Plaintext data key

k4
Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3

Sie kénnen einen einzelnen Schlisselbund verwenden oder Schllisselbunde desselben Typs oder
eines anderen Typs in einem Multi-Schlisselbund kombinieren. Wenn Sie Daten verschlisseln, gibt
der Multi-Schlisselbund eine Kopie des Datenschlissels zurilick, der von allen Umhillungsschlisseln
in allen Schlisselbunden verschlisselt wurde, aus denen der Multi-Schlisselbund besteht. Sie
kénnen die Daten mithilfe eines Schlisselbundes entschlisseln, wobei jeder der Schllssel im
Mehrfachschllisselbund eingeschlossen ist.

Schlusselbund-Kompatibilitat

Obwohl die verschiedenen Sprachimplementierungen von einige architektonische Unterschiede
AWS Encryption SDK aufweisen, sind sie vollstdndig kompatibel und unterliegen sprachlichen
Einschrankungen. Sie kdnnen Ihre Daten mit einer Sprachimplementierung verschlisseln und

mit jeder anderen Sprachimplementierung entschlisseln. Sie missen jedoch dieselben oder
entsprechende Wrapping-Schlissel verwenden, um Ihre Datenschlissel zu verschlisseln und zu
entschlUsseln. Informationen zu Spracheinschrankungen finden Sie im Thema zu den einzelnen
Sprachimplementierungen, z. B. the section called “Kompatibilitat” im AWS-Verschlisselungs-SDK

for JavaScript Thema.

Schlisselbund-Kompatibilitat 108

AWS Encryption SDK Entwicklerhandbuch

Schlisselringe werden in den folgenden Programmiersprachen unterstitzt:

* AWS-Verschlisselungs-SDK for C

» AWS-Verschlisselungs-SDK for JavaScript

* AWS Encryption SDK fur .NET

» Version 3. x der AWS-Verschlisselungs-SDK for Java

» Ausfiihrung 4. x von AWS-Verschlisselungs-SDK for Python, wenn es mit der optionalen
Abhangigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

* AWS Encryption SDK fiir Rust
+ AWS Encryption SDK fur Go

Unterschiedliche Anforderungen fur Verschlisselungsschlisselringe

In anderen AWS Encryption SDK Sprachimplementierungen als dem AWS-Verschlisselungs-
SDK for C mussen alle Schlissel in einem Verschlisselungsschlisselbund (oder einem
Masterschlisselbund) oder einem Masterschlisselanbieter in der Lage sein, den Datenschlussel
zu verschlisseln. Wenn ein UmschlieRungsschlissel nicht verschlisselt werden kann, schlagt die
Verschlisselungsmethode fehl. Daher muss der Anrufer Uber die erforderlichen Berechtigungen

fur alle Schltussel im Schlisselbund verfigen. Wenn Sie einen Discovery-Schlisselbund
verwenden, um Daten allein oder in einem Mehrfachschlisselbund zu verschlisseln, schlagt der
Verschlisselungsvorgang fehl.

Die Ausnahme ist der AWS-Verschlisselungs-SDK for C, bei dem der Verschlisselungsvorgang
einen standardmaRigen Erkennungsschlisselbund ignoriert, aber fehlschlagt, wenn Sie einen
Erkennungsschlisselbund mit mehreren Regionen angeben, allein oder in einem Schlisselbund mit
mehreren Schlisselbunden.

Kompatible Schlisselbunde und Masterschlissel-Anbieter

Die folgende Tabelle zeigt, welche Hauptschlissel und Hauptschlisselanbieter mit den mitgelieferten
Schlusselbunden kompatibel sind. AWS Encryption SDK Geringfligige Inkompatibilitdten aufgrund
von Spracheinschrankungen werden im Thema Uber die Sprachimplementierung beschrieben.

Schlusselbund: HauptschlUsselanbieter:

AWS KMS Schlisselring KMSMasterSchlissel (Java)

Unterschiedliche Anforderungen flr Verschlliisselungsschlisselringe 109

https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKey.html

AWS Encryption SDK

Entwicklerhandbuch

SchllUsselbund:

AWS KMS Hierarchi
scher Schlisselbund

AWS KMS ECDH-Schl

usselanhanger

HauptschlUsselanbieter:

KMSMasterKeyProvider (Java)

KMSMasterSchlissel (Python)

KMSMasterKeyProvider (Python)

® Note

Die AWS-Verschlisselungs-SDK for Python und enthalten
AWS-Verschlisselungs-SDK for Java keinen Hauptschlissel
oder Hauptschllisselanbieter, was dem AWS KMS regionalen
Discovery-Schlisselbund entspricht.

Wird von den folgenden Programmiersprachen und Versionen
unterstitzt:

Version 3. x der AWS-Verschliisselungs-SDK for Java
Ausfihrung 4. x von AWS Encryption SDK fir .NET

Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn
es mit der optionalen Abhangigkeit der Cryptographic Material
Providers Library (MPL) verwendet wird.

Version 1. x von der AWS Encryption SDK fiir Rust
Version 0.1. x oder héher von AWS Encryption SDK for Go

Wird von den folgenden Programmiersprachen und Versionen
unterstutzt:

Version 3. x der AWS-Verschlisselungs-SDK for Java
Ausflhrung 4. x von AWS Encryption SDK fir .NET

Version 4. x von AWS-Verschlusselungs-SDK for Python, wenn
es mit der optionalen Abhangigkeit der Cryptographic Material
Providers Library (MPL) verwendet wird.

Version 1. x von der AWS Encryption SDK fur Rust
Version 0.1. x oder héher von AWS Encryption SDK for Go

Kompatible Schllisselbunde und Masterschliissel-Anbieter 110

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKeyProvider.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html#aws_encryption_sdk.key_providers.kms.KMSMasterKeyProvider
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK

Entwicklerhandbuch

SchllUsselbund:

Unformatierter AES-
Schlisselbund

Unformatierter RSA-
Schlisselbund

Roher ECDH-Schl
usselbund

HauptschlUsselanbieter:

Wenn sie mit symmetrischen Verschlisselungsschlisseln verwendet
werden:
JceMasterKey(Java)

RawMasterKey(Python)

Wenn sie mit asymmetrischen Verschllsselungsschlisseln verwendet
werden:
JceMasterKey(Java)

RawMasterKey(Python)

® Note

Der Raw RSA-Schliisselbund unterstlitzt keine asymmetri
schen KMS-Schlissel. Wenn Sie asymmetrische RSA-KMS-
Schlissel verwenden mdchten, Version 4. x of the AWS
Encryption SDK fur .NET unterstitzt AWS KMS Schlissel
ringe, die symmetrische Verschlusselung (SYMMETRIC
_DEFAULT) oder asymmetrisches RSA verwenden. AWS
KMS keys

Wird von den folgenden Programmiersprachen und Versionen
unterstutzt:

» Version 3. x der AWS-Verschlisselungs-SDK for Java
* Ausflhrung 4. x von AWS Encryption SDK fur .NET

* Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn
es mit der optionalen Abhangigkeit der Cryptographic Material

Providers Library (MPL) verwendet wird.

* Version 1. x von der AWS Encryption SDK fur Rust
» Version 0.1. x oder héher von AWS Encryption SDK for Go

Kompatible Schllisselbunde und Masterschliissel-Anbieter 111

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

AWS KMS Schlusselringe

Ein AWS KMS Schlisselbund wird verwendet, AWS KMS keysum Datenschlissel zu generieren, zu
verschlisseln und zu entschlisseln. AWS Key Management Service (AWS KMS) schitzt Ihre KMS-
Schlussel und fuhrt kryptografische Operationen innerhalb der FIPS-Grenze durch. Wir empfehlen,
wann immer moglich einen AWS KMS Schllsselbund oder einen Schlisselbund mit &hnlichen
Sicherheitseigenschaften zu verwenden.

Alle Programmiersprachenimplementierungen, die Schlisselringe unterstitzen, unterstitzen
Schlusselbunde, die AWS KMS KMS-Schlissel mit symmetrischer Verschlisselung verwenden. Die
folgenden Programmiersprachenimplementierungen unterstitzen auch AWS KMS Schlisselringe, die
asymmetrische RSA-KMS-Schlissel verwenden:

» Version 3. x der AWS-Verschlisselungs-SDK for Java
 Ausfuhrung 4. x von AWS Encryption SDK fur .NET

+ Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn es mit der optionalen Abhangigkeit
der Cryptographic Material Providers Library (MPL) verwendet wird.

» Version 1. x von der AWS Encryption SDK fir Rust
» Version 0.1. x oder héher von AWS Encryption SDK for Go

Wenn Sie versuchen, in einer anderen Sprachimplementierung einen asymmetrischen KMS-
Schlussel in einen Verschlisselungsschlisselbund aufzunehmen, schlagt der Verschlisselungsaufruf
fehl. Wenn Sie ihn in einen Schlisselbund fur die Entschlisselung aufnehmen, wird er ignoriert.

Ab Version 2.3 kbnnen Sie einen Schlissel AWS KMS mit mehreren Regionen in einem AWS KMS
Schlusselbund oder einem Hauptschlusselanbieter verwenden. x der Version AWS Encryption
SDK und Version 3.0. x der AWS Encryption CLI. Einzelheiten und Beispiele zur Verwendung des
multi-Region-aware Symbols finden Sie unterVerwenden Sie mehrere Regionen AWS KMS keys.
Informationen zu Schllisseln fur mehrere Regionen finden Sie unter Verwenden von Schlusseln fur
mehrere Regionen im AWS Key Management Service Entwicklerhandbuch.

(® Note

Alle Erwahnungen von KMS-Schlusselanhangern im AWS Encryption SDK beziehen sich auf
Schlusselringe. AWS KMS

AWS KMS Schlisselringe 112

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK Entwicklerhandbuch

AWS KMS Bei Schlisselanhangern gibt es zwei Arten von Wickelschlisseln:

» Generatorschliissel: Generiert einen Klartext-Datenschllssel und verschliisselt ihn. Ein
Schlisselbund, der Daten verschlisselt, muss einen Generatorschliissel haben.

« Zusatzliche Schlissel: Verschlisselt den Klartext-Datenschliissel, den der Generatorschliissel
generiert hat. AWS KMS Schlisselbunde kénnen null oder mehr zusatzliche Schliissel haben.

Sie mussen Uber einen Generatorschlissel verfigen, um Nachrichten zu verschlisseln. Wenn
ein AWS KMS Schliisselbund nur einen KMS-Schlissel hat, wird dieser Schliissel verwendet,
um den Datenschlissel zu generieren und zu verschlisseln. Bei der Entschlisselung ist der
Generatorschlissel optional, und die Unterscheidung zwischen Generatorschliisseln und
zusatzlichen Schllisseln wird ignoriert.

Wie alle Schlisselanhanger kbnnen AWS KMS Schliisselringe unabhangig voneinander oder in
einem Mehrfachschlisselbund mit anderen Schlisselanhangern desselben oder eines anderen Typs
verwendet werden.

Themen

« AWS KMS Erforderliche Berechtigungen fur Schllisselanhanger

Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund

* Einen SchlUsselbund erstellen AWS KMS

» Verwenden eines Discovery-Schlisselbunds AWS KMS

» Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund

AWS KMS Erforderliche Berechtigungen fur Schlisselanhanger

Das bendétigt AWS Encryption SDK kein AWS-Konto und es hangt auch nicht von einem ab. AWS-
Service Um einen AWS KMS Schlisselbund verwenden zu kdénnen, benétigen Sie jedoch eine AWS-
Konto und die folgenden Mindestberechtigungen fir AWS KMS keys den Schllisselbund.

* Um mit einem AWS KMS Schlisselbund zu verschlisseln, benétigen Sie die kms:
GenerateDataKey -Berechtigung fir den Generatorschlissel. Sie bendtigen die kms:Encrypt-
Berechtigung fur alle zusatzlichen Schlissel im Schlisselbund. AWS KMS

* Um mit einem AWS KMS Schlisselbund zu entschllsseln, benétigen Sie die kms:Decrypt-
Berechtigung flr mindestens einen Schlissel im Schlisselbund. AWS KMS

AWS KMS Erforderliche Berechtigungen fiir Schllisselanhanger 113

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Encryption SDK Entwicklerhandbuch

* Um mit einem Mehrfachschliisselbund zu verschliisseln, der aus Schliisselbunden besteht,
bendtigen Sie die kms-Berechtigung flir den AWS KMS Generatorschlissel im Generator-
Schlusselbund. GenerateDataKey Sie benétigen die kms:Encrypt-Berechtigung fir alle anderen
Schlissel in allen anderen Schlisselbunden. AWS KMS

* Um mit einem asymmetrischen AWS KMS RSA-Schlisselbund zu verschlisseln, benétigen Sie
kms: GenerateDataKey oder kms:Encrypt nicht, da Sie bei der Erstellung des Schlusselbunds das

Material der 6ffentlichen Schllissel angeben missen, das Sie fir die Verschllisselung verwenden
mdchten. Bei der Verschlisselung mit diesem Schlisselbund werden keine Anrufe getatigt. AWS
KMS Um mit einem asymmetrischen AWS KMS RSA-Schliisselbund zu entschliisseln, bendtigen
Sie die kms:Decrypt-Berechtigung.

Ausflhrliche Informationen zu den Berechtigungen fir finden Sie unter KMS-Schlisselzugriff AWS
KMS keys und -berechtigungen im Entwicklerhandbuch.AWS Key Management Service

|dentifizierung AWS KMS keys in einem AWS KMS Schlusselbund

Ein AWS KMS Schlisselbund kann einen oder mehrere enthalten. AWS KMS keys Um

AWS KMS key in einem AWS KMS Schlisselbund eine anzugeben, verwenden Sie eine
unterstitzte AWS KMS Schlissel-ID. Die Schlisselbezeichner, die Sie zur Identifizierung eines
AWS KMS key in einem Schllisselbund verwenden kdnnen, variieren je nach Vorgang und
Sprachimplementierung. Einzelheiten zu den Schlisselbezeichnern fur einen AWS KMS key finden
Sie unter Schlusselkennungen im Entwicklerhandbuch.AWS Key Management Service

Es hat sich bewahrt, die spezifischste Schllissel-ID zu verwenden, die fir Ilhre Aufgabe praktikabel ist.

* In einem Verschlisselungsschliisselbund fiir kdnnen Sie einen Schllissel-ARN oder Alias-ARN
verwenden AWS-Verschlisselungs-SDK for C, um KMS-Schlissel zu identifizieren. In allen
anderen Sprachimplementierungen kénnen Sie eine Schlussel-1D, einen Schlussel-ARN, einen

Aliasnamen oder einen Alias-ARN verwenden, um Daten zu verschlUsseln.

* In einem Entschlisselungsschlisselbund missen Sie einen Schllissel-ARN verwenden, um AWS
KMS keys zu identifizieren. Diese Anforderung gilt fur alle Sprachenimplementierungen des AWS
Encryption SDK. Details hierzu finden Sie unter Auswahl von Schlisseln zum Umbrechen.

* In einem Schlusselbund, der fir die Verschlisselung und Entschlisselung verwendet wird, missen
Sie einen Schlissel-ARN verwenden, um AWS KMS keys zu identifizieren. Diese Anforderung gilt
fur alle Sprachenimplementierungen des AWS Encryption SDK.

Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund 114

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie einen Aliasnamen oder Alias-ARN flir einen KMS-Schlissel in einem
Verschlisselungsschlisselbund angeben, speichert der Verschllisselungsvorgang den Schlissel-
ARN, der derzeit mit dem Alias verknUpft ist, in den Metadaten des verschlisselten Datenschlissels.
Der Alias wird nicht gespeichert. Anderungen am Alias wirken sich nicht auf den KMS-Schliissel aus,
der zum Entschlusseln lhrer verschlUsselten Datenschlissel verwendet wird.

Einen Schlisselbund erstellen AWS KMS

Sie kénnen jeden AWS KMS Schlisselbund mit einem AWS KMS key oder mehreren
Schlisselbandern AWS KMS keys im selben oder einem anderen AWS-Konten und konfigurieren.
AWS-Regionen Dabei AWS KMS keys muss es sich um einen KMS-Schliissel mit symmetrischer
Verschlisselung (SYMMETRIC_DEFAULT) oder um einen asymmetrischen RSA-KMS-Schlissel
handeln. Sie kbnnen auch einen KMS-Schlissel mit symmetrischer Verschliisselung fir mehrere
Regionen verwenden. Sie kdnnen einen oder mehrere AWS KMS Schlisselbunde in einem
Mehrfachschlisselbund verwenden.

Sie kdnnen einen AWS KMS Schlisselbund erstellen, der Daten ver- und entschliisselt, oder

Sie kénnen AWS KMS Schlisselbunde speziell zum Verschllisseln oder Entschllisseln erstellen.
Wenn Sie einen AWS KMS Schlisselbund zum Verschliisseln von Daten erstellen, miissen Sie
einen Generatorschlissel angeben. Dieser wird verwendet, um einen Klartext-Datenschlissel zu
generieren und AWS KMS key diesen zu verschlisseln. Der Datenschlissel hat mathematisch
nichts mit dem KMS-Schliissel zu tun. Wenn Sie mdchten, kénnen Sie dann weitere angeben,

AWS KMS keys die denselben Klartext-Datenschllissel verschliisseln. Um ein durch diesen
Schlisselbund geschitztes verschlisseltes Feld zu entschlisseln, muss der von lhnen verwendete
Entschllisselungsschlisselbund mindestens einen der im Schlisselbund AWS KMS keys definierten
Werte enthalten, oder nein. AWS KMS keys(Ein AWS KMS Schlusselbund ohne AWS KMS keys wird
als Discovery-Schlisselbund bezeichnet.) AWS KMS

In anderen AWS Encryption SDK Sprachimplementierungen als dem mussen alle Schlissel
AWS-Verschlisselungs-SDK for C, die in einen Verschlisselungsschlisselbund oder einen
Mehrfachschllisselbund eingeschlossen werden, in der Lage sein, den Datenschllissel zu
verschlisseln. Wenn ein Wrapping-Schlissel nicht verschlisselt werden kann, schlagt die
Verschlisselungsmethode fehl. Daher muss der Anrufer Uber die erforderlichen Berechtigungen
fur alle Schltssel im Schlisselbund verfiigen. Wenn Sie einen Discovery-Schlisselbund
verwenden, um Daten allein oder in einem Mehrfachschlisselbund zu verschlisseln, schlagt der
Verschlisselungsvorgang fehl. Die Ausnahme ist der AWS-Verschlisselungs-SDK for C, bei dem
der Verschlisselungsvorgang einen standardmafligen Erkennungsschlisselbund ignoriert, aber

Einen Schliisselbund erstellen AWS KMS 115

AWS Encryption SDK Entwicklerhandbuch

fehlschlagt, wenn Sie einen Erkennungsschlisselbund mit mehreren Regionen angeben, allein oder
in einem Schlisselbund mit mehreren Schlisselbunden.

In den folgenden Beispielen wird ein AWS KMS Schlusselbund mit einem Generatorschlissel und
einem zusatzlichen Schlussel erstellt. Sowohl der Generatorschlissel als auch der Zusatzschlussel
sind KMS-Schlussel mit symmetrischer Verschlisselung. In diesen Beispielen wird der Schlissel
verwendet ARNs, um die KMS-SchlUssel zu identifizieren. Dies ist eine bewahrte Methode fur AWS
KMS Schlusselringe, die zur Verschlisselung verwendet werden, und eine Voraussetzung fur AWS
KMS Schliusselringe, die zur Entschlisselung verwendet werden. Details hierzu finden Sie unter
Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund.

C

Um einen AWS KMS key in einem Verschllsselungsschlisselbund in der zu identifizieren AWS-
Verschlisselungs-SDK for C, geben Sie einen Schliussel-ARN oder Alias-ARN an. In einem
Entschlisselungsschlisselbund missen Sie einen Schliissel-ARN verwenden. Details hierzu
finden Sie unter Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund.

Ein vollstandiges Beispiel finden Sie unter string.cpp.

const char * generator_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

struct aws_cryptosdk_keyring *kms_encrypt_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(generator_key, {additional_key});

C#/ .NET

Verwenden Sie die Methode, um einen Schlisselbund mit einem oder mehreren KMS-Schlisseln
im AWS Encryption SDK fir.NET zu erstellen. CreateAwsKmsMultiKeyring() In diesem
Beispiel werden zwei AWS KMS Schlissel verwendet. Verwenden Sie nur den Generator
Parameter, um einen KMS-Schlissel anzugeben. Der KmsKeyIds Parameter, der zusatzliche
KMS-SchlUssel angibt, ist optional.

Die Eingabe flr diesen Schlisselbund bendétigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient fir jede Region, die durch einen
KMS-Schlissel im Schlisselbund reprasentiert wird. Befindet sich der KMS-Schllssel, der durch
den Wert des Generator Parameters identifiziert wird, beispielsweise in der Region USA West

Einen Schliisselbund erstellen AWS KMS 116

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Entwicklerhandbuch

(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient fur die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen mussen, verwenden Sie die
CreateAwsKmsKeyring() Methode.

Wenn Sie im fir.NET einen Schlisselbund AWS KMS key AWS Encryption SDK fir die
Verschlisselung angeben, kdnnen Sie eine beliebige gultige Schlissel-ID verwenden: eine
Schlussel-ID, einen Schlissel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur
Identifizierung von AWS KMS keys in einem AWS KMS Schlusselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund

Im folgenden Beispiel wird Version 4 verwendet. x von AWS Encryption SDK fir .NET und die
CreateAwsKmsKeyring() Methode zum Anpassen des AWS KMS Clients.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput
{

Generator = generatorKey,

KmsKeyIds = additionalKeys

};

var kmsEncryptKeyring = mpl.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

JavaScript Browser

Wenn Sie in der einen Schlisselbund AWS KMS key flr die Verschlisselung angeben AWS-
Verschlisselungs-SDK for JavaScript, kdnnen Sie eine beliebige gtiltige Schllissel-ID verwenden:
eine Schlussel-1D, einen Schlussel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur
Identifizierung von AWS KMS keys in einem AWS KMS Schlusselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie kdnnen die

Einen Schlisselbund erstellen AWS KMS 117

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

auch verwendenbuildClient, um die Anzahl der verschliisselten Datenschlissel in einer
verschlisselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“‘Beschrankung verschlUsselter Datenschlissel”.

Ein vollstandiges Beispiel finden Sie unter kms_simple.ts im Repository unter. AWS-
Verschlisselungs-SDK for JavaScript GitHub

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const clientProvider = getClient(KMS, { credentials })

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeyId,
keyIds: [additionalKey]

b

JavaScript Node.js

Wenn Sie in der einen Schlisselbund AWS KMS key fir die Verschlisselung angeben AWS-
Verschlisselungs-SDK for JavaScript, kbnnen Sie eine beliebige gultige Schlissel-ID verwenden:
eine Schlussel-1D, einen Schlussel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur
Identifizierung von AWS KMS keys in einem AWS KMS Schlisselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschlisselten Datenschlissel in einer

verschlusselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“‘Beschrankung verschlUsselter Datenschlissel”.

Einen Schlisselbund erstellen AWS KMS 118

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

Ein vollstandiges Beispiel finden Sie unter kms_simple.ts im Repository unter. AWS-
Verschlisselungs-SDK for JavaScript GitHub

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({
generatorKeyld,
keyIds: [additionalKey]

)

Java

Verwenden Sie die Methode, um einen Schllsselbund mit einem oder mehreren Schlisseln zu
erstellen. AWS KMS CreateAwsKmsMultiKeyring() In diesem Beispiel werden zwei KMS-
Schlussel verwendet. Verwenden Sie nur den generator Parameter, um einen KMS-Schlissel
anzugeben. Der kmsKeyIds Parameter, der zusatzliche KMS-Schllssel angibt, ist optional.

Die Eingabe fur diesen Schlusselbund benétigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient fir jede Region, die durch einen
KMS-Schlissel im Schlisselbund reprasentiert wird. Befindet sich der KMS-Schllssel, der durch
den Wert des Generator Parameters identifiziert wird, beispielsweise in der Region USA West
(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient fur die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen mussen, verwenden Sie die
CreateAwsKmsKeyring() Methode.

Wenn Sie in der einen Schlisselbund AWS KMS key fur die Verschlisselung angeben AWS-
Verschlusselungs-SDK for Java, kdnnen Sie eine beliebige gultige Schliussel-ID verwenden:
eine Schlussel-1D, einen Schlussel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur

Einen Schliisselbund erstellen AWS KMS 119

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

Identifizierung von AWS KMS keys in einem AWS KMS Schlisselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund

Ein vollstandiges Beispiel finden Sie unter BasicEncryptionKeyringExample.java im AWS-
Verschlisselungs-SDK for Java Repository unter. GitHub

// Instantiate the AWS Encryption SDK and material providers

final AwsCrypto crypto = AwsCrypto.builder().build();

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");
// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(generatorkKey)
.kmsKeyIds(additionalKey)
.build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Python

Verwenden Sie die Methode, um einen Schllsselbund mit einem oder mehreren AWS KMS
Schlisseln zu erstellen. create_aws_kms_multi_keyring() In diesem Beispiel werden zwei
KMS-Schlissel verwendet. Verwenden Sie nur den generator Parameter, um einen KMS-
Schllssel anzugeben. Der kms_key_ids Parameter, der zusatzliche KMS-Schlissel angibt, ist
optional.

Die Eingabe fur diesen Schliusselbund benétigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient fir jede Region, die durch einen
KMS-Schlissel im Schllisselbund reprasentiert wird. Befindet sich der KMS-Schlissel, der durch
den Wert des generator Parameters identifiziert wird, beispielsweise in der Region USA West
(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient fir die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen mussen, verwenden Sie die
create_aws_kms_keyring() Methode.

Einen Schliisselbund erstellen AWS KMS 120

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/BasicEncryptionKeyringExample.java

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie in der einen Schlisselbund AWS KMS key fir die Verschliisselung angeben AWS-
Verschlisselungs-SDK for Python, kénnen Sie eine beliebige giiltige Schlissel-ID verwenden:
eine Schlussel-ID, einen Schlissel-ARN, einen Aliasnamen oder einen Alias-ARN. Hilfe zur
Identifizierung von AWS KMS keys in einem AWS KMS Schlisselbund finden Sie unter.
Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund

Im folgenden Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Ein vollstandiges Beispiel
finden Sie unter aws_kms_multi_keyring_example.py im AWS-Verschliisselungs-SDK for Python
Repository unter. GitHub

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
kms_multi_keyring_input: CreateAwsKmsMultiKeyringInput =
CreateAwsKmsMultiKeyringInput(
generator="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
kms_key_ids="arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
)

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

Einen Schlisselbund erstellen AWS KMS 121

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/aws_kms_multi_keyring_example.py

AWS Encryption SDK Entwicklerhandbuch

Rust

Verwenden Sie die create_aws_kms_multi_keyring() Methode, um einen Schliisselbund
mit einem oder mehreren AWS KMS Schlisseln zu erstellen. In diesem Beispiel werden zwei
KMS-Schlussel verwendet. Verwenden Sie nur den generator Parameter, um einen KMS-
Schllssel anzugeben. Der kms_key_ids Parameter, der zusatzliche KMS-Schlissel angibt, ist
optional.

Die Eingabe flr diesen Schlisselbund bendétigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient fir jede Region, die durch einen
KMS-Schlissel im Schllsselbund reprasentiert wird. Befindet sich der KMS-Schllssel, der durch
den Wert des generator Parameters identifiziert wird, beispielsweise in der Region USA West
(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient fir die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen mussen, verwenden Sie die
create_aws_kms_keyring() Methode.

Wenn Sie im AWS KMS key for Rust einen Schlusselbund fur eine Verschlisselung angeben,
konnen Sie eine beliebige gultige Schlussel-ID verwenden: eine Schlussel-ID, einen Schlissel-
ARN, einen Aliasnamen oder einen Alias-ARN. AWS Encryption SDK Hilfe zur Identifizierung von
AWS KMS keys in einem AWS KMS Schlusselbund finden Sie unter. Identifizierung AWS KMS
keys in einem AWS KMS Schlusselbund

Im folgenden Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Ein vollstandiges Beispiel finden
Sie unter aws_kms_keyring_example.rs im Rust-Verzeichnis des Repositorys auf. aws-encryption-
sdk GitHub

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),

Einen Schliisselbund erstellen AWS KMS 122

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs

AWS Encryption SDK Entwicklerhandbuch

("but adds".to_string(), "useful metadata".to_string()),

("that can help you".to_string(), "be confident that".to_string()),

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mpl.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

)

Go

Verwenden Sie die Methode, um einen Schllisselbund mit einem oder mehreren Schlisseln zu
erstellen. AWS KMS create_aws_kms_multi_keyring() In diesem Beispiel werden zwei
KMS-Schlissel verwendet. Verwenden Sie nur den generator Parameter, um einen KMS-
Schllssel anzugeben. Der kms_key_ids Parameter, der zusatzliche KMS-Schlissel angibt, ist
optional.

Die Eingabe fur diesen Schlusselbund benétigt keinen AWS KMS Client. Stattdessen AWS
Encryption SDK verwendet der den AWS KMS Standardclient fir jede Region, die durch einen
KMS-Schlissel im Schlisselbund reprasentiert wird. Befindet sich der KMS-Schllssel, der durch
den Wert des generator Parameters identifiziert wird, beispielsweise in der Region USA West
(Oregon) (us-west-2), AWS Encryption SDK wird ein AWS KMS Standardclient fir die us-
west-2 Region erstellt. Wenn Sie den AWS KMS Client anpassen mussen, verwenden Sie die
create_aws_kms_keyring() Methode.

Wenn Sie in AWS KMS key for Go einen Schlisselbund fur eine Verschllisselung angeben,
kdnnen Sie eine beliebige gultige Schlussel-ID verwenden: eine Schlussel-ID, einen Schltssel-
ARN, einen Aliasnamen oder einen Alias-ARN. AWS Encryption SDK Hilfe zur Identifizierung von

Einen Schliisselbund erstellen AWS KMS 123

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

AWS KMS keys in einem AWS KMS Schlisselbund finden Sie unter. Identifizierung AWS KMS
keys in einem AWS KMS Schlisselbund

Im folgenden Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create the AWS KMS keyring
awsKmsMultiKeyringInput := mpltypes.CreateAwsKmsMultiKeyringInput{

Einen Schlisselbund erstellen AWS KMS 124

AWS Encryption SDK Entwicklerhandbuch

Generator: "&arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

KmsKeyIds: []string{"arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"},

}

awsKmsMultiKeyring, err := matProv.CreateAwsKmsMultiKeyring(context.Background(),
awsKmsMultiKeyringInput)

Das unterstutzt AWS Encryption SDK auch AWS KMS SchlUsselringe, die asymmetrische RSA-
KMS-Schlussel verwenden. Asymmetrische AWS KMS RSA-Schlisselringe kdnnen nur ein key pair
enthalten.

Um mit einem asymmetrischen AWS KMS RSA-Schlisselbund zu verschlisseln, bendtigen Sie

kms: GenerateDataKey oder kms:Encrypt nicht, da Sie bei der Erstellung des Schlusselbunds das
Material der Offentlichen Schlissel angeben miussen, das Sie fur die Verschlusselung verwenden
mochten. Bei der Verschlusselung mit diesem Schlusselbund werden keine Anrufe getatigt. AWS
KMS Um mit einem asymmetrischen AWS KMS RSA-Schlisselbund zu entschlisseln, bendtigen Sie
die kms:Decrypt-Berechtigung.

(@ Note

Um einen AWS KMS Schlisselbund zu erstellen, der asymmetrische RSA-KMS-Schlissel
verwendet, mussen Sie eine der folgenden Programmiersprachenimplementierungen
verwenden:

» Version 3. x der AWS-Verschlisselungs-SDK for Java
* Ausflhrung 4. x von AWS Encryption SDK fir .NET

* Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn es mit der optionalen
Abhangigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

* Version 1. x von der AWS Encryption SDK fir Rust

Version 0.1. x oder héher von AWS Encryption SDK for Go

In den folgenden Beispielen CreateAwsKmsRsaKeyring wird die Methode verwendet, um einen
AWS KMS Schlisselbund mit einem asymmetrischen RSA-KMS-Schlissel zu erstellen. Um einen
asymmetrischen AWS KMS RSA-Schlisselbund zu erstellen, geben Sie die folgenden Werte an.

Einen Schliisselbund erstellen AWS KMS 125

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

kmsClient: einen neuen Client erstellen AWS KMS
kmsKeyID: der Schlissel-ARN, der Ihren asymmetrischen RSA-KMS-Schlissel identifiziert

publicKey: eine Datei ByteBuffer aus einer UTF-8-codierten PEM-Datei, die den &ffentlichen
Schlussel des Schlissels darstellt, an den Sie Ubergeben haben kmsKeyID

encryptionAlgorithm: Der Verschlisselungsalgorithmus muss oder sein
RSAES_OAEP_SHA_256 RSAES_OAEP_SHA_1

C#/ .NET

Um einen asymmetrischen AWS KMS RSA-Schllisselbund zu erstellen, missen Sie den
offentlichen Schlissel und den privaten Schliissel ARN aus lhrem asymmetrischen RSA-KMS-
Schlissel angeben. Der 6ffentliche Schlissel muss PEM-codiert sein. Im folgenden Beispiel wird
ein AWS KMS Schlisselbund mit einem asymmetrischen RSA-Schllisselpaar erstellt.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsRsaKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),

KmsKeyId = AWS KMS RSA private key ARN,

PublicKey = publicKey,

EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Java

Um einen asymmetrischen AWS KMS RSA-Schlisselbund zu erstellen, missen Sie den
offentlichen Schlissel und den privaten Schlissel ARN aus lhrem asymmetrischen RSA-KMS-
Schlussel angeben. Der 6ffentliche Schlissel muss PEM-codiert sein. Im folgenden Beispiel wird
ein AWS KMS Schlusselbund mit einem asymmetrischen RSA-Schlisselpaar erstellt.

// Instantiate the AWS Encryption SDK and material providers

Einen Schliisselbund erstellen AWS KMS 126

AWS Encryption SDK Entwicklerhandbuch

final AwsCrypto crypto = AwsCrypto.builder()
// Specify algorithmSuite without asymmetric signing here
//
// ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"),
// ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"),
// ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"),
// ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x@114"),
// ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256("0x0146"),
// ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178")

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256)
Lbuild();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
Lbuild();

// Create a KMS RSA keyring.
// This keyring takes in:

// - kmsClient

// - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key

// - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public
// key for the key passed into kmsKeyId

// - encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1

final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
CreateAwsKmsRsaKeyringInput.builder()
.kmsClient(KmsClient.create())
.kmsKeyId(rsaKeyArn)
.publicKey(publicKey)
.encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
.build();
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Python

Um einen asymmetrischen AWS KMS RSA-Schllisselbund zu erstellen, missen Sie den
offentlichen Schlissel und den privaten Schlissel ARN aus lhrem asymmetrischen RSA-KMS-
Schlissel angeben. Der 6ffentliche Schlissel muss PEM-codiert sein. Im folgenden Beispiel wird
ein AWS KMS Schlisselbund mit einem asymmetrischen RSA-Schllisselpaar erstellt.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(

Einen Schliisselbund erstellen AWS KMS 127

AWS Encryption SDK Entwicklerhandbuch

commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsRsaKeyringInput = CreateAwsKmsRsaKeyringInput(
public_key="public_key",
kms_key_id="kms_key_id",
encryption_algorithm="RSAES_OAEP_SHA_256",
kms_client=kms_client

kms_rsa_keyring: IKeyring = mat_prov.create_aws_kms_rsa_keyring(
input=keyring_input

Rust

Um einen asymmetrischen AWS KMS RSA-Schlisselbund zu erstellen, missen Sie den
offentlichen Schliussel und den privaten Schlissel ARN aus lhrem asymmetrischen RSA-KMS-
Schlussel angeben. Der 6ffentliche Schlissel muss PEM-codiert sein. Im folgenden Beispiel wird
ein AWS KMS Schlisselbund mit einem asymmetrischen RSA-Schlisselpaar erstellt.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;

Einen Schliisselbund erstellen AWS KMS 128

AWS Encryption SDK Entwicklerhandbuch

Go

let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring

let kms_rsa_keyring = mpl
.create_aws_kms_rsa_keyring()
.kms_key_id(kms_key_id)
.public_key(aws_smithy_types::Blob::new(public_key))

.encryption_algorithm(aws_sdk_kms: :types: :EncryptionAlgorithmSpec: :RsaesOaepSha256)
.kms_client(kms_client)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

Einen Schliisselbund erstellen AWS KMS 129

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err != nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

b
// Optional: Create an encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create the AWS KMS keyring
awsKmsRSAKeyringInput := mpltypes.CreateAwsKmsRsaKeyringInput{

KmsClient: kmsClient,
KmsKeyId: kmsKeyID,
PublicKey: kmsPublicKey,
EncryptionAlgorithm: kmstypes.EncryptionAlgorithmSpecRsaesOaepSha256,
}
awsKmsRSAKeyring, err := matProv.CreateAwsKmsRsaKeyring(context.Background(),
awsKmsRSAKeyringInput)
if err !'= nil {
panic(err)
}

Einen Schliisselbund erstellen AWS KMS 130

AWS Encryption SDK Entwicklerhandbuch

Verwenden eines Discovery-Schlisselbunds AWS KMS

Beim Entschlisseln empfiehlt es sich, die UmschlieRungsschlissel anzugeben, die sie verwenden
AWS Encryption SDK kdnnen. Um dieser bewahrten Methode zu folgen, sollten Sie einen
Schlusselbund fur die AWS KMS Entschlisselung verwenden, der die Anzahl der AWS KMS
UmschlieBungsschlissel auf die von lhnen angegebenen beschrankt. Sie kdnnen jedoch auch einen
AWS KMS Discovery-Schlusselbund erstellen, d. h. einen Schlusselbund, der keine AWS KMS
Schlussel zum Umschlief3en von Schlisseln festlegt.

Der AWS Encryption SDK bietet einen AWS KMS Standard-Discovery-Schlisselbund und

einen Discovery-Schlisselbund flr Schlissel mit mehreren Regionen. AWS KMS Hinweise zur
Verwendung von Regionsschlisseln mit dem finden Sie unter. AWS Encryption SDKVerwenden Sie
mehrere Regionen AWS KMS keys

Da er keine UmschlieBungsschlissel angibt, kann ein Discovery-Schliisselbund keine Daten
verschlisseln. Wenn Sie einen Discovery-Schliisselbund verwenden, um Daten allein oder in

einem Mehrfachschlisselbund zu verschlisseln, schlagt der Verschlisselungsvorgang fehl. Die
Ausnahme ist der AWS-Verschlisselungs-SDK for C, bei dem der Verschllisselungsvorgang

einen standardmafigen Erkennungsschlisselbund ignoriert, aber fehlschlagt, wenn Sie einen
Erkennungsschlisselbund mit mehreren Regionen angeben, allein oder in einem Schliisselbund mit
mehreren Schliisselbunden.

Bei der Entschlisselung kdnnen Sie mithilfe eines Discovery-Schlisselbunds die AWS Encryption
SDK Entschlisselung eines beliebigen verschlisselten Datenschlissels unter Verwendung des
verschlisselten Schlissels anfordern AWS KMS , unabhangig davon, wem dieser gehort oder wer
Zugriff AWS KMS key darauf hat. AWS KMS key Der Anruf ist nur erfolgreich, wenn der Anrufer Gber
die entsprechende Berechtigung verflgt. kms : Decrypt AWS KMS key

/A Important

Wenn Sie einen AWS KMS Discovery-Schlusselbund in einen Mehrschlisselbund
fur die Entschlisselung aufnehmen, setzt der Discovery-Schlisselbund alle KMS-

Schlusseleinschrankungen aulder Kraft, die durch andere Schlisselbunde im
Mehrfachschlisselbund festgelegt wurden. Der Mehrfachschlisselbund verhalt sich wie sein
am wenigsten restriktiver Schlusselbund. Ein AWS KMS Discovery-Schliusselbund hat keine
Auswirkung auf die Verschlisselung, wenn er alleine oder in einem Mehrfachschlisselbund
verwendet wird.

Verwenden eines Discovery-Schllsselbunds AWS KMS 131

AWS Encryption SDK Entwicklerhandbuch

Der AWS Encryption SDK bietet der Einfachheit halber einen AWS KMS Discovery-Schlisselbund.
Wir empfehlen jedoch aus folgenden Griinden, dass Sie nach Moéglichkeit einen beschrankteren
Schlusselbund verwenden.

 Authentizitat — Ein AWS KMS Discovery-Schlisselbund kann jeden Schlisselbund verwenden
AWS KMS key , der zum Verschlisseln eines Datenschllssels in der verschlisselten Nachricht
verwendet wurde, nur damit der Anrufer berechtigt ist, diesen Schliissel zum Entschllisseln zu
verwenden. AWS KMS key Dies ist mdglicherweise nicht der AWS KMS key , den der Anrufer
verwenden mdchte. Beispielsweise kdonnte einer der verschlisselten Datenschlissel unter einer
weniger sicheren Methode verschlisselt worden sein AWS KMS key , die jeder verwenden kann.

+ Latenz und Leistung — Ein AWS KMS Discovery-Schlisselbund ist moglicherweise merklich
langsamer als andere Schlisselbunde, da er AWS Encryption SDK versucht, alle verschlisselten
Datenschlissel zu entschlisseln, einschlieBlich der Schlissel, die AWS KMS keys in anderen
Regionen verschlusselt wurden, AWS-Konten und der Anrufer nicht berechtigt ist, diese fur AWS
KMS keys die Entschlisselung zu verwenden.

Wenn Sie einen Discovery-Schlisselbund verwenden, empfehlen wir die Verwendung eines

Discovery-Filters, um die KMS-Schlissel, die verwendet werden kbnnen, auf diejenigen in

bestimmten Partitionen zu beschranken. AWS-Konten Discovery-Filter werden in den Versionen

1.7 unterstitzt. x und spater von AWS Encryption SDK. Hilfe bei der Suche nach lhrer Konto-ID und
Partition finden Sie unter Ihre AWS-Konto |dentifikatoren und das ARN-Format in der Allgemeine
AWS-Referenz.

Der folgende Code instanziiert einen AWS KMS Discovery-Schlisselbund mit einem
Erkennungsfilter, der die KMS-Schlissel, die er verwenden AWS Encryption SDK kann, auf
diejenigen in der aws Partition und im Beispielkonto 111122223333 beschrankt.

Bevor Sie diesen Code verwenden, ersetzen Sie die Beispiel AWS-Konto - und Partitionswerte durch
gultige Werte fir lhre Partition und. AWS-Konto Wenn sich lhre KMS-Schlissel in China Regionen
befinden, verwenden Sie den aws-cn Partitionswert. Wenn sich Ihre KMS-Schlissel befinden AWS
GovCloud (US) Regions, verwenden Sie den aws-us-gov Partitionswert. Verwenden Sie fir alle
anderen AWS-Regionen den aws Partitionswert.

C

Ein vollstandiges Beispiel finden Sie unter kms_discovery.cpp.

std: :shared_ptr<KmsKeyring::> discovery_filter(

Verwenden eines Discovery-Schllsselbunds AWS KMS 132

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Entwicklerhandbuch

KmsKeyring: :DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildexr ()
.BuildDiscovery(discovery_filter));

C#/.NET

Im folgenden Beispiel wird Version 4 verwendet. x von AWS Encryption SDK fur .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key
var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),

DiscoveryFilter = new DiscoveryFilter()

{
AccountIds = account,
Partition = "aws"

1Y

var kmsDiscoveryKeyring =
mpl.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

JavaScript Browser
JavaScriptln missen Sie die Discovery-Eigenschaft explizit angeben.

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugebenREQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschlisselten Datenschlissel in einer

verschlusselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“‘Beschrankung verschlUsselter Datenschlissel”.

Verwenden eines Discovery-Schllsselbunds AWS KMS 133

AWS Encryption SDK Entwicklerhandbuch

import {
KmsKeyringBrowser,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-browser"'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, {

discovery,

discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
b

JavaScript Node.js
JavaScriptln missen Sie die Discovery-Eigenschaft explizit angeben.

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugebenREQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschlisselten Datenschlissel in einer

verschlisselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called

“‘Beschrankung verschlUsselter Datenschlissel”.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node'

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const discovery = true

const keyring = new KmsKeyringNode({
discovery,

Verwenden eines Discovery-Schllsselbunds AWS KMS 134

AWS Encryption SDK Entwicklerhandbuch

discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
1)

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.buildexr()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.buildexr()
.discoveryFilter(discoveryFilter)
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS discovery keyring

Verwenden eines Discovery-Schllsselbunds AWS KMS 135

AWS Encryption SDK Entwicklerhandbuch

discovery_keyring_input: CreateAwsKmsDiscoveryKeyringInput =
CreateAwsKmsDiscoveryKeyringInput(
kms_client=kms_client,
discovery_filter=DiscoveryFiltexr(
account_ids=[aws_account_id],
partition="aws"

discovery_keyring: IKeyring = mat_prov.create_aws_kms_discovery_keyring(
input=discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create a AWS KMS client.
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create discovery filter

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the AWS KMS discovery keyring
let discovery_keyring = mpl
.create_aws_kms_discovery_keyring()
.kms_client(kms_client.clone())
.discovery_filter(discovery_filter)
.send()
.await?;

Verwenden eines Discovery-Schllsselbunds AWS KMS 136

AWS Encryption SDK Entwicklerhandbuch

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

Verwenden eines Discovery-Schllsselbunds AWS KMS 137

AWS Encryption SDK Entwicklerhandbuch

panic(err)
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: [Jstring{kmsKeyAccountID},
Partition: "aws",
}
awsKmsDiscoveryKeyringInput := mpltypes.CreateAwsKmsDiscoveryKeyringInput{
KmsClient: kmsClient,

DiscoveryFilter: &discoveryFilter,

}
awsKmsDiscoveryKeyring, err :=
matProv.CreateAwsKmsDiscoveryKeyring(context.Background(),
awsKmsDiscoveryKeyringInput)
if err !'= nil {
panic(err)

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund

Ein AWS KMS Regional Discovery-Schlisselbund ist ein Schlisselbund, der ARNs die KMS-
Schlussel nicht spezifiziert. Stattdessen ermdglicht es die Entschlisselung AWS Encryption SDK
wobei insbesondere nur die KMS-Schlissel verwendet werden. AWS-Regionen

Bei der Entschlisselung mit einem AWS KMS regionalen Discovery-Schlisselbund werden alle
verschlisselten Datenschlissel AWS Encryption SDK entschlisselt, die unter einem AWS KMS
key der angegebenen Zeichen verschlusselt wurden. AWS-Region Um erfolgreich zu sein, muss
der Aufrufer Uber kms : Decrypt Berechtigungen fiir mindestens einen der angegebenen Schllssel
verfigen AWS-Region , AWS KMS keys der einen Datenschliissel verschliisselt hat.

Wie andere Discovery-Schlisselringe hat auch der regionale Discovery-Schlisselbund keine
Auswirkung auf die Verschllisselung. Er funktioniert nur beim Entschlisseln verschlisselter
Nachrichten. Wenn Sie einen Regional Discovery-Schlisselbund in einem Mehrfachschliisselbund
verwenden, der zum Verschlisseln und Entschlisseln verwendet wird, ist dieser nur beim
Entschlisseln wirksam. Wenn Sie einen Schlisselbund fir die Erkennung mehrerer Regionen
verwenden, um Daten allein oder in einem Schlisselbund zu verschlisseln, schlagt der
Verschlisselungsvorgang fehl.

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund 138

AWS Encryption SDK Entwicklerhandbuch

/A Important

Wenn Sie einen AWS KMS regionalen Discovery-Schllisselbund in einen Schltsselbund fir
die Entschlisselung mit mehreren Schliusseln aufnehmen, setzt der regionale Discovery-
Schlisselbund alle KMS-Schliisseleinschrankungen auller Kraft, die durch andere
Schlusselbunde im Mehrfachschlisselbund festgelegt wurden. Der Mehrfachschlisselbund
verhalt sich wie sein am wenigsten restriktiver Schlisselbund. Ein AWS KMS Discovery-
Schlisselbund hat keine Auswirkung auf die Verschlisselung, wenn er alleine oder in einem
Mehrfachschlisselbund verwendet wird.

Der regionale Discovery-Schlisselbund bei AWS-Verschlisselungs-SDK for C Versuchen, nur

mit KMS-Schllsseln in der angegebenen Region zu entschlisseln. Wenn Sie einen Discovery-
Schlisselbund in AWS-Verschlisselungs-SDK for JavaScript und AWS Encryption SDK flur.NET
verwenden, konfigurieren Sie die Region auf dem Client. AWS KMS Bei diesen AWS Encryption SDK
Implementierungen AWS KMS werden KMS-Schlissel nicht nach Region gefiltert, allerdings schlagt
eine Entschllsselungsanforderung fir KMS-Schlissel aul3erhalb der angegebenen Region fehl.

Wenn Sie einen Discovery-Schlisselbund verwenden, empfehlen wir die Verwendung eines
Discovery-Filters, um die bei der Entschlisselung verwendeten KMS-Schllssel auf die in den
angegebenen Partitionen verwendeten KMS-Schllssel zu beschranken. AWS-Konten Discovery-
Filter werden in den Versionen 1.7 unterstitzt. x und spater von AWS Encryption SDK.

Der folgende Code erstellt beispielsweise einen AWS KMS regionalen Discovery-Schlisselbund mit
einem Discovery-Filter. Dieser Schllisselbund beschrankt die Anzahl der AWS Encryption SDK KMS-
Schlissel im Konto 111122223333 in der Region USA West (Oregon) (us-west-2).

C

Weitere Informationen zum Anzeigen dieses Schllisselbunds und der create_kms_client-
Methode in einem funktionierenden Beispiel finden Sie unter kms_discovery.cpp.

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder()

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund 139

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Entwicklerhandbuch

WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter))

C#/ NET

AWS Encryption SDK Fir .NET gibt es keinen eigenen Schlisselbund fiir die regionale
Erkennung. Sie kdnnen jedoch verschiedene Techniken verwenden, um die bei der
Entschllsselung verwendeten KMS-Schlissel auf eine bestimmte Region zu beschranken.

Die effizienteste Methode, die Regionen in einem Discovery-Schlisselbund einzuschranken,

ist die Verwendung eines multi-Region-aware Discovery-Schlisselbunds, auch wenn Sie die
Daten nur mit Schllsseln aus einer Region verschlisselt haben. Wenn Schllssel mit nur einer
Region gefunden werden, verwendet der multi-Region-aware Schllsselbund keine Funktionen flr
mehrere Regionen.

Der von der CreateAwsKmsMrkDiscoveryKeyring() Methode zuriickgegebene
Schlisselbund filtert KMS-Schlissel vor dem Aufruf nach Region. AWS KMS Sie sendet AWS
KMS nur dann eine Entschliisselungsanforderung an, wenn der verschlisselte Datenschlissel mit
einem KMS-Schlussel in der Region verschlusselt wurde, die durch den Region Parameter im
Objekt angegeben wurde. CreateAwsKmsMrkDiscoveryKeyringInput

In den folgenden Beispielen wird Version 4 verwendet. x von AWS Encryption SDK fur .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter
{

AccountIds = account,

Partition = "aws"

};

var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
Region = RegionEndpoint.USWest2,
DiscoveryFilter = filter

i

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund 140

AWS Encryption SDK Entwicklerhandbuch

var kmsRegionalDiscoveryKeyring =
mpl.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

Sie kdnnen KMS-SchlUssel auch auf einen bestimmten Wert beschranken, AWS-
Region indem Sie eine Region in Ihrer Instanz des AWS KMS Clients angeben
(AmazonKeyManagementServiceClient). Diese Konfiguration ist jedoch weniger effizient und

potenziell kostspieliger als die Verwendung eines multi-Region-aware Discovery-Schlisselbunds.
Anstatt KMS-Schlussel vor dem Aufrufen nach Region zu filtern AWS KMS, ruft AWS KMS
for.NET jeden verschlisselten Datenschlissel auf (bis er einen entschlisselt) und beschrankt sich
darauf, die verwendeten KMS-Schlussel auf AWS KMS die angegebene Region zu beschranken.
AWS Encryption SDK

Im folgenden Beispiel wird Version 4 verwendet. x von AWS Encryption SDK fir .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter,
// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = new DiscoveryFilter()

{
AccountIds = account,
Partition = "aws"

1Y

var kmsRegionalDiscoveryKeyring =
mlp.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschlisselten Datenschlissel in einer

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund 141

https://docs.aws.amazon.com/sdkfornet/v4/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html

AWS Encryption SDK Entwicklerhandbuch

verschlisselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called

“‘Beschrankung verschlusselter Datenschlissel”.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'e@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
b

JavaScript Node.js

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschlisselten Datenschlissel in einer

verschlisselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called

“‘Beschrankung verschlUsselter Datenschlissel”.

Einen Uberblick tiber diesen Schliisselbund und die 1imitRegions Funktion finden Sie in einem
funktionierenden Beispiel unter kms_regional_discovery.ts.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'e@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund 142

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_regional_discovery.ts

AWS Encryption SDK Entwicklerhandbuch

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
clientProvider,
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }

D

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.buildexr()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.buildexr()
.discoveryFilter(discoveryFilter)
.regions("us-west-2")
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_region)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund 143

AWS Encryption SDK Entwicklerhandbuch

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS regional discovery keyring
regional_discovery_keyring_input: CreateAwsKmsMrkDiscoveryKeyringInput = \
CreateAwsKmsMrkDiscoveryKeyringInput(
kms_client=kms_client,
region=mrk_replica_decrypt_region,
discovery_filter=DiscoveryFiltex(
account_ids=[111122223333],
partition="aws"

regional_discovery_keyring: IKeyring =
mat_prov.create_aws_kms_mrk_discovery_keyring(
input=regional_discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund 144

AWS Encryption SDK

Entwicklerhandbuch

Go

// Create an AWS KMS client

let decrypt_kms_config = aws_sdk_kms::config::Builder::from(&sdk_config)
.region(Region: :new(mrk_replica_decrypt_region.clone()))
.build();

let decrypt_kms_client = aws_sdk_kms::Client::from_conf(decrypt_kms_config);

// Create discovery filter

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the regional discovery keyring

let discovery_keyring = mpl
.create_aws_kms_mrk_discovery_keyring()
.kms_client(decrypt_kms_client)
.region(mrk_replica_decrypt_region)
.discovery_filter(discovery_filter)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund

145

AWS Encryption SDK Entwicklerhandbuch

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1))
// Optional: Create an encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{awsAccountID},
Partition: "aws",
}
// Create the regional discovery keyring
awsKmsMrkDiscoveryInput := mpltypes.CreateAwsKmsMrkDiscoveryKeyringInput{
KmsClient: kmsClient,
Region: alternateRegionMrkKeyRegion,

DiscoveryFilter: &discoveryFilter,
}
awsKmsMrkDiscoveryKeyring, err :=
matProv.CreateAwsKmsMrkDiscoveryKeyring(context.Background(),
awsKmsMrkDiscoveryInput)
if err !'= nil {
panic(err)

Die exportiert AWS-Verschlisselungs-SDK for JavaScript auch eine Funktion flir Node.js und
den Browser. excludeRegions Diese Funktion erstellt einen AWS KMS Regional Discovery-

Verwenden Sie einen AWS KMS regionalen Discovery-Schlisselbund 146

AWS Encryption SDK Entwicklerhandbuch

Schlisselbund, der bestimmte Regionen AWS KMS keys auslasst. Im folgenden Beispiel wird ein
AWS KMS regionaler Discovery-Schlisselbund erstellt, der AWS KMS keys im Konto 111122223333
in allen Konten AWS-Region auller US East (Nord-Virginia) (us-east-1) verwendet werden kann.

Fur AWS-Verschlisselungs-SDK for C gibt es keine analoge Methode, aber Sie kénnen eine
implementieren, indem Sie eine benutzerdefinierte Methode erstellen. ClientSupplier

Dieses Beispiel zeigt den Code fur Node.js.

const discovery = true
const clientProvider = excludeRegions(['us-east-1'], getKmsClient)
const keyring = new KmsKeyringNode({

clientProvider,

discovery,

discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }

1

AWS KMS Hierarchische Schlusselanhanger

Mit dem AWS KMS hierarchischen Schlisselbund kénnen Sie lhre kryptografischen Materialien
mit einem KMS-Schlissel mit symmetrischer Verschlisselung schitzen, ohne AWS KMS
jedes Mal anrufen zu miussen, wenn Sie Daten ver- oder entschlisseln. Es ist eine gute Wahl
fur Anwendungen, bei denen die Anzahl der Aufrufe minimiert werden muss AWS KMS,

und fir Anwendungen, die kryptografisches Material wiederverwenden kénnen, ohne ihre
Sicherheitsanforderungen zu verletzen.

Der hierarchische Schlisselbund ist eine Lésung zum Zwischenspeichern von kryptografischem
Material, die die Anzahl der AWS KMS Aufrufe reduziert, indem AWS KMS geschutzte Branch-
Schlussel verwendet werden, die in einer Amazon DynamoDB-Tabelle gespeichert sind,

und anschlie3end das bei Verschlisselungs- und Entschlisselungsvorgangen verwendete
Zweigschlusselmaterial lokal zwischengespeichert wird. Die DynamoDB-Tabelle dient als
Schlusselspeicher flur die Verwaltung und den Schutz von Zweigschlisseln. Sie speichert den
aktiven Branch-SchlUssel und alle vorherigen Versionen des Branch-Schlissels. Der aktive
Zweigschlussel ist die neueste Version des Zweigschlissels. Der hierarchische Schlisselbund
verwendet einen eindeutigen Datenschlussel, um jede Nachricht zu verschlusseln, verschlisselt
jeden Datenverschlisselungsschlussel fur jede Verschlisselungsanforderung und verschlisselt
jeden Datenverschlisselungsschlussel mit einem eindeutigen UmschlieRungsschlussel, der vom
aktiven Branch-Schlussel abgeleitet wird. Der hierarchische Schlisselbund hangt von der Hierarchie

AWS KMS Hierarchische Schlisselanhanger 147

https://github.com/aws/aws-encryption-sdk-c/blob/master/aws-encryption-sdk-cpp/include/aws/cryptosdk/cpp/kms_keyring.h#L157

AWS Encryption SDK Entwicklerhandbuch

ab, die zwischen aktiven Zweigschlisseln und ihren abgeleiteten Umschliel3ungsschlisseln
eingerichtet wurde.

Der hierarchische Schliisselbund verwendet in der Regel jede Version des Zweigschlissels, um
mehrere Anfragen zu erfillen. Sie kontrollieren jedoch, in welchem Umfang aktive Zweigschlissel
wiederverwendet werden, und bestimmen, wie oft der aktive Zweigschlissel rotiert wird. Die aktive
Version des Abzweigschlissels bleibt aktiv, bis Sie ihn drehen. Frihere Versionen des aktiven
Zweigschlissels werden nicht zur Ausfiihrung von Verschliisselungsvorgangen verwendet, sie
kénnen jedoch weiterhin abgefragt und bei Entschlisselungsvorgangen verwendet werden.

Wenn Sie den hierarchischen Schllisselbund instanziieren, erstellt er einen lokalen Cache. Sie geben
ein Cache-Limit an, das die maximale Zeitspanne definiert, fir die die Branch-Schlisselmaterialien
im lokalen Cache gespeichert werden, bevor sie ablaufen und aus dem Cache entfernt werden.
Der hierarchische Schlisselbund fihrt einen AWS KMS Aufruf durch, um den Zweigschlissel

zu entschlUsseln und die Zweigschlisselmaterialien zusammenzustellen, wenn a zum ersten

Mal in einem Vorgang angegeben branch-key-id wird. AnschlieRend werden die Materialien
der Verzweigungsschlissel im lokalen Cache gespeichert und fur alle Verschlisselungs- und
Entschlisselungsvorgange, die dies spezifizieren, wiederverwendet, bis das Cache-Limit ablauft.
branch-key-id Das Speichern von Zweigschlisselmaterialien im lokalen Cache reduziert die
Anzahl der Aufrufe. AWS KMS Stellen Sie sich zum Beispiel ein Cache-Limit von 15 Minuten

vor. Wenn Sie 10.000 Verschliisselungsvorgange innerhalb dieses Cache-Limits ausfiihren,
musste der herkdbmmliche AWS KMS Schltisselbund 10.000 AWS KMS Aufrufe tatigen, um 10.000
Verschllisselungsvorgange zu erfiillen. Wenn Sie einen aktiven Schllisselbund habenbranch-
key-id, muss der hierarchische Schlisselbund nur einen AWS KMS Aufruf tatigen, um 10.000
Verschlisselungsvorgange abzuwickeln.

Der lokale Cache trennt Verschlisselungsmaterialien von Entschlisselungsmaterialien. Die
Verschlisselungsmaterialien werden aus dem aktiven Zweigschlissel zusammengesetzt und

fur alle Verschlisselungsvorgange wiederverwendet, bis das Cache-Limit abgelaufen ist. Die
Entschlisselungsmaterialien werden aus der Zweigschlissel-ID und der Version zusammengestellt,
die in den Metadaten des verschlisselten Felds identifiziert wurden, und sie werden fur alle
Entschlisselungsvorgange im Zusammenhang mit der Branch-Schlissel-ID und -version
wiederverwendet, bis das Cache-Limit ablauft. Im lokalen Cache kénnen mehrere Versionen
desselben Zweigschlissels gleichzeitig gespeichert werden. Wenn der lokale Cache fur die
Verwendung von konfiguriert istbranch key ID supplier, kann er auch Zweigschlisselmaterial von
mehreren aktiven Zweigschlisseln gleichzeitig speichern.

AWS KMS Hierarchische Schlliisselanhanger 148

AWS Encryption SDK Entwicklerhandbuch

® Note

Alle Erwahnungen des Begriffs ,Hierarchischer Schlisselbund® in der AWS Encryption SDK
beziehen sich auf den AWS KMS hierarchischen Schlisselbund.

Kompatibilitat mit Programmiersprachen

Der hierarchische Schlisselbund wird von den folgenden Programmiersprachen und Versionen
unterstutzt:

» Version 3. x der AWS-Verschlisselungs-SDK for Java
 Ausfiihrung 4. x von AWS Encryption SDK fur .NET

» Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn es mit der optionalen MPL-
Abhéangigkeit verwendet wird.

* Version 1. x von der AWS Encryption SDK fir Rust
* Version 0.1. x oder héher von AWS Encryption SDK for Go

Themen

* Funktionsweise

* Voraussetzungen

Erforderliche Berechtigungen

Wahlen Sie einen Cache

Erstellen Sie einen hierarchischen Schliisselbund

Funktionsweise

In den folgenden exemplarischen Vorgehensweisen wird beschrieben, wie der hierarchische
Schlusselbund Verschlisselungs- und Entschlisselungsmaterialien zusammenstellt. AulRerdem
werden die verschiedenen Aufrufe beschrieben, die der Schlisselbund fur Verschlisselungs-
und Entschlisselungsvorgange vornimmt. Technische Einzelheiten zur Ableitung von Schlusseln
und zur Verschlisselung von Klartext-Datenschlisseln finden Sie unter Technische Details zum
hierarchischen Schlisselbund. AWS KMS

Verschlusseln und signieren

Funktionsweise 149

AWS Encryption SDK Entwicklerhandbuch

In der folgenden exemplarischen Vorgehensweise wird beschrieben, wie der hierarchische
Schlisselbund Verschlisselungsmaterialien zusammenstellt und daraus einen eindeutigen
UmschlieBungsschlissel ableitet.

1. Die Verschlisselungsmethode fragt den hierarchischen Schllisselbund nach
Verschlisselungsmaterialien. Der Schlisselbund generiert einen Klartext-Datenschlissel und
Uberpruft dann, ob sich im lokalen Cache glltiges Verzweigungsmaterial fir die Generierung des
Wrapping-Schlissels befindet. Wenn glltiges Schlisselmaterial fir die Zweige vorhanden ist,
fahrt der Schlisselbund mit Schritt 4 fort.

2. Wenn kein gultiges Material fur Zweigschlissel vorhanden ist, fragt der hierarchische
Schlusselbund den Schlusselspeicher nach dem aktiven Zweigschlissel ab.

a. Der Schlusselspeicher ruft AWS KMS zur Entschlisselung des aktiven Zweigschlissels
auf und gibt den aktiven Zweigschlissel im Klartext zurtick. Daten, die den aktiven
Zweigschlussel identifizieren, werden serialisiert, um zusatzliche authentifizierte Daten
(AAD) beim Entschlisselungsaufruf von bereitzustellen. AWS KMS

b. Der Schllsselspeicher gibt den Klartext-Zweigschlissel und die ihn identifizierenden Daten
zuruck, z. B. die Version des Zweigschlussels.

3. Der hierarchische Schlisselbund stellt die Schiisselmaterialien der Zweige zusammen (die
Version mit dem Zweigschlissel im Klartext und der Zweigschlisselversion) und speichert eine
Kopie davon im lokalen Cache.

4. Der hierarchische Schlisselbund leitet aus dem Klartext-Verzweigungsschlissel und einem
16-Byte-Zufallssalz einen eindeutigen Umbruchschlissel ab. Er verwendet den abgeleiteten
UmschlieBungsschlissel, um eine Kopie des Klartext-Datenschlissels zu verschlisseln.

Die Verschlisselungsmethode verwendet die Verschlisselungsmaterialien, um die Daten zu
verschlisseln. Weitere Informationen finden Sie unter So werden AWS Encryption SDK Daten
verschlusselt.

Entschlisseln und verifizieren

In der folgenden exemplarischen Vorgehensweise wird beschrieben, wie der hierarchische
Schlisselbund Entschlisselungsmaterialien zusammenstellt und den verschlisselten Datenschlissel
entschlusselt.

1. Die Entschlisselungsmethode identifiziert den verschlisselten Datenschlissel aus der
verschlisselten Nachricht und leitet ihn an den hierarchischen Schlisselbund weiter.

Funktionsweise 150

AWS Encryption SDK Entwicklerhandbuch

2.

Der hierarchische Schltisselbund deserialisiert Daten, die den verschliisselten Datenschlissel
identifizieren, einschliellich der Version des Zweigschlissels, des 16-Byte-Salts und anderer
Informationen, die beschreiben, wie der Datenschliissel verschliisselt wurde.

Weitere Informationen finden Sie unter AWS KMS Technische Details zum hierarchischen
Schlisselbund.

Mit dem hierarchischen Schlisselbund wird geprift, ob sich im lokalen Cache giiltiges
Zweigschlisselmaterial befindet, das mit der in Schritt 2 identifizierten Version des
Zweigschlussels Ubereinstimmt. Wenn glltiges Schliisselmaterial fir die Zweige vorhanden ist,
fahrt der Schlisselbund mit Schritt 6 fort.

Wenn kein gultiges Material flir Zweigschlissel vorhanden ist, fragt der hierarchische
Schlisselbund den Schllsselspeicher nach dem Zweigschllissel ab, der mit der in Schritt 2
identifizierten Version des Zweigschlissels Ubereinstimmt.

a. Der Schlusselspeicher ruft AWS KMS zur Entschliisselung des Zweigschlissels auf und
gibt den aktiven Zweigschlissel im Klartext zurtick. Daten, die den aktiven Zweigschlussel
identifizieren, werden serialisiert, um zusatzliche authentifizierte Daten (AAD) beim
Entschlisselungsaufruf von bereitzustellen. AWS KMS

b. Der Schlisselspeicher gibt den Klartext-Zweigschlissel und die ihn identifizierenden Daten
zuruck, z. B. die Version des Zweigschlussels.

Der hierarchische Schllisselbund stellt die Schillisselmaterialien der Zweige zusammen (die
Version mit dem Zweigschlissel im Klartext und der Zweigschlisselversion) und speichert eine
Kopie davon im lokalen Cache.

Der hierarchische Schllisselbund verwendet die zusammengestellten Zweigschlisselmaterialien
und das in Schritt 2 identifizierte 16-Byte-Salt, um den eindeutigen Wrapping-Schlissel zu
reproduzieren, mit dem der Datenschlissel verschlisselt wurde.

Der hierarchische Schliisselbund verwendet den reproduzierten Wrapping-Schliissel, um den
DatenschlUssel zu entschlUsseln, und gibt den Klartext-Datenschllssel zurick.

Die Entschlusselungsmethode verwendet die Entschlisselungsmaterialien und den Klartext-

DatenschliUssel, um die verschlisselte Nachricht zu entschliisseln. Weitere Informationen finden Sie
unter So AWS Encryption SDK entschlUsselt der eine verschliusselte Nachricht.

Funktionsweise 151

AWS Encryption SDK Entwicklerhandbuch

Voraussetzungen

Bevor Sie einen hierarchischen Schlisselbund erstellen und verwenden, stellen Sie sicher, dass die
folgenden Voraussetzungen erflllt sind.

» Sie oder Ihr Schlisselspeicheradministrator haben einen Schllisselspeicher und mindestens einen
aktiven Zweigschlussel erstellt.

» Sie haben lhre Schlisselspeicheraktionen konfiguriert.

® Note

Wie Sie lhre Schliusselspeicher-Aktionen konfigurieren, bestimmt, welche Operationen Sie
ausfiuhren kénnen und welche KMS-Schllssel der hierarchische Schllisselbund verwenden
kann. Weitere Informationen finden Sie unter Schlisselspeicher-Aktionen.

» Sie verfligen Uber die erforderlichen AWS KMS Berechtigungen, um auf den Schllisselspeicher und
die Zweigschlissel zuzugreifen und diese zu verwenden. Weitere Informationen finden Sie unter
the section called “Erforderliche Berechtigungen”.

» Sie haben die unterstitzten Cachetypen Uberprtft und den Cachetyp konfiguriert, der lhren
Anforderungen am besten entspricht. Weitere Informationen finden Sie unter the section called
‘Wahlen Sie einen Cache”

Erforderliche Berechtigungen

Der benétigt AWS Encryption SDK keinen AWS-Konto und hangt auch nicht von einem ab AWS-
Service. Um einen hierarchischen Schlisselbund verwenden zu kénnen, bendétigen Sie jedoch
mindestens die folgenden Mindestberechtigungen flr die symmetrische (n) Verschlisselung AWS
KMS key(en) in lhrem Schlisselspeicher. AWS-Konto

+ Um Daten mit dem hierarchischen Schlisselbund zu ver- und entschlisseln, benétigen Sie
kms:Decrypt.

* Um Zweigschlissel zu erstellen und zu rotieren, benoétigen Sie kms: und kms:.
GenerateDataKeyWithoutPlaintext ReEncrypt

Weitere Informationen zur Steuerung des Zugriffs auf lhre Filialschlissel und Ihren Schltsselspeicher
finden Sie unterthe section called “Implementieren der geringsten Berechtigungen”.

Voraussetzungen 152

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Entwicklerhandbuch

Wahlen Sie einen Cache

Durch den hierarchischen Schlisselbund wird die Anzahl der Aufrufe reduziert, AWS KMS indem
die bei Verschlusselungs- und Entschlisselungsvorgangen verwendeten Filialschlisselmaterialien
lokal zwischengespeichert werden. Bevor Sie Ihren hierarchischen Schltsselbund erstellen, missen
Sie entscheiden, welche Art von Cache Sie verwenden mdchten. Sie kdbnnen den Standard-Cache

verwenden oder den Cache an |lhre Bediirfnisse anpassen.
Der hierarchische Schlisselbund unterstitzt die folgenden Cachetypen:

» the section called “Standard-Cache”

» the section called “MultiThreaded Cache”

» the section called “StormTracking Zwischenspeicher”

» the section called “Gemeinsam genutzter Cache”

/A Important

Alle unterstitzten Cachetypen sind fir die Unterstlitzung von Multithread-Umgebungen
konzipiert.

In Kombination mit dem unterstiitzt der AWS-Verschliisselungs-SDK for Python hierarchische
Schlusselbund jedoch keine Multithread-Umgebungen. Weitere Informationen finden Sie

in der Python-Datei README .rst im -library-Repository unteraws-cryptographic-material-

providers. GitHub

Standard-Cache

Fir die meisten Benutzer erflllt der Standard-Cache ihre Threading-Anforderungen. Der Standard-
Cache ist so konzipiert, dass er Umgebungen mit hohem Multithreading-Anteil unterstitzt. Wenn ein
Eintrag fur Branch-Schlussel-Materialien ablauft, verhindert der Standard-Cache den Aufruf mehrerer
Threads, AWS KMS indem ein Thread 10 Sekunden im Voraus dartber informiert wird, dass der
Eintrag fur Branch-Schlussel-Materialien ablauft. Dadurch wird sichergestellt, dass nur ein Thread
eine Anfrage AWS KMS zur Aktualisierung des Caches sendet.

Standard und StormTracking Caches unterstiutzen dasselbe Threading-Modell, aber Sie missen nur
die Eingangskapazitat angeben, um den Standard-Cache verwenden zu kénnen. Fur detailliertere
Cache-Anpassungen verwenden Sie den. the section called “StormTracking Zwischenspeicher”

Wahlen Sie einen Cache 153

https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main

AWS Encryption SDK

Entwicklerhandbuch

Sofern Sie nicht die Anzahl der Materialeintrage fir Branch Key anpassen mochten, die im
lokalen Cache gespeichert werden kdnnen, missen Sie bei der Erstellung des hierarchischen
Schlisselbunds keinen Cachetyp angeben. Wenn Sie keinen Cachetyp angeben, verwendet der
hierarchische Schlisselbund den Standard-Cachetyp und legt die Eintragskapazitat auf 1000 fest.

Um den Standard-Cache anzupassen, geben Sie die folgenden Werte an:

 Eintragskapazitat: Schrankt die Anzahl der Eintrage fir wichtige Materialien der Branche ein, die im

lokalen Cache gespeichert werden kénnen.

Java
.cache(CacheType.builder()
.Default(DefaultCache.builder()
.entryCapacity(100)
.build())
C#/ .NET

CacheType defaultCache = new CacheType
{

Default = new DefaultCache{EntryCapacity = 100}

};

Python

default_cache = CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

Rust

let cache: CacheType = CacheType::Default(
DefaultCache: :buildex()
.entry_capacity(100)
.build()?>,
);

Wahlen Sie einen Cache

154

AWS Encryption SDK Entwicklerhandbuch

Go

cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
},
}

MultiThreaded Cache

Der MultiThreaded Cache kann sicher in Multithread-Umgebungen verwendet werden, bietet jedoch
keine Funktionen zur Minimierung AWS KMS von Amazon DynamoDB DynamoDB-Aufrufen. Daher
werden alle Threads gleichzeitig benachrichtigt, wenn ein Eintrag flr wichtige Materialien in einer
Branche ablauft. Dies kann zu mehreren AWS KMS Aufrufen fihren, um den Cache zu aktualisieren.

Um den MultiThreaded Cache zu verwenden, geben Sie die folgenden Werte an:

» Eintragskapazitat: Beschrankt die Anzahl der Eintrage flr Branch-Schlisselmaterialien, die im
lokalen Cache gespeichert werden kénnen.

» Grole des Endstlicks des Eintrags: Definiert die Anzahl der Eintrage, die beschnitten werden
mussen, wenn die Eingangskapazitat erreicht ist.

Java
.cache(CacheType.builder()
.MultiThreaded(MultiThreadedCache.builder()
.entryCapacity(100)
.entryPruningTailSize(1)
.build())
C#/ .NET

CacheType multithreadedCache = new CacheType

{
MultiThreaded = new MultiThreadedCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1
}

Wahlen Sie einen Cache 155

AWS Encryption SDK Entwicklerhandbuch

i

Python

multithreaded_cache = CacheTypeMultiThreaded(
value=MultiThreadedCache(
entry_capacity=100,
entry_pruning_tail_size=1

Rust

CacheType: :MultiThreaded(

MultiThreadedCache: :buildex()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.build()?)

Go

var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberMultiThreaded{
Value: mpltypes.MultiThreadedCache{

EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
},

}

StormTracking Zwischenspeicher

Der StormTracking Cache ist so konzipiert, dass er Umgebungen mit vielen Threads unterstutzt.
Wenn ein Eintrag fur Branch-Schlissel-Materialien ablauft, verhindert der StormTracking Cache den
Aufruf mehrerer Threads, AWS KMS indem ein Thread im Voraus darlUber informiert wird, dass der
Eintrag fur Branch-Schlussel-Materialien ablauft. Dadurch wird sichergestellt, dass nur ein Thread
eine Anfrage AWS KMS zur Aktualisierung des Caches sendet.

Um den StormTracking Cache zu verwenden, geben Sie die folgenden Werte an:

Wahlen Sie einen Cache 156

AWS Encryption SDK Entwicklerhandbuch

Eintragskapazitat: Beschrankt die Anzahl der Eintrage flr Branch-Schllisselmaterialien, die im
lokalen Cache gespeichert werden kénnen.

Standardwert: 1000 Eintrage

GréRe des Eintrags zum Beschneiden: Definiert die Anzahl der Eintrage fur wichtige Materialien in
der Branche, die gleichzeitig beschnitten werden sollen.

Standardwert: 1 Eintrag

Ubergangszeit: Definiert die Anzahl der Sekunden vor Ablauf, nach der versucht wird, die
wichtigsten Materialien der Branche zu aktualisieren.

Standardwert: 10 Sekunden

Verlangerungsintervall: Definiert die Anzahl der Sekunden zwischen Versuchen, die
Schlusselmaterialien der Filiale zu aktualisieren.

Standardwert: 1 Sekunde

Fan-out: Definiert die Anzahl der gleichzeitigen Versuche, die wichtigsten Materialien der Filiale zu
aktualisieren.

Standardwert: 20 Versuche

In Flight Time to Live (TTL): Definiert die Anzahl der Sekunden, bis beim Versuch, die
Schlusselmaterialien der Filiale zu aktualisieren, ein Timeout auftritt. Jedes Mal, wenn

der Cache als Antwort auf eine zurtickkehrt NoSuchEntryGetCacheEntry, gilt dieser
Verzweigungsschlissel als aktiv, bis derselbe Schlissel zusammen mit einem PutCache Eintrag
geschrieben wird.

Standardwert: 10 Sekunden

Sleep: Definiert die Anzahl der Millisekunden, die ein Thread in den Ruhezustand versetzen soll,
wenn der fanOut Wert Gberschritten wird.

Standardwert: 20 Millisekunden

Java

.cache(CacheType.builder()
.StormTracking(StormTrackingCache.builder()
.entryCapacity(100)
.entryPruningTailSize(1)

Wahlen Sie einen Cache 157

AWS Encryption SDK Entwicklerhandbuch

.gracePeriod(10)
.gracelnterval(l)
.fanOut(20)
.inFlightTTL(10)
.sleepMilli(20)
.build())

C#/.NET

CacheType stormTrackingCache = new CacheType
{
StormTracking = new StormTrackingCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1,
FanOut = 20,
GraceInterval = 1,
GracePeriod = 10,
InFlightTTL = 10,
SleepMilli = 20

};

Python

storm_tracking_cache = CacheTypeStormTracking(
value=StormTrackingCache(
entry_capacity=100,
entry_pruning_tail_size=1,
fan_out=20,
grace_interval=1,
grace_period=10,
in_flight_ttl=10,
sleep_milli=20

Rust

CacheType: :StormTracking(
StormTrackingCache: :buildex()
.entry_capacity(100)

Wahlen Sie einen Cache 158

AWS Encryption SDK Entwicklerhandbuch

.entry_pruning_tail_size(1)
.grace_period(10)
.grace_interval(1)
.fan_out(20)
.in_flight_ttl(10)
.sleep_milli(20)

.build()?)

Go

var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberStormTracking{
Value: mpltypes.StormTrackingCache{
EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,

Gracelnterval: 1,
GracePeriod: 10,
FanOut: 20,
InFlightTTL: 10,
SleepMilli: 20,
b

}

Gemeinsam genutzter Cache

StandardmaRig erstellt der hierarchische Schlisselbund jedes Mal, wenn Sie den Schlisselbund
instanziieren, einen neuen lokalen Cache. Der Shared Cache kann jedoch dabei helfen,
Speicherplatz zu sparen, indem er es lhnen ermdglicht, einen Cache fir mehrere hierarchische
Schlusselbunde gemeinsam zu nutzen. Anstatt fur jeden hierarchischen Schlisselbund, den Sie
instanziieren, einen neuen Cache fur kryptografisches Material zu erstellen, speichert der Shared
Cache nur einen Cache im Arbeitsspeicher, der von allen hierarchischen Schlisselbunden verwendet
werden kann, die auf ihn verweisen. Der gemeinsam genutzte Cache tragt zur Optimierung

der Speichernutzung bei, indem verhindert wird, dass kryptografisches Material in mehreren
Schlusselbunden doppelt vorhanden ist. Stattdessen konnen die hierarchischen Schllsselbunde auf
denselben zugrunde liegenden Cache zugreifen, wodurch der Gesamtspeicherbedarf reduziert wird.

Wenn Sie Ihren Shared Cache erstellen, definieren Sie immer noch den Cachetyp. Sie kdnnen einen
the section called “Standard-Cache’the section called “MultiThreaded Cache”, oder the section
called “StormTracking Zwischenspeicher” als Cachetyp angeben oder einen beliebigen kompatiblen
benutzerdefinierten Cache ersetzen.

Wahlen Sie einen Cache 159

AWS Encryption SDK Entwicklerhandbuch

Partitionen

Ein einziger gemeinsam genutzter Cache kann von mehreren hierarchischen Schllisselbunden
verwendet werden. Wenn Sie einen hierarchischen Schlisselbund mit einem gemeinsam

genutzten Cache erstellen, kdnnen Sie eine optionale Partitions-ID definieren. Die Partitions-ID
unterscheidet, welcher hierarchische Schlisselbund in den Cache schreibt. Wenn zwei hierarchische
Schlisselbunde auf dieselbe Partitions-ID und dieselbe Zweigschlussel-ID verweisenlogical key
store name, teilen sich die beiden Schliisselbunde dieselben Cache-Eintrage im Cache. Wenn Sie
zwei hierarchische Schlisselbunde mit demselben Shared Cache, aber unterschiedlicher Partition
IDs erstellen, greift jeder Schlisselbund nur auf die Cache-Eintrage von der eigenen zugewiesenen
Partition innerhalb des Shared Caches zu. Die Partitionen dienen als logische Unterteilungen
innerhalb des gemeinsam genutzten Caches, sodass jeder hierarchische Schlisselbund unabhangig
auf seiner eigenen zugewiesenen Partition betrieben werden kann, ohne die in der anderen Partition
gespeicherten Daten zu beeintrachtigen.

Wenn Sie beabsichtigen, die Cache-Eintrage in einer Partition wiederzuverwenden oder
gemeinsam zu nutzen, mussen Sie |Ihre eigene Partitions-ID definieren. Wenn Sie die Partitions-
ID an |hren hierarchischen Schlisselbund tUbergeben, kann der Schlisselbund die Cache-
Eintrage wiederverwenden, die bereits im Shared Cache vorhanden sind, anstatt die Branch-
Schlusselmaterialien erneut abrufen und autorisieren zu mussen. Wenn Sie keine Partitions-ID
angeben, wird dem SchliUsselbund bei jeder Instanziierung des hierarchischen Schllisselbunds
automatisch eine eindeutige Partitions-ID zugewiesen.

Die folgenden Verfahren veranschaulichen, wie ein gemeinsam genutzter Cache mit dem Standard-
Cachetyp erstellt und an einen hierarchischen Schlisselbund Gbergeben wird.

1. Erstellen Sie einen CryptographicMaterialsCache (CMC) mithilfe der Material Providers
Library (MPL).

Java

// Instantiate the MPL
final MaterialProviders matProv =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a CacheType object for the Default cache

Wahlen Sie einen Cache 160

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

final CacheType cache =
CacheType.buildex()
.Default(DefaultCache.builder().entryCapacity(100).build())
.build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCachelInput cryptographicMaterialsCachelInput =
CreateCryptographicMaterialsCacheInput.builder()
.cache(cache)
.build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCachelInput);

C#/.NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

var cache

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Python

Instantiate the MPL
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create a CacheType object for the default cache
cache: CacheType = CacheTypeDefault(
value=DefaultCache(
entry_capacity=100,

Wahlen Sie einen Cache 161

AWS Encryption SDK Entwicklerhandbuch

Create a CMC using the default cache
cryptographic_materials_cache_input = CreateCryptographicMaterialsCacheInput(
cache=cache,

shared_cryptographic_materials_cache =
mat_prov.create_cryptographic_materials_cache(
cryptographic_materials_cache_input

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(
DefaultCache: :builder()
.entry_capacity(100)
.build()?>,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
create_cryptographic_materials_cache()
.cache(cache)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

)

// Instantiate the MPL
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

Wahlen Sie einen Cache 162

AWS Encryption SDK Entwicklerhandbuch

if err !'= nil {
panic(err)

// Create a CacheType object for the default cache
cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
},

// Create a CMC using the default cache
cmcCacheInput := mpltypes.CreateCryptographicMaterialsCacheInput{
Cache: &cache,

}
sharedCryptographicMaterialsCache, err :=
matProv.CreateCryptographicMaterialsCache(context.Background(), cmcCachelInput)
if err !'= nil {

panic(err)

2. Erstellen Sie ein CacheType Objekt fur den Shared Cache.

Ubergeben sharedCryptographicMaterialsCache Sie das, was Sie in Schritt 1 erstellt
haben, an das neue CacheType Objekt.

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
CacheType.buildex()
.Shared(sharedCryptographicMaterialsCache)
.build();

C#/ .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Python

Create a CacheType object for the shared_cryptographic_materials_cache

Wahlen Sie einen Cache 163

AWS Encryption SDK Entwicklerhandbuch

shared_cache: CacheType = CacheTypeShared(
value=shared_cryptographic_materials_cache

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
CacheType: :Shared(shared_cryptographic_materials_cache);

Go

// Create a CacheType object for the shared_cryptographic_materials_cache

shared_cache :=
mpltypes.CacheTypeMemberShared{sharedCryptographicMaterialsCache}

3. Ubergeben Sie das sharedCache Objekt aus Schritt 2 an lhren hierarchischen Schliisselbund.

Wenn Sie einen hierarchischen Schllisselbund mit einem gemeinsam genutzten Cache erstellen,
kénnen Sie optional a definieren, um Cache-Eintrage fur mehrere hierarchische Schlisselbunde
gemeinsam partitionID zu nutzen. Wenn Sie keine Partitions-ID angeben, weist der
hierarchische Schllisselbund dem Schllisselbund automatisch eine eindeutige Partitions-ID zu.

@ Note
Ihre hierarchischen Schlisselbunde verwenden dieselben Cacheeintrage in einem
gemeinsam genutzten Cache, wenn Sie zwei oder mehr Schllisselbunde erstellen, die
auf dieselbe Partitions-ID und Verzweigungsschlissel-ID verweisen. logical key store
name Wenn Sie nicht mochten, dass sich mehrere Schlisselbunde dieselben Cache-
Eintrage teilen, missen Sie flr jeden hierarchischen Schllisselbund eine eindeutige
Partitions-ID verwenden.

Im folgenden Beispiel wird ein hierarchischer Schlisselbund mit einem und einem branch key ID
supplier Cache-Limit von 600 Sekunden erstellt. Weitere Informationen zu den Werten, die in der
folgenden hierarchischen Schllisselbundkonfiguration definiert sind, finden Sie unter. the section
called “Erstellen Sie einen hierarchischen Schlisselbund”

Wahlen Sie einen Cache 164

AWS Encryption SDK Entwicklerhandbuch

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(keystore)
.branchKeyIdSupplier(branchKeyIdSupplier)
.tt1lSeconds(600)
.cache(sharedCache)
.partitionID(partitionlID)
.build();
final IKeyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyIdSupplier = branchKeyIdSupplier,
Cache = sharedCache,
TtlSeconds = 600,
PartitionId = partitionID
};

var keyring =
materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Python

Create the Hierarchical keyring

keyring_input: CreateAwsKmsHierarchicalKeyringInput =

CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=shared_cache,
partition_id=partition_id

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(

Wahlen Sie einen Cache 165

AWS Encryption SDK Entwicklerhandbuch

input=keyring_input

Rust

// Create the Hierarchical keyring
let keyringl = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_storel)
.branch_key_id(branch_key_id.clone())
// CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
clone it to
// pass it to different Hierarchical Keyrings, it will still point to the
same
// underlying cache, and increment the reference count accordingly.
.cache(shared_cache.clone())
.ttl_seconds(600)
.partition_id(partition_id.clone())
.send()
.await?;

Go

// Create the Hierarchical keyring
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStorel,
BranchKeyId: &branchKeyId,
TtlSeconds: 600,
Cache: &shared_cache,
PartitionId: &partitionId,
}
keyring, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)

Erstellen Sie einen hierarchischen Schliusselbund

Um einen hierarchischen Schllisselbund zu erstellen, missen Sie die folgenden Werte angeben:

Erstellen Sie einen hierarchischen Schliisselbund 166

AWS Encryption SDK Entwicklerhandbuch

» Ein Name fur den Schllsselspeicher

Der Name der DynamoDB-Tabelle, die Sie oder Ihr Schllisselspeicheradministrator als
Schlisselspeicher erstellt haben.

Ein Cache-Limit fur die Gultigkeitsdauer (Time to Live, TTL)

Die Zeitspanne in Sekunden, in der ein Eintrag flr Branch-Schllisselmaterialien im lokalen Cache
verwendet werden kann, bevor er ablauft. Das Cache-Limit TTL bestimmt, wie oft der Client anruft,
AWS KMS um die Verwendung der Branch-Schllssel zu autorisieren. Dieser Wert muss gréfRer als
null sein. Nach Ablauf des Cache-Limits TTL wird der Eintrag nicht mehr bearbeitet und aus dem
lokalen Cache entfernt.

» Eine Schlussel-ID fir eine Zweigstelle

Sie kénnen den entweder statisch konfigurierenbranch-key-id, der einen einzelnen
aktiven Zweigschlussel in lhrem Schllisselspeicher identifiziert, oder einen Lieferanten fur die
Zweigschlussel-ID angeben.

Der Anbieter der Zweigschlussel-ID bestimmt anhand der im Verschlisselungskontext
gespeicherten Felder, welcher Filialschlissel zum Entschlisseln eines Datensatzes erforderlich ist.

Wir empfehlen dringend, fir Mehrmandantendatenbanken, bei denen jeder Mandant Gber einen
eigenen Branch-Schlussel verfugt, einen Branch-Schlissel-ID-Anbieter zu verwenden. Sie

kénnen den Anbieter fur die Branch-Schlissel-ID verwenden, um einen benutzerfreundlichen
Namen fur Ihren Branch-Schlissel IDs zu erstellen, damit Sie die richtige Branch-Schlissel-I1D

fur einen bestimmten Mandanten leicht erkennen kénnen. Mit dem Anzeigenamen kdnnen Sie
beispielsweise auf einen Zweigschlissel als tenantl statt auf verweisenb3f61619-4d35-48ad-
a275-050f87e15122.

Fir Entschlisselungsvorgange kdnnen Sie entweder einen einzelnen hierarchischen
Schlusselbund statisch konfigurieren, um die Entschllsselung auf einen einzelnen Mandanten zu
beschranken, oder Sie kénnen den Branch-Schlissel-ID-Anbieter verwenden, um zu ermitteln,
welcher Mandant fiir die Entschlisselung eines Datensatzes verantwortlich ist.

» (Optional) Ein Cache

Erstellen Sie einen hierarchischen Schliisselbund 167

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie Ihren Cachetyp oder die Anzahl der Eintrage fir Branch-Schlisselmaterialien, die im
lokalen Cache gespeichert werden kdnnen, anpassen moéchten, geben Sie den Cachetyp und die
Eintragskapazitat an, wenn Sie den Schlisselbund initialisieren.

Der hierarchische Schllisselbund unterstuitzt die folgenden Cachetypen: Standard, MultiThreaded,
StormTracking und Shared. Weitere Informationen und Beispiele zur Definition der einzelnen
Cachetypen finden Sie unter. the section called “Wahlen Sie einen Cache”

Wenn Sie keinen Cache angeben, verwendet der hierarchische Schlisselbund automatisch den
Standard-Cachetyp und legt die Eintragskapazitat auf 1000 fest.

» (Optional) Eine Partitions-ID

Wenn Sie die angebenthe section called “Gemeinsam genutzter Cache”, kdnnen Sie optional eine
Partitions-ID definieren. Die Partitions-ID unterscheidet, welcher hierarchische Schliisselbund

in den Cache schreibt. Wenn Sie beabsichtigen, die Cache-Eintrage in einer Partition
wiederzuverwenden oder gemeinsam zu nutzen, mussen Sie lhre eigene Partitions-ID definieren.
Sie kénnen eine beliebige Zeichenfolge flr die Partitions-ID angeben. Wenn Sie keine Partitions-
ID angeben, wird dem Schllsselbund bei der Erstellung automatisch eine eindeutige Partitions-ID

zugewiesen.

Weitere Informationen finden Sie unter Partitions.

® Note

Ihre hierarchischen Schlisselbunde verwenden dieselben Cache-Eintrage in einem
gemeinsam genutzten Cache, wenn Sie zwei oder mehr Schllisselbunde erstellen, die auf
dieselbe Partitions-ID und Verzweigungsschlussel-ID verweisen. logical key store name
Wenn Sie nicht méchten, dass sich mehrere Schlisselbunde dieselben Cache-Eintrage
teilen, mussen Sie fir jeden hierarchischen Schlisselbund eine eindeutige Partitions-ID
verwenden.

» (Optional) Eine Liste von Grant-Tokens

Wenn Sie den Zugriff auf den KMS-Schllssel in Ihrem hierarchischen Schltisselbund mit Grants
steuern, mussen Sie bei der Initialisierung des Schllisselbunds alle erforderlichen Grant-Token
angeben.

Erstellen Sie einen hierarchischen Schliisselbund 168

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Entwicklerhandbuch

Erstellen Sie einen hierarchischen Schlisselbund mit einer statischen Zweigschlissel-1D

Die folgenden Beispiele zeigen, wie Sie einen hierarchischen Schlisselbund mit einer statischen
Zweigschlussel-ID, derthe section called “Standard-Cache”, und einem Cache-Limit von 600
Sekunden erstellen.

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(branchKeyStoreName)
.branchKeyId(branch-key-id)
.ttlSeconds(600)
.build();

final Keyring hierarchicalKeyring =

matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyId = branch-key-id,
TtlSeconds = 600

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);
Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id=branch_key_id,
ttl_seconds=600

Erstellen Sie einen hierarchischen Schliisselbund 169

AWS Encryption SDK Entwicklerhandbuch

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id(branch_key_id)
.ttl_seconds(600)
.send()
.await?;

Go

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

if err !'= nil {
panic(err)

}

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStore,

BranchKeyId: &branchKeyID,
TtlSeconds: 600,
}

hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)

Erstellen Sie einen hierarchischen Schlisselbund mit einem Lieferanten flir die Zweigschlissel-I1D

Die folgenden Verfahren zeigen, wie Sie einen hierarchischen Schlisselbund mit einem
Branchenschlussel-ID-Lieferanten erstellen.

1. Erstellen Sie einen Lieferanten fur die Zweigschlissel-ID

Erstellen Sie einen hierarchischen Schliisselbund 170

AWS Encryption SDK Entwicklerhandbuch

Im folgenden Beispiel werden benutzerfreundliche Namen fiir zwei Branch-Schltissel und

Aufrufe CreateDynamoDbEncryptionBranchKeyIdSupplier zur Erstellung eines Branch-

Schlissel-ID-Lieferanten erstellt.

Java

// Create friendly names for each branch-key-id

class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
private static String branchKeyIdForTenantl;
private static String branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this.branchKeyIdForTenantl = tenantlId;
this.branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
.DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.buildexr().build())
.build();
final BranchKeyIdSupplier branchKeyIdSupplier =
ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
.ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenantl, branch-key-ID-tenant2))
.build()).branchKeyIdSupplier();

C#/.NET

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
private String _branchKeyIdForTenantl;
private String _branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this._branchKeyIdForTenantl = tenantlId;
this._branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
{

Erstellen Sie einen hierarchischen Schliisselbund

171

AWS Encryption SDK Entwicklerhandbuch

DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenantl, branch-key-ID-tenant2)
}) .BranchKeyIdSupplier;

Python

Create branch key ID supplier that maps the branch key ID to a friendly name
branch_key_id_supplier: IBranchKeyIdSupplier = ExampleBranchKeyIdSupplier(
tenant_1_id=branch_key_id_a,
tenant_2_id=branch_key_id_b,

Rust

// Create branch key ID supplier that maps the branch key ID to a friendly name
let branch_key_id_supplier = ExampleBranchKeyIdSupplier: :new(

&branch_key_id_a,

&branch_key_id_b
);

Go

// Create branch key ID supplier that maps the branch key ID to a friendly name
keySupplier := branchKeySupplier{branchKeyA: branchKeyA, branchKeyB: branchKeyB}

2. Erstellen Sie einen hierarchischen Schliisselbund

In den folgenden Beispielen wird ein hierarchischer Schllisselbund mit dem in Schritt 1 erstellten
Branch-Schlissel-ID-Lieferanten, einem Cache-Limit von 600 Sekunden und einer maximalen
Cachegrofe von 1000 initialisiert.

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(keystore)
.branchKeyIdSupplier(branchKeyIdSupplier)
.ttlSeconds(600)

Erstellen Sie einen hierarchischen Schliisselbund 172

AWS Encryption SDK

Entwicklerhandbuch

.cache(CacheType.builder() //OPTIONAL
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

KeyStore = keystore,

BranchKeyIdSupplier = branchKeyIdSupplier,

TtlSeconds = 600,

Cache = new CacheType

{
Default = new DefaultCache { EntryCapacity = 100 }

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(

config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

),

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(

input=keyring_input

Erstellen Sie einen hierarchischen Schliisselbund

173

AWS Encryption SDK Entwicklerhandbuch

)

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id_supplier(branch_key_id_supplier)
.ttl_seconds(600)
.send()
.await?;

Go

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{

KeyStore: keyStore,
BranchKeyIdSupplier: &keySupplier,
TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)
}

AWS KMS ECDH-Schlusselanhanger

Ein AWS KMS ECDH-Schliisselbund verwendet eine asymmetrische Schlisselvereinbarung, AWS
KMS keysum einen gemeinsamen symmetrischen Wrapping-Schlissel zwischen zwei Parteien
abzuleiten. Zunachst verwendet der Schllisselbund den Schlisselvereinbarungsalgorithmus Elliptic
Curve Diffie-Hellman (ECDH), um ein gemeinsames Geheimnis aus dem privaten Schllssel im
KMS-Schlisselpaar des Absenders und dem 6ffentlichen Schllissel des Empfangers abzuleiten.
AnschlieRend leitet der Schliisselbund anhand des gemeinsamen geheimen Schllissels den
gemeinsamen Wrapping-Schlissel ab, der Ihre Datenverschlisselungsschlissel schitzt. Die
Schlusselableitungsfunktion, die (KDF_CTR_HMAC_SHA384) AWS Encryption SDK verwendet,

AWS KMS ECDH-Schlusselanhanger 174

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html

AWS Encryption SDK Entwicklerhandbuch

um den gemeinsamen Wrapping-Schllissel abzuleiten, entspricht den NIST-Empfehlungen fir die
Schlisselableitung.

Die Funktion zur Schlusselableitung gibt 64 Byte an Schlisselmaterial zurtick. Um sicherzustellen,
dass beide Parteien das richtige Schlisselmaterial verwenden, AWS Encryption SDK verwendet der
die ersten 32 Byte als Commitment-Schlissel und die letzten 32 Byte als gemeinsamen Wrapping-
Schlussel. Wenn der Schlisselbund beim Entschlisseln nicht denselben Commitment-Schlissel
und denselben gemeinsamen Wrapping-Schlissel reproduzieren kann, die im Chiffretext der
Nachrichtenkopfzeile gespeichert sind, schlagt der Vorgang fehl. Wenn Sie beispielsweise Daten
mit einem Schlisselbund verschlisseln, der mit Alices privatem Schllissel und Bobs &6ffentlichem
Schlussel konfiguriert ist, reproduziert ein Schlisselbund, der mit Bobs privatem Schlissel und
Alices 6ffentlichem Schltssel konfiguriert ist, denselben Commitment-Schlissel und gemeinsamen
Wrapping-Schlissel und kann die Daten entschlisseln. Wenn Bobs 6ffentlicher Schllssel nicht von
einem KMS-SchlUsselpaar stammt, kann Bob einen Raw ECDH-Schlusselbund erstellen, um die

Daten zu entschlisseln.

Der AWS KMS ECDH-Schlusselbund verschlisselt Daten mit einem symmetrischen Schlissel unter
Verwendung von AES-GCM. Der Datenschlissel wird dann mit dem abgeleiteten gemeinsamen
Wrapping-Schlussel unter Verwendung von AES-GCM umhdllt. Jeder AWS KMS ECDH-
Schlisselbund kann nur einen gemeinsamen Wrapping-Schlissel haben, aber Sie kbnnen mehrere

AWS KMS ECDH-Schlusselanhanger, einzeln oder zusammen mit anderen Schlusselbunden, in

einen Mehrfachschlisselbund aufnehmen.

Kompatibilitat mit Programmiersprachen

Der AWS KMS ECDH-Schlusselbund wurde in Version 1.5.0 der Cryptographic Material Providers
Library (MPL) eingefuihrt und wird von den folgenden Programmiersprachen und Versionen
unterstutzt:

» Version 3. x der AWS-Verschlisselungs-SDK for Java
 Ausfuhrung 4. x von AWS Encryption SDK fur .NET

» Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn es mit der optionalen MPL-
Abhangigkeit verwendet wird.

» Version 1. x von der AWS Encryption SDK fiir Rust
* Version 0.1. x oder héher von AWS Encryption SDK for Go

Themen

AWS KMS ECDH-Schlusselanhanger 175

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

 Erforderliche Berechtigungen fir AWS KMS ECDH-Schlisselanhanger

* Einen ECDH-Schlisselbund AWS KMS erstellen

» Einen AWS KMS ECDH-Discovery-Schlisselbund erstellen

Erforderliche Berechtigungen fur AWS KMS ECDH-Schlisselanhanger

Fir das AWS Encryption SDK ist kein AWS Konto erforderlich und es ist auch nicht von einem
Dienst abhangig. AWS Um einen AWS KMS ECDH-Schlisselbund verwenden zu kénnen, bendtigen
Sie jedoch ein AWS Konto und die folgenden Mindestberechtigungen fir AWS KMS keys den
Schlisselbund. Die Berechtigungen variieren je nachdem, welches Schlisselvereinbarungsschema
Sie verwenden.

* Um Daten mithilfe des KmsPrivateKeyToStaticPublicKey Schlisselvereinbarungsschemas
zu verschlisseln und zu entschlusseln, bendtigen Sie kms: GetPublicKey und kms:
DeriveSharedSecret auf dem asymmetrischen KMS-SchlUsselpaar des Absenders. Wenn
Sie den DER-codierten 6ffentlichen Schlissel des Absenders direkt angeben, wenn Sie lhren
Schlisselbund instanziieren, bendétigen Sie nur die kms: DeriveSharedSecret -Berechtigung fur das
asymmetrische KMS-Schlisselpaar des Absenders.

» Um Daten mithilfe des KmsPublicKeyDiscovery Schlisselvereinbarungsschemas zu
entschlisseln, bendtigen Sie die GetPublicKey Berechtigungen kms: DeriveSharedSecret und kms:
fir das angegebene asymmetrische KMS-Schlisselpaar.

Einen ECDH-Schlisselbund AWS KMS erstellen

Um einen AWS KMS ECDH-Schlusselbund zu erstellen, der Daten ver- und entschlisselt, missen
Sie das Schlisselvereinbarungsschema verwenden. KmsPrivateKeyToStaticPublicKey Um
einen AWS KMS ECDH-Schlisselbund mit dem Schlisselvereinbarungsschema zu initialisieren,
geben Sie die folgenden KmsPrivateKeyToStaticPublicKey Werte an:

* ID des Absenders AWS KMS key

Muss ein von NIST empfohlenes asymmetrisches KMS-Schllsselpaar mit elliptischer Kurve
(ECC) mit einem Wert von identifizieren. KeyUsage KEY_AGREEMENT Der private Schlissel des
Absenders wird verwendet, um den gemeinsamen geheimen Schllissel abzuleiten.

» (Optional) Der offentliche Schlissel des Absenders

Erforderliche Berechtigungen fir AWS KMS ECDH-Schlisselanhanger 176

https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Encryption SDK Entwicklerhandbuch

Muss ein DER-codierter offentlicher X.509-Schlissel sein, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert.

Die AWS KMS GetPublicKeyOperation gibt den éffentlichen Schlissel eines asymmetrischen KMS-
Schlusselpaars im erforderlichen DER-codierten Format zurick.

Um die Anzahl der AWS KMS Anrufe zu reduzieren, die Ihr Schlisselbund tatigt, kbnnen Sie
den offentlichen Schllssel des Absenders direkt angeben. Wenn kein Wert flr den offentlichen
Schlissel des Absenders angegeben wird, ruft der Schlisselbund auf, AWS KMS um den
offentlichen Schllssel des Absenders abzurufen.

 Der offentliche Schlissel des Empfangers

Sie mussen den DER-codierten 6ffentlichen X.509-Schlissel des Empféngers, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert, angeben.

Die AWS KMS GetPublicKeyOperation gibt den 6ffentlichen Schlissel eines asymmetrischen KMS-
Schlisselpaars im erforderlichen DER-codierten Format zurtick.

» Kurvenspezifikation

Identifiziert die Spezifikation fur elliptische Kurven in den angegebenen Schllisselpaaren. Sowohl
die Schlisselpaare des Absenders als auch des Empfangers missen dieselbe Kurvenspezifikation
haben.

Zulassige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

» (Optional) Eine Liste von Grant-Tokens

Wenn Sie den Zugriff auf den KMS-Schltssel in Inrem AWS KMS ECDH-Schltsselbund mit Grants
steuern, mussen Sie bei der Initialisierung des Schllsselbunds alle erforderlichen Grant-Token
angeben.

C#/.NET

Im folgenden Beispiel wird ein AWS KMS ECDH-Schltsselbund mit dem KMS-Schliissel des
Absenders, dem 6ffentlichen Schllissel des Absenders und dem 6ffentlichen Schllssel des
Empfangers erstellt. In diesem Beispiel wird der optionale SenderPublicKey Parameter
verwendet, um den 6ffentlichen Schllssel des Absenders bereitzustellen. Wenn Sie den
offentlichen Schlissel des Absenders nicht angeben, ruft der Schlisselbund auf, AWS KMS um

Einen ECDH-Schlisselbund AWS KMS erstellen 177

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Entwicklerhandbuch

den offentlichen Schllissel des Absenders abzurufen. Sowohl die Schlisselpaare des Absenders
als auch des Empfangers befinden sich auf der ECC_NIST_P256 Kurve.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
{
SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
SenderPublicKey = BobPublicKey,
RecipientPublicKey = AlicePublicKey

}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = staticConfiguration
1

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

Im folgenden Beispiel wird ein AWS KMS ECDH-Schlisselbund mit dem KMS-Schlussel des
Absenders, dem 6ffentlichen Schlissel des Absenders und dem 6ffentlichen Schltssel des
Empfangers erstellt. In diesem Beispiel wird der optionale senderPublicKey Parameter
verwendet, um den 6ffentlichen Schlissel des Absenders bereitzustellen. Wenn Sie den
offentlichen Schltissel des Absenders nicht angeben, ruft der Schlisselbund auf, AWS KMS um
den offentlichen Schllissel des Absenders abzurufen. Sowohl die Schlisselpaare des Absenders
als auch des Empfangers befinden sich auf der ECC_NIST_P256 Kurve.

// Retrieve public keys

Einen ECDH-Schlisselbund AWS KMS erstellen 178

AWS Encryption SDK Entwicklerhandbuch

// Must be DER-encoded X.509 public keys

ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab") ;
ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPrivateKeyToStaticPublicKey/(
KmsPrivateKeyToStaticPublicKeyInput.builder()
.senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
.senderPublicKey(BobPublicKey)
.recipientPublicKey(AlicePublicKey)
.build()).build()).build();

Python

Im folgenden Beispiel wird ein AWS KMS ECDH-Schlusselbund mit dem KMS-Schlussel des
Absenders, dem o6ffentlichen Schlissel des Absenders und dem o6ffentlichen Schltssel des
Empfangers erstellt. In diesem Beispiel wird der optionale senderPublicKey Parameter
verwendet, um den offentlichen Schllissel des Absenders bereitzustellen. Wenn Sie den
offentlichen Schllissel des Absenders nicht angeben, ruft der Schliisselbund auf, AWS KMS um
den offentlichen Schllissel des Absenders abzurufen. Sowohl die Schlisselpaare des Absenders
als auch des Empfangers befinden sich auf der ECC_NIST_P256 Kurve.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey,
KmsPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(

Einen ECDH-Schlisselbund AWS KMS erstellen 179

AWS Encryption SDK Entwicklerhandbuch

config=MaterialProvidersConfig()

Retrieve public keys

Must be DER-encoded X.509 public keys

bob_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
alice_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321")

Create the AWS KMS ECDH static keyring
sender_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput(
sender_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
sender_public_key = bob_public_key,
recipient_public_key = alice_public_key,

keyring = mat_prov.create_aws_kms_ecdh_keyring(sender_keyring_input)

Rust

Im folgenden Beispiel wird ein AWS KMS ECDH-Schltsselbund mit dem KMS-Schliissel des
Absenders, dem o6ffentlichen Schllissel des Absenders und dem o6ffentlichen Schliissel des
Empfangers erstellt. In diesem Beispiel wird der optionale sender_public_key Parameter
verwendet, um den 6ffentlichen Schllssel des Absenders bereitzustellen. Wenn Sie den
offentlichen Schllssel des Absenders nicht angeben, ruft der Schlisselbund auf, AWS KMS um
den offentlichen Schllssel des Absenders abzurufen.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

Einen ECDH-Schlisselbund AWS KMS erstellen 180

AWS Encryption SDK Entwicklerhandbuch

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Retrieve public keys

// Must be DER-encoded X.509 keys

let public_key_file_content_sender =
std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;

let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;

let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;

let parsed_public_key_file_content_recipient =
parse(public_key_file_content_recipient)?;

let public_key_recipient_utf8_bytes =
parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
KmsPrivateKeyToStaticPublicKeyInput::buildexr()

.sender_kms_identifier(arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
// Must be a UTF8 DER-encoded X.509 public key
.sender_public_key(public_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let kms_ecdh_static_configuration =
KmsEcdhStaticConfigurations: :KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;

Einen ECDH-Schlisselbund AWS KMS erstellen 181

AWS Encryption SDK Entwicklerhandbuch

let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring

let kms_ecdh_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client)
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1)

Einen ECDH-Schlisselbund AWS KMS erstellen 182

AWS Encryption SDK Entwicklerhandbuch

// Optional: Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Retrieve public keys
// Must be DER-encoded X.509 keys
publicKeySender, err := utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameSender)
if err !'= nil {
panic(err)
}
publicKeyRecipient, err :=
utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameRecipient)
if err != nil {
panic(err)

// Create KmsPrivateKeyToStaticPublicKeyInput
kmsEcdhStaticConfigurationInput := mpltypes.KmsPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
SenderKmsIdentifier: arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
SenderPublicKey: publicKeySender,
}
kmsEcdhStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPrivateKeyToStaticPublicKey{
Value: kmsEcdhStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create AWS KMS ECDH keyring
awsKmsEcdhKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhStaticConfiguration,
KmsClient: kmsClient,

Einen ECDH-Schlisselbund AWS KMS erstellen 183

AWS Encryption SDK Entwicklerhandbuch

}
awsKmsEcdhKeyring, err := matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhKeyringInput)
if err !'= nil {
panic(err)
}

Einen AWS KMS ECDH-Discovery-Schlisselbund erstellen

Beim Entschlisseln empfiehlt es sich, die Schlissel anzugeben, die sie verwenden kdnnen. AWS
Encryption SDK Um dieser bewahrten Methode zu folgen, verwenden Sie einen AWS KMS ECDH-
Schlusselbund mit dem KmsPrivateKeyToStaticPublicKey Schlisselvereinbarungsschema.
Sie kénnen jedoch auch einen AWS KMS ECDH-Discovery-Schlisselbund erstellen, d. h. einen
AWS KMS ECDH-Schlisselbund, der jede Nachricht entschliisseln kann, bei der der 6ffentliche
Schlissel des angegebenen KMS-Schliisselpaars mit dem 6ffentlichen Schllssel des Empfangers
Ubereinstimmt, der im Nachrichtenchiffretext gespeichert ist.

/A Important

Wenn Sie Nachrichten mithilfe des KmsPublicKeyDiscovery
Schlusselvereinbarungsschemas entschlisseln, akzeptieren Sie alle 6ffentlichen Schllssel,
unabhangig davon, wem sie gehdren.

Um einen AWS KMS ECDH-Schlisselbund mit dem Schlusselvereinbarungsschema zu initialisieren,
geben Sie die KmsPublicKeyDiscovery folgenden Werte an:

 ID des Empfangers AWS KMS key

Muss ein von NIST empfohlenes asymmetrisches KMS-Schliisselpaar mit elliptischer Kurve (ECC)
mit einem Wert von identifizieren. KeyUsage KEY_AGREEMENT

» Spezifikation der Kurve
Identifiziert die elliptische Kurvenspezifikation im KMS-Schlisselpaar des Empfangers.

Zulassige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

» (Optional) Eine Liste von Grant-Tokens

Einen AWS KMS ECDH-Discovery-Schlisselbund erstellen 184

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie den Zugriff auf den KMS-Schltssel in Inrem AWS KMS ECDH-Schltsselbund mit Grants
steuern, mussen Sie bei der Initialisierung des Schllisselbunds alle erforderlichen Grant-Token
angeben.

C#/ .NET

Im folgenden Beispiel wird ein AWS KMS ECDH-Discovery-Schlisselbund mit einem KMS-
Schlisselpaar auf der ECC_NIST_P256 Kurve erstellt. Sie missen Uber die DeriveSharedSecret
Berechtigungen kms: GetPublicKey und kms: fir das angegebene KMS-Schlusselpaar verflgen.
Dieser Schlisselbund kann jede Nachricht entschlisseln, bei der der 6ffentliche Schlissel

des angegebenen KMS-Schllsselpaars mit dem 6ffentlichen Schilissel des Empfangers
Ubereinstimmt, der im Nachrichtenchiffretext gespeichert ist.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations

{
KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
{
RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = discoveryConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

Im folgenden Beispiel wird ein AWS KMS ECDH-Discovery-Schlisselbund mit einem KMS-
Schlusselpaar auf der ECC_NIST_P256 Kurve erstellt. Sie mussen Uber die DeriveSharedSecret
Berechtigungen kms: GetPublicKey und kms: flr das angegebene KMS-Schlusselpaar verfugen.
Dieser Schlusselbund kann jede Nachricht entschlisseln, bei der der 6ffentliche Schlussel

Einen AWS KMS ECDH-Discovery-Schlisselbund erstellen 185

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Entwicklerhandbuch

des angegebenen KMS-Schllsselpaars mit dem 6ffentlichen Schllissel des Empfangers
Ubereinstimmt, der im Nachrichtenchiffretext gespeichert ist.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput.builder()
.recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321") .build()
).build())
.build();

Python

Im folgenden Beispiel wird ein AWS KMS ECDH-Discovery-Schlisselbund mit einem KMS-
Schlisselpaar auf der ECC_NIST_P256 Kurve erstellt. Sie missen Uber die DeriveSharedSecret
Berechtigungen kms: GetPublicKey und kms: flir das angegebene KMS-Schllsselpaar verfligen.

Dieser Schlisselbund kann jede Nachricht entschlisseln, bei der der 6ffentliche Schlissel
des angegebenen KMS-Schlisselpaars mit dem 6ffentlichen Schilissel des Empfangers
Ubereinstimmt, der im Nachrichtenchiffretext gespeichert ist.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,
KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery,
KmsPublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS ECDH discovery keyring
create_keyring_input = CreateAwsKmsEcdhKeyringInput(

Einen AWS KMS ECDH-Discovery-Schlisselbund erstellen 186

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Entwicklerhandbuch

kms_client = boto3.client('kms', region_name="us-west-2"),

curve_spec ECDHCurveSpec.ECC_NIST_P256,

key_agreement_scheme = KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput(

recipient_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(create_keyring_input)

Rust

// Instantiate the AWS Encryption SDK client
AwsEncryptionSdkConfig: :builder().build()?;
esdk_client::Client::from_conf(esdk_config)?;

let esdk_config
let esdk_client

// Create the AWS KMS client

let sdk_config =
aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
KmsPublicKeyDiscoveryInput::builder()
.recipient_kms_identifier(ecc_recipient_key_azrn)
.build()?;

let kms_ecdh_discovery_static_configuration =
KmsEcdhStaticConfigurations: :KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_

// Instantiate the material providers library

Einen AWS KMS ECDH-Discovery-Schlisselbund erstellen 187

AWS Encryption SDK Entwicklerhandbuch

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring

let kms_ecdh_discovery_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client.clone())
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_discovery_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1)

Einen AWS KMS ECDH-Discovery-Schlisselbund erstellen 188

AWS Encryption SDK Entwicklerhandbuch

// Optional: Create an encryption context

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create KmsPublicKeyDiscoveryInput
kmsEcdhDiscoveryStaticConfigurationInput := mpltypes.KmsPublicKeyDiscoveryInput{
RecipientKmsIdentifier: eccRecipientKeyArn,
}
kmsEcdhDiscoveryStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPublicKeyDiscovery{
Value: kmsEcdhDiscoveryStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create AWS KMS ECDH discovery keyring
awsKmsEcdhDiscoveryKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhDiscoveryStaticConfiguration,
KmsClient: kmsClient,

}
awsKmsEcdhDiscoveryKeyring, err :=
matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhDiscoveryKeyringInput)
if err !'= nil {
panic(err)

Einen AWS KMS ECDH-Discovery-Schlisselbund erstellen 189

AWS Encryption SDK Entwicklerhandbuch

Unformatierte AES-Schliusselbunde

AWS Encryption SDK Damit kdnnen Sie einen symmetrischen AES-Schlissel verwenden,

den Sie als UmschlieBungsschlissel angeben, der Ihren Datenschlissel schitzt. Sie missen

das Schlisselmaterial generieren, speichern und schitzen, vorzugsweise in einem Hardware-
Sicherheitsmodul (HSM) oder einem Schlusselverwaltungssystem. Verwenden Sie einen RAW-AES-
Schlusselbund, wenn Sie den Wrap-Schlissel bereitstellen und die Datenschlissel lokal oder offline
verschlisseln mussen.

Der Raw AES-Schlusselbund verschlisselt Daten mithilfe des AES-GCM-Algorithmus und
eines Wrapping-Schlissels, den Sie als Byte-Array angeben. Sie kénnen in jedem Raw-

AES-SchlUsselbund nur einen Wrap-Schlissel angeben, aber Sie kbnnen mehrere Raw

AES-SchlUsselanhanger, allein oder zusammen mit anderen Schlisselbunden, in einen
Mehrfachschlisselbund aufnehmen.

Der Raw-AES-SchlUsselbund entspricht der Klasse in der und der JceMasterKeyKlasse in der
AWS-Verschlisselungs-SDK for Java und interagiert mit ihnen, AWS-Verschlisselungs-SDK for
Python wenn sie mit AES-Verschlisselungsschlisseln verwendet werden. RawMasterKey Sie

kénnen Ihrer Daten mit einer Programmiersprachen-Implementierung verschlisseln und mit jeder
beliebigen anderen Sprachenimplementierung unter Verwendung desselben Umhdallungsschlissels
entschlisseln. Details hierzu finden Sie unter Schlusselbund-Kompatibilitat.

Wichtige Namespaces und Namen

Um den AES-Schlissel in einem Schlisselbund zu identifizieren, verwendet der Raw AES-
Schlusselbund einen Schlisselnamespace und einen Schlisselnamen, die Sie angeben.

Diese Werte sind nicht geheim. Sie erscheinen im Klartext in der Kopfzeile der verschlisselten
Nachricht, die der Verschlisselungsvorgang zurlckgibt. Wir empfehlen, fir Ihr HSM- oder
SchlUsselverwaltungssystem einen Schlisselnamespace und einen Schlisselnamen zu verwenden,
der den AES-Schlussel in diesem System identifiziert.

(® Note

Der Schlusselnamespace und der Schlisselname entsprechen den Feldern Provider-ID (oder
Provider) und Key-ID in den Feldern und. JceMasterKey RawMasterKey

Die Felder AWS-Verschlisselungs-SDK for C und AWS Encryption SDK fiir .NET reservieren
den aws-kms Schlisselnamespace-Wert fir KMS-Schlissel. Verwenden Sie diesen

Unformatierte AES-Schllisselbunde 190

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Entwicklerhandbuch

Namespace-Wert nicht in einem Raw AES- oder Raw RSA-Schlisselbund mit diesen
Bibliotheken.

Wenn Sie verschiedene Schlisselringe zum Verschlisseln und Entschlisseln einer bestimmten
Nachricht erstellen, sind die Namespace- und Namenswerte entscheidend. Wenn der
Schlusselnamespace und der Schlisselname im Schlisselbund flr die Entschlisselung nicht exakt
und unter Berucksichtigung der Grof3- und Kleinschreibung mit dem Schlisselnamespace und dem
Schlusselnamen im Verschlisselungsschlisselbund tbereinstimmen, wird der Schlisselbund nicht
verwendet, auch wenn die Schlisselmaterial-Bytes identisch sind.

Sie kénnten beispielsweise einen RAW-AES-Schlisselbund mit Schlisselnamespace und
Schlisselname definieren. HSM_01 AES_256_012 AnschlielRend verwenden Sie diesen
Schlisselbund, um einige Daten zu verschlisseln. Um diese Daten zu entschlisseln, erstellen Sie
einen RAW-AES-Schlisselbund mit demselben Schlisselnamespace, demselben Schlisselnamen
und demselben Schlisselmaterial.

Die folgenden Beispiele zeigen, wie Sie einen Raw AES-Schlisselbund erstellen. Die
AESWrappingKey Variable steht fur das von Ihnen bereitgestellte Schlisselmaterial.

C
Um einen Raw AES-Schlisselbund in der zu instanziieren, verwenden Sie AWS-
Verschliisselungs-SDK for C. aws_cryptosdk_raw_aes_keyring_new() Ein vollstandiges
Beispiel finden Sie unter raw_aes_keyring.c.
struct aws_allocator *alloc = aws_default_allocator();
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");
struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key,
wrapping_key_len);
C#/ .NET

Verwenden Sie die Methode, um einen Raw-AES-Schlisselbund fur.NET zu erstellen. AWS
Encryption SDK materialProviders.CreateRawAesKeyring() Ein vollstandiges Beispiel
finden Sie unter Raw AESKeyring Example.cs.

Unformatierte AES-Schllisselbunde 191

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

Im folgenden Beispiel wird Version 4 verwendet. x von AWS Encryption SDK fir .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
material.

// In production, use key material from a secure source.

var aesWrappingKey = new
MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput

{

KeyNamespace = keyNamespace,

KeyName = keyName,

WrappingKey = aesWrappingKey,

WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

Das AWS-Verschlisselungs-SDK for JavaScript im Browser bezieht seine kryptografischen
Primitive von der WebCryptoAPI. Bevor Sie den Schliisselbund erstellen, missen Sie ihn
verwenden, RawAesKeyringWebCrypto.importCryptoKey() um das Rohschliisselmaterial
in das Backend zu importieren. WebCrypto Dadurch wird sichergestellt, dass der Schlisselbund
vollstandig ist, obwohl alle Aufrufe asynchron sind. WebCrypto

Verwenden Sie dann die Methode, um einen Raw AES-Schlisselbund zu instanziieren.
RawAesKeyringWebCrypto() Sie missen den AES-Wrapping-Algorithmus (,Wrapping Suite®)
auf der Grundlage der Lange lhres Schllisselmaterials angeben. Ein vollstandiges Beispiel finden
Sie unter aes_simple.ts (Browser). JavaScript

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie kénnen die
auch verwendenbuildClient, um die Anzahl der verschliisselten Datenschlissel in einer

Unformatierte AES-Schllisselbunde 192

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK Entwicklerhandbuch

verschlisselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“‘Beschrankung verschlusselter Datenschlissel”.

import {
RawAesWrappingSuiteIdentifier,
RawAesKeyringWebCrypto,
synchronousRandomValues,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */

const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey(
rawAesKey,
wrappingSuite

const rawAesKeyring = new RawAesKeyringWebCrypto({
keyName,
keyNamespace,
wrappingSuite,
aesWrappingKey
1))

JavaScript Node.js

Um einen Raw AES-Schlisselbund in der Datei AWS-Verschlisselungs-SDK for JavaScript

fur Node.js zu instanziieren, erstellen Sie eine Instanz der Klasse. RawAesKeyringNode Sie
mussen den AES-Wrapping-Algorithmus (,Wrapping Suite®) auf der Grundlage der Lange lhres
Schlusselmaterials angeben. Ein vollstdndiges Beispiel finden Sie unter aes_simple.ts (Node.js).
JavaScript

Unformatierte AES-Schllisselbunde 193

https://github.com/aws/aws-encryption-sdk-javascript//blob/master/modules/example-node/src/aes_simple.ts

AWS Encryption SDK Entwicklerhandbuch

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie kénnen die
auch verwendenbuildClient, um die Anzahl der verschliisselten Datenschlissel in einer
verschlisselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called

‘Beschrankung verschlUsselter Datenschlissel”.

import {
RawAesKeyringNode,
buildClient,
CommitmentPolicy,
RawAesWrappingSuiteIdentifier,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

const rawAesKeyring = new RawAesKeyringNode({
keyName,
keyNamespace,
aesWrappingKey,
wrappingSuite,

1)

Java

Um einen Raw AES-Schlisselbund in der zu instanziieren, verwenden Sie AWS-
Verschliusselungs-SDK for Java. matProv.CreateRawAesKeyring()

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6)
.build();

final MaterialProviders matProv = MaterialProviders.builder()

Unformatierte AES-Schliisselbunde 194

AWS Encryption SDK Entwicklerhandbuch

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Python

Das folgende Beispiel instanziiert den AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Ein vollstandiges Beispiel finden Sie unter
raw_aes_keyring_example.py im AWS-Verschlisselungs-SDK for Python Repository unter.
GitHub

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "AES_256_@12"

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create Raw AES keyring

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(

Unformatierte AES-Schliisselbunde 195

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_aes_keyring_example.py

AWS Encryption SDK Entwicklerhandbuch

input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_@1";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle6)
.send()
.await?;

Go

import (
mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

Unformatierte AES-Schllisselbunde 196

AWS Encryption SDK Entwicklerhandbuch

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
//Instantiate the AWS Encryption SDK client.
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err != nil {
panic(err)
}
// Define the key namespace and key name
var keyNamespace = "A managed aes keys"

var keyName = "My 256-bit AES wrapping key"

// Optional: Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)
}
// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: aesWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)

Unformatierte AES-Schllisselbunde 197

AWS Encryption SDK Entwicklerhandbuch

Unformatierte RSA-Schlusselbunde

Der Raw RSA-Schlisselbund flhrt eine asymmetrische Verschlisselung und Entschlisselung

von Datenschlisseln im lokalen Speicher mit 6ffentlichen und privaten RSA-Schlisseln durch,

die Sie bereitstellen. Sie mussen den privaten Schllssel generieren, speichern und schitzen,
vorzugsweise in einem Hardware-Sicherheitsmodul (HSM) oder einem Schlisselverwaltungssystem.
Die Verschlusselungsfunktion verschlisselt den Datenschlissel unter dem 6ffentlichen RSA-
Schlussel. Die Entschlisselungsfunktion entschlisselt den Datenschlissel mithilfe des privaten
Schlussels. Sie kdnnen aus mehreren RSA-Padding-Modi auswahlen.

Ein unformatierter RSA-Schllsselbund, der verschlisselt und entschlisselt, muss ein
asymmetrisches offentliches und privates Schlisselpaar enthalten. Sie kdnnen Daten jedoch
mit einem Raw RSA Keyring verschlusseln, der nur tber einen offentlichen Schlissel verfugt,
und Sie kbnnen Daten mit einem Raw RSA Schlusselbund entschlisseln, der nur Gber einen
privaten Schlussel verfugt. Sie kdnnen einen beliebigen Raw RSA-Schlisselbund in einen

MehrfachschlUsselbund aufnehmen. Wenn Sie einen Raw RSA-Schlisselbund mit einem o6ffentlichen
und einem privaten Schlissel konfigurieren, stellen Sie sicher, dass sie Teil desselben key

pair sind. In einigen Sprachimplementierungen von AWS Encryption SDK wird kein Raw RSA-
Schlusselbund mit Schlisseln aus verschiedenen Paaren erstellt. Andere verlassen sich darauf, dass
Sie Uberprufen, ob lhre Schlussel von demselben key pair stammen.

Der Raw RSA Keyring entspricht in the und the JceMasterKey AWS-Verschlisselungs-SDK for
Java in und arbeitet mit ihnen zusammen, AWS-Verschlisselungs-SDK for Python wenn sie

mit RawMasterKeyasymmetrischen RSA-Verschllsselungsschlisseln verwendet werden. Sie

kénnen Ihrer Daten mit einer Programmiersprachen-Implementierung verschlisseln und mit jeder
beliebigen anderen Sprachenimplementierung unter Verwendung desselben Umhdallungsschlissels
entschlisseln. Details hierzu finden Sie unter Schllisselbund-Kompatibilitat.

(® Note

Der Raw RSA-Schlisselbund unterstitzt keine asymmetrischen KMS-Schlussel. Wenn

Sie asymmetrische RSA-KMS-Schlussel verwenden mdchten, unterstutzen die folgenden
Programmiersprachen AWS KMS Schllsselringe, die asymmetrische RSA verwenden: AWS
KMS keys

* Version 3. x der AWS-Verschlisselungs-SDK for Java
* Ausfiihrung 4. x von AWS Encryption SDK fur .NET

Unformatierte RSA-Schliisselbunde 198

https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Entwicklerhandbuch

» Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn es mit der optionalen
Abhangigkeit der Cryptographic Material Providers Library (MPL) verwendet wird.

» Version 0.1. x oder héher von AWS Encryption SDK for Go

Wenn Sie Daten mit einem RSA-RSA-Schlisselbund verschlisseln, der den 6ffentlichen
Schlussel eines RSA-KMS-Schlissels enthalt, konnen AWS Encryption SDK weder AWS
KMS der RSA-KMS-Schlissel noch diesen entschlisseln. Sie kdnnen den privaten Schlissel
eines AWS KMS asymmetrischen KMS-Schlissels nicht in einen Raw RSA-Schlisselbund
exportieren. Der AWS KMS Entschlisselungsvorgang kann die verschlisselte Nachricht, die
zuruckgegeben wird, nicht entschlisseln. AWS Encryption SDK

Achten Sie beim Erstellen eines RSA-Schlisselbunds in der darauf AWS-Verschlisselungs-SDK for
C, dass Sie den Inhalt der PEM-Datei, die jeden Schllissel enthalt, als Null-terminierte C-Zeichenfolge
angeben, nicht als Pfad oder Dateiname. Achten Sie beim Erstellen eines unformatierten RSA-
Schlusselbunds in JavaScript auf mdgliche Inkompatibilitat mit anderen Sprachenimplementierungen.

Namespaces und Namen

Um das RSA-Schlisselmaterial in einem Schlisselbund zu identifizieren, verwendet der RSA-RSA-
Schlisselbund einen Schlisselnamespace und einen Schlisselnamen, die Sie angeben. Diese
Werte sind nicht geheim. Sie erscheinen im Klartext in der Kopfzeile der verschlisselten Nachricht,
die der VerschlUsselungsvorgang zurtckgibt. Wir empfehlen, den Schlisselnamespace und den
Schlisselnamen zu verwenden, die das RSA-Schllsselpaar (oder seinen privaten Schltssel) in Threm
HSM oder Schlisselverwaltungssystem identifizieren.

@ Note

Der Schllisselnamespace und der Schliisselname entsprechen den Feldern Provider-ID (oder
Provider) und Key-ID in den Feldern und. JceMasterKey RawMasterKey

Der AWS-Verschlisselungs-SDK for C reserviert den aws -kms Schlisselnamespace-Wert
fur KMS-Schlussel. Verwenden Sie ihn nicht in einem Raw AES Keyring oder Raw RSA
Keyring mit dem. AWS-Verschlisselungs-SDK for C

Wenn Sie verschiedene Schliisselbunde zum Verschllisseln und Entschliisseln einer bestimmten
Nachricht erstellen, sind der Namespace und die Namenswerte entscheidend. Wenn der

Unformatierte RSA-Schliisselbunde 199

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Schlisselnamespace und der Schllisselname im Entschllisselungsschlisselbund nicht exakt

und unter Berlcksichtigung der Grol3- und Kleinschreibung flir den Schlliisselnamespace

und den Schllisselnamen im Verschlisselungsschlisselbund tbereinstimmen, wird der
Entschlisselungsschlisselbund nicht verwendet, auch wenn die Schllissel aus demselben key pair
stammen.

Der Schliisselnamespace und der Schliisselname des Schlisselmaterials in den Verschlisselungs-
und Entschlisselungsschlisselbunden miussen identisch sein, unabhangig davon, ob der
Schlisselbund den &éffentlichen RSA-Schlissel, den privaten RSA-Schlissel oder beide

Schlissel im key pair enthalt. Nehmen wir beispielsweise an, Sie verschliisseln Daten mit einem
RSA-Rohschlisselbund fir einen 6ffentlichen RSA-Schllssel mit Schltisselnamespace und
Schlisselname. HSM_01 RSA_2048_06 Um diese Daten zu entschlisseln, erstellen Sie einen RSA-
Rohschlisselbund mit dem privaten Schllssel (oder key pair) und demselben Schllisselnamespace
und Namen.

Padding-Modus

Sie mussen einen Fullmodus fur RSA-Rohschlisselringe angeben, die flir die Verschlusselung und
Entschlisselung verwendet werden, oder Funktionen lhrer Sprachimplementierung verwenden, die
ihn fur Sie spezifizieren.

Der AWS Encryption SDK unterstitzt die folgenden Fillmodi, die den Einschrankungen der
jeweiligen Sprache unterliegen. Wir empfehlen einen OAEP-Padding-Modus, insbesondere OAEP
mit SHA-256 und mit SHA-256 Padding. MGF1 Der Padding-Modus wird nur aus Griinden der
Abwartskompatibilitat unterstitzt. PKCS1

OAEP mit SHA-1 und mit SHA-1 Padding MGF1

OAEP mit SHA-256 und mit SHA-256-Padding MGF1

OAEP mit SHA-384 und mit SHA-384-Padding MGF1

OAEP mit SHA-512 und mit SHA-512-Padding MGF1

PKCS1 v1.5 Polsterung

Die folgenden Beispiele zeigen, wie Sie einen RSA-Rohschlisselbund mit dem 6ffentlichen

und privaten Schlissel eines RSA-Schlisselpaars und den OAEP mit SHA-256 und dem
SHA-256-Padding-Modus erstellen. MGF1 Die Variablen und stellen das von Ihnen bereitgestellte
Hauptmaterial dar. RSAPublicKey RSAPrivateKey

Unformatierte RSA-Schliisselbunde 200

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS Encryption SDK Entwicklerhandbuch

C

Um einen RSA-Schlusselbund in Raw zu erstellen AWS-Verschlisselungs-SDK for C, verwenden
Sie. aws_cryptosdk_raw_rsa_keyring_new

Achten Sie beim Aufbau eines Raw RSA-Schlisselbunds in der darauf AWS-Verschlisselungs-
SDK for C, dass Sie den Inhalt der PEM-Datei, die jeden Schllssel enthalt, als Null-terminierte C-
Zeichenfolge angeben, nicht als Pfad oder Dateiname. Ein vollstandiges Beispiel finden Sie unter
raw_rsa_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new(
alloc,
key_namespace,
key_name,
private_key_from_pem,
public_key_from_pem,
AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C#/ .NET

Verwenden Sie die Methode, um einen Raw RSA-Schlisselbund in flir.NET zu instanziieren. AWS
Encryption SDK materialProviders.CreateRawRsaKeyring() Ein vollstdndiges Beispiel
finden Sie unter Raw Example.cs. RSAKeyring

Das folgende Beispiel verwendet Version 4. x von AWS Encryption SDK fur .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files

var publicKey = new
MemoryStream(System.I0O.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));

var privateKey = new
MemoryStream(System.I0.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

Unformatierte RSA-Schliisselbunde 201

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput

{
KeyNamespace = keyNamespace,
KeyName = keyName,
PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
PublicKey = publicKey,
PrivateKey = privateKey
};

// Create the keyring
var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

JavaScript Browser

Das AWS-Verschlisselungs-SDK for JavaScript im Browser bezieht seine kryptografischen
Primitive aus der WebCryptoBibliothek. Bevor Sie den Schllsselbund erstellen, missen Sie das
Rohschlisselmaterial verwenden importPublicKey() und/oder importPrivateKey() in das
Backend importieren. WebCrypto Dadurch wird sichergestellt, dass der Schlisselbund vollstandig
ist, obwohl alle Aufrufe asynchron sind. WebCrypto Das Objekt, das die Importmethoden
verwenden, beinhaltet den Wrapping-Algorithmus und seinen Padding-Modus.

Verwenden Sie nach dem Import des Schliisselmaterials die RawRsaKeyringWebCrypto()
Methode, um den Schliusselbund zu instanziieren. Beachten Sie bei der Erstellung eines
RSA-Schlisselbundes in Raw die mdgliche JavaScript Inkompatibilitdt mit anderen
Sprachimplementierungen.

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschliisselten Datenschlissel in einer
verschlisselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“‘Beschrankung verschlUsselter Datenschlissel”.

Ein vollstandiges Beispiel finden Sie unter rsa_simple.ts (Browser). JavaScript

import {
RsaImportableKey,
RawRsaKeyringWebCrypto,
buildClient,
CommitmentPolicy,

Unformatierte RSA-Schliisselbunde 202

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/rsa_simple.ts

AWS Encryption SDK Entwicklerhandbuch

} from '@aws-crypto/client-browser"'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey(
privateRsaJwKKey

)

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey(
publicRsaJwKKey

)

const keyNamespace = 'HSM_01'
const keyName 'RSA_2048_06'

const keyring = new RawRsaKeyringWebCrypto({
keyName,
keyNamespace,
publicKey,
privateKey,

1)

JavaScript Node.js

Um einen RSA-Schlusselbund in Node.js zu instanziieren, erstellen Sie eine neue Instanz der
Klasse AWS-Verschlisselungs-SDK for JavaScript . RawRsaKeyringNode Der wrapKey
Parameter enthalt den o6ffentlichen Schllssel. Der unwrapKey Parameter enthalt den privaten
Schlussel. Der RawRsaKeyringNode Konstruktor berechnet einen Standard-Fullmodus fiir Sie,
obwohl Sie einen bevorzugten Flllmodus angeben kdnnen.

Beachten Sie bei der Erstellung eines RSA-Schlisselanhdngers die mogliche Inkompatibilitat mit
JavaScript anderen Sprachimplementierungen.

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschlisselten Datenschlissel in einer

verschlusselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called

“‘Beschrankung verschlUsselter Datenschlissel”.

Ein vollstandiges Beispiel finden Sie unter rsa_simple.ts (Node.js). JavaScript

Unformatierte RSA-Schliisselbunde 203

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/rsa_simple.ts

AWS Encryption SDK Entwicklerhandbuch

import {
RawRsaKeyringNode,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey,
rsaPrivateKey})

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
.keyName ("RSA_2048_06")
.keyNamespace("HSM_01")
.paddingScheme(PaddingScheme.0AEP_SHA256_MGF1)
.publicKey(RSAPublicKey)
.privateKey(RSAPrivateKey)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Python

Im folgenden Beispiel wird der Client mit der Standard-Commitment-Richtlinie instanziiert AWS
Encryption SDK . REQUIRE_ENCRYPT_REQUIRE_DECRYPT Ein vollstandiges Beispiel finden Sie
unter raw_rsa_keyring_example.py im AWS-Verschlisselungs-SDK for Python Repository unter.
GitHub

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "RSA_2048_ 06"

Instantiate the material providers

Unformatierte RSA-Schliisselbunde 204

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_rsa_keyring_example.py

AWS Encryption SDK Entwicklerhandbuch

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create Raw RSA keyring

keyring_input: CreateRawRsaKeyringInput = CreateRawRsaKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
padding_scheme=PaddingScheme.OAEP_SHA256_MGF1,
public_key=RSAPublicKey,
private_key=RSAPrivateKey

raw_rsa_keyring: IKeyring = mat_prov.create_raw_rsa_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "RSA_2048_06";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw RSA keyring
let raw_rsa_keyring = mpl

Unformatierte RSA-Schliisselbunde 205

AWS Encryption SDK Entwicklerhandbuch

.create_raw_rsa_keyring()

.key_name(key_name)

.key_namespace(key_namespace)
.padding_scheme(PaddingScheme: :0aepSha256Mgf1)
.public_key(aws_smithy_types::Blob: :new(RSAPublicKey))
.private_key(aws_smithy_types::Blob::new(RSAPrivateKey))
.send()

.await?;

Go

// Instantiate the material providers library
matProv, err :=
awscryptographymaterialproviderssmithygenerated.NewClient(awscryptographymaterialproviderss

// Create Raw RSA keyring

rsakKeyRingInput :=
awscryptographymaterialproviderssmithygeneratedtypes.CreateRawRsaKeyringInput{
KeyName: "rsa",
KeyNamespace: "rsa-keyring",
PaddingScheme:
awscryptographymaterialproviderssmithygeneratedtypes.PaddingSchemePkcsl,
PublicKey: pem.EncodeToMemory(publicKeyBlock),
PrivateKey: pem.EncodeToMemory(privateKeyBlock),

}

rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)

Go
import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

Unformatierte RSA-Schliisselbunde 206

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err != nil {
panic(err)
}
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048 06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create Raw RSA keyring

rsaKeyRingInput := mpltypes.CreateRawRsaKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
PaddingScheme: mpltypes.PaddingSchemeOaepSha512Mgf1,

PublicKey: (RSAPublicKey),
PrivateKey: (RSAPrivateKey),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)
if err !'= nil {
panic(err)
}

Unformatierte RSA-Schliisselbunde 207

AWS Encryption SDK Entwicklerhandbuch

Raw ECDH Schlisselanhanger

Der Raw ECDH-Schlusselbund verwendet die von Ihnen angegebenen Paare aus 6ffentlichem und
privatem Schlussel mit elliptischer Kurve, um einen gemeinsamen Wrapping-Schlissel zwischen
zwei Parteien abzuleiten. Zunachst leitet der Schlisselbund mithilfe des privaten Schlissels des
Absenders, des offentlichen Schllissels des Empfangers und des Schlisselvereinbarungsalgorithmus
Elliptic Curve Diffie-Hellman (ECDH) ein gemeinsames Geheimnis ab. Anschlie3end leitet der
Schlisselbund anhand des gemeinsamen geheimen Schlissels den gemeinsamen Wrapping-
Schlussel ab, der Ihre Datenverschlisselungsschlissel schitzt. Die Schlisselableitungsfunktion,

die (KDF_CTR_HMAC_SHA384) AWS Encryption SDK verwendet, um den gemeinsamen Wrapping-
Schlissel abzuleiten, entspricht den NIST-Empfehlungen fir die Schlisselableitung.

Die Funktion zur Schlisselableitung gibt 64 Byte an Schllsselmaterial zurtick. Um sicherzustellen,
dass beide Parteien das richtige Schllisselmaterial verwenden, AWS Encryption SDK verwendet der
die ersten 32 Byte als Commitment-Schllissel und die letzten 32 Byte als gemeinsamen Wrapping-
Schlussel. Wenn der Schlisselbund beim Entschlisseln nicht denselben Commitment-Schlissel
und denselben gemeinsamen Wrapping-Schllissel reproduzieren kann, die im Chiffretext der
Nachrichtenkopfzeile gespeichert sind, schlagt der Vorgang fehl. Wenn Sie beispielsweise Daten
mit einem Schllisselbund verschlisseln, der mit Alices privatem Schlissel und Bobs 6ffentlichem
Schlissel konfiguriert ist, reproduziert ein Schlisselbund, der mit Bobs privatem Schlissel und
Alices o6ffentlichem Schlissel konfiguriert ist, denselben Commitment-Schllissel und gemeinsamen
Wrapping-Schlissel und kann die Daten entschllisseln. Wenn Bobs 6ffentlicher Schllissel aus einem
AWS KMS key Paar stammt, kann Bob einen AWS KMS ECDH-Schlusselbund erstellen, um die
Daten zu entschlusseln.

Der Raw ECDH-Schlisselbund verschlisselt Daten mit einem symmetrischen Schllssel

unter Verwendung von AES-GCM. Der Datenschliissel wird dann mit dem abgeleiteten
gemeinsamen Wrapping-Schlissel unter Verwendung von AES-GCM umhiillt. Jeder Raw ECDH-
Schlusselbund kann nur einen gemeinsamen Wrap-Schlussel haben, aber Sie kbnnen mehrere
Raw ECDH-Schlusselanhanger, einzeln oder zusammen mit anderen Schllsselbunden, in einen
Mehrfachschlisselbund aufnehmen.

Sie sind daflr verantwortlich, lhre privaten Schllissel zu generieren, zu speichern und zu schiitzen,
vorzugsweise in einem Hardware-Sicherheitsmodul (HSM) oder einem Schliisselverwaltungssystem.
Die Schlisselpaare des Absenders und des Empfangers missen sich auf derselben elliptischen
Kurve befinden. Das AWS Encryption SDK untersttitzt die folgenden Spezifikationen fiir elliptische
Kurven:

Raw ECDH Schliisselanhanger 208

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK Entwicklerhandbuch

 ECC_NIST_P256
 ECC_NIST_P384
 ECC_NIST_P512

Kompatibilitdt mit Programmiersprachen

Der Raw ECDH-Schlisselbund wurde in Version 1.5.0 der Cryptographic Material Providers Library
(MPL) eingefiihrt und wird von den folgenden Programmiersprachen und Versionen unterstitzt:

» Version 3. x der AWS-Verschlisselungs-SDK for Java
 Ausfiihrung 4. x von AWS Encryption SDK fir .NET

» Version 4. x von AWS-Verschlisselungs-SDK for Python, wenn es mit der optionalen MPL-
Abhangigkeit verwendet wird.

* Version 1. x von der AWS Encryption SDK fir Rust
» Version 0.1. x oder héher von AWS Encryption SDK for Go

Einen RAW-ECDH-Schlisselbund erstellen

Der Raw ECDH-Schlisselbund unterstitzt drei wichtige Vereinbarungsschemata:, und.
RawPrivateKeyToStaticPublicKey EphemeralPrivateKeyToStaticPublicKey
PublicKeyDiscovery Das von lhnen gewahlte Schlisselvereinbarungsschema bestimmt,
welche kryptografischen Operationen Sie ausfuhren kbnnen und wie die Schlisselmaterialien
zusammengestellt werden.

Themen

» RawPrivateKeyToStaticPublicKey

» EphemeralPrivateKeyToStaticPublicKey

« PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Verwenden Sie das RawPrivateKeyToStaticPublicKey Schlisselvereinbarungsschema,

um den privaten Schlussel des Absenders und den 6&ffentlichen Schlissel des Empfangers im
Schlusselbund statisch zu konfigurieren. Dieses Schlisselvereinbarungsschema kann Daten ver- und
entschlisseln.

Einen RAW-ECDH-Schlisselbund erstellen 209

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Um einen RAW-ECDH-Schlisselbund mit dem Schllsselvereinbarungsschema zu initialisieren,
RawPrivateKeyToStaticPublicKey geben Sie die folgenden Werte an:

* Der private Schlissel des Absenders

Sie mussen den PEM-codierten privaten Schlissel des Absenders (PKCS #8 PrivateKeylInfo -
Strukturen) gemal der Definition in RFC 5958 angeben.

 Der offentliche Schlissel des Empfangers

Sie mussen den DER-codierten 6ffentlichen X.509-Schlissel des Empfangers, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert, angeben.

Sie kénnen den o6ffentlichen Schllissel eines KMS-Schllisselpaars mit asymmetrischer
Schlusselvereinbarung oder den 6ffentlichen Schlissel eines au3erhalb von AWS generierten key
pair angeben.

» Spezifikation der Kurve

Identifiziert die Spezifikation fur elliptische Kurven in den angegebenen Schllisselpaaren. Sowohl
die Schllisselpaare des Absenders als auch des Empfangers missen dieselbe Kurvenspezifikation
haben.

Zulassige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/.NET

// Instantiate material providers

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var BobPrivateKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the Raw ECDH static keyring
var staticConfiguration = new RawEcdhStaticConfigurations()
{
RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
{
SenderStaticPrivateKey = BobPrivateKey,
RecipientPublicKey = AlicePublicKey
}
};

Einen RAW-ECDH-Schliisselbund erstellen 210

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Entwicklerhandbuch

var createKeyringInput = new CreateRawEcdhKeyringInput()
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = staticConfiguration

i

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Das folgende Java-Beispiel verwendet das RawPrivateKeyToStaticPublicKey
Schlisselvereinbarungsschema, um den privaten Schllssel des Absenders und den 6ffentlichen
Schlissel des Empfangers statisch zu konfigurieren. Beide Schllsselpaare befinden sich auf der
ECC_NIST_P256 Kurve.

private static void StaticRawKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())

.build();

KeyPair senderKeys = GetRawEccKey();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH static keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.RawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput.builder()
// Must be a PEM-encoded private key

.senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
// Must be a DER-encoded X.509 public key

.recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
.build()
)
.build()
).build();

Einen RAW-ECDH-Schlisselbund erstellen 211

AWS Encryption SDK Entwicklerhandbuch

final IKeyring staticKeyring =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

Das folgende Python-Beispiel verwendet das
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey
Schlisselvereinbarungsschema, um den privaten Schllssel des Absenders und den 6ffentlichen
Schlissel des Empfangers statisch zu konfigurieren. Beide Schllisselpaare befinden sich auf der
ECC_NIST_P256 Kurve.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey,
RawPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Must be a PEM-encoded private key

bob_private_key = get_private_key_bytes()
Must be a DER-encoded X.509 public key
alice_public_key = get_public_key_bytes()

Create the raw ECDH static keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput(
sender_static_private_key = bob_private_key,
recipient_public_key = alice_public_key,

Einen RAW-ECDH-Schlisselbund erstellen 212

AWS Encryption SDK Entwicklerhandbuch

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

Das folgende Python-Beispiel verwendet das raw_ecdh_static_configuration
Schlisselvereinbarungsschema, um den privaten Schllssel des Absenders und den 6ffentlichen
Schlissel des Empfangers statisch zu konfigurieren. Beide Schllisselpaare missen sich auf
derselben Kurve befinden.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Create keyring input
let raw_ecdh_static_configuration_input =
RawPrivateKeyToStaticPublicKeyInput::buildexr()

// Must be a UTF8 PEM-encoded private key
.sender_static_private_key(private_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring
let raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()

Einen RAW-ECDH-Schlisselbund erstellen 213

AWS Encryption SDK Entwicklerhandbuch

.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(raw_ecdh_static_configuration)
.send()

.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Create keyring input

rawEcdhStaticConfigurationInput := mpltypes.RawPrivateKeyToStaticPublicKeyInput{
SenderStaticPrivateKey: privateKeySender,
RecipientPublicKey: publicKeyRecipient,

}

rawECDHStaticConfiguration :=

&mpltypes.RawEcdhStaticConfigurationsMemberRawPrivateKeyToStaticPublicKey{
Value: rawEcdhStaticConfigurationInput,

Einen RAW-ECDH-Schlisselbund erstellen 214

AWS Encryption SDK Entwicklerhandbuch

}

rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: rawECDHStaticConfiguration,

}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create raw ECDH static keyring
rawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)

EphemeralPrivateKeyToStaticPublicKey

Mit dem Schlisselvereinbarungsschema konfigurierte
EphemeralPrivateKeyToStaticPublicKey Schlisselringe erstellen lokal ein neues key pair
und leiten fUr jeden Verschlisselungsaufruf einen eindeutigen gemeinsamen Wrapping-Schlissel ab.

Dieses Schlisselvereinbarungsschema kann nur Nachrichten verschlisseln. Um

Nachrichten zu entschllisseln, die mit dem EphemeralPrivateKeyToStaticPublicKey
Schlisselvereinbarungsschema verschlisselt wurden, missen Sie ein Discovery-
Schlisselvereinbarungsschema verwenden, das mit dem o6ffentlichen Schllssel desselben
Empfangers konfiguriert ist. Zum Entschlisseln kénnen Sie einen RAW-ECDH-Schltsselbund
mit dem PublicKeyDiscoverySchlisselvereinbarungsalgorithmus verwenden, oder, falls
der 6ffentliche Schlissel des Empfangers aus einem KMS-Schllsselpaar mit asymmetrischer
Schlisselvereinbarung stammt, kénnen Sie einen AWS KMS ECDH-Schlisselbund mit dem
Schlisselvereinbarungsschema verwenden. KmsPublicKeyDiscovery

Um einen Raw-ECDH-Schlisselbund mit dem Schlisselvereinbarungsschema zu initialisieren, geben
Sie die folgenden Werte anEphemeralPrivateKeyToStaticPublicKey:

 Der offentliche Schlissel des Empfangers

Einen RAW-ECDH-Schlisselbund erstellen 215

AWS Encryption SDK Entwicklerhandbuch

Sie mussen den DER-codierten 6ffentlichen X.509-Schlissel des Empfangers, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert, angeben.

Sie kénnen den o6ffentlichen Schlissel eines KMS-Schllsselpaars mit asymmetrischer
Schlusselvereinbarung oder den 6ffentlichen Schlissel eines auRerhalb von AWS generierten key
pair angeben.

» Spezifikation der Kurve
Identifiziert die Spezifikation fir elliptische Kurven im angegebenen 6ffentlichen Schlissel.

Beim Verschlisseln erstellt der Schllisselbund ein neues key pair auf der angegebenen Kurve und
verwendet den neuen privaten Schlissel und den angegebenen 6ffentlichen Schllssel, um einen
gemeinsamen Wrapping-Schllissel abzuleiten.

Zulassige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

Im folgenden Beispiel wird ein RAW-ECDH-Schlusselbund mit dem
Schlusselvereinbarungsschema erstellt. EphemeralPrivateKeyToStaticPublicKey Beim
Verschlisseln erstellt der Schlisselbund lokal auf der angegebenen ECC_NIST_P256 Kurve ein
neues key pair.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the Raw ECDH ephemeral keyring
var ephemeralConfiguration = new RawEcdhStaticConfigurations()
{
EphemeralPrivateKeyToStaticPublicKey = new
EphemeralPrivateKeyToStaticPublicKeyInput
{
RecipientPublicKey = AlicePublicKey
}
};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,

Einen RAW-ECDH-Schlisselbund erstellen 216

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Entwicklerhandbuch

KeyAgreementScheme = ephemeralConfiguration

};

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Im folgenden Beispiel wird ein RAW-ECDH-Schlisselbund mit dem
EphemeralPrivateKeyToStaticPublicKey Schliisselvereinbarungsschema erstellt. Beim
Verschlisseln erstellt der Schltisselbund lokal auf der angegebenen ECC_NIST_P256 Kurve ein

neues key pair.

private static void EphemeralRawEcdhKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

.build();
ByteBuffer recipientPublicKey = getPublicKeyBytes();

// Create the Raw ECDH ephemeral keyring
final CreateRawEcdhKeyringInput ephemerallnput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.EphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput.buildex()
.recipientPublicKey(recipientPublicKey)
.build()
)
.build()
).build();

final IKeyring ephemeralKeyring =
materialProviders.CreateRawEcdhKeyring(ephemerallnput);

}

Python

Im folgenden Beispiel wird ein RAW-ECDH-Schlisselbund mit dem
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey

Einen RAW-ECDH-Schlisselbund erstellen 217

AWS Encryption SDK Entwicklerhandbuch

Schlisselvereinbarungsschema erstellt. Beim Verschllsseln erstellt der Schlisselbund lokal auf
der angegebenen ECC_NIST_P256 Kurve ein neues key pair.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey,
EphemeralPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Your get_public_key_bytes must return a DER-encoded X.509 public key
recipient_public_key = get_public_key_bytes()

Create the raw ECDH ephemeral private key keyring
ephemeral_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput(
recipient_public_key = recipient_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(ephemeral_input)

Rust

Im folgenden Beispiel wird ein RAW-ECDH-Schlisselbund mit dem
ephemeral_raw_ecdh_static_configuration Schlisselvereinbarungsschema erstellt.
Beim Verschlusseln erstellt der Schltsselbund lokal auf der angegebenen Kurve ein neues key
pair.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Einen RAW-ECDH-Schlisselbund erstellen 218

AWS Encryption SDK Entwicklerhandbuch

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Load public key from UTF-8 encoded PEM files into a DER encoded public key.
let public_key_file_content =

std::fs::read_to_string(Path: :new(EXAMPLE_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content = parse(public_key_file_content)?;
let public_key_recipient_utf8_bytes = parsed_public_key_file_content.contents();

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
EphemeralPrivateKeyToStaticPublicKeyInput::buildexr()
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let ephemeral_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring

let ephemeral_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
.send()
.await?;

Go

import (

Einen RAW-ECDH-Schlisselbund erstellen 219

AWS Encryption SDK Entwicklerhandbuch

"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Load public key from UTF-8 encoded PEM files into a DER encoded public key
publicKeyRecipient, err := LoadPublicKeyFromPEM(eccPublicKeyFileNameRecipient)
if err != nil {

panic(err)

// Create EphemeralPrivateKeyToStaticPublicKeyInput
ephemeralRawEcdhStaticConfigurationInput :=
mpltypes.EphemeralPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
}
ephemeralRawECDHStaticConfiguration :=
mpltypes.RawEcdhStaticConfigurationsMemberEphemeralPrivateKeyToStaticPublicKey{
Value: ephemeralRawEcdhStaticConfigurationInput,

// Instantiate the material providers library

Einen RAW-ECDH-Schlisselbund erstellen 220

AWS Encryption SDK Entwicklerhandbuch

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)

// Create raw ECDH ephemeral private key keyring
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: &ephemeralRawECDHStaticConfiguration,

}
ecdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)
}

PublicKkeyDiscovery

Beim Entschlisseln empfiehlt es sich, die UmschlieBungsschlissel anzugeben, die sie verwenden
kénnen. AWS Encryption SDK Um dieser bewahrten Methode zu folgen, verwenden Sie einen
ECDH-Schlusselbund, der sowohl den privaten Schllssel eines Absenders als auch den
offentlichen Schlissel des Empfangers angibt. Sie kébnnen jedoch auch einen Raw ECDH
Discovery-Schlisselbund erstellen, d. h. einen Raw ECDH-Schlisselbund, der jede Nachricht
entschlisseln kann, bei der der angegebene 6ffentliche Schltissel mit dem 6ffentlichen Schlissel
des Empfangers Ubereinstimmt, der im Chiffretext der Nachricht gespeichert ist. Dieses
Schlisselvereinbarungsschema kann nur Nachrichten entschlisseln.

/A Important

Wenn Sie Nachrichten mithilfe des PublicKeyDiscovery Schlisselvereinbarungsschemas
entschlUsseln, akzeptieren Sie alle offentlichen Schlissel, unabhangig davon, wem sie
gehdren.

Um einen Raw-ECDH-Schlisselbund mit dem Schllsselvereinbarungsschema zu initialisieren, geben
Sie die PublicKeyDiscovery folgenden Werte an:

« Statischer privater Schlissel des Empfangers

Einen RAW-ECDH-Schlisselbund erstellen 221

AWS Encryption SDK Entwicklerhandbuch

Sie mussen den PEM-codierten privaten Schllissel des Empfangers (PKCS #8 PrivateKeylInfo -
Strukturen) gemal der Definition in RFC 5958 angeben.

» Spezifikation der Kurve

Identifiziert die Spezifikation fur elliptische Kurven im angegebenen privaten Schllissel. Sowohl die
Schlisselpaare des Absenders als auch des Empfangers miissen dieselbe Kurvenspezifikation
haben.

Zulassige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

Im folgenden Beispiel wird ein Raw ECDH-Schlisselbund mit dem PublicKeyDiscovery
Schlusselvereinbarungsschema erstellt. Dieser Schllisselbund kann jede Nachricht entschlisseln,
bei der der 6ffentliche Schlliissel des angegebenen privaten Schlissels mit dem 6ffentlichen
Schlussel des Empfangers tbereinstimmt, der im Chiffretext der Nachricht gespeichert ist.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePrivateKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH discovery keyring
var discoveryConfiguration = new RawEcdhStaticConfigurations()

{

PublicKeyDiscovery = new PublicKeyDiscoveryInput
{
RecipientStaticPrivateKey = AlicePrivateKey

}

};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,

KeyAgreementScheme = discoveryConfiguration

iy

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Einen RAW-ECDH-Schlisselbund erstellen 222

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2

AWS Encryption SDK Entwicklerhandbuch

Java

Im folgenden Beispiel wird ein RAW-ECDH-Schlisselbund mit dem
Schlisselvereinbarungsschema erstellt. PublicKeyDiscovery Dieser Schlisselbund kann jede
Nachricht entschlisseln, bei der der 6ffentliche Schlissel des angegebenen privaten Schlissels
mit dem o6ffentlichen Schliissel des Empfangers Ubereinstimmt, der im Chiffretext der Nachricht

gespeichert ist.

private static void RawEcdhDiscovery() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

.build();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH discovery keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.buildexr()
.PublicKeyDiscovery(
PublicKeyDiscoveryInput.builder()
// Must be a PEM-encoded private key

.recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
.build()

)
.build()
).build();

final IKeyring publicKeyDiscovery =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

Im folgenden Beispiel wird ein RAW-ECDH-Schlisselbund mit dem

Schlisselvereinbarungsschema erstellt.
RawEcdhStaticConfigurationsPublicKeyDiscovery Dieser Schliisselbund kann jede

Einen RAW-ECDH-Schlisselbund erstellen 223

AWS Encryption SDK Entwicklerhandbuch

Nachricht entschliisseln, bei der der 6ffentliche Schllissel des angegebenen privaten Schlissels
mit dem o6ffentlichen Schliissel des Empfangers Ubereinstimmt, der im Chiffretext der Nachricht
gespeichert ist.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsPublicKeyDiscovery,
PublicKeyDiscoveryInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Your get_private_key_bytes must return a PEM-encoded private key
recipient_private_key = get_private_key_bytes()

Create the raw ECDH discovery keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = RawEcdhStaticConfigurationsPublicKeyDiscovery(
PublicKeyDiscoveryInput(
recipient_static_private_key = recipient_private_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

Im folgenden Beispiel wird ein RAW-ECDH-Schlisselbund mit dem
Schlisselvereinbarungsschema erstellt. discovery_raw_ecdh_static_configuration
Dieser Schlusselbund kann jede Nachricht entschlisseln, bei der der 6ffentliche Schlussel des
angegebenen privaten Schlissels mit dem o6ffentlichen Schlissel des Empfangers Ubereinstimmt,
der im Chiffretext der Nachricht gespeichert ist.

// Instantiate the AWS Encryption SDK client and material providers library

Einen RAW-ECDH-Schlisselbund erstellen 224

AWS Encryption SDK Entwicklerhandbuch

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Load keys from UTF-8 encoded PEM files.

let mut file = File::open(Path::new(EXAMPLE_ECC_PRIVATE_KEY_FILENAME_RECIPIENT))?;
let mut private_key_recipient_utf8_bytes = Vec::new();

file.read_to_end(&mut private_key_recipient_utf8_bytes)?;

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
PublicKeyDiscoveryInput::builder()
// Must be a UTF8 PEM-encoded private key
.recipient_static_private_key(private_key_recipient_utf8_bytes)
.build()?;

let discovery_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_ing

// Create raw ECDH discovery private key keyring

let discovery_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(discovery_raw_ecdh_static_configuration)
.send()
.await?;

Einen RAW-ECDH-Schlisselbund erstellen 225

AWS Encryption SDK Entwicklerhandbuch

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {

panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}
// Load keys from UTF-8 encoded PEM files.
privateKeyRecipient, err := os.ReadFile(eccPrivateKeyFileNameRecipient)
if err != nil {

panic(err)
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create PublicKeyDiscoveryInput
discoveryRawEcdhStaticConfigurationInput := mpltypes.PublicKeyDiscoveryInput{

Einen RAW-ECDH-Schlisselbund erstellen 226

AWS Encryption SDK Entwicklerhandbuch

RecipientStaticPrivateKey: privateKeyRecipient,

discoveryRawEcdhStaticConfiguration :=
&mpltypes.RawEcdhStaticConfigurationsMemberPublicKeyDiscovery{
Value: discoveryRawEcdhStaticConfigurationInput,

// Create raw ECDH discovery private key keyring
discoveryRawEcdhKeyringInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: discoveryRawEcdhStaticConfiguration,

}
discoveryRawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
discoveryRawEcdhKeyringInput)
if err !'= nil {
panic(err)
}

Multi-Schlusselbunde

Sie kénnen Schlisselbunde zu einem Multi-Schlisselbund kombinieren. Ein Multi-Schltsselbund
ist ein Schllsselbund, der aus einem oder mehreren einzelnen Schlisselbunden desselben oder
eines anderen Typs besteht. Das hat den gleichen Effekt wie die Verwendung von mehreren
Schlisselbunden in einer Reihe. Wenn Sie einen Multi-Schlisselbund verwenden, um Daten zu
verschlisseln, kénnen alle Umhillungsschlissel in einem seiner Schlisselbunde diese Daten
entschlusseln.

Wenn Sie einen Multi-Schlisselbund erstellen, um Daten zu verschlisseln, geben Sie einen

der Schlisselbunde als Generator-Schlisselbund an. Alle anderen Schlisselbunde werden

als untergeordnete Schlisselbunde bezeichnet. Der Generator-Schllisselbund generiert und
verschlisselt den Klartext-Datenschlissel. AnschlieRend verschlisseln alle Umhullungsschlissel

in den untergeordneten Schlisselbunden den gleichen Klartext-Datenschlissel. Der Multi-
Schlisselbund gibt den Klartext-Datenschlissel und einen verschlisselten Datenschlissel fur jeden
Umbhillungsschlissel im Multi-Schltisselbund zurtick. Wenn der Generator-Schltsselbund ein KMS-
Schlusselbund ist, generiert und verschlisselt der Generatorschltissel im AWS KMS Schlisselbund
den Klartext-Schlissel. Anschlielend verschlisseln alle zusatzlichen Schlissel AWS KMS keys

Multi-Schliisselbunde 227

AWS Encryption SDK Entwicklerhandbuch

im AWS KMS Schlisselbund und alle Schlissel in allen untergeordneten Schlisselbunden im
Mehrfachschlisselbund denselben Klartext-Schlissel.

Wenn Sie einen Mehrfachschlisselbund ohne Generatorschlisselbund erstellen, konnen Sie ihn
eigenstandig zum Entschlisseln von Daten verwenden, aber nicht zum Verschlisseln. Oder wenn
Sie bei Verschlisselungsvorgangen einen Mehrfachschlisselbund ohne Generatorschltisselbund
verwenden mdchten, kdnnen Sie ihn als untergeordneten Schlliisselbund in einem anderen
Schlisselbund angeben. Ein Mehrfachschlisselbund ohne Generator-Schllisselbund kann nicht als
Generator-Schliusselbund in einem anderen Schlisselbund mit mehreren Schliisseln bezeichnet
werden.

Beim Entschlisseln versucht der AWS Encryption SDK anhand der Schlisselbunde, einen der
verschlisselten Datenschlissel zu entschliisseln. Die Schlisselbunde werden in der Reihenfolge
aufgerufen, in der sie im Multi-Schlisselbund angegeben sind. Die Verarbeitung stoppt, sobald ein
Schlussel in einem Schlisselbund einen verschlisselten Datenschlissel entschlisseln kann.

Ab Version 1.7. x, wenn ein verschlisselter Datenschliissel unter einem AWS Key Management
Service (AWS KMS) -Schlisselbund (oder einem Hauptschllisselanbieter) verschllisselt wird,
Ubergibt der AWS Encryption SDK immer den Schliissel-ARN von AWS KMS key an den KeyId
Parameter der AWS KMS Decrypt-Operation. Dies ist eine AWS KMS bewahrte Methode, die
sicherstellt, dass Sie den verschlisselten Datenschlissel mit dem Wrapping-Schlissel entschlisseln,
den Sie verwenden mochten.

Ein funktionierendes Beispiel fur einen Multi-Schlisselbund finden Sie unter:

« C: multi_keyring.cpp

C#/.NET: .cs MultiKeyringExample

» JavaScript Node.js: multi_keyring.ts

» JavaScript Browser: multi_keyring.ts

Java MultiKeyringExample: .java

« Python: multi_keyring_example.py

Zum Erstellen eines Multi-Schltsselbunds missen Sie zuerst die untergeordneten Schllsselbunde
instanziieren. In diesem Beispiel verwenden wir einen AWS KMS Schllsselbund und einen

Raw AES-Schlisselbund, aber Sie kénnen jeden unterstitzten Schlisselbund in einem
Mehrfachschllisselbund kombinieren.

Multi-Schliisselbunde 228

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/multi_keyring.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/MultiKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/MultiKeyringExample.java
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/multi_keyring_example.py

AWS Encryption SDK Entwicklerhandbuch

C

/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(example_key);

// Define a Raw AES keyring. For details, see raw_aes_keyring.c */

struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key,

AWS_CRYPTOSDK_AES256);

C#/.NET

// Define an AWS KMS keyring. For details, see AwsKmsKeyringExample.cs.
var kmsKeyring = materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

// Define a Raw AES keyring. For details, see RawAESKeyringExample.cs.
var aesKeyring = materialProviders.CreateRawAesKeyring(createAesKeyringInput);

JavaScript Browser

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie kénnen die
auch verwendenbuildClient, um die Anzahl der verschliisselten Datenschlissel in einer
verschlusselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“‘Beschrankung verschlUsselter Datenschlissel”.

import {
KmsKeyringBrowser,
KMS,
getClient,
RawAesKeyringWebCrypto,
RawAesWrappingSuiteIdentifier,
MultiKeyringWebCrypto,
buildClient,
CommitmentPolicy,
synchronousRandomValues,

} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Multi-Schlisselbunde 229

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK Entwicklerhandbuch

const clientProvider = getClient(KMS, { credentials })

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace,
wrappingSuite, masterKey })

JavaScript Node.js

Im folgenden Beispiel wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschliisselten Datenschlissel in einer
verschlisselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“‘Beschrankung verschlusselter Datenschlissel”.

import {
MultiKeyringNode,
KmsKeyringNode,
RawAesKeyringNode,
RawAesWrappingSuiteIdentifier,
buildClient,
CommitmentPolicy,

} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey 1})

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite,
unencryptedMasterKey })

Java

// Define the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()

Multi-Schlisselbunde 230

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/raw-aes-keyring-node/src/raw_aes_keyring_node.ts

AWS Encryption SDK Entwicklerhandbuch

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateRawAesKeyringInput createRawAesKeyringInput =
CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
.build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyArn)
.build();
IKeyring awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Python

Im folgenden Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-
Richtlinie instanziiert,, REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create the AWS KMS keyring
kms_client = boto3.client('kms', region_name="us-west-2")

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

kms_keyring_input: CreateAwsKmsKeyringInput
generator=arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
kms_client=kms_client

CreateAwsKmsKeyringInput(

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=kms_keyring_input

Create Raw AES keyring
key_name_space = "HSM_01"

Multi-Schliisselbunde 231

AWS Encryption SDK Entwicklerhandbuch

key_name = "AES_256_@12"

raw_aes_keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=raw_aes_keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Create a Raw AES keyring
let key_namespace: &str = "my-key-namespace";
let key_name: &str = "my-aes-key-name";

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)

Multi-Schliisselbunde 232

AWS Encryption SDK Entwicklerhandbuch

Go

.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle)
.send()

.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1)

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

Multi-Schliisselbunde 233

AWS Encryption SDK Entwicklerhandbuch

// Create an AWS KMS keyring

awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,

}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)
}
// Create a Raw AES keyring
var keyNamespace = "my-key-namespace"
var keyName = "my-aes-key-name"

aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: AESWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)

Erstellen Sie als Nachstes den Multi-Schltsselbund und geben Sie seinen Generator-Schltisselbund
an, falls vorhanden. In diesem Beispiel erstellen wir einen Mehrfachschliisselbund, bei dem

der Schlusselbund der AWS KMS Generatorschlisselbund und der AES-Schlisselbund der
untergeordnete Schlisselbund ist.

C

Im Multi-Schltsselbund-Konstruktor in C geben Sie nur den Generator-Schlisselbund an.

struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc,
kms_keyring);

Verwenden Sie die aws_cryptosdk_multi_keyring_add_child-Methode, um einen
untergeordneten Schlisselbund zu Ihrem Multi-Schlisselbund hinzuzufiigen. Sie mussen die
Methode einmal fUr jeden untergeordneten Schlisselbund aufrufen, den Sie hinzufigen.

Multi-Schlisselbunde 234

AWS Encryption SDK Entwicklerhandbuch

// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);

C#/ .NET

Mit CreateMultiKeyringInput dem.NET-Konstruktor kdnnen Sie einen Generator-
Schlusselbund und untergeordnete Schlisselanhanger definieren. Das resultierende
CreateMultiKeyringInput Objekt ist unveranderlich.

var createMultiKeyringInput = new CreateMultiKeyringInput

{

Generator = kmsKeyring,

ChildKeyrings = new List<IKeyring>() {aesKeyring}
};

var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);
JavaScript Browser

JavaScript Mehrfachschlisselringe sind unveranderlich. Mit dem Konstruktor flir JavaScript
mehrere Schlisselbunde kénnen Sie den Generator-Schliisselbund und mehrere untergeordnete
Schlusselringe angeben.

const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children:
[aesKeyring]);

JavaScript Node.js

JavaScript Schllsselanhanger mit mehreren Schllisseln sind unveranderlich. Mit dem Konstruktor
fur JavaScript mehrere Schlisselbunde kénnen Sie den Generator-Schliisselbund und mehrere
untergeordnete Schlisselringe angeben.

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children:
[aesKeyring]);

Multi-Schliisselbunde 235

AWS Encryption SDK Entwicklerhandbuch

Java

Mit dem CreateMultiKeyringInput Java-Konstruktor kbnnen Sie einen Generator-
Schlusselbund und untergeordnete Schlisselringe definieren. Das resultierende
createMultiKeyringInput Objekt ist unveranderlich.

final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.buildex()
.generator(awsKmsMrkMultiKeyring)
.childKeyrings(Collections.singletonList(rawAesKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Python

multi_keyring_input: CreateMultiKeyringInput = CreateMultiKeyringInput(
generator=kms_keyring,
child_keyrings=[raw_aes_keyring]

multi_keyring: IKeyring = mat_prov.create_multi_keyring(
input=multi_keyring_input

Rust

let multi_keyring = mpl
.create_multi_keyring()
.generator(kms_keyring.clone())
.child_keyrings(vec![raw_aes_keyring.clone()])
.send()
.await?;

Go

createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: awsKmsKeyring,
ChildKeyrings: [Impltypes.IKeyring{rawAESKeyring},
}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err !'= nil {

Multi-Schliisselbunde 236

AWS Encryption SDK Entwicklerhandbuch

panic(err)

}

Jetzt konnen Sie mit dem Multi-Schlisselbund Daten ver- und entschlisseln.

Multi-Schlisselbunde 237

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK Programmiersprachen

Das AWS Encryption SDK ist fir die folgenden Programmiersprachen verfiigbar. Alle
Sprachimplementierungen sind interoperabel. Sie kbnnen mit einer Sprachimplementierung
verschlusseln und mit einer anderen entschlisseln. Die Interoperabilitat ist moglicherweise von
Spracheinschrankungen abhangig. Wenn dies der Fall ist, werden diese Einschrankungen im
Thema zur Sprachimplementierung beschrieben. Aulierdem missen Sie beim Verschlisseln und
Entschlisseln kompatible Schlisselblinde oder Masterschlissel und Masterschlisselanbieter
verwenden. Details hierzu finden Sie unter the section called “Schltisselbund-Kompatibilitat”.

Themen

» AWS-Verschlisselungs-SDK for C

» AWS Encryption SDK fur .NET

* AWS Encryption SDK fur Go

» AWS-Verschlisselungs-SDK for Java

» AWS-Verschlisselungs-SDK for JavaScript
* AWS-Verschlusselungs-SDK for Python
* AWS Encryption SDK fur Rust

« AWS Encryption SDK Befehlszeilenschnittstelle

AWS-Verschlusselungs-SDK for C

Die AWS-Verschlisselungs-SDK for C stellt eine clientseitige Verschllisselungsbibliothek
fur Entwickler bereit, die Anwendungen in C schreiben. Sie dient auch als Grundlage fir
Implementierungen von AWS Encryption SDK in héheren Programmiersprachen.

Wie alle Implementierungen von bietet sie erweiterte AWS Encryption SDK Datenschutzfunktionen.
AWS-Verschlisselungs-SDK for C Dazu gehdéren die Envelope-Verschlusselung, zusatzliche
authentifizierte Daten (AAD) und Algorithmen-Pakete mit sicherem, authentifiziertem, symmetrischem
Schlissel, wie z. B. 256-Bit-AES-GCM mit Schlisselableitung und Signatur.

Alle sprachspezifischen Implementierungen von sind vollsténdig interoperabel. AWS Encryption SDK
Beispielsweise kdnnen Sie Daten mit der verschlisseln AWS-Verschlisselungs-SDK for C und mit
jeder unterstutzten Sprachimplementierung entschlisseln, einschliel3lich der AWS Encryption CLI.

C 238

AWS Encryption SDK Entwicklerhandbuch

Das AWS-Verschlisselungs-SDK for C erfordert die Interaktion AWS SDK fir C++ mit AWS Key
Management Service (JAWS KMS. Sie missen es nur verwenden, wenn Sie den optionalen AWS
KMS Schlisselbund verwenden. Das erfordert AWS KMS jedoch AWS Encryption SDK keinen
anderen AWS Dienst.

Weitere Informationen

» Einzelheiten zur Programmierung mit dem AWS-Verschliisselungs-SDK for C finden Sie in den
C-Beispielen, den Beispielen im aws-encryption-sdk-c Repository auf GitHub und in der AWS-
Verschlisselungs-SDK for C API-Dokumentation.

* Eine Erlauterung zur Verwendung von AWS-Verschlisselungs-SDK for C zum Verschlisseln von
Daten, sodass Sie sie in mehreren Bereichen entschlisseln kbnnen AWS-Regionen, finden Sie
unter Wie entschlisselt man Chiffretexte in mehreren Regionen mit dem in C AWS Encryption SDK
im Sicherheitsblog. AWS

Themen

+ Installation des AWS-Verschliisselungs-SDK for C

* Mit dem AWS-Verschliisselungs-SDK for C

* AWS-Verschliusselungs-SDK for C Beispiele

Installation des AWS-Verschlisselungs-SDK for C

Installieren Sie die neueste Version von AWS-Verschlisselungs-SDK for C.

® Note

Alle AWS-Verschlisselungs-SDK for C Versionen vor 2.0.0 befinden sich in der end-of-
supportPhase.

Sie kdnnen sicher von Version 2.0 aus aktualisieren. x und héher auf die neueste Version
von AWS-Verschlisselungs-SDK for C ohne Code- oder Datenanderungen. In Version 2.0
wurden jedoch neue Sicherheitsfunktionen eingefiihrt. x sind nicht abwartskompatibel. Um
von Versionen vor 1.7 zu aktualisieren. x auf Version 2.0. x und hdher, Sie missen zuerst auf
die neueste Version 1 aktualisieren. x-Version von AWS-Verschlisselungs-SDK for C. Details
hierzu finden Sie unter Migrieren Sie lhre AWS Encryption SDK.

Installation 239

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

Eine ausflhrliche Anleitung zur Installation und Erstellung von finden Sie AWS-Verschlisselungs-
SDK for C in der README-Datei des aws-encryption-sdk-cRepositorys. Es enthalt Anweisungen zum
Erstellen auf Amazon Linux-, Ubuntu-, macOS- und Windows-Plattformen.

Bevor Sie beginnen, entscheiden Sie, ob Sie AWS KMS Schlisselringe in der AWS Encryption

SDK verwenden mochten. Wenn Sie einen AWS KMS Schlisselbund verwenden, miissen Sie den
installieren. AWS SDK flir C++ Das AWS SDK ist flir die Interaktion mit AWS Key Management
Service(AWS KMS) erforderlich. Wenn Sie AWS KMS Schlisselringe verwenden, werden diese AWS
Encryption SDK verwendet, AWS KMS um die Verschliisselungsschlissel zu generieren und zu
schutzen, die lhre Daten schitzen.

Sie mussen den nicht installieren, AWS SDK fir C++ wenn Sie einen anderen Schlisselbundtyp
verwenden, z. B. einen RAW-AES-Schlisselbund, einen RSA-Rohschlisselbund oder einen
Mehrfachschlisselbund ohne Schlisselbund. AWS KMS Wenn Sie jedoch einen unformatierten
Schlisselbund verwenden, mussen Sie |hre eigenen Rawrap-Schllissel generieren und schitzen.

Wenn Sie Probleme mit Ihrer Installation haben, melden Sie ein Problem im aws-encryption-
sdk-c Repository oder verwenden Sie einen der Feedback-Links auf dieser Seite.

Mit dem AWS-Verschlisselungs-SDK for C

In diesem Thema werden einige der Funktionen von erldutert AWS-Verschlisselungs-SDK for C , die
in anderen Programmiersprachenimplementierungen nicht unterstitzt werden.

Die Beispiele in diesem Abschnitt zeigen, wie Version 2.0 verwendet wird. x und spater von AWS-
Verschlisselungs-SDK for C. Beispiele, die friihere Versionen verwenden, finden Sie in der Release-
Liste des aws-encryption-sdk-c Repository-Repositorys unter GitHub.

Einzelheiten zur Programmierung mit dem AWS-Verschlisselungs-SDK for C finden Sie in den
C-Beispielen, den Beispielen im aws-encryption-sdk-c Repository unter GitHub und in der AWS-
Verschlisselungs-SDK for C API-Dokumentation.

Weitere Informationen finden Sie auch unter: Schltsselringe.

Themen

» Muster zum Ver- und Entschliisseln von Daten

» Referenzzahlung

Verwenden des C SDK 240

https://github.com/aws/aws-encryption-sdk-c/#readme
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/aws/aws-encryption-sdk-c/issues
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/

AWS Encryption SDK Entwicklerhandbuch

Muster zum Ver- und Entschlisseln von Daten

Wenn Sie den verwenden AWS-Verschlisselungs-SDK for C, folgen Sie einem ahnlichen Muster:
Erstellen Sie einen Schlisselbund, erstellen Sie ein CMM, das den Schlusselbund verwendet,
erstellen Sie eine Sitzung, die das CMM (und den Schliisselbund) verwendet, und verarbeiten Sie
dann die Sitzung.

1. Ladt Fehlerzeichenfolgen.

Rufen Sie die aws_cryptosdk_load_error_strings() Methode in lhrem C- oder C++-Code
auf. Sie ladt Fehlerinformationen, die fur das Debuggen sehr nitzlich sind.

Sie mussen es nur einmal aufrufen, z. B. in lhrer main Methode.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

2. Erstellen Sie einen Schliisselbund.

Konfigurieren Sie Ihren Schlisselbund mit dem Umhullungsschlissel, den Sie verwenden
mochten, um lhre Daten zu verschlUsseln. In diesem Beispiel wird ein AWS KMS Schlusselbund
mit einem Schllisselbund verwendet AWS KMS key, aber Sie kdnnen stattdessen jeden
beliebigen Schlisselbund verwenden.

Um einen AWS KMS key in einem Verschlisselungsschlisselbund in der zu identifizieren AWS-
Verschlisselungs-SDK for C, geben Sie einen Schltssel-ARN oder Alias-ARN an. In einem

Entschllsselungsschlisselbund missen Sie einen Schliissel-ARN verwenden. Details hierzu
finden Sie unter Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund.

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(KEY_ARN);

3. Erstellen Sie eine Sitzung.

In der verwenden Sie eine Sitzung AWS-Verschlisselungs-SDK for C, um eine einzelne Klartext-
Nachricht zu verschllisseln oder eine einzelne Chiffretext-Nachricht zu entschlisseln, unabhangig
von ihrer GroRe. Die Sitzung behalt den Status der Nachricht wahrend der Verarbeitung.

Verwenden des C SDK 241

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

Konfigurieren Sie lhre Sitzung mit einem Allocator, einem Schlisselbund und einem Modus:
AWS_CRYPTOSDK_ENCRYPT oder AWS_CRYPTOSDK_DECRYPT. Wenn Sie den Modus der Sitzung
andern mussen, verwenden Sie die aws_cryptosdk_session_reset-Methode.

Wenn Sie eine Sitzung mit einem Schlisselbund erstellen, erstellt der AWS-Verschlisselungs-
SDK for C automatisch einen standardmaRigen Cryptographic Materials Manager (CMM) fir Sie.
Sie mussen dieses Obijekt nicht erstellen, pflegen oder zerstéren.

Beispiel: Die folgende Sitzung verwendet den Allocator und den Schlisselbund, der in Schritt 1
definiert wurde. Wenn Sie Daten verschlisseln, lautet der Modus AWS_CRYPTOSDK_ENCRYPT.

struct aws_cryptosdk_session * session =
aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

4. Verschlisseln oder entschlisseln Sie die Daten.

Um die Daten in der Sitzung zu verarbeiten, verwenden Sie die
aws_cryptosdk_session_process-Methode. Wenn der Eingabepuffer grof3

genug ist, um den gesamten Klartext aufzunehmen, und der Ausgabepuffer grol3

genug ist, um den gesamten Chiffretext aufzunehmen, kénnen Sie aufrufen.
aws_cryptosdk_session_process_full Wenn Sie jedoch Streaming-Daten
verarbeiten missen, kdnnen Sie aws_cryptosdk_session_process in einer

Schleife aufrufen. Ein Beispiel finden Sie im Beispiel file_streaming.cpp. Das
aws_cryptosdk_session_process_full istin den AWS Encryption SDK Versionen 1.9
eingefuhrt. x und 2.2. x.

Wenn die Sitzung fir das Verschlisseln von Daten konfiguriert ist, beschreiben die Klartextfelder
die Eingabe und die Verschlisselungstext-Felder die Ausgabe. Das plaintext-Feld enthalt
die Nachricht, die Sie verschlisseln méchten, und das ciphertext-Feld ruft die verschllsselte
Nachricht ab, die die Verschlisselungsmethode zurlckgibt.

/* Encrypting data */
aws_cryptosdk_session_process_full(session,
ciphertext,
ciphertext_buffer_size,
&ciphertext_length,
plaintext,
plaintext_length)

Verwenden des C SDK 242

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/file_streaming.cpp

AWS Encryption SDK Entwicklerhandbuch

Wenn die Sitzung fir das Entschlisseln von Daten konfiguriert ist, beschreiben die
Verschlisselungstext-Felder die Eingabe und die Klartextfelder die Ausgabe. Das ciphertext-
Feld enthalt die verschlisselte Nachricht, die die Verschlisselungsmethode zuriickgegeben

hat, und das plaintext-Feld ruft die Klartextnachricht ab, die die Entschlisselungsmethode
zuruckgibt.

Um die Daten zu entschlisseln, rufen Sie die aws_cryptosdk_session_process_full-
Methode auf.

/* Decrypting data */
aws_cryptosdk_session_process_full(session,
plaintext,
plaintext_buffer_size,
&plaintext_length,
ciphertext,
ciphertext_length)

Referenzzahlung

Um Lecks im Arbeitsspeicher zu verhindern, missen Sie lhre Referenzen an alle Objekte freigeben,
die Sie erstellen, wenn Sie mit diesen fertig sind. Andernfalls erhalten Sie Lecks im Arbeitsspeicher.
Das SDK bietet Methoden, um diese Aufgabe zu vereinfachen.

Wenn Sie ein Ubergeordnetes Objekt mit einem der folgenden untergeordneten Objekte erstellen,
erhalt und behalt das Ubergeordnete Objekt einen Verweis auf das untergeordnete Objekt wie folgt
bei:

« Ein Schlusselbund, z. B. das Erstellen einer Sitzung mit einem Schlisselbund

» Ein standardmaliger Cryptographic Materials Manager (CMM), z. B. das Erstellen einer Sitzung

oder ein benutzerdefiniertes CMM mit einem Standard-CMM

» Ein Datenschlussel-Cache, z. B. das Erstellen eines Caching-CMM mit einem Schlisselbund und
Cache

Wenn Sie keinen unabhangigen Verweis auf das untergeordnete Objekt bendtigen, kdnnen Sie den
Verweis auf das untergeordnete Objekt freigeben, sobald Sie das Ubergeordnete Objekt erstellen.
Der verbleibende Verweis auf das untergeordnete Objekt wird freigegeben, wenn das Ubergeordnete
Objekt zerstort wird. Durch dieses Muster wird sichergestellt, dass Sie die Referenz auf jedes Objekt

Verwenden des C SDK 243

AWS Encryption SDK Entwicklerhandbuch

nur so lange wie notig behalten. Es kommt auch nicht zu einem Leck im Arbeitsspeicher aufgrund von
nicht freigegebenen Referenzen.

Sie sind nur dafir verantwortlich, Verweise auf die untergeordneten Objekte freizugeben, die Sie
explizit erstellen. Sie sind nicht verantwortlich fir die Verwaltung von Verweisen auf Objekte, die
das SDK fir Sie erstellt. Wenn das SDK ein Objekt erstellt, z. B. das Standard-CMM, das die
aws_cryptosdk_caching_cmm_new_from_keyring Methode einer Sitzung hinzufligt, verwaltet
das SDK die Erstellung und Zerstérung des Objekts und seiner Verweise.

Wenn Sie im folgenden Beispiel eine Sitzung mit einem Schlisselbund erstellen, erhalt die Sitzung

einen Verweis auf den Schlisselbund und behalt diesen Verweis bei, bis die Sitzung zerstdért wird.
Wenn Sie keinen zusatzlichen Verweis auf den Schlisselbund beibehalten missen, kénnen Sie
die aws_cryptosdk_keyring_release-Methode verwenden, um das Schllisselbundobjekt
freizugeben, sobald die Sitzung erstellt wird. Diese Methode verringert die Referenzanzahl fr
den Schlisselbund. Der Verweis der Sitzung auf den Schllsselbund wird freigegeben, wenn Sie
aws_cryptosdk_session_destroy aufrufen, um die Sitzung zu zerstoren.

// The session gets a reference to the keyring.
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring
object.
aws_cryptosdk_keyring_release(keyring);

Fur komplexere Aufgaben, wie die Wiederverwendung eines Schllisselbunds fir mehrere Sitzungen
oder die Angabe einer Algorithmus-Suite in einem CMM, missen Sie mdglicherweise einen
unabhangigen Verweis auf das Objekt beibehalten. Wenn ja, rufen Sie die Freigabemethoden nicht
sofort auf. Geben Sie stattdessen lhre Referenzen frei, wenn Sie die Objekte nicht mehr verwenden,
zusatzlich zum Léschen der Sitzung.

Diese Methode zur Referenzzahlung funktioniert auch, wenn Sie eine alternative Methode verwenden
CMMs, z. B. das CMM fur die Zwischenspeicherung von Datenschlusseln. Wenn Sie ein Cache-
CMM aus einem Cache und einem Schllisselbund erstellen, erhalt das Caching-CMM einen

Verweis auf beide Objekte. Sofern Sie sie nicht fir eine andere Aufgabe bendtigen, kdnnen Sie lhre
unabhangigen Verweise auf den Cache und den Schltisselbund freigeben, sobald das Caching-CMM
erstellt ist. Wenn Sie dann eine Sitzung mit dem Caching-CMM erstellen, kdnnen Sie lhren Verweis
auf das Caching-CMM freigeben.

Verwenden des C SDK 244

AWS Encryption SDK Entwicklerhandbuch

Beachten Sie, dass Sie nur fir die Freigabe von Verweisen auf Objekte verantwortlich sind, die Sie
explizit erstellen. Objekte, die die Methoden flr Sie erstellen, wie z. B. das Standard-CMM, das dem
Caching-CMM zugrunde liegt, werden von der Methode verwaltet.

/ Create the caching CMM from a cache and a keyring.

struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60,
AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

// Create a session with the caching CMM.
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator,

AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

/arrr

aws_cryptosdk_session_destroy(session);

AWS-Verschlisselungs-SDK for C Beispiele

Die folgenden Beispiele zeigen Ihnen, wie Sie mit AWS-Verschlusselungs-SDK for C dem Daten ver-
und entschlisseln konnen.

Die Beispiele in diesem Abschnitt zeigen, wie die Versionen 2.0 verwendet werden. x und spater von
AWS-Verschlisselungs-SDK for C. Beispiele, die frihere Versionen verwenden, finden Sie in der
Release-Liste des aws-encryption-sdk-c Repository-Repositorys unter GitHub.

Wenn Sie das installieren und erstellen AWS-Verschlisselungs-SDK for C, ist der Quellcode flr diese
und andere Beispiele im examples Unterverzeichnis enthalten, und sie werden kompiliert und in

das build Verzeichnis integriert. Sie finden sie auch im Unterverzeichnis fir Beispiele des aws-
encryption-sdk-cRepositorys unter. GitHub

Themen

» VerschlUsseln und Entschliisseln von Zeichenfolgen

Beispiele 245

https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/

AWS Encryption SDK Entwicklerhandbuch

VerschlUsseln und Entschlisseln von Zeichenfolgen

Das folgende Beispiel zeigt Ihnen, wie Sie mit dem eine AWS-Verschlisselungs-SDK for C
Zeichenfolge ver- und entschlisseln kdénnen.

Dieses Beispiel zeigt den AWS KMS Schlisselbund, eine Art von Schlisselbund, der ein AWS

KMS key in AWS Key Management Service (AWS KMS) verwendet, um Datenschlissel zu
generieren und zu verschlisseln. Das Beispiel enthalt in C++ geschriebenen Code. Das AWS-
Verschlisselungs-SDK for C erfordert den Aufruf AWS SDK fir C++ , AWS KMS wenn AWS KMS
Schlisselbunde verwendet werden. Wenn Sie einen Schllsselbund verwenden, der nicht interagiert
AWS KMS, wie z. B. einen RAW-AES-Schliisselbund, einen RSA-Rohschliisselbund oder einen
Mehrfachschllsselbund, der keinen Schllsselbund enthalt, ist der nicht erforderlich. AWS KMS AWS
SDK flur C++

Hilfe bei der Erstellung eines finden Sie unter Creating Keys im AWS KMS key Developer
Guide.AWS Key Management Service Hilfe zur Identifizierung von AWS KMS keys in einem
AWS KMS Schlisselbund finden Sie unterldentifizierung AWS KMS keys in einem AWS KMS
Schlusselbund.

Das vollstéandige Codebeispiel finden Sie unter: string.cpp

Themen

» Verschlisseln einer Zeichenfolge

» Entschliisseln einer Zeichenfolge

Verschlusseln einer Zeichenfolge

Im ersten Teil dieses Beispiels wird ein Schllisselbund mit einem AWS KMS Schliisselbund
verwendet, AWS KMS key um eine Klartext-Zeichenfolge zu verschlisseln.

Schritt 1. Ladt Fehlerzeichenfolgen.

Rufen Sie die aws_cryptosdk_load_error_strings() Methode in Ihrem C- oder C++-Code
auf. Sie ladt Fehlerinformationen, die fur das Debuggen sehr nitzlich sind.

Sie mussen es nur einmal aufrufen, z. B. in lhrer main Methode.

/* Load error strings for debugging */

Beispiele 246

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_load_error_strings();

Schritt 2: Konstruieren Sie den Schliisselbund.

Erstellen Sie einen AWS KMS Schlusselbund flr die Verschlusselung. Der Schlusselbund in
diesem Beispiel ist mit einem Schlisselbund konfiguriert AWS KMS key, aber Sie kdnnen einen
AWS KMS Schlisselbund mit mehreren AWS KMS keys, auch AWS KMS keys in verschiedenen
AWS-Regionen Konten, konfigurieren.

Um einen AWS KMS key in einem Verschlisselungsschlisselbund in der zu identifizieren AWS-
Verschlisselungs-SDK for C, geben Sie einen Schliussel-ARN oder Alias-ARN an. In einem
Entschlisselungsschlisselbund missen Sie einen Schliissel-ARN verwenden. Details hierzu
finden Sie unter Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund.

Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund

Wenn Sie einen Schltsselbund mit mehreren Schlisselbunden erstellen AWS KMS keys, geben
Sie den Schlissel an, der AWS KMS key zur Generierung und Verschlisselung des Klartext-
Datenschlissels verwendet wird, sowie ein optionales Array von zusétzlichen Schlisseln, AWS
KMS keys die denselben Klartext-Datenschlissel verschliusseln. In diesem Fall geben Sie nur den
Generator an. AWS KMS key

Ersetzen Sie vor Ausfuhrung dieses Codes den ARN des Beispiel-Schlissels durch einen
gultigen.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

Schritt 3: Erstellen Sie eine Sitzung.

Erstellen Sie eine Sitzung mithilfe des Allocators, eines Modus-Enumerators und des
Schlisselbunds.

Jede Sitzung erfordert eine Modus: entweder AWS_CRYPTOSDK_ENCRYPT zum Verschlisseln
oder AWS_CRYPTOSDK_DECRYPT zum Entschlisseln. Um den Modus einer vorhandenen Sitzung
zu andern, verwenden Sie die aws_cryptosdk_session_reset-Methode.

Beispiele 247

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

Nach dem Erstellen einer Sitzung mit dem Schlisselbund kénnen Sie Ihre Referenz auf den
Schlisselbund unter Verwendung der Methode, die das SDK bietet, freigeben. Die Sitzung behalt
wahrend ihrer Lebensdauer einen Verweis auf das Schllisselbundobjekt bei. Verweise auf den
Schlisselbund und die Sitzungsobjekte werden freigegeben, wenn Sie die Sitzung zerstéren.
Diese Referenzzahltechnik hilft, Lecks im Arbeitsspeicher zu verhindern, und sorgt daflir, dass die
Objekte nicht freigegeben werden, wahrend sie verwendet werden.

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Schritt 4: Legen Sie den Verschlusselungskontext fest.

Ein Verschlusselungskontext ist eine Art zufalliger, nicht geheimer, zusatzlich authentifizierter
Daten. Wenn Sie bei Encrypt einen Verschlisselungskontext angeben, bindet der
Verschlisselungskontext AWS Encryption SDK kryptografisch an den Chiffretext, sodass derselbe
Verschlisselungskontext zum Entschlisseln der Daten erforderlich ist. Die Verwendung eines
Verschlisselungskontexts ist optional, aber wir empfehlen dies als eine bewahrte Methode.

Erstellen Sie zuerst eine Hash-Tabelle, die die Zeichenfolgen des Verschlisselungskontexts
enthalt.

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_keyl, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_valuel, "String");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_keyl, (void *)enc_ctx_valuel, &was_created)
aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

Rufen Sie einen veranderlichen Zeiger auf den Verschllisselungskontext in der Sitzung ab.
Verwenden Sie anschlielend die aws_cryptosdk_enc_ctx_clone-Funktion zum Kopieren

Beispiele 248

AWS Encryption SDK Entwicklerhandbuch

des VerschlUsselungskontexts in die Sitzung. Halten Sie die Kopie in my_enc_ctx, damit Sie den
Wert nach der Entschllsselung der Daten validieren kdnnen.

Der Verschlisselungskontext ist Teil der Sitzung, nicht ein Parameter, der an die Sitzungs-
Verarbeitungsfunktion Gbergeben wird. Dadurch wird sichergestellt, dass derselbe
Verschlisselungskontext fir jedes Segment einer Nachricht verwendet wird, auch wenn die
Sitzungs-Verarbeitungsfunktion mehrmals aufgerufen wird, um die gesamte Nachricht zu
verschlusseln.

struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)

Schritt 5: Verschlisseln Sie die Zeichenfolge.

Verwenden Sie zum Verschlisseln der Klartext-Zeichenfolge die
aws_cryptosdk_session_process_full-Methode, wobei sich die Sitzung im
Verschlisselungsmodus befinden muss. Diese Methode wurde in Version 1.9 eingefihrt.
AWS Encryption SDK x und 2.2. x ist fur die Verschlisselung und Entschlisselung

ohne Streaming konzipiert. Um Streaming-Daten zu verarbeiten, rufen Sie den
aws_cryptosdk_session_process in einer Schleife auf.

Beim Verschlisseln sind die Klartextfelder Eingabefelder. Die Verschlisselungstext-Felder sind
Ausgabefelder. Wenn die Verarbeitung abgeschlossen ist, enthélt das ciphertext_output-
Feld die verschlisselte Nachricht, einschliel3lich des tatsachlichen Verschlisselungstexts,

der verschlisselten Datenschlissel und des Verschlisselungskontexts. Sie kdnnen diese
verschlisselte Nachricht entschlisseln, indem Sie die AWS Encryption SDK fir jede unterstitzte
Programmiersprache verwenden.

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
ciphertext_output,
ciphertext_buf_sz_output,
&ciphertext_len_output,
plaintext_input,
plaintext_len_input)) {
aws_cryptosdk_session_destroy(session);
return 8;

Beispiele 249

AWS Encryption SDK Entwicklerhandbuch

}

Schritt 6: Bereinigen Sie die Sitzung.

Im letzten Schritt wird die Sitzung einschlie3lich der Verweise auf das CMM und den
Schlisselbund geldscht.

Wenn Sie es vorziehen, die Sitzung nicht zu zerstéren, kdnnen Sie die Sitzung mit demselben
Schlusselbund und CMM wiederverwenden, um die Zeichenfolge zu entschlisseln oder um
andere Nachrichten zu verschlisseln oder zu entschlisseln. Um die Sitzung zum Entschlisseln
zu verwenden, wenden Sie die aws_cryptosdk_session_reset-Methode an, um den Modus
in AWS_CRYPTOSDK_DECRYPT zu andern.

Entschllsseln einer Zeichenfolge

Im zweiten Teil dieses Beispiels wird eine verschlisselte Nachricht entschlisselt, die den
Verschlisselungstext der urspringlichen Zeichenfolge enthalt.

Schritt 1: Fehlerzeichenfolgen laden.

Rufen Sie die aws_cryptosdk_load_error_strings() Methode in lhrem C- oder C++-Code
auf. Sie ladt Fehlerinformationen, die flr das Debuggen sehr nitzlich sind.

Sie mussen es nur einmal aufrufen, z. B. in lhrer main Methode.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Schritt 2: Konstruieren Sie den Schliisselbund.

Wenn Sie Daten entschlisseln AWS KMS, Ubergeben Sie die verschllsselte Nachricht, die die
Verschlusselungs-API zurtickgegeben hat. Die Decrypt-AP| akzeptiert keine Eingabe. AWS

KMS key AWS KMS Verwendet stattdessen dasselbe AWS KMS key zum Entschlisseln des
Chiffretextes, mit dem es ihn verschlusselt hat. AWS Encryption SDK Mit kénnen Sie jedoch einen
AWS KMS Schlusselbund angeben, bei dem die Option Verschlisseln und Entschlisseln aktiviert
ist. AWS KMS keys

Beim Entschlisseln kénnen Sie einen Schlisselbund konfigurieren, der nur den enthalt
AWS KMS keys , den Sie zum Entschlisseln der verschlisselten Nachricht verwenden
mochten. Méglicherweise mochten Sie einen Schlisselbund erstellen, der nur den enthalt

Beispiele 250

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Encryption SDK Entwicklerhandbuch

AWS KMS key , der von einer bestimmten Rolle in |hrer Organisation verwendet wird. Der
AWS Encryption SDK wird niemals einen verwenden, es AWS KMS key sei denn, er istim
Entschlisselungsschlisselbund enthalten. Wenn das SDK die verschlisselten Datenschlissel
nicht mithilfe des AWS KMS keys von Ihnen angegebenen Schlisselbunds entschllisseln kann,
entweder weil keiner der Schltissel AWS KMS keys im Schliisselbund zum Verschlisseln
eines der Datenschlissel verwendet wurde oder weil der Anrufer nicht berechtigt ist, den
Schlissel AWS KMS keys im Schllsselbund zum Entschllisseln zu verwenden, schlagt der
Entschlisselungsaufruf fehl.

Wenn Sie AWS KMS key flr eine Entschlisselung einen Schlisselbund angeben, missen
Sie seinen Schlussel-ARN verwenden. Alias ARNSs sind nur in Schlisselbunden fur die
Verschlisselung zulassig. Hilfe zur Identifizierung von AWS KMS keys in einem AWS
KMS Schlisselbund finden Sie unter. Identifizierung AWS KMS keys in einem AWS KMS
Schlusselbund

In diesem Beispiel geben wir einen Schlisselbund an, der mit demselben konfiguriert ist, der zur
Verschlisselung der Zeichenfolge AWS KMS key verwendet wurde. Ersetzen Sie vor Ausfiihrung
dieses Codes den ARN des Beispiel-Schlissels durch einen gultigen.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

Schritt 3: Erstellen Sie eine Sitzung.

Erstellen Sie eine Sitzung unter Verwendung des Allocators und des Schllisselbunds. Zum
Konfigurieren der Sitzung fur die Entschlisselung konfigurieren Sie die Sitzung mit dem
AWS_CRYPTOSDK_DECRYPT-Modus.

Nach dem Erstellen einer Sitzung mit einem Schliusselbund kénnen Sie lhre Referenz auf den
Schlusselbund unter Verwendung der Methode, die das SDK bietet, freigeben. Die Sitzung behalt
wahrend ihrer Lebensdauer einen Verweis auf das Schlisselbundobjekt bei und sowohl die
Sitzung als auch der Schlisselbund werden freigegeben, wenn Sie die Sitzung zerstéren. Diese
Referenzzahltechnik hilft, Lecks im Arbeitsspeicher zu verhindern, und sorgt daftir, dass die
Objekte nicht freigegeben werden, wahrend sie verwendet werden.

struct aws_cryptosdk_session *session =

Beispiele 251

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Schritt 4: Entschlisseln Sie die Zeichenfolge.

Verwenden Sie zum Entschlisseln der Zeichenfolge die
aws_cryptosdk_session_process_full-Methode mit der Sitzung, die fiir die
Entschlisselung konfiguriert ist. Diese Methode wurde in den AWS Encryption SDK
Versionen 1.9 eingefuhrt. x und 2.2. x ist fur die Verschllisselung und Entschlisselung
ohne Streaming konzipiert. Um Streaming-Daten zu verarbeiten, rufen Sie den
aws_cryptosdk_session_process in einer Schleife auf.

Beim Entschlisseln sind die Verschlisselungstext-Felder Eingabefelder. Die Klartextfelder sind
Ausgabefelder. Das ciphertext_input-Feld enthalt die verschlisselte Nachricht, die die
Verschlusselungsmethode zurtickgegeben hat. Wenn die Verarbeitung abgeschlossen ist, enthalt
das plaintext_output-Feld die Klartext-Zeichenfolge (entschlisselt).

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,

plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input)) {

aws_cryptosdk_session_destroy(session);

return 13;

Schritt 5: Uberpriifen Sie den Verschliisselungskontext.

Stellen Sie sicher, dass der tatsachliche Verschlisselungskontext — der, der zum Entschlisseln
der Nachricht verwendet wurde — den Verschlisselungskontext enthalt, den Sie beim
Verschlisseln der Nachricht angegeben haben. Der tatsachliche Verschllsselungskontext kann
zusatzliche Paare enthalten, da der Manager von kryptographischen Materialien (CMM) Paare

zum angegebenen Verschliusselungskontext hinzufigen kann, bevor die Nachricht verschlisselt
wird.

Beispiele 252

AWS Encryption SDK Entwicklerhandbuch

In der missen Sie beim Entschlisseln keinen Verschlisselungskontext angeben AWS-
Verschlisselungs-SDK for C, da der Verschlisselungskontext in der verschlisselten Nachricht
enthalten ist, die das SDK zurtickgibt. Aber bevor sie die Klartext-Nachricht zurlickgibt, sollte lhre
Entschllsselungsfunktion Gberprifen, dass alle Paare im angegebenen Verschlisselungskontext
in dem VerschlUsselungskontext erscheinen, der zum Entschlisseln der Nachricht verwendet
wurde.

Rufen Sie zuerst einen schreibgeschitzten Zeiger auf die Hash-Tabelle in der Sitzung ab.
Diese Hash-Tabelle enthalt den Verschlisselungskontext, der zum Entschlisseln der Nachricht
verwendet wurde.

const struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr(session);

Durchlaufen Sie anschliel3end den Verschlisselungskontext in der my_enc_ctx-Hash-Tabelle,
die Sie beim Verschlisseln kopiert haben. Uberprijfen Sie, dass alle Paare in der my_enc_ctx-
Hash-Tabelle, die zum Verschlisseln verwendet wurde, in der session_enc_ctx-Hash-Tabelle
erscheinen, die zur Entschlisselung verwendet wurde. Wenn ein Schlissel nicht vorhanden ist
oder dieser Schlussel einen anderen Wert hat, beenden Sie die Verarbeitung und schreiben Sie
eine Fehlermeldung.

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx); !
aws_hash_iter_done(&iter);

aws_hash_iter_next(&iter)) {

struct aws_hash_element *session_enc_ctx_kv_pair;

aws_hash_table_find(session_enc_ctx, iter.element.key,
&session_enc_ctx_kv_pair)

if (!session_enc_ctx_kv_pair ||
laws_string_eq(
(struct aws_string *)iter.element.value, (struct aws_string
*)session_enc_ctx_kv_pair->value)) {
fprintf(stderr, "Wrong encryption context!\n");
abort();

Beispiele 253

AWS Encryption SDK Entwicklerhandbuch

Schritt 6: Bereinigen Sie die Sitzung.

Nachdem Sie den Verschlisselungskontext Gberprtft haben, kénnen Sie die Sitzung I6schen
oder wiederverwenden. Wenn Sie die Sitzung neu konfigurieren missen, verwenden Sie die
aws_cryptosdk_session_reset Methode.

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK fur .NET

Die AWS Encryption SDK for .NET ist eine clientseitige Verschlisselungsbibliothek fur Entwickler, die
Anwendungen in C# und anderen .NET-Programmiersprachen schreiben. Sie wird unter Windows,
macOS und Linux unterstutzt.

(@ Note

Version 4.0.0 von AWS Encryption SDK fiir .NET weicht von der Nachrichtenspezifikation
ab. AWS Encryption SDK Aus diesem Grund kénnen Nachrichten, die mit Version 4.0.0
verschlisselt wurden, nur mit Version 4.0.0 oder héher von for.NET entschlisselt werden.
AWS Encryption SDK Sie kdnnen mit keiner anderen Programmiersprachenimplementierung
entschlisselt werden.

Version 4.0.1 von AWS Encryption SDK for .NET schreibt Nachrichten gemaf

der AWS Encryption SDK Nachrichtenspezifikation und ist mit anderen
Programmiersprachenimplementierungen interoperabel. StandardmaRig kann Version

4.0.1 Nachrichten lesen, die mit Version 4.0.0 verschlisselt wurden. Wenn Sie jedoch mit
Version 4.0.0 verschlisselte Nachrichten nicht entschlisseln méchten, kénnen Sie die
NetV4_0_0_RetryPolicyEigenschaft so angeben, dass der Client diese Nachrichten nicht
lesen kann. Weitere Informationen finden Sie in den Versionshinweisen zu Version 4.0.1 im
Repository unter. aws-encryption-sdk GitHub

Das AWS Encryption SDK fir.NET unterscheidet sich von einigen anderen
Programmiersprachenimplementierungen AWS Encryption SDK in folgenden Punkten:

» Keine Unterstitzung fur das Zwischenspeichern von Datenschlisseln

.NET 254

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/NetV4_0_0Example.cs
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1

AWS Encryption SDK Entwicklerhandbuch

® Note

Version 4. x of the AWS Encryption SDK for .NET unterstitzt den AWS KMS
hierarchischen Schlisselbund, eine alternative Lé6sung zum Zwischenspeichern
kryptografischer Materialien.

» Keine Unterstitzung fir Streaming-Daten
» Keine Protokollierung oder Stack-Traces von AWS Encryption SDK fir.NET
» Bendtigt den AWS SDK fur .NET

Das AWS Encryption SDK fur .NET enthalt alle Sicherheitsfunktionen, die in Version 2.0 eingeflhrt
wurden. x und héher von anderen Sprachimplementierungen von. AWS Encryption SDK Wenn Sie
jedoch for.NET verwenden, AWS Encryption SDK um Daten zu entschlisseln, die mit einer Version
vor 2.0 verschlusselt wurden. x-Version einer anderen Sprachimplementierung von AWS Encryption
SDK, mdglicherweise mussen Sie Ihre Verpflichtungsrichtlinie anpassen. Details hierzu finden Sie
unter Wie legen Sie lhre Verpflichtungsrichtlinie fest.

Die AWS Encryption SDK fir.NET-Version ist ein Produkt von AWS Encryption SDK In Dafny, einer
formalen Uberpriifungssprache, in der Sie Spezifikationen, den Code zu ihrer Implementierung

und die Beweise, um sie zu testen, schreiben. Das Ergebnis ist eine Bibliothek, die die Funktionen
von AWS Encryption SDK in einem Framework implementiert, das die funktionale Korrektheit
gewabhrleistet.

Weitere Informationen

 Beispiele fur die Konfiguration von Optionen in der AWS Encryption SDK, z. B. die Angabe
einer alternativen Algorithmussuite, die Beschrankung verschlisselter Datenschlissel und die
Verwendung von Schlisseln fuir AWS KMS mehrere Regionen, finden Sie unter. Konfiguration der
AWS Encryption SDK

* Einzelheiten zur Programmierung mit dem AWS Encryption SDK fir.NET finden Sie im aws -
encryption-sdk-netVerzeichnis des aws-encryption-sdk Repositorys unter GitHub.

Themen

+ Installation von AWS Encryption SDK fur.NET

» Debuggen des AWS Encryption SDK flr .NET

NET 255

https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/

AWS Encryption SDK Entwicklerhandbuch

« AWS Encryption SDK fiir NET-Beispiele

Installation von AWS Encryption SDK fur.NET

Das AWS Encryption SDK fur .NET ist als AWS.Cryptography.EncryptionSDKPaket in verfligbar
NuGet. Einzelheiten zur Installation und Erstellung von AWS Encryption SDK fur.NET finden Sie in
der Datei README.md im Repository. aws-encryption-sdk-net

Version 3.x

Ausfiuhrung 3. x of the AWS Encryption SDK fir .NET unterstutzt .NET Framework 4.5.2 — 4.8
nur unter Windows. Es unterstlitzt .NET Core 3.0+ und .NET 5.0 und héher auf allen unterstitzten
Betriebssystemen.

Version 4.x

Ausfiihrung 4. x of the AWS Encryption SDK fir .NET unterstitzt .NET 6.0 und .NET Framework
net48 und hoher.

AWS Encryption SDK Fur .NET sind die Schliussel SDK fur .NET auch dann erforderlich, wenn Sie
nicht AWS Key Management Service (AWS KMS) verwenden. Es ist mit dem NuGet Paket installiert.
Sofern Sie jedoch keine AWS KMS Schlussel verwenden, bendétigt AWS Encryption SDK fur.NET
keine AWS Anmeldeinformationen und keine Interaktion mit einem AWS Dienst. AWS-Konto Hilfe
beim Einrichten eines AWS Kontos finden Sie bei Bedarf unterVerwenden von AWS Encryption SDK
with AWS KMS.

Debuggen des AWS Encryption SDK fur .NET

Das AWS Encryption SDK fiir .NET generiert keine Protokolle. Ausnahmen im AWS Encryption SDK
fur.NET erzeugen eine Ausnahmemeldung, aber keine Stack-Traces.

Um lhnen beim Debuggen zu helfen, stellen Sie sicher, dass Sie die SDK fir .NET Anmeldung bei
aktivieren. Die Protokolle und Fehlermeldungen von SDK fir .NET kénnen Ihnen helfen, Fehler, die
in der auftreten, SDK fir .NET von denen in AWS Encryption SDK fir.NET zu unterscheiden. Hilfe
zur SDK fur .NET Protokollierung finden Sie AWSLoggingim AWS SDK fir .NET Entwicklerhandbuch.
(Um das Thema zu lesen, erweitern Sie den Abschnitt Offnen, um .NET Framework-Inhalte
anzuzeigen.)

Installieren und Erstellen 256

https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/#readme
https://docs.aws.amazon.com/sdk-for-net/v4/developer-guide/net-dg-config-other.html#config-setting-awslogging

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK fur .NET-Beispiele

Die folgenden Beispiele zeigen die grundlegenden Codierungsmuster, die Sie beim Programmieren
mit dem AWS Encryption SDK flur .NET verwenden. Insbesondere instanziieren Sie die Bibliothek
AWS Encryption SDK und die Material Provider-Bibliothek. Bevor Sie dann jede Methode

aufrufen, instanziieren Sie ein Objekt, das die Eingabe flir die Methode definiert. Dies ist dem
Codierungsmuster sehr dhnlich, das Sie in der verwenden. SDK fir .NET

Beispiele fir die Konfiguration von Optionen in der AWS Encryption SDK, z. B. die Angabe einer
alternativen Algorithmussuite, die Beschrankung verschlisselter Datenschliussel und die Verwendung
von Schlusseln fur AWS KMS mehrere Regionen, finden Sie unterKonfiguration der AWS Encryption
SDK.

Weitere Beispiele AWS Encryption SDK fir die Programmierung mit fir.NET finden Sie in den
Beispielen im aws-encryption-sdk-net Verzeichnis des aws-encryption-sdk Repositorys
unter GitHub.

Verschlusseln von Daten im AWS Encryption SDK fur.NET

Dieses Beispiel zeigt das grundlegende Muster fur die Verschlisselung von Daten. Es verschlisselt
eine kleine Datei mit Datenschlusseln, die durch einen AWS KMS UmschlieBungsschlissel geschutzt
sind.

Schritt 1: Instanziieren Sie die Bibliothek AWS Encryption SDK und die Materiallieferantenbibliothek.

Beginnen Sie mit der Instanziierung der Bibliothek AWS Encryption SDK und der
Materiallieferantenbibliothek. Sie verwenden die Methoden in, AWS Encryption SDK um Daten
zu verschlisseln und zu entschlisseln. Sie verwenden die Methoden in der Materialanbieter-
Bibliothek, um die Schlisselbunde zu erstellen, die angeben, welche Schlissel Ihre Daten
schutzen.

Die Art AWS Encryption SDK und Weise, wie Sie die Material Provider-Bibliothek instanziieren,
unterscheidet sich zwischen Version 3. x und 4. x von AWS Encryption SDK fur .NET. Alle
folgenden Schritte sind fur beide Versionen 3 identisch. x und 4. x von AWS Encryption SDK
fur .NET.

Version 3.x

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();

Beispiele 257

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples

AWS Encryption SDK Entwicklerhandbuch

var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders(

Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Schritt 2: Erstellen Sie ein Eingabeobjekt fur den Schlisselbund.

Jede Methode, die einen Schlusselbund erstellt, hat eine entsprechende Eingabeobjektklasse.
Um beispielsweise das Eingabeobjekt fir die CreateAwsKmsKeyring() Methode zu erstellen,
erstellen Sie eine Instanz der CreateAwsKmsKeyringInput Klasse.

Obwohl die Eingabe fur diesen Schlisselbund keinen Generatorschlissel spezifiziert, ist

der einzelne KMS-Schlussel, der durch den KmsKeyId Parameter angegeben wird, der

Generatorschlissel. Er generiert und verschlisselt den Datenschlissel, der die Daten
verschlusselt.

Dieses Eingabeobjekt benétigt einen AWS KMS Client fir den AWS-Region

KMS-Schlissel. Um einen AWS KMS Client zu erstellen, instanziieren Sie die
AmazonKeyManagementServiceClient Klasse in der. SDK fur .NET Wenn Sie den
AmazonKeyManagementServiceClient () Konstruktor ohne Parameter aufrufen, wird ein
Client mit den Standardwerten erstellt.

In einem AWS KMS Schllsselbund, der AWS Encryption SDK fiir die Verschlisselung mit
fur.NET verwendet wird, konnen Sie die KMS-Schliissel anhand der Schltssel-ID, des Schlissel-
ARN, des Aliasnamens oder des Alias-ARN identifizieren. In einem AWS KMS Schliisselbund,
der zum Entschlisseln verwendet wird, missen Sie einen Schlissel-ARN verwenden, um

jeden KMS-Schlissel zu identifizieren. Wenn Sie Ihren Verschlisselungsschltisselbund fir die
Entschlisselung wiederverwenden méchten, verwenden Sie eine ARN-Schlissel-ID fir alle KMS-
Schlissel.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object

Beispiele 258

AWS Encryption SDK Entwicklerhandbuch

var kmsKeyringInput = new CreateAwsKmsKeyringInput
{

KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn
i

Schritt 3: Erstellen Sie den Schlisselbund.

Um den Schlisselbund zu erstellen, rufen Sie die Schliisselbundmethode mit dem Schliisselbund-

Eingabeobjekt auf. In diesem Beispiel wird die CreateAwsKmsKeyring() Methode verwendet,
die nur einen KMS-Schlussel benétigt.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Schritt 4: Definieren Sie einen Verschlisselungskontext.

Ein Verschlusselungskontext ist ein optionales, aber dringend empfohlenes Element

kryptografischer Operationen in der AWS Encryption SDK. Sie kdnnen ein oder mehrere nicht
geheime SchlUssel-Wert-Paare definieren.

(® Note

Mit Version 4. x of the AWS Encryption SDK fir .NET, Sie kdnnen in allen

Verschlisselungsanforderungen mit dem erforderlichen Verschlisselungskontext CMM
einen Verschlusselungskontext angeben.

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
{"purpose", "test"}
il

Schritt 5: Erstellen Sie das Eingabeobjekt flr die Verschlisselung.

Bevor Sie die Encrypt () Methode aufrufen, erstellen Sie eine Instanz der EncryptInput
Klasse.

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt");

Beispiele 259

AWS Encryption SDK Entwicklerhandbuch

// Define the encrypt input
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

Schritt 6: Verschlisseln Sie den Klartext.

Verwenden Sie die Encrypt () Methode von AWS Encryption SDK , um den Klartext mit dem
von |hnen definierten Schlisselbund zu verschlisseln.

Die EncryptOutput Encrypt() Methode gibt Methoden zum Abrufen der verschllsselten
Nachricht (Ciphertext), den Verschlisselungskontext und die Algorithmus-Suite an.

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

Schritt 7: Holen Sie sich die verschlisselte Nachricht.

Die Decrypt () Methode in AWS Encryption SDK for .NET verwendet das Ciphertext Mitglied
der EncryptOutput Instanz.

Das Ciphertext Mitglied des EncryptOutput Objekts ist die verschlisselte Nachricht, ein
portables Objekt, das die verschlisselten Daten, die verschlisselten Datenschlissel und die

Metadaten einschlieRlich des Verschlisselungskontextes enthalt. Sie kbnnen die verschllisselte
Nachricht sicher fir einen langeren Zeitraum speichern oder sie an die Decrypt () Methode zur
Wiederherstellung des Klartextes weiterleiten.

var encryptedMessage = encryptOutput.Ciphertext;

Entschlisselung im strikten Modus in fur.NET AWS Encryption SDK

Bewahrte Methoden empfehlen, dass Sie die Schlissel angeben, die Sie zum Entschlisseln von
Daten verwenden. Diese Option wird als strikter Modus bezeichnet. Der AWS Encryption SDK
verwendet nur die KMS-Schlussel, die Sie in lhrem Schlisselbund angeben, um den Chiffretext zu
entschlisseln. Die Schlussel in Ihrem Entschlisselungsschlisselbund missen mindestens einen der
Schlussel enthalten, mit denen die Daten verschlisselt wurden.

Beispiele 260

AWS Encryption SDK Entwicklerhandbuch

Dieses Beispiel zeigt das grundlegende Muster der Entschllisselung im strikten Modus mit dem AWS
Encryption SDK fur.NET.

Schritt 1: Instanziieren Sie die Bibliothek AWS Encryption SDK und die Material Provider-Bibliothek.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Schritt 2: Erstellen Sie das Eingabeobjekt fir lhren Schllisselbund.

Um die Parameter fur die Schlisselbundmethode anzugeben, erstellen Sie ein Eingabeobjekt.
Jede Schlusselbundmethode in der AWS Encryption SDK fur.NET hat ein entsprechendes
Eingabeobjekt. Da in diesem Beispiel die CreateAwsKmsKeyring() Methode verwendet wird,
um den Schlisselbund zu erstellen, wird die CreateAwsKmsKeyringInput Klasse fir die
Eingabe instanziiert.

In einem Schltsselbund fur die Entschlisselung missen Sie einen Schlissel-ARN verwenden,
um KMS-Schlissel zu identifizieren.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn
};
Schritt 3: Erstellen Sie den Schlisselbund.

Um den Schlisselbund fur die Entschlisselung zu erstellen, werden in diesem Beispiel die
CreateAwsKmsKeyring() Methode und das Schlisselbund-Eingabeobjekt verwendet.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Schritt 4: Erstellen Sie das Eingabeobjekt fir die Entschlisselung.

Um das Eingabeobijekt fiir die Decrypt () Methode zu erstellen, instanziieren Sie die Klasse.
DecryptInput

Beispiele 261

AWS Encryption SDK Entwicklerhandbuch

Der Ciphertext Parameter des DecryptInput() Konstruktors verwendet das Ciphertext
Mitglied des EncryptOutput Objekts, das die Encrypt () Methode zuriickgegeben hat. Die
Ciphertext Eigenschaft stellt die verschlisselte Nachricht dar, die die verschlisselten Daten,
verschlisselten Datenschlissel und Metadaten enthalt, die zum Entschlisseln der Nachricht AWS
Encryption SDK bendtigt werden.

Mit Version 4. x von AWS Encryption SDK fur .NET kdnnen Sie den optionalen
EncryptionContext Parameter verwenden, um lhren Verschlisselungskontext in der
Decrypt () Methode anzugeben.

Verwenden Sie den EncryptionContext Parameter, um zu Uberprifen, ob der beim
Verschlusseln verwendete Verschlisselungskontext in dem Verschlisselungskontext enthalten
ist, der zum Entschlisseln des Chiffretextes verwendet wird. Dadurch werden Paare zum
Verschlusselungskontext AWS Encryption SDK hinzugeflgt, einschlieBlich der digitalen Signatur,
wenn Sie eine Algorithmussuite mit Signierung verwenden, z. B. die Standard-Algorithmussuite.

var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = encryptedMessage,

Keyring = keyring,

EncryptionContext = encryptionContext // OPTIONAL
};

Schritt 5: Entschlisseln Sie den Chiffretext.
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Schritt 6: Uberpriifen Sie den Verschliisselungskontext — Version 3. x

Die Decrypt () Methode der Version 3. x von AWS Encryption SDK for .NET benétigt keinen
VerschlUsselungskontext. Es ruft die Verschlisselungskontextwerte aus den Metadaten in der
verschlisselten Nachricht ab. Bevor Sie den Klartext zurtickgeben oder verwenden, sollten Sie
jedoch Uberprifen, ob der Verschlisselungskontext, der zum Entschlisseln des Chiffretextes
verwendet wurde, den Verschlisselungskontext enthalt, den Sie bei der Verschlisselung
angegeben haben.

Stellen Sie sicher, dass der beim Verschlisseln verwendete Verschlisselungskontext in dem
Verschlisselungskontext enthalten ist, der zum Entschlisseln des Chiffretextes verwendet wurde.

Beispiele 262

AWS Encryption SDK Entwicklerhandbuch

Das AWS Encryption SDK fligt dem Verschlisselungskontext Paare hinzu, einschliellich der
digitalen Signatur, wenn Sie eine Algorithmussuite mit Signierung verwenden, z. B. die Standard-
Algorithmussuite.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)
|| !decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");

Entschllisseln mit einem Discovery-Schlisselbund im fur.NET AWS Encryption SDK

Anstatt die KMS-Schlissel fir die Entschlisselung anzugeben, kdnnen Sie einen AWS KMS
Discovery-Schlisselbund angeben. Dabei handelt es sich um einen Schltisselbund, der keine KMS-
Schlussel angibt. Mit einem Discovery-Schlisselbund kénnen die Daten mit dem KMS-Schlissel,
der sie verschlisselt hat, AWS Encryption SDK entschliisselt werden, sofern der Anrufer Gber die
Entschlisselungsberechtigung fir den Schllissel verfigt. Fir bewahrte Methoden sollten Sie einen
Erkennungsfilter hinzufligen, der die KMS-Schlissel, die verwendet werden kdnnen, auf diejenigen
beschrankt, die insbesondere AWS-Konten fir eine bestimmte Partition verwendet werden kénnen.

Der AWS Encryption SDK fur.NET bietet einen einfachen Discovery-Schlisselbund, fur den

ein AWS KMS Client erforderlich ist, und einen Discovery-Mehrfachschlisselbund, fir den Sie
einen oder mehrere Schlissel angeben missen. AWS-Regionen Sowohl der Client als auch die
Regionen beschranken die Anzahl der KMS-Schlissel, die zum Entschlisseln der verschlisselten
Nachricht verwendet werden kénnen. Die Eingabeobjekte flir beide Schlisselbunde verwenden den
empfohlenen Erkennungsfilter.

Das folgende Beispiel zeigt das Muster fur die Entschlisselung von Daten mit einem AWS KMS
Discovery-Schlusselbund und einem Discovery-Filter.

Schritt 1: Instanziieren Sie die Bibliothek AWS Encryption SDK und die Materiallieferantenbibliothek.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());

Beispiele 263

AWS Encryption SDK Entwicklerhandbuch

var mpl = new MaterialProviders(new MaterialProvidersConfig());

Schritt 2: Erstellen Sie das Eingabeobjekt fur den Schlisselbund.

Um die Parameter flr die Schliisselbundmethode anzugeben, erstellen Sie

ein Eingabeobjekt. Jede Schlisselbundmethode in der AWS Encryption SDK

fur.NET hat ein entsprechendes Eingabeobjekt. Da in diesem Beispiel die
CreateAwsKmsDiscoveryKeyring() Methode verwendet wird, um den Schliisselbund zu

erstellen, wird die CreateAwsKmsDiscoveryKeyringInput Klasse fur die Eingabe instanziiert.

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()

{
AccountIds = accounts,
Partition = "aws"

};
Schritt 3: Erstellen Sie den Schlisselbund.

Um den Schlisselbund fir die Entschlisselung zu erstellen, werden in diesem Beispiel die
CreateAwsKmsDiscoveryKeyring() Methode und das Schlisselbund-Eingabeobjekt
verwendet.

var discoveryKeyring =
materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

Schritt 4: Erstellen Sie das Eingabeobjekt fur die Entschlisselung.

Um das Eingabeobijekt fir die Decrypt () Methode zu erstellen, instanziieren Sie die Klasse.

DecryptInput Der Wert des Ciphertext Parameters ist das Ciphertext Mitglied des
EncryptOutput Objekts, das die Encrypt () Methode zurilickgibt.

Mit Version 4. x von AWS Encryption SDK fur .NET kdnnen Sie den optionalen
EncryptionContext Parameter verwenden, um lhren Verschlisselungskontext in der
Decrypt() Methode anzugeben.

Beispiele

264

AWS Encryption SDK Entwicklerhandbuch

Verwenden Sie den EncryptionContext Parameter, um zu Uberprifen, ob der beim
Verschlisseln verwendete Verschlisselungskontext in dem Verschlisselungskontext enthalten
ist, der zum Entschlisseln des Chiffretextes verwendet wird. Dadurch werden Paare zum
Verschlisselungskontext AWS Encryption SDK hinzugeflgt, einschlieBlich der digitalen Signatur,
wenn Sie eine Algorithmussuite mit Signierung verwenden, z. B. die Standard-Algorithmussuite.

var ciphertext = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = ciphertext,

Keyring = discoveryKeyring,

EncryptionContext = encryptionContext // OPTIONAL
};

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Schritt 5: Uberpriifen Sie den Verschliisselungskontext — Version 3. x

Die Decrypt () Methode der Version 3. x von AWS Encryption SDK for .NET nimmt keinen
Verschliusselungskontext anDecrypt (). Es ruft die Verschlisselungskontextwerte aus

den Metadaten in der verschliisselten Nachricht ab. Bevor Sie den Klartext zurlickgeben

oder verwenden, sollten Sie jedoch Uberprifen, ob der Verschlisselungskontext, der zum
Entschlisseln des Chiffretextes verwendet wurde, den Verschlisselungskontext enthalt, den Sie
bei der Verschlisselung angegeben haben.

Stellen Sie sicher, dass der beim Verschlisseln verwendete Verschlisselungskontext in dem
Verschlisselungskontext enthalten ist, der zum Entschlisseln des Chiffretextes verwendet wurde.
Das AWS Encryption SDK fugt dem Verschlisselungskontext Paare hinzu, einschlief3lich der
digitalen Signatur, wenn Sie eine Algorithmussuite mit Signierung verwenden, z. B. die Standard-
Algorithmussuite.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)
| | !'decryptContextValue.Equals(contextValue))

Beispiele 265

AWS Encryption SDK Entwicklerhandbuch

throw new Exception("Encryption context does not match expected values");

AWS Encryption SDK fur Go

In diesem Thema wird erklart, wie Sie AWS Encryption SDK for Go installieren und verwenden.
Einzelheiten zur Programmierung mit AWS Encryption SDK for Go finden Sie unter dem Go-
Verzeichnis des aws-encryption-sdk Repositorys unter GitHub.

Das AWS Encryption SDK for Go unterscheidet sich von einigen anderen
Programmiersprachenimplementierungen AWS Encryption SDK in folgenden Punkten:

» Keine Unterstitzung fur das Zwischenspeichern von Datenschlisseln. AWS Encryption SDK For
Go unterstitzt jedoch den AWS KMS hierarchischen Schlisselbund, eine alternative Lésung zum
Zwischenspeichern kryptografischer Materialien.

» Keine Unterstitzung fur Streaming-Daten

The AWS Encryption SDK for Go enthalt alle Sicherheitsfunktionen, die in den Versionen 2.0
eingeflhrt wurden. x und héher von anderen Sprachimplementierungen von. AWS Encryption SDK
Wenn Sie jedoch AWS Encryption SDK for Go verwenden, um Daten zu entschliisseln, die mit einer
Version vor 2.0 verschlisselt wurden. x-Version einer anderen Sprachimplementierung von AWS
Encryption SDK, mdglicherweise missen Sie lhre Verpflichtungspolitik anpassen. Details hierzu
finden Sie unter Wie legen Sie |Ihre Verpflichtungsrichtlinie fest.

AWS Encryption SDK For Go ist ein Produkt von AWS Encryption SDK In Dafny, einer formalen
Bestatigungssprache, in der Sie Spezifikationen, den Code zu ihrer Implementierung und die
Beweise, um sie zu testen, schreiben. Das Ergebnis ist eine Bibliothek, die die Funktionen von AWS
Encryption SDK in einem Framework implementiert, das die funktionale Korrektheit gewahrleistet.

Weitere Informationen

 Beispiele fir die Konfiguration von Optionen in der AWS Encryption SDK, z. B. die Angabe
einer alternativen Algorithmussuite, die Beschrankung verschlisselter Datenschlissel und die
Verwendung von Schlisseln fir AWS KMS mehrere Regionen, finden Sie unter. Konfiguration der
AWS Encryption SDK

 Beispiele zur Konfiguration und Verwendung von AWS Encryption SDK for Go finden Sie in den
Go-Beispielen im aws-encryption-sdk Repository unter GitHub.

Go 266

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/examples

AWS Encryption SDK Entwicklerhandbuch

Themen

» Voraussetzungen

» |nstallation

Voraussetzungen

Stellen Sie vor der Installation von AWS Encryption SDK for Go sicher, dass Sie die folgenden
Voraussetzungen erflllen.

Eine unterstutzte Version von Go
Go 1.23 oder hoher ist AWS Encryption SDK fur for Go erforderlich.

Weitere Informationen zum Herunterladen und Installieren von Go finden Sie unter Go-Installation.

Installation

Installieren Sie die neueste Version von AWS Encryption SDK for Go. Einzelheiten zur Installation
und Erstellung von AWS Encryption SDK for Go finden Sie in der Datei README.md im Go-
Verzeichnis des aws-encryption-sdk Repositorys unter. GitHub

Installieren der neuesten Version

* Installieren Sie das for Go AWS Encryption SDK

go get github.com/aws/aws-encryption-sdk/releases/go/encryption-sdk@latest

+ Installieren Sie die Cryptographic Material Providers Library (MPL)

go get github.com/aws/aws-cryptographic-material-providers-library/releases/go/mpl

AWS-Verschlusselungs-SDK for Java

In diesem Thema wird erklart, wie das AWS-Verschlisselungs-SDK for Java installiert und verwendet
wird. Einzelheiten zur Programmierung mit dem AWS-Verschlisselungs-SDK for Java finden Sie im
aws-encryption-sdk-javaRepository unter GitHub. Eine API-Dokumentation finden Sie im Javadoc fiir
das AWS-Verschliisselungs-SDK for Java.

Voraussetzungen 267

https://go.dev/doc/install
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/README.md
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/

AWS Encryption SDK Entwicklerhandbuch

Themen

* Voraussetzungen

* |nstallation

* AWS-Verschlusselungs-SDK for Java Beispiele

Voraussetzungen

Stellen Sie vor der Installation von sicher AWS-Verschlisselungs-SDK for Java, dass Sie die
folgenden Voraussetzungen erfullen.

Eine Java-Entwicklungsumgebung

Sie bendtigen Java 8 oder héher. Klicken Sie auf der Oracle-Website auf Java SE Downloads und
laden und installieren Sie anschlieRend das Java SE Development Kit (JDK).

Wenn Sie das Oracle JDK verwenden, missen Sie auch die Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files herunterladen und installieren.

Bouncy Castle

Das AWS-Verschlisselungs-SDK for Java erfordert Bouncy Castle.

* AWS-Verschliusselungs-SDK for Java Versionen 1.6.1 und héher verwenden Bouncy Castle,
um kryptografische Objekte zu serialisieren und zu deserialisieren. Sie kdnnen Bouncy Castle
oder Bouncy Castle FIPS verwenden, um diese Anforderung zu erflillen. Hilfe zur Installation
und Konfiguration von Bouncy Castle FIPS finden Sie in der BC FIPS-Dokumentation,
insbesondere in den Benutzerhandbichern und den Sicherheitsrichtlinien. PDFs

* Frihere Versionen von AWS-Verschlisselungs-SDK for Java verwenden die Kryptografie-API
von Bouncy Castle fir Java. Diese Anforderung wird nur von Nicht-FIPS Bouncy Castle erfiillt.

Wenn Sie Bouncy Castle nicht haben, gehen Sie zu Bouncy Castle fur Java herunterladen, um
die Anbieterdatei herunterzuladen, die Ihrem JDK entspricht. Sie kdnnen auch Apache Maven
verwenden, um das Artefakt fur den Standard-Bouncy Castle-Anbieter (bcprov-ext-jdk150n) oder
das Artefakt fur Bouncy Castle FIPS (bc-fips) abzurufen.

AWS SDK fir Java

Version 3. x der AWS-Verschlisselungs-SDK for Java erfordert das AWS SDK for Java 2.x, auch
wenn Sie keine AWS KMS Schlusselringe verwenden.

Voraussetzungen 268

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation/
https://bouncycastle.org/download/bouncy-castle-java/
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips

AWS Encryption SDK Entwicklerhandbuch

Ausflihrung 2. x oder friiher von bendtigt AWS-Verschllisselungs-SDK for Java das nicht

AWS SDK fur Java. Die AWS SDK flr Java ist jedoch erforderlich, um AWS Key Management
Service(AWS KMS) als Hauptschlisselanbieter zu verwenden. Ab AWS-Verschlisselungs-SDK
for Java Version 2.4.0 AWS-Verschlisselungs-SDK for Java unterstitzt der sowohl Version 1.x
als auch 2.x von. AWS SDK fir Java AWS Encryption SDK Der Code fir AWS SDK fur Java
1.x und 2.x ist interoperabel. Sie kdnnen beispielsweise Daten mit AWS Encryption SDK Code

verschlisseln, der 1.x unterstitzt, und sie mit Code entschliisseln, der AWS SDK fiur Java 1.x
unterstitzt AWS SDK for Java 2.x (oder umgekehrt). Versionen vor 2.4.0 AWS-Verschliisselungs-
SDK for Java unterstitzen nur 1.x. AWS SDK fir Java Hinweise zur Aktualisierung Ihrer Version
von finden Sie unter AWS Encryption SDK. Migrieren Sie Ihre AWS Encryption SDK

Wenn Sie Ihren AWS-Verschlisselungs-SDK for Java Code von AWS SDK fir Java 1.x auf
aktualisieren AWS SDK for Java 2.x, ersetzen Sie Verweise auf die AWSKMSSchnittstelle in AWS
SDK fur Java 1.x durch Verweise auf die KmsClientSchnittstelle in. AWS SDK for Java 2.xDas
AWS-Verschlisselungs-SDK for Java unterstiitzt die Schnittstelle nicht. KmsAsyncClient
Aktualisieren Sie aullerdem lhren Code, sodass die AWS KMS zugehdrigen Objekte im
kmssdkv2 Namespace statt im kms Namespace verwendet werden.

Verwenden Sie Apache Maven AWS SDK flr Java, um das zu installieren.

* Um das gesamte AWS SDK fur Java als Abhangigkeit zu importieren, deklarieren Sie es in lhrer
pom. xml-Datei.

* Um eine Abhangigkeit nur fir das AWS KMS Modul in AWS SDK fir Java 1.x zu erstellen,
folgen Sie den Anweisungen zur Angabe bestimmter Module und setzen Sie den artifactId

Wert auf. aws-java-sdk-kms

« Um eine Abhangigkeit nur fir das AWS KMS Modul in AWS SDK fir Java 2.x zu erstellen,
folgen Sie den Anweisungen zur Angabe bestimmter Module. Stellen Sie ,groupIdbis”

software.amazon.awssdk und ,artifactIdBiskms* ein.

Weitere Anderungen finden Sie unter Was ist der Unterschied zwischen AWS SDK fiir Java 1.x
und 2.x im AWS SDK for Java 2.x Entwicklerhandbuch.

In den Java-Beispielen im AWS Encryption SDK Developer Guide wird der verwendet. AWS SDK
for Java 2.x

Installation

Installieren Sie die neueste Version von AWS-Verschlisselungs-SDK for Java.

Installation 269

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html

AWS Encryption SDK Entwicklerhandbuch

® Note

Alle AWS-Verschlisselungs-SDK for Java Versionen vor 2.0.0 befinden sich in der end-of-
supportPhase.

Sie kdnnen sicher von Version 2.0 aus aktualisieren. x und héher auf die neueste Version
von AWS-Verschlisselungs-SDK for Java ohne Code- oder Datenanderungen. In Version 2.0
wurden jedoch neue Sicherheitsfunktionen eingefiihrt. x sind nicht abwartskompatibel. Um
von Versionen vor 1.7 zu aktualisieren. x auf Version 2.0. x und héher, Sie missen zuerst
auf die neueste Version 1 aktualisieren. x-Version von AWS Encryption SDK. Details hierzu
finden Sie unter Migrieren Sie lhre AWS Encryption SDK.

Sie kdnnen das AWS-Verschlusselungs-SDK for Java auf folgende Weise installieren.
manuell

Um das aws-encryption-sdk-java GitHubRepository zu installieren AWS-Verschllsselungs-SDK
for Java, klonen oder laden Sie es herunter.

Verwenden von Apache Maven

Das AWS-Verschlisselungs-SDK for Java ist Uber Apache Maven mit der folgenden
Abhangigkeitsdefinition verfugbar.

<dependency>
<groupId>com.amazonaws</groupIld>
<artifactId>aws-encryption-sdk-java</artifactId>
<version>3.0.0</version>

</dependency>

Nachdem Sie das SDK installiert haben, schauen Sie sich zunachst den Java-Beispielcode in diesem
Handbuch und das Javadoc an. GitHub

AWS-Verschlisselungs-SDK for Java Beispiele

Die folgenden Beispiele zeigen Ihnen, wie Sie mit AWS-Verschlisselungs-SDK for Java dem Daten
ver- und entschlisseln kdnnen. Diese Beispiele zeigen, wie Version 3 verwendet wird. x und spater
von AWS-Verschlisselungs-SDK for Java. Version 3. x von AWS-Verschlusselungs-SDK for Java
bendtigt die AWS SDK for Java 2.x. Version 3. x von AWS-Verschlisselungs-SDK for Java ersetzt

Beispiele 270

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-java/
https://maven.apache.org/
https://aws.github.io/aws-encryption-sdk-java/

AWS Encryption SDK Entwicklerhandbuch

die HauptschlUsselanbieter durch Schlisselringe. Beispiele, die frihere Versionen verwenden, finden
Sie in der Release-Liste des aws-encryption-sdk-javaRepositorys unter GitHub.

Themen

» Verschlisseln und Entschliisseln von Zeichenfolgen

» Verschlisseln und Entschlisseln von Byte-Streams

» Verschlisseln und Entschliisseln von Bytestreams mit einem Mehrfachschliisselbund

VerschlUsseln und Entschlisseln von Zeichenfolgen

Das folgende Beispiel zeigt Ihnen, wie Sie Version 3 verwenden. x der AWS-Verschlisselungs-
SDK for Java zum Verschlisseln und Entschlisseln von Zeichenketten. Bevor Sie die Zeichenfolge
verwenden, konvertieren Sie sie in ein Byte-Array.

In diesem Beispiel wird ein AWS KMS Schlusselbund verwendet. Wenn Sie mit einem AWS KMS
Schlisselbund verschlisseln, konnen Sie eine Schlissel-ID, einen Schlissel-ARN, einen Aliasnamen
oder einen Alias-ARN verwenden, um die KMS-Schlissel zu identifizieren. Beim Entschliisseln
mussen Sie einen Schlissel-ARN verwenden, um KMS-Schlissel zu identifizieren.

Wenn Sie die encryptData()-Methode aufrufen, wird eine verschliusselte Nachricht
(CryptoResult) zurlickgegeben, die den Verschlisselungstext, die verschliisselten Datenschlissel
und den Verschlisselungskontext enthalt. Wenn Sie CryptoResult auf dem getResult-Objekt
aufrufen, gibt es eine Base-64-codierte Zeichenfolgenversion der verschlusselten Nachricht zurick,
die Sie an die decryptData()-Methode Gbergeben kénnen.

In ahnlicher Weise enthalt das decryptData() zuriickgegebene CryptoResult Objekt beim
Aufrufen die Klartextnachricht und eine AWS KMS key ID. Bevor Ihre Anwendung den Klartext
zuruckgibt, stellen Sie sicher, dass die AWS KMS key ID und der Verschlisselungskontext in der
verschlisselten Nachricht den Erwartungen entsprechen.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import software.amazon.cryptography.materialproviders.IKeyring;

Beispiele 271

https://github.com/aws/aws-encryption-sdk-java/releases
https://github.com/aws/aws-encryption-sdk-java/

AWS Encryption SDK Entwicklerhandbuch

import software.amazon.cryptography.materialproviders.MaterialProviders;

import
software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;

import java.util.Collections;

import java.util.Map;

/**
* Encrypts and then decrypts data using an AWS KMS Keyring.

*

* <p>Arguments:
*

*
& Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS
customer master

& key (CMK), see 'Viewing Keys' at

ik http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
*

*/

public class BasicEncryptionKeyringExample {

private static final byte[] EXAMPLE_DATA = "Hello
World".getBytes(StandardCharsets.UTF_8);

public static void main(final String[] args) {
final String keyArn = args[0];

encryptAndDecryptWithKeyring(keyArn);
}

public static void encryptAndDecryptWithKeyring(final String keyArn) {

// 1. Instantiate the SDK

// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with a
committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

Beispiele 272

AWS Encryption SDK Entwicklerhandbuch

// or “AwsCrypto.standard() .
final AwsCrypto crypto =
AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders materialProviders =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create an encryption context

// We recommend using an encryption context whenever possible

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =

Collections.singletonMap("ExampleContextKey", "ExampleContextValue");

// 4. Encrypt the data

final CryptoResult<byte[], ?> encryptResult =
crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext);

final byte[] ciphertext = encryptResult.getResult();

// 5. Decrypt the data
final CryptoResult<byte[], ?> decryptResult =
crypto.decryptData(
kmsKeyring,
ciphertext,
// Verify that the encryption context in the result contains the
// encryption context supplied to the encryptData method
encryptionContext);

// 6. Verify that the decrypted plaintext matches the original plaintext
assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA);

Beispiele 273

AWS Encryption SDK Entwicklerhandbuch

}

Verschlisseln und Entschlisseln von Byte-Streams

Das folgende Beispiel zeigt Ihnen, wie Sie AWS Encryption SDK Bytestreams verschliisseln und
entschlisseln konnen.

In diesem Beispiel wird ein Raw AES-Schlisselbund verwendet.

Bei der Verschlisselung verwendet dieses Beispiel die

AwsCrypto.builder() .withEncryptionAlgorithm() Methode, um eine
Algorithmussuite ohne digitale Signaturen anzugeben. Bei der Entschlisselung

wird in diesem Beispiel die Methode verwendet, um sicherzustellen, dass der

Chiffretext nicht signiert ist. createUnsignedMessageDecryptingStream() Die
createUnsignedMessageDecryptingStream() Methode schlagt fehl, wenn sie auf einen
Chiffretext mit einer digitalen Signatur trifft.

Wenn Sie mit der Standard-Algorithmus-Suite verschlisseln, die digitale Signaturen enthalt,
verwenden Sie stattdessen die createDecryptingStream() Methode, wie im nachsten Beispiel
gezeigt.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoAlgorithm;

import com.amazonaws.encryptionsdk.CryptoInputStream;

import com.amazonaws.encryptionsdk.jce.JceMasterKey;

import com.amazonaws.util.IOUtils;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import software.amazon.cryptography.materialproviders.model.AesWrappingAlg;

import software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;

Beispiele 274

AWS Encryption SDK Entwicklerhandbuch

import java.security.SecureRandom;
import java.util.Collections;

import java.util.Map;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

/**
* <p>

* Encrypts and then decrypts a file under a random key.

* <p>

* Arguments:

*

* Name of file containing plaintext data to encrypt
*

* <p>
* This program demonstrates using a standard Java {@link SecretKey} object as a {elink
IKeyring} to
* encrypt and decrypt streaming data.
*/
public class FileStreamingKeyringExample {
private static String srcFile;

public static void main(String[] args) throws IOException {
srcFile = args[0];

// In this example, we generate a random key. In practice,
// you would get a key from an existing store
SecretKey cryptoKey = retrieveEncryptionKey();

// Create a Raw Aes Keyring using the random key and an AES-GCM encryption
algorithm
final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();
final CreateRawAesKeyringInput keyringInput =
CreateRawAesKeyringInput.builder()
.wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded()))
.keyNamespace("Example")
.keyName (""RandomKey")
.wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAGl6)
.build();

Beispiele 275

AWS Encryption SDK Entwicklerhandbuch

IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput);

// Instantiate the SDK.

// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with
a committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

// This example encrypts with an algorithm suite that doesn't include signing
for faster decryption,

// since this use case assumes that the contexts that encrypt and decrypt are
equally trusted.

final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

// Create an encryption context to identify the ciphertext
Map<String, String> context = Collections.singletonMap("Example",
"FileStreaming");

// Because the file might be too large to load into memory, we stream the data,
instead of

//loading it all at once.

FileInputStream in = new FileInputStream(srcFile);

CryptoInputStream<JceMasterKey> encryptingStream =
crypto.createEncryptingStream(keyring, in, context);

FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
IOUtils.copy(encryptingStream, out);

encryptingStream.close();

out.close();

// Decrypt the file. Verify the encryption context before returning the

plaintext.
// Since the data was encrypted using an unsigned algorithm suite, use the

recommended

Beispiele 276

AWS Encryption SDK Entwicklerhandbuch

// createUnsignedMessageDecryptingStream method, which only accepts unsigned
messages.

in = new FileInputStream(srcFile + ".encrypted");

CryptoInputStream<JceMasterKey> decryptingStream =
crypto.createUnsignedMessageDecryptingStream(keyring, in);

// Does it contain the expected encryption context?

if
(!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Exampl
{

throw new IllegalStateException("Bad encryption context");

// Write the plaintext data to disk.

out = new FileOutputStream(srcFile + ".decrypted");
IO0Utils.copy(decryptingStream, out);
decryptingStream.close();

out.close();

/**
* In practice, this key would be saved in a secure location.
* For this demo, we generate a new random key for each operation.
*/
private static SecretKey retrieveEncryptionKey() {
SecureRandom rnd = new SecureRandom();
byte[] rawKey = new byte[16]; // 128 bits
rnd.nextBytes(rawKey);
return new SecretKeySpec(rawKey, "AES");

Verschlisseln und Entschlisseln von Bytestreams mit einem Mehrfachschlisselbund

Das folgende Beispiel zeigt Ihnen, wie Sie den AWS Encryption SDK mit einem
Mehrfachschlisselbund verwenden. Wenn Sie einen Multi-Schliisselbund verwenden, um Daten

zu verschlisseln, kénnen alle Umhillungsschlissel in einem seiner Schllisselbunde diese Daten
entschlisseln. In diesem Beispiel werden ein AWS KMS Schlisselbund und ein Raw RSA-
Schlisselbund als untergeordnete Schlisselanhanger verwendet.

In diesem Beispiel wird mit der Standard-Algorithmussuite verschlisselt, die eine digitale Signatur

enthalt. Beim Streaming AWS Encryption SDK gibt der Klartext nach Integritatsprifungen, aber bevor
die digitale Signatur verifiziert wurde, frei. Um zu vermeiden, dass der Klartext verwendet wird, bis

Beispiele 277

AWS Encryption SDK

Entwicklerhandbuch

die Signatur verifiziert ist, puffert dieses Beispiel den Klartext und schreibt ihn erst auf die Festplatte,
wenn die Entschliisselung und Uberpriifung abgeschlossen sind.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import
import
import
import
import
import
import

software.amazon.cryptography.materialproviders.model.
cryptography.materialproviders.
cryptography.materialproviders.
cryptography.materialproviders.
cryptography.materialproviders.

import
import
import
import

import
import
import
import
import
import
import
import
import

/**

* <p>

com.
com.
com.
com.
software.amazon.cryptography.materialproviders.
software.amazon.cryptography.materialproviders.

software.
software.
software.
software.

java.io

amazonaws

amazonaws.

amazonaws

amazonaws.

amazon.
amazon.
amazon.
amazon.

.encryptionsdk.AwsCrypto;

encryptionsdk.CommitmentPolicy;

.encryptionsdk.CryptoOQutputStream;

util.IOUtils;

.ByteArrayInputStream;

java.io.ByteArrayOutputStream;
java.io.FileInputStream;
java.io.FileOutputStream;

java.
java.
java.
java.
java.

nio.ByteBuffer;
security.GeneralSecurityException;
security.KeyPair;
security.KeyPairGenerator;
util.Collections;

IKeyring;
MaterialProviders;

CreateAwsKmsMultiKeyringInput;
model.CreateMultiKeyringInput;
model.CreateRawRsaKeyringInput;
model .MaterialProvidersConfig;
model.PaddingScheme;

* Encrypts a file using both AWS KMS Key and an asymmetric key pair.

* <p>

* Arguments:

*

* Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key,
& see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html

*

* Name of file containing plaintext data to encrypt

Beispiele

278

AWS Encryption SDK Entwicklerhandbuch

* </o0l>

* <p>

* You might use AWS Key Management Service (AWS KMS) for most encryption and
decryption operations, but

* still want the option of decrypting your data offline independently of AWS KMS. This
sample

* demonstrates one way to do this.

* <p>

* The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair

* so that either key alone can decrypt it. You might commonly use the AWS KMS key for
decryption. However,

* at any time, you can use the private RSA key to decrypt the ciphertext independent
of AWS KMS.

* <p>

* This sample uses the RawRsaKeyring to generate a RSA public-private key pair

* and saves the key pair in memory. In practice, you would store the private key in a
secure offline

* location, such as an offline HSM, and distribute the public key to your development
team.

*/
public class EscrowedEncryptKeyringExample {

private static ByteBuffer publicEscrowKey;
private static ByteBuffer privateEscrowKey;

public static void main(final String[] args) throws Exception {
// This sample generates a new random key for each operation.
// In practice, you would distribute the public key and save the private key in
secure
// storage.
generateEscrowKeyPair();

final String kmsArn = args[0];
final String fileName = args[1];

standardEncrypt(kmsArn, fileName);
standardDecrypt(kmsArn, fileName);

escrowDecrypt(fileName);

private static void standardEncrypt(final String kmsArn, final String fileName)
throws Exception {
// Encrypt with the KMS key and the escrowed public key
// 1. Instantiate the SDK

Beispiele 279

AWS Encryption SDK Entwicklerhandbuch

// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with
a committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.buildex()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Beispiele 280

AWS Encryption SDK Entwicklerhandbuch

// 5. Encrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName);

final FileOutputStream out = new FileOutputStream(fileName + ".encrypted");

final CryptoOutputStream<?> encryptingStream =
crypto.createEncryptingStream(multiKeyring, out);

IOUtils.copy(in, encryptingStream);
in.close();
encryptingStream.close();

private static void standardDecrypt(final String kmsArn, final String fileName)
throws Exception {

// Decrypt with the AWS KMS key and the escrow public key.

// 1. Instantiate the SDK.
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with
a committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();

Beispiele 281

AWS Encryption SDK Entwicklerhandbuch

IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.buildex()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".decrypted");

// Since we are using a signing algorithm suite, we avoid streaming decryption
directly to the output file,

// to ensure that the trailing signature is verified before writing any
untrusted plaintext to disk.

final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream();

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(multiKeyring, plaintextBuffer);

IOUtils.copy(in, decryptingStream);

in.close();

decryptingStream.close();

final ByteArrayInputStream plaintextReader = new
ByteArrayInputStream(plaintextBuffer.toByteArray());

I0Utils.copy(plaintextReader, out);

out.close();

private static void escrowDecrypt(final String fileName) throws Exception {

Beispiele 282

AWS Encryption SDK Entwicklerhandbuch

// You can decrypt the stream using only the private key.
// This method does not call AWS KMS.

// 1. Instantiate the SDK
final AwsCrypto crypto = AwsCrypto.standard();

// 2. Create the Raw Rsa Keyring with Private Key.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.privateKey(privateEscrowKey)
.build();
IKeyring escrowPrivateKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 3. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed");

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(escrowPrivateKeyring, out);

IOUtils.copy(in, decryptingStream);

in.close();

decryptingStream.close();

private static void generateEscrowKeyPair() throws GeneralSecurityException {
final KeyPairGenerator kg = KeyPairGenerator.getInstance('"RSA");
kg.initialize(4096); // Escrow keys should be very strong
final KeyPair keyPair = kg.generateKeyPair();
publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic());
privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate());

Beispiele 283

AWS Encryption SDK Entwicklerhandbuch

}

AWS-Verschlusselungs-SDK for JavaScript

Die wurde AWS-Verschlisselungs-SDK for JavaScript entwickelt, um Entwicklern, die
Webbrowseranwendungen in Node.js JavaScript oder Webserveranwendungen schreiben, eine
clientseitige Verschliusselungsbibliothek zur Verfugung zu stellen.

Wie alle Implementierungen von AWS-Verschlusselungs-SDK for JavaScript bietet sie erweiterte
Datenschutzfunktionen. AWS Encryption SDK Dazu gehdren die Envelope-Verschlisselung,

zusatzliche authentifizierte Daten (AAD) und Algorithmen-Pakete mit sicherem, authentifiziertem,

symmetrischem Schlussel, wie z. B. 256-Bit-AES-GCM mit Schlusselableitung und Signatur.

Alle sprachspezifischen Implementierungen von AWS Encryption SDK sind so konzipiert, dass
sie interoperabel sind und den Einschrankungen der Sprache unterliegen. Einzelheiten zu den
Spracheinschrankungen fur finden Sie unter. JavaScript the section called “Kompatibilitat”

Weitere Informationen

* Einzelheiten zur Programmierung mit dem AWS-Verschlusselungs-SDK for JavaScript finden Sie
im aws-encryption-sdk-javascriptRepository unter GitHub.

* Programmierbeispiele finden Sie unter the section called “Beispiele” und in den Modulen example-
browser und example-node im Repository. aws-encryption-sdk-javascript

+ Ein Beispiel aus der Praxis fur die Verwendung von AWS-Verschlisselungs-SDK for JavaScript
zum Verschlisseln von Daten in einer Webanwendung finden Sie im Sicherheitsblog unter How to
enable encryption in a browser with the and Node.js. AWS-Verschlisselungs-SDK for JavaScript
AWS

Themen

+ Kompatibilitat der AWS-VerschlUsselungs-SDK for JavaScript

* Installation des AWS-Verschlisselungs-SDK for JavaScript

* Module in der AWS-Verschlusselungs-SDK for JavaScript

* AWS-Verschlisselungs-SDK for JavaScript Beispiele

JavaScript 284

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/

AWS Encryption SDK Entwicklerhandbuch

Kompatibilitat der AWS-Verschlisselungs-SDK for JavaScript

Das AWS-Verschlisselungs-SDK for JavaScript ist so konzipiert, dass es mit anderen
Sprachimplementierungen von interoperabel ist. AWS Encryption SDKIn den meisten Fallen
kénnen Sie Daten mit der verschliisseln AWS-Verschlisselungs-SDK for JavaScript und mit

jeder anderen Sprachimplementierung entschlisseln, einschliel3lich der AWS Encryption SDK
Befehlszeilenschnittstelle. Und Sie kdnnen das verwenden, um verschliusselte Nachrichten AWS-
Verschliusselungs-SDK for JavaScript zu entschliisseln, die von anderen Sprachimplementierungen
von erzeugt wurden. AWS Encryption SDK

Wenn Sie das AWS-Verschlisselungs-SDK for JavaScript verwenden, miissen Sie sich jedoch
einiger Kompatibilitdtsprobleme in der JavaScript Sprachimplementierung und in Webbrowsern
bewusst sein.

Wenn Sie verschiedene Sprachimplementierungen verwenden, sollten Sie auRerdem darauf achten,
kompatible Hauptschlisselanbieter, Hauptschliissel und Schllisselringe zu konfigurieren. Details
hierzu finden Sie unter Schlisselbund-Kompatibilitat.

AWS-Verschlisselungs-SDK for JavaScript Kompatibilitat

Die JavaScript Implementierung von AWS Encryption SDK unterscheidet sich von anderen
Sprachimplementierungen in folgenden Punkten:

» Der Verschlusselungsvorgang von AWS-Verschlisselungs-SDK for JavaScript gibt keinen
Chiffretext ohne Frame zurick. Der entschlusselt jedoch gerahmten und ungerahmten Chiffretext,
der von anderen Sprachimplementierungen von zurickgegeben AWS-Verschlisselungs-SDK for
JavaScript wird. AWS Encryption SDK

* Ab Node.js-Version 12.9.0 unterstitzt Node.js die folgenden RSA-Schlisselumhuillungsoptionen:
« OAEP mit,, oder SHA1 SHA256 SHA384 SHA512
« OAEP mit und mit SHA1 MGF1 SHA1
« PKCS1v15
» Vor Version 12.9.0 unterstitzt Node.js nur die folgenden RSA-Schlisselumhullungsoptionen:
« OAEP mit und mit SHA1 MGF1 SHA1
« PKCS1v15

Kompatibilitat 285

AWS Encryption SDK Entwicklerhandbuch

Browserkompatibilitat

Einige Webbrowser unterstitzen keine grundlegenden kryptografischen Operationen, die fur das
AWS-Verschlisselungs-SDK for JavaScript erforderlich sind. Sie kdnnen einige der fehlenden
Operationen ausgleichen, indem Sie einen Fallback fur die WebCrypto API konfigurieren, die der
Browser implementiert.

Webbrowser-Einschrankungen
Die folgenden Einschrankungen gelten fir alle Webbrowser:

» Die WebCrypto API unterstlitzt das UmschlieRen von PKCS1v15 Schlisseln nicht.

* Browser unterstiitzen keine 192-Bit-Schlissel.

Erforderliche kryptografische Operationen

Das AWS-Verschlisselungs-SDK for JavaScript erfordert die folgenden Operationen in
Webbrowsern. Wenn ein Browser diese Operationen nicht unterstitzt, ist er nicht mit dem AWS-
Verschlisselungs-SDK for JavaScript kompatibel.

* Der Browser muss crypto.getRandomValues() enthalten, was eine Methode zum
Generieren kryptografisch zufalliger Werte ist. Informationen zu den unterstitzten
crypto.getRandomValues() Webbrowser-Versionen finden Sie unter Kann ich Krypto
verwenden. getRandomValues()? .

Erforderlicher Fallback

Das AWS-Verschlusselungs-SDK for JavaScript erfordert die folgenden Bibliotheken und
Operationen in Webbrowsern. Wenn Sie einen Webbrowser unterstutzen, der diese Anforderungen
nicht erfullt, missen Sie einen Fallback konfigurieren. Andernfalls schlagen Versuche fehl, das AWS-
Verschlisselungs-SDK for JavaScript mit dem Browser zu verwenden.

» Die WebCrypto API, die grundlegende kryptografische Operationen in Webanwendungen ausfuhrt,
ist nicht fur alle Browser verfugbar. Weitere Informationen zu den Webbrowser-Versionen, die
Web-Kryptografie unterstitzen, finden Sie unter Kann ich Web-Kryptografie verwenden?.

* Moderne Versionen des Safari-Webbrowsers unterstitzen keine AES-GCM-Verschlisselung
von Null Byte, was erforderlich ist. AWS Encryption SDK Wenn der Browser die WebCrypto API
implementiert, AES-GCM aber nicht zum Verschlisseln von Null Byte verwenden kann, AWS-

Kompatibilitat 286

https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=cryptography

AWS Encryption SDK Entwicklerhandbuch

Verschlisselungs-SDK for JavaScript verwendet er die Fallback-Bibliothek nur fir die Null-Byte-
Verschlisselung. Er verwendet die API fir alle anderen Operationen. WebCrypto

Um einen Fallback flr eine der Einschrankungen zu konfigurieren, fligen Sie die folgenden
Anweisungen zu Ihrem Code hinzu. Geben Sie in der Funktion configureFallback eine Bibliothek
an, die die fehlenden Funktionen unterstitzt. Im folgenden Beispiel wird die Microsoft Research

JavaScript Cryptography Library (nsrcrypto) verwendet, Sie kénnen sie jedoch durch eine
kompatible Bibliothek ersetzen. Ein vollstandiges Beispiel finden Sie unter fallback.ts.

import { configureFallback } from 'eaws-crypto/client-browser'
configureFallback(msrCrypto)

Installation des AWS-Verschlisselungs-SDK for JavaScript

Das AWS-Verschlusselungs-SDK for JavaScript besteht aus einer Sammlung voneinander
abhangiger Module. Einige der Module sind nur Sammlungen von Modulen, die fur die
Zusammenarbeit konzipiert sind. Einige Module sind so konzipiert, dass sie unabhangig voneinander
arbeiten. Fir alle Implementierungen sind einige Module erforderlich, einige andere werden nur fur
spezielle Falle bendtigt. Informationen zu den Modulen im Verzeichnis finden Sie unter Module in der
AWS-Verschlisselungs-SDK for JavaScript und die README . md Datei in den einzelnen Modulen im
aws-encryption-sdk-javascriptProjektarchiv unter GitHub. AWS Encryption SDK JavaScript

(@ Note

Alle AWS-Verschlusselungs-SDK for JavaScript Versionen vor 2.0.0 befinden sich in der end-
of-supportPhase.

Sie kénnen sicher von Version 2.0 aus aktualisieren. x und héher auf die neueste Version von
AWS-Verschlisselungs-SDK for JavaScript ohne Code- oder Datendnderungen. In Version
2.0 wurden jedoch neue Sicherheitsfunktionen eingeflihrt. x sind nicht abwartskompatibel.
Um von Versionen vor 1.7 zu aktualisieren. x auf Version 2.0. x und héher, Sie missen

zuerst auf die neueste Version 1 aktualisieren. x-Version von AWS-Verschliisselungs-SDK for
JavaScript. Details hierzu finden Sie unter Migrieren Sie lhre AWS Encryption SDK.

Um die Module zu installieren, verwenden Sie den npm-Paketmanager.

Installation 287

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/web-crypto-backend/src/backend-factory.ts#L78
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/fallback.ts
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.npmjs.com/get-npm

AWS Encryption SDK Entwicklerhandbuch

Verwenden Sie beispielsweise den folgenden Befehl, um das client-node Modul zu installieren,
das alle Module enthalt, die Sie mit der AWS-Verschlisselungs-SDK for JavaScript Datei Node.js
programmieren muissen.

npm install eaws-crypto/client-node

Verwenden Sie den folgenden Befehl, um das client-browser Modul zu installieren, das
alle Module enthalt, mit denen Sie AWS-Verschlisselungs-SDK for JavaScript im Browser
programmieren mussen.

npm install @aws-crypto/client-browser

Praktische Beispiele fur die AWS-Verschlisselungs-SDK for JavaScript Verwendung von finden Sie
in den Beispielen unter example-node und in den example-browser Modulen im aws-encryption-
sdk-javascriptRepository unter GitHub.

Module in der AWS-Verschlisselungs-SDK for JavaScript

Die Module im AWS-Verschlisselungs-SDK for JavaScript machen es einfach, den Code zu
installieren, den Sie fur Ihre Projekte bendtigen.

Module far JavaScript Node.js
client-node

Enthalt alle Module, mit denen Sie AWS-Verschlusselungs-SDK for JavaScript in Node.js
programmieren muissen.

caching-materials-manager-node

Exportiert Funktionen, die die Funktion zum Zwischenspeichern von Datenschlisseln AWS-
Verschlisselungs-SDK for JavaScript in Node.js unterstitzen.

decrypt-node

Exportiert Funktionen, die verschllsselte Nachrichten entschliisseln und verifizieren, die Daten
und Datenstrome darstellen. Im client-node-Modul enthalten.

encrypt-node

Exportiert Funktionen, die verschiedene Datentypen verschlisseln und signieren. Im client-
node-Modul enthalten.

Module 288

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-node

AWS Encryption SDK Entwicklerhandbuch

example-node

Exportiert funktionierende Beispiele flir die Programmierung mit dem AWS-Verschliisselungs-SDK
for JavaScript in Node.js. Enthalt ein Beispiel flr verschiedene Arten von Schlisselbunden und
verschiedene Arten von Daten.

hkdf-node

Exportiert eine HMAC-basierte Key Derivation Function (HKDF), die AWS-Verschlisselungs-
SDK for JavaScript in Node.js in bestimmten Algorithmus-Suites verwendet wird. Die AWS-
Verschlisselungs-SDK for JavaScript im Browser verwendet die native HKDF-Funktion in der API.
WebCrypto

integration-node

Definiert Tests, die Uberprifen, ob die AWS-Verschlisselungs-SDK for JavaScript in Node.js
enthaltene Datei mit anderen Sprachimplementierungen von kompatibel ist. AWS Encryption SDK

kms-keyring-node

Exportiert Funktionen, die AWS KMS Schlisselringe in Node.js unterstitzen.

raw-aes-keyring-node

Exportiert Funktionen, die Unformatierte AES-Schlisselbunde in Node.js unterstitzen.

raw-rsa-keyring-node

Exportiert Funktionen, die Unformatierte RSA-Schlisselbunde in Node.js unterstitzen.

Module fir Browser JavaScript

client-browser

Enthalt alle Module, mit denen Sie AWS-Verschlisselungs-SDK for JavaScript im Browser
programmieren muissen.

caching-materials-manager-browser

Exportiert Funktionen, die die Funktion zum Zwischenspeichern von Datenschlisseln JavaScript
im Browser unterstutzen.

decrypt-browser

Exportiert Funktionen, die verschlisselte Nachrichten entschlisseln und verifizieren, die Daten
und Datenstrome darstellen.

Module 289

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/hkdf-node
https://en.wikipedia.org/wiki/HKDF
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-browser

AWS Encryption SDK Entwicklerhandbuch

encrypt-browser

Exportiert Funktionen, die verschiedene Datentypen verschllsseln und signieren.

example-browser

Arbeitsbeispiele fur die Programmierung mit dem AWS-Verschlisselungs-SDK for JavaScript im
Browser. Enthalt Beispiele fir verschiedene Arten von Schllisselbunden und verschiedene Arten
von Daten.

integration-browser

Definiert Tests, die Uberprifen, ob das AWS-Verschlisselungs-SDK for Java Skript im Browser
mit anderen Sprachimplementierungen von kompatibel ist. AWS Encryption SDK

kms-keyring-browser

Exportiert Funktionen, die AWS KMS Schllsselringe im Browser unterstitzen.

raw-aes-keyring-browser

Exportiert Funktionen, die Unformatierte AES-Schlisselbunde im Browser unterstitzen.

raw-rsa-keyring-browser

Exportiert Funktionen, die Unformatierte RSA-SchlUsselbunde im Browser unterstitzen.

Module fir alle Implementierungen

cache-material

Unterstitzt die Datenschlissel-Caching-Funktion. Stellt Code fir die Zusammenstellung der
kryptografischen Materialien bereit, die mit jedem Datenschlissel zwischengespeichert werden.

kms-keyring

Exportiert Funktionen, die KMS-Schlisselbunde unterstitzen.

material-management

Implementiert den Manager von kryptographischen Materialien (CMM).

raw-keyring

Exportiert Funktionen, die fur unformatierte AES- und RSA-Schlisselbunde erforderlich sind.

serialize

Exportiert Funktionen, die das SDK verwendet, um seine Ausgabe zu serialisieren.

Module 290

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/cache-material
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/material-management
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/serialize

AWS Encryption SDK Entwicklerhandbuch

web-crypto-backend

Exportiert Funktionen, die die WebCrypto APl AWS-Verschllisselungs-SDK for JavaScript im
Browser verwenden.

AWS-Verschlisselungs-SDK for JavaScript Beispiele

Die folgenden Beispiele zeigen Ihnen, wie Sie mit dem AWS-Verschlisselungs-SDK for JavaScript
Daten verschlisseln und entschlisseln.

Weitere Beispiele fur die Verwendung der Module AWS-Verschlisselungs-SDK for JavaScript in
den Modulen example-node und example-browser im Repository finden Sie unter. aws-encryption-
sdk-javascript GitHub Diese Beispielmodule werden nicht installiert, wenn Sie die Module client-
browser oder client-node installieren.

Die vollstandigen Codebeispiele anzeigen: Knoten: kms_simple.ts, Browser: kms_simple.ts

Themen

« AWS KMS Daten mit einem Schllsselbund verschlliisseln

» Daten mit einem Schlisselbund entschlisseln AWS KMS

AWS KMS Daten mit einem Schliisselbund verschlisseln

Das folgende Beispiel zeigt Ihnen, wie Sie mit dem eine kurze Zeichenfolge AWS-Verschlisselungs-
SDK for JavaScript oder ein Byte-Array verschlisseln und entschlisseln kdnnen.

Dieses Beispiel zeigt einen AWS KMS Schlusselbund, eine Art von Schlisselbund, der AWS KMS
key zum Generieren und Verschlisseln von Datenschlisseln verwendet wird. Hilfe bei der Erstellung
eines AWS KMS key finden Sie unter Creating Keys im AWS Key Management Service Developer
Guide. Hilfe bei der Identifizierung von AWS KMS keys in einem AWS KMS Schlisselbund finden Sie
unter Identifizierung AWS KMS keys in einem AWS KMS Schlisselbund

Schritt 1: Legen Sie die Verpflichtungsrichtlinie fest.

Ab Version 1.7. x von AWS-Verschlisselungs-SDK for JavaScript, Sie kdnnen die Commitment-
Richtlinie festlegen, wenn Sie die neue buildClient Funktion aufrufen, die einen

AWS Encryption SDK Client instanziiert. Die buildClient Funktion verwendet einen
Aufzahlungswert, der lnre Commitment-Richtlinie darstellt. Sie gibt aktualisierte decrypt

Beispiele 291

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/web-crypto-backend
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK Entwicklerhandbuch

Funktionen encrypt und Funktionen zurlck, die lhre Verpflichtungsrichtlinie beim Verschlisseln
und Entschlisseln durchsetzen.

In den folgenden Beispielen wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschliisselten Datenschlissel in einer
verschlisselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“‘Beschrankung verschlUsselter Datenschlissel”.

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from 'e@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)
JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

Schritt 2: Konstruieren Sie den Schlusselbund.
Erstellen Sie einen AWS KMS Schlisselbund flr die Verschlusselung.

Bei der Verschlisselung mit einem AWS KMS Schlisselbund missen Sie einen
Generatorschlissel angeben, d. h. einen, der verwendet wird AWS KMS key , um den Klartext-
DatenschlUssel zu generieren und zu verschlisseln. Sie kdnnen auch null oder mehr zusatzliche

Beispiele 292

AWS Encryption SDK Entwicklerhandbuch

Schlissel angeben, die denselben Klartext-Datenschliissel verschliisseln. Der Schlisselbund
gibt den Klartext-Datenschlissel und eine verschlisselte Kopie dieses Datenschlissels flir jeden
AWS KMS key im Schlisselbund zurtick, einschliel3lich des Generatorschlissels. Um die Daten
zu entschlisseln, missen Sie einen der verschliisselten Datenschliissel entschlisseln.

Um den Schlisselbund AWS KMS keys fir die Verschlisselung in der anzugeben AWS-
Verschlisselungs-SDK for JavaScript, kdnnen Sie eine beliebige unterstitzte Schlissel-ID
verwenden. AWS KMS In diesem Beispiel wird ein Generatorschlissel verwendet, der durch
seinen Alias-ARN identifiziert wird, und ein zusatzlicher Schlissel, der durch einen Schlussel-ARN

identifiziert wird.

(® Note

Wenn Sie Ihren AWS KMS Schlisselbund fir die Entschlisselung wiederverwenden
mdchten, missen Sie den Schlissel verwenden, um ihn AWS KMS keys im
Schlisselbund ARNs zu identifizieren.

Bevor Sie diesen Code ausflhren, ersetzen Sie die Beispielbezeichner durch glltige AWS KMS
key Bezeichner. Sie mussen Uber die erforderlichen Berechtigungen verfugen, um die AWS KMS

keys im SchlUsselbund zu verwenden.

JavaScript Browser

Geben Sie zunachst Ihre Anmeldeinformationen im Browser ein. Die AWS-Verschlisselungs-
SDK for JavaScript Beispiele verwenden das Webpack. DefinePlugin, wodurch die Credential-
Konstanten durch |hre tatsdchlichen Anmeldeinformationen ersetzt werden. Sie kbnnen jedoch

jede Methode verwenden, um lhre Anmeldeinformationen anzugeben. Verwenden Sie dann
die Anmeldeinformationen, um einen AWS KMS Client zu erstellen.

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {
credentials: {
accessKeyld,
secretAccessKey,
sessionToken

1

Beispiele 293

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Entwicklerhandbuch

Geben Sie als Nachstes den Schlissel und den Zusatzschlissel AWS KMS keys fiir den
Generator an. Erstellen Sie dann einen AWS KMS Schlisselbund mit dem AWS KMS Client
und dem AWS KMS keys.

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’
const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']

const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyId, keyIds })

JavaScript Node.js

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt'
const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

Schritt 3: Stellen Sie den Verschlisselungskontext ein.

Ein Verschlusselungskontext ist eine Art zufalliger, nicht geheimer, zusatzlich authentifizierter
Daten. Wenn Sie bei Encrypt einen Verschlisselungskontext angeben, bindet der
Verschlisselungskontext AWS Encryption SDK kryptografisch an den Chiffretext, sodass derselbe
Verschlusselungskontext zum Entschlisseln der Daten erforderlich ist. Die Verwendung eines
Verschlisselungskontexts ist optional, aber wir empfehlen dies als eine bewahrte Methode.

Erstellen Sie ein einfaches Objekt, das die Verschlisselungskontextpaare enthalt. Der Schlissel
und der Wert in jedem Paar mussen eine Zeichenfolge sein.

JavaScript Browser

const context = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2'

}
JavaScript Node.js

const context = {
stage: 'demo',
purpose: 'simple demonstration app',

Beispiele 294

AWS Encryption SDK Entwicklerhandbuch

origin: 'us-west-2'

}

Schritt 4: Verschlisseln Sie die Daten.

Um die Klartextdaten zu verschliisseln, rufen Sie die encrypt-Funktion auf. Ubergeben Sie den
AWS KMS Schlisselbund, die Klartextdaten und den Verschlisselungskontext.

Die encrypt-Funktion gibt eine verschlisselte Nachricht (result) zurlck, die die
verschllsselten Daten, die verschlusselten Datenschlissel und wichtige Metadaten enthalt,
einschliellich des Verschlisselungskontexts und der Signatur.

Sie kénnen diese verschlisselte Nachricht entschlisseln, indem Sie das AWS Encryption SDK fir
jede unterstlutzte Programmiersprache verwenden.

JavaScript Browser

const plaintext = new Uint8Array([1l, 2, 3, 4, 5])

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
context 1})

JavaScript Node.js

const plaintext = 'asdf'

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
context })

Daten mit einem Schlusselbund entschlisseln AWS KMS

Sie konnen den verwenden AWS-Verschlisselungs-SDK for JavaScript , um die verschlisselte
Nachricht zu entschlisseln und die Originaldaten wiederherzustellen.

In diesem Beispiel entschllisseln wir die Daten, die wir im the section called “AWS KMS Daten mit
einem Schlusselbund verschlusseln”-Beispiel verschlisselt haben.

Schritt 1: Legen Sie die Verpflichtungsrichtlinie fest.

Ab Version 1.7. x von AWS-Verschlisselungs-SDK for JavaScript, Sie kdnnen die Commitment-
Richtlinie festlegen, wenn Sie die neue buildClient Funktion aufrufen, die einen

Beispiele 295

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK Client instanziiert. Die buildClient Funktion verwendet einen
Aufzahlungswert, der lnre Commitment-Richtlinie darstellt. Sie gibt aktualisierte decrypt
Funktionen encrypt und Funktionen zurick, die Ihre Verpflichtungsrichtlinie beim Verschlisseln
und Entschlusseln durchsetzen.

In den folgenden Beispielen wird die buildClient Funktion verwendet, um die Standard-
Commitment-Richtlinie anzugeben,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Sie kdnnen die
auch verwendenbuildClient, um die Anzahl der verschliisselten Datenschlissel in einer
verschlusselten Nachricht zu begrenzen. Weitere Informationen finden Sie unter the section called
“‘Beschrankung verschlUsselter Datenschlissel”.

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Schritt 2: Konstruieren Sie den Schliisselbund.

Um die Daten zu entschlisseln, Gibergeben Sie die verschlisselte Nachricht (result), die die
encrypt-Funktion zurickgegeben hat. Die verschlisselte Nachricht enthalt die verschlisselten

Beispiele 296

AWS Encryption SDK Entwicklerhandbuch

Daten, die verschlisselten Datenschlissel und wichtige Metadaten, einschliel3lich des
Verschlisselungskontexts und der Signatur.

Sie mussen beim Entschlisseln auch einen AWS KMS Schlusselbund angeben. Sie kdnnen
denselben Schlisselbund verwenden, der zum Verschlisseln der Daten verwendet wurde,
oder einen anderen Schlisselbund. Um erfolgreich zu sein, muss mindestens einer der
AWS KMS key Schlisselbunde im Entschlisselungsschlisselbund in der Lage sein, einen
der verschlusselten Datenschlissel in der verschlisselten Nachricht zu entschlisseln. Da

keine Datenschllissel generiert werden, miussen Sie keinen Generatorschlissel in einem
Entschlisselungsschlisselbund angeben. Wenn Sie dies tun, werden der Generatorschlissel und
zusatzliche Schlissel auf die gleiche Weise behandelt.

Um einen Schlisselbund AWS KMS key fir eine Entschlisselung in der anzugeben AWS-
Verschlisselungs-SDK for JavaScript, mussen Sie den Schlussel ARN verwenden. Andernfalls
AWS KMS key wird der nicht erkannt. Hilfe bei der Identifizierung von AWS KMS keys in einem
AWS KMS Schlisselbund finden Sie unter Identifizierung AWS KMS keys in einem AWS KMS
Schlusselbund

@ Note

Wenn Sie denselben Schliisselbund zum Verschliisseln und Entschliisseln verwenden,
verwenden Sie den Schlissel, um den AWS KMS keys Schlissel im Schlisselbund ARNs
zu identifizieren.

In diesem Beispiel erstellen wir einen Schlisselbund, der nur einen der im
Verschlisselungsschlisselbund enthaltenen Schlissel enthalt. AWS KMS keys Ersetzen Sie vor
Ausflihrung dieses Codes den ARN des Beispiel-Schllssels durch einen gultigen. Sie missen
Uber die kms : Decrypt-Berechtigung fur den AWS KMS key verfiigen.

JavaScript Browser

Geben Sie zunachst lhre Anmeldeinformationen im Browser ein. Die AWS-Verschllisselungs-
SDK for JavaScript Beispiele verwenden das Webpack. DefinePlugin, wodurch die Credential-
Konstanten durch lhre tatsachlichen Anmeldeinformationen ersetzt werden. Sie kbénnen jedoch
jede Methode verwenden, um Ihre Anmeldeinformationen anzugeben. Verwenden Sie dann
die Anmeldeinformationen, um einen AWS KMS Client zu erstellen.

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

Beispiele 297

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Entwicklerhandbuch

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
1)

Erstellen Sie als Nachstes mithilfe des AWS KMS Clients einen AWS KMS Schlisselbund.
In diesem Beispiel wird nur einer der Schlisselbunde AWS KMS keys aus dem
VerschlUsselungsschlusselbund verwendet.

const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })

JavaScript Node.js

const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']

const keyring = new KmsKeyringNode({ keyIds })

Schritt 3: Entschlisseln Sie die Daten.

Rufen Sie als Nachstes die decrypt-Funktion auf. Ubergeben Sie den gerade erstellten
Entschlisselungsschlisselbund (keyring) und die verschlisselte Nachricht, die die encrypt-
Funktion zurtickgegeben hat (result). Der AWS Encryption SDK verwendet den Schliisselbund,
um einen der verschlisselten Datenschlissel zu entschlisseln. Dann verwendet es den Klartext-
Datenschlissel, um die Daten zu entschlisseln.

Wenn der Aufruf erfolgreich ist, enthalt das plaintext-Feld die Klartextdaten (entschlisselt).
Das messageHeader-Feld enthédlt Metadaten Uber den Entschlisselungsprozess, einschliellich
des Verschlusselungskontexts, der zum Entschlisseln der Daten verwendet wurde.

JavaScript Browser

const { plaintext, messageHeader } = await decrypt(keyring, result)

Beispiele 298

AWS Encryption SDK Entwicklerhandbuch

JavaScript Node.js
const { plaintext, messageHeader } = await decrypt(keyring, result)

Schritt 4: Uberpriifen Sie den Verschliisselungskontext.

Der Verschlusselungskontext, der zum Entschlisseln der Daten verwendet wurde,

ist im Nachrichten-Header (messageHeader) enthalten, den die decrypt-Funktion

zuruckgibt. Bevor Ihre Anwendung die Klartextdaten zurlckgibt, stellen Sie sicher,

dass der Verschlusselungskontext, den Sie beim Verschlisseln angegeben haben, im
Verschlisselungskontext enthalten ist, der bei der Entschlisselung verwendet wurde. Eine
Nichtlbereinstimmung kann darauf hindeuten, dass die Daten manipuliert wurden oder dass Sie
nicht den richtigen Verschlisselungstext entschlisselt haben.

Bei der Uberpriifung des Verschliisselungskontexts ist keine genaue Ubereinstimmung
erforderlich. Wenn Sie einen Verschlusselungsalgorithmus mit Signatur verwenden, fugt
der Manager von kryptographischen Materialien (CMM) den o6ffentlichen Signaturschlissel
zum Verschlusselungskontext hinzu, bevor die Nachricht verschlisselt wird. Aber alle
Verschlisselungskontextpaare, die Sie Ubermittelt haben, sollten in den zurlickgegebenen
Verschlusselungskontext aufgenommen werden.

Holen Sie sich zuerst den Verschlisselungskontext aus dem Nachrichten-Header. Stellen
Sie dann sicher, dass jedes Schliissel-Wert-Paar im urspriinglichen Verschlisselungskontext
(context) mit einem Schllssel-Wert-Paar im zurlickgegebenen Verschlisselungskontext
(encryptionContext) Ubereinstimmt.

JavaScript Browser

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')

1)
JavaScript Node.js

const { encryptionContext } = messageHeader

Beispiele 299

AWS Encryption SDK Entwicklerhandbuch

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')

D

Wenn die Verschlisselungskontext-Prifung erfolgreich ist, kdnnen Sie die Klartextdaten
zurickgeben.

AWS-Verschlisselungs-SDK for Python

In diesem Thema wird erklart, wie das AWS-Verschlisselungs-SDK for Python installiert und
verwendet wird. Einzelheiten zur Programmierung mit dem AWS-Verschlusselungs-SDK for Python
finden Sie im aws-encryption-sdk-pythonRepository unter GitHub. Eine API-Dokumentation finden Sie
in Read the Docs.

Themen

» Voraussetzungen

* |nstallation

» AWS-Verschlusselungs-SDK for Python Beispielcode

Voraussetzungen

Stellen Sie vor der Installation von sicher AWS-Verschllisselungs-SDK for Python, dass Sie die
folgenden Voraussetzungen erfillen.

Eine unterstiutzte Version von Python

Python 3.8 oder héher ist flr die AWS-Verschlisselungs-SDK for Python Versionen 3.2.0 und
héher erforderlich.

(® Note

Die AWS Cryptographic Material Providers Library (MPL) ist eine optionale Abhangigkeit
fur die in Version 4 AWS-Verschlisselungs-SDK for Python eingefuhrte. x. Wenn Sie die
MPL installieren méchten, mussen Sie Python 3.11 oder hoher verwenden.

Python 300

https://github.com/aws/aws-encryption-sdk-python/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Frihere Versionen von AWS Encryption SDK unterstitzen Python 2.7 und Python 3.4 und héher,
wir empfehlen jedoch, dass Sie die neueste Version von verwenden AWS Encryption SDK.

Weitere Informationen zum Download von Python finden Sie unter Python-Downloads.

Das pip-Installationstool for Python

pipist in Python 3.6 und spateren Versionen enthalten, obwohl Sie es moglicherweise
aktualisieren mdchten. Weitere Informationen zum Aktualisieren oder Installieren pip finden Sie
in der pip Dokumentation unter Installation.

Installation

Installieren Sie die neueste Version von AWS-Verschlisselungs-SDK for Python.

(® Note

Alle AWS-Verschlisselungs-SDK for Python Versionen vor 3.0.0 befinden sich in der end-of-
supportPhase.

Sie kdnnen sicher von Version 2.0 aus aktualisieren. x und héher auf die neueste Version
von AWS Encryption SDK ohne Code- oder Datenanderungen. In Version 2.0 wurden jedoch
neue Sicherheitsfunktionen eingeflhrt. x sind nicht abwartskompatibel. Um von Versionen

vor 1.7 zu aktualisieren. x auf Version 2.0. x und héher, Sie mussen zuerst auf die neueste
Version 1 aktualisieren. x-Version von AWS Encryption SDK. Details hierzu finden Sie unter
Migrieren Sie lhre AWS Encryption SDK.

Verwenden Sie, pip um die zu installieren AWS-Verschlisselungs-SDK for Python, wie in den
folgenden Beispielen gezeigt.

Installieren der neuesten Version

pip install "aws-encryption-sdk[MPL]"

Das [MPL] Suffix installiert die AWS Cryptographic Material Providers Library (MPL). Die MPL
enthalt Konstrukte zum Verschlisseln und Entschlisseln Ihrer Daten. Die MPL ist eine optionale
Abhangigkeit fur die in Version 4 AWS-Verschlisselungs-SDK for Python eingefiihrte. x. Wir
empfehlen dringend, die MPL zu installieren. Wenn Sie jedoch nicht beabsichtigen, die MPL zu
verwenden, kdnnen Sie das Suffix weglassen. [MPL]

Installation 301

https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Entwicklerhandbuch

Weitere Informationen zur Verwendung von pip flr die Installation und die Aktualisierung von Paketen
finden Sie unter Pakete installieren.

Das AWS-Verschlisselungs-SDK for Python erfordert die Kryptografie-Bibliothek (pyca/cryptography)
auf allen Plattformen. Alle Versionen von installieren und erstellen die Bibliothek pip automatisch

unter Windows. cryptography pip8.1 und héher werden automatisch cryptography auf Linux
installiert und erstellt. Wenn Sie eine friihere Version von verwenden pip und Ihre Linux-Umgebung
nicht Gber die Tools verfligt, die zum Erstellen der cryptography Bibliothek erforderlich sind,
mussen Sie sie installieren. Weitere Informationen finden Sie unter Erstellen von Kryptographie unter

Linux.

In den Versionen 1.10.0 und 2.5.0 liegt die AWS-Verschlisselungs-SDK for Python
Kryptografieabhangigkeit zwischen 2.5.0 und 3.3.2. Andere Versionen von AWS-Verschlisselungs-

SDK for Python installieren die neueste Version der Kryptografie. Wenn Sie eine neuere Version der
Kryptografie als 3.3.2 bendtigen, empfehlen wir Ihnen, die neueste Hauptversion von zu verwenden.
AWS-Verschlisselungs-SDK for Python

Die neueste Entwicklungsversion von finden Sie im AWS-Verschlisselungs-SDK for Pythonaws-
encryption-sdk-pythonRepository unter. GitHub

Schauen Sie sich nach der AWS-Verschlisselungs-SDK for Python Installation von zunachst den
Python-Beispielcode in diesem Handbuch an.

AWS-Verschlisselungs-SDK for Python Beispielcode

Die folgenden Beispiele zeigen Ihnen, wie Sie mit AWS-Verschlisselungs-SDK for Python dem Daten
ver- und entschlisseln kdnnen.

Die Beispiele in diesem Abschnitt zeigen, wie Sie Version 4 verwenden. x von AWS-
Verschlisselungs-SDK for Python mit der optionalen Bibliotheksabhangigkeit von Cryptographic

Material Providers (aws-cryptographic-material-providers). Um Beispiele zu sehen, die
frihere Versionen verwenden, oder Installationen ohne die Material Providers Library (MPL), suchen
Sie lhre Version in der Releases-Liste des aws-encryption-sdk-pythonRepositorys unter. GitHub

Wenn Sie Version 4 verwenden. x von der AWS-Verschlisselungs-SDK for Python mit der MPL, es
verwendet Schlusselringe, um die Umschlagverschlisselung durchzufihren. Das AWS Encryption
SDK stellt Schlisselbunde bereit, die mit den Hauptschlisselanbietern kompatibel sind, die Sie in
frGheren Versionen verwendet haben. Weitere Informationen finden Sie unter the section called
“Schlusselbund-Kompatibilitat”. Beispiele fur die Migration von Master-Key-Anbietern zu Keyrings
finden Sie unter Migrationsbeispiele im Repository auf; aws-encryption-sdk-python GitHub

Beispiele 302

https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-python/releases
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration

AWS Encryption SDK Entwicklerhandbuch

Themen

» Verschlisseln und Entschlisseln von Zeichenfolgen

» VerschlUsseln und Entschlisseln von Byte-Streams

Verschlisseln und Entschlisseln von Zeichenfolgen

Das folgende Beispiel zeigt Ihnen, wie Sie Zeichenketten verschlisseln und entschlisseln
konnen. AWS Encryption SDK In diesem Beispiel wird ein AWS KMS Schlusselbund mit einem
symmetrischen KMS-Schliussel verwendet.

In diesem Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-Richtlinie
instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Weitere Informationen finden Sie unter the
section called “Festlegung lhrer Verpflichtungspolitik™.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example sets up the KMS Keyring

The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and

decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input
EXAMPLE_DATA

with an encryption context. This example also includes some sanity checks for
demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings
of the same or a different type.

import boto3

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

Beispiele 303

AWS Encryption SDK Entwicklerhandbuch

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

EXAMPLE_DATA: bytes = b"Hello World"

def encrypt_and_decrypt_with_keyring(
kms_key_id: str

"""Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring.

Usage: encrypt_and_decrypt_with_keyring(kms_key_id)

:param kms_key_id: KMS Key identifier for the KMS key you want to use for
encryption and

decryption of your data keys.

:type kms_key_id: string

1. Instantiate the encryption SDK client.

This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,

which enforces that this client only encrypts using committing algorithm suites
and enforces

that this client will only decrypt encrypted messages that were created with a
committing

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(

commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. Create a boto3 client for KMS.
kms_client = boto3.client('kms', region_name="us-west-2")

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Beispiele 304

AWS Encryption SDK Entwicklerhandbuch

}

4. Create your keyring
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=kms_client

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=keyring_input

5. Encrypt the data with the encryptionContext.
ciphertext, _ = client.encrypt(
source=EXAMPLE_DATA,
keyring=kms_keyring,
encryption_context=encryption_context

6. Demonstrate that the ciphertext and plaintext are different.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert ciphertext != EXAMPLE_DATA, \
"Ciphertext and plaintext data are the same. Invalid encryption"

7. Decrypt your encrypted data using the same keyring you used on encrypt.
plaintext_bytes, _ = client.decrypt(
source=ciphertext,
keyring=kms_keyring,
Provide the encryption context that was supplied to the encrypt method
encryption_context=encryption_context,

8. Demonstrate that the decrypted plaintext is identical to the original
plaintext.

(This is an example for demonstration; you do not need to do this in your own
code.)

assert plaintext_bytes == EXAMPLE_DATA, \

Beispiele 305

AWS Encryption SDK Entwicklerhandbuch

"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

Verschlisseln und Entschllisseln von Byte-Streams

Das folgende Beispiel zeigt Ihnen, wie Sie Bytestreams AWS Encryption SDK verschliisseln und
entschlisseln kdnnen. In diesem Beispiel wird ein Raw AES-Schlisselbund verwendet.

In diesem Beispiel wird der AWS Encryption SDK Client mit der Standard-Commitment-Richtlinie
instanziiert. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Weitere Informationen finden Sie unter the
section called “Festlegung lhrer Verpflichtungspolitik”.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example demonstrates file streaming for encryption and decryption.

File streaming is useful when the plaintext or ciphertext file/data is too large to
load into

memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of
loading it

all at once in memory. In this example, we demonstrate file streaming for encryption
and decryption

using a Raw AES keyring. However, you can use any keyring with streaming.

This example creates a Raw AES Keyring and then encrypts an input stream from the file
‘plaintext_filename’ with an encryption context to an output (encrypted) file
‘ciphertext_filename".

It then decrypts the ciphertext from ‘ciphertext_filename™ to a new file
“decrypted_filename .

This example also includes some sanity checks for demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

See raw_aes_keyring_example.py in the same directory for another raw AES keyring
example

in the AWS Encryption SDK for Python.

import filecmp

import secrets

Beispiele 306

AWS Encryption SDK Entwicklerhandbuch

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg,
CreateRawAesKeyringInput

from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_and_decrypt_with_keyring(
plaintext_filename: str,
ciphertext_filename: str,
decrypted_filename: str

"""Demonstrate a streaming encrypt/decrypt cycle.

Usage: encrypt_and_decrypt_with_keyring(plaintext_filename
ciphertext_filename
decrypted_filename)

:param plaintext_filename: filename of the plaintext data

:type plaintext_filename: string

:param ciphertext_filename: filename of the ciphertext data

:type ciphertext_filename: string

:param decrypted_filename: filename of the decrypted data

:type decrypted_filename: string

1. Instantiate the encryption SDK client.

This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment

policy,

which enforces that this client only encrypts using committing algorithm suites

and enforces

that this client will only decrypt encrypted messages that were created with a

committing

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(

commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. The key namespace and key name are defined by you.

Beispiele 307

AWS Encryption SDK

Entwicklerhandbuch

an

and are used by the Raw AES keyring to determine

whether it should attempt to decrypt an encrypted data key.
key_name_space = "Some managed raw keys"

key_name = "My 256-bit AES wrapping key"

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

4. Generate a 256-bit AES key to use with your keyring.

In practice, you should get this key from a secure key management system such as

HSM.

Here, the input to secrets.token_bytes() = 32 bytes = 256 bits
static_key = secrets.token_bytes(32)

5. Create a Raw AES keyring

We choose to use a raw AES keyring, but any keyring can be used with streaming.

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=static_key,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

6. Encrypt the data stream with the encryptionContext

with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as

ct_file:

with client.stream(
mode="'e',

Beispiele

308

AWS Encryption SDK Entwicklerhandbuch

source=pt_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as encryptor:
for chunk in encryptor:
ct_file.write(chunk)

7. Demonstrate that the ciphertext and plaintext are different.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \
"Ciphertext and plaintext data are the same. Invalid encryption"

8. Decrypt your encrypted data stream using the same keyring you used on
encrypt.
with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as
pt_file:
with client.stream(
mode='d",
source=ct_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as decryptor:
for chunk in decryptor:
pt_file.write(chunk)

10. Demonstrate that the decrypted plaintext is identical to the original
plaintext.

(This is an example for demonstration; you do not need to do this in your own
code.)

assert filecmp.cmp(plaintext_filename, decrypted_filename), \

"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

AWS Encryption SDK fur Rust

In diesem Thema wird erklart, wie Sie AWS Encryption SDK for Rust installieren und verwenden.
Einzelheiten zur Programmierung mit dem AWS Encryption SDK fir Rust finden Sie im Rust-
Verzeichnis des aws-encryption-sdk Repositorys unter GitHub.

The AWS Encryption SDK for Rust unterscheidet sich von einigen anderen
Programmiersprachenimplementierungen AWS Encryption SDK in folgenden Punkten:

Rust 309

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/

AWS Encryption SDK Entwicklerhandbuch

» Keine Unterstitzung fur das Zwischenspeichern von Datenschlisseln. Der AWS Encryption SDK
fur Rust unterstitzt jedoch den AWS KMS hierarchischen Schlisselbund, eine alternative Lésung
zum Zwischenspeichern kryptografischer Materialien.

» Keine Unterstitzung fir Streaming-Daten

The AWS Encryption SDK for Rust enthalt alle Sicherheitsfunktionen, die in den Versionen 2.0
eingefihrt wurden. x und héher von anderen Sprachimplementierungen von. AWS Encryption SDK
Wenn Sie jedoch AWS Encryption SDK for Rust verwenden, um Daten zu entschllisseln, die mit einer
Version vor 2.0 verschlisselt wurden. x-Version einer anderen Sprachimplementierung von AWS
Encryption SDK, méglicherweise missen Sie lhre Commitment-Richtlinie anpassen. Details hierzu
finden Sie unter Wie legen Sie lhre Verpflichtungsrichtlinie fest.

Die AWS Encryption SDK for Rust ist ein Produkt von AWS Encryption SDK In Dafny, einer formalen
Bestatigungssprache, in der Sie Spezifikationen, den Code zu ihrer Implementierung und die
Beweise, um sie zu testen, schreiben. Das Ergebnis ist eine Bibliothek, die die Funktionen von AWS
Encryption SDK in einem Framework implementiert, das die funktionale Korrektheit gewahrleistet.

Weitere Informationen

 Beispiele fur die Konfiguration von Optionen in der AWS Encryption SDK, z. B. die Angabe
einer alternativen Algorithmussuite, die Beschrankung verschlisselter Datenschlissel und die
Verwendung von Schlisseln fuir AWS KMS mehrere Regionen, finden Sie unter. Konfiguration der
AWS Encryption SDK

+ Beispiele zur Konfiguration und Verwendung von AWS Encryption SDK for Rust finden Sie in den
Rust-Beispielen im aws-encryption-sdk Repository unter GitHub.

Themen

» Voraussetzungen

» |nstallation

« AWS Encryption SDK fir Rust-Beispielcode

Voraussetzungen

Stellen Sie vor der Installation von AWS Encryption SDK for Rust sicher, dass Sie die folgenden
Voraussetzungen erflllen.

Voraussetzungen 310

https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples

AWS Encryption SDK Entwicklerhandbuch

Installieren Sie Rust und Cargo

Installieren Sie die aktuelle stabile Version von Rust mit Rustup.

Weitere Informationen zum Herunterladen und Installieren von Rustup finden Sie in den
Installationsverfahren in The Cargo Book.

Installation

The AWS Encryption SDK for Rust ist als Kiste auf aws -esdkCrates.io erhaltlich. Einzelheiten zur
Installation und Erstellung von AWS Encryption SDK for Rust finden Sie in der README.md im
Repository unter. aws-encryption-sdk GitHub

Sie kdnnen das AWS Encryption SDK fir Rust auf folgende Weise installieren.

manuell

Um das AWS Encryption SDK fir Rust zu installieren, klonen oder laden Sie das aws-encryption-
sdk GitHub Repository herunter.

Verwenden von Crates.io

Fuhren Sie den folgenden Cargo-Befehl in lnrem Projektverzeichnis aus:

cargo add aws-esdk

Oder flgen Sie lhrer Cargo.toml die folgende Zeile hinzu:

aws-esdk = "<version>"

AWS Encryption SDK fur Rust-Beispielcode

Die folgenden Beispiele zeigen die grundlegenden Codierungsmuster, die Sie beim Programmieren
mit dem AWS Encryption SDK fur Rust verwenden. Insbesondere instanziieren Sie die Bibliothek
AWS Encryption SDK und die Material Provider-Bibliothek. Bevor Sie die einzelnen Methoden
aufrufen, instanziieren Sie dann das Objekt, das die Eingabe fir die Methode definiert.

Beispiele fur die Konfiguration von Optionen in der AWS Encryption SDK, wie z. B. die Angabe einer
alternativen Algorithmus-Suite und die Beschrankung verschlisselter Datenschlissel, finden Sie in
den Rust-Beispielen im aws-encryption-sdk Repository unter. GitHub

Installation 311

https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-esdk
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/

AWS Encryption SDK Entwicklerhandbuch

Verschlisseln und Entschlisseln von Daten in der AWS Encryption SDK fur Rust

Dieses Beispiel zeigt das grundlegende Muster fur das Verschlisseln und Entschlisseln von Daten.
Es verschliUsselt eine kleine Datei mit Datenschlisseln, die durch einen AWS KMS Wrapping-
SchlUssel geschitzt sind.

Schritt 1: Instanziieren Sie die. AWS Encryption SDK

Sie verwenden die Methoden in, AWS Encryption SDK um Daten zu verschlisseln und zu
entschlisseln.

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Schritt 2: Erstellen Sie einen AWS KMS Client.

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

Optional: Erstellen Sie lhren Verschllsselungskontext.

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

Schritt 3: Instanziieren Sie die Material Provider-Bibliothek.

Sie verwenden die Methoden in der Material Provider-Bibliothek, um die Schliisselbunde zu
erstellen, die angeben, welche Schlissel Ihre Daten schitzen.

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Beispiele 312

AWS Encryption SDK Entwicklerhandbuch

Schritt 4: Erstellen Sie einen AWS KMS Schllisselbund.

Um den Schlisselbund zu erstellen, rufen Sie die Schlisselbundmethode mit dem Schlliisselbund-
Eingabeobjekt auf. In diesem Beispiel wird die create_aws_kms_keyring() Methode
verwendet und ein KMS-Schlissel angegeben.

let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

Schritt 5: Verschlisseln Sie den Klartext.

let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

let ciphertext = encryption_response
.ciphertext
.expect("Unable to unwrap ciphertext from encryption response");

Schritt 6: Entschlisseln Sie lhre verschlisselten Daten mit demselben Schllisselbund, den Sie beim
VerschlUsseln verwendet haben.

let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)
.send()
.await?;

let decrypted_plaintext = decryption_response
.plaintext

Beispiele 313

AWS Encryption SDK Entwicklerhandbuch

.expect("Unable to unwrap plaintext from decryption
response");

AWS Encryption SDK Befehlszeilenschnittstelle

Die AWS Encryption SDK Befehlszeilenschnittstelle (AWS Encryption CLI) ermdglicht es lhnen,
Daten interaktiv AWS Encryption SDK an der Befehlszeile und in Skripten zu verschlisseln und zu
entschlisseln. Sie bendtigen keine Kryptographie- oder Programmierkenntnisse.

® Note

Versionen der AWS Encryption CLI vor 4.0.0 befinden sich in der end-of-supportPhase.

Sie kénnen problemlos von Version 2.1 aus aktualisieren. x und héher auf die neueste
Version der AWS Encryption CLI ohne Code- oder Datenanderungen. In Version 2.1 wurden
jedoch neue Sicherheitsfunktionen eingeflihrt. x sind nicht abwartskompatibel. Um von
Version 1.7 zu aktualisieren. x oder friiher, Sie missen zuerst auf die neueste Version 1
aktualisieren. x-Version der AWS Encryption CLI. Details hierzu finden Sie unter Migrieren
Sie lhre AWS Encryption SDK.

Neue Sicherheitsfunktionen wurden urspringlich in den AWS Encryption CLI Versionen 1.7
veroffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Wie alle Implementierungen von bietet die AWS Encryption SDK AWS Encryption CLI erweiterte
Datenschutzfunktionen. Dazu gehdéren Umschlagverschlisselung, zusatzliche authentifizierte Daten
(AAD) und sichere, authentifizierte, symmetrische Schllisselalgorithmen wie 256-Bit-AES-GCM mit
SchlUsselableitung, Schlisselzusage und Signierung.

Die AWS Verschlusselungs-CLI basiert auf der AWS-Verschlisselungs-SDK for Pythonund wird
unter Linux, macOS und Windows unterstutzt. Sie kdnnen Befehle und Skripts zum Verschlisseln
und Entschlusseln Ihrer Daten in Ihrer bevorzugten Shell unter Linux oder macOS, in einem
Befehlszeilenfenster (cmd.exe) unter Windows und in einer PowerShell Konsole auf jedem System
ausfuhren.

Alle sprachspezifischen Implementierungen von AWS Encryption SDK, einschlieBlich der AWS
Encryption CLI, sind interoperabel. Sie kdnnen beispielsweise Daten mit der verschlisseln AWS-
Verschlisselungs-SDK for Javaund mit der AWS Encryption CLI entschlisseln.

Befehlszeilenschnittstelle 314

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html

AWS Encryption SDK Entwicklerhandbuch

Dieses Thema stellt die AWS Encryption CLI vor, erklart, wie sie installiert und verwendet wird,
und enthalt mehrere Beispiele, die Ihnen den Einstieg erleichtern. Einen schnellen Start finden
Sie unter So verschliisseln und entschlisseln Sie lhre Daten mit der AWS Encryption CLI im AWS
Sicherheitsblog. Ausflihrlichere Informationen finden Sie unter Read The Docs und entwickeln Sie

gemeinsam mit uns die AWS Encryption CLI im aws-encryption-sdk-cliRepository am GitHub.

Leistung

Die AWS Encryption CLI basiert auf dem AWS-Verschlisselungs-SDK for Python. Jedes Mal,
wenn Sie die CLI ausflhren, starten Sie eine neue Instance der Python-Laufzeitumgebung. Um

die Leistung zu verbessern, verwenden Sie nach Mdglichkeit einen einzigen Befehl anstelle einer
Reihe unabhéangiger Befehle. Fuhren Sie beispielsweise einen Befehl aus, der die Dateien in einem
Verzeichnis rekursiv verarbeitet, anstatt separate Befehle fir jede Datei auszufihren.

Themen

+ Installation der AWS Encryption SDK Befehlszeilenschnittstelle

So verwenden Sie die AWS Encryption CLI
Beispiele fur die AWS Encryption CLI

AWS Encryption SDK CLI Syntax und Parameterreferenz

Versionen der AWS Encryption CLI

Installation der AWS Encryption SDK Befehlszeilenschnittstelle

In diesem Thema wird erklart, wie die AWS Encryption CLI installiert wird. Ausfuhrliche Informationen
finden Sie im aws-encryption-sdk-cliRepository unter GitHub und in der Dokumentation.

Themen

* Installieren der Voraussetzungen

* Installation und Aktualisierung der AWS Encryption CLI

Installieren der Voraussetzungen

Die AWS Encryption CLI basiert auf dem AWS-Verschlisselungs-SDK for Python. Um die AWS
Encryption CLI zu installieren, bendtigen Sie Python und pip das Python-Paketverwaltungstool.
Python und pip stehen auf allen unterstitzten Plattformen zur Verfliigung.

Installieren Sie die folgenden Voraussetzungen, bevor Sie die AWS Encryption CLI installieren:

Installieren der -CLI 315

https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Entwicklerhandbuch

Python
Python 3.8 oder héher ist fur die AWS Encryption CLI Versionen 4.2.0 und héher erforderlich.

Frihere Versionen der AWS Encryption CLI unterstiitzen Python 2.7 und 3.4 und héher, wir
empfehlen jedoch, die neueste Version der AWS Encryption CLI zu verwenden.

Python ist in den meisten Linux- und macOS-Installationen enthalten, Sie mussen jedoch auf
Python 3.6 oder héher aktualisieren. Wir empfehlen lhnen, die neueste Version von Python zu
verwenden. Unter Windows mussen Sie Python installieren; es ist standardmafig nicht installiert.
Informationen zum Herunterladen und Installieren von Python finden Sie unter Python-Downloads.

Um festzustellen, ob Python installiert ist, geben Sie in der Befehlszeile Folgendes ein.

python

Um die Python-Version zu Gberprifen, verwenden Sie den Parameter -V (GroRbuchstabe V).

python -V

Unter Windows fligen Sie nach der Installation von Python den Pfad zur Python.exe Datei zum
Wert der Umgebungsvariablen Path hinzu.

StandardmaRig ist Python im Verzeichnis All Users oder in einem Benutzerprofilverzeichnis
($home oder Suserprofile%) im Unterverzeichnis AppData\Local\Programs\Python
installiert. Um den Speicherort der Datei Python. exe auf lhrem System zu finden, tberprifen
Sie einen der folgenden Registrierungsschlissel. Sie kdnnen es verwenden PowerShell , um die
Registrierung zu durchsuchen.

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
-or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath

pip
pip ist der Python-Paketmanager. Um die AWS Encryption CLI und ihre Abh&ngigkeiten zu

installieren, bendtigen Sie pip 8.1 oder hoher. Informationen zum Installieren und Aktualisieren
von pip finden Sie unter Installation in der pip-Dokumentation.

Auf Linux-Installationen kénnen pip Versionen vor 8.1 die Kryptografiebibliothek, die die
AWS Encryption CLI bendtigt, nicht erstellen. Wenn Sie |hre pip Version nicht aktualisieren

Installieren der -CLI 316

https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installing/

AWS Encryption SDK Entwicklerhandbuch

mdchten, kdnnen Sie die Build-Tools separat installieren. Weitere Informationen finden Sie unter
Kryptographie unter Linux.

AWS Command Line Interface

Das AWS Command Line Interface (AWS CLI) ist nur erforderlich, wenn Sie AWS KMS keys in
AWS Key Management Service (AWS KMS) mit der AWS Encryption CLI verwenden. Wenn Sie
einen anderen HauptschlUsselanbieter verwenden, AWS CLI ist der nicht erforderlich.

Fir die Verwendung AWS KMS keys mit der AWS Encryption CLI mussen Sie den installieren
und konfigurieren AWS CLI. Die Konfiguration stellt die Anmeldeinformationen, die Sie zur
Authentifizierung verwenden, fur die AWS Encryption CLI zur AWS KMS Verfugung.

Installation und Aktualisierung der AWS Encryption CLI

Installieren Sie die neueste Version der AWS Encryption CLI. Wenn Sie die AWS Encryption CLI

pip zur Installation verwenden, werden automatisch die Bibliotheken installiert, die die CLI bendtigt,
einschliellich der AWS-Verschlisselungs-SDK for PythonPython-Kryptografiebibliothek und der AWS
SDK fur Python (Boto3).

(® Note

Versionen der AWS Encryption CLI vor 4.0.0 befinden sich in der end-of-supportPhase.

Sie kénnen problemlos von Version 2.1 aus aktualisieren. x und hoéher auf die neueste
Version der AWS Encryption CLI ohne Code- oder Datenéanderungen. In Version 2.1 wurden
jedoch neue Sicherheitsfunktionen eingefltihrt. x sind nicht abwartskompatibel. Um von
Version 1.7 zu aktualisieren. x oder friher, Sie mussen zuerst auf die neueste Version 1
aktualisieren. x-Version der AWS Encryption CLI. Details hierzu finden Sie unter Migrieren
Sie Ihre AWS Encryption SDK.

Neue Sicherheitsfunktionen wurden urspringlich in den AWS Encryption CLI Versionen 1.7
veroffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Um die neueste Version der AWS Encryption CLI zu installieren

pip install aws-encryption-sdk-cli

Installieren der -CLI 317

https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

Um auf die neueste Version der AWS Encryption CLI zu aktualisieren
pip install --upgrade aws-encryption-sdk-cli
Um die Versionsnummern lhrer AWS Encryption CLI zu finden und AWS Encryption SDK

aws-encryption-cli --version

In der Ausgabe werden die Versionsnummern beider Bibliotheken aufgeflhrt.
aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0
Um auf die neueste Version der AWS Encryption CLI zu aktualisieren
pip install --upgrade aws-encryption-sdk-cli
Durch die Installation der AWS Encryption CLI wird auch die neueste Version von installiert AWS

SDK fur Python (Boto3), sofern sie nicht bereits installiert ist. Wenn Boto3 installiert ist, Gberprift das
Installationsprogramm die Boto3-Version und aktualisiert sie bei Bedarf.

Um lhre installierte Version von Boto3 zu finden

pip show boto3

Um auf die neueste Version von Boto3 zu aktualisieren

pip install --upgrade boto3

Informationen zur Installation der Version der AWS Encryption CLI, die sich derzeit in der Entwicklung
befindet, finden Sie im aws-encryption-sdk-cliRepository unter GitHub.

Weitere Informationen zur Verwendung von pip fir die Installation und die Aktualisierung von
Python-Paketen finden Sie in der pip-Dokumentation.

So verwenden Sie die AWS Encryption CLI

In diesem Thema wird erklart, wie die Parameter in der AWS Encryption CLI verwendet werden.
Beispiele finden Sie unter Beispiele fur die AWS Encryption CLI. Eine vollstdndige Dokumentation

Die CLI verwenden 318

https://github.com/aws/aws-encryption-sdk-cli/
https://pip.pypa.io/en/stable/quickstart/

AWS Encryption SDK Entwicklerhandbuch

finden Sie in Read the Docs. Die in diesen Beispielen gezeigte Syntax bezieht sich auf AWS
Encryption CLI Version 2.1. x und hdéher.

® Note

Versionen der AWS Encryption CLI vor 4.0.0 befinden sich in der end-of-supportPhase.

Sie kénnen problemlos von Version 2.1 aus aktualisieren. x und héher auf die neueste
Version der AWS Encryption CLI ohne Code- oder Datenanderungen. In Version 2.1 wurden
jedoch neue Sicherheitsfunktionen eingeflihrt. x sind nicht abwartskompatibel. Um von
Version 1.7 zu aktualisieren. x oder friiher, Sie missen zuerst auf die neueste Version 1
aktualisieren. x-Version der AWS Encryption CLI. Details hierzu finden Sie unter Migrieren
Sie Ihre AWS Encryption SDK.

Neue Sicherheitsfunktionen wurden urspriinglich in den AWS Encryption CLI Versionen 1.7
veroffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Ein Beispiel zur Verwendung der Sicherheitsfunktion, die verschllisselte Datenschllissel einschrankt,
finden Sie unterBeschrankung verschlisselter Datenschlissel.

Ein Beispiel, das zeigt, wie Schlussel fir AWS KMS mehrere Regionen verwendet werden, finden Sie
unterVerwenden Sie mehrere Regionen AWS KMS keys.

Themen

« Daten verschliisseln und entschllisseln

» Wie spezifiziert man Wrapping-Schlissel

* Eingaben bereitstellen

* Den Ausgabespeicherort festlegen

» Einen Verschlusselungskontext verwenden

» Wie spezifiziert man eine Verpflichtungsrichtlinie

» Parameter in einer Konfigurationsdatei speichern

Die CLI verwenden 319

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

Daten verschlisseln und entschlisseln

Die AWS Verschlisselungs-CLI verwendet die Funktionen von AWS Encryption SDK , um das
sichere Verschlisseln und Entschlisseln von Daten zu vereinfachen.

(® Note

Der --master-keys Parameter ist in Version 1.8 veraltet. x der AWS Encryption CLI und
wurde in Version 2.1 entfernt. x. Verwenden Sie stattdessen den --wrapping-keys-
Parameter. Ab Version 2.1. x, der --wrapping-keys Parameter ist beim Verschlisseln und
Entschlisseln erforderlich. Details hierzu finden Sie unter AWS Encryption SDK CLI Syntax
und Parameterreferenz.

+ Wenn Sie Daten in der AWS Encryption CLI verschlisseln, geben Sie lhre Klartextdaten und
einen Wrapping-Schlussel (oder Hauptschlissel) an, z. B. ein AWS KMS key in AWS Key
Management Service (AWS KMS). Wenn Sie einen benutzerdefinierten Hauptschlisselanbieter

verwenden, mussen Sie auch den Anbieter angeben. Aullerdem geben Sie Ausgabespeicherorte

fur die verschlisselte Nachricht und fur Metadaten Uber die Verschlisselungsoperation an. Ein
Verschlisselungskontext ist optional, wird aber empfohlen.

In Version 1.8. x, der --commitment-policy Parameter ist erforderlich, wenn Sie den - -
wrapping-keys Parameter verwenden; andernfalls ist er nicht glltig. Ab Version 2.1. x, der - -
commitment-policy Parameter ist optional, wird aber empfohlen.

aws-encryption-cli --encrypt --input myPlaintextData \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myEncryptedMessage \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

Die AWS Encryption CLI verschlisselt Inre Daten unter einem eindeutigen Datenschlissel.

Anschlie3end verschlisselt sie den Datenschlissel unter den von Ihnen angegebenen Wrapping-

Schlisseln. Sie gibt eine verschlisselte Nachricht und Metadaten tber die Operation zurlck.
Die verschlisselte Nachricht enthalt lhre verschlisselten Daten (verschllsselter Text) und eine

verschlisselte Kopie des Datenschlissels. Sie missen sich nicht um die Speicherung, Verwaltung

oder den Verlust des Datenschliissels kimmern.

Die CLI verwenden

320

AWS Encryption SDK Entwicklerhandbuch

» Wenn Sie Daten entschlisseln, Gbergeben Sie lhre verschliisselte Nachricht, den optionalen
Verschlisselungskontext und den Speicherort fur die Klartextausgabe und die Metadaten. Sie
geben auch die Wrapping-Schlissel an, die die AWS Encryption CLI zum Entschlisseln der
Nachricht verwenden kann, oder teilen der AWS Encryption CLI mit, dass sie alle Wrapping-
Schlissel verwenden kann, die die Nachricht verschliisselt haben.

Ab Version 1.8. x, der --wrapping-keys Parameter ist beim Entschlisseln optional, wird aber
empfohlen. Ab Version 2.1. x, der --wrapping-keys Parameter ist beim Verschlisseln und
Entschlisseln erforderlich.

Beim Entschlisseln kénnen Sie das Schlisselattribut des --wrapping-keys Parameters
verwenden, um die Wrapping-Schllissel anzugeben, mit denen lhre Daten entschlisselt werden.
Die Angabe eines AWS KMS UmschlieRungsschlissels beim Entschlisseln ist optional, hat sich
jedoch bewahrt, um zu verhindern, dass Sie einen Schlissel verwenden, den Sie nicht verwenden

wollten. Wenn Sie einen benutzerdefinierten Hauptschllsselanbieter verwenden, missen Sie den
Anbieter und den Wrapping-Schlissel angeben.

Wenn Sie das SchlUsselattribut nicht verwenden, missen Sie das Discovery-Attribut des - -
wrapping-keys Parameters auf setzentrue, sodass die AWS Encryption CLI mit einem
beliebigen Wrapping-Schlissel, der die Nachricht verschlisselt hat, entschlisseln kann.

Es hat sich bewahrt, den --max-encrypted-data-keys Parameter zu verwenden,

um zu verhindern, dass eine falsch formatierte Nachricht mit einer Gbermafigen Anzahl
verschliusselter Datenschlissel entschlisselt wird. Geben Sie die erwartete Anzahl verschllsselter
DatenschlUssel (einen flr jeden bei der Verschlisselung verwendeten Wrapping-Schlissel) oder
einen angemessenen Hochstwert (z. B. 5) an. Details hierzu finden Sie unter Beschrankung
verschlusselter Datenschlussel.

Der --buffer Parameter gibt erst dann Klartext zuriick, wenn alle Eingaben verarbeitet wurden,
einschlieBlich der Uberpriifung der digitalen Signatur, falls eine vorhanden ist.

Der --decrypt-unsigned Parameter entschlisselt Chiffretext und stellt sicher, dass
Nachrichten vor der Entschlisselung unsigniert sind. Verwenden Sie diesen Parameter, wenn
Sie den --algorithm Parameter verwendet und eine Algorithmussuite ohne digitale Signatur
zum VerschlUsseln von Daten ausgewahlt haben. Wenn der Chiffretext signiert ist, schlagt die
Entschlisselung fehl.

Die CLI verwenden 321

AWS Encryption SDK Entwicklerhandbuch

Sie kdnnen --decrypt oder --decrypt-unsigned fir die Entschlisselung verwenden, aber
nicht beide.

aws-encryption-cli --decrypt --input myEncryptedMessage \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myPlaintextData \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

Die AWS Encryption CLI verwendet den Wrapping-Schlissel, um den Datenschlussel in der
verschlusselten Nachricht zu entschlisseln. AnschlieRend verwendet sie den Datenschlissel zum
Entschlusseln Ihrer Daten. Sie gibt Ihre Klartextdaten und Metadaten tber die Operation zurlck.

Wie spezifiziert man Wrapping-Schltssel

Wenn Sie Daten in der AWS Encryption CLI verschllsseln, missen Sie mindestens einen Wrapping-
Schlissel (oder Masterschlissel) angeben. Sie kénnen AWS KMS keys in AWS Key Management
Service (AWS KMS), Wrapping Keys von einem benutzerdefinierten Masterkey-Anbieter oder
beides verwenden. Der KundenmasterschlUssel-Anbieter kann ein beliebiger kompatibler Python-
Masterschlussel-Anbieter sein.

Um das Umschliel3en von Schlisseln in den Versionen 1.8 anzugeben. x und héher verwenden
Sie den --wrapping-keys Parameter (-w). Der Wert dieses Parameters ist eine Sammlung von
Attributen mit dem attribute=value Format. Welche Attribute Sie verwenden, hangt von dem
Masterschlissel-Anbieter und dem Befehl ab.

« AWS KMS. In Verschliisselungsbefehlen missen Sie einen --wrapping-keys Parameter mit
einem SchllUsselattribut angeben. Ab Version 2.1. x, der --wrapping-keys Parameter ist auch
fur Entschlisselungsbefehle erforderlich. Bei der Entschlisselung muss der --wrapping-keys
Parameter ein Schlisselattribut oder ein Erkennungsattribut mit einem Wert von true (aber nicht
beiden) haben. Andere Attribute sind optional.

* Kundenmasterschlissel-Anbieter. Sie missen in jedem Befehl einen --wrapping-keys
Parameter angeben. Der Parameterwert muss key- und provider-Attribute besitzen.

Die CLI verwenden 322

AWS Encryption SDK Entwicklerhandbuch

Sie kdnnen mehrere --wrapping-keys Parameter und mehrere Schlisselattribute in denselben

Befehl aufnehmen.
UmschlieRen von Schlisselparameterattributen

Der Wert des - -wrapping-keys-Parameters besteht aus den folgenden Attributen und ihren
Werten. Ein --wrapping-keys Parameter (oder - -master-keys Parameter) ist in allen
Verschllisselungsbefehlen erforderlich. Ab Version 2.1. x, der --wrapping-keys Parameter ist
auch beim Entschlisseln erforderlich.

Wenn ein Attributname oder Wert Leerzeichen oder Sonderzeichen enthalt, schlieRen Sie den
Namen und den Wert in Anfiihrungszeichen ein. Beispiel, --wrapping-keys key=12345
"provider=my cool provider".

Schlissel: Geben Sie einen Wrapping-Schlissel an

Verwenden Sie das Schllsselattribut, um einen UmschlieBungsschliissel zu identifizieren. Bei der
Verschlisselung kann es sich bei dem Wert um einen beliebigen Schlisselbezeichner handeln,
den der HauptschlUsselanbieter erkennt.

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

In einem Verschlisselungsbefehl missen Sie mindestens ein Schlusselattribut und einen
Schlusselwert angeben. Verwenden Sie mehrere Schlisselattribute, um Ihren Datenschlissel
unter mehreren Wrapping-Schlisseln zu verschlisseln.

aws-encryption-cli --encrypt --wrapping-keys
key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3c4d

In Verschlisselungsbefehlen, die verwenden AWS KMS keys, kann der Wert von key die
Schlussel-ID, der zugehdrige Schlissel-ARN, ein Aliasname oder ein Alias-ARN sein.
Dieser Verschlisselungsbefehl beispielsweise verwendet einen Alias-ARN im Wert des key-
Attributs. Einzelheiten zu den Schlisselbezeichnern fir eine AWS KMS key finden Sie unter
Schlisselkennungen im AWS Key Management Service Entwicklerhandbuch.

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

In Entschlusselungsbefehlen, die einen Kundenmasterschlissel-Anbieter verwenden, mussen die
key- und provider-Attribute angegeben werden.

Die CLI verwenden 323

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Entwicklerhandbuch

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101"

In Decrypt-Befehlen, die verwenden AWS KMS, kénnen Sie das Schlisselattribut verwenden,
um das fur die Entschlisselung AWS KMS keys zu verwendende Objekt anzugeben, oder

das Discovery-Attribut mit dem Wert vontrue, sodass die AWS Encryption CLI jedes Attribut
verwenden kann AWS KMS key , das zum Verschlisseln der Nachricht verwendet wurde. Wenn
Sie einen angeben AWS KMS key, muss es sich um einen der Wrapping-Schlissel handeln, die

zum Verschlisseln der Nachricht verwendet wurden.

Die Angabe des UmschlieRBungsschlissels ist eine AWS Encryption SDK bewahrte Methode. Es
stellt sicher, dass Sie das verwenden, AWS KMS key was Sie verwenden mdchten.

In einem Decrypt-Befehl muss der Wert des SchlUsselattributs ein Schlissel-ARN sein.

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Discovery: Verwenden Sie AWS KMS key bei der Entschliisselung einen beliebigen

Wenn Sie die AWS KMS keys Verwendung beim Entschlisseln nicht einschranken mussen,
kénnen Sie das Discovery-Attribut mit dem Wert von verwenden. true Ein Wert von true
ermdglicht es der AWS Encryption CLI, die Nachricht mit jedem zu entschlisseln, der AWS KMS
key die Nachricht verschlisselt hat. Wenn Sie kein Discovery-Attribut angeben, ist Discovery
false (Standard). Das Discovery-Attribut ist nur in Entschlisselungsbefehlen gultig und nur,
wenn die Nachricht mit AWS KMS keys verschlisselt wurde.

Das Discovery-Attribut mit dem Wert von true ist eine Alternative zur Verwendung des
Schlusselattributs zur AWS KMS keys Spezifizierung. Beim Entschlisseln einer mit AWS
KMS keys verschliisselten Nachricht muss jeder --wrapping-keys Parameter Uiber ein
SchlUsselattribut oder ein Erkennungsattribut mit einem Wert vontrue, aber nicht Gber beide
verflgen.

Wenn Discovery den Wert true hat, empfiehlt es sich, die Attribute discovery-partition und
discovery-account zu verwenden, um die AWS KMS keys Verwendung auf die von lhnen
angegebenen Attribute zu beschranken. AWS-Konten Im folgenden Beispiel ermoglichen die
Discovery-Attribute der AWS Encryption CLI, jedes AWS KMS key der angegebenen Werte zu
verwenden AWS-Konten.

Die CLI verwenden 324

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

aws-encryption-cli --decrypt --wrapping-keys \
discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

Anbieter: Geben Sie den Hauptschlisselanbieter an

Das provider-Attribut identifiziert den Masterschliissel-Anbieter. Der Standardwert ist aws -kms
und steht fir AWS KMS. Wenn Sie einen anderen Masterschlisselanbieter verwenden, ist das
provider-Attribut nicht erforderlich.

--wrapping-keys key=12345 provider=my_custom_provider

Weitere Informationen zur Verwendung von benutzerdefinierten (Nicht-AWS KMS)
Hauptschlisselanbietern finden Sie im Thema Erweiterte Konfiguration in der README-Datei fir
das AWS Encryption CLI-Repository.

Region: Geben Sie ein AWS-Region

Verwenden Sie das Regionsattribut, um die AWS-Region von einem anzugeben AWS KMS
key. Dieses Attribut ist nur in Verschlisselungsbefehlen und nur dann guiltig, wenn der
Masterschlissel-Anbieter AWS KMS ist.

--encrypt --wrapping-keys key=alias/primary-key region=us-east-2

AWS Verschlusselungs-CLI-Befehle verwenden AWS-Region das, was im Schlusselattributwert
angegeben ist, wenn es eine Region enthalt, z. B. einen ARN. Wenn der Schlisselwert a angibt
AWS-Region, wird das Regionsattribut ignoriert.

Das region-Attribut hat Vorrang vor allen anderen Regionsangaben. Wenn Sie kein
Regionsattribut verwenden, verwenden die Befehle der AWS Encryption CLI das in Inrem AWS
CLI benannten Profil, falls vorhanden, oder in Ihrem Standardprofil AWS-Region angegebene.

Profil: Angabe eines benannten Profils

Verwenden Sie das Profilattribut, um ein AWS CLI benanntes Profil anzugeben. Benannte Profile
konnen Anmeldeinformationen und eine enthalten AWS-Region. Dieses Attribut ist nur gultig,
wenn der Masterschliussel-Anbieter AWS KMS ist.

--wrapping-keys key=alias/primary-key profile=admin-1

Die CLI verwenden 325

https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK Entwicklerhandbuch

Sie kénnen das profile-Attribut verwenden, um alternative Anmeldeinformationen in Ver- und
Entschlisselungsbefehlen anzugeben. In einem Verschllsselungsbefehl verwendet die AWS
Verschlisselungs-CLI das AWS-Region im benannten Profil nur, wenn der Schlisselwert keine
Region enthalt und kein Regionsattribut vorhanden ist. Bei einem Entschlisselungsbefehl wird
das AWS-Region im Namen angegebene Profil ignoriert.

Wie spezifiziert man mehrere Wrapping-Schlissel
Sie kénnen in jedem Befehl mehrere Umbruchschlissel (oder Hauptschlissel) angeben.

Wenn Sie mehr als einen UmschlielSungsschliissel angeben, generiert und verschlisselt der erste
UmschlieRungsschlissel den Datenschlissel, der zur Verschlisselung lhrer Daten verwendet
wird. Die anderen UmschlieRungsschliissel verschliisseln denselben Datenschlissel. Die daraus
resultierende verschlisselte Nachricht enthalt die verschlisselten Daten (,Chiffretext”) und eine
Sammlung verschlisselter Datenschllissel, von denen einer mit jedem UmschlieBungsschlissel
verschlusselt wird. Jeder Wrapping kann einen verschlusselten Datenschlissel entschlisseln und
anschlieend die Daten entschlisseln.

Es gibt zwei Mdglichkeiten, mehrere Wrapping-Schliissel anzugeben:

 Schliel3en Sie mehrere Schlisselattribute in den --wrapping-keys Parameterwert ein.

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio

* Verwendung von mehreren - -wrapping-keys-Parametern im selben Befehl. Verwenden Sie
diese Syntax, wenn die von lhnen angegebenen Attributwerte nicht fur alle Wrapping-Schlissel im
Befehl gelten.

--wrapping-keys region=us-east-2 key=alias/test_key \
--wrapping-keys region=us-west-1 key=alias/test_key

Das Discovery-Attribut mit einem Wert von true ermdglicht es der AWS Encryption CLI AWS
KMS key , jedes Attribut zu verwenden, das die Nachricht verschlisselt hat. Wenn Sie mehrere
--wrapping-keys Parameter in demselben Befehl verwenden, werden durch die Verwendung

Die CLI verwenden 326

AWS Encryption SDK Entwicklerhandbuch

eines discovery=true beliebigen --wrapping-keys Parameters die Grenzwerte des
Schlusselattributs in anderen - -wrapping-keys Parametern effektiv auer Kraft gesetzt.

Im folgenden Befehl begrenzt beispielsweise das Schllsselattribut im ersten --wrapping-
keys Parameter die AWS Verschlisselungs-CLI auf den angegebenen Wert AWS KMS key. Das
Discovery-Attribut im zweiten - -wrapping-keys Parameter ermoglicht es der AWS Encryption
CLI jedoch, jedes AWS KMS key der angegebenen Konten zum Entschllisseln der Nachricht zu
verwenden.

aws-encryption-cli --decrypt \
--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

Eingaben bereitstellen

Der Verschlisselungsvorgang in der AWS Encryption CLI verwendet Klartextdaten als Eingabe
und gibt eine verschlusselte Nachricht zurtick. Die Entschlisselungsoperation Gbernimmt eine
verschllsselte Nachricht als Eingabe und gibt Klartextdaten zurtck.

Der --input Parameter (-1), der der AWS Encryption CLI mitteilt, wo sich die Eingabe befindet, ist
in allen AWS Encryption CLI-Befehlen erforderlich.

Sie kénnen Eingaben wie folgt bereitstellen:

« Uber eine Datei.

--input myData.txt

* Unter Verwendung eines Dateinamenmusters.

--input testdir/*.xml

» Unter Verwendung eines Verzeichnisses oder Verzeichnisnamenmusters. Wenn die Eingabe ein
Verzeichnis ist, muss der - -recursive-Parameter (-, -R) angegeben werden.

--input testdir --recursive

Die CLI verwenden 327

AWS Encryption SDK Entwicklerhandbuch

+ Eingabe an den Befehl weiterleiten (stdin). Einen Wert von - flr den - -input-Parameter
verwenden. (Der Parameter - -input ist immer erforderlich.)

echo 'Hello World' | aws-encryption-cli --encrypt --input -

Den Ausgabespeicherort festlegen

Der - -output Parameter teilt der AWS Encryption CLI mit, wohin die Ergebnisse des
Verschlisselungs- oder Entschlisselungsvorgangs geschrieben werden sollen. Es ist in jedem AWS
Encryption CLI-Befehl erforderlich. Die AWS Encryption CLI erstellt fir jede Eingabedatei im Vorgang
eine neue Ausgabedatei.

Wenn eine Ausgabedatei bereits existiert, gibt die AWS Encryption CLI standardmaRig eine Warnung
aus und berschreibt dann die Datei. Um ein Uberschreiben zu verhindern, verwenden Sie den
Parameter --interactive, der Sie vor dem Uberschreiben zur Bestatigung auffordert, oder --no-
overwrite, der die Eingabe iiberspringt, wenn die Ausgabe ein Uberschreiben verursachen wiirde.
Um die Uberschreibwarnung zu unterdriicken, verwenden Sie - -quiet. Um Fehler und Warnungen
aus der AWS Encryption CLI zu erfassen, verwenden Sie den 2>&1 Umleitungsoperator, um sie in
den Ausgabestrom zu schreiben.

(® Note

Befehle, die Ausgabedateien Uberschreiben, 16schen zunachst die Ausgabedatei. Wenn der
Befehl fehlschlagt, ist die Ausgabedatei mdoglicherweise bereits geléscht.

Sie kbnnen den Ausgabespeicherort auf verschiedene Arten wahlen.

» Angabe eines Dateinamens. Wenn Sie einen Pfad zur Datei angeben, missen alle Verzeichnisse
im Pfad vorhanden sein, bevor der Befehl ausgefiihrt wird.

--output myEncryptedData.txt

» Angabe eines Verzeichnisses. Die Ausgabeverzeichnis muss vorhanden sein, bevor der Befehl
ausgefihrt wird.

Wenn die Eingabe Unterverzeichnisse enthalt, erzeugt der Befehl die Unterverzeichnisse unter
dem angegebenen Verzeichnis.

Die CLI verwenden 328

AWS Encryption SDK Entwicklerhandbuch

--output Test

Wenn der Ausgabespeicherort ein Verzeichnis (ohne Dateinamen) ist, erstellt die AWS
Encryption CLI Ausgabedateinamen auf der Grundlage der Eingabedateinamen plus einem
Suffix. Verschlisselungsoperationen fligen dem Eingabedateinamen .encrypted hinzu,
Entschliisselungsoperationen fiigen .decrypted hinzu. Mit dem Parameter --suffix andern
Sie das Suffix.

Wenn Sie z. B. file.txt verschlisseln, erstellt der Verschliisselungsbefehl
file.txt.encrypted. Wenn Sie file.txt.encrypted entschlisseln, erstellt der
Entschlisselungsbefehl file.txt.encrypted.decrypted.

* In die Befehlszeile schreiben (stdout). Geben Sie einen Wert von - fir den - -output-Parameter
ein. Sie kénnen --output -verwenden , um die Ausgabe an einen anderen Befehl oder ein
Programm weiterzuleiten.

--output -

Einen VerschlUusselungskontext verwenden

Mit der AWS Encryption CLI kénnen Sie einen Verschlisselungskontext fir Befehle zum
Verschlisseln und Entschlisseln bereitstellen. Es ist nicht erforderlich, aber eine bewahrte Methoden
fur die Kryptografie, die wir empfehlen.

Ein Verschlisselungskontext ist eine Art zufalliger, nicht geheimer zusatzlicher authentifizierter
Daten. In der AWS Encryption CLI besteht der Verschlisselungskontext aus einer Sammlung

von name=value Paaren. Sie kdnnen beliebigen Inhalt in den Paaren verwenden, einschlielich
Informationen Uber die Dateien, Daten, die lhnen helfen, den Verschlisselungsvorgang in Protokollen
zu finden, oder Daten, die Sie fur Ihre Berechtigungen oder Richtlinien bendtigen.

In einem Verschlisselungsbefehl

Der Verschlisselungskontext, den Sie in einem Verschllsselungsbefehl angeben, sowie alle weiteren
Paare, die vom CMM hinzugefligt werden, sind kryptographisch an die verschlisselten Daten
gebunden. Er ist auRerdem (in Klartext) in der verschlusselten Nachricht enthalten, die den Befehl

Die CLI verwenden 329

AWS Encryption SDK Entwicklerhandbuch

zurtickgibt. Wenn Sie einen verwenden AWS KMS key, kann der Verschlisselungskontext auch im
Klartext in Prifaufzeichnungen und Protokollen erscheinen, wie AWS CloudTrail z.

Das folgende Beispiel zeigt einen Verschllisselungskontext mit drei name=value-Paaren.

--encryption-context purpose=test dept=IT class=confidential

In einem Entschlisselungsbefehl

In einem Entschlisselungsbefehl hilft Ihnen der Verschlisselungskontext zu bestatigen, dass Sie die
richtige verschlisselte Nachricht entschlusseln.

Sie mussen in einem Entschlisselungsbefehl keinen Verschlisselungskontext angeben, auch wenn
beim Verschlisseln ein Verschlisselungskontext verwendet wurde. In diesem Fall Gberprift die AWS
Encryption CLI jedoch, ob jedes Element im Verschllisselungskontext des Decrypt-Befehls mit einem
Element im Verschlisselungskontext der verschlisselten Nachricht Gbereinstimmt. Wenn ein Element
nicht Gbereinstimmt, schlagt der Entschlisselungsbefehl fehl.

Beispielsweise entschlisselt der folgende Befehl die verschlisselte Nachricht nur, wenn ihr
Verschlisselungskontext dept=IT enthalt.

aws-encryption-cli --decrypt --encryption-context dept=IT ...

Ein Verschlusselungskontext ist ein wichtiger Teil Ihrer Sicherheitsstrategie. Wenn Sie jedoch einen
Verschlisselungskontext wahlen, denken Sie jedoch daran, dass seine Werte nicht geheim sind.
Nehmen Sie keine vertraulichen Daten in den Verschlisselungskontext auf.

So geben Sie einen Verschlisselungskontext an

* Verwenden Sie in einem encrypt-Befehl den --encryption-context-Parameter mit einem
oder mehreren name=value-Paaren. Verwenden Sie ein Leerzeichen, um die einzelnen Paare zu
trennen.

--encryption-context name=value [name=value] ...

* In einem decrypt-Befehl kann der --encryption-context-Parameterwert name=value-Paare,
name-Elemente (ohne Werte) oder eine Kombination aus beidem enthalten.

--encryption-context name[=value] [name] [name=value] ...

Die CLI verwenden 330

AWS Encryption SDK Entwicklerhandbuch

Wenn der name oder value in einem name=value-Paar Leerzeichen oder Sonderzeichen enthalt,
schlielen Sie gesamte Paar in Anfihrungszeichen ein.

--encryption-context "department=software engineering" "AWS-Region=us-west-2"

Dieser Entschlisselungsbefehl enthalt beispielsweise einen Verschlisselungskontext mit zwei
Paaren, purpose=test und dept=23.

aws-encryption-cli --encrypt --encryption-context purpose=test dept=23 ...

Dieser Entschlisselungsbefehl wirde erfolgreich ausgeflhrt. Der Verschlisselungskontext in den
einzelnen Befehlen ist eine Teilmenge des urspringlichen Verschlisselungskontexts.

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs
aws-encryption-cli --decrypt --encryption-context dept purpose=test ...

Diese Verschliusselungsbefehle wirden jedoch fehlschlagen. Der Verschlisselungskontext in der
verschllsselten Nachricht enthalt nicht die angegebenen Elemente.

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

Wie spezifiziert man eine Verpflichtungsrichtlinie

Verwenden Sie den --commitment-policyParameter, um die Commitment-Richtlinie flir den
Befehl festzulegen. Dieser Parameter wurde in Version 1.8 eingeflhrt. x. Es ist gultig fir Befehle
zum Verschlisseln und Entschlisseln. Die von Ihnen festgelegte Verpflichtungsrichtlinie ist nur flr
den Befehl glltig, in dem sie vorkommt. Wenn Sie keine Commitment-Richtlinie fir einen Befehl
festlegen, verwendet die AWS Encryption CLI den Standardwert.

Mit dem folgenden Parameterwert wird die Commitment-Richtlinie beispielsweise auf festgelegt.
Dabei wird immer mit Key Commitment verschlisseltrequire-encrypt-allow-decrypt,
Chiffretext, der mit oder ohne Key Commitment verschlisselt wurde, jedoch entschlisselt.

Die CLI verwenden 331

AWS Encryption SDK Entwicklerhandbuch

--commitment-policy require-encrypt-allow-decrypt

Parameter in einer Konfigurationsdatei speichern

Sie kénnen Zeit sparen und Tippfehler vermeiden, indem Sie haufig verwendete AWS Encryption
CLI-Parameter und -Werte in Konfigurationsdateien speichern.

Eine Konfigurationsdatei ist eine Textdatei, die Parameter und Werte fir einen AWS Encryption
CLI-Befehl enthalt. Wenn Sie in einem AWS Encryption CLI-Befehl auf eine Konfigurationsdatei
verweisen, wird die Referenz durch die Parameter und Werte in der Konfigurationsdatei ersetzt.
Der Effekt ist der gleiche, als ob Sie den Dateiinhalt in der Befehlszeile eingegeben. Eine
Konfigurationsdatei kann einen beliebigen Namen haben und sich in einem beliebigen Verzeichnis
befinden, auf das der aktuelle Benutzer zugreifen kann.

Die folgende Beispielkonfigurationsdatei,key . conf, gibt zwei AWS KMS keys in verschiedenen
Regionen an.

--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

Um die Konfigurationsdatei in einem Befehl zu verwenden, stellen sie dem Dateinamen ein At-
Zeichen (@) voraus. Verwenden Sie in einer PowerShell Konsole ein Backtick-Zeichen, um das At-
Zeichen (" @) zu maskieren.

Dieser Beispielbefehl verwendet die Datei key . conf in einem Verschlisselungsbefehl.

Bash
$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir
PowerShell

PS C:\> aws-encryption-cli -e “@key.conf -i .\Hello.txt -o .\TestDir

Konfigurationsdateiregeln

Fir die Verwendung von Konfigurationsdateien gelten die folgenden Regeln:

Die CLI verwenden 332

AWS Encryption SDK Entwicklerhandbuch

» Sie kénnen mehrere Parameter in jede Konfigurationsdatei aufnehmen und in beliebiger
Reihenfolge auflisten. Listen Sie jeden Parameter mit seinen Werten (falls vorhanden) in einer
separaten Zeile auf.

* Verwenden Sie # zum Hinzufligen eines Kommentars flr eine ganze oder einen Teil einer Zeile.

» Sie kdnnen Verweise auf andere Konfigurationsdateien aufnehmen. Verwenden Sie kein Backtick,
um dem @ Zeichen zu entkommen, auch nicht in. PowerShell

» Wenn Sie Anflhrungszeichen in einer Konfigurationsdatei verwenden, kann sich der angegebene
Text nicht Uber mehrere Zeilen erstrecken.

Dies ist beispielsweise der Inhalt einer encrypt.conf-Beispieldatei.

Archive Files

--encrypt

--output /archive/logs

--recursive

--interactive

--encryption-context class=unclassified dept=IT
--suffix # No suffix

--metadata-output ~/metadata

@caching.conf # Use limited caching

Sie kbnnen auch mehrere Konfigurationsdateien in einem Befehl angeben. Dieser Beispielbefehl
verwendet die Konfigurationsdateien encrypt.conf und master-keys.conf.

Bash

$ aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf

PowerShell

PS C:\> aws-encryption-cli -i $home\Test*.log ‘@encrypt.conf “@master-keys.conf

Weiter: Probieren Sie die Beispiele fur die AWS Verschlisselungs-CLI aus

Beispiele fur die AWS Encryption CLI

Verwenden Sie die folgenden Beispiele, um die AWS Encryption CLI auf der von Ihnen bevorzugten
Plattform auszuprobieren. Weitere Informationen zum Master-Schllssel und anderen Parametern

Beispiele 333

AWS Encryption SDK Entwicklerhandbuch

finden Sie unter So verwenden Sie die AWS Encryption CLI. Informationen zum schnellen Einstieg
finden Sie unter AWS Encryption SDK CLI Syntax und Parameterreferenz.

® Note

Die folgenden Beispiele verwenden die Syntax fur AWS Encryption CLI Version 2.1. x.

Neue Sicherheitsfunktionen wurden urspringlich in den AWS Encryption CLI Versionen 1.7
veroffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Ein Beispiel zur Verwendung der Sicherheitsfunktion, die verschlisselte Datenschliissel einschrankt,
finden Sie unterBeschrankung verschlisselter Datenschlissel.

Ein Beispiel zur Verwendung von Schlisseln fir AWS KMS mehrere Regionen finden Sie
unterVerwenden Sie mehrere Regionen AWS KMS keys.

Themen

* Verschlisseln einer Datei

* Entschliisseln einer Datei

* Alle Dateien in einem Verzeichnis verschlisseln

* Alle Dateien in einem Verzeichnis entschlisseln

* Verschlisseln und Entschlisseln in der Befehlszeile

* Verwenden mehrerer Hauptschlissel

» Verschlisseln und Entschliusseln in Skripts

* Verwenden von Datenschlissel-Caching

Verschlusseln einer Datei

In diesem Beispiel wird die AWS Encryption CLI verwendet, um den Inhalt der hello.txt Datei zu
verschlisseln, die eine Zeichenfolge ,Hello World“ enthalt.

Wenn Sie einen Verschlisselungsbefehl fur eine Datei ausfuhren, ruft die AWS Encryption CLI den
Inhalt der Datei ab, generiert einen eindeutigen DatenschlUssel, verschlisselt den Dateiinhalt unter
dem Datenschlussel und schreibt dann die verschliusselte Nachricht in eine neue Datei.

Beispiele 334

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

Der erste Befehl speichert den Schlissel ARN von AWS KMS key in der $keyArn Variablen.
Wenn Sie mit einem verschlisseln AWS KMS key, kénnen Sie es anhand einer Schlussel-ID,
eines Schlussel-ARN, eines Aliasnamens oder eines Alias-ARN identifizieren. Einzelheiten zu den
Schlusselkennungen fur eine AWS KMS key finden Sie unter Schlisselkennungen im AWS Key
Management Service Entwicklerhandbuch.

Der zweite Befehl verschlisselt den Dateiinhalt. Der Befehl verwendet den Parameter --encrypt,
um die Operation anzugeben, und den Parameter - -input, um die zu verschlisselnde Datei
anzugeben. Der - -wrapping-keysParameter und das erforderliche Schllsselattribut weisen den
Befehl an, den durch den Schlissel AWS KMS key reprasentierten ARN zu verwenden.

Der Befehl verwendet den --metadata-output-Parameter, um eine Textdatei flir die Metadaten
Uber die Verschlisselungsoperation anzugeben. Als bewahrte Methode verwendet der Befehl den - -
encryption-context-Parameter, um einen Verschlusselungskontext anzugeben.

Dieser Befehl verwendet den - -commitment-policyParameter auch, um die Commitment-
Richtlinie explizit festzulegen. In Version 1.8. x, dieser Parameter ist erforderlich, wenn Sie den - -
wrapping-keys Parameter verwenden. Ab Version 2.1. x, der --commitment-policy Parameter

ist optional, wird aber empfohlen.

Der Wert des --output-Parameters, ein Punkt (.), weist den Befehl an, die Ausgabedatei in das
aktuelle Verzeichnis zu speichern.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output .

PowerShell

To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

Beispiele 335

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Entwicklerhandbuch

PS C:\> aws-encryption-cli --encrypt °
--input Hello.txt °
--wrapping-keys key=$keyArn °
--metadata-output $home\Metadata.txt °
--commitment-policy require-encrypt-require-decrypt °
--encryption-context purpose=test °
--output .

Wenn der Verschlisselungsbefehl erfolgreich ausgefuhrt wird, erfolgt keine Ausgabe. Um
festzustellen, ob der Befehl erfolgreich ausgefuhrt wurde, Gberprifen Sie den booleschen Wert in der
Variablen $?. Wenn der Befehl erfolgreich ist, $? ist der Wert von @ (Bash) oder True (PowerShell).
Wenn der Befehl fehlschlagt, $? ist der Wert von ungleich Null (Bash) oder (). False PowerShell

Bash

$ echo $?
0

PowerShell

PS C:\> $?
True

Sie kénnen auch einen Verzeichnisauflistungsbefehl ausfihren, um zu tberprifen, ob der
Verschllisselungsbefehl eine neue Datei erstellt hat, hello.txt.encrypted. Da der Befehl encrypt
keinen Dateinamen fir die Ausgabe spezifizierte, schrieb die AWS Encryption CLI die Ausgabe

in eine Datei mit demselben Namen wie die Eingabedatei plus einem .encrypted Suffix. Um

ein anderes Suffix zu verwenden oder das Suffix wegzulassen, verwenden Sie den --suffix-
Parameter.

Die Datei hello.txt.encrypted enthélt eine verschlisselte Nachricht, die den

Verschlisselungstext der hello. txt-Datei enthalt, eine verschlisselte Kopie des Datenschlissels
und zusatzlichen Metadaten, einschlieRlich des Verschlisselungskontexts.

Bash

$ 1s

Beispiele 336

AWS Encryption SDK Entwicklerhandbuch

hello.txt hello.txt.encrypted

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

Entschlusseln einer Datei

In diesem Beispiel wird die AWS Encryption CLI verwendet, um den Inhalt der
Hello.txt.encrypted Datei zu entschlisseln, die im vorherigen Beispiel verschlisselt wurde.

Der Entschlisselungsbefehl verwendet den Parameter --decrypt, um die Operation anzugeben,
und den Parameter --input, um die zu entschlisselnde Datei anzugeben. Der Wert des --output
-Parameters ist ein Punkt, der das aktuelle Verzeichnis darstellt.

Der --wrapping-keys Parameter mit einem Schllsselattribut gibt den Wrapping-Schlissel an, der
zum Entschlisseln der verschlusselten Nachricht verwendet wird. Bei Entschlisselungsbefehlen mit
AWS KMS keys muss der Wert des Schlisselattributs ein Schlissel-ARN sein. Der --wrapping-
keys Parameter ist in einem Entschlisselungsbefehl erforderlich. Wenn Sie verwenden AWS KMS
keys, kdnnen Sie das Schlusselattribut verwenden, um das AWS KMS keys Entschlisselungsattribut
anzugeben, oder das Discovery-Attribut mit einem Wert von true (aber nicht beide). Wenn Sie einen
benutzerdefinierten Hauptschlisselanbieter verwenden, sind die Schlissel - und Anbieterattribute
erforderlich.

Der --commitment-policyParameter ist ab Version 2.1 optional. x, aber es wird empfohlen.
Wenn Sie es explizit verwenden, wird lhre Absicht deutlich, auch wenn Sie den Standardwert

angebenrequire-encrypt-require-decrypt.

Der Parameter --encryption-context ist optional im Entschlisselungsbefehl, auch dann,
wenn im Verschlisselungsbefehl ein Verschlisselungskontext angegeben ist. In diesem Fall
verwendet der Entschlisselungsbefehl denselben Verschlisselungskontext wie denjenigen, der im
Verschlisselungsbefehl angegeben wurde. Vor dem Entschlisseln Uberprift die AWS Encryption

Beispiele 337

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

CLI, ob der Verschlisselungskontext in der verschlisselten Nachricht ein purpose=test Paar
enthalt. Wenn dies nicht der Fall ist, schlagt der Entschlisselungsbefehl fehl.

Der --metadata-output-Parameter gibt eine Datei fir Metadaten Uber die
Entschlisselungsoperation an. Der Wert des - -output-Parameters, ein Punkt (.), weist den Befehl
an, die Ausgabedatei in das aktuelle Verzeichnis zu schreiben.

Es hat sich bewahrt, den --max-encrypted-data-keys Parameter zu verwenden, um zu
verhindern, dass eine falsch formatierte Nachricht mit einer Gbermafligen Anzahl verschlisselter
Datenschlissel entschlisselt wird. Geben Sie die erwartete Anzahl verschlisselter Datenschlissel
(einen flr jeden bei der Verschlisselung verwendeten Wrapping-Schlissel) oder einen
angemessenen Hochstwert (z. B. 5) an. Details hierzu finden Sie unter Beschrankung verschlisselter
DatenschlUssel.

Der --buffer gibt Klartext erst zurtick, nachdem alle Eingaben verarbeitet wurden, einschlie3lich
der Uberpriifung der digitalen Signatur, falls eine vorhanden ist.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt °
--input Hello.txt.encrypted °
--wrapping-keys key=$keyArn °

Beispiele 338

AWS Encryption SDK

Entwicklerhandbuch

--commitment-
--encryption-
--metadata-output $home\Metadata.txt

policy require-encrypt-require-decrypt °
context purpose=test °

~

--max-encrypted-data-keys 1 °

--buffer °
--output .

Wenn der Entschlisselungsbefehl erfolgreich ausgefuhrt wird, erfolgt keine Ausgabe. Um
festzustellen, ob der Befehl erfolgreich ausgefiihrt wurde, rufen Sie den Wert der Variablen $?
ab. Sie kdnnen auch einen Verzeichnisauflistungsbefehl ausflihren, um zu tGberprifen, ob der
Verschlisselungsbefehl eine neue Datei erstellt mit dem Suffix . decrypted erstellt hat. Um
den Klartextinhalt anzuzeigen, verwenden Sie einen Befehl, um den Dateiinhalt abzurufen, wie

beispielsweise cat oder Get-Content.

Bash

$ 1s

hello.txt hello.txt.encrypted hello.txt.encrypted.decrypted

$ cat hello.txt.encrypted.decrypted
Hello World

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime
-a---- 9/17/2017 1:01 PM
-a---- 9/17/2017 1:06 PM
-a---- 9/17/2017 1:08 PM

PS C:\> Get-Content Hello.txt.encrypted.
Hello World

Length Name

11 Hello.txt
585 Hello.txt.encrypted
11 Hello.txt.encrypted.decrypted

decrypted

Beispiele

339

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content

AWS Encryption SDK Entwicklerhandbuch

Alle Dateien in einem Verzeichnis verschliusseln

In diesem Beispiel wird die AWS Encryption CLI verwendet, um den Inhalt aller Dateien in einem
Verzeichnis zu verschlisseln.

Wenn sich ein Befehl auf mehrere Dateien auswirkt, verarbeitet die AWS Encryption CLI jede Datei
einzeln. Sie ruft den Dateiinhalt ab, ruft einen eindeutigen Datenschlissel fir die Datei aus dem
Master-Schlussel ab, verschlisselt den Inhalt der Datei unter dem Datenschlissel und schreibt

die Ergebnisse in eine neue Datei im Ausgabeverzeichnis. Aus diesem Grund kénnen Sie die
Ausgabedateien unabhangig voneinander entschlisseln.

Diese Auflistung des TestDir-Verzeichnisses zeigt die Klartext-Dateien, die wir verschlisseln
mochten.

Bash

$ 1s testdir
cool-new-thing.py hello.txt employees.csv

PowerShell

PS C:\> dir C:\TestDir

Directory: C:\TestDir

Mode LastWriteTime Length Name

-a---- 9/12/2017 3:11 PM 2139 cool-new-thing.py
-a---- 9/15/2017 5:57 PM 11 Hello.txt

-a---- 9/17/2017 1:44 PM 46 Employees.csv

Der erste Befehl speichert den Amazon-Ressourcennamen (ARN) von AWS KMS key in der
$keyArn Variablen.

Der zweite Befehl verschlisselt den Inhalt von Dateien im TestDir-Verzeichnis und schreibt

die Dateien mit dem verschlusselten Inhalt in das TestEnc-Verzeichnis. Wenn das TestEnc-
Verzeichnis nicht vorhanden ist, schlagt der Befehl fehl. Da der Eingabespeicherort ein Verzeichnis
ist, muss der --recursive-Parameter angegeben werden.

Beispiele 340

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Encryption SDK Entwicklerhandbuch

Der --wrapping-keysParameter und das erforderliche Schlisselattribut geben den

zu verwendenden Wrapping-Schlussel an. Der Verschlisselungsbefehl umfasst einen
Verschlusselungskontext, dept=IT. Wenn Sie einen Verschlisselungskontext in einem Befehl
angeben, der mehrere Dateien verschlusselt, wird fur alle Dateien derselbe Verschlisselungskontext
verwendet.

Der Befehl hat auch einen --metadata-output Parameter, der der AWS Encryption CLI mitteilt,
wo die Metadaten zu den Verschlisselungsvorgangen geschrieben werden sollen. Die AWS
Encryption CLI schreibt einen Metadatensatz fir jede verschliisselte Datei.

Das --commitment-policy parameterist ab Version 2.1 optional. x, aber es wird empfohlen.
Wenn der Befehl oder das Skript fehlschlagt, weil ein Chiffretext nicht entschlisselt werden kann,
kann lhnen die Richtlinieneinstellung ,Explizite Commitment“ dabei helfen, das Problem schnell zu
erkennen.

Wenn der Befehl abgeschlossen ist, schreibt die AWS Encryption CLI die verschlisselten Dateien in
das TestEnc Verzeichnis, gibt aber keine Ausgabe zurick.

Der letzte Befehl listet die Dateien im Verzeichnis TestEnc auf. Es gibt eine Ausgabedatei des
verschlisselten Inhalts fiir jede Eingabedatei mit Klartext-Inhalt. Da der Befehl kein alternatives
Suffix angegeben hat, hat der Verschlisselungsbefehl .encrypted an jeden der jede der
Eingabedateinamen angefigt.

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.

$ keyArn=arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input testdir --recursive\
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--output testenc

$ 1s testenc
cool-new-thing.py.encrypted employees.csv.encrypted hello.txt.encrypted

Beispiele 341

AWS Encryption SDK Entwicklerhandbuch

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt °
--input .\TestDir --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT °

--commitment-policy require-encrypt-require-decrypt °

--metadata-output .\Metadata\Metadata.txt °

--output .\TestEnc

PS C:\> dir .\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Alle Dateien in einem Verzeichnis entschlusseln

In diesem Beispiel werden alle Dateien in einem Verzeichnis entschlusselt. Es beginnt mit den
Dateien im Verzeichnis TestEnc, die im vorherigen Beispiel verschlisselt wurden.

Bash

$ 1s testenc
cool-new-thing.py.encrypted hello.txt.encrypted employees.csv.encrypted

PowerShell

PS C:\> dir C:\TestEnc

Directory: C:\TestEnc

Beispiele 342

AWS Encryption SDK Entwicklerhandbuch

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Dieser Entschlisselungsbefehl entschliisselt alle Dateien im TestEnc Verzeichnis und schreibt
die Klartextdateien in das Verzeichnis. TestDec Der --wrapping-keys Parameter mit einem
Schlusselattribut und einem Schlussel-ARN-Wert teilt der AWS Encryption CLI mit, welche AWS
KMS keys zum Entschlisseln der Dateien verwendet werden soll. Der Befehl verwendet den - -
interactive Parameter, um die AWS Encryption CLI anzuweisen, Sie vor dem Uberschreiben
einer Datei mit demselben Namen zu fragen.

Dieser Befehl verwendet auch den Verschllsselungskontext, die bereitgestellt wurde, als die Dateien
verschlisselt wurden. Beim Entschlisseln mehrerer Dateien Gberprift die AWS Encryption CLI den
Verschliisselungskontext jeder Datei. Wenn die Uberpriifung des Verschliisselungskontextes fir
eine Datei fehlschlagt, lehnt die AWS Encryption CLI die Datei ab, schreibt eine Warnung, zeichnet
den Fehler in den Metadaten auf und fahrt dann mit der Uberpriifung der verbleibenden Dateien

fort. Wenn die AWS Encryption CLI eine Datei aus einem anderen Grund nicht entschliisseln kann,
schlagt der gesamte Entschllisselungsbefehl sofort fehl.

In diesem Beispiel enthalten die verschllsselten Nachrichten in allen Eingabedateien das
Verschlisselungskontextelement dept=IT. Wenn Sie jedoch Nachrichten mit unterschiedlichen
Verschlusselungskontexten entschlisseln, kdnnen Sie mdglicherweise immer noch einen

Teil des Verschlusselungskontexts Uberprifen. Hatten beispielsweise einige Nachrichten den
Verschlisselungskontext dept=finance, andere hatten dept=1IT, kénnten Sie Uberprifen, ob der
Verschllisselungskontext immer einen dept-Namen enthalt, ohne den Wert anzugeben. Wenn Sie
spezifischer vorgehen mochten, kdnnen Sie die Dateien in separaten Befehlen entschlisseln.

Die Entschlisselungsbefehl gibt keine Ausgabe zurtlick, aber Sie kénnen einen
Verzeichnislistenbefehl verwenden, um zu prifen, ob der Befehl neue Dateien mit dem Suffix
.decrypted erstellt hat. Um den Klartextinhalt anzuzeigen, verwenden Sie einen Befehl, um den
Dateiinhalt abzurufen.

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Beispiele 343

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

$ aws-encryption-cli --decrypt \
--input testenc --recursive \
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output testdec --interactive

$ 1s testdec
cool-new-thing.py.encrypted.decrypted hello.txt.encrypted.decrypted
employees.csv.encrypted.decrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt °
--input C:\TestEnc --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT °
--commitment-policy require-encrypt-require-decrypt °
--metadata-output $home\Metadata.txt °
--max-encrypted-data-keys 1 °
--buffer °
--output C:\TestDec --interactive

PS C:\> dir .\TestDec

Mode LastWriteTime Length Name
-a---- 10/8/2017 4:57 PM 2139 cool-new-
thing.py.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 46 Employees.csv.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 11 Hello.txt.encrypted.decrypted

Beispiele 344

AWS Encryption SDK Entwicklerhandbuch

Verschlisseln und Entschlisseln in der Befehlszeile

Diese Beispiele zeigen lhnen, wie Sie Eingaben an Befehle Gbergeben (stdin) und Ausgaben in die
Befehlszeile schreiben (stdout). Sie erklaren, wie stdin und stdout in einem Befehl dargestellt werden,
und wie die eingebauten Base64-Codierungstools verwendet werden, um zu verhindern, dass die
Shell Nicht-ASCII-Zeichen falsch interpretiert.

Dieses Beispiel Ubergibt eine Klartext-Zeichenfolge an einen Verschlisselungsbefehl und speichert
die verschlUsselte Nachricht in einer Variablen. Dann Ubergibt es die verschlisselte Nachricht in der
Variablen an einen Entschlisselungsbefehl, der seine Ausgabe in die Pipeline schreibt (stdout).

Das Beispiel besteht aus drei Befehlen:

« Der erste Befehl speichert den Schlissel ARN von AWS KMS key in der $keyArn Variablen.
Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

* Der zweite Befehl Ubergibt die ZeichenfolgeHello Worldan den Verschlisselungsbefehl weiter
und speichert das Ergebnis in der Variablen $encrypted.

Die - -output Parameter --input und sind in allen AWS Encryption CLI-Befehlen erforderlich.
Um anzugeben, dass eine Eingabe dem Befehl Ubergeben wird (stdin), verwenden Sie einen
Bindestrich (-) fir den Wert des - -input-Parameters. Um die Ausgabe in die Befehlszeile zu
senden (stdout), verwenden Sie einen Bindestrich fir den Wert des - -output-Parameters.

Der - -encode-Parameter bewirkt, dass die Ausgabe mit Base64 codiert wird, bevor sie
zuruckgegeben wird. Dadurch wird verhindert, dass die Shell interpretiert die Nicht-ASCII-Zeichen
in der verschlisselten Nachricht falsch interpretiert.

Da dieser Befehl ist nur ein Machbarkeitsnachweist ist, lassen wir den Verschlisselungskontext
weg und unterdricken die Metadaten (-5).

Beispiele 345

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

Bash

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \

--input - --output - --
encode \
--wrapping-keys key=
$keyArn)
PowerShell

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S °

--input - --output - --
encode °

--wrapping-keys key=
$keyArn

« Der dritte Befehl tibergibt die verschliisselte Nachricht in der Variablen $encrypted an den
Entschllisselungsbefehl.

Dieser Entschlisselungsbefehl verwendet --input -, um anzugeben, dass die Eingabe aus der
Pipeline (stdin) kommt, und --output -, um die Ausgabe in die Pipeline zu senden (stdout). (Der
Eingabeparameter verwendet den Speicherort der Eingabe, nicht die tatsachlich eingegebenen
Bytes, Sie konnen also die Variable $encrypted nicht als Wert des - -input-Parameters
verwenden.)

In diesem Beispiel wird das Discovery-Attribut des --wrapping-keys Parameters verwendet,
damit die AWS Encryption CLI jedes beliebige AWS KMS key zum Entschlisseln der Daten
verwenden kann. Es gibt keine Verpflichtungsrichtlinie an, daher wird der Standardwert fir Version

2.1 verwendet. x und spater,require-encrypt-require-decrypt.

Da die Ausgabe verschlisselt und dann codiert wurde, verwendet der Entschlisselungsbefehl den
- -decode-Parameter zum Decodieren der mit Base64 codierten Eingabe, bevor sie entschliisselt
wird. Sie kdnnen auch den - -decode-Parameter verwenden, um mit Base64 codierte Eingaben zu
decodieren, bevor sie verschlusselt werden.

Auch hier lasst der Befehl den Verschlisselungskontext weg und unterdriickt die Metadaten (-S).

Beispiele 346

AWS Encryption SDK Entwicklerhandbuch

Bash

$ echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true
--input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true
--input - --output - --decode --buffer -S
Hello World

Sie kdnnen die Ver- und Entschlisselungsoperationen auch in einem einzigen Befehl ohne die
dazwischenliegende Variable durchfiihren.

Wie im vorherigen Beispiel haben die Parameter --input und --output einen --Wert, und der
Befehl verwendet den - -encode-Parameter, um die Ausgabe zu codieren, und den --decode
Parameter, um die Eingabe zu decodieren.

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ echo 'Hello World' |
aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --

output - --encode -S |
aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S

Hello World

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab’

PS C:\> 'Hello World' |
aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |

Beispiele 347

AWS Encryption SDK Entwicklerhandbuch

aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input
- --output - --decode -S
Hello World

Verwenden mehrerer Hauptschlussel

Dieses Beispiel zeigt, wie mehrere Masterschlissel beim Verschlisseln und Entschlisseln von Daten
in der AWS Encryption CLI verwendet werden.

Wenn Sie mehrere Master-Schliissel verwenden, um Daten zu verschliisseln, kann einer der Master-
Schlissel verwendet werden, um die Daten zu entschlisseln. Diese Strategie stellt sicher, dass Sie
die Daten entschliisseln kénnen, selbst wenn einer der Master-Schllissel nicht verfligbar ist. Wenn
Sie die verschlisselten Daten in mehreren speichern AWS-Regionen, kénnen Sie mit dieser Strategie
einen Hauptschlussel in derselben Region verwenden, um die Daten zu entschlisseln.

Wenn Sie mit mehreren Master-Schllisseln verschllisseln, spielt der erste Master-Schlissel eine
spezielle Rolle. Er generiert den DatenschlUssel, der zum Verschlisseln der Daten verwendet wird.
Die verbleibenden Master-Schlissel verschlisseln den Klartext-Datenschllssel. Die resultierende
verschlusselte Nachricht enthalt die verschlisselten Daten und eine Sammlung von verschllisselten
Datenschlisseln, einen fur jeden Master-Schlissel. Obwohl der erste Master-Schlissel den
Datenschlissel generiert hat, kann jeder der Master-Schlissel einen der Datenschlissel
entschlisseln, der verwendet werden kann, um die Daten zu entschlusseln.

VerschlUsselung mit drei Hauptschlisseln

In diesem Beispielbefehl werden drei UmschlieBungsschlissel verwendet, um die Finance. log
Datei zu verschlisseln, jeweils einen von dreien. AWS-Regionen

Er schreibt die verschlisselte Nachricht in das Verzeichnis Archive. Der Befehl verwendet den
--suffix -Parameter ohne Wert, um das Suffix zu unterdriicken, sodass die Eingabe- und
Ausgabedateinamen gleich sind.

Der Befehl verwendet den --wrapping-keys-Parameter mit drei Schlisselattributen. Sie kdnnen
auch mehrere --wrapping-keys-Parameter im selben Befehl verwenden.

Um die Protokolldatei zu verschlisseln, fordert die AWS Encryption CLI den ersten Wrapping-
Schlissel in der Liste auf$key1, den Datenschliissel zu generieren, mit dem sie die Daten
verschlusselt. AnschlieRend verwendet sie jeden der anderen Umschlie3ungsschlissel, um eine
Klartextkopie desselben Datenschlissels zu verschlisseln. Die verschlisselte Nachricht in der
Ausgabedatei enthalt alle drei verschlisselten Datenschlissel.

Beispiele 348

AWS Encryption SDK Entwicklerhandbuch

Bash

$ keyl=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3cad

$ aws-encryption-cli --encrypt --input /logs/finance.log \
--output /archive --suffix \
--encryption-context class=log \
--metadata-output ~/metadata \
--wrapping-keys key=$keyl key=$key2 key=$key3

PowerShell

PS C:\> $keyl = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef"

PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3c4d’

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log °
--output D:\Archive --suffix °
--encryption-context class=log °
--metadata-output $home\Metadata.txt
--wrapping-keys key=$keyl key=$key2 key=$key3

~

Dieser Befehl entschllsselt die verschlisselte Kopie der Datei Finance.log und schreibt sie in eine
Finance.log.clear-Datei im Verzeichnis Finance. Um Daten zu entschlisseln, die unter drei
verschliusselt wurden AWS KMS keys, kdnnen Sie dieselben drei AWS KMS keys oder eine beliebige
Teilmenge davon angeben. In diesem Beispiel wird nur eine der Optionen angegeben. AWS KMS
keys

Verwenden Sie das Schlusselattribut des --wrapping-keys Parameters, AWS KMS keys um der
AWS Encryption CLI mitzuteilen, welche zum Entschlisseln Ihrer Daten verwendet werden soll. Bei
der Entschlisselung mit AWS KMS keys muss der Wert des Schllsselattributs ein Schltissel-ARN
sein.

Beispiele 349

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

Sie benétigen die Berechtigung, die Decrypt-AP| auf dem von AWS KMS keys lhnen angegebenen
Computer aufzurufen. Weitere Informationen finden Sie unter Authentifizierung und Zugriffskontrolle
fir AWS KMS.

Als bewahrte Methode wird in diesen Beispielen der --max-encrypted-data-keys Parameter
verwendet, um zu verhindern, dass eine falsch formatierte Nachricht mit einer Ubermalligen
Anzahl verschlUsselter Datenschlissel entschlisselt wird. Obwohl in diesem Beispiel nur ein
Wrapping-SchlUssel fur die Entschllisselung verwendet wird, hat die verschlisselte Nachricht

drei (3) verschlUsselte DatenschlUssel, einen fur jeden der drei beim Verschlisseln verwendeten
Wrapping-Schlussel. Geben Sie die erwartete Anzahl verschlisselter Datenschlissel oder einen
angemessenen Hochstwert an, z. B. 5. Wenn Sie einen Hochstwert unter 3 angeben, schlagt der
Befehl fehl. Details hierzu finden Sie unter Beschrankung verschlusselter Datenschlissel.

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \
--wrapping-keys key=$keyl \
--output /finance --suffix '.clear' \
--metadata-output ~/metadata \
--max-encrypted-data-keys 3 \
--buffer \
--encryption-context class=log

PowerShell

PS C:\> aws-encryption-cli --decrypt °
--input D:\Archive\Finance.log °
--wrapping-keys key=$keyl °
--output D:\Finance --suffix '.clear'
--metadata-output .\Metadata\Metadata.txt °
--max-encrypted-data-keys 3 °
--buffer °
--encryption-context class=log

Verschlisseln und Entschlisseln in Skripts

Dieses Beispiel zeigt, wie die AWS Encryption CLI in Skripten verwendet wird. Sie kdnnen
Skripte schreiben, die nur Daten verschlisseln und entschlisseln, oder Skripts, die als Teil eines
Datenverwaltungsprozesses verschlisseln oder entschlisseln.

Beispiele 350

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK Entwicklerhandbuch

In diesem Beispiel ruft das Skript eine Sammlung von Protokolldateien ab, komprimiert sie,
verschlisselt sie und kopiert dann die verschlisselten Dateien in einen Amazon S3 S3-Bucket.
Dieses Skript verarbeitet jede Datei einzeln, sodass Sie sie unabhangig voneinander entschlisseln
und erweitern kdnnen.

Wenn Sie Dateien komprimieren und verschlisseln, stellen Sie sicher, dass Sie sie komprimieren,
bevor Sie sie verschliisseln. Ordnungsgemal verschlisselte Daten kénnen nicht komprimiert werden.

/A Warning

Seien Sie vorsichtig, wenn Sie Daten komprimieren, die Geheimnisse oder Daten enthalten,
die von boswilligen Angreifern kontrolliert werden kénnten. Die endgtiltige GrélRe der
komprimierten Daten verrat moglicherweise versehentlich vertrauliche Informationen tber
ihren Inhalt.

Bash

Continue running even if an operation fails.
set +e

dir=$1

encryptionContext=$2

s3bucket=$3

s3folder=$4

masterKeyProvider="aws-kms"
metadataOutput="/tmp/metadata-$(date +%s)"

compress(){
gzip -qf $1

encrypt(){
-e encrypt
-i input
-0 output
--metadata-output unique file for metadata
-m masterKey read from environment variable
-c encryption context read from the second argument.

H OH HF OB H

-v be verbose

Beispiele 351

AWS Encryption SDK Entwicklerhandbuch

aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output
${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c
"${encryptionContext}" -v

}

s3put (){
copy file argument 1 to s3 location passed into the script.
aws s3 cp ${1} ${s3bucket}/${s3folder}

}

Validate all required arguments are present.
if ["${dir}" 1 && ["${encryptionContextl}"] && ["${s3bucket}"] &&
["${s3folder}" 1 && ["${masterKey}" 1; then

Is $dir a valid directory?

test -d "${dir}"

if [$? -ne 0]; then
echo "Input is not a directory; exiting"
exit 1

fi

Iterate over all the files in the directory, except *gz and *encrypted (in case of
a re-run).
for f in $(find ${dir} -type f \(-name "*" ! -name *.gz ! -name *encrypted \));
do
echo "Working on $f"
compress ${f}
encrypt ${f}.gz

rm -f ${f}.gz

s3put ${f}.gz.encrypted
done;
else

echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>"

echo " and ENV var \$masterKey must be set"
exit 255
fi
PowerShell

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive
Param

(

Beispiele 352

AWS Encryption SDK Entwicklerhandbuch

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]

[String[]]
$FilePath,

[Parameter()]
[Switch]
$Recurse,

[Parameter(Mandatory=$true)]
[String]
$wrappingKeyID,

[Parameter()]
[String]
$masterKeyProvider = 'aws-kms',

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$ZipDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$EncryptDirectory,

[Parameter()]
[String]
$EncryptionContext,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$MetadataDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-S3Bucket -BucketName $_3})]
[String]

$S3Bucket,

[Parameter()]
[String]
$S3BucketFolder

Beispiele 353

AWS Encryption SDK Entwicklerhandbuch

)

BEGIN {}

PROCESS {
if ($files = dir $FilePath -Recurse:$Recurse)
{

Step 1: Compress
foreach ($file in $files)
{

$fileName = $file.Name

try

{

Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -
DestinationPath $ZipDirectory\$filename.zip

}
catch
{
Write-Error "Zip failed on $file.FullName"
}

Step 2: Encrypt
if (-not (Test-Path "$ZipDirectory\$filename.zip"))
{
Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip"
}
else
{
2>&1 captures command output
$err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip"
-0 $EncryptDirectory °
-m key=$wrappingKeyID provider=
$masterKeyProvider °
-c¢ $EncryptionContext °
--metadata-output $MetadataDirectory °
-v) 2>8&1

Check error status
if ($? -eq $false)
{
Write the error
$err

}
elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted")

Beispiele 354

AWS Encryption SDK Entwicklerhandbuch

Step 3: Write to S3 bucket
if ($S3BucketFolder)

{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted"

}

else

{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted"
}
}

Verwenden von Datenschlissel-Caching

Dieses Beispiel verwendet das Datenschlissel-Caching in einem Befehl, der eine gro3e Anzahl von
Dateien verschlusselt.

Standardmafig generiert die AWS Encryption CLI (und andere Versionen von AWS Encryption SDK)
einen eindeutigen Datenschlissel fur jede Datei, die sie verschliusselt. Obwohl die Verwendung eines
eindeutigen Datenschlussels fur jede Operation ist eine bewahrte Methode in der Kryptografie ist, ist
eine begrenzte Wiederverwendung von Datenschlisseln in einigen Situationen akzeptabel. Falls Sie
ein Datenschlissel-Caching in Betracht ziehen, beraten Sie sich mit einem Sicherheitstechniker,um
die Sicherheitsanforderungen lhrer Anwendung zu verstehen und die fur Sie geeigneten
Sicherheitsbarrieren zu bestimmen.

In diesem Beispiel beschleunigt das Datenschllissel-Caching die Verschllisselungsoperation, indem
sie die Frequenz der Anfragen an den Masterschlissel-Anbieter reduziert.

Der Befehl in diesem Beispiel verschlisselt ein grofes Verzeichnis mit mehreren
Unterverzeichnissen, die insgesamt ungefahr 800 kleine Protokolldateien enthalten. Der erste Befehl
speichert den ARN des AWS KMS key in einer keyARN-Variablen. Der zweite Befehl verschlisselt
alle Dateien im Eingabeverzeichnis (rekursiv) und schreibt sie in ein Archiv-Verzeichnis. Der Befehl
verwendet den --suffix -Parameter, um das .archive-Suffix anzugeben.

Beispiele 355

AWS Encryption SDK Entwicklerhandbuch

Der - -caching-Parameter aktiviert das Datenschlissel-Caching. Die Attribut capacity, das die
Anzahl der Datenschlissel im Cache begrenzt, wird auf 1 gesetzt, da die serielle Dateiverarbeitung
nie mehr als einen Datenschlissel gleichzeitig verwendet. Das Attribut max_age, mit dem festgelegt
wird, wie lange der Datenschlissel im Cache verwendet werden kann, ist auf 10 Sekunden
eingestellt.

Das optionale Attribut max_messages_encrypted ist auf 10 Nachrichten festgelegt, sodass eine
einzelner Datenschlussel nie verwendet werden kann, um mehr als 10 Dateien zu verschlisseln.
Die Begrenzung der Anzahl der von einem Datenschllssel verschliusselten Dateien reduziert die
Anzahl der Dateien, die in dem unwahrscheinlichen Fall betroffen waren, wenn ein Datenschlissel
kompromittiert wird.

Um diesen Befehl fur von lhrem Betriebssystem generierte Protokolldateien auszufihren, missen Sie
madglicherweise Administratorberechtigungen besitzen (sudo in Linux; Als Administrator ausfiihren in
Windows).

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input /var/log/httpd --recursive \
--output ~/archive --suffix .archive \
--wrapping-keys key=$keyArn \
--encryption-context class=log \
--suppress-metadata \
--caching capacity=1 max_age=10 max_messages_encrypted=10

PowerShell

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'
--wrapping-keys key=$keyARN
--encryption-context class=log °
--suppress-metadata °

Beispiele 356

AWS Encryption SDK Entwicklerhandbuch

--caching capacity=1 max_age=10
max_messages_encrypted=10

Um die Wirkung der Zwischenspeicherung von Datenschlisseln zu testen, wird in diesem Beispiel
das Cmdlet Measure-Command in verwendet. PowerShell Wenn Sie dieses Beispiel ohne

Datenschlissel-Caching ausfuhren, dauert seine Ausfuhrung etwa 25 Sekunden. Dieser Prozess
generiert einen neuen Datenschlussel fur jede Datei im Verzeichnis.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata }

Days 1 0

Hours : 0

Minutes 0

Seconds : 25

Milliseconds . 453

Ticks : 254531202

TotalDays : 0.000294596298611111
TotalHours : 0.00707031116666667
TotalMinutes 1 0.42421867
TotalSeconds : 25.4531202

TotalMilliseconds : 25453.1202

Das Datenschlissel-Caching beschleunigt das Verfahren, auch wenn Sie die einzelnen
Datenschlissel auf maximal 10 Dateien begrenzen. Der Befehl bendtigt jetzt weniger als 12
Sekunden und reduziert die Anzahl der Aufrufe des Masterschlissel-Anbieter auf ein Zehntel des
ursprunglichen Werts.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata °

Beispiele

357

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command

AWS Encryption SDK

Entwicklerhandbuch

max_messages_encrypted=10}

Days

Hours
Minutes
Seconds
Milliseconds
Ticks
TotalDays
TotalHours
TotalMinutes
TotalSeconds

TotalMilliseconds :

0
0
0

11

. 813

118132640

: 0.000136727592592593
: 0.00328146222222222
: 0.196887733333333

11.813264
11813.264

--caching capacity=1 max_age=10

Wenn Sie die max_messages_encrypted-Einschrankung weglassen, werden alle Dateien

unter demselben Datenschliissel verschliisselt. Diese Anderung erhéht das Risiko einer

Wiederverwendung von Datenschlisseln, ohne den Prozess sehr wesentlich schneller zu machen.

Sie reduziert jedoch die Anzahl der Aufrufe des Masterschlissel-Anbieters auf 1.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °

Days

Hours
Minutes
Seconds
Milliseconds
Ticks
TotalDays
TotalHours
TotalMinutes
TotalSeconds

TotalMilliseconds :

1 0
]
1 0

10

. 252

102523367

: 0.000118661304398148
: 0.00284787130555556
: 0.170872278333333

10.2523367
10252.3367

--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata °

--caching capacity=1 max_age=10}

Beispiele

358

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK CLI Syntax und Parameterreferenz

Dieses Thema enthalt Syntaxdiagramme und kurze Parameterbeschreibungen, die lhnen bei der
Verwendung des AWS Encryption SDK Command Line Interface (CLI, Befehlszeilenschnittstelle)
helfen. Hilfe zum Umschlief3en von Schlisseln und anderen Parametern finden Sie unterSo
verwenden Sie die AWS Encryption CLI. Beispiele finden Sie unter Beispiele fur die AWS Encryption
CLI. Eine vollstandige Dokumentation finden Sie in Read the Docs.

Themen

» AWS Verschlisselungs-CLI-Syntax

« AWS Befehlszeilenparameter der Verschlisselungs-CLI

» Erweiterte Parameter

AWS Verschlisselungs-CLI-Syntax

Diese Syntaxdiagramme von AWS Encryption CLI zeigen die Syntax fur jede Aufgabe, die Sie mit der
AWS Encryption CLI ausfuhren. Sie stellen die empfohlene Syntax in AWS Encryption CLI Version
2.1 dar. x und hoher.

Neue Sicherheitsfunktionen wurden urspringlich in den AWS Encryption CLI Versionen 1.7
veroffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

@ Note

Sofern in der Parameterbeschreibung nichts anderes angegeben ist, kann jeder Parameter
oder jedes Attribut in jedem Befehl nur einmal verwendet werden.

Wenn Sie ein Attribut verwenden, das ein Parameter nicht unterstuitzt, ignoriert die AWS
Encryption CLI dieses nicht unterstitzte Attribut ohne Warnung oder Fehler.

Hilfe anfordern

Um die vollstandige AWS Encryption CLI-Syntax mit Parameterbeschreibungen zu erhalten,
verwenden Sie --help oder-h.

aws-encryption-cli (--help | -h)

Syntax und Parameterreferenz 359

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

Die Version abrufen

Um die Versionsnummer Ihrer AWS Encryption CLI-Installation abzurufen, verwenden Sie- -
version. Geben Sie unbedingt die Version an, wenn Sie Fragen stellen, Probleme melden oder
Tipps zur Verwendung der AWS Encryption CLI geben.

aws-encryption-cli --version

Daten verschlisseln

Das folgende Syntaxdiagramm zeigt die Parameter, die ein encrypt-Befehl verwendet.

aws-encryption-cli --encrypt
--input <input> [--recursive] [--decode]
--output <output> [--interactive] [--no-overwrite] [--suffix
[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
key=<keyID> [key=<keyID>]
[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]

--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
[--commitment-policy <commitment-policy>]
[--encryption-context <encryption_context> [<encryption_context>
.11

[--max-encrypted-data-keys <integer>]
[--algorithm <algorithm_suite>]
[--caching <attributes>]
[--frame-length <length>]

[-v | -vv | -vvv | -vvvv]

[--quiet]

Daten entschlUsseln
Das folgende Syntaxdiagramm zeigt die Parameter, die ein decrypt-Befehl verwendet.

In Version 1.8. x, der --wrapping-keys Parameter ist beim Entschlisseln optional, wird

aber empfohlen. Ab Version 2.1. x, der --wrapping-keys Parameter ist beim Verschlisseln
und Entschlisseln erforderlich. Denn Sie kdnnen das Schlusselattribut verwenden AWS KMS
keys, um Wrapping-Schllissel anzugeben (Best Practice) oder das Discovery-Attribut auf
festlegentrue, wodurch die Wrapping-Schlissel, die die AWS Encryption CLI verwenden kann,
nicht eingeschrankt werden.

Syntax und Parameterreferenz 360

AWS Encryption SDK Entwicklerhandbuch

aws-encryption-cli --decrypt (or [--decrypt-unsigned])
--input <input> [--recursive] [--decode]
--output <output> [--interactive] [--no-overwrite] [--suffix
[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
[key=<keyID>] [key=<keyID>]
[discovery={true|false}] [discovery-partition=<aws-partition-
name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>] ...]
[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]

--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
[--commitment-policy <commitment-policy>]
[--encryption-context <encryption_context> [<encryption_context>
.11

[--buffer]

[--max-encrypted-data-keys <integer>]
[--caching <attributes>]
[--max-length <length>]

[-v | -vv | -vvv | -vvvv]

[--quiet]

Konfigurationsdateien verwenden

Sie kénnen auf Konfigurationsdateien verweisen, die Parameter und deren Werte enthalten. Dies
ist gleichwertig mit der Eingabe der Parameter und Werte im Befehl. Ein Beispiel finden Sie unter
Parameter in einer Konfigurationsdatei speichern.

aws-encryption-cli @<configuration_file>

In a PowerShell console, use a backtick to escape the @.
aws-encryption-cli ‘@<configuration_file>

AWS Befehlszeilenparameter der Verschlisselungs-CLI

Diese Liste enthalt eine grundlegende Beschreibung der Befehlsparameter von AWS Encryption CLI.
Eine vollstandige Beschreibung finden Sie in der aws-encryption-sdk-cliDokumentation.

Syntax und Parameterreferenz 361

http://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Entwicklerhandbuch

--encrypt (-e)
Verschllsselt die Eingabedaten. Jeder Befehl muss einen --encrypt--decrypt, oder oder - -
decrypt-unsigned -Parameter haben.

--decrypt (-d)
Entschlisselt die Eingabedaten. Jeder Befehl muss einen --encrypt--decrypt, oder --
decrypt-unsigned -Parameter haben.

--decrypt-unsigned [Eingeflihrt in Version 1.9. x und 2.2. x]

Der --decrypt-unsigned Parameter entschlisselt Chiffretext und stellt sicher, dass
Nachrichten vor der Entschlisselung unsigniert sind. Verwenden Sie diesen Parameter, wenn
Sie den --algorithm Parameter verwendet und eine Algorithmussuite ohne digitale Signatur
zum VerschlUsseln von Daten ausgewahlt haben. Wenn der Chiffretext signiert ist, schlagt die
Entschlisselung fehl.

Sie kdnnen --decrypt oder --decrypt-unsigned fur die Entschlisselung verwenden, aber
nicht beide.

--wrapping-keys (-w) [Eingeflhrt in Version 1.8. x]

Gibt die Wrapping-Schlussel (oder Hauptschliissel) an, die bei Verschlisselungs- und
Entschllsselungsvorgangen verwendet werden. Sie kdnnen in jedem Befehl mehrere - -

wrapping-keys Parameter verwenden.

Ab Version 2.1. x, der --wrapping-keys Parameter ist fur Befehle zum Verschlisseln und
Entschlisseln erforderlich. In Version 1.8. x, Verschlisselungsbefehle erfordern --wrapping-
keys entweder einen --master-keys Oder-Parameter. In Version 1.8. x decrypt-Befehle, ein
--wrapping-keys Parameter ist optional, wird aber empfohlen.

Wenn Sie einen benutzerdefinierten Hauptschlisselanbieter verwenden, bendétigen Befehle zum
Verschlisseln und Entschlisseln Schllissel - und Anbieterattribute. Bei der Verwendung von
AWS KMS keys Verschlisselungsbefehlen ist ein Schllsselattribut erforderlich. Fur Befehle zum
Entschllsseln ist ein Schlisselattribut oder ein Erkennungsattribut mit einem Wert von true
(aber nicht beiden) erforderlich. Es hat sich bewahrt, das Schlisselattribut beim Entschlisseln
zu verwenden.AWS Encryption SDK Dies ist besonders wichtig, wenn Sie Stapel unbekannter
Nachrichten entschlisseln, z. B. Nachrichten in einem Amazon S3 S3-Bucket oder einer Amazon
SQS SQS-Warteschlange.

Syntax und Parameterreferenz 362

AWS Encryption SDK Entwicklerhandbuch

Ein Beispiel, das zeigt, wie Sie Schlissel mit AWS KMS mehreren Regionen als Schlissel zum
Umschlie3en von Schliisseln verwenden konnen, finden Sie unter. Verwenden Sie mehrere
Regionen AWS KMS keys

Attribute: Der Wert des - -wrapping-keys-Parameters besteht aus den folgenden Attributen.
Das Formatist attribute_name=value.

Schlissel

Identifiziert den Umbruchschlissel, der bei dem Vorgang verwendet wurde. Das Format ist ein
key= ID-Paar. Sie kbnnen mehrere key-Attribute in jedem --wrapping-keys-Parameterwert
angeben.

» Befehle verschlisseln: Alle Verschllsselungsbefehle erfordern das Schllsselattribut.
Wenn Sie einen Befehl AWS KMS key in an encrypt verwenden, kann der Wert des
Schlusselattributs eine Schlissel-ID, ein Schlissel-ARN, ein Aliasname oder ein Alias-
ARN sein. Eine Beschreibung der AWS KMS Schliisselkennungen finden Sie unter
Schlusselkennungen im AWS Key Management Service Entwicklerhandbuch.

» Befehle entschlisseln: Beim Entschlisseln mit AWS KMS keys erfordert der --wrapping-
keys Parameter ein SchllUsselattribut mit einem Schltissel-ARN-Wert oder ein Discovery-
Attribut mit einem Wert von true (aber nicht beide). Die Verwendung des Schlisselattributs
ist eine AWS Encryption SDK bewadhrte Methode. Bei der Entschlisselung mit einem
benutzerdefinierten Hauptschllisselanbieter ist das Schllsselattribut erforderlich.

(® Note

Um einen AWS KMS Wrapping-Schlussel in einem Decrypt-Befehl anzugeben,
muss der Wert des Schlisselattributs ein Schlissel-ARN sein. Wenn Sie eine
Schlussel-ID, einen Aliasnamen oder einen Alias-ARN verwenden, erkennt die AWS
Encryption CLI den Wrapping-Schlussel nicht.

Sie kdnnen mehrere key-Attribute in jedem --wrapping-keys-Parameterwert angeben.
Alle Anbieter -, Regions - und Profilattribute in einem --wrapping-keys Parameter gelten
jedoch fir alle Schlissel, die in diesem Parameterwert enthalten sind. Verwenden Sie
mehrere --wrapping-keys Parameter im Befehl, um Wrapping Keys mit unterschiedlichen
Attributwerten anzugeben.

Syntax und Parameterreferenz 363

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Entwicklerhandbuch

Entdeckung

Ermdglicht der AWS Encryption CLI, beliebige AWS KMS key zum Entschlisseln der
Nachricht zu verwenden. Der Erkennungswert kann true oder false sein. Der Standardwert
ist false. Das Discovery-Attribut ist nur in Entschliisselungsbefehlen giltig und nur, wenn der
Hauptschlisselanbieter dies AWS KMS tut.

Bei der Entschlisselung mit AWS KMS keys erfordert der - -wrapping-keys Parameter ein
Schlusselattribut oder ein Discovery-Attribut mit einem Wert von true (aber nicht beiden).
Wenn Sie das Schlisselattribut verwenden, kdnnen Sie ein Erkennungsattribut mit dem Wert
von verwendenfalse, um die Erkennung explizit abzulehnen.

* False(Standard) — Wenn das Discovery-Attribut nicht angegeben ist oder sein Wert
istfalse, entschlisselt die AWS Encryption CLI die Nachricht nur unter Verwendung
des durch das Schlisselattribut des --wrapping-keys Parameters AWS KMS keys
angegebenen. Wenn Sie bei der Erkennung kein Schlisselattribut angebenfalse, schlagt
der Entschlisselungsbefehl fehl. Dieser Wert unterstitzt eine bewahrte Methode fir die
AWS Verschlisselungs-CLI.

* True— Wenn der Wert des Discovery-Attributs istt rue, ruft die AWS Encryption CLI
die AWS KMS keys From-Metadaten in der verschliusselten Nachricht ab und verwendet
diese, AWS KMS keys um die Nachricht zu entschlisseln. Das Discovery-Attribut mit dem
Wert von true verhalt sich wie Versionen der AWS Encryption CLI vor Version 1.8. x, das
es Ilhnen nicht erlaubte, beim Entschlisseln einen Wrapping-Schlissel anzugeben. lhre
Absicht, einen zu verwenden, AWS KMS key ist jedoch ausdricklich. Wenn Sie bei der
Erkennung ein SchlUsselattribut angebentrue, schlagt der Entschlisselungsbefehl fehl.

Der true Wert kann dazu flhren, dass die AWS Encryption CLI AWS KMS keys in
verschiedenen AWS-Konten Regionen verwendet wird oder AWS KMS keys dass versucht
wird, eine Verwendung zu verwenden, fir die der Benutzer nicht autorisiert ist.

Wenn Discovery aktiviert istt rue, empfiehlt es sich, die Attribute discovery-partition und
discovery-account zu verwenden, um die Verwendung auf die von lhnen AWS KMS keys
angegebenen Attribute zu beschranken. AWS-Konten

Discovery-Konto
Beschrankt die fur die Entschlisselung AWS KMS keys verwendeten Werte auf die

angegebenen Werte. AWS-Konto Der einzig gultige Wert fir dieses Attribut ist eine AWS-
Konto ID.

Syntax und Parameterreferenz 364

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

AWS Encryption SDK Entwicklerhandbuch

Dieses Attribut ist optional und nur in Entschlisselungsbefehlen giiltig, bei AWS KMS keys
denen das Discovery-Attribut auf gesetzt true und das Discovery-Partition-Attribut angegeben
ist.

Jedes Discovery-Account-Attribut bendtigt nur eine AWS-Konto ID, aber Sie kdnnen mehrere
Discovery-Account-Attribute in demselben Parameter angeben. - -wrapping-keys Alle in
einem bestimmten - -wrapping-keys Parameter angegebenen Konten missen sich in der
angegebenen Partition befinden. AWS

Discovery-Partition
Gibt die AWS Partition flr die Konten im Attribut discovery-account an. Sein Wert muss eine

AWS Partition sein, z. B. awsaws-cn, oder. aws-gov-cloud Weitere Informationen finden
Sie unter Amazon Resource Names in der Allgemeine AWS-Referenz.

Dieses Attribut ist erforderlich, wenn Sie das Attribut discovery-account verwenden. Sie
kénnen in jedem Parameter nur ein Discovery-Partition-Attribut angeben. --wrapping keys
Verwenden Sie AWS-Konten einen zusétzlichen - -wrapping-keys Parameter, um mehrere
Partitionen anzugeben.

provider
|dentifiziert den Masterschliussel-Anbieter. Das Format ist ein provider= ID-Paar. Der

Standardwert aws-kms steht fir. AWS KMS Dieses Attribut ist nur erforderlich, wenn der
Hauptschlisselanbieter dies nicht tut. AWS KMS

Region

Identifiziert den AWS-Region von einem AWS KMS key. Dieses Attribut ist nur gultig fiur AWS
KMS keys. Es wird nur verwendet, wenn die key-ID keine Region angibt, andernfalls wird es
ignoriert. Wenn es verwendet wird, Gberschreibt es die Standardregion im AWS CLI namens
profile.

Profil
Identifiziert ein AWS CLI benanntes Profil. Dieses Attribut ist nur gultig fr AWS KMS keys. Die

Region im Profil wird nur verwendet, wenn die key-ID keine Region angibt und es kein region-
Attribut im Befehl gibt.

--input (-i)

Gibt den Speicherort der zu ver- oder entschllisselnden Daten an. Dieser Parameter muss
angegeben werden. Der Wert kann ein Pfad zu einer Datei oder einem Verzeichnis oder ein
Dateinamenmuster sein. Wenn Sie Eingaben an den Befehl weiterleiten (stdin), verwenden Sie -.

Syntax und Parameterreferenz 365

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK Entwicklerhandbuch

Wenn die Eingabe nicht vorhanden ist, wird der Befehl fehlerfrei ohne Fehlermeldung oder
Warnung ausgefihrt.

--recursive (-r, -R)
Flhrt die Operation fir Dateien im Eingabeverzeichnis und seinen Unterverzeichnissen aus.
Dieser Parameter ist erforderlich, wenn der Wert von --input ein Verzeichnis ist.

--decode
Decodiert Base64-codierte Eingaben.

Wenn Sie eine Nachricht entschlisseln, die verschlisselt und dann codiert wurde, missen Sie
die Nachricht decodieren, bevor Sie sie entschlisseln. Dieser Parameter erledigt dies fur Sie.

Wenn Sie beispielsweise den - -encode-Parameter in einem Verschlisselungsbefehl
verwendet haben, verwenden Sie den --decode-Parameter in dem entsprechenden
Entschlusselungsbefehl. Sie konnen diesen Parameter auch verwenden, um mit Base64
codierte Eingaben zu decodieren, bevor Sie sie verschlisseln.

--output (-0)
Gibt einen Zielspeicherort flr die Ausgabe an. Dieser Parameter muss angegeben werden. Der

Wert kann ein Dateiname oder ein vorhandenes Verzeichnis sein, oder - sein, womit die Ausgabe
in die Befehlszeile geschrieben wird (stdout).

Wenn das angegebene Ausgabeverzeichnis nicht vorhanden ist, schlagt der Befehl fehl. Wenn die
Eingabe Unterverzeichnisse enthalt, reproduziert die AWS Encryption CLI die Unterverzeichnisse
unter dem von lhnen angegebenen Ausgabeverzeichnis.

StandardmaRig tberschreibt die AWS Encryption CLI Dateien mit demselben Namen. Dieses
Verhalten dndern Sie mit den Parametern --interactive oder --no-overwrite. Um die
Uberschreibwarnung zu unterdriicken, verwenden Sie den Parameter - -quiet.

(® Note

Wenn ein Befehl, der eine Ausgabedatei Uberschreiben wirde, fehlschlagt, ist die
Ausgabedatei bereits geldscht.

--interactive

Informiert Sie, bevor die Datei Uberschrieben wird.

Syntax und Parameterreferenz 366

AWS Encryption SDK Entwicklerhandbuch

--no-overwrite

Uberschreibt keine Dateien. Wenn die Ausgabedatei existiert, tiberspringt die AWS Encryption
CLI stattdessen die entsprechende Eingabe.

--Suffix

Gibt ein benutzerdefiniertes Dateinamensuffix fur Dateien an, die die AWS Encryption CLI
erstellt. Wenn Sie kein Suffix angeben wollen, verwenden Sie den Parameter ohne Wert (- -
suffix).

Wenn der - -output-Parameter keinen Dateinamen angibt, hat der Ausgabedateiname
standardmafig den gleichen Namen wie die Eingabedatei, jedoch mit dem Suffix. Das Suffix
fur Verschlisselungsbefehle ist . encrypted. Das Suffix fir Entschlisselungsbefehle ist
.decrypted.

--encode

Wendet die Base64-Codierung (binar in Text) auf die Ausgabe an. Die Kodierung verhindert,
dass das Shell-Host-Programm Nicht-ASCII-Zeichen im Ausgabetext falsch interpretiert.

Verwenden Sie diesen Parameter, wenn Sie eine verschlisselte Ausgabe nach stdout
(--output -) schreiben, insbesondere in einer PowerShell Konsole, auch wenn Sie die
Ausgabe an einen anderen Befehl weiterleiten oder sie in einer Variablen speichern.

--metadata-output

Gibt einen Speicherort flir Metadaten tber die kryptografischen Operationen an. Geben Sie einen
Pfad und einen Dateinamen ein. Wenn das Verzeichnis nicht vorhanden ist, schlagt der Befehl
fehl. Um die Metadaten in die Befehlszeile zu schreiben (stdout), verwenden Sie -.

Sie kénnen die Befehlsausgabe (--output) und Metadatenausgaben (--metadata-output)
nicht im selben Befehl auf stdout schreiben. Auch wenn der Wert von --input oder --output
ein Verzeichnis (ohne Dateinamen) ist, kdnnen Sie die Metadatenausgabe nicht in das gleiche
Verzeichnis oder in ein Unterverzeichnis dieses Verzeichnisses schreiben.

Wenn Sie eine vorhandene Datei angeben, hangt die AWS Encryption CLI standardmafig neue
Metadatensatze an jeden Inhalt der Datei an. Mit dieser Funktion kénnen Sie eine einzige Datei
erstellen, die die Metadaten flr alle lhre kryptografischen Operationen enthalt. Um den Inhalt einer
bestehenden Datei zu Gberschreiben, verwenden Sie den --overwrite-metadata-Parameter.

Die AWS Encryption CLI gibt fir jeden Verschlisselungs- oder Entschlisselungsvorgang, den der
Befehl ausfihrt, einen JSON-formatierten Metadatensatz zurtick. Jeder Metadatensatz enthalt die

Syntax und Parameterreferenz 367

AWS Encryption SDK Entwicklerhandbuch

vollstandigen Pfade zur Ein- und Ausgabedatei, den Verschlisselungskontext, das Algorithmen-
Paket und andere praktische Informationen, anhand derer Sie die Operation Uberprifen und
sicherstellen kénnen, ob sie Ihren Sicherheitsstandards entspricht.

--overwrite-metadata

Uberschreibt den Inhalt in der Metadaten-Ausgabedatei. StandardmaRig fiigt der - -
metadata-output-Parameter Metadaten an vorhandenen Inhalt der Datei an.

--suppress-metadata (-S)

Unterdrickt die Metadaten Uber die Verschlusselungs- oder Entschlisselungsoperation.

--commitment-policy

Gibt die Commitment-Richtlinie fur Befehle zum Verschlisseln und Entschlisseln an. Die
Commitment-Richtlinie bestimmt, ob Ihre Nachricht mit der Sicherheitsfunktion Key Commitment
ver- oder entschlisselt wird.

Der --commitment-policy Parameter wurde in Version 1.8 eingefuhrt. x. Es ist gultig far
Befehle zum Verschliisseln und Entschlisseln.

In Version 1.8. x, die AWS Encryption CLI verwendet die forbid-encrypt-allow-decrypt
Commitment-Richtlinie fur alle Verschlisselungs- und Entschlisselungsvorgdnge. Wenn Sie

den --wrapping-keys Parameter in einem Verschlisselungs- oder Entschlisselungsbefehl
verwenden, ist ein --commitment-policy Parameter mit dem forbid-encrypt-allow-
decrypt Wert erforderlich. Wenn Sie den --wrapping-keys Parameter nicht verwenden,

ist der --commitment-policy Parameter ungultig. Wenn Sie eine Verpflichtungsrichtlinie
festlegen, wird ausdricklich verhindert, dass sich |Ihre Verpflichtungsrichtlinie automatisch andert,
require-encrypt-require-decrypt wenn Sie auf Version 2.1 aktualisieren. x

Ab Version 2.1. x, alle Werte der Verpflichtungspolitik werden unterstutzt. Der --commitment-
policy Parameter ist optional und der Standardwert istrequire-encrypt-require-
decrypt.

Dieser Parameter hat die folgenden Werte:

« forbid-encrypt-allow-decrypt— Mit Schllsselzusage kann nicht verschliisselt werden.
Es kann Chiffretexte entschlisseln, die mit oder ohne Schllisselbindung verschlisselt wurden.

In Version 1.8. x, das ist der einzig gultige Wert. Die AWS Encryption CLI verwendet die
forbid-encrypt-allow-decrypt Commitment-Richtlinie fur alle Verschlisselungs- und
Entschllisselungsvorgange.

Syntax und Parameterreferenz 368

AWS Encryption SDK Entwicklerhandbuch

* require-encrypt-allow-decrypt— Verschlisselt nur mit Schlisselzusage. Entschlisselt
mit und ohne Schlisselbindung. Dieser Wert wurde in Version 2.1 eingefuhrt. x.

* require-encrypt-require-decrypt(Standard) — Verschlisselt und entschliisselt nur mit
Schlusselzusage. Dieser Wert wurde in Version 2.1 eingefiihrt. x. Dies ist der Standardwert in
den Versionen 2.1. x und spater. Mit diesem Wert entschlisselt die AWS Encryption CLI keinen
Chiffretext, der mit friiheren Versionen von verschlisselt wurde. AWS Encryption SDK

Ausflhrliche Informationen zur Festlegung |hrer Verpflichtungsrichtlinie finden Sie unter. Migrieren
Sie lhre AWS Encryption SDK

--encryption-context (-c)

Gibt einen Verschlusselungskontext fur die Operation an. Dieser Parameter ist nicht erforderlich,
wird jedoch empfohlen.

* In einem --encrypt -Befehl geben Sie ein oder mehrere name=value Paare an. Verwenden
Sie Leerzeichen, um die zu trennen.

* Geben Sie in einem --decrypt Befehl name=value Paare, name Elemente ohne Werte oder
beides ein.

Wenn der name oder value in einem name=value-Paar Leerzeichen oder Sonderzeichen
enthalt, schlieRen Sie gesamte Paar in Anfihrungszeichen ein. Beispiel, --encryption-
context "department=software development".

--buffer (-b) [Eingeflhrt in Version 1.9. x und 2.2.]

Gibt Klartext erst zurlick, nachdem alle Eingaben verarbeitet wurden, einschlie3lich der
Uberpriifung der digitalen Signatur, falls eine vorhanden ist.

-- max-encrypted-data-keys [Eingefuhrt in Version 1.9. x und 2.2. x]

Gibt die maximale Anzahl verschliusselter Datenschlissel in einer verschlisselten Nachricht an.
Dieser Parameter ist optional.

Gultige Werte sind 1 — 65.535. Wenn Sie diesen Parameter weglassen, erzwingt die AWS
Encryption CLI kein Maximum. Eine verschlisselte Nachricht kann bis zu 65.535 (216 — 1)
verschlisselte Datenschlissel enthalten.

Sie konnen diesen Parameter in Verschlisselungsbefehlen verwenden, um eine falsch formatierte
Nachricht zu verhindern. Sie kdnnen ihn in Entschlisselungsbefehlen verwenden, um bdsartige
Nachrichten zu erkennen und zu verhindern, dass Nachrichten mit zahlreichen verschlisselten

Syntax und Parameterreferenz 369

AWS Encryption SDK Entwicklerhandbuch

Datenschlisseln, die Sie nicht entschlisseln kdnnen, entschliisselt werden. Einzelheiten und ein
Beispiel finden Sie unter Beschrankung verschlisselter Datenschlissel.

--help (-h)

Gibt Verwendung und Syntax in der Befehlszeile aus.

--version

Ruft die Version der AWS Encryption CLI ab.

-V | -vV | -vwV | -vvvv

Zeigt ausfihrliche Informationen, Warnungen und Debugging-Nachrichten an. Die Details in der
Ausgabe nehmen mit der Anzahl der v im Parameter zu. Die detaillierteste Einstellung (-vvvv)
gibt Daten auf Debugging-Ebene von der AWS Encryption CLI und allen von ihr verwendeten
Komponenten zurlck.

--quiet (-q)
Unterdrickt Warnmeldungen, z. B. die Nachricht, die angezeigt wird, wenn Sie eine Ausgabedatei
Uberschreiben.

--master-keys (-m) [Veraltet]

(® Note

Der Parameter --master-keys ist in 1.8 veraltet. x und wurde in Version 2.1 entfernt. x.
Verwenden Sie stattdessen den Parameter --wrapping-keys.

Gibt die in Ver- und Entschlisselungsoperationen verwendeten Masterschllssel an. Sie kdnnen in
einem Befehl mehrere Masterschlisselparameter verwenden.

Der --master-keys-Parameter muss in Verschlisselungsbefehle angegeben werden. Er ist in
Entschlusselungsbefehlen nur erforderlich, wenn Sie einen benutzerdefinierten (nicht-AWS KMS)
HauptschlUsselanbieter verwenden.

Attribute: Der Wert des --master-keys-Parameters besteht aus den folgenden Attributen. Das
Format ist attribute_name=value.

Schlissel

Identifiziert den Wrapping-Schlussel, der bei dem Vorgang verwendet wurde. Das Format ist
ein key= ID-Paar. Das keyAttribut muss in allen Verschlisselungsbefehlen angegeben werden.

Syntax und Parameterreferenz 370

AWS Encryption SDK Entwicklerhandbuch

Wenn Sie einen Befehl AWS KMS key in an encrypt verwenden, kann der Wert des
Schlisselattributs eine Schliissel-ID, ein Schlissel-ARN, ein Aliasname oder ein Alias-ARN
sein. Einzelheiten zu AWS KMS Schlusselkennungen finden Sie unter Schlisselkennungen im
Entwicklerhandbuch.AWS Key Management Service

Das Schlusselattribut ist in Entschllsselungsbefehlen erforderlich, wenn dies beim
HauptschlUsselanbieter nicht der Fall ist. AWS KMS Das Schllsselattribut ist in Befehlen nicht
zulassig, die Daten entschlisseln, die unter einem verschlisselt wurden. AWS KMS key

Sie kénnen mehrere key-Attribute in jedem - -master-keys-Parameterwert angeben. Die
provider-, region- und profile-Attribute gelten jedoch fir alle Masterschlissel im Parameterwert.
Um Masterschlissel mit unterschiedlichen Attributwerten anzugeben, verwenden Sie mehrere
--master-keys-Parameter im Befehl.

provider

Identifiziert den Masterschllssel-Anbieter. Das Format ist ein provider= ID-Paar. Der
Standardwert aws-kms steht fliir. AWS KMS Dieses Attribut ist nur erforderlich, wenn der
HauptschlUsselanbieter dies nicht tut. AWS KMS

Region

Identifiziert den AWS-Region von einem AWS KMS key. Dieses Attribut ist nur gultig fur AWS
KMS keys. Es wird nur verwendet, wenn die key-ID keine Region angibt, andernfalls wird es
ignoriert. Wenn es verwendet wird, Gberschreibt es die Standardregion im AWS CLI namens
profile.

Profil

Identifiziert ein AWS CLI benanntes Profil. Dieses Attribut ist nur gultig fur AWS KMS keys. Die
Region im Profil wird nur verwendet, wenn die key-ID keine Region angibt und es kein region-
Attribut im Befehl gibt.

Erweiterte Parameter

--algorithm

Gibt ein alternatives Algorithmen-Paket an. Dieser Parameter ist optional und nur in
VerschlUsselungsbefehlen gultig.

Wenn Sie diesen Parameter weglassen, verwendet die AWS Encryption CLI eine der
Standard-Algorithmus-Suiten fur die in Version 1.8 AWS Encryption SDK eingefuhrte. x. Beide

Syntax und Parameterreferenz 371

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK Entwicklerhandbuch

Standardalgorithmen verwenden AES-GCM mit einer HKDF -, einer ECDSA-Signatur und einem
256-Bit-Verschlisselungsschlissel. Man verwendet Key Commitment, man nicht. Die Wahl der
Standard-Algorithmus-Suite wird durch die Commitment-Richtlinie fir den Befehl bestimmt.

Die Standard-Algorithmus-Suiten werden fir die meisten Verschlisselungsvorgange empfohlen.
Eine Liste gultiger Werte finden Sie unter den Werten fir den algorithm-Parameter in Read the
Docs.

--frame-length

Erstellt die Ausgabe mit angegebenen Frame-Lange. Dieser Parameter ist optional und nur in
VerschlUsselungsbefehlen gultig.

Geben Sie einen Wert in Bytes ein. Glltige Werte sind 0 und 1 — 2231 - 1. Ein Wert von 0 steht
fur Daten ohne Frame. Die Standardeinstellung ist 4096 (Byte).

(® Note

Verwenden Sie nach Mdglichkeit gerahmte Daten. Das AWS Encryption SDK

unterstutzt Daten ohne Frames nur fur die Verwendung in alteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK kdnnen immer noch nicht gerahmten
Chiffretext generieren. Alle unterstitzten Sprachimplementierungen kdnnen gerahmten
und ungerahmten Chiffretext entschlisseln.

--max-length

Gibt die maximale Frame-GrolRe (oder die maximale Inhaltslange flr Nachrichten ohne Frame)

in Bytes an, die aus verschlisselten Nachrichten gelesen werden. Dieser Parameter ist optional
und nur in Entschlisselungsbefehlen gultig. Es wurde entwickelt, um Sie vor der Entschlisselung
extrem grol3er bdsartiger Verschlisselungstexte zu schitzen.

Geben Sie einen Wert in Bytes ein. Wenn Sie diesen Parameter weglassen, wird die Framegroe
beim AWS Encryption SDK Entschlisseln nicht begrenzt.

--caching

Aktiviert das DatenschliUssel-Caching, womit Datenschllssel wiederverwendet werden kdnnen,
statt fur jede Eingabedatei einen neuen Datenschissel zu generieren. Dieser Parameter
unterstitzt ein erweitertes Szenario. Lesen Sie unbedingt die Dokumentation zum Datenschlissel-
Caching, bevor Sie diese Funktion verwenden.

Syntax und Parameterreferenz 372

https://en.wikipedia.org/wiki/HKDF
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution

AWS Encryption SDK Entwicklerhandbuch

Der - -caching-Parameter hat die folgenden Attribute.

capacity (erforderlich)
Legt die maximale Anzahl der Eintrage im Cache fest.

Der minimale Wert betragt 1. Es gibt keinen Hochstwert.
max_age (erforderlich)

Ermitteln Sie, wie lange Cache-Eintrage in Sekunden verwendet werden, und zwar ab dem
Zeitpunkt, zu dem sie dem Cache hinzugefugt werden.

Geben Sie einen Wert grélier als 0 ein. Es gibt keinen Hochstwert.

max_messages_encrypted (optional)

Legt die maximale Anzahl der Nachrichten fest, die ein im Cache befindlicher Eintrag
verschlisseln kann.

Gultige Werte sind 1 — 2732. Der Standardwert ist 2432 (Nachrichten).

max_bytes_encrypted (optional)

Legt die maximale Anzahl der Bytes fest, die ein im Cache befindlicher Eintrag verschlisseln
kann.

Gultige Werte sind 0 und 1 — 2763 - 1. Der Standardwert ist 2263 - 1 (Nachrichten). Bei
einem Wert von 0 kénnen Sie Datenschlissel-Caching nur verwenden, wenn Sie leere
Nachrichtenzeichenfolgen verschlisseln.

Versionen der AWS Encryption CLI

Wir empfehlen, die neueste Version der AWS Encryption CLI zu verwenden.

(® Note

Versionen der AWS Encryption CLI vor 4.0.0 befinden sich in der end-of-supportPhase.

Sie kénnen problemlos von Version 2.1 aus aktualisieren. x und héher auf die neueste
Version der AWS Encryption CLI ohne Code- oder Datenéanderungen. In Version 2.1 wurden
jedoch neue Sicherheitsfunktionen eingefluihrt. x sind nicht abwartskompatibel. Um von
Version 1.7 zu aktualisieren. x oder friher, Sie mussen zuerst auf die neueste Version 1
aktualisieren. x-Version der AWS Encryption CLI. Details hierzu finden Sie unter Migrieren
Sie lhre AWS Encryption SDK.

Versionen 373

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

Neue Sicherheitsfunktionen wurden urspringlich in den AWS Encryption CLI Versionen 1.7
veroffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Hinweise zu wichtigen Versionen von finden Sie unterVersionen von AWS Encryption SDK. AWS
Encryption SDK

Welche Version verwende ich?
Wenn Sie mit der AWS Encryption CLI noch nicht vertraut sind, verwenden Sie die neueste Version.

Um Daten zu entschlisseln, die mit einer Version AWS Encryption SDK vor Version 1.7 verschlisselt
wurden. x, migrieren Sie zuerst auf die neueste Version der AWS Encryption CLI. Nehmen Sie alle
empfohlenen Anderungen vor, bevor Sie auf Version 2.1 aktualisieren. x oder spéter. Details hierzu
finden Sie unter Migrieren Sie Ihre AWS Encryption SDK.

Weitere Informationen

« Ausfihrliche Informationen zu den Anderungen und Anleitungen fiir die Migration zu diesen neuen
Versionen finden Sie unterMigrieren Sie lhre AWS Encryption SDK.

» Eine Beschreibung der neuen AWS Encryption CLI-Parameter und -Attribute finden Sie unterAWS
Encryption SDK CLI Syntax und Parameterreferenz.

In den folgenden Listen werden die Anderungen an der AWS Encryption CLI in Version 1.8
beschrieben. x und 2.1. x.

Ausfithrung 1.8. x Anderungen an der AWS Encryption CLI
* Verwirft den Parameter. - -master-keys Verwenden Sie stattdessen den --wrapping-keys-
Parameter.

+ Flgt den Parameter --wrapping-keys () -w hinzu. Er unterstitzt alle Attribute des --master-
keys Parameters. AulRerdem werden die folgenden optionalen Attribute hinzugefiigt, die nur beim
Entschlusseln mit AWS KMS keys gultig sind.

+ Entdeckung

» Discovery-Partition

Versionen 374

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

» Discovery-Konto

Fir benutzerdefinierte Hauptschlisselanbieter benétigen -decrypt Befehle --encrypt und -
entweder einen --wrapping-keys Parameter oder einen --master-keys Parameter (aber
nicht beide). AuRerdem AWS KMS keys erfordert ein --encrypt Befehl mit entweder einen - -
wrapping-keys Parameter oder einen --master-keys Parameter (aber nicht beides).

In einem --decrypt Befehl mit AWS KMS keys ist der --wrapping-keys Parameter optional,
wird aber empfohlen, da er in Version 2.1 erforderlich ist. x. Wenn Sie es verwenden, missen Sie
entweder das identifizierende Attribut oder das Discovery-Attribut mit einem Wert von txue (aber
nicht beide) angeben.

« Flgt den --commitment-policy Parameter hinzu. Der einzige gultige Wert ist forbid-
encrypt-allow-decrypt. Die forbid-encrypt-allow-decrypt Commitment-Richtlinie
wird in allen Befehlen zum Verschllsseln und Entschlisseln verwendet.

In Version 1.8. x, wenn Sie den --wrapping-keys Parameter verwenden, ist ein - -
commitment-policy Parameter mit dem forbid-encrypt-allow-decrypt Wert
erforderlich. Wenn Sie den Wert explizit festlegen, wird verhindert, dass lhre Verpflichtungsrichtlinie
automatisch geandert wird, require-encrypt-require-decrypt wenn Sie auf Version 2.1

aktualisieren. x.

Ausfiihrung 2.1. x Anderungen an der AWS Encryption CLI

» Entfernt den --master-keys Parameter. Verwenden Sie stattdessen den --wrapping-keys-
Parameter.

* Der --wrapping-keys Parameter ist in allen Befehlen zum Verschlisseln und Entschliisseln
erforderlich. Sie miUssen entweder ein Schlisselattribut oder ein Erkennungsattribut mit dem Wert
true (aber nicht beide) angeben.

* Der --commitment-policy Parameter unterstitzt die folgenden Werte. Details hierzu finden Sie
unter Festlegung lhrer Verpflichtungspolitik.

* forbid-encrypt-allow-decrypt
 require-encrypt-allow-decrypt
* require-encrypt-require decrypt (Standard)

* Der --commitment-policy Parameter istin Version 2.1 optional. x. Der Standardwert ist
require-encrypt-require-decrypt.

Versionen 375

AWS Encryption SDK Entwicklerhandbuch

Ausfiihrung 1.9. x und 2.2. x Anderungen an der AWS Encryption CLI

+ Fugtden --decrypt-unsigned Parameter hinzu. Details hierzu finden Sie unter Version 2.2. x.

* Flgtden --buffer Parameter hinzu. Details hierzu finden Sie unter Version 2.2. x.

* Flgtden --max-encrypted-data-keys Parameter hinzu. Details hierzu finden Sie unter
Beschrankung verschlUsselter Datenschlissel.

Version 3.0. x Anderungen an der AWS Encryption CLI

» Fugt Unterstitzung fur Schltissel AWS KMS mit mehreren Regionen hinzu. Details hierzu finden
Sie unter Verwenden Sie mehrere Regionen AWS KMS keys.

Versionen 376

AWS Encryption SDK Entwicklerhandbuch

Datenschlissel-Caching

Das Datenschlissel-Caching speichert Datenschlissel und zugehdrige kryptographische Materialien
in einem Cache. Wenn Sie Daten ver- oder entschlisseln, AWS Encryption SDK sucht der nach
einem passenden Datenschliissel im Cache. Wenn eine Ubereinstimmung gefunden wird, wird

der im Cache gespeicherte Datenschliussel verwendet, statt einen neuen zu generieren. Das
Datenschlissel-Caching kann die Leistung verbessern, die Kosten senken und Ihnen helfen,
innerhalb der Service-Limits zu bleiben, wenn lhre Anwendung gré3er wird.

Ihre Anwendung kann vom Datenschlissel-Caching profitieren, wenn:

+ Sie Datenschlissel wiederverwenden kann.
+ Sie zahlreiche Datenschlussel generiert.

« lhre kryptografischen Operationen unakzeptabel langsam, teuer, begrenzt oder ressourcen-intensiv
sind.

Durch das Zwischenspeichern kann die Nutzung kryptografischer Dienste wie () reduziert werden.
AWS Key Management Service AWS KMS Wenn Sie lhr AWS KMS requests-per-secondLimit
erreichen, kann Caching helfen. Ihre Anwendung kann zwischengespeicherte Schlissel verwenden,
um einige lhrer DatenschlUsselanforderungen zu bearbeiten, anstatt sie aufzurufen. AWS KMS(Sie
kénnen auch im AWS Support Center einen Fall erstellen, um das Limit fir Ihr Konto zu erhéhen.)

Das AWS Encryption SDK hilft Ihnen dabei, lhren Datenschlissel-Cache zu erstellen und

zu verwalten. Es bietet einen lokalen Cache und einen Caching Cryptographic Materials
Manager (Caching CMM), der mit dem Cache interagiert und die von Ihnen festgelegten
Sicherheitsschwellenwerte durchsetzt. Durch die Kombination dieser Komponenten profitieren
Sie von der Effizienz der Wiederverwendung von Datenschlisseln bei gleichzeitiger Wahrung der
Sicherheit Ihres Systems.

Das Zwischenspeichern von Datenschlisseln ist eine optionale Funktion von, die Sie mit Vorsicht
verwenden sollten. AWS Encryption SDK StandardmafRig AWS Encryption SDK generiert der fur
jeden Verschlusselungsvorgang einen neuen Datenschlissel. Diese Technik unterstitzt bewahrte
kryptografische Methoden gegen eine Ubermalige Wiederverwendung von Datenschlisseln. Im
Allgemeinen sollten Sie das Datenschlissel-Caching nur dann verwenden, wenn es erforderlich
ist, um lhre Leistungsziele zu erfullen. Verwenden Sie dann die Sicherheitsschwellenwerte fur das

Datenschlissel-Caching, um sicherzustellen, dass Sie die minimale Menge an Caching verwenden,
die zur Erreichung lhrer Kosten- und Leistungsziele erforderlich ist.

377

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/

AWS Encryption SDK Entwicklerhandbuch

Version 3. x of the unterstitzt AWS-Verschlisselungs-SDK for Java nur das Caching-CMM mit

der alten Master-Key-Provider-Schnittstelle, nicht die Keyring-Schnittstelle. Allerdings Version 4.

x von AWS Encryption SDK fir .NET, Version 3. x von der AWS-Verschlisselungs-SDK for Java,
Version 4. x der AWS-Verschlisselungs-SDK for Python, Version 1. x von AWS Encryption SDK fur
Rust und Version 0.1. x oder héher von AWS Encryption SDK for Go unterstitzen den AWS KMS
hierarchischen Schlisselbund, eine alternative Lé6sung zum Zwischenspeichern kryptografischer

Materialien. Mit dem hierarchischen Schliisselbund verschliisselte Inhalte kbnnen nur mit dem AWS
KMS hierarchischen Schlisselbund entschlisselt werden. AWS KMS

Eine ausflhrliche Erlauterung dieser Sicherheitsaspekte finden Sie im Sicherheits-Blog unter AWS
Encryption SDK: So entscheiden Sie, ob das Zwischenspeichern von Datenschlisseln flr lhre
Anwendung geeignet ist. AWS

Themen

» Das Datenschlissel-Caching verwenden

» Festlegen von Cache-Sicherheitsschwellenwerten

» Weitere Informationen zum Datenschliissel-Caching

» Beispiel flr das Datenschlissel-Caching

Das Datenschlissel-Caching verwenden

In diesem Thema erfahren Sie, wie Sie das Datenschliussel-Caching in lhrer Anwendung verwenden.
Es fuhrt Sie Schritt flr Schritt durch den Vorgang. AnschlieRend kombiniert es die Schritte in einem
einfachen Beispiel, das das Datenschissel-Caching in einer Operation zum Verschlisseln einer
Zeichenfolge verwendet.

Die Beispiele in diesem Abschnitt zeigen, wie Version 2.0 verwendet wird. x und spater von AWS

Encryption SDK. Beispiele, die frihere Versionen verwenden, finden Sie in der Release-Liste des

GitHub Repositorys fur Ihre Programmiersprache nach |hrer Version.

Vollstandige und getestete Beispiele fur die Verwendung von Datenschlissel-Caching in finden Sie
AWS Encryption SDK unter:

* C/C++: caching_cmm.cpp

+ Java: SimpleDataKeyCachingExample .java

» JavaScript Browser: caching_cmm.ts

» JavaScript Node.js: caching_cmm.ts

Das Datenschliissel-Caching verwenden 378

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts

AWS Encryption SDK Entwicklerhandbuch

» Python: data_key_caching_basic.py

AWS Encryption SDK Fir .NET wird das Zwischenspeichern von Datenschliisseln nicht unterstitzt.

Themen

* Verwenden der Zwischenspeicherung von Datenschlisseln: Step-by-step

» Beispiel fir das Datenschlissel-Caching: Verschlisseln einer Zeichenfolge

Verwenden der Zwischenspeicherung von DatenschlUsseln: Step-by-step

Diese step-by-step Anweisungen zeigen lhnen, wie Sie die Komponenten erstellen, die Sie fir die
Implementierung des Zwischenspeichers von Datenschlisseln bendtigen.

» Erstellen Sie einen Datenschlissel-Cache. In diesen Beispielen verwenden wir den lokalen Cache,
den der AWS Encryption SDK bereitstellt. Wir beschranken den Cache auf zehn Datenschliissel.

C
// Cache capacity (maximum number of entries) is required
size_t cache_capacity = 10;
struct aws_allocator *allocator = aws_default_allocator();
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);
Java

Das folgende Beispiel verwendet Version 2. x der AWS-Verschlisselungs-SDK for Java.
Ausfuhrung 3. x of the AWS-Verschlisselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlisseln. Mit Version 3. x, Sie kdnnen auch den AWS KMS
hierarchischen Schlisselbund verwenden, eine alternative Losung zum Zwischenspeichern
kryptografischer Materialien.

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);

Verwenden der Zwischenspeicherung von Datenschliisseln: Step-by-step 379

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK Entwicklerhandbuch

JavaScript Browser

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)

JavaScript Node.js

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)

Python

Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

+ Erstellen Sie einen HauptschlUsselanbieter (Java und Python) oder einen Schlisselbund (C und
JavaScript). In diesen Beispielen wird ein Hauptschlisselanbieter AWS Key Management Service
(AWS KMS) oder ein kompatibler AWS KMS Schlusselbund verwendet.

C
// Create an AWS KMS keyring
// The input is the Amazon Resource Name (ARN)
// of an AWS KMS key
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_azrn);
Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlisselungs-SDK for
Java. Ausfuhrung 3. x of the AWS-Verschlisselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlisseln. Mit Version 3. x, Sie kdnnen auch den AWS KMS

Verwenden der Zwischenspeicherung von Datenschliisseln: Step-by-step 380

AWS Encryption SDK Entwicklerhandbuch

hierarchischen Schlisselbund verwenden, eine alternative Loésung zum Zwischenspeichern

kryptografischer Materialien.

// Create an AWS KMS master key provider

// The input is the Amazon Resource Name (ARN)

// of an AWS KMS key

MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.builder().buildStrict(kmsKeyAzrn);

JavaScript Browser

Im Browser mussen Sie Ihre Anmeldeinformationen sicher injizieren. In diesem Beispiel
werden Anmeldeinformationen in einem Webpack (kms.webpack.config) definiert, mit dem
Anmeldeinformationen zur Laufzeit aufgel0st werden. Es erstellt eine AWS KMS Client-
Provider-Instanz aus einem AWS KMS Client und den Anmeldeinformationen. Wenn es dann
den Schlusselbund erstellt, Gbergibt es den Client-Provider zusammen mit dem () an den
Konstruktor. AWS KMS key generatorKeyId)

const { accessKeyId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
b

/* Create an AWS KMS keyring
* You must configure the AWS KMS keyring with at least one AWS KMS key
* The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeyId,
keyIds,
b

JavaScript Node.js

/* Create an AWS KMS keyring

Verwenden der Zwischenspeicherung von Datenschliisseln: Step-by-step

381

AWS Encryption SDK Entwicklerhandbuch

& The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

Python

Create an AWS KMS master key provider

The input is the Amazon Resource Name (ARN)

of an AWS KMS key

key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

» Erstellen Sie einen Manager fur kryptografische Materialien zum Zwischenspeichern (Caching
CMM).

Ordnen Sie Ihr Caching-CMM lhrem Cache und lhrem Hauptschlisselanbieter oder Schlisselbund
zu. Legen Sie dann die Schwellenwerte fur die Cache-Sicherheit auf dem Cache-CMM fest.

In der AWS-Verschlisselungs-SDK for C kénnen Sie ein Caching-CMM aus einem zugrunde
liegenden CMM, z. B. dem Standard-CMM, oder aus einem Schlisselbund erstellen. In diesem
Beispiel wird der Caching-CMM aus einem Schlisselbund erstellt.

Nachdem Sie das Caching-CMM erstellt haben, kénnen Sie |hre Verweise auf den
Schlisselbund und den Cache freigeben. Details hierzu finden Sie unter the section called
‘Referenzzahlung”.

// Create the caching CMM

// Set the partition ID to NULL.

// Set the required maximum age value to 60 seconds.

struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL,
60, AWS_TIMESTAMP_SECS);

// Add an optional message threshold

Verwenden der Zwischenspeicherung von Datenschliisseln: Step-by-step 382

AWS Encryption SDK Entwicklerhandbuch

// The cached data key will not be used for more than 10 messages.
aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlisselungs-SDK
for Java. Ausfuhrung 3. x of the unterstitzt AWS-Verschlusselungs-SDK for Java kein
Zwischenspeichern von Datenschlisseln, aber es unterstitzt den AWS KMS hierarchischen

SchlUsselbund, eine alternative Losung zum Zwischenspeichern kryptografischer Materialien.

/-k
* Security thresholds
& Max entry age is required.
* Max messages (and max bytes) per entry are optional
*/
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10;

//Create a caching CMM
CryptoMaterialsManager cachingCmm =
CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)

.withCache(cache)
.withMaxAge(MAX_ENTRY_AGE_SECONDS,

TimeUnit.SECONDS)
.withMessageUselLimit(MAX_ENTRY_MSGS)
.build();

JavaScript Browser

/*
* Security thresholds
ik Max age (in milliseconds) is required.
ks Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */

Verwenden der Zwischenspeicherung von Datenschliisseln: Step-by-step 383

AWS Encryption SDK Entwicklerhandbuch

const cachingCmm = new WebCryptoCachingMaterialsManagexr({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

D

JavaScript Node.js

/-k
* Security thresholds
* Max age (in milliseconds) is required.
* Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new NodeCachingMaterialsManager({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

1)

Python

Security thresholds

Max entry age is required.

Max messages (and max bytes) per entry are optional
#

MAX_ENTRY_AGE_SECONDS = 60.0

MAX_ENTRY_MESSAGES = 10

Create a caching CMM

caching_cmm = CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=MAX_ENTRY_MESSAGES

Verwenden der Zwischenspeicherung von Datenschliisseln: Step-by-step 384

AWS Encryption SDK Entwicklerhandbuch

Das ist alles. Lassen Sie sie dann den Cache flir Sie AWS Encryption SDK verwalten oder fligen Sie
Ihre eigene Cache-Verwaltungslogik hinzu.

Wenn Sie das Zwischenspeichern von Datenschliisseln in einem Aufruf zum Verschlisseln
oder Entschlisseln von Daten verwenden moéchten, geben Sie |hr Caching-CMM anstelle eines
Hauptschlisselanbieters oder eines anderen CMM an.

® Note

Wenn Sie Datenstrome oder Daten unbekannter Gro3e verschlisseln, stellen Sie sicher,
dass Sie die DatengroRe in der Anfrage angeben. Beim AWS Encryption SDK Verschlisseln
von Daten unbekannter Grélie wird kein Datenschlissel-Caching verwendet.

In der AWS-Verschlisselungs-SDK for C erstellen Sie eine Sitzung mit dem Caching-CMM und
verarbeiten dann die Sitzung.

StandardmaRig werden Datenschlissel AWS Encryption SDK nicht zwischengespeichert,
wenn die Nachrichtengrof3e unbekannt und unbegrenzt ist. Um eine Zwischenspeicherung
zuzulassen, wenn Sie die genaue Datengréf3e nicht kennen, verwenden Sie die
aws_cryptosdk_session_set_message_bound-Methode, um eine maximale GroRe fiir
die Nachricht festzulegen. Legen Sie die Grenze grél3er als die geschatzte NachrichtengréfRe
fest. Wenn die tatsachliche NachrichtengréfRe die Grenze Uberschreitet, schliagt die
Verschlisselungsoperation fehl.

/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process(
session, output_buffer, output_capacity, &output_produced,
input_buffer, input_len, &input_consumed);

/* Release your references to the caching CMM and the session. */

Verwenden der Zwischenspeicherung von Datenschliisseln: Step-by-step 385

AWS Encryption SDK Entwicklerhandbuch

aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlisselungs-SDK for
Java. Ausfiihrung 3. x of the AWS-Verschlisselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlisseln. Mit Version 3. x, Sie kénnen auch den AWS KMS
hierarchischen Schlisselbund verwenden, eine alternative Losung zum Zwischenspeichern
kryptografischer Materialien.

// When the call to encryptData specifies a caching CMM,

// the encryption operation uses the data key cache

final AwsCrypto encryptionSdk = AwsCrypto.standard();

return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser
const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

Wenn Sie das CMM flir die Zwischenspeicherung in der Datei AWS-Verschlisselungs-SDK for
JavaScript fur Node.js verwenden, bendtigt die encrypt Methode die Lange des Klartextes.
Wenn Sie sie nicht angeben, wird der Datenschlissel nicht zwischengespeichert. Wenn Sie eine
Lange angeben, aber die von lhnen bereitgestellten Klartextdaten diese Lange tberschreiten,
schlagt die Verschlisselungsoperation fehl. Wenn Sie die genaue Lange des Klartextes nicht
kennen, z. B. beim Streamen von Daten, geben Sie den grof3ten erwarteten Wert an.

const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength:
plaintext.length })

Python

Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

When the call to encrypt specifies a caching CMM,
the encryption operation uses the data key cache
#

encrypted_message, header = client.encrypt(

Verwenden der Zwischenspeicherung von Datenschliisseln: Step-by-step 386

AWS Encryption SDK Entwicklerhandbuch

source=plaintext_source,
materials_manager=caching_cmm

Beispiel fur das Datenschliussel-Caching: Verschllsseln einer Zeichenfolge

Dieses einfache Codebeispiel verwendet das Datenschlissel-Caching beim Verschlisseln einer
Zeichenfolge. Sie kombiniert den Code aus der step-by-step Prozedur zu Testcode, den Sie

ausfuhren kdnnen.

Das Beispiel erstellt einen lokalen Cache und einen Hauptschlisselanbieter oder Schlisselbund flr

einen AWS KMS key. Anschlieltend werden der lokale Cache und der Hauptschllisselanbieter oder

der Schlusselbund verwendet, um ein Caching-CMM mit entsprechenden Sicherheitsschwellenwerten

zu erstellen. In Java und Python spezifiziert die Verschlisselungsanforderung das Caching-CMM, die

zu verschlisselnden Klartextdaten und einen Verschlisselungskontext. In C wird der Caching-CMM
in der Sitzung angegeben und die Sitzung wird fir die Verschlisselungsanfrage bereitgestellt.

Um diese Beispiele auszuflihren, missen Sie den Amazon-Ressourcennamen (ARN) eines angeben
AWS KMS key. Stellen Sie sicher, dass Sie die Berechtigung fur die Verwendung des AWS KMS key
zum Generieren eines DatenschlUssels besitzen.

Ausfuhrlichere Beispiele aus der Praxis fur die Erstellung und Verwendung eines Datenschlissel-
Caches finden Sie unterBeispielcode fur das Zwischenspeichern von DatenschlUsseln.

C

* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.

* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
* this file except in compliance with the License. A copy of the License is
* located at

ik http://aws.amazon.com/apache2.0/

* or in the "license" file accompanying this file. This file is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied. See the License for the specific language governing permissions and

* limitations under the License.

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 387

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users

AWS Encryption SDK Entwicklerhandbuch

#include <aws/cryptosdk/cache.h>
#include <aws/cryptosdk/cpp/kms_keyring.h>
#include <aws/cryptosdk/session.h>

void encrypt_with_caching(
uint8_t *ciphertext, // output will go here (assumes ciphertext_capacity
bytes already allocated)
size_t *ciphertext_len, // length of output will go here
size_t ciphertext_capacity,
const char *kms_key_arn,
int max_entry_age,
int cache_capacity) {
const uint64_t MAX_ENTRY_MSGS = 100;

struct aws_allocator *allocator = aws_default_allocator();

// Load error strings for debugging
aws_cryptosdk_load_error_strings();

// Create a keyring
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_azrn);

// Create a cache
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

// Create a caching CMM
struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(
allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);
if (!caching_cmm) abort();

if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS))
abort();

// Create a session
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);
if (!session) abort();

// Encryption context

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 388

AWS Encryption SDK Entwicklerhandbuch

struct aws_hash_table *enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

if (!enc_ctx) abort();

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");

if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL))
abort();

// Plaintext data to be encrypted

const char *my_data = "My plaintext data";

size_t my_data_len = strlen(my_data);

if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();

// When the session uses a caching CMM, the encryption operation uses the data
key cache
// specified in the caching CMM.
size_t bytes_read;
if (aws_cryptosdk_session_process(
session,
ciphertext,
ciphertext_capacity,
ciphertext_len,
(const uint8_t *)my_data,
my_data_len,
&bytes_read))
abort();
if (laws_cryptosdk_session_is_done(session) || bytes_read != my_data_len)
abort();

aws_cryptosdk_session_destroy(session);
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlisselungs-SDK for

Java. Ausfuhrung 3. x of the AWS-Verschlisselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschliusseln. Mit Version 3. x, Sie kdnnen auch den AWS KMS
hierarchischen Schlusselbund verwenden, eine alternative Losung zum Zwischenspeichern

kryptografischer Materialien.

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 389

AWS Encryption SDK

Entwicklerhandbuch

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.examples;

import
import
import
import
import
import
import
import
import
import
import
import

/**
* <p>

* Encr

* <p>

com.
com.
com.
com.
com.
com.
com.
com.

java.
java.
java.
java.

ypts

amazonaws

amazonaws.
.encryptionsdk.
.encryptionsdk.
amazonaws.

amazonaws
amazonaws

amazonaws.
amazonaws.

amazonaws

.encryptionsdk.

encryptionsdk.

encryptionsdk.
encryptionsdk.
encryptionsdk.

.encryptionsdk.
nio.charset.StandardCharsets;
util.Collections;
util.Map;

util.concurrent.TimeUnit;

AwsCrypto;

CryptoMaterialsManager;
MasterKeyProvider;
caching.CachingCryptoMaterialsManager;
caching.CryptoMaterialsCache;
caching.LocalCryptoMaterialsCache;
kmssdkv2.KmsMasterKey;
kmssdkv2.KmsMasterKeyProvider;

a string using an &KMS; key and data key caching

* Arguments:

*

* <1i>KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,
see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/

*

developerguide/find-cmk-id-arn.html

* Max entry age: Maximum time (in seconds) that a cached entry can be used
* Cache capacity: Maximum number of entries in the cache

>

public class SimpleDataKeyCachingExample {

* </ol
*/
/*
*/

Security thresholds
Max entry age is required.

Max messages (and max bytes) per data key are optional

private static final int MAX_ENTRY_MSGS = 100;

public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int
cacheCapacity) {

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge

390

AWS Encryption SDK Entwicklerhandbuch

// Plaintext data to be encrypted
byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);

// Encryption context

// Most encrypted data should have an associated encryption context

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-
Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =
Collections.singletonMap("purpose", "test");

// Create a master key provider
MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.builder()
.buildStrict(kmsKeyAzrn);

// Create a cache
CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);

// Create a caching CMM
CryptoMaterialsManager cachingCmm =

CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
.withCache(cache)
.withMaxAge(maxEntryAge, TimeUnit.SECONDS)
.withMessageUselLimit(MAX_ENTRY_MSGS)
.build();

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, myData,
encryptionContext).getResult();
}

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/* This is a simple example of using a caching CMM with a KMS keyring

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 391

AWS Encryption SDK Entwicklerhandbuch

* to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.

*/

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
WebCryptoCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from 'eaws-crypto/client-browser'
import { toBase64 } from '@aws-sdk/util-base64-browser'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient() .
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* This is injected by webpack.
* The webpack.DefinePlugin or @aws-sdk/karma-credential-loader will replace the
values when bundling.
* The credential values are pulled from @aws-sdk/credential-provider-node
* Use any method you like to get credentials into the browser.
* See kms.webpack.config
*/
declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* This is done to facilitate testing. */

export async function testCachingCMMExample() {
/* This example uses an &KMS; keyring. The generator key in a &KMS; keyring
generates and encrypts the data key.

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 392

AWS Encryption SDK Entwicklerhandbuch

* The caller needs kms:GenerateDataKey permission on the &KMS; key in
generatorKeyId.
*/
const generatorKeyld =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding additional KMS keys that can decrypt.
* The caller must have kms:Encrypt permission for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.
* In “generatorId’, this &KMS; key is identified by its alias ARN.
* In “keyIds', this &KMS; key is identified by its key ARN.
* In practice, you would specify different &KMS; keys,
* or omit the “keyIds' parameter.
* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [
'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* Need a client provider that will inject correct credentials.

* The credentials here are injected by webpack from your environment bundle is
created

* The credential values are pulled using @aws-sdk/credential-provider-node.

* See kms.webpack.config

* You should inject your credential into the browser in a secure manner

* that works with your application.

*/

const { accessKeyId, secretAccessKey, sessionToken } = credentials

/* getClient takes a KMS client constructor
* and optional configuration values.
* The credentials can be injected here,
* because browsers do not have a standard credential discovery process the way
Node.js does.
*/
const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken,

iy

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 393

AWS Encryption SDK Entwicklerhandbuch

1)

/* You must configure the KMS keyring with your &KMS; keys */
const keyring = new KmsKeyringBrowser({

clientProvider,

generatorKeyld,

keyIds,
1)

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The ‘capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum number of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 394

AWS Encryption SDK

Entwicklerhandbuch

*/
const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.

*

*

*

This value is optional,
but you should configure the lowest practical value.

/

const maxMessagesEncrypted = 10

const cachingCMM = new WebCryptoCachingMaterialsManagexr({

*

*

backingMaterials: keyring,
cache,

partition,

maxAge,

maxBytesEncrypted,
maxMessagesEncrypted,

Encryption context is a *very* powerful tool for controlling
and managing access.
When you pass an encryption context to the encrypt function,

the encryption context is cryptographically bound to the ciphertext.

If you don't pass in the same encryption context when decrypting,
the decrypt function fails.

The encryption context is ***npot*** secret!

Encrypted data is opaque.

You can use an encryption context to assert things about the encrypted data.

The encryption context helps you to determine

whether the ciphertext you retrieved is the ciphertext you expect to decrypt.

For example, if you are are only expecting data from 'us-west-2',

the appearance of a different AWS Region in the encryption context can indicate

malicious interference.
* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context

*

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.
* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context

*

/

const encryptionContext = {

stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2',

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge

395

AWS Encryption SDK Entwicklerhandbuch

}

/* Find data to encrypt. */
const plainText = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data.

* The caching CMM only reuses data keys

* when it know the length (or an estimate) of the plaintext.

* However, in the browser,

* you must provide all of the plaintext to the encrypt function.

* Therefore, the encrypt function in the browser knows the length of the
plaintext

* and does not accept a plaintextLength option.

*/

const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })

/* Log the plain text

* only for testing and to show that it works.

*/
console.log('plainText:', plainText)
document.write('</br>plainText:' + plainText + '</br>")

/* Log the base64-encoded result

* so that you can try decrypting it with another AWS Encryption SDK
implementation.

*/

const resultBase64 = toBaseb64(result)

console.log(resultBase64)

document.write(resultBaseb4)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 396

AWS Encryption SDK Entwicklerhandbuch

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the ‘decrypt’ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

D

/* Log the clear message
* only for testing and to show that it works.
*/
document.write('</br>Decrypted:' + plaintext)
console.log(plaintext)

/* Return the values to make testing easy. */
return { plainText, plaintext }

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
NodeCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from 'e@aws-crypto/client-node’

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient()".
*/

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 397

AWS Encryption SDK Entwicklerhandbuch

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

export async function cachingCMMNodeSimpleTest() {
/* An &KMS; key is required to generate the data key.
* You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.
*/
const generatorKeyId =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding alternate &KMS; keys that can decrypt.
* Access to kms:Encrypt is required for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.
* In “generatorId’, this &KMS; key is identified by its alias ARN.
* In “keyIds®, this &KMS; key is identified by its key ARN.
* In practice, you would specify different &KMS; keys,
* or omit the “keyIds® parameter.
* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [
'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* The &KMS; keyring must be configured with the desired &KMS; keys
* This example passes the keyring to the caching CMM
* instead of using it directly.
*/

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The ‘capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 398

AWS Encryption SDK Entwicklerhandbuch

* as the second parameter. This value is in milliseconds.
*/

const capacity = 100

const cache = getlLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum amount of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxMessagesEncrypted = 10

const cachingCMM = new NodeCachingMaterialsManager({
backingMaterials: keyring,
cache,
partition,
maxAge,
maxBytesEncrypted,
maxMessagesEncrypted,

1)

/* Encryption context is a *very* powerful tool for controlling
* and managing access.

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 399

AWS Encryption SDK Entwicklerhandbuch

* When you pass an encryption context to the encrypt function,

* the encryption context is cryptographically bound to the ciphertext.

* If you don't pass in the same encryption context when decrypting,

* the decrypt function fails.

* The encryption context is ***not*** secret!

* Encrypted data is opaque.

* You can use an encryption context to assert things about the encrypted data.

* The encryption context helps you to determine

* whether the ciphertext you retrieved is the ciphertext you expect to decrypt.

* For example, if you are are only expecting data from 'us-west-2',

* the appearance of a different AWS Region in the encryption context can indicate
malicious interference.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context

*

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context

*/

const encryptionContext = {

stage: 'demo',

purpose: 'simple demonstration app',

origin: 'us-west-2',

/* Find data to encrypt. A simple string. */
const cleartext = 'asdf'

/* Encrypt the data.
* The caching CMM only reuses data keys
* when it know the length (or an estimate) of the plaintext.
* If you do not know the length,
* because the data is a stream
* provide an estimate of the largest expected value.

* If your estimate is smaller than the actual plaintext length
* the AWS Encryption SDK will throw an exception.

* If the plaintext is not a stream,

* the AWS Encryption SDK uses the actual plaintext length
* instead of any length you provide.

*/

const { result } = await encrypt(cachingCMM, cleartext, {

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 400

AWS Encryption SDK Entwicklerhandbuch

encryptionContext,
plaintextLength: 4,
)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the ‘decrypt’ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

D

/* Return the values so the code can be tested. */
return { plaintext, result, cleartext, messageHeader }

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"). You
may not use this file except in compliance with the License. A copy of

the License is located at

http://aws.amazon.com/apache2.0/

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 401

AWS Encryption SDK Entwicklerhandbuch

or in the "license" file accompanying this file. This file is

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
"""Example of encryption with data key caching."""
import aws_encryption_sdk

from aws_encryption_sdk import CommitmentPolicy

def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):
"""Encrypts a string using an &KMS; key and data key caching.

:param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key

:param float max_age_in_cache: Maximum time in seconds that a cached entry can
be used

:param int cache_capacity: Maximum number of entries to retain in cache at once

Data to be encrypted

my_data = "My plaintext data"

Security thresholds
Max messages (or max bytes per) data key are optional
MAX_ENTRY_MESSAGES = 100

Create an encryption context
encryption_context = {"purpose": "test"}

Set up an encryption client with an explicit commitment policy. Note that if
you do not explicitly choose a

commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.

client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R

Create a master key provider for the &KMS; key
key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

Create a local cache
cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)

Create a caching CMM

caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,

Beispiel flr das Datenschliissel-Caching: Verschliisseln einer Zeichenfolge 402

AWS Encryption SDK Entwicklerhandbuch

max_age=max_age_in_cache,
max_messages_encrypted=MAX_ENTRY_MESSAGES,

When the call to encrypt data specifies a caching CMM,
the encryption operation uses the data key cache specified
in the caching CMM
encrypted_message, _header = client.encrypt(
source=my_data, materials_manager=caching_cmm,
encryption_context=encryption_context

)

return encrypted_message

Festlegen von Cache-Sicherheitsschwellenwerten

Wenn Sie das Zwischenspeichern von Datenschlisseln implementieren, missen Sie die
Sicherheitsschwellenwerte konfigurieren, die das Caching-CMM durchsetzt.

Die Sicherheitsschwellenwerte helfen Ihnen, die Verwendungsdauer jedes im Cache gespeicherten
Datenschlissels und die Menge der unter jedem DatenschlUssel geschutzten Daten zu begrenzen.
Das Caching-CMM gibt zwischengespeicherte Datenschlissel nur zurtck, wenn der Cacheeintrag
allen Sicherheitsschwellenwerten entspricht. Wenn der Cache-Eintrag einen vorgegebenen
Schwellenwert Uberschreitet, wird der Eintrag fur die aktuelle Operation nicht verwendet und so bald
wie mdglich aus dem Cache entfernt. Die erste Verwendung der einzelnen Datenschlissel (vor dem
Caching) ist davon ausgenommen.

Verwenden Sie als Regel die minimale Menge an Caching, die erforderlich ist, um Ihre Kosten- und
Leistungsziele zu erreichen.

Es speichert AWS Encryption SDK nur DatenschlUssel im Cache, die mithilfe einer

Schlusselableitungsfunktion verschlisselt wurden. Aul3erdem richtet es Obergrenzen flur einige

Schwellenwerte ein. Diese Einschréankungen stellen sicher, dass Datenschlissel nicht Gber ihre
kryptografischen Obergrenzen hinaus wiederverwendet werden. Da lhre Klartext-Datenschlissel
jedoch im Cache gespeichert werden (standardmafig im Arbeitsspeicher), sollten Sie versuchen,
die Zeit zu minimieren, wie lange die Schlissel gespeichert werden. Versuchen Sie auch, die
Datenmenge zu begrenzen, die offengelegt werden kdnnte, wenn ein Schllssel verletzt wird.

Festlegen von Cache-Sicherheitsschwellenwerten 403

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Entwicklerhandbuch

Beispiele fur die Festlegung von Cache-Sicherheitsschwellenwerten finden Sie unter AWS Encryption
SDK: So entscheiden Sie, ob das Zwischenspeichern von Datenschlisseln fir lhre Anwendung
geeignet ist im Sicherheits-Blog. AWS

@ Note

Der Caching-CMM erzwingt alle folgenden Schwellenwerte. Wenn Sie keinen optionalen Wert
angeben, verwendet der Caching-CMM den Standardwert.

Um das Zwischenspeichern von Datenschlisseln voriibergehend zu deaktivieren, AWS
Encryption SDK bieten die Java- und Python-Implementierungen von einen Null-Cache fir
kryptografische Materialien (Null-Cache). Der Null-Cache gibt einen Fehler fur alle GET-
Anfragen zurlck und reagiert nicht auf PUT-Anfragen. Wir empfehlen Ihnen die Verwendung
des Null-Cache, anstatt die Cache-Kapazitat oder den Sicherheitsschwellenwert auf 0 zu
setzen. Weitere Informationen finden Sie im Null-Cache in Java und Python.

Hochstalter (erforderlich)

Legt fest, wie lange ein im Cache gespeicherter Eintrag verwendet werden kann, beginnend ab
dem Zeitpunkt, zu dem er hinzugefligt wurde. Dieser Wert ist erforderlich. Geben Sie einen Wert
gréRer als 0 ein. Der maximale Alterswert wird dadurch AWS Encryption SDK nicht begrenzt.

Alle Sprachimplementierungen von AWS Encryption SDK definieren das maximale Alter in
Sekunden, mit Ausnahme von AWS-Verschlusselungs-SDK for JavaScript, das Millisekunden
verwendet.

Verwenden Sie das kirzeste Intervall, bei dem lhre Anwendung noch vom Cache profitieren
kann. Sie kdnnen die maximale Altersgrenze wie eine Schllisselrotationsrichtlinie verwenden.
Verwenden Sie sie, um die Wiederverwendung von Datenschlisseln einzuschranken, die
Offenlegung von kryptographischem Material zu minimieren und Datenschllssel zu entfernen,
deren Richtlinien sich mdglicherweise geandert haben, wahrend sie im Cache gespeichert waren.

Maximale Anzahl verschlisselter Nachrichten (optional)

Gibt die maximale Anzahl der Nachrichten an, die ein im Cache gespeicherter Datenschliissel
verschlisseln kann. Dieser Wert ist optional. Geben Sie einen Wert zwischen 1 und 2732
Nachrichten ein. Der Standardwert betragt 2432 Nachrichten

Stellen Sie die Anzahl der durch jeden im Cache gespeicherten Schlissel geschitzten
Nachrichten so ein, dass sie grof3 genug ist, um Nutzen aus der Wiederverwendung zu erhalten,

Festlegen von Cache-Sicherheitsschwellenwerten 404

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/caching/NullCryptoMaterialsCache.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.caches.null.html

AWS Encryption SDK Entwicklerhandbuch

aber klein genug, um die Anzahl der Nachrichten zu begrenzen, die bei einer Gefahrdung eines
Schlissels offengelegt werden koénnten.

Maximale Anzahl verschlisselter Bytes (optional)

Gibt die maximale Anzahl der Bytes an, die ein im Cache gespeicherter Datenschlissel
verschlisseln kann. Dieser Wert ist optional. Geben Sie einen Wert zwischen 0 und 2763 - 1 ein.
Der Standardwert lautet 2263 - 1. Bei einem Wert von 0 kénnen Sie Datenschlissel-Caching nur
verwenden, wenn Sie leere Nachrichtenzeichenfolgen verschlisseln.

Die Bytes in der aktuellen Anfrage sind bei der Auswertung dieses Schwellenwerts enthalten.
Wenn die verarbeiteten Bytes plus die aktuellen Bytes den Schwellenwert tiberschreiten, wird der
im Cache gespeicherte Datenschlissel aus dem Cache entfernt, auch wenn er bei einer kleineren
Anfrage verwendet werden hatte kénnen.

Weitere Informationen zum Datenschlussel-Caching

Fir die meisten Anwendungen ist die Standard-Implementierung des Datenschlissel-Cachings

ausreichend, ohne dass benutzerdefinierter Code geschrieben werden muss. Dieser Abschnitt

beschreibt die Standard-Implementierung und einige Details zu Optionen.

Themen

Wie das Datenschlissel-Caching funktioniert

Erstellen eines Cache fur kryptografische Materialien

Erstellen eines Managers von kryptographischen Materialien, der Caching verwendet

Was befinde sich in einem Datenschlissel-Cache-Eintrag?

Verschlisselungskontext: Wie Cache-Eintrage ausgewahlt werden

Benutzt meine Anwendung zwischengespeicherte Datenschlissel?

Wie das DatenschlUssel-Caching funktioniert

Wenn Sie Datenschlissel-Caching in einer Anfrage verwenden, um Daten zu verschlisseln oder

zu entschlisseln, sucht das AWS Encryption SDK zuerst im Cache nach einem DatenschlUssel,

der der Anfrage entspricht. Wenn es eine giiltige Ubereinstimmung findet, verwendet es den

zwischengespeicherten Datenschlissel, um die Daten zu verschlisseln. Andernfalls erzeugt es einen

neuen Datenschlissel, genau wie ohne den Cache.

Weitere Informationen zum Datenschliissel-Caching 405

AWS Encryption SDK Entwicklerhandbuch

Das Datenschliissel-Caching wird nicht fir Daten unbekannter GréRe verwendet, wie z. B.
gestreamte Daten. Auf diese Weise kann das Caching-CMM den Schwellenwert fiir die maximale
Bytezahl ordnungsgemaf’ durchsetzen. Um dieses Verhalten zu vermeiden, fiigen Sie der
Verschlisselungsanfrage die NachrichtengrofRe hinzu.

Beim Zwischenspeichern von Datenschlisseln wird zusatzlich zu einem Cache ein Caching-Manager
fur kryptografisches Material (Caching CMM) verwendet. Der Caching-CMM ist ein spezialisierter
Cryptographic Materials Manager (CMM), der mit einem Cache und einem zugrunde liegenden

CMM interagiert. (Wenn Sie einen Hauptschliusselanbieter oder einen Schlusselbund angeben, AWS
Encryption SDK erstellt dieser ein Standard-CMM fir Sie.) Das zwischengespeicherte CMM speichert
die Datenschlussel, die das zugrunde liegende CMM zuriickgibt. Das Cache-CMM setzt auch die von
Ihnen festgelegten Cache-Sicherheitsschwellenwerte durch.

Um zu verhindern, dass der falsche Datenschlissel aus dem Cache ausgewahlt wird, setzen
alle kompatiblen Zwischenspeicherungen CMMs voraus, dass die folgenden Eigenschaften der
zwischengespeicherten kryptografischen Materialien mit der Materialanforderung Gbereinstimmen.

 Algorithmen-Paket

+ VerschlUsselungskontext (auch, wenn dieser leer ist)

 Partitionsname (eine Zeichenfolge, die das Caching-CMM identifiziert)

* (Nur Entschliusselung) Verschlisselte Datenschlissel

(® Note

Die AWS Encryption SDK Zwischenspeicherung von Datenschlisseln erfolgt nur dann, wenn
die Algorithmus-Suite eine Funktion zur Schltsselableitung verwendet.

Die folgenden Workflows zeigen, wie eine Anforderung zum Verschlisseln von Daten mit und
ohne Datenschlissel-Caching verarbeitet wird. Sie zeigen, wie die von lhnen erstellten Caching-
Komponenten, einschliel3lich des Caches und des Caching-CMM, dabei verwendet werden.

Verschlisseln von Daten ohne Caching

So rufen Sie Verschlisselungsmaterialien ohne Caching ab:

1. Eine Anwendung fordert sie auf, Daten AWS Encryption SDK zu verschlisseln.

Wie das Datenschlissel-Caching funktioniert 406

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Entwicklerhandbuch

Die Anfrage spezifiziert einen Hauptschllsselanbieter oder einen Schlisselbund. Das AWS
Encryption SDK erstellt ein Standard-CMM, das mit lnrem HauptschlUsselanbieter oder
Schlusselbund interagiert.

2. Der AWS Encryption SDK fragt das CMM nach Verschlisselungsmaterial (besorgen Sie sich
kryptografisches Material).

3. Das CMM fragt seinen Schlisselbund (C und JavaScript) oder seinen Hauptschlisselanbieter
(Java und Python) nach kryptografischem Material. Dies kann einen Aufruf eines kryptografischen
Dienstes wie () beinhalten. AWS Key Management Service AWS KMS Das CMM gibt die
Verschlisselungsmaterialien an den zurtick. AWS Encryption SDK

4. Der AWS Encryption SDK verwendet den Klartext-Datenschlissel, um die Daten zu verschlisseln.
Es speichert die verschlUsselten Daten und verschlisselten Datenschlissel in einer
verschlisselten Nachricht, die an den Benutzer zurickgegeben wird.

Request to
encrypt data
A Encrypted
User DATA e YV message
l A
AWS ‘ DATA
e
Encryption o O e
ypt

SDK P N

Get cryptographic Pﬁ

A

materials

materials

Cryptographic
manager (CMM)

Get master keys
CMM Generate data key

Verschlisseln von Daten mit Caching

So rufen Sie Verschliusselungsmaterialien mit Datenschlissel-Caching ab:

1. Eine Anwendung fordert sie auf, Daten AWS Encryption SDK zu verschlisseln.

Wie das Datenschlissel-Caching funktioniert 407

AWS Encryption SDK Entwicklerhandbuch

Die Anforderung spezifiziert einen Caching Cryptographic Materials Manager (Caching CMM), der
einem zugrunde liegenden Cryptographic Materials Manager (CMM) zugeordnet ist. Wenn Sie
einen Hauptschlisselanbieter oder einen Schlisselbund angeben, erstellt dieser ein Standard-
CMM fir Sie AWS Encryption SDK .

2. Das SDK fragt den angegebenen Caching-CMM nach Verschliisselungsmaterialien.
3. Das Caching-CMM fordert Verschlisselungsmaterial aus dem Cache an.

a. Wenn der Cache eine Ubereinstimmung findet, aktualisiert er das Alter und die
Verwendungswerte des entsprechenden Cache-Eintrags und gibt die zwischengespeicherten
Verschlisselungsmaterialien an das zwischengespeicherte CMM zurtick.

Wenn der Cache-Eintrag seinen Sicherheitsschwellenwerten entspricht, gibt ihn das Cache-
CMM an das SDK zuriick. Andernfalls weist es den Cache an, den Eintrag zu entfernen, und
geht so vor, als gébe es keine Ubereinstimmung.

b. Wenn der Cache keine giiltige Ubereinstimmung findet, fordert das Cache-CMM das zugrunde
liegende CMM auf, einen neuen Datenschllssel zu generieren.

Das zugrunde liegende CMM bezieht die kryptografischen Materialien von seinem
Schlisselbund (C und JavaScript) oder seinem Hauptschllisselanbieter (Java und Python).
Dabei kdnnte es sich um einen Aufruf eines Dienstes handeln, z. B. AWS Key Management
Service. Das zugrunde liegende CMM gibt die Klartext- und verschlisselten Kopien des
Datenschlissels an das zwischengespeicherte CMM zurtick.

Das Caching-CMM speichert die neuen Verschlisselungsmaterialien im Cache.

4. Das zwischengespeicherte CMM gibt die Verschlisselungsmaterialien an den zurick. AWS
Encryption SDK

5. Der AWS Encryption SDK verwendet den Klartext-Datenschlissel, um die Daten zu verschlisseln.
Es speichert die verschlusselten Daten und verschlisselten Datenschlissel in einer
verschlusselten Nachricht, die an den Benutzer zurickgegeben wird.

Wie das Datenschlissel-Caching funktioniert 408

AWS Encryption SDK Entwicklerhandbuch

Request to
User encrypt data Encrypted
message ==
Caching
=
AWS T

SDK cryptographic
materials

Encryption E= ?‘r—' DATA og Encrypt
I !

Return to SDK

|

Caching
CMM
Keys in
Query cache B caZhe'? P Save in cache "I
'y

Get cryptographic materials
CMM

Get master keys
Generate data key

v

Erstellen eines Cache fur kryptografische Materialien

Der AWS Encryption SDK definiert die Anforderungen an einen Cache fir kryptografisches Material,
der beim Zwischenspeichern von Datenschlisseln verwendet wird. Er stellt auch einen lokalen

Cache bereit, bei dem es sich um einen konfigurierbaren LRU-Cache (In-Memory-Cache, Least
Recently Used) handelt. Um eine Instanz des lokalen Caches zu erstellen, verwenden Sie den
LocalCryptoMaterialsCache Konstruktor in Java und Python, die getLocalCryptographic
MaterialsCache Funktion in JavaScript oder den aws_cryptosdk_materials_cache_local_new
Konstruktor in C.

Der lokale Cache enthalt Logik fur die grundlegende Cacheverwaltung, einschlie3lich des
Hinzufligens, Entfernens und Abgleichs zwischengespeicherter Eintrage sowie der Verwaltung des
Caches. Sie mussen keine benutzerdefinierte Cache-Verwaltungslogik schreiben. Sie kdnnen den
lokalen Cache unverandert verwenden, ihn anpassen oder durch einen beliebigen kompatiblen
Cache ersetzen.

Wenn Sie einen lokalen Cache erstellen, legen Sie dessen Kapazitat fest, d. h. die maximale Anzahl
von Eintragen, die der Cache aufnehmen kann. Diese Einstellung hilft Innen, einen effizienten Cache
mit begrenzter Wiederverwendung von Datenschlisseln zu entwerfen.

Erstellen eines Cache fir kryptografische Materialien 409

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29
https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29

AWS Encryption SDK Entwicklerhandbuch

Der AWS-Verschlisselungs-SDK for Java und der stellt AWS-Verschlisselungs-SDK for Python
aullerdem einen Null-Cache fur kryptografisches Material bereit (NullCryptoMaterialsCache). Der
NullCryptoMaterialsCache gibt flr alle GET Operationen einen Fehlschlag zurlick und reagiert

nicht auf PUT Operationen. Sie kdnnen das wahrend der NullCryptoMaterialsCache Testphase
verwenden oder um das Caching in einer Anwendung, die Caching-Code enthalt, voriibergehend zu
deaktivieren.

In der AWS Encryption SDK ist jeder Cache fir kryptografisches Material einem Caching-Manager
fur kryptografische Materialien (Caching CMM) zugeordnet. Das CMM flr die Zwischenspeicherung

ruft Datenschlissel aus dem Cache ab, legt DatenschlUssel in den Cache und setzt die von Ihnen

festgelegten Sicherheitsschwellenwerte durch. Wenn Sie ein Caching-CMM erstellen, geben Sie den
Cache an, den es verwendet, und den zugrunde liegenden CMM oder Hauptschlisselanbieter, der
die zwischengespeicherten Datenschlissel generiert.

Erstellen eines Managers von kryptographischen Materialien, der Caching
verwendet

Um das Zwischenspeichern von Datenschliisseln zu aktivieren, erstellen Sie einen Cache und
einen Caching-Manager fur kryptografische Materialien (Caching-CMM). Anschliel3end geben Sie
in Ihren Anfragen zum Verschlisseln oder Entschlisseln von Daten statt eines standardmaRigen

Cryptographic Materials Manager (CMM), eines Masterschlisselanbieters oder eines Schlisselbunds

einen CMM fUr die Zwischenspeicherung an.

Es gibt zwei Arten von. CMMs Beide rufen Datenschlissel (und verwandtes kryptografisches
Material) ab, aber auf unterschiedliche Weise, wie folgt:

* Ein CMM ist mit einem Schlisselbund (C oder JavaScript) oder einem Hauptschlisselanbieter
(Java und Python) verknlpft. Wenn das SDK das CMM nach Materialien zur Verschlisselung
oder Entschlisselung fragt, ruft das CMM die Materialien von seinem Schlisselbund oder
Hauptschlisselanbieter ab. In Java und Python verwendet der CMM die Masterschlliissel zum
Generieren, Verschlisseln oder Entschlisseln der Datenschlissel. In C und C generiert und
JavaScript verschlisselt der Schliisselbund die kryptografischen Materialien und gibt sie zurick.

» Ein Cache-CMM ist einem Cache, z. B. einem lokalen Cache, und einem zugrunde liegenden CMM
zugeordnet. Wenn das SDK den Cache-CMM nach kryptografischem Material fragt, versucht das
Caching-CMM, diese aus dem Cache abzurufen. Wenn es keine Ubereinstimmung finden kann,
fragt das Cache-CMM das zugrundeliegende CMM nach den Materialien. Anschlie3end speichert
er die neuen kryptografischen Materialien im Cache, bevor er sie an den Aufrufer zurtickgibt.

Erstellen eines Managers von kryptographischen Materialien, der Caching verwendet 410

AWS Encryption SDK Entwicklerhandbuch

Das CMM fir die Zwischenspeicherung setzt aullerdem Sicherheitsschwellenwerte durch, die Sie
fur jeden Cache-Eintrag festlegen. Da die Sicherheitsschwellenwerte im Cache-CMM festgelegt und
von diesem durchgesetzt werden, kénnen Sie jeden kompatiblen Cache verwenden, auch wenn der
Cache nicht flr vertrauliches Material konzipiert ist.

Was befinde sich in einem Datenschlissel-Cache-Eintrag?

Das Datenschliissel-Caching speichert Datenschllissel und zugehdrige kryptographische
Materialien in einem Cache. Jeder Eintrag enthalt die folgenden Elemente. Diese Informationen sind
madglicherweise hilfreich, wenn Sie entscheiden, ob Sie die Funktion zum Zwischenspeichern von
Datenschlisseln verwenden mochten, und wenn Sie Sicherheitsschwellenwerte in einem Caching
Cryptographic Materials Manager (Caching CMM) festlegen.

Im Cache gespeicherte Eintrage flr Verschlisselungsanfragen

Die Eintrage, die einem Datenschliissel-Cache durch eine Verschllsselungsoperation hinzugeflgt
werden, umfassen folgende Elemente:

+ Klartext-Datenschlussel

» Verschlisselte Datenschlissel (einen oder mehrere)

» VerschlUusselungskontext

» Nachrichtensignaturschlissel (falls verwendet)

 Algorithmen-Paket

» Metadaten, einschliel3lich Nutzungszahler fur die Durchsetzung von Sicherheitsschwellenwerten

Im Cache gespeicherte Eintrage flr Entschlisselungsanfragen

Die Eintrage, die einem Datenschllissel-Cache durch eine Entschliisselungsoperation hinzugefligt
werden, umfassen folgende Elemente:

+ Klartext-Datenschlussel

 Signaturverifizierungsschlissel (falls verwendet)

» Metadaten, einschliel3lich Nutzungszahler fur die Durchsetzung von Sicherheitsschwellenwerten

Was befinde sich in einem Datenschliissel-Cache-Eintrag? 411

AWS Encryption SDK Entwicklerhandbuch

Verschlusselungskontext: Wie Cache-Eintrage ausgewahlt werden

Sie kénnen in jeder Anfrage zur Verschllsselung von Daten einen Verschlisselungskontext angeben.
Der Verschlisselungskontext spielt eine spezielle Rolle beim Datenschlissel-Caching. Damit kénnen
Sie Untergruppen von Datenschlisseln in Inrem Cache erstellen, auch wenn die Datenschlissel aus

demselben CMM fur die Zwischenspeicherung stammen.

Ein Verschlusselungskontext ist eine Gruppe von Schlussel/Wert-Paaren mit zufalligen, nicht
geheimen Daten. Bei der Entschllsselung wird der Verschllisselungskontext kryptographisch an die
verschlisselten Daten, sodass derselbe Verschlisselungskontext zur Entschlisselung der Daten

bendtigt wird. In der AWS Encryption SDK wird der Verschlisselungskontext in der verschlisselten

Nachricht mit den verschlisselten Daten und Datenschlisseln gespeichert.

Wenn Sie einen Datenschlissel-Cache verwenden, kdnnen Sie auch den Verschlisselungskontext
verwenden, um bestimmte im Cache gespeicherte Datenschlissel fir Ihre Verschliisselungsvorgange
auszuwahlen. Der Verschlisselungskontext wird im Cache-Eintrag mit dem Datenschlissel
gespeichert (er ist Teil der Cache-Eintrag-ID). Im Cache gespeicherte Datenschliissel werden nur
wiederverwendet, wenn ihre Verschlisselungskontexte Gbereinstimmen. Wenn Sie bestimmte
Datenschlissel fur eine Verschllisselungsanfrage wiederverwenden mochten, geben Sie den
gleichen Verschlisselungskontext an. Wenn Sie diese Datenschllissel vermeiden mdchten, geben
Sie einen anderen Verschllisselungskontext an.

Der Verschlisselungskontext ist immer optional, wird aber empfohlen. Wenn Sie in lhrer Anfrage
keinen Verschllsselungskontext angeben, wird ein leerer Verschlisselungskontext in die Cache-
Eintrag-ID aufgenommen und jeder Anfrage zugeordnet.

Benutzt meine Anwendung zwischengespeicherte Datenschlissel?

Das Datenschlissel-Caching ist eine Optimierungsstrategie, die fir bestimmte Anwendungen

und Workloads sehr effektiv ist. Da es jedoch ein gewisses Risiko mit sich bringt, ist es wichtig zu
bestimmen, wie effektiv es fur lhre Situation ist, und dann zu entscheiden, ob der Nutzen die Risiken
Uberwiegt.

Da das Datenschlissel-Caching Datenschlissel wiederverwendet, ist der offensichtlichste Effekt

die Verringerung der Anzahl der Aufrufe, um neue Datenschliissel zu generieren. Wenn das
Zwischenspeichern von Datenschlisseln implementiert ist, wird AWS Encryption SDK die AWS KMS
GenerateDataKey Operation nur aufgerufen, um den urspringlichen Datenschlissel zu erstellen,
und wenn der Cache fehlt. Das Caching verbessert jedoch die Leistung nur in Anwendungen, die

Verschliisselungskontext: Wie Cache-Eintrage ausgewahlt werden 412

AWS Encryption SDK Entwicklerhandbuch

zahlreiche Datenschllissel mit den gleichen Eigenschaften generieren, einschliel3lich des gleichen
Verschlusselungskontexts und des gleichen Algorithmen-Pakets.

Um festzustellen, ob Ihre Implementierung von tatsachlich Datenschlissel aus dem Cache
verwendet, probieren Sie die folgenden Techniken aus. AWS Encryption SDK

- Uberpriifen Sie in den Protokollen lhrer Master-Key-Infrastruktur die Haufigkeit von Aufrufen zur
Erstellung neuer Datenschliissel. Wenn das Datenschlissel-Caching wirksam ist, sollte die Anzahl
der Aufrufe zum Erstellen neuer Schlissel spurbar fallen. Wenn Sie beispielsweise einen AWS
KMS Hauptschlisselanbieter oder einen Schllisselbund verwenden, suchen Sie in den CloudTrail
Protokollen nach GenerateDataKeyAnrufen.

» Vergleichen Sie die verschlisselten Nachrichten, die das AWS Encryption SDK als Antwort
auf verschiedene Verschllisselungsanforderungen zuriickgibt. Wenn Sie beispielsweise den
verwenden AWS-Verschlisselungs-SDK for Java, vergleichen Sie das ParsedCiphertextObjekt
aus verschiedenen Verschlisselungsaufrufen. Vergleichen Sie in der AWS-Verschlisselungs-
SDK for JavaScript den Inhalt der encryptedDataKeys Eigenschaft von. MessageHeader
Wenn Datenschlissel wiederverwendet werden, sind die verschlisselten Datenschlissel in der

verschlisselten Nachricht identisch.

Beispiel fur das Datenschlussel-Caching

In diesem Beispiel wird das Zwischenspeichern von Datenschlisseln mit einem lokalen Cache
verwendet, um eine Anwendung zu beschleunigen, in der von mehreren Geraten generierte Daten
verschlisselt und in verschiedenen Regionen gespeichert werden.

In diesem Szenario generieren mehrere Datenproduzenten Daten, verschlisseln sie und
schreiben in jeder Region in einen Kinesis-Stream. AWS LambdaFunktionen (Verbraucher)
entschlisseln die Streams und schreiben Klartextdaten in eine DynamoDB-Tabelle in der Region.
Datenproduzenten und -verbraucher verwenden den AWS Encryption SDK und einen AWS KMS
Hauptschlisselanbieter. Um die Anzahl der Aufrufe an KMS zu reduzieren, verfligt jeder Hersteller
und Verbraucher Uber einen eigenen lokalen Cache.

Den Quellcode fir diese Beispiele finden Sie in Java und Python. Das Beispiel enthalt auch eine
CloudFormation Vorlage, die die Ressourcen fiir die Beispiele definiert.

Beispiel flir das Datenschliissel-Caching 413

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/

AWS Encryption SDK Entwicklerhandbuch

Producers

(4 \ \e\u—central—l)
Amazon _ AWS KMS
Kinesis
A)‘JS Lambd\a\)
\[Consumer I \[Consumer I Consumer Consumer
£ A\ v
Amazon Amazon
DynamoDB DynamoDB
. VAN v

Lokale Cache-Ergebnisse

Die folgende Tabelle zeigt, dass ein lokaler Cache die Gesamtzahl der Aufrufe an KMS (pro Sekunde
pro Region) in diesem Beispiel auf 1% seines urspriinglichen Werts reduziert.

Produzentenanfragen
Anforderungen pro Sekunde pro Client Clients pro Durchschn
Region ittliche
Datenschl Datenschl Gesamt (pro Anfragen pro
Ussele ussel Region)

Lokale Cache-Ergebnisse 414

AWS Encryption SDK

Entwicklerhandbuch

Kein Cache

Lokaler
Cache

generieren
(us-west-2)

1

1 RPS/100
Anwendung
en

Konsumentenanfragen

Kein Cache

Lokaler
Cache

Beispielcode fur das Zwischenspeichern von Datenschlisseln

verschlisseln
(eu-central-1)

1

1 RPS/100
Anwendung
en

1

1 RPS/100
Anwendung
en

Anforderungen pro Sekunde pro Client

Datenschl
ussel
entschlisseln

1 RPS pro
Produzent

1 RPS pro
Produzent
/100
Anwendung
en

Produzenten

500

500

Gesamt

500

500

500

Client pro
Region

Sekunde pro
Region.

500

5

Durchschn
ittiche
Anfragen pro
Sekunde pro
Region.

1.000

10

Dieses Codebeispiel erstellt eine einfache Implementierung von Datenschlissel-Caching mit einem

lokalen Cache in Java und Python. Der Code erstellt zwei Instanzen eines lokalen Caches: eine

fur Datenproduzenten, die Daten verschlisseln, und eine weitere fir Datenverbraucher (AWS

Lambda Funktionen), die Daten entschlisseln. Einzelheiten zur Implementierung von Datenschlissel-

Caching in den einzelnen Sprachen finden Sie in der Javadoc - und Python-Dokumentation fur. AWS

Encryption SDK

Das Zwischenspeichern von Datenschlisseln ist fir alle Programmiersprachen verfugbar, die von

unterstutzt werden. AWS Encryption SDK

Beispiel-Code

415

https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/

AWS Encryption SDK Entwicklerhandbuch

Vollstandige und getestete Beispiele flir die Verwendung von Datenschlissel-Caching in finden Sie
unter AWS Encryption SDK:

C/C++: caching_cmm.cpp

Java: SimpleDataKeyCachingExample .java

JavaScript Browser: caching_cmm.ts

JavaScript Node.js: caching_cmm.ts

Python: data_key_caching_basic.py

Produzent

Der Producer ruft eine Map ab, konvertiert sie in JSON, verwendet sie, um sie AWS Encryption SDK
zu verschlisseln, und Ubertragt den Chiffretext-Datensatz jeweils in einen Kinesis-Stream. AWS-
Region

Der Code definiert einen Manager flr kryptografisches Material im Cache (Caching CMM) und ordnet
ihn einem lokalen Cache und einem zugrunde liegenden Hauptschlisselanbieter zu.AWS KMS Das
zwischengespeicherte CMM speichert die Datenschlissel (und das zugehérige kryptografische
Material) des HauptschlUsselanbieters zwischen. Au3erdem interagiert sie mit dem Cache im Namen
des SDK und erzwingt die von lhnen festgelegten Sicherheitsschwellenwerte.

Da beim Aufruf der Verschlisselungsmethode ein CMM angegeben wird, das zwischengespeichert
wird, und nicht ein regularer Cryptographic Materials Manager (CMM) oder HauptschlUsselanbieter,
wird bei der Verschlisselung das Zwischenspeichern von Datenschlisseln verwendet.

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlisselungs-SDK for
Java. Ausfihrung 3. x of the AWS-Verschlisselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlisseln. Mit Version 3. x, Sie kénnen auch den AWS KMS
hierarchischen Schlisselbund verwenden, eine alternative Lésung zum Zwischenspeichern
kryptografischer Materialien.

/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

Beispiel-Code 416

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py
https://aws.amazon.com/kinesis/streams/

AWS Encryption SDK

Entwicklerhandbuch

*

* http://aws.amazon.com/apache2.0

*

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

/**

com.
com.
com.
com.
com.
com.
com.
com.
com.
com.

java.
java.
java.
java.
java.
java.

amazonaws.encryptionsdk.AwsCrypto;
amazonaws.encryptionsdk.CommitmentPolicy;
amazonaws.encryptionsdk.CryptoResult;
amazonaws.encryptionsdk.MasterKeyProvider;
amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
amazonaws.encryptionsdk.multi.MultipleProviderFactory;
amazonaws.util. json.Jackson;

util.Arraylist;

util.HashMap;

util.List;

util.Map;

util.uuID;

util.concurrent.TimeUnit;

software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
software.amazon.awssdk.core.SdkBytes;
software.amazon.awssdk.regions.Region;
software.amazon.awssdk.services.kinesis.KinesisClient;

software.amazon.awssdk.services.kms.KmsClient;

* Pushes data to Kinesis Streams in multiple Regions.

*/

public class MultiRegionRecordPusher {

private
private
private
private
private

static final long MAX_ENTRY_AGE_MILLISECONDS = 300000;
static final long MAX_ENTRY_USES = 100;

static final int MAX_CACHE_ENTRIES = 100;

final String streamName_;

final Arraylist<KinesisClient> kinesisClients_;

the

Beispiel-Code

417

AWS Encryption SDK Entwicklerhandbuch

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

/**
* Creates an instance of this object with Kinesis clients for all target
Regions and a cached
* key provider containing KMS master keys in all target Regions.
*/
public MultiRegionRecordPusher(final Region[] regions, final String
kmsAliasName,
final String streamName) {
streamName_ = streamName;
crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();
kinesisClients_ = new ArraylList<>();

AwsCredentialsProvider credentialsProvider =
DefaultCredentialsProvider.builder().build();

// Build KmsMasterKey and AmazonKinesisClient objects for each target region
List<KmsMasterKey> masterKeys = new ArraylList<>();
for (Region region : regions) {
kinesisClients_.add(KinesisClient.buildex()
.credentialsProvider(credentialsProvider)
.region(region)
.build());

KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder()
.defaultRegion(region)
.builderSuppliexr(() ->
KmsClient.builder().credentialsProvider(credentialsProvider))
.buildStrict(kmsAliasName)
.getMasterKey(kmsAliasName);

masterKeys.add(regionMasterKey);

// Collect KmsMasterKey objects into single provider and add cache
MasterKeyProvider<?> masterKeyProvider =
MultipleProviderFactory.buildMultiProvider(
KmsMasterKey.class,
masterKeys

);

Beispiel-Code 418

AWS Encryption SDK Entwicklerhandbuch

cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()
.withMasterKeyProvider(masterKeyProvider)
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.withMessageUseLimit(MAX_ENTRY_USES)
.build();

/**
* JSON serializes and encrypts the received record data and pushes it to all
target streams.
*/
public void putRecord(final Map<Object, Object> data) {
String partitionKey = UUID.randomUUID().toString();
Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("stream", streamName_);

// JSON serialize data
String jsonData = Jackson.toJsonString(data);

// Encrypt data

CryptoResult<byte[], ?> result = crypto_.encryptData(
cachingMaterialsManager_,
jsonData.getBytes(),
encryptionContext

);

byte[] encryptedData = result.getResult();

// Put records to Kinesis stream in all Regions
for (KinesisClient regionalKinesisClient : kinesisClients_) {
regionalKinesisClient.putRecord(builder ->
builder.streamName(streamName_)
.data(SdkBytes.fromByteArray(encryptedData))
.partitionKey(partitionKey));

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Beispiel-Code 419

AWS Encryption SDK Entwicklerhandbuch

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this

file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import json

import uuid

from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider,
CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy

from aws_encryption_sdk.key_providers.kms import KMSMasterKey

import boto3

class MultiRegionRecordPusher(object):
"""Pushes data to Kinesis Streams in multiple Regions."""
CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 300.0
MAX_ENTRY_MESSAGES_ENCRYPTED = 100

def __init_ (self, regions, kms_alias_name, stream_name):
self._kinesis_clients = []
self._stream_name = stream_name

Set up EncryptionSDKClient
_client =
EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Set up KMSMasterKeyProvider with cache
_key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name)

Add MasterKey and Kinesis client for each Region
for region in regions:
self._kinesis_clients.append(boto3.client('kinesis’,
region_name=region))
regional_master_key = KMSMasterKey/(

Beispiel-Code

420

AWS Encryption SDK Entwicklerhandbuch

client=boto3.client('kms', region_name=region),
key_id=kms_alias_name

)

_key_provider.add_master_key_provider(regional_master_key)

cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY)
self._materials_manager = CachingCryptoMaterialsManager(
master_key_provider=_key_provider,
cache=cache,
max_age=self .MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED

def put_record(self, record_data):
"""JSON serializes and encrypts the received record data and pushes it to
all target streams.

:param dict record_data: Data to write to stream
Kinesis partition key to randomize write load across stream shards
partition_key = uuid.uuid4().hex

encryption_context = {'stream': self._stream_name}

JSON serialize data
json_data = json.dumps(record_data)

Encrypt data

encrypted_data, _header = _client.encrypt(
source=json_data,
materials_manager=self._materials_manager,
encryption_context=encryption_context

Put records to Kinesis stream in all Regions
for client in self._kinesis_clients:
client.put_record(
StreamName=self._stream_name,
Data=encrypted_data,
PartitionKey=partition_key

Beispiel-Code 421

AWS Encryption SDK Entwicklerhandbuch

Konsument

Der Datenverbraucher ist eine AWS LambdaFunktion, die durch Kinesis-Ereignisse ausgeldst wird.
Es entschlUsselt und deserialisiert jeden Datensatz und schreibt den Klartext-Datensatz in eine
Amazon DynamoDB-Tabelle in derselben Region.

Wie der Herstellercode ermdglicht auch der Verbrauchercode das Zwischenspeichern von
Datenschlisseln, indem er bei Aufrufen der Entschlisselungsmethode einen Caching Cryptographic
Materials Manager (Caching CMM) verwendet.

Der Java-Code erstellt einen Hauptschllsselanbieter im strikten Modus mit einem bestimmten Wert.
AWS KMS key Der strikte Modus ist beim Entschlisseln nicht erforderlich, hat sich aber bewahrt. Der
Python-Code verwendet den Discovery-Modus, der es ermdglicht, jeden Wrapping-Schlissel zu AWS
Encryption SDK verwenden, der einen Datenschllssel verschlisselt hat, um ihn zu entschlisseln.

Java

Im folgenden Beispiel wird Version 2 verwendet. x der AWS-Verschlisselungs-SDK for

Java. Ausflhrung 3. x of the AWS-Verschlisselungs-SDK for Java verbietet das CMM zum
Zwischenspeichern von Datenschlisseln. Mit Version 3. x, Sie kédnnen auch den AWS KMS
hierarchischen Schlisselbund verwenden, eine alternative Loésung zum Zwischenspeichern

kryptografischer Materialien.

Dieser Code erstellt einen Hauptschlisselanbieter fur die Entschlisselung im strikten Modus. Er
AWS Encryption SDK kann nur den von AWS KMS keys Ihnen angegebenen verwenden, um lhre
Nachricht zu entschlisseln.

/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

* http://aws.amazon.com/apache2.0

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

Beispiel-Code 422

https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/dynamodb/

AWS Encryption SDK Entwicklerhandbuch

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;

import com.amazonaws.services.lambda.runtime.Context;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
import com.amazonaws.util.BinaryUtils;

import java.io.UnsupportedEncodingException;

import java.nio.ByteBuffer;

import java.nio.charset.StandardCharsets;

import java.util.concurrent.TimeUnit;

import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;

import software.amazon.awssdk.enhanced.dynamodb.TableSchema;

/**
* Decrypts all incoming Kinesis records and writes records to DynamoDB.
*/

public class LambdaDecryptAndWrite {

private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000;
private static final int MAX_CACHE_ENTRIES = 100;

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

private final DynamoDbTable<Item> table_;

/**
* Because the cache is used only for decryption, the code doesn't set the max
bytes or max
* message security thresholds that are enforced only on on data keys used for
encryption.
*/
public LambdaDecryptAndwWrite() {
String kmsKeyArn = System.getenv("CMK_ARN");
cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

.withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyAzrn))
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)

Beispiel-Code 423

AWS Encryption SDK Entwicklerhandbuch

.build();

crypto_ = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

String tableName = System.getenv("TABLE_NAME");
DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build();
table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class));

/**
* @param event
* @param context
*/
public void handleRequest(KinesisEvent event, Context context)
throws UnsupportedEncodingException {
for (KinesisEventRecord record : event.getRecords()) {
ByteBuffer ciphertextBuffer = record.getKinesis().getData();
byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer);

// Decrypt and unpack record
CryptoResult<byte[], ?> plaintextResult =
crypto_.decryptData(cachingMaterialsManager_,
ciphertext);

// Verify the encryption context value
String streamArn = record.getEventSourceARN();
String streamName = streamArn.substring(streamArn.indexOf("/") + 1);
if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) {
throw new IllegalStateException("Wrong Encryption Context!");

// Write record to DynamoDB

String jsonItem = new String(plaintextResult.getResult(),
StandardCharsets.UTF_8);

System.out.println(jsonItem);

table_.putItem(Item.fromJSON(jsonItem));

private static class Item {

Beispiel-Code 424

AWS Encryption SDK Entwicklerhandbuch

static Item fromJSON(String jsonText) {
// Parse JSON and create new Item
return new Item();

Python

Dieser Python-Code wird mit einem Master-Key-Anbieter im Discovery-Modus entschlisselt. Es
ermdglicht die AWS Encryption SDK Verwendung eines beliebigen UmschlieRungsschlissels, der
einen Datenschlissel verschlisselt hat, um ihn zu entschlisseln. Der strikte Modus, in dem Sie
die UmschlieRungsschlissel angeben, die fir die Entschlisselung verwendet werden kdnnen, ist
eine bewahrte Methode.

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import baseb4

import json

import logging

import os

from aws_encryption_sdk import EncryptionSDKClient,
DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager,
LocalCryptoMaterialsCache, CommitmentPolicy

import boto3

_LOGGER = logging.getlLogger(__name__)
_is_setup = False
CACHE_CAPACITY = 100

Beispiel-Code 425

AWS Encryption SDK

Entwicklerhandbuch

MAX_

def

ENTRY_AGE_SECONDS = 600.0

setup():

"""Sets up clients that should persist across Lambda invocations."""
global encryption_sdk_client

encryption_sdk_client =

EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

def

global materials_manager
key_provider = DiscoveryAwsKmsMasterKeyProvider()
cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY)

Because the cache is used only for decryption, the code doesn't set
the max bytes or max message security thresholds that are enforced
only on on data keys used for encryption.
materials_manager = CachingCryptoMaterialsManager/(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS
)
global table
table_name = os.environ.get('TABLE_NAME')
table = boto3.resource('dynamodb').Table(table_name)
global _is_setup
_is_setup = True

lambda_handler(event, context):

"""Decrypts all incoming Kinesis records and writes records to DynamoDB."""

_LOGGER.debug('New event:')
_LOGGER.debug(event)
if not _is_setup:
setup()
with table.batch_writer() as batch:
for record in event.get('Records', []):
Record data baseb4-encoded by Kinesis
ciphertext = base64.b64decode(record['kinesis']['data'])

Decrypt and unpack record

plaintext, header = encryption_sdk_client.decrypt(
source=ciphertext,
materials_manager=materials_manager

)

item = json.loads(plaintext)

Beispiel-Code

426

AWS Encryption SDK Entwicklerhandbuch

Verify the encryption context value

stream_name = record['eventSourceARN'].split('/', 1)[1]

if stream_name != header.encryption_context['stream']:
raise ValueError('Wrong Encryption Context!')

Write record to DynamoDB
batch.put_item(Item=item)

Beispiel fur das Zwischenspeichern von Datenschlisseln: Vorlage
CloudFormation

Diese CloudFormation Vorlage richtet alle erforderlichen AWS Ressourcen ein, um das Beispiel fur
das Zwischenspeichern von Datenschlisseln zu reproduzieren.

JSON

"Parameters": {
"SourceCodeBucket": {
"Type": "String",
"Description": "S3 bucket containing Lambda source code zip files"
},
"PythonLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"
},
"PythonLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
.
"JavalLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"
.
"JavalLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"

CloudFormation Vorlage 427

AWS Encryption SDK

Entwicklerhandbuch

I
"KeyAliasSuffix": {
"Type": "String",

"Description": "Suffix to use for KMS key Alias (ie:

KeyAliasSuffix)"
I
"StreamName": {
"Type": "String",
"Description": "Name to use for Kinesis Stream"

},
"Resources": {
"InputStream": {
"Type": "AWS::Kinesis::Stream",
"Properties": {
"Name": {
"Ref'": "StreamName"

1,
"ShardCount": 2

1,

"PythonLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {

"AttributeDefinitions": [

{
"AttributeName": "id",
"AttributeType": "S"
}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

.
"PythonLambdaRole": {
"Type": "AWS::IAM::Role",

alias/

CloudFormation Vorlage

428

AWS Encryption SDK

Entwicklerhandbuch

"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
},
"Action": "sts:AssumeRole"
}

iy
"ManagedPolicyArns": [
"arn:aws:iam::aws:policy/service-role/

AWSLambdaBasicExecutionRole"

1,
"Policies": [
{
"PolicyName": "PythonLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,
"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}"
}
I
{
"Effect": "Allow",
"Action": [
"dynamodb:PutItem"
1,
"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}*"
}
I
CloudFormation Vorlage 429

AWS Encryption SDK Entwicklerhandbuch

"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {

"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"

}

},
"PythonLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Python consumer",
"Runtime": "python2.7",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"PythonLambdaRole",

"Azn"
]
I
"Handler":
"aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler",
"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"
I
"S3Key": {
"Ref": "PythonLambdaS3Key"
},

"S30bjectVersion": {
"Ref": "PythonLambdaObjectVersionId"

CloudFormation Vorlage 430

AWS Encryption SDK

Entwicklerhandbuch

1,
"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "PythonLambdaOutputTable"

I
"PythonLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"
},
"FunctionName": {
"Ref": "PythonLambdaFunction"
I
"StartingPosition": "TRIM_HORIZON"

1,
"JavalLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [

{
"AttributeName": "id",
"AttributeType": "S"
}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

CloudFormation Vorlage

431

AWS Encryption SDK

Entwicklerhandbuch

}
I
"JavaLambdaRole":
"Type": "AWS::
"Properties":

{
IAM: :Role",

{

"AssumeRolePolicyDocument": {

"Version":

"2012-10-17",

"Statement": [

{

}I

"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"

}I

"Action": "sts:AssumeRole"

"ManagedPolicyArns": [
"arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"

]I

"Policies": [

{

${AWS: :AccountId}:table/${JavalLambdaOutputTable}"

"PolicyName": "JavalLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:

}

I
{
"Effect": "Allow",

"Action": [
"dynamodb:PutItem"
1,

"Resource": {

CloudFormation Vorlage

432

AWS Encryption SDK Entwicklerhandbuch

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${JavaLambdaOutputTable}*"
}
I

{

"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {

"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"

}

},
"JavaLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Java consumer",
"Runtime": "java8",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"JavalLambdaRole",

"Azn"
]
I
"Handler":
""com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite: :handleRequest",
"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"
I
"S3Key": {

"Ref": "JavalLambdaS3Key"

CloudFormation Vorlage 433

AWS Encryption SDK Entwicklerhandbuch

3,
"S30bjectVersion": {
"Ref": "JavalLambdaObjectVersionId"

},
"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "JavalLambdaOutputTable"

I
"CMK_ARN": {
"Fn::GetAtt": [
"RegionKinesisCMK",
"Azn"
]
}

I
"JavalLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"

I
"FunctionName": {

"Ref": "JavalLambdaFunction"
1,

"StartingPosition": "TRIM_HORIZON"

3,
"RegionKinesisCMK": {
"Type'": "AWS: :KMS: :Key",
"Properties": {
"Description": "Used to encrypt data passing through Kinesis Stream
in this region",
"Enabled": true,
"KeyPolicy": {
"Version": "2012-10-17",
"Statement": [

CloudFormation Vorlage 434

AWS Encryption SDK

Entwicklerhandbuch

"Effect": "Allow",
"Principal": {
"AWS": {

"Fn::Sub": "arn:aws:iam::${AWS: :AccountId}:root"

},

"Action": [
"kms:Encrypt",
"kms:GenerateDataKey",
"kms:CreateAlias",
"kms:DeleteAlias",
"kms:DescribeKey",
"kms:DisableKey",
"kms:EnableKey",
"kms:PutKeyPolicy",
"kms:ScheduleKeyDeletion",
"kms:UpdateAlias",
"kms :UpdateKeyDescription"

1,

"Resource": "*"

"Effect": "Allow",
"Principal": {
"AWS": [
{
"Fn::GetAtt": [
"PythonLambdaRole",

"Arn"
]
I
{
"Fn::GetAtt": [
"JavalLambdaRole",
"Arn"
]
}
]
I
"Action": "kms:Decrypt",
"Resource": "*"

CloudFormation Vorlage

435

AWS Encryption SDK Entwicklerhandbuch

},
"RegionKinesisCMKAlias": {
"Type": "AWS::KMS::Alias",
"Properties": {
"AliasName": {
"Fn::Sub": "alias/${KeyAliasSuffix}"
},
"TargetKeyId": {
"Ref": "RegionKinesisCMK"

YAML

Parameters:
SourceCodeBucket:
Type: String
Description: S3 bucket containing Lambda source code zip files
PythonLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
PythonLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
JavaLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
JavalLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
KeyAliasSuffix:
Type: String
Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)'
StreamName:
Type: String
Description: Name to use for Kinesis Stream

CloudFormation Vorlage 436

AWS Encryption SDK

Entwicklerhandbuch

Resources:
InputStream:
Type: AWS::Kinesis::Stream
Properties:
Name: !Ref StreamName
ShardCount: 2
PythonLambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1
PythonLambdaRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service:

ManagedPolicyAzrns:

lambda.amazonaws.com
Action: sts:AssumeRole

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:

PolicyName: PythonLambdaAccess

PolicyDocument:

Version: 2012-10-17

Statement:

Effect: Allow

Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem

CloudFormation Vorlage

437

AWS Encryption SDK

Entwicklerhandbuch

Resource:
${AWS: :

Effect: Allow
Action:

1Sub arn:aws:dynamodb:${AWS: :Region}:
AccountId}:table/${PythonLambdaOutputTable}

- dynamodb:PutItem

Resource:
${AWS: :

Effect: Allow

Action:
- kinesis
- kinesis
- kinesis
- kinesis
Resource:
${AWS: :AccountId}:stream/${InputStream}
PythonLambdaFunction:
Type: AWS::Lambda::Function

Properties:
Description: Python consumer
Runtime: python2.7
MemorySize: 512
Timeout: 90
Role:
Handler:

1Sub arn:aws:dynamodb:${AWS: :Region}:
AccountId}:table/${PythonLambdaOutputTable}*

:GetRecords
:GetShardIterator
:DescribeStream
:ListStreams

ISub arn:aws:kinesis:${AWS::Region}:

!GetAtt PythonLambdaRole.Azrn

aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler

Code:
S3Bucket:
S3Key: !Ref PythonLambdaS3Key
S30bjectVersion:
Environment:
Variables:
TABLE_NAME :
PythonLambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping

IRef SourceCodeBucket

!Ref PythonLambdaObjectVersionId

!Ref PythonLambdaOutputTable

Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref PythonLambdaFunction

StartingPosition: TRIM_HORIZON
JavalLambdaOutputTable:

CloudFormation Vorlage

438

AWS Encryption SDK

Entwicklerhandbuch

Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

JavalambdaRole:

${AWS: :

Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:
PolicyName: JavalLambdaAccess
PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS
AccountId}:table/${JavaLambdaOutputTable}
Effect: Allow
Action:
- dynamodb:PutItem

: :Region}:

CloudFormation Vorlage

439

AWS Encryption SDK

Entwicklerhandbuch

Resource:

1Sub arn:aws:dynamodb:${AWS: :Region}:

${AWS: :AccountId}:table/${JavalLambdaOutputTable}*

Effect: Allow

Action:
- kinesis
- kinesis
- kinesis
- kinesis
Resource:
${AWS: :AccountId}:stream/${InputStream}
JavalLambdaFunction:
Type: AWS::Lambda::Function
Properties:

Description: Java consumer
Runtime: java8

MemorySize: 512

Timeout: 90

Role: !GetAtt JavalLambdaRole.Arn
Handler:

com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndwWrite: :handleRequest

Code:
S3Bucket:
S3Key: !Ref JavalambdaS3Key
S30bjectVersion:
Environment:
Variables:
TABLE_NAME :
CMK_ARN:
JavalambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn:
${AWS: :AccountId}:stream/${InputStream}

:GetRecords
:GetShardIterator
:DescribeStream
:ListStreams

ISub arn:aws:kinesis:${AWS::Region}:

IRef SourceCodeBucket

!Ref JavalLambdaObjectVersionId

!Ref JavalLambdaOutputTable
!GetAtt RegionKinesisCMK.Azrn

1Sub arn:aws:kinesis:${AWS::Region}:

FunctionName: !Ref JavalLambdaFunction
StartingPosition: TRIM_HORIZON
RegionKinesisCMK:
Type: AWS::KMS: :Key
Properties:

Description: Used to encrypt data
region
Enabled: true

passing through Kinesis Stream in this

CloudFormation Vorlage

440

AWS Encryption SDK

Entwicklerhandbuch

KeyPolicy:
Version: 2012-10-17
Statement:

Effect: Allow
Principal:

AWS: !Sub arn:aws:iam::${AWS::AccountId}:root

Action:

Data plane actions

- kms:Encrypt

- kms:GenerateDataKey

Control plane actions

- kms:CreateAlias

- kms:DeleteAlias

- kms:DescribeKey

- kms:DisableKey

- kms:EnableKey

- kms:PutKeyPolicy

- kms:ScheduleKeyDeletion

- kms:UpdateAlias

- kms:UpdateKeyDescription
Resource: '*'

Effect: Allow
Principal:
AWS:
- !GetAtt PythonLambdaRole.Arn
- lGetAtt JavalLambdaRole.Arn
Action: kms:Decrypt
Resource: '*'
RegionKinesisCMKAlias:
Type: AWS::KMS::Alias
Properties:
AliasName: !Sub alias/${KeyAliasSuffix}
TargetKeyId: !Ref RegionKinesisCMK

CloudFormation Vorlage

441

AWS Encryption SDK Entwicklerhandbuch

Versionen von AWS Encryption SDK

Die AWS Encryption SDK Sprachimplementierungen verwenden semantische Versionierung,

damit Sie den Umfang der Anderungen in den einzelnen Versionen leichter erkennen kénnen. Eine
Anderung der Hauptversionsnummer, z. B. 1. x. x bis 2. x. x steht fiir eine grundlegende Anderung,
die wahrscheinlich Codeénderungen und eine geplante Bereitstellung erfordert. Wichtige Anderungen
in einer neuen Version wirken sich mdglicherweise nicht auf jeden Anwendungsfall aus. Lesen Sie in
den Versionshinweisen nach, ob Sie davon betroffen sind. Eine Anderung in einer Nebenversion, wie
z. B. x. x auf x .2. x ist immer abwartskompatibel, kann aber veraltete Elemente enthalten.

Verwenden Sie nach Méglichkeit die neueste Version von AWS Encryption SDK in der von Ihnen
gewahlten Programmiersprache. Die Wartungs- und Supportrichtlinien flr jede Version unterscheiden
sich je nach Implementierung der Programmiersprache. Einzelheiten zu den unterstitzten Versionen
in Ihrer bevorzugten Programmiersprache finden Sie in der SUPPORT_POLICY.rst Dateiim

zugehdrigen GitHubRepository.

Wenn Upgrades neue Funktionen beinhalten, die eine spezielle Konfiguration erfordern, um
Verschlisselungs- oder Entschlisselungsfehler zu vermeiden, stellen wir eine Zwischenversion und
detaillierte Anweisungen zu deren Verwendung zur Verfugung. Zum Beispiel Versionen 1.7. x und
1.8. x sind als Ubergangsversionen konzipiert, mit denen Sie ein Upgrade von Versionen vor 1.7
durchfihren konnen. x auf Versionen 2.0. x und spéter. Details hierzu finden Sie unter Migrieren Sie
Ihre AWS Encryption SDK.

(® Note

Das X in einer Versionsnummer steht flr einen beliebigen Patch der Haupt- und
Nebenversion. Zum Beispiel Version 1.7. x steht fur alle Versionen, die mit 1.7 beginnen,
einschlieRlich 1.7.1 und 1.7.9.

Neue Sicherheitsfunktionen wurden urspringlich in den AWS Encryption CLI Versionen 1.7
verdffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Die folgenden Tabellen bieten einen Uberblick tiber die wichtigsten Unterschiede zwischen den
unterstitzten Versionen von AWS Encryption SDK fir die einzelnen Programmiersprachen.

442

https://semver.org/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK

Entwicklerhandbuch

C

Eine ausfiihrliche Beschreibung aller Anderungen finden Sie in der Datei CHANGELOG.md im aws-

encryption-sdk-cRepository unter. GitHub

Hauptversion Details
1.x 1,0

1,7
2.X 2.0

2.2

2.3

Lebenszyklusphase
der SDK-Haupt
version

Erstversion. End-of-Support Phase

Updates fir AWS
Encryption SDK, die
Benutzern friherer
Versionen helfen,
auf Versionen 2.0
zu aktualisieren. x
und spater. Weitere
Informationen finden
Sie in Version 1.7. x.

Aktualisierungen der Allgemeine Verfugbar
AWS Encryption SDK. keit (GA)
Weitere Informati

onen finden Sie unter
Version 2.0. x.

Verbesserungen am
Prozess der Nachricht
enentschlisselung.

Fugt Unterstitzung
fur Schlissel AWS
KMS mit mehreren
Regionen hinzu.

443

https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Entwicklerhandbuch

C#/.NET

Eine ausfiihrliche Beschreibung aller Anderungen finden Sie in der Datei CHANGELOG.md im

Repository unter. aws-encryption-sdk-net GitHub

Hauptversion Details
3.X 3.1.0
4.x 4,0

Befehlszeilenschnittstelle (CLI)

Erstversion.

Integriert die Unterstit
zung fur den AWS
KMS hierarchischen
Schlisselbund,

den erforderlichen
Verschllsselungsko
ntext (CMM) und
asymmetrische RSA-
Schlisselringe. AWS
KMS

Lebenszyklusphase
der SDK-Haupt
version

Ende des Supports

Version 3.x von AWS
Encryption SDK
fur.NET hat das Ende
des Support erreicht.
Bitte fihren Sie ein
Upgrade auf 4.x
durch.

Allgemeine Verfugbar
keit (GA)

Eine ausfiihrliche Beschreibung aller Anderungen finden Sie unter Versionen der AWS Encryption
CLI und in der Datei Changelog.rst im Repository auf. aws-encryption-sdk-cli GitHub

C#/.NET

444

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK

Entwicklerhandbuch

Hauptversion Details
1.x 1,0

1,7
2.x 2.0

21

Erstversion.

Updates fir AWS
Encryption SDK , die
Benutzern friherer
Versionen helfen,
auf Versionen 2.0
zu aktualisieren. x
und spater. Weitere
Informationen finden
Sie in Version 1.7. x.

Aktualisierungen der
AWS Encryption SDK.
Weitere Informati
onen finden Sie unter
Version 2.0. x.

Entfernt den - -
discovery
Parameter und
ersetzt ihn durch das
discovery Attribut
des --wrapping-
keys Parameters.

Version 2.1.0 der
AWS Encryption CLI
entspricht Version 2.0
in anderen Programmi
ersprachen.

Lebenszyklusphase
der SDK-Haupt
version

End-of-Support Phase

End-of-Support Phase

Befehlszeilenschnittstelle (CLI)

445

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Entwicklerhandbuch

2.2
3.X 3.0
4.x 4,0
4.1
4.2

Verbesserungen am
Prozess der Nachricht
enentschlisselung.

Fugt Unterstutzung
fur Schlissel AWS
KMS mit mehreren
Regionen hinzu.

Die AWS Encryptio

n CLI unterstitzt
Python 2 oder Python
3.4 nicht mehr. Ab
Hauptversion 4. x der
AWS Encryption CLI,
nur Python 3.5 oder
hoher wird unterstutzt.

Die AWS Encryption
CLI unterstitzt Python
3.5 nicht mehr. Ab
Version 4.1. x der
AWS Encryption CLI,
nur Python 3.6 oder
hoher wird unterstutzt.

Die AWS Encryption
CLI unterstitzt Python
3.6 nicht mehr. Ab
Version 4.2. x der
AWS Encryption CLI,
nur Python 3.7 oder
hoher wird unterstutzt.

End-of-Support Phase

Allgemeine Verflgbar
keit (GA)

Befehlszeilenschnittstelle (CLI)

446

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

Java

Eine ausfiihrliche Beschreibung aller Anderungen finden Sie in der Datei Changelog.rst im Repository

unter. aws-encryption-sdk-java GitHub

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

1.x 1,0 Erstversion. End-of-Support Phase

1.3 Integriert die Unterstit

zung fur den Manager
fur kryptografische
Materialien und das
Zwischenspeichern
von Datenschlisseln.
Auf die determini
stische IV-Generation
umgestellt.

1.6.1 Verwirft und
AwsCrypto
.encryptS
tring() und
ersetzt sie durch
AwsCrypto
.decryptS
tring() und.
AwsCrypto
.encryptD
ata() AwsCrypto
.decryptData()

1,7 Updates fur, AWS
Encryption SDK die
Benutzern friherer
Versionen beim

Java 447

https://github.com/aws/aws-encryption-sdk-java/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-java/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Entwicklerhandbuch

2.X

20

2.2

2.3

24

Upgrade auf Version
2.0 helfen. x und
spater. Weitere
Informationen finden
Sie in Version 1.7. x.

Aktualisierungen der
AWS Encryption SDK.
Weitere Informati
onen finden Sie unter
Version 2.0. x.

Verbesserungen am
Prozess der Nachricht
enentschlisselung.

Fugt Unterstutzung
fur Schlissel AWS
KMS mit mehreren
Regionen hinzu.

Fugt Unterstutzung
fir AWS SDK for Java
2.x hinzu.

Allgemeine Verflgbar
keit (GA)

Version 2.x von
AWS-Verschlisselun
gs-SDK for Java
wird 2024 in den
Wartungsmodus
wechseln.

Java

448

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Entwicklerhandbuch

3.X 3.0

Go

Integriert die AWS- Allgemeine Verflgbar
Verschlisselungs- keit (GA)

SDK for Java in die
Material Providers

Library (MPL).

Integriert die Unterstit
zung fir symmetris
che und asymmetri
sche AWS KMS RSA-
Schlisselringe, AWS
KMS ECDH-Schl
usselringe, AWS
KMS hierarchische
Schlisselringe, Raw
AES-Schlisselanhén
ger, Raw RSA-Schli
sselanhanger, Raw
ECDH-Schliusselring
e, Multi-Keyrings und
den erforderlichen
Verschllsselungsko
ntext CMM.

Eine detaillierte Beschreibung aller Anderungen finden Sie in der Datei CHANGELOG.md im Go-
Verzeichnis des aws-encryption-sdkRepositorys. GitHub

Hauptversion Details

0.1.x 0.1.0

Lebenszyklusphase
der SDK-Haupt
version

Erstversion. Allgemeine Verflugbar
keit (GA)

449

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Entwicklerhandbuch

JavaScript

Eine ausfiihrliche Beschreibung aller Anderungen finden Sie in der Datei CHANGELOG.md im aws-

encryption-sdk-javascriptRepository unter. GitHub

Hauptversion Details
1.x 1,0

1,7
2.X 2.0

2.2

2.3

Lebenszyklusphase
der SDK-Haupt
version

Erstversion. End-of-Support Phase

Updates fir AWS
Encryption SDK, die
Benutzern friherer
Versionen helfen,
auf Versionen 2.0
zu aktualisieren. x
und spater. Weitere
Informationen finden
Sie in Version 1.7. x.

Aktualisierungen der End-of-Support Phase
AWS Encryption SDK.
Weitere Informati

onen finden Sie unter
Version 2.0. x.

Verbesserungen des
Entschllsselungspr
ozesses fur Nachricht
en.

Fugt Unterstitzung
fur Schlissel AWS
KMS mit mehreren
Regionen hinzu.

JavaScript

450

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Entwicklerhandbuch

3.X 3.0
4.x 4,0
Python

Entfernt die Cl-
Abdeckung fur Knoten
10. Fuhrt ein Upgrade
der Abhangigkeiten
durch, sodass Knoten
8 und Knoten 10

nicht mehr unterstutzt
werden.

Erfordert Version

3 der AWS-Versc
hlisselungs-SDK for
JavaScript s, kms -
client umden
AWS KMS Schlissel
bund verwenden zu
kdnnen.

Wartung

Der Support flr
Version 3.x von AWS-
Verschllsselungs-
SDK for JavaScript
endet am 17. Januar
2024.

Allgemeine Verflgbar
keit (GA)

Eine ausfiihrliche Beschreibung aller Anderungen finden Sie in der Datei Changelog.rst im Repository

unter. aws-encryption-sdk-python GitHub

Hauptversion Details
1.x 1,0
1.3

Erstversion.

Integriert die Unterstit
zung fir den Manager
fur kryptografische
Materialien und das
Zwischenspeichern
von Datenschlisseln.
Auf die determini

Lebenszyklusphase
der SDK-Haupt
version

End-of-Support Phase

Python

451

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-python/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-python/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Entwicklerhandbuch

1,7

2.X 20

2.2

2.3

stische 1V-Generation
umgestellt.

Updates fir AWS
Encryption SDK , die
Benutzern friherer
Versionen beim
Upgrade auf Version
2.0 helfen. x und
spater. Weitere
Informationen finden
Sie in Version 1.7. x.

Aktualisierungen der End-of-Support Phase
AWS Encryption SDK.

Weitere Informati

onen finden Sie unter

Version 2.0. x.

Verbesserungen des
EntschlUsselungspr
ozesses fur Nachricht
en.

Fugt Unterstutzung
fur Schlissel AWS
KMS mit mehreren
Regionen hinzu.

Python

452

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

3.X 3.0 Das unterstutzt Allgemeine Verflgbar
Python 2 oder Python keit (GA)
3.4 nicht AWS-Versc
hlisselungs-SDK
for Python mehr. Ab
Hauptversion 3. x
von der AWS-Versc
hlisselungs-SDK for
Python, nur Python
3.5 oder hoher wird

unterstutzt.
4.x 4,0 Integriert die AWS- Allgemeine Verflgbar
Verschlisselungs- keit (GA)

SDK for Python in die
Material Providers

Library (MPL).

Rust

Eine detaillierte Beschreibung aller Anderungen finden Sie in der Datei CHANGELOG.md im Rust-
Verzeichnis des Repositorys auf aws-encryption-sdk. GitHub

Hauptversion Details Lebenszyklusphase
der SDK-Haupt
version

1.x 1,0 Erstversion. Allgemeine Verflgbar
keit (GA)

Versionsdetails

In der folgenden Liste werden die Hauptunterschiede zwischen den unterstitzten Versionen von
beschrieben AWS Encryption SDK.

Themen

Rust 453

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

* Versionen vor 1.7. X

* Version 1.7. x

e Version 2.0. x

e Version 2.2. x

e Version 2.3. x

Versionen vor 1.7. x

(® Note

Alle 1. x. x Versionen von AWS Encryption SDK befinden sich in der end-of-supportPhase.
Aktualisieren Sie so schnell wie mdglich auf die neueste verfugbare Version von AWS

Encryption SDK fir Ihre Programmiersprache. Um ein Upgrade von einer AWS Encryption
SDK Version vor 1.7 durchzufiihren. x, Sie mussen zuerst auf 1.7 aktualisieren. x. Details
hierzu finden Sie unter Migrieren Sie lhre AWS Encryption SDK.

Versionen von AWS Encryption SDK friher als 1.7. x bieten wichtige Sicherheitsfunktionen, darunter
Verschlisselung mit dem Advanced Encryption Standard Algorithm in Galois/Counter Mode (AES-
GCM), eine HMAC-basierte extract-and-expand Schlusselableitungsfunktion (HKDF), Signierung und
einen 256-Bit-Verschllisselungsschlissel. Diese Versionen unterstiutzen jedoch nicht die von uns
empfohlenen Best Practices, einschliel3lich Key Commitment.

Version 1.7. x

® Note

Alle 1. x. x Versionen von AWS Encryption SDK befinden sich in der end-of-supportPhase.

Version 1.7. x wurde entwickelt, um Benutzern friherer Versionen von das Upgrade AWS Encryption
SDK auf Version 2.0 zu erleichtern. x und spater. Wenn Sie mit dem noch nicht vertraut sind AWS
Encryption SDK, kdnnen Sie diese Version Uberspringen und mit der neuesten verfiigbaren Version
in Ihrer Programmiersprache beginnen.

Version 1.7. x ist vollstandig abwartskompatibel; es fiihrt keine grundlegenden Anderungen ein
und andert auch nicht das Verhalten von. AWS Encryption SDK Es ist auch vorwartskompatibel; es

Versionen vor 1.7. x 454

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

ermdglicht Ihnen, Ihren Code so zu aktualisieren, dass er mit Version 2.0 kompatibel ist. x. Es enthalt
neue Funktionen, aktiviert sie jedoch nicht vollstandig. Und es erfordert Konfigurationswerte, die
verhindern, dass Sie sofort alle neuen Funktionen tGbernehmen, bis Sie bereit sind.

Version 1.7. x beinhaltet die folgenden Anderungen:

AWS KMS Aktualisierungen des Master Key Providers (erforderlich)

Version 1.7. x fihrt neue Konstruktoren fliir AWS-Verschlisselungs-SDK for Java und ein AWS-
Verschlisselungs-SDK for Python , die explizit AWS KMS Master-Key-Anbieter entweder im
strikten Modus oder im Discovery-Modus erstellen. Diese Version fiigt ahnliche Anderungen an
der AWS Encryption SDK Befehlszeilenschnittstelle (CLI) hinzu. Details hierzu finden Sie unter
Aktualisierung der AWS KMS Hauptschlusselanbieter.

 Im strikten Modus benétigen AWS KMS Hauptschliisselanbieter eine Liste von Wrapping-
Schlisseln, und sie verschlisseln und entschllisseln nur mit den von Ihnen angegebenen
Wrapping-Schlisseln. Dies ist eine AWS Encryption SDK bewahrte Methode, mit der
sichergestellt wird, dass Sie die Umschliefungsschlissel verwenden, die Sie verwenden
mochten.

» Im Discovery-Modus AWS KMS akzeptieren Master-Key-Anbieter keine Wrap-Schlissel.
Sie kdnnen sie nicht zum Verschlisseln verwenden. Beim Entschliisseln kénnen sie einen
beliebigen UmschlieBungsschlissel verwenden, um einen verschlisselten Datenschllssel zu
entschlisseln. Sie kdnnen jedoch die fir die Entschlisselung verwendeten Wrapping-Schlissel
auf diese beschranken. AWS-Konten Die Kontofilterung ist optional, aber es ist eine bewahrte
Methode, die wir empfehlen.

Die Konstruktoren, die friihere Versionen von AWS KMS Master-Key-Providern erstellen,

sind in Version 1.7 veraltet. x und wurde in Version 2.0 entfernt. x. Diese Konstruktoren
instanziieren Masterschlusselanbieter, die mit den von Ihnen angegebenen Wrapping-
Schlisseln verschlisseln. Sie entschliisseln jedoch verschliisselte Datenschllssel mithilfe

des UmschlieRungsschlissels, mit dem sie verschllisselt wurden, ohne Ricksicht auf die
angegebenen UmschlieRungsschliissel. Benutzer kdnnen unbeabsichtigt Nachrichten mit
UmschlieBungsschlisseln entschliisseln, die sie nicht verwenden wollen, auch AWS KMS keys in
anderen AWS-Konten Regionen.

An den Konstruktoren fir AWS KMS Hauptschliissel wurden keine Anderungen vorgenommen.
Beim Verschlisseln und Entschliisseln verwenden die AWS KMS Hauptschlissel nur die, AWS
KMS key die Sie angeben.

Version 1.7. x 455

AWS Encryption SDK Entwicklerhandbuch

AWS KMS Aktualisierungen des Schllisselbundes (optional)

Version 1.7. x fugt den AWS-Verschlisselungs-SDK for JavaScript Implementierungen AWS-
Verschlusselungs-SDK for C und einen neuen Filter hinzu, der die AWS KMS Erkennung von
Schlusselanhangern auf bestimmte Bereiche beschrankt. AWS-Konten Dieser neue Kontofilter
ist optional, aber er ist eine bewahrte Methode, die wir empfehlen. Details hierzu finden Sie unter
AWS KMS Schlusselanhanger aktualisieren.

Es wurden keine Anderungen an den Konstruktoren fiir AWS KMS Schliisselanhanger
vorgenommen. AWS KMS Standardschlusselringe verhalten sich im strikten Modus wie

HauptschlUsselanbieter. AWS KMS Discovery-Schlisselringe werden explizit im Discovery-Modus
erstellt.

Ubergabe einer Schliissel-ID an Decrypt AWS KMS

Ab Version 1.7. x, wenn verschlisselte Datenschlissel entschlisselt werden, gibt der AWS KMS
key in seinen Aufrufen der AWS KMS Decrypt-Operation AWS Encryption SDK immer an. Der

AWS Encryption SDK ruft den Schllssel-ID-Wert fir AWS KMS key aus den Metadaten in jedem
verschlisselten Datenschlissel ab. Fir diese Funktion sind keine Codeanderungen erforderlich.

Die Angabe der Schlissel-ID von AWS KMS key ist nicht erforderlich, um Chiffretext zu
entschlisseln, der mit einem KMS-SchlUssel mit symmetrischer Verschllsselung verschlisselt
wurde, ist jedoch eine bewahrte Methode. AWS KMS Wie bei der Angabe von Wrapping Keys in
Ihrem Schllsselanbieter wird bei dieser Vorgehensweise sichergestellt, dass AWS KMS nur mit
dem Wrapping-Schlissel entschlisselt wird, den Sie verwenden mdéchten.

Entschlisseln Sie Chiffretext mit Schlisselbindung

Version 1.7. x kann Chiffretext entschlisseln, der mit oder ohne Schlisselbindung verschlisselt
wurde. Es kann jedoch keinen Chiffretext mit Schlisselbindung verschlisseln. Mit dieser
Eigenschaft kbnnen Sie Anwendungen vollstandig bereitstellen, die mit Key Commitment
verschlisselten Chiffretext entschlisseln kdnnen, bevor sie jemals auf einen solchen Chiffretext
stoRen. Da diese Version Nachrichten entschlisselt, die ohne Schlisselbindung verschlisselt
wurden, mussen Sie keinen Chiffretext erneut verschlisseln.

Um dieses Verhalten zu implementieren, Version 1.7. x enthalt eine neue
Konfigurationseinstellung fir Commitment-Richtlinien, die festlegt, ob sie mit Key Commitment
ver- oder entschliisseln AWS Encryption SDK kénnen. In Version 1.7. x, der einzig gultige Wert
fur die Commitment-RichtlinieForbidEncryptAllowDecrypt, wird bei allen Verschlisselungs-
und Entschlisselungsvorgangen verwendet. Dieser Wert verhindert, dass der AWS Encryption

Version 1.7. x 456

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId

AWS Encryption SDK Entwicklerhandbuch

SDK mit einer der neuen Algorithmus-Suiten verschlisselt wird, die Key Commitment beinhalten.
Er erméglicht die AWS Encryption SDK Entschlisselung von Chiffretext mit und ohne
Schlisselbindung.

In Version 1.7 gibt es zwar nur einen gultigen Wert fur die Verpflichtungspolitik. x, wir verlangen,
dass Sie diesen Wert explizit festlegen kdnnen, wenn Sie den in dieser Version APls eingeflihrten
neuen Wert verwenden. Wenn Sie den Wert explizit festlegen, wird verhindert, dass sich lhre
Verpflichtungsrichtlinie automatisch andert, require-encrypt-require-decrypt wenn Sie
auf Version 2.1 aktualisieren. x. Stattdessen kénnen Sie |hre Verpflichtungspolitik schrittweise

migrieren.

Algorithmus-Suiten mit hohem Engagement

Version 1.7. x enthalt zwei neue Algorithmus-Suiten, die Key Commitment unterstutzen.
Eine beinhaltet das Signieren, die andere nicht. Wie bereits friher unterstitzte Algorithmus-
Suiten beinhalten diese beiden neuen Algorithmus-Suiten Verschlisselung mit AES-GCM,
einen 256-Bit-Verschllsselungsschlissel und eine HMAC-basierte extract-and-expand
Schlusselableitungsfunktion (HKDF).

Die standardméafige Algorithmussuite, die fur die Verschlisselung verwendet wird, andert sich
jedoch nicht. Diese Algorithmus-Suiten wurden zu Version 1.7 hinzugefugt. x, um Ilhre Anwendung
fur die Verwendung in den Versionen 2.0 vorzubereiten. x und spater.

Anderungen an der CMM-Implementierung

Version 1.7. x filhrt Anderungen an der Standardschnittstelle des Cryptographic Materials
Manager (CMM) ein, um die Schliisseliibergabe zu unterstiitzen. Diese Anderung wirkt sich nur
auf Sie aus, wenn Sie ein benutzerdefiniertes CMM geschrieben haben. Einzelheiten finden Sie in
der API-Dokumentation oder im GitHub Repository flr Ihre Programmiersprache.

Version 2.0. x

Ausflhrung 2.0. x unterstitzt die neuen Sicherheitsfunktionen AWS Encryption SDK, die in

der angeboten werden, einschlieBlich spezifizierter Wrapping Keys und Key Commitment. Zur
Unterstiitzung dieser Funktionen, Version 2.0. x enthalt wichtige Anderungen fiir friihere Versionen
von AWS Encryption SDK. Sie kénnen sich auf diese Anderungen vorbereiten, indem Sie Version
1.7 bereitstellen. x. Ausfuhrung 2.0. x enthalt alle neuen Funktionen, die in Version 1.7 eingefuhrt
wurden. x mit den folgenden Ergénzungen und Anderungen.

Version 2.0. x 457

AWS Encryption SDK Entwicklerhandbuch

® Note

Version 2. x. x der AWS-Verschlisselungs-SDK for Python, AWS-Verschlisselungs-SDK for
JavaScript, und die AWS Encryption CLI befinden sich in der end-of-supportPhase.
Informationen zur Unterstltzung und Wartung dieser AWS Encryption SDK Version in

Ihrer bevorzugten Programmiersprache finden Sie in der SUPPORT_POLICY.rst Datei im
zugehorigen GitHubRepository.

AWS KMS Hauptschllsselanbieter

Die urspringlichen Konstruktoren des AWS KMS Hauptschlisselanbieters, die in Version 1.7
veraltet waren. x wurden in Version 2.0 entfernt. x. Sie missen AWS KMS Master-Key-Anbieter
explizit im strikten Modus oder im Discovery-Modus erstellen.

Verschlisseln und entschlisseln Sie Chiffretext mit Schllisselzusage

Version 2.0. x kann Chiffretext mit oder ohne Schliusselbindung ver- und entschlisseln. Sein

Verhalten wird durch die Richtlinieneinstellung ,Commitment” bestimmt. StandardmaRig
verschlisselt es immer mit Key Commitment und entschlisselt nur Chiffretext, der mit Key
Commitment verschlusselt wurde. Sofern Sie die Verpflichtungsrichtlinie nicht &ndern, AWS
Encryption SDK werden Chiffretexte, die mit einer friiheren Version von, einschliel3lich Version
1.7, verschllUsselt wurden, nicht entschliusselt. AWS Encryption SDKXx.

/A Important

StandardmaRig Version 2.0. x entschlisselt keinen Chiffretext, der ohne Schlisselbindung
verschlisselt wurde. Wenn lhre Anwendung mdglicherweise auf einen Chiffretext

stot, der ohne Schlisselzuweisung verschliusselt wurde, legen Sie einen Wert fur die
Commitment-Richtlinie mit fest. ALLowDecrypt

In Version 2.0. x, die Richtlinieneinstellung fur Verpflichtungen hat drei gultige Werte:

* ForbidEncryptAllowDecrypt— Sie AWS Encryption SDK kénnen nicht mit dem Schlussel
verschlisseln. Es kann Chiffretexte entschlisseln, die mit oder ohne Schlisselbindung
verschlusselt wurden.

* RequireEncryptAllowDecrypt— Sie AWS Encryption SDK missen mit Schlisselbindung
verschlisseln. Es kann Chiffretexte entschlisseln, die mit oder ohne Schlisselbindung
verschlusselt wurden.

Version 2.0. x 458

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

* RequireEncryptRequireDecrypt(Standard) — Sie AWS Encryption SDK missen mit
Schliusselzuweisung verschlisseln. Es entschlisselt nur Chiffretexte mit Schlisselbindung.

Wenn Sie von einer friheren Version von auf Version 2.0 migrieren. AWS Encryption SDK x,
setzen Sie die Commitment-Richtlinie auf einen Wert, der sicherstellt, dass Sie alle vorhandenen
Chiffretexte entschlisseln kénnen, auf die Ihre Anwendung stol3en kdnnte. Sie werden diese
Einstellung wahrscheinlich im Laufe der Zeit anpassen.

Version 2.2. x

Integriert die Unterstltzung fir digitale Signaturen und die Beschrankung verschlisselter
DatenschlUssel.

(® Note

Version 2. x. x der AWS-Verschlisselungs-SDK for Python, AWS-Verschlusselungs-SDK for
JavaScript, und die AWS Encryption CLI befinden sich in der end-of-supportPhase.

Informationen zur Unterstitzung und Wartung dieser AWS Encryption SDK Version in
Ihrer bevorzugten Programmiersprache finden Sie in der SUPPORT_POLICY.rst Dateiim
zugehdrigen GitHubRepository.

Digitale Signaturen

Um den Umgang mit digitalen Signaturen beim Entschlisseln zu verbessern, AWS Encryption
SDK umfasst das die folgenden Funktionen:

* Nicht-Streaming-Modus — gibt Klartext erst zuriick, nachdem alle Eingaben verarbeitet
wurden, einschlieRlich der Uberpriifung der digitalen Signatur, falls vorhanden. Diese
Funktion verhindert, dass Sie vor der Uberpriifung der digitalen Signatur Klartext verwenden.
Verwenden Sie diese Funktion immer dann, wenn Sie mit digitalen Signaturen verschliisselte
Daten entschlisseln (die standardmaRige Algorithmussuite). Da die AWS Encryption CLI
beispielsweise Daten immer im Streaming-Modus verarbeitet, sollten Sie den - -buffer
Parameter verwenden, wenn Sie Chiffretext mit digitalen Signaturen entschlisseln.

» Entschlisselungsmodus nur unsigniert — diese Funktion entschlusselt nur unsignierten
Chiffretext. Wenn bei der Entschlisselung eine digitale Signatur im Chiffretext gefunden
wird, schlagt der Vorgang fehl. Verwenden Sie diese Funktion, um zu verhindern, dass

Version 2.2. x 459

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

unbeabsichtigt Klartext aus signierten Nachrichten verarbeitet wird, bevor die Signatur Gberprift
wird.

Beschrankung verschlusselter Datenschlissel

Sie kdnnen die Anzahl der verschlisselten Datenschliissel in einer verschlisselten Nachricht
einschranken. Mit dieser Funktion kénnen Sie beim Verschlisseln einen falsch konfigurierten
Hauptschlisselanbieter oder einen falsch konfigurierten Schitisselbund oder beim Entschllisseln
einen bdsartigen Chiffretext erkennen.

Sie sollten verschlisselte Datenschliissel einschranken, wenn Sie Nachrichten aus einer nicht
vertrauenswiurdigen Quelle entschlisseln. Dadurch werden unnétige, teure und potenziell
erschépfende Zugriffe auf Ihre Schllsselinfrastruktur verhindert.

Version 2.3. x

Fugt Unterstitzung fur Schlissel AWS KMS mit mehreren Regionen hinzu. Details hierzu finden Sie
unter Verwenden Sie mehrere Regionen AWS KMS keys.

® Note

Die AWS Encryption CLI unterstitzt ab Version 3.0 Schlissel fir mehrere Regionen. x.
Ausflihrung 2. x. x der AWS-Verschlisselungs-SDK for Python, AWS-Verschlisselungs-SDK
for JavaScript, und die AWS Encryption CLI befinden sich in der end-of-supportPhase.
Informationen zur Unterstltzung und Wartung dieser AWS Encryption SDK Version in

Ihrer bevorzugten Programmiersprache finden Sie in der SUPPORT_POLICY.rst Datei im
zugehorigen GitHubRepository.

Version 2.3. x 460

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Entwicklerhandbuch

Migrieren Sie Inre AWS Encryption SDK

Das AWS Encryption SDK unterstitzt mehrere interoperable
Programmiersprachenimplementierungen, von denen jede in einem Open-Source-Repository am

entwickelt wurde. GitHub Als bewahrte Methode empfehlen wir, dass Sie AWS Encryption SDK fir
jede Sprache die neueste Version von verwenden.

Sie kénnen problemlos ein Upgrade von Version 2.0 durchflihren. x oder héher von AWS Encryption
SDK auf die neueste Version. Allerdings die 2.0. Die X-Version von AWS Encryption SDK fuhrt
wichtige neue Sicherheitsfunktionen ein, von denen einige grundlegende Anderungen darstellen. Um
ein Upgrade von Versionen vor 1.7 durchzuflhren. x auf Versionen 2.0. x und héher, Sie missen
zuerst auf die neueste Version 1 aktualisieren. x-Version. Die Themen in diesem Abschnitt sollen
lhnen helfen, die Anderungen zu verstehen, die richtige Version fiir Ihre Anwendung auszuwéhlen
und sicher und erfolgreich auf die neuesten Versionen von zu migrieren AWS Encryption SDK.

Informationen zu wichtigen Versionen von finden Sie unterVersionen von AWS Encryption SDK. AWS
Encryption SDK

/A Important

Fuhren Sie kein direktes Upgrade von einer Version vor 1.7 durch. x auf Version 2.0. x oder
héher, ohne zuerst auf die neueste Version 1 aktualisiert zu haben. x-Version. Wenn Sie
direkt auf Version 2.0 aktualisieren. x oder héher und alle neuen Funktionen sofort aktivieren,
kénnen Chiffretext, der unter alteren Versionen von verschlisselt wurde, AWS Encryption
SDK nicht entschlisseln. AWS Encryption SDK

(® Note

Die friheste Version von AWS Encryption SDK fur .NET ist Version 3.0. x. Alle Versionen
von AWS Encryption SDK fur .NET unterstitzen die in 2.0 eingeflhrten bewahrten
Sicherheitsmethoden. x der AWS Encryption SDK. Sie kdnnen sicher auf die neueste Version
aktualisieren, ohne Code- oder Datenanderungen vornehmen zu mussen.

AWS Verschlusselungs-CLI: Verwenden Sie beim Lesen dieses Migrationshandbuchs die
Version 1.7. x Migrationsanweisungen fir AWS Encryption CLI 1.8. x und verwende 2.0.

x Migrationsanweisungen fur AWS Encryption CLI 2.1. x. Details hierzu finden Sie unter
Versionen der AWS Encryption CLI.

461

AWS Encryption SDK Entwicklerhandbuch

Neue Sicherheitsfunktionen wurden urspringlich in den AWS Encryption CLI Versionen 1.7
veroffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Neuer Benutzer

Wenn Sie mit dem noch nicht vertraut sind AWS Encryption SDK, installieren Sie die neueste
Version von AWS Encryption SDK fur Ihre Programmiersprache. Die Standardwerte aktivieren alle
Sicherheitsfunktionen von AWS Encryption SDK, einschliel3lich Verschlusselung mit Signierung,
Schlusselableitung und Schlisselzusage. des AWS Encryption SDK

Aktuelle Benutzer

Wir empfehlen Ihnen, so bald wie mdglich ein Upgrade von lhrer aktuellen Version auf
die neueste verfugbare Version durchzufihren. Alles 1. X-Versionen von AWS Encryption
SDK befinden sich in der end-of-support Phase, ebenso wie spatere Versionen in einigen

Programmiersprachen. Einzelheiten zum Support- und Wartungsstatus von AWS Encryption SDK
in Ihrer Programmiersprache finden Sie unterSupport und Wartung.

AWS Encryption SDK Versionen 2.0. x und héher bieten neue Sicherheitsfunktionen zum
Schutz |Ihrer Daten. AWS Encryption SDK Version 2.0 jedoch. x beinhaltet grundlegende
Anderungen, die nicht abwértskompatibel sind. Um einen sicheren Ubergang zu gewahrleisten,
sollten Sie zunachst von lhrer aktuellen Version auf die neueste Version 1 migrieren. x in lhrer
Programmiersprache. Wann dein letzter 1. Die x-Version ist vollstandig implementiert und
funktioniert erfolgreich. Sie kdnnen sicher auf die Versionen 2.0 migrieren. x und spater. Dieser
zweistufige Prozess ist besonders fur verteilte Anwendungen von entscheidender Bedeutung.

Weitere Informationen zu den AWS Encryption SDK Sicherheitsfunktionen, die diesen Anderungen
zugrunde liegen, finden Sie im Sicherheitsblog unter Verbesserte clientseitige Verschlisselung:

Explizite Keylds und zentrale Verpflichtung. AWS

Bendtigen Sie Hilfe bei der Verwendung von mit dem? AWS-Verschlisselungs-SDK for Java AWS
SDK for Java 2.x Siehe Voraussetzungen.

Themen

» Wie migriert und implementiert man AWS Encryption SDK

462

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Entwicklerhandbuch

 Aktualisierung der AWS KMS Hauptschlisselanbieter

« AWS KMS Schliisselanhanger aktualisieren

» Festlegung Ihrer Verpflichtungspolitik

» Fehlerbehebung bei der Migration auf die neuesten Versionen

Wie migriert und implementiert man AWS Encryption SDK

Bei der Migration von einer AWS Encryption SDK Version vor 1.7. x auf Version 2.0. x oder
héher, Sie mussen sicher auf Verschllisselung mit Schlisselbindung umsteigen. Andernfalls
wird lhre Anwendung auf Chiffretexte stoRen, die sie nicht entschlisseln kann. Wenn Sie AWS

KMS Hauptschlisselanbieter verwenden, miussen Sie auf neue Konstruktoren aktualisieren, die
Hauptschlisselanbieter im strikten Modus oder im Discovery-Modus erstellen.

(® Note

Dieses Thema richtet sich an Benutzer, die von friheren Versionen von AWS Encryption SDK
auf Version 2.0 migrieren. x oder hoher. Wenn Sie mit dem noch nicht vertraut sind AWS
Encryption SDK, kdnnen Sie sofort damit beginnen, die neueste verfluigbare Version mit den
Standardeinstellungen zu verwenden.

Um eine kritische Situation zu vermeiden, in der Sie den Chiffretext, den Sie lesen missen, nicht
entschlisseln kdnnen, empfehlen wir, die Migration und Bereitstellung in mehreren verschiedenen
Phasen durchzuflhren. Stellen Sie sicher, dass jede Phase abgeschlossen und vollstandig
bereitgestellt ist, bevor Sie mit der nachsten Phase beginnen. Dies ist besonders wichtig fur verteilte
Anwendungen mit mehreren Hosts.

Phase 1: Aktualisieren Sie Ihre Anwendung auf die neueste Version 1. x-
Version

Auf die neueste Version aktualisieren 1. x-Version fur Ihre Programmiersprache. Testen Sie
sorgfaltig, implementieren Sie Ihre Anderungen und stellen Sie sicher, dass das Update auf alle
Zielhosts Ubertragen wurde, bevor Sie mit Phase 2 beginnen.

Wie migriert und implementiert man 463

AWS Encryption SDK Entwicklerhandbuch

/A Important

Vergewissern Sie sich, dass Ihre neueste Version 1 x-Version ist Version 1.7. x oder hdher
von AWS Encryption SDK.

Das letzte 1. x-Versionen von AWS Encryption SDK sind abwartskompatibel mit alteren

Versionen von AWS Encryption SDK und aufwartskompatibel mit Versionen 2.0. x und spater.

Sie enthalten die neuen Funktionen, die in Version 2.0 enthalten sind. x, enthalten jedoch sichere
Standardeinstellungen, die fir diese Migration entwickelt wurden. Sie erméglichen es Ihnen, lhre
AWS KMS Hauptschliisselanbieter bei Bedarf zu aktualisieren und die vollstandige Implementierung
mit Algorithmus-Suiten durchzufiihren, die Chiffretext mit Schllsselbindung entschlisseln kénnen.

» Ersetzen Sie veraltete Elemente, einschlieldlich Konstruktoren flr altere Hauptschllisselanbieter.
AWS KMS Stellen Sie in Python sicher, dass Sie Verfallswarnungen aktivieren. Codeelemente, die
in der neuesten Version veraltet sind. x-Versionen wurden aus den Versionen 2.0 entfernt. x und
spater.

» Legen Sie Ihre Verpflichtungspolitik ausdriicklich auf festForbidEncryptAllowDecrypt. Dies ist
zwar der einzig gultige Wert in der letzten Version 1. X-Versionen, diese Einstellung ist erforderlich,
wenn Sie die in dieser Version APIs eingefuhrten verwenden. Dadurch wird verhindert, dass Ihre
Anwendung bei der Migration auf Version 2.0 verschlisselten Chiffretext zurickweist, der ohne
Schliusselzuweisung verschlusselt wurde. x und héher. Details hierzu finden Sie unter the section
called “Festlegung Ihrer Verpflichtungspolitik”.

* Wenn Sie AWS KMS HauptschlUsselanbieter verwenden, missen Sie lhre alteren
HauptschlUsselanbieter auf Masterschlisselanbieter aktualisieren, die den strikten Modus und
den Erkennungsmodus unterstitzen. Dieses Update ist fur die AWS-Verschlisselungs-SDK for
Java AWS-Verschlisselungs-SDK for Python, und die AWS Encryption CLI erforderlich. Wenn Sie
Master-Key-Anbieter im Discovery-Modus verwenden, empfehlen wir Ihnen, den Discovery-Filter
zu implementieren, der die verwendeten Wrapping-Schlissel auf diese beschrankt AWS-Konten.
Dieses Update ist optional, aber es ist eine bewahrte Methode, die wir empfehlen. Details hierzu
finden Sie unter Aktualisierung der AWS KMS Hauptschllsselanbieter.

+ Wenn Sie AWS KMS Erkennungsschlisselringe verwenden, empfehlen wir lhnen, einen
Erkennungsfilter einzubauen, der die bei der Entschlisselung verwendeten Wrapping-
Schlussel auf bestimmte Schllssel beschrankt. AWS-Konten Dieses Update ist optional, aber
es ist eine bewahrte Methode, die wir empfehlen. Details hierzu finden Sie unter AWS KMS
Schlisselanhanger aktualisieren.

Phase 1: Aktualisieren Sie lhre Anwendung auf die neueste Version 1. x-Version 464

https://docs.python.org/3/library/warnings.html

AWS Encryption SDK Entwicklerhandbuch

Phase 2: Aktualisieren Sie Ihre Anwendung auf die neueste Version

Nach der Bereitstellung der neuesten Version 1. Die x-Version wurde erfolgreich auf allen Hosts
installiert. Sie kdnnen ein Upgrade auf die Versionen 2.0 durchflihren. x und spater. Version 2.0. x
enthalt wichtige Anderungen fiir alle friiheren Versionen von AWS Encryption SDK. Wenn Sie jedoch
die in Phase 1 empfohlenen Codeanderungen vornehmen, kénnen Sie Fehler bei der Migration zur
neuesten Version vermeiden.

Stellen Sie vor dem Update auf die neueste Version sicher, dass lhre Verpflichtungsrichtlinie
durchgangig auf eingestellt istForbidEncryptAllowDecrypt. Abhangig

von lhrer Datenkonfiguration kénnen Sie dann in lhrem eigenen Tempo zur
Standardeinstellung migrieren RequireEncryptAllowDecrypt und dann zur
StandardeinstellungRequireEncryptRequireDecrypt. Wir empfehlen eine Reihe von
Ubergangsschritten wie das folgende Muster.

1. Beginnen Sie mit lhrer Verpflichtungspolitik, die auf eingestellt
istForbidEncryptAllowDecrypt. Der AWS Encryption SDK kann Nachrichten mit Key
Commitment entschlusseln, verschlisselt aber noch nicht mit Key Commitment.

2. Wenn Sie bereit sind, aktualisieren Sie lhre Verpflichtungsrichtlinie auf.
RequireEncryptAllowDecrypt Das AWS Encryption SDK beginnt mit der Verschlisselung
Ihrer Daten mit Schltsselverpflichtung. Es kann Chiffretext mit und ohne Schlisselbindung
entschlisseln.

Bevor Sie lhre Verpflichtungsrichtlinie auf aktualisieren, vergewissern Sie
sichRequireEncryptAllowDecrypt, dass Ihre neueste Version 1. Die X-Version wird auf allen
Hosts bereitgestellt, einschliellich der Hosts aller Anwendungen, die den von |hnen erstellten
Chiffretext entschlisseln. Versionen der Vorgangerversion AWS Encryption SDK vor Version 1.7. x
kann Nachrichten, die mit Key Commitment verschlisselt wurden, nicht entschlisseln.

Dies ist auch ein guter Zeitpunkt, um Ihrer Anwendung Metriken hinzuzufliigen, mit denen Sie
messen kdnnen, ob Sie immer noch Chiffretext ohne Schllisselbindung verarbeiten. Auf diese
Weise kdnnen Sie feststellen, wann es sicher ist, lhre Richtlinieneinstellung fur Verpflichtungen
zu aktualisieren. RequireEncryptRequireDecrypt Fir einige Anwendungen, z. B. solche,
die Nachrichten in einer Amazon SQS SQS-Warteschlange verschlisseln, kann dies bedeuten,
dass lange genug gewartet wird, bis der gesamte in alten Versionen verschlisselte Chiffretext
erneut verschlisselt oder geléscht wurde. Fir andere Anwendungen, wie z. B. verschlisselte S3-
Objekte, mussen Sie mdglicherweise alle Objekte herunterladen, erneut verschlisseln und erneut
hochladen.

Phase 2: Aktualisieren Sie Ihre Anwendung auf die neueste Version 465

AWS Encryption SDK Entwicklerhandbuch

3. Wenn Sie sicher sind, dass Sie keine Nachrichten ohne Schlisselbindung verschlisselt haben,
kénnen Sie |hre Verpflichtungsrichtlinie auf aktualisieren. RequireEncryptRequireDecrypt
Dieser Wert stellt sicher, dass lhre Daten immer mit Schlisselbindung ver- und entschlisselt
werden. Diese Einstellung ist die Standardeinstellung, sodass Sie sie nicht explizit festlegen
muissen. Wir empfehlen sie jedoch. Eine explizite Einstellung erleichtert das Debuggen und
mogliche Rollbacks, die erforderlich sein kénnten, wenn lhre Anwendung auf Chiffretext stoR3t, der
ohne Schlisselbindung verschlisselt wurde.

Aktualisierung der AWS KMS Hauptschlisselanbieter

Um auf die neueste Version zu migrieren 1. x-Version von AWS Encryption SDK und dann

auf Version 2.0. x oder héher, Sie mussen altere AWS KMS Hauptschllisselanbieter durch
HauptschlUsselanbieter ersetzen, die explizit im strikten Modus oder Discovery-Modus erstellt
wurden. Altere Hauptschliisselanbieter sind in Version 1.7 veraltet. x und wurde in Version

2.0 entfernt. x. Diese Anderung ist fir Anwendungen und Skripts erforderlich, die die AWS-
Verschlisselungs-SDK for JavaAWS-Verschliisselungs-SDK for Python, und die AWS Encryption CLI
verwenden. Die Beispiele in diesem Abschnitt zeigen lhnen, wie Sie Ihren Code aktualisieren.

(@ Note

Schalten Sie in Python Verfallswarnungen ein. Auf diese Weise kénnen Sie die Teile lhres
Codes identifizieren, die Sie aktualisieren missen.

Wenn Sie einen AWS KMS Hauptschlissel (keinen Hauptschlisselanbieter) verwenden, kénnen Sie
diesen Schritt Uberspringen. AWS KMS Hauptschlissel sind nicht veraltet oder wurden nicht entfernt.
Sie verschlisseln und entschlisseln nur mit den von Ihnen angegebenen Wrapping-Schlisseln.

Die Beispiele in diesem Abschnitt konzentrieren sich auf die Elemente lhres Codes, die Sie andern
mussen. Ein vollstandiges Beispiel fur den aktualisierten Code finden Sie im Abschnitt Beispiele des
GitHub Repositorys fur Ihre Programmiersprache. Aullerdem verwenden diese Beispiele in der Regel
Schlussel ARNs zur Darstellung AWS KMS keys. Wenn Sie einen Hauptschlisselanbieter fur die
Verschlisselung erstellen, kdnnen Sie einen beliebigen gultigen AWS KMS Schlisselbezeichner
verwenden, um einen AWS KMS key darzustellen. Wenn Sie einen Hauptschlisselanbieter fur die
Entschllsselung erstellen, missen Sie einen Schllissel-ARN verwenden.

Erfahren Sie mehr Uber Migration

Aktualisierung der AWS KMS Hauptschliisselanbieter 466

https://docs.python.org/3/library/warnings.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Entwicklerhandbuch

Informationen zur Einrichtung lhrer Verpflichtungsrichtlinie finden Sie fir alle AWS Encryption SDK
Benutzer unterthe section called “Festlegung lhrer Verpflichtungspolitik”.

Fur AWS-Verschlisselungs-SDK for JavaScript Benutzer AWS-Verschlisselungs-SDK for C und
Benutzer finden Sie weitere Informationen zu einem optionalen Update flir Schlliisselanhanger inAWS
KMS Schliisselanhanger aktualisieren.

Themen

» Umstellung auf den strikten Modus

 In den Discovery-Modus migrieren

Umstellung auf den strikten Modus

Nach dem Update auf die neueste Version 1. x-Version von AWS Encryption SDK, ersetzen Sie lhre
alten Hauptschlisselanbieter durch Hauptschllsselanbieter im strikten Modus. Im strikten Modus
mussen Sie die Wrapping-Schlissel angeben, die beim Verschliisseln und Entschlisseln verwendet
werden sollen. Der AWS Encryption SDK verwendet nur die von lhnen angegebenen Wrapping-
Schlussel. Veraltete Hauptschllsselanbieter kénnen Daten mit jedem entschlisseln AWS KMS key ,
der einen Datenschlissel verschlisselt hat, auch AWS KMS keys in verschiedenen AWS-Konten
Regionen.

Master-Key-Anbieter im strikten Modus wurden in Version 1.7 eingeflihrt. AWS Encryption SDK x. Sie
ersetzen altere Master-Key-Anbieter, die in 1.7 veraltet sind. x und in 2.0 entfernt. x. Die Verwendung
von Master-Key-Anbietern im strikten Modus ist eine AWS Encryption SDK bewahrte Methode.

Der folgende Code erstellt einen Hauptschlisselanbieter im strikten Modus, den Sie zum
Verschlusseln und Entschlisseln verwenden kdnnen.

Java

Dieses Beispiel stellt Code in einer Anwendung dar, die die Version 1.6.2 oder friher von
verwendet. AWS-Verschlisselungs-SDK for Java

In diesem Code wird die KmsMasterKeyProvider.builder () Methode verwendet, um
einen AWS KMS Hauptschlisselanbieter zu instanziieren, der einen AWS KMS key als
UmschlieBungsschlissel verwendet.

// Create a master key provider

Umstellung auf den strikten Modus 467

AWS Encryption SDK Entwicklerhandbuch

// Replace the example key ARN with a valid one
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.withKeysForEncryption(awsKmsKey)
.build();

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.7 verwendet. x oder
héher von AWS-Verschlisselungs-SDK for Java . Ein vollstandiges Beispiel finden Sie unter
BasicEncryptionExample.java.

Die im vorherigen Beispiel verwendeten Builder .withKeysForEncryption() Methoden
Builder.build() und sind in Version 1.7 veraltet. x und wurden aus Version 2.0 entfernt. x.

Um auf einen Master-Key-Anbieter im strikten Modus zu aktualisieren, ersetzt dieser Code Aufrufe
veralteter Methoden durch einen Aufruf der neuen Builder.buildStrict () Methode. In
diesem Beispiel wird eine AWS KMS key als Schlussel fur den Zeilenumbruch angegeben, aber
die Builder.buildStrict () Methode kann auch eine Liste mit mehreren verwenden. AWS
KMS keys

// Create a master key provider in strict mode

// Replace the example key ARN with a valid one from your AWS-Konto.
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

Python

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.4.1 von verwendet. AWS-
Verschlisselungs-SDK for Python Dieser Code verwendetKMSMasterKeyProvider, was in
Version 1.7 veraltet ist. x und wurde aus Version 2.0 entfernt. x. Bei der Entschllsselung wird
jeder verwendet, der einen Datenschliissel verschlisselt hat AWS KMS key , unabhangig von
dem, was AWS KMS keys Sie angeben.

Beachten Sie, dass dies nicht veraltet KMSMasterKey ist oder entfernt wurde. Beim
Verschlusseln und Entschlisseln werden nur die von Ihnen angegebenen verwendet. AWS KMS
key

Umstellung auf den strikten Modus 468

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java

AWS Encryption SDK Entwicklerhandbuch

Create a master key provider

Replace the example key ARN with a valid one

key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvidex(
key_ids=[key_1, key_2]

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.7 verwendet. x von AWS-
Verschlisselungs-SDK for Python. Ein vollstandiges Beispiel finden Sie unter basic_encryption.py.

Um auf einen Master-Key-Anbieter im strikten Modus zu aktualisieren, ersetzt
dieser Code den Aufruf von KMSMasterKeyProvidexr () durch einen Aufruf
vonStrictAwsKmsMasterKeyProvider().

Create a master key provider in strict mode

Replace the example key ARNs with valid values from your AWS-Konto
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[key_1, key_2]

AWS Encryption CLI

Dieses Beispiel zeigt, wie mit der AWS Encryption CLI Version 1.1.7 oder friher ver- und
entschlisselt wird.

In Version 1.1.7 und friher geben Sie beim Verschlisseln einen oder mehrere Hauptschlissel
(oder Wrapping-Schlissel) an, z. B. einen. AWS KMS key Beim Entschlisseln kénnen Sie

keine UmschlieBungsschlissel angeben, es sei denn, Sie verwenden einen benutzerdefinierten
HauptschlUsselanbieter. Die AWS Encryption CLI kann jeden Wrapping-Schlissel verwenden, der
einen Datenschlussel verschlusselt hat.

\\ Replace the example key ARN with a valid one

Umstellung auf den strikten Modus 469

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/basic_encryption.py

AWS Encryption SDK Entwicklerhandbuch

$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--master-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Dieses Beispiel zeigt, wie mit der AWS Encryption CLI Version 1.7 ver- und entschlisselt wird. x
oder héher. Vollstandige Beispiele finden Sie unterBeispiele fur die AWS Encryption CLI.

Der --master-keys Parameter ist in Version 1.7 veraltet. x und wurde in Version 2.0 entfernt. x.
Er wurde durch den --wrapping-keys Parameter by ersetzt, der fir Befehle zum Verschlisseln
und Entschlusseln erforderlich ist. Dieser Parameter unterstiitzt den strikten Modus und den
Erkennungsmodus. Der strikte Modus ist eine AWS Encryption SDK bewédhrte Methode, mit der
sichergestellt wird, dass Sie den gewlnschten Umbruchschlissel verwenden.

Um auf den strikten Modus umzusteigen, verwenden Sie das Schlisselattribut des --wrapping-
keys Parameters, um beim Verschlisseln und Entschliusseln einen UmschlieRungsschlissel
anzugeben.

\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

Umstellung auf den strikten Modus 470

AWS Encryption SDK Entwicklerhandbuch

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

In den Discovery-Modus migrieren

Ab Version 1.7. x, es hat sich bewahrt AWS Encryption SDK , den strikten Modus fur AWS KMS
HauptschlUsselanbieter zu verwenden, d. h., beim Verschlisseln und Entschlisseln anzugeben,
dass Schlissel eingeschlossen werden. Sie mussen beim Verschlisseln immer Wrapping-Schlissel
angeben. Es gibt jedoch Situationen, in denen die Angabe ARNs des Schlissels AWS KMS

keys flr die Entschliisselung nicht praktikabel ist. Wenn Sie beispielsweise AWS KMS keys beim
Verschlisseln Aliase zur ldentifizierung verwenden, verlieren Sie den Vorteil von Aliasen, wenn

Sie beim Entschlisseln den Schliissel angeben missen. ARNs Da sich Hauptschlisselanbieter

im Erkennungsmodus wie die urspriinglichen Hauptschllsselanbieter verhalten, kénnen Sie sie
aulRerdem vorlibergehend als Teil lhrer Migrationsstrategie verwenden und spater im strikten Modus
auf Hauptschlisselanbieter umsteigen.

In solchen Fallen kbnnen Sie Hauptschllisselanbieter im Erkennungsmodus verwenden. Bei

diesen Hauptschlisselanbietern kdnnen Sie keine Schllissel angeben, sodass Sie sie nicht

zum VerschlUsseln verwenden konnen. Bei der Entschlisselung kdnnen sie jeden beliebigen
UmschlieBungsschlissel verwenden, mit dem ein Datenschlissel verschlisselt wurde. Im Gegensatz
zu alteren Hauptschllsselanbietern, die sich genauso verhalten, werden sie jedoch explizit im
Discovery-Modus erstellt. Wenn Sie Master-Key-Anbieter im Discovery-Modus verwenden, kdnnen
Sie die Anzahl der Wrapping-Schlissel, die verwendet werden kénnen, auf bestimmte Schlissel
beschranken AWS-Konten. Dieser Erkennungsfilter ist optional, aber es handelt sich um eine
bewahrte Methode, die wir empfehlen. Informationen zu AWS Partitionen und Konten finden Sie unter
Amazon Resource Names in der Allgemeine AWS-Referenz.

In den folgenden Beispielen werden ein AWS KMS Master-Key-Provider im Strict-Modus fur

die Verschlisselung und ein AWS KMS Master-Key-Provider im Discovery-Modus fir die
EntschlUsselung erstellt. Der Hauptschlisselanbieter im Erkennungsmodus verwendet einen
Erkennungsfilter, um die fir die Entschlisselung verwendeten Schllissel auf die aws Partition und
auf ein bestimmtes Beispiel zu beschranken. AWS-Konten Obwohl der Kontofilter in diesem sehr
einfachen Beispiel nicht erforderlich ist, ist er eine bewahrte Methode, die sehr nutzlich ist, wenn eine
Anwendung Daten verschlusselt und eine andere Anwendung die Daten entschlisselt.

In den Discovery-Modus migrieren 471

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Encryption SDK Entwicklerhandbuch

Java

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.7 verwendet. x oder
héher von AWS-Verschlisselungs-SDK for Java. Ein vollstandiges Beispiel finden Sie unter
DiscoveryDecryptionExample.java.

Um einen Hauptschlisselanbieter im strikten Modus flr die Verschlisselung zu

instanziieren, verwendet dieses Beispiel die Methode. Builder.buildStrict() Um einen
Hauptschlisselanbieter im Discovery-Modus fur die Entschlisselung zu instanziieren, wird die
Methode verwendet. Builder.buildDiscovery() Die Builder.buildDiscovery()
Methode verwendet eine, DiscoveryFilter die den Wert AWS Encryption SDK auf AWS KMS
keys in der angegebenen AWS Partition und den angegebenen Konten begrenzt.

// Create a master key provider in strict mode for encrypting
// Replace the example alias ARN with a valid one from your AWS-Konto.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting

// Replace the example account IDs with valid values.

DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.aslList("111122223333",
""444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildDiscovery(accounts);

Python

Dieses Beispiel stellt Code in einer Anwendung dar, die Version 1.7 verwendet. x oder héher
von AWS-Verschlisselungs-SDK for Python . Ein vollstédndiges Beispiel finden Sie unter
discovery_kms_provider.py.

Um einen Hauptschlisselanbieter im strikten Modus fir die Verschlisselung zu

erstellen, verwendet StrictAwsKmsMasterKeyProvider dieses Beispiel. Um einen
Hauptschlisselanbieter im Discovery-Modus fir die Entschlisselung zu erstellen, wird
DiscoveryAwsKmsMasterKeyProvider with a verwendet, DiscoveryFilter das den
Wert AWS Encryption SDK auf AWS KMS keys in der angegebenen AWS Partition und den
angegebenen Konten begrenzt.

In den Discovery-Modus migrieren 472

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Entwicklerhandbuch

Create a master key provider in strict mode

Replace the example key ARN and alias ARNs with valid values from your AWS-Konto.
key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

key_2 = "arn:aws:kms:us-
west-2:444455556666:key/la2b3c4d-5e6f-1a2b-3c4d-5e6f1la2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMastexrKeyProvidex(
key_ids=[key_1, key_2]

Create a master key provider in discovery mode for decrypting
Replace the example account IDs with valid values
accounts = DiscoveryFilter(
partition="aws",
account_ids=["111122223333", "444455556666"]
)

aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvider(
discovery_filter=accounts

AWS Encryption CLI

Dieses Beispiel zeigt, wie mit der AWS Encryption CLI Version 1.7 ver- und entschlisselt wird.
x oder héher. Ab Version 1.7. x, der --wrapping-keys Parameter ist beim Verschlisseln und
Entschlisseln erforderlich. Der --wrapping-keys Parameter unterstiitzt den Strict-Modus und
den Discovery-Modus. Vollstadndige Beispiele finden Sie unterthe section called “Beispiele”.

Bei der Verschlisselung gibt dieses Beispiel einen Umschlielfungsschlissel an, der erforderlich
ist. Beim EntschlUsseln wird explizit der Erkennungsmodus ausgewahlt, indem das discovery
Attribut des - -wrapping-keys Parameters mit dem Wert von verwendet wird. true

Um die Anzahl der Schlissel, die im Discovery-Modus verwendet werden AWS Encryption SDK
kénnen, auf bestimmte Schllssel zu beschranken AWS-Konten, werden in diesem Beispiel

die discovery-account Attribute discovery-partition und des --wrapping-keys
Parameters verwendet. Diese optionalen Attribute sind nur glltig, wenn das discovery Attribut
auf gesetzt isttrue. Sie missen die discovery-account Attribute discovery-partition
und zusammen verwenden. Keines der Attribute ist alleine gultig.

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

In den Discovery-Modus migrieren 473

AWS Encryption SDK Entwicklerhandbuch

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyAlias \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values
$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--output .

AWS KMS Schlisselanhanger aktualisieren

Die AWS KMS Schltsselbunde im AWS-Verschlisselungs-SDK for C, im AWS Encryption SDK
fur.NET und im AWS-Verschlisselungs-SDK for JavaScriptunterstitzen bewahrte Methoden, da Sie
beim Verschlisseln und Entschlisseln angeben kdnnen, dass Schlissel umschlossen werden. Wenn

Sie einen AWS KMS Discovery-Schlusselbund erstellen, tun Sie dies explizit.

(@ Note

Die friheste Version von AWS Encryption SDK fir .NET ist Version 3.0. x. Alle Versionen
von AWS Encryption SDK fir .NET unterstltzen die in 2.0 eingefiihrten bewahrten
Sicherheitsmethoden. x der AWS Encryption SDK. Sie kénnen sicher auf die neueste Version
aktualisieren, ohne Code- oder Datendnderungen vornehmen zu missen.

Wenn Sie auf die neueste Version aktualisieren 1. X-Version von AWS Encryption SDK, Sie kdnnen
einen Erkennungsfilter verwenden, um die Anzahl der Schlissel, die ein AWS KMS Discovery-

Schlusselbund oder ein AWS KMS regionaler Discovery-Schlisselbund beim Entschlisseln

AWS KMS Schllsselanhanger aktualisieren 474

AWS Encryption SDK Entwicklerhandbuch

verwendet, auf bestimmte Schllssel zu beschranken. AWS-KontenDas Filtern eines Discovery-
Schlisselbunds ist eine bewahrte Methode. AWS Encryption SDK

Die Beispiele in diesem Abschnitt zeigen lhnen, wie Sie den Discovery-Filter zu einem AWS KMS
regionalen Discovery-Schlisselbund hinzufligen.

Erfahren Sie mehr tUber Migration

Informationen zur Einrichtung lhrer Verpflichtungsrichtlinie finden Sie fur alle AWS Encryption SDK
Benutzer unterthe section called “Festlegung lhrer Verpflichtungspolitik”.

Informationen zu einem erforderlichen Update fiur AWS-Verschlisselungs-SDK for Java Master-Key-
Anbieter finden Sie fur Benutzer von, und AWS Encryption CLI unterthe section called “Aktualisierung
der AWS KMS Hauptschlusselanbieter”. AWS-Verschlisselungs-SDK for Python

Mdglicherweise haben Sie Code wie den folgenden in Ihrer Anwendung. In diesem Beispiel wird ein
AWS KMS regionaler Discovery-Schlisselbund erstellt, fir den nur Schlissel in der Region USA
West (Oregon) (us-west-2) verwendet werden kdnnen. Dieses Beispiel stellt Code in AWS Encryption
SDK Versionen vor 1.7 dar. x. In den Versionen 1.7 ist es jedoch weiterhin gultig. x und spater.

C

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder()
.WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })

JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

AWS KMS Schliisselanhanger aktualisieren 475

AWS Encryption SDK Entwicklerhandbuch

Ab Version 1.7. x, Sie kénnen jedem Discovery-Schliisselbund einen AWS KMS Discovery-

Filter hinzufligen. Dieser Erkennungsfilter beschrankt den Wert AWS KMS keys , den er fir die
Entschllsselung verwenden AWS Encryption SDK kann, auf diejenigen in der angegebenen Partition
und den angegebenen Konten. Bevor Sie diesen Code verwenden, andern Sie gegebenenfalls die
Partition und ersetzen Sie das Beispielkonto IDs durch ein gultiges Konto.

C

Ein vollstandiges Beispiel finden Sie unter kms_discovery.cpp.

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.AddAccount("444455556666")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder()

WithKmsClient(create_kms_client(Aws: :Region::US_WEST_2)).BuildDiscovery(discovery_filter))
JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
aws' }

1)

JavaScript Node.js

Ein vollstandiges Beispiel finden Sie unter kms_filtered_discovery.ts.

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({

clientProvider,

AWS KMS Schliisselanhanger aktualisieren 476

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts

AWS Encryption SDK Entwicklerhandbuch

discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
aws' }

D

Festlegung Ihrer Verpflichtungspolitik

Key Commitment stellt sicher, dass lhre verschlisselten Daten immer im gleichen Klartext
entschlisselt werden. Um diese Sicherheitseigenschaft ab Version 1.7 bereitzustellen. x

AWS Encryption SDK verwendet neue Algorithmus-Suiten mit hohem Engagement. Um
festzustellen, ob Ihre Daten mit Key Commitment ver- und entschlisselt werden, verwenden Sie
die Konfigurationseinstellung der Commitment-Richtlinie. Das Verschlusseln und Entschlisseln von
Daten mit Key Commitment ist eine AWS Encryption SDK bewahrte Methode.

Die Festlegung einer verbindlichen Richtlinie ist ein wichtiger Bestandteil des zweiten Schritts

im Migrationsprozess — der Migration von der letzten Version 1. x Versionen der beiden AWS
Encryption SDK Versionen 2.0. x und spater. Nachdem Sie |hre Verpflichtungsrichtlinie festgelegt
und geandert haben, sollten Sie lhre Anwendung grindlich testen, bevor Sie sie in der Produktion
einsetzen. Hinweise zur Migration finden Sie unterWie migriert und implementiert man AWS
Encryption SDK.

Die Richtlinieneinstellung ,Commitment* hat in den Versionen 2.0 drei glltige Werte. x und spater. In
der letzten 1. x-Versionen (beginnend mit Version 1.7. x), ForbidEncryptAllowDecrypt ist nur

gultig.

* ForbidEncryptAllowDecrypt— Sie AWS Encryption SDK kénnen nicht mit Schlisselzusage
verschlisseln. Es kann Chiffretexte entschlisseln, die mit oder ohne Schlisselbindung
verschlusselt wurden.

In der letzten Version 1. x-Versionen, dies ist der einzig gultige Wert. Es stellt sicher, dass

Sie erst dann mit Key Commitment verschlisseln, wenn Sie vollstandig bereit sind, mit Key
Commitment zu entschlisseln. Wenn Sie den Wert explizit festlegen, wird verhindert, dass sich
Ihre Verpflichtungsrichtlinie automatisch andert, require-encrypt-require-decrypt wenn
Sie auf Version 2.0 aktualisieren. x oder spater. Stattdessen kénnen Sie |hre Verpflichtungspolitik
schrittweise migrieren.

* RequireEncryptAllowDecrypt— Das verschlisselt AWS Encryption SDK immer mit
Schlisselzusage. Es kann Chiffretexte entschlisseln, die mit oder ohne Schlisselbindung
verschlisselt wurden. Dieser Wert wurde in Version 2.0 hinzugefligt. x.

Festlegung lhrer Verpflichtungspolitik 477

AWS Encryption SDK Entwicklerhandbuch

* RequireEncryptRequireDecrypt— Der verschlisselt und entschlisselt AWS Encryption
SDK immer mit Schlisselbindung. Dieser Wert wurde in Version 2.0 hinzugeflgt. x. Dies ist der
Standardwert in den Versionen 2.0. x und spater.

In der letzten 1. x-Versionen, der einzig gultige Wert der Verpflichtungspolice
istForbidEncryptAllowDecrypt. Nach der Migration auf Version 2.0. x oder spater kénnen
Sie |Ihre Verpflichtungsrichtlinie schrittweise andern, sobald Sie bereit sind. Aktualisieren Sie lhre

Verpflichtungsrichtlinie RequireEncryptRequireDecrypt erst, wenn Sie sicher sind, dass Sie
keine Nachrichten ohne Schliisselbindung verschlisselt haben.

Diese Beispiele zeigen lhnen, wie Sie Ihre Verpflichtungsrichtlinie in der neuesten Version
festlegen. x-Versionen und in den Versionen 2.0. x und spater. Die Technik hangt von lhrer
Programmiersprache ab.

Erfahren Sie mehr Uber Migration

Informationen zu AWS-Verschliisselungs-SDK for Java den erforderlichen Anderungen an den AWS
Hauptschlisselanbietern finden Sie unter, und die Encryption CLIthe section called “Aktualisierung
der AWS KMS Hauptschlusselanbieter”. AWS-Verschlisselungs-SDK for Python

Informationen zu einem optionalen Update fir AWS-Verschllsselungs-SDK for C Schlisselanhanger
finden Sie unterAWS KMS Schltsselanhanger aktualisieren. AWS-Verschlisselungs-SDK for
JavaScript

Wie legen Sie lhre Verpflichtungsrichtlinie fest

Die Methode, mit der Sie Ihre Verpflichtungspolitik festlegen, unterscheidet sich je nach
Sprachimplementierung geringfligig. Diese Beispiele zeigen Ihnen, wie das geht. Bevor Sie lhre
Verpflichtungspolitik &ndern, tUberprifen Sie den mehrstufigen Ansatz unterWie migriert und
implementiert man.

C

Ab Version 1.7. x von AWS-Verschlisselungs-SDK for C, Sie verwenden die
aws_cryptosdk_session_set_commitment_policy Funktion, um die
Verpflichtungsrichtlinie fur Ihre Verschllisselungs- und Entschlisselungssitzungen festzulegen.
Die von lhnen festgelegte Commitment-Richtlinie gilt fur alle Verschlisselungs- und
Entschlisselungsvorgange, die in dieser Sitzung aufgerufen werden.

Wie legen Sie lhre Verpflichtungsrichtlinie fest 478

AWS Encryption SDK Entwicklerhandbuch

Die aws_cryptosdk_session_new_from_cmm Funktionen
aws_cryptosdk_session_new_from_keyring und sind in Version

1.7 veraltet. x und in Version 2.0 entfernt. x. Diese Funktionen werden

durch aws_cryptosdk_session_new_from_cmm_2 Funktionen
aws_cryptosdk_session_new_from_keyring_2 und ersetzt, die eine Sitzung zurlickgeben.

Wenn Sie das aws_cryptosdk_session_new_from_keyring_2 und
aws_cryptosdk_session_new_from_cmm_2 in der letzten Version verwenden 1. x-
Versionen, Sie missen die aws_cryptosdk_session_set_commitment_policy Funktion
mit dem COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT Commitment-Policy-

Wert aufrufen. In den Versionen 2.0. x und héher ist der Aufruf dieser Funktion optional und
akzeptiert alle gultigen Werte. Die Standard-Commitment-Richtlinie fur Versionen 2.0. x und héher
istCOMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Ein vollstandiges Beispiel finden Sie unter string.cpp.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Create an AWS KMS keyring */

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session =
aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Encrypt your data */

size_t plaintext_consumed_output;

aws_cryptosdk_session_process(encrypt_session,
ciphertext_output,
ciphertext_buf_sz_output,
ciphertext_len_output,

Wie legen Sie lhre Verpflichtungsrichtlinie fest 479

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Entwicklerhandbuch

plaintext_input,
plaintext_len_input,
&plaintext_consumed_output)

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);
struct aws_cryptosdk_session *decrypt_session =
*aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Decrypt your ciphertext */

size_t ciphertext_consumed_output;

aws_cryptosdk_session_process(decxrypt_session,
plaintext_output,
plaintext_buf_sz_output,
plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output)

C#/ .NET

Der require-encrypt-require-decrypt Wertist die Standard-Commitment-Richtlinie in
allen Versionen von AWS Encryption SDK fur.NET. Sie kdnnen es als bewahrte Methode explizit
festlegen, dies ist jedoch nicht erforderlich. Wenn Sie jedoch AWS Encryption SDK for .NET
verwenden, um Chiffretext zu entschlisseln, der mit einer anderen Sprachimplementierung

von AWS Encryption SDK Without Key Commitment verschlisselt wurde, missen Sie den

Wert der Commitment-Richtlinie auf oder andern. REQUIRE_ENCRYPT_ALLOW_DECRYPT
FORBID_ENCRYPT_ALLOW_DECRYPT Andernfalls schlagen Versuche, den Chiffretext zu
entschlisseln, fehl.

Im AWS Encryption SDK fur.NET legen Sie die Commitment-Richtlinie fur eine Instanz von fest.
AWS Encryption SDK Instanziieren Sie ein AwsEncryptionSdkConfig Objekt mit einem
CommitmentPolicy Parameter und verwenden Sie das Konfigurationsobjekt, um die Instanz zu
erstellen. AWS Encryption SDK Rufen Sie dann die Decrypt () Methoden Encrypt() und der
konfigurierten AWS Encryption SDK Instanz auf.

Wie legen Sie lhre Verpflichtungsrichtlinie fest 480

AWS Encryption SDK Entwicklerhandbuch

In diesem Beispiel wird die Commitment-Richtlinie auf festgelegtrequire-encrypt-allow-
decrypt.

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig

{
CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT

};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

var encryptionContext = new Dictionary<string, string>()

{
{"purpose", "test"}encryptionSdk

};

var createKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput

{
Ciphertext = ciphertext,

Wie legen Sie lhre Verpflichtungsrichtlinie fest 481

AWS Encryption SDK Entwicklerhandbuch

Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Verwenden Sie den --commitment-policy Parameter, um eine Commitment-Richtlinie in der
AWS Encryption CLI festzulegen. Dieser Parameter wurde in Version 1.8 eingeflihrt. x.

In der letzten 1. X-Version, wenn Sie den --wrapping-keys Parameter in einem --encrypt
--decrypt OR-Befehl verwenden, ist ein --commitment-policy Parameter mit dem
forbid-encrypt-allow-decrypt Wert erforderlich. Andernfalls ist der - -commitment-
policy Parameter unglltig.

In den Versionen 2.1. x und héher ist der --commitment-policy Parameter optional

und hat standardmafig den require-encrypt-require-decrypt Wert, der keinen
Chiffretext ver- oder entschlisselt, der ohne Schlisselzuweisung verschlisselt wurde. Wir
empfehlen jedoch, dass Sie die Commitment-Richtlinie explizit fur alle Verschlisselungs- und
Entschlisselungsanfragen festlegen, um die Wartung und Fehlerbehebung zu erleichtern.

In diesem Beispiel wird die Commitment-Richtlinie festgelegt. Aulierdem wird der - -
wrapping-keys Parameter verwendet, der den --master-keys Parameter ab Version

1.8 ersetzt. x. Details hierzu finden Sie unter the section called “Aktualisierung der AWS KMS
HauptschlUsselanbieter”. Vollstandige Beispiele finden Sie unterBeispiele fur die AWS Encryption
CLI.

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later
$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys key=$keyArn \

Wie legen Sie lhre Verpflichtungsrichtlinie fest 482

AWS Encryption SDK Entwicklerhandbuch

--commitment-policy forbid-encrypt-allow-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \

--output .

Java

Ab Version 1.7. x von AWS-Verschlisselungs-SDK for Java, Sie legen die Commitment-
Richtlinie far Ihre Instanz von festAwsCrypto, dem Objekt, das den AWS Encryption SDK
Client darstellt. Diese Commitment-Richtlinieneinstellung gilt fur alle Verschlisselungs- und
Entschlisselungsvorgange, die auf diesem Client aufgerufen werden.

Der AwsCrypto() Konstruktor ist in der neuesten Version 1 veraltet. x-Versionen von AWS-
Verschlisselungs-SDK for Java und wurden in Version 2.0 entfernt. x. Es wird durch eine
neue Builder Klasse, eine Builder.withCommitmentPolicy() Methode und den
CommitmentPolicy Aufzahlungstyp ersetzt.

In der letzten 1. x-Versionen, die Builder Klasse bendtigt die
Builder.withCommitmentPolicy() Methode und das
CommitmentPolicy.ForbidEncryptAllowDecrypt Argument. Ab Version 2.0.
X, die Builder.withCommitmentPolicy() Methode ist optional; der Standardwert
istCommitmentPolicy.RequireEncryptRequireDecrypt.

Ein vollstandiges Beispiel finden Sie unter SetCommitmentPolicyExample.java.

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.ForbidEncryptAllowDecxypt)
.build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Encrypt your plaintext data

CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
masterKeyProvider,
sourcePlaintext,
encryptionContext);

Wie legen Sie lhre Verpflichtungsrichtlinie fest 483

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SetCommitmentPolicyExample.java

AWS Encryption SDK Entwicklerhandbuch

byte[] ciphertext = encryptResult.getResult();

// Decrypt your ciphertext

CryptoResult<byte[], KmsMasterKey> decryptResult = crypto.decryptData(
masterKeyProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

JavaScript

Ab Version 1.7. x von AWS-Verschlusselungs-SDK for JavaScript, Sie kénnen die Commitment-
Richtlinie festlegen, wenn Sie die neue buildClient Funktion aufrufen, die einen

AWS Encryption SDK Client instanziiert. Die buildClient Funktion verwendet einen
Aufzahlungswert, der lnre Commitment-Richtlinie darstellt. Sie gibt aktualisierte decrypt
Funktionen encrypt und Funktionen zurlck, die lhre Verpflichtungsrichtlinie beim Verschlisseln
und Entschlisseln durchsetzen.

In der letzten Version 1. x-Versionen, die buildClient Funktion benétigt das
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT Argument. Ab Version
2.0. x, das Argument der Commitment-Richtlinie ist optional und der Standardwert
istCommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Der Code fiir Node.js und der Browser sind flr diesen Zweck identisch, aulder dass der Browser
eine Anweisung bendétigt, um Anmeldeinformationen festzulegen.

Im folgenden Beispiel werden Daten mit einem AWS KMS Schlisselbund

verschlisselt. Die neue buildClient Funktion setzt die Commitment-Richtlinie
aufFORBID_ENCRYPT_ALLOW_DECRYPT, den Standardwert in der letzten Version 1. x Versionen.
Das Upgrade encrypt und die decrypt Funktionen, die buildClient zurlickgegeben werden,
setzen die von lhnen festgelegte Verpflichtungsrichtlinie durch.

import { buildClient } from '@aws-crypto/client-node'
const { encrypt, decrypt } =
buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create an AWS KMS keyring

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

Wie legen Sie lhre Verpflichtungsrichtlinie fest 484

AWS Encryption SDK Entwicklerhandbuch

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext:
context })

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

Ab Version 1.7. x von AWS-Verschlisselungs-SDK for Python, Sie legen die Commitment-
Richtlinie fir Ihre Instanz von festEncryptionSDKClient, einem neuen Objekt, das den AWS
Encryption SDK Client darstellt. Die von Ihnen festgelegte Commitment-Richtlinie gilt fur alle
decrypt Aufrufe encrypt und Aufrufe, die diese Instanz des Clients verwenden.

In der letzten Version 1. X-Versionen, der EncryptionSDKClient Konstruktor benétigt
den CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT Aufzahlungswert. Ab
Version 2.0. x, das Argument der Commitment-Richtlinie ist optional und der Standardwert
istCommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

In diesem Beispiel wird der neue EncryptionSDKClient Konstruktor verwendet und die
Commitment-Richtlinie auf 1.7 gesetzt. x Standardwert. Der Konstruktor instanziiert einen Client,
der den darstellt. AWS Encryption SDK Wenn Sie die stream Methoden encryptdecrypt, oder
auf diesem Client aufrufen, setzen sie die von Ihnen festgelegte Commitment-Richtlinie durch. In
diesem Beispiel wird auch der neue Konstruktor fir die StrictAwsKmsMasterKeyProvider
Klasse verwendet, der festlegt, AWS KMS keys wann verschlisselt und entschliisselt werden soll.

Ein vollstdndiges Beispiel finden Sie unter set_commitment.py.

Instantiate the client
client =
aws_encryption_sdk.EncxryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_AL

// Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

)

Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,

Wie legen Sie lhre Verpflichtungsrichtlinie fest 485

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/set_commitment.py

AWS Encryption SDK Entwicklerhandbuch

encryption_context=encryption_context,
master_key_provider=aws_kms_strict_master_key_provider

Decrypt your ciphertext

decrypted, decrypt_header = client.decxrypt(
source=ciphertext,
master_key_provider=aws_kms_strict_master_key_provider

Rust

Der require-encrypt-require-decrypt Wertist die Standard-Commitment-Richtlinie

in allen Versionen von AWS Encryption SDK for Rust. Sie kdnnen es als bewahrte Methode
explizit festlegen, aber es ist nicht erforderlich. Wenn Sie jedoch AWS Encryption SDK for Rust
verwenden, um Chiffretext zu entschlisseln, der mit einer Implementierung von AWS Encryption
SDK Without Key Commitment in einer anderen Sprache verschlisselt wurde, mussen Sie

den Richtlinienwert Commitment auf oder andern. REQUIRE_ENCRYPT_ALLOW_DECRYPT
FORBID_ENCRYPT_ALLOW_DECRYPT Andernfalls schlagen Versuche, den Chiffretext zu
entschlisseln, fehl.

In der AWS Encryption SDK fir Rust legen Sie die Commitment-Richtlinie fir eine Instanz von
fest. AWS Encryption SDK Instanziieren Sie ein AwsEncryptionSdkConfig Objekt mit einem
comitment_policy Parameter und verwenden Sie das Konfigurationsobjekt, um die Instanz zu
erstellen. AWS Encryption SDK Rufen Sie dann die Decrypt () Methoden Encrypt() und der
konfigurierten AWS Encryption SDK Instanz auf.

In diesem Beispiel wird die Commitment-Richtlinie auf festgelegtforbid-encrypt-allow-
decrypt.

// Configure the commitment policy on the AWS Encryption SDK instance

let esdk_config = AwsEncryptionSdkConfig::buildexr()
.commitment_policy(ForbidEncryptAllowDecrypt)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

Wie legen Sie lhre Verpflichtungsrichtlinie fest 486

AWS Encryption SDK Entwicklerhandbuch

// Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

// Decrypt your ciphertext
let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)
.send()
.await?;

Wie legen Sie lhre Verpflichtungsrichtlinie fest 487

AWS Encryption SDK Entwicklerhandbuch

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
commitPolicyForbidEncryptAllowDecrypt :=
mpltypes.ESDKCommitmentPolicyForbidEncryptAllowDecrypt
encryptionClient, err :=
client.NewClient(esdktypes.AwsEncryptionSdkConfig{CommitmentPolicy:
&commitPolicyForbidEncryptAllowDecxypt})
if err !'= nil {
panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D)
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

Wie legen Sie lhre Verpflichtungsrichtlinie fest 488

AWS Encryption SDK Entwicklerhandbuch

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Encrypt your plaintext data
res, err := forbidEncryptClient.Encrypt(context.Background(),
esdktypes.EncryptInput{

Plaintext: [1byte(exampleText),
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

1))

if err != nil {
panic(err)

}

// Decrypt your ciphertext
decryptOutput, err := forbidEncryptClient.Decrypt(context.Background(),
esdktypes.DecryptInput{

Ciphertext: res.Ciphertext,
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

1)

if err !'= nil {
panic(err)

}

Wie legen Sie lhre Verpflichtungsrichtlinie fest 489

AWS Encryption SDK Entwicklerhandbuch

Fehlerbehebung bei der Migration auf die neuesten Versionen

Bevor Sie lhre Anwendung auf Version 2.0 aktualisieren. x oder héher von AWS Encryption SDK,
aktualisieren Sie auf die neueste Version 1. x-Version von AWS Encryption SDK und stellen Sie sie
vollstandig bereit. Auf diese Weise kdnnen Sie die meisten Fehler vermeiden, die beim Update auf
Version 2.0 auftreten kénnen. x und spater. Eine ausfuhrliche Anleitung, einschliel3lich Beispielen,
finden Sie unterMigrieren Sie Ihre AWS Encryption SDK.

/A Important

Vergewissern Sie sich, dass Ihr neuestes 1. x-Version ist Version 1.7. x oder héher von AWS
Encryption SDK.

(® Note

AWS Encryption CLI: Verweise in diesem Handbuch auf Version 1.7. x der Angaben AWS
Encryption SDK beziehen sich auf Version 1.8. x der AWS Encryption CLI. Verweise in
diesem Handbuch auf Version 2.0. x davon AWS Encryption SDK gelten fur 2.1. x der AWS
Encryption CLI.

Neue Sicherheitsfunktionen wurden urspringlich in den AWS Encryption CLI Versionen 1.7
verdffentlicht. x und 2.0. x. Allerdings AWS Encryption CLI Version 1.8. x ersetzt Version 1.7.
x und AWS Encryption CLI 2.1. x ersetzt 2.0. x. Einzelheiten finden Sie in der entsprechenden
Sicherheitsempfehlung im aws-encryption-sdk-cliRepository unter GitHub.

Dieses Thema soll Ihnen helfen, die haufigsten Fehler zu erkennen und zu beheben, auf die Sie
moglicherweise stol3en.

Themen

» Veraltete oder entfernte Objekte

» Konfigurationskonflikt: Verpflichtungsrichtlinie und Algorithmus-Suite

» Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretext

- Die Uberpriifung der Schliisselzusage ist fehlgeschlagen

» Andere Verschlisselungsfehler

» Andere Fehler bei der Entschlisselung

Fehlerbehebung bei der Migration auf die neuesten Versionen 490

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Entwicklerhandbuch

« Uberlegungen zum Rollback

Veraltete oder entfernte Objekte

Version 2.0. x enthélt mehrere grundlegende Anderungen, darunter das Entfernen <erer
Konstruktoren, Methoden, Funktionen und Klassen, die in Version 1.7 veraltet waren. x. Um
Compilerfehler, Importfehler, Syntaxfehler und Fehler, dass das Symbol nicht gefunden wurde
(abhangig von lhrer Programmiersprache) zu vermeiden, aktualisieren Sie zuerst auf die neueste
Version 1. x-Version von AWS Encryption SDK fir lhre Programmiersprache. (Dies muss Version 1.7
sein. x oder spater.) Bei Verwendung der neuesten Version 1. In der X-Version kénnen Sie beginnen,
die Ersatzelemente zu verwenden, bevor die urspriinglichen Symbole entfernt werden.

Wenn Sie auf Version 2.0 aktualisieren mussen. x oder spater, konsultieren Sie sofort das Changelog
fur Ihre Programmiersprache und ersetzen Sie die alten Symbole durch die Symbole, die im
Changelog empfohlen werden.

Konfigurationskonflikt: Verpflichtungsrichtlinie und Algorithmus-Suite

Wenn Sie eine Algorithmus-Suite angeben, die mit lhrer Commitment-Richtlinie in Konflikt steht,

schlagt der Verschlisselungsaufruf mit einem Konfigurationskonfliktfehler fehl.

Um diese Art von Fehler zu vermeiden, geben Sie keine Algorithmus-Suite an. StandardmaRig
AWS Encryption SDK wahlt der den sichersten Algorithmus aus, der mit lhrer Verpflichtungspolitik
kompatibel ist. Wenn Sie jedoch eine Algorithmus-Suite angeben missen, z. B. eine Suite ohne
Signatur, stellen Sie sicher, dass Sie eine Algorithmus-Suite wahlen, die mit Ihrer Commitment-
Richtlinie kompatibel ist.

Verpflichtungspolitik Kompatible Algorithmus-Suiten

ForbidEncryptAllowDecrypt Jede Algorithmus-Suite ohne Schliissel
bindung, wie zum Beispiel:
AES_256_GCM_IV12_TAG1l6_HKDF
_SHA384_ECDSA_P384 (03 78) (mit
Signatur)

AES_256_GCM_IV12_TAG1l6_HKDF
_SHA256 (01 78) (ohne Unterschrift)

Veraltete oder entfernte Objekte 491

AWS Encryption SDK Entwicklerhandbuch

Verpflichtungspolitik Kompatible Algorithmus-Suiten

RequireEncryptAllowDecrypt Jede Algorithmus-Suite mit Schlisselverpflich
tung, wie zum Beispiel:
AES_256_GCM_HKDF_SHA512_COM
MIT_KEY_ECDSA_P384 (05 78) (mit
Signatur)

RequireEncryptRequireDecrypt

AES_256_GCM_HKDF_SHA512_COM
MIT_KEY (04 78) (ohne Unterschrift)

Wenn dieser Fehler auftritt, obwohl Sie keine Algorithmus-Suite angegeben haben, wurde die
Algorithmus-Suite, die den Konflikt verursacht, moglicherweise von lhrem Cryptographic Materials
Manager (CMM) ausgewahit. Das Standard-CMM wahlt keine widersprichliche Algorithmus-
Suite aus, wohl aber ein benutzerdefiniertes CMM. Hilfe finden Sie in der Dokumentation zu lhrem
benutzerdefinierten CMM.

Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretext

Die RequireEncryptRequireDecryptCommitment-Richtlinie erlaubt es nicht, eine Nachricht
AWS Encryption SDK zu entschliisseln, die ohne Schlisselzusage verschlisselt wurde. Wenn Sie
den bitten, eine Nachricht ohne Schlissellibergabe AWS Encryption SDK zu entschlisseln, wird ein
Konfigurationskonfliktfehler zurtickgegeben.

Um diesen Fehler zu vermeiden, sollten Sie vor der RequireEncryptRequireDecrypt
Festlegung der Commitment-Richtlinie sicherstellen, dass alle Chiffretexte, die ohne
Schlisselzuweisung verschlisselt wurden, mit Key Commitment entschlisselt und erneut
verschlisselt werden oder von einer anderen Anwendung verarbeitet werden. Wenn Sie auf diesen
Fehler stol3en, kbnnen Sie einen Fehler flr den widersprichlichen Chiffretext zurlickgeben oder lhre
Verpflichtungsrichtlinie voriibergehend auf andern. RequireEncryptAllowDecrypt

Wenn dieser Fehler auftritt, weil Sie auf Version 2.0 aktualisiert haben. x oder héher von einer
Version vor 1.7. x ohne vorher auf die neueste Version aktualisiert zu haben 1. x-Version (Version
1.7). x oder hbher), erwagen Sie, auf die neueste Version 1 zurlickzukehren. x-Version und
Bereitstellung dieser Version auf allen Hosts vor dem Upgrade auf Version 2.0. x oder hdher. Weitere
Informationen dazu finden Sie unter Wie migriert und implementiert man AWS Encryption SDK.

Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretext 492

AWS Encryption SDK Entwicklerhandbuch

Die Uberpriifung der Schliisselzusage ist fehlgeschlagen

Wenn Sie Nachrichten entschlisseln, die mit Key Commitment verschlisselt wurden, erhalten Sie
mdglicherweise die Fehlermeldung Key Commitment Validation failed. Dies weist darauf hin, dass der
Entschlisselungsaufruf fehlgeschlagen ist, weil ein Datenschllssel in einer verschlisselten Nachricht
nicht mit dem eindeutigen Datenschliissel fiir die Nachricht identisch ist. Durch die Uberpriifung des
Datenschlissels wahrend der Entschliisselung schitzt Sie die Schlisselzusage davor, eine Nachricht
zu entschlisseln, die zu mehr als einem Klartext fihren kénnte.

Dieser Fehler weist darauf hin, dass die verschliusselte Nachricht, die Sie zu entschlisseln
versuchten, nicht von der zurtickgegeben wurde. AWS Encryption SDK Es kann sich um eine manuell
erstellte Nachricht oder um das Ergebnis einer Datenbeschadigung handeln. Wenn dieser Fehler
auftritt, kann lhre Anwendung die Nachricht zurtickweisen und die Verarbeitung neuer Nachrichten
fortsetzen oder beenden.

Andere Verschlusselungsfehler

Die Verschlusselung kann aus mehreren Grunden fehlschlagen. Sie kdbnnen einen AWS KMS
Discovery-Schlusselbund oder einen Hauptschllsselanbieter im Discovery-Modus nicht verwenden,

um eine Nachricht zu verschlisseln.

Stellen Sie sicher, dass Sie einen Schlisselbund oder einen Hauptschlisselanbieter angeben, der
Schlussel umschliefdt, den Sie fur die Verschlisselung verwenden durfen. Hilfe zu Berechtigungen fur
finden Sie unter SchlUsselrichtlinie anzeigen und Zugriff auf eine bestimmen AWS KMS key im AWS
Key Management Service Entwicklerhandbuch. AWS KMS keys

Andere Fehler bei der Entschlisselung

Wenn lhr Versuch, eine verschlisselte Nachricht zu entschllisseln, fehlschlagt, bedeutet dies, dass
Sie keinen der verschlisselten Datenschliissel in der Nachricht entschlisseln AWS Encryption SDK
konnten (oder wollten).

Wenn Sie einen Schltisselbund oder einen Hauptschllsselanbieter verwendet haben, der Wrapping
Keys spezifiziert, AWS Encryption SDK verwendet dieser nur die von lhnen angegebenen Wrapping
Keys. Vergewissern Sie sich, dass Sie die beabsichtigten UmschlieRungsschlissel verwenden und
dass Sie fir mindestens einen der UmschlieBungsschlissel kms :Decrypt berechtigt sind. Wenn
Sie die Nachricht als Fallback verwenden AWS KMS keys, kdnnen Sie versuchen, die Nachricht mit
einem AWS KMS Discovery-Schlisselbund oder einem Hauptschlisselanbieter im Discovery-Modus

Die Uberpriifung der Schliisselzusage ist fehlgeschlagen 493

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html

AWS Encryption SDK Entwicklerhandbuch

zu entschlisseln. Wenn der Vorgang erfolgreich ist, tUberprifen Sie vor der Rickgabe des Klartextes,
ob der Schlissel, der zum Entschlisseln der Nachricht verwendet wurde, vertrauenswirdig ist.

Uberlegungen zum Rollback

Wenn |lhre Anwendung Daten nicht ver- oder entschliisseln kann, kénnen Sie das Problem in der
Regel beheben, indem Sie die Codesymbole, Schlisselringe, Hauptschllisselanbieter oder die
Verpflichtungsrichtlinie aktualisieren. In einigen Fallen kénnen Sie jedoch entscheiden, dass es am
besten ist, Ihre Anwendung auf eine friihere Version von zurlickzusetzen. AWS Encryption SDK

Wenn Sie ein Rollback durchflihren missen, tun Sie dies mit Vorsicht. Versionen AWS Encryption
SDK vor 1.7. x kann Chiffretext, der mit Key Commitment verschliisselt wurde, nicht entschliisseln.

» Ein Rollback von der neuesten Version wird riickgangig gemacht 1. Die X-Version auf eine
frhere Version von AWS Encryption SDK ist im Allgemeinen sicher. Mdglicherweise miissen Sie
Anderungen, die Sie an lhrem Code vorgenommen haben, riickgéngig machen, um Symbole und
Objekte zu verwenden, die in friiheren Versionen nicht unterstitzt wurden.

» Sobald Sie in Version 2.0 mit der Verschlisselung mit Key Commitment begonnen haben (indem
Sie Ihre Commitment-Richtlinie auf einstellenRequireEncryptAllowDecrypt). x oder hdher
kénnen Sie zu Version 1.7 zurlickkehren. x, aber nicht zu einer friiheren Version. Versionen der
AWS Encryption SDK Vorgangerversionen vor 1.7. x kann Chiffretext, der mit Key Commitment

verschliusselt wurde, nicht entschlisseln.

Wenn Sie versehentlich die Verschlisselung mit Schllisselzusage aktivieren, bevor alle Hosts

mit Schlisselzusage entschlisseln kdnnen, ist es moglicherweise am besten, mit dem Rollout
fortzufahren, anstatt ein Rollback durchzufiihren. Wenn Nachrichten vortibergehend sind oder
gefahrlos geléscht werden kdnnen, sollten Sie ein Rollback mit Verlust von Nachrichten in Betracht
ziehen. Wenn ein Rollback erforderlich ist, sollten Sie in Betracht ziehen, ein Tool zu schreiben, das
alle Nachrichten entschlisselt und erneut verschlisselt.

Uberlegungen zum Rollback 494

AWS Encryption SDK Entwicklerhandbuch

Haufig gestellte Fragen

Haufig gestellte Fragen
* Wie AWS Encryption SDK unterscheidet sich das von dem AWS SDKs?

* Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3 S3-Verschlisselungsclient?

* Welche kryptografischen Algorithmen werden vom AWS Encryption SDK unterstitzt und welcher
ist der Standard?

» Wie wird der Initialisierungsvektor (1V) generiert und wo wird er gespeichert?

* Wie werden die einzelnen Datenschlissel generiert, verschllisselt und entschlisselt?

+ Wie kann ich nachverfolgen, welche Datenschliissel zum Verschlisseln meiner Daten verwendet

wurden?

+ Wie AWS Encryption SDK speichern sie verschliisselte Datenschliissel mit ihren verschliisselten
Daten?

* Wie viel Mehraufwand verursacht das AWS Encryption SDK Nachrichtenformat flir meine
verschlusselten Daten?

» Kann ich meinen eigenen Masterschlisselanbieter verwenden?

+ Kann ich Daten mit mehr als einem Wrapping Key verschlusseln?

* Welche Datentypen kann ich mit dem verschlisseln? AWS Encryption SDK

* Wie werden Streams AWS Encryption SDK verschlisselt und entschlisselt input/output (1/0)?

Wie AWS Encryption SDK unterscheidet sich das von dem AWS
SDKs?

AWS SDKsSie bieten Bibliotheken fur die Interaktion mit Amazon Web Services (AWS),
einschlieRlich AWS Key Management Service (AWS KMS). Fur einige Sprachimplementierungen von
AWS Encryption SDK, z. B. AWS Encryption SDK fur .NET, ist das AWS SDK immer in derselben
Programmiersprache erforderlich. Fir andere Sprachimplementierungen ist das entsprechende AWS
SDK nur erforderlich, wenn Sie AWS KMS Schlussel in Ihren Schltsselbunden oder Master-Key-
Anbietern verwenden. Einzelheiten finden Sie im Thema zu Ihrer Programmiersprache unter. AWS
Encryption SDK Programmiersprachen

Sie kdnnen den verwenden, AWS SDKs um mit ihnen zu interagieren AWS KMS, einschlieflich
der Verschlisselung und Entschlisselung kleiner Datenmengen (bis zu 4.096 Byte mit einem

Wie AWS Encryption SDK unterscheidet sich das von dem AWS SDKs? 495

https://aws.amazon.com/tools/

AWS Encryption SDK Entwicklerhandbuch

symmetrischen Verschlisselungsschlissel) und der Generierung von Datenschlisseln fir die
clientseitige Verschlisselung. Wenn Sie jedoch einen Datenschlissel generieren, missen Sie

den gesamten Verschlisselungs- und Entschliisselungsprozess verwalten, einschliel3lich der
Verschlisselung Ihrer Daten mit dem Datenschlissel aulerhalb von AWS KMS, der sicheren
Léschung des Klartext-Datenschlissels, der Speicherung des verschlisselten Datenschlissels und
der anschlielenden Entschlisselung des Datenschliissels und der Entschlisselung lhrer Daten. Der
erledigt diesen Vorgang flir Sie. AWS Encryption SDK

Die AWS Encryption SDK stellt eine Bibliothek bereit, die Daten unter Verwendung von
Industriestandards und bewahrten Methoden ver- und entschllisselt. Sie generiert den
Datenschlissel, verschlisselt ihn unter den von lhnen angegebenen Wrapping-Schltisseln und gibt
eine verschlisselte Nachricht zurlck, ein portables Datenobjekt, das die verschlusselten Daten und
die verschlisselten Datenschlissel enthalt, die Sie zum Entschlisseln bendtigen. Wenn es an der
Zeit ist, zu entschllsseln, Gbergeben Sie die verschlisselte Nachricht und mindestens einen der
UmschlieBungsschlissel (optional), und das AWS Encryption SDK gibt Ihre Klartextdaten zurick.

Sie kénnen die Schltiissel AWS KMS keys als Wrapping Keys verwenden AWS Encryption SDK,

dies ist jedoch nicht erforderlich. Sie kdnnen die von Ihnen generierten Verschllisselungsschlissel
und die von lhrem Schliisselmanager oder dem lokalen Hardware-Sicherheitsmodul generierten
Verschlisselungsschlissel verwenden. Sie kénnen das verwenden, AWS Encryption SDK auch wenn
Sie kein AWS Konto haben.

Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3
S3-Verschlisselungsclient?

Der Amazon S3-Verschlisselungsclient im AWS SDKs ermdglicht die Verschlisselung und

Entschlisselung von Daten, die Sie in Amazon Simple Storage Service (Amazon S3) speichern.
Diese Clients sind eng mit Amazon S3 verbunden und nur fir die Verwendung mit dort gespeicherten
Daten vorgesehen.

Das AWS Encryption SDK bietet Verschlisselung und Entschllisselung fur Daten, die Sie tberall
speichern kénnen. Der AWS Encryption SDK und der Amazon S3 S3-Verschlisselungsclient sind
nicht kompatibel, da sie Chiffretexte mit unterschiedlichen Datenformaten erzeugen.

Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3 S3-Verschlisselungsclient? 496

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html

AWS Encryption SDK Entwicklerhandbuch

Welche kryptografischen Algorithmen werden vom AWS Encryption
SDK unterstutzt und welcher ist der Standard?

Der AWS Encryption SDK verwendet den symmetrischen Algorithmus Advanced Encryption
Standard (AES) im Galois/Counter Modus (GCM), auch bekannt als AES-GCM, um |hre Daten zu
verschlisseln. Sie kdnnen aus mehreren symmetrischen und asymmetrischen Algorithmen wahlen,
um die Datenschliussel zu verschlisseln, mit denen lhre Daten verschlisselt werden.

Fir AES-GCM ist AES-GCM die Standardalgorithmussuite mit einem 256-Bit-Schliissel, Key
Derivation (HKDF), digitalen Signaturen und Key Commitment. AWS Encryption SDK unterstitzt
aullerdem 192-Bit- und 128-Bit-Verschlisselungsschlissel und Verschlisselungsalgorithmen ohne
digitale Signaturen und Schlisselbindung.

Die Lange des Initialisierungsvektors (1V) ist immer 12 Bytes; die Lange des Authentifizierungs-Tags
ist immer 16 Bytes. Standardmaliig verwendet das SDK den Datenschlissel als Eingabe fir die
HMAC-basierte Schlisselableitungsfunktion (HKDF) zur Ableitung des extract-and-expand AES-
GCM-Verschlisselungsschlissels und flgt auRerdem eine ECDSA-Signatur (Elliptic Curve Digital
Signature Algorithm) hinzu.

Weitere Informationen zum Auswahlen des Algorithmus finden Sie unter Unterstutzte Algorithmen-
Pakete.

Weitere Informationen zu den unterstitzten Algorithmen finden Sie unter Algorithmen — Referenz.

Wie wird der Initialisierungsvektor (IV) generiert und wo wird er
gespeichert?

Das AWS Encryption SDK verwendet eine deterministische Methode, um flir jeden Frame einen
anderen IV-Wert zu erstellen. Dieses Verfahren garantiert, dass Vs sich innerhalb einer Nachricht
niemals wiederholen. (Vor Version 1.3.0 von AWS-Verschliisselungs-SDK for Java and the generierte
der AWS-Verschliisselungs-SDK for Python AWS Encryption SDK nach dem Zufallsprinzip einen
eindeutigen IV-Wert fir jeden Frame.)

Die IV wird in der verschllsselten Nachricht gespeichert, die der AWS Encryption SDK
zurtickgibt. Weitere Informationen hierzu finden Sie unter AWS Encryption SDK Referenz zum
Nachrichtenformat.

Welche kryptografischen Algorithmen werden vom AWS Encryption SDK unterstiitzt und welcher ist der 497
Standard?

AWS Encryption SDK Entwicklerhandbuch

Wie werden die einzelnen Datenschllssel generiert, verschlUsselt
und entschlisselt?

Die Methode hangt vom verwendeten Schllsselbund oder Hauptschllisselanbieter ab.

Die AWS KMS Schlisselringe und Hauptschlisselanbieter AWS Encryption SDK verwenden den
AWS KMS GenerateDataKeyAPI-Vorgang, um jeden Datenschlissel zu generieren und ihn unter

seinem Wrapping-Schlissel zu verschlisseln. Um Kopien des Datenschlissels unter zusatzlichen
KMS-Schlisseln zu verschlisseln, verwenden sie den AWS KMS Vorgang Encrypt. Um die
Datenschlissel zu entschlisseln, verwenden sie den Vorgang Decrypt AWS KMS . Einzelheiten
finden Sie unter AWS KMS Schlisselbund in der AWS Encryption SDK Spezifikation unter. GitHub

Andere Schlisselbunde generieren den Datenschllissel und verschlisseln und entschlisseln mit
bewahrten Methoden fir jede Programmiersprache. Einzelheiten finden Sie in der Spezifikation des
Schlisselbundes oder Hauptschlisselanbieters im Abschnitt Framework der Spezifikation unter.
AWS Encryption SDK GitHub

Wie kann ich nachverfolgen, welche Datenschlissel zum
Verschlusseln meiner Daten verwendet wurden?
Das AWS Encryption SDK erledigt das fur Sie. Wenn Sie Daten verschlisseln, verschlisselt das SDK

den DatenschlUssel und speichert den verschlisselten Schliissel zusammen mit den verschlisselten
Daten in der verschlusselten Nachricht, die es zurtickgibt. Wenn Sie Daten entschlisseln, extrahiert

das AWS Encryption SDK den verschlisselten Datenschllssel aus der verschlisselten Nachricht,
entschlusselt ihn und verwendet ihn dann zur Entschlisselung der Daten.

Wie AWS Encryption SDK speichern sie verschlusselte
Datenschlissel mit ihren verschlisselten Daten?

Die Verschlusselungsoperationen geben wiederum eine verschlusselte Nachricht AWS Encryption

SDK zurtick, eine einzelne Datenstruktur, die die verschlisselten Daten und ihre verschlisselten
Datenschlissel enthalt. Das Nachrichtenformat besteht aus mindestens zwei Teilen: einem
Header und einem Text. Der Nachrichten-Header enthalt die verschlisselten Datenschllissel
sowie Informationen daruber, wie der Nachrichtentext gebildet wird. Der Nachrichtentext enthalt
die verschlUsselten Daten. Wenn die Algorithmus-Suite eine digitale Signatur enthalt, umfasst das

Wie werden die einzelnen Datenschliissel generiert, verschliisselt und entschliisselt? 498

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/aws-kms/aws-kms-keyring.md
https://github.com/awslabs/aws-encryption-sdk-specification/tree/master/framework

AWS Encryption SDK Entwicklerhandbuch

Nachrichtenformat eine Ful3zeile, die die Signatur enthalt. Weitere Informationen finden Sie unter
AWS Encryption SDK Referenz zum Nachrichtenformat.

Wie viel Mehraufwand verursacht das AWS Encryption SDK
Nachrichtenformat fur meine verschlisselten Daten?

Die Hohe des zusatzlichen Mehraufwands AWS Encryption SDK hangt von mehreren Faktoren ab,
unter anderem von den folgenden:

* Der GroRRe der Klartextdaten

Welche der unterstutzten Algorithmen verwendet werden

Ob zuséatzliche authentifizierte Daten (AAD) bereitgestellt werden, und von der Lange dieser AAD
» Die Anzahl und Art der Wrapping Keys oder Masterkeys

* Der Framegrofde (wenn Daten mit Frame verwendet werden)

Wenn Sie den AWS Encryption SDK mit seiner Standardkonfiguration verwenden (einen AWS
KMS key als Umschliefdungsschlissel (oder Hauptschlussel), kein AAD, Daten ohne Frames und
einen VerschlUsselungsalgorithmus mit Signierung), betragt der Overhead ungefahr 600 Byte. Im
Allgemeinen kdnnen Sie davon ausgehen, dass das AWS Encryption SDK einen Overhead von

1 KB oder weniger verursacht, wobei die bereitgestellten AAD nicht bertcksichtigt sind. Weitere
Informationen finden Sie unter AWS Encryption SDK Referenz zum Nachrichtenformat.

Kann ich meinen eigenen Masterschllsselanbieter verwenden?

Ja. Die Implementierungsdetails hangen davon ab, welche der unterstutzten Programmiersprachen

Sie verwenden. In allen unterstitzten Sprachen kénnen Sie jedoch benutzerdefinierte Manager fiir
kryptografische Materialien (MsCMMs), Hauptschlisselanbieter, Schllisselringe, Hauptschliissel und
Schlissel zum Umschlief3en von Schltsseln definieren.

Kann ich Daten mit mehr als einem Wrapping Key verschlusseln?

Ja. Sie kdnnen den Datenschlissel mit zusatzlichen Umschliellungsschlisseln (oder
HauptschlUsseln) verschlisseln, um Redundanz zu gewahrleisten, wenn sich der Schlissel in einer
anderen Region befindet oder fur die Entschllisselung nicht verfigbar ist.

Wie viel Mehraufwand verursacht das AWS Encryption SDK Nachrichtenformat fir meine verschliisselten 499
Daten?

AWS Encryption SDK Entwicklerhandbuch

Um Daten unter mehreren Umschlie3ungsschlisseln zu verschliisseln, erstellen Sie einen
Schlisselbund oder einen Hauptschlisselanbieter mit mehreren Umschliel3ungsschlisseln. Wenn
Sie mit Schlisselbunden arbeiten, konnen Sie einen einzelnen Schlisselbund mit mehreren
Umhullungsschliusseln oder einen Multi-Schlusselbund erstellen.

Wenn Sie Daten mit mehreren UmschlieBungsschlisseln verschlisseln, AWS Encryption SDK
verwendet der einen UmschlieBungsschlussel, um einen Klartext-Datenschlissel zu generieren.
Der Datenschlussel ist eindeutig und hat mathematisch nichts mit dem UmschlieRungsschliissel zu
tun. Die Operation gibt den Klartext-Datenschliissel und eine Kopie des Datenschlissels zurlck,
die durch den Umschlie3ungsschlissel verschlisselt wurde. AnschlieRend verschlisselt die
Verschlisselungsmethode den Datenschliissel mit den anderen Umschliel3ungsschlisseln. Die
resultierende verschlisselte Nachricht enthalt die verschlisselten Daten und einen verschlisselten
Datenschlissel fir jeden UmschlieRungsschlissel.

Die verschlusselte Nachricht kann mit einem der beim Verschlisselungsvorgang verwendeten
Wrapping-Schlussel entschlisselt werden. Der AWS Encryption SDK verwendet einen
UmschlieBungsschlissel, um einen verschlisselten Datenschlissel zu entschlisseln. AnschlielRend
verwendet es den Klartext-Datenschlissel, um die Daten zu entschlusseln.

Welche Datentypen kann ich mit dem verschlusseln? AWS
Encryption SDK

Die meisten Programmiersprachenimplementierungen von AWS Encryption SDK kdnnen Rohbytes
(Byte-Arrays), 1/0 Streams (Byte-Streams) und Zeichenketten verschlisseln. Das AWS Encryption
SDK fur.NET unterstutzt keine Streams. I/0O Wir stellen Beispielcode flr jede der unterstutzten
Programmiersprachen zur Verfugung.

Wie werden Streams AWS Encryption SDK verschlusselt und
entschlusselt input/output (1/0)?

Der AWS Encryption SDK erstellt einen verschlisselnden oder entschlisselnden Stream, der einen
zugrunde liegenden Stream umschliel3t. I/O Der verschlisselnde oder entschlisselnde Stream fuhrt
bei einem Lese- oder Schreibaufruf eine kryptographische Operation durch. Beispielsweise kann er
Klartextdaten aus dem zugrundeliegenden Stream lesen und verschlisseln, bevor er das Ergebnis
zuruckgibt. Oder er kann VerschlUsselungstext aus einem zugrundeliegenden Stream lesen und
entschlisseln, bevor er das Ergebnis zurlckgibt. Wir stellen Beispielcode zum Verschlisseln und

Welche Datentypen kann ich mit dem verschlisseln? AWS Encryption SDK 500

AWS Encryption SDK Entwicklerhandbuch

Entschlisseln von Streams flr jede der unterstutzten Programmiersprachen bereit, die Streaming
unterstutzen.

Der AWS Encryption SDK fur.NET unterstitzt I/O keine Streams.

Wie werden Streams AWS Encryption SDK verschliisselt und entschlisselt input/output (1/0)? 501

AWS Encryption SDK Entwicklerhandbuch

AWS Encryption SDK Referenz

Die Informationen auf dieser Seite stellen eine Referenz fir die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlisselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschliusselungsbibliothek erstellen, bendtigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstitzten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Die Spezifikation, die die Elemente einer ordnungsgemalien AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Der AWS Encryption SDK verwendet die unterstutzten Algorithmen, um eine einzelne Datenstruktur
oder Nachricht zurlickzugeben, die verschlisselte Daten und die entsprechenden verschlisselten
Datenschlussel enthalt. Die folgenden Themen erldutern die Algorithmen und die Datenstruktur.
Verwenden Sie diese Informationen zum Erstellen von Bibliotheken, die Verschlisselungstexte lesen
und schreiben kdnnen, die mit diesem SDK kompatibel sind.

Themen

AWS Encryption SDK Referenz zum Nachrichtenformat

AWS Encryption SDK Beispiele fur Nachrichtenformate
Text — Zusatzliche authentifizierte Daten (AAD) — Referenz fur das AWS Encryption SDK

AWS Encryption SDK Referenz zu Algorithmen

AWS Encryption SDK Referenz zum Initialisierungsvektor
AWS KMS Technische Details zum hierarchischen Schlisselbund

AWS Encryption SDK Referenz zum Nachrichtenformat

Die Informationen auf dieser Seite stellen eine Referenz fir die Erstellung lhrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlisselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlisselungsbibliothek erstellen, bendtigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstitzten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Nachrichtenformat — Referenz 502

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Entwicklerhandbuch

Die Spezifikation, die die Elemente einer ordnungsgemafRen AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Die Verschlisselungsoperationen AWS Encryption SDK geben eine einzelne Datenstruktur oder eine
verschlusselte Nachricht zurtck, die die verschlisselten Daten (Chiffretext) und alle verschlisselten

Datenschlissel enthalt. Um diese Datenstruktur zu verstehen, oder zum Erstellen von Bibliotheken,
die sie lesen und schreiben kdnnen, missen Sie das Nachrichtenformat verstehen.

Das Nachrichtenformat besteht aus mindestens zwei Teilen: einem Header und einem Text. In
einigen Fallen enthalt das Nachrichtenformat einen dritten Teil, einen Footer. Das Nachrichtenformat
definiert eine sortierte Reihenfolge von Bytes in Netzwerk-Bytereihenfolge, auch als Big-Endian-
Format bezeichnet. Das Nachrichtenformat beginnt mit dem Header, gefolgt vom Text, gefolgt vom
Footer (falls vorhanden).

Die von The unterstitzten Algorithmus-Suiten AWS Encryption SDK verwenden eine von
zwei Versionen im Nachrichtenformat. Algorithmus-Suiten ohne Schltisselbindung verwenden

das Nachrichtenformat Version 1. Algorithmus-Suites mit Key Commitment verwenden das
Nachrichtenformat Version 2.

Themen

» Header-Struktur

e Textstruktur

* Footer-Struktur

Header-Struktur

Der Nachrichten-Header enthéalt den verschliisselten Datenschliissel sowie Informationen dartber,
wie der Nachrichtentext gebildet wird. In der folgenden Tabelle werden die Felder beschrieben,
die den Header in den Nachrichtenformat-Versionen 1 und 2 bilden. Die Byte werden in der
angegebenen Reihenfolge angehangt.

Der Wert Nicht vorhanden gibt an, dass das Feld in dieser Version des Nachrichtenformats nicht
vorhanden ist. Fettgedruckter Text weist auf Werte hin, die in jeder Version unterschiedlich sind.

Header-Struktur 503

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

Entwicklerhandbuch

® Note

Mdéglicherweise missen Sie horizontal oder vertikal scrollen, um alle Daten in dieser Tabelle

anzuzeigen.

Header-Struktur

Feld

Version

Type
Algorithm ID
Message ID

AAD Length

AAD

Encrypted Data Key Count

Encrypted Data Key(s)

Nachrichtenformat Version 1
Lange (Bytes)

1

16
2

Wenn der Verschlisselungsko

ntext leer ist, ist der Wert des
2-Byte-Felds AAD-Lénge 0.

Variable. Die Lange dieses
Felds wird in den vorherigen
2 Byte angezeigt (Feld AAD-
Lange).

Wenn der Verschlisselungsko

ntext leer ist, gibt es keine
AAD-Feld im Header.

2

Variable. Abhangig von der
Anzahl der verschlusselten

Nachrichtenformat Version 2
Lange (Bytes)

1

Nicht vorhanden

2

32

2

Wenn der Verschlisselungsko

ntext leer ist, ist der Wert des
2-Byte-Felds AAD-Lénge 0.

Variable. Die Lange dieses
Felds wird in den vorherigen
2 Byte angezeigt (Feld AAD-
Lange).

Wenn der Verschlisselungsko

ntext leer ist, gibt es keine
AAD-Feld im Header.

2

Variable. Abhangig von der
Anzahl der verschlusselten

Header-Struktur

504

AWS Encryption SDK

Entwicklerhandbuch

Feld

Content Type

Reserved

IV Length

Frame Length

Algorithm Suite Data

Header Authentication

Ausfihrung

Nachrichtenformat Version 1

Lange (Bytes)

Datenschlissel und ihrer
jeweiligen Lange.

1

4

4

Nicht anwesend

Variable. Wird durch den
Algorithmus bestimmt, der die
Nachricht generiert hat.

Nachrichtenformat Version 2

Lange (Bytes)

Datenschlissel und ihrer
jeweiligen Lange.

1
Nicht vorhanden
Nicht anwesend
4

Variabel. Wird durch den
Algorithmus bestimmt, der die
Nachricht generiert hat.

Variable. Wird durch den
Algorithmus bestimmt, der die
Nachricht generiert hat.

Die Version dieses Nachrichtenformats. Die Version ist entweder 1 oder 2 als Byte @1 oder 02 in

hexadezimaler Schreibweise codiert

Geben Sie ein

Der Typ dieses Nachrichtenformats. Der Typ gibt die Art der Struktur an. Der einzige unterstitzte
Typ wird als vom Kunden authentifizierte verschliisselte Daten beschrieben. Sein Typwert ist 128,
kodiert als Byte 80 im Hexadezimalformat.

Dieses Feld ist im Nachrichtenformat Version 2 nicht vorhanden.

Algorithmus-ID

Eine ID fur den verwendeten Algorithmus. Dies ist ein 2-Byte-Wert, interpretiert als vorzeichenlose

16-Bit-Ganzzahl. Weitere Informationen die Algorithmen finden Sie unter AWS Encryption SDK

Referenz zu Algorithmen.

Header-Struktur

505

AWS Encryption SDK Entwicklerhandbuch

Nachrichten-ID

Ein zufallig generierter Wert, der die Nachricht identifiziert. Die Nachrichten-ID:
« |dentifiziert die verschliisselte Nachricht eindeutig.
+ Bindet den Nachrichten-Header schwach an den Nachrichtentext.

« Stellt einen Mechanismus zur sicheren Wiederverwendung eines Datenschllssels fir mehrere
verschlusselte Nachrichten bereit.

» Schiitzt vor versehentlicher Wiederverwendung eines Datenschllssels oder der Abnutzung von
Schlisseln im AWS Encryption SDK.

Dieser Wert betragt 128 Bit im Nachrichtenformat Version 1 und 256 Bit in Version 2.
AAD-Lange

Die Lange der zusatzliche authentifizierten Daten (AAD, Additional Authenticated Data). Es
handelt sich um einen 2-Byte-Wert, interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die
Anzahl der Bytes angibt, die die AAD enthalten.

Wenn der Verschlisselungskontext leer ist, ist der Wert des Felds AAD-Lange 0.

AAD

Die zusatzlich authentifizierten Daten (Additional Authenticated Data, ADD). Bei den AAD
handelt es sich um eine Codierung der Verschlisselungskontexts, ein Array mit Schlissel-Wert-
Paaren, wobei jeder Schlissel und jeder Wert eine Zeichenfolge mit UTF-8-Zeichen ist. Der
Verschlisselungskontext wird eine Bytefolge umgewandelt und flir den AAD-Wert verwendet.
Wenn der Verschlisselungskontext leer ist, gibt es keine AAD-Feld im Header.

Wenn die Algorithmen mit Signatur verwendet werden, muss der Verschlisselungskontext

das Schlissel-Wert-Paar { ' aws-crypto-public-key', Qtxt} enthalten. Qtxt stellt den
elliptischen Kurvenpunkt Q dar, komprimiert gemafl SEC 1 Version 2.0 und dann base64-kodiert.
Der Verschlusselungskontext kann zusatzliche Werte enthalten, aber die maximale Lange der
konstruierten AAD betragt 2 » 16 — 1 Byte.

In der folgenden Tabelle sind die Felder beschrieben, die die AAD bilden. Schlissel-Wert-Paare
werden dem Schllssel nach in aufsteigender Reihenfolge gemal UTF-8-Zeichencode sortiert. Die
Byte werden in der angegebenen Reihenfolge angehangt.

Header-Struktur 506

http://www.secg.org/sec1-v2.pdf

AWS Encryption SDK Entwicklerhandbuch

AAD-Struktur

Feld Lange (Bytes)

Key-Value Pair Count 2

Key Length 2

Key Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Schllisse
llange).

Value Length 2

Value Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Wertlang
e).

Anzahl der Schlissel-Wert-Paare

Die Anzahl der Schlissel-Wert-Paare in den AAD. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Schlissel-Wert-Paare in
den AAD angibt. Die maximale Anzahl der Schlissel-Wert-Paare in den AAD ist 2216 - 1.

Wenn es keinen Verschlusselungskontext gibt oder der Verschllisselungskontext leer ist, ist
dieses Feld nicht in der AAD-Struktur vorhanden.

Lange des Schlissels

Die Lange des Schlissels flr das Schlissel-Wert-Paar. Es handelt sich um einen 2-Byte-
Wert, interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den
Schlissel enthalten.

Schlissel

Der Schlussel fur das Schlissel-Wert-Paar. Dies ist eine Folge UTF-8-kodierter Bytes.
Wert Lange
Die Lange des Werts fur das Schlissel-Wert-Paar. Es handelt sich um einen 2-Byte-Wert,

interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den Wert
enthalten.

Header-Struktur 507

AWS Encryption SDK Entwicklerhandbuch

Wert

Der Wert flr das Schlissel-Wert-Paar. Dies ist eine Folge UTF-8-kodierter Bytes.

Anzahl verschlisselter Datenschlissel

Die Anzahl der verschlusselten Datenschlissel. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der verschlisselten
DatenschlUssel angibt. Die maximale Anzahl verschlUsselter Datenschltssel in jeder Nachricht
betragt 65.535 (2216 — 1).

Verschlisselte Datenschlissel

Eine Folge von verschlUsselten Datenschlusseln. Die Lange der Folge wird durch die Anzahl der
verschlUsselten Datenschlissel und ihre jeweilige Lange bestimmt. Die Folge enthalt mindestens
einen verschlusselten Datenschlissel.

In der folgenden Tabelle sind die Felder beschrieben, die die verschlisselten Datenschlissel
bilden. Die Byte werden in der angegebenen Reihenfolge angehangt.

Struktur der verschlisselten Datenschlissel

Feld Lange (Bytes)
Key Provider ID Length 2
Key Provider 1D Variable. Gleich dem Wert, der in den

vorherigen 2 Bytes angegeben ist (Lange der
Schlusselanbieter-I1D).

Key Provider Information Length 2

Key Provider Information Variable. Gleich dem Wert, der in den

vorherigen 2 Bytes angegeben ist (Lange der
Schlusselanbieterinformation).

Encrypted Data Key Length 2

Encrypted Data Key Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Lange des

verschlisselten Datenschlussels).

Header-Struktur 508

AWS Encryption SDK Entwicklerhandbuch

Lange der Schllisselanbieter-ID

Die Lange der Schllisselanbieter-ID. Es handelt sich um einen 2-Byte-Wert, interpretiert als
vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die die Schllisselanbieter-ID
enthalten.

ID des Schliisselanbieters

Die Schlusselanbieter-ID. Wird verwendet, um den Anbieter des verschlisselten
Datenschlissels anzugeben, und ist auf Erweiterbarkeit ausgelegt.

Lange der Informationen zum Schlisselanbieter

Die Lange der Schlisselanbieterinformation. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die die
Schlusselanbieterinformation enthalten.

Informationen zu den wichtigsten Anbietern
Die Schlisselanbieterinformation. Wird durch den Schliisselanbieter bestimmt.

Wenn der Hauptschlisselanbieter AWS KMS ist oder Sie einen AWS KMS Schliisselbund
verwenden, enthalt dieser Wert den Amazon-Ressourcennamen (ARN) von. AWS KMS key

Lange des verschlusselten Datenschlissels

Die Lange des verschlusselten Datenschlissels. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den
verschlusselten Datenschlissel enthalten.

Verschlisselter Datenschlissel

Der verschlisselte Datenschlissel. Dies ist der vom Schlisselanbieter verschllsselte
Datenverschlisselungsschlissel.

Art des Inhalts

Der Typ der verschlisselten Daten, entweder ungerahmt oder gerahmt.

(® Note

Verwenden Sie nach Mdglichkeit gerahmte Daten. Das AWS Encryption SDK
unterstutzt Daten ohne Frames nur fur die Verwendung in alteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK kénnen immer noch nicht gerahmten

Header-Struktur 509

AWS Encryption SDK Entwicklerhandbuch

Chiffretext generieren. Alle unterstitzten Sprachimplementierungen kénnen gerahmten
und ungerahmten Chiffretext entschlisseln.

Frame-Daten werden in gleich lange Teile aufgeteilt; jeder Teil wird separat verschlisselt. Inhalt
mit Frame ist Typ 2, kodiert als Byte 02 im Hexadezimalformat.

Daten ohne Frames werden nicht aufgeteilt, sondern sind ein einziger verschlisselter Blob. Inhalt
ohne Frame ist Typ 1, kodiert als Byte @1 im Hexadezimalformat.

Reserviert

Eine reservierte Folge aus 4 Bytes. Der Wert muss 0 sein. Es ist kodiert als die Bytes 00 00 00
@0 im Hexadezimalformat (d. h. eine 4-Byte-Folge einer 32-Bit-Ganzzahl mit dem Wert 0).

Dieses Feld ist im Nachrichtenformat Version 2 nicht vorhanden.

IV Lange

Die Lange des Initialisierungsvektors (IV). Es handelt sich um einen 1-Byte-Wert, interpretiert als
vorzeichenlose 8-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den IV enthalten. Dieser Wert
wird durch den 1V-Byte-Wert des Algorithmus bestimmt, der die Nachricht generiert hat.

Dieses Feld ist in Version 2 des Nachrichtenformats nicht vorhanden, das nur Algorithmus-Suites
unterstitzt, die deterministische IV-Werte im Nachrichtenkopf verwenden.

Lange des Frames

Die Lange jedes Frames mit gerahmten Daten. Es handelt sich um einen 4-Byte-Wert, der als 32-
Bit-Ganzzahl ohne Vorzeichen interpretiert wird und die Anzahl der Byte in jedem Frame angibt.
Wenn die Daten nicht gerahmt sind, d. h. wenn der Wert des Content Type Felds 1 ist, muss
dieser Wert O sein.

(® Note

Verwenden Sie nach Mdglichkeit gerahmte Daten. Das AWS Encryption SDK

unterstutzt Daten ohne Frames nur fur die Verwendung in alteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK kdnnen immer noch nicht gerahmten
Chiffretext generieren. Alle unterstitzten Sprachimplementierungen kdnnen gerahmten
und ungerahmten Chiffretext entschltsseln.

Header-Struktur 510

AWS Encryption SDK

Entwicklerhandbuch

Daten der Algorithm Suite

Zusatzliche Daten, die der Algorithmus bendtigt, der die Nachricht generiert hat. Die Lange und
der Inhalt werden durch den Algorithmus bestimmt. Ihre Lange kdnnte 0 sein.

Dieses Feld ist im Nachrichtenformat Version 1 nicht vorhanden.

Header-Authentifizierung

Die Header-Authentifizierung wird durch den Algorithmus bestimmt, der die Meldung generiert
hat. Die Header-Authentifizierung wird unter Verwendung des kompletten Headers berechnet. Sie
besteht aus einem IV und einem Authentifizierungs-Tag. Die Byte werden in der angegebenen

Reihenfolge angehangt.

Struktur der Header-Authentifizierung

Feld

%

Authentication Tag

Lange in Version 1.0 (Byte)

Variable. Wird durch den IV-
Byte-Wert des Algorithmus
bestimmt, der die Nachricht
generiert hat.

Variable. Wird durch den
Authentifizierungs-Tag-
Byte-Wert des Algorithmus
bestimmt, die die Nachricht
generiert hat.

Lange in Version 2.0 (Byte)

N/A

Variable. Wird durch den
Authentifizierungs-Tag-
Byte-Wert des Algorithmus
bestimmt, die die Nachricht
generiert hat.

Der Initialisierungsvektor (IV) zur Berechnung des Header-Authentifizierungs-Tags.

Dieses Feld ist im Header der Nachrichtenformatversion 2 nicht vorhanden. Nachrichtenformat
Version 2 unterstitzt nur Algorithmus-Suites, die deterministische IV-Werte im Nachrichtenkopf

verwenden.

Authentifizierungs-Tag

Die Authentifizierungswert fur den Header. Es wird verwendet, um den gesamten Inhalt des

Headers zu authentifizieren.

Header-Struktur

511

AWS Encryption SDK Entwicklerhandbuch

Textstruktur

Der Nachrichtentext enthalt die verschlisselten Daten, den sogenannten Verschllisselungstext.

Die Struktur des Textes hangt vom Inhaltstyp ab (mit oder ohne Frame). Die folgenden Abschnitte
beschreiben das Format des Nachrichtentexts fir jeden Inhaltstyp. Die Struktur des Nachrichtentexts
ist in den Nachrichtenformat-Versionen 1 und 2 dieselbe.

Themen

 Daten ohne Frame

 Daten mit Frame

Daten ohne Frame

Daten ohne Frame werden in einem einzigen Blob mit einer eindeutigen 1V und Text-AAD
verschlusselt.

(® Note

Verwenden Sie nach Mdglichkeit gerahmte Daten. Das AWS Encryption SDK

unterstutzt Daten ohne Frames nur fur die Verwendung in alteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK kénnen immer noch nicht gerahmten
Chiffretext generieren. Alle unterstitzten Sprachimplementierungen kénnen gerahmten und
ungerahmten Chiffretext entschlisseln.

In der folgenden Tabelle sind die Felder beschrieben, die Daten ohne Frame bilden. Die Byte werden
in der angegebenen Reihenfolge angehangt.

Struktur von Text ohne Frame

Feld Lange, in Bytes

\Y% Variable. Gleich dem im |V Length-Byte des
Headers angegebenen Wert.

Encrypted Content Length 8

Textstruktur 512

AWS Encryption SDK Entwicklerhandbuch

Feld Lange, in Bytes

Encrypted Content Variable. Gleich dem Wert, der in den vorherige
n 8 Bytes angegeben ist (Lange des verschlis
selten Inhalts).

Authentication Tag Variable. Wird durch die verwendete Algorithm
us-Implementierung bestimmt.

Der Initialisierungsvektor (V) fur die Verwendung mit dem Verschlusselungsalgorithmus.

Lange des verschlisselten Inhalts

Die Lange des verschlusselten Inhalts oder Verschlisselungstext. Es handelt sich um einen 8-
Byte-Wert, interpretiert als vorzeichenlose 64-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die
den verschlusselten Inhalt enthalten.

Technisch ist der maximal zulassige Wert 2 » 63 — 1 oder 8 Exbibytes (8 EiB). In der Praxis ist
der maximale Wert jedoch 2 * 36 — 32 oder 64 Gibibyte (64 GiB), aufgrund von Einschrankungen
durch die implementierten Algorithmen.

@ Note

Die Java-Implementierung dieses SDK schrankt diesen Wert weiter auf 2 * 31 — 1 oder 2
Gibibyte (2 GiB) ein, aufgrund von Einschrankungen in der Sprache.

Verschlisselter Inhalt

Der verschlusselte Inhalt (Verschlisselungstext), wie vom Verschlusselungsalgorithmus
zuruckgegeben.

Authentifizierungs-Tag

Die Authentifizierungswert fur den Text. Er wird verwendet, um den Nachrichtentext zu
authentifizieren.

Textstruktur 513

AWS Encryption SDK Entwicklerhandbuch

Daten mit Frame

Bei Daten mit Frame werden die Klartextdaten in gleichlange Teile unterteilt, die als Frames
bezeichnet werden. Das AWS Encryption SDK verschlisselt jeden Frame separat mit einem
eindeutigen V- und Body-AAD.

® Note

Verwenden Sie nach Méglichkeit gerahmte Daten. Das AWS Encryption SDK

unterstitzt Daten ohne Frames nur flr die Verwendung in alteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK kénnen immer noch nicht gerahmten
Chiffretext generieren. Alle unterstitzten Sprachimplementierungen kénnen gerahmten und
ungerahmten Chiffretext entschliisseln.

Die Frame-Lange, d. h. die Lange des verschlusselten Inhalts im Frame, kann fir jede Nachricht
unterschiedlich sein. Die maximale Anzahl von Bytes in einem Frame ist 2 * 32 — 1. Die maximale

Anzahl von Frames in einer Nachricht ist 2 » 32 — 1.

Es gibt zwei Arten von Frames: regulare und abschlieRende. Jede Nachricht muss aus einem
abschlielenden Frame bestehen oder einen enthalten.

Alle regularen Frames in einer Nachricht haben die gleiche Frame-Lange. Der abschlieliende Frame
kann eine andere Frame-Lange haben.

Die Zusammensetzung der Frames in Daten mit Frame variiert je nach Lange des verschlisselten
Inhalts.

» Entspricht der Framelange — Wenn die Lange des verschlisselten Inhalts mit der Framelange
der reguléren Frames Ubereinstimmt, kann die Nachricht aus einem regularen Frame bestehen,
der die Daten enthalt, gefolgt von einem letzten Frame mit der Lange Null (0). Oder die Nachricht
kann nur aus einem abschliefenden Frame bestehen, der die Daten enthalt. In diesem Fall hat der
abschliefende Frame die gleiche Frame-Lange wie die reguléren Frames.

+ Vielfaches der Framelange — Wenn die Lange des verschlisselten Inhalts ein exaktes Vielfaches
der Framelange der reguldren Frames ist, kann die Nachricht in einem regularen Frame enden,
der die Daten enthalt, gefolgt von einem letzten Frame mit einer L&dnge von Null (0). Oder die
Nachricht kann in einem abschlieRenden Frame enden, der die Daten enthalt. In diesem Fall hat
der abschlieRende Frame die gleiche Frame-Lange wie die regularen Frames.

Textstruktur 514

AWS Encryption SDK Entwicklerhandbuch

» Kein Vielfaches der Framelange — Wenn die Lange des verschllisselten Inhalts kein exaktes
Vielfaches der Framelange der regularen Frames ist, enthalt der letzte Frame die verbleibenden
Daten. Die Frame-Lange des abschlieRenden Frames ist kleiner als die Frame-Lange der
regularen Frames.

» Weniger als die Framelange — Wenn die Lange des verschlisselten Inhalts kleiner als die
Framelange der regularen Frames ist, besteht die Nachricht aus einem letzten Frame, der alle
Daten enthalt. Die Frame-Lange des abschliellienden Frames ist kleiner als die Frame-Lange der
regularen Frames.

In den folgenden Tabellen sind die Felder beschrieben, die die Frames bilden. Die Byte werden in der
angegebenen Reihenfolge angehangt.

Textstruktur mit Frame, regularer Frame

Feld Lange, in Bytes
Sequence Number 4
\% Variable. Gleich dem im |V Length-Byte des

Headers angegebenen Wert.

Encrypted Content Variable. Gleich dem im Frame Length des
Headers angegebenen Wert.

Authentication Tag Variable. Wird durch den verwendeten
Algorithmus bestimmt, wie im Algorithm |ID des
Headers spezifiziert.

Sequenznummer

Die Frame-Folgenummer. Dies ist ein inkrementeller Zahler fir den Frame. Dies ist ein 4-Byte-
Wert, interpretiert als vorzeichenlose 32-Bit-Ganzzahl.

Daten mit Frame mussen mit der Folgenummer 1 beginnen. Nachfolgende Frames mussen sich
in der richtigen Reihenfolge befinden ein Inkrement von 1 gegeniber dem vorherigen Frame
enthalten. Andernfalls wird der Entschlisselungsprozess angehalten und eine Fehlermeldung
ausgegeben.

Textstruktur 515

AWS Encryption SDK Entwicklerhandbuch

\Y

Der Initialisierungsvektor (IV) fir den Frame. Das SDK nutzt eine deterministische Methode fur die
Konstruktion eines jeweils anderen |V fur jeden Frame in der Nachricht. Seine Lange wird durch
die verwendete Algorithmus-Folge bestimmt.

Verschlisselter Inhalt

Der verschlusselte Inhalt (Verschlisselungstext) flir den Frame, wie vom
VerschlUsselungsalgorithmus zurtckgegeben.

Authentifizierungs-Tag

Die Authentifizierungswert flr den Frame. Er wird verwendet, um den gesamten Frame zu
authentifizieren.

Textstruktur mit Frame, abschlieender Frame

Feld Lange, in Bytes

Sequence Number End 4

Sequence Number 4

\% Variable. Gleich dem im |V Length-Byte des

Headers angegebenen Wert.

Encrypted Content Length 4

Encrypted Content Variable. Gleich dem Wert, der in den vorherige
n 4 Bytes angegeben ist (Ladnge des verschlus

selten Inhalts).

Authentication Tag Variable. Wird durch den verwendeten
Algorithmus bestimmt, wie im Algorithm |ID des
Headers spezifiziert.

Ende der Sequenznummer

Ein Indikator flr den abschlielRenden Frame. Der Wert wird als die 4 Bytes FF FF FF FF im
Hexadezimalformat kodiert.

Textstruktur 516

AWS Encryption SDK Entwicklerhandbuch

Sequenznummer

Die Frame-Folgenummer. Dies ist ein inkrementeller Zahler flir den Frame. Dies ist ein 4-Byte-
Wert, interpretiert als vorzeichenlose 32-Bit-Ganzzahl.

Daten mit Frame muissen mit der Folgenummer 1 beginnen. Nachfolgende Frames muissen sich
in der richtigen Reihenfolge befinden ein Inkrement von 1 gegeniber dem vorherigen Frame
enthalten. Andernfalls wird der Entschlisselungsprozess angehalten und eine Fehlermeldung
ausgegeben.

Der Initialisierungsvektor (IV) fir den Frame. Das SDK nutzt eine deterministische Methode fir die
Konstruktion eines jeweils anderen |V fir jeden Frame in der Nachricht. Die Lange der IV-Lange
wird durch die Algorithmus-Folge angegeben.

Lange des verschlusselten Inhalts

Die Lange des verschlusselten Inhalts. Es handelt sich um einen 4-Byte-Wert, interpretiert als
vorzeichenlose 32-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den verschlisselten Inhalt
fur den Frame enthalten.

Verschliusselter Inhalt

Der verschlusselte Inhalt (Verschlisselungstext) fir den Frame, wie vom
VerschlUsselungsalgorithmus zurtckgegeben.

Authentifizierungs-Tag

Die Authentifizierungswert flr den Frame. Er wird verwendet, um den gesamten Frame zu
authentifizieren.

Footer-Struktur

Wenn die Algorithmen mit Signatur verwendet werden, enthalt das Nachrichtenformat einen Footer.
Die Fulzeile der Nachricht enthalt eine digitale Signatur, die anhand des Nachrichtenkopfs und des
Nachrichtentexts berechnet wird. In der folgenden Tabelle sind die Felder des Footers beschrieben.
Die Byte werden in der angegebenen Reihenfolge angehangt. Die Struktur der Nachrichtenful3zeile

ist in den Nachrichtenformat-Versionen 1 und 2 dieselbe.

Footer-Struktur

AWS Encryption SDK Entwicklerhandbuch

Footer-Struktur

Feld Lange, in Bytes
Signature Length 2
Signature Variable. Gleich dem Wert, der in den vorherige

n 2 Bytes angegeben ist (Signaturlange).

Lange der Signatur

Die Lange der Signatur. Es handelt sich um einen 2-Byte-Wert, interpretiert als vorzeichenlose 16-
Bit-Ganzzahl, die die Anzahl der Bytes angibt, die die Signatur enthalten.

Signatur

Die Signatur
AWS Encryption SDK Beispiele fur Nachrichtenformate

Die Informationen auf dieser Seite stellen eine Referenz fur die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlusselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlusselungsbibliothek erstellen, bendtigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstitzten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Die Spezifikation, die die Elemente einer ordnungsgemaflien AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Die folgenden Themen zeigen Beispiele fur das AWS Encryption SDK Nachrichtenformat. Jedes
Beispiel zeigt die Rohbytes im Hexadezimalformat, gefolgt von einer Beschreibung, woflr diese Bytes
stehen.

Themen

» Gerahmte Daten (Nachrichtenformat, Version 1)

» Frame-Daten (Nachrichtenformat, Version 2)

Nachrichtenformat — Beispiele 518

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Entwicklerhandbuch

» Daten ohne Frames (Nachrichtenformat, Version 1)

Gerahmte Daten (Nachrichtenformat, Version 1)

Das folgende Beispiel zeigt das Nachrichtenformat fiir Frame-Daten im Nachrichtenformat Version 1.

Fem - +

| Header |

Fem - +

01 Version (1.0)

80 Type (128, customer authenticated encrypted
data)

0378 Algorithm ID (see Algorithmen - Referenz)
6E7COFBD 4DF4A999 717C22A2 DDFE1A27 Message ID (random 128-bit value)

Q08E AAD Length (142)

0004 AAD Key-Value Pair Count (4)

0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("QThis")

0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")

0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("lan")

Q00A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")

0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")

0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")

0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-

public-key")

632D6B65 79

0044 AAD Key-Value Pair 4, Value Length (68)

416A4173 7569326F 7430364C 4B77715A AAD Key-Value Pair 4, Value
("AjAsui2ot@6LKwgzZXDInU/Aqc2vD+@0kp0Z1cc8Tg2qd7rs5aLTg71vfUEW/86+/5w=="")

58444A6E 552F4171 63327644 2B304F6B

704F5A31 63633854 67327164 37727335

614C5467 376C7666 5545572F 38362B2F

35773D3D

0002 EncryptedDataKeyCount (2)

0007 Encrypted Data Key 1, Key Provider ID Length
(7)

Gerahmte Daten (Nachrichtenformat, Version 1) 519

AWS Encryption SDK

Entwicklerhandbuch

6177732D 6B6D73
kms™)
004B

Information Length (75)

61726E3A 6177733A

Information ("arn:aws:kms:

6B6D733A

a755-138a6d9alleb")

6573742D 323A3131
33333A6B 65792F37
35383235 2D343234
33386136 64396131
00A7

Length (167)
01010200 7857A1C1
956C4702 23DCES8SD7Y
Q2A4EF29 7F000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 Q4012E30
7A12EB19 8BF2D802
A5474FBC 392360B5
A6BD7332 6BF86DAB
47Q07E356 ADA3735A
O9F224BF9 E67E87
0007

(7)
6177732D 6B6D73
kms™)
Q04E

31313232
31356330
352D6137
316536

F7370545
16C59679
7E307C06
306D0201
0701301E
11040C3F
01108038
CB9997E0
60D8CCB8
7C52D778

Information Length (78)

61726E3A 6177733A

Information ("arn:aws:kms:

be3435b423ff")
656E7472 616C2D31
32333333 333A6B65
34622D61 6663632D
372D6265 33343335
00A7

Length (167)
01010200 78FAFFFB
QE57BD87 3F6QF4E6
AF787150 69000000
86F70D01 Q0706A06F
092A8648 86F70D01

6B6D733A

3A313131
792F3962
34366138
62343233

DEDE@6AF
FD196144
7E307C06
306D0201
0701301E

Encrypted

Encrypted

75732D77 Encrypted

Data Key 1, Key Provider ID ("aws-

Data Key 1, Key Provider

Data Key 1, Key Provider

us-west-2:111122223333:key/715c0818-5825-4245-

32323333
3831382D
35352D31

Encrypted

4LECA7C83 Encrypted
973E3CED
092A8648
00306806
06096086
F02C897B
24003D1F
6A17DE4C
8295DBE9
B3135A47

Encrypted

Encrypted

Encrypted

63612D63 Encrypted

ca-central-1:111122223333:

31323232
31336361
2D616134
6666
Encrypted

AC72F79B Encrypted
5A002C9%4
092A8648
00306806
06096086

Data Key 1, Encrypted Data Key

Data Key 1, Encrypted Data Key

Data Key 2, Key Provider ID Length

Data Key 2, Key Provider ID ("aws-

Data Key 2, Key Provider

Data Key 2, Key Provider
key/9bl3casb-afcc-46a8-aas47-

Data Key 2, Encrypted Data Key

Data Key 2, Encrypted Data Key

Gerahmte Daten (Nachrichtenformat, Version 1)

520

AWS Encryption SDK

Entwicklerhandbuch

48016503
D218B674
E470AA27
57DCC69B
72EBAAFD
556FBD58
02

00000000
oC

00000100
4ECBD5CO
0B896144

00000001
6BD3FESC
1F6471E0Q
F5AFA33C
FBDSAQC3
BDEE43A8
A90DB923
201E3AD9S
DEB7F372
CB80A167
A7DSD2CC
6D1E798B
0041BC78
BB732F27
57F2BB80
E866C042
A820055F
5262DB34
O4EE3CC5
00000002
F1140984
216C7C6A
Al042608
A41455B4
A884C1E1
23DFEE28
7597C901
1FF787AB
778D7CEE

04012E30
5BBC6102
DEAB660B
AAB1294F
E24E3EDS8
9E621C

9899CA65
0CA27950

ADBCB213
A51AF310
7D2E8C6C
C6E3FB59
OFOOF49E
699A1495
1EA6DA14
375ECB28
9C361C4B
5150D414
AEBA4CDB
3E5F2F41
D83DC36D
066971C2
E1382369
FB47E428
59F5D37E
379732B5

FF25F943
2234F395
8A8BCB3F
9A78BACYS
705FF696
E74B225A
65EF3502
2E38FD77
3C36625F

11040C36
01108038
3EQCESEO
21202C01
7168EQFA

923D2347
CA571201

5B89E8F1
10FASEF6
9C5D5175
C125DBF2
ACBBD8B2
C3B31B50
7F6496DB
9BF84B6D
5ECQ7438
AF75F509
ADOQ@SESF
8AF157FD
CCOEBCO5
DEEAQG62F
12E99268B
41876F14
76E46522
F56751FA

959BE514
FOD2D9B9
B58CF384
36E54E68
E540D297
732F2C0C
546575D4
125D129C
FF3A985C

CD985E12
0320E3CD
8B1A89E4
9A50D323
DB40508F

4DA58029

FOC76EDF
A212AF8E
89AC7939
1C785089
0A48A830
6BC1l04A4
2863889F
7A4822B4
FCE118BD
1A571B77
461E959A
00D87803
4F36255D
BA4OE2FC
3B6261D9
E8213640
8E5F26AD

304670BF
D72EC004
2709B7BD
446A8285
27C6BDA2
6D5EBF22
43D44B96
76F7D320

Content Type (2, framed data)
Reserved

IV Length (12)

Frame Length (256)

IV

Authentication Tag

Frame 1, Sequence Number (1)
Frame 1, IV
Frame 1, Encrypted Content

Frame 1, Authentication Tag
Frame 2, Sequence Number (2)
Frame 2, IV

Frame 2, Encrypted Content

Gerahmte Daten (Nachrichtenformat, Version 1)

521

AWS Encryption SDK

Entwicklerhandbuch

ED70B1F3
C8760D55
95941F7E
AC65B6EF
2A57F1FD
DF1172C2
3B16F868
FECDC4A4
A61FQA3B
FFFFFFFF
00000003
35F74F11
0000008E
F7A53D37
B965AD1F
BA9FA7C4
88859500
4ALE52A3
3A043180
CO51AD55
6ADCO17D
B66B6A5A
811234FD

0066

30640230
639AED00O
758B309F
5208B133
3C6A7D5E
7E06808D
A13762FF

79729B47
7779520A
5CBAEACS
08262D74
E7060503
FA63CF54
1BBC5E4D
8577F08B
A3E45A84

25410F01

2F467237
AS10AASF
B25AF82E
7096FABB
8E41484D
DF25E5C5
A437F6BC
BA41CDA4
80FDB433
8D589683
+

+

085C1D3C
F7624854
5EFD9D5D
02301DF7
4F8B894E
OFE79002
844D

E7D9B5FC
81D54F9B
CEC13B62
44670624
AC37E197
E6E2B9B6
0B6919B3
99D766A1
4D151493

DDOE@4BF

6FBDOB57
SEFFFFF4
64A0LE3A
3ACAD32A
270B7AQF
3676E449
139E9E55
COF17A83
8A4L8D6AL
51F6F39A

63424E15
F8CF2203
2EQ7ADOB
2DFC877A
83D98E7C
E24422B9

02FCESF5
EC45219D
1464757D
A3657F7F
2F297A84
A86F582B
08D5ABCF
E5545670
63ECA38F

D1DFE830
BC7D431C
A@915526
75CFEDOC
ED61810C
0986557F
6199FD60
3823F9EC
21CB

040B3E3B

B2244448
D7198A28
467B8317
66838028
E350F424
98A0D130

Frame
Final
Final
Final
Final
Final

2, Authentication Tag

Frame,
Frame,
Frame,
Frame,
Frame,

Sequence Number End

Sequence Number (3)

IV

Encrypted Content Length (142)
Encrypted Content

Final Frame, Authentication Tag

Signature Length (102)
Signature

Frame-Daten (Nachrichtenformat, Version 2)

Das folgende Beispiel zeigt das Nachrichtenformat fiir Frame-Daten im Nachrichtenformat Version 2.

Version (2.0)

Frame-Daten (Nachrichtenformat, Version 2)

522

AWS Encryption SDK

Entwicklerhandbuch

0578
122747eb
cc621a30
008e
0004
0005
30546869
0002
6973
0003
31616e
000a
656€6372
0008
32636f6e
0007
6578616d
0015
6177732d

21dfe39b 38631c61l 7fad7340
32allcc3 216d0204 fd148459

73

79707469 6f6e

74657874

706¢c65

63727970 746f2d70 75626c69

public-key")

632d6b65
0044
41746733

79

72703845 41345161 36706669

Algorithm ID (see Algorithms reference)

Message ID (random 256-bit value)
Length (142)

AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD

AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Key-Value Pair 4,
Key-Value Pair 4,

Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair

Count (4)

1, Key Length (5)

1, Key ("@This™")

1, Value Length (2)

1, Value ("is")

2, Key Length (3)

2, Key ("lan")

2, Value Length (10)

2, Value ("encryption")
3, Key Length (8)

3, Key ("2context")

3, Value Length (7)

3, Value ("example")
4, Key Length (21)
4, Key ("aws-crypto-

Value Length (68)
Value

("QXRnM3JwOEVBNFFhNnBmaTk3MULTNTk3NHpOMn1ZWE5vSmtwRHFPc@dIYkVaVDRGMES50M1FKRStmbTFVY@1WdThnPT0=

39373149
6f4a6bb70
3Q4e4e32
38673d3d
0001
0007

(7)
6177732d
kms™")
004b

53353937 347a4e32 7959584e
44714F73 47486245 53543463
5164452b 666d3155 634d5675

6b6d73

Information Length (75)

61726e3a

6177733a 6b6d733a 75732d77

Encrypted
Encrypted

Encrypted

Encrypted

Encrypted

Data
Data

Data

Data

Data

Key
Key

Key

Key

Key

Count (1)
1, Key Provider ID Length

1, Key Provider ID ("aws-

1, Key Provider

1, Key

Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537efl-
d8dc-4780-9f5a-55776cbb2f7f")

6573742d
33333a6b
64386463
35373736
00a7

32333635 38393536 36303038
65792162 33353337 6566312d
2d343738 302d3966 35612d35
63626232 663766

Length (167)

Encrypted Data Key 1, Encrypted Data Key

Frame-Daten (Nachrichtenformat, Version 2)

523

AWS Encryption SDK

Entwicklerhandbuch

01010100
29515057
bc9dafb4
86f70d01
09228648
48016503
06063803
413196d2
eQ0ee216
ba62e9e4
cc9ee5cH
02

00001000
05cd@35b
634f7b2c
76cb339f

fEffffff
00000001
00000000
00000009
fabe39c6
f683a564

0067

30650230
ade70b3f
967d91d8
869cade2
e5054803
074217ea
3657e2b0

7840f38c
1964ada3
14000000
0706a06°f
86f70d01
04012e30
8460802
903bf1d7
74ecl349
f2ac8df6
7203bb

29d5499d
c3df2aa9
2536741f

00000000

02927399
405d68db

+

+

2ale47ad
2a2bc3b8
42d92baf
023100aa
110c9ed8
3b@1b660
9368hbd

275e3109
eflc21e9
7e307c06
306d0201
0701301e
11040c39
0110803b
3ed98fc8
12777577
bcb1758f

4587570b
88210105
59al1c202

00000001

3e
eeb0@656¢c

98867925
50eb9lef
357bba48
ael2deosf
11b2e08a
534ac921

7416c107
4c8badbd
09228648
00306806
06096086
32d75294
2a46bc23
a94ac6ed
7fa@52a5
2ce@fb21

87502afe
4a2c7687
4f2594ab

d57c9eb0

cl712e8f
56cfdd18
f636c7a0
8a0afe85
c4a052a9
bf@91d12

Encrypted Data Key 1, Encrypted Data Key

Content Type (2, framed data)
Frame Length (4096)
Algorithm Suite Data (key commitment)

Authentication Tag

Final Frame, Sequence Number End

Final Frame, Sequence Number (1)

Final Frame, IV

Final Frame, Encrypted Content Length (9)
Final Frame, Encrypted Content

Final Frame, Authentication Tag

Signature Length (103)
Signature

Daten ohne Frames (Nachrichtenformat, Version 1)

Das folgende Beispiel zeigt das Nachrichtenformat fir Daten ohne Frame.

Daten ohne Frames (Nachrichtenformat, Version 1)

524

AWS Encryption SDK Entwicklerhandbuch

® Note

Verwenden Sie nach Mdglichkeit gerahmte Daten. Das AWS Encryption SDK

unterstitzt Daten ohne Frames nur flr die Verwendung in alteren Versionen. Einige
Sprachimplementierungen von AWS Encryption SDK kénnen immer noch nicht gerahmten
Chiffretext generieren. Alle unterstitzten Sprachimplementierungen kénnen gerahmten und
ungerahmten Chiffretext entschlisseln.

L +

| Header |

L +

01 Version (1.0)

80 Type (128, customer authenticated encrypted
data)

0378 Algorithm ID (see Algorithmen - Referenz)
B8929B01 753D4A45 C@217F39 4Q4F7QFF Message ID (random 128-bit value)

00O8E AAD Length (142)

0004 AAD Key-Value Pair Count (4)

0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("@This")

0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")

0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("lan")

000A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D7@ 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-

public-key")

632D6B65 79

0044 AAD Key-Value Pair 4, Value Length (68)

41734738 67473949 6E4C5075 3136594B AAD Key-Value Pair 4, Value
("AsG8gG9INLPul6YK1gXTOD+nykG8YgHAhqecj8aXfD2e5B4gtVE73dZkyC1A+rAMOQ=="")

6C715854 4F442B6E 796B4738 59714841

68716563 6A386158 66443265 35423467

74564537 33645A6B 79436C41 2B72414D

4F513D3D

Daten ohne Frames (Nachrichtenformat, Version 1) 525

AWS Encryption SDK

Entwicklerhandbuch

0002
0007
(7)
6177732D 6B6D73
kms™")
004B

Information Length (75)

61726E3A 6177733A

Information ("arn:aws:kms:

6B6D733A

a755-138a6d9alle6")

6573742D 323A3131
33333A6B 65792F37
35383235 2D343234
33386136 64396131
Q0A7

Length (167)
01010200 7857A1C1
956C4702 23DCE8D7
02A4EF29 7F000000
86F70D01 0706A06F
092A8648 86F70D01
48016503 04012E30
OF2A0383 659EF802
3A33605C 48840656
E9A33EBE 33F46461
418E1151 21311A75
3E2DEBD5 CB@@5D
0007

(7)
6177732D 6B6D73
kms™")
Q0Q4E

31313232
31356330
352D6137
316536

F7370545
16C59679
7E307C06
306D0201
0701301E
11040C28
0110803B
C38BCB1F
0591FECA
E575ECCS

Information Length (78)

61726E3A 6177733A

Information ("arn:aws:kms:

be3435b423ff")
656E7472 616C2D31
32333333 333A6B65
34622D61 6663632D
372D6265 33343335
Q0A7

Length (167)
01010200 78FAFFFB
QE57BD87 3F6QF4E6

6B6D733A

3A313131
792F3962
34366138
62343233

DEDE@GAF
FD196144

75732D77

Encrypted Data Key Count (2)
Encrypted Data Key 1, Key Provider ID Length

Encrypted Data Key 1, Key Provider ID ("aws-

Encrypted Data Key 1, Key Provider

Encrypted Data Key 1, Key Provider

us-west-2:111122223333:key/715c0818-5825-4245-

32323333
3831382D
35352D31

4LECA7C83
973E3CED
092A8648
00306806
06096086
4116449A
B23A8133
9CCE7369
947262F3
61A286E0

63612D63

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 2, Key Provider ID Length

Encrypted Data Key 2, Key Provider ID ("aws-

Encrypted Data Key 2, Key Provider

Encrypted Data Key 2, Key Provider

ca-central-1:111122223333:key/9bl3casb-afcc-46a8-aa47-

31323232
31336361
2D616134
6666

AC72F79B
5A002C94

Encrypted Data Key 2, Encrypted Data Key

Encrypted Data Key 2, Encrypted Data Key

Daten ohne Frames (Nachrichtenformat, Version 1)

526

AWS Encryption SDK

Entwicklerhandbuch

AF787150
86F70D01
092A8648
48016503
76616EF2
FDD01BD9
3CCe686D7
71F18A46
2A363C2A
01

00000000
oC

00000000
734C1BBE
2C82BB23

D39DD3E5
00000000
E8B6F955
5871BA4C
59455BD8
E4159DFE
6766ECD5
55FCDA5B
C7D75BCC
ECE10AA7
95FE9C58
31E4F48A
B48A2068
CO9B21A10
9D86E334
54C0C231
B8178484
12B0000OC
ASBA8Q4F
A15D0551
5E2034DB
46B2C979
C2394012
C6FFB914
1BABBAE4
F3CB6B86

69000000
0706A06F
86F70D01
04012E30
A6B30D02
B0979082
F3CF7C7A
80OE2C43F
E11397

032F7025
4CBF4AAB

915E0201
0000028E
B5F22FE4
93F78436
D76479DF
C8A944B6
E3F54653
9F5318BC
10FQ5EAS
559AF633
C65329D1
9B1CCO47
8060DF60
371E6179
701E1442
AD43571A
7EB73A4F
8429F504
7F190927
DAEBA4AF
4D19E7CD
AB84EE12
AF20A97E
FEFD4DES
BE55325E
71666C06

7E307C06
306D0201
0701301E
11040CB2
0110803B
099FDBFC
CCC52639
A34COESS8

84CDASDO
8F5C6002

77A4AB11

FD890224
1085E4F8
C28D2E0B
685643FC
DF205D30
F4265B06
QE2F2F40
9DE2(C21B
377C4CD7
EE5A0719
B492A737
78FAFB0OB
EA5DA288
B9071925
AAE46B26
936B2492
5D2DF651
2060D0OD5
EEA6CF7E
202FD6DF
369BCBDA
88F5AFE1
4FB7E602
6BF74E1B

092A8648
00306806
06096086
A820D0CC
8073D0OF1
F7B13548
122A1495
11D05114

622E886C

4E1D5155
D61ECE28
BDB3D5D3
EA24122B
0081D2D8
2FE7C741
47A60344
12AC8087
EA10Q3EC1
704211E5
21B0DB21
BAAEC3F4
64485077
609A4ES9
F5B374B8
AAF47E94
B59D4C2F
CB1DA4EG
549C86AC
E7E3C0O9F
62459D3E
98488557
C1CO4BEE
OF881F31

Content Type (1, nonframed data)
Reserved

IV Length (12)

Frame Length (@, nonframed data)
IV

Authentication Tag

IV
Encrypted Content Length (654)
Encrypted Content

Daten ohne Frames (Nachrichtenformat, Version 1)

527

AWS Encryption SDK

Entwicklerhandbuch

B731839B
E3862DF6
6920AA76
D4ESDF5C
6932E67C
63490741
978A019C
66DFF333
2C15100C
9247EF61
76EQ8E9B
E24FDE26
C4A46ALE
2EAFDSCB
1E3305D9
6276C5F1
50715406
65B2E942

0067

30650230
CBE194F1
BE84B355
1BEB8281
1559963B
331F3614
34CB7E4B

CF711F6A
338E02B5
OBF8E903
491EE86B
C64B3A26
3AB79D60
FE49EEQA
OE10226F
6A2AA3F1
3E7B7EQD
9ADCDF8C
3044C856
B5AB72FE
BOEB8B83
@COE2294
A3B7E5S1E
822D1682

24BEEAGE
+

+

7229DDF5
1CCOF8CF
3CED1721
023100B2
889F72C3
BC407CEE
363A38

84CA95F5
C345CFF8
552C5A04
20C33FE1
B8988B25
D8S8AEFBES
@E9S6BFOD
0A1B219C
88251874
29F3AD89
C886D4FD
BFO8FO51
096041F1
AE@5885A
ESAD7E3B
422D365D
80BOF2E5
A513F918

B86A5B64
D27B7F8B
AGBE2A1B
@CB323EF
B15D1700
B86A6G6FA

958D3B44
A31D54F3
917CCD11
5D21F0AD
CFA33E2B
2F48E25A
D6074DDB
BES54E4C2
FDCO94F6B
FA14A29C
A69F6CB4
1ADAD329
F3F3571B
8F2D2793
8E4DEC96
E4C0259C
5C94

CCEC1DE3

54E4D627
F50658C0
8E3F449E
58A4ACE3
5FB26E61
CBF74D9E

Authentication Tag

Signature Length (103)
Signature

Text — Zusatzliche authentifizierte Daten (AAD) — Referenz fur das
AWS Encryption SDK

Die Informationen auf dieser Seite stellen eine Referenz fir die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlisselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlisselungsbibliothek erstellen, bendtigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstitzten Programmi
ersprachen finden Sie unter. Programmiersprachen

Text-AAD — Referenz

528

AWS Encryption SDK Entwicklerhandbuch

Die Spezifikation, die die Elemente einer ordnungsgemafRen AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Sie mussen zusatzliche authentifizierte Daten (AAD) fir den AES-GCM-Algorithmus fur jede
kryptografische Operation angeben. Dies gilt fir Textdaten mit und ohne Frame. Weitere
Informationen zu AAD und seiner Verwendung im Galois/Counter Modus (GCM) finden Sie unter
Empfehlungen fir Block Cipher Modes of Operations: Galois/Counter Mode (GCM) und GMAC.

In der folgenden Tabelle sind die Felder beschrieben, die die Text-AAD bilden. Die Byte werden in
der angegebenen Reihenfolge angehangt.

Struktur der Text-AAD

Feld Lange, in Bytes
Message |ID 16
Body AAD Content Variable. Weitere Informationen finden Sie

unter Text-AAD-Inhalt in der folgenden Liste.

Sequence Number 4

Content Length 8

Nachrichten-ID

Der gleiche Message ID-Wert, wie der im Nachrichten-Header festgelegte Wert.
AAD-Inhalt des Hauptteils

Ein UTF-8-kodierter Wert, abhangig von der Art der verwendeten Textdaten.

Far Daten ohne Frame verwenden Sie den Wert AWSKMSEncryptionClient Single Block.

Fir regulare Frames in Daten mit Frame verwenden Sie den Wert AWSKMSEncryptionClient

Frame.

Fur den abschlieRenden Frame in Daten mit Frame verwenden Sie den Wert
AWSKMSEncryptionClient Final Frame.

Text-AAD - Referenz 529

https://github.com/awslabs/aws-encryption-sdk-specification/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

AWS Encryption SDK Entwicklerhandbuch

Sequenznummer
Ein 4-Byte-Wert, interpretiert als vorzeichenlose 32-Bit-Ganzzahl.

Fur Daten mit Frame ist dies die Frame-Folgenummer.

Far Daten ohne Frame verwenden Sie den Wert 1, kodiert als die 4 Bytes 00 00 00 01 im
Hexadezimalformat.

Lange des Inhalts

Die Lange der Klartextdaten in Bytes, die dem Algorithmus zur Verschlisselung zur Verfigung
gestellt werden. Dies ist ein 8-Byte-Wert, interpretiert als vorzeichenlose 64-Bit-Ganzzahl.

AWS Encryption SDK Referenz zu Algorithmen

Die Informationen auf dieser Seite stellen eine Referenz fir die Erstellung lhrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlisselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlisselungsbibliothek erstellen, bendtigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstitzten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Die Spezifikation, die die Elemente einer ordnungsgemaflen AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Wenn Sie |hre eigene Bibliothek erstellen, die Chiffretexte lesen und schreiben kann, die mit dem
kompatibel sind AWS Encryption SDK, missen Sie verstehen, wie die unterstitzten Algorithmus-
Suites zur Verschlisselung von Rohdaten AWS Encryption SDK implementiert.

Die AWS Encryption SDK unterstitzt die folgenden Algorithmus-Suiten. Alle AES-GCM-
Algorithmus-Suiten verfiigen Uber einen 12-Byte-Initialisierungsvektor und ein 16-Byte-AES-GCM-
Authentifizierungs-Tag. Die Standard-Algorithmus-Suite variiert je nach Version und ausgewahlter
Key Commitment-Richtlinie. AWS Encryption SDK Einzelheiten finden Sie unter Commitment-
Richtlinie und Algorithmus-Suite.

Algorithmen — Referenz 530

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

Entwicklerhandbuch

AWS Encryption SDK Algorithmus-Suiten

Algorithm
us-ID

05 78

04 78

03 78

03 46

02 14

01 78

Version
im
Nachricht
enformat

0x02

0x02

0x01

0x01

0x01

0x01

Verschlus
selungsal
gorithmus

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

Lange
des
Datenschl
Ussels
(Bits)

256

256

256

192

128

256

Schlissel
ableitung
salgorith
mus

HKDF mit
SHA-512

HKDF mit
SHA-512

HKDF mit
SHA-384

HKDF mit
SHA-384

HKDF mit
SHA-256

HKDF mit
SHA-256

Signatur-
Algorithm
us

ECDSA
mit P-384
und
SHA-384

Keine

ECDSA
mit P-384
und
SHA-384

ECDSA
mit P-384
und
SHA-384

ECDSA
mit P-256
und
SHA-256

Keine

Algorithm
us fur
Schlissel
zusagen

HKDF mit
SHA-512

HKDF mit
SHA-512

Keine

Keine

Keine

Keine

Datenlang
e der
Algorithm
Suite
(Byte)

32
(wichtigs
te
Verpflich
tung)

32
(wichtigs
te
Verpflich
tung)

N/A

N/A

N/A

N/A

Algorithmen — Referenz

531

AWS Encryption SDK

Entwicklerhandbuch

Algorithm

us-1D

01 46

01 14

00 78

00 46

00 14

Version
im
Nachricht
enformat

0x01

0x01

0x01

0x01

0x01

Algorithmus-ID

Verschlus
selungsal
gorithmus

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

Lange
des
Datenschl
Ussels
(Bits)

192

128

256

192

128

Schlissel
ableitung
salgorith
mus

HKDF mit
SHA-256

HKDF mit
SHA-256
Keine

Keine

Keine

Signatur-
Algorithm
us

Keine

Keine

Keine

Keine

Keine

Algorithm
us fur
Schlissel
zusagen

Keine

Keine

Keine

Keine

Keine

Datenlang
e der
Algorithm
Suite
(Byte)

N/A

N/A

N/A

N/A

N/A

Ein 2-Byte-Hexadezimalwert, der eine Algorithmusimplementierung eindeutig identifiziert. Dieser

Wert wird im Nachrichtenkopf des Chiffretextes gespeichert.

Version im Nachrichtenformat

Die Version des Nachrichtenformats. Algorithmus-Suites mit Key Commitment verwenden das
Nachrichtenformat Version 2 (0x02). Algorithmus-Suites ohne Schllisselzusage verwenden das

Nachrichtenformat Version 1 (0x01).

Datenlange der Algorithmus-Suite

Die Lange der flr die Algorithmus-Suite spezifischen Daten in Byte. Dieses Feld wird nur im
Nachrichtenformat Version 2 (0x02) unterstitzt. Im Nachrichtenformat Version 2 (0x02) werden
diese Daten im Algorithm suite data Feld des Nachrichtenkopfs angezeigt. Algorithmus-

Suites, die Key Commitment unterstutzen, verwenden 32 Byte fur die Key-Commitment-

Zeichenfolge. Weitere Informationen finden Sie in dieser Liste unter Key Commitment-

Algorithmus.

Algorithmen — Referenz

532

AWS Encryption SDK Entwicklerhandbuch

Lange des DatenschlUssels

Die Lange des Datenschlussels in Bits. Der AWS Encryption SDK unterstutzt 256-Bit-, 192-Bit-
und 128-Bit-Schlissel. Der Datenschllssel wird durch einen Schltsselbund oder Hauptschlissel

generiert.

In einigen Implementierungen wird dieser Datenschliissel als Eingabe fir eine HMAC-basierte
extract-and-expand Schlisselableitungsfunktion (HKDF) verwendet. Die Ausgabe des HKDF
wird als DatenverschlUsselungsschlissel im Verschlisselungsalgorithmus verwendet. Weitere
Informationen finden Sie in dieser Liste unter Algorithmus zur Schllsselableitung.

Verschlisselungsalgorithmus

Der Name und der Modus des verwendeten Verschlisselungsalgorithmus. Algorithmus-
Suiten AWS Encryption SDK verwenden den Advanced Encryption Standard (AES) -
Verschlisselungsalgorithmus mit Galois/Counter Modus (GCM).

Algorithmus fur Schlisselzusagen

Der Algorithmus, der zur Berechnung der Key-Commitment-Zeichenfolge verwendet wurde. Die
Ausgabe wird im Algorithm suite data Feld des Nachrichtenkopfs gespeichert und dient zur
Validierung des Datenschlissels fir Key Commitment.

Eine technische Erlauterung des Hinzufligens von Key Commitment zu einer Algorithmus-Suite
finden Sie unter Key Committing AEADs in Cryptology ePrint Archive.

Schlisselableitungsalgorithmus

Die HMAC-basierte extract-and-expand Schlisselableitungsfunktion (HKDF), die zur Ableitung
des Datenverschlisselungsschlussels verwendet wird. Die AWS Encryption SDK verwendet das
in RFC 5869 definierte HKDF.

Algorithmus-Suiten ohne Schlisselbindung (Algorithmus-ID —) @1xx @3 xx
» Die verwendete Hash-Funktion ist je nach Algorithmus-Suite entweder SHA-384 oder SHA-256.
» FUr den Extraktionsschritt:

» Es wird kein Salt verwendet. Gemall dem RFC ist das Salz auf eine Folge von Nullen gesetzt.
Die Lange der Zeichenfolge entspricht der Lange der Hashfunktionsausgabe, die 48 Byte flr
SHA-384 und 32 Byte fur SHA-256 betragt.

» Das Eingabematerial ist der Datenschlissel aus dem Schlisselbund oder dem
HauptschlUsselanbieter.

Algorithmen — Referenz 533

https://eprint.iacr.org/2020/1153
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS Encryption SDK Entwicklerhandbuch

» Fdr den Expansionsschritt:
» Der pseudozufallige Eingabeschliissel ist die Ausgabe aus dem Extraktionsschritt.

» Die Eingabeinformationen sind eine Verkettung der Algorithmus-ID und der Nachrichten-ID (in
dieser Reihenfolge).

» Die Lange des Ausgabe-Keying-Materials entspricht der Lange des Datenschlissels.
Diese Ausgabe wird als Datenverschlisselungsschlissel im Verschlisselungsalgorithmus
verwendet.

Algorithmus-Suiten mit Schlisselbindung (Algorithmus-ID @4xx und@5xx)
* Die verwendete Hash-Funktion ist SHA-512.
* FuUr den Extraktionsschritt:

» Der Salt ist ein kryptografischer 256-Bit-Zufallswert. Im Nachrichtenformat Version 2 (0x02)
wird dieser Wert im Feld gespeichert. MessageID

» Bei der ersten Eingabe handelt es sich um den Datenschliissel aus dem Schlisselbund oder
dem HauptschlUsselanbieter.

» FUr den Expansionsschritt:
» Der pseudozufallige Eingabeschlissel ist die Ausgabe aus dem Extraktionsschritt.

» Die Schlusselbezeichnung besteht aus den UTF-8-kodierten Bytes der DERIVEKEY
Zeichenfolge in Big-Endian-Byte-Reihenfolge.

+ Die Eingabeinformationen sind eine Verkettung der Algorithmus-ID und der
Schlusselbezeichnung (in dieser Reihenfolge).

* Die Lange des Ausgabe-Keying-Materials entspricht der Lange des Datenschlussels.
Diese Ausgabe wird als Datenverschlisselungsschlissel im Verschlisselungsalgorithmus
verwendet.

Version im Nachrichtenformat

Die Version des Nachrichtenformats, das mit der Algorithmussuite verwendet wird. Details hierzu
finden Sie unter Nachrichtenformat — Referenz.

Signatur-Algorithmus

Der Signaturalgorithmus, der verwendet wird, um eine digitale Signatur iber dem Chiffretext-
Header und dem Hauptteil zu generieren. Der AWS Encryption SDK verwendet den Elliptic Curve
Digital Signature Algorithm (ECDSA) mit den folgenden Besonderheiten:

+ Die verwendete elliptische Kurve die P-384- oder P-256-Kurve, wie durch die Algorithmus-ID
angegeben. Diese Kurven sind in Digital Signature Standard (DSS) (FIPS PUB 186-4) definiert.

Algorithmen — Referenz 534

http://doi.org/10.6028/NIST.FIPS.186-4

AWS Encryption SDK Entwicklerhandbuch

» Die verwendete Hash-Funktion ist SHA-384 (mit der P-384-Kurve) oder SHA-256 (mit der
P-256-Kurve).

AWS Encryption SDK Referenz zum Initialisierungsvektor

Die Informationen auf dieser Seite stellen eine Referenz fir die Erstellung Ihrer eigenen, mit AWS
Encryption SDK kompatiblen Verschlisselungsbibliothek dar. Falls Sie keine eigene kompatible
Verschlisselungsbibliothek erstellen, bendtigen Sie diese Informationen wahrscheinlich nicht.

Informationen zur Verwendung von AWS Encryption SDK in einer der unterstitzten Programmi
ersprachen finden Sie unterProgrammiersprachen.

Die Spezifikation, die die Elemente einer ordnungsgemafien AWS Encryption SDK Implement
ierung definiert, finden Sie in der AWS Encryption SDK Spezifikation unter GitHub.

Der AWS Encryption SDK stellt die Initialisierungsvektoren (IVs) bereit, die von allen unterstitzten
Algorithmus-Suiten bendétigt werden. Das SDK verwendet Frame-Folgenummern, um einen IV zu

konstruieren, sodass keine zwei Frames in derselben Nachricht denselben IV haben kdnnen.

Jeder 96-Bit- (12-Byte-)IV besteht aus zwei Big-Endian-Byte-Arrays, die in der folgenden Reihenfolge
verkettet sind:

» 64 Bits: 0 (fur eine zuklnftige Nutzung reserviert)

« 32 Bits: Frame-Folgenummer. Fur das Header-Authentifizierungs-Tag besteht dieser Wert aus
lauter Nullen.

Vor der Einfuhrung der Zwischenspeicherung von Datenschlisseln verwendeten sie AWS Encryption
SDK immer einen neuen Datenschlissel, um jede Nachricht zu verschlisseln, und alle wurden

nach dem Zufallsprinzip generiert. IVs Zufallig generierte Schlussel Vs waren kryptografisch

sicher, da Datenschlussel nie wiederverwendet wurden. Als das SDK das Zwischenspeichern von
DatenschlUsseln einflhrte, bei dem Datenschlissel bewusst wiederverwendet werden, haben wir die
Art und Weise geandert, wie das SDK generiert. IVs

Die Verwendung von deterministischen IVs Methoden, die sich innerhalb einer Nachricht nicht
wiederholen kénnen, erhéht die Anzahl der Aufrufe, die sicher unter einem einzigen Datenschlissel
ausgefuhrt werden kdnnen, erheblich. Dartuber hinaus verwenden im Cache gespeichert

Initialisierungsvektor — Referenz 535

https://github.com/awslabs/aws-encryption-sdk-specification/
https://en.wikipedia.org/wiki/Initialization_vector

AWS Encryption SDK Entwicklerhandbuch

Datenschlissel immer einen Algorithmus mit einer Schlusselableitungsfunktion. Die Verwendung

einer deterministischen IV mit einer Funktion zur Ableitung von Pseudozufallsschlisseln zur Ableitung
von Verschlisselungsschlisseln aus einem DatenschlUssel ermoglicht die Verschlisselung von 2432
Nachrichten, ohne die kryptografischen Grenzen AWS Encryption SDK zu Uberschreiten.

AWS KMS Technische Details zum hierarchischen Schlusselbund

Der AWS KMS hierarchische Schlusselbund verwendet einen eindeutigen Datenschlissel, um

jede Nachricht zu verschlisseln, und verschlisselt jeden Datenschlissel mit einem eindeutigen
UmschlieBungsschlissel, der von einem aktiven Zweigschlissel abgeleitet wird. Er verwendet eine
Schlusselableitung im Zahlermodus mit einer Pseudozufallsfunktion mit HMAC SHA-256, um den 32-
Byte-Wrapping-Schlissel mit den folgenden Eingaben abzuleiten.

 Ein zufélliges 16-Byte-Salz
» Der aktive Zweigschlissel

» Der UTF-8-kodierte Wert fur die Schlisselanbieter-ID "“ aws-kms-hierarchy

Der hierarchische Schlisselbund verwendet den abgeleiteten Wrapping-Schlissel, um eine Kopie
des Klartext-Datenschlissels mithilfe von AES-GCM-256 mit einem 16-Byte-Authentifizierungs-Tag
und den folgenden Eingaben zu verschlisseln.

» Der abgeleitete Wrapping-Schlissel wird als AES-GCM-Verschlisselungsschlissel verwendet

» Der Datenschlissel wird als AES-GCM-Nachricht verwendet

+ Ein zufélliger 12-Byte-Initialisierungsvektor (1V) wird als AES-GCM IV verwendet

Zusatzliche authentifizierte Daten (AAD), die die folgenden serialisierten Werte enthalten.

Wert Lange in Byte Interpretiert als
"aws-kms-hierarchy" 17 UTF-8-kodiert
Die Kennung des Zweigschl Variable UTF-8-kodiert
ussels

Die Version des Zweigschl 16 UTF-8-kodiert
ussels

AWS KMS Technische Details zum hierarchischen Schliisselbund 536

https://en.wikipedia.org/wiki/Key_derivation_function
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS Encryption SDK Entwicklerhandbuch

Wert Lange in Byte Interpretiert als
Verschlusselungskontext Variable UTF-8-kodierte Schlissel-
Wert-Paare

AWS KMS Technische Details zum hierarchischen Schliisselbund 537

AWS Encryption SDK Entwicklerhandbuch

Dokumentenverlauf fur das AWS Encryption SDK Developer
Guide

In diesem Thema werden wichtige Aktualisierungen im AWS Encryption SDK -Entwicklerhandbuch
beschrieben.

Themen

» Neueste Aktualisierungen

» Frihere Aktualisierungen

Neueste Aktualisierungen

Die folgende Tabelle beschreibt signifikante Anderungen an dieser Dokumentation seit November
2017. Neben den hier aufgelisteten gréReren Anderungen aktualisieren wir die Dokumentation
regelmanig tberarbeitet, um Beschreibungen und Beispiele zu verbessern und lhre Riickmeldungen
zu beriicksichtigen. Wenn Sie (iber wichtige Anderungen benachrichtigt werden mdchten, abonnieren
Sie den RSS-Feed.

Anderung Beschreibung Datum

Allgemeine Verfugbarkeit Dokumentation fir den AWS 17. Juni 2024
KMS ECDH-Schlisselbund
und den Raw ECDH-Schl

usselbund hinzugefugt.

AWS-Verschlisselungs-SDK 6. Dezember 2023

for Java Version 3.x

Integriert die Bibliothek AWS-
Verschlisselungs-SDK

for Java mit den Materiala
nbietern. Integriert die
Unterstitzung fur Schlissel
ringe und den erforderlichen
Verschlisselungskontext
CMM.

AWS Encryption SDK fur.NET-

Version 4.x

Integriert die Unterstitzung flr
den AWS KMS hierarchischen

12. Oktober 2023

Neueste Aktualisierungen

538

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html

AWS Encryption SDK

Entwicklerhandbuch

Allgemeine Verflgbarkeit

Anderung der Dokumentation

Allgemeine Verflgbarkeit

Allgemeine Verflgbarkeit

SchllUsselbund, den erforderl

ichen VerschlUsselungskontext

(CMM) und asymmetrische
RSA-Schlisselringe. AWS
KMS

EinfUhrung der Unterstlitzung
fur AWS Encryption SDK
fur.NET.

Ersetzen Sie den AWS Key
Management Service Begriff
Customer Master Key (CMK)
durch AWS KMS keyeinen
KMS-Schlissel.

Unterstltzung fur hinzugefi
gt AWS Key Managemen

t Service. (AWS KMS)
Schlissel fur mehrere
Regionen. Schllissel mit
mehreren Regionen sind
unterschiedliche AWS KMS
Schlissel AWS-Regionen , die
synonym verwendet werden
kénnen, da sie dieselbe
Schlissel-ID und dasselbe
Schlisselmaterial haben.

Die Dokumentation zum
verbesserten EntschlUs
selungsprozess von Nachricht
en wurde hinzugefligt und
aktualisiert.

17. Mai 2022

30. August 2021

8. Juni 2021

11. Mai 2021

Neueste Aktualisierungen

539

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#master-key
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/configure.html#config-mrks
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#digital-sigs

AWS Encryption SDK

Entwicklerhandbuch

Allgemeine Verflgbarkeit

Allgemeine Verflgbarkeit

Allgemeine Verflgbarkeit

Die Dokumentation fur die
allgemein verfligbare Version
von AWS Encryption CLI
Version 1.8 wurde hinzugefl
gt und aktualisiert. x als

Ersatz fur AWS Encryption

CLI Version 1.7. x und AWS
Encryption CLI 2.1. x als
Ersatz fur AWS Encryption CLI
2.0. x.

Die Dokumentation fur

die allgemein verfligbare
Version der AWS Encryptio

n SDK Versionen 1.7 wurde
hinzugefligt und aktualisiert. x
und 2.0. x, einschlieBlich eines
Best-Practices-Leitfadens,
eines Migrationsleitfade

ns, aktualisierter Konzepte,
aktualisierter Themen zu
Programmiersprachen, einer
aktualisierten Referenz

zu Algorithm Suites, einer
aktualisierten Referenz

zum Nachrichtenformat und
einem neuen Beispiel fUr ein
Nachrichtenformat.

Dokumentation zur allgemein
en Verflugbarkeitsversion des
AWS-Verschlisselungs-SDK
for JavaScript wurde hinzugefi
gt und aktualisiert.

27. Oktober 2020

24. September 2020

1. Oktober 2019

Neueste Aktualisierungen

540

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html

AWS Encryption SDK Entwicklerhandbuch

Vorschauversion Dokumentation der 6ffentlic 21. Juni 2019
hen Beta-Version des AWS-
Verschlisselungs-SDK for
JavaScript wurde hinzugeflgt
und aktualisiert.

Allgemeine Verflgbarkeit Dokumentation zur allgemein 16. Mai 2019
en Verflugbarkeitsversion des
AWS-Verschlisselungs-SDK
for C wurde hinzugeflgt und
aktualisiert.

Vorschauversion Dokumentation der Vorversio 5. Februar 2019
n des AWS-Verschlisselungs-
SDK for C wurde hinzugefugt.

Neue Veréffentlichung Dokumentation der Befehlsze 20. November 2017
ilenschnittstelle fir das AWS
Encryption SDK hinzugefugt.

Frihere Aktualisierungen

In der folgenden Tabelle werden wichtige Anderungen am AWS Encryption SDK Developer Guide vor
November 2017 beschrieben.

Anderung Beschreibung Datum

Neue Version Zuséatzliches Datenschlissel- 31. Juli 2017
Caching Kapitel fur die neue
Funktion.

Es wurde das the section
called “Initialisierungsvektor —

Referenz” Thema hinzugefu
gt, in dem erklart wird, dass
das SDK nicht mehr zufallig
generiert IVs , sondern Vs

Frihere Aktualisierungen 541

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html

AWS Encryption SDK

Entwicklerhandbuch

Anderung

Aktualisierung

Neue Version

Erstversion

Beschreibung

deterministisch konstruiert
wurde.

Das the section called
“Konzepte” Thema zur
Erlauterung von Konzepten

, einschliel3lich des neuen
Managers fir kryptografische
Materialien, wurde hinzugefi

gt.

Erweiterung der Nachricht
enformat — Referenz-

Dokumentation in einen
neuen AWS Encryption SDK
Referenz-Abschnitt.

Es wurde ein Abschnitt Gber
die AWS Encryption SDK
Unterstutzte Algorithmen-

Pakete hinzugeflugt.

Das unterstutzt AWS
Encryption SDK jetzt zusatzlic
h zu die Python Programmi
erspracheJava.

Erste Version der AWS
Encryption SDK und dieser
Dokumentation.

Datum

21. Marz 2017

21. Marz 2017

22. Marz 2016

Fruhere Aktualisierungen

542

AWS Encryption SDK Entwicklerhandbuch

Die vorliegende Ubersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser Ubersetzten Fassung und der englischen Fassung (einschlieRlich
infolge von Verzdgerungen bei der Ubersetzung) ist die englische Fassung maRgeblich.

dxliii

	AWS Encryption SDK
	Table of Contents
	Was ist der AWS Encryption SDK?
	Entwickelt in Open-Source-Repositorien
	Kompatibilität mit Verschlüsselungsbibliotheken und -services
	Support und Wartung
	Mehr lernen
	Senden von Feedback
	Konzepte in der AWS Encryption SDK
	Umschlagverschlüsselung
	Datenschlüssel
	Schlüssel zum Umschließen
	Schlüsselanhänger und Hauptschlüsselanbieter
	Verschlüsselungskontext
	Verschlüsselte Nachricht
	Algorithmen-Paket
	Manager von kryptographischen Materialien
	Symmetrische und asymmetrische Verschlüsselung
	Wichtiges Engagement
	Verpflichtungspolitik
	Digitale Signaturen

	So AWS Encryption SDK funktioniert das
	Wie AWS Encryption SDK verschlüsselt der Daten
	Wie AWS Encryption SDK entschlüsselt der eine verschlüsselte Nachricht

	Unterstützte Algorithmus-Suiten in der AWS Encryption SDK
	Empfohlen: AES-GCM mit Schlüsselableitung, Signierung und Schlüsselzusage
	Andere unterstützte Algorithmen-Pakete

	Verwenden von AWS Encryption SDK with AWS KMS
	Bewährte Methoden für AWS Encryption SDK
	Konfiguration der AWS Encryption SDK
	Auswahl einer Programmiersprache
	Auswahl von Schlüsseln zum Umbrechen
	Verwenden Sie mehrere Regionen AWS KMS keys
	Auswahl einer Algorithmus-Suite
	Beschränkung verschlüsselter Datenschlüssel
	Einen Discovery-Filter erstellen
	Konfiguration des erforderlichen Verschlüsselungskontextes (CMM)
	Festlegung einer Verpflichtungspolitik
	Arbeiten mit Streaming-Daten
	Zwischenspeichern von Datenschlüsseln

	Wichtige Geschäfte in der AWS Encryption SDK
	Terminologie und Konzepte von Key Stores
	Implementieren der geringsten Berechtigungen
	Einen Schlüsselspeicher erstellen
	Schlüsselspeicheraktionen konfigurieren
	Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen
	Statische Konfiguration
	Discovery-Konfiguration

	Erstellen Sie einen aktiven Filialschlüssel
	Drehe deinen aktiven Filialschlüssel

	Schlüsselringe
	Funktionsweise von Schlüsselbunden
	Schlüsselbund-Kompatibilität
	Unterschiedliche Anforderungen für Verschlüsselungsschlüsselringe
	Kompatible Schlüsselbunde und Masterschlüssel-Anbieter

	AWS KMS Schlüsselringe
	AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger
	Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund
	Einen Schlüsselbund erstellen AWS KMS
	Verwenden eines Discovery-Schlüsselbunds AWS KMS
	Verwenden Sie einen AWS KMS regionalen Discovery-Schlüsselbund

	AWS KMS Hierarchische Schlüsselanhänger
	Funktionsweise
	Voraussetzungen
	Erforderliche Berechtigungen
	Wählen Sie einen Cache
	Standard-Cache
	MultiThreaded Cache
	StormTracking Zwischenspeicher
	Gemeinsam genutzter Cache

	Erstellen Sie einen hierarchischen Schlüsselbund
	Erstellen Sie einen hierarchischen Schlüsselbund mit einer statischen Zweigschlüssel-ID
	Erstellen Sie einen hierarchischen Schlüsselbund mit einem Lieferanten für die Zweigschlüssel-ID

	AWS KMS ECDH-Schlüsselanhänger
	Erforderliche Berechtigungen für AWS KMS ECDH-Schlüsselanhänger
	Einen ECDH-Schlüsselbund AWS KMS erstellen
	Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen

	Unformatierte AES-Schlüsselbunde
	Unformatierte RSA-Schlüsselbunde
	Raw ECDH Schlüsselanhänger
	Einen RAW-ECDH-Schlüsselbund erstellen
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	Multi-Schlüsselbunde

	AWS Encryption SDK Programmiersprachen
	AWS-Verschlüsselungs-SDK for C
	Installation des AWS-Verschlüsselungs-SDK for C
	Mit dem AWS-Verschlüsselungs-SDK for C
	Muster zum Ver- und Entschlüsseln von Daten
	Referenzzählung

	AWS-Verschlüsselungs-SDK for C Beispiele
	Verschlüsseln und Entschlüsseln von Zeichenfolgen
	Verschlüsseln einer Zeichenfolge
	Entschlüsseln einer Zeichenfolge

	AWS Encryption SDK für .NET
	Installation von AWS Encryption SDK für.NET
	Debuggen des AWS Encryption SDK für .NET
	AWS Encryption SDK für .NET-Beispiele
	Verschlüsseln von Daten im AWS Encryption SDK für.NET
	Entschlüsselung im strikten Modus in für.NET AWS Encryption SDK
	Entschlüsseln mit einem Discovery-Schlüsselbund im für.NET AWS Encryption SDK

	AWS Encryption SDK für Go
	Voraussetzungen
	Installation

	AWS-Verschlüsselungs-SDK for Java
	Voraussetzungen
	Installation
	AWS-Verschlüsselungs-SDK for Java Beispiele
	Verschlüsseln und Entschlüsseln von Zeichenfolgen
	Verschlüsseln und Entschlüsseln von Byte-Streams
	Verschlüsseln und Entschlüsseln von Bytestreams mit einem Mehrfachschlüsselbund

	AWS-Verschlüsselungs-SDK for JavaScript
	Kompatibilität der AWS-Verschlüsselungs-SDK for JavaScript
	AWS-Verschlüsselungs-SDK for JavaScript Kompatibilität
	Browserkompatibilität

	Installation des AWS-Verschlüsselungs-SDK for JavaScript
	Module in der AWS-Verschlüsselungs-SDK for JavaScript
	Module für JavaScript Node.js
	Module für Browser JavaScript
	Module für alle Implementierungen

	AWS-Verschlüsselungs-SDK for JavaScript Beispiele
	AWS KMS Daten mit einem Schlüsselbund verschlüsseln
	Daten mit einem Schlüsselbund entschlüsseln AWS KMS

	AWS-Verschlüsselungs-SDK for Python
	Voraussetzungen
	Installation
	AWS-Verschlüsselungs-SDK for Python Beispielcode
	Verschlüsseln und Entschlüsseln von Zeichenfolgen
	Verschlüsseln und Entschlüsseln von Byte-Streams

	AWS Encryption SDK für Rust
	Voraussetzungen
	Installation
	AWS Encryption SDK für Rust-Beispielcode
	Verschlüsseln und Entschlüsseln von Daten in der AWS Encryption SDK für Rust

	AWS Encryption SDK Befehlszeilenschnittstelle
	Installation der AWS Encryption SDK Befehlszeilenschnittstelle
	Installieren der Voraussetzungen
	Installation und Aktualisierung der AWS Encryption CLI

	So verwenden Sie die AWS Encryption CLI
	Daten verschlüsseln und entschlüsseln
	Wie spezifiziert man Wrapping-Schlüssel
	Umschließen von Schlüsselparameterattributen
	Wie spezifiziert man mehrere Wrapping-Schlüssel

	Eingaben bereitstellen
	Den Ausgabespeicherort festlegen
	Einen Verschlüsselungskontext verwenden
	Wie spezifiziert man eine Verpflichtungsrichtlinie
	Parameter in einer Konfigurationsdatei speichern

	Beispiele für die AWS Encryption CLI
	Verschlüsseln einer Datei
	Entschlüsseln einer Datei
	Alle Dateien in einem Verzeichnis verschlüsseln
	Alle Dateien in einem Verzeichnis entschlüsseln
	Verschlüsseln und Entschlüsseln in der Befehlszeile
	Verwenden mehrerer Hauptschlüssel
	Verschlüsseln und Entschlüsseln in Skripts
	Verwenden von Datenschlüssel-Caching

	AWS Encryption SDK CLI Syntax und Parameterreferenz
	AWS Verschlüsselungs-CLI-Syntax
	AWS Befehlszeilenparameter der Verschlüsselungs-CLI
	Erweiterte Parameter

	Versionen der AWS Encryption CLI
	Ausführung 1.8. x Änderungen an der AWS Encryption CLI
	Ausführung 2.1. x Änderungen an der AWS Encryption CLI
	Ausführung 1.9. x und 2.2. x Änderungen an der AWS Encryption CLI
	Version 3.0. x Änderungen an der AWS Encryption CLI

	Datenschlüssel-Caching
	Das Datenschlüssel-Caching verwenden
	Verwenden der Zwischenspeicherung von Datenschlüsseln: Step-by-step
	Beispiel für das Datenschlüssel-Caching: Verschlüsseln einer Zeichenfolge

	Festlegen von Cache-Sicherheitsschwellenwerten
	Weitere Informationen zum Datenschlüssel-Caching
	Wie das Datenschlüssel-Caching funktioniert
	Verschlüsseln von Daten ohne Caching
	Verschlüsseln von Daten mit Caching

	Erstellen eines Cache für kryptografische Materialien
	Erstellen eines Managers von kryptographischen Materialien, der Caching verwendet
	Was befinde sich in einem Datenschlüssel-Cache-Eintrag?
	Verschlüsselungskontext: Wie Cache-Einträge ausgewählt werden
	Benutzt meine Anwendung zwischengespeicherte Datenschlüssel?

	Beispiel für das Datenschlüssel-Caching
	Lokale Cache-Ergebnisse
	Beispielcode für das Zwischenspeichern von Datenschlüsseln
	Produzent
	Konsument

	Beispiel für das Zwischenspeichern von Datenschlüsseln: Vorlage CloudFormation

	Versionen von AWS Encryption SDK
	C
	C#/.NET
	Befehlszeilenschnittstelle (CLI)
	Java
	Go
	JavaScript
	Python
	Rust
	Versionsdetails
	Versionen vor 1.7. x
	Version 1.7. x
	Version 2.0. x
	Version 2.2. x
	Version 2.3. x

	Migrieren Sie Ihre AWS Encryption SDK
	Wie migriert und implementiert man AWS Encryption SDK
	Phase 1: Aktualisieren Sie Ihre Anwendung auf die neueste Version 1. x-Version
	Phase 2: Aktualisieren Sie Ihre Anwendung auf die neueste Version

	Aktualisierung der AWS KMS Hauptschlüsselanbieter
	Umstellung auf den strikten Modus
	In den Discovery-Modus migrieren

	AWS KMS Schlüsselanhänger aktualisieren
	Festlegung Ihrer Verpflichtungspolitik
	Wie legen Sie Ihre Verpflichtungsrichtlinie fest

	Fehlerbehebung bei der Migration auf die neuesten Versionen
	Veraltete oder entfernte Objekte
	Konfigurationskonflikt: Verpflichtungsrichtlinie und Algorithmus-Suite
	Konfigurationskonflikt: Verpflichtungsrichtlinie und Chiffretext
	Die Überprüfung der Schlüsselzusage ist fehlgeschlagen
	Andere Verschlüsselungsfehler
	Andere Fehler bei der Entschlüsselung
	Überlegungen zum Rollback

	Häufig gestellte Fragen
	Wie AWS Encryption SDK unterscheidet sich das von dem AWS SDKs?
	Wie AWS Encryption SDK unterscheidet sich der vom Amazon S3 S3-Verschlüsselungsclient?
	Welche kryptografischen Algorithmen werden vom AWS Encryption SDK unterstützt und welcher ist der Standard?
	Wie wird der Initialisierungsvektor (IV) generiert und wo wird er gespeichert?
	Wie werden die einzelnen Datenschlüssel generiert, verschlüsselt und entschlüsselt?
	Wie kann ich nachverfolgen, welche Datenschlüssel zum Verschlüsseln meiner Daten verwendet wurden?
	Wie AWS Encryption SDK speichern sie verschlüsselte Datenschlüssel mit ihren verschlüsselten Daten?
	Wie viel Mehraufwand verursacht das AWS Encryption SDK Nachrichtenformat für meine verschlüsselten Daten?
	Kann ich meinen eigenen Masterschlüsselanbieter verwenden?
	Kann ich Daten mit mehr als einem Wrapping Key verschlüsseln?
	Welche Datentypen kann ich mit dem verschlüsseln? AWS Encryption SDK
	Wie werden Streams AWS Encryption SDK verschlüsselt und entschlüsselt input/output (I/O)?

	AWS Encryption SDK Referenz
	AWS Encryption SDK Referenz zum Nachrichtenformat
	Header-Struktur
	Textstruktur
	Daten ohne Frame
	Daten mit Frame

	Footer-Struktur

	AWS Encryption SDK Beispiele für Nachrichtenformate
	Gerahmte Daten (Nachrichtenformat, Version 1)
	Frame-Daten (Nachrichtenformat, Version 2)
	Daten ohne Frames (Nachrichtenformat, Version 1)

	Text – Zusätzliche authentifizierte Daten (AAD) – Referenz für das AWS Encryption SDK
	AWS Encryption SDK Referenz zu Algorithmen
	AWS Encryption SDK Referenz zum Initialisierungsvektor
	AWS KMS Technische Details zum hierarchischen Schlüsselbund

	Dokumentenverlauf für das AWS Encryption SDK Developer Guide
	Neueste Aktualisierungen
	Frühere Aktualisierungen

	

