
Entwicklerhandbuch für Version 1.x

AWS SDK für Java 1.x

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

AWS SDK für Java 1.x: Entwicklerhandbuch für Version 1.x

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Table of Contents
.. viii
AWS SDK für Java 1.x ... 1

Version 2 des SDK wurde veröffentlicht ... 1
Zusätzliche Dokumentation und Ressourcen .. 1
Unterstützung für Eclipse-IDE ... 2
Entwicklung von Anwendungen für Android ... 2
Anzeigen des SDK-Versionsverlaufs ... 2
Erstellen von Java-Referenzdokumentationen für frühere SDK-Versionen 2

Erste Schritte .. 4
Grundlegende Einrichtung ... 4

Übersicht ... 4
Anmeldemöglichkeit beim AWS Zugriffsportal ... 5
Richten Sie gemeinsam genutzte Konfigurationsdateien ein ... 5
Installieren Sie eine Java-Entwicklungsumgebung .. 7

Möglichkeiten, das zu bekommen AWS SDK für Java ... 7
Voraussetzungen .. 7
Verwenden Sie ein Build-Tool .. 8
Laden Sie das vorgefertigte JAR herunter ... 8
Aus dem Quellcode erstellen ... 9

Verwenden Sie Build-Tools ... 10
Das SDK mit Apache Maven verwenden ... 10
Das SDK mit Gradle verwenden .. 13

Temporäre Zugangsdaten und Region ... 17
Konfigurieren Sie temporäre Anmeldeinformationen .. 18
Aktualisieren von IMDS-Anmeldeinformationen ... 19
Stellen Sie das ein AWS-Region .. 19

Mit dem AWS SDK für Java .. 21
Bewährte Methoden für die AWS Entwicklung mit dem AWS SDK für Java 21

S3 .. 21
Erstellen von Service-Clients ... 22

Abruf eines Client-Generators .. 23
Erstellen von Async-Clients .. 24
Verwenden DefaultClient .. 25
Client-Lebenszyklus .. 25

iii

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Geben Sie temporäre Anmeldeinformationen ein ... 26
Verwenden der standardmäßigen Anbieterkette von Anmeldeinformationen 26
Geben Sie einen Anbieter oder eine Anbieterkette für Anmeldeinformationen an 30
Geben Sie explizit temporäre Anmeldeinformationen an ... 30
Weitere Infos ... 31

AWS-Region Auswahl ... 31
Überprüfung der Serviceverfügbarkeit in einer Region .. 31
Auswahl einer Region ... 32
Auswahl eines bestimmten Endpunkts ... 32
Ermitteln Sie die Region automatisch anhand der Umgebung .. 33

Umgang mit Ausnahmen ... 35
Warum ungeprüfte Ausnahmen? .. 35
AmazonServiceException (und Unterklassen) ... 35
AmazonClientException .. 36

Asynchrone Programmierung .. 36
Java-Futures ... 37
Asynchrone Callbacks .. 38
Bewährte Methoden .. 40

AWS SDK für Java Protokollierung von Anrufen .. 41
Herunterladen der Log4J-JAR .. 41
Festlegen des Klassenpfads .. 42
Service-spezifische Fehler und Warnungen ... 42
Protokollierung von Anforderungs-/Antwortübersichten ... 43
Verbose-Protokollierung des Netzwerkverkehrs ... 44
Protokollieren von Latenz-Metriken .. 44

Client-Konfiguration .. 45
Proxy-Konfiguration ... 45
HTTP-Transport-Konfiguration .. 46
TCP-Socketpuffer-Größenhinweise .. 47

Zugriffskontrollrichtlinien .. 48
Amazon S3 Beispiel ... 49
Amazon SQS Beispiel .. 49
Beispiel für Amazon SNS ... 50

Legen Sie die JVM-TTL für DNS-Namenssuchen fest ... 50
Wie legt man die JVM-TTL fest ... 51

Aktivierung von Metriken für AWS SDK für Java ... 51

iv

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Wie aktiviert man die Generierung von Java-SDK-Metriken .. 52
Verfügbare Arten von Metriken .. 53
Weitere Informationen ... 56

Codebeispiele ... 58
AWS SDK für Java 2.x .. 58
Amazon CloudWatch Beispiele .. 58

Metriken abrufen von CloudWatch ... 59
Veröffentlichen benutzerdefinierter Metrikdaten ... 61
Mit CloudWatch Alarmen arbeiten .. 62
Verwenden von Alarmaktionen in CloudWatch .. 65
Ereignisse senden an CloudWatch .. 67

Amazon DynamoDB Beispiele ... 70
Verwenden Sie AWS kontobasierte Endpunkte ... 70
Arbeiten mit Tabellen in DynamoDB .. 71
Arbeiten mit Elementen in DynamoDB ... 78

Amazon EC2 Beispiele .. 85
Tutorial: Eine EC2 Instanz starten ... 86
Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon
EC2 ... 91
Tutorial: Amazon EC2 Spot-Instances ... 98
Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 110
Amazon EC2 Instanzen verwalten ... 127
Verwendung von Elastic IP-Adressen in Amazon EC2 .. 133
Regionen und Verfügbarkeitszonen verwenden ... 136
Mit Amazon EC2 Schlüsselpaaren arbeiten ... 139
Arbeiten mit Sicherheitsgruppen in Amazon EC2 .. 141

AWS Identity and Access Management (IAM) Beispiele ... 145
Verwalten von IAM-Zugriffsschlüsseln .. 145
Verwalten von IAM-Benutzern .. 150
Verwenden von IAM-Konto-Aliasen .. 153
Arbeiten mit IAM-Richtlinien ... 156
Arbeiten mit IAM-Serverzertifikaten .. 161

Lambda Amazon-Beispiele .. 164
Serviceoperationen ... 165

Amazon Pinpoint Beispiele .. 169
Apps erstellen und löschen in Amazon Pinpoint .. 169

v

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Endpunkte erstellen in Amazon Pinpoint ... 171
Segmente erstellen in Amazon Pinpoint .. 173
Kampagnen erstellen in Amazon Pinpoint ... 175
Kanäle aktualisieren in Amazon Pinpoint ... 176

Amazon S3 Beispiele ... 178
Amazon S3 Buckets erstellen, auflisten und löschen .. 178
Operationen an Amazon S3 Objekten ausführen .. 184
Amazon S3 Zugriffsberechtigungen für Buckets und Objekte verwalten 189
Verwaltung des Zugriffs auf Amazon S3 Buckets mithilfe von Bucket-Richtlinien 193
TransferManager Für Amazon S3 Operationen verwenden ... 197
Einen Amazon S3 Bucket als Website konfigurieren ... 210
Amazon S3 Clientseitige Verschlüsselung verwenden .. 213

Amazon SQS Beispiele .. 220
Mit Amazon SQS Nachrichtenwarteschlangen arbeiten ... 220
Amazon SQS Nachrichten senden, empfangen und löschen .. 223
Long Polling für Amazon SQS Nachrichtenwarteschlangen aktivieren 226
Sichtbarkeits-Timeout einrichten in Amazon SQS ... 228
Verwenden von Warteschlangen für unzustellbare Briefe in Amazon SQS 231

Amazon SWF Beispiele ... 233
SWF-Grundlagen .. 234
Eine einfache Amazon SWF Anwendung erstellen .. 236
Lambda Aufgaben ... 256
Korrektes Herunterfahren von Aktivitäts- und Workflow-Workern .. 261
Registrieren von Domänen ... 264
Auflisten von Domänen .. 265

Im SDK enthaltene Codebeispiele .. 266
Abrufen der Beispiele ... 266
Erstellen und Ausführen der Beispiele in der Befehlszeile .. 266
Erstellen und Ausführen der Beispiele in der Eclipse-IDE ... 267

Sicherheit .. 269
Datenschutz ... 270
Erzwingen einer Mindest-TLS-Version .. 271

Vorgehensweise zum Überprüfen der TLS-Version ... 271
Erzwingen einer Mindest-TLS-Version ... 271

Identitäts- und Zugriffsverwaltung ... 272
Zielgruppe ... 272

vi

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Authentifizierung mit Identitäten ... 273
Verwalten des Zugriffs mit Richtlinien .. 274
Wie AWS-Services arbeiten Sie mit IAM ... 276
Problembehebung bei AWS Identität und Zugriff ... 277

Compliance-Validierung ... 279
Ausfallsicherheit ... 279
Infrastruktursicherheit ... 280
Migration des S3-Verschlüsselungsclients .. 281

Voraussetzungen .. 281
Überblick über die Migration ... 281
Aktualisieren Sie bestehende Clients, um neue Formate zu lesen .. 281
Migrieren Sie Verschlüsselungs- und Entschlüsselungsclients auf V2 283
Weitere Beispiele .. 285

OpenPGP-Schlüssel ... 287
Aktueller Schlüssel .. 287
Frühere Schlüssel .. 293

Dokumentverlauf ... 300

vii

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Version AWS SDK für Java 1.x wurde am 31. Juli 2024 in den Wartungsmodus versetzt und
wird end-of-supportam 31. Dezember 2025 verfügbar sein. Wir empfehlen Ihnen, auf den zu
migrieren AWS SDK for Java 2.x, um weiterhin neue Funktionen, Verfügbarkeitsverbesserungen und
Sicherheitsupdates zu erhalten.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich
infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

viii

https://aws.amazon.com/blogs/developer/announcing-end-of-support-for-aws-sdk-for-java-v1-x-on-december-31-2025/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Entwicklerhandbuch — AWS SDK für Java 1.x
Das AWS SDK für Javabietet eine Java-API für AWS Dienste. Mit dem SDK können Sie auf einfache
Weise Java-Anwendungen erstellen, die mit Amazon S3, Amazon EC2 DynamoDB, und mehr
funktionieren. Unterstützung für neue Services ergänzen wir regelmäßig im AWS SDK für Java. Eine
Liste der unterstützten Services und deren API-Versionen, die in den einzelnen Versionen des SDKs
enthalten sind, finden Sie in den Versionshinweisen für die Version, mit der Sie arbeiten.

Version 2 des SDK wurde veröffentlicht

Schauen Sie sich das neue AWS SDK für Java 2.x unter https://github.com/aws/aws-sdk-java-
v2/ an. Sie enthält mit Spannung erwartete Funktionen, wie z. B. die Möglichkeit, eine HTTP-
Implementierung einzubinden. Informationen zu den ersten Schritten finden Sie im AWS SDK für
Java 2.x Developer Guide.

Zusätzliche Dokumentation und Ressourcen

Zusätzlich zu diesem Handbuch finden Sie im Folgenden wertvolle Online-Ressourcen für AWS SDK
für Java Entwickler:

• AWS SDK für Java API Reference

• Java-Entwicklerblog

• Java-Entwicklerforen

• GitHub:

• Dokumentationsquelle

• Dokumentationsprobleme

• SDK-Quellcode

• SDK-Probleme

• SDK-Beispiele

• Gitter-Kanal

• Die AWS-Codebeispiel-Katalog

• @awsforjava (Twitter)

• Versionshinweise

Version 2 des SDK wurde veröffentlicht 1

https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java#release-notes
https://github.com/aws/aws-sdk-java-v2/
https://github.com/aws/aws-sdk-java-v2/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://aws.amazon.com/blogs/developer/category/java
https://forums.aws.amazon.com/forum.jspa?forumID=70
https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide/issues
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/issues
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://gitter.im/aws/aws-sdk-java
https://docs.aws.amazon.com/code-samples/latest/catalog/
https://twitter.com/awsforjava
https://github.com/aws/aws-sdk-java#release-notes

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Unterstützung für Eclipse-IDE

Wenn Sie Code mit der Eclipse-IDE entwickeln, können Sie das verwenden, AWS Toolkit for
Eclipseum das AWS SDK für Java zu einem vorhandenen Eclipse-Projekt hinzuzufügen oder ein
neues AWS SDK für Java Projekt zu erstellen. Das Toolkit unterstützt auch das Erstellen und
Hochladen von Lambda Funktionen, das Starten und Überwachen von Amazon EC2 Instanzen, das
Verwalten von IAM Benutzern und Sicherheitsgruppen, einen AWS CloudFormation Vorlageneditor
und mehr.

Die vollständige Dokumentation finden Sie im AWS Toolkit for Eclipse Benutzerhandbuch.

Entwicklung von Anwendungen für Android

Wenn Sie ein Android-Entwickler sind, Amazon Web Services veröffentlicht ein SDK, das speziell für
die Android-Entwicklung entwickelt wurde: das Amplify Android (AWS Mobile SDK for Android).

Anzeigen des SDK-Versionsverlaufs

Den Versionsverlauf von AWS SDK für Java, einschließlich der Änderungen und unterstützten
Dienste pro SDK-Version, finden Sie in den Versionshinweisen des SDK.

Erstellen von Java-Referenzdokumentationen für frühere SDK-
Versionen

Die AWS SDK für Java API-Referenz stellt den neuesten Build der Version 1.x des SDK dar. Wenn
Sie einen früheren Build der 1.x-Version verwenden, möchten Sie möglicherweise auf die SDK-
Referenzdokumentation zugreifen, die der von Ihnen verwendeten Version entspricht.

Die einfachste Methode zum Erstellen der Dokumentation besteht darin, das Build-Tool von Apache
Maven zu nutzen. Laden Sie Maven zuerst herunter und installieren Sie es, falls es auf Ihrem System
noch nicht vorhanden ist, und erstellen Sie die Referenzdokumentation dann mit den folgenden
Schritten:

1. Suchen Sie auf der Releases-Seite des SDK-Repositorys die SDK-Version, die Sie verwenden,
und wählen Sie sie aus. GitHub

2. Wählen Sie entweder den Link zip (die meisten Plattformen, einschließlich Windows) oder
tar.gz (Linux, macOS oder Unix), um das SDK auf Ihren Computer herunterzuladen.

Unterstützung für Eclipse-IDE 2

https://aws.amazon.com/eclipse/
https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://docs.aws.amazon.com/sdk-for-android/index.html
https://github.com/aws/aws-sdk-java#release-notes
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://maven.apache.org/
https://github.com/aws/aws-sdk-java/releases

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

3. Extrahieren Sie das Archiv in ein lokales Verzeichnis.

4. Navigieren Sie in der Befehlszeile zu dem Verzeichnis, in das Sie das Archiv entpackt haben.
Geben Sie dann folgenden Befehl ein:

mvn javadoc:javadoc

5. Nachdem die Erstellung abgeschlossen ist, finden Sie die generierte HTML-Dokumentation im
Verzeichnis aws-java-sdk/target/site/apidocs/.

Erstellen von Java-Referenzdokumentationen für frühere SDK-Versionen 3

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Erste Schritte
Dieser Abschnitt enthält Informationen zur Installation, Einrichtung und Verwendung des AWS SDK
für Java.

Themen

• Grundkonfiguration zum Arbeiten AWS-Services

• Möglichkeiten, das zu bekommen AWS SDK für Java

• Verwenden Sie Build-Tools

• AWS Temporäre Anmeldeinformationen und AWS-Region für die Entwicklung einrichten

Grundkonfiguration zum Arbeiten AWS-Services

Übersicht

Für die erfolgreiche Entwicklung von Anwendungen, die AWS-Services über das zugreifen AWS SDK
für Java, sind die folgenden Bedingungen erforderlich:

• Sie müssen in der Lage sein, sich bei dem AWS Zugangsportal anzumelden, das im verfügbar ist
AWS IAM Identity Center.

• Die Berechtigungen der für das SDK konfigurierten IAM-Rolle müssen den Zugriff auf die
AWS-Services , die Ihre Anwendung benötigt, ermöglichen. Die mit der PowerUserAccess
AWS verwalteten Richtlinie verbundenen Berechtigungen reichen für die meisten
Entwicklungsanforderungen aus.

• Eine Entwicklungsumgebung mit den folgenden Elementen:

• Gemeinsam genutzte Konfigurationsdateien, die auf folgende Weise eingerichtet werden:

• Die config Datei enthält ein Standardprofil, das eine spezifiziert AWS-Region.

• Die credentials Datei enthält temporäre Anmeldeinformationen als Teil eines
Standardprofils.

• Eine geeignete Installation von Java.

• Ein Tool zur Build-Automatisierung wie Maven oder Gradle.

• Ein Texteditor für die Arbeit mit Code.

• (Optional, aber empfohlen) Eine IDE (integrierte Entwicklungsumgebung) wie IntelliJ IDEA,
Eclipse oder. NetBeans

Grundlegende Einrichtung 4

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://maven.apache.org/download.cgi
https://gradle.org/install/
https://www.jetbrains.com/idea/download/#section=windows
https://www.eclipse.org/ide/
https://netbeans.org/downloads/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Wenn Sie eine IDE verwenden, können Sie AWS Toolkit s auch integrieren, um die Arbeit
mit ihnen zu vereinfachen. AWS-Services Die AWS Toolkit for IntelliJund AWS Toolkit for
Eclipsesind zwei Toolkits, die Sie für die Java-Entwicklung verwenden können.

Important

Bei den Anweisungen in diesem Abschnitt zur Einrichtung wird davon ausgegangen, dass
Sie oder Ihr Unternehmen IAM Identity Center verwenden. Wenn Ihre Organisation einen
externen Identitätsanbieter verwendet, der unabhängig von IAM Identity Center arbeitet,
finden Sie heraus, wie Sie temporäre Anmeldeinformationen für das SDK for Java erhalten
können. Folgen Sie diesen Anweisungen, um der ~/.aws/credentials Datei temporäre
Anmeldeinformationen hinzuzufügen.
Wenn Ihr Identitätsanbieter der ~/.aws/credentials Datei automatisch temporäre
Anmeldeinformationen hinzufügt, stellen Sie sicher, dass der Profilname [default] so
lautet, dass Sie dem SDK keinen Profilnamen angeben müssen oder AWS CLI.

Anmeldemöglichkeit beim AWS Zugriffsportal

Das AWS Zugriffsportal ist die Webadresse, über die Sie sich manuell beim IAM Identity
Center anmelden. Das Format der URL ist d-xxxxxxxxxx.awsapps.com/start
oderyour_subdomain.awsapps.com/start.

Wenn Sie mit dem AWS Zugriffsportal nicht vertraut sind, folgen Sie den Anweisungen für den
Kontozugriff in Schritt 1 des Themas IAM Identity Center-Authentifizierung im Referenzhandbuch
AWS SDKs und im Tools-Referenzhandbuch. Folgen Sie nicht Schritt 2, da AWS SDK für
Java 1.x die automatische Token-Aktualisierung und den automatischen Abruf temporärer
Anmeldeinformationen für das SDK, das in Schritt 2 beschrieben wird, nicht unterstützt.

Richten Sie gemeinsam genutzte Konfigurationsdateien ein

Die gemeinsam genutzten Konfigurationsdateien befinden sich auf Ihrer Entwicklungs-Workstation
und enthalten grundlegende Einstellungen, die von all AWS SDKs und der AWS Command Line
Interface (CLI) verwendet werden. Die gemeinsam genutzten Konfigurationsdateien können eine
Reihe von Einstellungen enthalten, aber in diesen Anweisungen werden die grundlegenden Elemente
festgelegt, die für die Arbeit mit dem SDK erforderlich sind.

Anmeldemöglichkeit beim AWS Zugriffsportal 5

https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html#idcGettingStarted
https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html
https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Richten Sie die gemeinsam genutzte config Datei ein

Das folgende Beispiel zeigt den Inhalt einer gemeinsam genutzten config Datei.

[default]
region=us-east-1
output=json

Verwenden Sie für Entwicklungszwecke die Datei, die dem Ort AWS-Region am nächsten liegt, an
dem Sie Ihren Code ausführen möchten. Eine Liste der Regionalcodes, die Sie in der config Datei
verwenden können, finden Sie in der Allgemeine Amazon Web Services-Referenz Anleitung. Die
json Einstellung für das Ausgabeformat ist einer von mehreren möglichen Werten.

Folgen Sie den Anweisungen in diesem Abschnitt, um die config Datei zu erstellen.

Richten Sie temporäre Anmeldeinformationen für das SDK ein

Nachdem Sie über das Zugriffsportal AWS Zugriff auf eine AWS-Konto und IAM-Rolle erhalten
haben, konfigurieren Sie Ihre Entwicklungsumgebung mit temporären Anmeldeinformationen für den
Zugriff durch das SDK.

Schritte zum Einrichten einer lokalen credentials Datei mit temporären Anmeldeinformationen

1. Erstellen Sie eine gemeinsam genutzte credentials Datei.

2. Fügen Sie den folgenden Platzhaltertext in die credentials Datei ein, bis Sie funktionierende
temporäre Anmeldeinformationen einfügen.

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

3. Speichern Sie die Datei. Die Datei ~/.aws/credentials sollte jetzt auf Ihrem lokalen
Entwicklungssystem vorhanden sein. Diese Datei enthält das [Standard] -Profil, das das SDK for
Java verwendet, wenn kein bestimmtes benanntes Profil angegeben ist.

4. Melden Sie sich beim AWS Access-Portal an.

5. Folgen Sie diesen Anweisungen unter der Überschrift Manuelle Aktualisierung der
Anmeldeinformationen, um die Anmeldeinformationen für die IAM-Rolle aus dem AWS
Zugriffsportal zu kopieren.

Richten Sie gemeinsam genutzte Konfigurationsdateien ein 6

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-profile
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosignin.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

a. Wählen Sie für Schritt 4 der verlinkten Anleitung den IAM-Rollennamen aus, der den Zugriff
für Ihre Entwicklungsanforderungen gewährt. Diese Rolle hat normalerweise einen Namen
wie PowerUserAccessoder Developer.

b. Wählen Sie für Schritt 7 die Option Manuelles Hinzufügen eines Profils zu Ihrer AWS
Anmeldeinformationsdatei und kopieren Sie den Inhalt.

6. Fügen Sie die kopierten Anmeldeinformationen in Ihre lokale credentials Datei ein und
entfernen Sie alle eingefügten Profilnamen. Ihre Datei sollte wie folgt aussehen:

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

7. Speichern Sie die credentials Datei

Das SDK for Java greift auf diese temporären Anmeldeinformationen zu, wenn es einen Service-
Client erstellt und sie für jede Anfrage verwendet. Die in Schritt 5a ausgewählten Einstellungen für
die IAM-Rolle bestimmen, wie lange die temporären Anmeldeinformationen gültig sind. Die maximale
Dauer beträgt zwölf Stunden.

Wenn die temporären Anmeldeinformationen abgelaufen sind, wiederholen Sie die Schritte 4 bis 7.

Installieren Sie eine Java-Entwicklungsumgebung

Für AWS SDK für Java Version 1 ist ein Java 7 JDK oder neuer erforderlich, und alle JDK-Versionen
von Java LTS (Long-Term Support) werden unterstützt. Wenn Sie Version 1.12.767 oder eine frühere
Version des SDK verwenden, können Sie Java 7 verwenden. Wenn Sie jedoch Version 1.12.768 oder
eine neuere Version des SDK verwenden, ist Java 8 erforderlich. Das zentrale Maven-Repository
listet die neueste Version des SDK for Java auf.

Das AWS SDK für Java funktioniert mit dem Oracle Java SE Development Kit und mit Distributionen
von Open Java Development Kit (OpenJDK) wie Amazon Corretto, Red Hat OpenJDK und Adoptium.

Möglichkeiten, das zu bekommen AWS SDK für Java

Voraussetzungen

Um das verwenden zu können AWS SDK für Java, benötigen Sie:

Installieren Sie eine Java-Entwicklungsumgebung 7

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosessionduration.html
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom
https://www.oracle.com/java/technologies/downloads/
https://adoptium.net/
https://aws.amazon.com/corretto
https://developers.redhat.com/products/openjdk/overview
https://adoptium.net/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• Sie müssen in der Lage sein, sich bei dem AWS Zugangsportal anzumelden, das im verfügbar ist
AWS IAM Identity Center.

• Eine geeignete Installation von Java.

• Temporäre Anmeldeinformationen, die in Ihrer lokalen gemeinsam genutzten credentials Datei
eingerichtet sind.

Anweisungen zur Einrichtung für die Verwendung des SDK for Java finden Sie im the section called
“Grundlegende Einrichtung” Thema.

Verwenden Sie ein Build-Tool, um Abhängigkeiten für das SDK for Java zu
verwalten (empfohlen)

Wir empfehlen, Apache Maven oder Gradle mit Ihrem Projekt zu verwenden, um auf die
erforderlichen Abhängigkeiten des SDK for Java zuzugreifen. In diesem Abschnitt wird beschrieben,
wie Sie diese Tools verwenden.

Laden Sie das SDK herunter und extrahieren Sie es (nicht empfohlen)

Wir empfehlen, dass Sie ein Build-Tool verwenden, um auf das SDK für Ihr Projekt zuzugreifen. Sie
können jedoch ein vorgefertigtes JAR der neuesten Version des SDK herunterladen.

Note

Weitere Informationen zum Herunterladen und Erstellen von früheren Versionen des SDKs
finden Sie unter Installieren von früheren Versionen des SDKs.

1. Laden Sie das SDK aus der ZIP-Datei herunter https://sdk-for-java.amazonwebservices.com/latest/
aws-java-sdk.

2. Extrahieren Sie den Inhalt nach dem Herunterladen des SDKs in ein lokales Verzeichnis.

Das SDK enthält folgende Verzeichnisse:

• documentation- enthält die API-Dokumentation (auch im Internet verfügbar: AWS SDK für Java
API-Referenz).

• lib- enthält die .jar SDK-Dateien.

Verwenden Sie ein Build-Tool 8

https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip
https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• samples- enthält einen funktionierenden Beispielcode, der demonstriert, wie das SDK verwendet
wird.

• third-party/lib- enthält Bibliotheken von Drittanbietern, die vom SDK verwendet werden, wie
Apache Commons Logging, AspectJ und das Spring-Framework.

Um das SDK zu verwenden, fügen Sie den vollständigen Pfad zu den Verzeichnissen lib und
third-party zu den Abhängigkeiten in Ihrer Build-Datei hinzu und fügen Sie sie zu Ihrem
Java-CLASSPATH hinzu, um Ihren Code auszuführen.

Frühere Versionen des SDK aus dem Quellcode erstellen (nicht empfohlen)

Nur die neueste Version des vollständigen SDK wird in vorgefertigter Form als herunterladbares
JAR bereitgestellt. Sie können jedoch eine vorherige Version des SDKs mit Apache Maven (Open
Source) erstellen. Maven lädt alle erforderlichen Abhängigkeiten, erstellt und installiert das SDK in
einem Schritt. Besuchen Sie http://maven.apache.org/, um Installationsanweisungen und weitere
Informationen zu erhalten.

1. Gehen Sie zur GitHub SDK-Seite unter: AWS SDK für Java (GitHub).

2. Wählen Sie das Tag aus, das der gewünschten SDK-Versionsnummer entspricht. Beispiel,
1.6.10.

3. Klicken Sie auf die Schaltfläche Download ZIP, um die ausgewählte Version des SDKs
herunterzuladen.

4. Extrahieren Sie die Datei in ein Verzeichnis auf Ihrem Entwicklungssystem. Bei vielen Systemen
können Sie dazu den grafischen Datei-Manager oder das unzip-Dienstprogramm in einem
Terminal-Fenster nutzen.

5. Navigieren Sie in einem Terminal-Fenster in das Verzeichnis, in das Sie die SDK-Quelldateien
entpackt haben.

6. Erstellen und installieren Sie das SDK mit dem folgenden Befehl (Maven erforderlich):

mvn clean install -Dgpg.skip=true

Die resultierende .jar-Datei wird im target-Verzeichnis erstellt.

7. (Optional) Erstellen Sie die API-Referenz-Dokumentation mit dem folgenden Befehl:

mvn javadoc:javadoc

Aus dem Quellcode erstellen 9

http://maven.apache.org/
https://github.com/aws/aws-sdk-java
https://maven.apache.org/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Die Dokumentation wird im Verzeichnis target/site/apidocs/ erstellt.

Verwenden Sie Build-Tools
Die Verwendung von Build-Tools hilft bei der Verwaltung der Entwicklung von Java-Projekten. Es sind
mehrere Build-Tools verfügbar, aber wir zeigen, wie Sie mit zwei beliebten Build-Tools, Maven und
Gradle, loslegen können. In diesem Thema erfahren Sie, wie Sie mit diesen Build-Tools die SDK for
Java Java-Abhängigkeiten verwalten, die Sie für Ihre Projekte benötigen.

Themen

• Das SDK mit Apache Maven verwenden

• Das SDK mit Gradle verwenden

Das SDK mit Apache Maven verwenden

Sie können Apache Maven verwenden, um AWS SDK für Java Projekte zu konfigurieren und zu
erstellen oder um das SDK selbst zu erstellen.

Note

Um die Anleitungen in diesem Thema nachzuvollziehen, sollten Sie Maven installiert haben.
Wenn Maven noch nicht installiert ist, besuchen Sie http://maven.apache.org/, um es
herunterzuladen und zu installieren.

Erstellen eines neuen Maven-Pakets

Sie können ein einfaches Maven-Paket erstellen, indem Sie ein Terminal-Fenster (eine Befehlszeile)
öffnen und Folgendes ausführen:

mvn -B archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DgroupId=org.example.basicapp \
 -DartifactId=myapp

Ersetzen Sie org.example.basicapp mit dem vollen Paket-Namespace Ihrer Anwendung und myapp
mit dem Projektnamen (wird für den Verzeichnisnamen Ihres Projekts übernommen).

Verwenden Sie Build-Tools 10

https://maven.apache.org/
http://maven.apache.org/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Erstellt standardmäßig eine Projektvorlage für Sie unter Verwendung des Schnellstart-Archetyps,
der für viele Projekte ein guter Ausgangspunkt ist. Es sind noch mehr Archetypen verfügbar.
Auf der Maven-Archetypen-Seite findest du eine Liste der Archetypen, die im Paket enthalten
sind. Sie können einen bestimmten Archetyp zur Nutzung auswählen, indem Sie das Argument -
DarchetypeArtifactId an den Befehl archetype:generate anhängen. Zum Beispiel:

mvn archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-webapp \
 -DgroupId=org.example.webapp \
 -DartifactId=mywebapp

Note

Viele weitere Informationen zum Erstellen und Konfigurieren von Projekten finden Sie im
Maven-Handbuch „Erste Schritte“.

Konfigurieren des SDKs als Maven-Abhängigkeit

Um das AWS SDK für Java in Ihrem Projekt zu verwenden, müssen Sie es als Abhängigkeit in der
pom.xml Datei Ihres Projekts deklarieren. Ab Version 1.9.0 können Sie einzelne Komponenten oder
das gesamte SDK importieren.

Angeben einzelner SDK-Module

Verwenden Sie zur Auswahl einzelner SDK-Module die AWS SDK für Java Stückliste (BOM) für
Maven. Dadurch wird sichergestellt, dass die von Ihnen angegebenen Module dieselbe Version des
SDK verwenden und dass sie miteinander kompatibel sind.

Um die BOM zu verwenden, fügen Sie der Datei pom.xml Ihrer Anwendung einen Abschnitt
<dependencyManagement> hinzu. Fügen Sie dabei aws-java-sdk-bom als Abhängigkeit hinzu
und geben Sie die SDK-Version an, die Sie nutzen möchten:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>

Das SDK mit Apache Maven verwenden 11

http://maven.apache.org/archetypes/maven-archetype-quickstart/
https://maven.apache.org/archetypes/index.html
https://maven.apache.org/guides/getting-started/
https://maven.apache.org/guides/getting-started/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 <version>1.11.1000</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Die neueste Version der AWS SDK für Java Stückliste, die auf Maven Central verfügbar ist, finden
Sie unter: com.amazonaws/. https://mvnrepository.com/artifact/ aws-java-sdk-bom Auf dieser Seite
können Sie auch sehen, welche von der BOM verwalteten Module (Abhängigkeiten) Sie im Abschnitt
<dependencies> der Datei pom.xml Ihres Projekts einfügen können.

Sie können jetzt einzelne Module aus dem SDK zur Nutzung in Ihrer Anwendung auswählen. Da Sie
die SDK-Version bereits in der BOM deklariert haben, müssen Sie die Versionsnummer nicht mehr
für jede Komponente angeben.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-dynamodb</artifactId>
 </dependency>
</dependencies>

Sie können auch in der nachlesen, welche Abhängigkeiten Sie AWS-Codebeispiel-Katalog für eine
bestimmte Aufgabe verwenden sollten. AWS-Service Weitere Informationen finden Sie in der POM-
Datei unter einem bestimmten Servicebeispiel. Wenn Sie beispielsweise an den Abhängigkeiten für
den AWS S3-Dienst interessiert sind, finden Sie das vollständige Beispiel unter GitHub. (Schau dir
den Pom under /java/example_code/s 3 an).

Importieren aller SDK-Module

Wenn Sie das gesamte SDK als Abhängigkeit aufnehmen möchten, verwenden Sie nicht die BOM-
Methode. Deklarieren Sie es stattdessen einfach wie folgt in pom.xml:

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>

Das SDK mit Apache Maven verwenden 12

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 <artifactId>aws-java-sdk</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

Erstellen Ihres Projekts

Sobald Ihr Projekt fertig eingerichtet ist, können Sie es mit dem Maven-Befehl package erstellen:

mvn package

Dadurch wird die 0jar-Datei im Verzeichnis target angelegt.

Erstellen des SDKs mit Maven

Sie können Apache Maven verwenden, um das SDK aus den Quellen zu erstellen. Laden Sie dazu
den SDK-Code von herunter GitHub, entpacken Sie ihn lokal und führen Sie dann den folgenden
Maven-Befehl aus:

mvn clean install

Das SDK mit Gradle verwenden

Um die SDK-Abhängigkeiten für Ihr Gradle-Projekt zu verwalten, importieren Sie die Maven-Stückliste
für AWS SDK für Java in die Datei der Anwendung. build.gradle

Note

Ersetzen Sie in den folgenden Beispielen 1.12.529 in der Build-Datei durch eine gültige
Version von. AWS SDK für Java Suchen Sie die neueste Version im zentralen Maven-
Repository.

Projekteinrichtung für Gradle 4.6 oder höher

Seit Gradle 4.6 können Sie die verbesserte POM-Unterstützungsfunktion von Gradle verwenden,
um Stücklistendateien (BOM) zu importieren, indem Sie eine Abhängigkeit von einer Stückliste
deklarieren.

Das SDK mit Gradle verwenden 13

https://github.com/aws/aws-sdk-java
https://gradle.com/
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://docs.gradle.org/4.6/release-notes.html#bom-import

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

1. Wenn Sie Gradle 5.0 oder höher verwenden, fahren Sie mit Schritt 2 fort. Andernfalls aktivieren Sie
die Funktion IMPROVED_POM_SUPPORT in der settings.gradle-Datei.

enableFeaturePreview('IMPROVED_POM_SUPPORT')

2. Fügen Sie die Stückliste zum Abschnitt Abhängigkeiten der Anwendungsdatei hinzu.
build.gradle

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')

 // Declare individual SDK dependencies without version
 ...
}

3. Geben Sie im Abschnitt dependencies (Abhängigkeiten) die SDK-Module an, die verwendet
werden sollen. Im Folgenden ist beispielsweise eine Abhängigkeit für Amazon Simple Storage
Service (Amazon S3) enthalten.

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
 ...
}

Gradle löst mit den Informationen aus der BOM automatisch die richtige Version der SDK-
Abhängigkeiten auf.

Das Folgende ist ein Beispiel für eine vollständige build.gradle Datei, die eine Abhängigkeit für
enthält Amazon S3.

group 'aws.test'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {

Das SDK mit Gradle verwenden 14

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 mavenCentral()
}

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Note

Ersetzen Sie im vorherigen Beispiel die Abhängigkeit von Amazon S3 durch die
Abhängigkeiten der AWS Dienste, die Sie in Ihrem Projekt verwenden werden. Die Module
(Abhängigkeiten), die von der AWS SDK für Java BOM verwaltet werden, sind im zentralen
Maven-Repository aufgeführt.

Projekteinrichtung für Gradle-Versionen vor 4.6

Gradle-Versionen vor 4.6 verfügen über keine native Stücklistenunterstützung. Um AWS SDK für
Java Abhängigkeiten für Ihr Projekt zu verwalten, verwenden Sie das Abhängigkeitsverwaltungs-
Plugin von Spring für Gradle, um die Maven-Stückliste für das SDK zu importieren.

1. Fügen Sie das Plugin für die Abhängigkeitsverwaltung zur Datei Ihrer Anwendung hinzu.
build.gradle

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

2. Fügen Sie die BOM in den Abschnitt dependencyManagement der Datei ein.

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'

Das SDK mit Gradle verwenden 15

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 }
}

3. Geben Sie im Abschnitt Abhängigkeiten die SDK-Module an, die Sie verwenden werden. Im
folgenden Beispiel ist eine Abhängigkeit für Amazon S3 enthalten.

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
}

Gradle löst mit den Informationen aus der BOM automatisch die richtige Version der SDK-
Abhängigkeiten auf.

Das Folgende ist ein Beispiel für eine vollständige build.gradle Datei, die eine Abhängigkeit für
enthält Amazon S3.

group 'aws.test'
version '1.0'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }

Das SDK mit Gradle verwenden 16

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

}

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
 testCompile group: 'junit', name: 'junit', version: '4.11'
}

Note

Ersetzen Sie im vorherigen Beispiel die Abhängigkeit von Amazon S3 durch die
Abhängigkeiten des AWS Dienstes, den Sie in Ihrem Projekt verwenden werden. Die Module
(Abhängigkeiten), die von der AWS SDK für Java BOM verwaltet werden, sind im zentralen
Maven-Repository aufgeführt.

Weitere Informationen über das Angeben von SDK-Abhängigkeiten mit der BOM finden Sie unter
Verwenden des SDK mit Apache Maven.

AWS Temporäre Anmeldeinformationen und AWS-Region für die
Entwicklung einrichten

Um mit dem eine Verbindung zu einem der unterstützten Dienste herzustellen AWS SDK
für Java, müssen Sie AWS temporäre Anmeldeinformationen angeben. Die AWS SDKs
und CLIs verwenden Anbieterketten, um an verschiedenen Stellen nach AWS temporären
Anmeldeinformationen zu suchen, einschließlich System-/Benutzerumgebungsvariablen und lokalen
AWS Konfigurationsdateien.

Dieses Thema enthält grundlegende Informationen zum Einrichten Ihrer AWS temporären
Anmeldeinformationen für die lokale Anwendungsentwicklung mithilfe von. AWS SDK für Java Wenn
Sie Anmeldeinformationen für die Verwendung innerhalb einer EC2 Instanz einrichten müssen
oder wenn Sie die Eclipse-IDE für die Entwicklung verwenden, lesen Sie stattdessen die folgenden
Themen:

• Wenn Sie eine EC2 Instanz verwenden, erstellen Sie eine IAM-Rolle und gewähren Sie Ihrer EC2
Instanz dann Zugriff auf diese Rolle, wie unter Verwenden von IAM-Rollen zum Gewähren des
Zugriffs auf AWS Ressourcen beschrieben. Amazon EC2

Temporäre Zugangsdaten und Region 17

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• Richten Sie AWS Anmeldeinformationen in Eclipse mit dem ein. AWS Toolkit for Eclipse
Weitere Informationen finden Sie im AWS Toolkit for Eclipse Benutzerhandbuch unter AWS
Anmeldeinformationen einrichten.

Konfigurieren Sie temporäre Anmeldeinformationen

Sie können temporäre Anmeldeinformationen für AWS SDK für Java auf verschiedene Arten
konfigurieren, aber hier sind die empfohlenen Vorgehensweisen:

• Legen Sie temporäre Anmeldeinformationen in der Profildatei für AWS Anmeldeinformationen auf
Ihrem lokalen System fest, die sich unter folgender Adresse befindet:

• ~/.aws/credentials (Linux, MacOS und Unix)

• C:\Users\USERNAME\.aws\credentials (Windows)

Anweisungen zum the section called “Richten Sie temporäre Anmeldeinformationen für das SDK
ein” Abrufen Ihrer temporären Anmeldeinformationen finden Sie in diesem Handbuch.

• Legen Sie die AWS_SESSION_TOKEN Umgebungsvariablen
AWS_ACCESS_KEY_IDAWS_SECRET_ACCESS_KEY, und fest.

Um diese Variablen auf Linux, macOS oder Unix festzulegen, verwenden Sie :

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key
export AWS_SESSION_TOKEN=your_session_token

In Windows können Sie die Variablen mit festlegen:

set AWS_ACCESS_KEY_ID=your_access_key_id
set AWS_SECRET_ACCESS_KEY=your_secret_access_key
set AWS_SESSION_TOKEN=your_session_token

• Geben Sie für eine EC2 Instanz eine IAM-Rolle an und gewähren Sie Ihrer EC2 Instanz dann
Zugriff auf diese Rolle. Eine ausführliche Beschreibung der Funktionsweise finden Sie unter IAM-
Rollen für Amazon EC2 im Amazon EC2 Benutzerhandbuch für Linux-Instances.

Sobald Sie Ihre AWS temporären Anmeldeinformationen mit einer dieser Methoden
eingerichtet haben, werden sie automatisch AWS SDK für Java mithilfe der standardmäßigen

Konfigurieren Sie temporäre Anmeldeinformationen 18

https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Anmeldeinformationsanbieterkette geladen. Weitere Informationen zum Arbeiten mit AWS
Anmeldeinformationen in Ihren Java-Anwendungen finden Sie unter Mit AWS Anmeldeinformationen
arbeiten.

Aktualisieren von IMDS-Anmeldeinformationen

Das AWS SDK für Java unterstützt die optionale Aktualisierung von IMDS-Anmeldeinformationen im
Hintergrund alle 1 Minute, unabhängig von der Ablaufzeit der Anmeldeinformationen. Auf diese Weise
können Sie Ihre Anmeldeinformationen häufiger aktualisieren und die Wahrscheinlichkeit verringern,
dass die tatsächliche Verfügbarkeit beeinträchtigt wird, wenn Sie IMDS nicht erreichen. AWS

 1. // Refresh credentials using a background thread, automatically every minute. This
 will log an error if IMDS is down during
 2. // a refresh, but your service calls will continue using the cached credentials
 until the credentials are refreshed
 3. // again one minute later.
 4.
 5. InstanceProfileCredentialsProvider credentials =
 6. InstanceProfileCredentialsProvider.createAsyncRefreshingProvider(true);
 7.
 8. AmazonS3Client.builder()
 9. .withCredentials(credentials)
 10. .build();
 11.
 12. // This is new: When you are done with the credentials provider, you must close it
 to release the background thread.
 13. credentials.close();

Stellen Sie das ein AWS-Region

Sie sollten einen Standard festlegen AWS-Region , der für den Zugriff auf AWS Dienste mit dem
verwendet wird AWS SDK für Java. Um die beste Netzwerkleistung zu erzielen, wählen Sie die
Region aus, die geografisch in Ihrer Nähe (oder in der Nähe Ihrer Kunden) liegt. Eine Liste der
Regionen für jeden Dienst finden Sie unter Regionen und Endpunkte in der Amazon Web Services
allgemeinen Referenz.

Note

Wenn Sie keine Region auswählen, wird standardmäßig us-east-1 verwendet.

Aktualisieren von IMDS-Anmeldeinformationen 19

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Sie können ähnliche Techniken wie das Festlegen von Anmeldeinformationen verwenden, um Ihre
AWS Standardregion festzulegen:

• Stellen Sie das AWS-Region in der AWS Konfigurationsdatei auf Ihrem lokalen System ein, die sich
unter folgendem Pfad befindet:

• ~/.aws/config unter Linux, macOS oder Unix

• C:\Users\USERNAME\ .aws\ config unter Windows

Diese Datei sollte Zeilen im folgenden Format enthalten:

+

[default]
region = your_aws_region

+

Ersetzen Sie AWS-Region your_aws_region durch Ihre gewünschte (z. B. „us-east-1").

• Legen Sie die AWS_REGION-Umgebungsvariable fest.

Verwenden Sie unter Linux, macOS oder Unix :

export AWS_REGION=your_aws_region

In Windows nutzen Sie :

set AWS_REGION=your_aws_region

Wobei your_aws_region der gewünschte Name ist. AWS-Region

Stellen Sie das ein AWS-Region 20

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Mit dem AWS SDK für Java
Dieser Abschnitt enthält wichtige allgemeine Informationen zur Programmierung mit dem AWS SDK
für Java , die für alle Dienste gelten, die Sie möglicherweise mit dem SDK verwenden.

Informationen und Beispiele zur dienstspezifischen Programmierung (für Amazon EC2, Amazon S3
Amazon SWF, usw.) finden Sie unter AWS SDK für Java Codebeispiele.

Themen

• Bewährte Methoden für die AWS Entwicklung mit dem AWS SDK für Java

• Erstellen von Service-Clients

• Geben Sie temporäre Anmeldeinformationen für die AWS SDK für Java

• AWS-Region Auswahl

• Umgang mit Ausnahmen

• Asynchrone Programmierung

• AWS SDK für Java Protokollierung von Anrufen

• Client-Konfiguration

• Zugriffskontrollrichtlinien

• Legen Sie die JVM-TTL für DNS-Namenssuchen fest

• Aktivierung von Metriken für AWS SDK für Java

Bewährte Methoden für die AWS Entwicklung mit dem AWS SDK
für Java

Die folgenden bewährten Methoden können Ihnen helfen, Probleme oder Probleme bei der
Entwicklung von AWS Anwendungen mit dem zu vermeiden AWS SDK für Java. Wir haben diese
bewährten Methoden nach Service angeordnet.

S3

Vermeiden ResetExceptions

Wenn Sie Objekte mithilfe Amazon S3 von Streams hochladen (entweder über einen AmazonS3
Client oderTransferManager), können Netzwerkverbindungs- oder Timeoutprobleme auftreten.

Bewährte Methoden für die AWS Entwicklung mit dem AWS SDK für Java 21

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Standardmäßig schlagen Übertragungen bei AWS SDK für Java Wiederholungsversuchen fehl,
indem der Eingabestream vor dem Start einer Übertragung markiert und dann vor einem erneuten
Versuch zurückgesetzt wird.

Wenn der Stream das Markieren und Zurücksetzen nicht unterstützt, gibt das SDK eine Meldung aus,
ResetExceptionwenn vorübergehende Fehler auftreten und Wiederholungsversuche aktiviert sind.

Bewährte Methode

Wir empfehlen, dass Sie Streams einsetzen, die Markieren und Zurücksetzen unterstützen.

Der zuverlässigste Weg, dies zu vermeiden, ResetExceptionbesteht darin, Daten mithilfe einer Datei
oder bereitzustellen, mit der sie umgehen AWS SDK für Java können FileInputStream, ohne durch
Markierungs- und Reset-Beschränkungen eingeschränkt zu sein.

Wenn es sich bei dem Stream nicht um einen Stream handelt, FileInputStreamaber das Markieren
und Zurücksetzen unterstützt, können Sie das Markierungslimit mithilfe der setReadLimit Methode
von RequestClientOptionsfestlegen. Der Standardwert beträgt 128 KB. Wenn Sie den Wert für das
Leselimit auf ein Byte setzen, das über der Größe des Streams liegt, wird a zuverlässig vermieden
ResetException.

Beträgt die maximal erwartete Größe eines Streams beispielsweise 100 000 Bytes, legen Sie die
Lesegrenze auf 100 001 (100 000 + 1) Bytes fest. Das Markieren und Zurücksetzen funktioniert
immer für 100 000 oder weniger Bytes. Hinweis: Dies könnte bei einigen Streams dazu führen, dass
die angegebene Anzahl an Bytes in den Arbeitsspeicher gepuffert wird.

Erstellen von Service-Clients

Um Anfragen zu stellen Amazon Web Services, erstellen Sie zunächst ein Service-Client-Objekt. Die
empfohlene Methode besteht darin, den Service-Client-Generator zu nutzen.

Jedes AWS-Service hat eine Serviceschnittstelle mit Methoden für jede Aktion in der Service-
API. Beispielsweise wird die Dienstschnittstelle für DynamoDB benannt. AmazonDynamoDBClient
Jede Service-Schnittstelle verfügt über einen entsprechenden Client-Generator, mit dem Sie eine
Implementierung der Service-Schnittstelle erstellen können. Die Client-Builder-Klasse für DynamoDB
heißt AmazonDynamo DBClient Builder.

Erstellen von Service-Clients 22

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/RequestClientOptions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClientBuilder.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClientBuilder.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Abruf eines Client-Generators

Um eine Instance des Client-Generators abzurufen, verwenden Sie die statische Factory-Methode
standard, wie im folgenden Beispiel gezeigt.

AmazonDynamoDBClientBuilder builder = AmazonDynamoDBClientBuilder.standard();

Sobald Sie einen Generator haben, können Sie die Eigenschaften des Clients anpassen, indem Sie
die vielen praktischen Setter in der Generator-API nutzen. Beispielsweise können Sie wie folgt eine
benutzerdefinierte Region und einen benutzerdefinierten Anmeldeinformationsanbieter festlegen.

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

Note

Die praktischen withXXX-Methoden geben das builder-Objekt zurück. So können Sie
die Methodenaufrufe in Reihe schalten, was nicht nur einfacher ist, sondern auch für besser
lesbaren Code sorgt. Nachdem Sie die gewünschten Eigenschaften konfiguriert haben, rufen
Sie die build-Methode auf, um den Client zu erstellen. Sobald ein Client erstellt wurde, ist er
unveränderlich und alle Aufrufe an setRegion oder setEndpoint schlagen fehl.

Ein Generator kann mehrere Clients mit der gleichen Konfiguration erstellen. Wenn Sie Ihre
Anwendung entwerfen, sollten Sie daran denken, dass der Generator veränderlich und nicht
threadsicher ist.

Der folgende Code verwendet den Generator als Factory für Client-Instances.

public class DynamoDBClientFactory {
 private final AmazonDynamoDBClientBuilder builder =
 AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"));

 public AmazonDynamoDB createClient() {
 return builder.build();

Abruf eines Client-Generators 23

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 }
}

Der Builder stellt auch fließende Setter für ClientConfigurationund sowie RequestMetricCollectoreine
benutzerdefinierte Liste von 2 bereit. RequestHandler

Im Folgenden finden Sie ein vollständiges Beispiel, in dem sämtliche konfigurierbaren Eigenschaften
überschrieben werden.

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .withClientConfiguration(new ClientConfiguration().withRequestTimeout(5000))
 .withMetricsCollector(new MyCustomMetricsCollector())
 .withRequestHandlers(new MyCustomRequestHandler(), new
 MyOtherCustomRequestHandler)
 .build();

Erstellen von Async-Clients

Der AWS SDK für Java hat asynchrone (oder asynchrone) Clients für jeden Dienst (außer Amazon
S3) und einen entsprechenden asynchronen Client-Builder für jeden Dienst.

So erstellen Sie einen asynchronen DynamoDB-Client mit dem Standard
ExecutorService

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

Zusätzlich zu den Konfigurationsoptionen, die der synchrone (oder synchrone) Client-Builder
unterstützt, ermöglicht Ihnen der asynchrone Client, benutzerdefinierte Optionen festzulegen,
um die ExecutorFactoryzu ändern, ExecutorService die der asynchrone Client verwendet.
ExecutorFactoryist eine funktionale Schnittstelle, sodass sie mit Lambda-Ausdrücken und
Methodenreferenzen in Java 8 zusammenarbeitet.

So erstellen Sie einen asynchronen Client mit einem benutzerdefinierten Executor

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()

Erstellen von Async-Clients 24

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/RequestMetricCollector.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/client/builder/ExecutorFactory.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withExecutorFactory(() -> Executors.newFixedThreadPool(10))
 .build();

Verwenden DefaultClient

Sowohl der synchrone als auch der asynchrone Client-Generator haben eine weitere Factory-
Methode mit dem Namen defaultClient. Mit dieser Methode wird ein Dienstclient
mit der Standardkonfiguration erstellt, wobei die Standardanbieterkette zum Laden von
Anmeldeinformationen und der verwendet wird AWS-Region. Wenn die Anmeldeinformationen
oder die Region nicht aus der Umgebung, in der die Anwendung ausgeführt wird, ermittelt werden
können, schlägt der Aufruf von defaultClient fehl. Weitere Informationen darüber, wie AWS
Anmeldeinformationen und Region bestimmt werden, finden Sie unter Mit Anmeldeinformationen
arbeiten und AWS-Region Auswahl.

So erstellen Sie einen Standard-Service-Client

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

Client-Lebenszyklus

Service-Clients im SDK sind threadsicher. Um eine bestmögliche Leistung zu erzielen,
sollten Sie sie als langlebige Objekte behandeln. Jeder Client verfügt über seine eigene
Verbindungspool-Ressource. Explizit Clients herunterfahren, wenn sie nicht mehr benötigt werden,
um Ressourcenverluste zu vermeiden.

Um einen Client explizit herunterzufahren, rufen Sie die shutdown-Methode auf. Nach dem Aufruf
von shutdown werden alle Client-Ressourcen freigegeben und der Client kann nicht mehr verwendet
werden.

So fahren Sie einen Client herunter

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.shutdown();
// Client is now unusable

Verwenden DefaultClient 25

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Geben Sie temporäre Anmeldeinformationen für die AWS SDK für
Java

Um Anfragen an zu stellen Amazon Web Services, müssen Sie AWS temporäre
Anmeldeinformationen angeben, AWS SDK für Java die beim Aufrufen der Dienste verwendet
werden können. Dafür können Sie eine der folgenden Möglichkeiten auswählen:

• Verwenden Sie die standardmäßige Anbieterkette von Anmeldeinformationen (empfohlen).

• Nutzen Sie einen bestimmten Anbieter bzw. eine Anbieterkette von Anmeldeinformationen (oder
erstellen Sie Ihren eigenen).

• Geben Sie die temporären Anmeldeinformationen selbst im Code ein.

Verwenden der standardmäßigen Anbieterkette von Anmeldeinformationen

Wenn Sie einen neuen Dienstclient ohne Angabe von Argumenten initialisieren, AWS SDK für Java
versucht der Client, temporäre Anmeldeinformationen mithilfe der standardmäßigen Anbieterkette
für Anmeldeinformationen zu finden, die von der AWSCredentialsProviderChainDefault-Klasse
implementiert wird. Die standardmäßige Anbieterkette von Anmeldeinformationen sucht in dieser
Reihenfolge nach Anmeldeinformationen:

1. Umgebungsvariablen -AWS_ACCESS_KEY_ID, AWS_SECRET_KEY
oderAWS_SECRET_ACCESS_KEY, und. AWS_SESSION_TOKEN Der AWS SDK für Java verwendet
die EnvironmentVariableCredentialsProviderKlasse, um diese Anmeldeinformationen zu laden.

2. Java-Systemeigenschaften -aws.accessKeyId, aws.secretKey (aber
nichtaws.secretAccessKey) undaws.sessionToken. Der AWS SDK für Java verwendet die
SystemPropertiesCredentialsProvider, um diese Anmeldeinformationen zu laden.

3. Web-Identitätstoken-Anmeldeinformationen aus der Umgebung oder dem Container.

4. Die Standarddatei mit Profilen für Anmeldeinformationen. Sie befindet sich in der Regel unter
~/.aws/credentials (der Speicherort kann je nach Plattform variieren) und wird von vielen
Benutzern gemeinsam genutzt AWS SDKs und von den AWS CLI. Die AWS SDK für Java
verwendet die ProfileCredentialsProvider, um diese Anmeldeinformationen zu laden.

Sie können eine Datei mit den Anmeldeinformationen erstellen, indem Sie den von der
bereitgestellten aws configure Befehl verwenden AWS CLI, oder Sie können sie erstellen,
indem Sie die Datei mit einem Texteditor bearbeiten. Informationen zum Dateiformat für
Anmeldeinformationen finden Sie unter Dateiformat AWS für Anmeldeinformationen.

Geben Sie temporäre Anmeldeinformationen ein 26

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EnvironmentVariableCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/SystemPropertiesCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/profile/ProfileCredentialsProvider.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

5. Amazon ECS-Container-Anmeldeinformationen — werden aus dem Amazon ECS geladen, wenn
die Umgebungsvariable gesetzt AWS_CONTAINER_CREDENTIALS_RELATIVE_URI ist. Der AWS
SDK für Java verwendet die ContainerCredentialsProvider, um diese Anmeldeinformationen zu
laden. Sie können die IP-Adresse für diesen Wert angeben.

6. Anmeldeinformationen für das Instanzprofil — werden für EC2 Instanzen verwendet und
über den Amazon EC2 Metadatendienst bereitgestellt. Der AWS SDK für Java verwendet die
InstanceProfileCredentialsProvider, um diese Anmeldeinformationen zu laden. Sie können die IP-
Adresse für diesen Wert angeben.

Note

Instance-Profil-Anmeldeinformationen werden nur verwendet, wenn
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI nicht gesetzt ist. Weitere
Informationen finden Sie unter EC2ContainerCredentialsProviderWrapper.

Legen Sie temporäre Anmeldeinformationen fest

Um AWS temporäre Anmeldeinformationen verwenden zu können, müssen sie an mindestens einem
der oben genannten Speicherorte eingerichtet sein. Weitere Informationen über das Festlegen von
Anmeldeinformationen finden Sie in den folgenden Themen:

• Informationen zum Angeben von Anmeldeinformationen in der Umgebung oder in der
Standarddatei mit den Anmeldeinformationen finden Sie unterthe section called “Konfigurieren Sie
temporäre Anmeldeinformationen”.

• Informationen über das Festlegen von Java-Systemeigenschaften finden Sie in der System
Properties-Anleitung auf der offiziellen Java Tutorials-Website.

• Informationen zum Einrichten und Verwenden von Anmeldeinformationen für das Instanzprofil mit
Ihren EC2 Instances finden Sie unter Using IAM-Rollen to Grant Access to AWS Resources on.
Amazon EC2

Richten Sie ein alternatives Anmeldeinformationsprofil ein

Das AWS SDK für Java verwendet standardmäßig das Standardprofil, es gibt jedoch Möglichkeiten,
anzupassen, welches Profil aus der Anmeldeinformationsdatei stammt.

Verwenden der standardmäßigen Anbieterkette von Anmeldeinformationen 27

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/ContainerCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EC2ContainerCredentialsProviderWrapper.html
http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html
http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Sie können die Umgebungsvariable AWS Profile verwenden, um das vom SDK geladene Profil zu
ändern.

Unter Linux, macOS oder Unix würden Sie beispielsweise den folgenden Befehl ausführen, um das
Profil in MyProfile zu ändern.

export AWS_PROFILE="myProfile"

Verwenden Sie unter Windows folgende Variante:

set AWS_PROFILE="myProfile"

Das Setzen der AWS_PROFILE Umgebungsvariablen wirkt sich auf das Laden der
Anmeldeinformationen für alle offiziell unterstützten AWS SDKs Tools aus (einschließlich der AWS
CLI und der AWS Tools for Windows PowerShell). Um nur das Profil für eine Java-Anwendung zu
ändern, können Sie aws.profile stattdessen die Systemeigenschaft verwenden.

Note

Die Umgebungsvariable hat Vorrang vor der Systemeigenschaft.

Legen Sie einen alternativen Speicherort für die Anmeldeinformationsdatei fest

Das AWS SDK für Java lädt AWS temporäre Anmeldeinformationen automatisch aus dem
Standardspeicherort der Anmeldeinformationsdatei. Sie können jedoch auch den Speicherort
angeben, indem Sie die Umgebungsvariable AWS_CREDENTIAL_PROFILES_FILE auf den
vollständigen Pfad zur Anmeldeinformationsdatei setzen.

Sie können diese Funktion verwenden, um vorübergehend den Speicherort zu ändern, an dem AWS
SDK für Java nach Ihrer Anmeldeinformationsdatei gesucht wird (z. B. indem Sie diese Variable in
der Befehlszeile festlegen). Alternativ können Sie die Umgebungsvariable in Ihrer Benutzer- oder
Systemumgebung setzen, um sie für den Benutzer oder systemweit zu ändern.

So überschreiben Sie den Standardspeicherort der Anmeldeinformationsdatei

• Setzen Sie die AWS_CREDENTIAL_PROFILES_FILE Umgebungsvariable auf den Speicherort
Ihrer AWS Anmeldeinformationsdatei.

• Verwenden Sie unter Linux, macOS oder Unix:

Verwenden der standardmäßigen Anbieterkette von Anmeldeinformationen 28

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

export AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

• Verwenden Sie unter Windows:

set AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

CredentialsDateiformat

Wenn Sie den Anweisungen in der Grundkonfiguration dieses Handbuchs folgen, sollte Ihre
Anmeldeinformationsdatei das folgende grundlegende Format haben.

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

[profile2]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

Der Profilname wird in eckigen Klammern angegeben (zum Beispiel [default]), gefolgt von den
konfigurierbaren Feldern in diesem Profil als Schlüssel-Wert-Paare. Ihre credentials Datei kann
mehrere Profile enthalten, die hinzugefügt oder bearbeitet werden können, indem Sie das aws
configure --profile PROFILE_NAME zu konfigurierende Profil auswählen.

Sie können zusätzliche Felder angeben, z. metadata_service_timeout B.
undmetadata_service_num_attempts. Diese können nicht mit der CLI konfiguriert werden. Sie
müssen die Datei von Hand bearbeiten, wenn Sie sie verwenden möchten. Weitere Informationen
zur Konfigurationsdatei und ihren verfügbaren Feldern finden Sie unter Konfiguration von AWS
Command Line Interface im AWS Command Line Interface Benutzerhandbuch.

Anmeldeinformationen laden

Nachdem Sie temporäre Anmeldeinformationen festgelegt haben, lädt das SDK sie mithilfe der
standardmäßigen Anbieterkette für Anmeldeinformationen.

Dazu instanziieren Sie wie folgt einen AWS-Service Client, ohne dem Builder explizit
Anmeldeinformationen zur Verfügung zu stellen.

Verwenden der standardmäßigen Anbieterkette von Anmeldeinformationen 29

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

Geben Sie einen Anbieter oder eine Anbieterkette für
Anmeldeinformationen an

Sie können einen Anmeldeinformationsanbieter angeben, der sich von der standardmäßigen
Anbieterkette von Anmeldeinformationen unterscheidet. Verwenden Sie dazu den Client-Generator.

Sie stellen einem Client Builder, der eine Provider-Schnittstelle als Eingabe verwendet, eine Instanz
eines AWSCredentialsAnbieters oder einer Anbieterkette zur Verfügung. Das folgende Beispiel zeigt
konkret, wie Sie Anmeldeinformationen der Umgebung nutzen.

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new EnvironmentVariableCredentialsProvider())
 .build();

Eine vollständige Liste der von AWS SDK für Java-bereitgestellten Anmeldeinformationsanbietern
und Anbieterketten finden Sie unter All Known Implementing Classes in AWSCredentials Provider.

Note

Sie können diese Technik verwenden, um Anmeldeinformationsanbieter oder Anbieterketten
bereitzustellen, die Sie erstellen, indem Sie Ihren eigenen Anmeldeinformationsanbieter
verwenden, der die AWSCredentialsProvider Schnittstelle implementiert, oder indem Sie
der Klasse Unterklassen zuordnen. AWSCredentialsProviderChain

Geben Sie explizit temporäre Anmeldeinformationen an

Wenn die Standard-Anmeldeinformationen oder ein bestimmter oder benutzerdefinierter Anbieter
oder eine Anbieterkette für Ihren Code nicht funktionieren, können Sie explizit angegebene
Anmeldeinformationen festlegen. Wenn Sie temporäre Anmeldeinformationen mit abgerufen haben
AWS STS, verwenden Sie diese Methode, um die Anmeldeinformationen für den AWS Zugriff
anzugeben.

Geben Sie einen Anbieter oder eine Anbieterkette für Anmeldeinformationen an 30

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProviderChain.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

1. Instanziieren Sie die BasicSessionCredentialsKlasse und stellen Sie ihr den AWS
Zugriffsschlüssel, den AWS geheimen Schlüssel und das AWS Sitzungstoken zur Verfügung, die
das SDK für die Verbindung verwenden wird.

2. Erstellen Sie eine AWSStaticCredentialsProvidermit dem AWSCredentials Objekt.

3. Konfigurieren Sie den Client-Generator mit dem AWSStaticCredentialsProvider und
erstellen Sie den Client.

Im Folgenden wird ein Beispiel gezeigt.

BasicSessionCredentials awsCreds = new BasicSessionCredentials("access_key_id",
 "secret_key_id", "session_token");
AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new AWSStaticCredentialsProvider(awsCreds))
 .build();

Weitere Infos

• Melden Sie sich an AWS und erstellen Sie einen IAM-Benutzer

• Richten Sie AWS Anmeldeinformationen und Region für die Entwicklung ein

• Verwenden von IAM-Rollen zur Gewährung des Zugriffs auf AWS Ressourcen für Amazon EC2

AWS-Region Auswahl

Regionen ermöglichen Ihnen den Zugriff auf AWS Dienste, die sich physisch in einem bestimmten
geografischen Gebiet befinden. Dies ist nicht nur für die Redundanz nützlich, sondern sorgt auch
dafür, dass Ihre Daten und Anwendungen in der Nähe Ihres Standorts sowie des Standorts Ihrer
Benutzer ausgeführt werden.

Überprüfung der Serviceverfügbarkeit in einer Region

Um zu sehen, ob ein bestimmtes Produkt in einer Region verfügbar AWS-Service ist, wenden Sie die
isServiceSupported Methode für die Region an, die Sie verwenden möchten.

Region.getRegion(Regions.US_WEST_2)
 .isServiceSupported(AmazonDynamoDB.ENDPOINT_PREFIX);

Weitere Infos 31

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/BasicSessionCredentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSStaticCredentialsProvider.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Weitere Informationen über die Regionen, die Sie angeben können, und über die Nutzung des
Endpunkt-Präfixes für den abzufragenden Service finden Sie in der Dokumentation der Regions-
Klasse. Jedes Service-Endpunkt-Präfix wird in der Service-Schnittstelle definiert. Das DynamoDB
Endpunktpräfix ist beispielsweise in AmazonDynamoDB definiert.

Auswahl einer Region

Ab Version 1.4 von können Sie einen Regionsnamen angeben AWS SDK für Java, und das SDK
wählt automatisch einen geeigneten Endpunkt für Sie aus. Informationen darüber, wie Sie den
Endpunkt selbst auswählen können, finden Sie unter Auswahl eines bestimmten Endpunkts.

Um explizit eine Region festzulegen, empfehlen wir, dass Sie die Regions-Aufzählung nutzen. Dabei
handelt es sich um eine Aufzählung aller öffentlich verfügbaren Regionen. Mit dem folgenden Code
können Sie einen Client mit einer Region aus der Aufzählung erstellen:

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

Wenn die Region, die Sie verwenden möchten, nicht in der Regions-Aufzählung enthalten ist,
können Sie die Region mit einem String festlegen, der den Namen der Region enthält.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion("{region_api_default}")
 .build();

Note

Nachdem Sie einen Client mit dem Generator erstellt haben, ist er unveränderlich und die
Region kann nicht mehr geändert werden. Wenn Sie mit mehreren AWS-Regionen für
denselben Service arbeiten, sollten Sie mehrere Clients erstellen — einen pro Region.

Auswahl eines bestimmten Endpunkts

Jeder AWS Client kann so konfiguriert werden, dass er einen bestimmten Endpunkt innerhalb einer
Region verwendet, indem die withEndpointConfiguration Methode bei der Erstellung des
Clients aufgerufen wird.

Auswahl einer Region 32

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Verwenden Sie beispielsweise den folgenden Code, um den Amazon S3 Client für die Verwendung
der Region Europa (Irland) zu konfigurieren.

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withEndpointConfiguration(new EndpointConfiguration(
 "https://s3.eu-west-1.amazonaws.com",
 "eu-west-1"))
 .withCredentials(CREDENTIALS_PROVIDER)
 .build();

Die aktuelle Liste der Regionen und der entsprechenden Endpunkte für alle AWS Dienste finden Sie
unter Regionen und Endpunkte.

Ermitteln Sie die Region automatisch anhand der Umgebung

Important

Dieser Abschnitt gilt nur, wenn Sie einen Client Builder für den Zugriff auf AWS Dienste
verwenden. AWS Clients, die mit dem Client-Konstruktor erstellt wurden, ermitteln die Region
nicht automatisch anhand der Umgebung, sondern verwenden stattdessen die Standard-
SDK-Region (USEast1).

Wenn Sie auf Amazon EC2 oder Lambda ausgeführt werden, möchten Sie möglicherweise Clients
so konfigurieren, dass sie dieselbe Region verwenden, in der Ihr Code ausgeführt wird. So wird der
Code von der Umgebung abgekoppelt, in der er läuft, wodurch die Bereitstellung Ihrer Anwendung in
mehreren Regionen einfacher wird. Dies wiederum sorgt für weniger Latenz und mehr Redundanz.

Sie sollten Client-Generatoren verwenden, damit das SDK die Region, in der der Code ausgeführt
wird, automatisch erkennt.

Verwenden Sie die defaultClient Methode des Client Builders, um die Region anhand der
Umgebung anhand der credential/region Standardanbieterkette zu ermitteln.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

Dies entspricht der Verwendung von standard, gefolgt von build.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()

Ermitteln Sie die Region automatisch anhand der Umgebung 33

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .build();

Wenn Sie nicht explizit eine Region mit den withRegion-Methoden festlegen, nutzt das SDK die
Standard-Anbieterkette für Regionen und versucht, die zu nutzende Region zu ermitteln.

Standard-Anbieterkette für Regionen

Folgende Regeln gelten für das Nachschlagen der Region:

1. Etwaige explizite, mit withRegion oder setRegion festgelegte Regionen direkt im Generator
haben Vorrang vor allen anderen.

2. Die Umgebungsvariable AWS_REGION wird geprüft. Wenn sie festgelegt ist, wird die zugehörige
Region zur Konfiguration des Clients verwendet.

Note

Diese Umgebungsvariable wird vom Lambda Container festgelegt.

3. Das SDK überprüft die AWS gemeinsam genutzte Konfigurationsdatei (normalerweise
unter~/.aws/config). Ist die Eigenschaft region vorhanden, wird sie vom SDK verwendet.

• Die Umgebungsvariable AWS_CONFIG_FILE kann verwendet werden, um den Speicherort der
gemeinsam genutzten Konfigurationsdatei anzupassen.

• Die AWS_PROFILE Umgebungsvariable oder die aws.profile Systemeigenschaft können
verwendet werden, um das Profil anzupassen, das vom SDK geladen wird.

4. Das SDK versucht, mithilfe des Amazon EC2 Instanz-Metadatendienstes die Region der aktuell
ausgeführten Amazon EC2 Instanz zu ermitteln.

5. Hat das SDK zu diesem Zeitpunkt immer noch keine Region gefunden, schlägt die Erstellung des
Clients mit einer Ausnahme fehl.

Bei der Entwicklung von AWS Anwendungen besteht ein gängiger Ansatz darin, die gemeinsam
genutzte Konfigurationsdatei (beschrieben unter Verwenden der Standardanbieterkette für
Anmeldeinformationen) zu verwenden, um die Region für die lokale Entwicklung festzulegen,
und sich bei der Ausführung auf der AWS Infrastruktur auf die Standardregions-Anbieterkette zu
verlassen, um die Region zu bestimmen. Dies vereinfacht die Client-Erstellung stark und sorgt dafür,
dass Ihre Anwendung portabel bleibt.

Ermitteln Sie die Region automatisch anhand der Umgebung 34

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Umgang mit Ausnahmen

Es ist wichtig zu verstehen, wie AWS SDK für Java und wann Ausnahmen ausgelöst werden, um
qualitativ hochwertige Anwendungen mithilfe des SDK zu erstellen. In den folgenden Abschnitten
werden die verschiedenen Fälle von Ausnahmen beschrieben, die vom SDK ausgelöst werden, und
wie sie korrekt verarbeitet werden.

Warum ungeprüfte Ausnahmen?

Das AWS SDK für Java verwendet aus den folgenden Gründen Laufzeitausnahmen (oder ungeprüfte
Ausnahmen) anstelle von geprüften Ausnahmen:

• Entwickler erhalten genaue Kontrolle über die Fehler, auf die sie eingehen möchten. Sie werden
aber nicht dazu gezwungen, auftretende Ausnahmen zu verarbeiten, für die sie sich nicht
interessieren (was den Code übermäßig aufblähen würde).

• Skalierbarkeitsprobleme durch geprüfte Ausnahmen in großen Anwendungen werden verhindert.

Im Allgemeinen eignen sich geprüfte Ausnahmen gut im kleinen Rahmen. Wenn Anwendungen
wachsen und komplexer werden, können sie allerdings zu Problemen führen.

Weitere Informationen über die Verwendung von geprüften und ungeprüften Ausnahmen finden Sie
unter:

• Ungeprüfte Ausnahmen — Die Kontroverse

• The Trouble with Checked Exceptions

• Java’s checked exceptions were a mistake (and here’s what I would like to do about it)

AmazonServiceException (und Unterklassen)

AmazonServiceExceptionist die häufigste Ausnahme, die bei der AWS SDK für Java Verwendung
von auftritt. Diese Ausnahme stellt eine Fehlerantwort von einem dar AWS-Service. Wenn
Sie beispielsweise versuchen, eine Amazon EC2 Instanz zu beenden, die nicht existiert, EC2
wird eine Fehlerantwort zurückgegeben, und alle Details dieser Fehlerantwort werden in der
AmazonServiceException ausgelösten Antwort enthalten. In einigen Fällen wird eine abgeleitete
Klasse von AmazonServiceException ausgelöst. So erhalten Entwickler genaue Kontrolle über
den Umgang mit Fehlerfällen in Catch-Blöcken.

Umgang mit Ausnahmen 35

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.artima.com/intv/handcuffs2.html
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Wenn Sie auf eine stoßenAmazonServiceException, wissen Sie, dass Ihre Anfrage erfolgreich
an die gesendet wurde, AWS-Service aber nicht erfolgreich bearbeitet werden konnte. Dies kann an
Fehlern in den Parametern der Anforderung oder an Problemen auf Seiten des Services liegen.

AmazonServiceException gibt Ihnen Informationen wie z. B.:

• zurückgegebener HTTP-Statuscode

• AWS Fehlercode zurückgegeben

• detaillierte Fehlermeldung aus dem Service

• AWS Anforderungs-ID für die fehlgeschlagene Anfrage

AmazonServiceExceptionenthält auch Informationen darüber, ob die fehlgeschlagene Anfrage
vom Anrufer (eine Anfrage mit unzulässigen Werten) oder vom AWS-Service Anrufer (ein interner
Dienstfehler) verschuldet wurde.

AmazonClientException

AmazonClientExceptiongibt an, dass im Java-Client-Code ein Problem aufgetreten ist, entweder
beim Versuch, eine Anfrage an zu senden, AWS oder beim Versuch, eine Antwort von zu
analysieren. AWS An AmazonClientException ist im Allgemeinen schwerwiegender als ein
AmazonServiceException und weist auf ein schwerwiegendes Problem hin, das den Client
daran hindert, Serviceanfragen an AWS Dienste zu tätigen. Dies ist beispielsweise der AWS SDK
für Java Fall, AmazonClientException wenn keine Netzwerkverbindung verfügbar ist, wenn Sie
versuchen, einen Vorgang auf einem der Clients aufzurufen.

Asynchrone Programmierung

Sie können synchrone oder asynchrone Methoden verwenden, um Operationen für Dienste
aufzurufen. AWS Synchrone Methoden blockieren die Ausführung Ihres Threads, bis der Client
eine Antwort vom Service erhält. Asynchrone Methoden kehren sofort zurück. So haben Sie die
Gewissheit, dass die Kontrolle an den aufrufenden Thread zurückgegeben wird, ohne auf eine
Antwort zu warten.

Da eine asynchrone Methode zurückmeldet, bevor eine Antwort verfügbar ist, benötigen Sie einen
Weg, an die Antwort zu gelangen, sobald diese bereitsteht. Das AWS SDK für Java bietet zwei
Möglichkeiten: Zukünftige Objekte und Callback-Methoden.

AmazonClientException 36

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Java-Futures

Asynchrone Methoden AWS SDK für Java geben ein Future-Objekt zurück, das die Ergebnisse der
asynchronen Operation in der future enthält.

Rufen Sie die Future isDone()-Methode auf, um festzustellen, ob der Service bereits ein
Antwortobjekt bereitgestellt hat. Wenn die Antwort bereit ist, können Sie das Antwortobjekt durch
Aufrufen der Future get()-Methode erhalten. Mit diesem Mechanismus können Sie regelmäßig
eine Abfrage nach den Ergebnissen der asynchronen Operation durchführen, während die
Anwendung an anderen Aufgaben arbeitet.

Hier ist ein Beispiel für eine asynchrone Operation, die eine Lambda Funktion aufruft und eine
empfängt, Future die ein Objekt enthalten kann. InvokeResult Das InvokeResult-Objekt wird erst
abgerufen, sobald isDone() true ergibt.

import com.amazonaws.services.lambda.AWSLambdaAsyncClient;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class InvokeLambdaFunctionAsync
{
 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req);

 System.out.print("Waiting for future");
 while (future_res.isDone() == false) {
 System.out.print(".");
 try {
 Thread.sleep(1000);
 }

Java-Futures 37

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeResult.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 catch (InterruptedException e) {
 System.err.println("\nThread.sleep() was interrupted!");
 System.exit(1);
 }
 }

 try {
 InvokeResult res = future_res.get();
 if (res.getStatusCode() == 200) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 }
 else {
 System.out.format("Received a non-OK response from {AWS}: %d\n",
 res.getStatusCode());
 }
 }
 catch (InterruptedException | ExecutionException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 System.exit(0);
 }
}

Asynchrone Callbacks

Neben der Verwendung des Future Java-Objekts zur Überwachung des Status asynchroner
Anfragen können Sie mit dem SDK auch eine Klasse implementieren, die die Schnittstelle verwendet.
AsyncHandler AsyncHandlerbietet zwei Methoden, die je nach Abschluss der Anfrage aufgerufen
werden: onSuccess undonError.

Der wichtigste Vorteil der Rückruf-Schnittstelle besteht darin, dass Sie das Future-Objekt nicht
mehr regelmäßig abfragen müssen, um zu ermitteln, wann die Anforderung abgeschlossen wurde.
Stattdessen kann Ihr Code sofort die nächste Aktivität beginnen und sich auf das SDK verlassen, das
für den Aufruf Ihrer Handler zum richtigen Zeitpunkt sorgt.

import com.amazonaws.services.lambda.AWSLambdaAsync;
import com.amazonaws.services.lambda.AWSLambdaAsyncClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;

Asynchrone Callbacks 38

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/AsyncHandler.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.handlers.AsyncHandler;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;

public class InvokeLambdaFunctionCallback
{
 private class AsyncLambdaHandler implements AsyncHandler<InvokeRequest,
 InvokeResult>
 {
 public void onSuccess(InvokeRequest req, InvokeResult res) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 System.exit(0);
 }

 public void onError(Exception e) {
 System.out.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req, new
 AsyncLambdaHandler());

 System.out.print("Waiting for async callback");
 while (!future_res.isDone() && !future_res.isCancelled()) {
 // perform some other tasks...
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("Thread.sleep() was interrupted!");

Asynchrone Callbacks 39

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 System.exit(0);
 }
 System.out.print(".");
 }
 }
}

Bewährte Methoden

Ausführen eines Rückrufs

Ihre Implementierung des AsyncHandler wird in dem Threadpool ausgeführt, der dem asynchronen
Client gehört. Der kurze, schnell ausgeführte Code sollte am besten in der AsyncHandler-
Implementierung eingefügt werden. Der lange ausgeführte oder blockierende Code in Handler-
Methoden kann zu Konkurrenzsituationen für den Threadpool, der vom asynchronen Client
verwendet wird, und kann den Client daran hindern, Anforderungen auszuführen. Wenn Sie eine lang
andauernde Aufgabe haben, die mit einem Rückruf gestartet werden soll, lassen Sie den Rückruf
die Aufgabe in einem neuen Thread oder in einem Threadpool ausführen, der von Ihrer Anwendung
verwaltet wird.

Threadpool-Konfiguration

Die asynchronen Clients im AWS SDK für Java stellen einen Standard-Threadpool bereit, der
für die meisten Anwendungen funktionieren sollte. Sie können einen benutzerdefinierten Code
implementieren ExecutorServiceund ihn an AWS SDK für Java asynchrone Clients übergeben, um
mehr Kontrolle darüber zu haben, wie die Thread-Pools verwaltet werden.

Sie könnten beispielsweise eine ExecutorService Implementierung bereitstellen, die eine
benutzerdefinierte Methode verwendet, ThreadFactoryum zu steuern, wie Threads im Pool benannt
werden, oder um zusätzliche Informationen über die Threadnutzung zu protokollieren.

Asynchroner Zugriff

Die TransferManagerKlasse im SDK bietet asynchrone Unterstützung für die Arbeit mit. Amazon
S3TransferManagerverwaltet asynchrone Uploads und Downloads, bietet detaillierte
Fortschrittsberichte zu Übertragungen und unterstützt Rückrufe bei verschiedenen Ereignissen.

Bewährte Methoden 40

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ThreadFactory.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/TransferManager.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

AWS SDK für Java Protokollierung von Anrufen

Das AWS SDK für Java ist mit Apache Commons Logging instrumentiert, einer Abstraktionsschicht,
die die Verwendung eines von mehreren Logging-Systemen zur Laufzeit ermöglicht.

Unterstützte Protokollierungssysteme sind u. a. das Java Logging Framework und Apache
Log4j. In diesem Thema erhalten Sie Informationen zur Nutzung von Log4j. Sie können die
Protokollierungsfunktionalität des SDKs ohne Änderungen am Code Ihrer Anwendung nutzen.

Weitere Informationen über Log4j finden Sie auf der Apache-Website.

Note

In diesem Thema geht es um Log4j 1.x. Log4j2 unterstützt Apache Commons Logging nicht
direkt. Stattdessen wird ein Adapter bereitgestellt, der Protokollierungsaufrufe automatisch
mithilfe der Apache Commons Logging-Schnittstelle an Log4j2 weiterleitet. Weitere
Informationen finden Sie unter Commons Logging Bridge in der Log4j2-Dokumentation.

Herunterladen der Log4J-JAR

Zur Nutzung von Log4j mit dem SDK müssen Sie das Log4j-JAR von der Apache-Website
herunterladen. Das SDK enthält das JAR nicht. Kopieren Sie die JAR-Datei an einen Speicherort, der
in Ihrem Klassenpfad enthalten ist.

Log4j verwendet eine Konfigurationsdatei namens "log4j.properties". Beispiel-Konfigurationsdateien
werden nachfolgend angezeigt. Kopieren Sie die Konfigurationsdatei in ein Verzeichnis in Ihrem
Klassenpfad. Die Log4j JAR-Dateien und die Datei "log4j.properties" müssen nicht im selben
Verzeichnis liegen.

In der Konfigurationsdatei "log4j.properties" sind Eigenschaften wie die Protokollierungsebene,
das Ziel der Protokollierungsausgaben (z. B. an eine Datei oder an die Konsole) sowie das
Ausgabeformat angegeben. Die Protokollierungsebene ist die Granularität der Ausgaben, die der
Protokollierer erzeugt. Log4j unterstützt das Konzept mehrerer Hierarchien der Protokollierung.
Die Protokollierungsebene wird für jede Hierarchie separat festgelegt. Die folgenden zwei
Protokollierungshierarchien sind im AWS SDK für Java verfügbar:

• log4j.logger.com.amazonaws

AWS SDK für Java Protokollierung von Anrufen 41

http://commons.apache.org/proper/commons-logging/guide.html
http://logging.apache.org/log4j/2.x/
http://www.apache.org/
https://logging.apache.org/log4j/2.x/log4j-jcl.html
http://logging.apache.org/log4j/2.x/manual/configuration.html#Loggers
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/layouts.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• log4j.logger.org.apache.http.wire

Festlegen des Klassenpfads

Sowohl die Log4j JAR-Datei als auch die Datei "log4j.properties" müssen in Ihrem Klassenpfad
liegen. Wenn Sie Apache Ant verwenden, legen Sie den Klassenpfad im path-Element der Ant-
Datei fest. Das folgende Beispiel zeigt ein Pfadelement aus der Ant-Datei für das im Amazon S3 SDK
enthaltene Beispiel.

<path id="aws.java.sdk.classpath">
 <fileset dir="../../third-party" includes="**/*.jar"/>
 <fileset dir="../../lib" includes="**/*.jar"/>
 <pathelement location="."/>
</path>

In der Eclipse-IDE können Sie den Klassenpfad festlegen, indem Sie das Menü öffnen und auf
Projekt | Eigenschaften | Java Build-Pfad klicken.

Service-spezifische Fehler und Warnungen

Wir empfehlen, dass Sie die Protokollierungshierarchie "com.amazonaws" immer auf "WARN" gestellt
lassen. So entgehen Ihnen keine wichtigen Meldungen aus den Client-Bibliotheken. Wenn der
Amazon S3 Client beispielsweise feststellt, dass Ihre Anwendung nicht ordnungsgemäß geschlossen
wurde InputStream und möglicherweise Ressourcen verloren gehen, meldet der S3-Client dies
in Form einer Warnmeldung an die Protokolle. Dadurch wird auch sichergestellt, dass Nachrichten
protokolliert werden, wenn der Client Schwierigkeiten bei der Verarbeitung von Anforderungen oder
Antworten hat.

In der folgenden "log4j.properties"-Datei ist der rootLogger auf WARN gesetzt. Dies hat zur Folge,
dass Warn- und Fehlermeldungen von allen Protokollierern in der Hierarchie "com.amazonaws"
enthalten sind. Alternativ können Sie ausdrücklich den com.amazonaws-Protokollierer auf WARN
stellen.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Or you can explicitly enable WARN and ERROR messages for the {AWS} Java clients

Festlegen des Klassenpfads 42

http://ant.apache.org/manual/
https://github.com/aws/aws-sdk-java/blob/master/src/samples/AmazonS3/build.xml
https://github.com/aws/aws-sdk-java/blob/master/src/samples/AmazonS3/build.xml

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

log4j.logger.com.amazonaws=WARN

Protokollierung von Anforderungs-/Antwortübersichten

Jede Anfrage an AWS-Service generiert eine eindeutige AWS Anforderungs-ID, die nützlich ist, wenn
Sie auf ein Problem mit der Bearbeitung einer AWS-Service Anfrage stoßen. AWS Anfragen IDs
sind programmgesteuert über Ausnahmeobjekte im SDK für jeden fehlgeschlagenen Serviceabruf
zugänglich. Sie können auch über die DEBUG-Protokollebene im Logger „com.amazonaws.request“
gemeldet werden.

Die folgende Datei log4j.properties ermöglicht eine Zusammenfassung der Anfragen und Antworten,
einschließlich der Anfrage. AWS IDs

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Turn on DEBUG logging in com.amazonaws.request to log
a summary of requests/responses with {AWS} request IDs
log4j.logger.com.amazonaws.request=DEBUG

Hier finden Sie ein Beispiel für die Protokollausgabe.

2009-12-17 09:53:04,269 [main] DEBUG com.amazonaws.request - Sending
Request: POST https://rds.amazonaws.com / Parameters: (MaxRecords: 20,
Action: DescribeEngineDefaultParameters, SignatureMethod: HmacSHA256,
AWSAccessKeyId: ACCESSKEYID, Version: 2009-10-16, SignatureVersion: 2,
Engine: mysql5.1, Timestamp: 2009-12-17T17:53:04.267Z, Signature:
q963XH63Lcovl5Rr71APlzlye99rmWwT9DfuQaNznkD,) 2009-12-17 09:53:04,464
[main] DEBUG com.amazonaws.request - Received successful response: 200, {AWS}
Request ID: 694d1242-cee0-c85e-f31f-5dab1ea18bc6 2009-12-17 09:53:04,469
[main] DEBUG com.amazonaws.request - Sending Request: POST
https://rds.amazonaws.com / Parameters: (ResetAllParameters: true, Action:
ResetDBParameterGroup, SignatureMethod: HmacSHA256, DBParameterGroupName:
java-integ-test-param-group-0000000000000, AWSAccessKeyId: ACCESSKEYID,
Version: 2009-10-16, SignatureVersion: 2, Timestamp:
2009-12-17T17:53:04.467Z, Signature:
9WcgfPwTobvLVcpyhbrdN7P7l3uH0oviYQ4yZ+TQjsQ=,)

2009-12-17 09:53:04,646 [main] DEBUG com.amazonaws.request - Received
successful response: 200, {AWS} Request ID:

Protokollierung von Anforderungs-/Antwortübersichten 43

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

694d1242-cee0-c85e-f31f-5dab1ea18bc6

Verbose-Protokollierung des Netzwerkverkehrs

In einigen Fällen kann es nützlich sein, die genauen Anfragen und Antworten zu sehen, die
der Sender AWS SDK für Java sendet und empfängt. Sie sollten diese Protokollierung in
Produktionssystemen nicht aktivieren, da das Ausschreiben umfangreicher Anfragen (z. B. wenn
eine Datei hochgeladen wird Amazon S3) oder Antworten eine Anwendung erheblich verlangsamen
kann. Wenn Sie wirklich Zugriff auf diese Informationen benötigen, können Sie sie vorübergehend
über den Apache HttpClient 4-Logger aktivieren. Durch Aktivieren der DEBUG-Ebene für den
org.apache.http.wire-Protokollierer wird die Protokollierung für sämtliche Anforderungs- und
Antwortdaten aktiviert.

Die folgende Datei log4j.properties aktiviert die vollständige Protokollierung in Apache HttpClient 4
und sollte nur vorübergehend aktiviert werden, da dies erhebliche Auswirkungen auf die Leistung
Ihrer Anwendung haben kann.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Log all HTTP content (headers, parameters, content, etc) for
all requests and responses. Use caution with this since it can
be very expensive to log such verbose data!
log4j.logger.org.apache.http.wire=DEBUG

Protokollieren von Latenz-Metriken

Wenn Sie bei der Behandlung Metriken anzeigen möchten, z. B. welcher Prozess die meiste Zeit
beansprucht oder ob die Latenz auf der Server- oder Client-Seite größer ist, kann der Latenz-
Protokollierer hilfreich sein. Stellen Sie den com.amazonaws.latency-Protokollierer zur Aktivierung
auf DEBUG.

Note

Dieser Protokollierer ist nur verfügbar, wenn SDK-Metriken aktiviert sind. Weitere
Informationen zum SDK-Metrikpaket finden Sie unter Metriken aktivieren für. AWS SDK für
Java

Verbose-Protokollierung des Netzwerkverkehrs 44

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
log4j.logger.com.amazonaws.latency=DEBUG

Hier finden Sie ein Beispiel für die Protokollausgabe.

com.amazonaws.latency - ServiceName=[{S3}], StatusCode=[200],
ServiceEndpoint=[https://list-objects-integ-test-test.s3.amazonaws.com],
RequestType=[ListObjectsV2Request], AWSRequestID=[REQUESTID],
 HttpClientPoolPendingCount=0,
RetryCapacityConsumed=0, HttpClientPoolAvailableCount=0, RequestCount=1,
HttpClientPoolLeasedCount=0, ResponseProcessingTime=[52.154],
 ClientExecuteTime=[487.041],
HttpClientSendRequestTime=[192.931], HttpRequestTime=[431.652],
 RequestSigningTime=[0.357],
CredentialsRequestTime=[0.011, 0.001], HttpClientReceiveResponseTime=[146.272]

Client-Konfiguration

Der AWS SDK für Java ermöglicht es Ihnen, die Standard-Client-Konfiguration zu ändern. Dies ist
hilfreich, wenn Sie:

• Herstellen einer Internetverbindung über einen Proxy

• Ändern von HTTP-Transport-Einstellungen, z. B. Verbindungstimeout und wiederholte
Anforderungsversuche

• Angabe von TCP-Socketpuffer-Größenhinweisen

Proxy-Konfiguration

Wenn Sie ein Client-Objekt erstellen, können Sie ein optionales ClientConfigurationObjekt
übergeben, um die Konfiguration des Clients anzupassen.

Wenn Sie sich über einen Proxy-Server mit dem Internet verbinden, sollten Sie über das
ClientConfiguration-Objekt die Einstellungen des Proxy-Servers konfigurieren (Proxy-Host,
‑Port und Benutzername/Passwort).

Client-Konfiguration 45

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

HTTP-Transport-Konfiguration

Mithilfe des ClientConfigurationObjekts können Sie mehrere HTTP-Transportoptionen konfigurieren.
Gelegentlich werden neue Optionen hinzugefügt. Eine vollständige Liste der Optionen, die Sie
abrufen oder festlegen können, finden Sie in der AWS SDK für Java API-Referenz.

Note

Jeder konfigurierbare Wert hat einen von einer Konstanten definierten Standardwert.
Eine Liste der konstanten Werte für finden Sie ClientConfiguration unter Konstante
Feldwerte in der AWS SDK für Java API-Referenz.

Maximale Anzahl der Verbindungen

Sie können die maximal zulässige Anzahl offener HTTP-Verbindungen festlegen, indem Sie den
verwenden ClientConfiguration. setMaxConnectionsMethode.

Important

Legen Sie die maximalen Verbindungen auf die Anzahl der gleichzeitigen Transaktionen fest,
um Verbindungskonflikte und eine schlechte Leistung zu vermeiden. Den Standardwert für
maximale Verbindungen finden Sie unter Konstante Feldwerte in der AWS SDK für Java API-
Referenz.

Timeouts und Fehlerbehandlung

Sie können Optionen im Zusammenhang mit Timeouts und der Fehlerbehandlung für HTTP-
Verbindungen festlegen.

• Verbindungstimeout

Das Verbindungstimeout ist die Zeit (in Millisekunden), die die HTTP-Verbindung wartet, um eine
Verbindung herzustellen. Der Standardwert beträgt 10 000 ms.

Um diesen Wert selbst festzulegen, verwenden Sie den ClientConfiguration.
setConnectionTimeoutMethode.

• Connection Time to Live (TTL, Gültigkeitsdauer der Verbindung)

HTTP-Transport-Konfiguration 46

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxConnections-int-
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTimeout-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTimeout-int-

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Standardmäßig versucht das SDK, HTTP-Verbindungen so lange wie möglich wiederzuverwenden.
In Fehlersituationen, bei denen eine Verbindung zu einem Server aufgebaut wird, der außer Betrieb
genommen wird, sorgt eine endliche TTL für eine schnellere Anwendungswiederherstellung. Wird
beispielsweise eine 15-Minuten-TTL eingestellt, ist dadurch sichergestellt, dass auch dann, wenn
Sie eine Verbindung zu einem Server aufgebaut haben, bei dem Probleme auftreten, innerhalb von
15 Minuten eine Verbindung zu einem neuen Server hergestellt wird.

Verwenden Sie die Methode ClientConfiguration.setConnectionTTL, um die TTL für die HTTP-
Verbindung festzulegen.

• Maximale Anzahl der erneuten Versuche

Die standardmäßige maximale Wiederholungsanzahl für Fehler bei wiederholbaren Aktionen
ist 3. Sie können einen anderen Wert festlegen, indem Sie die verwenden. ClientConfiguration
setMaxErrorMethode wiederholen.

Lokale Adresse

Um die lokale Adresse festzulegen, an die der HTTP-Client gebunden wird, verwenden
SieClientConfiguration. setLocalAddress.

TCP-Socketpuffer-Größenhinweise

Fortgeschrittene Benutzer, die TCP-Parameter auf niedriger Ebene optimieren möchten, können
zusätzlich Hinweise zur Größe des TCP-Puffers über das ClientConfigurationObjekt festlegen. Die
meisten Benutzer müssen diese Einstellungen nie anpassen, sie stehen aber für fortgeschrittene
Benutzer bereit.

Die optimalen TCP-Puffergrößen für eine Anwendung hängen stark von der Konfiguration und
den Fähigkeiten des Netzwerks und des Betriebssystems ab. Beispielsweise bieten die meisten
modernen Betriebssysteme eine Logik zur automatischen Anpassung der TCP-Puffergrößen. Dies
kann sich weitreichend auf die Leistung von TCP-Verbindungen auswirken, wenn diese lang genug
geöffnet bleiben, damit die automatische Anpassung die Puffergrößen optimieren kann.

Große Puffer (z. B. 2 MB) ermöglichen dem Betriebssystem, mehr Daten im Arbeitsspeicher zu
puffern, ohne dass der Remote-Server die Informationen bestätigen muss. Sie sind also besonders
nützlich, wenn das Netzwerk eine hohe Latenz aufweist.

TCP-Socketpuffer-Größenhinweise 47

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTTL-long-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Dies ist nur ein Hinweis, an den sich das Betriebssystem nicht halten muss. Bei Verwendung dieser
Option sollten Benutzer immer die beim Betriebssystem konfigurierten Grenz- und Standardwerte
überprüfen. In den meisten Betriebssystemen ist eine maximale TCP-Puffergröße konfiguriert, die
nicht überschritten wird, es sei denn, Sie heben die maximale TCP-Puffergröße explizit an.

Für die Konfiguration von TCP-Puffergrößen und betriebssystemspezifischen TCP-Einstellungen
stehen viele Ressourcen zur Verfügung, wie z. B.:

• Host Tuning

Zugriffskontrollrichtlinien

AWS Mithilfe von Zugriffskontrollrichtlinien können Sie detaillierte Zugriffskontrollen für Ihre
Ressourcen festlegen. AWS Eine Zugriffsrichtlinie besteht aus einer Reihe von Anweisungen, die
folgende Form annehmen:

Konto A darf Aktion B auf Ressource C ausführen, wenn Bedingung D gilt.

Wobei gilt:

• A ist der Principal — AWS-Konto Derjenige, der eine Anfrage zum Zugriff auf oder zur Änderung
einer Ihrer AWS Ressourcen stellt.

• B ist die Aktion — die Art und Weise, wie auf Ihre AWS Ressource zugegriffen oder sie geändert
wird, z. B. das Senden einer Nachricht an eine Amazon SQS Warteschlange oder das Speichern
eines Objekts in einem Amazon S3 Bucket.

• C ist die Ressource — die AWS Entität, auf die der Principal zugreifen möchte, z. B. eine Amazon
SQS Warteschlange oder ein Objekt, in dem gespeichert ist Amazon S3.

• D ist eine Reihe von Bedingungen — Die optionalen Einschränkungen, die angeben, wann
dem Prinzipal der Zugriff auf Ihre Ressource gewährt oder verweigert werden soll. Viele
ausdrucksstarke Bedingungen sind verfügbar, einige speziell für jeden Service. Beispielsweise
können Sie mit Datumsbedingungen den Zugriff auf Ressourcen nur nach oder vor einem
bestimmten Zeitpunkt zulassen.

Zugriffskontrollrichtlinien 48

http://fasterdata.es.net/host-tuning/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Amazon S3 Beispiel

Das folgende Beispiel zeigt eine Richtlinie, die jedem Zugriff erlaubt, alle Objekte in einem Bucket zu
lesen, aber den Zugriff auf das Hochladen von Objekten in diesen Bucket auf zwei bestimmte AWS-
Konto s beschränkt (zusätzlich zum Konto des Bucket-Besitzers).

Statement allowPublicReadStatement = new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));
Statement allowRestrictedWriteStatement = new Statement(Effect.Allow)
 .withPrincipals(new Principal("123456789"), new Principal("876543210"))
 .withActions(S3Actions.PutObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));

Policy policy = new Policy()
 .withStatements(allowPublicReadStatement, allowRestrictedWriteStatement);

AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
s3.setBucketPolicy(myBucketName, policy.toJson());

Amazon SQS Beispiel

Richtlinien werden häufig verwendet, um eine Amazon SQS Warteschlange für den Empfang von
Nachrichten von einem Amazon SNS SNS-Thema zu autorisieren.

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SQSActions.SendMessage)
 .withConditions(ConditionFactory.newSourceArnCondition(myTopicArn)));

Map queueAttributes = new HashMap();
queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson());

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.setQueueAttributes(new SetQueueAttributesRequest(myQueueUrl, queueAttributes));

Amazon S3 Beispiel 49

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Beispiel für Amazon SNS

Einige Dienste bieten zusätzliche Bedingungen, die in Richtlinien verwendet werden können. Amazon
SNS bietet Bedingungen für das Zulassen oder Ablehnen von Abonnements für SNS-Themen auf der
Grundlage des Protokolls (z. B. E-Mail, HTTP, HTTPS Amazon SQS) und des Endpunkts (z. B. E-
Mail-Adresse, URL, Amazon SQS ARN) der Anfrage zum Abonnieren eines Themas.

Condition endpointCondition =
 SNSConditionFactory.newEndpointCondition("*@mycompany.com");

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SNSActions.Subscribe)
 .withConditions(endpointCondition));

AmazonSNS sns = AmazonSNSClientBuilder.defaultClient();
sns.setTopicAttributes(
 new SetTopicAttributesRequest(myTopicArn, "Policy", policy.toJson()));

Legen Sie die JVM-TTL für DNS-Namenssuchen fest

Die Java Virtual Machine (JVM) speichert DNS-Namensauflösungen zwischen. Wenn die JVM einen
Hostnamen in eine IP-Adresse auflöst, speichert sie die IP-Adresse für einen bestimmten Zeitraum,
der als (TTL) bezeichnet wird. time-to-live

Da AWS Ressourcen DNS-Namenseinträge verwenden, die sich gelegentlich ändern, empfehlen
wir, dass Sie Ihre JVM mit einem TTL-Wert von 5 Sekunden konfigurieren. Auf diese Weise wird bei
Änderung der IP-Adresse einer Ressource sichergestellt, dass Ihre Anwendung die neue IP-Adresse
der Ressource durch erneute Abfrage des DNS abrufen und nutzen kann.

Bei einigen Java-Konfigurationen ist die JVM-Standard-TTL so festgelegt, dass DNS-Einträge
nie aktualisiert werden, bis die JVM neu gestartet wird. Wenn sich also die IP-Adresse einer
AWS Ressource ändert, während Ihre Anwendung noch läuft, kann sie diese Ressource erst
verwenden, wenn Sie die JVM manuell neu starten und die zwischengespeicherten IP-Informationen
aktualisiert werden. In diesem Fall ist es wichtig, die TTL der JVM so einzustellen, dass sie die
zwischengespeicherten IP-Daten von Zeit zu Zeit aktualisiert.

Beispiel für Amazon SNS 50

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Wie legt man die JVM-TTL fest

Um die TTL der JVM zu ändern, legen Sie den Sicherheitseigenschaftswert networkaddress.cache.ttl
fest und legen Sie die networkaddress.cache.ttl Eigenschaft in der Datei für Java 8 oder
in der $JAVA_HOME/jre/lib/security/java.security Datei für Java 11 oder höher fest.
$JAVA_HOME/conf/security/java.security

Das Folgende ist ein Ausschnitt aus einer java.security Datei, die zeigt, dass der TTL-Cache auf
5 Sekunden eingestellt ist.

#
This is the "master security properties file".
#
An alternate java.security properties file may be specified
...
The Java-level namelookup cache policy for successful lookups:
#
any negative value: caching forever
any positive value: the number of seconds to cache an address for
zero: do not cache
...
networkaddress.cache.ttl=5
...

Alle Anwendungen, die auf der durch die $JAVA_HOME Umgebungsvariable repräsentierten JVM
ausgeführt werden, verwenden diese Einstellung.

Aktivierung von Metriken für AWS SDK für Java

AWS SDK für Java Sie können mit Amazon Metriken für die Visualisierung und Überwachung
generieren CloudWatch, die Folgendes messen:

• die Leistung Ihrer Anwendung beim Zugriff AWS

• die Leistung Ihres JVMs bei Verwendung mit AWS

• Details der Laufzeitumgebung wie z. B. Heap-Speicher, Anzahl der Threads und geöffneter Datei-
Deskriptoren

Wie legt man die JVM-TTL fest 51

https://docs.oracle.com/en/java/javase/17/core/java-networking.html
https://aws.amazon.com/cloudwatch/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Wie aktiviert man die Generierung von Java-SDK-Metriken

Sie müssen die folgende Maven-Abhängigkeit hinzufügen, damit das SDK Metriken an CloudWatch
senden kann.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.12.490*</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-cloudwatchmetrics</artifactId>
 <scope>provided</scope>
 </dependency>
 <!-- Other SDK dependencies. -->
</dependencies>

* Ersetzen Sie die Versionsnummer durch die neueste Version des SDK, die bei Maven Central
verfügbar ist.

AWS SDK für Java Metriken sind standardmäßig deaktiviert. Um es für Ihre lokale
Entwicklungsumgebung zu aktivieren, fügen Sie eine Systemeigenschaft hinzu, die beim Start der
JVM auf Ihre AWS Sicherheitsanmeldedatei verweist. Beispiel:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/aws.properties

Sie müssen den Pfad zu Ihrer Anmeldeinformationsdatei angeben, damit das SDK die gesammelten
Datenpunkte zur späteren Analyse hochladen kann. CloudWatch

Wie aktiviert man die Generierung von Java-SDK-Metriken 52

https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Wenn Sie AWS von einer Amazon EC2 Instanz aus zugreifen, die den Amazon EC2 Instanz-
Metadatendienst verwendet, müssen Sie keine Anmeldeinformationsdatei angeben. In
diesem Fall ist nur Folgendes anzugeben:

-Dcom.amazonaws.sdk.enableDefaultMetrics

Alle von der erfassten Metriken AWS SDK für Java befinden sich unter dem Namespace AWSSDK/
Java und werden in die CloudWatch Standardregion (us-east-1) hochgeladen. Wenn Sie die Region
ändern möchten, geben Sie sie mit dem Attribut cloudwatchRegion in der Systemeigenschaft an.
Um die CloudWatch Region beispielsweise auf us-east-1 festzulegen, verwenden Sie:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,cloudwatchRegion={region_api_default}

Sobald Sie die Funktion aktiviert haben, werden bei jeder Serviceanfrage AWS von metrische
Datenpunkte generiert AWS SDK für Java, für die statistische Zusammenfassung in die
Warteschlange gestellt und asynchron hochgeladen, CloudWatch etwa einmal pro Minute.
Sobald die Metriken hochgeladen wurden, können Sie sie mithilfe von visualisieren AWS-
Managementkonsoleund Alarme für potenzielle Probleme wie Speicherverlust, Verlust von
Dateideskriptoren usw. einrichten.

Verfügbare Arten von Metriken

Die Standardmetriken werden in drei Hauptkategorien unterteilt:

AWS Metriken anfordern

• Deckt Bereiche wie die Latenz der HTTP-Anforderung/‑Antwort, die Anzahl der Anfragen,
Ausnahmen und Wiederholungen ab.

Verfügbare Arten von Metriken 53

https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

AWS-Service Metriken

• Schließen Sie AWS-Service spezifische Daten ein, z. B. den Durchsatz und die Byteanzahl für
S3-Uploads und -Downloads.

Verfügbare Arten von Metriken 54

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Maschinenmetriken

• Enthalten die Laufzeitumgebung, darunter Heap-Speicher, Anzahl der Threads und geöffneter
Datei-Deskriptoren.

Verfügbare Arten von Metriken 55

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Wenn Sie Maschinenmetriken ausschließen möchten, fügen Sie excludeMachineMetrics in
die Systemeigenschaft ein:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,excludeMachineMetrics

Weitere Informationen

• In der amazonaws/metrics-Paketübersicht finden Sie eine vollständige Liste der vordefinierten
Standardmetrik-Typen.

• Weitere Informationen zur CloudWatch Verwendung von finden Sie AWS SDK für Java in
CloudWatch Beispielen mit der. AWS SDK für Java

Weitere Informationen 56

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/package-summary.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• Weitere Informationen zur Leistungsoptimierung finden Sie im Blogbeitrag Tuning the AWS SDK für
Java to Improve Resiliency.

Weitere Informationen 57

https://aws.amazon.com/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency
https://aws.amazon.com/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

AWS SDK für Java Codebeispiele

Dieser Abschnitt enthält Tutorials und Beispiele für die Verwendung von AWS SDK für Java Version 1
zum Programmieren von AWS Diensten.

Den Quellcode für diese und andere Beispiele finden Sie im Repository für AWS
Dokumentationscodebeispiele unter GitHub.

Um dem AWS Dokumentationsteam ein neues Codebeispiel vorzuschlagen, das es erstellen könnte,
erstellen Sie eine neue Anfrage. Das Team möchte Codebeispiele erstellen, die breitere Szenarien
und Anwendungsfälle abdecken, im Vergleich zu einfachen Codeausschnitten, die nur einzelne API-
Aufrufe abdecken. Anweisungen finden Sie in den Richtlinien für Beiträge im Codebeispiel-Repository
auf.. GitHub

AWS SDK für Java 2.x

Im Jahr 2018 AWS veröffentlichte das AWS SDK for Java 2.x. Dieses Handbuch enthält
Anweisungen zur Verwendung des neuesten Java-SDK sowie Beispielcode.

Note

Weitere Beispiele und zusätzliche Ressourcen für AWS SDK für Java Entwickler finden Sie
unter Zusätzliche Dokumentation und Ressourcen!

CloudWatch Beispiele für die Verwendung der AWS SDK für Java

Dieser Abschnitt bietet Beispiele für die Programmierung von CloudWatch mithilfe des AWS SDK für
Java.

Amazon CloudWatch überwacht Ihre Amazon Web Services (AWS) Ressourcen und die
Anwendungen, auf denen Sie laufen, AWS in Echtzeit. Sie können CloudWatch damit Metriken
sammeln und verfolgen. Dabei handelt es sich um Variablen, die Sie für Ihre Ressourcen und
Anwendungen messen können. CloudWatch Alarme senden Benachrichtigungen oder nehmen auf
der Grundlage von von Ihnen festgelegter Regeln automatisch Änderungen an den Ressourcen vor,
die Sie überwachen.

AWS SDK für Java 2.x 58

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Weitere Informationen dazu CloudWatch finden Sie im Amazon CloudWatch Benutzerhandbuch.

Note

Die Beispiele enthalten nur den Code, der zur Demonstration jeder Technik nötig ist. Der
vollständige Beispielcode ist verfügbar unter GitHub. Von dort aus können Sie eine einzelne
Quelldatei herunterladen oder das Repository klonen, um alle Beispiele lokal zu erstellen und
auszuführen.

Themen

• Metriken abrufen von CloudWatch

• Veröffentlichen benutzerdefinierter Metrikdaten

• Mit CloudWatch Alarmen arbeiten

• Verwenden von Alarmaktionen in CloudWatch

• Ereignisse senden an CloudWatch

Metriken abrufen von CloudWatch

Auflisten von Metriken

Um CloudWatch Metriken aufzulisten, erstellen Sie eine listMetrics Methode
ListMetricsRequestund rufen sie auf. AmazonCloudWatchClient Sie können ListMetricsRequest
zum Filtern der zurückgegebenen Metriken nach Namespace, Metrikname oder Dimensionen
verwenden.

Note

Eine Liste der Metriken und Dimensionen, die von AWS Services veröffentlicht werden,
finden Sie im {https---docs-aws-amazon-com- AmazonCloudWatch -Latest-Monitoring-cw-
support-for-AWS-html} [Amazon Metrics and Dimensions Reference] im Benutzerhandbuch.
CloudWatch Amazon CloudWatch

Importe

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;

Metriken abrufen von CloudWatch 59

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ListMetricsRequest;
import com.amazonaws.services.cloudwatch.model.ListMetricsResult;
import com.amazonaws.services.cloudwatch.model.Metric;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

ListMetricsRequest request = new ListMetricsRequest()
 .withMetricName(name)
 .withNamespace(namespace);

boolean done = false;

while(!done) {
 ListMetricsResult response = cw.listMetrics(request);

 for(Metric metric : response.getMetrics()) {
 System.out.printf(
 "Retrieved metric %s", metric.getMetricName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

Die Metriken werden in a zurückgegeben, indem die zugehörige Methode aufgerufen
wird. ListMetricsResultgetMetrics Eventuell werden die Ergebnisse seitenweise
zurückgegeben. Um den nächsten Stapel Ergebnisse abzurufen, rufen Sie setNextToken
beim Original-Anforderungsobjekt mit dem Rückgabewert der getNextToken-Methode des
ListMetricsResult-Objekts auf. Übergeben Sie das geänderte Anforderungsobjekt dann an
einen weiteren Aufruf von listMetrics.

Weitere Informationen

• ListMetricsin der Amazon CloudWatch API-Referenz.

Metriken abrufen von CloudWatch 60

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsResult.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Veröffentlichen benutzerdefinierter Metrikdaten

Eine Reihe von AWS Diensten veröffentlichen ihre eigenen Metriken in Namespaces, die mit
"AWS" beginnen. Sie können benutzerdefinierte Metrikdaten auch mit Ihrem eigenen Namespace
veröffentlichen (sofern dieser nicht mit "" beginnt). AWS

Veröffentlichen benutzerdefinierter Metrikdaten

Um Ihre eigenen Metrikdaten zu veröffentlichen, rufen Sie die Methode AmazonCloudWatchClient's
putMetricData mit einem auf. PutMetricDataRequest Die PutMetricDataRequest muss
den benutzerdefinierten Namespace enthalten, der für die Daten verwendet werden soll, und
Informationen über den Datenpunkt selbst in einem MetricDatumObjekt.

Note

Sie können keinen Namespace angeben, der mit "" AWS beginnt. Namespaces, die mit "AWS"
beginnen, sind für die Verwendung durch Produkte reserviert. Amazon Web Services

Importe

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.MetricDatum;
import com.amazonaws.services.cloudwatch.model.PutMetricDataRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricDataResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("UNIQUE_PAGES")
 .withValue("URLS");

MetricDatum datum = new MetricDatum()
 .withMetricName("PAGES_VISITED")
 .withUnit(StandardUnit.None)

Veröffentlichen benutzerdefinierter Metrikdaten 61

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricDataRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/MetricDatum.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withValue(data_point)
 .withDimensions(dimension);

PutMetricDataRequest request = new PutMetricDataRequest()
 .withNamespace("SITE/TRAFFIC")
 .withMetricData(datum);

PutMetricDataResult response = cw.putMetricData(request);

Weitere Informationen

• Verwenden von Amazon CloudWatch Metriken im Amazon CloudWatch Benutzerhandbuch.

• AWS Namespaces im Amazon CloudWatch Benutzerhandbuch.

• PutMetricDatain der API-Referenz Amazon CloudWatch .

Mit CloudWatch Alarmen arbeiten

Einrichten eines Alarms

Um einen Alarm auf der Grundlage einer CloudWatch Metrik zu erstellen, rufen Sie die
AmazonCloudWatchClient putMetricAlarm Methode 'mit PutMetricAlarmRequesteiner Angabe der
Alarmbedingungen auf.

Importe

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ComparisonOperator;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;
import com.amazonaws.services.cloudwatch.model.Statistic;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("InstanceId")

Mit CloudWatch Alarmen arbeiten 62

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withValue(instanceId);

PutMetricAlarmRequest request = new PutMetricAlarmRequest()
 .withAlarmName(alarmName)
 .withComparisonOperator(
 ComparisonOperator.GreaterThanThreshold)
 .withEvaluationPeriods(1)
 .withMetricName("CPUUtilization")
 .withNamespace("{AWS}/EC2")
 .withPeriod(60)
 .withStatistic(Statistic.Average)
 .withThreshold(70.0)
 .withActionsEnabled(false)
 .withAlarmDescription(
 "Alarm when server CPU utilization exceeds 70%")
 .withUnit(StandardUnit.Seconds)
 .withDimensions(dimension);

PutMetricAlarmResult response = cw.putMetricAlarm(request);

Auflisten von Alarmen

Um die CloudWatch Alarme aufzulisten, die Sie erstellt haben, rufen Sie die describeAlarms
Methode AmazonCloudWatchClient's mit einer auf DescribeAlarmsRequest, mit der Sie Optionen für
das Ergebnis festlegen können.

Importe

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsResult;
import com.amazonaws.services.cloudwatch.model.MetricAlarm;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

boolean done = false;
DescribeAlarmsRequest request = new DescribeAlarmsRequest();

while(!done) {

Mit CloudWatch Alarmen arbeiten 63

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 DescribeAlarmsResult response = cw.describeAlarms(request);

 for(MetricAlarm alarm : response.getMetricAlarms()) {
 System.out.printf("Retrieved alarm %s", alarm.getAlarmName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

Die Liste der Alarme kann abgerufen werden, indem Sie die getMetricAlarms Funktion aufrufen
DescribeAlarmsResult, die von zurückgegeben wirddescribeAlarms.

Eventuell werden die Ergebnisse seitenweise zurückgegeben. Um den nächsten Stapel Ergebnisse
abzurufen, rufen Sie setNextToken beim Original-Anforderungsobjekt mit dem Rückgabewert der
getNextToken-Methode des DescribeAlarmsResult-Objekts auf. Übergeben Sie das geänderte
Anforderungsobjekt dann an einen weiteren Aufruf von describeAlarms.

Note

Sie können auch Alarme für eine bestimmte Metrik abrufen, indem Sie die
describeAlarmsForMetric Methode AmazonCloudWatchClient's verwenden. Sie lässt
sich ähnlich wie describeAlarms nutzen.

Löschen von Alarmen

Um CloudWatch Alarme zu löschen, rufen Sie die AmazonCloudWatchClient deleteAlarms
Methode mit einer auf, DeleteAlarmsRequestdie einen oder mehrere Namen von Alarmen enthält, die
Sie löschen möchten.

Importe

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsResult;

Mit CloudWatch Alarmen arbeiten 64

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DeleteAlarmsRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DeleteAlarmsRequest request = new DeleteAlarmsRequest()
 .withAlarmNames(alarm_name);

DeleteAlarmsResult response = cw.deleteAlarms(request);

Weitere Informationen

• Amazon CloudWatch Alarme erstellen im Amazon CloudWatch Benutzerhandbuch

• PutMetricAlarmin der Amazon CloudWatch API-Referenz

• DescribeAlarmsin der Amazon CloudWatch API-Referenz

• DeleteAlarmsin der Amazon CloudWatch API-Referenz

Verwenden von Alarmaktionen in CloudWatch

Mithilfe von CloudWatch Alarmaktionen können Sie Alarme erstellen, die Aktionen wie das
automatische Stoppen, Beenden, Neustarten oder Wiederherstellen von Instanzen ausführen.
Amazon EC2

Note

Alarmaktionen können einem Alarm hinzugefügt werden, indem Sie bei der
PutMetricAlarmRequestErstellung eines Alarms die setAlarmActions Methode
verwenden.

Aktivieren von Alarmaktionen

Um Alarmaktionen für einen CloudWatch Alarm zu aktivieren, rufen Sie den
AmazonCloudWatchClient enableAlarmActions Befehl mit einem auf, der einen oder mehrere
Namen von Alarmen EnableAlarmActionsRequestenthält, deren Aktionen Sie aktivieren möchten.

Importe

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;

Verwenden von Alarmaktionen in CloudWatch 65

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DescribeAlarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DeleteAlarms.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/EnableAlarmActionsRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

EnableAlarmActionsRequest request = new EnableAlarmActionsRequest()
 .withAlarmNames(alarm);

EnableAlarmActionsResult response = cw.enableAlarmActions(request);

Deaktivieren von Alarmaktionen

Um Alarmaktionen für einen CloudWatch Alarm zu deaktivieren, rufen Sie die
AmazonCloudWatchClient s disableAlarmActions mit einem auf, das einen oder mehrere
Namen von Alarmen DisableAlarmActionsRequestenthält, deren Aktionen Sie deaktivieren möchten.

Importe

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DisableAlarmActionsRequest request = new DisableAlarmActionsRequest()
 .withAlarmNames(alarmName);

DisableAlarmActionsResult response = cw.disableAlarmActions(request);

Weitere Informationen

• Erstellen Sie im Amazon CloudWatch Benutzerhandbuch Alarme zum Stoppen, Beenden,
Neustarten oder Wiederherstellen einer Instanz

Verwenden von Alarmaktionen in CloudWatch 66

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DisableAlarmActionsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• PutMetricAlarmin der Amazon CloudWatch API-Referenz

• EnableAlarmActionsin der Amazon CloudWatch API-Referenz

• DisableAlarmActionsin der Amazon CloudWatch API-Referenz

Ereignisse senden an CloudWatch

CloudWatch Events liefert nahezu in Echtzeit einen Stream von Systemereignissen, die Änderungen
an AWS Ressourcen für Amazon EC2 Instanzen, Lambda Funktionen, Kinesis Streams, Amazon
ECS Aufgaben, Step Functions Zustandsmaschinen, Amazon SNS Themen, Amazon SQS
Warteschlangen oder integrierte Ziele beschreiben. Sie können Ereignisse zuordnen und sie zu einer
oder mehreren Zielfunktionen oder Streams umleiten, indem Sie einfache Regeln nutzen.

Hinzufügen von Ereignissen

Um benutzerdefinierte CloudWatch Ereignisse hinzuzufügen, rufen Sie die
AmazonCloudWatchEventsClient putEvents 's-Methode mit einem PutEventsRequestObjekt
auf, das ein oder mehrere PutEventsRequestEntryObjekte enthält, die Details zu jedem Ereignis
bereitstellen. Sie können mehrere Parameter für den Eintrag angeben, wie z. B. die Quelle und den
Typ des Ereignisses, mit dem Ereignis verknüpfte Ressourcen usw.

Note

Sie können maximal 10 Ereignisse pro Aufruf von putEvents angeben.

Importe

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequestEntry;
import com.amazonaws.services.cloudwatchevents.model.PutEventsResult;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

Ereignisse senden an CloudWatch 67

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_EnableAlarmActions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DisableAlarmActions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequestEntry.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

final String EVENT_DETAILS =
 "{ \"key1\": \"value1\", \"key2\": \"value2\" }";

PutEventsRequestEntry request_entry = new PutEventsRequestEntry()
 .withDetail(EVENT_DETAILS)
 .withDetailType("sampleSubmitted")
 .withResources(resource_arn)
 .withSource("aws-sdk-java-cloudwatch-example");

PutEventsRequest request = new PutEventsRequest()
 .withEntries(request_entry);

PutEventsResult response = cwe.putEvents(request);

Hinzufügen von Regeln

Um eine Regel zu erstellen oder zu aktualisieren, rufen Sie die AmazonCloudWatchEventsClient
putRule Methode 'PutRuleRequestmit dem Namen der Regel und optionalen Parametern wie dem
Ereignismuster, der IAM Rolle, die der Regel zugeordnet werden soll, und einem Planungsausdruck
auf, der beschreibt, wie oft die Regel ausgeführt wird.

Importe

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutRuleRequest;
import com.amazonaws.services.cloudwatchevents.model.PutRuleResult;
import com.amazonaws.services.cloudwatchevents.model.RuleState;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

PutRuleRequest request = new PutRuleRequest()
 .withName(rule_name)
 .withRoleArn(role_arn)
 .withScheduleExpression("rate(5 minutes)")
 .withState(RuleState.ENABLED);

PutRuleResult response = cwe.putRule(request);

Ereignisse senden an CloudWatch 68

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutRuleRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Hinzufügen von Zielen

Ziele sind die Ressourcen, die beim Auslösen einer Regel aufgerufen werden. Zu den Beispielzielen
gehören Amazon EC2 Instanzen, Lambda Funktionen, Kinesis Streams, Amazon ECS Aufgaben,
Step Functions Zustandsmaschinen und integrierte Ziele.

Um einer Regel ein Ziel hinzuzufügen, rufen Sie die AmazonCloudWatchEventsClient
putTargets 's-Methode mit einer auf, die die zu aktualisierende Regel und eine Liste von Zielen
PutTargetsRequestenthält, die der Regel hinzugefügt werden sollen.

Importe

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsResult;
import com.amazonaws.services.cloudwatchevents.model.Target;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

Target target = new Target()
 .withArn(function_arn)
 .withId(target_id);

PutTargetsRequest request = new PutTargetsRequest()
 .withTargets(target)
 .withRule(rule_name);

PutTargetsResult response = cwe.putTargets(request);

Weitere Informationen

• Hinzufügen von Ereignissen mit PutEvents im Amazon CloudWatch Events Benutzerhandbuch

• Planen Sie Ausdrücke für Regeln im Amazon CloudWatch Events Benutzerhandbuch

• Ereignistypen für CloudWatch Ereignisse im Amazon CloudWatch Events Benutzerhandbuch

• Ereignisse und Ereignismuster im Amazon CloudWatch Events Benutzerhandbuch

• PutEventsin der Amazon CloudWatch Events API-Referenz

Ereignisse senden an CloudWatch 69

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutTargetsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/EventTypes.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• PutTargetsin der Amazon CloudWatch Events API-Referenz

• PutRulein der Amazon CloudWatch Events API-Referenz

DynamoDB Beispiele für die Verwendung der AWS SDK für Java

Dieser Abschnitt bietet Beispiele für die Programmierung von DynamoDB mithilfe des AWS SDK für
Java.

Note

Die Beispiele enthalten nur den Code, der zur Demonstration jeder Technik nötig ist. Der
vollständige Beispielcode ist verfügbar unter GitHub. Von dort aus können Sie eine einzelne
Quelldatei herunterladen oder das Repository klonen, um alle Beispiele lokal zu erstellen und
auszuführen.

Themen

• Verwenden Sie AWS kontobasierte Endpunkte

• Arbeiten mit Tabellen in DynamoDB

• Arbeiten mit Elementen in DynamoDB

Verwenden Sie AWS kontobasierte Endpunkte

DynamoDB bietet AWS kontobasierte Endpunkte, die die Leistung verbessern können, indem sie Ihre
AWS Konto-ID verwenden, um die Anforderungsweiterleitung zu optimieren.

Um diese Funktion nutzen zu können, müssen Sie Version 1.12.771 oder höher von Version 1
von verwenden. AWS SDK für Java Sie finden die neueste Version des SDK im zentralen Maven-
Repository. Sobald eine unterstützte Version des SDK aktiv ist, verwendet sie automatisch die neuen
Endpunkte.

Wenn Sie das kontobasierte Routing deaktivieren möchten, haben Sie vier Möglichkeiten:

• Konfigurieren Sie einen DynamoDB-Dienstclient mit der AccountIdEndpointMode Einstellung
auf. DISABLED

• Legen Sie eine Umgebungsvariable fest.

Amazon DynamoDB Beispiele 70

https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutRule.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.SDKOverview.html#Programming.SDKs.endpoints
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• Legen Sie eine JVM-Systemeigenschaft fest.

• Aktualisieren Sie die Einstellung für die gemeinsam genutzte AWS Konfigurationsdatei.

Der folgende Ausschnitt ist ein Beispiel dafür, wie Sie das kontobasierte Routing deaktivieren können,
indem Sie einen DynamoDB-Dienstclient konfigurieren:

ClientConfiguration config = new ClientConfiguration()
 .withAccountIdEndpointMode(AccountIdEndpointMode.DISABLED);
AWSCredentialsProvider credentialsProvider = new
 EnvironmentVariableCredentialsProvider();

AmazonDynamoDB dynamodb = AmazonDynamoDBClientBuilder.standard()
 .withClientConfiguration(config)
 .withCredentials(credentialsProvider)
 .withRegion(Regions.US_WEST_2)
 .build();

Das AWS SDKs Referenzhandbuch zu Tools enthält weitere Informationen zu den letzten drei
Konfigurationsoptionen.

Arbeiten mit Tabellen in DynamoDB

Tabellen sind die Container für alle Elemente in einer DynamoDB Datenbank. Bevor Sie Daten
hinzufügen oder daraus entfernen können DynamoDB, müssen Sie eine Tabelle erstellen.

Für jede Tabelle definieren Sie:

• Einen Tabellennamen, der eindeutig für Ihr Konto und Ihre Region ist.

• Einen Primärschlüssel, für den jeder Wert eindeutig sein muss. Ihre Tabelle kann keine zwei
Elemente mit demselben Primärschlüsselwert enthalten.

Ein Primärschlüssel kann einfach sein, also aus einem Schlüssel mit einer einzigen Partition
(HASH) bestehen, oder zusammengesetzt, also aus einer Partition und einem Sortierschlüssel
(RANGE).

Jedem Schlüsselwert ist ein Datentyp zugeordnet, der nach der ScalarAttributeTypeKlasse
aufgezählt wird. Der Schlüsselwert kann binär (B), numerisch (n) oder eine Zeichenfolge (S) sein.
Weitere Informationen finden Sie unter Benennungsregeln und Datentypen im Amazon DynamoDB
Entwicklerhandbuch.

Arbeiten mit Tabellen in DynamoDB 71

https://docs.aws.amazon.com/sdkref/latest/guide/feature-account-endpoints.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-account-endpoints.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ScalarAttributeType.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• Werte zum bereitgestellten Durchsatz, die die Anzahl der reservierten Lese-Schreib-
Kapazitätseinheiten für die Tabelle angeben.

Note

Amazon DynamoDB Die Preisgestaltung basiert auf den bereitgestellten Durchsatzwerten,
die Sie für Ihre Tabellen festlegen. Reservieren Sie daher nur so viel Kapazität, wie Sie für
Ihre Tabelle voraussichtlich benötigen.

Der bereitgestellte Durchsatz für eine Tabelle kann jederzeit geändert werden. So können Sie die
Kapazität anpassen, wenn sich Ihre Anforderungen ändern.

Erstellen einer Tabelle

Verwenden Sie die createTable Methode des DynamoDB Kunden, um eine neue DynamoDB
Tabelle zu erstellen. Sie müssen Tabellenattribute und ein Tabellenschema erstellen. Beide
Komponenten fließen in den Primärschlüssel der Tabelle ein. Sie müssen auch anfänglich
bereitgestellte Durchsatzwerte und einen Tabellennamen angeben. Definieren Sie nur wichtige
Tabellenattribute, wenn Sie Ihre DynamoDB Tabelle erstellen.

Note

Wenn eine Tabelle mit dem von Ihnen gewählten Namen bereits existiert,
AmazonServiceExceptionwird eine ausgelöst.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.CreateTableResult;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.ScalarAttributeType;

Arbeiten mit Tabellen in DynamoDB 72

https://aws.amazon.com/dynamodb/pricing/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Erstellen einer Tabelle mit einem einfachen Primärschlüssel

Dieser Code erstellt eine Tabelle mit einem einfachen Primärschlüssel ("Name").

Code

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(new AttributeDefinition(
 "Name", ScalarAttributeType.S))
 .withKeySchema(new KeySchemaElement("Name", KeyType.HASH))
 .withProvisionedThroughput(new ProvisionedThroughput(
 new Long(10), new Long(10)))
 .withTableName(table_name);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 CreateTableResult result = ddb.createTable(request);
 System.out.println(result.getTableDescription().getTableName());
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter GitHub.

Erstellen einer Tabelle mit einem zusammengesetzten Primärschlüssel

Füge ein weiteres hinzu AttributeDefinitionund KeySchemaElementzu CreateTableRequest.

Code

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(
 new AttributeDefinition("Language", ScalarAttributeType.S),
 new AttributeDefinition("Greeting", ScalarAttributeType.S))
 .withKeySchema(
 new KeySchemaElement("Language", KeyType.HASH),
 new KeySchemaElement("Greeting", KeyType.RANGE))
 .withProvisionedThroughput(
 new ProvisionedThroughput(new Long(10), new Long(10)))
 .withTableName(table_name);

Das vollständige Beispiel finden Sie unter GitHub.

Arbeiten mit Tabellen in DynamoDB 73

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeDefinition.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/KeySchemaElement.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/CreateTableRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTableCompositeKey.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Auflisten von Tabellen

Sie können die Tabellen in einer bestimmten Region auflisten, indem Sie die listTables Methode
des DynamoDB Clients aufrufen.

Note

Wenn die benannte Tabelle für Ihr Konto und Ihre Region nicht existiert,
ResourceNotFoundExceptionwird a ausgelöst.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ListTablesRequest;
import com.amazonaws.services.dynamodbv2.model.ListTablesResult;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

ListTablesRequest request;

boolean more_tables = true;
String last_name = null;

while(more_tables) {
 try {
 if (last_name == null) {
 request = new ListTablesRequest().withLimit(10);
 }
 else {
 request = new ListTablesRequest()
 .withLimit(10)
 .withExclusiveStartTableName(last_name);
 }

 ListTablesResult table_list = ddb.listTables(request);
 List<String> table_names = table_list.getTableNames();

Arbeiten mit Tabellen in DynamoDB 74

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 if (table_names.size() > 0) {
 for (String cur_name : table_names) {
 System.out.format("* %s\n", cur_name);
 }
 } else {
 System.out.println("No tables found!");
 System.exit(0);
 }

 last_name = table_list.getLastEvaluatedTableName();
 if (last_name == null) {
 more_tables = false;
 }

Standardmäßig werden bis zu 100 Tabellen pro Aufruf zurückgegeben. Verwenden Sie diese
getLastEvaluatedTableName Option für das zurückgegebene ListTablesResultObjekt, um die
zuletzt ausgewertete Tabelle abzurufen. Mit diesem Wert können Sie die Auflistung nach dem zuletzt
zurückgegebenen Wert der vorherigen Auflistung beginnen.

Das vollständige Beispiel finden Sie unter. GitHub

Beschreiben (Abrufen von Informationen zu) einer Tabelle

Rufen Sie die describeTable Methode des DynamoDB Clients auf.

Note

Wenn die benannte Tabelle für Ihr Konto und Ihre Region nicht existiert,
ResourceNotFoundExceptionwird a ausgelöst.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughputDescription;
import com.amazonaws.services.dynamodbv2.model.TableDescription;

Code

Arbeiten mit Tabellen in DynamoDB 75

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/model/ListTablesResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/ListTables.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 TableDescription table_info =
 ddb.describeTable(table_name).getTable();

 if (table_info != null) {
 System.out.format("Table name : %s\n",
 table_info.getTableName());
 System.out.format("Table ARN : %s\n",
 table_info.getTableArn());
 System.out.format("Status : %s\n",
 table_info.getTableStatus());
 System.out.format("Item count : %d\n",
 table_info.getItemCount().longValue());
 System.out.format("Size (bytes): %d\n",
 table_info.getTableSizeBytes().longValue());

 ProvisionedThroughputDescription throughput_info =
 table_info.getProvisionedThroughput();
 System.out.println("Throughput");
 System.out.format(" Read Capacity : %d\n",
 throughput_info.getReadCapacityUnits().longValue());
 System.out.format(" Write Capacity: %d\n",
 throughput_info.getWriteCapacityUnits().longValue());

 List<AttributeDefinition> attributes =
 table_info.getAttributeDefinitions();
 System.out.println("Attributes");
 for (AttributeDefinition a : attributes) {
 System.out.format(" %s (%s)\n",
 a.getAttributeName(), a.getAttributeType());
 }
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter GitHub.

Arbeiten mit Tabellen in DynamoDB 76

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DescribeTable.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Ändern (Aktualisieren) einer Tabelle

Sie können die bereitgestellten Durchsatzwerte Ihrer Tabelle jederzeit ändern, indem Sie die
updateTable Methode des DynamoDB Clients aufrufen.

Note

Wenn die benannte Tabelle für Ihr Konto und Ihre Region nicht existiert,
ResourceNotFoundExceptionwird a ausgelöst.

Importe

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.AmazonServiceException;

Code

ProvisionedThroughput table_throughput = new ProvisionedThroughput(
 read_capacity, write_capacity);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateTable(table_name, table_throughput);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter GitHub.

Löschen einer Tabelle

Rufen Sie die deleteTable Methode des DynamoDB Clients auf und übergeben Sie ihr den Namen
der Tabelle.

Arbeiten mit Tabellen in DynamoDB 77

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Wenn die benannte Tabelle für Ihr Konto und Ihre Region nicht existiert,
ResourceNotFoundExceptionwird a ausgelöst.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.deleteTable(table_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Infos

• Richtlinien für die Arbeit mit Tabellen finden Sie im Amazon DynamoDB Entwicklerhandbuch

• Arbeiten mit Tabellen finden Sie DynamoDB im Amazon DynamoDB Entwicklerhandbuch

Arbeiten mit Elementen in DynamoDB

DynamoDB In ist ein Element eine Sammlung von Attributen, von denen jedes einen Namen und
einen Wert hat. Ein Attributwert kann eine Skalarfunktion, eine Gruppe oder ein Dokumenttyp sein.
Weitere Informationen finden Sie unter Benennungsregeln und Datentypen im Amazon DynamoDB
Entwicklerhandbuch.

Arbeiten mit Elementen in DynamoDB 78

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DeleteTable.java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Abrufen (empfangen) eines Elements aus einer Tabelle

Rufen Sie die AmazonDynamo getItem DB-Methode auf und übergeben Sie ihr ein
GetItemRequestObjekt mit dem Tabellennamen und dem Primärschlüsselwert des gewünschten
Elements. Sie gibt ein GetItemResultObjekt zurück.

Sie können die getItem() Methode des zurückgegebenen GetItemResult Objekts verwenden,
um eine Map von Schlüsselpaaren (String) und Wertpaaren (AttributeValue) abzurufen, die dem
Element zugeordnet sind.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import java.util.HashMap;
import java.util.Map;

Code

HashMap<String,AttributeValue> key_to_get =
 new HashMap<String,AttributeValue>();

key_to_get.put("DATABASE_NAME", new AttributeValue(name));

GetItemRequest request = null;
if (projection_expression != null) {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name)
 .withProjectionExpression(projection_expression);
} else {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name);
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {

Arbeiten mit Elementen in DynamoDB 79

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemResult.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeValue.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 Map<String,AttributeValue> returned_item =
 ddb.getItem(request).getItem();
 if (returned_item != null) {
 Set<String> keys = returned_item.keySet();
 for (String key : keys) {
 System.out.format("%s: %s\n",
 key, returned_item.get(key).toString());
 }
 } else {
 System.out.format("No item found with the key %s!\n", name);
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

Das vollständige Beispiel finden Sie unter GitHub.

Hinzufügen eines neuen Elements zu einer Tabelle

Erstellen Sie eine Map mit Schlüssel-Wert-Paaren, die die Attribute des Elements darstellen. Diese
müssen Werte für die Primärschlüsselfelder der Tabelle enthalten. Wenn das Element mit dem
Primärschlüssel bereits vorhanden ist, werden dessen Felder durch die Anforderung aktualisiert.

Note

Wenn die benannte Tabelle für Ihr Konto und Ihre Region nicht existiert,
ResourceNotFoundExceptionwird a ausgelöst.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Code

HashMap<String,AttributeValue> item_values =
 new HashMap<String,AttributeValue>();

Arbeiten mit Elementen in DynamoDB 80

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/GetItem.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

item_values.put("Name", new AttributeValue(name));

for (String[] field : extra_fields) {
 item_values.put(field[0], new AttributeValue(field[1]));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.putItem(table_name, item_values);
} catch (ResourceNotFoundException e) {
 System.err.format("Error: The table \"%s\" can't be found.\n", table_name);
 System.err.println("Be sure that it exists and that you've typed its name
 correctly!");
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

Das vollständige Beispiel finden Sie unter GitHub.

Aktualisieren eines vorhandenen Elements in einer Tabelle

Sie können ein Attribut für ein Element aktualisieren, das bereits in einer Tabelle vorhanden ist,
indem Sie die updateItem Methode der AmazonDynamo Datenbank verwenden und dabei einen
Tabellennamen, einen Primärschlüsselwert und eine Zuordnung der zu aktualisierenden Felder
angeben.

Note

Wenn die benannte Tabelle für Ihr Konto und Ihre Region nicht existiert oder wenn das
Element, das durch den von Ihnen übergebenen Primärschlüssel identifiziert wurde, nicht
existiert, ResourceNotFoundExceptionwird a ausgelöst.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeAction;

Arbeiten mit Elementen in DynamoDB 81

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/PutItem.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.AttributeValueUpdate;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Code

HashMap<String,AttributeValue> item_key =
 new HashMap<String,AttributeValue>();

item_key.put("Name", new AttributeValue(name));

HashMap<String,AttributeValueUpdate> updated_values =
 new HashMap<String,AttributeValueUpdate>();

for (String[] field : extra_fields) {
 updated_values.put(field[0], new AttributeValueUpdate(
 new AttributeValue(field[1]), AttributeAction.PUT));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateItem(table_name, item_key, updated_values);
} catch (ResourceNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

Das vollständige Beispiel finden Sie unter GitHub.

Verwenden Sie die Dynamo-Klasse DBMapper

Die AWS SDK für Javastellt eine DBMapperDynamo-Klasse bereit, mit der Sie Ihre clientseitigen
Klassen Tabellen zuordnen können. Amazon DynamoDB Um die DBMapperDynamo-Klasse zu
verwenden, definieren Sie die Beziehung zwischen Elementen in einer DynamoDB Tabelle und
ihren entsprechenden Objektinstanzen in Ihrem Code mithilfe von Anmerkungen (wie im folgenden
Codebeispiel gezeigt). Mit der DBMapperDynamo-Klasse können Sie auf Ihre Tabellen zugreifen,
verschiedene Erstellungs-, Lese-, Aktualisierungs- und Löschvorgänge (CRUD) ausführen und
Abfragen ausführen.

Arbeiten mit Elementen in DynamoDB 82

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateItem.java
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Mit der DBMapperDynamo-Klasse können Sie keine Tabellen erstellen, aktualisieren oder
löschen.

Importe

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBRangeKey;
import com.amazonaws.services.dynamodbv2.model.AmazonDynamoDBException;

Code

Das folgende Java-Codebeispiel zeigt Ihnen, wie Sie mithilfe der DBMapperDynamo-Klasse Inhalte
zur Music-Tabelle hinzufügen. Nachdem der Inhalt der Tabelle hinzugefügt wurde, beachten Sie,
dass ein Element mithilfe der Schlüssel Partition und Sortieren geladen wird. Anschließend wird das
Element Auszeichnungen aktualisiert. Informationen zum Erstellen der Music-Tabelle finden Sie unter
Create a Table im Amazon DynamoDB Developer Guide.

 AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 MusicItems items = new MusicItems();

 try{
 // Add new content to the Music table
 items.setArtist(artist);
 items.setSongTitle(songTitle);
 items.setAlbumTitle(albumTitle);
 items.setAwards(Integer.parseInt(awards)); //convert to an int

 // Save the item
 DynamoDBMapper mapper = new DynamoDBMapper(client);
 mapper.save(items);

 // Load an item based on the Partition Key and Sort Key
 // Both values need to be passed to the mapper.load method

Arbeiten mit Elementen in DynamoDB 83

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 String artistName = artist;
 String songQueryTitle = songTitle;

 // Retrieve the item
 MusicItems itemRetrieved = mapper.load(MusicItems.class, artistName,
 songQueryTitle);
 System.out.println("Item retrieved:");
 System.out.println(itemRetrieved);

 // Modify the Award value
 itemRetrieved.setAwards(2);
 mapper.save(itemRetrieved);
 System.out.println("Item updated:");
 System.out.println(itemRetrieved);

 System.out.print("Done");
 } catch (AmazonDynamoDBException e) {
 e.getStackTrace();
 }
 }

 @DynamoDBTable(tableName="Music")
 public static class MusicItems {

 //Set up Data Members that correspond to columns in the Music table
 private String artist;
 private String songTitle;
 private String albumTitle;
 private int awards;

 @DynamoDBHashKey(attributeName="Artist")
 public String getArtist() {
 return this.artist;
 }

 public void setArtist(String artist) {
 this.artist = artist;
 }

 @DynamoDBRangeKey(attributeName="SongTitle")
 public String getSongTitle() {
 return this.songTitle;
 }

Arbeiten mit Elementen in DynamoDB 84

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 public void setSongTitle(String title) {
 this.songTitle = title;
 }

 @DynamoDBAttribute(attributeName="AlbumTitle")
 public String getAlbumTitle() {
 return this.albumTitle;
 }

 public void setAlbumTitle(String title) {
 this.albumTitle = title;
 }

 @DynamoDBAttribute(attributeName="Awards")
 public int getAwards() {
 return this.awards;
 }

 public void setAwards(int awards) {
 this.awards = awards;
 }
 }

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Infos

• Richtlinien für die Arbeit mit Elementen im Amazon DynamoDB Entwicklerhandbuch

• Arbeiten mit Elementen aus DynamoDB dem Amazon DynamoDB Entwicklerhandbuch

Amazon EC2 Beispiele für die Verwendung der AWS SDK für Java
Dieser Abschnitt enthält Beispiele für die Programmierung Amazon EC2mit dem AWS SDK für Java.

Themen

• Tutorial: Eine EC2 Instanz starten

• Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon EC2

• Tutorial: Amazon EC2 Spot-Instances

• Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement

• Amazon EC2 Instanzen verwalten

Amazon EC2 Beispiele 85

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UseDynamoMapping.java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForItems.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://aws.amazon.com/ec2/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• Verwendung von Elastic IP-Adressen in Amazon EC2

• Regionen und Verfügbarkeitszonen verwenden

• Mit Amazon EC2 Schlüsselpaaren arbeiten

• Arbeiten mit Sicherheitsgruppen in Amazon EC2

Tutorial: Eine EC2 Instanz starten

Dieses Tutorial zeigt, wie Sie mit AWS SDK für Java dem eine EC2 Instanz starten können.

Themen

• Voraussetzungen

• Eine Amazon EC2 Sicherheitsgruppe erstellen

• Erstellen eines Schlüsselpaares

• Eine Amazon EC2 Instanz ausführen

Voraussetzungen

Bevor Sie beginnen, stellen Sie sicher, dass Sie eine erstellt AWS-Konto und Ihre AWS
Anmeldeinformationen eingerichtet haben. Weitere Informationen finden Sie unter Erste Schritte mit .

Eine Amazon EC2 Sicherheitsgruppe erstellen

EC2-Classic geht in den Ruhestand

Warning

Wir gehen in den Ruhestand EC2 -Classic am 15. August 2022. Wir empfehlen Ihnen, von
EC2 -Classic zu einer VPC zu migrieren. Weitere Informationen finden Sie im Blogbeitrag
EC2-Classic-Classic-Classic Networking is Retiring — So bereiten Sie sich vor.

Erstellen Sie eine Sicherheitsgruppe, die als virtuelle Firewall fungiert und den Netzwerkverkehr für
eine oder mehrere Instanzen kontrolliert. EC2 Ordnet Ihre Amazon EC2 Instances standardmäßig
einer Sicherheitsgruppe zu, die keinen eingehenden Datenverkehr zulässt. Sie können eine
Sicherheitsgruppe erstellen, die es Ihren EC2 Instances ermöglicht, bestimmten Datenverkehr zu
akzeptieren. Wenn Sie beispielsweise eine Verbindung zu einer Linux-Instance herstellen müssen,

Tutorial: Eine EC2 Instanz starten 86

https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

muss die Sicherheitsgruppe so konfiguriert werden, dass SSH-Datenverkehr möglich ist. Sie können
eine Sicherheitsgruppe mithilfe der Amazon EC2 Konsole oder der erstellen AWS SDK für Java.

Sie erstellen eine Sicherheitsgruppe für die Verwendung in EC2 -Classic oder VPC EC2. Weitere
Informationen zu EC2 -Classic und EC2 VPC finden Sie unter Unterstützte Plattformen im Amazon
EC2 Benutzerhandbuch für Linux-Instances.

Weitere Informationen zum Erstellen einer Sicherheitsgruppe mithilfe der Amazon EC2 Konsole
finden Sie unter Amazon EC2 Sicherheitsgruppen im Amazon EC2 Benutzerhandbuch für Linux-
Instances.

1. Erstellen und initialisieren Sie eine CreateSecurityGroupRequestInstanz. Verwenden Sie die
withGroupNameMethode, um den Namen der Sicherheitsgruppe festzulegen, und die Methode
withDescription, um die Beschreibung der Sicherheitsgruppe wie folgt festzulegen:

CreateSecurityGroupRequest csgr = new CreateSecurityGroupRequest();
csgr.withGroupName("JavaSecurityGroup").withDescription("My security group");

Der Name der Sicherheitsgruppe muss in der AWS Region, in der Sie Ihren Amazon EC2 Client
initialisieren, eindeutig sein. Sie müssen US-ASCII-Zeichen für den Namen und die Beschreibung
der Sicherheitsgruppe verwenden.

2. Übergeben Sie das Anforderungsobjekt als Parameter an die createSecurityGroupMethode. Die
Methode gibt ein CreateSecurityGroupResultObjekt wie folgt zurück:

CreateSecurityGroupResult createSecurityGroupResult =
 amazonEC2Client.createSecurityGroup(csgr);

Wenn Sie versuchen, eine Sicherheitsgruppe mit dem gleichen Namen wie dem einer bereits
vorhandenen Sicherheitsgruppe zu erstellen, gibt createSecurityGroup eine Ausnahme aus.

Standardmäßig lässt eine neue Sicherheitsgruppe keinen eingehenden Datenverkehr zu Ihrer
Amazon EC2 Instance zu. Um eingehenden Datenverkehr zu erlauben, müssen Sie ausdrücklich
eingehende Daten für die Sicherheitsgruppe autorisieren. Sie können eingehende Daten für einzelne
IP-Adressen, für einen IP-Adressbereich, ein bestimmtes Protokoll sowie für TCP-/UDP-Ports
autorisieren.

1. Erstellen und initialisieren Sie eine Instanz IpPermission. Verwenden Sie die Methode
withIPv4Ranges, um den Bereich der IP-Adressen festzulegen, für den der Zugriff autorisiert

Tutorial: Eine EC2 Instanz starten 87

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withGroupName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withDescription-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createSecurityGroup-com.amazonaws.services.ec2.model.CreateSecurityGroupRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpv4Ranges-java.util.Collection-

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

werden soll, und verwenden Sie die Methode, um das withIpProtocolIP-Protokoll festzulegen.
Verwenden Sie die withToPortMethoden withFromPortund, um den Portbereich anzugeben, für
den der eingehende Datenverkehr autorisiert werden soll, wie folgt:

IpPermission ipPermission =
 new IpPermission();

IpRange ipRange1 = new IpRange().withCidrIp("111.111.111.111/32");
IpRange ipRange2 = new IpRange().withCidrIp("150.150.150.150/32");

ipPermission.withIpv4Ranges(Arrays.asList(new IpRange[] {ipRange1, ipRange2}))
 .withIpProtocol("tcp")
 .withFromPort(22)
 .withToPort(22);

Alle im IpPermission-Objekt angegebenen Bedingungen müssen erfüllt sein, damit eingehende
Daten zugelassen werden.

Geben Sie die IP-Adresse über CIDR-Notation an. Wenn Sie das Protokoll als TCP/UDP angeben,
müssen Sie einen Quell- und Ziel-Port festlegen. Sie können Ports nur bei Angabe von TCP oder
UDP autorisieren.

2. Erstellen und initialisieren Sie eine Instanz. AuthorizeSecurityGroupIngressRequest Verwenden
Sie die withGroupName Methode, um den Namen der Sicherheitsgruppe anzugeben, und
übergeben Sie das IpPermission Objekt, das Sie zuvor initialisiert haben, wie folgt an die
withIpPermissionsMethode:

AuthorizeSecurityGroupIngressRequest authorizeSecurityGroupIngressRequest =
 new AuthorizeSecurityGroupIngressRequest();

authorizeSecurityGroupIngressRequest.withGroupName("JavaSecurityGroup")
 .withIpPermissions(ipPermission);

3. Übergeben Sie das Anforderungsobjekt wie folgt an die authorizeSecurityGroupIngress-Methode:

amazonEC2Client.authorizeSecurityGroupIngress(authorizeSecurityGroupIngressRequest);

Wenn Sie authorizeSecurityGroupIngress mit IP-Adressen aufrufen, für die eingehende
Daten bereits autorisiert sind, gibt diese Methode eine Ausnahme aus. Erstellen und initialisieren

Tutorial: Eine EC2 Instanz starten 88

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpProtocol-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withToPort-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withFromPort-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html#withIpPermissions-com.amazonaws.services.ec2.model.IpPermission%E2%80%A6%E2%80%8B-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Sie vor dem Aufruf ein neues IpPermission Objekt, um den Zugriff für verschiedene Ports und
IPs Protokolle zu autorisieren. AuthorizeSecurityGroupIngress

Immer wenn Sie die Methoden authorizeSecurityGroupIngress oder authorizeSecurityGroupEgress
aufrufen, wird Ihrer Sicherheitsgruppe eine Regel hinzugefügt.

Erstellen eines Schlüsselpaares

Sie müssen ein key pair angeben, wenn Sie eine EC2 Instance starten, und dann den privaten
Schlüssel des key pair angeben, wenn Sie eine Verbindung mit der Instance herstellen. Sie
können ein Schlüsselpaar erstellen oder ein vorhandenes Schlüsselpaar verwenden, das Sie
beim Start anderer Instances genutzt haben. Weitere Informationen finden Sie unter Amazon EC2
Schlüsselpaare im Amazon EC2 Benutzerhandbuch für Linux-Instances.

1. Erstellen und initialisieren Sie eine CreateKeyPairRequestInstanz. Verwenden Sie die
withKeyNameMethode, um den Namen des key pair wie folgt festzulegen:

CreateKeyPairRequest createKeyPairRequest = new CreateKeyPairRequest();

createKeyPairRequest.withKeyName(keyName);

Important

Namen von Schlüsselpaaren müssen eindeutig sein. Wenn Sie versuchen, ein
Schlüsselpaar mit dem gleichen Namen wie dem eines bereits vorhandenen
Schlüsselpaars zu erstellen, wird eine Ausnahme ausgelöst.

2. Übergeben Sie das Anforderungsobjekt an die createKeyPairMethode. Die Methode gibt wie folgt
eine CreateKeyPairResultInstanz zurück:

CreateKeyPairResult createKeyPairResult =
 amazonEC2Client.createKeyPair(createKeyPairRequest);

3. Rufen Sie die getKeyPairMethode des Ergebnisobjekts auf, um ein KeyPairObjekt zu
erhalten. Rufen Sie die getKeyMaterialMethode des KeyPair Objekts wie folgt auf, um den
unverschlüsselten PEM-codierten privaten Schlüssel abzurufen:

KeyPair keyPair = new KeyPair();

Tutorial: Eine EC2 Instanz starten 89

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupEgress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupEgressRequest-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html#withKeyName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createKeyPair-com.amazonaws.services.ec2.model.CreateKeyPairRequest--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html#getKeyPair--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html#getKeyMaterial--

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

keyPair = createKeyPairResult.getKeyPair();

String privateKey = keyPair.getKeyMaterial();

Eine Amazon EC2 Instanz ausführen

Gehen Sie wie folgt vor, um eine oder mehrere identisch konfigurierte EC2 Instances von demselben
Amazon Machine Image (AMI) aus zu starten. Nachdem Sie Ihre EC2 Instances erstellt haben,
können Sie deren Status überprüfen. Nachdem Ihre EC2 Instances ausgeführt wurden, können Sie
eine Verbindung zu ihnen herstellen.

1. Erstellen und initialisieren Sie eine RunInstancesRequestInstanz. Stellen Sie sicher, dass das AMI,
das Schlüsselpaar und die Sicherheitsgruppe, die Sie angeben, in der beim Erstellen des Client-
Objekts angegebenen Region vorhanden sind.

RunInstancesRequest runInstancesRequest =
 new RunInstancesRequest();

runInstancesRequest.withImageId("ami-a9d09ed1")
 .withInstanceType(InstanceType.T1Micro)
 .withMinCount(1)
 .withMaxCount(1)
 .withKeyName("my-key-pair")
 .withSecurityGroups("my-security-group");

withImageId

• Die ID des AMI. Unter Amazon Machine Image (AMI) erfahren Sie, wie Sie die von Amazon
AMIs bereitgestellten Inhalte finden oder Ihre eigenen erstellen können.

withInstanceType

• Ein Instance-Typ, der kompatibel mit dem angegebenen AMI ist. Weitere Informationen
finden Sie unter Instance-Typen im Amazon EC2 Benutzerhandbuch für Linux-Instances.

withMinCount

• Die Mindestanzahl der zu startenden EC2 Instances. Wenn es sich dabei um mehr Instances
handelt, als in der Ziel-Availability Zone gestartet werden Amazon EC2 können, werden
keine Instances Amazon EC2 gestartet.

Tutorial: Eine EC2 Instanz starten 90

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withImageId-java.lang.String-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withInstanceType-java.lang.String-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMinCount-java.lang.Integer-

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

withMaxCount

• Die maximale Anzahl der zu startenden EC2 Instances. Wenn es sich dabei um mehr
Instances handelt, als in der Ziel-Availability Zone Amazon EC2 gestartet werden
Amazon EC2 können, wird die größtmögliche Anzahl von oben genannten Instances
gestartetMinCount. Sie können zwischen 1 und der maximalen Anzahl der Instances
starten, die für Sie beim jeweiligen Instance-Typ zulässig sind. Weitere Informationen
finden Sie unter Wie viele Instances kann ich ausführen? Amazon EC2 in den Amazon EC2
allgemeinen FAQs.

withKeyName

• Der Name des EC2 key pair. Wenn Sie eine Instance ohne Angabe eines Schlüsselpaars
starten, können Sie sich nicht mit ihr verbinden. Weitere Informationen finden Sie unter
Erstellen eines Schlüsselpaars.

withSecurityGroups

• Eine oder mehrere Sicherheitsgruppen. Weitere Informationen finden Sie unter Amazon EC2
Sicherheitsgruppe erstellen.

2. Starten Sie die Instances, indem Sie das Anforderungsobjekt an die runInstances-Methode
übergeben. Die Methode gibt ein RunInstancesResultObjekt wie folgt zurück:

RunInstancesResult result = amazonEC2Client.runInstances(
 runInstancesRequest);

Sobald die Instance ausgeführt wird, können Sie sich mit dem Schlüsselpaar mit ihr verbinden.
Weitere Informationen finden Sie unter Connect to Your Linux Instance. im Amazon EC2
Benutzerhandbuch für Linux-Instances.

Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren
für Amazon EC2

Alle Anfragen an Amazon Web Services (AWS) müssen kryptografisch signiert werden, wobei die
Anmeldeinformationen verwendet werden müssen, die von ausgestellt wurden. AWS Sie können
IAM-Rollen verwenden, um bequem sicheren Zugriff auf AWS Ressourcen von Ihren Instances aus
zu gewähren. Amazon EC2

Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon EC2 91

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMaxCount-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withKeyName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withSecurityGroups-java.util.Collection-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#runInstances-com.amazonaws.services.ec2.model.RunInstancesRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesResult.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Dieses Thema enthält Informationen zur Verwendung von IAM-Rollen mit Java SDK-Anwendungen,
die auf ausgeführt werden. Amazon EC2 Weitere Informationen zu IAM-Instanzen finden Sie unter
IAM-Rollen für Amazon EC2 im Amazon EC2 Benutzerhandbuch für Linux-Instances.

Die Standardanbieterketten und Instanzprofile EC2

Wenn Ihre Anwendung mithilfe des Standardkonstruktors einen AWS Client erstellt, sucht der Client
mithilfe der standardmäßigen Anbieterkette für Anmeldeinformationen in der folgenden Reihenfolge
nach Anmeldeinformationen:

1. in den Java-Systemeigenschaften: aws.accessKeyId und aws.secretKey

2. in System-Umgebungsvariablen: AWS_ACCESS_KEY_ID und AWS_SECRET_ACCESS_KEY

3. in der Standarddatei für Anmeldeinformationen (der Speicherort dieser Datei hängt von der
jeweiligen Plattform ab)

4. Anmeldeinformationen, die über den Amazon EC2 Container-Service bereitgestellt werden, wenn
die AWS_CONTAINER_CREDENTIALS_RELATIVE_URI Umgebungsvariable gesetzt ist und der
Sicherheitsmanager über die Zugriffsberechtigung für die Variable verfügt.

5. In den Instanzprofil-Anmeldeinformationen, die in den Instanz-Metadaten enthalten sind, die der
IAM-Rolle für die EC2 Instanz zugeordnet sind.

6. Web-Identitätstoken-Anmeldeinformationen aus der Umgebung oder dem Container.

Der Schritt mit den Anmeldeinformationen für das Instanzprofil in der Standardanbieterkette ist nur
verfügbar, wenn Sie Ihre Anwendung auf einer Amazon EC2 Instance ausführen, bietet jedoch die
größte Benutzerfreundlichkeit und die beste Sicherheit bei der Arbeit mit Amazon EC2 Instances.
Sie können eine InstanceProfileCredentialsProviderInstanz auch direkt an den Client-Konstruktor
übergeben, um die Anmeldeinformationen für das Instanzprofil abzurufen, ohne die gesamte
Standardanbieterkette durchlaufen zu müssen.

Zum Beispiel:

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withCredentials(new InstanceProfileCredentialsProvider(false))
 .build();

Bei diesem Ansatz ruft das SDK temporäre AWS Anmeldeinformationen ab, die dieselben
Berechtigungen haben wie die, die der IAM-Rolle zugeordnet sind, die der Amazon EC2 Instanz
in ihrem Instanzprofil zugeordnet ist. Diese Anmeldeinformationen sind zwar temporär und würden

Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon EC2 92

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

irgendwann ablaufen, aktualisiert sie jedoch InstanceProfileCredentialsProvider
regelmäßig für Sie, sodass die abgerufenen Anmeldeinformationen weiterhin Zugriff auf ermöglichen.
AWS

Important

Die Anmeldeinformationen werden nur dann automatisch aktualisiert, wenn
Sie den standardmäßigen Client-Konstruktor verwenden, der seinen eigenen
InstanceProfileCredentialsProvider als Teil der standardmäßigen Anbieterkette
erstellt, oder wenn Sie eine InstanceProfileCredentialsProvider-Instance direkt an
den Client-Konstruktor übergeben. Wenn Sie Anmeldeinformationen des Instance-Profils auf
andere Weise abrufen oder übergeben, sind Sie selbst für die Überprüfung und ggf. für die
Aktualisierung abgelaufener Anmeldeinformationen zuständig.

Wenn der Client-Konstruktor mithilfe der Anmeldeinformationsanbieterkette keine
Anmeldeinformationen finden kann, gibt er eine aus. AmazonClientException

Exemplarische Vorgehensweise: Verwenden von IAM-Rollen für Instanzen EC2

In der folgenden exemplarischen Vorgehensweise wird gezeigt, wie Sie Amazon S3 mithilfe einer
IAM-Rolle ein Objekt abrufen können, um den Zugriff zu verwalten.

Erstellen einer IAM-Rolle

Erstellen Sie eine IAM-Rolle, die nur Lesezugriff auf gewährt. Amazon S3

1. Öffnen Sie die IAM-Konsole.

2. Wechseln Sie im Navigationsbereich zu Roles (Rollen) und klicken Sie auf Create New Role (Neue
Rolle erstellen).

3. Geben Sie einen Namen für die Rolle ein und klicken Sie dann auf Next Step. Merken Sie sich
diesen Namen, da Sie ihn benötigen, wenn Sie Ihre Instance starten. Amazon EC2

4. Wählen Sie auf der Seite „Rollentyp auswählen“ unter AWS-Service Rollen die Option aus
Amazon EC2 .

5. Wählen Sie auf der Seite „Berechtigungen festlegen“ unter Richtlinienvorlage auswählen die
Option Amazon S3 Schreibgeschützter Zugriff und dann Nächster Schritt aus.

6. Wählen Sie auf der Seite Review (Prüfen) Create Role (Rolle erstellen) aus.

Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon EC2 93

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html
https://console.aws.amazon.com/iam/home

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Starten Sie eine EC2 Instance und geben Sie Ihre IAM-Rolle an

Sie können eine Amazon EC2 Instance mit einer IAM-Rolle über die Amazon EC2 Konsole oder die
starten. AWS SDK für Java

• Um eine Amazon EC2 Instance über die Konsole zu starten, folgen Sie den Anweisungen unter
Erste Schritte mit Amazon EC2 Linux-Instances im Amazon EC2 Benutzerhandbuch für Linux-
Instances.

Wenn Sie die Seite Review Instance Launch erreichen, klicken Sie auf Edit instance details.
Wählen Sie unter IAM-Rolle die IAM-Rolle aus, die Sie zuvor erstellt haben. Befolgen Sie die
Anweisungen und schließen Sie den Vorgang ab.

Note

Zum Herstellen einer Verbindung mit der Instance müssen Sie eine Sicherheitsgruppe und
ein Schlüsselpaar neu erstellen oder vorhandene Anmeldeinformationen auswählen.

• Informationen zum Starten einer Amazon EC2 Instance mit einer IAM-Rolle mithilfe von finden Sie
unter Instanz ausführen. AWS SDK für Java Amazon EC2

Erstellen Ihrer Anwendung

Lassen Sie uns die Beispielanwendung erstellen, die auf der EC2 Instance ausgeführt werden soll.
Zuerst erstellen Sie ein Verzeichnis, in dem Sie die Tutorial-Dateien abspeichern können (z. B.
GetS3ObjectApp).

Kopieren Sie als Nächstes die AWS SDK für Java Bibliotheken in Ihr neu erstelltes Verzeichnis.
Wenn Sie die AWS SDK für Java in Ihr ~/Downloads Verzeichnis heruntergeladen haben, können
Sie sie mit den folgenden Befehlen kopieren:

cp -r ~/Downloads/aws-java-sdk-{1.7.5}/lib .
cp -r ~/Downloads/aws-java-sdk-{1.7.5}/third-party .

Legen Sie eine neue Datei namens GetS3Object.java an und fügen Sie den folgenden Code ein:

import java.io.*;

import com.amazonaws.auth.*;
import com.amazonaws.services.s3.*;

Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon EC2 94

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.s3.model.*;
import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;

public class GetS3Object {
 private static final String bucketName = "text-content";
 private static final String key = "text-object.txt";

 public static void main(String[] args) throws IOException
 {
 AmazonS3 s3Client = AmazonS3ClientBuilder.defaultClient();

 try {
 System.out.println("Downloading an object");
 S3Object s3object = s3Client.getObject(
 new GetObjectRequest(bucketName, key));
 displayTextInputStream(s3object.getObjectContent());
 }
 catch(AmazonServiceException ase) {
 System.err.println("Exception was thrown by the service");
 }
 catch(AmazonClientException ace) {
 System.err.println("Exception was thrown by the client");
 }
 }

 private static void displayTextInputStream(InputStream input) throws IOException
 {
 // Read one text line at a time and display.
 BufferedReader reader = new BufferedReader(new InputStreamReader(input));
 while(true)
 {
 String line = reader.readLine();
 if(line == null) break;
 System.out.println(" " + line);
 }
 System.out.println();
 }
}

Legen Sie eine weitere neue Datei namens build.xml an und fügen Sie folgende Zeilen ein:

<project name="Get {S3} Object" default="run" basedir=".">

Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon EC2 95

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 <path id="aws.java.sdk.classpath">
 <fileset dir="./lib" includes="**/*.jar"/>
 <fileset dir="./third-party" includes="**/*.jar"/>
 <pathelement location="lib"/>
 <pathelement location="."/>
 </path>

 <target name="build">
 <javac debug="true"
 includeantruntime="false"
 srcdir="."
 destdir="."
 classpathref="aws.java.sdk.classpath"/>
 </target>

 <target name="run" depends="build">
 <java classname="GetS3Object" classpathref="aws.java.sdk.classpath" fork="true"/>
 </target>
</project>

Erstellen und starten Sie das geänderte Programm. Beachten Sie, dass keine Anmeldeinformationen
im Programm gespeichert werden. Daher wird der Code ausgelöst, sofern Sie Ihre AWS
Anmeldeinformationen nicht bereits angegeben habenAmazonServiceException. Zum Beispiel:

$ ant
Buildfile: /path/to/my/GetS3ObjectApp/build.xml

build:
 [javac] Compiling 1 source file to /path/to/my/GetS3ObjectApp

run:
 [java] Downloading an object
 [java] AmazonServiceException

BUILD SUCCESSFUL

Übertragen Sie das kompilierte Programm auf Ihre EC2 Instance

Übertragen Sie das Programm zusammen mit den AWS SDK für Java Bibliotheken mithilfe von
Secure Copy () auf Ihre Amazon EC2 Instanz. Die Reihenfolge der Befehle sieht in etwa wie folgt
aus:

Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon EC2 96

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

scp -p -i {my-key-pair}.pem GetS3Object.class ec2-user@{public_dns}:GetS3Object.class
scp -p -i {my-key-pair}.pem build.xml ec2-user@{public_dns}:build.xml
scp -r -p -i {my-key-pair}.pem lib ec2-user@{public_dns}:lib
scp -r -p -i {my-key-pair}.pem third-party ec2-user@{public_dns}:third-party

Note

Abhängig von der verwendeten Linux-Distribution lautet der user name (Benutzername) "ec2-
user", "root" oder "ubuntu". Um den öffentlichen DNS-Namen Ihrer Instance abzurufen, öffnen
Sie die EC2 Konsole und suchen Sie auf der Registerkarte Beschreibung nach dem Wert
Public DNS (z. B.ec2-198-51-100-1.compute-1.amazonaws.com).

Bei den vorhergehenden Befehlen:

• ist GetS3Object.class Ihr kompiliertes Programm,

• build.xml ist die Ant-Datei zum Erstellen und Ausführen Ihres Programms und

• die Verzeichnisse lib und third-party sind die entsprechenden Bibliotheksordner aus dem
AWS SDK für Java.

• Der -r Schalter gibt an, dass eine rekursive Kopie des gesamten Inhalts der third-party
Verzeichnisse library und in der AWS SDK für Java Distribution erstellt werden scp soll.

• Der Schalter -p sorgt dafür, dass scp die Berechtigungen der Quelldateien beibehalten soll,
während diese zum Ziel kopiert werden.

Note

Der -p Switch funktioniert nur unter Linux, macOS oder Unix. Wenn Sie Dateien von
Windows kopieren, müssen Sie die Dateiberechtigungen auf Ihrer Instance mit dem
folgenden Befehl korrigieren:

chmod -R u+rwx GetS3Object.class build.xml lib third-party

Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon EC2 97

https://console.aws.amazon.com/ec2/home

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Führen Sie das Beispielprogramm auf der EC2 Instanz aus

Um das Programm auszuführen, stellen Sie eine Verbindung zu Ihrer Amazon EC2 Instance
her. Weitere Informationen finden Sie unter Connect to Your Linux Instance im Amazon EC2
Benutzerhandbuch für Linux-Instances.

Wenn ant auf Ihrer Instance nicht verfügbar ist, installieren Sie es mit folgendem Befehl:

sudo yum install ant

Führen Sie das Programm dann mithilfe von ant wie folgt aus:

ant run

Das Programm schreibt den Inhalt Ihres Amazon S3 Objekts in Ihr Befehlsfenster.

Tutorial: Amazon EC2 Spot-Instances

Übersicht

Spot-Instances ermöglichen es Ihnen, auf ungenutzte Amazon Elastic Compute Cloud (Amazon EC2)
Kapazität bis zu 90% gegenüber dem Preis für On-Demand-Instances zu bieten und die erworbenen
Instances so lange laufen zu lassen, wie Ihr Gebot den aktuellen Spot-Preis übersteigt. Amazon EC2
ändert den Spot-Preis in regelmäßigen Abständen auf der Grundlage von Angebot und Nachfrage,
und Kunden, deren Gebote dem Preis entsprechen oder ihn übertreffen, erhalten Zugriff auf die
verfügbaren Spot-Instances. Wie mit On-Demand-Instances und Reserved Instances erhalten Sie mit
Spot-Instances eine weitere Möglichkeit, mehr Rechenkapazität zu erhalten.

Spot-Instances können Ihre Amazon EC2 Kosten für Stapelverarbeitung, wissenschaftliche
Forschung, Bildverarbeitung, Videokodierung, Daten- und Webcrawling, Finanzanalysen und
Tests erheblich senken. Darüber hinaus ermöglichen Spot-Instances Zugriff auf große Mengen an
zusätzlicher Kapazität in Situationen, in denen diese Kapazität nicht dringend benötigt wird.

Senden Sie zur Nutzung von Spot-Instances eine Spot-Instance-Anforderung und geben Sie den
Höchstpreis an, den Sie pro Instance-Stunde zu zahlen bereit sind; dies ist Ihr Gebot. Wenn Ihr
Höchstgebot den aktuellen Spot-Preis übersteigt, wird Ihrer Anforderung stattgegeben. Ihre Instances
werden so lange ausgeführt, bis Sie sie entweder beenden oder bis der Spot-Preis Ihr Höchstgebot
übersteigt.

Tutorial: Amazon EC2 Spot-Instances 98

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Wichtiger Hinweis:

• Sie zahlen oft weniger pro Stunde als Sie geboten haben. Amazon EC2 passt den Spotpreis
regelmäßig an, wenn Anfragen eingehen und sich das verfügbare Angebot ändert. Alle Benutzer
bezahlen für diesen Zeitraum denselben Spot-Preis, unabhängig davon, ob ihr Gebot höher lag.
Daher zahlen Sie möglicherweise weniger als Ihr Gebot, aber Sie zahlen nie mehr als das Gebot.

• Wenn Sie Spot-Instances ausführen und Ihr Gebot nicht mehr mindestens dem aktuellen Spot-
Preis entspricht, werden Ihre Instances beendet. Daher sollten Sie sicherstellen, dass Ihre
Workloads und Anwendungen flexibel genug sind, um aus dieser gelegentlichen Kapazität Nutzen
zu ziehen.

Spot-Instances verhalten sich während der Ausführung genau wie andere Amazon EC2 Instances,
und wie andere Amazon EC2 Instances können Spot-Instances beendet werden, wenn Sie sie nicht
mehr benötigen. Beim Beenden einer Instance zahlen Sie für die angefangene Stunde (wie bei On-
Demand- und Reserved Instances). Wenn der Spot-Preis jedoch über Ihrem Gebot liegt und Ihre
Instance bis gekündigt wird Amazon EC2, wird Ihnen keine Teilstunde der Nutzung in Rechnung
gestellt.

In diesem Tutorial wird gezeigt, wie AWS SDK für Java Sie Folgendes tun können.

• Senden einer Spot-Anfrage

• Ermitteln, wann die Spot-Anfrage erfüllt wird

• Abbrechen der Spot-Anfrage

• Beenden von dazugehörigen Instances

Voraussetzungen

Um dieses Tutorial verwenden zu können, müssen Sie das AWS SDK für Java installiert haben und
die grundlegenden Installationsvoraussetzungen erfüllen. Weitere Informationen finden Sie unter
Einrichten von. AWS SDK für Java

Schritt 1: Einrichten Ihrer Anmeldeinformationen

Um mit der Verwendung dieses Codebeispiels zu beginnen, müssen Sie AWS Anmeldeinformationen
einrichten. Anweisungen dazu finden Sie unter AWS Zugangsdaten und Region für die Entwicklung
einrichten.

Tutorial: Amazon EC2 Spot-Instances 99

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Wir empfehlen, dass Sie die Anmeldeinformationen eines IAM-Benutzers für diese Werte
nutzen. Weitere Informationen finden Sie unter Registrierung für einen IAM-Benutzer AWS
und Erstellen eines IAM-Benutzers.

Nachdem Sie Ihre Einstellungen eingerichtet haben, können Sie mit dem Beispiel-Code loslegen.

Schritt 2: Einrichten einer Sicherheitsgruppe

Eine Sicherheitsgruppe agiert als Firewall, die den zulässigen Verkehr zu und von einer Gruppe
Instances steuert. Standardmäßig wird eine Instance ohne eine Sicherheitsgruppe gestartet.
Sämtlicher eingehender IP-Datenverkehr auf allen TCP-Ports wird daher verweigert. Vor dem
Absenden unserer Spot-Anforderung richten wir also eine Sicherheitsgruppe ein, die den
nötigen Netzwerkverkehr zulässt. Für die Zwecke dieses Tutorials erstellen wir eine neue
Sicherheitsgruppe mit dem Namen "GettingStarted", die Secure Shell (SSH) -Verkehr von der IP-
Adresse aus ermöglicht, von der aus Sie Ihre Anwendung ausführen. Zur Einrichtung einer neuen
Sicherheitsgruppe sollten Sie das folgende Codebeispiel einschließen oder ausführen. Dadurch wird
die Sicherheitsgruppe per Programm eingerichtet.

Nachdem wir ein AmazonEC2 Client-Objekt erstellt haben, erstellen wir ein
CreateSecurityGroupRequest Objekt mit dem Namen "GettingStarted" und einer Beschreibung
für die Sicherheitsgruppe. Anschließend wird die ec2.createSecurityGroup-API zum Erstellen
der Gruppe aufgerufen.

Zum Aktivieren des Zugriffs auf die Gruppe erstellen wir ein ipPermission-Objekt, bei dem der
IP-Adressbereich des Subnetzes auf die CIDR-Darstellung des Subnetzes des lokalen Computers
festgelegt ist. Das Suffix "/10" bei der IP-Adresse zeigt das Subnetz für die angegebene IP-Adresse
an. Anschließend konfigurieren wir auch das ipPermission-Objekt mit dem TCP-Protokoll und dem
Port 22 (SSH). Im letzten Schritt wird ec2.authorizeSecurityGroupIngress mit dem Namen
der Sicherheitsgruppe und dem ipPermission-Objekt aufgerufen.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest = new
 CreateSecurityGroupRequest("GettingStartedGroup", "Getting Started Security Group");

Tutorial: Amazon EC2 Spot-Instances 100

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security
// Group by default to the ip range associated with your subnet.
try {
 InetAddress addr = InetAddress.getLocalHost();

 // Get IP Address
 ipAddr = addr.getHostAddress()+"/10";
} catch (UnknownHostException e) {
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP
// from above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest("GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
} catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has
 // already been authorized.
 System.out.println(ase.getMessage());
}

Tutorial: Amazon EC2 Spot-Instances 101

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Hinweis: Sie müssen diese Anwendung nur einmal ausführen, um eine neue Sicherheitsgruppe zu
erstellen.

Sie können die Sicherheitsgruppe auch mithilfe von AWS Toolkit for Eclipse erstellen. Weitere
Informationen finden Sie unter Sicherheitsgruppen verwalten von AWS Cost Explorer.

Schritt 3: Senden Ihrer Spot-Instance-Anforderung

Zum Senden einer Spot-Anforderung sollten Sie zuerst den Instance-Typ, das Amazon Machine
Image (AMI) und den Höchstpreis für Ihr Gebot festlegen. Sie müssen auch die zuvor konfigurierte
Sicherheitsgruppe aufnehmen, damit Sie sich bei Bedarf bei der Instance anmelden können.

Es stehen mehrere Instanztypen zur Auswahl. Eine vollständige Liste finden Sie unter Amazon EC2
Instanztypen. Für diese Anleitung verwenden wir t1.micro, den günstigsten verfügbaren Instance-
Typ. Als Nächstes bestimmen wir, welches AMI wir nutzen möchten. Wir werden ami-a9d09ed1
verwenden, das up-to-date Amazon Linux-AMI, das am meisten verfügbar war, als wir dieses Tutorial
geschrieben haben. Von Zeit zu Zeit kann es neuere AMIs geben. Die jeweils neueste AMI-Version
lässt sich mit folgenden Schritten ermitteln:

1. Öffnen Sie die Amazon EC2 -Konsole.

2. Wählen Sie die Schaltfläche Launch Instance (Instance starten).

3. Im ersten Fenster werden die verfügbaren angezeigt. AMIs Die AMI-ID ist neben dem jeweiligen
AMI-Titel aufgelistet. Alternativ können Sie die DescribeImages-API nutzen. Die Nutzung dieses
Befehls wird in dieser Anleitung allerdings nicht behandelt.

Es gibt viele Wege zur Gebotsgestaltung für Spot-Instances. Eine gute Übersicht der
unterschiedlichen Ansätze finden Sie im Video Bieten für Spot-Instances. Allerdings beschreiben wir
drei allgemeine Strategien für den Einstieg: Gebote, um sicherzustellen, dass die Kosten geringer
sind als bei On-Demand-Preisen; Gebote basierend auf dem Wert der resultierenden Berechnung;
Gebote, um Rechenkapazität so schnell wie möglich zu erwerben.

• Senkung der Kosten unter On-Demand Sie haben eine Stapelverarbeitungsaufgabe, die einige
Stunden oder Tage laufen wird. Allerdings sind Sie flexibel, was den Start und Abschluss angeht.
Sie möchten die Aufgabe nach Möglichkeit günstiger als mit On-Demand-Instances abschließen.
Sie untersuchen den Spot-Price-Verlauf für Instance-Typen, indem Sie entweder die AWS-
Managementkonsole oder die Amazon EC2 API verwenden. Weitere Informationen finden Sie
unter Anzeigen des Spot-Preisverlaufs. Nachdem Sie den Preisverlauf für Ihren gewünschten

Tutorial: Amazon EC2 Spot-Instances 102

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://console.aws.amazon.com/ec2/home
https://www.youtube.com/watch?v=WD9N73F3Fao&feature=player_embedded
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Instance-Typ in einer bestimmten Availability Zone analysiert haben, gibt es zwei alternative
Ansätze für Ihr Gebot:

• Sie könnten ein Gebot am oberen Ende der Skala für Spot-Preise abgeben (aber immer
noch unter dem On-Demand-Preis) und voraussehen, dass Ihre einmalige Spot-Anforderung
sehr wahrscheinlich erfüllt wird und die Instance lange genug aktiv bleibt, um die Aufgabe
abzuschließen.

• Oder Sie können den Betrag, den Sie für Spot-Instances zu zahlen bereit sind, als % des On-
Demand-Instance-Preises angeben und planen, viele Instances zu kombinieren, die im Laufe
der Zeit über eine persistente Anforderungen gestartet wurden. Wenn der angegebene Preis
überschritten wird, wird die Spot-Instance beendet. (Später in dieser Anleitung zeigen wir Ihnen,
wie Sie diese Aufgabe automatisieren können.)

• Nicht mehr zahlen, als das Ergebnis einbringt Sie haben eine Aufgabe zur Datenverarbeitung,
die ausgeführt werden soll. Sie kennen den Wert der Ergebnisse des Auftrags gut genug, um zu
wissen, wie sich der Wert als Rechenkosten darstellen lässt. Sie analysieren den Spot-Preisverlauf
Ihres Instance-Typs und entscheiden sich dann für einen Gebotspreis, der sicherstellt, dass
die Kosten der Rechenzeit geringer sind als der Wert der Auftragsergebnisse. Sie erstellen ein
persistentes Gebot und lassen es zwischenzeitlich laufen, sobald der Spot-Preis Ihr Gebot erreicht
oder darunter sinkt.

• Schneller Erwerb von Rechenkapazität Sie haben einen plötzlichen, kurzfristigen Bedarf an
zusätzlicher Kapazität, die von On-Demand-Instances nicht bereitgestellt werden kann. Sie
analysieren den Spot-Preisverlauf Ihres Instance-Typs und bieten dann über dem höchsten
bisherigen Preis. So sorgen Sie dafür, dass Ihre Anforderung mit hoher Wahrscheinlichkeit schnell
erfüllt wird und bis zum Abschluss der Aufgabe läuft.

Nachdem Sie den Gebotspreis ausgewählt haben, können Sie eine Spot-Instance anfordern. Für
diese Anleitung bieten wir den On-Demand-Preis (0,03 USD) und maximieren so die Chancen, dass
das Gebot erfüllt wird. Sie können die Typen der verfügbaren Instances und die On-Demand-Preise
für Instances auf der Seite mit den Amazon EC2 Preisen ermitteln. Für die Dauer der Ausführung der
Instances zahlen Sie bei Spot-Instances den bei der Anforderung angegebenen Stundensatz. Die
Spot-Instance-Preise werden festgelegt Amazon EC2 und auf der Grundlage langfristiger Trends bei
Angebot und Nachfrage nach Spot-Instance-Kapazität schrittweise angepasst. Sie können auch den
Betrag, den Sie für eine Spot-Instance zu zahlen bereit sind, als % des On-Demand-Instance-Preises
angeben. Um eine Spot-Instance anzufordern, müssen Sie Ihre Anfrage einfach mit den zuvor
ausgewählten Parametern erstellen. Als Erstes erstellen wir ein RequestSpotInstanceRequest-
Objekt. Für das Anforderungsobjekt sind die Anzahl der zu startenden Instances sowie der

Tutorial: Amazon EC2 Spot-Instances 103

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Gebotspreis nötig. Außerdem müssen Sie die LaunchSpecification für die Anforderung
festlegen. Sie umfasst den Instance-Typ, die AMI-ID sowie die Sicherheitsgruppe, die Sie verwenden
möchten. Sobald die Anforderung vorbereitet ist, rufen Sie die Methode requestSpotInstances
des Objekts AmazonEC2Client auf. Das folgende Beispiel zeigt, wie Sie eine Spot-Instance
anfordern.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Setup the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specifications to the request.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Beim Ausführen dieses Codes wird eine neue Spot-Instance-Anforderung ausgeführt. Mit weiteren
Optionen können Sie Spot-Anforderungen konfigurieren. Weitere Informationen finden Sie unter
Tutorial: Advanced Amazon EC2 Spot Request Management oder im RequestSpotInstancesKurs in
der AWS SDK für Java API-Referenz.

Tutorial: Amazon EC2 Spot-Instances 104

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Sie zahlen für Spot-Instances, die tatsächlich gestartet werden. Achten Sie also darauf,
getätigte Anforderungen zu stornieren und gestartete Instances zu beenden, damit Ihnen
keine unnötigen Kosten entstehen.

Schritt 4: Ermitteln des Status Ihrer Spot-Instance-Anforderung

Als Nächstes erstellen wir einen Code, der darauf wartet, dass die Spot-Anforderung den Status
"active" erreicht, bevor wir zum letzten Schritt wechseln. Um den Status unserer Spot-Anfrage zu
ermitteln, fragen wir die Methode describeSpotInstanceRequests nach dem Status der Spot-Request-
ID ab, die wir überwachen möchten.

Die in Schritt 2 erstellte Anforderungs-ID ist in der Antwort auf unsere requestSpotInstances-
Anforderung enthalten. Der folgende Beispielcode zeigt, wie Sie Anfragen IDs aus der
requestSpotInstances Antwort sammeln und sie verwenden, um eine ArrayList zu füllen.

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// Setup an arraylist to collect all of the request ids we want to
// watch hit the running state.
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add all of the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

Rufen Sie zur Überwachung Ihrer Anforderungs-ID die Methode
describeSpotInstanceRequests auf und ermitteln Sie so den Status der Anforderung. Warten
Sie dann in einer Schleife, bis die Anforderung nicht mehr den Zustand "open" aufweist. Hinweis:
Wir überprüfen hier, ob der Zustand ungleich "open" ist, anstatt etwa auf "active" zu überprüfen.
Der Grund ist, dass die Anforderung direkt zu "closed" übergehen kann, wenn ein Problem mit den

Tutorial: Amazon EC2 Spot-Instances 105

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#describeSpotInstanceRequests

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Argumenten der Anforderung vorliegt. Im folgenden Codebeispiel sehen Sie im Detail, wie diese
Aufgabe umgesetzt wird.

// Create a variable that will track whether there are any
// requests still in the open state.
boolean anyOpen;

do {
 // Create the describeRequest object with all of the request ids
 // to monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false - which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen=false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);
 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all in
 // the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we attempted
 // to request it. There is the potential for it to transition
 // almost immediately to closed or cancelled so we compare
 // against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 }
} catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out of
 // the loop. This prevents the scenario where there was
 // blip on the wire.
 anyOpen = true;
 }

Tutorial: Amazon EC2 Spot-Instances 106

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

Nachdem dieser Code ausgeführt wird, ist Ihre Spot-Instance-Anforderung entweder abgeschlossen
oder mit einem Fehler gescheitert, der auf dem Bildschirm angezeigt wird. In beiden Fällen können
wir mit dem nächsten Schritt fortfahren, alle aktiven Anforderungen bereinigen und alle laufenden
Instances beenden.

Schritt 5: Bereinigen der Spot-Anforderungen und ‑Instances

Schließlich müssen wir unsere Anforderungen und Instances bereinigen. Es ist wichtig, sowohl
ausstehende Anforderungen zu stornieren als auch etwaige Instances zu beenden. Wenn Sie nur die
Anforderungen stornieren, werden Ihre Instances nicht beendet und Sie müssen weiter für sie zahlen.
Wenn Sie die Instances beenden, können Ihre Spot-Anforderungen storniert werden. In einigen
Fällen – etwa dann, wenn Sie persistente Gebote nutzen –, reicht das Beenden Ihrer Instances nicht
aus, damit Ihre Anforderung nicht erneut erfüllt wird. Daher ist es eine bewährte Methode, sowohl die
aktiven Gebote zu stornieren als auch alle laufenden Instances zu beenden.

Im folgenden Beispiel wird gezeigt, wie Sie Ihre Anforderungen stornieren.

try {
 // Cancel requests.
 CancelSpotInstanceRequestsRequest cancelRequest =
 new CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Tutorial: Amazon EC2 Spot-Instances 107

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Zum Stornieren ausstehender Anforderungen brauchen Sie die jeweilige Instance-ID. Sie ist mit
der Anforderung verknüpft, die sie gestartet hat. Im folgenden Codebeispiel ergänzen wir unseren
Originalcode zur Überwachung der Instances um eine ArrayList. Darin speichern wir die Instance-
ID aus der describeInstance-Antwort.

// Create a variable that will track whether there are any requests
// still in the open state.
boolean anyOpen;
// Initialize variables.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 // Create the describeRequest with all of the request ids to
 // monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false, which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen = false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all
 // in the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we
 // attempted to request it. There is the potential for
 // it to transition almost immediately to closed or
 // cancelled so we compare against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true; break;
 }
 // Add the instance id to the list we will
 // eventually terminate.
 instanceIds.add(describeResponse.getInstanceId());

Tutorial: Amazon EC2 Spot-Instances 108

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 }
 } catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out
 // of the loop. This prevents the scenario where there
 // was blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

Beenden Sie mithilfe der Instance IDs, die in gespeichert istArrayList, alle laufenden Instances
mithilfe des folgenden Codeausschnitts.

try {
 // Terminate instances.
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Zusammenfassung

Um all das zusammenzubringen, bieten wir einen objektorientierteren Ansatz, der die oben
beschriebenen Schritte kombiniert: Initialisierung des EC2 Clients, Senden der Spot-Anfrage,
Feststellung, wann sich die Spot-Anfragen nicht mehr im offenen Zustand befinden, und Bereinigen
aller verbliebenen Spot-Anfragen und der zugehörigen Instances. Wir erstellen eine Klasse namens
Requests, die diese Aktionen ausführt.

Tutorial: Amazon EC2 Spot-Instances 109

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Zudem legen wir eine Klasse GettingStartedApp mit einer main-Methode an, in der wir die
High-Level-Funktionsaufrufe durchführen. Insbesondere initialisieren wir das zuvor beschriebene
Requests-Objekt. Wir senden die Spot-Instance-Anforderung. Anschließend warten wir, bis die
Spot-Anforderung den Zustand "active" erreicht. Schließlich bereinigen wir die Anforderungen und
Instances.

Der vollständige Quellcode für dieses Beispiel kann unter eingesehen oder heruntergeladen werden.
GitHub

Herzlichen Glückwunsch! Sie haben jetzt die Erste-Schritte-Anleitung zur Entwicklung von Spot-
Instance-Software mit dem AWS SDK für Java abgeschlossen.

Nächste Schritte

Fahren Sie mit Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement fort.

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement

Amazon EC2 Spot-Instances ermöglichen es Ihnen, Gebote für ungenutzte Amazon EC2 Kapazität
abzugeben und diese Instances so lange laufen zu lassen, wie Ihr Gebot den aktuellen Spot-Preis
übersteigt. Amazon EC2 ändert den Spot-Preis regelmäßig auf der Grundlage von Angebot und
Nachfrage. Weitere Informationen zu Spot-Instances finden Sie unter Spot-Instances im Amazon EC2
Benutzerhandbuch für Linux-Instances.

Voraussetzungen

Um dieses Tutorial verwenden zu können, müssen Sie das AWS SDK für Java installiert haben und
die grundlegenden Installationsvoraussetzungen erfüllen. Weitere Informationen finden Sie unter
Einrichten von. AWS SDK für Java

Einrichten Ihrer Anmeldeinformationen

Um mit der Verwendung dieses Codebeispiels zu beginnen, müssen Sie AWS Anmeldeinformationen
einrichten. Anweisungen dazu finden Sie unter AWS Zugangsdaten und Region für die Entwicklung
einrichten.

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 110

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-GettingStarted
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Wir empfehlen, dass Sie die Anmeldeinformationen eines IAM Benutzers verwenden, um
diese Werte anzugeben. Weitere Informationen finden Sie unter Registrieren für AWS und
Erstellen eines IAM Benutzers.

Nachdem Sie Ihre Einstellungen eingerichtet haben, können Sie mit dem Beispiel-Code loslegen.

Einrichten einer Sicherheitsgruppe

Eine Sicherheitsgruppe agiert als Firewall, die den zulässigen Verkehr zu und von einer Gruppe
Instances steuert. Standardmäßig wird eine Instance ohne eine Sicherheitsgruppe gestartet.
Sämtlicher eingehender IP-Datenverkehr auf allen TCP-Ports wird daher verweigert. Vor dem
Absenden unserer Spot-Anforderung richten wir also eine Sicherheitsgruppe ein, die den nötigen
Netzwerkverkehr zulässt. Für die Zwecke dieses Tutorials erstellen wir eine neue Sicherheitsgruppe
namens "GettingStarted", die Secure Shell (SSH) -Verkehr von der IP-Adresse aus ermöglicht, von
der aus Sie Ihre Anwendung ausführen. Zur Einrichtung einer neuen Sicherheitsgruppe sollten Sie
das folgende Codebeispiel einschließen oder ausführen. Dadurch wird die Sicherheitsgruppe per
Programm eingerichtet.

Nachdem wir ein AmazonEC2 Client-Objekt erstellt haben, erstellen wir ein
CreateSecurityGroupRequest Objekt mit dem Namen "GettingStarted" und einer Beschreibung
für die Sicherheitsgruppe. Anschließend wird die ec2.createSecurityGroup-API zum Erstellen
der Gruppe aufgerufen.

Zum Aktivieren des Zugriffs auf die Gruppe erstellen wir ein ipPermission-Objekt, bei dem der
IP-Adressbereich des Subnetzes auf die CIDR-Darstellung des Subnetzes des lokalen Computers
festgelegt ist. Das Suffix "/10" bei der IP-Adresse zeigt das Subnetz für die angegebene IP-Adresse
an. Anschließend konfigurieren wir auch das ipPermission-Objekt mit dem TCP-Protokoll und dem
Port 22 (SSH). Im letzten Schritt wird ec2 .authorizeSecurityGroupIngress mit dem Namen
der Sicherheitsgruppe und dem ipPermission-Objekt aufgerufen.

(Der folgende Code entspricht unserem Code aus der ersten Anleitung.)

// Create the AmazonEC2Client object so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withCredentials(credentials)
 .build();

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 111

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest =
 new CreateSecurityGroupRequest("GettingStartedGroup",
 "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security Group
// by default to the ip range associated with your subnet.
try {
 // Get IP Address
 InetAddress addr = InetAddress.getLocalHost();
 ipAddr = addr.getHostAddress()+"/10";
}
catch (UnknownHostException e) {
 // Fail here...
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP from
// above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest(
 "GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 112

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

}
catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has already
 // been authorized.
 System.out.println(ase.getMessage());
}

Sie können das gesamte Codebeispiel im advanced.CreateSecurityGroupApp.java-
Codebeispiel einsehen. Hinweis: Sie müssen diese Anwendung nur einmal ausführen, um eine neue
Sicherheitsgruppe zu erstellen.

Note

Sie können die Sicherheitsgruppe auch mithilfe von AWS Toolkit for Eclipse erstellen. Weitere
Informationen finden Sie AWS Cost Explorer im AWS Toolkit for Eclipse Benutzerhandbuch
unter Sicherheitsgruppen verwalten.

Detaillierte Optionen für die Erstellung von Spot-Instance-Anforderungen

Wie wir im Tutorial: Amazon EC2 Spot-Instances erklärt haben, müssen Sie Ihre Anfrage mit einem
Instance-Typ, einem Amazon Machine Image (AMI) und einem Höchstgebotspreis erstellen.

Als Erstes erstellen wir ein RequestSpotInstanceRequest-Objekt. Für das Anforderungsobjekt
sind die Anzahl der gewünschten Instances sowie der Gebotspreis nötig. Außerdem müssen wir die
LaunchSpecification für die Anforderung festlegen. Sie umfasst den Instance-Typ, die AMI-ID
sowie die Sicherheitsgruppe, die Sie verwenden möchten. Nachdem die Anforderung vorbereitet ist,
rufen wir die Methode requestSpotInstances des Objekts AmazonEC2Client auf. Es folgt ein
Beispiel für die Anforderung einer Spot-Instance.

(Der folgende Code entspricht unserem Code aus der ersten Anleitung.)

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 113

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Persistente im Vergleich zu einmaligen Anforderungen

Beim Erstellen einer Spot-Instance-Anforderung können Sie mehrere optionale Parameter angeben.
Die erste Option gibt an, ob Ihre Anforderung von einmaliger oder persistenter Natur sein soll.
Standardmäßig handelt es sich um eine einmalige Anforderung. Eine einmalige Anforderung kann nur
einmal erfüllt werden. Sind die angeforderten Instances beendet, wird die Anforderung geschlossen.
Eine persistente Anforderung wird zur Erfüllung immer dann herangezogen, wenn für die gleiche
Anforderung keine Spot-Instance ausgeführt wird. Geben Sie den Typ der Anforderung an, indem
Sie einfach den "Type" auf der Spot-Anforderung festlegen. Dies lässt sich mit folgendem Code
erreichen:

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 114

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest =
 new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the type of the bid to persistent.
requestRequest.setType("persistent");

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Einschränken der Dauer einer Anforderung

Außerdem können Sie optional festlegen, wie lange Ihre Anforderung gültig bleibt. Sie können für
diesen Zeitraum eine Start- und Endzeit festlegen. Standardmäßig wird eine Spot-Anforderung zur
Erfüllung von dem Augenblick ihrer Erstellung bis zu dem Zeitpunkt herangezogen, an dem sie

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 115

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

entweder erfüllt oder von Ihnen storniert wird. Allerdings können Sie die Gültigkeitsdauer bei Bedarf
einschränken. Ein Beispiel dafür, wie Sie diesen Zeitraum angeben, wird im folgenden Code gezeigt:

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the valid start time to be two minutes from now.
Calendar cal = Calendar.getInstance();
cal.add(Calendar.MINUTE, 2);
requestRequest.setValidFrom(cal.getTime());

// Set the valid end time to be two minutes and two hours from now.
cal.add(Calendar.HOUR, 2);
requestRequest.setValidUntil(cal.getTime());

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro)

// and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon
// Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 116

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Gruppieren Sie Ihre Amazon EC2 Spot-Instance-Anfragen

Auf Wunsch können Sie Spot-Instance-Anforderungen auf verschiedene Weise gruppieren. Beachten
Sie die Vorteile der Nutzung von Start-, Availability Zone- und Platzierungsgruppen.

Wenn Sie sichergehen möchten, dass Ihre Spot-Instances gleichzeitig gestartet und beendet werden,
können Sie eine Startgruppe nutzen. Eine Startgruppe ist eine Bezeichnung, die einige Gebote
gruppiert. Alle Instances in einer Startgruppe werden zusammen gestartet und beendet. Hinweis:
Wurden Instances in einer Startgruppe bereits erfüllt, gibt es keine Garantie dafür, dass neu in der
gleichen Startgruppe gestarteten Instances ebenfalls erfüllt werden. Ein Beispiel dafür, wie Sie eine
Startgruppe festlegen können, wird im folgenden Code gezeigt:

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the launch group.
requestRequest.setLaunchGroup("ADVANCED-DEMO-LAUNCH-GROUP");

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 117

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Wenn Sie sicherstellen möchten, dass alle Instances in einer Anforderung in derselben Availability
Zone gestartet werden, und es nicht relevant ist, in welcher Zone, können Sie Availability Zone-
Gruppen nutzen. Eine Availability Zone-Gruppe ist eine Bezeichnung, die eine Gruppe von Instances
in derselben Availability Zone gruppiert. Alle Instances mit der gleichen Availability Zone-Gruppe, die
gleichzeitig erfüllt werden, starten in derselben Availability Zone. Ein Beispiel für die Einrichtung einer
Availability Zone-Gruppe finden Sie hier:

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the availability zone group.
requestRequest.setAvailabilityZoneGroup("ADVANCED-DEMO-AZ-GROUP");

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 118

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Sie können eine Availability Zone angeben, die Sie für Ihre Spot-Instances nutzen möchten. Das
folgende Codebeispiel zeigt, wie Sie eine Availability Zone festlegen.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the availability zone to use. Note we could retrieve the
// availability zones using the ec2.describeAvailabilityZones() API. For
// this demo we will just use us-east-1a.
SpotPlacement placement = new SpotPlacement("us-east-1b");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Schließlich können Sie eine Platzierungsgruppe angeben, wenn Sie High Performance Computing
(HPC)-Spot-Instances nutzen, etwa Cluster Compute-Instances oder Cluster-GPU-Instances.

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 119

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Platzierungsgruppen sorgen für eine niedrigere Latenz und eine hohe Bandbreitenkonnektivität
zwischen den Instances. Ein Beispiel für die Einrichtung einer Platzierungsgruppe finden Sie hier:

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.

LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the placement group to use with whatever name you desire.
// For this demo we will just use "ADVANCED-DEMO-PLACEMENT-GROUP".
SpotPlacement placement = new SpotPlacement();
placement.setGroupName("ADVANCED-DEMO-PLACEMENT-GROUP");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Alle Parameter in diesem Abschnitt sind optional. Es ist auch wichtig zu wissen, dass die
meisten dieser Parameter — mit Ausnahme der Tatsache, ob es sich bei Ihrem Gebot um
ein einmaliges oder ein dauerhaftes Gebot handelt — die Wahrscheinlichkeit verringern

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 120

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

können, dass das Gebot erfüllt wird. Daher ist es wichtig, diese Optionen nur bei Bedarf zu
nutzen. Alle obigen Codebeispiele sind in einem langen Codebeispiel kombiniert, das in der
com.amazonaws.codesamples.advanced.InlineGettingStartedCodeSampleApp.java-
Klasse zu finden ist.

So bleibt eine Stammpartition nach einer Unterbrechung oder Beendigung erhalten

Eine der einfachsten Möglichkeiten, mit Unterbrechungen Ihrer Spot-Instances umzugehen,
besteht darin, sicherzustellen, dass Ihre Daten regelmäßig auf ein Amazon Elastic Block Store
(Amazon Amazon EBS) -Volume (Amazon) überprüft werden. Durch das Setzen von Prüfpunkten
in regelmäßigen Abständen verlieren Sie im Falle einer Unterbrechung nur die seit dem letzten
Prüfpunkt erstellten Daten (angenommen, zwischenzeitlich wurden keine anderen idempotenten
Aktionen ausgeführt). Um diesen Prozess zu vereinfachen, können Sie Ihre Spot-Anforderung so
konfigurieren, dass Ihre Stammpartition bei Unterbrechungen oder Beendigungen nicht gelöscht wird.
Im folgenden Beispiel haben wir neuen Code eingefügt, der zeigt, wie sich dieses Szenario umsetzen
lässt.

Im hinzugefügten Code erstellen wir ein BlockDeviceMapping Objekt und setzen es mit
einem Amazon EBS Objekt verknüpft Amazon Elastic Block Store (Amazon EBS), das wir so
konfiguriert haben, dass es gelöscht not wird, wenn die Spot-Instance beendet wird. Wir fügen dies
dann BlockDeviceMapping zu den ArrayList Mappings hinzu, die wir in die Startspezifikation
aufnehmen.

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 121

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Create the block device mapping to describe the root partition.
BlockDeviceMapping blockDeviceMapping = new BlockDeviceMapping();
blockDeviceMapping.setDeviceName("/dev/sda1");

// Set the delete on termination flag to false.
EbsBlockDevice ebs = new EbsBlockDevice();
ebs.setDeleteOnTermination(Boolean.FALSE);
blockDeviceMapping.setEbs(ebs);

// Add the block device mapping to the block list.
ArrayList<BlockDeviceMapping> blockList = new ArrayList<BlockDeviceMapping>();
blockList.add(blockDeviceMapping);

// Set the block device mapping configuration in the launch specifications.
launchSpecification.setBlockDeviceMappings(blockList);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Wenn Sie dieses Volume beim Startup erneut an Ihre Instance anfügen möchten, können Sie
auch die Einstellungen für Blockgerät-Zuweisung verwenden. Wenn Sie eine Nicht-Root-Partition

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 122

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

angehängt haben, können Sie alternativ die Amazon EBS Amazon-Volumes angeben, die Sie an
Ihre Spot-Instance anhängen möchten, nachdem sie wieder aufgenommen wurde. Geben Sie dazu
einfach eine Snapshot-ID in Ihrem EbsBlockDevice und einen alternativen Gerätenamen in Ihren
BlockDeviceMapping-Objekten an. Durch die Nutzung von Blockgerät-Zuweisungen lässt sich die
Instance einfacher starten.

Wenn Sie die Stammpartition verwenden, um Prüfpunkte für Ihre wichtigen Daten anzulegen, können
Sie auf diese Weise die Wahrscheinlichkeit der Unterbrechung Ihrer Instances im Griff behalten.
Weitere Methoden zum Umgang mit der Wahrscheinlichkeit von Unterbrechungen finden Sie im
Video Managing Interruption.

So markieren Sie Spot-Anforderungen und ‑Instances

Das Hinzufügen von Tags zu Amazon EC2 Ressourcen kann die Verwaltung Ihrer Cloud-Infrastruktur
vereinfachen. Tags sind ein Typ von Metadaten, der verwendet werden kann, um benutzerfreundliche
Namen zu erstellen, die Durchsuchbarkeit zu optimieren und die Koordination zwischen mehreren
Benutzern zu verbessern. Sie können Tags auch zur Automatisierung von Skripts und Teilen Ihrer
Prozesse nutzen. Weitere Informationen zum Taggen von Amazon EC2 Ressourcen finden Sie unter
Verwenden von Tags im Amazon EC2 Benutzerhandbuch für Linux-Instances.

Markieren von -Anforderungen

Zum Hinzufügen von Tags zu Ihren Spot-Anforderungen müssen Sie sie markieren, nachdem
sie angefordert wurden. Der Rückgabewert von requestSpotInstances() stellt Ihnen ein
RequestSpotInstancesResultObjekt zur Verfügung, mit dem Sie die Spot-Anfrage IDs für das Tagging
abrufen können:

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// A list of request IDs to tag
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 123

https://www.youtube.com/watch?feature=player_embedded&v=wcPNnUo60pc
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesResult.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Sobald Sie die haben IDs, können Sie die Anfragen taggen, indem Sie sie IDs zu einer hinzufügen
CreateTagsRequestund die createTags() Methode des Amazon EC2 Clients aufrufen:

// The list of tags to create
ArrayList<Tag> requestTags = new ArrayList<Tag>();
requestTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_requests = new CreateTagsRequest();
createTagsRequest_requests.setResources(spotInstanceRequestIds);
createTagsRequest_requests.setTags(requestTags);

// Tag the spot request
try {
 ec2.createTags(createTagsRequest_requests);
}
catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Markieren von Instances

Ähnlich wie bei Spot-Anforderungen selbst können Sie eine Instance erst nach ihrer Erstellung
markieren. Instances werden erstellt, sobald die Spot-Anforderung erfüllt wurde (d. h., wenn sie nicht
mehr den Status offen hat).

Sie können den Status Ihrer Anfragen überprüfen, indem Sie die
describeSpotInstanceRequests() Methode des Amazon EC2 Clients mit
einem DescribeSpotInstanceRequestsRequestObjekt aufrufen. Das zurückgegebene
DescribeSpotInstanceRequestsResultObjekt enthält eine Liste von SpotInstanceRequestObjekten,
mit denen Sie den Status Ihrer Spot-Anfragen abfragen und deren Instanz abrufen können, IDs
sobald sie sich nicht mehr im geöffneten Zustand befinden.

Sobald die Spot-Anforderung nicht mehr offen ist, können Sie ihre Instance-ID vom
SpotInstanceRequest-Objekt erhalten, indem Sie dessen getInstanceId()-Methode aufrufen.

boolean anyOpen; // tracks whether any requests are still open

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 124

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateTagsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/SpotInstanceRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

// a list of instances to tag.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 DescribeSpotInstanceRequestsRequest describeRequest =
 new DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 anyOpen=false; // assume no requests are still open

 try {
 // Get the requests to monitor
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // are any requests open?
 for (SpotInstanceRequest describeResponse : describeResponses) {
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 // get the corresponding instance ID of the spot request
 instanceIds.add(describeResponse.getInstanceId());
 }
 }
 catch (AmazonServiceException e) {
 // Don't break the loop due to an exception (it may be a temporary issue)
 anyOpen = true;
 }

 try {
 Thread.sleep(60*1000); // sleep 60s.
 }
 catch (Exception e) {
 // Do nothing if the thread woke up early.
 }
} while (anyOpen);

Jetzt können Sie die zurückgegebenen Instances markieren:

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 125

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

// Create a list of tags to create
ArrayList<Tag> instanceTags = new ArrayList<Tag>();
instanceTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_instances = new CreateTagsRequest();
createTagsRequest_instances.setResources(instanceIds);
createTagsRequest_instances.setTags(instanceTags);

// Tag the instance
try {
 ec2.createTags(createTagsRequest_instances);
}
catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Stornieren von Spot-Anforderungen und Beenden von Instances

Stornieren einer Spot-Anforderung

Um eine Spot-Instance-Anfrage zu stornieren, rufen Sie den Amazon EC2 Client mit einem
CancelSpotInstanceRequestsRequestObjekt cancelSpotInstanceRequests auf.

try {
 CancelSpotInstanceRequestsRequest cancelRequest = new
 CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement 126

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CancelSpotInstanceRequestsRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Beenden von Spot-Instances

Sie können alle laufenden Spot-Instances beenden, indem Sie sie IDs an die
terminateInstances() Methode des Amazon EC2 Clients übergeben.

try {
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Zusammenfassung

Fassen wir zusammen: Wir bieten einen eher objektorientierten Ansatz, der die in dieser
Anleitung gezeigten Schritte in einer einfach einsetzbaren Klasse kombiniert. Wir instanziieren
eine Klasse namens Requests, die diese Aktionen ausführt. Zudem legen wir eine Klasse
GettingStartedApp mit einer main-Methode an, in der wir die High-Level-Funktionsaufrufe
durchführen.

Der vollständige Quellcode für dieses Beispiel kann unter eingesehen oder heruntergeladen werden
GitHub.

Herzlichen Glückwunsch! Sie haben jetzt die Anleitung "Erweiterte Anforderungsfunktionen" zur
Entwicklung von Spot-Instance-Software mit dem AWS SDK für Java abgeschlossen.

Amazon EC2 Instanzen verwalten

Erstellen einer Instance

Erstellen Sie eine neue Amazon EC2 Instance, indem Sie die runInstances Methode des EC2
Amazon-Clients aufrufen und ihr ein RunInstancesRequestzu verwendendes Amazon Machine Image
(AMI) und einen Instance-Typ zur Verfügung stellen.

Importe

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;

Amazon EC2 Instanzen verwalten 127

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-Advanced
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.ec2.model.InstanceType;
import com.amazonaws.services.ec2.model.RunInstancesRequest;
import com.amazonaws.services.ec2.model.RunInstancesResult;
import com.amazonaws.services.ec2.model.Tag;

Code

RunInstancesRequest run_request = new RunInstancesRequest()
 .withImageId(ami_id)
 .withInstanceType(InstanceType.T1Micro)
 .withMaxCount(1)
 .withMinCount(1);

RunInstancesResult run_response = ec2.runInstances(run_request);

String reservation_id =
 run_response.getReservation().getInstances().get(0).getInstanceId();

Siehe vollständiges Beispiel.

Starten einer Instance

Um eine Amazon EC2 Instance zu starten, rufen Sie die startInstances Methode
des EC2 Amazon-Clients auf und geben ihr eine, die die ID der zu startenden Instance
StartInstancesRequestenthält.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StartInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StartInstancesRequest request = new StartInstancesRequest()
 .withInstanceIds(instance_id);

ec2.startInstances(request);

Siehe vollständiges Beispiel.

Amazon EC2 Instanzen verwalten 128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StartInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Anhalten einer Instance

Um eine Amazon EC2 Instance zu stoppen, rufen Sie die stopInstances Methode
des EC2 Amazon-Clients auf und geben ihr eine, die die ID der zu stoppenden Instance
StopInstancesRequestenthält.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StopInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StopInstancesRequest request = new StopInstancesRequest()
 .withInstanceIds(instance_id);

ec2.stopInstances(request);

Siehe vollständiges Beispiel.

Neustarten einer Instance

Um eine Amazon EC2 Instance neu zu starten, rufen Sie die rebootInstances Methode des EC2
Amazon-Clients auf und geben ihr eine, die die ID der Instance RebootInstancesRequestenthält, die
neu gestartet werden soll.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.RebootInstancesRequest;
import com.amazonaws.services.ec2.model.RebootInstancesResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

RebootInstancesRequest request = new RebootInstancesRequest()

Amazon EC2 Instanzen verwalten 129

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StopInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RebootInstancesRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withInstanceIds(instance_id);

RebootInstancesResult response = ec2.rebootInstances(request);

Siehe vollständiges Beispiel.

Beschreiben von Instances

Um Ihre Instances aufzulisten, erstellen Sie eine describeInstances Methode des EC2 Amazon-
Clients DescribeInstancesRequestund rufen Sie sie auf. Es wird ein DescribeInstancesResultObjekt
zurückgegeben, mit dem Sie die Amazon EC2 Instances für Ihr Konto und Ihre Region auflisten
können.

Instances werden nach Reservierung gruppiert. Jede Reservierung entspricht dem Aufruf von
startInstances, durch den die Instance gestartet wurde. Um Ihre Instances aufzulisten, sollten
Sie zuerst die getReservations' method, and then call `getInstances-Methode der
DescribeInstancesResult-Klasse für jedes zurückgegebene Reservation-Objekt aufrufen.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.Reservation;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();
boolean done = false;

DescribeInstancesRequest request = new DescribeInstancesRequest();
while(!done) {
 DescribeInstancesResult response = ec2.describeInstances(request);

 for(Reservation reservation : response.getReservations()) {
 for(Instance instance : reservation.getInstances()) {
 System.out.printf(
 "Found instance with id %s, " +
 "AMI %s, " +
 "type %s, " +

Amazon EC2 Instanzen verwalten 130

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/RebootInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Reservation.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 "state %s " +
 "and monitoring state %s",
 instance.getInstanceId(),
 instance.getImageId(),
 instance.getInstanceType(),
 instance.getState().getName(),
 instance.getMonitoring().getState());
 }
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

Die Ergebnisse werden seitenweise zurückgegeben. Sie können die weiteren Ergebnisse abrufen,
indem Sie den von der getNextToken-Methode des Rückgabeobjekts zurückgegebenen Wert an
die setNextToken-Methode des Original-Anforderungsobjekts übergeben. Verwenden Sie dann das
gleiche Anforderungsobjekt für den nächsten Aufruf von describeInstances.

Siehe vollständiges Beispiel.

Überwachung einer Instance

Sie können verschiedene Aspekte Ihrer Amazon EC2 Instances überwachen, z. B. die CPU- und
Netzwerkauslastung, den verfügbaren Arbeitsspeicher und den verbleibenden Festplattenspeicher.
Weitere Informationen zur Instanzüberwachung finden Sie unter Überwachung Amazon EC2 im
Amazon EC2 Benutzerhandbuch für Linux-Instances.

Um mit der Überwachung einer Instance zu beginnen, müssen Sie eine MonitorInstancesRequestmit
der ID der zu überwachenden Instance erstellen und sie an die monitorInstances Methode des
EC2 Amazon-Clients übergeben.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.MonitorInstancesRequest;

Code

Amazon EC2 Instanzen verwalten 131

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeInstances.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/MonitorInstancesRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

MonitorInstancesRequest request = new MonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.monitorInstances(request);

Siehe vollständiges Beispiel.

Anhalten der Instance-Überwachung

Um die Überwachung einer Instance zu beenden, erstellen Sie eine UnmonitorInstancesRequestmit
der ID der Instance, deren Überwachung beendet werden soll, und übergeben Sie sie an die
unmonitorInstances Methode des EC2 Amazon-Clients.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.UnmonitorInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

UnmonitorInstancesRequest request = new UnmonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.unmonitorInstances(request);

Siehe vollständiges Beispiel.

Weitere Informationen

• RunInstancesin der Amazon EC2 API-Referenz

• DescribeInstancesin der Amazon EC2 API-Referenz

• StartInstancesin der Amazon EC2 API-Referenz

• StopInstancesin der Amazon EC2 API-Referenz

• RebootInstancesin der Amazon EC2 API-Referenz

Amazon EC2 Instanzen verwalten 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/UnmonitorInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StartInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StopInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RebootInstances.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• MonitorInstancesin der Amazon EC2 API-Referenz

• UnmonitorInstancesin der Amazon EC2 API-Referenz

Verwendung von Elastic IP-Adressen in Amazon EC2

EC2-Classic geht in den Ruhestand

Warning

Wir gehen in den Ruhestand EC2 -Classic am 15. August 2022. Wir empfehlen Ihnen, von
EC2 -Classic zu einer VPC zu migrieren. Weitere Informationen finden Sie im Blogbeitrag
EC2-Classic-Classic-Classic Networking is Retiring — So bereiten Sie sich vor.

Zuweisen einer Elastic IP-Adresse

Um eine Elastic IP-Adresse zu verwenden, verknüpfen Sie sie zuerst mit Ihrem Konto und
anschließend mit Ihrer Instance oder Netzwerkschnittstelle.

Um eine Elastic IP-Adresse zuzuweisen, rufen Sie die allocateAddress Methode des EC2
Amazon-Clients mit einem AllocateAddressRequestObjekt auf, das den Netzwerktyp (klassisch EC2
oder VPC) enthält.

Die zurückgegebene Datei AllocateAddressResultenthält eine Zuweisungs-ID, mit der Sie die
Adresse einer Instance zuordnen können, indem Sie die Zuweisungs-ID und die Instance-ID in
a AssociateAddressRequestan die associateAddress Methode des EC2 Amazon-Clients
übergeben.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AllocateAddressRequest;
import com.amazonaws.services.ec2.model.AllocateAddressResult;
import com.amazonaws.services.ec2.model.AssociateAddressRequest;
import com.amazonaws.services.ec2.model.AssociateAddressResult;
import com.amazonaws.services.ec2.model.DomainType;

Code

Verwendung von Elastic IP-Adressen in Amazon EC2 133

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_MonitorInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_UnmonitorInstances.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AssociateAddressRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

AllocateAddressRequest allocate_request = new AllocateAddressRequest()
 .withDomain(DomainType.Vpc);

AllocateAddressResult allocate_response =
 ec2.allocateAddress(allocate_request);

String allocation_id = allocate_response.getAllocationId();

AssociateAddressRequest associate_request =
 new AssociateAddressRequest()
 .withInstanceId(instance_id)
 .withAllocationId(allocation_id);

AssociateAddressResult associate_response =
 ec2.associateAddress(associate_request);

Siehe vollständiges Beispiel.

Beschreiben von Elastic IP-Adressen

Um die Elastic IP-Adressen aufzulisten, die Ihrem Konto zugewiesen sind, rufen Sie
die describeAddresses Methode des EC2 Amazon-Clients auf. Sie gibt eine zurück
DescribeAddressesResult, mit der Sie eine Liste von Address-Objekten abrufen können, die die
Elastic IP-Adressen in Ihrem Konto repräsentieren.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.Address;
import com.amazonaws.services.ec2.model.DescribeAddressesResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeAddressesResult response = ec2.describeAddresses();

for(Address address : response.getAddresses()) {

Verwendung von Elastic IP-Adressen in Amazon EC2 134

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/AllocateAddress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAddressesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Address.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 System.out.printf(
 "Found address with public IP %s, " +
 "domain %s, " +
 "allocation id %s " +
 "and NIC id %s",
 address.getPublicIp(),
 address.getDomain(),
 address.getAllocationId(),
 address.getNetworkInterfaceId());
}

Siehe vollständiges Beispiel.

Freigeben einer Elastic IP-Adresse

Um eine Elastic IP-Adresse freizugeben, rufen Sie die releaseAddress Methode des EC2
Amazon-Clients auf und übergeben Sie ihr eine, die die Zuweisungs-ID der Elastic IP-Adresse
ReleaseAddressRequestenthält, die Sie freigeben möchten.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.ReleaseAddressRequest;
import com.amazonaws.services.ec2.model.ReleaseAddressResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

ReleaseAddressRequest request = new ReleaseAddressRequest()
 .withAllocationId(alloc_id);

ReleaseAddressResult response = ec2.releaseAddress(request);

Nachdem Sie eine Elastic IP-Adresse freigegeben haben, wird sie für den AWS IP-Adresspool
freigegeben und steht Ihnen danach möglicherweise nicht mehr zur Verfügung. Achten Sie
darauf, die DNS-Datensätze sowie alle Server und Geräte zu aktualisieren, die mit der Adresse
kommunizieren. Wenn Sie versuchen, eine Elastic IP-Adresse freizugeben, die Sie bereits
veröffentlicht haben, erhalten Sie eine AuthFailureFehlermeldung, wenn die Adresse bereits einer
anderen AWS-Konto zugewiesen ist.

Verwendung von Elastic IP-Adressen in Amazon EC2 135

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAddresses.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/ReleaseAddressRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Wenn Sie EC2-Classic oder eine Standard-VPC verwenden, wird durch die Freigabe einer Elastic
IP-Adresse diese automatisch von allen Instances getrennt, mit der sie verknüpft ist. Verwenden Sie
die disassociateAddress Methode des EC2 Amazon-Clients, um die Zuordnung einer Elastic IP-
Adresse zu trennen, ohne sie freizugeben.

Wenn Sie einen Nicht-Standard-VPC verwenden, müssen Sie die Verknüpfung der Elastic IP-
Adresse mit disassociateAddress aufheben, bevor Sie versuchen, sie freizugeben. Andernfalls
wird ein Fehler Amazon EC2 zurückgegeben (UngültigIPAddress). InUse).

Siehe vollständiges Beispiel.

Weitere Informationen

• Elastische IP-Adressen im Amazon EC2 Benutzerhandbuch für Linux-Instances

• AllocateAddressin der Amazon EC2 API-Referenz

• DescribeAddressesin der Amazon EC2 API-Referenz

• ReleaseAddressin der Amazon EC2 API-Referenz

Regionen und Verfügbarkeitszonen verwenden

Beschreiben von Regionen

Rufen Sie die EC2 describeRegions Amazon-Client-Methode auf, um die für Ihr Konto
verfügbaren Regionen aufzulisten. Sie gibt DescribeRegionsResult zurück. Rufen Sie die
getRegions-Methode des zurückgegebenen Objekts auf und Sie erhalten eine Liste mit Region-
Objekten, von denen jedes für eine Region steht.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

Code

DescribeRegionsResult regions_response = ec2.describeRegions();

Regionen und Verfügbarkeitszonen verwenden 136

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/ReleaseAddress.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AllocateAddress.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAddresses.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ReleaseAddress.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeRegionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Region.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

for(Region region : regions_response.getRegions()) {
 System.out.printf(
 "Found region %s " +
 "with endpoint %s",
 region.getRegionName(),
 region.getEndpoint());
}

Siehe vollständiges Beispiel.

Beschreiben von Availability Zones

Rufen Sie die EC2 describeAvailabilityZones Amazon-Client-Methode
auf, um jede Availability Zone aufzulisten, die für Ihr Konto verfügbar sind. Sie gibt
DescribeAvailabilityZonesResult zurück. Rufen Sie die getAvailabilityZones Methode auf, um
eine Liste von AvailabilityZoneObjekten zu erhalten, die jede Availability Zone repräsentieren.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

Code

DescribeAvailabilityZonesResult zones_response =
 ec2.describeAvailabilityZones();

for(AvailabilityZone zone : zones_response.getAvailabilityZones()) {
 System.out.printf(
 "Found availability zone %s " +
 "with status %s " +
 "in region %s",
 zone.getZoneName(),
 zone.getState(),
 zone.getRegionName());
}

Regionen und Verfügbarkeitszonen verwenden 137

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAvailabilityZonesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AvailabilityZone.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Siehe vollständiges Beispiel.

Beschreiben von Konten

Um Ihr Konto zu beschreiben, rufen Sie die describeAccountAttributes Methode des
EC2 Amazon-Clients auf. Diese Methode gibt ein DescribeAccountAttributesResultObjekt
zurück. Rufen Sie die getAccountAttributes Methode dieses Objekts auf, um eine
Liste von AccountAttributeObjekten zu erhalten. Sie können die Liste durchgehen, um ein
AccountAttributeObjekt abzurufen.

Sie können die Attributwerte Ihres Kontos abrufen, indem Sie die Methode des
AccountAttributegetAttributeValuesObjekts aufrufen. Diese Methode gibt eine Liste von
AccountAttributeValueObjekten zurück. Sie können diese zweite Liste durchlaufen, um den Wert von
Attributen anzuzeigen (siehe das folgende Codebeispiel).

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AccountAttributeValue;
import com.amazonaws.services.ec2.model.DescribeAccountAttributesResult;
import com.amazonaws.services.ec2.model.AccountAttribute;
import java.util.List;
import java.util.ListIterator;

Code

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

try{
 DescribeAccountAttributesResult accountResults = ec2.describeAccountAttributes();
 List<AccountAttribute> accountList = accountResults.getAccountAttributes();

 for (ListIterator iter = accountList.listIterator(); iter.hasNext();) {

 AccountAttribute attribute = (AccountAttribute) iter.next();
 System.out.print("\n The name of the attribute is
 "+attribute.getAttributeName());
 List<AccountAttributeValue> values = attribute.getAttributeValues();

 //iterate through the attribute values
 for (ListIterator iterVals = values.listIterator(); iterVals.hasNext();) {

Regionen und Verfügbarkeitszonen verwenden 138

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAccountAttributesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttributeValue.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 AccountAttributeValue myValue = (AccountAttributeValue) iterVals.next();
 System.out.print("\n The value of the attribute is
 "+myValue.getAttributeValue());
 }
 }
 System.out.print("Done");
}
catch (Exception e)
{
 e.getStackTrace();
}

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• Regionen und Availability Zones im Amazon EC2 Benutzerhandbuch für Linux-Instances

• DescribeRegionsin der Amazon EC2 API-Referenz

• DescribeAvailabilityZonesin der Amazon EC2 API-Referenz

Mit Amazon EC2 Schlüsselpaaren arbeiten

Erstellen eines Schlüsselpaars

Um ein key pair zu erstellen, rufen Sie die createKeyPair Methode des EC2 Amazon-Clients mit
einer auf CreateKeyPairRequest, die den Namen des Schlüssels enthält.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateKeyPairRequest;
import com.amazonaws.services.ec2.model.CreateKeyPairResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateKeyPairRequest request = new CreateKeyPairRequest()
 .withKeyName(key_name);

Mit Amazon EC2 Schlüsselpaaren arbeiten 139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAccount.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeRegions.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

CreateKeyPairResult response = ec2.createKeyPair(request);

Siehe vollständiges Beispiel.

Beschreiben von Schlüsselpaaren

Rufen Sie die EC2 describeKeyPairs Amazon-Client-Methode auf, um Ihre Schlüsselpaare
aufzulisten oder Informationen über sie zu erhalten. Sie gibt eine zurück DescribeKeyPairsResult, mit
der Sie auf die Liste der Schlüsselpaare zugreifen können, indem Sie ihre getKeyPairs Methode
aufrufen, die eine Liste von KeyPairInfoObjekten zurückgibt.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeKeyPairsResult;
import com.amazonaws.services.ec2.model.KeyPairInfo;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeKeyPairsResult response = ec2.describeKeyPairs();

for(KeyPairInfo key_pair : response.getKeyPairs()) {
 System.out.printf(
 "Found key pair with name %s " +
 "and fingerprint %s",
 key_pair.getKeyName(),
 key_pair.getKeyFingerprint());
}

Siehe vollständiges Beispiel.

Löschen eines Schlüsselpaars

Um ein key pair zu löschen, rufen Sie die deleteKeyPair Methode des EC2 Amazon-Clients auf
und übergeben Sie ihr eine DeleteKeyPairRequest, die den Namen des zu löschenden key pair
enthält.

Importe

Mit Amazon EC2 Schlüsselpaaren arbeiten 140

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateKeyPair.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeKeyPairsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPairInfo.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeKeyPairs.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteKeyPairRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteKeyPairRequest;
import com.amazonaws.services.ec2.model.DeleteKeyPairResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteKeyPairRequest request = new DeleteKeyPairRequest()
 .withKeyName(key_name);

DeleteKeyPairResult response = ec2.deleteKeyPair(request);

Siehe vollständiges Beispiel.

Weitere Informationen

• Amazon EC2 Schlüsselpaare im Amazon EC2 Benutzerhandbuch für Linux-Instances

• CreateKeyPairin der Amazon EC2 API-Referenz

• DescribeKeyPairsin der Amazon EC2 API-Referenz

• DeleteKeyPairin der Amazon EC2 API-Referenz

Arbeiten mit Sicherheitsgruppen in Amazon EC2

Erstellen einer Sicherheitsgruppe

Um eine Sicherheitsgruppe zu erstellen, rufen Sie die createSecurityGroup Methode des EC2
Amazon-Clients mit einer auf CreateSecurityGroupRequest, die den Namen des Schlüssels enthält.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Code

Arbeiten mit Sicherheitsgruppen in Amazon EC2 141

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteKeyPair.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateKeyPair.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeKeyPairs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteKeyPair.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateSecurityGroupRequest create_request = new
 CreateSecurityGroupRequest()
 .withGroupName(group_name)
 .withDescription(group_desc)
 .withVpcId(vpc_id);

CreateSecurityGroupResult create_response =
 ec2.createSecurityGroup(create_request);

Siehe vollständiges Beispiel.

Konfigurieren einer Sicherheitsgruppe

Eine Sicherheitsgruppe kann sowohl den eingehenden (eingehenden) als auch den ausgehenden
(ausgehenden) Datenverkehr zu Ihren Instances kontrollieren. Amazon EC2

Um Ihrer Sicherheitsgruppe Eingangsregeln hinzuzufügen, verwenden Sie die
authorizeSecurityGroupIngress Methode des EC2 Amazon-Clients und geben Sie den
Namen der Sicherheitsgruppe und die Zugriffsregeln (IpPermission) an, die Sie ihr innerhalb eines
AuthorizeSecurityGroupIngressRequestObjekts zuweisen möchten. Im folgenden Beispiel wird
gezeigt, wie Sie einer Sicherheitsgruppe IP-Berechtigungen hinzufügen.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Code

IpRange ip_range = new IpRange()
 .withCidrIp("0.0.0.0/0");

IpPermission ip_perm = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(80)
 .withFromPort(80)
 .withIpv4Ranges(ip_range);

Arbeiten mit Sicherheitsgruppen in Amazon EC2 142

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupIngressRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

IpPermission ip_perm2 = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(22)
 .withFromPort(22)
 .withIpv4Ranges(ip_range);

AuthorizeSecurityGroupIngressRequest auth_request = new
 AuthorizeSecurityGroupIngressRequest()
 .withGroupName(group_name)
 .withIpPermissions(ip_perm, ip_perm2);

AuthorizeSecurityGroupIngressResult auth_response =
 ec2.authorizeSecurityGroupIngress(auth_request);

Um der Sicherheitsgruppe eine Ausgangsregel hinzuzufügen, geben Sie ähnliche Daten
in einer der authorizeSecurityGroupEgress Methoden des EC2 Amazon-Clients
AuthorizeSecurityGroupEgressRequestan.

Siehe vollständiges Beispiel.

Beschreiben von Sicherheitsgruppen

Rufen Sie die describeSecurityGroups Methode des EC2 Amazon-Clients auf, um Ihre
Sicherheitsgruppen zu beschreiben oder Informationen über sie zu erhalten. Sie gibt eine zurück
DescribeSecurityGroupsResult, mit der Sie auf die Liste der Sicherheitsgruppen zugreifen können,
indem Sie ihre getSecurityGroups Methode aufrufen, die eine Liste von SecurityGroupObjekten
zurückgibt.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsRequest;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsResult;

Code

final String USAGE =
 "To run this example, supply a group id\n" +
 "Ex: DescribeSecurityGroups <group-id>\n";

if (args.length != 1) {

Arbeiten mit Sicherheitsgruppen in Amazon EC2 143

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSecurityGroupsResult.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/SecurityGroup.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 System.out.println(USAGE);
 System.exit(1);
}

String group_id = args[0];

Siehe vollständiges Beispiel.

Löschen einer Sicherheitsgruppe

Um eine Sicherheitsgruppe zu löschen, rufen Sie die deleteSecurityGroup Methode des EC2
Amazon-Clients auf und übergeben Sie ihr eine DeleteSecurityGroupRequest, die die ID der zu
löschenden Sicherheitsgruppe enthält.

Importe

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteSecurityGroupRequest request = new DeleteSecurityGroupRequest()
 .withGroupId(group_id);

DeleteSecurityGroupResult response = ec2.deleteSecurityGroup(request);

Siehe vollständiges Beispiel.

Weitere Informationen

• Amazon EC2 Sicherheitsgruppen im Amazon EC2 Benutzerhandbuch für Linux-Instances

• Autorisieren von eingehendem Traffic für Ihre Linux-Instances im Amazon EC2 Benutzerhandbuch
für Linux-Instances

• CreateSecurityGroupin der API-Referenz Amazon EC2

• DescribeSecurityGroupsin der Amazon EC2 API-Referenz

• DeleteSecurityGroupin der Amazon EC2 API-Referenz

Arbeiten mit Sicherheitsgruppen in Amazon EC2 144

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeSecurityGroups.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteSecurityGroupRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteSecurityGroup.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteSecurityGroup.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• AuthorizeSecurityGroupIngressin der Amazon EC2 API-Referenz

IAM-Beispiele mit dem AWS SDK für Java

Dieser Abschnitt enthält Beispiele für die Programmierung von IAM mit dem AWS SDK für Java.

AWS Identity and Access Management (IAM) ermöglicht es Ihnen, den Zugriff Ihrer Benutzer
auf AWS Dienste und Ressourcen sicher zu kontrollieren. Mit IAM können Sie AWS Benutzer
und Gruppen erstellen und verwalten und ihnen mithilfe von Berechtigungen den Zugriff auf
Ressourcen gewähren oder verweigern. AWS Eine vollständige Anleitung zu IAM finden Sie im IAM
Benutzerhandbuch.

Note

Die Beispiele enthalten nur den Code, der zur Demonstration jeder Technik nötig ist. Der
vollständige Beispielcode ist verfügbar unter GitHub. Von dort aus können Sie eine einzelne
Quelldatei herunterladen oder das Repository klonen, um alle Beispiele lokal zu erstellen und
auszuführen.

Themen

• Verwalten von IAM-Zugriffsschlüsseln

• Verwalten von IAM-Benutzern

• Verwenden von IAM-Konto-Aliasen

• Arbeiten mit IAM-Richtlinien

• Arbeiten mit IAM-Serverzertifikaten

Verwalten von IAM-Zugriffsschlüsseln

Erstellen eines Zugriffsschlüssels

Um einen IAM-Zugriffsschlüssel zu erstellen, rufen Sie die AmazonIdentityManagementClient
createAccessKey Methode mit einem CreateAccessKeyRequestObjekt auf.

CreateAccessKeyRequesthat zwei Konstruktoren — einen für einen Benutzernamen und einen
ohne Parameter. Wenn Sie die Version nutzen, die keine Parameter entgegen nimmt, müssen Sie

AWS Identity and Access Management (IAM) Beispiele 145

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AuthorizeSecurityGroupIngress.html
https://aws.amazon.com/iam/
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccessKeyRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

den Benutzernamen mithilfe der withUserName-Setter-Methode festlegen, bevor Sie das Element
an die createAccessKey-Methode übergeben.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccessKeyRequest request = new CreateAccessKeyRequest()
 .withUserName(user);

CreateAccessKeyResult response = iam.createAccessKey(request);

Das vollständige Beispiel finden Sie unter. GitHub

Auflisten von Zugriffsschlüsseln

Um die Zugriffsschlüssel für einen bestimmten Benutzer aufzulisten, erstellen Sie ein
ListAccessKeysRequestObjekt, das den Benutzernamen enthält, für den die Schlüssel aufgelistet
werden sollen, und übergeben Sie ihn an die AmazonIdentityManagementClient listAccessKeys
Methode.

Note

Wenn Sie keinen Benutzernamen angeben, wird versuchtlistAccessKeys, die
Zugriffsschlüssel aufzulisten, die dem Benutzer zugeordnet sind AWS-Konto , der die Anfrage
signiert hat.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;

Verwalten von IAM-Zugriffsschlüsseln 146

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccessKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.identitymanagement.model.AccessKeyMetadata;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysRequest;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListAccessKeysRequest request = new ListAccessKeysRequest()
 .withUserName(username);

while (!done) {

 ListAccessKeysResult response = iam.listAccessKeys(request);

 for (AccessKeyMetadata metadata :
 response.getAccessKeyMetadata()) {
 System.out.format("Retrieved access key %s",
 metadata.getAccessKeyId());
 }

 request.setMarker(response.getMarker());

 if (!response.getIsTruncated()) {
 done = true;
 }
}

Die Ergebnisse von listAccessKeys sind seitenweise angeordnet (mit einem Standardhöchstwert
von 100 Datensätzen pro Aufruf). Sie können das zurückgegebene ListAccessKeysResultObjekt
aufrufengetIsTruncated, um zu überprüfen, ob die Abfrage weniger Ergebnisse geliefert hat,
als verfügbar sind. Falls ja, rufen Sie setMarker für den ListAccessKeysRequest auf und
übergeben Sie ihn beim nächsten Aufruf von listAccessKeys.

Das vollständige Beispiel finden Sie unter GitHub.

Abrufen der letzten Nutzungszeit eines Zugriffsschlüssels

Um die Uhrzeit zu ermitteln, zu der ein Zugriffsschlüssel zuletzt verwendet wurde, rufen Sie
die AmazonIdentityManagementClient getAccessKeyLastUsed 's-Methode mit der ID des

Verwalten von IAM-Zugriffsschlüsseln 147

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccessKeys.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Zugriffsschlüssels auf (die mithilfe eines GetAccessKeyLastUsedRequestObjekts übergeben werden
kann), oder direkt an die Overload, die die Zugriffsschlüssel-ID direkt übernimmt.

Sie können dann das zurückgegebene GetAccessKeyLastUsedResultObjekt verwenden, um die
Uhrzeit der letzten Verwendung des Schlüssels abzurufen.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedRequest;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetAccessKeyLastUsedRequest request = new GetAccessKeyLastUsedRequest()
 .withAccessKeyId(access_id);

GetAccessKeyLastUsedResult response = iam.getAccessKeyLastUsed(request);

System.out.println("Access key was last used at: " +
 response.getAccessKeyLastUsed().getLastUsedDate());

Das vollständige Beispiel finden Sie unter GitHub.

Aktivieren oder Deaktivieren von Zugriffsschlüsseln

Sie können einen Zugriffsschlüssel aktivieren oder deaktivieren, indem Sie ein
UpdateAccessKeyRequestObjekt erstellen, die Zugriffsschlüssel-ID, optional den
Benutzernamen und den gewünschten Status angeben und dann das Anforderungsobjekt an die
AmazonIdentityManagementClient updateAccessKey -Methode übergeben.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyRequest;

Verwalten von IAM-Zugriffsschlüsseln 148

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AccessKeyLastUsed.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateAccessKeyRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/StatusType.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateAccessKeyRequest request = new UpdateAccessKeyRequest()
 .withAccessKeyId(access_id)
 .withUserName(username)
 .withStatus(status);

UpdateAccessKeyResult response = iam.updateAccessKey(request);

Das vollständige Beispiel finden Sie unter GitHub.

Löschen eines Zugriffsschlüssels

Um einen Zugriffsschlüssel dauerhaft zu löschen, rufen Sie die deleteKey Methode
AmazonIdentityManagementClient 'auf und geben ihr eine, die die ID und den Benutzernamen des
Zugriffsschlüssels DeleteAccessKeyRequestenthält.

Note

Nach dem Löschen können Schlüssel nicht mehr abgerufen oder verwendet werden. Um
einen Schlüssel vorübergehend zu deaktivieren, sodass er später wieder aktiviert werden
kann, verwenden Sie stattdessen updateAccessKeymethod.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyResult;

Code

final AmazonIdentityManagement iam =

Verwalten von IAM-Zugriffsschlüsseln 149

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateAccessKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccessKeyRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccessKeyRequest request = new DeleteAccessKeyRequest()
 .withAccessKeyId(access_key)
 .withUserName(username);

DeleteAccessKeyResult response = iam.deleteAccessKey(request);

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• CreateAccessKeyin der IAM-API-Referenz

• ListAccessKeysin der IAM-API-Referenz

• GetAccessKeyLastUsedin der IAM-API-Referenz

• UpdateAccessKeyin der IAM-API-Referenz

• DeleteAccessKeyin der IAM-API-Referenz

Verwalten von IAM-Benutzern

Erstellen eines Benutzers

Erstellen Sie einen neuen IAM-Benutzer, indem Sie den Benutzernamen für die createUser
Methode AmazonIdentityManagementClient angeben, entweder direkt oder mithilfe eines
CreateUserRequestObjekts, das den Benutzernamen enthält.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateUserRequest;
import com.amazonaws.services.identitymanagement.model.CreateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

Verwalten von IAM-Benutzern 150

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccessKey.java
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateUserRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

CreateUserRequest request = new CreateUserRequest()
 .withUserName(username);

CreateUserResult response = iam.createUser(request);

Das vollständige Beispiel finden Sie unter. GitHub

Auflisten von Benutzern

Um die IAM-Benutzer für Ihr Konto aufzulisten, erstellen Sie ein neues ListUsersRequestund
übergeben Sie es an die AmazonIdentityManagementClient listUsers Methode. Sie können die
Benutzerliste abrufen, indem Sie das zurückgegebene ListUsersResultObjekt aufrufengetUsers.

Die von listUsers zurückgegebene Benutzerliste ist segmentiert. Sie können prüfen, ob weitere
Ergebnisse bereitliegen, indem Sie die getIsTruncated-Methode des Antwortobjekts aufrufen.
Gibt sie true zurück, rufen Sie die setMarker()-Methode des Anfrageobjekts auf und übergeben
ihr den Rückgabewert der getMarker()-Methode des Antwortobjekts.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListUsersRequest;
import com.amazonaws.services.identitymanagement.model.ListUsersResult;
import com.amazonaws.services.identitymanagement.model.User;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListUsersRequest request = new ListUsersRequest();

while(!done) {
 ListUsersResult response = iam.listUsers(request);

 for(User user : response.getUsers()) {
 System.out.format("Retrieved user %s", user.getUserName());
 }

Verwalten von IAM-Benutzern 151

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListUsersRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListUsersResult.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

Das vollständige Beispiel finden Sie unter GitHub.

Aktualisieren eines Benutzers

Um einen Benutzer zu aktualisieren, rufen Sie die updateUser Methode des
AmazonIdentityManagementClient Objekts auf, die ein UpdateUserRequestObjekt verwendet, mit
dem Sie den Namen oder Pfad des Benutzers ändern können.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateUserRequest;
import com.amazonaws.services.identitymanagement.model.UpdateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateUserRequest request = new UpdateUserRequest()
 .withUserName(cur_name)
 .withNewUserName(new_name);

UpdateUserResult response = iam.updateUser(request);

Das vollständige Beispiel finden Sie unter GitHub.

Löschen eines Benutzers

Um einen Benutzer zu löschen, rufen Sie die AmazonIdentityManagementClient deleteUser
Anfrage mit einem UpdateUserRequestObjektsatz mit dem zu löschenden Benutzernamen auf.

Importe

Verwalten von IAM-Benutzern 152

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListUsers.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteConflictException;
import com.amazonaws.services.identitymanagement.model.DeleteUserRequest;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteUserRequest request = new DeleteUserRequest()
 .withUserName(username);

try {
 iam.deleteUser(request);
} catch (DeleteConflictException e) {
 System.out.println("Unable to delete user. Verify user is not" +
 " associated with any resources");
 throw e;
}

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• IAM-Benutzer im IAM Benutzerhandbuch

• Verwaltung von IAM-Benutzern im Benutzerhandbuch IAM

• CreateUserin der IAM-API-Referenz

• ListUsersin der IAM-API-Referenz

• UpdateUserin der IAM-API-Referenz

• DeleteUserin der IAM-API-Referenz

Verwenden von IAM-Konto-Aliasen

Wenn Sie möchten, dass die URL für Ihre Anmeldeseite Ihren Firmennamen oder eine andere
benutzerfreundliche Kennung anstelle Ihrer AWS-Konto ID enthält, können Sie einen Alias für Ihre
AWS-Konto.

Verwenden von IAM-Konto-Aliasen 153

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteUser.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUser.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

AWS unterstützt genau einen Kontoalias pro Konto.

Erstellen eines Konto-Alias

Um einen Kontoalias zu erstellen, rufen Sie die createAccountAlias Methode
AmazonIdentityManagementClient's mit einem CreateAccountAliasRequestObjekt auf, das den
Aliasnamen enthält.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccountAliasRequest request = new CreateAccountAliasRequest()
 .withAccountAlias(alias);

CreateAccountAliasResult response = iam.createAccountAlias(request);

Das vollständige Beispiel finden Sie unter GitHub.

Auflisten von Konto-Aliassen

Rufen Sie die listAccountAliases Methode s auf, um den AmazonIdentityManagementClient
Alias Ihres Kontos aufzulisten, falls vorhanden.

Note

Die zurückgegebene Methode ListAccountAliasesResultunterstützt dieselben getMarker
Methoden getIsTruncated und wie andere AWS SDK für Java Listenmethoden, AWS-
Konto kann jedoch nur einen Kontoalias haben.

Verwenden von IAM-Konto-Aliasen 154

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccountAliasRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccountAlias.java
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListAccountAliasesResult.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAccountAliasesResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAccountAliasesResult response = iam.listAccountAliases();

for (String alias : response.getAccountAliases()) {
 System.out.printf("Retrieved account alias %s", alias);
}

Das vollständige Beispiel finden Sie unter GitHub.

Löschen eines Konto-Alias

Um den Alias Ihres Kontos zu löschen, rufen Sie AmazonIdentityManagementClient die
deleteAccountAlias Methode auf. Wenn Sie einen Kontoalias löschen, müssen Sie seinen
Namen mithilfe eines DeleteAccountAliasRequestObjekts angeben.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccountAliasRequest request = new DeleteAccountAliasRequest()
 .withAccountAlias(alias);

Verwenden von IAM-Konto-Aliasen 155

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccountAliases.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccountAliasRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

DeleteAccountAliasResult response = iam.deleteAccountAlias(request);

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• Ihre AWS Konto-ID und ihr Alias finden Sie im IAM Benutzerhandbuch

• CreateAccountAliasin der IAM-API-Referenz

• ListAccountAliasesin der IAM-API-Referenz

• DeleteAccountAliasin der IAM-API-Referenz

Arbeiten mit IAM-Richtlinien

Erstellen einer Richtlinie

Um eine neue Richtlinie zu erstellen, geben Sie den Namen der Richtlinie und ein
Richtliniendokument im JSON-Format in einer Methode CreatePolicyRequestan
AmazonIdentityManagementClient. createPolicy

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreatePolicyRequest;
import com.amazonaws.services.identitymanagement.model.CreatePolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreatePolicyRequest request = new CreatePolicyRequest()
 .withPolicyName(policy_name)
 .withPolicyDocument(POLICY_DOCUMENT);

CreatePolicyResult response = iam.createPolicy(request);

IAM-Richtliniendokumente sind JSON-Zeichenfolgen mit einer gut dokumentierten Syntax. Hier finden
Sie ein Beispiel, das den Zugriff für bestimmte Anfragen an DynamoDB gewährt.

Arbeiten mit IAM-Richtlinien 156

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccountAlias.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccountAlias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccountAliases.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountAlias.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreatePolicyRequest.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

public static final String POLICY_DOCUMENT =
 "{" +
 " \"Version\": \"2012-10-17\", " +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": \"logs:CreateLogGroup\"," +
 " \"Resource\": \"%s\"" +
 " }," +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"dynamodb:DeleteItem\"," +
 " \"dynamodb:GetItem\"," +
 " \"dynamodb:PutItem\"," +
 " \"dynamodb:Scan\"," +
 " \"dynamodb:UpdateItem\"" +
 "]," +
 " \"Resource\": \"RESOURCE_ARN\"" +
 " }" +
 "]" +
 "}";

Das vollständige Beispiel finden Sie unter. GitHub

Abrufen einer Richtlinie

Um eine bestehende Richtlinie abzurufen, rufen Sie die AmazonIdentityManagementClient
getPolicy Methode auf und geben den ARN der Richtlinie in einem GetPolicyRequestObjekt an.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetPolicyRequest;
import com.amazonaws.services.identitymanagement.model.GetPolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

Arbeiten mit IAM-Richtlinien 157

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreatePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetPolicyRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

GetPolicyRequest request = new GetPolicyRequest()
 .withPolicyArn(policy_arn);

GetPolicyResult response = iam.getPolicy(request);

Das vollständige Beispiel finden Sie unter GitHub.

Anfügen einer Rollenrichtlinie

Sie können eine Richtlinie an IAMhttp: //docs.aws.amazon anhängen. com/IAM/
latest/UserGuide/id_roles.html [role], indem Sie die attachRolePolicy Methode
AmazonIdentityManagementClient's aufrufen und ihr den Rollennamen und den Richtlinien-ARN in
einem zur Verfügung stellen AttachRolePolicyRequest.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AttachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.AttachedPolicy;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

AttachRolePolicyRequest attach_request =
 new AttachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(POLICY_ARN);

iam.attachRolePolicy(attach_request);

Das vollständige Beispiel finden Sie unter GitHub.

Auflisten angefügter Rollenrichtlinien

Listet die angehängten Richtlinien für eine Rolle auf, indem Sie die listAttachedRolePolicies
Methode AmazonIdentityManagementClient's aufrufen. Es wird ein

Arbeiten mit IAM-Richtlinien 158

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetPolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/AttachRolePolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

ListAttachedRolePoliciesRequestObjekt benötigt, das den Rollennamen enthält, um die Richtlinien
aufzulisten.

Rufen Sie das zurückgegebene ListAttachedRolePoliciesResultObjekt getAttachedPolicies
auf, um die Liste der angehängten Richtlinien abzurufen. Die Ergebnisse sind evtl. gekürzt. Gibt die
ListAttachedRolePoliciesResult-Methode des getIsTruncated-Objekts true zurück,
rufen Sie die ListAttachedRolePoliciesRequest-Methode des setMarker-Objekts auf.
Verwenden Sie das Ergebnis dann in einem weiteren Aufruf von listAttachedRolePolicies, um
das nächste Teilergebnis abzurufen.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesRequest;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesResult;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAttachedRolePoliciesRequest request =
 new ListAttachedRolePoliciesRequest()
 .withRoleName(role_name);

List<AttachedPolicy> matching_policies = new ArrayList<>();

boolean done = false;

while(!done) {
 ListAttachedRolePoliciesResult response =
 iam.listAttachedRolePolicies(request);

 matching_policies.addAll(
 response.getAttachedPolicies()
 .stream()
 .filter(p -> p.getPolicyName().equals(role_name))
 .collect(Collectors.toList()));

Arbeiten mit IAM-Richtlinien 159

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesResult.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 if(!response.getIsTruncated()) {
 done = true;
 }
 request.setMarker(response.getMarker());
}

Das vollständige Beispiel finden Sie unter GitHub.

Trennen einer Rollenrichtlinie

Um eine Richtlinie von einer Rolle zu trennen, rufen Sie die detachRolePolicy Methode
AmazonIdentityManagementClient's auf und geben Sie ihr den Rollennamen und den Richtlinien-
ARN in a DetachRolePolicyRequestan.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DetachRolePolicyRequest request = new DetachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(policy_arn);

DetachRolePolicyResult response = iam.detachRolePolicy(request);

Das vollständige Beispiel finden Sie unter. GitHub

Weitere Informationen

• Überblick über die IAM-Richtlinien im IAM Benutzerhandbuch.

• AWS Referenz zu den IAM-Richtlinien im IAM Benutzerhandbuch.

• CreatePolicyin der IAM-API-Referenz

Arbeiten mit IAM-Richtlinien 160

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DetachRolePolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DetachRolePolicy.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• GetPolicyin der IAM-API-Referenz

• AttachRolePolicyin der IAM-API-Referenz

• ListAttachedRolePoliciesin der IAM-API-Referenz

• DetachRolePolicyin der IAM-API-Referenz

Arbeiten mit IAM-Serverzertifikaten

Um HTTPS-Verbindungen zu Ihrer Website oder Anwendung zu aktivieren AWS, benötigen Sie
ein SSL/TLS-Serverzertifikat. Sie können ein Serverzertifikat verwenden, das von AWS Certificate
Manager bereitgestellt wird, oder eines, das Sie von einem externen Anbieter bezogen haben.

Wir empfehlen, dass Sie ACM für die Bereitstellung, Verwaltung und Bereitstellung Ihrer
Serverzertifikate verwenden. Mit ACM können Sie ein Zertifikat anfordern, es für Ihre AWS
Ressourcen bereitstellen und ACM die Zertifikatserneuerung für Sie durchführen lassen. Zertifikate
von ACM sind kostenlos. Weitere Informationen zu ACM finden Sie im ACM-Benutzerhandbuch.

Abrufen eines Serverzertifikats

Sie können ein Serverzertifikat abrufen, indem Sie die getServerCertificate Methode
AmazonIdentityManagementClient 'aufrufen und ihr eine GetServerCertificateRequestmit dem
Namen des Zertifikats übergeben.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetServerCertificateRequest request = new GetServerCertificateRequest()
 .withServerCertificateName(cert_name);

GetServerCertificateResult response = iam.getServerCertificate(request);

Arbeiten mit IAM-Serverzertifikaten 161

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html
https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetServerCertificateRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Das vollständige Beispiel finden Sie unter GitHub.

Auflisten von Serverzertifikaten

Um Ihre Serverzertifikate aufzulisten, rufen Sie die listServerCertificates Methode
AmazonIdentityManagementClient's mit einem auf ListServerCertificatesRequest. Sie gibt
ListServerCertificatesResult zurück.

Rufen Sie die getServerCertificateMetadataList Methode des
zurückgegebenen ListServerCertificateResult Objekts auf, um eine Liste von
ServerCertificateMetadataObjekten abzurufen, mit denen Sie Informationen zu den einzelnen
Zertifikaten abrufen können.

Die Ergebnisse sind evtl. gekürzt. Gibt die ListServerCertificateResult-Methode des
getIsTruncated-Objekts true zurück, rufen Sie die ListServerCertificatesRequest-
Methode des setMarker-Objekts auf. Verwenden Sie das Ergebnis dann in einem weiteren Aufruf
von listServerCertificates, um das nächste Teilergebnis abzurufen.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesRequest;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesResult;
import com.amazonaws.services.identitymanagement.model.ServerCertificateMetadata;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListServerCertificatesRequest request =
 new ListServerCertificatesRequest();

while(!done) {

 ListServerCertificatesResult response =
 iam.listServerCertificates(request);

 for(ServerCertificateMetadata metadata :

Arbeiten mit IAM-Serverzertifikaten 162

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetServerCertificate.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ServerCertificateMetadata.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 response.getServerCertificateMetadataList()) {
 System.out.printf("Retrieved server certificate %s",
 metadata.getServerCertificateName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

Das vollständige Beispiel finden Sie unter GitHub.

Aktualisieren eines Serverzertifikats

Sie können den Namen oder Pfad eines Serverzertifikats aktualisieren, indem Sie die
updateServerCertificate Methode AmazonIdentityManagementClient's aufrufen. Sie benötigt
eine UpdateServerCertificateRequestObjektgruppe mit dem aktuellen Namen des Serverzertifikats
und entweder einem neuen Namen oder einem neuen Pfad zur Verwendung.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateServerCertificateRequest request =
 new UpdateServerCertificateRequest()
 .withServerCertificateName(cur_name)
 .withNewServerCertificateName(new_name);

UpdateServerCertificateResult response =
 iam.updateServerCertificate(request);

Das vollständige Beispiel finden Sie unter GitHub.

Arbeiten mit IAM-Serverzertifikaten 163

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListServerCertificates.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateServerCertificateRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateServerCertificate.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Löschen eines Serverzertifikats

Um ein Serverzertifikat zu löschen, rufen Sie die deleteServerCertificate Methode
AmazonIdentityManagementClient 'mit einem auf, das den Namen des Zertifikats
DeleteServerCertificateRequestenthält.

Importe

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteServerCertificateRequest request =
 new DeleteServerCertificateRequest()
 .withServerCertificateName(cert_name);

DeleteServerCertificateResult response =
 iam.deleteServerCertificate(request);

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• Arbeiten mit Serverzertifikaten im IAM Benutzerhandbuch

• GetServerCertificatein der IAM-API-Referenz

• ListServerCertificatesin der IAM-API-Referenz

• UpdateServerCertificatein der IAM-API-Referenz

• DeleteServerCertificatein der IAM-API-Referenz

• ACM-Benutzerhandbuch

Lambda Beispiele für die Verwendung der AWS SDK für Java
Dieser Abschnitt enthält Beispiele für die Programmierung Lambda mit dem AWS SDK für Java.

Lambda Amazon-Beispiele 164

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteServerCertificateRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteServerCertificate.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificates.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServerCertificate.html
https://docs.aws.amazon.com/acm/latest/userguide/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Die Beispiele enthalten nur den Code, der zur Demonstration jeder Technik nötig ist. Der
vollständige Beispielcode ist verfügbar unter GitHub. Von dort aus können Sie eine einzelne
Quelldatei herunterladen oder das Repository klonen, um alle Beispiele lokal zu erstellen und
auszuführen.

Themen

• Funktionen aufrufen, auflisten und löschen Lambda

Funktionen aufrufen, auflisten und löschen Lambda

Dieser Abschnitt enthält Beispiele für die Programmierung mit dem Lambda Service-Client unter
Verwendung von. AWS SDK für Java Informationen zum Erstellen einer Lambda Funktion finden Sie
unter So erstellen Sie AWS Lambda Funktionen.

Themen

• Aufruf einer -Funktion

• Listenfunktionen

• Löschen einer -Funktion

Aufruf einer -Funktion

Sie können eine Lambda Funktion aufrufen, indem Sie ein AWSLambdaObjekt erstellen und dessen
invoke Methode aufrufen. Erstellen Sie ein InvokeRequestObjekt, um zusätzliche Informationen
wie den Funktionsnamen und die Nutzlast anzugeben, die an die Funktion übergeben werden sollen.
Lambda Funktionsnamen werden als arn:aws:lambda:us-east - 1:555556330391:function: angezeigt.
HelloFunction Sie können den Wert abrufen, indem Sie sich die Funktion in der ansehen. AWS-
Managementkonsole

Um Nutzdaten an eine Funktion zu übergeben, rufen Sie die withPayload Methode des
InvokeRequestObjekts auf und geben Sie eine Zeichenfolge im JSON-Format an, wie im folgenden
Codebeispiel gezeigt.

Importe

Serviceoperationen 165

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/lambda-tutorial.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.services.lambda.model.ServiceException;

import java.nio.charset.StandardCharsets;

Code

Das folgende Codebeispiel zeigt, wie eine Funktion aufgerufen wird. Lambda

 String functionName = args[0];

 InvokeRequest invokeRequest = new InvokeRequest()
 .withFunctionName(functionName)
 .withPayload("{\n" +
 " \"Hello \": \"Paris\",\n" +
 " \"countryCode\": \"FR\"\n" +
 "}");
 InvokeResult invokeResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 invokeResult = awsLambda.invoke(invokeRequest);

 String ans = new String(invokeResult.getPayload().array(),
 StandardCharsets.UTF_8);

 //write out the return value
 System.out.println(ans);

 } catch (ServiceException e) {
 System.out.println(e);
 }

 System.out.println(invokeResult.getStatusCode());

Serviceoperationen 166

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Auf GitHub finden Sie ein vollständiges Beispiel.

Listenfunktionen

Erstellen Sie ein AWSLambdaObjekt und rufen Sie seine listFunctions Methode auf. Diese
Methode gibt ein ListFunctionsResultObjekt zurück. Sie können die getFunctions Methode dieses
Objekts aufrufen, um eine Liste von FunctionConfigurationObjekten zurückzugeben. Sie können die
Liste durchlaufen, um Informationen über die Funktionen abzurufen. Das folgende Java-Codebeispiel
zeigt beispielsweise, wie die einzelnen Funktionsnamen abgerufen werden.

Importe

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.FunctionConfiguration;
import com.amazonaws.services.lambda.model.ListFunctionsResult;
import com.amazonaws.services.lambda.model.ServiceException;
import java.util.Iterator;
import java.util.List;

Code

Das folgende Java-Codebeispiel zeigt, wie eine Liste von Lambda Funktionsnamen abgerufen wird.

 ListFunctionsResult functionResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 functionResult = awsLambda.listFunctions();

 List<FunctionConfiguration> list = functionResult.getFunctions();

 for (Iterator iter = list.iterator(); iter.hasNext();) {
 FunctionConfiguration config = (FunctionConfiguration)iter.next();

 System.out.println("The function name is "+config.getFunctionName());
 }

Serviceoperationen 167

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/LambdaInvokeFunction.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/ListFunctionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/FunctionConfiguration.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 } catch (ServiceException e) {
 System.out.println(e);
 }

Auf GitHub finden Sie ein vollständiges Beispiel.

Löschen einer -Funktion

Erstellen Sie ein AWSLambdaObjekt und rufen Sie seine deleteFunction Methode auf. Erstellen
Sie ein DeleteFunctionRequestObjekt und übergeben Sie es an die deleteFunction Methode.
Dieses Objekt enthält Informationen wie den Namen der zu löschenden Funktion. Funktionsnamen
werden als arn:aws:lambda:us-east - 1:555556330391:function: angezeigt. HelloFunction Sie können
den Wert abrufen, indem Sie sich die Funktion in der ansehen. AWS-Managementkonsole

Importe

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.ServiceException;
import com.amazonaws.services.lambda.model.DeleteFunctionRequest;

Code

Der folgende Java-Code zeigt, wie eine Lambda Funktion gelöscht wird.

 String functionName = args[0];
 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 DeleteFunctionRequest delFunc = new DeleteFunctionRequest();
 delFunc.withFunctionName(functionName);

 //Delete the function
 awsLambda.deleteFunction(delFunc);
 System.out.println("The function is deleted");

 } catch (ServiceException e) {
 System.out.println(e);

Serviceoperationen 168

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/ListFunctions.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/DeleteFunctionRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 }

Auf GitHub finden Sie ein vollständiges Beispiel.

Amazon Pinpoint Beispiele für die Verwendung der AWS SDK für
Java

Dieser Abschnitt bietet Beispiele für die Programmierung von Amazon Pinpoint mithilfe des AWS
SDK für Java.

Note

Die Beispiele enthalten nur den Code, der zur Demonstration jeder Technik nötig ist. Der
vollständige Beispielcode ist verfügbar unter GitHub. Von dort aus können Sie eine einzelne
Quelldatei herunterladen oder das Repository klonen, um alle Beispiele lokal zu erstellen und
auszuführen.

Themen

• Apps erstellen und löschen in Amazon Pinpoint

• Endpunkte erstellen in Amazon Pinpoint

• Segmente erstellen in Amazon Pinpoint

• Kampagnen erstellen in Amazon Pinpoint

• Kanäle aktualisieren in Amazon Pinpoint

Apps erstellen und löschen in Amazon Pinpoint

Eine App ist ein Amazon Pinpoint Projekt, in dem Sie die Zielgruppe für eine bestimmte Anwendung
definieren und diese Zielgruppe mit maßgeschneiderten Nachrichten ansprechen. Die Beispiele auf
dieser Seite zeigen, wie Sie eine neue App erstellen oder eine bestehende löschen.

Erstellen einer Anwendung

Erstellen Sie eine neue App, Amazon Pinpoint indem Sie dem CreateAppRequestObjekt einen
App-Namen geben und dieses Objekt dann an die AmazonPinpointClient createApp -Methode
übergeben.

Amazon Pinpoint Beispiele 169

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/DeleteFunction.java
https://aws.amazon.com/pinpoint/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateAppRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Importe

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateAppRequest;
import com.amazonaws.services.pinpoint.model.CreateAppResult;
import com.amazonaws.services.pinpoint.model.CreateApplicationRequest;

Code

CreateApplicationRequest appRequest = new CreateApplicationRequest()
 .withName(appName);

CreateAppRequest request = new CreateAppRequest();
request.withCreateApplicationRequest(appRequest);
CreateAppResult result = pinpoint.createApp(request);

Das vollständige Beispiel finden Sie unter GitHub.

Löschen einer APP

Um eine App zu löschen, rufen Sie die AmazonPinpointClient deleteApp Anfrage mit einem
DeleteAppRequestObjekt auf, für das der zu löschende App-Name festgelegt ist.

Importe

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;

Code

DeleteAppRequest deleteRequest = new DeleteAppRequest()
 .withApplicationId(appID);

pinpoint.deleteApp(deleteRequest);

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• Apps in der Amazon Pinpoint API-Referenz

Apps erstellen und löschen in Amazon Pinpoint 170

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/DeleteAppRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/DeleteApp.java
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apps.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• App in der Amazon Pinpoint API-Referenz

Endpunkte erstellen in Amazon Pinpoint

Ein Endpunkt kennzeichnet auf eindeutige Weise ein Benutzergerät, an das Sie mit Amazon Pinpoint
Push-Benachrichtigungen senden können. Wenn für Ihre App Amazon Pinpoint Support aktiviert ist,
registriert Ihre App automatisch einen Endpunkt, Amazon Pinpoint wenn ein neuer Benutzer Ihre App
öffnet. Das folgende Beispiel zeigt, wie Sie programmgesteuert einen neuen Endpunkt hinzufügen.

Erstellen eines Endpunkts

Erstellen Sie einen neuen Endpunkt, Amazon Pinpoint indem Sie die Endpunktdaten in einem
EndpointRequestObjekt angeben.

Importe

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.UpdateEndpointRequest;
import com.amazonaws.services.pinpoint.model.UpdateEndpointResult;
import com.amazonaws.services.pinpoint.model.EndpointDemographic;
import com.amazonaws.services.pinpoint.model.EndpointLocation;
import com.amazonaws.services.pinpoint.model.EndpointRequest;
import com.amazonaws.services.pinpoint.model.EndpointResponse;
import com.amazonaws.services.pinpoint.model.EndpointUser;
import com.amazonaws.services.pinpoint.model.GetEndpointRequest;
import com.amazonaws.services.pinpoint.model.GetEndpointResult;

Code

HashMap<String, List<String>> customAttributes = new HashMap<>();
List<String> favoriteTeams = new ArrayList<>();
favoriteTeams.add("Lakers");
favoriteTeams.add("Warriors");
customAttributes.put("team", favoriteTeams);

EndpointDemographic demographic = new EndpointDemographic()
 .withAppVersion("1.0")
 .withMake("apple")
 .withModel("iPhone")
 .withModelVersion("7")

Endpunkte erstellen in Amazon Pinpoint 171

https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-app.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/EndpointRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withPlatform("ios")
 .withPlatformVersion("10.1.1")
 .withTimezone("America/Los_Angeles");

EndpointLocation location = new EndpointLocation()
 .withCity("Los Angeles")
 .withCountry("US")
 .withLatitude(34.0)
 .withLongitude(-118.2)
 .withPostalCode("90068")
 .withRegion("CA");

Map<String,Double> metrics = new HashMap<>();
metrics.put("health", 100.00);
metrics.put("luck", 75.00);

EndpointUser user = new EndpointUser()
 .withUserId(UUID.randomUUID().toString());

DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm'Z'"); // Quoted "Z" to
 indicate UTC, no timezone offset
String nowAsISO = df.format(new Date());

EndpointRequest endpointRequest = new EndpointRequest()
 .withAddress(UUID.randomUUID().toString())
 .withAttributes(customAttributes)
 .withChannelType("APNS")
 .withDemographic(demographic)
 .withEffectiveDate(nowAsISO)
 .withLocation(location)
 .withMetrics(metrics)
 .withOptOut("NONE")
 .withRequestId(UUID.randomUUID().toString())
 .withUser(user);

Erstellen Sie dann ein UpdateEndpointRequestObjekt mit diesem EndpointRequest Objekt.
Schließlich übergeben Sie das UpdateEndpointRequest Objekt an AmazonPinpointClient die
updateEndpoint Methode.

Code

UpdateEndpointRequest updateEndpointRequest = new UpdateEndpointRequest()
 .withApplicationId(appId)

Endpunkte erstellen in Amazon Pinpoint 172

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateEndpointRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withEndpointId(endpointId)
 .withEndpointRequest(endpointRequest);

UpdateEndpointResult updateEndpointResponse =
 client.updateEndpoint(updateEndpointRequest);
System.out.println("Update Endpoint Response: " +
 updateEndpointResponse.getMessageBody());

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• Hinzufügen von Endpunkten im Amazon Pinpoint Entwicklerhandbuch

• Endpunkt in der Amazon Pinpoint API-Referenz

Segmente erstellen in Amazon Pinpoint

Ein Benutzersegment stellt einen Teil Ihrer Benutzer basierend auf gemeinsamen Merkmalen dar,
z. B. Zeitpunkt der letzten App-Öffnung durch einen Benutzer oder verwendetes Gerät. Das folgende
Beispiel zeigt, wie ein Benutzersegment definiert wird.

Erstellen eines Segments

Erstellen Sie ein neues Segment in, Amazon Pinpoint indem Sie die Abmessungen des Segments in
einem SegmentDimensionsObjekt definieren.

Importe

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateSegmentRequest;
import com.amazonaws.services.pinpoint.model.CreateSegmentResult;
import com.amazonaws.services.pinpoint.model.AttributeDimension;
import com.amazonaws.services.pinpoint.model.AttributeType;
import com.amazonaws.services.pinpoint.model.RecencyDimension;
import com.amazonaws.services.pinpoint.model.SegmentBehaviors;
import com.amazonaws.services.pinpoint.model.SegmentDemographics;
import com.amazonaws.services.pinpoint.model.SegmentDimensions;
import com.amazonaws.services.pinpoint.model.SegmentLocation;
import com.amazonaws.services.pinpoint.model.SegmentResponse;
import com.amazonaws.services.pinpoint.model.WriteSegmentRequest;

Segmente erstellen in Amazon Pinpoint 173

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateEndpoint.java
https://docs.aws.amazon.com/pinpoint/latest/developerguide/endpoints.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-endpoint.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Code

Pinpoint pinpoint =
 AmazonPinpointClientBuilder.standard().withRegion(Regions.US_EAST_1).build();
Map<String, AttributeDimension> segmentAttributes = new HashMap<>();
segmentAttributes.put("Team", new
 AttributeDimension().withAttributeType(AttributeType.INCLUSIVE).withValues("Lakers"));

SegmentBehaviors segmentBehaviors = new SegmentBehaviors();
SegmentDemographics segmentDemographics = new SegmentDemographics();
SegmentLocation segmentLocation = new SegmentLocation();

RecencyDimension recencyDimension = new RecencyDimension();
recencyDimension.withDuration("DAY_30").withRecencyType("ACTIVE");
segmentBehaviors.setRecency(recencyDimension);

SegmentDimensions dimensions = new SegmentDimensions()
 .withAttributes(segmentAttributes)
 .withBehavior(segmentBehaviors)
 .withDemographic(segmentDemographics)
 .withLocation(segmentLocation);

Als Nächstes setzen Sie das SegmentDimensionsObjekt in ein WriteSegmentRequest, das wiederum
verwendet wird, um ein CreateSegmentRequestObjekt zu erstellen. Übergeben Sie dann das
CreateSegmentRequest Objekt an AmazonPinpointClient die createSegment Methode.

Code

WriteSegmentRequest writeSegmentRequest = new WriteSegmentRequest()
 .withName("MySegment").withDimensions(dimensions);

CreateSegmentRequest createSegmentRequest = new CreateSegmentRequest()
 .withApplicationId(appId).withWriteSegmentRequest(writeSegmentRequest);

CreateSegmentResult createSegmentResult = client.createSegment(createSegmentRequest);

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• Amazon Pinpoint Segmente im Amazon Pinpoint Benutzerhandbuch

• Segmente im Amazon Pinpoint Entwicklerhandbuch erstellen

Segmente erstellen in Amazon Pinpoint 174

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteSegmentRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateSegmentRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateSegment.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/segments.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/segments.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• Segmente in der Amazon Pinpoint API-Referenz

• Segment in der Amazon Pinpoint API-Referenz

Kampagnen erstellen in Amazon Pinpoint

Mit diesen Kampagnen können Sie die Bindung zwischen Ihrer App und den Benutzern erhöhen.
Sie können eine Kampagne erstellen, um für ein bestimmtes Benutzersegment maßgeschneiderte
Nachrichten oder besondere Werbeaktionen bereitzustellen. In diesem Beispiel wird gezeigt, wie eine
neue Standard-Kampagne erstellt wird, bei der eine benutzerdefinierte Push-Benachrichtigung an ein
bestimmtes Benutzersegment gesendet wird.

Erstellen einer Kampagne

Bevor Sie eine neue Kampagne erstellen, müssen Sie einen Zeitplan und eine Nachricht definieren
und diese Werte in einem WriteCampaignRequestObjekt festlegen.

Importe

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateCampaignRequest;
import com.amazonaws.services.pinpoint.model.CreateCampaignResult;
import com.amazonaws.services.pinpoint.model.Action;
import com.amazonaws.services.pinpoint.model.CampaignResponse;
import com.amazonaws.services.pinpoint.model.Message;
import com.amazonaws.services.pinpoint.model.MessageConfiguration;
import com.amazonaws.services.pinpoint.model.Schedule;
import com.amazonaws.services.pinpoint.model.WriteCampaignRequest;

Code

Schedule schedule = new Schedule()
 .withStartTime("IMMEDIATE");

Message defaultMessage = new Message()
 .withAction(Action.OPEN_APP)
 .withBody("My message body.")
 .withTitle("My message title.");

MessageConfiguration messageConfiguration = new MessageConfiguration()

Kampagnen erstellen in Amazon Pinpoint 175

https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segments.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segment.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Schedule.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Message.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withDefaultMessage(defaultMessage);

WriteCampaignRequest request = new WriteCampaignRequest()
 .withDescription("My description.")
 .withSchedule(schedule)
 .withSegmentId(segmentId)
 .withName("MyCampaign")
 .withMessageConfiguration(messageConfiguration);

Erstellen Sie dann eine neue Kampagne, Amazon Pinpoint indem Sie die
WriteCampaignRequestKampagnenkonfiguration für ein CreateCampaignRequestObjekt angeben.
Schließlich übergeben Sie das CreateCampaignRequest Objekt an AmazonPinpointClient die
createCampaign Methode.

Code

CreateCampaignRequest createCampaignRequest = new CreateCampaignRequest()
 .withApplicationId(appId).withWriteCampaignRequest(request);

CreateCampaignResult result = client.createCampaign(createCampaignRequest);

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• Amazon Pinpoint Kampagnen im Amazon Pinpoint Benutzerhandbuch

• Kampagnen im Amazon Pinpoint Entwicklerhandbuch erstellen

• Kampagnen in der Amazon Pinpoint API-Referenz

• Kampagne in der Amazon Pinpoint API-Referenz

• Kampagnenaktivitäten in der Amazon Pinpoint API-Referenz

• Kampagnenversionen in der Amazon Pinpoint API-Referenz

• Kampagnenversion in der Amazon Pinpoint API-Referenz

Kanäle aktualisieren in Amazon Pinpoint

Ein Channel definiert die Arten von Plattformen, an die Sie Nachrichten übermitteln können. Dieses
Beispiel zeigt, wie der APNs Kanal zum Senden einer Nachricht verwendet wird.

Kanäle aktualisieren in Amazon Pinpoint 176

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/pinpoint/model/CreateCampaignRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-activities.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-versions.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-version.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Aktualisieren eines Channels

Aktivieren Sie einen Kanal, Amazon Pinpoint indem Sie eine App-ID und ein Anforderungsobjekt
des Kanaltyps angeben, den Sie aktualisieren möchten. In diesem Beispiel wird der APNs Kanal
aktualisiert, wofür das APNSChannelRequest-Objekt erforderlich ist. Legen Sie diese in der Methode
fest UpdateApnsChannelRequestund übergeben Sie das Objekt an AmazonPinpointClient die
updateApnsChannel Methode.

Importe

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.APNSChannelRequest;
import com.amazonaws.services.pinpoint.model.APNSChannelResponse;
import com.amazonaws.services.pinpoint.model.GetApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.GetApnsChannelResult;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelResult;

Code

APNSChannelRequest request = new APNSChannelRequest()
 .withEnabled(enabled);

UpdateApnsChannelRequest updateRequest = new UpdateApnsChannelRequest()
 .withAPNSChannelRequest(request)
 .withApplicationId(appId);
UpdateApnsChannelResult result = client.updateApnsChannel(updateRequest);

Das vollständige Beispiel finden Sie unter GitHub.

Weitere Informationen

• Amazon Pinpoint Kanäle im Amazon Pinpoint Benutzerhandbuch

• ADM-Kanal in der Amazon Pinpoint API-Referenz

• APNs Kanal in der Amazon Pinpoint API-Referenz

• APNs Sandbox-Kanal in der Amazon Pinpoint API-Referenz

• APNs VoIP-Kanal in der Amazon Pinpoint API-Referenz

• APNs VoIP-Sandbox-Kanal in der Amazon Pinpoint API-Referenz

Kanäle aktualisieren in Amazon Pinpoint 177

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/APNSChannelRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateApnsChannelRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/UpdateChannel.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-adm-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-sandbox-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-sandbox-channel.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• Der Baidu-Kanal in der API-Referenz Amazon Pinpoint

• E-Mail-Kanal in der Amazon Pinpoint API-Referenz

• GCM-Kanal in der Amazon Pinpoint API-Referenz

• SMS-Kanal in der Amazon Pinpoint API-Referenz

Amazon S3 Beispiele für die Verwendung der AWS SDK für Java

Dieser Abschnitt bietet Beispiele für die Programmierung von Amazon S3 mithilfe des AWS SDK für
Java.

Note

Die Beispiele enthalten nur den Code, der zur Demonstration jeder Technik nötig ist. Der
vollständige Beispielcode ist verfügbar unter GitHub. Von dort aus können Sie eine einzelne
Quelldatei herunterladen oder das Repository klonen, um alle Beispiele lokal zu erstellen und
auszuführen.

Themen

• Amazon S3 Buckets erstellen, auflisten und löschen

• Operationen an Amazon S3 Objekten ausführen

• Amazon S3 Zugriffsberechtigungen für Buckets und Objekte verwalten

• Verwaltung des Zugriffs auf Amazon S3 Buckets mithilfe von Bucket-Richtlinien

• TransferManager Für Amazon S3 Operationen verwenden

• Einen Amazon S3 Bucket als Website konfigurieren

• Amazon S3 Clientseitige Verschlüsselung verwenden

Amazon S3 Buckets erstellen, auflisten und löschen

Jedes Objekt (Datei) Amazon S3 muss sich in einem Bucket befinden, der eine Sammlung
(Container) von Objekten darstellt. Jeder Bucket ist mit einem Schlüssel (Namen) bekannt, der
eindeutig sein muss. Ausführliche Informationen zu Buckets und ihrer Konfiguration finden Sie unter
Arbeiten mit Amazon S3 Buckets im Amazon Simple Storage Service Benutzerhandbuch.

Amazon S3 Beispiele 178

https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-baidu-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-email-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-gcm-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-sms-channel.html
https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Bewährte Methode
Wir empfehlen, dass Sie die AbortIncompleteMultipartUploadLebenszyklusregel für Ihre
Amazon S3 Buckets aktivieren.
Diese Regel weist darauf Amazon S3 hin, dass mehrteilige Uploads abgebrochen werden,
die nicht innerhalb einer bestimmten Anzahl von Tagen nach der Initiierung abgeschlossen
werden. Wenn das festgelegte Zeitlimit überschritten wird, wird der Upload Amazon S3
abgebrochen und anschließend die unvollständigen Upload-Daten gelöscht.
Weitere Informationen finden Sie unter Lebenszykluskonfiguration für einen Bucket mit
Versionierung im Amazon S3 Benutzerhandbuch.

Note

Bei diesen Codebeispielen wird vorausgesetzt, dass Sie die Informationen unter Verwenden
von verstehen AWS SDK für Java und AWS Standardanmeldedaten anhand der
Informationen unter AWS Anmeldeinformationen einrichten und Region für die Entwicklung
konfiguriert haben.

Bucket erstellen

Verwenden Sie die Methode des AmazonS3-Clients. createBucket Der neue Bucket wird
zurückgegeben. Die createBucket-Methode löst eine Ausnahme aus, falls der Bucket bereits
vorhanden ist.

Note

Bevor Sie versuchen, einen Bucket zu erstellen, sollten Sie die doesBucketExist-Methode
aufrufen, um zu prüfen, ob ein gleichnamiger Bucket bereits existiert. Falls ja, wird true
zurückgegeben, andernfalls false.

Importe

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Amazon S3 Buckets erstellen, auflisten und löschen 179

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

Code

if (s3.doesBucketExistV2(bucket_name)) {
 System.out.format("Bucket %s already exists.\n", bucket_name);
 b = getBucket(bucket_name);
} else {
 try {
 b = s3.createBucket(bucket_name);
 } catch (AmazonS3Exception e) {
 System.err.println(e.getErrorMessage());
 }
}
return b;

Das vollständige Beispiel finden Sie unter. GitHub

Auflisten von Buckets

Verwenden Sie die Methode des AmazonS3-Clients. listBucket Wenn diese Aktion erfolgreich ist,
wird eine Liste mit Bucket-Objekten zurückgegeben.

Importe

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

Code

List<Bucket> buckets = s3.listBuckets();
System.out.println("Your {S3} buckets are:");
for (Bucket b : buckets) {

Amazon S3 Buckets erstellen, auflisten und löschen 180

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CreateBucket.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 System.out.println("* " + b.getName());
}

Das vollständige Beispiel finden Sie unter. GitHub

Bucket löschen

Bevor Sie einen Amazon S3 Bucket löschen können, müssen Sie sicherstellen, dass der Bucket
leer ist. Andernfalls tritt ein Fehler auf. Wenn Sie einen versionierten Bucket nutzen, müssen Sie
außerdem alle versionierten Objekte löschen, die mit dem Bucket verknüpft sind.

Note

Das vollständige Beispiel umfasst die einzelnen Schritte der Reihe nach und bietet somit eine
vollständige Lösung für das Löschen eines Amazon S3 Buckets und seines Inhalts.

Themen

• Entfernen von Objekten aus einem nicht versionierten Bucket vor dem Löschen

• Entfernen von Objekten aus einem versionierten Bucket vor dem Löschen

• Löschen eines leeren Buckets

Entfernen von Objekten aus einem nicht versionierten Bucket vor dem Löschen

Verwenden Sie die listObjects Methode des AmazonS3-Clients, um die Objektliste abzurufen
und jedes Objekt deleteObject zu löschen.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

Amazon S3 Buckets erstellen, auflisten und löschen 181

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListBuckets.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

System.out.println(" - removing objects from bucket");
ObjectListing object_listing = s3.listObjects(bucket_name);
while (true) {
 for (Iterator<?> iterator =
 object_listing.getObjectSummaries().iterator();
 iterator.hasNext();) {
 S3ObjectSummary summary = (S3ObjectSummary) iterator.next();
 s3.deleteObject(bucket_name, summary.getKey());
 }

 // more object_listing to retrieve?
 if (object_listing.isTruncated()) {
 object_listing = s3.listNextBatchOfObjects(object_listing);
 } else {
 break;
 }
}

Das vollständige Beispiel finden Sie unter. GitHub

Entfernen von Objekten aus einem versionierten Bucket vor dem Löschen

Wenn Sie einen versionierten Bucket nutzen, müssen Sie auch alle gespeicherten Versionen der
Objekte im Bucket entfernen, bevor der Bucket gelöscht werden kann.

Verwenden Sie ein ähnliches Muster wie beim Entfernen von Objekten innerhalb eines Buckets.
Entfernen Sie versionierte Objekte, indem Sie die listVersions Methode des AmazonS3-Clients
verwenden, um alle versionierten Objekte aufzulisten und dann jedes einzelne deleteVersion zu
löschen.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

Amazon S3 Buckets erstellen, auflisten und löschen 182

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

System.out.println(" - removing versions from bucket");
VersionListing version_listing = s3.listVersions(
 new ListVersionsRequest().withBucketName(bucket_name));
while (true) {
 for (Iterator<?> iterator =
 version_listing.getVersionSummaries().iterator();
 iterator.hasNext();) {
 S3VersionSummary vs = (S3VersionSummary) iterator.next();
 s3.deleteVersion(
 bucket_name, vs.getKey(), vs.getVersionId());
 }

 if (version_listing.isTruncated()) {
 version_listing = s3.listNextBatchOfVersions(
 version_listing);
 } else {
 break;
 }
}

Das vollständige Beispiel finden Sie unter. GitHub

Löschen eines leeren Buckets

Sobald Sie die Objekte aus einem Bucket entfernt haben (einschließlich aller versionierten Objekte),
können Sie den Bucket selbst mithilfe der Methode des AmazonS3-Clients löschen. deleteBucket

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" OK, bucket ready to delete!");
s3.deleteBucket(bucket_name);

Amazon S3 Buckets erstellen, auflisten und löschen 183

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Das vollständige Beispiel finden Sie unter. GitHub

Operationen an Amazon S3 Objekten ausführen

Ein Amazon S3 Objekt steht für eine Datei oder eine Sammlung von Daten. Jedes Objekt muss in
einem Bucket enthalten sein.

Note

Bei diesen Codebeispielen wird vorausgesetzt, dass Sie die Informationen unter Verwenden
von verstehen AWS SDK für Java und AWS Standardanmeldedaten anhand der
Informationen unter AWS Anmeldeinformationen einrichten und Region für die Entwicklung
konfiguriert haben.

Themen

• Hochladen eines Objekts

• Auflisten von Objekten

• Herunterladen eines Objekts

• Kopieren, Verschieben oder Umbenennen von Objekten

• Objekte löschen

• Löschen mehrerer Objekte auf einmal

Hochladen eines Objekts

Verwenden Sie die putObject Methode des AmazonS3-Clients und geben Sie einen Bucket-
Namen, einen Schlüsselnamen und eine Datei für den Upload an. Der Bucket muss vorhanden sein,
andernfalls tritt ein Fehler auf.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Code

Operationen an Amazon S3 Objekten ausführen 184

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

System.out.format("Uploading %s to S3 bucket %s...\n", file_path, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.putObject(bucket_name, key_name, new File(file_path));
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter. GitHub

Auflisten von Objekten

Um eine Liste der Objekte in einem Bucket abzurufen, verwenden Sie die listObjects Methode
des AmazonS3-Clients und geben Sie den Namen eines Buckets an.

Die listObjects Methode gibt ein ObjectListingObjekt zurück, das Informationen über die
Objekte im Bucket bereitstellt. Um die Objektnamen (Schlüssel) aufzulisten, verwenden Sie die
getObjectSummaries Methode, um eine Liste von ObjectSummaryS3-Objekten abzurufen, von
denen jedes ein einzelnes Objekt im Bucket darstellt. Rufen Sie dann dessen getKey-Methode zum
Abrufen des Objektnamens auf.

Importe

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListObjectsV2Result;
import com.amazonaws.services.s3.model.S3ObjectSummary;

Code

System.out.format("Objects in S3 bucket %s:\n", bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
ListObjectsV2Result result = s3.listObjectsV2(bucket_name);
List<S3ObjectSummary> objects = result.getObjectSummaries();
for (S3ObjectSummary os : objects) {
 System.out.println("* " + os.getKey());
}

Operationen an Amazon S3 Objekten ausführen 185

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/PutObject.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/ObjectListing.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectSummary.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Das vollständige Beispiel finden Sie unter GitHub.

Herunterladen eines Objekts

Verwenden Sie die getObject Methode des AmazonS3-Clients und übergeben Sie ihm den Namen
eines Buckets und eines Objekts zum Herunterladen. Bei Erfolg gibt die Methode ein S3Object
zurück. Der angegebene Bucket und der Objektschlüssel müssen vorhanden sein, andernfalls tritt ein
Fehler auf.

Sie können den Inhalt des Objekts anfordern, indem Sie getObjectContent für das Objekt
S3Object aufrufen. Dies gibt ein S3 zurückObjectInputStream, das sich wie ein Standard-Java-
Objekt verhält. InputStream

Das folgende Beispiel lädt ein Objekt von S3 herunter und speichert die Inhalte in einer Datei mit dem
Namen des Objektschlüssels.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectInputStream;

import java.io.File;

Code

System.out.format("Downloading %s from S3 bucket %s...\n", key_name, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 S3Object o = s3.getObject(bucket_name, key_name);
 S3ObjectInputStream s3is = o.getObjectContent();
 FileOutputStream fos = new FileOutputStream(new File(key_name));
 byte[] read_buf = new byte[1024];
 int read_len = 0;
 while ((read_len = s3is.read(read_buf)) > 0) {
 fos.write(read_buf, 0, read_len);
 }
 s3is.close();

Operationen an Amazon S3 Objekten ausführen 186

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListObjects.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3Object.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectInputStream.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 fos.close();
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
} catch (FileNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (IOException e) {
 System.err.println(e.getMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter. GitHub

Kopieren, Verschieben oder Umbenennen von Objekten

Sie können ein Objekt mithilfe der Methode des AmazonS3-Clients von einem Bucket in einen
anderen kopieren. copyObject Sie nimmt den Namen des Buckets, aus dem kopiert werden soll,
das zu kopierende Objekt sowie den Namen des Zielbuckets entgegen.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

Code

try {
 s3.copyObject(from_bucket, object_key, to_bucket, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
System.out.println("Done!");

Das vollständige Beispiel finden Sie unter. GitHub

Note

Sie können copyObject mit deleteObject verwenden, um ein Objekt zu verschieben oder
umzubenennen. Kopieren Sie das Objekt dazu als Erstes auf einen neuen Namen (Sie

Operationen an Amazon S3 Objekten ausführen 187

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetObject.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CopyObject.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

können den gleichen Bucket als Quelle und Ziel angeben) und löschen Sie das Objekt dann
von seinem bisherigen Speicherort.

Objekte löschen

Verwenden Sie die deleteObject Methode des AmazonS3-Clients und übergeben Sie ihm den
Namen eines Buckets und eines Objekts, das gelöscht werden soll. Der angegebene Bucket und der
Objektschlüssel müssen vorhanden sein, andernfalls tritt ein Fehler auf.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteObject(bucket_name, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter. GitHub

Löschen mehrerer Objekte auf einmal

Mit der deleteObjects Methode des AmazonS3-Clients können Sie mehrere Objekte aus
demselben Bucket löschen, indem Sie ihre Namen an die Methode link:sdk-for-java/v1/reference/
com/amazonaws/services/s3/model/DeleteObjectsRequest.html übergeben.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Operationen an Amazon S3 Objekten ausführen 188

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObject.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 DeleteObjectsRequest dor = new DeleteObjectsRequest(bucket_name)
 .withKeys(object_keys);
 s3.deleteObjects(dor);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter. GitHub

Amazon S3 Zugriffsberechtigungen für Buckets und Objekte verwalten

Sie können Zugriffskontrolllisten (ACLs) für Amazon S3 Buckets und Objekte verwenden, um Ihre
Ressourcen detailliert zu steuern. Amazon S3

Note

Bei diesen Codebeispielen wird vorausgesetzt, dass Sie die Informationen unter Verwenden
von verstehen AWS SDK für Java und AWS Standardanmeldedaten anhand der
Informationen unter AWS Anmeldeinformationen einrichten und Region für die Entwicklung
konfiguriert haben.

Abrufen der Zugriffskontrollliste für einen Bucket

Um die aktuelle ACL für einen Bucket abzurufen, rufen Sie die getBucketAcl Methode von
AmazonS3 auf und übergeben ihr den Bucket-Namen für die Abfrage. Diese Methode gibt ein
AccessControlListObjekt zurück. Um jede Zugriffsberechtigung in der Liste abzurufen, rufen Sie die
getGrantsAsList-Methode des Objekts auf. Sie erhalten dann eine Standard-Java-Liste mit Grant-
Objekten.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

Amazon S3 Zugriffsberechtigungen für Buckets und Objekte verwalten 189

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObjects.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter GitHub.

Festlegen der Zugriffskontrollliste für einen Bucket

Um einer ACL für einen Bucket Berechtigungen hinzuzufügen oder zu ändern, rufen Sie die Methode
von setBucketAcl AmazonS3 auf. Sie benötigt ein AccessControlListObjekt, das eine Liste von
Empfängern und Zugriffsebenen für die Einrichtung enthält.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

Amazon S3 Zugriffsberechtigungen für Buckets und Objekte verwalten 190

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

try {
 // get the current ACL
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setBucketAcl(bucket_name, acl);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note

Sie können die eindeutige ID des Empfängers direkt mithilfe der Klasse Stipendiat angeben
oder die Klasse verwenden, um den EmailAddressGranteeEmpfänger per E-Mail festzulegen,
wie wir es hier getan haben.

Das vollständige Beispiel finden Sie unter. GitHub

Abrufen der Zugriffskontrollliste für ein Objekt

Um die aktuelle ACL für ein Objekt abzurufen, rufen Sie die getObjectAcl Methode von AmazonS3
auf und übergeben ihr den Bucket-Namen und den Objektnamen für die Abfrage. Diese Methode
gibt zum Beispiel getBucketAcl ein AccessControlListObjekt zurück, mit dem Sie jeden Grant
untersuchen können.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Code

try {

Amazon S3 Zugriffsberechtigungen für Buckets und Objekte verwalten 191

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter GitHub.

Festlegen der Zugriffskontrollliste für ein Objekt

Um einer ACL für ein Objekt Berechtigungen hinzuzufügen oder zu ändern, rufen Sie die Methode
von setObjectAcl AmazonS3 auf. Sie benötigt ein AccessControlListObjekt, das eine Liste von
Empfängern und Zugriffsebenen für die Einrichtung enthält.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

Code

 try {
 // get the current ACL
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setObjectAcl(bucket_name, object_key, acl);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

Amazon S3 Zugriffsberechtigungen für Buckets und Objekte verwalten 192

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

}

Note

Sie können die eindeutige ID des Empfängers direkt mithilfe der Klasse Stipendiat angeben
oder die Klasse verwenden, um den EmailAddressGranteeEmpfänger per E-Mail festzulegen,
wie wir es hier getan haben.

Das vollständige Beispiel finden Sie unter. GitHub

Weitere Informationen

• GET Bucket acl in der Amazon S3 API-Referenz

• Fügen Sie Bucket ACL in die Amazon S3 API-Referenz ein

• GET Object acl in der Amazon S3 API-Referenz

• PUT Object acl in der Amazon S3 API-Referenz

Verwaltung des Zugriffs auf Amazon S3 Buckets mithilfe von Bucket-
Richtlinien

Sie können eine Bucket-Richtlinie einrichten, abrufen oder löschen, um den Zugriff auf Ihre Amazon
S3 Buckets zu verwalten.

Festlegen einer Bucket-Richtlinie

Sie können die Bucket-Richtlinie für einen bestimmten S3-Bucket wie folgt festlegen:

• Rufen Sie den AmazonS3-Client an setBucketPolicy und stellen Sie ihm eine
SetBucketPolicyRequest

• Durch direktes Festlegen der Richtlinie unter Verwendung der setBucketPolicy-Überladung, die
einen Bucket-Namen und einen Richtlinientext (im JSON-Format) entgegen nimmt

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.policy.Policy;

Verwaltung des Zugriffs auf Amazon S3 Buckets mithilfe von Bucket-Richtlinien 193

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/SetBucketPolicyRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.auth.policy.Principal;

Code

 s3.setBucketPolicy(bucket_name, policy_text);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Verwenden der Policy-Klasse zum Generieren oder Überprüfen einer Richtlinie

Wenn Sie setBucketPolicy eine Bucket-Richtlinie übergeben, können Sie die folgenden Aufgaben
ausführen:

• Direktes Übergeben der Richtlinie als Zeichenfolge mit Text im JSON-Format

• Erstellen der Richtlinie mit der Policy-Klasse

Bei Verwendung der Policy-Klasse müssen Sie sich keine Gedanken über die korrekte
Formatierung Ihrer Text-Zeichenfolge machen. Sie können die Richtlinie als JSON-Text von der
Policy-Klasse erhalten, indem Sie die toJson-Methode aufrufen.

Importe

import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.actions.S3Actions;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

 new Statement(Statement.Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new Resource(
 "{region-arn}s3:::" + bucket_name + "/*")));
return bucket_policy.toJson();

Verwaltung des Zugriffs auf Amazon S3 Buckets mithilfe von Bucket-Richtlinien 194

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/policy/Policy.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Die Policy-Klasse bietet außerdem eine fromJson-Methode, mit der versucht werden kann,
eine Richtlinie aus einer übergebenen JSON-Zeichenfolge zu erstellen. Die Methode überprüft die
Zeichenfolge und stellt so sicher, dass sich der Text in eine gültige Richtlinienstruktur umwandeln
lässt. Sie löst einen Fehler mit einer IllegalArgumentException aus, wenn der Richtlinientext
ungültig ist.

Policy bucket_policy = null;
try {
 bucket_policy = Policy.fromJson(file_text.toString());
} catch (IllegalArgumentException e) {
 System.out.format("Invalid policy text in file: \"%s\"",
 policy_file);
 System.out.println(e.getMessage());
}

Mit dieser Technik können Sie eine Richtlinie im Voraus validieren, die Sie aus einer Datei oder
anderweitig einlesen.

Das vollständige Beispiel finden Sie unter. GitHub

Abrufen einer Bucket-Richtlinie

Um die Richtlinie für einen Amazon S3 Bucket abzurufen, rufen Sie die getBucketPolicy Methode
des AmazonS3-Clients auf und übergeben Sie ihr den Namen des Buckets, aus dem die Richtlinie
abgerufen werden soll.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

 try {
 BucketPolicy bucket_policy = s3.getBucketPolicy(bucket_name);
 policy_text = bucket_policy.getPolicyText();
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());

Verwaltung des Zugriffs auf Amazon S3 Buckets mithilfe von Bucket-Richtlinien 195

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetBucketPolicy.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 System.exit(1);
 }

Wenn der angegebene Bucket nicht vorhanden ist, Sie nicht darauf zugreifen können oder wenn
keine Bucket-Richtlinie eingerichtet ist, wird eine AmazonServiceException ausgelöst.

Das vollständige Beispiel finden Sie unter. GitHub

Löschen einer Bucket-Richtlinie

Um eine Bucket-Richtlinie zu löschen, rufen Sie den AmazonS3-Client auf und geben Sie ihm den
Bucket-Namen. deleteBucketPolicy

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Code

 try {
 s3.deleteBucketPolicy(bucket_name);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

Diese Methode wird auch dann erfolgreich ausgeführt, wenn der Bucket noch nicht über eine
Richtlinie verfügt. Wenn Sie den Namen eines Buckets angeben, der noch nicht vorhanden ist oder
für den Sie keinen Zugriff haben, wird eine AmazonServiceException ausgelöst.

Das vollständige Beispiel finden Sie unter. GitHub

Weitere Infos

• Überblick über die Sprache der Access Policy im Amazon Simple Storage Service
Benutzerhandbuch

• Beispiele für Bucket-Richtlinien im Amazon Simple Storage Service Benutzerhandbuch

Verwaltung des Zugriffs auf Amazon S3 Buckets mithilfe von Bucket-Richtlinien 196

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetBucketPolicy.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucketPolicy.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

TransferManager Für Amazon S3 Operationen verwenden

Sie können die AWS SDK für Java TransferManager Klasse verwenden, um Dateien zuverlässig
aus der lokalen Umgebung zu übertragen Amazon S3 und Objekte von einem S3-Speicherort an
einen anderen zu kopieren. TransferManagerkann den Fortschritt einer Übertragung abrufen und
Uploads und Downloads anhalten oder fortsetzen.

Note

Bewährte Methode
Wir empfehlen Ihnen, die AbortIncompleteMultipartUploadLebenszyklusregel für Ihre Amazon
S3 Buckets zu aktivieren.
Diese Regel weist darauf Amazon S3 hin, dass mehrteilige Uploads abgebrochen werden,
die nicht innerhalb einer bestimmten Anzahl von Tagen nach der Initiierung abgeschlossen
werden. Wenn das festgelegte Zeitlimit überschritten wird, wird der Upload Amazon S3
abgebrochen und anschließend die unvollständigen Upload-Daten gelöscht.
Weitere Informationen finden Sie unter Lebenszykluskonfiguration für einen Bucket mit
Versionierung im Amazon S3 Benutzerhandbuch.

Note

Bei diesen Codebeispielen wird vorausgesetzt, dass Sie die Informationen unter Verwenden
von verstehen AWS SDK für Java und AWS Standardanmeldedaten anhand der
Informationen unter AWS Anmeldeinformationen einrichten und Region für die Entwicklung
konfiguriert haben.

Hochladen von Dateien und Verzeichnissen

TransferManager kann Dateien, Dateilisten und Verzeichnisse in alle Amazon S3 Buckets hochladen,
die Sie zuvor erstellt haben.

Themen

• Hochladen einer einzelnen Datei

• Hochladen einer Dateiliste

• Upload eines Verzeichnisses

TransferManager Für Amazon S3 Operationen verwenden 197

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Hochladen einer einzelnen Datei

Rufen Sie TransferManager die upload Methode auf und geben Sie einen Amazon S3 Bucket-
Namen, einen Schlüsselnamen (Objektnamen) und ein Standard-Java-Dateiobjekt an, das die
hochzuladende Datei darstellt.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload xfer = xfer_mgr.upload(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Die upload-Methode kehrt sofort zurück und stellt ein Upload-Objekt bereit, mit dem Sie den
Übertragungsstatus abrufen oder auf die Fertigstellung warten können.

Informationen dazu, wie Sie eine Übertragung vor dem Aufrufen der shutdownNow Methode
erfolgreich abschließen waitForCompletion können, finden Sie unter Warten, bis eine
Übertragung abgeschlossen TransferManager ist. Während Sie darauf warten, dass die Übertragung
abgeschlossen ist, können Sie Aktualisierungen zum Status und Fortschritt abfragen oder diese als

TransferManager Für Amazon S3 Operationen verwenden 198

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Ereignisse empfangen. Weitere Informationen finden Sie unter Abrufen des Übertragungsstatus und
‑fortschritts.

Das vollständige Beispiel finden Sie unter GitHub.

Hochladen einer Dateiliste

Sie können mehrere Dateien auf einmal hochladen, indem Sie die TransferManager-Methode des
uploadFileList aufrufen und dabei Folgendes angeben:

• Ein Amazon S3 Bucket-Name

• Schlüsselpräfix, das dem Namen der erstellten Objekte vorangestellt wird (Pfad innerhalb des
Buckets, wo die Objekte abgespeichert werden sollen)

• File-Objekt, das das relative Verzeichnis darstellt, von dem aus die Dateipfade erstellt werden
sollen

• List-Objekt mit einer Reihe von File-Objekten zum Hochladen

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Code

ArrayList<File> files = new ArrayList<File>();
for (String path : file_paths) {
 files.add(new File(path));
}

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadFileList(bucket_name,

TransferManager Für Amazon S3 Operationen verwenden 199

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/List.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 key_prefix, new File("."), files);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Informationen dazu, wie Sie die shutdownNow Methode verwenden, um eine Übertragung vor
dem Aufrufen TransferManager erfolgreich abzuschließenwaitForCompletion, finden Sie unter
Warten auf den Abschluss einer Übertragung. Während Sie darauf warten, dass die Übertragung
abgeschlossen ist, können Sie Aktualisierungen zum Status und Fortschritt abfragen oder diese als
Ereignisse empfangen. Weitere Informationen finden Sie unter Abrufen des Übertragungsstatus und
‑fortschritts.

Das von zurückgegebene MultipleFileUploadObjekt uploadFileList kann verwendet werden, um
den Status oder den Fortschritt der Übertragung abzufragen. Weitere Informationen finden Sie unter
Den aktuellen Status einer Übertragung abfragen und ProgressListener Übertragungsstatus abrufen
mit a.

Sie können auch die MultipleFileUpload-Methode der getSubTransfers-Klasse verwenden,
um die einzelnen Upload-Objekte für jede zu übertragende Datei zu erhalten. Weitere Informationen
finden Sie unter Abruf des Fortschritts von untergeordneten Übertragungen.

Das vollständige Beispiel finden Sie unter GitHub.

Upload eines Verzeichnisses

Sie können die uploadDirectory Methode verwenden TransferManager, um ein ganzes
Verzeichnis von Dateien hochzuladen, mit der Option, Dateien in Unterverzeichnisse rekursiv zu
kopieren. Sie geben einen Amazon S3 Bucket-Namen, ein S3-Schlüsselpräfix, ein File-Objekt, das
das zu kopierende lokale Verzeichnis darstellt, und einen boolean Wert an, der angibt, ob Sie
Unterverzeichnisse rekursiv kopieren möchten (true oder false).

Importe

import com.amazonaws.AmazonServiceException;

TransferManager Für Amazon S3 Operationen verwenden 200

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Code

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadDirectory(bucket_name,
 key_prefix, new File(dir_path), recursive);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Informationen dazu, wie Sie eine Übertragung vor dem Aufrufen TransferManager der Methode
erfolgreich abschließen waitForCompletion können, finden Sie unter Warten auf den Abschluss
einer Übertragung. shutdownNow Während Sie darauf warten, dass die Übertragung abgeschlossen
ist, können Sie Aktualisierungen zum Status und Fortschritt abfragen oder diese als Ereignisse
empfangen. Weitere Informationen finden Sie unter Abrufen des Übertragungsstatus und ‑fortschritts.

Das von zurückgegebene MultipleFileUploadObjekt uploadFileList kann verwendet werden, um
den Status oder den Fortschritt der Übertragung abzufragen. Weitere Informationen finden Sie unter
Den aktuellen Status einer Übertragung abfragen und ProgressListener Übertragungsstatus abrufen
mit a.

Sie können auch die MultipleFileUpload-Methode der getSubTransfers-Klasse verwenden,
um die einzelnen Upload-Objekte für jede zu übertragende Datei zu erhalten. Weitere Informationen
finden Sie unter Abruf des Fortschritts von untergeordneten Übertragungen.

Das vollständige Beispiel finden Sie unter GitHub.

TransferManager Für Amazon S3 Operationen verwenden 201

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Herunterladen von Dateien oder Verzeichnissen

Verwenden Sie die TransferManager Klasse, um entweder eine einzelne Datei (Amazon S3 Objekt)
oder ein Verzeichnis (ein Amazon S3 Bucket-Name gefolgt von einem Objektpräfix) herunterzuladen
Amazon S3.

Themen

• Herunterladen einer einzelnen Datei

• Herunterladen eines Verzeichnisses

Herunterladen einer einzelnen Datei

Verwenden Sie die download Methode TransferManager's und geben Sie den Amazon S3 Bucket-
Namen an, der das Objekt enthält, das Sie herunterladen möchten, den Schlüssel- (Objekt-) Namen
und ein File-Objekt, das die Datei darstellt, die auf Ihrem lokalen System erstellt werden soll.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Download xfer = xfer_mgr.download(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

TransferManager Für Amazon S3 Operationen verwenden 202

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

xfer_mgr.shutdownNow();

Informationen dazu, wie Sie eine Übertragung vor dem Aufrufen TransferManager der shutdownNow
Methode erfolgreich abschließen waitForCompletion können, finden Sie unter Warten auf den
Abschluss einer Übertragung. Während Sie darauf warten, dass die Übertragung abgeschlossen
ist, können Sie Aktualisierungen zum Status und Fortschritt abfragen oder diese als Ereignisse
empfangen. Weitere Informationen finden Sie unter Abrufen des Übertragungsstatus und ‑fortschritts.

Das vollständige Beispiel finden Sie unter GitHub.

Herunterladen eines Verzeichnisses

Verwenden Sie die TransferManager downloadDirectory Methode, um eine Reihe von Dateien
herunterzuladen, die ein gemeinsames key prefix haben (analog zu einem Verzeichnis in einem
Dateisystem). Amazon S3 Die Methode verwendet den Amazon S3 Bucket-Namen, der die Objekte
enthält, die Sie herunterladen möchten, das Objektpräfix, das von allen Objekten gemeinsam genutzt
wird, und ein File-Objekt, das das Verzeichnis darstellt, in das die Dateien auf Ihrem lokalen System
heruntergeladen werden sollen. Wenn das angegebene Verzeichnis noch nicht vorhanden ist, wird es
erstellt.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

Code

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();

try {
 MultipleFileDownload xfer = xfer_mgr.downloadDirectory(
 bucket_name, key_prefix, new File(dir_path));
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {

TransferManager Für Amazon S3 Operationen verwenden 203

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Informationen dazu, wie Sie eine Übertragung vor dem Aufrufen TransferManager der shutdownNow
Methode erfolgreich abschließen waitForCompletion können, finden Sie unter Warten auf den
Abschluss einer Übertragung. Während Sie darauf warten, dass die Übertragung abgeschlossen
ist, können Sie Aktualisierungen zum Status und Fortschritt abfragen oder diese als Ereignisse
empfangen. Weitere Informationen finden Sie unter Abrufen des Übertragungsstatus und ‑fortschritts.

Das vollständige Beispiel finden Sie unter GitHub.

Kopieren von Objekten

Rufen Sie die copy-Methode von TransferManager auf, um ein Objekt von einem S3-Bucket in einen
anderen zu kopieren.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Copy;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

Code

System.out.println("Copying s3 object: " + from_key);
System.out.println(" from bucket: " + from_bucket);
System.out.println(" to s3 object: " + to_key);
System.out.println(" in bucket: " + to_bucket);

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Copy xfer = xfer_mgr.copy(from_bucket, from_key, to_bucket, to_key);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

TransferManager Für Amazon S3 Operationen verwenden 204

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

}
xfer_mgr.shutdownNow();

Das vollständige Beispiel finden Sie unter GitHub.

Warten auf die Fertigstellung einer Übertragung

Wenn Ihre Anwendung (oder Ihr Thread) blockieren kann, bis die Übertragung abgeschlossen
ist, können Sie die waitForCompletion Methode der Transfer-Schnittstelle verwenden, um zu
blockieren, bis die Übertragung abgeschlossen ist oder eine Ausnahme auftritt.

try {
 xfer.waitForCompletion();
} catch (AmazonServiceException e) {
 System.err.println("Amazon service error: " + e.getMessage());
 System.exit(1);
} catch (AmazonClientException e) {
 System.err.println("Amazon client error: " + e.getMessage());
 System.exit(1);
} catch (InterruptedException e) {
 System.err.println("Transfer interrupted: " + e.getMessage());
 System.exit(1);
}

Sie erhalten den Fortschritt der Übertragungen, wenn Sie vor dem Aufrufen Ereignisse
abfragenwaitForCompletion, einen Abfragemechanismus in einem separaten Thread
implementieren oder Fortschrittsaktualisierungen asynchron mit einem empfangen. ProgressListener

Das vollständige Beispiel finden Sie unter. GitHub

Abrufen des Übertragungsstatus und ‑fortschritt

Jede der von den copy Methoden TransferManager upload*download*, und zurückgegebenen
Klassen gibt eine Instanz einer der folgenden Klassen zurück, je nachdem, ob es sich um eine
Operation mit einer oder mehreren Dateien handelt.

Klasse Zurückgegeben von

Copy copy

Download download

TransferManager Für Amazon S3 Operationen verwenden 205

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrCopy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Copy.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Download.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Klasse Zurückgegeben von

MultipleFileDownload downloadDirectory

Hochladen upload

MultipleFileUpload uploadFileList , uploadDirectory

Alle diese Klassen implementieren die Transfer-Schnittstelle. Transfer liefert nützliche Methoden,
um den Fortschritt einer Übertragung abzurufen, die Übertragung zu pausieren oder fortzusetzen
sowie den aktuellen oder abschließenden Status der Übertragung abzurufen.

Themen

• Abfragen des aktuellen Fortschritts einer Übertragung

• Holen Sie sich den Übertragungsfortschritt mit einem ProgressListener

• Abruf des Fortschritts von untergeordneten Übertragungen

Abfragen des aktuellen Fortschritts einer Übertragung

Diese Schleife gibt den Fortschritt einer Übertragung aus, untersucht den aktuellen Fortschritt
während der Ausführung und gibt beim Abschluss den abschließenden Status aus.

Importe

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

// print the transfer's human-readable description
System.out.println(xfer.getDescription());

TransferManager Für Amazon S3 Operationen verwenden 206

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileDownload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

// print an empty progress bar...
printProgressBar(0.0);
// update the progress bar while the xfer is ongoing.
do {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 return;
 }
 // Note: so_far and total aren't used, they're just for
 // documentation purposes.
 TransferProgress progress = xfer.getProgress();
 long so_far = progress.getBytesTransferred();
 long total = progress.getTotalBytesToTransfer();
 double pct = progress.getPercentTransferred();
 eraseProgressBar();
 printProgressBar(pct);
} while (xfer.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = xfer.getState();
System.out.println(": " + xfer_state);

Das vollständige Beispiel finden Sie unter. GitHub

Holen Sie sich den Übertragungsfortschritt mit einem ProgressListener

Mithilfe der addProgressListener Methode der Transfer-Schnittstelle können Sie jeder
Übertragung eine ProgressListenerhinzufügen.

A ProgressListenerbenötigt nur eine MethodeprogressChanged, die ein ProgressEventObjekt
akzeptiert. Mit diesem Objekt können Sie die Gesamtzahl der Bytes der Operation ermitteln, indem
Sie die getBytes-Methode aufrufen. Die Gesamtzahl der übertragenen Bytes erfahren Sie mit Aufruf
von getBytesTransferred.

Importe

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

TransferManager Für Amazon S3 Operationen verwenden 207

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressEvent.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload u = xfer_mgr.upload(bucket_name, key_name, f);
 // print an empty progress bar...
 printProgressBar(0.0);
 u.addProgressListener(new ProgressListener() {
 public void progressChanged(ProgressEvent e) {
 double pct = e.getBytesTransferred() * 100.0 / e.getBytes();
 eraseProgressBar();
 printProgressBar(pct);
 }
 });
 // block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(u);
 // print the final state of the transfer.
 TransferState xfer_state = u.getState();
 System.out.println(": " + xfer_state);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Das vollständige Beispiel finden Sie unter GitHub.

Abruf des Fortschritts von untergeordneten Übertragungen

Die MultipleFileUploadKlasse kann Informationen über ihre Unterübertragungen zurückgeben,
indem sie ihre getSubTransfers Methode aufruft. Sie gibt eine unveränderbare Sammlung
von Upload-Objekten zurück, die den individuellen Übertragungsstatus und den Fortschritt jeder
Unterübertragung angeben.

Importe

import com.amazonaws.AmazonClientException;

TransferManager Für Amazon S3 Operationen verwenden 208

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Collection.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

Collection<? extends Upload> sub_xfers = new ArrayList<Upload>();
sub_xfers = multi_upload.getSubTransfers();

do {
 System.out.println("\nSubtransfer progress:\n");
 for (Upload u : sub_xfers) {
 System.out.println(" " + u.getDescription());
 if (u.isDone()) {
 TransferState xfer_state = u.getState();
 System.out.println(" " + xfer_state);
 } else {
 TransferProgress progress = u.getProgress();
 double pct = progress.getPercentTransferred();
 printProgressBar(pct);
 System.out.println();
 }
 }

 // wait a bit before the next update.
 try {
 Thread.sleep(200);
 } catch (InterruptedException e) {
 return;
 }
} while (multi_upload.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = multi_upload.getState();
System.out.println("\nMultipleFileUpload " + xfer_state);

Das vollständige Beispiel finden Sie unter. GitHub

TransferManager Für Amazon S3 Operationen verwenden 209

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Weitere Infos

• Objektschlüssel im Amazon Simple Storage Service Benutzerhandbuch

Einen Amazon S3 Bucket als Website konfigurieren

Sie können einen Amazon S3 Bucket so konfigurieren, dass er sich wie eine Website verhält. Hierzu
müssen Sie die Website-Konfiguration festlegen.

Note

Bei diesen Codebeispielen wird vorausgesetzt, dass Sie die Informationen unter Verwenden
von verstehen AWS SDK für Java und AWS Standardanmeldedaten anhand der
Informationen unter AWS Anmeldeinformationen einrichten und Region für die Entwicklung
konfiguriert haben.

Festlegen der Website-Konfiguration eines Buckets

Um die Website-Konfiguration eines Amazon S3 Buckets festzulegen, rufen Sie die
setWebsiteConfiguration AmazonS3-Methode mit dem Bucket-Namen auf, für den die
Konfiguration festgelegt werden soll, und einem BucketWebsiteConfigurationObjekt, das die Website-
Konfiguration des Buckets enthält.

Das Festlegen eines Index-Dokuments ist erforderlich. Alle anderen Parameter sind optional.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

Code

 String bucket_name, String index_doc, String error_doc) {
BucketWebsiteConfiguration website_config = null;

if (index_doc == null) {

Einen Amazon S3 Bucket als Website konfigurieren 210

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 website_config = new BucketWebsiteConfiguration();
} else if (error_doc == null) {
 website_config = new BucketWebsiteConfiguration(index_doc);
} else {
 website_config = new BucketWebsiteConfiguration(index_doc, error_doc);
}

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.setBucketWebsiteConfiguration(bucket_name, website_config);
} catch (AmazonServiceException e) {
 System.out.format(
 "Failed to set website configuration for bucket '%s'!\n",
 bucket_name);
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note

Beim Festlegen einer Website-Konfiguration werden die Zugriffsberechtigungen für den
Bucket nicht geändert. Um die enthaltenen Dateien im Internet sichtbar zu machen, müssen
Sie zusätzlich eine Bucket-Richtlinie festlegen, durch die der öffentliche Lesezugriff für die
Dateien in dem Bucket ermöglicht wird. Weitere Informationen finden Sie unter Zugriff auf
Amazon S3 Buckets mithilfe von Bucket-Richtlinien verwalten.

Das vollständige Beispiel finden Sie unter. GitHub

Abruf der Website-Konfiguration eines Buckets

Um die Website-Konfiguration eines Amazon S3 Buckets abzurufen, rufen Sie die
getWebsiteConfiguration AmazonS3-Methode mit dem Namen des Buckets auf, für den die
Konfiguration abgerufen werden soll.

Die Konfiguration wird als Objekt zurückgegeben. BucketWebsiteConfiguration Wenn keine Website-
Konfiguration für den Bucket vorhanden ist, wird null zurückgegeben.

Importe

import com.amazonaws.AmazonServiceException;

Einen Amazon S3 Bucket als Website konfigurieren 211

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetWebsiteConfiguration.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 BucketWebsiteConfiguration config =
 s3.getBucketWebsiteConfiguration(bucket_name);
 if (config == null) {
 System.out.println("No website configuration found!");
 } else {
 System.out.format("Index document: %s\n",
 config.getIndexDocumentSuffix());
 System.out.format("Error document: %s\n",
 config.getErrorDocument());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to get website configuration!");
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter GitHub.

Löschen der Website-Konfiguration eines Buckets

Um die Website-Konfiguration eines Amazon S3 Buckets zu löschen, rufen Sie die
deleteWebsiteConfiguration Methode von AmazonS3 mit dem Namen des Buckets auf, aus
dem die Konfiguration gelöscht werden soll.

Importe

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

Einen Amazon S3 Bucket als Website konfigurieren 212

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetWebsiteConfiguration.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteBucketWebsiteConfiguration(bucket_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to delete website configuration!");
 System.exit(1);
}

Das vollständige Beispiel finden Sie unter. GitHub

Weitere Informationen

• PUT Bucket-Website in der Amazon S3 API-Referenz

• GET Bucket-Website in der Amazon S3 API-Referenz

• DELETE Bucket-Website in der Amazon S3 API-Referenz

Amazon S3 Clientseitige Verschlüsselung verwenden

Das Verschlüsseln von Daten mit dem Amazon S3 Verschlüsselungsclient ist eine Möglichkeit,
eine zusätzliche Schutzebene für vertrauliche Informationen bereitzustellen, in denen Sie
gespeichert sind. Amazon S3 Die Beispiele in diesem Abschnitt zeigen, wie Sie den Amazon S3
Verschlüsselungsclient für Ihre Anwendung erstellen und konfigurieren.

Wenn Sie mit Kryptografie noch nicht vertraut sind, finden Sie in den Grundlagen der Kryptografie im
AWS KMS-Entwicklerhandbuch einen grundlegenden Überblick über Begriffe und Algorithmen der
Kryptografie. Informationen zur allgemeinen Kryptografieunterstützung finden Sie AWS SDKs unter
AWS SDK-Unterstützung für Amazon S3 clientseitige Verschlüsselung in der Amazon Web Services
Allgemeinen Referenz.

Note

Bei diesen Codebeispielen wird vorausgesetzt, dass Sie die Informationen unter Verwenden
von verstehen AWS SDK für Java und AWS Standardanmeldedaten anhand der
Informationen unter AWS Anmeldeinformationen einrichten und Region für die Entwicklung
konfiguriert haben.

Amazon S3 Clientseitige Verschlüsselung verwenden 213

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteWebsiteConfiguration.java
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
https://docs.aws.amazon.com/kms/latest/developerguide/crypto-intro.html
https://docs.aws.amazon.com/general/latest/gr/aws_sdk_cryptography.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Wenn Sie Version 1.11.836 oder eine frühere Version von verwenden AWS SDK für Java, finden Sie
unter Amazon S3 Encryption Client Migration Informationen zur Migration Ihrer Anwendungen auf
spätere Versionen. Wenn Sie nicht migrieren können, finden Sie dieses vollständige Beispiel unter.
GitHub

Wenn Sie Version 1.11.837 oder höher von verwenden AWS SDK für Java, sollten Sie sich
andernfalls die unten aufgeführten Beispielthemen zur Verwendung Amazon S3 der clientseitigen
Verschlüsselung ansehen.

Themen

• Amazon S3 clientseitige Verschlüsselung mit Client-Hauptschlüsseln

• Amazon S3 clientseitige Verschlüsselung mit AWS KMS-verwalteten Schlüsseln

Amazon S3 clientseitige Verschlüsselung mit Client-Hauptschlüsseln

In den folgenden Beispielen wird die AmazonS3 EncryptionClient V2Builder-Klasse verwendet,
um einen Amazon S3 Client mit aktivierter clientseitiger Verschlüsselung zu erstellen. Nach der
Aktivierung werden alle Objekte, auf die Sie mit diesem Client hochladen, Amazon S3 verschlüsselt.
Alle Objekte, die Sie Amazon S3 mit diesem Client erhalten, werden automatisch entschlüsselt.

Note

Die folgenden Beispiele zeigen die Verwendung der Amazon S3 clientseitigen
Verschlüsselung mit kundenverwalteten Client-Hauptschlüsseln. Informationen zur
Verwendung der Verschlüsselung mit von AWS KMS verwalteten Schlüsseln finden Sie unter
Amazon S3 Clientseitige Verschlüsselung mit von KMS verwalteten Schlüsseln. AWS

Bei der Aktivierung der clientseitigen Verschlüsselung können Sie zwischen zwei
Verschlüsselungsmodi wählen: strikt authentifiziert Amazon S3 oder authentifiziert. In den folgenden
Abschnitten sehen Sie, wie die unterschiedlichen Modi aktiviert werden. Informationen zu den
Algorithmen, die in den einzelnen Modi verwendet werden, finden Sie in der Definition. CryptoMode

Erforderliche Importe

Importieren Sie für diese Beispiele die folgenden Klassen.

Importe

Amazon S3 Clientseitige Verschlüsselung verwenden 214

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;

Strikte authentifizierte Verschlüsselung

Strikte authentifizierte Verschlüsselung ist der Standardmodus, wenn kein Modus angegeben
CryptoMode ist.

Um diesen Modus explizit zu aktivieren, geben Sie den StrictAuthenticatedEncryption Wert
in der withCryptoConfiguration Methode an.

Note

Bei Verwendung der clientseitigen authentifizierten Verschlüsselung müssen Sie die neueste
Bouncy Castle jar-Datei im Klassenpfad Ihrer Anwendung einschließen.

Code

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY2, "This is the 2nd content to
 encrypt");

Authentifizierter Verschlüsselungsmodus

Beim Modus AuthenticatedEncryption wird während der Verschlüsselung ein verbesserter
Schlüsselverpackungsalgorithmus angewendet. Bei einer Entschlüsselung in diesem Modus verifiziert

Amazon S3 Clientseitige Verschlüsselung verwenden 215

https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

der Algorithmus die Integrität des entschlüsselten Objekts und löst eine Ausnahme aus, wenn das
Objekt nicht verifiziert werden kann. Weitere Informationen zur Funktionsweise der authentifizierten
Verschlüsselung finden Sie im Blogbeitrag Amazon S3 Client-Side Authenticated Encryption.

Note

Bei Verwendung der clientseitigen authentifizierten Verschlüsselung müssen Sie die neueste
Bouncy Castle jar-Datei im Klassenpfad Ihrer Anwendung einschließen.

Zur Aktivierung des Modus geben Sie den AuthenticatedEncryption-Wert in der
withCryptoConfiguration-Methode an.

Code

AmazonS3EncryptionV2 s3EncryptionClientV2 =
 AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.DEFAULT_REGION)
 .withClientConfiguration(new ClientConfiguration())
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode(CryptoMode.AuthenticatedEncryption))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3EncryptionClientV2.putObject(bucket_name, ENCRYPTED_KEY1, "This is the 1st content to
 encrypt");

Amazon S3 clientseitige Verschlüsselung mit AWS KMS-verwalteten Schlüsseln

In den folgenden Beispielen wird die AmazonS3 EncryptionClient V2Builder-Klasse verwendet,
um einen Amazon S3 Client mit aktivierter clientseitiger Verschlüsselung zu erstellen. Nach
der Konfiguration werden alle Objekte, auf die Sie mit diesem Client hochladen, Amazon S3
verschlüsselt. Alle Objekte, die Sie Amazon S3 über diesen Client erhalten, werden automatisch
entschlüsselt.

Note

Die folgenden Beispiele zeigen, wie die Amazon S3 clientseitige Verschlüsselung mit
verwalteten AWS KMS-Schlüsseln verwendet wird. Informationen zur Verwendung der

Amazon S3 Clientseitige Verschlüsselung verwenden 216

https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/download/bouncy-castle-java/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Verschlüsselung mit Ihren eigenen Schlüsseln finden Sie unter Amazon S3 Clientseitige
Verschlüsselung mit Client-Hauptschlüsseln.

Bei der Aktivierung der clientseitigen Verschlüsselung können Sie zwischen zwei
Verschlüsselungsmodi wählen: strikt authentifiziert Amazon S3 oder authentifiziert. In den folgenden
Abschnitten sehen Sie, wie die unterschiedlichen Modi aktiviert werden. Informationen zu den
Algorithmen, die in den einzelnen Modi verwendet werden, finden Sie in der Definition. CryptoMode

Erforderliche Importe

Importieren Sie für diese Beispiele die folgenden Klassen.

Importe

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.kms.AWSKMS;
import com.amazonaws.services.kms.AWSKMSClientBuilder;
import com.amazonaws.services.kms.model.GenerateDataKeyRequest;
import com.amazonaws.services.kms.model.GenerateDataKeyResult;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;

Strikte authentifizierte Verschlüsselung

Strikte authentifizierte Verschlüsselung ist der Standardmodus, wenn kein Modus angegeben
CryptoMode ist.

Um diesen Modus explizit zu aktivieren, geben Sie den StrictAuthenticatedEncryption Wert
in der withCryptoConfiguration Methode an.

Note

Bei Verwendung der clientseitigen authentifizierten Verschlüsselung müssen Sie die neueste
Bouncy Castle jar-Datei im Klassenpfad Ihrer Anwendung einschließen.

Amazon S3 Clientseitige Verschlüsselung verwenden 217

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Code

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");
System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

Rufen Sie die putObject Methode auf dem Amazon S3 Verschlüsselungsclient auf, um Objekte
hochzuladen.

Code

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");

Sie können das Objekt mit demselben Client abrufen. Bei diesem Beispiel wird die
getObjectAsString-Methode zum Abrufen der gespeicherten Zeichenfolge eingesetzt.

Code

System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

Authentifizierter Verschlüsselungsmodus

Beim Modus AuthenticatedEncryption wird während der Verschlüsselung ein verbesserter
Schlüsselverpackungsalgorithmus angewendet. Bei einer Entschlüsselung in diesem Modus verifiziert
der Algorithmus die Integrität des entschlüsselten Objekts und löst eine Ausnahme aus, wenn das
Objekt nicht verifiziert werden kann. Weitere Informationen zur Funktionsweise der authentifizierten
Verschlüsselung finden Sie im Blogbeitrag Amazon S3 Client-Side Authenticated Encryption.

Note

Bei Verwendung der clientseitigen authentifizierten Verschlüsselung müssen Sie die neueste
Bouncy Castle jar-Datei im Klassenpfad Ihrer Anwendung einschließen.

Amazon S3 Clientseitige Verschlüsselung verwenden 218

https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Zur Aktivierung des Modus geben Sie den AuthenticatedEncryption-Wert in der
withCryptoConfiguration-Methode an.

Code

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

AWS KMS Den Client konfigurieren

Der Amazon S3 Verschlüsselungsclient erstellt standardmäßig einen AWS KMS Client, sofern nicht
explizit einer angegeben ist.

Um die Region für diesen automatisch erstellten AWS KMS Client festzulegen, legen Sie den fest.
awsKmsRegion

Code

Region kmsRegion = Region.getRegion(Regions.AP_NORTHEAST_1);

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withAwsKmsRegion(kmsRegion))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Alternativ können Sie Ihren eigenen AWS KMS Client verwenden, um den Verschlüsselungsclient zu
initialisieren.

Code

AWSKMS kmsClient = AWSKMSClientBuilder.standard()
 .withRegion(Regions.US_WEST_2);
 .build();

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()

Amazon S3 Clientseitige Verschlüsselung verwenden 219

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withRegion(Regions.US_WEST_2)
 .withKmsClient(kmsClient)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Amazon SQS Beispiele für die Verwendung der AWS SDK für Java

Dieser Abschnitt bietet Beispiele für die Programmierung von Amazon SQS mithilfe des AWS SDK für
Java.

Note

Die Beispiele enthalten nur den Code, der zur Demonstration jeder Technik nötig ist. Der
vollständige Beispielcode ist verfügbar unter GitHub. Von dort aus können Sie eine einzelne
Quelldatei herunterladen oder das Repository klonen, um alle Beispiele lokal zu erstellen und
auszuführen.

Themen

• Mit Amazon SQS Nachrichtenwarteschlangen arbeiten

• Amazon SQS Nachrichten senden, empfangen und löschen

• Long Polling für Amazon SQS Nachrichtenwarteschlangen aktivieren

• Sichtbarkeits-Timeout einrichten in Amazon SQS

• Verwenden von Warteschlangen für unzustellbare Briefe in Amazon SQS

Mit Amazon SQS Nachrichtenwarteschlangen arbeiten

Eine Nachrichtenwarteschlange ist der logische Container, in den Nachrichten zuverlässig gesendet
werden Amazon SQS. Es gibt zwei Arten von Warteschlangen: Standard und First-in-First-out-
Verfahren (FIFO). Weitere Informationen zu Warteschlangen und den Unterschieden zwischen
diesen Typen finden Sie im Amazon SQS Entwicklerhandbuch.

In diesem Thema wird beschrieben, wie Sie mithilfe von eine Amazon SQS Warteschlange erstellen,
auflisten, löschen und deren URL abrufen. AWS SDK für Java

Amazon SQS Beispiele 220

https://aws.amazon.com/sqs/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Erstellen einer Warteschlange

Verwenden Sie die createQueue Methode des AmazonSQS-Clients und stellen Sie ein
CreateQueueRequestObjekt bereit, das die Warteschlangenparameter beschreibt.

Importe

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
CreateQueueRequest create_request = new CreateQueueRequest(QUEUE_NAME)
 .addAttributesEntry("DelaySeconds", "60")
 .addAttributesEntry("MessageRetentionPeriod", "86400");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

Sie können die vereinfachte Form von createQueue verwenden, die nur einen Namen für die
Warteschlange benötigt, um eine Standard-Warteschlange zu erstellen.

sqs.createQueue("MyQueue" + new Date().getTime());

Das vollständige Beispiel finden Sie unter. GitHub

Auflisten von Warteschlangen

Rufen Sie die Methode des AmazonSQS-Clients auf, um die Amazon SQS Warteschlangen für Ihr
Konto aufzulisten. listQueues

Importe

Mit Amazon SQS Nachrichtenwarteschlangen arbeiten 221

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesResult;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
ListQueuesResult lq_result = sqs.listQueues();
System.out.println("Your SQS Queue URLs:");
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

Wenn Sie die listQueues-Überladung ohne Parameter aufrufen, werden alle Warteschlangen
zurückgegeben. Sie können die zurückgegebenen Ergebnisse filtern, indem Sie ein
ListQueuesRequest-Objekt übergeben.

Importe

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesRequest;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String name_prefix = "Queue";
lq_result = sqs.listQueues(new ListQueuesRequest(name_prefix));
System.out.println("Queue URLs with prefix: " + name_prefix);
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

Das vollständige Beispiel finden Sie unter. GitHub

Abrufen der URL für eine Warteschlange

Rufen Sie die Methode des AmazonSQS-Clients auf. getQueueUrl

Importe

Mit Amazon SQS Nachrichtenwarteschlangen arbeiten 222

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String queue_url = sqs.getQueueUrl(QUEUE_NAME).getQueueUrl();

Das vollständige Beispiel finden Sie unter. GitHub

Löschen einer Warteschlange

Geben Sie die URL der Warteschlange für die Methode des AmazonSQS-Clients andeleteQueue.

Importe

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.deleteQueue(queue_url);

Das vollständige Beispiel finden Sie unter. GitHub

Weitere Infos

• So funktionieren Amazon SQS Warteschlangen im Amazon SQS Entwicklerhandbuch

• CreateQueuein der Amazon SQS API-Referenz

• GetQueueUrlin der Amazon SQS API-Referenz

• ListQueuesin der Amazon SQS API-Referenz

• DeleteQueuesin der Amazon SQS API-Referenz

Amazon SQS Nachrichten senden, empfangen und löschen

In diesem Thema wird beschrieben, wie Sie Amazon SQS Nachrichten senden, empfangen und
löschen. Nachrichten werden immer mit einer SQS-Warteschlange geliefert.

Amazon SQS Nachrichten senden, empfangen und löschen 223

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueues.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Senden einer Nachricht

Fügen Sie einer Amazon SQS Warteschlange eine einzelne Nachricht hinzu, indem Sie die Methode
des AmazonSQS-Clients aufrufen. sendMessage Geben Sie ein SendMessageRequestObjekt an,
das die URL der Warteschlange, den Nachrichtentext und den optionalen Verzögerungswert (in
Sekunden) enthält.

Importe

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.SendMessageRequest;

Code

SendMessageRequest send_msg_request = new SendMessageRequest()
 .withQueueUrl(queueUrl)
 .withMessageBody("hello world")
 .withDelaySeconds(5);
sqs.sendMessage(send_msg_request);

Das vollständige Beispiel finden Sie unter GitHub.

Senden mehrerer Nachrichten gleichzeitig

Sie können mehrere Nachrichten in einer einzigen Anforderung senden. Um mehrere Nachrichten
zu senden, verwenden Sie die sendMessageBatch Methode des AmazonSQS-Clients, die eine
URL SendMessageBatchRequestmit der Warteschlange und eine Liste von Nachrichten (jeweils
eine SendMessageBatchRequestEntry) zum Senden verwendet. Sie können auch eine optionale
Verzögerung pro Nachricht festlegen.

Importe

import com.amazonaws.services.sqs.model.SendMessageBatchRequest;
import com.amazonaws.services.sqs.model.SendMessageBatchRequestEntry;

Code

SendMessageBatchRequest send_batch_request = new SendMessageBatchRequest()
 .withQueueUrl(queueUrl)
 .withEntries(

Amazon SQS Nachrichten senden, empfangen und löschen 224

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequestEntry.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 new SendMessageBatchRequestEntry(
 "msg_1", "Hello from message 1"),
 new SendMessageBatchRequestEntry(
 "msg_2", "Hello from message 2")
 .withDelaySeconds(10));
sqs.sendMessageBatch(send_batch_request);

Das vollständige Beispiel finden Sie unter. GitHub

Empfangen von Nachrichten

Rufen Sie alle Nachrichten ab, die sich derzeit in der Warteschlange befinden, indem Sie die
receiveMessage Methode des AmazonSQS-Clients aufrufen und ihr die URL der Warteschlange
übergeben. Nachrichten werden als Liste von Message-Objekten zurückgegeben.

Importe

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.SendMessageBatchRequest;

Code

List<Message> messages = sqs.receiveMessage(queueUrl).getMessages();

Löschen von Nachrichten nach dem Empfangen

Nachdem Sie eine Nachricht empfangen und ihren Inhalt verarbeitet haben, löschen Sie die Nachricht
aus der Warteschlange, indem Sie die Empfangsnummer und die Warteschlangen-URL der Nachricht
an die Methode des AmazonSQS-Clients senden. deleteMessage

Code

for (Message m : messages) {
 sqs.deleteMessage(queueUrl, m.getReceiptHandle());
}

Das vollständige Beispiel finden Sie unter. GitHub

Weitere Infos

• So funktionieren Amazon SQS Warteschlangen im Amazon SQS Entwicklerhandbuch

Amazon SQS Nachrichten senden, empfangen und löschen 225

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/Message.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• SendMessagein der Amazon SQS API-Referenz

• SendMessageBatchin der Amazon SQS API-Referenz

• ReceiveMessagein der Amazon SQS API-Referenz

• DeleteMessagein der Amazon SQS API-Referenz

Long Polling für Amazon SQS Nachrichtenwarteschlangen aktivieren

Amazon SQS verwendet standardmäßig kurze Abfragen, bei denen nur eine Teilmenge der Server
anhand einer gewichteten Zufallsverteilung abgefragt wird, um festzustellen, ob Nachrichten für die
Antwort verfügbar sind.

Lange Abfragen tragen dazu bei, die Nutzungskosten zu senken, Amazon SQS indem die Anzahl der
leeren Antworten reduziert wird, wenn keine Nachrichten als Antwort auf eine an eine Warteschlange
gesendete ReceiveMessage Anfrage zur Verfügung stehen, und falsche Leerantworten vermieden
werden. Amazon SQS

Note

Sie können eine lange Abfragefrequenz zwischen 1 und 20 Sekunden festlegen.

Aktivieren der Langabfrage beim Erstellen einer Warteschlange

Um lange Abfragen beim Erstellen einer Amazon SQS Warteschlange zu aktivieren, legen Sie das
ReceiveMessageWaitTimeSeconds Attribut für das CreateQueueRequestObjekt fest, bevor Sie
die Methode der AmazonSQS-Klasse aufrufen. createQueue

Importe

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

Long Polling für Amazon SQS Nachrichtenwarteschlangen aktivieren 226

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

// Enable long polling when creating a queue
CreateQueueRequest create_request = new CreateQueueRequest()
 .withQueueName(queue_name)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

Das vollständige Beispiel finden Sie unter. GitHub

Aktivieren der Langabfrage für eine vorhandene Warteschlange

Sie können nicht nur die lange Abfrage beim Erstellen einer Warteschlange aktivieren,
sondern sie auch für eine bestehende Warteschlange aktivieren, indem Sie die Methode
SetQueueAttributesRequestvor ReceiveMessageWaitTimeSeconds dem Aufrufen der
AmazonSQS-Klasse aktivieren. setQueueAttributes

Importe

import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Code

SetQueueAttributesRequest set_attrs_request = new SetQueueAttributesRequest()
 .withQueueUrl(queue_url)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");
sqs.setQueueAttributes(set_attrs_request);

Das vollständige Beispiel finden Sie unter. GitHub

Aktivieren von Langabfragen beim Nachrichteneingang

Sie können lange Abfragen beim Empfang einer Nachricht aktivieren, indem Sie die Wartezeit
in Sekunden für die Methode festlegen ReceiveMessageRequest, die Sie an die Methode der
AmazonSQS-Klasse übergeben. receiveMessage

Long Polling für Amazon SQS Nachrichtenwarteschlangen aktivieren 227

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Sie sollten sicherstellen, dass das Anfrage-Timeout des AWS Kunden größer ist als die
maximale lange Abfragezeit (20 s), damit es bei Ihren receiveMessage Anfragen nicht zu
einem Timeout kommt, während Sie auf das nächste Umfrageereignis warten!

Importe

import com.amazonaws.services.sqs.model.ReceiveMessageRequest;

Code

ReceiveMessageRequest receive_request = new ReceiveMessageRequest()
 .withQueueUrl(queue_url)
 .withWaitTimeSeconds(20);
sqs.receiveMessage(receive_request);

Das vollständige Beispiel finden Sie unter. GitHub

Weitere Infos

• Amazon SQS Long Polling im Amazon SQS Entwicklerhandbuch

• CreateQueuein der Amazon SQS API-Referenz

• ReceiveMessagein der Amazon SQS API-Referenz

• SetQueueAttributesin der Amazon SQS API-Referenz

Sichtbarkeits-Timeout einrichten in Amazon SQS

Wenn eine Nachricht empfangen wird Amazon SQS, verbleibt sie in der Warteschlange, bis sie
gelöscht wird, um den Empfang sicherzustellen. Eine empfangene, aber nicht gelöschte Nachricht
erscheint erst nach Ablauf einer bestimmten Zeitbeschränkung für die Sichtbarkeit in nachfolgenden
Anforderungen. Dadurch wird gewährleistet, dass die Nachricht nicht mehrmals empfangen wird,
bevor sie verarbeitet und gelöscht werden kann.

Sichtbarkeits-Timeout einrichten in Amazon SQS 228

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Bei Nutzung von Standard-Warteschlangen kann durch die Zeitbeschränkung für die
Sichtbarkeit nicht garantiert werden, dass eine Nachricht mehrmals empfangen wird. Wenn
Sie eine Standard-Warteschlange verwenden, achten Sie darauf, dass Ihr Code mit dem Fall
umgehen kann, dass dieselbe Nachricht mehrmals eingeht.

Einrichten der Zeitbeschränkung für die Sichtbarkeit einer einzelnen Nachricht

Wenn Sie eine Nachricht erhalten haben, können Sie ihr Sichtbarkeits-Timeout ändern, indem Sie
ihre Empfangsnummer in einer Methode übergeben ChangeMessageVisibilityRequest, die Sie an die
Methode der AmazonSQS-Klasse übergeben. changeMessageVisibility

Importe

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Get the receipt handle for the first message in the queue.
String receipt = sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle();

sqs.changeMessageVisibility(queue_url, receipt, timeout);

Das vollständige Beispiel finden Sie unter. GitHub

Einrichten der Zeitbeschränkung für die Sichtbarkeit mehrerer Nachrichten auf einmal

Um das Timeout für die Nachrichtensichtbarkeit für mehrere Nachrichten gleichzeitig festzulegen,
erstellen Sie eine Liste von ChangeMessageVisibilityBatchRequestEntryObjekten, die jeweils eine
eindeutige ID-Zeichenfolge und ein Empfangs-Handle enthalten. Übergeben Sie dann die Liste an die
Methode der Amazon SQS Client-Klasse. changeMessageVisibilityBatch

Sichtbarkeits-Timeout einrichten in Amazon SQS 229

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityBatchRequestEntry.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Importe

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ChangeMessageVisibilityBatchRequestEntry;
import java.util.ArrayList;
import java.util.List;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

List<ChangeMessageVisibilityBatchRequestEntry> entries =
 new ArrayList<ChangeMessageVisibilityBatchRequestEntry>();

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg1",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout));

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg2",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout + 200));

sqs.changeMessageVisibilityBatch(queue_url, entries);

Das vollständige Beispiel finden Sie unter. GitHub

Weitere Infos

• Visibility Timeout im Amazon SQS Developer Guide

• SetQueueAttributesin der Amazon SQS API-Referenz

• GetQueueAttributesin der Amazon SQS API-Referenz

• ReceiveMessagein der Amazon SQS API-Referenz

Sichtbarkeits-Timeout einrichten in Amazon SQS 230

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• ChangeMessageVisibilityin der Amazon SQS API-Referenz

• ChangeMessageVisibilityBatchin der Amazon SQS API-Referenz

Verwenden von Warteschlangen für unzustellbare Briefe in Amazon SQS

Amazon SQS bietet Unterstützung für Warteschlangen mit uneingeschränkten Briefen. Andere
(Quell-)Warteschlangen können Nachrichten, die nicht erfolgreich verarbeitet werden konnten, an
die Warteschlange für unzustellbare Nachrichten senden. Sie können diese Nachrichten in der
Warteschlange für unzustellbare Nachrichten sammeln und isolieren, um zu bestimmen, warum die
Verarbeitung fehlgeschlagen ist.

Erstellen einer Warteschlange für unzustellbare Nachrichten

Eine Warteschlange für unzustellbare Nachrichten wird wie eine reguläre Warteschlange erstellt, hat
aber folgende Einschränkungen:

• Eine Warteschlange für unzustellbare Nachrichten muss den gleichen Typ der Warteschlange
(FIFO oder Standard) wie die Quell-Warteschlange haben.

• Eine Warteschlange für eingehende Nachrichten muss mit derselben AWS-Konto AND-Region wie
die Quellwarteschlange erstellt werden.

Hier erstellen wir zwei identische Amazon SQS Warteschlangen, von denen eine als Warteschlange
für eingehende Nachrichten dient:

Importe

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Create source queue
try {
 sqs.createQueue(src_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {

Verwenden von Warteschlangen für unzustellbare Briefe in Amazon SQS 231

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 throw e;
 }
}

// Create dead-letter queue
try {
 sqs.createQueue(dl_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

Das vollständige Beispiel finden Sie unter. GitHub

Zuweisen einer Warteschlange für unzustellbare Nachrichten an eine Quell-
Warteschlange

Sie können eine Warteschlange für unzustellbare Nachrichten zuweisen, indem Sie als Erstes eine
Redrive-Richtlinie erstellen und die Richtlinie dann in den Attributen der Warteschlange festlegen.
Eine Redrive-Richtlinie wird in JSON angegeben und enthält den ARN der Warteschlange für
unzustellbare Nachrichten sowie die maximale Anzahl an Malen, die eine Nachricht empfangen
und nicht verarbeitet werden kann, bevor sie an die Warteschlange für unzustellbare Nachrichten
gesendet wird.

Um die Redrive-Richtlinie für Ihre Quell-Warteschlange festzulegen, rufen
Sie die setQueueAttributes Methode der AmazonSQS-Klasse mit einem
SetQueueAttributesRequestObjekt auf, für das Sie das RedrivePolicy Attribut mit Ihrer JSON-
Redrive-Richtlinie festgelegt haben.

Importe

import com.amazonaws.services.sqs.model.GetQueueAttributesRequest;
import com.amazonaws.services.sqs.model.GetQueueAttributesResult;
import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Code

String dl_queue_url = sqs.getQueueUrl(dl_queue_name)
 .getQueueUrl();

Verwenden von Warteschlangen für unzustellbare Briefe in Amazon SQS 232

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

GetQueueAttributesResult queue_attrs = sqs.getQueueAttributes(
 new GetQueueAttributesRequest(dl_queue_url)
 .withAttributeNames("QueueArn"));

String dl_queue_arn = queue_attrs.getAttributes().get("QueueArn");

// Set dead letter queue with redrive policy on source queue.
String src_queue_url = sqs.getQueueUrl(src_queue_name)
 .getQueueUrl();

SetQueueAttributesRequest request = new SetQueueAttributesRequest()
 .withQueueUrl(src_queue_url)
 .addAttributesEntry("RedrivePolicy",
 "{\"maxReceiveCount\":\"5\", \"deadLetterTargetArn\":\""
 + dl_queue_arn + "\"}");

sqs.setQueueAttributes(request);

Das vollständige Beispiel finden Sie unter. GitHub

Weitere Infos

• Verwenden von Amazon SQS Dead Letter Queues im Amazon SQS Entwicklerhandbuch

• SetQueueAttributesin der Amazon SQS API-Referenz

Amazon SWF Beispiele für die Verwendung der AWS SDK für Java

Amazon SWFist ein Workflow-Management-Service, der Entwicklern hilft, verteilte Workflows
zu erstellen und zu skalieren, die parallel oder sequentielle Schritte umfassen können, die aus
Aktivitäten, untergeordneten Workflows oder sogar Lambda-Aufgaben bestehen können.

Es gibt zwei Möglichkeiten, mit dem zu arbeiten: Amazon SWF mit dem AWS SDK für JavaSWF-
Client-Objekt oder mit dem für Java. AWS Flow Framework Das AWS Flow Framework für Java ist
anfangs schwieriger zu konfigurieren, da es häufig Anmerkungen verwendet und auf zusätzliche
Bibliotheken wie AspectJ und das Spring Framework angewiesen ist. Bei großen oder komplexen
Projekten sparen Sie jedoch Codierungszeit, indem Sie for Java verwenden. AWS Flow Framework
Weitere Informationen finden Sie im AWS Flow Framework for Java Developer Guide.

Dieser Abschnitt enthält Beispiele für die direkte Programmierung Amazon SWF mit dem AWS SDK
für Java Client.

Amazon SWF Beispiele 233

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://aws.amazon.com/swf/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Themen

• SWF-Grundlagen

• Eine einfache Amazon SWF Anwendung erstellen

• Lambda Aufgaben

• Korrektes Herunterfahren von Aktivitäts- und Workflow-Workern

• Registrieren von Domänen

• Auflisten von Domänen

SWF-Grundlagen

Dies sind allgemeine Muster für die Arbeit Amazon SWF mit der AWS SDK für Java. Dies soll
hauptsächlich als Referenz dienen. Ein vollständigeres Einführungstutorial finden Sie unter Erstellen
einer einfachen Amazon SWF Anwendung.

Abhängigkeiten

Für Amazon SWF Basisanwendungen sind die folgenden Abhängigkeiten erforderlich, die im
Lieferumfang von enthalten sind AWS SDK für Java:

• aws-java-sdk-1.12.*.jar

• commons-logging-1.2.*.jar

• httpclient-4.3.*.jar

• httpcore-4.3.*.jar

• jackson-annotations-2.12.*.jar

• jackson-core-2.12.*.jar

• jackson-databind-2.12.*.jar

• joda-time-2.8.*.jar

Note

Die Versionsnummern dieser Pakete hängen von der Version des SDK ab, die Sie haben,
aber die Versionen, die mit dem SDK geliefert werden, wurden auf Kompatibilität getestet und
sollten Sie verwenden.

SWF-Grundlagen 234

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

AWS Flow Framework für Java-Anwendungen sind zusätzliche Einstellungen und zusätzliche
Abhängigkeiten erforderlich. Weitere Informationen AWS Flow Framework zur Verwendung des
Frameworks finden Sie im for Java Developer Guide.

Importe

Im Allgemeinen können Sie die folgenden Importe für Code-Entwicklung nutzen:

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

Sie sollten jedoch nur die Klassen importieren, die Sie wirklich benötigen.
Dazu geben Sie wahrscheinlich bestimmte Klassen im Workspace
com.amazonaws.services.simpleworkflow.model an:

import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

Wenn Sie das AWS Flow Framework für Java verwenden, importieren Sie Klassen aus dem
com.amazonaws.services.simpleworkflow.flow Workspace. Zum Beispiel:

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

Note

AWS Flow Framework Für Java gelten zusätzliche Anforderungen, die über die Basisversion
hinausgehen AWS SDK für Java. Weitere Informationen finden Sie im AWS Flow Framework
for Java Developer Guide.

Verwenden der SWF-Client-Klasse

Ihre grundlegende Schnittstelle zu Amazon SWF sind entweder die
AmazonSimpleWorkflowAsyncClientKlassen AmazonSimpleWorkflowClientoder. Der Unterschied
zwischen diesen Klassen besteht darin, dass die *AsyncClient-Klasse Future-Objekte für
gleichzeitige (asynchrone) Programmierung zurückgibt.

SWF-Grundlagen 235

https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

AmazonSimpleWorkflowClient swf = AmazonSimpleWorkflowClientBuilder.defaultClient();

Eine einfache Amazon SWF Anwendung erstellen

In diesem Thema werden Sie in die Programmierung von Amazon SWFAnwendungen mit dem AWS
SDK für Java eingeführt und dabei einige wichtige Konzepte vorgestellt.

Über das Beispiel

Das Beispielprojekt erstellt einen Workflow mit einer einzigen Aktivität, der Workflow-Daten
akzeptiert, die über die AWS Cloud übertragen werden (in der HelloWorld Tradition ist dies der Name
einer zu begrüßenden Person) und anschließend eine Begrüßung als Antwort ausgibt.

Obwohl dies auf den ersten Blick sehr einfach erscheint, bestehen Amazon SWF Anwendungen aus
einer Reihe von Teilen, die zusammenarbeiten:

• Einer Domäne als logischem Container für die Ausführungsdaten des Workflows.

• Einem oder mehreren Workflows, die Code-Komponenten darstellen, mit denen die logische
Reihenfolge der Ausführung für die Aktivitäten und untergeordneten Workflows Ihres Workflows
definiert wird.

• Einem Workflow-Worker, auch Entscheider genannt, der Abfragen für Entscheidungsaufgaben
ausführt und daraufhin Aktivitäten oder untergeordnete Workflows plant.

• Einer oder mehreren Aktivitäten, die jeweils eine Arbeitseinheit im Workflow darstellen.

• Einem Aktivitäts-Worker, der Abfragen für Aktivitätsaufgaben durchführt und als Reaktion
Aktivitätsmethoden ausführt.

• Eine oder mehrere Aufgabenlisten, bei denen es sich um Warteschlangen handelt, die Amazon
SWF dazu dienen, Anfragen an die Workflow- und Aktivitätsmitarbeiter zu richten. Aufgaben in
einer Aufgabenliste für Workflow-Worker werden Entscheidungsaufgaben genannt. Aufgaben für
Aktivitäts-Worker nennen sich Aktivitätsaufgaben.

• Einem Workflow-Starter, der mit der Ausführung des Workflows beginnt.

Amazon SWF Orchestriert hinter den Kulissen den Betrieb dieser Komponenten, koordiniert ihren
Fluss aus der AWS Cloud, leitet Daten zwischen ihnen weiter, verarbeitet Timeouts und Heartbeat-
Benachrichtigungen und protokolliert den Verlauf der Workflow-Ausführung.

Eine einfache Amazon SWF Anwendung erstellen 236

https://aws.amazon.com/swf/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Voraussetzungen

Entwicklungsumgebung

Die Entwicklungsumgebung in dieser Anleitung besteht aus:

• Das Tool AWS SDK für Java.

• Apache Maven (3.3.1).

• JDK 1.7 oder neuer. Diese Anleitung wurde mit JDK 1.8.0 entwickelt und getestet.

• Einen guten Java-Texteditor (Ihrer Wahl).

Note

Wenn Sie ein anderes Build-System als Maven verwenden, können Sie trotzdem ein
Projekt mit den entsprechenden Schritten für Ihre Umgebung erstellen und dabei die
hier bereitgestellten Konzepte verwenden. Weitere Informationen zur Konfiguration und
Verwendung von AWS SDK für Java mit den verschiedenen Build-Systemen finden Sie unter
Erste Schritte.
Ebenso, aber mit größerem Aufwand, können die hier gezeigten Schritte mit jedem der AWS
SDKs mit Unterstützung für implementiert werden Amazon SWF.

Alle erforderlichen externen Abhängigkeiten sind im Lieferumfang von enthalten AWS SDK für Java,
sodass Sie nichts zusätzlich herunterladen müssen.

AWS Zugriff

Um dieses Tutorial erfolgreich durcharbeiten zu können, benötigen Sie Zugriff auf das AWS
Zugangsportal, wie im Abschnitt zur Grundkonfiguration dieses Handbuchs beschrieben.

In den Anweisungen wird beschrieben, wie Sie auf temporäre Anmeldeinformationen zugreifen, die
Sie kopieren und in Ihre lokale gemeinsam genutzte credentials Datei einfügen. Die temporären
Anmeldeinformationen, die Sie einfügen, müssen einer IAM-Rolle zugeordnet sein AWS IAM
Identity Center , die über Zugriffsberechtigungen für Amazon SWF verfügt. Nach dem Einfügen der
temporären Anmeldeinformationen sieht Ihre credentials Datei wie folgt aus.

[default]

Eine einfache Amazon SWF Anwendung erstellen 237

https://aws.amazon.com/sdk-for-java/
http://maven.apache.org/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

Diese temporären Anmeldeinformationen sind mit dem default Profil verknüpft.

Erstellen eines SWF-Projekts

1. Starten Sie ein neues Projekt mit Maven:

mvn archetype:generate -DartifactId=helloswf \
-DgroupId=aws.example.helloswf -DinteractiveMode=false

Dadurch wird ein neues Projekt mit einer Standard-Projektstruktur für Maven erzeugt:

helloswf
pom.xml
src
 ### main
 # ### java
 # ### aws
 # ### example
 # ### helloswf
 # ### App.java
 ### test
 ### ...

Sie können das test-Verzeichnis und dessen Inhalte ignorieren oder löschen, da wir es für diese
Anleitung nicht verwenden. Sie können auch App.java löschen, da wir sie durch neue Klassen
ersetzen.

2. Bearbeiten Sie die pom.xml Projektdatei und fügen Sie das aws-java-sdk-simpleworkflowModul
hinzu, indem Sie dem <dependencies> Block eine Abhängigkeit hinzufügen.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-simpleworkflow</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

Eine einfache Amazon SWF Anwendung erstellen 238

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

3. Achten Sie darauf, dass Maven das Projekt mit Unterstützung für JDK 1.7+ erstellt. Fügen Sie
Folgendes in der Datei <dependencies> zu Ihrem Projekt hinzu (vor oder nach dem Block
pom.xml):

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
</build>

Entwickeln des Projekts

Das Beispielprojekt umfasst vier separate Anwendungen, die wir einzeln untersuchen:

• HelloTypes.java — enthält die Domänen-, Aktivitäts- und Workflow-Typdaten des Projekts, die mit
den anderen Komponenten gemeinsam genutzt werden. Außerdem übernimmt diese Datei das
Registrieren dieser Typen mit SWF.

• ActivityWorker.java --enthält den Activity Worker, der nach Aktivitätsaufgaben fragt und daraufhin
Aktivitäten ausführt.

• WorkflowWorker.java — enthält den Workflow-Worker (Decider), der Entscheidungsaufgaben
abfragt und neue Aktivitäten plant.

• WorkflowStarter.java --enthält den Workflow-Starter, der eine neue Workflow-Ausführung startet,
wodurch SWF beginnt, Entscheidungs- und Workflow-Aufgaben zu generieren, die Ihre Worker
bearbeiten können.

Allgemeine Schritte für alle Quelldateien

Alle Dateien, die Sie erstellen, um Ihre Java-Klassen zu integrieren, haben ein paar Dinge
gemeinsam. Aus zeitlichen Gründen werden die folgenden Schritte jedes Mal implizit vorausgesetzt,
wenn Sie eine neue Datei zum Projekt hinzufügen:

Eine einfache Amazon SWF Anwendung erstellen 239

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

1. Erstellen Sie die Datei im Verzeichnis src/main/java/aws/example/helloswf/ des
Projekts.

2. Fügen Sie eine package-Deklaration am Anfang jeder Datei hinzu, um ihren Namespace zu
deklarieren. Das Beispielprojekt nutzt:

package aws.example.helloswf;

3. Fügen Sie import Deklarationen für die AmazonSimpleWorkflowClientKlasse und für mehrere
Klassen im com.amazonaws.services.simpleworkflow.model Namespace hinzu. Der
Einfachheit halber verwenden wir:

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

Registrieren von Domäne und Workflow- und Aktivitätstypen

Als Erstes erstellen wir eine neue ausführbare Klasse, HelloTypes.java. Diese Datei enthält
freigegebene Daten, die verschiedenen Teilen Ihres Workflows bekannt sein müssen, z. B. die
Namen und Version Ihrer Aktivitäten und Workflow-Typen, den Namen der Domäne und den Namen
der Aufgabenliste.

1. Öffnen Sie den Texteditor und erstellen Sie die Datei HelloTypes.java. Fügen Sie eine
Package-Deklaration und die Importe laut den allgemeinen Schritten hinzu.

2. Deklarieren Sie die HelloTypes-Klasse und geben Sie Werte für Ihre registrierten Aktivitäts- und
Workflow-Typen an:

 public static final String DOMAIN = "HelloDomain";
 public static final String TASKLIST = "HelloTasklist";
 public static final String WORKFLOW = "HelloWorkflow";
 public static final String WORKFLOW_VERSION = "1.0";
 public static final String ACTIVITY = "HelloActivity";
 public static final String ACTIVITY_VERSION = "1.0";

Diese Werte werden im gesamten Code verwendet.

Eine einfache Amazon SWF Anwendung erstellen 240

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

3. Erstellen Sie nach den String-Deklarationen eine Instanz der AmazonSimpleWorkflowClientKlasse.
Dies ist die grundlegende Schnittstelle zu den Amazon SWF Methoden, die von der bereitgestellt
werden AWS SDK für Java.

private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

Im vorherigen Codeausschnitt wird davon ausgegangen, dass dem Profil temporäre
Anmeldeinformationen zugeordnet sind. default Wenn Sie ein anderes Profil verwenden, ändern
Sie den obigen Code wie folgt und profile_name ersetzen Sie ihn durch den Namen des
tatsächlichen Profilnamens.

private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder
 .standard()
 .withCredentials(new ProfileCredentialsProvider("profile_name"))
 .withRegion(Regions.DEFAULT_REGION)
 .build();

4. Fügen Sie eine neue Funktion für die Registrierung einer SWF-Domäne hinzu. Bei einer Domäne
handelt es sich um einen logischen Container für eine Reihe von zugehörigen SWF-Aktivitäten
und Workflow-Typen. SWF-Komponenten können nur miteinander kommunizieren, wenn sie in
derselben Domäne sind.

 try {
 System.out.println("** Registering the domain '" + DOMAIN + "'.");
 swf.registerDomain(new RegisterDomainRequest()
 .withName(DOMAIN)
 .withWorkflowExecutionRetentionPeriodInDays("1"));
 } catch (DomainAlreadyExistsException e) {
 System.out.println("** Domain already exists!");
 }

Wenn Sie eine Domain registrieren, geben Sie ihr einen Namen (eine beliebige Gruppe von 1
bis 256 Zeichen mit Ausnahme von:,,/,|, Steuerzeichen oder der wörtlichen Zeichenfolge '`arn')
und eine Aufbewahrungsfrist, d. h. die Anzahl der Tage, in denen die Ausführungsverlaufsdaten
Ihres Workflows nach Abschluss einer Workflow-Ausführung aufbewahrt Amazon SWF werden.

Eine einfache Amazon SWF Anwendung erstellen 241

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Der maximale Aufbewahrungszeitraum für die Workflow-Ausführung ist 90 Tage. Weitere
Informationen finden Sie unter RegisterDomainRequest.

Wenn eine Domäne mit diesem Namen bereits existiert, DomainAlreadyExistsExceptionwird a
aktiviert. Da uns nicht interessiert, ob die Domäne schon erstellt wurde, können wir die Ausnahme
ignorieren.

Note

Dieser Code veranschaulicht ein allgemeines Muster bei der Arbeit mit AWS SDK für Java
Methoden: Daten für die Methode werden von einer Klasse im simpleworkflow.model
Namespace bereitgestellt, die Sie mithilfe der verkettbaren Methoden instanziieren und
auffüllen. 0with*

5. Fügen Sie eine neue Funktion für die Registrierung eines neuen Aktivitätstyps hinzu. Eine Aktivität
stellt eine Arbeitseinheit in Ihrem Workflow dar.

 try {
 System.out.println("** Registering the activity type '" + ACTIVITY +
 "-" + ACTIVITY_VERSION + "'.");
 swf.registerActivityType(new RegisterActivityTypeRequest()
 .withDomain(DOMAIN)
 .withName(ACTIVITY)
 .withVersion(ACTIVITY_VERSION)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskScheduleToStartTimeout("30")
 .withDefaultTaskStartToCloseTimeout("600")
 .withDefaultTaskScheduleToCloseTimeout("630")
 .withDefaultTaskHeartbeatTimeout("10"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Activity type already exists!");
 }

Ein Aktivitätstyp wird durch einen Namen und eine Version angegeben, die zum Unterscheiden
der Aktivitäten von denen anderen Dateien in der Domäne, in der sie registriert sind, verwendet
werden. Aktivitäten enthalten außerdem eine Reihe von optionalen Parametern, wie die
Standard-Aufgabenliste für den Empfang von Aufgaben und Daten aus SWF und eine Reihe
verschiedener Timeouts, mit denen Sie Einschränkungen dafür, wie lange verschiedene Teile
der Aktivität ausgeführt werden dürfen, festlegen können. Weitere Informationen finden Sie unter
RegisterActivityTypeRequest.

Eine einfache Amazon SWF Anwendung erstellen 242

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterActivityTypeRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Alle Timeout-Werte werden in Sekunden angegeben. Eine vollständige Beschreibung der
Auswirkungen von Amazon SWF Timeouts auf Ihre Workflow-Ausführungen finden Sie
unter Timeout-Typen.

Wenn der Aktivitätstyp, den Sie registrieren möchten, bereits existiert,
TypeAlreadyExistsExceptionwird ein ausgelöst. Fügen Sie eine neue Funktion für die Registrierung
eines neuen Workflow-Typs hinzu. Ein Workflow, auch Entscheider genannt, stellt die Logik Ihrer
Workflow-Ausführung dar.

+

 try {
 System.out.println("** Registering the workflow type '" + WORKFLOW +
 "-" + WORKFLOW_VERSION + "'.");
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Workflow type already exists!");
 }

+

Ähnlich wie bei Aktivitätstypen werden Workflow-Typen durch einen Namen und eine Version
identifiziert und haben auch konfigurierbare Timeouts. Weitere Informationen finden Sie unter
RegisterWorkflowTypeRequest.

+

Wenn der Workflowtyp, den Sie registrieren möchten, bereits existiert,
TypeAlreadyExistsExceptionwird ein ausgelöst. Markieren Sie die Klasse schließlich als ausführbar,
indem Sie eine main-Methode hinzufügen. Diese registriert die Domäne, den Aktivitätstyp sowie den
Workflow-Typ:

Eine einfache Amazon SWF Anwendung erstellen 243

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

+

 registerDomain();
 registerWorkflowType();
 registerActivityType();

Jetzt können Sie die Anwendung erstellen und ausführen, um das Registrierungsskript auszuführen.
Sie können aber auch mit dem Entwickeln der Aktivitäts- und Workflow-Worker fortfahren. Sobald die
Domäne, der Workflow und die Aktivität registriert wurden, müssen Sie sie nicht erneut ausführen.
Diese Typen bleiben bestehen, bis Sie sie selbst als veraltet kennzeichnen.

Implementieren des Aktivitäts-Workers

Eine Aktivität ist die grundlegende Arbeitseinheit in einem Workflow. Ein Workflow stellt die
Logik bereit und plant auszuführende Aktivitäten (oder andere Aktionen) als Reaktion auf
Entscheidungsaufgaben. Ein typischer Workflow besteht normalerweise aus einer Reihe von
Aktivitäten, die synchron, asynchron oder gemischt ausgeführt werden können.

Der Activity Worker ist der Code, der nach Aktivitätsaufgaben fragt, die von Amazon SWF als
Reaktion auf Workflow-Entscheidungen generiert werden. Wird eine Aktivitätsaufgabe empfangen,
wird die zugehörige Aktivität ausgeführt und eine Erfolg-/Fehlermeldung an den Workflow
zurückgegeben.

Wir implementieren einen einfachen Aktivitäts-Worker, der eine einzelne Aktivität ausführt.

1. Öffnen Sie den Texteditor und erstellen Sie die Datei ActivityWorker.java. Fügen Sie eine
Package-Deklaration und die Importe laut den allgemeinen Schritten hinzu.

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

2. Fügen Sie die ActivityWorker Klasse der Datei hinzu und geben Sie ihr ein Datenelement für
einen SWF-Client, mit dem Amazon SWF wir interagieren werden:

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

3. Fügen Sie die Methode, die wir nutzen werden, als Aktivität hinzu:

Eine einfache Amazon SWF Anwendung erstellen 244

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

private static String sayHello(String input) throws Throwable {
 return "Hello, " + input + "!";
}

Die Aktivität nimmt einfach eine Zeichenfolge entgegen, kombiniert sie zu einer Begrüßung und
gibt das Ergebnis zurück. Es ist zwar unwahrscheinlich, dass diese Aktivität eine Ausnahme
auslöst. Dennoch empfiehlt es sich, Aktivitäten zu entwerfen, die einen Fehler auslösen können,
wenn ein Fehler auftritt.

4. Fügen Sie eine main-Methode hinzu. Wir verwenden sie als Abfragemethode der
Aktivitätsaufgabe. Wir starten sie, indem wir Code hinzufügen, der die Aufgabenliste nach
Aktivitätsaufgaben abfragt:

 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(
 new PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(
 new TaskList().withName(HelloTypes.TASKLIST)));

 String task_token = task.getTaskToken();

Die Aktivität empfängt Aufgaben von, Amazon SWF indem sie die pollForActivityTask
Methode des SWF-Clients aufruft und dabei die Domäne und die Aufgabenliste angibt, die in der
übergebenen Datei verwendet werden sollen. PollForActivityTaskRequest

Sobald eine Aufgabe empfangen wird, rufen wir eine eindeutige Kennung für sie ab, indem wir die
getTaskToken-Methode der Aufgabe aufrufen.

5. Schreiben Sie als Nächstes Code zum Verarbeiten der eingehenden Aufgaben. Fügen Sie
Folgendes zur main-Methode hinzu, und zwar direkt nach dem Code, der die Aufgabe abruft und
deren Aufgabentoken ermittelt.

 if (task_token != null) {
 String result = null;
 Throwable error = null;

Eine einfache Amazon SWF Anwendung erstellen 245

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForActivityTaskRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 try {
 System.out.println("Executing the activity task with input '" +
 task.getInput() + "'.");
 result = sayHello(task.getInput());
 } catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(task_token)
 .withResult(result));
 } else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(task_token)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }

Wenn das Aufgabentoken ungleich null ist, beginnen wir die Ausführung der Aktivitätsmethode
(sayHello) und übergeben dabei die Eingabedaten, die mit der Aufgabe mitgesendet wurden.

Wenn die Aufgabe erfolgreich war (es wurde kein Fehler generiert), reagiert der Worker auf
SWF, indem er die respondActivityTaskCompleted Methode des SWF-Clients mit einem
RespondActivityTaskCompletedRequestObjekt aufruft, das das Task-Token und die Ergebnisdaten
der Aktivität enthält.

Wenn die Aufgabe dagegen fehlgeschlagen ist, antworten wir, indem wir die
respondActivityTaskFailed Methode mit einem RespondActivityTaskFailedRequestObjekt
aufrufen und ihr das Task-Token und Informationen über den Fehler übergeben.

Eine einfache Amazon SWF Anwendung erstellen 246

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskCompletedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskFailedRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Note

Diese Aktivität wird nicht korrekt beendet, wenn sie unsanft abgebrochen wird. Dies geht
zwar über die Grenzen dieser Anleitung hinaus, doch eine alternative Implementierung
dieses Aktivitäts-Workers finden Sie im begleitenden Thema Korrektes Herunterfahren von
Aktivitäts- und Workflow-Workern.

Implementieren des Workflow-Workers

Die Workflow-Logik liegt in einem Codeteil, der Workflow-Worker genannt wird. Der Workflow-
Worker fragt nach Entscheidungsaufgaben ab, die Amazon SWF in der Domäne und in der Standard-
Taskliste gesendet wurden, für die der Workflowtyp registriert wurde.

Wenn der Workflow-Worker eine Aufgabe erhält, wird eine Art Entscheidung gefällt (in der Regel, ob
eine neue Aktivität geplant werden soll oder nicht) und eine entsprechende Aktion ausgeführt (z. B.
zur Planung der Aktivität).

1. Öffnen Sie den Texteditor und erstellen Sie die Datei WorkflowWorker.java. Fügen Sie eine
Package-Deklaration und die Importe laut den allgemeinen Schritten hinzu.

2. Fügen Sie einige zusätzliche Importe in die Datei ein:

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

3. Deklarieren Sie die WorkflowWorker Klasse und erstellen Sie eine Instanz der
AmazonSimpleWorkflowClientKlasse, die für den Zugriff auf SWF-Methoden verwendet wird.

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

4. Fügen Sie die main-Methode hinzu. Die Methode wird in Schleife ausgeführt und ruft
Entscheidungsaufgaben mit der pollForDecisionTask-Methode des SWF-Clients ab. Die
PollForDecisionTaskRequeststellt die Details bereit.

Eine einfache Amazon SWF Anwendung erstellen 247

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForDecisionTaskRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 PollForDecisionTaskRequest task_request =
 new PollForDecisionTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST));

 while (true) {
 System.out.println(
 "Polling for a decision task from the tasklist '" +
 HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 DecisionTask task = swf.pollForDecisionTask(task_request);

 String taskToken = task.getTaskToken();
 if (taskToken != null) {
 try {
 executeDecisionTask(taskToken, task.getEvents());
 } catch (Throwable th) {
 th.printStackTrace();
 }
 }
 }

Sobald eine Aufgabe empfangen wird, rufen wir ihre getTaskToken-Methode auf. Diese
gibt eine Zeichenfolge zur Erkennung der Aufgabe zurück. Wenn das zurückgegebene
Token nicht vorhanden istnull, verarbeiten wir es in der executeDecisionTask Methode
weiter und übergeben ihm das Task-Token und die Liste der mit der Aufgabe gesendeten
HistoryEventObjekte.

5. Fügen Sie die executeDecisionTask-Methode hinzu. Sie nimmt das Aufgabentoken (einen
String) und eine HistoryEvent-Liste entgegen.

 List<Decision> decisions = new ArrayList<Decision>();
 String workflow_input = null;
 int scheduled_activities = 0;
 int open_activities = 0;
 boolean activity_completed = false;
 String result = null;

Wir richten auch einige Datenmitglieder zur Nachverfolgung ein, u. a.:

Eine einfache Amazon SWF Anwendung erstellen 248

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

• Eine Liste mit Decision-Objekten, mit denen die Ergebnisse der Aufgabenverarbeitung berichtet
werden.

• Eine Zeichenfolge für die Workflow-Eingabe, die durch das Ereignis "WorkflowExecutionStarted"
bereitgestellt wird

• Eine Zählung der geplanten und offenen (aktiven) Aktivitäten. So wird die Planung von
Aktivitäten vermieden, die bereits geplant wurden oder momentan ausgeführt werden.

• Einen boolescher Wert, der angibt, ob die Aktivität abgeschlossen ist.

• Eine Zeichenfolge, die die Aktivitätsergebnisse für die Rückgabe als unser Workflow-Ergebnis
speichert.

6. Fügen Sie als Nächstes Code in die executeDecisionTask-Methode ein, der die mit der
Aufgabe mitgesendeten HistoryEvent-Objekte verarbeitet, je nachdem, welcher Ereignistyp von
der getEventType-Methode gemeldet wurde.

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 switch(event.getEventType()) {
 case "WorkflowExecutionStarted":
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case "ActivityTaskScheduled":
 scheduled_activities++;
 break;
 case "ScheduleActivityTaskFailed":
 scheduled_activities--;
 break;
 case "ActivityTaskStarted":
 scheduled_activities--;
 open_activities++;
 break;
 case "ActivityTaskCompleted":
 open_activities--;
 activity_completed = true;
 result = event.getActivityTaskCompletedEventAttributes()
 .getResult();
 break;
 case "ActivityTaskFailed":
 open_activities--;

Eine einfache Amazon SWF Anwendung erstellen 249

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 break;
 case "ActivityTaskTimedOut":
 open_activities--;
 break;
 }
}
System.out.println("]");

Für die Zwecke unseres Workflows interessieren wir uns am meisten für:

• das Ereignis WorkflowExecutionStarted "", das angibt, dass die Workflow-Ausführung gestartet
wurde (was normalerweise bedeutet, dass Sie die erste Aktivität im Workflow ausführen sollten),
und das die erste Eingabe für den Workflow bereitstellt. In diesem Fall handelt es sich um
den Namen für unsere Begrüßung. Deswegen speichern wir die Daten in einer Zeichenfolge,
während wir die auszuführende Aktivität planen.

• das Ereignis ActivityTaskCompleted "", das gesendet wird, sobald die geplante Aktivität
abgeschlossen ist. Die Ereignisdaten enthalten auch den Rückgabewert der abgeschlossenen
Aktivität. Da wir nur eine Aktivität haben, verwenden wir diesen Wert als Ergebnis des gesamten
Workflows.

Die anderen Ereignistypen können verwendet werden, wenn Ihre Workflows es erfordern.
Informationen zu den einzelnen Ereignistypen finden Sie in der HistoryEventKursbeschreibung.

+ HINWEIS: Zeichenketten in switch Anweisungen wurden in Java 7 eingeführt. Wenn Sie eine
frühere Version von Java verwenden, können Sie die EventTypeKlasse verwenden, um den von
String history_event.getType() zurückgegebenen Wert in einen Enum-Wert und dann,
String falls erforderlich, wieder in einen umzuwandeln:

EventType et = EventType.fromValue(event.getEventType());

1. Fügen Sie nach der switch-Anweisung weiteren Code hinzu, um mit einer passenden
Entscheidung auf die empfangene Aufgabe zu reagieren.

if (activity_completed) {
 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.CompleteWorkflowExecution)
 .withCompleteWorkflowExecutionDecisionAttributes(
 new CompleteWorkflowExecutionDecisionAttributes()

Eine einfache Amazon SWF Anwendung erstellen 250

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withResult(result)));
} else {
 if (open_activities == 0 && scheduled_activities == 0) {

 ScheduleActivityTaskDecisionAttributes attrs =
 new ScheduleActivityTaskDecisionAttributes()
 .withActivityType(new ActivityType()
 .withName(HelloTypes.ACTIVITY)
 .withVersion(HelloTypes.ACTIVITY_VERSION))
 .withActivityId(UUID.randomUUID().toString())
 .withInput(workflow_input);

 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.ScheduleActivityTask)
 .withScheduleActivityTaskDecisionAttributes(attrs));
 } else {
 // an instance of HelloActivity is already scheduled or running. Do nothing,
 another
 // task will be scheduled once the activity completes, fails or times out
 }
}

System.out.println("Exiting the decision task with the decisions " + decisions);

• Wenn die Aktivität noch nicht geplant wurde, antworten wir mit einer ScheduleActivityTask
Entscheidung, die Informationen in einer ScheduleActivityTaskDecisionAttributesStruktur über
die Aktivität bereitstellt, die als Nächstes geplant Amazon SWF werden soll, einschließlich aller
Daten, die an die Aktivität gesendet Amazon SWF werden sollen.

• Wenn die Aktivität abgeschlossen wurde, betrachten wir den gesamten Workflow als
abgeschlossen und antworten mit einer CompletedWorkflowExecution Entscheidung,
indem wir eine CompleteWorkflowExecutionDecisionAttributesStruktur ausfüllen, um
Einzelheiten über den abgeschlossenen Workflow bereitzustellen. In diesem Fall geben wir das
Ergebnis der Aktivität zurück.

In beiden Fällen werden die Entscheidungsinformationen zur Decision-Liste hinzugefügt, die
oben in der Methode deklariert wurde.

2. Vervollständigen Sie die Entscheidungsaufgabe, indem Sie die Liste der Decision-Objekte
zurückgeben, die bei der Verarbeitung der Aufgabe erfasst wurden. Fügen Sie den Code am Ende
der executeDecisionTask-Methode hinzu, die wir schreiben:

Eine einfache Amazon SWF Anwendung erstellen 251

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/CompleteWorkflowExecutionDecisionAttributes.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

swf.respondDecisionTaskCompleted(
 new RespondDecisionTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withDecisions(decisions));

Die respondDecisionTaskCompleted-Methode des SWF-Clients nimmt das Aufgabentoken
zur Erkennung der Aufgabe sowie die Liste der Decision-Objekte entgegen.

Implementieren des Workflow-Starters

Schließlich erstellen wir Code zum Starten der Workflow-Ausführung.

1. Öffnen Sie den Texteditor und erstellen Sie die Datei WorkflowStarter.java. Fügen Sie eine
Package-Deklaration und die Importe laut den allgemeinen Schritten hinzu.

2. Fügen Sie die WorkflowStarter-Klasse hinzu:

package aws.example.helloswf;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

public class WorkflowStarter {
 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 public static final String WORKFLOW_EXECUTION = "HelloWorldWorkflowExecution";

 public static void main(String[] args) {
 String workflow_input = "{SWF}";
 if (args.length > 0) {
 workflow_input = args[0];
 }

 System.out.println("Starting the workflow execution '" + WORKFLOW_EXECUTION +
 "' with input '" + workflow_input + "'.");

 WorkflowType wf_type = new WorkflowType()

Eine einfache Amazon SWF Anwendung erstellen 252

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 .withName(HelloTypes.WORKFLOW)
 .withVersion(HelloTypes.WORKFLOW_VERSION);

 Run run = swf.startWorkflowExecution(new StartWorkflowExecutionRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withWorkflowType(wf_type)
 .withWorkflowId(WORKFLOW_EXECUTION)
 .withInput(workflow_input)
 .withExecutionStartToCloseTimeout("90"));

 System.out.println("Workflow execution started with the run id '" +
 run.getRunId() + "'.");
 }
}

Die WorkflowStarter-Klasse besteht aus einer einzelnen Methode main, die ein optionales
Argument entgegen nimmt. Dieses wird auf der Befehlszeile als Eingabedaten für den Workflow
übergeben.

Die SWF-Client-MethodestartWorkflowExecution, verwendet ein
StartWorkflowExecutionRequestObjekt als Eingabe. Zusätzlich zur Angabe der Domäne und des
auszuführenden Workflow-Typs geben wir hier Folgendes an:

• einen lesbaren Namen für die Workflow-Ausführung,

• Workflow-Eingabedaten (in unserem Beispiel auf der Befehlszeile angegeben) sowie

• einen Timeout-Wert, der in Sekunden angibt, wie lange die Ausführung des gesamten
Workflows dauern darf.

Das zurückgegebene startWorkflowExecution Run-Objekt stellt eine Run-ID bereit, einen
Wert, der verwendet werden kann, um diese bestimmte Workflow-Ausführung in Amazon SWF der
Historie Ihrer Workflow-Ausführungen zu identifizieren.

+ HINWEIS: Die Lauf-ID wird von dem Namen der Workflow-Ausführung generiert Amazon SWF,
den Sie beim Start der Workflow-Ausführung übergeben, und ist nicht identisch mit diesem.

Erstellen des Beispiels

Sie können das Beispielprojekt mit Maven erstellen, indem Sie zum helloswf-Verzeichnis wechseln
und Folgendes eingeben:

Eine einfache Amazon SWF Anwendung erstellen 253

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/StartWorkflowExecutionRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Run.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

mvn package

Die resultierende helloswf-1.0.jar-Datei wird im target-Verzeichnis erstellt.

Ausführen des Beispiels

Das Beispiel besteht aus vier separaten ausführbaren Klassen, die unabhängig voneinander
ausgeführt werden.

Note

Wenn Sie ein Linux-, MacOS- oder Unix-System verwenden, können Sie alle nacheinander in
einem einzigen Terminalfenster ausführen. Wenn Sie Windows verwenden, sollten Sie zwei
weitere Instances der Eingabeaufforderung öffnen und in jedem Fenster zum helloswf-
Verzeichnis wechseln.

Festlegen des Java-Klassenpfads

Obwohl Maven die Abhängigkeiten für Sie erledigt hat, müssen Sie zur Ausführung des AWS
Beispiels die SDK-Bibliothek und ihre Abhängigkeiten in Ihrem Java-Klassenpfad bereitstellen.
Sie können die CLASSPATH Umgebungsvariable entweder auf den Speicherort Ihrer AWS SDK-
Bibliotheken und das third-party/lib Verzeichnis im SDK setzen, das die erforderlichen
Abhängigkeiten enthält:

export CLASSPATH='target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/
lib/*'
java example.swf.hello.HelloTypes

oder verwenden Sie die -cp Option des java Befehls, um den Klassenpfad festzulegen, während
die einzelnen Anwendungen ausgeführt werden.

java -cp target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/lib/* \
 example.swf.hello.HelloTypes

Welche Version Sie bevorzugen, liegt an Ihnen. Wenn Sie keine Probleme beim Erstellen des Codes
hatten, versuchen beide, die Beispiele auszuführen, und es wird eine Reihe von "NoClassDefFound"
-Fehlern angezeigt. Dies liegt wahrscheinlich daran, dass der Klassenpfad falsch gesetzt ist.

Eine einfache Amazon SWF Anwendung erstellen 254

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Registrieren von Domäne und Workflow- und Aktivitätstypen

Vor der Ausführung Ihrer Worker und des Workflow-Starters müssen Sie die Domäne und die
Workflow- und Aktivitätstypen registrieren. Der entsprechende Code wurde in den Arbeitsablauf „Eine
Domäne registrieren“ und in den Aktivitätstypen implementiert.

Nach dem Erstellen und Festlegen des CLASSPATH können Sie den Code zur Registrierung mit
folgendem Befehl ausführen:

 echo 'Supply the name of one of the example classes as an argument.'

Starten der Aktivitäts- und Workflow-Worker

Nachdem die Typen nun registriert sind, können Sie die Aktivitäts- und Workflow-Worker starten.
Diese werden weiterhin ausgeführt und nach Aufgaben abgefragt, bis sie beendet werden. Sie sollten
sie also entweder in separaten Terminalfenstern ausführen, oder, wenn Sie unter Linux, macOS oder
Unix arbeiten, können Sie den & Operator verwenden, um zu veranlassen, dass jeder von ihnen bei
der Ausführung einen eigenen Prozess erzeugt.

 echo 'If there are arguments to the class, put them in quotes after the class
 name.'
 exit 1

Wenn Sie diese Befehle in separaten Fenstern laufen lassen, lassen Sie den letzten &-Operator in
jeder Zeile weg.

Starten der Workflow-Ausführung

Nachdem die Aktivitäts- und Workflow-Worker nun Abfragen durchführen, können Sie die Workflow-
Ausführung starten. Dieser Prozess läuft so lange, bis der Workflow den Status "abgeschlossen"
zurückgibt. Führen Sie ihn in einem neuen Terminal-Fenster aus (außer Sie haben die Worker mit
dem &-Operator in ihre eigenen separaten Prozesse abzweigen lassen).

fi

Note

Wenn Sie eigene Eingabedaten angeben möchten, die zuerst an den Workflow und dann an
die Aktivität übergeben werden, fügen Sie sie zur Befehlszeile hinzu. Zum Beispiel:

Eine einfache Amazon SWF Anwendung erstellen 255

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

echo "## Running $className..."

Sobald Sie die Workflow-Ausführung starten, sollten Sie Ausgaben von beiden Workern und von
der Workflow-Ausführung selbst sehen. Wenn der Workflow schließlich abgeschlossen ist, wird die
Ausgabe auf dem Bildschirm angezeigt.

Vollständiger Quellcode für dieses Beispiel

Du kannst den kompletten Quellcode für dieses Beispiel auf Github im aws-java-developer-
guideRepository durchsuchen.

Weitere Informationen

• Die hier gezeigten Worker können zu verloren gegangenen Aufgaben führen, wenn sie beendet
werden, während noch eine Workflow-Abfrage läuft. Unter Korrektes Herunterfahren von Aktivitäts-
und Workflow-Workern erfahren Sie, wie sich Worker korrekt herunterfahren lassen.

• Weitere Informationen Amazon SWF finden Sie auf der Amazon SWFStartseite oder im Amazon
SWF Developer Guide.

• Sie können AWS Flow Framework for Java verwenden, um mithilfe von Anmerkungen komplexere
Workflows in einem eleganten Java-Stil zu schreiben. Weitere Informationen finden Sie im AWS
Flow Framework for Java Developer Guide.

Lambda Aufgaben

Als Alternative zu oder in Verbindung mit Amazon SWF Aktivitäten können Sie Lambda-Funktionen
verwenden, um Arbeitseinheiten in Ihren Workflows darzustellen und sie ähnlich wie Aktivitäten zu
planen.

Dieses Thema konzentriert sich auf die Implementierung von Amazon SWF Lambda Aufgaben
mithilfe von. AWS SDK für Java Weitere Informationen zu Lambda Aufgaben im Allgemeinen finden
Sie unter AWS Lambda Aufgaben im Amazon SWF Entwicklerhandbuch.

Lambda Aufgaben 256

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java/example_code/swf
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Einrichten einer serviceübergreifenden IAM-Rolle zum Ausführen Ihrer Lambda-
Funktion

Bevor Sie Ihre Lambda Funktion ausführen Amazon SWF können, müssen Sie eine IAM-Rolle
einrichten, um die Amazon SWF Erlaubnis zu erteilen, Lambda Funktionen in Ihrem Namen
auszuführen. Vollständige Informationen dazu finden Sie unter AWS Lambda Aufgaben.

Sie benötigen den Amazon-Ressourcennamen (ARN) dieser IAM-Rolle, wenn Sie einen Workflow
registrieren, der Lambda Aufgaben verwendet.

Erstellen Sie eine Funktion Lambda

Sie können Lambda Funktionen in einer Reihe verschiedener Sprachen schreiben, einschließlich
Java. Vollständige Informationen zum Erstellen, Bereitstellen und Verwenden von Lambda
Funktionen finden Sie im AWS Lambda Entwicklerhandbuch.

Note

Es spielt keine Rolle, in welcher Sprache Sie Ihre Lambda Funktion schreiben, sie kann von
jedem Amazon SWF Workflow geplant und ausgeführt werden, unabhängig von der Sprache,
in der Ihr Workflow-Code geschrieben ist. Amazon SWF kümmert sich um die Einzelheiten
der Ausführung der Funktion und der Weitergabe von Daten an und von ihr.

Hier ist eine einfache Lambda Funktion, die anstelle der Aktivität unter Erstellen einer einfachen
Amazon SWF Anwendung verwendet werden könnte.

• Diese Version ist geschrieben JavaScript und kann direkt mit dem folgenden Befehl eingegeben
werden AWS-Managementkonsole:

exports.handler = function(event, context) {
 context.succeed("Hello, " + event.who + "!");
};

• Hier ist dieselbe in Java geschriebene Funktion, die Sie auch auf Lambda bereitstellen und
ausführen könnten:

package example.swf.hellolambda;

Lambda Aufgaben 257

https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html
https://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/console/home

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.util.json.JSONException;
import com.amazonaws.util.json.JSONObject;

public class SwfHelloLambdaFunction implements RequestHandler<Object, Object> {
 @Override
 public Object handleRequest(Object input, Context context) {
 String who = "{SWF}";
 if (input != null) {
 JSONObject jso = null;
 try {
 jso = new JSONObject(input.toString());
 who = jso.getString("who");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
 return ("Hello, " + who + "!");
 }
}

Note

Weitere Informationen zur Bereitstellung von Java-Funktionen in Lambda finden Sie unter
Creating a Deployment Package (Java) im AWS Lambda Developer Guide. Sie sollten sich
auch den Abschnitt mit dem Titel Programmiermodell für Lambda Autorenfunktionen in
Java ansehen.

Lambda Funktionen verwenden ein Ereignis oder Eingabeobjekt als ersten Parameter und ein
Kontextobjekt als zweiten, das Informationen über die Anforderung zur Ausführung der Lambda
Funktion bereitstellt. Diese bestimmte Funktion erwartet die Parameter im JSON-Format, wobei das
Feld who auf den Namen zum Zusammensetzen der Begrüßung gesetzt ist.

Registrieren Sie einen Workflow zur Verwendung mit Lambda

Damit ein Workflow eine Lambda Funktion planen kann, müssen Sie den Namen der IAM-Rolle
angeben, die die Berechtigung zum Aufrufen Lambda von Funktionen erteilt Amazon SWF . Sie
können dies bei der Workflow-Registrierung festlegen, indem Sie die setDefaultLambdaRole
Methoden withDefaultLambdaRole oder von verwenden. RegisterWorkflowTypeRequest

Lambda Aufgaben 258

https://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

System.out.println("** Registering the workflow type '" + WORKFLOW + "-" +
 WORKFLOW_VERSION
 + "'.");
try {
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withDefaultLambdaRole(lambda_role_arn)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
}
catch (TypeAlreadyExistsException e) {

Planen Sie eine Lambda Aufgabe

Das Planen einer Lambda Aufgabe ähnelt dem Planen einer Aktivität. Sie geben
eine Entscheidung mit einem ScheduleLambdaFunction `DecisionTypeund mit an
ScheduleLambdaFunctionDecisionAttributes.

running_functions == 0 && scheduled_functions == 0) {
AWSLambda lam = AWSLambdaClientBuilder.defaultClient();
GetFunctionConfigurationResult function_config =
 lam.getFunctionConfiguration(
 new GetFunctionConfigurationRequest()
 .withFunctionName("HelloFunction"));
String function_arn = function_config.getFunctionArn();

ScheduleLambdaFunctionDecisionAttributes attrs =
 new ScheduleLambdaFunctionDecisionAttributes()
 .withId("HelloFunction (Lambda task example)")
 .withName(function_arn)
 .withInput(workflow_input);

decisions.add(

In der ScheduleLambdaFuntionDecisionAttributes müssen Sie einen Namen angeben,
der der ARN der aufzurufenden Lambda Funktion ist, und eine ID, mit der die Lambda Funktion in
Verlaufsprotokollen identifiziert Amazon SWF wird.

Lambda Aufgaben 259

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DecisionType.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleLambdaFunctionDecisionAttributes.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Sie können auch optionale Eingaben für die Lambda Funktion angeben und ihren Timeout-Wert
für Start bis Ende festlegen. Dabei handelt es sich um die Anzahl der Sekunden, die die Lambda
Funktion ausführen darf, bevor ein LambdaFunctionTimedOut Ereignis generiert wird.

Note

Dieser Code verwendet den AWSLambdaClient, um den ARN der Lambda Funktion anhand
des Funktionsnamens abzurufen. Sie können diese Technik verwenden, um zu vermeiden,
dass der vollständige ARN (einschließlich Ihrer AWS-Konto ID) in Ihrem Code fest codiert
wird.

Behandeln Sie Lambda-Funktionsereignisse in Ihrem Decider

Lambda Aufgaben generieren eine Reihe von Ereignissen, auf die Sie reagieren können, wenn
Sie in Ihrem Workflow-Worker nach Entscheidungsaufgaben suchen, die dem Lebenszyklus
Ihrer Lambda Aufgabe entsprechen, mit EventTypeWerten wieLambdaFunctionScheduled,
LambdaFunctionStarted und. LambdaFunctionCompleted Wenn die Lambda Funktion
fehlschlägt oder ihre Ausführung länger dauert als der eingestellte Timeout-Wert, erhalten Sie
entweder einen Ereignistyp LambdaFunctionFailed oder einen LambdaFunctionTimedOut
Ereignistyp.

boolean function_completed = false;
String result = null;

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 EventType event_type = EventType.fromValue(event.getEventType());
 switch(event_type) {
 case WorkflowExecutionStarted:
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case LambdaFunctionScheduled:
 scheduled_functions++;
 break;
 case ScheduleLambdaFunctionFailed:
 scheduled_functions--;

Lambda Aufgaben 260

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambdaClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 break;
 case LambdaFunctionStarted:
 scheduled_functions--;
 running_functions++;
 break;
 case LambdaFunctionCompleted:
 running_functions--;
 function_completed = true;
 result = event.getLambdaFunctionCompletedEventAttributes()
 .getResult();
 break;
 case LambdaFunctionFailed:
 running_functions--;
 break;
 case LambdaFunctionTimedOut:
 running_functions--;
 break;

Empfangen Sie die Ausgabe Ihrer Funktion Lambda

Wenn Sie einen Befehl LambdaFunctionCompleted`EventType, you can
retrieve your 0 function’s return value by first calling
`getLambdaFunctionCompletedEventAttributes HistoryEventzum Abrufen eines
LambdaFunctionCompletedEventAttributesObjekts erhalten und dann dessen getResult Methode
aufrufen, um die Ausgabe der Lambda Funktion abzurufen:

 LambdaFunctionCompleted:
running_functions--;

Vollständiger Quellcode für dieses Beispiel

Sie können die komplette Quellcode:github: `< awsdocs/aws-java-developer-guide/tree/master/
doc_source/snippets/helloswf _lambda/> nach diesem Beispiel auf Github im Repository
durchsuchen. aws-java-developer-guide

Korrektes Herunterfahren von Aktivitäts- und Workflow-Workern

Das Thema Erstellen einer einfachen Amazon SWF Anwendung bot eine vollständige
Implementierung einer einfachen Workflow-Anwendung, die aus einer Registrierungsanwendung,
einem Aktivitäts- und Workflow-Worker sowie einem Workflow-Starter bestand.

Korrektes Herunterfahren von Aktivitäts- und Workflow-Workern 261

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/LambdaFunctionCompletedEventAttributes.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Worker-Klassen sind so konzipiert, dass sie kontinuierlich ausgeführt werden und nach Aufgaben
suchen, die von Amazon SWF gesendet wurden, um Aktivitäten auszuführen oder Entscheidungen
zurückzugeben. Sobald eine Umfrage angefordert wurde, wird der Abfragende Amazon SWF
aufgezeichnet und versucht, ihm eine Aufgabe zuzuweisen.

Wenn der Workflow-Worker während einer langen Umfrage beendet wird, versucht er Amazon SWF
möglicherweise trotzdem, eine Aufgabe an den abgebrochenen Mitarbeiter zu senden, was dazu
führt, dass die Aufgabe verloren geht (bis die Aufgabe das Timeout erreicht).

Eine Möglichkeit zur Bewältigung dieser Situation besteht darin, zu warten, bis alle Long-Poll-
Anforderungen zurückkehren, bevor der Worker beendet wird.

In diesem Thema schreiben wir den Aktivitäts-Worker von helloswf um und verwenden Java-Hooks
für das Herunterfahren. So versuchen wir, den Aktivitäts-Worker ordnungsgemäß herunterzufahren.

Hier finden Sie den vollständigen Code:

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.ActivityTask;
import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

public class ActivityWorkerWithGracefulShutdown {

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 private static final CountDownLatch waitForTermination = new CountDownLatch(1);
 private static volatile boolean terminate = false;

 private static String executeActivityTask(String input) throws Throwable {
 return "Hello, " + input + "!";
 }

 public static void main(String[] args) {
 Runtime.getRuntime().addShutdownHook(new Thread() {

Korrektes Herunterfahren von Aktivitäts- und Workflow-Workern 262

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 @Override
 public void run() {
 try {
 terminate = true;
 System.out.println("Waiting for the current poll request" +
 " to return before shutting down.");
 waitForTermination.await(60, TimeUnit.SECONDS);
 }
 catch (InterruptedException e) {
 // ignore
 }
 }
 });
 try {
 pollAndExecute();
 }
 finally {
 waitForTermination.countDown();
 }
 }

 public static void pollAndExecute() {
 while (!terminate) {
 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(new
 PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST)));

 String taskToken = task.getTaskToken();

 if (taskToken != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '"
 + task.getInput() + "'.");
 result = executeActivityTask(task.getInput());
 }
 catch (Throwable th) {

Korrektes Herunterfahren von Aktivitäts- und Workflow-Workern 263

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withResult(result));
 }
 else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(taskToken)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }
 }
 }
}

In dieser Version wurde der Polling-Code aus der main-Funktion in der ursprünglichen Version in
eine eigene Methode pollAndExecute verschoben.

Die main Funktion verwendet nun einen CountDownLatchin Verbindung mit einem Shutdown-Hook,
damit der Thread bis zu 60 Sekunden wartet, nachdem seine Beendigung angefordert wurde, bevor
der Thread beendet wird.

Registrieren von Domänen

Jeder Workflow und jede Aktivität in Amazon SWFbenötigt eine Domain, in der sie ausgeführt werden
kann.

1. Erstellen Sie ein neues RegisterDomainRequestObjekt und geben Sie ihm mindestens den
Domänennamen und die Aufbewahrungsfrist für die Workflow-Ausführung an (diese Parameter
sind beide erforderlich).

2. Rufen Sie die AmazonSimpleWorkflowClient.registerDomain-Methode mit dem Objekt auf
RegisterDomainRequest.

Registrieren von Domänen 264

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/Runtime.html
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#registerDomain-com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest-

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

3. Ermitteln Sie DomainAlreadyExistsException, ob die Domain, die Sie anfordern, bereits existiert (in
diesem Fall ist normalerweise keine Aktion erforderlich).

Der folgende Code veranschaulicht dieses Vorgehen:

public void register_swf_domain(AmazonSimpleWorkflowClient swf, String name)
{
 RegisterDomainRequest request = new RegisterDomainRequest().withName(name);
 request.setWorkflowExecutionRetentionPeriodInDays("10");
 try
 {
 swf.registerDomain(request);
 }
 catch (DomainAlreadyExistsException e)
 {
 System.out.println("Domain already exists!");
 }
}

Auflisten von Domänen

Sie können die mit Ihrem Konto und Ihrer AWS Region verknüpften Amazon SWFDomains nach
Registrierungstyp auflisten.

1. Erstellen Sie ein ListDomainsRequestObjekt und geben Sie den Registrierungsstatus der Domains
an, an denen Sie interessiert sind — dies ist erforderlich.

2. Rufen Sie AmazonSimpleWorkflowClient.listDomains mit dem Objekt auf. ListDomainRequest Die
Ergebnisse werden in einem DomainInfosObjekt bereitgestellt.

3. Rufen Sie das zurückgegebene Objekt getDomainInfosauf, um eine Liste von DomainInfoObjekten
zu erhalten.

4. Rufen Sie GetName für jedes DomainInfoObjekt auf, um seinen Namen zu erhalten.

Der folgende Code veranschaulicht dieses Vorgehen:

public void list_swf_domains(AmazonSimpleWorkflowClient swf)
{
 ListDomainsRequest request = new ListDomainsRequest();
 request.setRegistrationStatus("REGISTERED");
 DomainInfos domains = swf.listDomains(request);

Auflisten von Domänen 265

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ListDomainsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#listDomains-com.amazonaws.services.simpleworkflow.model.ListDomainsRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html#getDomainInfos--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html#getName--

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 System.out.println("Current Domains:");
 for (DomainInfo di : domains.getDomainInfos())
 {
 System.out.println(" * " + di.getName());
 }
}

Im SDK enthaltene Codebeispiele

Das AWS SDK für Java wird mit Codebeispielen geliefert, die viele Funktionen des SDK in baubaren,
ausführbaren Programmen demonstrieren. Sie können diese studieren oder ändern, um Ihre eigenen
AWS Lösungen mithilfe von zu implementieren. AWS SDK für Java

Abrufen der Beispiele

Die AWS SDK für Java Codebeispiele befinden sich im Beispielverzeichnis des SDK. Wenn Sie das
SDK anhand der Informationen unter Einrichten von heruntergeladen und installiert haben AWS SDK
für Java, haben Sie die Beispiele bereits auf Ihrem System.

Sie können sich die neuesten Beispiele auch im AWS SDK für Java GitHub Repository im
Verzeichnis src/samples ansehen.

Erstellen und Ausführen der Beispiele in der Befehlszeile

Mithilfe der enthaltenen Ant-Build-Skripts können Sie die Beispiele leicht erstellen und in der
Befehlszeile ausführen. Jedes Beispiel enthält eine README-Datei im HTML-Format mit speziellen
Informationen für das jeweilige Beispiel.

Note

Wenn Sie sich den Beispielcode ansehen GitHub, klicken Sie in der Quellcode-Anzeige auf
die Schaltfläche Raw, wenn Sie sich die Datei README.html des Beispiels ansehen. Im
Raw-Modus wird das HTML korrekt im Browser dargestellt.

Voraussetzungen

Bevor Sie eines der AWS SDK für Java Beispiele ausführen, müssen Sie Ihre AWS
Anmeldeinformationen in der Umgebung oder mit den einrichten AWS CLI, wie unter AWS

Im SDK enthaltene Codebeispiele 266

https://github.com/aws/aws-sdk-java/tree/master/src/samples
http://ant.apache.org/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Anmeldeinformationen einrichten und Region für die Entwicklung angegeben, festlegen. Die Beispiele
verwenden die standardmäßige Anbieterkette von Anmeldeinformationen, sofern möglich. Wenn Sie
Ihre Anmeldeinformationen auf diese Weise festlegen, können Sie die riskante Praxis vermeiden, Ihre
AWS Anmeldeinformationen in Dateien im Quellcodeverzeichnis einzufügen (wo sie versehentlich
eingecheckt und öffentlich zugänglich gemacht werden könnten).

Ausführen der Beispiele

1. Wechseln Sie in das Verzeichnis mit dem Beispiel-Code. Wenn Sie sich beispielsweise im
Stammverzeichnis des AWS SDK-Downloads befinden und das AwsConsoleApp Beispiel
ausführen möchten, geben Sie Folgendes ein:

cd samples/AwsConsoleApp

2. Erstellen und führen Sie das Beispiel mit Ant aus. Das Standard-Build-Ziel führt beide Aktionen
aus, daher können Sie einfach Folgendes eingeben:

ant

Das Beispiel druckt Informationen auf die Standardausgabe, zum Beispiel:

===

Welcome to the {AWS} Java SDK!

===
You have access to 4 Availability Zones.

You have 0 {EC2} instance(s) running.

You have 13 Amazon SimpleDB domain(s) containing a total of 62 items.

You have 23 {S3} bucket(s), containing 44 objects with a total size of 154767691 bytes.

Erstellen und Ausführen der Beispiele in der Eclipse-IDE

Wenn Sie das verwenden AWS Toolkit for Eclipse, können Sie auch ein neues Projekt in Eclipse
starten, das auf dem basiert, AWS SDK für Java oder das SDK zu einem vorhandenen Java-Projekt
hinzufügen.

Erstellen und Ausführen der Beispiele in der Eclipse-IDE 267

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Voraussetzungen

Nach der Installation von empfehlen wir AWS Toolkit for Eclipse, das Toolkit mit Ihren
Sicherheitsanmeldedaten zu konfigurieren. Sie können dies jederzeit tun, indem Sie in Eclipse im
Menü „Fenster“ die Option „Einstellungen“ und dann den Abschnitt „ AWS Toolkit“ auswählen.

Ausführen der Beispiele

1. Öffnen Sie Eclipse.

2. Erstellen Sie ein neues AWS Java-Projekt. Klicken Sie in Eclipse im Menü Datei auf Neu und dann
auf Projekt. Der Assistent Neues Projekt wird geöffnet.

3. Erweitern Sie die AWS Kategorie und wählen Sie dann AWS Java-Projekt aus.

4. Wählen Sie Weiter. Die Seite "Projekteinstellungen" wird angezeigt.

5. Geben Sie einen Namen in das Feld Projektname ein. In der Gruppe AWS SDK für Java Beispiele
werden die im SDK verfügbaren Beispiele angezeigt, wie zuvor beschrieben.

6. Wählen Sie durch Markieren der Kontrollkästchen die Beispiele aus, die Sie in Ihr Projekt
aufnehmen möchten.

7. Geben Sie Ihre AWS Anmeldedaten ein. Wenn Sie das bereits AWS Toolkit for Eclipse mit Ihren
Anmeldeinformationen konfiguriert haben, wird dies automatisch ausgefüllt.

8. Wählen Sie Finish (Abschließen). Das Projekt wird erstellt und zum Projekt-Explorer hinzugefügt.

9. Wählen Sie die .java-Beispieldatei aus, die Sie ausführen möchten. Wählen Sie für das Amazon
S3 Beispiel beispielsweiseS3Sample.java.

10.Klicken Sie im Menü Ausführen auf Ausführen.

11.Klicken Sie im Projekt-Explorer mit der rechten Maustaste auf das Projekt, zeigen Sie dann auf
Build-Pfad und wählen Sie Bibliotheken hinzufügen.

12.Wählen Sie AWS Java SDK, wählen Sie Weiter und folgen Sie dann den weiteren Anweisungen
auf dem Bildschirm.

Erstellen und Ausführen der Beispiele in der Eclipse-IDE 268

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Sicherheit für AWS SDK für Java

Cloud-Sicherheit genießt bei Amazon Web Services (AWS) höchste Priorität. Als AWS -Kunde
profitieren Sie von einer Rechenzentrums- und Netzwerkarchitektur, die zur Erfüllung der
Anforderungen von Organisationen entwickelt wurden, für die Sicherheit eine kritische Bedeutung
hat. Sicherheit ist eine gemeinsame Verantwortung zwischen AWS Ihnen und Ihnen. Im Modell der
übergreifenden Verantwortlichkeit wird Folgendes mit „Sicherheit der Cloud“ bzw. „Sicherheit in der
Cloud“ umschrieben:

Sicherheit der Cloud — AWS ist verantwortlich für den Schutz der Infrastruktur, auf der alle in der
AWS Cloud angebotenen Dienste ausgeführt werden, und für die Bereitstellung von Diensten, die Sie
sicher nutzen können. Unsere Sicherheitsverantwortung hat bei uns höchste Priorität AWS, und die
Wirksamkeit unserer Sicherheit wird im Rahmen der AWS Compliance-Programme regelmäßig von
externen Prüfern getestet und verifiziert.

Sicherheit in der Cloud — Ihre Verantwortung richtet sich nach dem von Ihnen genutzten AWS Dienst
und anderen Faktoren, wie der Sensibilität Ihrer Daten, den Anforderungen Ihres Unternehmens und
den geltenden Gesetzen und Vorschriften.

Dieses AWS Produkt oder dieser Service folgt dem Modell der gemeinsamen Verantwortung in
Bezug auf die spezifischen Amazon Web Services (AWS) -Services, die es unterstützt. Informationen
zur AWS Servicesicherheit finden Sie auf der Seite mit der Dokumentation zur AWS Servicesicherheit
und den AWS Services, für die das AWS Compliance-Programm zur Einhaltung der Vorschriften
zuständig ist.

Themen

• Datenschutz in AWS SDK für Java 1.x

• AWS SDK für Java Unterstützung für TLS

• Identitäts- und Zugriffsverwaltung

• Überprüfung der Einhaltung der Vorschriften für dieses AWS Produkt oder diese Dienstleistung

• Ausfallsicherheit für dieses AWS Produkt oder diese Dienstleistung

• Sicherheit der Infrastruktur für dieses AWS Produkt oder diesen Service

• Amazon S3 Migration des Verschlüsselungsclients

269

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Datenschutz in AWS SDK für Java 1.x

Das Modell der gemeinsamen Verantwortung gilt für den Datenschutz in diesem AWS Produkt oder
dieser Dienstleistung. Wie in diesem Modell beschrieben, AWS ist es für den Schutz der globalen
Infrastruktur verantwortlich, auf der die gesamte AWS Cloud läuft. Sie sind dafür verantwortlich, die
Kontrolle über Ihre in dieser Infrastruktur gehosteten Inhalte zu behalten. Dieser Inhalt enthält die
Sicherheitskonfigurations- und Verwaltungsaufgaben für die von Ihnen verwendeten AWS -Services.
Weitere Informationen zum Datenschutz finden Sie unter Häufig gestellte Fragen zum Datenschutz.
Informationen zum Datenschutz in Europa finden Sie im Blogbeitrag AWS Shared Responsibility
Model und GDPR im AWS Security Blog.

Aus Datenschutzgründen empfehlen wir Ihnen, Ihre AWS-Konto Anmeldeinformationen zu schützen
und individuelle Benutzerkonten mit AWS Identity and Access Management (IAM) einzurichten. So
erhält jeder Benutzer nur die Berechtigungen, die zum Durchführen seiner Aufgaben erforderlich sind.
Außerdem sollten Sie die Daten mit folgenden Methoden schützen:

• Verwenden Sie für jedes Konto die Multi-Faktor-Authentifizierung (MFA).

• Wird verwendet SSL/TLS , um mit AWS Ressourcen zu kommunizieren.

• Richten Sie die API und die Protokollierung von Benutzeraktivitäten mit ein AWS CloudTrail.

• Verwenden Sie AWS Verschlüsselungslösungen mit allen Standardsicherheitskontrollen innerhalb
der AWS Dienste.

• Verwenden Sie fortschrittliche verwaltete Sicherheitsdienste wie Amazon Macie, die Sie bei der
Erkennung und Sicherung personenbezogener Daten unterstützen, die in Amazon S3 gespeichert
sind.

• Wenn Sie für den Zugriff AWS über eine Befehlszeilenschnittstelle oder eine API FIPS 140-2-
validierte kryptografische Module benötigen, verwenden Sie einen FIPS-Endpunkt. Weitere
Informationen über verfügbare FIPS-Endpunkte finden Sie unter Federal Information Processing
Standard (FIPS) 140-2.

Wir empfehlen dringend, in Freitextfeldern wie z. B. im Feld Name keine sensiblen, identifizierenden
Informationen wie Kontonummern von Kunden einzugeben. Dies gilt auch, wenn Sie mit diesem
AWS Produkt oder Service oder anderen AWS Diensten über die Konsole, API oder arbeiten. AWS
CLI AWS SDKs Alle Daten, die Sie in dieses AWS Produkt, diesen Service oder andere Dienste
eingeben, werden möglicherweise zur Aufnahme in Diagnoseprotokolle aufgenommen. Wenn Sie
eine URL für einen externen Server bereitstellen, schließen Sie keine Anmeldeinformationen zur
Validierung Ihrer Anforderung an den betreffenden Server in die URL ein.

Datenschutz 270

https://aws.amazon.com/compliance/shared-responsibility-model
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr
https://aws.amazon.com/compliance/fips
https://aws.amazon.com/compliance/fips

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

AWS SDK für Java Unterstützung für TLS

Die folgenden Informationen gelten nur für die Java-SSL-Implementierung (die Standard-SSL-
Implementierung in der AWS SDK für Java). Wenn Sie eine andere SSL-Implementierung
verwenden, erfahren Sie in Ihrer spezifischen SSL-Implementierung, wie Sie TLS-Versionen
erzwingen.

Vorgehensweise zum Überprüfen der TLS-Version

Schlagen Sie in der Dokumentation Ihres JVM-Anbieters (Java Virtual Machine) nach, welche TLS-
Versionen auf Ihrer Plattform unterstützt werden. Bei einigen gibt JVMs der folgende Code aus,
welche SSL-Versionen unterstützt werden.

System.out.println(Arrays.toString(SSLContext.getDefault().getSupportedSSLParameters().getProtocols()));

Um den SSL-Handshake in Aktion zu sehen und welche Version von TLS verwendet wird, können
Sie die Systemeigenschaft javax.net.debug verwenden.

java app.jar -Djavax.net.debug=ssl

Note

TLS 1.3 ist nicht kompatibel mit SDK for Java Java-Versionen 1.9.5 bis 1.10.31. Weitere
Informationen finden Sie im folgenden Blogbeitrag.
https://aws.amazon.com/blogs/entwickler/tls-1-3- - -1-9-5-to-1-10-31/ incompatibility-with-aws-
sdk for-java-versions

Erzwingen einer Mindest-TLS-Version

Das SDK bevorzugt immer die neueste TLS-Version, die von der Plattform und dem Dienst
unterstützt wird. Wenn Sie eine bestimmte TLS-Mindestversion erzwingen möchten, lesen Sie in
der Dokumentation Ihrer JVM nach. Für OpenJDK-basierte Anwendungen können Sie JVMs die
Systemeigenschaft verwenden. jdk.tls.client.protocols

java app.jar -Djdk.tls.client.protocols=PROTOCOLS

Erzwingen einer Mindest-TLS-Version 271

https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/
https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Die unterstützten Werte von PROTOCOLS finden Sie in der Dokumentation Ihrer JVM.

Identitäts- und Zugriffsverwaltung
AWS Identity and Access Management (IAM) hilft einem Administrator AWS-Service , den Zugriff
auf Ressourcen sicher zu AWS kontrollieren. IAM-Administratoren kontrollieren, wer authentifiziert
(angemeldet) und autorisiert werden kann (über Berechtigungen verfügt), um Ressourcen zu
verwenden. AWS IAM ist ein Programm AWS-Service , das Sie ohne zusätzliche Kosten nutzen
können.

Themen

• Zielgruppe

• Authentifizierung mit Identitäten

• Verwalten des Zugriffs mit Richtlinien

• Wie AWS-Services arbeiten Sie mit IAM

• Problembehebung bei AWS Identität und Zugriff

Zielgruppe

Die Art und Weise, wie Sie AWS Identity and Access Management (IAM) verwenden, hängt von der
Arbeit ab, in der Sie tätig sind. AWS

Dienstbenutzer — Wenn Sie dies AWS-Services für Ihre Arbeit verwenden, stellt Ihnen Ihr
Administrator die erforderlichen Anmeldeinformationen und Berechtigungen zur Verfügung. Wenn
Sie für Ihre Arbeit mehr AWS Funktionen verwenden, benötigen Sie möglicherweise zusätzliche
Berechtigungen. Wenn Sie die Funktionsweise der Zugriffskontrolle nachvollziehen, wissen Sie
bereits, welche Berechtigungen Sie von Ihrem Administrator anfordern müssen. Falls Sie auf eine
Funktion nicht zugreifen können AWS, finden Problembehebung bei AWS Identität und Zugriff Sie
weitere Informationen in der Bedienungsanleitung der von AWS-Service Ihnen verwendeten.

Serviceadministrator — Wenn Sie in Ihrem Unternehmen für die AWS Ressourcen verantwortlich
sind, haben Sie wahrscheinlich vollen Zugriff auf AWS. Es ist Ihre Aufgabe, zu bestimmen, auf
welche AWS Funktionen und Ressourcen Ihre Servicebenutzer zugreifen sollen. Anschließend
müssen Sie Anforderungen an Ihren IAM-Administrator senden, um die Berechtigungen der
Servicebenutzer zu ändern. Lesen Sie die Informationen auf dieser Seite, um die Grundkonzepte von
IAM nachzuvollziehen. Weitere Informationen darüber, wie Ihr Unternehmen IAM verwenden kann
AWS, finden Sie in der Benutzeranleitung des von AWS-Service Ihnen verwendeten.

Identitäts- und Zugriffsverwaltung 272

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

IAM-Administrator: Wenn Sie als IAM-Administrator fungieren, sollten Sie Einzelheiten dazu kennen,
wie Sie Richtlinien zur Verwaltung des Zugriffs auf AWS verfassen können. Beispiele für AWS
identitätsbasierte Richtlinien, die Sie in IAM verwenden können, finden Sie im Benutzerhandbuch der
AWS-Service von Ihnen verwendeten.

Authentifizierung mit Identitäten

Authentifizierung ist die Art und Weise, wie Sie sich AWS mit Ihren Identitätsdaten anmelden. Sie
müssen sich als IAM-Benutzer authentifizieren oder eine IAM-Rolle annehmen. Root-Benutzer des
AWS-Kontos

Sie können sich als föderierte Identität anmelden, indem Sie Anmeldeinformationen aus einer
Identitätsquelle wie AWS IAM Identity Center (IAM Identity Center), Single Sign-On-Authentifizierung
oder Anmeldeinformationen verwenden. Google/Facebook Weitere Informationen zur Anmeldung
finden Sie im Benutzerhandbuch unter So melden Sie sich bei Ihrem AWS-Konto anAWS-
Anmeldung .

AWS Bietet für den programmatischen Zugriff ein SDK und eine CLI zum kryptografischen Signieren
von Anfragen. Weitere Informationen finden Sie im IAM-Benutzerhandbuch unter AWS Signature
Version 4 für API-Anfragen.

AWS-Konto Root-Benutzer

Wenn Sie einen erstellen AWS-Konto, beginnen Sie mit einer Anmeldeidentität, dem sogenannten
AWS-Konto Root-Benutzer, der vollständigen Zugriff auf alle AWS-Services Ressourcen hat.
Wir empfehlen dringend, den Root-Benutzer nicht für alltägliche Aufgaben zu verwenden.
Informationen zu Aufgaben, für die Root-Benutzeranmeldedaten erforderlich sind, finden Sie im IAM-
Benutzerhandbuch unter Aufgaben, für die Root-Benutzeranmeldedaten erforderlich sind.

Verbundidentität

Als bewährte Methode sollten menschliche Benutzer für den Zugriff AWS-Services mithilfe
temporärer Anmeldeinformationen einen Verbund mit einem Identitätsanbieter verwenden.

Eine föderierte Identität ist ein Benutzer aus Ihrem Unternehmensverzeichnis, Ihrem Directory
Service Web-Identitätsanbieter oder der AWS-Services mithilfe von Anmeldeinformationen
aus einer Identitätsquelle zugreift. Föderierte Identitäten übernehmen Rollen, die temporäre
Anmeldeinformationen bereitstellen.

Authentifizierung mit Identitäten 273

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Für eine zentralisierte Zugriffsverwaltung empfehlen wir. AWS IAM Identity Center Weitere
Informationen finden Sie unter Was ist IAM Identity Center? im AWS IAM Identity Center -
Benutzerhandbuch.

IAM-Benutzer und -Gruppen

Ein IAM-Benutzer ist eine Identität mit spezifischen Berechtigungen für eine einzelne Person
oder Anwendung. Wir empfehlen, temporäre Anmeldeinformationen anstelle von IAM-Benutzern
mit langfristigen Anmeldeinformationen zu verwenden. Weitere Informationen finden Sie im
IAM-Benutzerhandbuch unter Erfordern, dass menschliche Benutzer den Verbund mit einem
Identitätsanbieter verwenden müssen, um AWS mithilfe temporärer Anmeldeinformationen darauf
zuzugreifen.

Eine IAM-Gruppe spezifiziert eine Sammlung von IAM-Benutzern und erleichtert die Verwaltung
von Berechtigungen für große Benutzergruppen. Weitere Informationen finden Sie im IAM-
Benutzerhandbuch unter Anwendungsfälle für IAM-Benutzer.

IAM roles

Eine IAM-Rolle ist eine Identität mit bestimmten Berechtigungen, die temporäre
Anmeldeinformationen bereitstellt. Sie können eine Rolle übernehmen, indem Sie von einem
Benutzer zu einer IAM-Rolle (Konsole) wechseln oder indem Sie eine AWS CLI oder AWS API-
Operation aufrufen. Weitere Informationen finden Sie im IAM-Benutzerhandbuch unter Methoden zur
Übernahme einer Rolle.

IAM-Rollen sind nützlich für Verbundbenutzerzugriff, temporäre IAM-Benutzerberechtigungen,
kontoübergreifenden Zugriff, dienstübergreifenden Zugriff und Anwendungen, die auf Amazon
ausgeführt werden. EC2 Weitere Informationen finden Sie unter Kontoübergreifender
Ressourcenzugriff in IAM im IAM-Benutzerhandbuch.

Verwalten des Zugriffs mit Richtlinien

Sie kontrollieren den Zugriff, AWS indem Sie Richtlinien erstellen und diese an Identitäten oder
Ressourcen anhängen. AWS Eine Richtlinie definiert Berechtigungen, wenn sie mit einer Identität
oder Ressource verknüpft sind. AWS bewertet diese Richtlinien, wenn ein Principal eine Anfrage
stellt. Die meisten Richtlinien werden AWS als JSON-Dokumente gespeichert. Weitere Informationen
zu JSON-Richtliniendokumenten finden Sie im IAM-Benutzerhandbuch unter Überblick über JSON-
Richtlinien.

Verwalten des Zugriffs mit Richtlinien 274

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Mithilfe von Richtlinien legen Administratoren fest, wer auf was Zugriff hat, indem sie definieren,
welcher Principal Aktionen mit welchen Ressourcen und unter welchen Bedingungen ausführen kann.

Standardmäßig haben Benutzer, Gruppen und Rollen keine Berechtigungen. Ein IAM-Administrator
erstellt IAM-Richtlinien und fügt sie Rollen hinzu, die Benutzer dann übernehmen können. IAM-
Richtlinien definieren Berechtigungen unabhängig von der Methode, die zur Ausführung des
Vorgangs verwendet wird.

Identitätsbasierte Richtlinien

Identitätsbasierte Richtlinien sind Richtliniendokumente für JSON-Berechtigungen, die Sie
an eine Identität (Benutzer, Gruppe oder Rolle) anhängen. Diese Richtlinien steuern, welche
Aktionen Identitäten auf welchen Ressourcen und unter welchen Bedingungen ausführen
können. Informationen zum Erstellen identitätsbasierter Richtlinien finden Sie unter Definieren
benutzerdefinierter IAM-Berechtigungen mit vom Kunden verwalteten Richtlinien im IAM-
Benutzerhandbuch.

Bei identitätsbasierten Richtlinien kann es sich um Inline-Richtlinien (direkt in eine einzelne Identität
eingebettet) oder um verwaltete Richtlinien (eigenständige Richtlinien, die mehreren Identitäten
zugeordnet sind) handeln. Informationen zur Auswahl zwischen verwalteten und Inline-Richtlinien
finden Sie im IAM-Benutzerhandbuch unter Wählen Sie zwischen verwalteten Richtlinien und Inline-
Richtlinien.

Ressourcenbasierte Richtlinien

Ressourcenbasierte Richtlinien sind JSON-Richtliniendokumente, die Sie an eine Ressource
anfügen. Beispiele hierfür sind Vertrauensrichtlinien für IAM-Rollen und Amazon S3 S3-Bucket-
Richtlinien. In Services, die ressourcenbasierte Richtlinien unterstützen, können Service-
Administratoren sie verwenden, um den Zugriff auf eine bestimmte Ressource zu steuern. Sie
müssen in einer ressourcenbasierten Richtlinie einen Prinzipal angeben.

Ressourcenbasierte Richtlinien sind Richtlinien innerhalb dieses Diensts. Sie können AWS verwaltete
Richtlinien von IAM nicht in einer ressourcenbasierten Richtlinie verwenden.

Zugriffskontrolllisten () ACLs

Zugriffskontrolllisten (ACLs) steuern, welche Principals (Kontomitglieder, Benutzer oder Rollen) über
Zugriffsberechtigungen für eine Ressource verfügen. ACLs ähneln ressourcenbasierten Richtlinien,
verwenden jedoch nicht das JSON-Richtliniendokumentformat.

Verwalten des Zugriffs mit Richtlinien 275

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Amazon S3 und Amazon VPC sind Beispiele für Dienste, die Unterstützung ACLs bieten. AWS WAF
Weitere Informationen finden Sie unter Übersicht über ACLs die Zugriffskontrollliste (ACL) im Amazon
Simple Storage Service Developer Guide.

Weitere Richtlinientypen

AWS unterstützt zusätzliche Richtlinientypen, mit denen die maximalen Berechtigungen festgelegt
werden können, die durch gängigere Richtlinientypen gewährt werden:

• Berechtigungsgrenzen — Legen Sie die maximalen Berechtigungen fest, die eine identitätsbasierte
Richtlinie einer IAM-Entität gewähren kann. Weitere Informationen finden Sie unter
Berechtigungsgrenzen für IAM-Entitäten im -IAM-Benutzerhandbuch.

• Richtlinien zur Dienststeuerung (SCPs) — Geben Sie die maximalen Berechtigungen für eine
Organisation oder Organisationseinheit in an. AWS Organizations Weitere Informationen finden Sie
unter Service-Kontrollrichtlinien im AWS Organizations -Benutzerhandbuch.

• Richtlinien zur Ressourcenkontrolle (RCPs) — Legen Sie die maximal verfügbaren Berechtigungen
für Ressourcen in Ihren Konten fest. Weitere Informationen finden Sie im AWS Organizations
Benutzerhandbuch unter Richtlinien zur Ressourcenkontrolle (RCPs).

• Sitzungsrichtlinien — Erweiterte Richtlinien, die beim Erstellen einer temporären Sitzung für eine
Rolle oder einen Verbundbenutzer als Parameter übergeben werden. Weitere Informationen finden
Sie unter Sitzungsrichtlinien im IAM-Benutzerhandbuch.

Mehrere Richtlinientypen

Wenn mehrere auf eine Anforderung mehrere Richtlinientypen angewendet werden können, sind
die entsprechenden Berechtigungen komplizierter. Informationen darüber, wie AWS bestimmt
wird, ob eine Anfrage zulässig ist, wenn mehrere Richtlinientypen betroffen sind, finden Sie unter
Bewertungslogik für Richtlinien im IAM-Benutzerhandbuch.

Wie AWS-Services arbeiten Sie mit IAM

Einen allgemeinen Überblick darüber, wie die meisten IAM-Funktionen AWS-Services funktionieren,
finden Sie im AWS IAM-Benutzerhandbuch unter Dienste, die mit IAM funktionieren.

Informationen zur Verwendung bestimmter Dienste AWS-Service mit IAM finden Sie im Abschnitt
Sicherheit im Benutzerhandbuch des jeweiligen Dienstes.

Wie AWS-Services arbeiten Sie mit IAM 276

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Problembehebung bei AWS Identität und Zugriff

Verwenden Sie die folgenden Informationen, um häufig auftretende Probleme zu diagnostizieren und
zu beheben, die bei der Arbeit mit AWS und IAM auftreten können.

Themen

• Ich bin nicht berechtigt, eine Aktion durchzuführen in AWS

• Ich bin nicht berechtigt, iam durchzuführen: PassRole

• Ich möchte Personen außerhalb von mir den Zugriff AWS-Konto auf meine AWS Ressourcen
ermöglichen

Ich bin nicht berechtigt, eine Aktion durchzuführen in AWS

Wenn Sie eine Fehlermeldung erhalten, dass Sie nicht zur Durchführung einer Aktion berechtigt sind,
müssen Ihre Richtlinien aktualisiert werden, damit Sie die Aktion durchführen können.

Der folgende Beispielfehler tritt auf, wenn der IAM-Benutzer mateojackson versucht, über die
Konsole Details zu einer fiktiven my-example-widget-Ressource anzuzeigen, jedoch nicht über
awes:GetWidget-Berechtigungen verfügt.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

In diesem Fall muss die Richtlinie für den Benutzer mateojackson aktualisiert werden, damit er mit
der awes:GetWidget-Aktion auf die my-example-widget-Ressource zugreifen kann.

Wenn Sie Hilfe benötigen, wenden Sie sich an Ihren AWS Administrator. Ihr Administrator hat Ihnen
Ihre Anmeldeinformationen zur Verfügung gestellt.

Ich bin nicht berechtigt, iam durchzuführen: PassRole

Wenn Sie eine Fehlermeldung erhalten, dass Sie nicht autorisiert sind, die iam:PassRole-Aktion
auszuführen, müssen Ihre Richtlinien aktualisiert werden, damit Sie eine Rolle an AWSübergeben
können.

Einige AWS-Services ermöglichen es Ihnen, eine bestehende Rolle an diesen Dienst zu übergeben,
anstatt eine neue Servicerolle oder eine dienstverknüpfte Rolle zu erstellen. Hierzu benötigen Sie
Berechtigungen für die Übergabe der Rolle an den Dienst.

Problembehebung bei AWS Identität und Zugriff 277

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Der folgende Beispielfehler tritt auf, wenn ein IAM-Benutzer mit dem Namen marymajor versucht,
die Konsole zu verwenden, um eine Aktion in AWS auszuführen. Um die Aktion ausführen zu können,
benötigt der Service jedoch Berechtigungen, die von einer Servicerolle gewährt werden. Mary besitzt
keine Berechtigungen für die Übergabe der Rolle an den Dienst.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In diesem Fall müssen die Richtlinien von Mary aktualisiert werden, um die Aktion iam:PassRole
ausführen zu können.

Wenn Sie Hilfe benötigen, wenden Sie sich an Ihren AWS Administrator. Ihr Administrator hat Ihnen
Ihre Anmeldeinformationen zur Verfügung gestellt.

Ich möchte Personen außerhalb von mir den Zugriff AWS-Konto auf meine AWS
Ressourcen ermöglichen

Sie können eine Rolle erstellen, die Benutzer in anderen Konten oder Personen außerhalb Ihrer
Organisation für den Zugriff auf Ihre Ressourcen verwenden können. Sie können festlegen, wem
die Übernahme der Rolle anvertraut wird. Für Dienste, die ressourcenbasierte Richtlinien oder
Zugriffskontrolllisten (ACLs) unterstützen, können Sie diese Richtlinien verwenden, um Personen
Zugriff auf Ihre Ressourcen zu gewähren.

Weitere Informationen finden Sie hier:

• Informationen darüber, ob diese Funktionen AWS unterstützt werden, finden Sie unter. Wie AWS-
Services arbeiten Sie mit IAM

• Informationen dazu, wie Sie Zugriff auf Ihre Ressourcen gewähren können, AWS-Konten die
Ihnen gehören, finden Sie im IAM-Benutzerhandbuch unter Gewähren des Zugriffs auf einen IAM-
Benutzer in einem anderen AWS-Konto , den Sie besitzen.

• Informationen dazu, wie Sie Dritten Zugriff auf Ihre Ressourcen gewähren können AWS-Konten,
finden Sie AWS-Konten im IAM-Benutzerhandbuch unter Gewähren des Zugriffs für Dritte.

• Informationen dazu, wie Sie über einen Identitätsverbund Zugriff gewähren, finden Sie
unter Gewähren von Zugriff für extern authentifizierte Benutzer (Identitätsverbund) im IAM-
Benutzerhandbuch.

• Informationen zum Unterschied zwischen der Verwendung von Rollen und ressourcenbasierten
Richtlinien für den kontoübergreifenden Zugriff finden Sie unter Kontoübergreifender
Ressourcenzugriff in IAM im IAM-Benutzerhandbuch.

Problembehebung bei AWS Identität und Zugriff 278

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Überprüfung der Einhaltung der Vorschriften für dieses AWS
Produkt oder diese Dienstleistung

Informationen darüber, ob AWS-Service ein AWS-Services in den Geltungsbereich bestimmter
Compliance-Programme fällt, finden Sie unter Umfang nach Compliance-Programm AWS-Services
unter . Wählen Sie dort das Compliance-Programm aus, an dem Sie interessiert sind. Allgemeine
Informationen finden Sie unter AWS Compliance-Programme AWS .

Sie können Prüfberichte von Drittanbietern unter herunterladen AWS Artifact. Weitere Informationen
finden Sie unter Berichte herunterladen unter .

Ihre Verantwortung für die Einhaltung der Vorschriften bei der Nutzung AWS-Services hängt von der
Vertraulichkeit Ihrer Daten, den Compliance-Zielen Ihres Unternehmens und den geltenden Gesetzen
und Vorschriften ab. Weitere Informationen zu Ihrer Verantwortung für die Einhaltung der Vorschriften
bei der Nutzung AWS-Services finden Sie in der AWS Sicherheitsdokumentation.

Dieses AWS Produkt oder dieser Service folgt dem Modell der gemeinsamen Verantwortung in
Bezug auf die spezifischen Amazon Web Services (AWS) -Services, die es unterstützt. Informationen
zur AWS Servicesicherheit finden Sie auf der Seite mit der Dokumentation zur AWS Servicesicherheit
und den AWS Services, für die das AWS Compliance-Programm zur Einhaltung der Vorschriften
zuständig ist.

Ausfallsicherheit für dieses AWS Produkt oder diese Dienstleistung

Die AWS globale Infrastruktur basiert auf AWS-Regionen Availability Zones.

AWS-Regionen bieten mehrere physisch getrennte und isolierte Availability Zones, die über
Netzwerke mit niedriger Latenz, hohem Durchsatz und hoher Redundanz miteinander verbunden
sind.

Mithilfe von Availability Zones können Sie Anwendungen und Datenbanken erstellen und ausführen,
die automatisch Failover zwischen Zonen ausführen, ohne dass es zu Unterbrechungen kommt.
Availability Zones sind besser verfügbar, fehlertoleranter und skalierbarer als herkömmliche
Infrastrukturen mit einem oder mehreren Rechenzentren.

Weitere Informationen zu AWS Regionen und Availability Zones finden Sie unter AWS Globale
Infrastruktur.

Compliance-Validierung 279

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/security/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/about-aws/global-infrastructure/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Dieses AWS Produkt oder dieser Service folgt dem Modell der gemeinsamen Verantwortung in
Bezug auf die spezifischen Amazon Web Services (AWS) -Services, die es unterstützt. Informationen
zur AWS Servicesicherheit finden Sie auf der Seite mit der Dokumentation zur AWS Servicesicherheit
und den AWS Services, für die das AWS Compliance-Programm zur Einhaltung der Vorschriften
zuständig ist.

Sicherheit der Infrastruktur für dieses AWS Produkt oder diesen
Service

Dieses AWS Produkt oder dieser Dienst verwendet Managed Services und ist daher durch die AWS
globale Netzwerksicherheit geschützt. Informationen zu AWS Sicherheitsdiensten und zum AWS
Schutz der Infrastruktur finden Sie unter AWS Cloud-Sicherheit. Informationen zum Entwerfen Ihrer
AWS Umgebung unter Verwendung der bewährten Methoden für die Infrastruktursicherheit finden Sie
unter Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

Sie verwenden AWS veröffentlichte API-Aufrufe, um über das Netzwerk auf dieses AWS Produkt
oder diesen Service zuzugreifen. Kunden müssen Folgendes unterstützen:

• Transport Layer Security (TLS). Wir benötigen TLS 1.2 und empfehlen TLS 1.3.

• Verschlüsselungs-Suiten mit Perfect Forward Secrecy (PFS) wie DHE (Ephemeral Diffie-Hellman)
oder ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Die meisten modernen Systeme wie Java 7
und höher unterstützen diese Modi.

Außerdem müssen Anforderungen mit einer Zugriffsschlüssel-ID und einem geheimen
Zugriffsschlüssel signiert sein, der einem IAM-Prinzipal zugeordnet ist. Alternativ können Sie mit AWS
Security Token Service (AWS STS) temporäre Sicherheitsanmeldeinformationen erstellen, um die
Anforderungen zu signieren.

Dieses AWS Produkt oder dieser Service folgt dem Modell der gemeinsamen Verantwortung in
Bezug auf die spezifischen Amazon Web Services (AWS) -Services, die es unterstützt. Informationen
zur AWS Servicesicherheit finden Sie auf der Seite mit der Dokumentation zur AWS Servicesicherheit
und den AWS Services, für die das AWS Compliance-Programm zur Einhaltung der Vorschriften
zuständig ist.

Infrastruktursicherheit 280

https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Amazon S3 Migration des Verschlüsselungsclients

In diesem Thema erfahren Sie, wie Sie Ihre Anwendungen von Version 1 (V1) des
Verschlüsselungsclients Amazon Simple Storage Service (Amazon S3) auf Version 2 (V2) migrieren
und die Anwendungsverfügbarkeit während des gesamten Migrationsprozesses sicherstellen.

Voraussetzungen

Amazon S3 Für die clientseitige Verschlüsselung ist Folgendes erforderlich:

• Java 8 oder höher ist in Ihrer Anwendungsumgebung installiert. Das AWS SDK für Java funktioniert
mit dem Oracle Java SE Development Kit und mit Distributionen von Open Java Development Kit
(OpenJDK) wie Amazon CorrettoRed Hat OpenJDK und JDK. AdoptOpen

• Das Bouncy Castle Crypto-Paket. Sie können die Bouncy Castle-.jar-Datei im Klassenpfad Ihrer
Anwendungsumgebung platzieren oder Ihrer Maven-Datei eine Abhängigkeit von der ArtifactID
bcprov-ext-jdk15on (mit der GroupID von) hinzufügen. org.bouncycastle pom.xml

Überblick über die Migration

Diese Migration erfolgt in zwei Phasen:

1. Aktualisieren Sie bestehende Clients, damit sie neue Formate lesen können. Aktualisieren
Sie Ihre Anwendung so, dass sie Version 1.11.837 oder höher verwendet, AWS SDK für Java
und stellen Sie die Anwendung erneut bereit. Dadurch können die Amazon S3 clientseitigen
Verschlüsselungsdienstclients in Ihrer Anwendung Objekte entschlüsseln, die von V2-Dienstclients
erstellt wurden. Wenn Ihre Anwendung mehrere verwendet AWS SDKs, müssen Sie jedes SDK
separat aktualisieren.

2. Migrieren Sie Verschlüsselungs- und Entschlüsselungsclients auf V2. Sobald alle Ihre V1-
Verschlüsselungsclients die V2-Verschlüsselungsformate lesen können, aktualisieren Sie
die Amazon S3 clientseitigen Verschlüsselungs- und Entschlüsselungsclients in Ihrem
Anwendungscode, sodass sie ihre V2-Entsprechungen verwenden.

Aktualisieren Sie bestehende Clients, um neue Formate zu lesen

Der V2-Verschlüsselungsclient verwendet Verschlüsselungsalgorithmen, die ältere Versionen von
AWS SDK für Java nicht unterstützen.

Migration des S3-Verschlüsselungsclients 281

https://adoptopenjdk.net/
https://www.oracle.com/java/technologies/javase-downloads.html
https://adoptopenjdk.net/
https://aws.amazon.com/corretto/
https://developers.redhat.com/products/openjdk
https://adoptopenjdk.net/
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Der erste Schritt der Migration besteht darin, Ihre V1-Verschlüsselungsclients so zu aktualisieren,
dass sie Version 1.11.837 oder höher von verwenden. AWS SDK für Java(Wir empfehlen Ihnen,
auf die neueste Release-Version zu aktualisieren, die Sie in der Java API-Referenz Version 1.x
finden.) Aktualisieren Sie dazu die Abhängigkeit in Ihrer Projektkonfiguration. Nachdem Ihre
Projektkonfiguration aktualisiert wurde, erstellen Sie Ihr Projekt neu und stellen Sie es erneut bereit.

Sobald Sie diese Schritte abgeschlossen haben, können die V1-Verschlüsselungsclients Ihrer
Anwendung Objekte lesen, die von V2-Verschlüsselungsclients geschrieben wurden.

Aktualisieren Sie die Abhängigkeit in Ihrer Projektkonfiguration

Ändern Sie Ihre Projektkonfigurationsdatei (z. B. pom.xml oder build.gradle), um Version 1.11.837
oder höher von zu verwenden. AWS SDK für Java Erstellen Sie dann Ihr Projekt neu und stellen Sie
es erneut bereit.

Wenn Sie diesen Schritt vor der Bereitstellung des neuen Anwendungscodes abschließen, können
Sie sicherstellen, dass die Verschlüsselungs- und Entschlüsselungsvorgänge während des
Migrationsprozesses in Ihrer gesamten Flotte konsistent bleiben.

Beispiel für die Verwendung von Maven

Ausschnitt aus einer Datei pom.xml:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.837</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Beispiel mit Gradle

Ausschnitt aus einer build.gradle-Datei:

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.11.837')

Aktualisieren Sie bestehende Clients, um neue Formate zu lesen 282

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Migrieren Sie Verschlüsselungs- und Entschlüsselungsclients auf V2

Sobald Ihr Projekt mit der neuesten SDK-Version aktualisiert wurde, können Sie Ihren
Anwendungscode ändern, um den V2-Client zu verwenden. Aktualisieren Sie dazu
zunächst Ihren Code, um den neuen Service Client Builder zu verwenden. Stellen Sie dann
Verschlüsselungsmaterial mithilfe einer Methode auf dem Builder bereit, die umbenannt wurde, und
konfigurieren Sie Ihren Service Client nach Bedarf weiter.

Diese Codefragmente demonstrieren, wie die clientseitige Verschlüsselung mit dem verwendet wird
AWS SDK für Java, und bieten Vergleiche zwischen den V1- und V2-Verschlüsselungsclients.

V1

// minimal configuration in V1; default CryptoMode.EncryptionOnly.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3Encryption encryptionClient = AmazonS3EncryptionClient.encryptionBuilder()
 .withEncryptionMaterials(encryptionMaterialsProvider)
 .build();

V2

// minimal configuration in V2; default CryptoMode.StrictAuthenticatedEncryption.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3EncryptionV2 encryptionClient = AmazonS3EncryptionClientV2.encryptionBuilder()
 .withEncryptionMaterialsProvider(encryptionMaterialsProvider)
 .withCryptoConfiguration(new CryptoConfigurationV2()
 // The following setting allows the client to read V1
 encrypted objects
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
)
 .build();

Das obige Beispiel setzt den Wert cryptoMode aufAuthenticatedEncryption. Dies ist
eine Einstellung, die es einem V2-Verschlüsselungsclient ermöglicht, Objekte zu lesen, die
von einem V1-Verschlüsselungsclient geschrieben wurden. Wenn Ihr Client nicht die Fähigkeit
benötigt, Objekte zu lesen, die von einem V1-Client geschrieben wurden, empfehlen wir,
StrictAuthenticatedEncryption stattdessen die Standardeinstellung von zu verwenden.

Migrieren Sie Verschlüsselungs- und Entschlüsselungsclients auf V2 283

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Konstruieren Sie einen V2-Verschlüsselungsclient

Der V2-Verschlüsselungsclient kann durch Aufrufen von AmazonS3 EncryptionClient
v2.encryptionBuilder () erstellt werden.

Sie können alle Ihre vorhandenen V1-Verschlüsselungsclients durch V2-Verschlüsselungsclients
ersetzen. Ein V2-Verschlüsselungsclient kann immer jedes Objekt lesen, das von
einem V1-Verschlüsselungsclient geschrieben wurde, solange Sie dies zulassen,
indem Sie den V2-Verschlüsselungsclient für die Verwendung von `konfigurieren
AuthenticatedEncryption`cryptoMode.

Das Erstellen eines neuen V2-Verschlüsselungsclients ist dem Erstellen eines V1-
Verschlüsselungsclients sehr ähnlich. Es gibt jedoch einige Unterschiede:

• Sie werden ein CryptoConfigurationV2 Objekt anstelle eines CryptoConfiguration
Objekts verwenden, um den Client zu konfigurieren. Dieser Parameter muss angegeben werden.

• Die cryptoMode Standardeinstellung für den V2-Verschlüsselungsclient
istStrictAuthenticatedEncryption. Für den V1-Verschlüsselungsclient ist dies der
FallEncryptionOnly.

• Die Methode withEncryptionMaterials() im Encryption Client Builder wurde in
withEncryptionMaterialsProvider () umbenannt. Dies ist lediglich eine kosmetische Änderung, die
den Argumenttyp genauer wiedergibt. Sie müssen die neue Methode verwenden, wenn Sie Ihren
Service-Client konfigurieren.

Note

Lesen Sie beim Entschlüsseln mit AES-GCM das gesamte Objekt bis zum Ende, bevor
Sie die entschlüsselten Daten verwenden. Dadurch wird überprüft, ob das Objekt seit der
Verschlüsselung nicht geändert wurde.

Verwenden Sie Anbieter von Verschlüsselungsmaterialien

Sie können weiterhin dieselben Anbieter für Verschlüsselungsmaterialien und Objekte für
Verschlüsselungsmaterialien verwenden, die Sie bereits mit dem V1-Verschlüsselungsclient
verwenden. Diese Klassen sind für die Bereitstellung der Schlüssel verantwortlich, die der
Verschlüsselungsclient zum Schutz Ihrer Daten verwendet. Sie können sowohl mit dem V2- als auch
mit dem V1-Verschlüsselungsclient synonym verwendet werden.

Migrieren Sie Verschlüsselungs- und Entschlüsselungsclients auf V2 284

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Konfigurieren Sie den V2 Encryption Client

Der V2-Verschlüsselungsclient ist mit einem CryptoConfigurationV2 Objekt konfiguriert.
Dieses Objekt kann erstellt werden, indem sein Standardkonstruktor aufgerufen und dann seine
Eigenschaften entsprechend den Standardeinstellungen geändert werden.

Die Standardwerte für CryptoConfigurationV2 sind:

• cryptoMode = CryptoMode.StrictAuthenticatedEncryption

• storageMode = CryptoStorageMode.ObjectMetadata

• secureRandom= Instanz von SecureRandom

• rangeGetMode = CryptoRangeGetMode.DISABLED

• unsafeUndecryptableObjectPassthrough = false

Beachten Sie, EncryptionOnlydass dies cryptoMode im V2-Verschlüsselungsclient nicht unterstützt
wird. Der V2-Verschlüsselungsclient verschlüsselt Inhalte immer mit authentifizierter Verschlüsselung
und schützt Schlüssel zur Inhaltsverschlüsselung (CEKs) mithilfe von V2-Objekten. KeyWrap

Das folgende Beispiel zeigt, wie die Kryptokonfiguration in V1 angegeben wird und wie ein
CryptoConfigurationV2-Objekt instanziiert wird, um es an den V2-Verschlüsselungs-Client-Builder zu
übergeben.

V1

CryptoConfiguration cryptoConfiguration = new CryptoConfiguration()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

V2

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

Weitere Beispiele

Die folgenden Beispiele zeigen, wie bestimmte Anwendungsfälle im Zusammenhang mit einer
Migration von V1 zu V2 behandelt werden können.

Weitere Beispiele 285

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Konfigurieren Sie einen Service Client zum Lesen von Objekten, die vom V1
Encryption Client erstellt wurden

Um Objekte zu lesen, die zuvor mit einem V1-Verschlüsselungsclient geschrieben wurden, setzen Sie
den cryptoMode Wert aufAuthenticatedEncryption. Der folgende Codeausschnitt zeigt, wie
ein Konfigurationsobjekt mit dieser Einstellung erstellt wird.

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption);

Konfigurieren Sie einen Service Client für das Abrufen von Bytebereichen von
Objekten

Um aus get einem verschlüsselten S3-Objekt auf einen Bytebereich zugreifen zu können,
aktivieren Sie die neue KonfigurationseinstellungrangeGetMode. Diese Einstellung ist auf dem
V2-Verschlüsselungsclient standardmäßig deaktiviert. Beachten Sie, dass ein Bereich, auch wenn
er aktiviert ist, get nur für Objekte funktioniert, die mit Algorithmen verschlüsselt wurden, die von
der cryptoMode Einstellung des Clients unterstützt werden. Weitere Informationen finden Sie
CryptoRangeGetModein der AWS SDK für Java API-Referenz.

Wenn Sie den verwenden möchten, Amazon S3 TransferManager um mehrteilige Downloads
verschlüsselter Amazon S3 Objekte mithilfe des V2-Verschlüsselungsclients durchzuführen, müssen
Sie zuerst die rangeGetMode Einstellung auf dem V2-Verschlüsselungsclient aktivieren.

Der folgende Codeausschnitt zeigt, wie der V2-Client für die Ausführung eines Ranges konfiguriert
wird. get

// Allows range gets using AES/CTR, for V2 encrypted objects only
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withRangeGetMode(CryptoRangeGetMode.ALL);

// Allows range gets using AES/CTR and AES/CBC, for V1 and V2 objects
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
 .withRangeGetMode(CryptoRangeGetMode.ALL);

Weitere Beispiele 286

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoRangeGetMode.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

OpenPGP-Schlüssel für den AWS SDK für Java
Alle öffentlich verfügbaren Maven-Artefakte für AWS SDK für Java sind mit dem OpenPGP-Standard
signiert. Der öffentliche Schlüssel, den Sie zur Überprüfung der Signatur eines Artefakts benötigen,
ist im folgenden Abschnitt verfügbar.

Aktueller Schlüssel
Die folgende Tabelle enthält OpenPGP-Schlüsselinformationen für die aktuellen Versionen des SDK
for Java 1.x und SDK for Java 2.x.

Schlüssel-ID AC10x 07B386692DADD

Typ RSA

Größe 4096/4096

Erstellt 2016-06-30

Läuft ab 2026-09-27

Benutzer-ID AWS SDKs und Tools < @amazon .com> aws-
dr-tools

Schlüssel-Fingerabdruck FEB9 209F 2F2F 3F46 6484 1E55 0 7B38 692
HINZUFÜGEN AC1

Um den folgenden öffentlichen OpenPGP-Schlüssel für das SDK for Java in die Zwischenablage zu
kopieren, wählen Sie das Symbol „Kopieren“ in der oberen rechten Ecke.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV

Aktueller Schlüssel 287

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJo12ZrBQkTQxnmAAoJEKwQezhmktrdi18P/A3De83MBx8bdcWJ
Fot71Vk1TyBQFErgrtcytSU0czEHx3tGbzgQLbMlyzjirOT03usxEkOeqTVK+RU+
5uFXNZYQLwMJlHJ6S8tnfLe/ExM5WQ2KPwIUPfZs1GDDRQB2dIKSc+qYrP1O1vf4
O4iPgfLHMW2bFh3zjjxcaHCJyqc7Cau33eZFBAsRni1jOUo7MeyX0hlXfW8pd48Q
wZllQVZ/6KmDiFWA0CZ+2svJ5cL0tgPoh1OQjoz0nHpNfuDILMrZ+e7tx2VTlkGH
UGeNSydnrK8v9ztFn34KtU/k7NEWoVSyEi+5ICZL18FBwPqTwdVWXwXrqZCKiIpr
8ZdJWDz2sJfgDFNCC6rKgCQ6FrmaD9G76dYWkQ4AbZqABlUzU3q36W1K0r3iOAb5
G4tdOt4yqXHTe1x+ZUNaeW7gaCmtXAxLw0OfeJrcq/44b/SQP+qJ8sSOv76Yg2oF
BsF5DWOVUFghbTyokHAoVROyhBR4dUUisY39AqLSL8+Lp9Pr3wNuGl9GLrMD5701
piUb88B3Gwe1EiKV1gaKrvZ3mECDUiSMVO0Z5iG8E4QDpNmVbJbV1uT821ubvtOv
2Ko10Fa0uwCYGssdRGqEXNy6jz/Er8LAC3+nmGINDJQzrF+loYoSSkI2Nu7lhMuL
7iWwUPF7OhDXoVSAn4X3x6q2rGK0wsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZTsFCRNDGLYACgkQ
rBB7OGaS2t0/Ow//YIv51vHtD+kwMmIvk3zpizDHY0zW2dOezAo+C/DsSyC7wDll
Dixw34EQ1yLXH5xLR8CH1zupl3JmmEp1ucdQggoefbidxDl8Fld7tJOD1y3GGnTD
0jAl2ZC+W65Oh+wS1mD1FlaKjMGGkvJf0dA7RtU2T8dv3vt8dsxg76FMFS3+fqlC
FNOAsNTn9zWR1SqBIfkMJK83aq6s/rcEV9VrAYgDgqex58fygB5EuTf842/IF7WZ
Q9gd6fupB0mMZP5YWd2uj/vsBTYakG+mgQwDxZuKPeEzAqnqqS7biSQOUO6Wozlq
Yy4fSczE9GkBAvg0pGmbko+zHvpnjvX/h1CUpC6odvFyOAhZp6zyhs0QWz9thfqV
lU8WlbgJ2atFDn5GUSxF/fe0Yzovlbbs6sbYXuvMG9RiEOuJ1mBbZR3aIdZ1U6Do
BHc/vjc5mWcV7JQSP7i4W/8W7X3UAuN9LdxB+IvF3Cwrgtlw2BWvA5Alco5Tnz8t
P/CIVmBjk+sLme8W4kfLK3IWEbwClOdNnErI/MHRm65A2Y5EMIhwjrOi07SU1Pxa
nPpg3OYJCdvjzdB8QE3/DBiMfOl4dISfKDVEWnfK8mZaYd/BeRm2gUAa9UrqSFCG
BlA7Lg+eLI3US0FvwWJ4j5bBJqgLu+y7crIkiUOPAQuLk3lO+5uYU/I3DuLCwZQE
EwEKAD4CGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AWIQT+uSCfLy8/RmSEHlWs
EHs4ZpLa3QUCZwAXCAUJEWvKgwAKCRCsEHs4ZpLa3ZdTEACMBLg2q9zk8ZH02nDz
Sg5zc8Wlqq8WdxU0Pj8qx4UOrrMca7wyiUvrgoxPW5lh1RVNUeMkDRfu9pSXcOVI
V9LvmYE/WnwKROubgGbsC4T7M/LqV0/AulXil4d7IXcO6l4toa8LTNWtD5bODgrN
gvay1AzCU8kq1Qw1cKZ2gAfvA3Ba7PWyLeUN4HTlGrXcw73G+0CofY1L8wqWxHCJ
29XqQzeTEc6MDEeIlNlVdUcy8Qr5uwkEsl34H9AxS5F1opJ4TqvXiDZsrSRRv57R
XYmRZDWeYT+9PZaMsHXza5qgej7BfATxhYfICsNaY6MK3x6b+nDSKkoZgO+i09zh
1YjpahhQe6G336v/3mRj0dKGCRQ6znQ9ghUaB5z9zfvgH5AOEkTe3l8MqM+j5A6P
VjSBBJAHKejxr7+wKJKIA6P+DqpsYAunzftwUzrLVqb+BZQ+DcTmVrE7OPcMYJD5
QglX/Le+WmWZHI154NXgpWWUOUgZUbUge4DKrT+zCJ9iecPLKTW7OcULyXO+rjb8
8BGrD5GPlHB3dOUXXTlMKCqg3qy1Bu2KnZTQiaEEdZgSIGQbrW0JTMmmXJkKjokd
JMA4vYeg5en51G9nRQjScPngx77IxvByNyFWTJdG1ENpJpsK9TtmENcpyUJtJZTJ

Aktueller Schlüssel 288

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

ZSOIRVPP5RzR5vInuXWq6VV0BMLBlAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMB
AAIeAQIXgBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEoiBQkPj/2dAAoJEKwQ
ezhmktrdx1YP/0vvym3jgX/pwnR7K1rafZMb1iKQBr0ISG8cdbaf4pqX5vuUZnyj
w9Cl/oONn7jJjnQxOIIzuBoxne2WN28ftM2w0nVXm85mAmz2fwQz/fdKDyonXcOh
pfD2iMqn7gESjhEgRE7wMDYMDuLdqHI7OKWGVfgrh7xEmKapLh45h7cnumo2VjL9
uDYY1aOBHz993T7oE41y43rhk+6kKbGFd2uuo7h5j1ZF8Lj6sYfcEzXOU1OhRlD0
nyBjDy9MYWu0YNouc70WgMceGx6hjvCAM/5fxP7SZFecZ7ePeB0GpvVA24hSNENE
0r3tUekuOf1I0FunMnMnbh7ZO9rPYqWvWDNIpU3S4CjFhY82L+IeKnmLy8N6ASRk
HsPiNCOHSK8C/0ynrd9xLhX8Jsk/TGiQYaleoHhWkNLlZsL86QHL8SKEqkqZCQf5
AEqghDP6NEGS7lnOenA7JjIrA9KLlT7fnNWZOwFi5X+o/CymE2ytEMS0Yf3nmY4U
n9x56Wgn6J2zqB5nqOXf6NxGdAIgOBm098YEnKCIFzk+yhoDlprVpHcnd2b5f6Oq
uh8KYOEbKgpMJ3zZuWSL5kwGF1nNoYiAkonMaz9H3pOQnOMVYCUeUTDRsiO/prrd
UhNlry4TAsBMpeXnFhdLVM3vFQZVpByadGOJNmnaN/Wavw2a00UGBFa4wsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJhMqGaBQkLnlUVAAoJEKwQ
ezhmktrd2sQP/3YHM+U+BbOy1nSEAfykZ71+uCM2hkHMLdxQYWB/rBWkmg/pbu+d
r4t45RsTASrNjRcZOntlPMQRIq973ymHfpmeS+noFwvTGH7zDv1BRBR9wPrd1XUz
iSuEUHGi/fqxUVXQ5mbonzfThX8tuXeuiQmeToqoB00FYlZm6xsNnEHcjVl66mC4
IPoJLWnZJs4rOCeoRf5XvDTgX6xt5/kLYRZf79qaWGFvaZpsc1CH+rQJUdVa/D4T
7pI7hX6zy0S91z4iuC5HZUiOTF+y5auEZHGTdTWNS1kvOvfcCTi0XK/GkGL82SZu
7X2VGnpCeUnFyViRGlk+KaDG1sVyDY+lcBPg6ilr45M6MQV0iHS5OF04QNXSKt5+
UnzJH7lldgNsR6ibRMyNV3k5v3fyUcSBvIYyLORTTBiVEjQDSbk1QNqbrQlX9CWz
+EJWn16BFTmMFvxBSWPm640GncHP5J3/0MbMw3Cm90x7k8UfNANIemcrJrSxIDwm
g9cVAg3a+D+wxjrVe8jGg0ejvECpm+0yswigj5x6Lqj09A4UgdjEauN+/pn0nhBo
Gv7DzMXtM/LoDtgp6wn93qZVN2TsuHnkEk4UyntB6eWJbBdXHWUr47exiWh0dvQN
tpwCWPT6I7ZTPtA5K/zx+q9m6797BLgAkTYc6gloQL3vs1Z1S3m/hZNawsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJgmrz2BQkLBnBxAAoJEKwQ
ezhmktrd36oP/2rB2EkwSOCKC4m0heWSfDWi6OBKoEbbDtFtc6/HwqBW8SPsiKlq
zV0e3qBY/LVju04+ktJEK+EGXLnC3iC36MegrQ8zt391kEx/Zv9LIuVOCX90QIAX
dL8MVUkkjRLCFFH8pTgRy1cJYWk1X4dYdXWYc29fCwNVartNdNBhsb2ht3VJeKDE
kUivBHmkjuISDPEnI1coY7Lj0ZtY5cHdRF2eZpB0RkTBpsIt18rCYyHkERZrhmvb
j3rOyPyvOa+1/dQS8/hv5pEmbKx8cy8RdJkmbUHYatPBsjHkJSWr7O7G9VFW4GoN
9CRAI4KkbDSEDjCL5dv2pq0Sew1MkLuWJGULAMgiIUlWcOs5SZZGFSksNQrtSFV9
Z/wGocecMGkGQNXQ06JV/Fry/TvyphBlmylEqL+NLqEcEjnlz90IVu+ZA+M09J96
UlHO7V5GvBgM+QK/q/dJeMHPWrNlo1gA6Nwl/HBdM0DqzdZ2jEPvsQSABvZrPMty
+BAqEar4wqY1AH4X5ccEjO7nJQoBQSDRSki1fkBsc1nx44N/m0kHdIa0Z/Y+Mw4v
WiZhREkOospG1I4lBa3CNTVAhSs9msGsYfkqvFJGHL7sZY8XSv82GBBvA0nUNrsJ
bLBwo2FaQG9eoatRAGkqp4b/OtNtBuGeiQoNwFGbfUZTAaStj5/zZj0swsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJe+9bwBQkJZ4plAAoJEKwQ
ezhmktrd+ScP/RoaUKriVVAgLHOGs+/mnfKtnfTlClzi5dsdI9/6H0vLpmSWK/Cl
2cT6gary45VMgAeVK+H1lQXafYj+FY++I5kYoe2GrSvIXhpjaFAJyNf/dKleTsqR
Tm371i8b3FDYs5kvy2CnTbmHB8MsOGxck8/YHd1x+g8WpO2IgF89yYCSF3CAdxC3
6bHbs6Z3C3lcM/3SoWF+Yie2P8XeBMPCGp/BcjQzUcHF6G06TwDDYhixucUi6vEY
EH5JtOwVVQ7bubT8OFeOoJwVxlzYz4UoqxjKDWymarTzu03AUIT0PXPece94bJAK
mSh68ItQe3H8tSPMubERWz2tEV3lVkChDGXcC7BYQmxHseolxz/qzCtJ0iX9BvZR

Aktueller Schlüssel 289

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

dniZNeNJ/Cu8M2pDp47zdNFXzf/Q/sQ9pQlws22G2g119rWDneBku9n1vTP80/er
SB+VLTBjDiArlCY5y9+BG8wbscExJySoQxkB9j/nlMzPY5rgk0SyxsNj9GbqH+hr
EjS3/uacNwSLxGcOT2E9Teot5pfTEO6fQVq+35QhfAlP8c8jze01W/+u+wXu1Ui9
azRSzYtCHanGyyet6U1mlBpAkqkZzH6t3CA5czc9i6FbzjvFVZnbRUZIRzfISYew
lF5WqgTn2iYVdxagPRvLF5kjd696brGW9d5HwirCVGaK04VsXWlAblB9wsF9BBMB
CgAnBQJXdYAFAhsDBQkHhh+ABQsJCAcDBRUKCQgLBRYCAwEAAh4BAheAAAoJEKwQ
ezhmktrdWigP/3QWl7aO81BUWyby4HEhN4SdAoWGY/FLqO4mCtuplcnMgRUCSiL9
l2BSCTMCtUcdSWtYwOgSChN2mMsdi1U2FNR5HvNunYR/pFdqjfQurf1ZmKVeG5/4
uuKaOxMw9e8pK5uYAfs+O7gr8gu/f6/Drp7NZk3/yVKpf4WCY9oX9TA1q9O/11nN
cwS45U/d7YP+N1YM9cBXa1DnDcdfm0BlykzouAF0qd1Lwi/tmLENvybD3+2c2WsE
rlFZGSa5ZafO0tTIWXh5k6wh5FdRRycrnSyRK3B9N9+yaXfMQ0XpOypa8dqQEnCi
IsngDCJPxtTrhMWKhBFRUMzK/WZTDboTQSQDK+YVRrE4K8MtoZSKwZLV2r9O3TpX
kpbKsPVYmexerfdMeZfjZMF1bC7BmEs7jciH6JjbqAoAPnHzN0481aeNarINSViX
PQWr2mp9qShei2/RavLtx2ZNrvmGW72ZKpF8E3WWUDpBJqFVeGNRvOm3aZj8o/Hl
ewtNjcT4ouJfqlfKiULv+g7ANEMDLQTFDTg5twRdvmZlB7oTBsavf+LwxPIXhH32
IR7TX7VeicMMxmZnmZK2ANT/QBi3laf+ojVHvB+f6D74eLNq0Zqjfi/3UFNYsYjg
E+YgCqEUBpHbl61nOHwGOSsQwfap2uKKlzukD/KxH5SPBC3DYGBI+KCbzsFNBFd1
gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+hV6XulGA
HAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go7xHIxgFj
C046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FKVYR/j9ue
nEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQlQ1Kou+3
dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjypUwgp0MT
o25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGwsMDyHNqyJ
eYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6QxaZje9YSZU
ijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KDOSn5CbmX
pAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVgroUVtprs
mHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs/Hd981Fd
VghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQABwsF8BBgB
CgAmAhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZm4FCRNDGegACgkQrBB7
OGaS2t3y5g/7BFXp/fdanzuQPToJTPen7AVwhLloKaiYhG3GjdXfMPLvu6UtaaGm
qynLolUNNooobptFqc1G9BKoAghQrta7CsDHtsQF2xyc3Mfu0gmpL/7X5a7sFIeJ
j08UjfweHx4DSG4LEZgNaAoWFjZltp4+8cqijkAHXt+r+1ayQG4VVHOWyXXqmSH4
9HqtbPcPyRzxdoVLeshZC9jmhHhhKqw/LwGyipWSOUKQDjWarBwdyhNmWCaLvxH1
ndMp4tq8DPGC3G4T9tYAbANrn7nKfZgHebMSzMw9kSp0L6QvwwTDjJyIWz85WyeH
WHeBysDaBOit3XDlehUew27y7N6a9hQSYjnXuwvre5mjDIOqJon/31R6ui2Z1y9P
a+bC11hbLXXh9tLCXRuoOt6thh9Cq5X1a76PPpEv30o3bpsb6l2hbrut1OKezwvK
l7txito/jfMiWfsZHA9O4SoM+8GnmVingHtZ805n1T4RddJvT/vaqplfI6zf7jmf
a69lALP420riFOQcwntNUM5tVmFUZsnFp2YRd4Ls7MiXVjtABahlSbb94l5WSVc0
jrOLDf94edvzk4R8i2Ob8CfVZNqEsTR6bHz8dT7Q+xQzEdjUujyyZY1UUl157Qeb
OsHjhCtuZYCI04X9hZ37nKnZXSxRlRDCnt5BEiyFu2WD1RscUe6PcVDCwXwEGAEK
ACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCaNdlPQUJE0MYuAAKCRCsEHs4
ZpLa3XCpD/42DrcveE+q2ulrAIYPDlUlHiwIMejqBDRm6zmr1KSAeb4E6/MFcP4s
rXSSscMlrqG6NVynjNCXjD2YzWii68EwoXLJkgoD3r2ifzkV62EX2MIEeNZAVwuy
KNxorzmy6bhuWltRYNK/hITs2AG5orOk9ADEJ8PixKymrWlhesPaWX6Yhp9/tWaC

Aktueller Schlüssel 290

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

RHOSRiLbRVaJ+7sqT88urLmkV9Hqx949Zxv4+cgBVUGL6WXKsfWhHjbDMNJnozWB
SZaIJznLApOM8z+1DNrqUYyfR8SkF4IOVmg6HDzoyuseJJ8JvMAlkvT6F9VBq/iE
yeDYdEEQxwHwozKrEx5Ybxl5mntbqwCXy6kHSx2+/3RZWpZQ8K29YP9QEk0KeGF8
9Vap3jjNrX4u3cuRNQpeblQc4uFn3Nzaj+cVV4YzcRw94NifecXpujSvk8XU2ytJ
/JgMBxPIBKglN4eEMet9b4FRB5XeBdPAm19/LXyb4IlIipGNXlgNz/HCuBzidzHT
QQdqfA9rZVx1hwFr7AJCVqWaXVsx1oEAhKqpTtsLMyj594DvnRuwKw5Vse+1eydW
MIHYdbxmJccsTGIt/hsOpc8zfm+QYk5752jshhOKEBy+Ey3QZI1WbO547NOb2Hwr
Pgt7fw2NCKMPElSu98zmneFPhqNHf7L5urBe5gADj81E8lm6t/oVxcLBfAQYAQoA
JgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJnABcLBQkRa8qFAAoJEKwQezhm
ktrde3MP/13CLWp99XvRROrzD/bWOfWjAenT2PE/tYdOY9YcTQFbnIUhaVUDWAo3
pibR3D4u9LlY4olpGfJ7BTIHFa9myfpaVvmrNjueYI4omli24JQ/CKqNdY8Qzxz+
/QyiNK7Aw5cEBWIu84WGB1SsefWWT3rZe9YBb77gNcWHZ15pXTXrcgUxGY4808MC
I9YFWq8EA0iHawtFnmB3UFfClWt37Hy3PKvr1is3uG60+ULI8RQz3/+ZwSG8U+xt
b+I7H9+gITc1eFCb+tIwp5xWflyxcFXYk6UzOL7y3Fg2tIEuSNtIHUC9NDVobf6c
I0KAzZcMvKiPQiuBnVOjgDLmCZM5H6axj9x+gi4oVh6ea3HLqMzyjm5JkeCGgKWv
H0gD3yGEZDvcbavkQOle5T+4JefndKzCPrluX0iyx+oQiiOL8WieSSkSB6BsZcUN
SeuGJwM79Y7Oqld/YVrQNBZj5Vz+m3nZ+0EWDDMI0hRgMpSEIc+dnTC0u103Z+Rc
c2IJq8INmU653sUcfCZE12ParW4rF7ib6kViYrABT8f4e2TP0aOyP5kp51ied9qL
azaBA6tt/C9X1V2EJZK4srXtmcZO2Im45RAiVXyfpBAmmiF3eZWCbKe7qBC4rDRh
LZG4RQW/S86Da0BID7gQz9IFSkaG504MsDhvnA7iAqaHUHUepCsiwsF8BBgBCgAm
AhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiQFCQ+P/Z8ACgkQrBB7OGaS
2t3AwA/9GkXKUgvjKGCxwE4SdDt7c2jw6to2TTP9iFJ3Xbk3+5BURT3gkZCuu9D7
gt+97aVo/B4EM7Xz8DQKyY7Ic9VAwDRra/Hwi1V0hw1zyIWQ/gAnX3baU6qLRWHR
vVR5meV8r35C+rg9DaWFYmvS7PIv9LfxESwBPUjbmx8k4/5EJpHUwf12bzkTnot5
7q5lHxKQa6IvqQak+Hp9ZM2KPdsgKO2HWJJIIvYcI5byW9zBKV0O7YR8gtRAJKp9
IbtsXx0WT6cqHOFVc5SSzdcaMt0gLFl7BTnJyvKK2l9GABGBmzYDjeCyF2J+Ippf
oqxqfTe6EoOsuEMc2PbLTs9SsWjyCC2VGlX8+uUH9SoKwL0VQ6LFsP6fhkVKqi/a
rB6UuPR/iZnrKIuxMNQ4U+t2Q6UdMlmXsAXTNdkwzoK9oJRokIrH0ZV1KtH4sjjA
tCic+tOddq+GQLiKe2WpJfxlA0uESCB0TxjAwQmfn1H+dUhPeLlbNimHlH0/hXPd
ifuNGozzADIRseQDyzjl8xGL1qRZLD3cfmda6RyZ+S3dQRuaRrcFCDccpY/pO+F8
jbx64zyqqNs+KV+SkQGOcKFhWTZGCfQ/zMDtDmQKjb3eTAkv1zdEOMw9zEjjmS0q
8FNl+2wO3VnvXwvBbtDdVCIaIq+jVcsy5XtnnV+bJ19Q9yue/XvCwWUEGAEKAA8C
GwwFAmEyoZoFCQueVRUACgkQrBB7OGaS2t1uHBAAhOYVvrtchRmzCvdNER1DtkIs
bgQPJ9OxbyfvmvoD06qxH7PrycLZKbt7yYpAUU/CMc86GwaEe0I5Nm1CTs6NvDIv
g3e7EPIS859tyQflbM56NlwbsopCuoCJYknuroIf/M6dW6vJKNXLMmnL/AtalUBw
X+5pblmGUUJep49oTOxQEnvnuqyvaGjXgFXix5PVFJD2ed5NnQeFpvfCpc/ioNOj
z7ORO82j1ht5nWqPraXX5AYhQFM/kwR1cK4LV7gVDd/q+dfGYHzpxQ/HtyX/Lasi
N6I52QqA95SM1ZZLPFLaNh6EvnB7uC9pLCYS8nvilX7/cez5PFff1e1gXCOT0jv3
mJ2exLmXV0BbfKgjccFCxhrdRLtukfiDfJkySy1zdscnpfng8wJ3xKRv43cUTz7M
Z24OYNMqK26aJZVXEQUYjCwsBylY/F5wjYAwgwZ8yF5RFix28P/K8JsIHb3QrAJK
sNWQAb03ZWis3N3spR5M9Mw3VuDZ3WUXq7mxB5M3kpVoZ3vETU5cwTbADYNPf4Sw
BDK2uIVtxabezxSBtz0FcyYoF+OW8q7r4WvoyC9/+3GfnozZLJcEIVDk4W2pMW4A
UhG/6drKTm3HkSDWIDu7d1sHWMffLEYfUHtN5DKkDkGoPfHvZvu9teR5yLfUrPTf
ktihPn/JMrmwa9pwi8LCwWUEGAEKAA8CGwwFAmCavPcFCQsGcHIACgkQrBB7OGaS

Aktueller Schlüssel 291

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

2t0uaA//UWRaRiHEAKeRqBG/T2ak+XZJNu7QHfNgoUEAub9Zru8oPPXx2AJLcHEN
KWmeFlLxADdWOZs4Bm9oOew3VQnR/dBqjnXfob9Rc+eYUjA3rXazM/QrqcU8Syi3
MjNGUmjdL5aQF+IppAMgOBLG1TEnM7C5/PvrGJuYpGEnkKEwMK/GYhqg2V60pHEV
Pvs66mefJpCzbZSy56qtknSt6yBNWc14XgDX6VTn2kW4CV/3vVJUuvjvYs9SPyY8
mKEXa6QvUd3PcXv6RiWk4lGYuT1+jh2VkcFQ+JnUwv9TbKFB9b5jq1bvW9+LMDEl
YXux7pBP5RPk+OLpyiExIRFWhi3x7aMWOzQ+I9yuNTeYkTHiEAQRUhs/1Fh4oLgI
v9QZgC0mRSN3zm8plQdivs1ZlAosAqqkA9BQwqsgosQe7P92irYIJqay0si9wGCD
wSMsmeXdIF6wW3/UMJZl66aarPeiZApGX0QdTZwjMh/QK/8gTKyeZulKmNkNfwWq
O17OirWqLKssVHtg3VUM8EIdh+oNqDDXSeWtYUmpPpWp+yWZ0x1MFFZhUQHQZTGu
TIj4A92LQzbrfj/jXRvWm2SrJMivUoiDUn+qxKIpVwFlI5gVb+uyTFhw89PCkphr
JwRi052RLoU9yd6Ek46UH4XfZZWrZuzY+zzB7oqGONphLgi/h3DCwWUEGAEKAA8C
GwwFAl771b8FCQlniTUACgkQrBB7OGaS2t2/MxAAjoEGPdzavhsOlXdPCRd1D5QJ
r8T/NSEV2z1cp8ZvdrkjNF09TBP4qsBnKJiuvY1Iw7OGX9W2okvXxgJizE45v9MH
WEMz4hmIjmAfRwcqENgpOc1IY/T0/+kkCW8dB6d30J1kT0n2PCRzN9L5vPqZXGTG
mLvd9MOjH1256w4uxLb+e1HMDTCqEN1ppq9G+EAR/29q8JZWs1marbZZWxSWcg/E
1YYbNafzklgjq4CLh/j8AEWSvLr39zRy9uvQ/yqAKZ4K4aZfh/SPupGDvsD6ZK54
EPHxErQ7aiXTbUHtvwhxWLOP6WmxFA3Shr6L6YUb6jq+0PVliFC517g3mxFHJtwt
yXGNIKhmzmr0l9OlsHafulJ/9QPfK3Ce32SkPhW/11MYA8HzduMv5Arp7cBczXSP
EUTmNIVKv3gTjSQrzRhwhHmMuqyDZ/rXQQ1jl2sxIDjO4MUMvVjYKF+OCNm42gVs
8ca3/wN9ZNU6hyFWeKQDuCAqPPbT5GO/DKseFEwB+07wwyH1RXbyl0v4fneg605X
S7lqhNtw2p1hDL0HYHDiV+aPZ+LoOmX6+dmnqE6bQJaIlVb922KWmliO7F3DkqP7
0jFlhoE1gfiXWkxP4Gy8wOobNfEMgvz02djkGQy+oQqeNdIcZFZgzPTGKB/nVgpt
9CcRDWjPltFCd2e1FBbCwWUEGAEKAA8FAld1gAUCGwwFCQeGH4AACgkQrBB7OGaS
2t1PIQ//Qc5VYfBCxpaMysaPQ44wXPEZSjxIGZhhMGzb1UzzAEYOw+RgKN5nNTXq
L2KoOkOrGnKqZOKByMdXwIPH/rGwwEsbbIpopnibf5ic5B/+xCTIK+qLIwX2ZLuk
NhbL6Y+E+7DxMMh+KqBWHONKkgwVY+rFWOfoops839ABKvc9/Ry4/qqkcb40AzpD
l1iQJ5vK/DMuaDWxWeKXqJLIl3WMGPcPfheuBZL1u7LEEHYKMgzvpbF81WIn3MBo
8jvxf2/o+kMafSSDqgvOu6yu8GOhmScpCbRJn7jV/HrG+tM+zy48TN6/MkGWSR7q
TD34pqBjyatVfVl6dGD6xj/i/Emt5hZB6qXruCDH7AWMoNx+FkDubs4sc4PKysZU
Itya6KdQFo2UeYsNwZhdn6QwKhd85um4JUHJCY0mARvjsQgWXH/5MR40cow77bbE
vVq0XNd+QRVlyT42CEtnIUOFLeDVuZrum5Tuvvna6ImMDoi/z6QcNeL79XsY2m6I
QVRiHr1BDb/8JLkfnWiwL8GRv169Kf8unx0y5u1YBpcMYkyDD2+pnnk3TY0rR+8X
8goecaS8fbyu/Q48K85ZMD8wKW/bzLQ+tK9y8xed24u2QERftMhIw9b6f45Nrrf/
PhgV8RnuwUusSbdDe8kw3eYTmLdzD4kZc9K7SdO2CqT+hm//9JI=
=uGHC
-----END PGP PUBLIC KEY BLOCK-----

Aktueller Schlüssel 292

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Frühere Schlüssel

Important

Neue Schlüssel werden erstellt, bevor die vorherigen ablaufen. Daher kann zu einem
bestimmten Zeitpunkt mehr als ein Schlüssel gültig sein. Schlüssel werden ab dem Tag
ihrer Erstellung zum Signieren von Artefakten verwendet. Verwenden Sie daher den zuletzt
ausgegebenen Schlüssel, wenn sich die Gültigkeitsdauer von Schlüsseln überschneidet.

Haltbarkeitsdatum: 04.10.2025

Schlüssel-ID 0 x AC1 07B386692DADD

Typ RSA

Größe 4096/4096

Erstellt 2016-06-30

Ablaufdatum 2025-10-04

Benutzer-ID AWS SDKs und Tools < @amazon .com> aws-
dr-tools

Schlüssel-Fingerabdruck FEB9 209F 2F2F 3F46 6484 1E55 0 7B38 692
HINZUFÜGEN AC1

Um den folgenden öffentlichen OpenPGP-Schlüssel für das SDK for Java in die Zwischenablage zu
kopieren, wählen Sie das Symbol „Kopieren“ in der oberen rechten Ecke.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej

Frühere Schlüssel 293

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJnABcIBQkRa8qDAAoJEKwQezhmktrdl1MQAIwEuDar3OTxkfTa
cPNKDnNzxaWqrxZ3FTQ+PyrHhQ6usxxrvDKJS+uCjE9bmWHVFU1R4yQNF+72lJdw
5UhX0u+ZgT9afApE65uAZuwLhPsz8upXT8C6VeKXh3shdw7qXi2hrwtM1a0Pls4O
Cs2C9rLUDMJTySrVDDVwpnaAB+8DcFrs9bIt5Q3gdOUatdzDvcb7QKh9jUvzCpbE
cInb1epDN5MRzowMR4iU2VV1RzLxCvm7CQSyXfgf0DFLkXWiknhOq9eINmytJFG/
ntFdiZFkNZ5hP709loywdfNrmqB6PsF8BPGFh8gKw1pjowrfHpv6cNIqShmA76LT
3OHViOlqGFB7obffq//eZGPR0oYJFDrOdD2CFRoHnP3N++AfkA4SRN7eXwyoz6Pk
Do9WNIEEkAcp6PGvv7AokogDo/4OqmxgC6fN+3BTOstWpv4FlD4NxOZWsTs49wxg
kPlCCVf8t75aZZkcjXng1eClZZQ5SBlRtSB7gMqtP7MIn2J5w8spNbs5xQvJc76u
NvzwEasPkY+UcHd05RddOUwoKqDerLUG7YqdlNCJoQR1mBIgZButbQlMyaZcmQqO
iR0kwDi9h6Dl6fnUb2dFCNJw+eDHvsjG8HI3IVZMl0bUQ2kmmwr1O2YQ1ynJQm0l
lMllI4hFU8/lHNHm8ie5darpVXQEwsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiIFCQ+P/Z0ACgkQ
rBB7OGaS2t3HVg//S+/KbeOBf+nCdHsrWtp9kxvWIpAGvQhIbxx1tp/impfm+5Rm
fKPD0KX+g42fuMmOdDE4gjO4GjGd7ZY3bx+0zbDSdVebzmYCbPZ/BDP990oPKidd
w6Gl8PaIyqfuARKOESBETvAwNgwO4t2ocjs4pYZV+CuHvESYpqkuHjmHtye6ajZW
Mv24NhjVo4EfP33dPugTjXLjeuGT7qQpsYV3a66juHmPVkXwuPqxh9wTNc5TU6FG
UPSfIGMPL0xha7Rg2i5zvRaAxx4bHqGO8IAz/l/E/tJkV5xnt494HQam9UDbiFI0
Q0TSve1R6S45/UjQW6cycyduHtk72s9ipa9YM0ilTdLgKMWFjzYv4h4qeYvLw3oB
JGQew+I0I4dIrwL/TKet33EuFfwmyT9MaJBhqV6geFaQ0uVmwvzpAcvxIoSqSpkJ
B/kASqCEM/o0QZLuWc56cDsmMisD0ouVPt+c1Zk7AWLlf6j8LKYTbK0QxLRh/eeZ
jhSf3HnpaCfonbOoHmeo5d/o3EZ0AiA4GbT3xgScoIgXOT7KGgOWmtWkdyd3Zvl/
o6q6Hwpg4RsqCkwnfNm5ZIvmTAYXWc2hiICSicxrP0fek5Cc4xVgJR5RMNGyI7+m
ut1SE2WvLhMCwEyl5ecWF0tUze8VBlWkHJp0Y4k2ado39Zq/DZrTRQYEVrjCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmEyoZoFCQueVRUACgkQ
rBB7OGaS2t3axA//dgcz5T4Fs7LWdIQB/KRnvX64IzaGQcwt3FBhYH+sFaSaD+lu
752vi3jlGxMBKs2NFxk6e2U8xBEir3vfKYd+mZ5L6egXC9MYfvMO/UFEFH3A+t3V
dTOJK4RQcaL9+rFRVdDmZuifN9OFfy25d66JCZ5OiqgHTQViVmbrGw2cQdyNWXrq
YLgg+gktadkmzis4J6hF/le8NOBfrG3n+QthFl/v2ppYYW9pmmxzUIf6tAlR1Vr8
PhPukjuFfrPLRL3XPiK4LkdlSI5MX7Llq4RkcZN1NY1LWS8699wJOLRcr8aQYvzZ
Jm7tfZUaekJ5ScXJWJEaWT4poMbWxXINj6VwE+DqKWvjkzoxBXSIdLk4XThA1dIq
3n5SfMkfuWV2A2xHqJtEzI1XeTm/d/JRxIG8hjIs5FNMGJUSNANJuTVA2putCVf0
JbP4QlafXoEVOYwW/EFJY+brjQadwc/knf/QxszDcKb3THuTxR80A0h6ZysmtLEg
PCaD1xUCDdr4P7DGOtV7yMaDR6O8QKmb7TKzCKCPnHouqPT0DhSB2MRq437+mfSe
EGga/sPMxe0z8ugO2CnrCf3eplU3ZOy4eeQSThTKe0Hp5YlsF1cdZSvjt7GJaHR2

Frühere Schlüssel 294

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

9A22nAJY9PojtlM+0Dkr/PH6r2brv3sEuACRNhzqCWhAve+zVnVLeb+Fk1rCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmCavPYFCQsGcHEACgkQ
rBB7OGaS2t3fqg//asHYSTBI4IoLibSF5ZJ8NaLo4EqgRtsO0W1zr8fCoFbxI+yI
qWrNXR7eoFj8tWO7Tj6S0kQr4QZcucLeILfox6CtDzO3f3WQTH9m/0si5U4Jf3RA
gBd0vwxVSSSNEsIUUfylOBHLVwlhaTVfh1h1dZhzb18LA1Vqu0100GGxvaG3dUl4
oMSRSK8EeaSO4hIM8ScjVyhjsuPRm1jlwd1EXZ5mkHRGRMGmwi3XysJjIeQRFmuG
a9uPes7I/K85r7X91BLz+G/mkSZsrHxzLxF0mSZtQdhq08GyMeQlJavs7sb1UVbg
ag30JEAjgqRsNIQOMIvl2/amrRJ7DUyQu5YkZQsAyCIhSVZw6zlJlkYVKSw1Cu1I
VX1n/Aahx5wwaQZA1dDTolX8WvL9O/KmEGWbKUSov40uoRwSOeXP3QhW75kD4zT0
n3pSUc7tXka8GAz5Ar+r90l4wc9as2WjWADo3CX8cF0zQOrN1naMQ++xBIAG9ms8
y3L4ECoRqvjCpjUAfhflxwSM7uclCgFBINFKSLV+QGxzWfHjg3+bSQd0hrRn9j4z
Di9aJmFESQ6iykbUjiUFrcI1NUCFKz2awaxh+Sq8UkYcvuxljxdK/zYYEG8DSdQ2
uwlssHCjYVpAb16hq1EAaSqnhv86020G4Z6JCg3AUZt9RlMBpK2Pn/NmPSzCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAl771vAFCQlnimUACgkQ
rBB7OGaS2t35Jw/9GhpQquJVUCAsc4az7+ad8q2d9OUKXOLl2x0j3/ofS8umZJYr
8KXZxPqBqvLjlUyAB5Ur4fWVBdp9iP4Vj74jmRih7YatK8heGmNoUAnI1/90qV5O
ypFObfvWLxvcUNizmS/LYKdNuYcHwyw4bFyTz9gd3XH6Dxak7YiAXz3JgJIXcIB3
ELfpsduzpncLeVwz/dKhYX5iJ7Y/xd4Ew8Ian8FyNDNRwcXobTpPAMNiGLG5xSLq
8RgQfkm07BVVDtu5tPw4V46gnBXGXNjPhSirGMoNbKZqtPO7TcBQhPQ9c95x73hs
kAqZKHrwi1B7cfy1I8y5sRFbPa0RXeVWQKEMZdwLsFhCbEex6iXHP+rMK0nSJf0G
9lF2eJk140n8K7wzakOnjvN00VfN/9D+xD2lCXCzbYbaDXX2tYOd4GS72fW9M/zT
96tIH5UtMGMOICuUJjnL34EbzBuxwTEnJKhDGQH2P+eUzM9jmuCTRLLGw2P0Zuof
6GsSNLf+5pw3BIvEZw5PYT1N6i3ml9MQ7p9BWr7flCF8CU/xzyPN7TVb/677Be7V
SL1rNFLNi0IdqcbLJ63pTWaUGkCSqRnMfq3cIDlzNz2LoVvOO8VVmdtFRkhHN8hJ
h7CUXlaqBOfaJhV3FqA9G8sXmSN3r3pusZb13kfCKsJUZorThWxdaUBuUH3CwX0E
EwEKACcFAld1gAUCGwMFCQeGH4AFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AACgkQ
rBB7OGaS2t1aKA//dBaXto7zUFRbJvLgcSE3hJ0ChYZj8Uuo7iYK26mVycyBFQJK
Iv2XYFIJMwK1Rx1Ja1jA6BIKE3aYyx2LVTYU1Hke826dhH+kV2qN9C6t/VmYpV4b
n/i64po7EzD17ykrm5gB+z47uCvyC79/r8Ouns1mTf/JUql/hYJj2hf1MDWr07/X
Wc1zBLjlT93tg/43Vgz1wFdrUOcNx1+bQGXKTOi4AXSp3UvCL+2YsQ2/JsPf7ZzZ
awSuUVkZJrllp87S1MhZeHmTrCHkV1FHJyudLJErcH0337Jpd8xDRek7Klrx2pAS
cKIiyeAMIk/G1OuExYqEEVFQzMr9ZlMNuhNBJAMr5hVGsTgrwy2hlIrBktXav07d
OleSlsqw9ViZ7F6t90x5l+NkwXVsLsGYSzuNyIfomNuoCgA+cfM3TjzVp41qsg1J
WJc9Bavaan2pKF6Lb9Fq8u3HZk2u+YZbvZkqkXwTdZZQOkEmoVV4Y1G86bdpmPyj
8eV7C02NxPii4l+qV8qJQu/6DsA0QwMtBMUNODm3BF2+ZmUHuhMGxq9/4vDE8heE
ffYhHtNftV6JwwzGZmeZkrYA1P9AGLeVp/6iNUe8H5/oPvh4s2rRmqN+L/dQU1ix
iOAT5iAKoRQGkduXrWc4fAY5KxDB9qna4oqXO6QP8rEflI8ELcNgYEj4oJvOwU0E
V3WABQEQALzM0Cs9Zvd08xOEvbEBj59LrS9d0HVKQ61gmkNakWC+jR35VD6FXpe6
UYAcBLrEbVYfKw9P0p6MhFKAsb570JoznKGzE1rVYUZQzhD0RKje35rvkajvEcjG
AWMLTjr87pWHeD0389ER64bzORncfa/l+YP56PI+CThb2wUvTTONGJkPQUpVhH+P
256cQL/Y0Fwu4XLerpwN+YKgMQ47raRcydobPeSfMQr9fVKRyOzFEOrvNpCVDUqi
77d0gLDLjHlIlDyOX5554S8XYLb91eYOiFvnu2pTCKiiExRCSYK29mAQePKlTCCn
QxOjbmBbGS8mVIkpQ5vpvXvzpY3JIjMXaDGqWSQSYGXhECyxCR5eOtKYbCwwPIc2
rIl5gW6yXyw9pKmj5XafTP7YHTvRSr7CZ/VLkDkWl6AfQ9nPOg1mjwjpDFpmN71h

Frühere Schlüssel 295

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

JlSKMaZkh0QGV5FW3dK+GLwxiWdqx3htbZErWyvumWQF/xBF7puKJBEXcoM5KfkJ
uZekBwcnVkfNFF2RdkM1ALq8InGzLXc7ROuEm0BXVirfju7JRtWLb3UhJWCuhRW2
muyYegSTkag5MduD1IJK37GL8WIlAL65taYgZegUoxHdSaEOefOhspxuduz8d33z
UV1WCFhi+r/+BMCQmTRbF8ao7fTC1dGd084DRP6qE/dMT4u0ZEn7ABEBAAHCwXwE
GAEKACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCZwAXCwUJEWvKhQAKCRCs
EHs4ZpLa3XtzD/9dwi1qffV70UTq8w/21jn1owHp09jxP7WHTmPWHE0BW5yFIWlV
A1gKN6Ym0dw+LvS5WOKJaRnyewUyBxWvZsn6Wlb5qzY7nmCOKJpYtuCUPwiqjXWP
EM8c/v0MojSuwMOXBAViLvOFhgdUrHn1lk962XvWAW++4DXFh2deaV0163IFMRmO
PNPDAiPWBVqvBANIh2sLRZ5gd1BXwpVrd+x8tzyr69YrN7hutPlCyPEUM9//mcEh
vFPsbW/iOx/foCE3NXhQm/rSMKecVn5csXBV2JOlMzi+8txYNrSBLkjbSB1AvTQ1
aG3+nCNCgM2XDLyoj0IrgZ1To4Ay5gmTOR+msY/cfoIuKFYenmtxy6jM8o5uSZHg
hoClrx9IA98hhGQ73G2r5EDpXuU/uCXn53Sswj65bl9IssfqEIoji/FonkkpEgeg
bGXFDUnrhicDO/WOzqpXf2Fa0DQWY+Vc/pt52ftBFgwzCNIUYDKUhCHPnZ0wtLtd
N2fkXHNiCavCDZlOud7FHHwmRNdj2q1uKxe4m+pFYmKwAU/H+Htkz9Gjsj+ZKedY
nnfai2s2gQOrbfwvV9VdhCWSuLK17ZnGTtiJuOUQIlV8n6QQJpohd3mVgmynu6gQ
uKw0YS2RuEUFv0vOg2tASA+4EM/SBUpGhudODLA4b5wO4gKmh1B1HqQrIsLBfAQY
AQoAJgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEokBQkPj/2fAAoJEKwQ
ezhmktrdwMAP/RpFylIL4yhgscBOEnQ7e3No8OraNk0z/YhSd125N/uQVEU94JGQ
rrvQ+4Lfve2laPweBDO18/A0CsmOyHPVQMA0a2vx8ItVdIcNc8iFkP4AJ1922lOq
i0Vh0b1UeZnlfK9+Qvq4PQ2lhWJr0uzyL/S38REsAT1I25sfJOP+RCaR1MH9dm85
E56Lee6uZR8SkGuiL6kGpPh6fWTNij3bICjth1iSSCL2HCOW8lvcwSldDu2EfILU
QCSqfSG7bF8dFk+nKhzhVXOUks3XGjLdICxZewU5ycryitpfRgARgZs2A43gshdi
fiKaX6Ksan03uhKDrLhDHNj2y07PUrFo8ggtlRpV/PrlB/UqCsC9FUOixbD+n4ZF
Sqov2qwelLj0f4mZ6yiLsTDUOFPrdkOlHTJZl7AF0zXZMM6CvaCUaJCKx9GVdSrR
+LI4wLQonPrTnXavhkC4intlqSX8ZQNLhEggdE8YwMEJn59R/nVIT3i5WzYph5R9
P4Vz3Yn7jRqM8wAyEbHkA8s45fMRi9akWSw93H5nWukcmfkt3UEbmka3BQg3HKWP
6TvhfI28euM8qqjbPilfkpEBjnChYVk2Rgn0P8zA7Q5kCo293kwJL9c3RDjMPcxI
45ktKvBTZftsDt1Z718LwW7Q3VQiGiKvo1XLMuV7Z51fmydfUPcrnv17wsFlBBgB
CgAPAhsMBQJhMqGaBQkLnlUVAAoJEKwQezhmktrdbhwQAITmFb67XIUZswr3TREd
Q7ZCLG4EDyfTsW8n75r6A9OqsR+z68nC2Sm7e8mKQFFPwjHPOhsGhHtCOTZtQk7O
jbwyL4N3uxDyEvOfbckH5WzOejZcG7KKQrqAiWJJ7q6CH/zOnVurySjVyzJpy/wL
WpVAcF/uaW5ZhlFCXqePaEzsUBJ757qsr2ho14BV4seT1RSQ9nneTZ0Hhab3wqXP
4qDTo8+zkTvNo9YbeZ1qj62l1+QGIUBTP5MEdXCuC1e4FQ3f6vnXxmB86cUPx7cl
/y2rIjeiOdkKgPeUjNWWSzxS2jYehL5we7gvaSwmEvJ74pV+/3Hs+TxX39XtYFwj
k9I795idnsS5l1dAW3yoI3HBQsYa3US7bpH4g3yZMkstc3bHJ6X54PMCd8Skb+N3
FE8+zGduDmDTKitumiWVVxEFGIwsLAcpWPxecI2AMIMGfMheURYsdvD/yvCbCB29
0KwCSrDVkAG9N2VorNzd7KUeTPTMN1bg2d1lF6u5sQeTN5KVaGd7xE1OXME2wA2D
T3+EsAQytriFbcWm3s8Ugbc9BXMmKBfjlvKu6+Fr6Mgvf/txn56M2SyXBCFQ5OFt
qTFuAFIRv+nayk5tx5Eg1iA7u3dbB1jH3yxGH1B7TeQypA5BqD3x72b7vbXkeci3
1Kz035LYoT5/yTK5sGvacIvCwsFlBBgBCgAPAhsMBQJgmrz3BQkLBnByAAoJEKwQ
ezhmktrdLmgP/1FkWkYhxACnkagRv09mpPl2STbu0B3zYKFBALm/Wa7vKDz18dgC
S3BxDSlpnhZS8QA3VjmbOAZvaDnsN1UJ0f3Qao5136G/UXPnmFIwN612szP0K6nF
PEsotzIzRlJo3S+WkBfiKaQDIDgSxtUxJzOwufz76xibmKRhJ5ChMDCvxmIaoNle
tKRxFT77OupnnyaQs22UsueqrZJ0resgTVnNeF4A1+lU59pFuAlf971SVLr472LP

Frühere Schlüssel 296

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Uj8mPJihF2ukL1Hdz3F7+kYlpOJRmLk9fo4dlZHBUPiZ1ML/U2yhQfW+Y6tW71vf
izAxJWF7se6QT+UT5Pji6cohMSERVoYt8e2jFjs0PiPcrjU3mJEx4hAEEVIbP9RY
eKC4CL/UGYAtJkUjd85vKZUHYr7NWZQKLAKqpAPQUMKrIKLEHuz/doq2CCamstLI
vcBgg8EjLJnl3SBesFt/1DCWZeummqz3omQKRl9EHU2cIzIf0Cv/IEysnmbpSpjZ
DX8Fqjtezoq1qiyrLFR7YN1VDPBCHYfqDagw10nlrWFJqT6VqfslmdMdTBRWYVEB
0GUxrkyI+APdi0M2634/410b1ptkqyTIr1KIg1J/qsSiKVcBZSOYFW/rskxYcPPT
wpKYaycEYtOdkS6FPcnehJOOlB+F32WVq2bs2Ps8we6KhjjaYS4Iv4dwwsFlBBgB
CgAPAhsMBQJe+9W/BQkJZ4k1AAoJEKwQezhmktrdvzMQAI6BBj3c2r4bDpV3TwkX
dQ+UCa/E/zUhFds9XKfGb3a5IzRdPUwT+KrAZyiYrr2NSMOzhl/VtqJL18YCYsxO
Ob/TB1hDM+IZiI5gH0cHKhDYKTnNSGP09P/pJAlvHQend9CdZE9J9jwkczfS+bz6
mVxkxpi73fTDox9duesOLsS2/ntRzA0wqhDdaaavRvhAEf9vavCWVrNZmq22WVsU
lnIPxNWGGzWn85JYI6uAi4f4/ABFkry69/c0cvbr0P8qgCmeCuGmX4f0j7qRg77A
+mSueBDx8RK0O2ol021B7b8IcVizj+lpsRQN0oa+i+mFG+o6vtD1ZYhQude4N5sR
RybcLclxjSCoZs5q9JfTpbB2n7pSf/UD3ytwnt9kpD4Vv9dTGAPB83bjL+QK6e3A
XM10jxFE5jSFSr94E40kK80YcIR5jLqsg2f610ENY5drMSA4zuDFDL1Y2ChfjgjZ
uNoFbPHGt/8DfWTVOochVnikA7ggKjz20+RjvwyrHhRMAftO8MMh9UV28pdL+H53
oOtOV0u5aoTbcNqdYQy9B2Bw4lfmj2fi6Dpl+vnZp6hOm0CWiJVW/dtilppYjuxd
w5Kj+9IxZYaBNYH4l1pMT+BsvMDqGzXxDIL89NnY5BkMvqEKnjXSHGRWYMz0xigf
51YKbfQnEQ1oz5bRQndntRQWwsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQ
ezhmktrdTyEP/0HOVWHwQsaWjMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCje
ZzU16i9iqDpDqxpyqmTigcjHV8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF
9mS7pDYWy+mPhPuw8TDIfiqgVhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+
NAM6Q5dYkCebyvwzLmg1sVnil6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNVi
J9zAaPI78X9v6PpDGn0kg6oLzrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJB
lkke6kw9+KagY8mrVX1ZenRg+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHOD
ysrGVCLcmuinUBaNlHmLDcGYXZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKM
O+22xL1atFzXfkEVZck+NghLZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7
GNpuiEFUYh69QQ2//CS5H51osC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02N
K0fvF/IKHnGkvH28rv0OPCvOWTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+O
Ta63/z4YFfEZ7sFLrEm3Q3vJMN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=bboB
-----END PGP PUBLIC KEY BLOCK-----

Haltbarkeitsdatum: 08.10.2024

Schlüssel-ID 0 x AC1 07B386692DADD

Typ RSA

Größe 4096/4096

Erstellt 2016-06-30

Frühere Schlüssel 297

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Ablaufdatum 2024-10-08

Benutzer-ID AWS SDKs und Tools < @amazon .com> aws-
dr-tools

Schlüssel-Fingerabdruck FEB9 209F 2F2F 3F46 6484 1E55 0 7B38 692
HINZUFÜGEN AC1

Um den folgenden öffentlichen OpenPGP-Schlüssel für das SDK for Java in die Zwischenablage zu
kopieren, wählen Sie das Symbol „Kopieren“ in der oberen rechten Ecke.

-----BEGIN PGP PUBLIC KEY BLOCK-----

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zsFNBFd1gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+
hV6XulGAHAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go
7xHIxgFjC046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FK
VYR/j9uenEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQ
lQ1Kou+3dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjy
pUwgp0MTo25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGws
MDyHNqyJeYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6Qxa
Zje9YSZUijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KD
OSn5CbmXpAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVg
roUVtprsmHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs
/Hd981FdVghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQAB
wsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQezhmktrdTyEP/0HOVWHwQsaW
jMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCjeZzU16i9iqDpDqxpyqmTigcjH
V8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF9mS7pDYWy+mPhPuw8TDIfiqg
VhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+NAM6Q5dYkCebyvwzLmg1sVni
l6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNViJ9zAaPI78X9v6PpDGn0kg6oL
zrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJBlkke6kw9+KagY8mrVX1ZenRg

Frühere Schlüssel 298

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHODysrGVCLcmuinUBaNlHmLDcGY
XZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKMO+22xL1atFzXfkEVZck+NghL
ZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7GNpuiEFUYh69QQ2//CS5H51o
sC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02NK0fvF/IKHnGkvH28rv0OPCvO
WTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+OTa63/z4YFfEZ7sFLrEm3Q3vJ
MN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=Z9u3
-----END PGP PUBLIC KEY BLOCK-----

Frühere Schlüssel 299

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

Dokumentverlauf
Diese Seite listet wichtige Änderungen am AWS SDK für Java Developer Guide im Laufe seiner
Geschichte auf.

Dieser Leitfaden wurde veröffentlicht am: 1. Oktober 2025.

1. Oktober 2025

Fügen Sie einen neuen PGP-Schlüssel hinzu, der am 27.09.2026 abläuft.

5. Oktober 2024

Aktualisieren Sie die aktuellen OpenPGP-Schlüsselinformationen.

4. September 2024

Fügen Sie Informationen zu AWS kontobasierten Endpunkten für DynamoDB hinzu. Siehe the
section called “Verwenden Sie AWS kontobasierte Endpunkte”.

21. Mai 2024, 2024

Entfernen Sie die Anweisungen zum Einstellen der networkaddress.cache.ttl
Sicherheitseigenschaft mithilfe einer Java-Befehlszeilen-Systemeigenschaft. Siehe Wie legt man
die JVM-TTL fest.

12. Januar 2024

Fügen Sie ein Banner hinzu, das das Ende der Unterstützung für AWS SDK für Java v1.x
ankündigt.

6. Dezember 2023

• Geben Sie den aktuellen OpenPGP-Schlüssel an.

14. März 2023

• Aktualisierung des Leitfadens zur Ausrichtung an bewährten IAM-Methoden. Weitere
Informationen finden Sie unter Bewährte IAM-Methoden.

28. Juli 2022

• Es wurde eine Warnung hinzugefügt, dass EC2 -Classic am 15. August 2022 in den Ruhestand
geht.

22. März 2018

• DynamoDB Beispielsweise wurde die Verwaltung von Tomcat-Sitzungen entfernt, da dieses
Tool nicht mehr unterstützt wird.

300

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

2. Nov. 2017

• Kryptografiebeispiele für Amazon S3 Verschlüsselungsclients hinzugefügt, einschließlich neuer
Themen: Verwenden Sie clientseitige Verschlüsselung und Amazon S3Amazon S3 clientseitige
Verschlüsselungmit verwalteten AWS KMS-Schlüsseln und clientseitige Verschlüsselung mit
Amazon S3 Client-Hauptschlüsseln.

14. April 2017

• Der AWS SDK für Java Abschnitt „Amazon S3 Beispiele zur Verwendung des Buckets“ wurde
aktualisiert, darunter neue Themen: Verwaltung von Amazon S3 Zugriffsberechtigungen für
Buckets und Objekte und Konfiguration eines Buckets als Website. Amazon S3

4. April 2017

• Ein neues Thema, Enabling Metrics for the, AWS SDK für Java beschreibt, wie Anwendungs-
und SDK-Leistungsmetriken für die AWS SDK für Java generiert werden.

3. April 2017

• Dem AWS SDK für Java Abschnitt „ CloudWatch Beispiele verwenden“ wurden neue
CloudWatch Beispiele hinzugefügt: Metriken abrufen aus CloudWatch, Veröffentlichen
benutzerdefinierter Metrikdaten, Arbeiten mit CloudWatch Alarmen, Verwenden von
Alarmaktionen in CloudWatch und Senden von Ereignissen an CloudWatch

27. März 2017

• Weitere Amazon EC2 Beispiele wurden dem AWS SDK für Java Abschnitt „Amazon EC2
Beispiele verwenden“ hinzugefügt: Amazon EC2 Instanzen verwalten, Elastic IP-Adressen
verwenden in Amazon EC2, Regionen und Availability Zones verwenden, Mit Amazon EC2
Schlüsselpaaren arbeiten und Mit Sicherheitsgruppen arbeiten in Amazon EC2.

21. März 2017

• Neue IAM-Beispiele wurden zu den IAM-Beispielen hinzugefügt. Verwenden Sie den AWS SDK
für Java Abschnitt: Verwaltung von IAM-Zugriffsschlüsseln, Verwaltung von IAM-Benutzern,
Verwendung von IAM-Kontoaliasen, Arbeiten mit IAM-Richtlinienund Arbeiten mit IAM-
Serverzertifikaten

13. März 2017

• Dem Amazon SQS Abschnitt wurden drei neue Themen hinzugefügt: Aktivieren von Long
Polling für Amazon SQS Nachrichtenwarteschlangen, Einstellen des Sichtbarkeits-Timeouts in
und Verwenden von Warteschlangen fürunzustellbare Nachrichten in. Amazon SQSAmazon
SQS

301

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

26. Januar 2017

• Es wurden ein neues Amazon S3 Thema, Using TransferManager for Amazon S3 Operations,
und neue Best Practices für die AWS Entwicklung hinzugefügt, wobei das AWS SDK für Java
Thema im Abschnitt Verwenden des Themas enthalten ist. AWS SDK für Java

16. Januar 2017

• Es wurden ein neues Amazon S3 Thema, Verwaltung des Zugriffs auf Amazon S3 Buckets
mithilfe von Bucket-Richtlinien, und zwei neue Amazon SQS Themen, Arbeiten mit Amazon
SQS Nachrichtenwarteschlangen und Senden, Empfangen und Löschen von Amazon SQS
Nachrichten, hinzugefügt.

16. Dezember 2016

• Es wurden neue Beispielthemen hinzugefügt für DynamoDB: Arbeiten mit Tabellen in
DynamoDB und Arbeiten mit Elementen in. DynamoDB

26. Sept. 2016

• Die Themen im Abschnitt „Erweitert“ wurden in „Verwenden von“ verschoben AWS SDK für
Java, da sie für die Verwendung des SDK von zentraler Bedeutung sind.

25. August 2016

• Ein neues Thema, Creating Service Clients, wurde dem Abschnitt Verwenden von hinzugefügt,
in dem gezeigt wird AWS SDK für Java, wie Client Builder verwendet werden können, um die
Erstellung von AWS-Service Clients zu vereinfachen.

Der Abschnitt mit den AWS SDK für Java Codebeispielen wurde mit neuen Beispielen für
S3 aktualisiert, die von einem Repository unterstützt werden GitHub, das den vollständigen
Beispielcode enthält.

02. Mai 2016

• Dem AWS SDK für Java Abschnitt Verwenden wurde ein neues Thema, Asynchrone
Programmierung, hinzugefügt, in dem beschrieben wird, wie mit asynchronen Client-Methoden
gearbeitet wird, die Future Objekte zurückgeben oder die eine annehmen. AsyncHandler

26. Apr. 2016

• Das Thema SSL-Zertifikatanforderungen wurde entfernt, da es nicht mehr relevant ist.
Unterstützung für SHA-1-signierte Zertifikate wurde im Jahr 2015 als veraltet markiert und die
Website mit den Test-Skripts wurde entfernt.

302

https://github.com/awsdocs/aws-doc-sdk-examples

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

14. März 2016

• Dem Amazon SWF Abschnitt Lambda-Aufgaben wurde ein neues Thema hinzugefügt, in dem
beschrieben wird, wie ein Amazon SWF Workflow implementiert wird, der Lambda Funktionen
als Aufgaben aufruft, als Alternative zur Verwendung herkömmlicher Amazon SWF Aktivitäten.

04. März 2016

• Der AWS SDK für Java Abschnitt „Amazon SWF Beispiele zur Verwendung des Themas“ wurde
mit neuen Inhalten aktualisiert:

• Amazon SWF Grundlagen — Enthält grundlegende Informationen darüber, wie Sie SWF in
Ihre Projekte integrieren können.

• Eine einfache Amazon SWF Anwendung erstellen — Ein neues Tutorial mit step-by-step
Anleitungen für Java-Entwickler, die noch keine Erfahrung damit haben Amazon SWF.

• Aktivitäts- und Workflow-Worker ordnungsgemäß herunterfahren — Beschreibt, wie Sie
mithilfe der Parallelitätsklassen von Java Amazon SWF Worker-Klassen ordnungsgemäß
herunterfahren können.

23. Februar 2016

• Die Quelle für das AWS SDK für Java Entwicklerhandbuch wurde verschoben nach. aws-java-
developer-guide

28. Dezember 2015

• the section called “Legen Sie die JVM-TTL für DNS-Namenssuchen fest”wurde von Advanced
in Using the verschoben und aus Gründen der AWS SDK für Java Übersichtlichkeit neu
geschrieben.

Verwenden des SDKs mit Apache Maven wurde mit Informationen über die Einbindung der
SDK-Bill of Materials (BOM) in Ihr Projekt aktualisiert.

04. August 2015

• SSL-Zertifikatsanforderungen sind ein neues Thema im Abschnitt „Erste Schritte AWS“, in
dem die Umstellung auf SHA256 -signierte Zertifikate für SSL-Verbindungen beschrieben wird.
Außerdem wird beschrieben, wie Java-Umgebungen mit Version 1.6 und früheren Versionen
repariert werden können, sodass diese Zertifikate verwendet werden können, die für den AWS
Zugriff nach dem 30. September 2015 erforderlich sind.

Note

Java 1.7+ ist bereits in der Lage, mit SHA256 -signierten Zertifikaten zu arbeiten.

303

https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide

AWS SDK für Java 1.x Entwicklerhandbuch für Version 1.x

14. Mai 2014

• Das Material zur Einführung und zu den ersten Schritten wurde stark überarbeitet, um die neue
Struktur des Leitfadens zu unterstützen. Es enthält nun auch Anleitungen zur Einrichtung von
AWS Zugangsdaten und zur Region für die Entwicklung.

Die Besprechung der Codebeispiele wurde in ihr eigenes Thema im Abschnitt Zusätzliche
Dokumentation und Ressourcen verschoben.

Informationen zum Anzeigen des SDK-Revisionsverlaufs wurden in die Einführung verschoben.

9. Mai 2014

• Die allgemeine Struktur der AWS SDK für Java Dokumentation wurde vereinfacht, und die
Themen Erste Schritte und Zusätzliche Dokumentation und Ressourcen wurden aktualisiert.

Neue Themen wurden hinzugefügt:

• Mit AWS Anmeldeinformationen arbeiten — Erläutert die verschiedenen Möglichkeiten, wie
Sie Anmeldeinformationen für die angeben können AWS SDK für Java.

• Zugriff auf AWS Ressourcen mithilfe von IAM-Rollen gewähren auf Amazon EC2 — enthält
Informationen zur sicheren Angabe von Anmeldeinformationen für Anwendungen, die auf
EC2 Instances ausgeführt werden.

9. Sept. 2013

• In diesem Thema, dem Dokumentverlauf, werden die Änderungen am AWS SDK für Java
Entwicklerhandbuch nachverfolgt. Es handelt sich um ein begleitendes Dokument zu release
notes history (Verlauf der Versionshinweise).

304

	AWS SDK für Java 1.x
	Table of Contents
	
	Entwicklerhandbuch — AWS SDK für Java 1.x
	Version 2 des SDK wurde veröffentlicht
	Zusätzliche Dokumentation und Ressourcen
	Unterstützung für Eclipse-IDE
	Entwicklung von Anwendungen für Android
	Anzeigen des SDK-Versionsverlaufs
	Erstellen von Java-Referenzdokumentationen für frühere SDK-Versionen

	Erste Schritte
	Grundkonfiguration zum Arbeiten AWS-Services
	Übersicht
	Anmeldemöglichkeit beim AWS Zugriffsportal
	Richten Sie gemeinsam genutzte Konfigurationsdateien ein
	Richten Sie die gemeinsam genutzte config Datei ein
	Richten Sie temporäre Anmeldeinformationen für das SDK ein

	Installieren Sie eine Java-Entwicklungsumgebung

	Möglichkeiten, das zu bekommen AWS SDK für Java
	Voraussetzungen
	Verwenden Sie ein Build-Tool, um Abhängigkeiten für das SDK for Java zu verwalten (empfohlen)
	Laden Sie das SDK herunter und extrahieren Sie es (nicht empfohlen)
	Frühere Versionen des SDK aus dem Quellcode erstellen (nicht empfohlen)

	Verwenden Sie Build-Tools
	Das SDK mit Apache Maven verwenden
	Erstellen eines neuen Maven-Pakets
	Konfigurieren des SDKs als Maven-Abhängigkeit
	Angeben einzelner SDK-Module
	Importieren aller SDK-Module

	Erstellen Ihres Projekts
	Erstellen des SDKs mit Maven

	Das SDK mit Gradle verwenden
	Projekteinrichtung für Gradle 4.6 oder höher
	Projekteinrichtung für Gradle-Versionen vor 4.6

	AWS Temporäre Anmeldeinformationen und AWS-Region für die Entwicklung einrichten
	Konfigurieren Sie temporäre Anmeldeinformationen
	Aktualisieren von IMDS-Anmeldeinformationen
	Stellen Sie das ein AWS-Region

	Mit dem AWS SDK für Java
	Bewährte Methoden für die AWS Entwicklung mit dem AWS SDK für Java
	S3
	Vermeiden ResetExceptions

	Erstellen von Service-Clients
	Abruf eines Client-Generators
	Erstellen von Async-Clients
	So erstellen Sie einen asynchronen DynamoDB-Client mit dem Standard ExecutorService
	So erstellen Sie einen asynchronen Client mit einem benutzerdefinierten Executor

	Verwenden DefaultClient
	So erstellen Sie einen Standard-Service-Client

	Client-Lebenszyklus
	So fahren Sie einen Client herunter

	Geben Sie temporäre Anmeldeinformationen für die AWS SDK für Java
	Verwenden der standardmäßigen Anbieterkette von Anmeldeinformationen
	Legen Sie temporäre Anmeldeinformationen fest
	Richten Sie ein alternatives Anmeldeinformationsprofil ein
	Legen Sie einen alternativen Speicherort für die Anmeldeinformationsdatei fest
	So überschreiben Sie den Standardspeicherort der Anmeldeinformationsdatei

	CredentialsDateiformat
	Anmeldeinformationen laden

	Geben Sie einen Anbieter oder eine Anbieterkette für Anmeldeinformationen an
	Geben Sie explizit temporäre Anmeldeinformationen an
	Weitere Infos

	AWS-Region Auswahl
	Überprüfung der Serviceverfügbarkeit in einer Region
	Auswahl einer Region
	Auswahl eines bestimmten Endpunkts
	Ermitteln Sie die Region automatisch anhand der Umgebung
	Standard-Anbieterkette für Regionen

	Umgang mit Ausnahmen
	Warum ungeprüfte Ausnahmen?
	AmazonServiceException (und Unterklassen)
	AmazonClientException

	Asynchrone Programmierung
	Java-Futures
	Asynchrone Callbacks
	Bewährte Methoden
	Ausführen eines Rückrufs
	Threadpool-Konfiguration
	Asynchroner Zugriff

	AWS SDK für Java Protokollierung von Anrufen
	Herunterladen der Log4J-JAR
	Festlegen des Klassenpfads
	Service-spezifische Fehler und Warnungen
	Protokollierung von Anforderungs-/Antwortübersichten
	Verbose-Protokollierung des Netzwerkverkehrs
	Protokollieren von Latenz-Metriken

	Client-Konfiguration
	Proxy-Konfiguration
	HTTP-Transport-Konfiguration
	Maximale Anzahl der Verbindungen
	Timeouts und Fehlerbehandlung
	Lokale Adresse

	TCP-Socketpuffer-Größenhinweise

	Zugriffskontrollrichtlinien
	Amazon S3 Beispiel
	Amazon SQS Beispiel
	Beispiel für Amazon SNS

	Legen Sie die JVM-TTL für DNS-Namenssuchen fest
	Wie legt man die JVM-TTL fest

	Aktivierung von Metriken für AWS SDK für Java
	Wie aktiviert man die Generierung von Java-SDK-Metriken
	Verfügbare Arten von Metriken
	Weitere Informationen

	AWS SDK für Java Codebeispiele
	AWS SDK für Java 2.x
	CloudWatch Beispiele für die Verwendung der AWS SDK für Java
	Metriken abrufen von CloudWatch
	Auflisten von Metriken
	Weitere Informationen

	Veröffentlichen benutzerdefinierter Metrikdaten
	Veröffentlichen benutzerdefinierter Metrikdaten
	Weitere Informationen

	Mit CloudWatch Alarmen arbeiten
	Einrichten eines Alarms
	Auflisten von Alarmen
	Löschen von Alarmen
	Weitere Informationen

	Verwenden von Alarmaktionen in CloudWatch
	Aktivieren von Alarmaktionen
	Deaktivieren von Alarmaktionen
	Weitere Informationen

	Ereignisse senden an CloudWatch
	Hinzufügen von Ereignissen
	Hinzufügen von Regeln
	Hinzufügen von Zielen
	Weitere Informationen

	DynamoDB Beispiele für die Verwendung der AWS SDK für Java
	Verwenden Sie AWS kontobasierte Endpunkte
	Arbeiten mit Tabellen in DynamoDB
	Erstellen einer Tabelle
	Erstellen einer Tabelle mit einem einfachen Primärschlüssel
	Erstellen einer Tabelle mit einem zusammengesetzten Primärschlüssel

	Auflisten von Tabellen
	Beschreiben (Abrufen von Informationen zu) einer Tabelle
	Ändern (Aktualisieren) einer Tabelle
	Löschen einer Tabelle
	Weitere Infos

	Arbeiten mit Elementen in DynamoDB
	Abrufen (empfangen) eines Elements aus einer Tabelle
	Hinzufügen eines neuen Elements zu einer Tabelle
	Aktualisieren eines vorhandenen Elements in einer Tabelle
	Verwenden Sie die Dynamo-Klasse DBMapper
	Weitere Infos

	Amazon EC2 Beispiele für die Verwendung der AWS SDK für Java
	Tutorial: Eine EC2 Instanz starten
	Voraussetzungen
	Eine Amazon EC2 Sicherheitsgruppe erstellen
	EC2-Classic geht in den Ruhestand

	Erstellen eines Schlüsselpaares
	Eine Amazon EC2 Instanz ausführen

	Verwenden von IAM-Rollen, um Zugriff auf AWS Ressourcen zu gewähren für Amazon EC2
	Die Standardanbieterketten und Instanzprofile EC2
	Exemplarische Vorgehensweise: Verwenden von IAM-Rollen für Instanzen EC2
	Erstellen einer IAM-Rolle
	Starten Sie eine EC2 Instance und geben Sie Ihre IAM-Rolle an
	Erstellen Ihrer Anwendung
	Übertragen Sie das kompilierte Programm auf Ihre EC2 Instance
	Führen Sie das Beispielprogramm auf der EC2 Instanz aus

	Tutorial: Amazon EC2 Spot-Instances
	Übersicht
	Voraussetzungen
	Schritt 1: Einrichten Ihrer Anmeldeinformationen
	Schritt 2: Einrichten einer Sicherheitsgruppe
	Schritt 3: Senden Ihrer Spot-Instance-Anforderung
	Schritt 4: Ermitteln des Status Ihrer Spot-Instance-Anforderung
	Schritt 5: Bereinigen der Spot-Anforderungen und ‑Instances
	Zusammenfassung
	Nächste Schritte

	Tutorial: Erweitertes Amazon EC2 Spot-Anforderungsmanagement
	Voraussetzungen
	Einrichten Ihrer Anmeldeinformationen
	Einrichten einer Sicherheitsgruppe
	Detaillierte Optionen für die Erstellung von Spot-Instance-Anforderungen
	Persistente im Vergleich zu einmaligen Anforderungen
	Einschränken der Dauer einer Anforderung
	Gruppieren Sie Ihre Amazon EC2 Spot-Instance-Anfragen
	So bleibt eine Stammpartition nach einer Unterbrechung oder Beendigung erhalten
	So markieren Sie Spot-Anforderungen und ‑Instances
	Markieren von -Anforderungen
	Markieren von Instances

	Stornieren von Spot-Anforderungen und Beenden von Instances
	Stornieren einer Spot-Anforderung
	Beenden von Spot-Instances

	Zusammenfassung

	Amazon EC2 Instanzen verwalten
	Erstellen einer Instance
	Starten einer Instance
	Anhalten einer Instance
	Neustarten einer Instance
	Beschreiben von Instances
	Überwachung einer Instance
	Anhalten der Instance-Überwachung
	Weitere Informationen

	Verwendung von Elastic IP-Adressen in Amazon EC2
	EC2-Classic geht in den Ruhestand
	Zuweisen einer Elastic IP-Adresse
	Beschreiben von Elastic IP-Adressen
	Freigeben einer Elastic IP-Adresse
	Weitere Informationen

	Regionen und Verfügbarkeitszonen verwenden
	Beschreiben von Regionen
	Beschreiben von Availability Zones
	Beschreiben von Konten
	Weitere Informationen

	Mit Amazon EC2 Schlüsselpaaren arbeiten
	Erstellen eines Schlüsselpaars
	Beschreiben von Schlüsselpaaren
	Löschen eines Schlüsselpaars
	Weitere Informationen

	Arbeiten mit Sicherheitsgruppen in Amazon EC2
	Erstellen einer Sicherheitsgruppe
	Konfigurieren einer Sicherheitsgruppe
	Beschreiben von Sicherheitsgruppen
	Löschen einer Sicherheitsgruppe
	Weitere Informationen

	IAM-Beispiele mit dem AWS SDK für Java
	Verwalten von IAM-Zugriffsschlüsseln
	Erstellen eines Zugriffsschlüssels
	Auflisten von Zugriffsschlüsseln
	Abrufen der letzten Nutzungszeit eines Zugriffsschlüssels
	Aktivieren oder Deaktivieren von Zugriffsschlüsseln
	Löschen eines Zugriffsschlüssels
	Weitere Informationen

	Verwalten von IAM-Benutzern
	Erstellen eines Benutzers
	Auflisten von Benutzern
	Aktualisieren eines Benutzers
	Löschen eines Benutzers
	Weitere Informationen

	Verwenden von IAM-Konto-Aliasen
	Erstellen eines Konto-Alias
	Auflisten von Konto-Aliassen
	Löschen eines Konto-Alias
	Weitere Informationen

	Arbeiten mit IAM-Richtlinien
	Erstellen einer Richtlinie
	Abrufen einer Richtlinie
	Anfügen einer Rollenrichtlinie
	Auflisten angefügter Rollenrichtlinien
	Trennen einer Rollenrichtlinie
	Weitere Informationen

	Arbeiten mit IAM-Serverzertifikaten
	Abrufen eines Serverzertifikats
	Auflisten von Serverzertifikaten
	Aktualisieren eines Serverzertifikats
	Löschen eines Serverzertifikats
	Weitere Informationen

	Lambda Beispiele für die Verwendung der AWS SDK für Java
	Funktionen aufrufen, auflisten und löschen Lambda
	Aufruf einer -Funktion
	Listenfunktionen
	Löschen einer -Funktion

	Amazon Pinpoint Beispiele für die Verwendung der AWS SDK für Java
	Apps erstellen und löschen in Amazon Pinpoint
	Erstellen einer Anwendung
	Löschen einer APP
	Weitere Informationen

	Endpunkte erstellen in Amazon Pinpoint
	Erstellen eines Endpunkts
	Weitere Informationen

	Segmente erstellen in Amazon Pinpoint
	Erstellen eines Segments
	Weitere Informationen

	Kampagnen erstellen in Amazon Pinpoint
	Erstellen einer Kampagne
	Weitere Informationen

	Kanäle aktualisieren in Amazon Pinpoint
	Aktualisieren eines Channels
	Weitere Informationen

	Amazon S3 Beispiele für die Verwendung der AWS SDK für Java
	Amazon S3 Buckets erstellen, auflisten und löschen
	Bucket erstellen
	Auflisten von Buckets
	Bucket löschen
	Entfernen von Objekten aus einem nicht versionierten Bucket vor dem Löschen
	Entfernen von Objekten aus einem versionierten Bucket vor dem Löschen
	Löschen eines leeren Buckets

	Operationen an Amazon S3 Objekten ausführen
	Hochladen eines Objekts
	Auflisten von Objekten
	Herunterladen eines Objekts
	Kopieren, Verschieben oder Umbenennen von Objekten
	Objekte löschen
	Löschen mehrerer Objekte auf einmal

	Amazon S3 Zugriffsberechtigungen für Buckets und Objekte verwalten
	Abrufen der Zugriffskontrollliste für einen Bucket
	Festlegen der Zugriffskontrollliste für einen Bucket
	Abrufen der Zugriffskontrollliste für ein Objekt
	Festlegen der Zugriffskontrollliste für ein Objekt
	Weitere Informationen

	Verwaltung des Zugriffs auf Amazon S3 Buckets mithilfe von Bucket-Richtlinien
	Festlegen einer Bucket-Richtlinie
	Verwenden der Policy-Klasse zum Generieren oder Überprüfen einer Richtlinie

	Abrufen einer Bucket-Richtlinie
	Löschen einer Bucket-Richtlinie
	Weitere Infos

	TransferManager Für Amazon S3 Operationen verwenden
	Hochladen von Dateien und Verzeichnissen
	Hochladen einer einzelnen Datei
	Hochladen einer Dateiliste
	Upload eines Verzeichnisses

	Herunterladen von Dateien oder Verzeichnissen
	Herunterladen einer einzelnen Datei
	Herunterladen eines Verzeichnisses

	Kopieren von Objekten
	Warten auf die Fertigstellung einer Übertragung
	Abrufen des Übertragungsstatus und ‑fortschritt
	Abfragen des aktuellen Fortschritts einer Übertragung
	Holen Sie sich den Übertragungsfortschritt mit einem ProgressListener
	Abruf des Fortschritts von untergeordneten Übertragungen

	Weitere Infos

	Einen Amazon S3 Bucket als Website konfigurieren
	Festlegen der Website-Konfiguration eines Buckets
	Abruf der Website-Konfiguration eines Buckets
	Löschen der Website-Konfiguration eines Buckets
	Weitere Informationen

	Amazon S3 Clientseitige Verschlüsselung verwenden
	Amazon S3 clientseitige Verschlüsselung mit Client-Hauptschlüsseln
	Erforderliche Importe
	Strikte authentifizierte Verschlüsselung
	Authentifizierter Verschlüsselungsmodus

	Amazon S3 clientseitige Verschlüsselung mit AWS KMS-verwalteten Schlüsseln
	Erforderliche Importe
	Strikte authentifizierte Verschlüsselung
	Authentifizierter Verschlüsselungsmodus
	AWS KMS Den Client konfigurieren

	Amazon SQS Beispiele für die Verwendung der AWS SDK für Java
	Mit Amazon SQS Nachrichtenwarteschlangen arbeiten
	Erstellen einer Warteschlange
	Auflisten von Warteschlangen
	Abrufen der URL für eine Warteschlange
	Löschen einer Warteschlange
	Weitere Infos

	Amazon SQS Nachrichten senden, empfangen und löschen
	Senden einer Nachricht
	Senden mehrerer Nachrichten gleichzeitig

	Empfangen von Nachrichten
	Löschen von Nachrichten nach dem Empfangen
	Weitere Infos

	Long Polling für Amazon SQS Nachrichtenwarteschlangen aktivieren
	Aktivieren der Langabfrage beim Erstellen einer Warteschlange
	Aktivieren der Langabfrage für eine vorhandene Warteschlange
	Aktivieren von Langabfragen beim Nachrichteneingang
	Weitere Infos

	Sichtbarkeits-Timeout einrichten in Amazon SQS
	Einrichten der Zeitbeschränkung für die Sichtbarkeit einer einzelnen Nachricht
	Einrichten der Zeitbeschränkung für die Sichtbarkeit mehrerer Nachrichten auf einmal
	Weitere Infos

	Verwenden von Warteschlangen für unzustellbare Briefe in Amazon SQS
	Erstellen einer Warteschlange für unzustellbare Nachrichten
	Zuweisen einer Warteschlange für unzustellbare Nachrichten an eine Quell-Warteschlange
	Weitere Infos

	Amazon SWF Beispiele für die Verwendung der AWS SDK für Java
	SWF-Grundlagen
	Abhängigkeiten
	Importe
	Verwenden der SWF-Client-Klasse

	Eine einfache Amazon SWF Anwendung erstellen
	Über das Beispiel
	Voraussetzungen
	Entwicklungsumgebung
	AWS Zugriff

	Erstellen eines SWF-Projekts
	Entwickeln des Projekts
	Allgemeine Schritte für alle Quelldateien
	Registrieren von Domäne und Workflow- und Aktivitätstypen
	Implementieren des Aktivitäts-Workers
	Implementieren des Workflow-Workers
	Implementieren des Workflow-Starters

	Erstellen des Beispiels
	Ausführen des Beispiels
	Festlegen des Java-Klassenpfads
	Registrieren von Domäne und Workflow- und Aktivitätstypen
	Starten der Aktivitäts- und Workflow-Worker
	Starten der Workflow-Ausführung

	Vollständiger Quellcode für dieses Beispiel
	Weitere Informationen

	Lambda Aufgaben
	Einrichten einer serviceübergreifenden IAM-Rolle zum Ausführen Ihrer Lambda-Funktion
	Erstellen Sie eine Funktion Lambda
	Registrieren Sie einen Workflow zur Verwendung mit Lambda
	Planen Sie eine Lambda Aufgabe
	Behandeln Sie Lambda-Funktionsereignisse in Ihrem Decider
	Empfangen Sie die Ausgabe Ihrer Funktion Lambda
	Vollständiger Quellcode für dieses Beispiel

	Korrektes Herunterfahren von Aktivitäts- und Workflow-Workern
	Registrieren von Domänen
	Auflisten von Domänen

	Im SDK enthaltene Codebeispiele
	Abrufen der Beispiele
	Erstellen und Ausführen der Beispiele in der Befehlszeile
	Voraussetzungen
	Ausführen der Beispiele

	Erstellen und Ausführen der Beispiele in der Eclipse-IDE
	Voraussetzungen
	Ausführen der Beispiele

	Sicherheit für AWS SDK für Java
	Datenschutz in AWS SDK für Java 1.x
	AWS SDK für Java Unterstützung für TLS
	Vorgehensweise zum Überprüfen der TLS-Version
	Erzwingen einer Mindest-TLS-Version

	Identitäts- und Zugriffsverwaltung
	Zielgruppe
	Authentifizierung mit Identitäten
	AWS-Konto Root-Benutzer
	Verbundidentität
	IAM-Benutzer und -Gruppen
	IAM roles

	Verwalten des Zugriffs mit Richtlinien
	Identitätsbasierte Richtlinien
	Ressourcenbasierte Richtlinien
	Zugriffskontrolllisten () ACLs
	Weitere Richtlinientypen
	Mehrere Richtlinientypen

	Wie AWS-Services arbeiten Sie mit IAM
	Problembehebung bei AWS Identität und Zugriff
	Ich bin nicht berechtigt, eine Aktion durchzuführen in AWS
	Ich bin nicht berechtigt, iam durchzuführen: PassRole
	Ich möchte Personen außerhalb von mir den Zugriff AWS-Konto auf meine AWS Ressourcen ermöglichen

	Überprüfung der Einhaltung der Vorschriften für dieses AWS Produkt oder diese Dienstleistung
	Ausfallsicherheit für dieses AWS Produkt oder diese Dienstleistung
	Sicherheit der Infrastruktur für dieses AWS Produkt oder diesen Service
	Amazon S3 Migration des Verschlüsselungsclients
	Voraussetzungen
	Überblick über die Migration
	Aktualisieren Sie bestehende Clients, um neue Formate zu lesen
	Aktualisieren Sie die Abhängigkeit in Ihrer Projektkonfiguration
	Beispiel für die Verwendung von Maven
	Beispiel mit Gradle

	Migrieren Sie Verschlüsselungs- und Entschlüsselungsclients auf V2
	Konstruieren Sie einen V2-Verschlüsselungsclient
	Verwenden Sie Anbieter von Verschlüsselungsmaterialien
	Konfigurieren Sie den V2 Encryption Client

	Weitere Beispiele
	Konfigurieren Sie einen Service Client zum Lesen von Objekten, die vom V1 Encryption Client erstellt wurden
	Konfigurieren Sie einen Service Client für das Abrufen von Bytebereichen von Objekten

	OpenPGP-Schlüssel für den AWS SDK für Java
	Aktueller Schlüssel
	Frühere Schlüssel
	Haltbarkeitsdatum: 04.10.2025
	Haltbarkeitsdatum: 08.10.2024

	Dokumentverlauf

