Amazon EKS

Eksctl User Guide

Copyright © 2026 Copyright informaiton pending.

Eksctl User Guide Amazon EKS

Eksctl User Guide: Amazon EKS

Copyright © 2026 Copyright informaiton pending.

Copyright information pending.

Eksctl User Guide Amazon EKS

Table of Contents

LA L T =3 Yl o N 1
FRATUIES ...ttt st e a e s s b st e e et s sb e s b e s et e e st s e saesnasennes 1
EKSCEL FAQ ettt e esteeteste s e e e et et e st et e st e s se s s e esa e e e e e s et e sesassaeseesaesaastessansansensansassassaasaanaan 2

GENEIAL cuiieteerete ettt ettt et ettt st et e b et e e Rt e e e e s et et e R et et e e ae e e st eae b et eneene 2
NOAEGIOUPS ..eoeeeieteteteteeteeee et ee e teste st e e e e e e e e e et e sae st essassessassaessessassansansassasseesasssensastantansansansessassesnes 2
INIGEESS ettt ettt et e et e e s sae e e s ae e e s b e e s s b e s s b e e s s e e s e st e s st e s e a e e s e s e e e e a e e e a e e e s b e e e s aee s saaeesaaeersaanen 3
KUBDBCLL ...ttt sttt ettt s b et s b et e s e b et s s e b et e e saasseseesessensenarsan 3
DIFY RUN ettt et s st e et e s s e e s s s aa e s s sa e s s an e s sanesessae s ssaesssaasssseesssessssseessssesssssesssaessssnanes 3
ONE-0Off OPLIONS IN EKSCLL ettt sttt ae s s nans 5

LT 5 T 1 RN 7
SEEP T INSTALL EKSCEL .ottt ettt s e e e et et e st e be s b e sassnesnans 7
Step 2: Create clusSter CONTIG fIlE vttt st s e e aenens 8
SEEP 31 CrEATE CLUSTEN ottt et et e st e s ae s b e et e e se e e e sa e e et et e tasassassassassaensensansans 8

OPLioNAL: DELELE CLUSLET ...ttt ettt st s e e s e s e e e e e et e s et e st e sbassassessesssensensansans 9
NEXE STEPS coeietiiieeitieterct ettt ettt s st e e st e s te s ste e st e s sae e st e ssseessaassseessaesssasssasssaesstesssessssesssessssesssessssesssesssaenns 9

Installation options fOr EKSCLLuiiiiiiiiiiiinieennniniiiciiiiiiiinneesnsnssiissccecsssssssssssssssssssssesssssssssssssnnes 10
PrEIEQUISITE «.eeeieeeteeceeete ettt ettt st e s st e a e s s ae e st e st e s ssa e e ae e st e s ae e saasssaessaesssesssaesssassssesssessseesssens 10
FOP UNIX ottt ettt sttt et st a e st e s e st e b s e st s b e et e ae et e s st e se s b esatesaesesneesesnsenns 10
FOIr WINAOWS ...ttt sttt sttt ettt s s bt et s s b et e s s et et ssassasaesassansestesassansensssanes 11

USING Gt BASK: ettt e ettt e s te st e e s e e e e e e e e e st et aaassasseenaesaenaannan 12
HOIMEDIEW ..ttt ettt sttt st ettt e st et e s s e b et e e sbe st e e ssasantesasansesssaanns 12
DIOCKET ettt ettt sttt et s et et s s b et et s et et et b et e e e et et e ae s et et e seebe b e e s eteneens 13
SHELL COMPLELION .ttt ettt e st e st e st s e s re e e e s e saesbestesbassassasseessasaensansaneans 13

BASK ettt a et b et e st et et b et et e s e se e e seese b e st eaenes 13

ZSH1 ettt e st e b e e e e e s e e e e st et et et et e ta s e e aeeaeera et et e tetanteeseesaeaaeneenaantan 13

FISI ettt et e st e e e e et e et et et e b e e s e e seeRe et et et e te et e tansaeseeseensensantesentantans 13

POWEISRELL ..ttt sttt st sttt e s e st et e sae st e e ssesbe e esasas 14
(T o T I | <L O TSSOSO USRS 14

CLUSTEIS ..iiiiiiiiriinsssessessee 15
TOPICS: citeeteeeteectteete et et e et e et e s te e st e st e e s ra e s s e e s e e e b e e sa e s b e e st e e s e e s e e e b e e Rt e e b e e st e e b e e R e e e ae e st e e te e nteeteeesaenates 15
Creating and MaNAgING CLUSLEISeouieieieeeeeee ettt e e se et e s tesaesse e s e e e enaenaennan 17

Creating @ SIMPLE CLUSTEN ...ttt et ae st s e e e e e e e e e saeaaaas 17

Create cluster using CONFIG fIlE .ot saeaan 17

Update kubeconfig for NEW CLUSLEN ...ttt 19

Eksctl User Guide Amazon EKS

DELELE CLUSLEN ..ttt ettt et et s s b e st et s et e st e s b et e e saassestesassansessssan 20
DIFY RUN ettt sttt et s et e s ae e s e e s st s s sa e s b e e st e s b e s s s e e s ae e st assseassaesssaesssassseessaesssenseessenns 21
EKS AULO MOAE ...ttt sttt sttt et ettt et et e s bt s et et e e s s et e st ssassestesassansenarsn 21
Creating an EKS cluster with Auto Mode enabled ... 21
Updating an EKS cluster to use AUtO MOE ...ttt nas 22
DiSabling AULO MOAE ...ttt ettt st s te e e e e e e e e e et e st e st et e s seese e e esaennassensanean 23
FUrther iNFOrMAtion ..ottt sttt ettt a b aene 23
EKS ACCESS ENTIIES ..ttt sttt eae st et a e st se st e st s st s b et e snesnessaannas 23
Cluster authenticCation MOE ..ottt sttt st sa e e saas 24
ACCESS ENTIY RESOUICESoeievtiieiitieieecteete et cete st estesssessaessseesaessseesssessssesssassssssssessseesssesssesssaessens 25
Create QCCESS ENTIY ..ottt ssae st e e sae s s e e st e e s e e s saeessaessaa e saasssaasssesssaesssessseessaensnes 27
GEL QCECESS BNEIY ettt ettt et s s e e st e s ae s st e s e e e s e e s aesssaessaeesaaesssasssaesssessseesssessses 27
DELELE ACCESS ENEIY ettt st et e st e s s e e e e st e st e st et e st e s saesessaeseessenaansansansansas 27
Migrate from aws-auth CONfIGMAP ...t 28
Disable cluster creator admin PermiSSIONScceceiieieiiecieecececee et se s e e e e aesaennens 29
NON EKSCLI-CrEated CLUSTEIS ..ottt ettt ettt s et e st et e be st e e nas 29
SUPPOrtEd COMMANGS ...ttt ettt e te st e s besse e e e e e s et et et estassassassessaensensansansan 29
Creating NOAEGIOUPSoocveiiieteeeeecte et cte e te e e e s e e e et et e aestesbessasse e e e s e s essentessassassassassasssessensantans 31
EKS CONMNMECEON .ttt ettt st sttt e e s st s b e st e st st e et e s ae s b e st e snesbesnsessesns 32
REGISTEI CLUSTEN ..ttt ettt st e st s e et e e e e e et et e st et e sesseeseesaensensensansanes 32
DEIEGISTEN CLUSTEN ..ttt et st e s e st e e e e e e s et e st e aesseeseeseenaennenaensanes 33
FUrther iNFOrMAtion ...ttt ettt sa et e s b et aene 23
CONFIGUIE KUDBLET ...ttt ettt et e et sre et e e e e et et e st e ste b e sassesseesaeneansanaansanes 33
KubeReserved CalCULAtION ...ttt sttt ae st s b ess e s sbesassasnans 35
CLOUAWALCN LOGGING ..ttt e et ettt e s b e st e st e e e s e e s et e aestestassassassassaennanaans 35
Enabling CloudWatch LOgging ...ttt saesbe s e nennan 35
ClusterConTig EXAMPLES ..ottt ettt st ste s e s e e sa et sa e st e st e ssesaessaeaen e s esaansanes 37
EKS FULLY-PriVAte CLUSLEN ..ccuveieeeeeeeteeeeeeteteteteste e ste s e se e s et e st e aesse s s e s e e s s e s e s e saesbassassassassassnenaanes 38
Creating @ fUlly-Private CLUSLEN ...ttt st aesre s e s e s s e e sa e s anaans 39
Configuring private access to additional AWS SErviCescceeeerervereerencieneesteseseseseeeeceesennes 39
NOUEGIOUPS ..evevereieeieeeeteterteste e stese st s e st et et esaestessessessessaesa et assassassassassassassesssessassassansansansassassesseensan 41
CluSter ENAPOINT ACCESS ...vooveevieiieieieitictestesesese s e et e stessestestessesses e e s s s esaessassassassassassesssessessessansansenses 41
User-supplied VPC and SUDNELS ...ttt sttt st s e s e sasaesa e st saanaas 41
Managing @ fUlly-Private CLUSLENoue ettt ettt s s e s e e aesaenans 42
Force-delete a fully-private CLUSTEN ...t 43
LIMIEQEIONS ettt ettt ettt b e b s b s s s st e e e st e b e b e ssessessessesaeans 43

Eksctl User Guide Amazon EKS

Outbound access Via HTTP ProXy SEIVELScccceceeeereeeereeeeisessestessessessssssesessessessessessessessesssssssnes 43
FUrther INFOrMAtioN ...ttt ettt et et s ss et s e sae s enas 23
AAAONS ..ttt ettt ettt s s e st et s s b et e e s s e b et e s et et e st e R et et e s e ae st e st e s et et e s e aeteneeaenee 44
Creating @AAONS ...ttt e st e s te st e st e b e e e e e s e e e e sae st e aasbessaereeseeneenaantantans 44
Listing €nabled @dONS ...ttt re ettt b e st a e et naenaans 46
Setting the addON’'S VEISION ...t ettt teste st e s e e e e e e a e s e stenaaneas 47
DiSCOVEING QUAONS ...ttt te e e se e e et et e b et essesseeseesa e s essessasbansassassassesnsanean 47
Discovering the configuration schema for addons ... 48
Working with configuration VALUES ...ttt sa e e 48
USING CUSTOM NAMESPACE ...cueiiiieeieicteeieesteerteestessreestessseessessseesssesssaesssessssssssesssessssessssesssessseesssasns 49
UPAting @AAONS ...ttt ettt et esaestesbe e e e e s e et et et et e basseesaesaesaennansansanean 50
DELEtiNG QAAONS ...ttt sttt e st e st e s s e e e e e e et et e besbesseesneneenaans 51
Cluster creation flexibility for default networking addons ..., 51
AMAZON EMR ..ottt ettt st sttt a e sttt b e s se e st s b e st e st ebane 52
EKS Fargate SUPPOIT ...ttt sttt e st st esae s st e s sae s s e e s sae s s st e s aasssaessaeessaasssesssaesssassnsasssennnes 52
Creating a cluster with Fargate SUPPOIt ...ttt sa et aens 52
Creating a cluster with Fargate support using a config file ..o, 54
Designing Fargate Profiles ...ttt e et et sae b s nnens 56
Managing Fargate Profiles ...ttt st nes 57
FUMREE FEAMING ettt ettt e st e st e e e e s et et e s tesaesseeseeseesaesaensantans 60
CLUSEEE UPGIAQES ..ttt ettt e teeteste s e e e e et et et e st e basbasseeseesaessessensansansasassasseeneensanean 61
Updating coNtrol Plan@ VEISION ...ttt te e te e sae s e s e see s eaesaestassessassessnesnennens 61
Default add-0N UPAALES ...t ettt re et e e sa e e b e b e b e s aeese e e s saenaanes 62
Update pre-installed add-0n ...ttt aan 63
ENQDLE ZONAL SHITE c.eeeieeeee ettt sttt st sttt s sa e st et b e e ne 63
Creating a cluster with zonal shift enabled ... 64
Enabling zonal shift on an exiSting CLUSTENcouiouiieeeeeee e 64
FUrther INFOrMAtioN ...ttt ettt et e st ssa b et s s ae e nas 23
KQrPeNTEr SUPPOIT ...ttt ettt sre e e e s st e e st e s s ae e s ae s sae e st e s sseessaessseesssesssaesssessnsesssessnes 64
Automatic Security Group TAgGING ...ccceeceeeriiieienieenteenierseeesreestesssessseessseesseesssessssesssesssnesssesssaessnes 67
Cluster Config SCHEMAceueuiiiiiiiiiiiiiiieenencniiieeeitttttesessssssssssssssesses 68
NOAEGIOUPS «euuiiiiiiiiiiinnneennnniiiiiiecetitesssans 69
TOPICS: citeeteeeteectteete et et e et e et e s te e st e st e e s ra e s s e e s e e e b e e sa e s b e e st e e s e e s e e e b e e Rt e e b e e st e e b e e R e e e ae e st e e te e nteeteeesaenates 15
WOrk With NOAE GrOUPS ..ottt ettt st e e st e e e e e saesae b e stessa s e e e e e enaenaensansans 71
Creating NOTEGIOUPSoccveieieteeeeece ettt rte e te e e e e e e et e s e aesseste st esse e e e s e s essensesansassassassasssessensantans 71
Nodegroup selection in CONFIG fIlES ..o aens 74

Eksctl User Guide Amazon EKS

LiStING NOAEGIOUPSeveeeeteeeeeeeeetete ettt e st et e st e st esae s s e s se e e e e e st e s e stessassassassesseesesnsansansans 75
Nodegroup iMMULADILILY ..ottt ae e s s e s e e e sa e beaans 75
SCAlING NOAEGIOUPS ...ttt ettt te e s teste s e e e e e s e et e ste st e st assessassaesaessessensansessessaesasssessanes 75
Deleting and draining NOAEGIOUPScccveieeiirieeececeeeeeeteste e ste e e e e s saestesaessesse s e e e e s eaesanes 76
OtNE FEATUIES ..ttt sttt et s s et st s st e e s be st et s e sbe s esessassenassans 77
UNMAaNaged NOAEGIOUPScveveeieeieeieeeeteteteteteste e ssee e s e e se s estessessassassseseessessessassassansensassassassssssensanes 78
Updating MuUltiple NOAEGIOUPSccueeuieeieieieteeeeteree ettt ste e e s e e e e e e s e s e stessestessessaesnsaenennan 79
Updating default @dd-0Ns ...ttt te ettt ae st e s e nennan 80
EKS Managed NOAEGIOUPSccccueeieeieeieeeeeetetete e cte e stestee e seesaesaestestessessassaesessaessesessessassassasssesesnsenean 80
Creating Managed NOAEGIOUPScecveciecieeiececeeeeeee et te e ste e stesae e e e e e s e s e stessesaessessessassasssensansans 81
Upgrading managed NOAEGIOUPScceeeeieieiierienieeeeeeeeeessestestessessessessseaessessessessessassessassssnsensansen 85
Handling parallel upgrades for NOAES ...ttt a e sreeens 86
Updating Managed NOAEGIOUPScceeeeeeieierierieciesteceeeeeeeestestesaessessessesssesaessessessessessessassessesseenes 87
NOAEGroUP HEALEN ISSUES ..ottt ste e e e sttt saesae e se e s snenans 87
MANAGING LADELS ...ttt sttt ettt e e e e e et et nes 87
Scaling Managed NOAEGIOUPSccecviierieeeererieeeeetetecteste e ssesee e e s esesaessessessessessessnssasssessensansansen 88
FUrther INFOrMAtioN ...ttt ettt et e st ssa b et s s ae e nas 23
NOAE DOOLSLIAPPING ..ottt e et e st et et e s tesseese et a e e et et e stestessassasseeseensensansansansanes 88
AMAZONLINUX2023 ...ttt sttt st st sae st e st e s e s sbe st s se st e st essessbe s st sssesnsasntessanns 88
LAuNCh teMPLAte SUPPOIT ...ttt ettt te et e e e e s st et e b e e s s se e s e e e e e e a et eaanaanes 90
Creating managed nodegroups using a provided launch templatecccoeeeeveeieceecieceecnennee. 90
Upgrading a managed nodegroup to use a different launch template version 91
Notes on custom AMI and launch template SUPPOIt ... 91
CUSTOM SUDNELS ..ttt a e sttt et s b et e s a st et e e sba s enesaanes 91
VWY ettt ettt e st e e e e et et et et et e e b e e s e e reeRe et et et et et e e aeeRe e st e Rt et et e tetenaaesaeree st entententatanes 92
HOW ettt ettt s b e st e e st s b et e st s b e s b e st e b e et e e st e se st e st e sseenbesneeanans 92
DELEtiNG The CLUSTEN .ttt ettt b e s e s s reeaeea e e e aanes 93
CUSEOM DINS .ttt ettt st a st st et s b st e st s b e et e e st s b e st e st s ssesnbesseessesasasseas 93
TAINTES ettt sttt e e st s e bt s s b e et a e e b et e st et et e st st e e Rt e eae et e e ntesse s aesnt s 94
INSEANCE SELECLON ..ttt sttt st e s b ettt e st e s b et e e s sasae e s e ssansesasan 95
Create cluster anNd NOAEGIOUPSccccviieieeecececeeee ettt te e e e e e e e et e stestessessesseesaeseesaensessansansan 95
SPOL INSTANCES ...ttt s e st e s ste s st e s te s se e s be e st e s sbe s sae s saessaesssassaesssaesssesssessssessssesseanns 98
ManNAged NOUAEGIOUPSooueeiiitetetectecteeeee et te et e stesae s e s e e s e e e s e saestessassessessaessesaessansansensassassasseesaanes 98
UNMANAged NOUEGIOUPScceeeeieieieieiteiteitestesteseeeeseeeesaessessessessessesssssssssessassessessassessassassasssensanes 100
GPU SUPPOIT .ttt ettt st e st e s ste e s tessse e s aessaeesssesssaessbesssaesssassssasssessssesssessseesssessseesssassseens 102
ARM SUPPOIT ..ttt sttt st e st s ste e st e s s st s st e s sae e s b e s saessssesssaesssassseasssesssaesssessseesssesssaessessseans 103

Vi

Eksctl User Guide Amazon EKS

AULTO SCALING ettt e e e e et e st et e s te st e st e s s e et e e e e seessestesansessassessessaesesnsensensansans 105
ENQDLE AULO SCAlING oottt sttt s e s e e e a e st et ae b e b e s se e e e e enaennan 105
CUSTOM AMI SUPPOIT .ottt ettt ee e ss e e s sae s s e e s sse s st e s se e st essessssessssesssasssessssessseesssessseesssensses 107
Setting the NOAE AMI ID ...ttt te e e et et esaesaasbassa e e s e enneaenes 107
Setting the NOAE AMI FAMULY ..ottt a e st sae st esse s e sessnennan 109
Windows cUSEOM AMI SUPPOIToovieieeeeectetetetectee ettt e e saeste s e s e e s e aesaessesaessessassessaesaensansans 111
Bottlerocket cuStOmM AMI SUPPOIt c...ceeoiiieeeeteececeree ettt re e e e e sae st et esae s s anenens 112
WiINAOWS WOTKEE NOGES ..ottt ettt ste st et se st st s esse st e e s e st e e s e sse st e e ssassesassassessesens 112
Creating a new cluster with Windows SUPPOItooiiieieieececeeecteteeteve e 113
Adding Windows support to an existing LinuX ClUSEErcoeeeeieieieeeececececee et 114
Additional Volume MapPings ... ceeeciciercesec e s e stestestestesse s e s s e e e s e s e saesaessassas e s e esaansenes 114
EKS HYDFIA NOAES ..ottt sttt e st a et ste st e st e s se e e e e e e e s e saa st e saassassessassesneensansansans 115
INEFOAUCTION ettt ettt st ettt et s st et et s s et et e e ssa st esassassenassenns 115
NEEWOTKING ..ottt ste e te s e e e e e et et e te st e st et e ssesseesaessessestessassassassassesseesaessensensansansansanes 116
CrEAENTIALS ettt et ettt et b st s b et e e s s e s et e s sa st e e e satan 117
AA-0NS SUPPOIT ettt ettt ettt e te et estessesse e s st et e s et e sesaassasseessessessansansassansansassaesaensans 118
FUMTNEE FEFEIENCES ..ttt a e st et b et s sb e st et s e sae s e e ssans 119
NOAE REPAIT CONTIG .ottt s e e s e e e e e s e st e b e s be st e sse e e e seese e s estantansanes 119
Creating a cluster a managed nodegroup with node repair enabledcceeerevererennnene. 119
FUrther INFOrMAtioN ...ttt ettt et e st ssa b et s s ae e nas 23
NEEWOIKING ..cciiiiiiiiiiennniiiiiieiiiiiieeeeesesessssseseeeetssns 121
TOPICS: citeiteeeteectt et et e st e et ee e e e te e st e et e e s st e s s e e s s e e e s e e sa e s e e e st e e st e s e e et e e Rt e et e e st e e b e e Rt e e ae e st e e aa e ateebeeeraenates 15
VPC CONTIQUIALION ettt e e e et et st e st et e st e e e e e e e e s et et e tassessaesessaensansansansan 122
DediCated VPC fOr CLUSTET ..ouevieieieeeeteereteteestest ettt st e st sse st e e sse st e st s e ssa st e e ssassesaenas 122
CRANGE VP CIDR ..ttt ettt et et sae s te st e st e se e e e et et e s e st et e aassessaesaensenaensansansansanes 122
Use an existing VPC: shared With KOPS ...ttt 122
Use existing VPC: other custom configurationcccceereeineciecicceeee e 123
Custom Shared NOde SECUIItY GIOUP ..cccceeeeieieieieietesteseeee e eeeeessesaestestessessessesssesesessessansans 126
NAT GAEEWAY oottt eeste st es e s st e s saesssesssae s st essaesssaesssassseesssesssessssesssessssesssessssessseessaens 127
SUDNEE SELLINGS ettt et e st e st e st esae s e et e e s e e et e ae b e sassasseesaensenaaneans 128
Use private subnets for initial NOA@GIrOUPc.coeeuieieieeeeceeceee et aens 128
CUStOM SUDNEL tOPOLOGY wecueeieeieeeteeee ettt re e et saeste st et e s e s se s e e e e e esananeans 128
CLUSEEE ACCESS ..onveieeieteiesienteteesteste s te st et e e st et et s e sse st s e ssaste st s sa st estesassastensssessastessssessensesessensensesessensesens 130
Managing Access to the Kubernetes APl Server ENApointscccoeeeeveeceeciececeseeeceeeeeeeene. 130
Restricting Access to the EKS Kubernetes Public APl endpointccooveeiecececeneneceeeeee 132
Control Plane NETWOIKINGceccieieiieieeeeeeeeeeeete et e e et e stesressesse e e e e e e e aesaestessassassasseenaanes 133

vii

Eksctl User Guide Amazon EKS

Updating control plane SUDNELS ...ttt ettt ae s e a e et et 133
Updating control plane SECUNItY GrOUPS ..c.cceceeieiicieriecieeeceseeee et testestesaesree e e e e seaessessessansens 134
IPVE SUPPOIT ..ttt sttt ettt s ae st e s ae e s e e s s s e s sa e s b e e st essae e st asssaessaasssasssaesssessseesssesssaensees 135
DEFINE IP FAMULY ettt ettt st e be e e e e e et e ae s tesbesaassesseesnenaanes 135
LAM cirriiiiniitneiinnectnectnectssecesecssssstsssnsssnnss 137
TOPICS: citeiteeeteectteete et et e et e et e s te e st e e st e ssa e st e e st e e s e e s sa e s b e e s s e e e st e e e et e e Rt e e b e e s b e e b e e e Rt e e ae e st e e aaesateeseeeraeeates 15
MiINIMUM TAM POLICIES ..ottt st e e sae st sa e st e b e s sa s e e sa e e e s esa e aensanaensanes 138
IAM PermisSions DOUNAIY ...ttt et steste s e s e e e e e e e s e saesbessasbe s e e e esaennanean 139
Setting the VPC CNI Permission BOUNAAIYccocoieeeieiecieieceececee ettt sve e e ese e 140
[AM POLICIES ..ttt et e et e st e et e et e e e e e e e e s et et e stassessasseeseessensantassansansassassassesnsassansans 140
Supported 1AM add-0N POLICIESccueeuieeeeeecteeee ettt steste e e e e e et e st e s e aa s nes 140
Adding @ cUStOM INSEANCE FOLE c..ueeeeeeeeeee ettt e et st esaesaesbe s e saennans 141
Attaching iNLNE POLICIESeeveeeeeeeeeee ettt e et st e s te s e b e s e e e s snennan 142
Attaching policies DY ARN ...ttt te e s e e e e et e st e aessesaessessa e s enaensenean 142
Manage IAM USEIS QN FOLES ...ttt ettt et e te e s se e e et et e aesaesaessasseesaeseenaensanaanes 143
Edit ConfigMap with @ CLI COMMANAcooiieeeeeeeeetee ettt sa et nean 143
Edit ConfigMap using a ClusterConfig file ... 144
[AM ROLES TOr SEIrVICE ACCOUNLSooveviiiriirteietrentetsesteste e estet e e sseste e sesse st e e ssestesaesessessesassessensesassan 145
HOW Tt WOTKS ettt ettt ettt st et b e st s b st et s s et e ssaaesassannan 145
USAGE FIrOM CLI oottt ettt e te et e e e e e et e st e st e st e st e e e e e e e e e et et estasassessaesasnnanean 146
USage With CONFIG FILES ..ttt s re e s na e aenes 148
FUrther INFOrMAtioN ...ttt ettt et e st ssa b et s s ae e nas 23
EKS Pod Identity ASSOCIAtIONSc.ccviieieieieciececeeee ettt e s e e s e sa et e stesaesbesseese e e s s ensenenaenean 150
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 150
Creating Pod Identity ASSOCIAtIONScc.ccueeueiierieeeiceeeeeetese et s re e s ae e an e annens 151
Fetching Pod Identity ASSOCIAtIONSccccieiiieieececeeeee ettt 152
Updating Pod Identity ASSOCIQtIONScccccveieiiecieeeeeceeteteeeece ettt aesnenens 153
Deleting Pod Identity ASSOCIQtIONSccueeveiieiieeeeeceee ettt sae e aesaesseaens 153
EKS Add-ons support for pod identity associationsccccceevveveecieciecenecececec e 154
Migrating existing iamserviceaccounts and addons to pod identity associations 159
Cross Account Pod Identity SUPPOIT ...t as 161
FUMTNEE FEFEIENCES ..ttt sttt ae st et b et s e st e s e saa b e e snans 119
Deployment OPIONS ...ccciiiiiiieeeiiiiiiiiiiiiiiieenenmnesiiiiseeeetttsesss 163
TOPICS: citeeteeeteectteete et et e et e et e s te e st e st e e s ra e s s e e s e e e b e e sa e s b e e st e e s e e s e e e b e e Rt e e b e e st e e b e e R e e e ae e st e e te e nteeteeesaenates 15
EKS ANYWREIE ..ttt ettt e s te et et e e e et et e st e st e s aeesessaeseese et ensatansansasesseensansensansan 163
AWS OULPOSES SUPPOIT ...ttt ettt e et ese e s sseeseeesaessssessaeesanessseesssessssesssasssassssessssesssesssasns 164

viii

Eksctl User Guide Amazon EKS

Extending existing clusters to AWS OULPOSLESc.cceiieieciicieieececeseeee ettt sse e sae e eennens 164
Creating a local cluster 0n AWS OULPOSEScoviieiecieieceeecee ettt re e saesa e ae s 165
Features unsupported on LOCal CLUSLENSeouieieieieeeeeee et a e 169
FUrther iNFOrMAtioN ...ttt ettt ettt sb et s e sae e enas 23
SECUNITY ceiiiiiiiieennniiiiiiiiniiiinnsesssssssssssessssssssssssssssssssssssess 170
WLTROIDC ettt ettt et et e s te st e st e e sesaa e s et et et e b e s s asseeseesaensassassessassessassaasesnsensensansans 170
A1SADLEPOAIMDS ...ttt sttt et ettt st et e e s et e s e b et e sasse st e e sessesaesassansenaene 170
KIMS ENCIYPTION ettt sttt s sae s e e sae st e s s e s e st e st e s ae s b e s s e ssessbe s st asseessasssessasnsesssenseensennes 170
Creating a cluster with KMS encryption enabled ..., 171
Enabling KMS encryption on an existing ClUSTENcoeviiiiciecieciceeceseeee e 171
TroubLleShOOtING ..cciiiiiiiieriiiiiiiiiiiiiiiiiannneiiiiiieeetitessansssssssssssssseeessses 173
Failed StACK CrEAtION ...c.coueeiieeeeee ettt sttt sttt et s et a s s et e s se b et e e nes 173
subnet ID "subnet-11111111" is not the same as "subnet-22222222"ccooeverevverrerveevencnene 173
DELETION ISSUEBS ..ottt teeste st ettt s et et e e sae st e e s s et e e s e sbe st s e ssestesaesassestesassessensssansensensssensanens 174
kubectl logs and kubectl run fails with Authorization Errorcveenveeceeciececececeseeeeeee, 174
ANNOUNCEIMENTSceeuiiiieuniirennieneneiertaeessseciesssesses 175
Managed Nodegroups DEfAULL ...ttt st et saestesre s e s e s s e s annans 175
Nodegroup Bootstrap Override FOr CUStOmM AMIS ...ttt sae e saas 175

Eksctl User Guide Amazon EKS

What is Eksctl?

eksctl is a command-Lline utility tool that automates and simplifies the process of creating,
managing, and operating Amazon Elastic Kubernetes Service (Amazon EKS) clusters. Written

in Go, eksctl provides a declarative syntax through YAML configurations and CLI commands to
handle complex EKS cluster operations that would otherwise require multiple manual steps across
different AWS services.

eksctl is particularly valuable for DevOps engineers, platform teams, and Kubernetes
administrators who need to consistently deploy and manage EKS clusters at scale. It's especially
useful for organizations transitioning from self-managed Kubernetes to EKS, or those
implementing infrastructure as code (laC) practices, as it can be integrated into existing CI/CD
pipelines and automation workflows. The tool abstracts away many of the complex interactions
between AWS services required for EKS cluster setup, such as VPC configuration, IAM role creation,
and security group management.

Key features of eksctl include the ability to create fully functional EKS clusters with a single
command, support for custom networking configurations, automated node group management,
and GitOps workflow integration. The tool manages cluster upgrades, scales node groups, and
handles add-on management through a declarative approach. eksctl also provides advanced
capabilities such as Fargate profile configuration, managed node group customization, and spot
instance integration, while maintaining compatibility with other AWS tools and services through
native AWS SDK integration.

Features

The features that are currently implemented are:

» Create, get, list and delete clusters

« Create, drain and delete nodegroups
» Scale a nodegroup

« Update a cluster

» Use custom AMIs

« Configure VPC Networking

» Configure access to APl endpoints

» Support for GPU nodegroups

Features 1

Eksctl User Guide Amazon EKS

Spot instances and mixed instances

IAM Management and Add-on Policies

List cluster Cloudformation stacks

Install coredns

Write kubeconfig file for a cluster

Eksctl FAQ

General

Can | use eksctl to manage clusters which weren’t created by eksctl1?

Yes! From version @.40.0 you can run eksctl against any cluster, whether it was created by
eksctl or not. For more information, see the section called “Non eksctl-created clusters”.

Nodegroups

How can | change the instance type of my nodegroup?

From the point of view of eksctl, nodegroups are immutable. This means that once created the
only thing eksctl can do is scale the nodegroup up or down.

To change the instance type, create a new nodegroup with the desired instance type, then drain
it so that the workloads move to the new one. After that step is complete you can delete the old
nodegroup.

How can | see the generated userdata for a nodegroup?

First you'll need the name of the Cloudformation stack that manages the nodegroup:

eksctl utils describe-stacks --region=us-west-2 --cluster NAME

You'll see a name similar to eksct1l-CLUSTER_NAME-nodegroup-NODEGROUP_NAME.

You can execute the following to get the userdata. Note the final line which decodes from base64
and decompresses the gzipped data.

NG_STACK=eksctl-scrumptious-monster-1595247364-nodegroup-ng-29b8862f # your stack here
LAUNCH_TEMPLATE_ID=$(aws cloudformation describe-stack-resources --stack-name $NG_STACK

\

Eksctl FAQ 2

Eksctl User Guide Amazon EKS

| jg -r '.StackResources | map(select(.LogicalResourceId == "NodeGroupLaunchTemplate")

\
| .PhysicalResourceId)[0]')
aws ec2 describe-launch-template-versions --launch-template-id $LAUNCH_TEMPLATE_ID \
| jg -r '.LaunchTemplateVersions[@].LaunchTemplateData.UserData' \
| baseb4 -d | gunzip

Ingress

How do | set up ingress with eksctl?

We recommend using the AWS Load Balancer Controller. Documentation on how to deploy the
controller to your cluster, as well as how to migrate from the old ALB Ingress Controller, can be

found here.

For the Nginx Ingress Controller, setup would be the same as any on other Kubernetes cluster.

Kubectl
I'm using an HTTPS proxy and cluster certificate validation fails, how can | use the system CAs?

Set the environment variable KUBECONFIG_USE_SYSTEM_CA to make kubeconfig respect the
system certificate authorities.

Dry Run

The dry-run feature allows you to inspect and change the instances matched by the instance
selector before proceeding to creating a nodegroup.

When eksctl create cluster is called with the instance selector options and --dry-run,
eksctl will output a ClusterConfig file containing a nodegroup representing the CLI options and the
instance types set to the instances matched by the instance selector resource criteria.

eksctl create cluster --name development --dry-run

apiVersion: eksctl.io/vlalpha5
cloudWatch:
clusterLogging: {3}
iam:
vpcResourceControllerPolicy: true
withOIDC: false

Ingress 3

https://github.com/kubernetes-sigs/aws-load-balancer-controller
https://docs.aws.eu/eks/latest/userguide/alb-ingress.html
https://kubernetes.github.io/ingress-nginx/deploy/#aws

Eksctl User Guide Amazon EKS

kind: ClusterConfig

managedNodeGroups:

- amiFamily: AmazonLinux2
desiredCapacity: 2
disableIMDSv1: true
disablePodIMDS: false
iam:

withAddonPolicies:
albIngress: false
appMesh: false
appMeshPreview: false
autoScaler: false
certManager: false
cloudWatch: false
ebs: false
efs: false
externalDNS: false
fsx: false
imageBuilder: false
xRay: false
instanceSelector: {}
instanceType: m5.large
labels:
alpha.eksctl.io/cluster-name: development
alpha.eksctl.io/nodegroup-name: ng-4aba8a47
maxSize: 2
minSize: 2
name: ng-4aba8a47
privateNetworking: false
securityGroups:
withLocal: null
withShared: null
ssh:
allow: false
enableSsm: false
publicKeyPath: ""
tags:
alpha.eksctl.io/nodegroup-name: ng-4aba8as47
alpha.eksctl.io/nodegroup-type: managed
volumeIOPS: 3000
volumeSize: 80
volumeThroughput: 125
volumeType: gp3
metadata:

Dry Run 4

Eksctl User Guide Amazon EKS

name: development
region: us-west-2
version: "1.24"

privateCluster:
enabled: false
vpc:

autoAllocateIPv6: false
cidr: 192.168.0.0/16
clusterEndpoints:

privateAccess: false

publicAccess: true
manageSharedNodeSecurityGroupRules: true
nat:

gateway: Single

The generated ClusterConfig can then be passed to eksctl create cluster:

eksctl create cluster -f generated-cluster.yaml

When a ClusterConfig file is passed with --dry-run, eksctl will output a ClusterConfig file
containing the values set in the file.

One-off Options in eksctl

There are certain one-off options that cannot be represented in the ClusterConfigfile, e.g., --
install-vpc-controllers.

It is expected that:
eksctl create cluster --<options...> --dry-run > config.yaml

followed by:

eksctl create cluster -f config.yaml

would be equivalent to running the first command without --dry-run.

eksctl therefore disallows passing options that cannot be represented in the config file when - -
dry-runis passed.

One-off Options in eksctl 5

Eksctl User Guide Amazon EKS

/A Important

If you need to pass an AWS profile, set the AWS_PROFILE environment variable, instead of
passing the --profile CLI option.

One-off Options in eksctl 6

Eksctl User Guide Amazon EKS

Tutorial

This topic walks you through installing and configuring eksctl, then using it to create an Amazon
EKS cluster.

Step 1: Install eksctl

Complete the following steps to download and install the latest version of eksctl on your Linux or
macOS device:

To install eksctl with Homebrew
1. (Prerequisite) Install Homebrew.
2. Add the AWS tap:

brew tap aws/tap

3. Install eksctl

brew install aws/tap/eksctl

Before using eksctl, complete these configuration steps:

1. Install prerequisites:

« Install AWS CLI version 2.x or later.

« Install kubectl using Homebrew:

brew install kubernetes-cli

2. Configure AWS credentials in your environment:

aws configure

3. Verify AWS CLI configuration:

aws sts get-caller-identity

Step 1: Install eksctl 7

https://brew.sh/
https://docs.aws.eu/cli/latest/userguide/getting-started-install.html
https://formulae.brew.sh/formula/kubernetes-cli
https://docs.aws.eu/cli/latest/userguide/cli-chap-configure.html

Eksctl User Guide Amazon EKS

Step 2: Create cluster config file

Create a cluster configuration file using these steps:

1. Create a new file named cluster.yaml:

touch cluster.yaml

2. Add the following basic cluster configuration:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: basic-cluster
region: us-west-2

nodeGroups:
- name: ng-1
instanceType: m5.large
desiredCapacity: 2
minSize: 1
maxSize: 3
ssh:
allow: false
3. Customize the configuration:
« Update the region to match your desired AWS region.
» Modify the instanceType based on your workload requirements.
» Adjust the desiredCapacity, minSize, and maxSize according to your needs.

4. Validate the configuration file:

eksctl create cluster -f cluster.yaml --dry-run

Step 3: Create cluster

Follow these steps to create your EKS cluster:

1. Create the cluster using the configuration file:

Step 2: Create cluster config file 8

Eksctl User Guide Amazon EKS

eksctl create cluster -f cluster.yaml

2. Wait for cluster creation (this typically takes 15-20 minutes).

3. Verify cluster creation:

eksctl get cluster

4. Configure kubectl to use your new cluster:

aws eks update-kubeconfig --name basic-cluster --region us-west-2

5. Verify cluster connectivity:

kubectl get nodes

Your cluster is now ready to use.

Optional: Delete Cluster

Remember to delete the cluster when you're done to avoid unnecessary charges:

eksctl delete cluster -f cluster.yaml

(@ Note

Cluster creation can incur AWS charges. Make sure to review the Amazon EKS pricing before
creating a cluster.

Next Steps

» Configure Kubectl to connect to the cluster

» Deploy a sample app

Optional: Delete Cluster 9

https://aws.eu/eks/pricing/

Eksctl User Guide Amazon EKS

Installation options for Eksctl

eksctl is available to install from official releases as described below. We recommend that you
install eksctl from only the official GitHub releases. You may opt to use a third-party installer, but
please be advised that AWS does not maintain nor support these methods of installation. Use them
at your own discretion.

Prerequisite

You will need to have AWS API credentials configured. What works for AWS CLI or any other tools
(kops, Terraform, etc.) should be sufficient. You can use ~/.aws/credentials file or environment

variables. For more information, see the AWS CLI Reference.

You will also need AWS IAM Authenticator for Kubernetes command (either aws-iam-
authenticator or aws eks get-token (available in version 1.16.156 or greater of AWS CLI) in
your PATH.

The IAM account used for EKS cluster creation should have these minimal access levels.

AWS Service Access Level

CloudFormation Full Access

EC2 Full: Tagging Limited: List, Read, Write

EC2 Auto Scaling Limited: List, Write

EKS Full Access

IAM Limited: List, Read, Write, Permissions
Management

Systems Manager Limited: List, Read

For Unix

To download the latest release, run:

Prerequisite 10

https://docs.aws.eu/cli/latest/userguide/cli-config-files.html
https://docs.aws.eu/cli/latest/userguide/cli-environment.html
https://docs.aws.eu/cli/latest/userguide/cli-environment.html
https://docs.aws.eu/cli/latest/userguide/cli-environment.html
https://github.com/kubernetes-sigs/aws-iam-authenticator

Eksctl User Guide

Amazon EKS

for ARM systems, set ARCH to: “arm64’, “armve or “armv7’
ARCH=amd64
PLATFORM=$(uname -s)_$ARCH

curl -sLO "https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_
$PLATFORM. tar.gz"

(Optional) Verify checksum
curl -sL "https://github.com/eksctl-io/eksctl/releases/latest/download/
eksctl_checksums.txt" | grep $PLATFORM | sha256sum --check

tar -xzf eksctl_$PLATFORM.tar.gz -C /tmp && rm eksctl_$PLATFORM.tar.gz

sudo install -m @755 /tmp/eksctl /usr/local/bin && rm /tmp/eksctl

For Windows

Direct download (latest release):

AMDG64/x86_64
ARMVE
ARMv7
ARM64

Make sure to unzip the archive to a folder in the PATH variable.

Optionally, verify the checksum:

1. Download the checksum file: latest

2. Use Command Prompt to manually compare CertUtil's output to the checksum file

downloaded.

REM Replace amd64 with armv6, armv7 or arm64
CertUtil -hashfile eksctl_Windows_amd64.zip SHA256

3. Using PowerShell to automate the verification using the -eq operator to get a True or False

result:

Replace amd64 with armv6, armv7 or arm64

For Windows

11

https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_windows_amd64.zip
https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_windows_armv6.zip
https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_windows_armv7.zip
https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_windows_arm64.zip
https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_checksums.txt

Eksctl User Guide Amazon EKS

(Get-FileHash -Algorithm SHA256 .\eksctl_Windows_amd64.zip).Hash -eq ((Get-Content .
\eksctl_checksums.txt) -match 'eksctl_Windows_amd64.zip' -split ' ')[0]

Using Git Bash:

for ARM systems, set ARCH to: “arm64°, “armvée or “armv7’
ARCH=amd64
PLATFORM=windows_$ARCH

curl -sLO "https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_
$PLATFORM. zip"

(Optional) Verify checksum
curl -sL "https://github.com/eksctl-io/eksctl/releases/latest/download/
eksctl_checksums.txt" | grep $PLATFORM | sha256sum --check

unzip eksctl_$PLATFORM.zip -d $HOME/bin

rm eksctl_$PLATFORM.zip

The eksctl executable is placed in $HOME /bin, which is in $PATH from Git Bash.

Homebrew

You can use Homebrew to install software on MacOS and Linux.
AWS maintains a Homebrew tap including eksctl.

For more information about the Homebrew tap, see the project on Github and the Homebrew
formula for eksctl.

To install eksctl with Homebrew
1. (Prerequisite) Install Homebrew
2. Add the AWS tap

brew tap aws/tap

3. Install eksctl

Using Git Bash: 12

https://github.com/aws/homebrew-tap
https://github.com/aws/homebrew-tap/blob/master/Formula/eksctl.rb
https://github.com/aws/homebrew-tap/blob/master/Formula/eksctl.rb
https://brew.sh/

Eksctl User Guide Amazon EKS

brew install aws/tap/eksctl

Docker

For every release and RC a container image is pushed to ECR repository public.ecr.aws/
eksctl/eksctl. Learn more about the usage on ECR Public Gallery - eksctl. For example,

docker run --rm -it public.ecr.aws/eksctl/eksctl version

Shell Completion

Bash

To enable bash completion, run the following, or putitin ~/.bashrc or ~/.profile:

. <(eksctl completion bash)

Zsh

For zsh completion, please run:

mkdir -p ~/.zsh/completion/
eksctl completion zsh > ~/.zsh/completion/_eksctl

and put the following in ~/.zshrc:
fpath=($fpath ~/.zsh/completion)

Note if you're not running a distribution like oh-my-zsh you may first have to enable
autocompletion (and put in ~/. zshrc to make it persistent):

autoload -U compinit
compinit

Fish

The below commands can be used for fish auto completion:

Docker 13

https://gallery.ecr.aws/eksctl/eksctl

Eksctl User Guide Amazon EKS

mkdir -p ~/.config/fish/completions
eksctl completion fish > ~/.config/fish/completions/eksctl.fish

Powershell

The below command can be referred for setting it up. Please note that the path might be different
depending on your system settings.

eksctl completion powershell > C:\Users\Documents\WindowsPowerShell\Scripts\eksctl.psl

Updates

/A Important

If you install eksctl by directly downloading it (not using a package manager) you need to
manually update it.

Powershell 14

Eksctl User Guide Amazon EKS

Clusters

This chapter covers creating and configuring EKS clusters using eksctl. It also includes add-ons and
EKS Auto Mode.

Topics:

the section called “EKS Access Entries”

« Simplify Kubernetes RBAC management by replacing aws-auth ConfigMap with EKS access
entries

« Migrate existing 1AM identity mappings from aws-auth ConfigMap to access entries
» Configure cluster authentication modes and control cluster creator admin permissions

the section called “"Default add-on updates”

» Keep clusters secure by updating default EKS add-ons on older clusters

the section called “Addons”

« Automate routine tasks for installing, updating, and removing add-ons.

« Amazon EKS Add-ons include AWS add-ons, open source community add-ons, and
marketplace add-ons.

the section called “EKS Auto Mode"

» Reduce operational overhead by letting AWS manage your EKS infrastructure
» Configure custom node pools instead of default general-purpose and system pools
» Convert existing EKS clusters to use Auto Mode

the section called “CloudWatch logging”

« Troubleshoot cluster issues by enabling logs for specific EKS control plane components
« Configure log retention periods for EKS cluster logs
» Modify existing cluster logging settings using eksctl commands

the section called “Cluster upgrades”

« Maintain security and stability by safely upgrading EKS control plane versions
» Roll out upgrades across nodegroups by replacing old groups with new ones
« Update default cluster add-ons

the section called “Creating and managing clusters”

Topics: 15

Eksctl User Guide Amazon EKS

« Start quickly with basic EKS clusters using default managed nodegroups
» Create customized clusters using config files with specific configurations
» Deploy clusters in existing VPCs with private networking and custom IAM policies

 the section called “"Configure kubelet”

« Prevent node resource starvation by configuring kubelet and system daemon reservations
« Customize eviction thresholds for memory and filesystem availability
» Enable or disable specific kubelet feature gates across node groups

+ the section called “EKS Connector”

» Centralize management of hybrid Kubernetes deployments through EKS Console
» Configure IAM roles and permissions for external cluster access
« Remove external clusters and cleanup associated AWS resources

« the section called “"EKS Fully-Private Cluster”

» Meet security requirements with fully-private EKS clusters having no outbound internet access
» Configure private access to AWS services through VPC endpoints
» Create and manage private nodegroups with explicit networking settings

« the section called “Karpenter Support”

« Automate node provisioning
» Create custom Karpenter provisioner configurations
« Set up Karpenter with spot instance interruption handling

« the section called “Amazon EMR"

« Create IAM identity mapping between EMR and EKS cluster

« the section called “"EKS Fargate Support”

» Define custom Fargate profiles for pod scheduling
« Manage Fargate profiles through creation and configuration updates

+ the section called “Non eksctl-created clusters”

» Standardize management of clusters created outside eksctl
» Use eksctl commands on existing non-eksctl clusters

« the section called “Enable Zonal Shift”

« Improve application availability by enabling rapid zone failover capabilities

Topics: 16
Op-csConﬁgure zonal shift on new EKS cluster deployments

Eksctl User Guide Amazon EKS

« Enable zonal shift features on existing EKS clusters

Creating and managing clusters

This topic covers how to create and delete EKS clusters using Eksctl. You can create clusters with a
CLI command, or by creating a cluster configuration YAML file.

Creating a simple cluster

Create a simple cluster with the following command:

eksctl create cluster

That will create an EKS cluster in your default region (as specified by your AWS CLI configuration)
with one managed nodegroup containing two mb5.large nodes.

eksctl now creates a managed nodegroup by default when a config file isn't used. To create a self-
managed nodegroup, pass --managed=false to eksctl create cluster oreksctl create
nodegroup.

Considerations

« When creating clusters in us-east-1, you might encounter an
UnsupportedAvailabilityZoneException. If this happens, copy the suggested zones and
pass the --zones flag, for example: eksctl create cluster --region=us-east-1 --
zones=us-east-la,us-east-1b,us-east-1d. This issue may occur in other regions but is
less common. In most cases, you won't need to use the --zone flag.

Create cluster using config file

You can create a cluster using a config file instead of flags.

First, create cluster.yaml file:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

Creating and managing clusters 17

Eksctl User Guide Amazon EKS

metadata:
name: basic-cluster
region: eu-north-1

nodeGroups:
- name: ng-1
instanceType: m5.large
desiredCapacity: 10
volumeSize: 80
ssh:
allow: true # will use ~/.ssh/id_rsa.pub as the default ssh key
- name: ng-2
instanceType: m5.xlarge
desiredCapacity: 2
volumeSize: 100
ssh:
publicKeyPath: ~/.ssh/ec2_id_rsa.pub

Next, run this command:

eksctl create cluster -f cluster.yaml

This will create a cluster as described.

If you needed to use an existing VPC, you can use a config file like this:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: cluster-in-existing-vpc
region: eu-north-1

vpc:
subnets:
private:
eu-north-la: { id: subnet-0ff156e0c4ab6d300c }
eu-north-1b: { id: subnet-0549cdab573695c03 }
eu-north-1c: { id: subnet-0426fb4a607393184 }
nodeGroups:

- name: ng-l-workers
labels: { role: workers }

Create cluster using config file 18

Eksctl User Guide

Amazon EKS

instanceType: m5.xlarge

desiredCapacity: 10

privateNetworking: true
- name: ng-2-builders

labels: { role: builders }
instanceType: m5.2xlarge
desiredCapacity: 2

privateNetworking: true

iam:

withAddonPolicies:
imageBuilder: true

The cluster name or nodegroup name must contain only alphanumeric characters (case-sensitive)

and hyphens. It must start with an alphabetic character and can’t exceed 128 characters, or you

will receive a validation error. For more information, see Create a stack from the CloudFormation

console in the AWS CLoudFormation user guide.

Update kubeconfig for new cluster

After the cluster has been created, the appropriate kubernetes configuration will be added to your

kubeconfig file. This is, the file that you have configured in the environment variable KUBECONFIG

or ~/.kube/config by default. The path to the kubeconfig file can be overridden using the - -

kubeconfig flag.

Other flags that can change how the kubeconfig file is written:

flag

--kubeconfig

--set-kubeconfig-c
ontext

type

string

bool

use

path to write
kubeconfig (incompat
ible with --auto-ku
beconfig)

if true then current-
context will be set
in kubeconfig; if a
context is already
set then it will be
overwritten

default value

$KUBECONFIG or
~/.kube/config

true

Update kubeconfig for new cluster

19

https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/cfn-using-console-create-stack-parameters.html
https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/cfn-using-console-create-stack-parameters.html

Eksctl User Guide Amazon EKS

flag type use default value

--auto-kubeconfig bool save kubeconfig file true
by cluster name

--write-kubeconfig bool toggle writing of true
kubeconfig

Delete cluster

To delete this cluster, run:

eksctl delete cluster -f cluster.yaml

/A Warning

Use the --wait flag with delete operations to ensure deletion errors are properly reported.

Without the --wait flag, eksctl will only issue a delete operation to the cluster’'s CloudFormation
stack and won't wait for its deletion. In some cases, AWS resources using the cluster or its VPC may
cause cluster deletion to fail. If your delete fails or you forget the wait flag, you may have to go to
the CloudFormation GUI and delete the eks stacks from there.

/A Warning

PDB policies may block node removal during cluster deletion.

When deleting a cluster with nodegroups, Pod Disruption Budget (PDB) policies can prevent nodes
from being removed successfully. For example, clusters with aws-ebs-csi-driver installed
typically have two pods with a PDB policy allowing only one pod to be unavailable at a time,
making the other pod unevictable during deletion. To successfully delete the cluster in these
scenarios, use the disable-nodegroup-eviction flag to bypass PDB policy checks:

eksctl delete cluster -f cluster.yaml --disable-nodegroup-eviction

Delete cluster 20

Eksctl User Guide Amazon EKS

See the examples/ directory in the eksctl GitHub repo for more sample config files.
Dry Run
The dry-run feature enables generating a ClusterConfig file that skips cluster creation and outputs

a ClusterConfig file that represents the supplied CLI options and contains the default values set by
eksctl.

More info can be found on the Dry Run page.

EKS Auto Mode

eksctl supports EKS Auto Mode, a feature that extends AWS management of Kubernetes clusters

beyond the cluster itself, to allow AWS to also set up and manage the infrastructure that enables
the smooth operation of your workloads. This allows you to delegate key infrastructure decisions
and leverage the expertise of AWS for day-to-day operations. Cluster infrastructure managed by
AWS includes many Kubernetes capabilities as core components, as opposed to add-ons, such as
compute autoscaling, pod and service networking, application load balancing, cluster DNS, block
storage, and GPU support.

Creating an EKS cluster with Auto Mode enabled

eksctl has added a new autoModeConfig field to enable and configure Auto Mode. The shape
of the autoModeConfig field is

autoModeConfig:
defaults to false
enabled: boolean
optional, defaults to [general-purpose, system].
To disable creation of nodePools, set it to the empty array ([]).
nodePools: []string
optional, eksctl creates a new role if this is not supplied
and nodePools are present.
nodeRoleARN: string

If autoModeConfig.enabled is true, eksctl creates an EKS cluster by passing
computeConfig.enabled: true,
kubernetesNetworkConfig.elasticLoadBalancing.enabled: true, and

Dry Run 21

https://github.com/eksctl-io/eksctl/tree/master/examples
https://docs.aws.eu/eks/latest/userguide/automode.html

Eksctl User Guide Amazon EKS

storageConfig.blockStorage.enabled: true to the EKS API, enabling management of
data plane components like compute, storage and networking.

To create an EKS cluster with Auto Mode enabled, set autoModeConfig.enabled: true, asin

auto-mode-cluster.yaml
apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig
metadata:
name: auto-mode-cluster
region: us-west-2

autoModeConfig:
enabled: true

eksctl create cluster -f auto-mode-cluster.yaml

eksctl creates a node role to use for nodes launched by Auto Mode. eksctl also creates the
general-purpose and system node pools. To disable creation of the default node pools, e.g., to
configure your own node pools that use a different set of subnets, set nodePools: [], asin

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig
metadata:
name: auto-mode-cluster
region: us-west-2

autoModeConfig:
enabled: true
nodePools: [] # disables creation of default node pools.

Updating an EKS cluster to use Auto Mode

To update an existing EKS cluster to use Auto Mode, run

cluster.yaml
apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig
metadata:
name: cluster
region: us-west-2

Updating an EKS cluster to use Auto Mode 22

Eksctl User Guide Amazon EKS

autoModeConfig:
enabled: true

eksctl update auto-mode-config -f cluster.yaml

(® Note

If the cluster was created by eksctl, and it uses public subnets as cluster subnets, Auto
Mode will launch nodes in public subnets. To use private subnets for worker nodes
launched by Auto Mode, update the cluster to use private subnets.

Disabling Auto Mode

To disable Auto Mode, set autoModeConfig.enabled: false andrun

cluster.yaml
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig
metadata:
name: auto-mode-cluster
region: us-west-2

autoModeConfig:
enabled: false

eksctl update auto-mode-config -f cluster.yaml

Further information

+ EKS Auto Mode

EKS Access Entries

You can use eksctl to manage EKS Access Entries. Use access entries to grant Kubernetes
permissions to AWS IAM Identities. For example, you might grant a developer role permission to
read Kubernetes resources in a cluster.

Disabling Auto Mode 23

https://docs.aws.eu/eks/latest/userguide/automode.html

Eksctl User Guide Amazon EKS

This topic covers how to use eksctl to manage access entries. For general information about access
entries, see Grant |IAM users access to Kubernetes with EKS access entries.

You can attach Kubernetes access policies defined by AWS, or assocoiate an IAM Identity with a
Kubernetes group.

For more information about the available pre-defined policies, see Associate access policies with

access entries.

If you need to define customer Kubernetes policies, associate the IAM Identity with a Kubernetes
group, and grant permissions to that group.

Cluster authentication mode

You can only use access entries if the authentication mode of the cluster permits it.

For more information, see Set Cluster Authentication Mode

Set authentication mode with a YAML file

eksctl has added a new accessConfig.authenticationMode field under ClusterConfig,
which can be set to one of the following three values:

o CONFIG_MAP - default in EKS API - only aws -auth ConfigMap will be used
« API - only access entries APl will be used

o API_AND_CONFIG_MAP - default in eksctl - both aws-auth ConfigMap and access entries API
can be used

Set authentication mode in ClusterConfig YAML:

accessConfig:
authenticationMode: <>

Update authentication mode with a command

If you want to use access entries on an already existing, non-eksctl created, cluster, where
CONFIG_MAP option is used, the user will need to first set authenticationMode to
API_AND_CONFIG_MAP. For that, eksctl has introduced a new command for updating the cluster
authentication mode, which works both with CLI flags e.g.

Cluster authentication mode 24

https://docs.aws.eu/eks/latest/userguide/access-entries.html
https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions
https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions
https://docs.aws.eu/eks/latest/userguide/grant-k8s-access.html#set-cam

Eksctl User Guide Amazon EKS

eksctl utils update-authentication-mode --cluster my-cluster --authentication-mode
API_AND_CONFIG_MAP

Access Entry Resources

Access entries have a type, such as STANDARD or EC2_LINUX. The type depends on how you are
using the access entry.

« The standard type is for granting Kubernetes permissions to IAM Users and IAM Roles.

« For example, you can view Kubernetes resources in the AWS console by attaching an access
policy to the Role or User you use to access the console.

« The EC2_LINUX and EC2_WINDOWS types are for granting Kubernetes permissions to EC2
instances. Instances use these permissions to join the cluster.

For more information about the types of access entries, see Create access entries

IAM Entities

You can use access entries to grant Kubernetes permissions to IAM Identities such as IAM Users and
IAM Roles.

Use the accessConfig.accessEntries field to associate the ARN of an IAM resource with a
Access Entries EKS API. For example:

accessConfig:
authenticationMode: API_AND_CONFIG_MAP
accessEntries:
- principalARN: arn:aws:iam::111122223333:user/my-user-name
type: STANDARD
kubernetesGroups: # optional Kubernetes groups
- groupl # groups can used to give permissions via RBAC
- group2

- principalARN: arn:aws:iam::111122223333:role/role-name-1
accessPolicies: # optional access polices
- policyARN: arn:aws:eks::aws:cluster-access-policy/AmazonEKSViewPolicy
accessScope:
type: namespace
namespaces:
- default

Access Entry Resources 25

https://docs.aws.eu/eks/latest/userguide/creating-access-entries.html
https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions

Eksctl User Guide Amazon EKS

- my-namespace
- dev-*

- principalARN: arn:aws:iam::111122223333:role/admin-role
accessPolicies: # optional access polices
- policyARN: arn:aws:eks::aws:cluster-access-policy/AmazonEKSClusterAdminPolicy
accessScope:
type: cluster

- principalARN: arn:aws:iam::111122223333:role/role-name-2
type: EC2_LINUX

In addition to associating EKS policies, one can also specify the Kubernetes groups to which an IAM
entity belongs, thus granting permissions via RBAC.

Managed nodegroups and Fargate

The integration with access entries for these resources will be achieved behind the scenes, by the
EKS API. Newly created managed node groups and Fargate pods will create API access entries,
rather than using pre-loaded RBAC resources. Existing node groups and Fargate pods will not be
changed, and continue to rely on the entries in the aws-auth config map.

Self-managed nodegroups

Each access entry has a type. For authorizing self-managed nodegroups, eksctl will create a
unique access entry for each nodegroup with the principal ARN set to the node role ARN and type
set to either EC2_LINUX or EC2_WINDOWS depending on nodegroup amiFamily.

When creating your own access entries, you can also specify EC2_LINUX (for an IAM role used with
Linux or Bottlerocket self-managed nodes), EC2_WINDOWS (for an IAM roles used with Windows
self-managed nodes), FARGATE_LINUX (for an IAM roles used with AWS Fargate (Fargate)), or
STANDARD as a type. If you don't specify a type, the default type is set to STANDARD.

(® Note

When deleting a nodegroup created with a pre-existing instanceRoleARN, it is the user’s
responsibility to delete the corresponding access entry when no more nodegroups are
associated with it. This is because eksctl does not attempt to find out if an access entry is
still in use by non-eksctl created self-managed nodegroups as it is a complicated process.

Access Entry Resources 26

Eksctl User Guide Amazon EKS

Create access entry

This can be done in two different ways, either during cluster creation, specifying the desired access
entries as part of the config file and running:

eksctl create cluster -f config.yaml
OR post cluster creation, by running:

eksctl create accessentry -f config.yaml

For an example config file for creating access entries, see 40-access-entries.yaml in the eksctl
GitHub repo.

Get access entry

The user can retieve all access entries associated with a certain cluster by running one of the
following:

eksctl get accessentry -f config.yaml

OR

eksctl get accessentry --cluster my-cluster

Alternatively, to retrieve only the access entry corresponding to a certain IAM entity one shall use
the --principal-arn flag. e.q.

eksctl get accessentry --cluster my-cluster --principal-arn
arn:aws:iam::111122223333:user/admin

Delete access entry

To delete a single access entry at a time use:

eksctl delete accessentry --cluster my-cluster --principal-arn
arn:aws:iam::111122223333:user/admin

Create access entry 27

https://github.com/eksctl-io/eksctl/blob/main/examples/40-access-entries.yaml

Eksctl User Guide Amazon EKS

To delete multiple access entries, use the --config-file flag and specify all the
principalARN’s corresponding with the access entries, under the top-level accessEntry field,
e.g.

accessEntry:
- principalARN: arn:aws:iam::111122223333:user/my-user-name
- principalARN: arn:aws:iam::111122223333:ro0le/role-name-1
- principalARN: arn:aws:iam::111122223333:ro0le/admin-role

eksctl delete accessentry -f config.yaml

Migrate from aws-auth ConfigMap

The user can migrate their existing IAM identities from aws-auth configmap to access entries by
running the following:

eksctl utils migrate-to-access-entry --cluster my-cluster --target-authentication-mode
<API or API_AND_CONFIG_MAP>

When --target-authentication-mode flag is set to API, authentication mode is switched
to API mode (skipped if already in API mode), IAM identity mappings will be migrated to access
entries, and aws -auth configmap is deleted from the cluster.

When --target-authentication-mode flag is set to API_AND_CONFIG_MAP, authentication
mode is switched to API_AND_CONFIG_MAP mode (skipped if already in API_AND_CONFIG_MAP
mode), IAM identity mappings will be migrated to access entries, but aws-auth configmap is
preserved.

® Note

When --target-authentication-mode flag is set to API, this command will not
update authentication mode to API mode if aws-auth configmap has one of the below
constraints.

» There is an Account level identity mapping.

Migrate from aws-auth ConfigMap 28

Eksctl User Guide Amazon EKS

« One or more Roles/Users are mapped to the kubernetes group(s) which begin with prefix
system: (except for EKS specific groups i.e. system:masters, system:bootstrappers,
system:nodes etc).

« One or more IAM identity mapping(s) are for a [Service Linked Role](link:IAM/latest/UserGuide/
using-service-linked-roles.html).

Disable cluster creator admin permissions

eksctl has added a new field
accessConfig.bootstrapClusterCreatorAdminPermissions: boolean that, when set to
false, disables granting cluster-admin permissions to the IAM identity creating the cluster. i.e.

add the option to the config file:

accessConfig:
bootstrapClusterCreatorAdminPermissions: false

and run:

eksctl create cluster -f config.yaml

Non eksctl-created clusters
You can run eksctl commands against clusters which were not created by eksctl.

(® Note

Eksctl can only support unowned clusters with names which are compatible with AWS
CloudFormation. Any cluster names which do not match this will fail CloudFormation API
validation check.

Supported commands

The following commands can be used against clusters created by any means other than eksctl.
The commands, flags and config file options can be used in exactly the same way.

Disable cluster creator admin permissions 29

Eksctl User Guide

Amazon EKS

If we have missed some functionality, please let us know.

v Create:
v eksctl
v eksctl
v eksctl
v eksctl
v Get:
v eksctl
v eksctl
v eksctl
v eksctl
v Delete:
v eksctl
v eksctl
v eksctl
v eksctl
v eksctl
v Upgrade:
v eksctl
v eksctl
v Set/Unset:
v eksctl
v eksctl
v Scale:
v eksctl
v Drain:
v eksctl
v Enable:

Create
Create
Create

Create

nodegroup (see note below)

fargateprofile
iamserviceaccount

iamidentitymapping

get clusters/cluster

get fargateprofile

get nodegroup

get labels

delete
delete
delete
delete
delete

cluster

nodegroup
fargateprofile
iamserviceaccount

iamidentitymapping

upgrade cluster

upgrade nodegroup

set labels

unset labels

scale nodegroup

drain nodegroup

v eksctl enable profile

L/ eksct]l enable repo

Supported commands

30

https://github.com/eksctl-io/eksctl/issues

Eksctl User Guide

Amazon EKS

v Utils:

v eksctl
v eksctl
v eksctl
v eksctl
v eksctl
v eksctl
v eksctl
v eksctl
v eksctl
v eksctl
v eksctl

utils
utils
utils
utils
utils
utils
utils
utils
utils
utils

utils

associate-iam-oidc-provider
describe-stacks
install-vpc-controllers
nodegroup-health
set-public-access-cidrs
update-cluster-endpoints
update-cluster-logging
write-kubeconfig
update-coredns
update-aws-node

update-kube-proxy

Creating nodegroups

eksctl create nodegroup is the only command which requires specific input from the user.

Since users can create their clusters with any networking configuration they like, for the time-

being, eksctl will not attempt to retrieve or guess these values. This may change in the future as

we learn more about how people are using this command on non eksctl-created clusters.

This means that in order to create nodegroups or managed nodegroups on a cluster which was not

created by eksctl, a config file containing VPC details must be provided. At a minimum:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:

name: non-eksctl-created-cluster

region: us-west-2

vpc:

id: "vpc-12345"

securityGroup:
subnets:
private:

"sg-12345"

this is the ControlPlaneSecurityGroup

Creating nodegroups

31

Eksctl User Guide Amazon EKS

privatel:

id: "subnet-12345"
private2:

id: "subnet-67890"

public:

publicl:

id: "subnet-12345"
public2:

id: "subnet-67890"

Fore more information on VPC configuration options, see Networking.

Registering non-EKS clusters with EKS Connector

You can use the EKS Connector to view clusters outside of AWS in the EKS Console. This process
requires registering the cluster with EKS and running the EKS Connector agent on the external

Kubernetes cluster.

eksctl simplifies registering non-EKS clusters by creating the required AWS resources and
generating Kubernetes manifests for EKS Connector to apply to the external cluster.

Register Cluster

To register or connect a non-EKS Kubernetes cluster, run

eksctl register cluster --name <name> --provider <provider>

2021-08-19 13:47:26 [#] creating IAM role "eksctl-20210819194112186040"

2021-08-19 13:47:26 [#] registered cluster "<name>" successfully

2021-08-19 13:47:26 [#] wrote file eks-connector.yaml to <current directory>

2021-08-19 13:47:26 [#] wrote file eks-connector-clusterrole.yaml to <current
directory>

2021-08-19 13:47:26 [#] wrote file eks-connector-console-dashboard-full-access-

group.yaml to <current directory>

2021-08-19 13:47:26 [!] note: "eks-connector-clusterrole.yaml" and "eks-connector-

console-dashboard-full-access-group.yaml" give full EKS Console access to IAM identity
"<aws-arn>", edit if required; read https://eksctl.io/usage/eks-connector for more
info

2021-08-19 13:47:26 [#] =run “kubectl apply -f eks-connector.yaml,eks-connector-

clusterrole.yaml, eks-connector-console-dashboard-full-access-group.yaml™ before
<expiry> to connect the cluster

EKS Connector 32

https://docs.aws.eu/eks/latest/userguide/eks-connector.html

Eksctl User Guide Amazon EKS

This command will register the cluster and write three files that contain the Kubernetes manifests
for EKS Connector that must be applied to the external cluster before the registration expires.

(® Note

eks-connector-clusterrole.yaml and eks-connector-console-dashboard-
full-access-clusterrole.yaml give get and 1ist permissions for Kubernetes
resources in all namespaces to the calling IAM identity and must be edited accordingly
if required before applying them to the cluster. To configure more restricted access, see
Granting access to a user to view a cluster.

To provide an existing IAM role to use for EKS Connector, pass it via --role-arnasin:

eksctl register cluster --name <name> --provider <provider> --role-arn=<role-arn>

If the cluster already exists, eksctl will return an error.

Deregister cluster

To deregister or disconnect a registered cluster, run

eksctl deregister cluster --name <name>

2021-08-19 16:04:09 [#] unregistered cluster "<name>" successfully

2021-08-19 16:04:09 [#] run “kubectl delete namespace eks-connector’ and “kubectl
delete -f eks-connector-binding.yaml’ on your cluster to remove EKS Connector
resources

This command will deregister the external cluster and remove its associated AWS resources, but
you are required to remove the EKS connector Kubernetes resources from the cluster.

Further information

« EKS Connector

Customizing kubelet configuration

System resources can be reserved through the configuration of the kubelet. This is recommended,
because in the case of resource starvation the kubelet might not be able to evict pods

Deregister cluster 33

https://docs.aws.eu/eks/latest/userguide/connector-grant-access.html
https://docs.aws.eu/eks/latest/userguide/eks-connector.html

Eksctl User Guide Amazon EKS

and eventually make the node become NotReady. To do this, config files can include the
kubeletExtraConfig field which accepts a free form yaml that will be embedded into the
kubelet.yaml.

Some fields in the kubelet.yaml are set by eksctl and therefore are not overwritable, such as the
address, clusterDomain, authentication, authorization, or serverTLSBootstrap.

The following example config file creates a nodegroup that reserves 300m vCPU, 300Mi of
memory and 1Gi of ephemeral-storage for the kubelet; 300m vCPU, 300Mi of memory and 1Giof
ephemeral storage for OS system daemons; and kicks in eviction of pods when there is less than
200Mi of memory available or less than 10% of the root filesystem.

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: dev-cluster-1
region: eu-north-1

nodeGroups:
- name: ng-1
instanceType: m5a.xlarge
desiredCapacity: 1
kubeletExtraConfig:
kubeReserved:
cpu: "300m"
memory: "300QMi"
ephemeral-storage: "1Gi"
kubeReservedCgroup: "/kube-reserved"
systemReserved:
cpu: "300m"
memory: "300Mi"
ephemeral-storage: "1Gi"

evictionHard:
memory.available: "200Mi"
nodefs.available: "10%"
featureGates:

RotateKubeletServerCertificate: true # has to be enabled, otherwise it will
be disabled

In this example, given instances of type m5a. x1arge which have 4 vCPUs and 16GiB of memory,
the Allocatable amount of CPUs would be 3.4 and 15.4 GiB of memory. It is important to

Configure kubelet 34

Eksctl User Guide Amazon EKS

know that the values specified in the config file for the the fields in kubeletExtraconfig
will completely overwrite the default values specified by eksctl. However, omitting one or more
kubeReserved parameters will cause the missing parameters to be defaulted to sane values
based on the aws instance type being used.

kubeReserved calculation

While it is generally recommended to configure a mixed instance NodeGroup

to use instances with the same CPU and RAM configuration; that's not a strict

requirement. Therefore the kubeReserved calculation uses the smallest instance in the
InstanceDistribution.InstanceTypes field. This way NodeGroups with disparate instance
types will not reserve too many resources on the smallest instance. However, this could lead to a
reservation that is too small for the largest instance type.

/A Warning

By default eksctl sets featureGates.RotateKubeletServerCertificate=true,
but when custom featureGates are provided, it will be unset. You should always include
featureGates.RotateKubeletServerCertificate=true, unless you have to disable
it.

CloudWatch logging

This topic explains how to configure Amazon CloudWatch logging for your EKS cluster’s control
plane components. CloudWatch logging provides visibility into your cluster’s control plane
operations, which is essential for troubleshooting issues, auditing cluster activities, and monitoring
the health of your Kubernetes components.

Enabling CloudWatch logging

CloudWatch logging for EKS control plane is not enabled by default due to data ingestion and
storage costs.

To enable control plane logging when cluster is created, you will need to define
cloudWatch.clusterLogging.enableTypes setting in your ClusterConfig (see below for
examples).

kubeReserved calculation 35

https://docs.aws.eu/eks/latest/userguide/control-plane-logs.html

Eksctl User Guide Amazon EKS

So if you have a config file with correct cloudWatch.clusterLogging.enableTypes setting,
you can create a cluster with eksctl create cluster --config-file=<path>.

If you have created a cluster already, you can use eksctl utils update-cluster-logging.

(@ Note

this command runs in plan mode by default, you will need to specify --approve flag to
apply the changes to your cluster.

If you are using a config file, run:

eksctl utils update-cluster-logging --config-file=<path>

Alternatively, you can use CLI flags.

To enable all types of logs, run:

eksctl utils update-cluster-logging --enable-types all
To enable audit logs, run:

eksctl utils update-cluster-logging --enable-types audit
To enable all but controllerManager logs, run:

eksctl utils update-cluster-logging --enable-types=all --disable-
types=controllerManager

If the api and scheduler log types were already enabled, to disable scheduler and enable
controllerManager at the same time, run:

eksctl utils update-cluster-logging --enable-types=controllerManager --disable-
types=scheduler

This will leave api and controllerManager as the only log types enabled.

Enabling CloudWatch logging 36

Eksctl User Guide Amazon EKS

To disable all types of logs, run:

eksctl utils update-cluster-logging --disable-types all

ClusterConfig Examples

In an EKS cluster, the enableTypes field under clusterlLogging can take a list of possible values
to enable the different types of logs for the control plane components.

The following are the possible values:

« api: Enables the Kubernetes API server logs.

« audit: Enables the Kubernetes audit logs.

« authenticator: Enables the authenticator logs.

« controllerManager: Enables the Kubernetes controller manager logs.

« scheduler: Enables the Kubernetes scheduler logs.

To learn more, see EKS documentation.

Disable all logs
To disable all types, use [] or remove the cloudWatch section completely.
Enable all logs

You can enable all types with "*" or "all". For example:

cloudwWatch:
clusterlLogging:
enableTypes: ["*"]

Enable one or more logs

You can enable a subset of types by listing the types you want to enable. For example:

cloudWatch:
clusterlLogging:

ClusterConfig Examples 37

https://docs.aws.eu/eks/latest/userguide/control-plane-logs.html

Eksctl User Guide Amazon EKS

enableTypes:
- "audit"
- "authenticator"

Log retention period

By default, logs are stored in CloudWatch Logs, indefinitely. You can specify the number of days for
which the control plane logs should be retained in CloudWatch Logs. The following example retains
logs for 7 days:

cloudWatch:
clusterlLogging:
logRetentionInDays: 7

Complete example

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: cluster-11
region: eu-west-2

nodeGroups:
- name: ng-1
instanceType: m5.large
desiredCapacity: 1

cloudWatch:
clusterlLogging:

enableTypes: ["audit", "authenticator"]
logRetentionInDays: 7

EKS Fully-Private Cluster

eksctl supports creation of fully-private clusters that have no outbound internet access and have
only private subnets. VPC endpoints are used to enable private access to AWS services.

This guide describes how to create a private cluster without outbound internet access.

EKS Fully-Private Cluster 38

Eksctl User Guide Amazon EKS

Creating a fully-private cluster

The only required field to create a fully-private cluster is privateCluster.enabled:

privateCluster:
enabled: true

Post cluster creation, eksctl commands that need access to the Kubernetes API server will have

to be run from within the cluster’s VPC, a peered VPC or using some other means like AWS Direct
Connect. eksctl commands that need access to the EKS APIs will not work if they're being run from
within the cluster's VPC. To fix this, create an interface endpoint for Amazon EKS to privately access
the Amazon Elastic Kubernetes Service (Amazon EKS) management APIs from your Amazon Virtual
Private Cloud (VPC). In a future release, eksctl will add support to create this endpoint so it does
not need to be manually created. Commands that need access to the OpenID Connect provider URL
will need to be run from outside of your cluster's VPC once you've enabled AWS PrivateLink for
Amazon EKS.

Creating managed nodegroups will continue to work, and creating self-managed nodegroups will
work as it needs access to the API server via the EKS interface endpoint if the command is run from
within the cluster’'s VPC, a peered VPC or using some other means like AWS Direct Connect.

(@ Note

VPC endpoints are charged by the hour and based on usage. More details about pricing can
be found at AWS PrivateLink pricing

/A Warning

Fully-private clusters are not supported in eu-south-1.

Configuring private access to additional AWS services

To enable worker nodes to access AWS services privately, eksctl creates VPC endpoints for the
following services:

« Interface endpoints for ECR (both ecr.api and ecr.dkr) to pull container images (AWS CNI
plugin etc)

Creating a fully-private cluster 39

https://docs.aws.eu/eks/latest/userguide/vpc-interface-endpoints.html
https://aws.amazon.com/about-aws/whats-new/2022/12/amazon-eks-supports-aws-privatelink/
https://aws.eu/privatelink/pricing/

Eksctl User Guide Amazon EKS

« A gateway endpoint for S3 to pull the actual image layers

« An interface endpoint for EC2 required by the aws-cloud-provider integration

« Aninterface endpoint for STS to support Fargate and IAM Roles for Services Accounts (IRSA)
« An interface endpoint for CloudWatch logging (1ogs) if CloudWatch logging is enabled

These VPC endpoints are essential for a functional private cluster, and as such, eksctl does not
support configuring or disabling them. However, a cluster might need private access to other AWS
services (e.g., Autoscaling required by the Cluster Autoscaler). These services can be specified in
privateCluster.additionalEndpointServices, which instructs eksctl to create a VPC
endpoint for each of them.

For example, to allow private access to Autoscaling and CloudWatch logging:

privateCluster:
enabled: true
additionalEndpointServices:
For Cluster Autoscaler

"autoscaling"
CloudWatch logging

+*

- Illogsll

The endpoints supported in additionalEndpointServices are autoscaling,
cloudformation and logs.

Skipping endpoint creations

If a VPC has already been created with the necessary AWS endpoints set up and linked to the
subnets described in the EKS documentation, eksctl can skip creating them by providing the
option skipEndpointCreation like this:

privateCluster:
enabled: true
skipEndpointCreation: true

This setting cannot be used together with additionalEndpointServices. It will skip all
endpoint creation. Also, this setting is only recommended if the endpoint <# subnet topology

is correctly set up. If subnet ids are correct, vpce routing is set up with prefix addresses, all the
necessary EKS endpoints are created and linked to the provided VPC. eksctl will not alter any of
these resources.

Configuring private access to additional AWS services 40

Eksctl User Guide Amazon EKS

Nodegroups

Only private nodegroups (both managed and self-managed) are supported in a fully-private cluster
because the cluster's VPC is created without any public subnets. The privateNetworking field
(nodeGroup[].privateNetworking and managedNodeGroup[) must be explicitly set. It is an
error to leave privateNetworking unset in a fully-private cluster.

nodeGroups:
- name: ngl
instanceType: m5.large
desiredCapacity: 2
privateNetworking must be explicitly set for a fully-private cluster
Rather than defaulting this field to “true’,
we require users to explicitly set it to make the behaviour
explicit and avoid confusion.
privateNetworking: true

managedNodeGroups:

- name: ml
instanceType: m5.large
desiredCapacity: 2
privateNetworking: true

Cluster Endpoint Access

A fully-private cluster does not support modifying clusterEndpointAccess during

cluster creation. It is an error to set either clusterEndpoints.publicAccess or
clusterEndpoints.privateAccess, as a fully-private cluster can have private access only, and
allowing modification of these fields can break the cluster.

User-supplied VPC and subnets

eksctl supports creation of fully-private clusters using a pre-existing VPC and subnets. Only private
subnets can be specified and it's an error to specify subnets under vpc.subnets.public.

eksctl creates VPC endpoints in the supplied VPC and modifies route tables for the supplied
subnets. Each subnet should have an explicit route table associated with it because eksctl does not
modify the main route table.

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

Nodegroups 41

Eksctl User Guide Amazon EKS

metadata:
name: private-cluster
region: us-west-2

privateCluster:
enabled: true
additionalEndpointServices:
- "autoscaling"

vpcC:
subnets:
private:

us-west-2b:

id: subnet-0818beec303f8419b
us-west-2c:

id: subnet-0d42ef09490805e2a
us-west-2d:

id: subnet-0da7418077077c5f9

nodeGroups:

- name: ngl

instanceType: m5.large

desiredCapacity: 2

privateNetworking must be explicitly set for a fully-private cluster

Rather than defaulting this field to true for a fully-private cluster, we require

users to explicitly set it

to make the behaviour explicit and avoid confusion.

privateNetworking: true

managedNodeGroups:

- name: ml
instanceType: m5.large
desiredCapacity: 2
privateNetworking: true

Managing a fully-private cluster

For all commands to work post cluster creation, eksctl will need private access to the EKS API
server endpoint, and outbound internet access (for EKS:DescribeCluster). Commands that do
not need access to the API server will be supported if eksctl has outbound internet access.

Managing a fully-private cluster 42

Eksctl User Guide Amazon EKS

Force-delete a fully-private cluster

Errors are likely to occur when deleting a fully-private cluster through eksctl since eksctl does not
automatically have access to all of the cluster’s resources. - -foxrce exists to solve this: it will force
delete the cluster and continue when errors occur.

Limitations

A limitation of the current implementation is that eksctl initially creates the cluster with both
public and private endpoint access enabled, and disables public endpoint access after all
operations have completed. This is required because eksctl needs access to the Kubernetes API
server to allow self-managed nodes to join the cluster and to support GitOps and Fargate. After
these operations have completed, eksctl switches the cluster endpoint access to private-only. This
additional update does mean that creation of a fully-private cluster will take longer than for a
standard cluster. In the future, eksctl may switch to a VPC-enabled Lambda function to perform
these API operations.

Outbound access via HTTP proxy servers

eksctl is able to talk to the AWS APIs via a configured HTTP(S) proxy server, however you will need
to ensure you set your proxy exclusion list correctly.

Generally, you will need to ensure that requests for the VPC endpoint for your cluster are not
routed via your proxies by setting an appropriate no_proxy environment variable including the
value .eks.amazonaws.com.

If your proxy server performs "SSL interception” and you are using IAM Roles for Service Accounts
(IRSA), you will need to ensure that you explicitly bypass SSL Man-in-the-Middle for the domain
oidc.<region>.amazonaws.com. Failure to do so will result in eksctl obtaining the incorrect
root certificate thumbprint for the OIDC provider, and the AWS VPC CNI plugin will fail to start due
to being unable to obtain IAM credentials, rendering your cluster inoperative.

Further information

+ EKS Private Clusters

Force-delete a fully-private cluster 43

https://docs.aws.eu/eks/latest/userguide/private-clusters.html

Eksctl User Guide Amazon EKS

Addons

This topic describes how to manage Amazon EKS Add-Ons for your Amazon EKS clusters using
eksctl. EKS Add-Ons is a feature that lets you enable and manage Kubernetes operational software
through the EKS API, simplifying the process of installing, configuring, and updating cluster add-
ons.

/A Warning

eksctl now installs default addons (vpc-cni, coredns, kube-proxy) as EKS addons instead
of self-managed addons. This means you should use eksctl update addon instead of
eksctl utils update-* commands for clusters created with eksctl v0.184.0 and above.

You can create clusters without any default networking addons when you want to use alternative
CNI plugins like Cilium and Calico.

EKS Add-ons now support receiving IAM permissions via EKS Pod Identity Associations, allowing
them to connect with AWS services outside of the cluster

Creating addons

Eksctl provides more flexibility for managing cluster addons:

In your config file, you can specify the addons you want and (if required) the role or policies to
attach to them:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig
metadata:
name: example-cluster
region: us-west-2

iam:
withOIDC: true

addons:

- name: vpc-cni
all below properties are optional
version: 1.7.5
tags:

Addons 44

Eksctl User Guide

Amazon EKS

team:

eks

you can specify at most one of:
attachPolicyARNs:

- arn:aws:iam::account:policy/AmazonEKS_CNI_Policy

or

serviceAccountRoleARN:

or

attachPolicy:
Statement:
- Effect: Allow
Action:

ec2:
ec2:
ec2:
:DeleteNetworkInterface

ec?2

ec2:
ec2:
ec2:
ec2:
ec2:
ec2:
ec2:

AssignPrivateIpAddresses
AttachNetworkInterface
CreateNetworkInterface

DescribeInstances

DescribeTags
DescribeNetworkInterfaces
DescribelInstanceTypes
DetachNetworkInterface
ModifyNetworkInterfaceAttribute
UnassignPrivateIpAddresses

Resource: '*'

You can specify at most one of attachPolicy, attachPolicyARNs and

serviceAccountRoleARN.

arn:aws:iam: :account:role/AmazonEKSCNIAccess

If none of these are specified, the addon will be created with a role that has all recommended
policies attached.

(® Note

In order to attach policies to addons your cluster must have 0IDC enabled. If it's not

enabled we ignore any policies attached.

You can then either have these addons created during the cluster creation process:

eksctl create cluster -f config.yaml

Or create the addons explicitly after cluster creation using the config file or CLI flags:

Creating addons

45

Eksctl User Guide Amazon EKS

eksctl create addon -f config.yaml

eksctl create addon --name vpc-cni --version 1.7.5 --service-account-role-arn <role-
arn>

eksctl create addon --name aws-ebs-csi-driver --namespace-config 'namespace=custom-
namespace'

® Tip
Use the --namespace-config flag to deploy addons to a custom namespace instead of
the default namespace.

During addon creation, if a self-managed version of the addon already exists on the cluster, you
can choose how potential configMap conflicts shall be resolved by setting resolveConflicts
option via the config file, e.g.

addons:
- name: vpc-cni
attachPolicyARNs:

- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
resolveConflicts: overwrite

For addon create, the resolveConflicts field supports three distinct values:

« none - EKS doesn't change the value. The create might fail.
« overwrite - EKS overwrites any config changes back to EKS default values.

« preserve - EKS doesn’'t change the value. The create might fail. (Similarly to none, but different
from preserve in updating addons).

Listing enabled addons

You can see what addons are enabled in your cluster by running:

eksctl get addons --cluster <cluster-name>

Listing enabled addons 46

Eksctl User Guide Amazon EKS

or

eksctl get addons -f config.yaml

Setting the addon’s version

Setting the version of the addon is optional. If the version field is left empty eksctl will resolve
the default version for the addon. More information about which version is the default version for
specific addons can be found in the AWS documentation about EKS. Note that the default version

might not necessarily be the latest version available.

The addon version can be set to 1atest. Alternatively, the version can be set with the EKS build
tag specified, suchas v1.7.5-eksbuild.1 orvl.7.5-eksbuild.2. It can also be set to the
release version of the addon, suchasv1l.7.50r 1.7.5, and the eksbuild suffix tag will be
discovered and set for you.

See the section below on how to discover available addons and their versions.

Discovering addons

You can discover what addons are available to install on your cluster by running:

eksctl utils describe-addon-versions --cluster <cluster-name>

This will discover your cluster’s kubernetes version and filter on that. Alternatively if you want to
see what addons are available for a particular kubernetes version you can run:

eksctl utils describe-addon-versions --kubernetes-version <version>

You can also discover addons by filtering on their type, owner and/or publisher. For e.g., to see
addons for a particular owner and type you can run:

eksctl utils describe-addon-versions --kubernetes-version 1.22 --types "infra-
management, policy-management" --owners "aws-marketplace"

The types, owners and publishers flags are optional and can be specified together or
individually to filter the results.

Setting the addon's version 47

Eksctl User Guide Amazon EKS

Discovering the configuration schema for addons

After discovering the addon and version, you can view the customization options by fetching its
JSON configuration schema.

eksctl utils describe-addon-configuration --name vpc-cni --version v1.12.0-eksbuild.l

This returns a JSON schema of the various options available for this addon.

Working with configuration values

ConfigurationValues can be provided in the configuration file during the creation or update of
addons. Only JSON and YAML formats are supported.

For eqg.,

addons:
- name: coredns
configurationValues: |-
replicaCount: 2

addons:

- name: coredns
version: latest
configurationValues: "{\"replicaCount\":3}"
resolveConflicts: overwrite

(® Note

Bear in mind that when addon configuration values are being modified, configuration
conflicts will arise.

Thus, we need to specify how to deal with those by setting the “resolveConflicts® field
accordingly.

As in this scenario we want to modify these values, we'd set ‘resolveConflicts:
overwrite'.

Additionally, the get command will now also retrieve ConfigurationValues for the addon. e.g.

Discovering the configuration schema for addons 48

Eksctl User Guide Amazon EKS

eksctl get addon --cluster my-cluster --output yaml

- ConfigurationValues: '{"replicaCount":3}'
IAMRole: ""
Issues: null
Name: coredns
NewerVersion: ""

Status: ACTIVE

Version: v1.8.7-eksbuild.3

Using custom namespace

A custom namespace can be provided in the configuration file during the creation of addons. A
namespace can't be updated once an addon is created.

Using config file

addons:

- name: aws-ebs-csi-driver
version: latest
namespaceConfig:

namespace: custom-namespace

Using CLI flag

Alternatively, you can specify a custom namespace using the --namespace-config flag:

eksctl create addon --cluster my-cluster --name aws-ebs-csi-driver --namespace-config
'namespace=custom-namespace’

The get command will also retrieve the namespace value for the addon

- ConfigurationValues:
IAMRole: ""
Issues: null
Name: aws-ebs-csi-driver
NamespaceConfig:
namespace: custom-namespace

NewerVersion:

Using custom namespace 49

Eksctl User Guide Amazon EKS

PodIdentityAssociations: null
Status: ACTIVE
Version: v1.47.0-eksbuild.1

Updating addons

You can update your addons to newer versions and change what policies are attached by running:

eksctl update addon -f config.yaml

eksctl update addon --name vpc-cni --version 1.8.0 --service-account-role-arn <new-
role>

(® Note

The namespace configuration cannot be updated once an addon is created. The - -
namespace-config flag is only available during addon creation.

Similarly to addon creation, When updating an addon, you have full control over the config
changes that you may have previously applied on that add-on’s configMap. Specifically, you can
preserve, or overwrite them. This optional functionality is available via the same config file field
resolveConflicts. eqg,

addons:
- name: vpc-cni
attachPolicyARNs:
- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
resolveConflicts: preserve

For addon update, the resolveConflicts field accepts three distinct values:

« none - EKS doesn’t change the value. The update might fail.
« overwrite - EKS overwrites any config changes back to EKS default values.

« preserve - EKS preserves the value. If you choose this option, we recommend that you test
any field and value changes on a non-production cluster before updating the add-on on your
production cluster.

Updating addons 50

Eksctl User Guide Amazon EKS

Deleting addons

You can delete an addon by running:

eksctl delete addon --cluster <cluster-name> --name <addon-name>

This will delete the addon and any IAM roles associated to it.

When you delete your cluster all IAM roles associated to addons are also deleted.

Cluster creation flexibility for default networking addons

When a cluster is created, EKS automatically installs VPC CNI, CoreDNS and kube-proxy as self-
managed addons. To disable this behavior in order to use other CNI plugins like Cilium and Calico,
eksctl now supports creating a cluster without any default networking addons. To create such a
cluster, set addonsConfig.disableDefaultAddons, as in:

addonsConfig:
disableDefaultAddons: true

eksctl create cluster -f cluster.yaml

To create a cluster with only CoreDNS and kube-proxy and not VPC CNI, specify the addons
explicitly in addons and set addonsConfig.disableDefaultAddons, asin:

addonsConfig:
disableDefaultAddons: true
addons:
- name: kube-proxy
- name: coredns

eksctl create cluster -f cluster.yaml

As part of this change, eksctl now installs default addons as EKS addons instead of self-managed
addons during cluster creation if addonsConfig.disableDefaultAddons is not explicitly set to
true. As such, eksctl utils update-* commands can no longer be used for updating addons
for clusters created with eksctl v0.184.0 and above:

o eksctl utils update-aws-node

Deleting addons 51

Eksctl User Guide Amazon EKS

e eksctl utils update-coredns

« eksctl utils update-kube-proxy

Instead, eksctl update addon should be used now.

To learn more, see Amazon EKS introduces cluster creation flexibility for networking add-ons.

Enabling Access for Amazon EMR

In order to allow EMR to perform operations on the Kubernetes API, its SLR needs to be granted
the required RBAC permissions. eksctl provides a command that creates the required RBAC
resources for EMR, and updates the aws-auth ConfigMap to bind the role with the SLR for EMR.

eksctl create iamidentitymapping --cluster dev --service-name emr-containers --
namespace default

EKS Fargate Support

AWS Fargate is a managed compute engine for Amazon ECS that can run containers. In Fargate you
don't need to manage servers or clusters.

Amazon EKS can now launch pods onto AWS Fargate. This removes the need to worry about how

you provision or manage infrastructure for pods and makes it easier to build and run performant,
highly-available Kubernetes applications on AWS.

Creating a cluster with Fargate support

You can add a cluster with Fargate support with:

eksctl create cluster --fargate

[#] eksctl version 0.11.0

[#] using region ap-northeast-1

[#] setting availability zones to [ap-northeast-la ap-northeast-1d ap-northeast-1c]
[#] subnets for ap-northeast-la - public:192.168.0.0/19 private:192.168.96.0/19

[#] subnets for ap-northeast-1d - public:192.168.32.0/19 private:192.168.128.0/19
[#] subnets for ap-northeast-1c - public:192.168.64.0/19 private:192.168.160.0/19
[#] nodegroup "ng-dba9d731" will use "ami-02e124a380df41614" [AmazonLinux2/1.14]
[#] using Kubernetes version 1.14

Amazon EMR 52

https://aws.amazon.com/about-aws/whats-new/2024/06/amazon-eks-cluster-creation-flexibility-networking-add-ons/
https://aws.amazon.com/emr/
https://aws.amazon.com/fargate/
https://docs.aws.eu/eks/latest/userguide/fargate.html

Eksctl User Guide Amazon EKS

[#] creating EKS cluster "ridiculous-painting-1574859263" in "ap-northeast-1" region
[#] will create 2 separate CloudFormation stacks for cluster itself and the initial
nodegroup

[#] if you encounter any issues, check CloudFormation console or try 'eksctl utils
describe-stacks --region=ap-northeast-1 --cluster=ridiculous-painting-1574859263'

[#] CloudWatch logging will not be enabled for cluster "ridiculous-
painting-1574859263" in "ap-northeast-1"

[#] vyou can enable it with 'eksctl utils update-cluster-logging --enable-

types={SPECIFY-YOUR-LOG-TYPES-HERE (e.g. all)} --region=ap-northeast-1 --
cluster=ridiculous-painting-1574859263'

[#] Kubernetes API endpoint access will use default of {publicAccess=true,
privateAccess=false} for cluster "ridiculous-painting-1574859263" in "ap-northeast-1"
[#] 2 sequential tasks: { create cluster control plane "ridiculous-
painting-1574859263", create nodegroup "ng-dba9d731" }

[#] building cluster stack "eksctl-ridiculous-painting-1574859263-cluster"

[#] deploying stack "eksctl-ridiculous-painting-1574859263-cluster"

[#] building nodegroup stack "eksctl-ridiculous-painting-1574859263-nodegroup-ng-

dba9d731"

[#] --nodes-min=2 was set automatically for nodegroup ng-dba9d731

[#] --nodes-max=2 was set automatically for nodegroup ng-dbad9d731

[#] deploying stack "eksctl-ridiculous-painting-1574859263-nodegroup-ng-dbadd731"

[#] all EKS cluster resources for "ridiculous-painting-1574859263" have been created
[#] saved kubeconfig as "/Users/marc/.kube/config"

[#] adding identity "arn:aws:iam::123456789012:role/eksctl-ridiculous-painting-157485-

NodeInstanceRole-104DXUJOFDPO5" to auth ConfigMap

[#] nodegroup "ng-dba9d731" has @ node(s)

[#] waiting for at least 2 node(s) to become ready in "ng-dba9d731"

[#] nodegroup "ng-dba9d731" has 2 node(s)

[#] node "ip-192-168-27-156.ap-northeast-1.compute.internal"” is ready

[#] node "ip-192-168-95-177.ap-northeast-1.compute.internal" is ready

[#] creating Fargate profile "default" on EKS cluster "ridiculous-painting-1574859263"
[#] created Fargate profile "default" on EKS cluster "ridiculous-painting-1574859263"
[#] kubectl command should work with "/Users/marc/.kube/config", try 'kubectl get
nodes'

[#] EKS cluster "ridiculous-painting-1574859263" in "ap-northeast-1" region is ready

This command will have created a cluster and a Fargate profile. This profile contains certain
information needed by AWS to instantiate pods in Fargate. These are:

» pod execution role to define the permissions required to run the pod and the networking
location (subnet) to run the pod. This allows the same networking and security permissions to
be applied to multiple Fargate pods and makes it easier to migrate existing pods on a cluster to
Fargate.

Creating a cluster with Fargate support 53

Eksctl User Guide Amazon EKS

» Selector to define which pods should run on Fargate. This is composed by a namespace and
labels.

When the profile is not specified but support for Fargate is enabled with --fargate a default

Fargate profile is created. This profile targets the default and the kube-system namespaces so
pods in those namespaces will run on Fargate.

The Fargate profile that was created can be checked with the following command:

eksctl get fargateprofile --cluster ridiculous-painting-1574859263 -0 yaml
- name: fp-default

podExecutionRoleARN: arn:aws:iam::123456789012:role/eksctl-ridiculous-
painting-1574859263-ServiceRole-EIFQOHOS1GE7

selectors:

- namespace: default

- namespace: kube-system

subnets:

- subnet-0b3a5522f3b48a742

- subnet-0c35f1497067363f3

- subnet-0a29aa00b25082021

To learn more about selectors see Designing Fargate profiles.

Creating a cluster with Fargate support using a config file

The following config file declares an EKS cluster with both a nodegroup composed of one EC2
m5. large instance and two Fargate profiles. All pods defined in the default and kube-
system namespaces will run on Fargate. All pods in the dev namespace that also have the label
dev=passed will also run on Fargate. Any other pods will be scheduled on the node in ng-1.

An example of ClusterConfig with a normal nodegroup and a Fargate profile.

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: fargate-cluster
region: ap-northeast-1

nodeGroups:
- name: ng-1

Creating a cluster with Fargate support using a config file 54

Eksctl User Guide Amazon EKS

instanceType: m5.large
desiredCapacity: 1

fargateProfiles:
- name: fp-default
selectors:
All workloads in the "default" Kubernetes namespace will be
scheduled onto Fargate:
- namespace: default
All workloads in the "kube-system" Kubernetes namespace will be
scheduled onto Fargate:
- namespace: kube-system
- name: fp-dev
selectors:

#
#

All workloads in the "dev" Kubernetes namespace matching the following
label selectors will be scheduled onto Fargate:
- namespace: dev
labels:
env: dev
checks: passed

eksctl create cluster -f cluster-fargate.yaml

[#] eksctl version 0.11.0

[#] using region ap-northeast-1

[#] setting availability zones to [ap-northeast-1c ap-northeast-la ap-northeast-1d]
[#] subnets for ap-northeast-1c - public:192.168.0.0/19 private:192.168.96.0/19
[#] subnets for ap-northeast-la - public:192.168.32.0/19 private:192.168.128.0/19
[#] subnets for ap-northeast-1d - public:192.168.64.0/19 private:192.168.160.0/19
[#] nodegroup "ng-1" will use "ami-02e124a380df41614" [AmazonLinux2/1.14]

[#] using Kubernetes version 1.14

[#] creating EKS cluster "fargate-cluster" in "ap-northeast-1" region with Fargate
profile and un-managed nodes

[#] 1 nodegroup (ng-1) was included (based on the include/exclude rules)

[#] will create a CloudFormation stack for cluster itself and 1 nodegroup stack(s)
[#] will create a CloudFormation stack for cluster itself and @ managed nodegroup
stack(s)

[#] if you encounter any issues, check CloudFormation console or try 'eksctl utils
describe-stacks --region=ap-northeast-1 --cluster=fargate-cluster'

[#] CloudWatch logging will not be enabled for cluster "fargate-cluster" in "ap-
northeast-1"

[#] you can enable it with 'eksctl utils update-cluster-logging --enable-

types={SPECIFY-YOUR-LOG-TYPES-HERE (e.g. all)} --region=ap-northeast-1 --
cluster=fargate-cluster'

Creating a cluster with Fargate support using a config file 55

Eksctl User Guide Amazon EKS

[#] Kubernetes API endpoint access will use default of {publicAccess=true,
privateAccess=false} for cluster "fargate-cluster" in "ap-northeast-1"

[#] 2 sequential tasks: { create cluster control plane "fargate-cluster", create
nodegroup "ng-1" }

[#] building cluster stack "eksctl-fargate-cluster-cluster"

[#] deploying stack "eksctl-fargate-cluster-cluster"

[#] building nodegroup stack "eksctl-fargate-cluster-nodegroup-ng-1"

[#] --nodes-min=1 was set automatically for nodegroup ng-1

[#] --nodes-max=1 was set automatically for nodegroup ng-1

[#] deploying stack "eksctl-fargate-cluster-nodegroup-ng-1"

[#] all EKS cluster resources for "fargate-cluster" have been created

[#] saved kubeconfig as "/home/userl/.kube/config"

[#] adding identity "arn:aws:iam::123456789012:role/eksctl-fargate-cluster-nod-

NodeInstanceRole-42Q80B271471" to auth ConfigMap

[#] nodegroup "ng-1" has @ node(s)

[#] waiting for at least 1 node(s) to become ready in "ng-1"

[#] nodegroup "ng-1" has 1 node(s)

[#] node "ip-192-168-71-83.ap-northeast-1.compute.internal™ is ready

[#] creating Fargate profile "fp-default" on EKS cluster "fargate-cluster"

[#] created Fargate profile "fp-default" on EKS cluster "fargate-cluster"

[#] creating Fargate profile "fp-dev" on EKS cluster "fargate-cluster"

[#] created Fargate profile "fp-dev" on EKS cluster "fargate-cluster"

[#] "coredns" is now schedulable onto Fargate

[#] "coredns" is now scheduled onto Fargate

[#] ‘"coredns" is now scheduled onto Fargate

[#] "coredns" pods are now scheduled onto Fargate

[#] kubectl command should work with "/home/userl/.kube/config", try 'kubectl get
nodes'

[#] EKS cluster "fargate-cluster" in "ap-northeast-1" region is ready

Designing Fargate profiles

Each selector entry has up to two components, namespace and a list of key-value pairs. Only the
namespace component is required to create a selector entry. All rules (namespaces, key value pairs)
must apply to a pod to match a selector entry. A pod only needs to match one selector entry to run
on the profile. Any pod that matches all the conditions in a selector field would be scheduled to

be run on Fargate. Any pods not matching either the whitelisted Namespaces but where the user
manually set the scheduler: fargate-scheduler filed would be stuck in a Pending state, as they were
not authorized to run on Fargate.

Profiles must meet the following requirements:

Designing Fargate profiles 56

Eksctl User Guide Amazon EKS

» One selector is mandatory per profile

» Each selector must include a namespace; labels are optional

Example: scheduling workload in Fargate

To schedule pods on Fargate for the example mentioned above, one could, for example, create a
namespace called dev and deploy the workload there:

kubectl create namespace dev
namespace/dev created

kubectl run nginx --image=nginx --restart=Never --namespace dev
pod/nginx created

kubectl get pods --all-namespaces --output wide

NAMESPACE NAME READY STATUS AGE IP NODE
dev nginx 1/1 Running 75s 192.168.183.140
fargate-ip-192-168-183-140.ap-northeast-1.compute.internal

kube-system aws-node-44qst 1/1 Running 21m 192.168.70.246
ip-192-168-70-246.ap-northeast-1.compute.internal

kube-system aws-node-4vr66 1/1 Running 21m 192.168.23.122
ip-192-168-23-122.ap-northeast-1.compute.internal

kube-system coredns-699bb99bf8-84x74 1/1 Running 26m 192.168.2.95
ip-192-168-23-122.ap-northeast-1.compute.internal

kube-system coredns-699bb99bf8-f6x6n 1/1 Running 26m 192.168.90.73
ip-192-168-70-246.ap-northeast-1.compute.internal

kube-system kube-proxy-brxhg 1/1 Running 21m 192.168.23.122
ip-192-168-23-122.ap-northeast-1.compute.internal

kube-system kube-proxy-zd7s8 1/1 Running 21m 192.168.70.246

ip-192-168-70-246.ap-northeast-1.compute.internal

From the output of the last kubectl get pods command we can see that the
nginx pod is deployed in a node called fargate-ip-192-168-183-140.ap-
northeast-1.compute.internal.

Managing Fargate profiles

To deploy Kubernetes workloads on Fargate, EKS needs a Fargate profile. When creating a cluster
like in the examples above, eksctl takes care of this by creating a default profile. Given an
already existing cluster, it's also possible to create a Fargate profile with the eksctl create
fargateprofile command:

Managing Fargate profiles 57

Eksctl User Guide Amazon EKS

® Note

This operation is only supported on clusters that run on the EKS platform version eks .5 or
higher.

(® Note

If the existing was created with a version of eksctl prior to 0.11.0, you will need to run
eksctl upgrade cluster before creating the Fargate profile.

eksctl create fargateprofile --namespace dev --cluster fargate-example-cluster
[#] creating Fargate profile "fp-9bfc77ad" on EKS cluster "fargate-example-cluster"
[#] created Fargate profile "fp-9bfc77ad" on EKS cluster "fargate-example-cluster"

You can also specify the name of the Fargate profile to be created. This name must not start with
the prefix eks-.

eksctl create fargateprofile --namespace dev --cluster fargate-example-cluster --name
fp-development
[#] created Fargate profile "fp-development" on EKS cluster "fargate-example-cluster"

Using this command with CLI flags eksctl can only create a single Fargate profile with a simple
selector. For more complex selectors, for example with more namespaces, eksctl supports using a
config file:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: fargate-example-cluster
region: ap-northeast-1

fargateProfiles:
- name: fp-default
selectors:
All workloads in the "default" Kubernetes namespace will be
scheduled onto Fargate:

Managing Fargate profiles 58

Eksctl User Guide Amazon EKS

namespace: default
All workloads in the "kube-system" Kubernetes namespace will be
scheduled onto Fargate:
namespace: kube-system
- name: fp-dev
selectors:
All workloads in the "dev" Kubernetes namespace matching the following
label selectors will be scheduled onto Fargate:
- namespace: dev
labels:
env: dev
checks: passed

eksctl create fargateprofile -f fargate-example-cluster.yaml

[#] creating Fargate profile "fp-default" on EKS cluster "fargate-example-cluster"
[#] created Fargate profile "fp-default" on EKS cluster "fargate-example-cluster"
[#] creating Fargate profile "fp-dev" on EKS cluster "fargate-example-cluster"

[#] created Fargate profile "fp-dev" on EKS cluster "fargate-example-cluster"

[#] "coredns" is now scheduled onto Fargate

[#] "coredns" pods are now scheduled onto Fargate

To see existing Fargate profiles in a cluster:

eksctl get fargateprofile --cluster fargate-example-cluster

NAME SELECTOR_NAMESPACE SELECTOR_LABELS POD_EXECUTION_ROLE_ARN
SUBNETS
fp-9bfc77ad dev <none> arn:aws:iam: :123456789012:role/

eksctl-fargate-example-cluster-ServiceRole-1T5F78E5FSH79
subnet-00adf1d8c99f83381, subnet-04affbl63ffabl7d4, subnet-035b34379d5ef5473

And to see them in yaml format:

eksctl get fargateprofile --cluster fargate-example-cluster -o yaml
- name: fp-9bfc77ad

podExecutionRoleARN: arn:aws:iam::123456789012:role/eksctl-fargate-example-cluster-
ServiceRole-1T5F78E5FSH79

selectors:

- namespace: dev

subnets:

- subnet-00adf1d8c99f83381

- subnet-04affbl63ffabl7d4

- subnet-035b34379d5ef5473

Managing Fargate profiles 59

Eksctl User Guide Amazon EKS

Orin json format:

eksctl get fargateprofile --cluster fargate-example-cluster -o json

L

"name": "fp-9bfc77ad",

"podExecutionRoleARN": "arn:aws:iam::123456789012:ro0le/eksctl-fargate-example-
cluster-ServiceRole-1T5F78E5FSH79",

"selectors": [

{

"namespace": "dev"

1,

"subnets": [
"subnet-00adf1d8c99f83381",
"subnet-04affbl63ffabl7d4",
"subnet-035b34379d5ef5473"

Fargate profiles are immutable by design. To change something, create a new Fargate profile
with the desired changes and delete the old one with the eksctl delete fargateprofile
command like in the following example:

eksctl delete fargateprofile --cluster fargate-example-cluster --name fp-9bfc77ad --
wait
2019-11-27T19:04:26+09:00 [#] deleting Fargate profile "fp-9bfc77ad"
ClusterName: "fargate-example-cluster",
FargateProfileName: "fp-9bfc77ad"
}

Note that the profile deletion is a process that can take up to a few minutes. When the --wait
flag is not specified, eksctl optimistically expects the profile to be deleted and returns as soon as
the AWS API request has been sent. To make eksctl wait until the profile has been successfully
deleted, use --wait like in the example above.

Further reading

« AWS Fargate
o Amazon EKS can now launch pods onto AWS Fargate

Further reading 60

https://aws.amazon.com/fargate/
https://docs.aws.eu/eks/latest/userguide/fargate.html

Eksctl User Guide Amazon EKS

Cluster upgrades

An ‘eksctl -managed cluster can be upgraded in 3 easy steps:

1. upgrade control plane version with eksctl upgrade cluster
2. upgrade nodegroups

3. update the default networking add-ons (For more information, see the section called “Default
add-on updates”):

Carefully review cluster upgrade related resources:

« Update existing cluster to new Kubernetes version in the Amazon EKS User Guide

» Best Practices for Cluster Upgrades in the EKS Best Practices Guide

® Note

The old eksctl update cluster will be deprecated. Use eksctl upgrade cluster
instead.

Updating control plane version

Control plane version upgrades must be done for one minor version at a time.

To upgrade control plane to the next available version run:

eksctl upgrade cluster --name=<clusterName>

This command will not apply any changes right away, you will need to re-run it with --approve to
apply the changes.

The target version for the cluster upgrade can be specified both with the CLI flag:

eksctl upgrade cluster --name=<clusterName> --version=1.16

or with the config file

Cluster upgrades 61

https://docs.aws.eu/eks/latest/userguide/update-cluster.html
https://docs.aws.eu/eks/latest/best-practices/cluster-upgrades.html

Eksctl User Guide Amazon EKS

cat clusterl.yaml

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: cluster-1
region: eu-north-1
version: "1.16"

eksctl upgrade cluster --config-file clusterl.yaml

/A Warning

The only values allowed for the --version and metadata.version arguments are the
current version of the cluster or one version higher. Upgrades of more than one Kubernetes
version are not supported.

Default add-on updates

This topic explains how to update the default pre-installed add-ons that are included on EKS
clusters.

/A Warning

eksctl now installs default addons as EKS addons instead of self-managed addons. Read
more about its implications in Cluster creation flexibility for default networking addons.

For updating addons, eksctl utils update-<addon> cannot be used for clusters
created with eksctl v0.184.0 and above. This guide is only valid for clusters created before
this change.

There are 3 default add-ons that get included in each EKS cluster:

e kube-proxy
e aws-node

e coredns

Default add-on updates 62

Eksctl User Guide Amazon EKS

Update pre-installed add-on

For official EKS addons that are created manually through eksctl create addons orupon
cluster creation, the way to manage them is through eksctl create/get/update/delete
addon. In such cases, please refer to the docs about EKS Add-Ons.

The process for updating each of them is different, hence there are 3 distinct commands that
you will need to run. All of the following commands accept --config-file. By default each of
these commands runs in plan mode, if you are happy with the proposed changes, re-run with - -
approve.

To update kube-proxy, run:

eksctl utils update-kube-proxy --cluster=<clusterName>
To update aws-node, run:

eksctl utils update-aws-node --cluster=<clusterName>
To update coredns, run:

eksctl utils update-coredns --cluster=<clusterName>

Once upgraded, be sure to run kubectl get pods -n kube-systemand check if all addon
pods are in ready state, you should see something like this:

NAME READY STATUS RESTARTS AGE
aws-node-g5ghn 1/1 Running 0 2m
aws-node-zfc9s 1/1 Running 0 2m
coredns-7bcbfc4774-g6gg8 1/1 Running @ 1m
coredns-7bcbfc4774-hftng 1/1 Running © 1m
kube-proxy-djkp7 1/1 Running 0 3m
kube-proxy-mpdsp 1/1 Running 0 3m

Support for Zonal Shift in EKS clusters

EKS now supports Amazon Application Recovery Controller (ARC) zonal shift and zonal autoshift
that enhances the resiliency of multi-AZ cluster environments. With AWS Zonal Shift, customers

Update pre-installed add-on 63

Eksctl User Guide Amazon EKS

can shift in-cluster traffic away from an impaired availability zone, ensuring new Kubernetes pods
and nodes are launched in healthy availability zones only.

Creating a cluster with zonal shift enabled

zonal-shift-cluster.yaml

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: highly-available-cluster
region: us-west-2

zonalShiftConfig:
enabled: true

eksctl create cluster -f zonal-shift-cluster.yaml

Enabling zonal shift on an existing cluster

To enable or disable zonal shift on an existing cluster, run

eksctl utils update-zonal-shift-config -f zonal-shift-cluster.yaml

or without a config file:

eksctl utils update-zonal-shift-config --cluster=zonal-shift-cluster --enabled

Further information

+ EKS Zonal Shift

Karpenter Support

eksctl provides support for adding Karpenter to a newly created cluster. It will create all the
necessary prerequisites outlined in Karpenter's Getting Started section including installing

Creating a cluster with zonal shift enabled 64

https://docs.aws.eu/eks/latest/userguide/zone-shift.html
https://karpenter.sh/
https://karpenter.sh/docs/getting-started/

Eksctl User Guide Amazon EKS

Karpenter itself using Helm. We currently support installing versions @.28.0+. See the Karpenter
compatibility section for further details.

The following cluster configuration outlines a typical Karpenter installation:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: cluster-with-karpenter
region: us-west-2
version: '1.32' # requires a version of Kubernetes compatible with Karpenter
tags:
karpenter.sh/discovery: cluster-with-karpenter # here, it is set to the cluster
name
iam:
withOIDC: true # required

karpenter:
version: '1.2.1' # Exact version should be specified according to the Karpenter

compatibility matrix

managedNodeGroups:

- name: managed-ng-1
minSize: 1
maxSize: 2
desiredCapacity: 1

The version is Karpenter's version as it can be found in their Helm Repository. The following
options are also available to be set:

karpenter:
version: '1.2.1'
createServiceAccount: true # default is false
defaultInstanceProfile: 'KarpenterNodeInstanceProfile' # default is to use the IAM
instance profile created by eksctl
withSpotInterruptionQueue: true # adds all required policies and rules for supporting
Spot Interruption Queue, default is false

OIDC must be defined in order to install Karpenter.

Karpenter Support 65

https://karpenter.sh/docs/upgrading/compatibility/
https://karpenter.sh/docs/upgrading/compatibility/

Eksctl User Guide

Amazon EKS

Once Karpenter is successfully installed, add NodePool(s) and NodeClass(es) to allow Karpenter to
start adding nodes to the cluster.

The NodePool's nodeClassRef section must match the name of an EC2NodeClass. For example:

apiVersion: karpenter.sh/vl
kind: NodePool

metadata:

name: example

annotations:
kubernetes.io/description: "Example NodePool"

spec:

template:

spec:

requirements:

key: kubernetes.io/arch

operator: In

values: ["amd64"]

key: kubernetes.io/os

operator: In

values: ["linux"]

key: karpenter.sh/capacity-type
operator: In

values: ["on-demand"]

key: karpenter.k8s.aws/instance-category
operator: In

values: ["c", "m", "zr"]

key: karpenter.k8s.aws/instance-generation
operator: Gt

values: ["2"]

nodeClassRef:
group: karpenter.k8s.aws
kind: EC2NodeClass
name: example # must match the name of an EC2NodeClass

apiVersion: karpenter.k8s.aws/vl
kind: EC2NodeClass

metadata:

name: example

annotations:
kubernetes.io/description: "Example EC2NodeClass"

spec:

role: "eksctl-KarpenterNodeRole-${CLUSTER_NAME}" # replace with your cluster name

Karpenter Support

66

https://karpenter.sh/docs/concepts/nodepools/
https://karpenter.sh/docs/concepts/nodeclasses/

Eksctl User Guide Amazon EKS

subnetSelectorTerms:
- tags:
karpenter.sh/discovery: "${CLUSTER_NAME}" # replace with your cluster name
securityGroupSelectorTerms:
- tags:
karpenter.sh/discovery: "${CLUSTER_NAME}" # replace with your cluster name
amiSelectorTerms:
- alias: al2023@latest # Amazon Linux 2023

Note that you must specify one of role or instanceProfile for lauch nodes. If you choose to
use instanceProfile the name of the profile created by eksctl follows the pattern: eksctl-
KarpenterNodeInstanceProfile-<cluster-name>.

Automatic Security Group Tagging

eksctl automatically tags the cluster’'s shared node security group with karpenter.sh/
discovery when both Karpenter is enabled (karpenter.version specified) and the
karpenter.sh/discovery tag exists in metadata.tags. This enables AWS Load Balancer
Controller compatibility.

Note with karpenter 0.32.0+, Provisioners have been deprecated and replaced by NodePool.

Automatic Security Group Tagging 67

https://karpenter.sh/docs/concepts/nodepools/

Eksctl User Guide

Amazon EKS

Cluster Config Schema

(® Note

The location of the schema is currently being migrated.

You can use a yaml file to create a cluster. View the schema reference.

For example:

eksctl create cluster -f cluster.yaml

The schema reference for this file is available on GitHub.

For more information about using the file, see the section called “Creating and managing clusters”.

68

https://schema.eksctl.io/
https://schema.eksctl.io/

Eksctl User Guide Amazon EKS

Nodegroups

This chapter includes information about how you create and configure Nodegroups with Eksctl.
Nodegroups are groups of EC2 instances attached to an EKS cluster.

Topics:

» the section called “Spot instances”

» Create and manage EKS clusters with Spot instances using managed node groups
« Configure Spot instances for unmanaged node groups using the MixedInstancesPolicy
« Distinguish Spot and On-Demand instances using the node-1ifecycle Kubernetes label

 the section called “Auto Scaling”

» Enable automatic scaling of Kubernetes cluster nodes by creating a cluster or nodegroup with
IAM role that allows the use of the cluster autoscaler

» Configure nodegroup definitions to include necessary tags and annotations for the cluster
autoscaler to scale the nodegroup

» Create separate nodegroups for each availability zone if workloads have zone-specific
requirements, such as zone-specific storage or affinity rules

» the section called "EKS managed nodegroups”

 Provision and manage EC2 instances (nodes) for Amazon EKS Kubernetes clusters
« Easily apply bug fixes, security patches, and update nodes to the latest Kubernetes versions

» the section called “"EKS Hybrid Nodes"

» Enable running on-premises and edge applications on customer-managed infrastructure with
the same AWS EKS clusters, features, and tools used in the AWS Cloud

» Configure networking to connect on-premises networks to an AWS VPC, using options like
AWS Site-to-Site VPN or AWS Direct Connect

» Set up credentials for remote nodes to authenticate with the EKS cluster, using either AWS
Systems Manager (SSM) or AWS IAM Roles Anywhere

» the section called “Node Repair Config”

« Enabling Node Repair for EKS Managed Nodegroups to automatically monitor and replace or
reboot unhealthy worker nodes

 the section called "ARM Support”

Topics: 69

Eksctl User Guide Amazon EKS

» Create an EKS cluster with ARM-based Graviton instances for improved performance and cost-
efficiency

« the section called “Taints"”

» Apply taints to specific node groups in a Kubernetes cluster
» Control scheduling and eviction of pods based on taint keys, values, and effects

» the section called “Launch template support”

« Launching managed node groups using a provided EC2 Launch Template
» Upgrading a managed node group to use a different version of a Launch Template

« Understanding limitations and considerations when using custom AMIs and Launch Templates
with managed node groups

» the section called “"Work with node groups”

» Enable SSH access to EC2 instances in the node group
 Scale the number of nodes in a node group up or down

« the section called “Custom subnets”

» Extend an existing VPC with a new subnet and add a Nodegroup to that subnet

 the section called “Node bootstrapping”

« Understand the new node initialization process (nodeadm) introduced in AmazonLinux2023

» Learn about the default NodeConfig settings applied by eksctl for self-managed and EKS-
managed nodes

« Customize the node bootstrapping process by providing an overrideBootstrapCommand with a
custom NodeConfig

« the section called “"Unmanaged nodegroups”

» Create or update unmanaged node groups in an EKS cluster
« Update default Kubernetes add-ons like kube-proxy, aws-node, and CoreDNS

« the section called "GPU Support”

» Eksctl supports selecting GPU instance types for nodegroups, enabling the use of GPU-
accelerated workloads on EKS clusters.

» Eksctl automatically installs the NVIDIA Kubernetes device plugin when a GPU-enabled
instance type is selected, facilitating the use of GPU resources in the cluster.

« Users can disable automatic plugin installation and manually install a specific version of the

Topics:“I VIDTA KUbEIHEtES dEUICE thgIII USIIIg t|IE pIUWdEd co||||||a||ds. 70

Eksctl User Guide Amazon EKS

« the section called “Instance Selector”

» Automatically generate a list of suitable EC2 instance types based on resource criteria like
vCPUs, memory, GPUs, and CPU architecture

» Create clusters and node groups with the instance types matched by the specified instance
selector criteria

« Perform a dry run to inspect and modify the instance types matched by the instance selector
before creating a node group

» the section called “"Additional Volume Mappings”

» Configure additional volume mappings for a managed node group in an EKS cluster

» Customize volume properties like size, type, encryption, IOPS, and throughput for the
additional volumes

« Attach existing EBS snapshots as additional volumes to the node group

e the section called “Windows Worker Nodes"”

« Add Windows node groups to an existing Linux Kubernetes cluster to enable running Windows
workloads

» Schedule workloads on the appropriate operating system (Windows or Linux) using node
selectors based on the kubernetes.io/os and kubernetes.io/arch labels

» the section called “"Custom AMI support”

» Use the --node-ami flag to specify a custom AMI for node groups, query AWS for the latest
EKS-optimized AMI, or use AWS Systems Manager Parameter Store to find the AMI.

« Set the --node-ami-family flag to specify the operating system family for the node group
AMI, such as AmazonLinux2, Ubuntu2204, or WindowsServer2022CoreContainer.

» For Windows node groups, specify a custom AMI and provide a PowerShell bootstrap script via
the overrideBootstrapCommand.

+ the section called “Custom DNS"

« Overwrite the DNS server IP address used for internal and external DNS lookups

Work with node groups

Creating nodegroups

You can add one or more nodegroups in addition to the initial nodegroup created along with the
cluster.

Work with node groups 71

Eksctl User Guide Amazon EKS

To create an additional nodegroup, use:

eksctl create nodegroup --cluster=<clusterName> [--name=<nodegroupName>]

(® Note

--version flag is not supported for managed nodegroups. It always inherits the version
from control plane.

By default, new unmanaged nodegroups inherit the version from the control plane (- -
version=auto), but you can specify a different version, you can also use --version=latest to
force use of whichever is the latest version.

Additionally, you can use the same config file used for eksctl create cluster:

eksctl create nodegroup --config-file=<path>

Creating a nodegroup from a config file

Nodegroups can also be created through a cluster definition or config file. Given the following
example config file and an existing cluster called dev-cluster:

dev-cluster.yaml
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: dev-cluster
region: eu-north-1

managedNodeGroups:

- name: ng-l-workers
labels: { role: workers }
instanceType: m5.xlarge
desiredCapacity: 10
volumeSize: 80
privateNetworking: true

- name: ng-2-builders
labels: { role: builders }

Creating nodegroups 72

Eksctl User Guide Amazon EKS

instanceType: m5.2xlarge
desiredCapacity: 2
volumeSize: 100
privateNetworking: true

The nodegroups ng-1-workers and ng-2-builders can be created with this command:

eksctl create nodegroup --config-file=dev-cluster.yaml

Load Balancing

If you have already prepared for attaching existing classic load balancers or/and target groups
to the nodegroups, you can specify these in the config file. The classic load balancers or/and
target groups are automatically associated with the ASG when creating nodegroups. This is only
supported for self-managed nodegroups defined via the nodeGroups field.

dev-cluster-with-1b.yaml
apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: dev-cluster
region: eu-north-1

nodeGroups:
- name: ng-1l-web
labels: { role: web }
instanceType: m5.xlarge
desiredCapacity: 10
privateNetworking: true
classiclLoadBalancerNames:
- dev-clb-1
- dev-clb-2
asgMetricsCollection:
- granularity: 1Minute
metrics:
- GroupMinSize
- GroupMaxSize
- GroupDesiredCapacity
- GroupInServicelnstances
- GroupPendingInstances
- GroupStandbyInstances

Creating nodegroups 73

Eksctl User Guide Amazon EKS

- GroupTerminatingInstances
- GroupTotalInstances
- name: ng-2-api

labels: { role: api }

instanceType: m5.2xlarge

desiredCapacity: 2

privateNetworking: true

targetGroupARNs:

- arn:aws:elasticloadbalancing:eu-north-1:01234567890:targetgroup/dev-target-
group-1/abcdef@123456789

Nodegroup selection in config files

To perform a create or delete operation on only a subset of the nodegroups specified in a
config file, there are two CLI flags that accept a list of globs, @ and 1, e.g.:

eksctl create nodegroup --config-file=<path> --include='ng-prod-*-??' --exclude='ng-
test-1-ml-a,ng-test-2-7'

Using the example config file above, one can create all the workers nodegroup except the workers
one with the following command:

eksctl create nodegroup --config-file=dev-cluster.yaml --exclude=ng-1l-workers

Or one could delete the builders nodegroup with:

eksctl delete nodegroup --config-file=dev-cluster.yaml --include=ng-2-builders --
approve

In this case, we also need to supply the --approve command to actually delete the nodegroup.

Include and exclude rules

if no --include or --exclude is specified everything is included
 if only --include is specified, only nodegroups that match those globs will be included
« if only --exclude is specified, all nodegroups that do not match those globs are included

« if both are specified then --exclude rules take precedence over --include (i.e. nodegroups
that match rules in both groups will be excluded)

Nodegroup selection in config files 74

Eksctl User Guide Amazon EKS

Listing nodegroups
To list the details about a nodegroup or all of the nodegroups, use:

eksctl get nodegroup --cluster=<clusterName> [--name=<nodegroupName>]

To list one or more nodegroups in YAML or JSON format, which outputs more info than the default
log table, use:

YAML format
eksctl get nodegroup --cluster=<clusterName> [--name=<nodegroupName>] --output=yaml

JSON format
eksctl get nodegroup --cluster=<clusterName> [--name=<nodegroupName>] --output=json

Nodegroup immutability

By design, nodegroups are immutable. This means that if you need to change something (other
than scaling) like the AMI or the instance type of a nodegroup, you would need to create a new
nodegroup with the desired changes, move the load and delete the old one. See the Deleting and
draining nodegroups section.

Scaling nodegroups

Nodegroup scaling is a process that can take up to a few minutes. When the --wait flag is not
specified, eksct1 optimistically expects the nodegroup to be scaled and returns as soon as the
AWS API request has been sent. To make eksctl wait until the nodes are available, add a --wait
flag like the example below.

® Note

Scaling a nodegroup down/in (i.e. reducing the number of nodes) may result in errors as we
rely purely on changes to the ASG. This means that the node(s) being removed/terminated
aren't explicitly drained. This may be an area for improvement in the future.

Scaling a managed nodegroup is achieved by directly calling the EKS API that updates a managed
node group configuration.

Listing nodegroups 75

Eksctl User Guide Amazon EKS

Scaling a single nodegroup

A nodegroup can be scaled by using the eksctl scale nodegroup command:

eksctl scale nodegroup --cluster=<clusterName> --nodes=<desiredCount> --
name=<nodegroupName> [--nodes-min=<minSize>] [--nodes-max=<maxSize>] --wait

For example, to scale nodegroup ng-a345f4elin cluster-1 to 5 nodes, run:

eksctl scale nodegroup --cluster=cluster-1 --nodes=5 ng-a345f4el

A nodegroup can also be scaled by using a config file passed to --config-file and specifying
the name of the nodegroup that should be scaled with - -name. Eksctl will search the config file
and discover that nodegroup as well as its scaling configuration values.

If the desired number of nodes is NOT within the range of current minimum and current maximum
number nodes, one specific error will be shown. These values can also be passed with flags - -
nodes-min and --nodes-max respectively.

Scaling multiple nodegroups

Eksctl can discover and scale all the nodegroups found in a config file that is passed with - -
config-file.

Similarly to scaling a single nodegroup, the same set of validations apply to each nodegroup. For
example, the desired number of nodes must be within the range of the minimum and maximum
number of nodes.

Deleting and draining nodegroups

To delete a nodegroup, run:

eksctl delete nodegroup --cluster=<clusterName> --name=<nodegroupName>

Include and exclude rules can also be used with this command.

(® Note

This will drain all pods from that nodegroup before the instances are deleted.

Deleting and draining nodegroups 76

Eksctl User Guide Amazon EKS

To skip eviction rules during the drain process, run:

eksctl delete nodegroup --cluster=<clusterName> --name=<nodegroupName> --disable-
eviction

All nodes are cordoned and all pods are evicted from a nodegroup on deletion, but if you need to
drain a nodegroup without deleting it, run:

eksctl drain nodegroup --cluster=<clusterName> --name=<nodegroupName>

To uncordon a nodegroup, run:

eksctl drain nodegroup --cluster=<clusterName> --name=<nodegroupName> --undo

To ignore eviction rules such as PodDisruptionBudget settings, run:

eksctl drain nodegroup --cluster=<clusterName> --name=<nodegroupName> --disable-
eviction

To speed up the drain process you can specify --parallel <value> for the number of nodes to
drain in parallel.

Other features

You can also enable SSH, ASG access and other features for a nodegroup, e.g.:

eksctl create nodegroup --cluster=cluster-1 --node-
labels="autoscaling=enabled, purpose=ci-worker" --asg-access --full-ecr-access --ssh-
access

Update labels

There are no specific commands in eksctl to update the labels of a nodegroup, but it can easily
be achieved using kubectl, e.g.:

kubectl label nodes -1 alpha.eksctl.io/nodegroup-name=ng-1 new-label=foo

Other features 77

Eksctl User Guide Amazon EKS

SSH Access

You can enable SSH access for nodegroups by configuring one of publicKey, publicKeyName
and publicKeyPath in your nodegroup configuration. Alternatively you can use AWS Systems
Manager (SSM) to SSH onto nodes, by configuring the nodegroup with enableSsm:

managedNodeGroups:
- name: ng-1
instanceType: m5.large
desiredCapacity: 1
ssh: # import public key from file
publicKeyPath: ~/.ssh/id_rsa_tests.pub
- name: ng-2
instanceType: m5.large
desiredCapacity: 1
ssh: # use existing EC2 key
publicKeyName: ec2_dev_key
- name: ng-3
instanceType: m5.large
desiredCapacity: 1
ssh: # import inline public key
publicKey: "ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQDqZEdzvHNnK/GVP8nLngRHu/
GDi/3PeES7+Bx613koXn/0i/UmM9/jcW5XGziz/
0elcPJ777eZV7muEvXg5ZMQBrYxUtYCdvd8Rt6DIoSqDLsIPgbuuN1QoBHq/PU2IjpWnp/
wrJQXMk94ITIrGjY8QHfCnpuMENCucVaifgAhwyeyuO5KiqUmD8E@ORmcsotHKBVI9X8H5eqlLXd8zMQaPl
+Ub7j5PG+9KftQuOF/QhdFvpSLsHaxvBzA5nhIltjkaFcwGQnD1rpCM3+UnQE7Izoa5Yt1xoUWRwnF
+L2TKovW7+bYQ1lkxsuuiX149jXTCIDVjkYCqi7HkrXYqcClsbsror someuser@hostname"
- name: ng-4
instanceType: m5.large
desiredCapacity: 1
ssh: # enable SSH using SSM
enableSsm: true

Unmanaged nodegroups

In eksctl, setting --managed=false or using the nodeGroups field creates an unmanaged

nodegroup. Bear in mind that unmanaged nodegroups do not appear in the EKS console, which as

a general rule only knows about EKS-managed nodegroups.

You should be upgrading nodegroups only after you ran eksctl upgrade cluster. (See
Upgrading clusters.)

Unmanaged nodegroups

78

https://docs.aws.eu/systems-manager/latest/userguide/session-manager-working-with-sessions-start.html#sessions-start-cli
https://docs.aws.eu/systems-manager/latest/userguide/session-manager-working-with-sessions-start.html#sessions-start-cli

Eksctl User Guide Amazon EKS

If you have a simple cluster with just an initial nodegroup (i.e. created with eksctl create
cluster), the process is very simple:

1. Get the name of old nodegroup:

eksctl get nodegroups --cluster=<clusterName> --region=<region>

® Note

You should see only one nodegroup here, if you see more - read the next
section.

2. Create a new nodegroup:

eksctl create nodegroup --cluster=<clusterName> --region=<region> --
name=<newNodeGroupName> --managed=false

3. Delete the old nodegroup:

eksctl delete nodegroup --cluster=<clusterName> --region=<region> --
name=<oldNodeGroupName>

(® Note

This will drain all pods from that nodegroup before the instances are deleted.
In some scenarios, Pod Disruption Budget (PDB) policies can prevent pods to
be evicted. To delete the nodegroup regardless of PDB, one should use the "--

disable-eviction® flag, will bypass checking PDB policies.

Updating multiple nodegroups

If you have multiple nodegroups, it's your responsibility to track how each one was configured. You
can do this by using config files, but if you haven't used it already, you will need to inspect your
cluster to find out how each nodegroup was configured.

In general terms, you are looking to:

Updating multiple nodegroups 79

Eksctl User Guide Amazon EKS

« review which nodegroups you have and which ones can be deleted or must be replaced for the
new version

» note down configuration of each nodegroup, consider using config file to ease upgrades next
time

Updating with config file

If you are using config file, you will need to do the following.

Edit config file to add new nodegroups, and remove old nodegroups. If you just want to upgrade
nodegroups and keep the same configuration, you can just change nodegroup names, e.g. append
-v2 to the name.

To create all of new nodegroups defined in the config file, run:

eksctl create nodegroup --config-file=<path>

Once you have new nodegroups in place, you can delete old ones:

eksctl delete nodegroup --config-file=<path> --only-missing

(@ Note

First run is in plan mode, if you are happy with the proposed changes, re-run with - -
approve.

Updating default add-ons

You may need to update the networking add-ons installed on your cluster. For more information,
see the section called “Default add-on updates”.

EKS managed nodegroups

Amazon EKS managed nodegroups is a feature that automates the provisioning and lifecycle
management of nodes (EC2 instances) for Amazon EKS Kubernetes clusters. Customers can
provision optimized groups of nodes for their clusters and EKS will keep their nodes up to date
with the latest Kubernetes and host OS versions.

Updating default add-ons 80

https://docs.aws.eu/eks/latest/userguide/managed-node-groups.html

Eksctl User Guide Amazon EKS

An EKS managed node group is an autoscaling group and associated EC2 instances that are
managed by AWS for an Amazon EKS cluster. Each node group uses the Amazon EKS-optimized
Amazon Linux 2 AMI. Amazon EKS makes it easy to apply bug fixes and security patches to nodes,
as well as update them to the latest Kubernetes versions. Each node group launches an autoscaling
group for your cluster, which can span multiple AWS VPC availability zones and subnets for high-
availability.

NEW Launch Template support for managed nodegroups

(@ Note

The term "unmanaged nodegroups" has been used to refer to nodegroups that eksctl
has supported since the beginning (represented via the nodeGroups field). The
ClusterConfig file continues to use the nodeGroups field for defining unmanaged
nodegroups, and managed nodegroups are defined with the managedNodeGroups field.

Creating managed nodegroups
$ eksctl create nodegroup
New clusters
To create a new cluster with a managed nodegroup, run

eksctl create cluster

To create multiple managed nodegroups and have more control over the configuration, a config
file can be used.

(® Note

Managed nodegroups do not have complete feature parity with unmanaged nodegroups.

cluster.yaml
A cluster with two managed nodegroups

Creating managed nodegroups 81

Eksctl User Guide Amazon EKS

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: managed-cluster
region: us-west-2

managedNodeGroups:
- name: managed-ng-1
minSize: 2
maxSize: 4
desiredCapacity: 3
volumeSize: 20
ssh:
allow: true
publicKeyPath: ~/.ssh/ec2_id_rsa.pub
new feature for restricting SSH access to certain AWS security group IDs
sourceSecurityGroupIds: ["sg-00241fbb12c607007"]
labels: {role: worker}

tags:

nodegroup-role: worker
iam:

withAddonPolicies:

externalDNS: true
certManager: true

- name: managed-ng-2
instanceType: t2.large
minSize: 2
maxSize: 3

Another example of a config file for creating a managed nodegroup can be found here.

It's possible to have a cluster with both managed and unmanaged nodegroups. Unmanaged
nodegroups do not show up in the AWS EKS console but eksctl get nodegroup will list both
types of nodegroups.

cluster.yaml

A cluster with an unmanaged nodegroup and two managed nodegroups.
apiVersion: eksctl.io/vlalpha5s

kind: ClusterConfig

Creating managed nodegroups 82

https://github.com/eksctl-io/eksctl/blob/main/examples/15-managed-nodes.yaml

Eksctl User Guide Amazon EKS

metadata:
name: managed-cluster
region: us-west-2

nodeGroups:
- name: ng-1
minSize: 2

managedNodeGroups:
- name: managed-ng-1
minSize: 2
maxSize: 4
desiredCapacity: 3
volumeSize: 20
ssh:
allow: true
publicKeyPath: ~/.ssh/ec2_id_rsa.pub
new feature for restricting SSH access to certain AWS security group IDs
sourceSecurityGroupIds: ["sg-00241fbb12c607007"]
labels: {role: worker}

tags:

nodegroup-role: worker
iam:

withAddonPolicies:

externalDNS: true
certManager: true

- name: managed-ng-2
instanceType: t2.large
privateNetworking: true
minSize: 2
maxSize: 3

NEW Support for custom AMI, security groups, instancePrefix, instanceName,
ebsOptimized, volumeType, volumeName, volumeEncrypted, volumeKmsKeyID,
volumeIOPS, maxPodsPerNode, preBootstrapCommands, overrideBootstrapCommand, and
disableIMDSv1

cluster.yaml

A cluster with a managed nodegroup with customization.
apiVersion: eksctl.io/vlalpha5

kind: ClusterConfig

Creating managed nodegroups 83

Eksctl User Guide

Amazon EKS

metadata:
name: managed-cluster
region: us-west-2

managedNodeGroups:
- name: custom-ng
ami: ami-Qel24de4755b2734d
securityGroups:
attachIDs: ["sg-1234"]
maxPodsPerNode: 80
ssh:
allow: true
volumeSize: 100
volumeName: /dev/xvda
volumeEncrypted: true

defaults to true, which enforces the use of IMDSv2 tokens

disableIMDSv1: false
overrideBootstrapCommand:
#!/bin/bash

/etc/eks/bootstrap.sh managed-cluster --kubelet-extra-args
labels=eks.amazonaws.com/nodegroup=custom-ng, eks.amazonaws.com/nodegroup-

image=ami-Qel24de4755b2734d"

If you are requesting an instance type that is only available in one zone (and the eksctl config

requires specification of two) make sure to add the availability zone to your node group request:

cluster.yaml

A cluster with a managed nodegroup with "availabilityZones"

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: flux-cluster
region: us-east-2
version: "1.23"

availabilityZones: ["us-east-2b",

managedNodeGroups:
- name: workers

instanceType: hpc6a.48xlarge

"us-east-2c"]

Creating managed nodegroups

84

Eksctl User Guide Amazon EKS

minSize: 64
maxSize: 64
labels: { "fluxoperator": "true" }
availabilityZones: ["us-east-2b"]
efaEnabled: true
placement:

groupName: eks-efa-testing

This can be true for instance types like the Hpc6 family that are only available in one zone.

Existing clusters

eksctl create nodegroup --managed

Tip : if you are using a ClusterConfig file to describe your whole cluster, describe your new
managed node group in the managedNodeGroups field and run:

eksctl create nodegroup --config-file=YOUR_CLUSTER.yaml

Upgrading managed nodegroups

You can update a nodegroup to the latest EKS-optimized AMI release version for the AMI type you
are using at any time.

If your nodegroup is the same Kubernetes version as the cluster, you can update to the latest AMI
release version for that Kubernetes version of the AMI type you are using. If your nodegroup is the
previous Kubernetes version from the cluster’'s Kubernetes version, you can update the nodegroup
to the latest AMI release version that matches the nodegroup’s Kubernetes version, or update to
the latest AMI release version that matches the clusters Kubernetes version. You cannot roll back a
nodegroup to an earlier Kubernetes version.

To upgrade a managed nodegroup to the latest AMI release version:

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster

The nodegroup can be upgraded to the latest AMI release for a specified Kubernetes version using:

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster --kubernetes-
version=<kubernetes-version>

Upgrading managed nodegroups 85

https://aws.amazon.com/ec2/instance-types/hpc6/

Eksctl User Guide Amazon EKS

To upgrade to a specific AMI release version instead of the latest version, pass --release-
version:

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster --release-
version=1.19.6-20210310

® Note

If the managed nodes are deployed using custom AMls, the following workflow must be
followed in order to deploy a new version of the custom AMI.

« initial deployment of the nodegroup must be done using a launch template. e.qg.

managedNodeGroups:
- name: launch-template-ng
launchTemplate:
id: 1t-1234
version: "2" #optional (uses the default version of the launch template if
unspecified)

» create a new version of the custom AMI (using AWS EKS console).

» create a new launch template version with the new AMI ID (using AWS EKS console).

« upgrade the nodes to the new version of the launch template. e.g.

eksctl upgrade nodegroup --name nodegroup-name --cluster cluster-name --launch-
template-version new-template-version

Handling parallel upgrades for nodes

Multiple managed nodes can be upgraded simultaneously. To configure parallel upgrades, define
the updateConfig of a nodegroup when creating the nodegroup. An example updateConfig
can be found here.

To avoid any downtime to your workloads due to upgrading multiple nodes at once, you can limit
the number of nodes that can become unavailable during an upgrade by specifying this in the
maxUnavailable field of an updateConfig. Alternatively, use maxUnavailablePercentage,

Handling parallel upgrades for nodes 86

https://github.com/eksctl-io/eksctl/blob/main/examples/15-managed-nodes.yaml

Eksctl User Guide Amazon EKS

which defines the maximum number of unavailable nodes as a percentage of the total number of
nodes.

Note that maxUnavailable cannot be higher than maxSize. Also, maxUnavailable and
maxUnavailablePercentage cannot be used simultaneously.

This feature is only available for managed nodes.

Updating managed nodegroups

eksctl allows updating the UpdateConfig section of a managed nodegroup. This section

defines two fields. MaxUnavailable and MaxUnavailablePercentage. Your nodegroups are
unaffected during the update, thus downtime shouldn't be expected.

The command update nodegroup should be used with a config file using the --config-file
flag. The nodegroup should contain an nodeGroup.updateConfig section. More information can
be found here.

Nodegroup Health issues

EKS Managed Nodegroups automatically checks the configuration of your nodegroup and nodes
for health issues and reports them through the EKS API and console. To view health issues for a
nodegroup:

eksctl utils nodegroup-health --name=managed-ng-1 --cluster=managed-cluster

Managing Labels

EKS Managed Nodegroups supports attaching labels that are applied to the Kubernetes nodes in
the nodegroup. This is specified via the 1abels field in eksctl during cluster or nodegroup creation.

To set new labels or updating existing labels on a nodegroup:

eksctl set labels --cluster managed-cluster --nodegroup managed-ng-1 --labels
kubernetes.io/managed-by=eks, kubernetes.io/role=worker

To unset or remove labels from a nodegroup:

eksctl unset labels --cluster managed-cluster --nodegroup managed-ng-1 --labels
kubernetes.io/managed-by, kubernetes.io/role

Updating managed nodegroups 87

https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/aws-properties-eks-nodegroup-updateconfig.html
https://geoffcline.github.io/eksctl-schema-demo/#nodeGroups-updateConfig

Eksctl User Guide Amazon EKS

To view all labels set on a nodegroup:

eksctl get labels --cluster managed-cluster --nodegroup managed-ng-1

Scaling Managed Nodegroups

eksctl scale nodegroup also supports managed nodegroups. The syntax for scaling a
managed or unmanaged nodegroup is the same.

eksctl scale nodegroup --name=managed-ng-1 --cluster=managed-cluster --nodes=4 --nodes-
min=3 --nodes-max=5

Further information

« EKS Managed Nodegroups

Node bootstrapping

AmazonLinux2023

AL2023 introduced a new node initialization process nodeadm that uses a YAML configuration
schema, dropping the use of /etc/eks/bootstrap.sh script.

(@ Note
With Kubernetes versions 1.30 and above, Amazon Linux 2023 is the default OS.

Default settings for AL2

For self-managed nodes and EKS-managed nodes based on custom AMiIs, eksctl creates a
default, minimal, NodeConfig and automatically injects it into the nodegroups'’s launch template
userdata. i.e.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=//

Scaling Managed Nodegroups 88

https://docs.aws.eu/eks/latest/userguide/managed-node-groups.html
https://awslabs.github.io/amazon-eks-ami/nodeadm/

Eksctl User Guide Amazon EKS

--//

Content-Type: application/node.eks.aws

apiVersion: node.eks.aws/vlalphal
kind: NodeConfig
spec:
cluster:
apiServerEndpoint: https://XXXX.us-west-2.eks.amazonaws.com
certificateAuthority: XXXX
cidr: 10.100.0.0/16
name: my-cluster
kubelet:
config:
clusterDNS:
- 10.100.0.10
flags:
- --node-labels=alpha.eksctl.io/cluster-name=my-cluster,alpha.eksctl.io/nodegroup-
name=my-nodegroup
- --register-with-taints=special=true:NoSchedule

--//--

For EKS-managed nodes based on native AMIs, the default NodeConfig is being added by EKS
MNG under the hood, appended directly to the EC2's userdata. Thus, in this scenario, eksctl does
not need to include it within the launch template.

Configuring the bootstrapping process

To set advanced properties of NodeConfig, or simply override the default values, eksctl allows
you to specify a custom NodeConfig via nodeGroup.overrideBootstrapCommand or
managedNodeGroup.overrideBootstrapCommand e.g.

managedNodeGroups:
- name: mng-1
amiFamily: AmazonLinux2023
ami: ami-0253856dd7ab7dbc8
overrideBootstrapCommand: |
apiVersion: node.eks.aws/vlalphal
kind: NodeConfig
spec:
instance:
localStorage:

AmazonLinux2023 89

Eksctl User Guide Amazon EKS

strategy: RAIDO

This custom config will be prepended to the userdata by eksctl, and merged by nodeadm with the
default config. Read more about nodeadm's capability of merging multiple configuration objects
here.

Launch Template support for Managed Nodegroups

eksctl supports launching managed nodegroups using a provided EC2 Launch Template. This
enables multiple customization options for nodegroups including providing custom AMls and
security groups, and passing user data for node bootstrapping.

Creating managed nodegroups using a provided launch template

managed-cluster.yaml

A cluster with two managed nodegroups
apiVersion: eksctl.io/vlalpha5s

kind: ClusterConfig

metadata:
name: managed-cluster
region: us-west-2

managedNodeGroups:
- name: managed-ng-1
launchTemplate:
id: 1t-12345
version: "2" # optional (uses the default launch template version if unspecified)

- name: managed-ng-2
minSize: 2
desiredCapacity: 2
maxSize: 4
labels:

role: worker
tags:

nodegroup-name: managed-ng-2
privateNetworking: true
launchTemplate:

id: 1t-12345

Launch template support 90

https://awslabs.github.io/amazon-eks-ami/nodeadm/doc/examples/#merging-multiple-configuration-objects
https://docs.aws.eu/AWSEC2/latest/UserGuide/ec2-launch-templates.html

Eksctl User Guide Amazon EKS

Upgrading a managed nodegroup to use a different launch template
version

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster --launch-
template-version=3

(® Note

If a launch template is using a custom AMI, then the new version should also use a custom
AMI or the upgrade operation will fail

If a launch template is not using a custom AMI, the Kubernetes version to upgrade to can also be
specified:

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster --launch-
template-version=3 --kubernetes-version=1.17

Notes on custom AMI and launch template support

« When a launch template is provided, the following fields are not supported: instanceType,
ami, ssh.allow, ssh.sourceSecurityGrouplds, securityGroups, instancePrefix,
instanceName, ebsOptimized, volumeEncrypted, volumeKmsKeyID, volumeIOPS,
maxPodsPerNode, preBootstrapCommands, overrideBootstrapCommand and
disableIMDSv1.

e When using a custom AMI (ami), overrideBootstrapCommand must also be set to perform the
bootstrapping.

« overrideBootstrapCommand can only be set when using a custom AMI.

« When a launch template is provided, tags specified in the nodegroup config apply to the EKS
Nodegroup resource only and are not propagated to EC2 instances.

Custom subnets

It's possible to extend an existing VPC with a new subnet and add a Nodegroup to that subnet.

Upgrading a managed nodegroup to use a different launch template version 91

Eksctl User Guide Amazon EKS

Why

Should the cluster run out of pre-configured IPs, it's possible to resize the existing VPC with a new
CIDR to add a new subnet to it. To see how to do that, read this guide on AWS Extending VPCs.

TL;DR

Go to the VPC's configuration and add click on Actions->Edit CIDRs and add a new range. For
example:

192.168.0.0/19 -> existing CIDR
+ 192.169.0.0/19 -> new CIDR

Now you need to add a new Subnet. Depending on if it's a new Private or a Public subnet, you will
have to copy the routing information from a private or a public subnet respectively.

Once the subnet is created, add routing, and copy either the NAT gateway ID or the Internet
Gateway from another subnet in the VPC. Take care that if it's a public subnet Enable Automatic IP
Assignment. Actions->Modify auto-assign IP settings->Enable auto-assign public IPv4 address.

Don't forget to also copy the TAGS of the existing subnets depending on Public or Private subnet
configuration. This is important, otherwise the subnet will not be part of the cluster and instances
in the subnet will be unable to join.

When finished, copy the new subnet’s ID. Repeat as often as necessary.
How

To create a nodegroup in the created subnet(s) run the following command:

eksctl create nodegroup --cluster <cluster-name> --name my-new-subnet --subnet-ids
subnet-0edeb3a®4bec27141, subnet-0edeb3al4bec27142, subnet-0edeb3a@4bec27143

or for a single subnet id

eksctl create nodegroup --cluster <cluster-name> --name my-new-subnet --subnet-ids
subnet-0edeb3a@4bec27141

Or, use the configuration as such:

eksctl create nodegroup -f cluster-managed.yaml

Why 92

https://docs.aws.eu/vpc/latest/userguide/VPC_Subnets.html#vpc-resize

Eksctl User Guide Amazon EKS

With a configuration like this:

A simple example of ClusterConfig object with two nodegroups:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: cluster-3
region: eu-north-1

nodeGroups:

- name: new-subnet-nodegroup
instanceType: m5.large
desiredCapacity: 1
subnets:

- subnet-id1l
- subnet-id2

Wait for the nodegroup to be created and the new instances should have the new IP ranges of the
subnet(s).

Deleting the cluster

Since the new addition modified the existing VPC by adding a dependency outside of the
CloudFormation stack, CloudFormation can no longer remove the cluster.

Before deleting the cluster, remove all created extra subnets by hand, then proceed by calling
eksctl:

eksctl delete cluster -n <cluster-name> --wait

Custom DNS

There are two ways of overwriting the DNS server IP address used for all the internal and external
DNS lookups. This is the equivalent of the --cluster-dns flag for the kubelet.

The first, is through the clustexrDNS field. Config files accepts a string field called clusterDNS
with the IP address of the DNS server to use. This will be passed to the kubelet that in turn will

Deleting the cluster 93

Eksctl User Guide Amazon EKS

pass it to the pods through the /etc/resolv. conf file. For more information, see the schema of
the config file.

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: cluster-1
region: eu-north-1

nodeGroups:
- name: ng-1
clusterDNS: 169.254.20.10

Note that this configuration only accepts one IP address. To specify more than one address, use the
kubeletExtraConfig parameter:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: cluster-1
region: eu-north-1

nodeGroups:
- name: ng-1
kubeletExtraConfig:
clusterDNS: ["169.254.20.10","172.20.0.10"]

Taints
To apply taints to a specific nodegroup use the taints config section like this:

taints:
- key: your.domain.com/db
value: "true"
effect: NoSchedule
- key: your.domain.com/production
value: "true"
effect: NoExecute

Taints 94

https://geoffcline.github.io/eksctl-schema-demo/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Eksctl User Guide Amazon EKS

A full example can be found here.

Instance Selector

eksctl supports specifying multiple instance types for managed and self-managed nodegroups,
but with over 270 EC2 instance types, users have to spend time figuring out which instance types
would be well suited for their nodegroup. It's even harder when using Spot instances because you
need to choose a set of instances that works together well with the Cluster Autoscaler.

eksctl now integrates with the EC2 instance selector, which addresses this problem by generating

a list of instance types based on resource criteria: vCPUs, memory, # of GPUs and CPU architecture.
When the instance selector criteria is passed, eksctl creates a nodegroup with the instance types set
to the instance types matching the supplied criteria.

Create cluster and nodegroups

To create a cluster with a single nodegroup that uses instance types matched by the instance
selector resource criteria passed to eksctl, run

eksctl create cluster --instance-selector-vcpus=2 --instance-selector-memory=4

This will create a cluster and a managed nodegroup with the instanceTypes field set to
[c5.1large, c5a.large, c5ad.large, c5d.large, t2.medium, t3.medium,
t3a.medium] (the set of instance types returned may change).

For unmanaged nodegroups, the instancesDistribution.instanceTypes field will be set:

eksctl create cluster --managed=false --instance-selector-vcpus=2 --instance-selector-
memory=4

The instance selector criteria can also be specified in ClusterConfig:

instance-selector-cluster.yaml
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: cluster
region: us-west-2

Instance Selector 95

https://github.com/eksctl-io/eksctl/blob/main/examples/34-taints.yaml
https://github.com/aws/amazon-ec2-instance-selector

Eksctl User Guide Amazon EKS

nodeGroups:
- name: ng
instanceSelector:
vCPUs: 2
memory: "4" # 4 GiB, unit defaults to GiB

managedNodeGroups:
- name: mng
instanceSelector:
vCPUs: 2
memory: 2GiB #
cpuArchitecture: x86_64 # default value

eksctl create cluster -f instance-selector-cluster.yaml

The following instance selector CLI options are supported by eksctl create cluster and
eksctl create nodegroup:

--instance-selector-vcpus, --instance-selector-memory, --instance-selector-
gpus and instance-selector-cpu-architecture

An example file can be found here.
Dry Run

The dry-run feature allows you to inspect and change the instances matched by the instance
selector before proceeding to creating a nodegroup.

eksctl create cluster --name development --instance-selector-vcpus=2 --instance-
selector-memory=4 --dry-run

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig
...
managedNodeGroups:
- amiFamily: AmazonLinux2
instanceSelector:
memory: "4"
vCPUs: 2
instanceTypes:
- c5.1large

Create cluster and nodegroups

96

https://github.com/eksctl-io/eksctl/blob/main/examples/28-instance-selector.yaml

Eksctl User Guide Amazon EKS

- c5a.large
- c5ad.large
- c5d.large
- t2.medium
- t3.medium
- t3a.medium

other config

The generated ClusterConfig can then be passed to eksctl create cluster:

eksctl create cluster -f generated-cluster.yaml

The instanceSelector field representing the CLI options will also be added to the ClusterConfig
file for visibility and documentation purposes. When --dry-run is omitted, this field will be
ignored and the instanceTypes field will be used, otherwise any changes to instanceTypes
would get overridden by eksctl.

When a ClusterConfig file is passed with --dry-run, eksctl will output a ClusterConfig file
containing the same set of nodegroups after expanding each nodegroup’s instance selector
resource criteria.

instance-selector-cluster.yaml
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: cluster
region: us-west-2

nodeGroups:
- name: ng
instanceSelector:
vCPUs: 2
memory: 4 # 4 GiB, unit defaults to GiB

managedNodeGroups:
- name: mng
instanceSelector:
vCPUs: 2
memory: 2GiB #

Create cluster and nodegroups 97

Eksctl User Guide Amazon EKS

cpuArchitecture: x86_64 # default value

eksctl create cluster -f instance-selector-cluster.yaml --dry-run

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig
...
managedNodeGroups:
- amiFamily: AmazonLinux2
...
instanceSelector:
cpuArchitecture: x86_64
memory: 2GiB
vCPUs: 2
instanceTypes:
- t3.small
- t3a.small
nodeGroups:
- amiFamily: AmazonLinux2
...
instanceSelector:
memory: "4"
vCPUs: 2
instanceType: mixed
instancesDistribution:
capacityRebalance: false
instanceTypes:
- c5.1large
- c5a.large
- c5ad.large
- c5d.large
- t2.medium
- t3.medium
- t3a.medium

Spot instances

Managed Nodegroups

eksctl supports Spot worker nodes using EKS Managed Nodegroups, a feature that allows EKS

customers with fault-tolerant applications to easily provision and manage EC2 Spot Instances for

Spot instances 98

https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-provisioning-and-managing-ec2-spot-instances-in-managed-node-groups/

Eksctl User Guide Amazon EKS

their EKS clusters. EKS Managed Nodegroup will configure and launch an EC2 Autoscaling group

of Spot Instances following Spot best practices and draining Spot worker nodes automatically
before the instances are interrupted by AWS. There is no incremental charge to use this feature and
customers pay only for using the AWS resources, such as EC2 Spot Instances and EBS volumes.

To create a cluster with a managed nodegroup using Spot instances, pass the --spot flag and an
optional list of instance types:

eksctl create cluster --spot --instance-types=c3.large,c4.large,c5.large

To create a managed nodegroup using Spot instances on an existing cluster:

eksctl create nodegroup --cluster=<clusterName> --spot --instance-
types=c3.large,c4.large,c5.1large

To create Spot instances using managed nodegroups via a config file:

spot-cluster.yaml

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: spot-cluster
region: us-west-2

managedNodeGroups:
- name: spot

instanceTypes: ["c3.large",'"c4.large","c5.large","c5d.large","c5n.large", "c5a.large"]
spot: true

“instanceTypes defaults to ['m5.large]
- name: spot-2
spot: true

On-Demand instances

- name: on-demand
instanceTypes: ["c3.large", "c4.large", "c5.large"]

eksctl create cluster -f spot-cluster.yaml

Managed Nodegroups 99

Eksctl User Guide Amazon EKS

® Note

Unmanaged nodegroups do not support the spot and instanceTypes fields, instead the
instancesDistribution field is used to configure Spot instances. See below

Further information

» EKS Spot Nodegroups

« EKS Managed Nodegroup Capacity Types

Unmanaged Nodegroups
eksctl has support for spot instances through the MixedInstancesPolicy for Auto Scaling Groups.

Here is an example of a nodegroup that uses 50% spot instances and 50% on demand instances:

nodeGroups:
- name: ng-1
minSize: 2
maxSize: 5
instancesDistribution:
maxPrice: 0.017
instanceTypes: ["t3.small", "t3.medium"] # At least one instance type should be
specified
onDemandBaseCapacity: 0
onDemandPercentageAboveBaseCapacity: 50
spotInstancePools: 2

Note that the nodeGroups.X.instanceType field shouldn't be set when using the
instancesDistribution field.

This example uses GPU instances:

nodeGroups:

- name: ng-gpu
instanceType: mixed
desiredCapacity: 1
instancesDistribution:

Unmanaged Nodegroups 100

https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-provisioning-and-managing-ec2-spot-instances-in-managed-node-groups/
https://docs.aws.eu/eks/latest/userguide/managed-node-groups.html#managed-node-group-capacity-types

Eksctl User Guide Amazon EKS

instanceTypes:
- p2.xlarge
- p2.8xlarge
- p2.16xlarge
maxPrice: 0.50

This example uses the capacity-optimized spot allocation strategy:

nodeGroups:
- name: ng-capacity-optimized
minSize: 2
maxSize: 5
instancesDistribution:
maxPrice: 0.017
instanceTypes: ["t3.small", "t3.medium"] # At least one instance type should be
specified
onDemandBaseCapacity: 0
onDemandPercentageAboveBaseCapacity: 50
spotAllocationStrategy: "capacity-optimized"

This example uses the capacity-optimized-prioritized spot allocation strategy:

nodeGroups:
- name: ng-capacity-optimized-prioritized
minSize: 2
maxSize: 5
instancesDistribution:
maxPrice: 0.017
instanceTypes: ["t3a.small", "t3.small"] # At least two instance types should be
specified
onDemandBaseCapacity: 0
onDemandPercentageAboveBaseCapacity: 0
spotAllocationStrategy: "capacity-optimized-prioritized"

Use the capacity-optimized-prioritized allocation strategy and then set the order of
instance types in the list of launch template overrides from highest to lowest priority (first to

last in the list). Amazon EC2 Auto Scaling honors the instance type priorities on a best-effort

basis but optimizes for capacity first. This is a good option for workloads where the possibility of
disruption must be minimized, but also the preference for certain instance types matters.For more
information, see ASG Purchase Options.

Unmanaged Nodegroups 101

https://docs.aws.eu/autoscaling/ec2/userguide/asg-purchase-options.html#asg-spot-strategy

Eksctl User Guide Amazon EKS

Note that the spotInstancePools field shouldn't be set when using the
spotAllocationStrategy field. If the spotAllocationStrategy is not specified, EC2 will
default to use the lowest-price strategy.

Here is a minimal example:

nodeGroups:
- name: ng-1
instancesDistribution:

instanceTypes: ["t3.small", "t3.medium"] # At least one instance type should be
specified

To distinguish nodes between spot or on-demand instances you can use the kubernetes label
node-1lifecycle which will have the value spot or on-demand depending on its type.

Parameters in instancesDistribution

Please see the cluster config schema for details.

GPU Support

Eksctl supports selecting GPU instance types for nodegroups. Simply supply a compatible instance
type to the create command, or via the config file.

eksctl create cluster --node-type=p2.xlarge

® Note

It is no longer necessary to subscribe to the marketplace AMI for GPU support on EKS.

The AMI resolvers (auto and auto-ssm) will see that you want to use a GPU instance type and
they will select the correct EKS optimized accelerated AMI.

Eksctl will detect that an AMI with a GPU-enabled instance type has been selected and will install
the NVIDIA Kubernetes device plugin automatically.

GPU Support 102

https://github.com/NVIDIA/k8s-device-plugin

Eksctl User Guide Amazon EKS

® Note

Windows and Ubuntu AMiIs do not ship with GPU drivers installed, hence running GPU-
accelerated workloads will not work out of the box.

To disable the automatic plugin installation, and manually install a specific version, use - -
install-nvidia-plugin=false with the create command. For example:

eksctl create cluster --node-type=p2.xlarge --install-nvidia-plugin=false

and, for versions 0.15.0 and above,

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/<VERSION>/
deployments/static/nvidia-device-plugin.yml

or, for older versions,

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/<VERSION>/
nvidia-device-plugin.yml

The installation of the NVIDIA Kubernetes device plugin will be skipped if the cluster only includes

Bottlerocket nodegroups, since Bottlerocket already handles the execution of the device plugin.
If you use different AMI families in your cluster’s configurations, you may need to use taints and
tolerations to keep the device plugin from running on Bottlerocket nodes.

ARM Support

This topic covers how to create a cluster with an ARM node group, and how to add an ARM node
group to an existing cluster.

EKS supports 64-bit ARM architecture with its Graviton processors. To create a cluster, select one of

the Graviton-based instance types (al, t4g, m6g, m7g, mégd, c6g, c7g, c6gd, r6g, r7g, r6gd, m8g,
r8g, c8g) and run:

eksctl create cluster --node-type=al.large

or use a config file:

ARM Support 103

https://github.com/NVIDIA/k8s-device-plugin
https://aws.amazon.com/ec2/graviton/

Eksctl User Guide Amazon EKS

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: cluster-arm-1
region: us-west-2

nodeGroups:
- name: ng-arm-1
instanceType: m6g.medium
desiredCapacity: 1

eksctl create cluster -f cluster-arm-1.yaml

ARM is also supported in managed nodegroups:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: cluster-arm-2
region: us-west-2

managedNodeGroups:
- name: mng-arm-1
instanceType: m6g.medium
desiredCapacity: 1

eksctl create cluster -f cluster-arm-2.yaml

The AMI resolvers, auto and auto-ssm, will infer the correct AMI based on the ARM instance type.
Only AmazonLinux2023, AmazonLinux2 and Bottlerocket families have EKS optimized AMls for
ARM.

(® Note

ARM is supported for clusters with version 1.15 and higher.

ARM Support 104

Eksctl User Guide Amazon EKS

Auto Scaling

Enable Auto Scaling

You can create a cluster (or nodegroup in an existing cluster) with 1AM role that will allow use of
cluster autoscaler:

eksctl create cluster --asg-access

This flag also sets k8s.io/cluster-autoscaler/enabled and k8s.io/cluster-
autoscaler/<clusterName> tags, so nodegroup discovery should work.

Once the cluster is running, you will need to install Cluster Autoscaler itself.

You should also add the following to your managed or unmanaged nodegroup definition(s) to add
the tags required for the Cluster Autoscaler to scale the nodegroup:

nodeGroups:
- name: ngl-public
iam:
withAddonPolicies:
autoScaler: true

Scaling up from 0

If you would like to be able to scale your node group up from 0 and you have labels and/or taints
defined on your nodegroups, you will need to propagate these as tags on your Auto Scaling Groups
(ASGs).

One way to do this is by setting the ASG tags in the tags field of your nodegroup definitions. For
example, given a nodegroup with the following labels and taints:

nodeGroups:
- name: ngl-public
labels:
my-cool-label: pizza
taints:
key: feaster

value: "true"
effect: NoSchedule

Auto Scaling 105

https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md

Eksctl User Guide Amazon EKS

You would need to add the following ASG tags:

nodeGroups:
- name: ngl-public

labels:

my-cool-label: pizza
taints:

feaster: "true:NoSchedule"
tags:

k8s.io/cluster-autoscaler/node-template/label/my-cool-label: pizza
k8s.io/cluster-autoscaler/node-template/taint/feaster: "true:NoSchedule"

For both managed and unmanaged nodegroups, this can be done automatically by setting
propagateASGTags to true, which will add the labels and taints as tags to the Auto Scaling

group:

nodeGroups:
- name: ngl-public

labels:
my-cool-label: pizza
taints:

feaster: "true:NoSchedule"
propagateASGTags: true

Zone-aware Auto Scaling

If your workloads are zone-specific you'll need to create separate nodegroups for each zone. This is
because the cluster-autoscaler assumes that all nodes in a group are exactly equivalent. So,
for example, if a scale-up event is triggered by a pod which needs a zone-specific PVC (e.g. an EBS
volume), the new node might get scheduled in the wrong AZ and the pod will fail to start.

You won't need a separate nodegroup for each AZ if your environment meets the following criteria:

No zone-specific storage requirements.

No required podAffinity with topology other than host.

No required nodeAffinity on zone label.

No nodeSelector on a zone label.

Enable Auto Scaling 106

Eksctl User Guide

Amazon EKS

(Read more here and here.)

If you meet all of the above requirements (and possibly others) then you should be safe with a

single nodegroup which spans multiple AZs. Otherwise you'll want to create separate, single-AZ

nodegroups:

BEFORE:

nodeGroups:
- name: ngl-public
instanceType: m5.xlarge

availabilityZones: ["eu-west-2a",

AFTER:

nodeGroups:
- name: ngl-public-2a
instanceType: m5.xlarge
availabilityZones: ["eu-west-2a"]
- name: ngl-public-2b
instanceType: m5.xlarge
availabilityZones: ["eu-west-2b"]

Custom AMI support

Setting the node AMI ID

"eu-west-2b"]

The --node-ami flag enables a number of advanced use cases such as using a custom AMI or
querying AWS in realtime to determine which AMI to use. The flag can be used for both non-GPU

and GPU images.

The flag can take the AMI image id for an image to explicitly use. It also can take the following

'special’ keywords:

Keyword

auto

Description

Indicates that the AMI to use for the nodes
should be found by querying AWS EC2. This
relates to the auto resolver.

Custom AMI support

107

https://github.com/kubernetes/autoscaler/pull/1802#issuecomment-474295002
https://github.com/eksctl-io/eksctl/pull/647#issuecomment-474698054

Eksctl User Guide Amazon EKS

Keyword Description

auto-ssm Indicates that the AMI to use for the nodes
should be found by querying AWS SSM
Parameter Store.

® Note

At the moment, EKS managed nodegroups only support the following AMI Families
when working with custom AMls: AmazonLinux2023, AmazonLinux2, Bottlerocket,
Ubuntu2004, UbuntuPro2004, Ubuntu2204 and Ubuntu2404

When setting - -node-ami to an ID string, eksctl will assume that a custom AMI has been
requested. For AmazonLinux2 and Ubuntu nodes, both EKS managed and self-managed,

this will mean that overrideBootstrapCommand is required. For AmazonLinux2023, since

it stops using the /etc/eks/bootstrap.sh script for node bootstrapping, in favour of a
nodeadm initialization process (for more information, please refer to node bootstrapping docs),
overrideBootstrapCommand is not supported.

CLI flag examples:

eksctl create cluster --node-ami=auto

with a custom ami id
eksctl create cluster --node-ami=ami-customl234

Config file example:

nodeGroups:

- name: ngl
instanceType: p2.xlarge
amiFamily: AmazonLinux2
ami: auto

- name: ng2
instanceType: m5.large
amiFamily: AmazonLinux2
ami: ami-customl234

Setting the node AMI ID 108

https://github.com/eksctl-io/eksctl/blob/main/pkg/nodebootstrap/README.md

Eksctl User Guide

Amazon EKS

managedNodeGroups:
- name: m-ng-2
amiFamily: AmazonLinux2
ami: ami-customl234
instanceType: m5.large

overrideBootstrapCommand:

#!/bin/bash

/etc/eks/bootstrap.sh <cluster-name>

The --node-ami flag can also be used with eksctl create nodegroup.

Setting the node AMI Family

The --node-ami-family can take following keywords:

Keyword

AmazonLinux2

AmazonLinux2023

Ubuntu2004

UbuntuPro2004

Ubuntu2204

UbuntuPro2204

Description

Indicates that the EKS AMI image based on
Amazon Linux 2 should be used (default).

Indicates that the EKS AMI image based
on Amazon Linux 2023 should be used.

Indicates that the EKS AMI image based
on Ubuntu 20.04 LTS (Focal) should
be used (supported for EKS < 1.29).

Indicates that the EKS AMI image based
on Ubuntu Pro 20.04 LTS (Focal) should be
used (available for EKS >= 1.27, « 1.29).

Indicates that the EKS AMI image based
on Ubuntu 22.04 LTS (Jammy) should
be used (available for EKS >= 1.29).

Indicates that the EKS AMI image based
on Ubuntu Pro 22.04 LTS (Jammy) should
be used (available for EKS >= 1.29).

Setting the node AMI Family

109

Eksctl User Guide Amazon EKS

Keyword Description

Ubuntu2404 Indicates that the EKS AMI image based
on Ubuntu 24.04 LTS (Noble) should
be used (available for EKS >= 1.31).

UbuntuPro2404 Indicates that the EKS AMI image based
on Ubuntu Pro 24.04 LTS (Noble) should
be used (available for EKS >= 1.31).

Bottlerocket Indicates that the EKS AMI image
based on Bottlerocket should be used.

WindowsServer2019FullContainer Indicates that the EKS AMI image
based on Windows Server 2019
Full Container should be used.

WindowsServer2019CoreContainer Indicates that the EKS AMI image
based on Windows Server 2019
Core Container should be used.

WindowsServer2022FullContainer Indicates that the EKS AMI image
based on Windows Server 2022
Full Container should be used.

WindowsServer2022CoreContainer Indicates that the EKS AMI image
based on Windows Server 2022
Core Container should be used.

CLI flag example:

eksctl create cluster --node-ami-family=AmazonLinux2

Config file example:

nodeGroups:
- name: ngl
instanceType: m5.large
amiFamily: AmazonLinux2

Setting the node AMI Family 110

Eksctl User Guide Amazon EKS

managedNodeGroups:
- name: m-ng-2
instanceType: m5.large
amiFamily: Ubuntu2204

The --node-ami-family flag can also be used with eksctl create nodegroup. eksctl
requires AMI Family to be explicitly set via config file or via --node-ami-family CLI flag,
whenever working with a custom AML.

(® Note

At the moment, EKS managed nodegroups only support the following AMI Families
when working with custom AMls: AmazonLinux2023, AmazonLinux2, Bottlerocket,
Ubuntu2004, UbuntuPro2004, Ubuntu2204 and Ubuntu2404

Windows custom AMI support

Only self-managed Windows nodegroups can specify a custom AMI. amiFamily should be set to a
valid Windows AMI family.

The following PowerShell variables will be available to the bootstrap script:

$EKSBootstrapScriptFile

$EKSClusterName

$APIServerEndpoint

$Base64ClusterCA

$ServiceCIDR

$KubeletExtraArgs

$KubeletExtraArgsMap: A hashtable containing arguments for the kubelet, e.g., @{ 'node-
labels' = ''; 'register-with-taints' = ''; 'max-pods' = '10'}

$DNSClusterIP

$ContainerRuntime

Config file example:

nodeGroups:
- name: custom-windows
amiFamily: WindowsServer2022FullContainer
ami: ami-@1579b74557facaf7
overrideBootstrapCommand: |

Windows custom AMI support 111

Eksctl User Guide Amazon EKS

& $EKSBootstrapScriptFile -EKSClusterName "$EKSClusterName" -APIServerEndpoint
"$APIServerEndpoint" -Base64ClusterCA "$Base64ClusterCA" -ContainerRuntime
"containerd" -KubeletExtraArgs "$KubeletExtraArgs" 3>&1 4>&1 5>&1 6>&1

Bottlerocket custom AMI support

For Bottlerocket nodes, the overrideBootstrapCommand is not supported. Instead, to
designate their own bootstrap container, one should use the bottlerocket field as part of the
configuration file. E.g.

nodeGroups:
- name: bottlerocket-ng
ami: ami-customl234
amiFamily: Bottlerocket
bottlerocket:
enableAdminContainer: true
settings:
bootstrap-containers:
bootstrap:
source: <MY-CONTAINER-URI>

Windows Worker Nodes

From version 1.14, Amazon EKS supports Windows Nodes that allow running Windows containers.

In addition to having Windows nodes, a Linux node in the cluster is required to run CoreDNS,

as Microsoft doesn't support host-networking mode yet. Thus, a Windows EKS cluster will be

a mixture of Windows nodes and at least one Linux node. The Linux nodes are critical to the
functioning of the cluster, and thus, for a production-grade cluster, it's recommended to have at
least two t2.1large Linux nodes for HA.

(® Note

You no longer need to install the VPC resource controller on Linux worker nodes to run
Windows workloads in EKS clusters created after October 22, 2021. You can enable
Windows IP address management on the EKS control plane via a ConfigMap setting (see
link:eks/latest/userguide/windows-support.html for details). eksctl will automatically
patch the ConfigMap to enable Windows IP address management when a Windows
nodegroup is created.

Bottlerocket custom AMI support 112

https://docs.aws.eu/eks/latest/userguide/windows-support.html

Eksctl User Guide

Amazon EKS

Creating a new cluster with Windows support

The config file syntax allows creating a fully-functioning cluster with Windows support in a single

command:

cluster.yaml

An example of ClusterConfig containing Windows and Linux node groups to support

Windows workloads
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: windows-cluster
region: us-west-2

nodeGroups:
- name: windows-ng
amiFamily: WindowsServer2@19FullContainer
minSize: 2
maxSize: 3

managedNodeGroups:

- name: linux-ng
instanceType: t2.large
minSize: 2
maxSize: 3

- name: windows-managed-ng
amiFamily: WindowsServer2@19FullContainer
minSize: 2
maxSize: 3

eksctl create cluster -f cluster.yaml

To create a new cluster with Windows un-managed nodegroup without using a config file, issue the

following commands:

eksctl create cluster --managed=false --name=windows-cluster --node-ami-

family=WindowsServer2019CoreContainer

Creating a new cluster with Windows support

Eksctl User Guide Amazon EKS

Adding Windows support to an existing Linux cluster

To enable running Windows workloads on an existing cluster with Linux nodes (AmazonLinux2
AMI family), you need to add a Windows nodegroup.

NEW Support for Windows managed nodegroup has been added (--managed=true or omit the
flag).

eksctl create nodegroup --managed=false --cluster=existing-cluster --node-ami-
family=WindowsServer2019CoreContainer

eksctl create nodegroup --cluster=existing-cluster --node-ami-
family=WindowsServer2019CoreContainer

To ensure workloads are scheduled on the right OS, they must have a nodeSelector targeting the
OS it must run on:

Targeting Windows
nodeSelector:
kubernetes.io/os: windows
kubernetes.io/arch: amd64

Targeting Linux
nodeSelector:
kubernetes.io/os: linux
kubernetes.io/arch: amd64

If you are using a cluster older than 1.19 the kubernetes.io/os and kubernetes.io/arch
labels need to be replaced with beta.kubernetes.io/os and beta.kubernetes.io/arch
respectively.

Further information

» EKS Windows Support

Additional Volume Mappings

As an additional configuration option, when dealing with volume mappings, it's possible to
configure extra mappings when the nodegroup is created.

To do this, set the field additionalVolumes as follows:

Adding Windows support to an existing Linux cluster 114

https://docs.aws.eu/eks/latest/userguide/windows-support.html

Eksctl User Guide Amazon EKS

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: dev-cluster
region: eu-north-1

managedNodeGroups:
- name: ng-l-workers
labels: { role: workers }
instanceType: m5.xlarge
desiredCapacity: 10
volumeSize: 80
additionalVolumes:
- volumeName: '/tmp/mount-1' # required
volumeSize: 80
volumeType: 'gp3'
volumeEncrypted: true
volumeKmsKeyID: 'id'
volumeIOPS: 3000
volumeThroughput: 125
- volumeName: '/tmp/mount-2' # required
volumeSize: 80
volumeType: 'gp2'
snapshotID: 'snapshot-id'

For more details about selecting volumeNames, see the device naming documentation. To find out

more about EBS volumes, Instance volume limits or Block device mappings visit this page.

EKS Hybrid Nodes

Introduction

AWS EKS introduces Hybrid Nodes, a new feature that enables you to run on-premises and edge
applications on customer-managed infrastructure with the same AWS EKS clusters, features, and
tools you use in the AWS Cloud. AWS EKS Hybird Nodes brings an AWS-managed Kubernetes

experience to on-premises environments for customers to simplify and standardize how you run
applications across on-premises, edge and cloud environments. Read more at EKS Hybrid Nodes.

To facilitate support for this feature, eksctl introduces a new top-level field called
remoteNetworkConfig. Any Hybrid Nodes related configuration shall be set up via this field,

EKS Hybrid Nodes 115

https://docs.aws.eu/AWSEC2/latest/UserGuide/device_naming.html
https://docs.aws.eu/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.eu/eks/latest/userguide/hybrid-nodes-overview.html

Eksctl User Guide Amazon EKS

as part of the config file; there are no CLI flags counterparts. Additionally, at launch, any remote
network config can only be set up during cluster creation and cannot be updated afterwards. This
means, you won't be able to update existing clusters to use Hybrid Nodes.

The remoteNetworkConfig section of the config file allows you to setup the two core areas when
it comes to joining remote nodes to you EKS clusters: networking and credentials.

Networking

EKS Hybrid Nodes is flexible to your preferred method of connecting your on-premises network(s)
to an AWS VPC. There are several documented options available, including AWS Site-to-Site

VPN and AWS Direct Connect, and you can choose the method that best fits your use case. In
most of the methods you might choose, your VPC will be attached to either a virtual private

gateway (VGW) or a transit gateway (TGW). If you rely on eksctl to create a VPC for you, eksctl will
also configure, within the scope of your VPC, any networking related pre-requisites in order to
facilitate communication between your EKS control plane and the remote nodes i.e.

« ingress/egress SG rules
 routes in the private subnets' route tables

« the VPC gateway attachment to the given TGW or VGW

Example config file:

remoteNetworkConfig:
vpcGatewayID: tgw-xxxx # either VGW or TGW to be attached to your VPC
remoteNodeNetworks:
eksctl will create, behind the scenes, SG rules, routes, and a VPC gateway
attachment,
to facilitate communication between remote network(s) and EKS control plane, via
the attached gateway
- cidrs: ["10.80.146.0/24"]
remotePodNetworks:
- cidrs: ["10.86.30.0/23"]

If your connectivity method of choice does not involve using a TGW or VGW, you must not rely on
eksctl to create the VPC for you, and instead provide a pre-existing one. On a related note, if you
are using a pre-existing VPC, eksctl won't make any amendments to it, and ensuring all networking
requirements are in place falls under your responsibility.

Networking 116

https://docs.aws.eu/whitepapers/latest/aws-vpc-connectivity-options/network-to-amazon-vpc-connectivity-options.html

Eksctl User Guide Amazon EKS

® Note

eksctl does not setup any networking infrastructure outside your AWS VPC (i.e. any
infrastructure from VGW/TGW to the remote networks)

Credentials

EKS Hybrid Nodes use the AWS IAM Authenticator and temporary IAM credentials provisioned by
either AWS SSM or AWS IAM Roles Anywhere to authenticate with the EKS cluster. Similar to the
self-managed nodegroups, if not otherwise provided, eksctl will create for you a Hybrid Nodes
IAM Role to be assumed by the remote nodes. Additioanlly, when using IAM Roles Anywhere as
your credentials provider, eksctl will setup a profile, and trust anchor based on a given certificate
authority bundle (iam.caBundleCert) e.q.

remoteNetworkConfig:
iam:

the provider for temporary IAM credentials. Default is SSM.
provider: IRA
the certificate authority bundle that serves as the root of trust,
used to validate the X.509 certificates provided by your nodes.
can only be set when provider is IAMRolesAnywhere.
caBundleCert: xxxx

The ARN of the Hybrid Nodes Role created by eksctl is needed later in the process of joining your
remote nodes to the cluster, to setup NodeConfig for nodeadm, and to create activations (if using
SSM). To fetch it, use:

aws cloudformation describe-stacks \
--stack-name eksctl-<CLUSTER_NAME>-cluster \
--query 'Stacks[].Outputs[?0utputKey=="RemoteNodesRoleARN].[OutputValue]' \
--output text

Similarly, if using IAM Roles Anywhere, you can fetch the ARN of the trust anchor
and of the anywhere profile created by eksctl, amending the previous command
by replacing RemoteNodesRoleARN with RemoteNodesTrustAnchorARN or
RemoteNodesAnywhereProfileARN, respectively.

Credentials 117

Eksctl User Guide Amazon EKS

If you have a pre-existing IAM Roles Anywhere configuration in place, or you are using SSM, you
can provide a IAM Role for Hybrid nodes via remoteNetworkConfig.iam.roleARN. Bear in mind
that in this scenario, eksctl won't create the trust anchor and anywhere profile for you. e.g.

remoteNetworkConfig:
iam:
roleARN: arn:aws:iam::000011112222:role/HybridNodesRole

To map the role to a Kubernetes identity and authorise the remote nodes to join the EKS
cluster, eksctl creates an access entry with Hybrid Nodes IAM Role as principal ARN and of type
HYBRID_LINUX. i.e.

eksctl get accessentry --cluster my-cluster --principal-arn
arn:aws:iam::000011112222:ro0le/eksctl-my-cluster-clust-HybridNodesSSMRole-XiIAg@d29Pk0
--output json
[
{
"principalARN": "arn:aws:iam::000011112222:role/eksctl-my-cluster-clust-
HybridNodesSSMRole-XiIAg@d29Pk0",
"kubernetesGroups": [
"system:nodes"

Add-ons support

Container Networking Interface (CNI): The AWS VPC CNI can't be used with hybrid nodes. The core
capabilities of Cilium and Calico are supported for use with hybrid nodes. You can manage your
CNI with your choice of tooling such as Helm. For more information, see Configure a CNI for hybrid
nodes.

(@ Note

If you install VPC CNI in your cluster for your self-managed or EKS-managed nodegroups,
you have to use v1.19.0-eksbuild.1 or later, as this includes an udpate to the add-on'’s
daemonset to exclude it from being installed on Hybrid Nodes.

Add-ons support 118

https://docs.aws.eu/eks/latest/userguide/hybrid-nodes-cni.html
https://docs.aws.eu/eks/latest/userguide/hybrid-nodes-cni.html

Eksctl User Guide Amazon EKS

Further references

« EKS Hybrid Nodes UserDocs

« Launch Announcement

Support for Node Repair Config in EKS Managed Nodegroups

EKS Managed Nodegroups now supports Node Repair, where the health of managed nodes are
monitored, and unhealthy worker nodes are replaced or rebooted in response.

Creating a cluster a managed nodegroup with node repair enabled

To create a cluster with a managed nodegroup using node repair, pass the --enable-node-
repair flag:

eksctl create cluster --enable-node-repair

To create a managed nodegroup using node repair on an existing cluster:

eksctl create nodegroup --cluster=<clusterName> --enable-node-repair

To create a cluster with a managed nodegroup using node repair via a config file:

node-repair-nodegroup-cluster.yaml
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: cluster-44
region: us-west-2

managedNodeGroups:
- name: ng-1
nodeRepairConfig:
enabled: true

eksctl create cluster -f node-repair-nodegroup-cluster.yaml

Further references 119

https://docs.aws.eu/eks/latest/userguide/hybrid-nodes-overview.html
https://aws.amazon.com/about-aws/whats-new/2024/12/amazon-eks-hybrid-nodes

Eksctl User Guide Amazon EKS

Further information

« EKS Managed Nodegroup Node Health

Further information 120

https://docs.aws.eu/eks/latest/userguide/node-health.html

Eksctl User Guide Amazon EKS

Networking

This chapter includes information about how Eksctl creates Virtual Private Cloud (VPC) networks
for EKS clusters.

Topics:

» the section called "VPC Configuration”

» Modify the VPC CIDR range and configure IPv6 addressing
« Use an existing VPC
» Customize the VPC, subnets, security groups, and NAT gateways for the new EKS cluster

» the section called “Subnet Settings”

» Use private subnets for the initial nodegroup to isolate it from the public internet

» Customize subnet topology by listing multiple subnets per availability zone and specifying
subnets in nodegroup configurations

 Restrict nodegroups to specific named subnets in the VPC configuration
« When using private subnets for nodegroups, set privateNetworking to true

« Provide a complete subnet specification with both public and private configurations in the
VPC spec

« Only one of subnets or availabilityZones can be provided in nodegroup configuration

« the section called “Cluster Access”

« Manage public and private access to the Kubernetes API server endpoints in an EKS cluster
» Restrict access to the EKS Kubernetes public APl endpoint by specifying allowed CIDR ranges

» Update the API server endpoint access configuration and public access CIDR restrictions for an
existing cluster

» the section called “Control plane networking”

« Update the subnets used by the EKS control plane for a cluster

 the section called “IPv6 Support”

» Specify the IP version (IPv4 or IPv6) to be used when creating a VPC with EKS cluster

Topics: 121

Eksctl User Guide Amazon EKS

VPC Configuration

Dedicated VPC for Cluster

By default eksctl create cluster will create a dedicated VPC for the cluster. This is done in
order to avoid interference with existing resources for a variety of reasons, including security, but
also because it is challenging to detect all settings in an existing VPC.

The default VPC CIDR used by eksctlis 192.168.0.0/16.
« Itis divided into 8 (/19) subnets (3 private, 3 public & 2 reserved).

The initial nodegroup is created in public subnets.

SSH access is disabled unless --allow-ssh is specified.

The nodegroup by default allows inbound traffic from the control plane security group on ports
1025 - 65535.

(® Note

In us-east-1 eksctl only creates 2 public and 2 private subnets by default.

Change VPC CIDR

If you need to set up peering with another VPC, or simply need a larger or smaller range of IPs, you
can use --vpc-cidr flag to change it. Please refer to the AWS docs for guides on choosing CIDR
blocks which are permitted for use in an AWS VPC.

If you are creating an IPv6 cluster you can configure VPC.IPv6Cidr in the cluser config file. This
setting is only in the config file, not in a CLI flag.

If you own an IPv6 IP address block, you can also bring your own IPv6 pool. See Bring your own IP
addresses (BYOIP) to Amazon EC2 on how to import your own pool. Then use the VPC.IPv6Cidr
in the cluser config file to configure Eksctl.

Use an existing VPC: shared with kops

You can use the VPC of an existing Kubernetes cluster managed by kops. This feature is provided to
facilitate migration and/or cluster peering.

VPC Configuration 122

https://docs.aws.eu/vpc/latest/userguide/VPC_Subnets.html#VPC_Sizing
https://docs.aws.eu/AWSEC2/latest/UserGuide/ec2-byoip.html
https://docs.aws.eu/AWSEC2/latest/UserGuide/ec2-byoip.html
https://github.com/kubernetes/kops

Eksctl User Guide Amazon EKS

If you have previously created a cluster with kops, e.g. using commands similar to this:

export KOPS_STATE_STORE=s3://kops
kops create cluster cluster-1.k8s.local --zones=us-west-2c,us-west-2b,us-west-2a --
networking=weave --yes

You can create an EKS cluster in the same AZs using the same VPC subnets (NOTE: at least 2 AZs/
subnets are required):

eksctl create cluster --name=cluster-2 --region=us-west-2 --vpc-from-kops-
cluster=cluster-1.k8s.local

Use existing VPC: other custom configuration

eksctl provides some, but not complete, flexibility for custom VPC and subnet topologies.

You can use an existing VPC by supplying private and/or public subnets using the --vpc-
private-subnets and --vpc-public-subnets flags. It is up to you to ensure the subnets
you use are categorised correctly, as there is no simple way to verify whether a subnet is actually
private or public, because configurations vary.

Given these flags, eksctl create cluster will determine the VPC ID automatically, but it will
not create any routing tables or other resources, such as internet/NAT gateways. It will, however,
create dedicated security groups for the initial nodegroup and the control plane.

You must ensure to provide at least 2 subnets in different AZs and this condition is checked by
EKS. If you use an existing VPC, the following requirements aren’t enforced or checked by EKS

or Eksctl and EKS creates the cluster. Some basic functions of the cluster work without these
requirements. (For example, tagging is not strictly necessary, tests have shown that it is possible to
create a functional cluster without any tags set on the subnets, however there is no guarantee that
this will always hold and tagging is recommended.)

Standard requirements:

all given subnets must be in the same VPC, within the same block of IPs

a sufficient number IP addresses are available, based on needs

sufficient number of subnets (minimum 2), based on needs

subnets are tagged with at least the following:

« kubernetes.io/cluster/<name> tag set to either shared or owned

Use existing VPC: other custom configuration 123

Eksctl User Guide Amazon EKS

e kubernetes.io/role/internal-elb tag set to 1 for private subnets
« kubernetes.io/role/elb tag set to 1 for public subnets

« correctly configured internet and/or NAT gateways

 routing tables have correct entries and the network is functional

« NEW: all public subnets should have the property MapPublicIpOnLaunch enabled (i.e. Auto-
assign public IPv4 address in the AWS console). Managed node groups and Fargate don't
assign public IPv4 addresses, the property must be set on the subnet.

There may be other requirements imposed by EKS or Kubernetes, and it is entirely up to you to
stay up-to-date on any requirements and/or recommendations, and implement those as needed/
possible.

Default security group settings applied by eksctl may or may not be sufficient for sharing access
with resources in other security groups. If you wish to modify the ingress/egress rules of the
security groups, you might need to use another tool to automate changes, or do it via EC2 console.

When in doubt, don't use a custom VPC. Using eksctl create cluster withoutany --vpc-*
flags will always configure the cluster with a fully-functional dedicated VPC.

Examples

Create a cluster using a custom VPC with 2x private and 2x public subnets:

eksctl create cluster \
--vpc-private-subnets=subnet-0ff156e0c4a6d300c, subnet-0426fb4a607393184 \
--vpc-public-subnets=subnet-0153e560b3129a696, subnet-009fa®199ec203c37

or use the following equivalent config file:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: my-test
region: us-west-2

vpc:
id: "vpc-11111"
subnets:

Use existing VPC: other custom configuration 124

Eksctl User Guide

Amazon EKS

private:
us-west-2a:
id: "subnet-0ff156e@c4a6d300c"
us-west-2c:
id: "subnet-0426fb4a607393184"
public:
us-west-2a:
id: "subnet-0153e560b3129a696"
us-west-2c:
id: "subnet-009fa0199ec203c37"

nodeGroups:
- name: ng-1

Create a cluster using a custom VPC with 3x private subnets and make initial nodegroup use those

subnets:

eksctl create cluster \
--vpc-private-

subnets=subnet-0ff156e0c4a6d300c, subnet-0549cdab573695c03, subnet-0426fb4ab07393184 \

--node-private-networking

or use the following equivalent config file:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: my-test
region: us-west-2

vpc:
id: "vpc-11111"
subnets:
private:
us-west-2d:
id: "subnet-0ff156e@c4a6d300c"
us-west-2c:
id: "subnet-0549cdab573695c03"
us-west-2a:
id: "subnet-0426fb4a607393184"
nodeGroups:

Use existing VPC: other custom configuration

125

Eksctl User Guide Amazon EKS

- name: ng-1
privateNetworking: true

Create a cluster using a custom VPC 4x public subnets:

eksctl create cluster \
--vpc-public-
subnets=subnet-0153e560b3129a696, subnet-0cc9c5aebe75083fd, subnet-009fa0199ec203c37, subnet-018fa

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: my-test
region: us-west-2

vpc:
id: "vpc-11111"
subnets:
public:
us-west-2d:
id: "subnet-0153e560b3129a696"
us-west-2c:
id: "subnet-@cc9c5aebe75083fd"
us-west-2a:
id: "subnet-009fa0199ec203c37"
us-west-2b:
id: "subnet-018fa0176ba320e45"

nodeGroups:
- name: ng-1

More examples can be found in the repo’s examples folder:

 using an existing VPC

« using a custom VPC CIDR

Custom Shared Node Security Group

eksctl will create and manage a shared node security group that allows communication between
unmanaged nodes and the cluster control plane and managed nodes.

Custom Shared Node Security Group 126

https://github.com/eksctl-io/eksctl/blob/master/examples/04-existing-vpc.yaml
https://github.com/eksctl-io/eksctl/blob/master/examples/02-custom-vpc-cidr-no-nodes.yaml

Eksctl User Guide Amazon EKS

If you wish to provide your own custom security group instead, you may override the
sharedNodeSecurityGroup field in the config file:

vpc:
sharedNodeSecurityGroup: sg-0123456789

By default, when creating the cluster, eksct1 will add rules to this security group to allow
communication to and from the default cluster security group that EKS creates. The default cluster
security group is used by both the EKS control plane and managed node groups.

If you wish to manage the security group rules yourself, you may prevent eksctl from creating the
rules by setting manageSharedNodeSecurityGroupRules to false in the config file:

vpc:
sharedNodeSecurityGroup: sg-0123456789
manageSharedNodeSecurityGroupRules: false

NAT Gateway

The NAT Gateway for a cluster can be configured to be Disable, Single (default) or
HighlyAvailable. The HighlyAvailable option will deploy a NAT Gateway in each
Availability Zone of the Region, so that if an AZ is down, nodes in the other AZs will still be able to
communicate to the Internet.

It can be specified through the --vpc-nat-mode CLI flag or in the cluster config file like the
example below:

vpc:
nat:
gateway: HighlyAvailable # other options: Disable, Single (default)

See the complete example here.

(® Note

Specifying the NAT Gateway is only supported during cluster creation. It isn't touched
during a cluster upgrade.

NAT Gateway 127

https://github.com/eksctl-io/eksctl/blob/master/examples/09-nat-gateways.yaml

Eksctl User Guide Amazon EKS

Subnet Settings

Use private subnets for initial nodegroup

If you prefer to isolate the initial nodegroup from the public internet, you can use the --node-
private-networking flag. When used in conjunction with the --ssh-access flag, the SSH port
can only be accessed from inside the VPC.

® Note

Using the --node-private-networking flag will result in outgoing traffic to go through
the NAT gateway using its Elastic IP. On the other hand, if the nodes are in a public subnet,
the outgoing traffic won't go through the NAT gateway and hence the outgoing traffic has
the IP of each individual node.

Custom subnet topology

eksctl version @.32.0 introduced further subnet topology customisation with the ability to:

o List multiple subnets per AZ in VPC configuration

» Specify subnets in nodegroup configuration

In earlier versions custom subnets had to be provided by availability zone, meaning just one subnet
per AZ could be listed. From @.32.0 the identifying keys can be arbitrary.

vpc:
id: "vpc-11111"
subnets:
public:
public-one: # arbitrary key
id: "subnet-0153e560b3129a696"
public-two:
id: "subnet-0cc9c5aebe75083fd"
us-west-2b: # or list by AZ
id: "subnet-018fa@176ba320e45"
private:

private-one:
id: "subnet-0153e560b3129a696"

Subnet Settings 128

Eksctl User Guide Amazon EKS

private-two:
id: "subnet-0cc9c5aebe75083fd"

/A Important
If using the AZ as the identifying key, the az value can be omitted.

If using an arbitrary string as the identifying key, like above, either:

o id must be set (az and cidr optional)

« or az must be set (cidr optional)

If a user specifies a subnet by AZ without specifying CIDR and ID, a subnet in that AZ will be chosen
from the VPC, arbitrarily if multiple such subnets exist.

(® Note

A complete subnet spec must be provided, i.e. both public and private configurations
declared in the VPC spec.

Nodegroups can be restricted to named subnets via the configuration. When specifying subnets on
nodegroup configuration, use the identifying key as given in the VPC spec not the subnet id. For

example:

vpc:
id: "vpc-11111"
subnets:
public:
public-one:
id: "subnet-0153e560b3129a696"
. # subnet spec continued

nodeGroups:

- name: ng-1
instanceType: m5.xlarge
desiredCapacity: 2
subnets:

Custom subnet topology 129

Eksctl User Guide Amazon EKS

- public-one

(® Note

Only one of subnets or availabilityZones can be provided in nodegroup
configuration.

When placing nodegroups inside a private subnet, privateNetworking must be set to true on
the nodegroup:

vpc:
id: "vpc-11111"
subnets:
public:
private-one:
id: "subnet-0153e560b3129a696"
. # subnet spec continued

nodeGroups:

- name: ng-1
instanceType: m5.xlarge
desiredCapacity: 2
privateNetworking: true
subnets:

- private-one

See 24-nodegroup-subnets.yaml in the eksctl GitHub repo for a full configuration example.

Cluster Access

Managing Access to the Kubernetes API Server Endpoints

By default, an EKS cluster exposes the Kubernetes API server publicly but not directly from within
the VPC subnets (public=true, private=false). Traffic destined for the API server from within the
VPC must first exit the VPC networks (but not Amazon'’s network) and then re-enter to reach the
APl server.

The Kubernetes API server endpoint access for a cluster can be configured for public and private
access when creating the cluster using the cluster config file. Example below:

Cluster Access 130

https://github.com/eksctl-io/eksctl/blob/master/examples/24-nodegroup-subnets.yaml

Eksctl User Guide Amazon EKS

vpc:

clusterEndpoints:
publicAccess: <true|false>
privateAccess: <true|false>

There are some additional caveats when configuring Kubernetes APl endpoint access:

1. EKS doesn’t allow clusters without either private or public access enabled.

2. EKS does allow creating a configuration that allows only private access to be enabled, but eksctl
doesn't support it during cluster creation as it prevents eksctl from being able to join the worker
nodes to the cluster.

3. Updating a cluster to have private only Kubernetes APl endpoint access means that Kubernetes
commands, by default, (e.g. kubectl) as well as eksctl delete cluster, eksctl utils
write-kubeconfig, and possibly the command eksctl utils update-kube-proxy must
be run within the cluster VPC.

« This requires some changes to various AWS resources. For more information, see Cluster API
server endpoint.

» You can provide vpc.extraCIDRs which will append additional CIDR ranges to the
ControlPlaneSecurityGroup, allowing subnets outside the VPC to reach the kubernetes API
endpoint. Similarly you can provide vpc.extraIPv6CIDRs to append IPv6 CIDR ranges as
well.

The following is an example of how one could configure the Kubernetes APl endpoint access using
the utils sub-command:

eksctl utils update-cluster-vpc-config --cluster=<clustername> --private-access=true --
public-access=false

To update the setting using a ClustexConfig file, use:

eksctl utils update-cluster-vpc-config -f config.yaml --approve

Note that if you don't pass a flag, it will keep the current value. Once you are satisfied with the
proposed changes, add the approve flag to make the change to the running cluster.

Managing Access to the Kubernetes API Server Endpoints 131

https://docs.aws.eu/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.eu/eks/latest/userguide/cluster-endpoint.html

Eksctl User Guide Amazon EKS

Restricting Access to the EKS Kubernetes Public APl endpoint

The default creation of an EKS cluster exposes the Kubernetes API server publicly.

This feature only applies to the public endpoint. The API server endpoint access configuration
options won't change, and you will still have the option to disable the public endpoint so your
cluster is not accessible from the internet. (Source: https://github.com/aws/containers-roadmap/
issues/108#issuecomment-552766489)

To restrict access to the public APl endpoint to a set of CIDRs when creating a cluster, set the
publicAccessCIDRs field:

vpc:
publicAccessCIDRs: ["1.1.1.1/32", "2.2.2.0/24"]

To update the restrictions on an existing cluster, use:

eksctl utils update-cluster-vpc-config --cluster=<cluster> 1.1.1.1/32,2.2.2.0/24

To update the restrictions using a ClusterConfig file, set the new CIDRs in
vpc.publicAccessCIDRs and run:

eksctl utils update-cluster-vpc-config -f config.yaml

/A Important

If setting publicAccessCIDRs and creating node-groups either privateAccess should
be set to true or the nodes' IPs should be added to the publicAccessCIDRs list.

If nodes cannot access the cluster APl endpoint due to restricted access, cluster creation will fail
with context deadline exceeded due to the nodes being unable to access the public endpoint
and failing to join the cluster.

To update both API server endpoint access and public access CIDRs for a cluster in a single
command, run:

eksctl utils update-cluster-vpc-config --cluster=<cluster> --public-access=true --
private-access=true --public-access-cidrs=1.1.1.1/32,2.2.2.0/24

Restricting Access to the EKS Kubernetes Public APl endpoint 132

https://docs.aws.eu/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.eu/eks/latest/userguide/cluster-endpoint.html

Eksctl User Guide Amazon EKS

To update the setting using a config file:

vpc:
clusterEndpoints:
publicAccess: <true|false>
privateAccess: <true|false>
publicAccessCIDRs: ["1.1.1.1/32"]

eksctl utils update-cluster-vpc-config --cluster=<cluster> -f config.yaml

Updating control plane subnets and security groups

This documentation explains how to modify the networking configuration of your EKS cluster’s
control plane after initial creation. This includes updating the control plane subnets and security

groups.
Updating control plane subnets

When a cluster is created with eksctl, a set of public and private subnets are created and passed to
the EKS API. EKS creates 2 to 4 cross-account elastic network interfaces (ENIs) in those subnets to
enable communication between the EKS managed Kubernetes control plane and your VPC.

To update the subnets used by the EKS control plane, run:

eksctl utils update-cluster-vpc-config --cluster=<cluster> --control-plane-subnet-
ids=subnet-1234,subnet-5678

To update the setting using a config file:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig
metadata:

name: cluster

region: us-west-2

vpc:
controlPlaneSubnetIDs: [subnet-1234, subnet-5678]

eksctl utils update-cluster-vpc-config -f config.yaml

Control plane networking 133

Eksctl User Guide Amazon EKS

Without the --approve flag, eksctl only logs the proposed changes. Once you are satisfied with
the proposed changes, rerun the command with the --approve flag.

Updating control plane security groups

To manage traffic between the control plane and worker nodes, EKS supports passing additional
security groups that are applied to the cross-account network interfaces provisioned by EKS. To
update the security groups for the EKS control plane, run:

eksctl utils update-cluster-vpc-config --cluster=<cluster> --control-plane-security-
group-ids=sg-1234,sg-5678

To update the setting using a config file:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig
metadata:

name: cluster

region: us-west-2

vpc:
controlPlaneSecurityGroupIDs: [sg-1234, sg-5678]

eksctl utils update-cluster-vpc-config -f config.yaml

To update both control plane subnets and security groups for a cluster, run:

eksctl utils update-cluster-vpc-config --cluster=<cluster> --control-plane-subnet-
ids=<> --control-plane-security-group-ids=<>

To update both fields using a config file:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig
metadata:

name: cluster

region: us-west-2

vpc:
controlPlaneSubnetIDs: [subnet-1234, subnet-5678]

Updating control plane security groups 134

Eksctl User Guide Amazon EKS

controlPlaneSecurityGroupIDs: [sg-1234, sg-5678]

eksctl utils update-cluster-vpc-config -f config.yaml

For a complete example, refer to cluster-subnets-sgs.yaml.

Without the --approve flag, eksctl only logs the proposed changes. Once you are satisfied with
the proposed changes, rerun the command with the --approve flag.

IPv6 Support

Define IP Family

When eksctl creates a vpc, you can define the IP version that will be used. The following options
are available to be configured:

o IPV4
o |IPV6

The default value is IPva4.

To define it, use the following example:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: my-test
region: us-west-2
version: "1.21"

kubernetesNetworkConfig:
ipFamily: IPv6 # or IPv4

addons:
- name: vpc-cni
- name: coredns
- name: kube-proxy

iam:

IPv6 Support 135

https://github.com/eksctl-io/eksctl/blob/main/examples/38-cluster-subnets-sgs.yaml

Eksctl User Guide Amazon EKS

withOIDC: true

(@ Note
This setting is only in the config file, not in a CLI flag.

If you use IPv6, you must configure the following requirements:

« OIDCis enabled

« managed addons are defined as shows above

o cluster version must be => 1.21

» vpc-cni addon version must be => 1.10.0

 self-managed nodegroups are not supported with IPv6 clusters

« managed nodegroups are not supported with un-owned IPv6 clusters

e vpc.nat and serviceIPv4CIDR fields are created by eksctl for ipv6 clusters and are not
supported configuration options

» AutoAllocatelPv6 is not supported together with IPv6

» For IPv6 cluster, the IAM role for vpc-cni must have required IAM policies for IPv6 mode

associated

Private networking can be done with IPv6 IP family as well. Please follow the instruction outlined
under EKS Private Cluster.

Define IP Family

136

https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/iam-policy.md#ipv6-mode

Eksctl User Guide Amazon EKS

IAM

This chapter includes information about working with AWS IAM.

Topics:

» the section called “Manage IAM users and roles”

« Manage IAM user and role mappings to control access to an EKS cluster
» Configure IAM identity mappings through the cluster config file or CLI commands

e the section called “IAM Roles for Service Accounts”

« Manage fine-grained permissions for applications running on Amazon EKS that use other AWS
services

» Create and configure IAM Roles and Kubernetes Service Account pairs using eksctl

« Enable IAM OpenlID Connect Provider for an EKS cluster to enable IAM Roles for Service
Accounts

» the section called “IAM permissions boundary”

« Control the maximum permissions granted to IAM entities (users or roles) by setting a
permissions boundary

« the section called "EKS Pod Identity Associations”

» Configure IAM permissions for EKS add-ons using recommended pod identity associations

« Enable Kubernetes applications to receive required IAM permissions to connect with AWS
services outside the cluster

« Simplify the process of automating IAM roles and service accounts across multiple EKS clusters

» the section called “IAM policies”

« Manage IAM policies for EKS node groups, including support for various add-on policies like
image builder, auto scaler, external DNS, cert manager, and more.

 Attach custom instance roles or inline policies to node groups for additional permissions.

« Attach specific AWS managed policies by ARN to node groups, ensuring required policies like
AmazonEKSWorkerNodePolicy and AmazonEKS_CNI_Policy are included.

« the section called “Minimum IAM policies”

« Manage AWS EC2 resources, including load balancers, auto-scaling groups, and CloudWatch
monitoring

Topics: 137

Eksctl User Guide Amazon EKS

» Create and manage AWS CloudFormation stacks

« Manage Amazon Elastic Kubernetes Service (EKS) clusters, node groups, and related resources
like IAM roles and policies

Minimum IAM policies

This document describes the minimum IAM policies needed to run the main use cases of eksctl.
These are the ones used to run the integration tests.

(® Note

Remember to replace <account_id> with your own.

(® Note

An AWS Managed Policy is created and administered by AWS. You cannot change the
permissions defined in AWS managed policies.

AmazonEC2FullAccess (AWS Managed Policy)

View AmazonEC2FullAccess policy definition.

AWSCloudFormationFullAccess (AWS Managed Policy)

View AWSCloudFormationFullAccess policy definition.

EksAllAccess

Error: No files found with UUID: 27ad3ff9-60be-4128-8b83-f8833a6e39aa

lamLimitedAccess

Error: No files found with UUID: 5500eeb9-bf3d-498d-999b-7f8036e705a5

Minimum IAM policies 138

https://docs.aws.eu/aws-managed-policy/latest/reference/AmazonEC2FullAccess.html
https://docs.aws.eu/aws-managed-policy/latest/reference/AWSCloudFormationFullAccess.html

Eksctl User Guide Amazon EKS

IAM permissions boundary

A permissions boundary is an advanced AWS IAM feature in which the maximum permissions that

an identity-based policy can grant to an IAM entity have been set; where those entities are either
users or roles. When a permissions boundary is set for an entity, that entity can only perform the

actions that are allowed by both its identity-based policies and its permissions boundaries.

You can provide your permissions boundary so that all identity-based entities created by eksctl

are created within that boundary. This example demonstrates how a permissions boundary can be

provided to the various identity-based entities that are created by eksctl:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: cluster-17
region: us-west-2

iam:
withOIDC: true
serviceRolePermissionsBoundary: "arn:aws:iam::11111:policy/entity/boundary"
fargatePodExecutionRolePermissionsBoundary: "arn:aws:iam::11111:policy/entity/
boundary"
serviceAccounts:
- metadata:
name: s3-reader
attachPolicyARNs:
- "arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess"
permissionsBoundary: "arn:aws:iam::11111:policy/entity/boundary"

nodeGroups:
- name: "ng-1"
desiredCapacity: 1
iam:
instanceRolePermissionsBoundary: "arn:aws:iam::11111:policy/entity/boundary"

/A Warning

It is not possible to provide both a role ARN and a permissions boundary.

IAM permissions boundary

139

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_boundaries.html

Eksctl User Guide Amazon EKS

Setting the VPC CNI Permission Boundary

Please note that when you create a cluster with OIDC enabled eksctl will automatically create an
iamserviceaccount for the VPC-CNI for security reasons. If you would like to add a permission
boundary to it then you must specify the iamserviceaccount in your config file manually:

iam:
serviceAccounts:
- metadata:

name: aws-node
namespace: kube-system

attachPolicyARNs:

- "arn:aws:iam::<arn>:policy/AmazonEKS_CNI_Policy"

permissionsBoundary: "arn:aws:iam::11111:policy/entity/boundary"

IAM policies

You can attach Instance Roles to node groups. Workloads running on the node will receive IAM
permissions from the node. For mroe information, see IAM roles for Amazon EC2.

This page lists the pre-defined IAM policy templates available in eksctl. These templates simplify
the process of granting your EKS nodes the appropriate AWS service permissions without having to
manually create custom IAM policies.

Supported IAM add-on policies

Example of all supported add-on policies:

nodeGroups:

- name: ng-1
instanceType: m5.xlarge
desiredCapacity: 1
iam:

withAddonPolicies:
imageBuilder: true
autoScaler: true
externalDNS: true
certManager: true
appMesh: true
appMeshPreview: true

Setting the VPC CNI Permission Boundary 140

https://docs.aws.eu/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Eksctl User Guide Amazon EKS

ebs: true

fsx: true

efs: true
awsLoadBalancerController: true
xRay: true

cloudwWatch: true

Image Builder Policy

The imageBuilder policy allows for full ECR (Elastic Container Registry) access. This is useful for
building, for example, a Cl server that needs to push images to ECR.

EBS Policy

The ebs policy enables the new EBS CSI (Elastic Block Store Container Storage Interface) driver.

Cert Manager Policy

The certManager policy enables the ability to add records to Route 53 in order to solve the
DNSO1 challenge. More information can be found here.

Adding a custom instance role

This example creates a nodegroup that reuses an existing IAM Instance Role from another cluster:

apiVersion: eksctl.io/vlalpha4
kind: ClusterConfig
metadata:
name: test-cluster-c-1
region: eu-north-1

nodeGroups:
- name: ng2-private
instanceType: m5.large
desiredCapacity: 1
iam:
instanceProfileARN: "arn:aws:iam::123:instance-profile/eksctl-test-cluster-a-3-
nodegroup-ng2-private-NodeInstanceProfile-Y4YKHLNINMXC"
instanceRoleARN: "arn:aws:iam::123:role/eksctl-test-cluster-a-3-nodegroup-
NodeInstanceRole-DNGMQTQHQHBJ"

Adding a custom instance role 141

https://cert-manager.io/docs/configuration/acme/dns01/route53/#set-up-a-iam-role

Eksctl User Guide

Amazon EKS

Attaching inline policies

nodeGroups:
- name: my-special-nodegroup
iam:
attachPolicy:

Version: "2012-10-17"

Statement:

- Effect: Allow
Action:
- 's3:GetObject'
Resource: 'arn:aws:s3

Attaching policies by ARN

nodeGroups:
- name: my-special-nodegroup
iam:
attachPolicyARNs:

- arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy

- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

- arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryPullOnly
- arn:aws:iam::aws:policy/ElasticloadBalancingFullAccess

:::example-bucket/*'

- arn:aws:iam::1111111111:policy/kube2iam

withAddonPolicies:
autoScaler: true
imageBuilder: true

/A Warning

If a nodegroup includes the attachPolicyARNSs it must also include the default
node policies, like AmazonEKSWorkerNodePolicy, AmazonEKS_CNI_Policy and
AmazonEC2ContainerRegistryPullOnly in this example.

Attaching inline policies

142

Eksctl User Guide Amazon EKS

Manage IAM users and roles

(® Note
AWS suggests migraitng to the section called “"EKS Pod Identity Associations” from the

aws-auth ConfigMap.

EKS clusters use IAM users and roles to control access to the cluster. The rules are implemented in a
config map

Edit ConfigMap with a CLI Command

called aws-auth. eksctl provides commands to read and edit this config map.

Get all identity mappings:

eksctl get iamidentitymapping --cluster <clusterName> --region=<region>

Get all identity mappings matching an arn:

eksctl get iamidentitymapping --cluster <clusterName> --region=<region> --arn
arn:aws:iam::123456:r0le/testing-role

Create an identity mapping:

eksctl create iamidentitymapping --cluster <clusterName> --region=<region> --arn
arn:aws:iam::123456:role/testing --group system:masters --username admin

Delete an identity mapping:

eksctl delete iamidentitymapping --cluster <clusterName> --region=<region> --arn
arn:aws:iam::123456:ro0le/testing

(® Note

Above command deletes a single mapping FIFO unless --all is given in which case it
removes all matching. Will warn if more mappings matching this role are found.

Manage IAM users and roles 143

Eksctl User Guide Amazon EKS

Create an account mapping:

eksctl create iamidentitymapping --cluster <clusterName> --region=<region> --account
user-account

Delete an account mapping:

eksctl delete iamidentitymapping --cluster <clusterName> --region=<region> --account
user-account

Edit ConfigMap using a ClusterConfig file
The identity mappings can also be specified in ClusterConfig:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: cluster-with-iamidentitymappings
region: us-east-1

iamIdentityMappings:
- arn: arn:aws:iam::000000000000:role/myAdminRole
groups:
- system:masters
username: admin
noDuplicateARNs: true # prevents shadowing of ARNs

- arn: arn:aws:iam::000000000000:user/myUser
username: myUser
noDuplicateARNs: true # prevents shadowing of ARNs

- serviceName: emr-containers
namespace: emr # serviceName requires namespace

- account: "0000000000QQ" # account must be configured with no other options

nodeGroups:
- name: ng-1
instanceType: m5.large
desiredCapacity: 1

Edit ConfigMap using a ClusterConfig file 144

Eksctl User Guide Amazon EKS

eksctl create iamidentitymapping -f cluster-with-iamidentitymappings.yaml

IAM Roles for Service Accounts

® Tip
eksctl supports configuring fine-grained permissions to EKS running apps via EKS Pod
Identity Associations

Amazon EKS supports here Roles for Service Accounts (IRSA)] that allows cluster operators to map
AWS IAM Roles to Kubernetes Service Accounts.

This provides fine-grained permission management for apps that run on EKS and use other AWS
services. These could be apps that use S3, any other data services (RDS, MQ, STS, DynamoDB), or
Kubernetes components like AWS Load Balancer controller or ExternalDNS.

You can easily create IAM Role and Service Account pairs with eksctl.

(® Note

If you used instance roles, and are considering to use IRSA instead, you shouldn’t mix the

two.

How it works

It works via IAM OpenlID Connect Provider (OIDC) that EKS exposes, and IAM Roles must be
constructed with reference to the IAM OIDC Provider (specific to a given EKS cluster), and a
reference to the Kubernetes Service Account it will be bound to. Once an IAM Role is created, a
service account should include the ARN of that role as an annotation (eks.amazonaws.com/
role-arn). By default the service account will be created or updated to include the role
annotation, this can be disabled using the flag --role-only.

Inside EKS, there is an admission controller that injects AWS session credentials into pods
respectively of the roles based on the annotation on the Service Account used by the pod. The
credentials will get exposed by AWS_ROLE_ARN & AWS_WEB_IDENTITY_TOKEN_FILE environment

IAM Roles for Service Accounts 145

https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions
https://github.com/aws/amazon-eks-pod-identity-webhook/

Eksctl User Guide Amazon EKS

variables. Given a recent version of AWS SDK is used (see here for details of exact version), the
application will use these credentials.

In eksctl the name of the resource is iamserviceaccount, which represents an IAM Role and
Service Account pair.

Usage from CLI

(@ Note

IAM Roles for Service Accounts require Kubernetes version 1.13 or above.

The IAM OIDC Provider is not enabled by default, you can use the following command to enable it,
or use config file (see below):

eksctl utils associate-iam-oidc-provider --cluster=<clusterName>

Once you have the IAM OIDC Provider associated with the cluster, to create a IAM role bound to a
service account, run:

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
namespace=<serviceAccountNamespace> --attach-policy-arn=<policyARN>

® Note

You can specify --attach-policy-arn multiple times to use more than one policy.

More specifically, you can create a service account with read-only access to S3 by running:

eksctl create iamserviceaccount --cluster=<clusterName> --name=s3-read-only --attach-
policy-arn=arn:aws:iam: :aws:policy/AmazonS3ReadOnlyAccess

By default, it will be created in default namespace, but you can specify any other namespace,
e.g.:

eksctl create iamserviceaccount --cluster=<clusterName> --name=s3-read-only --
namespace=s3-app --attach-policy-arn=arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

Usage from CLI 146

https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions

Eksctl User Guide Amazon EKS

® Note

If the namespace doesn't exist already, it will be created.

If you have service account already created in the cluster (without an IAM Role), you will need to
use --override-existing-serviceaccounts flag.

Custom tagging may also be applied to the IAM Role by specifying --tags:

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
tags "Owner=John Doe, Team=Some Team"

CloudFormation will generate a role name that includes a random string. If you prefer a
predetermined role name you can specify --role-name:

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
role-name "custom-role-name"

When the service account is created and managed by some other tool, such as helm, use --
role-only to prevent conflicts. The other tool is then responsible for maintaining the role
ARN annotation. Note that --override-existing-serviceaccounts has no effect on
roleOnly/--role-only service accounts, the role will always be created.

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
role-only --role-name=<customRoleName>

When you have an existing role which you want to use with a service account, you can provide
the --attach-role-arn flag instead of providing the policies. To ensure the role can only be
assumed by the specified service account, you should set a here relationship policy document].

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
attach-role-arn=<customRoleARN>

To update a service accounts roles permissions you can run eksctl update
iamserviceaccount.

Usage from CLI 147

https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions

Eksctl User Guide Amazon EKS

® Note

eksctl delete iamserviceaccount deletes Kubernetes ServiceAccounts even if
they were not created by eksctl.

Usage with config files

To manage iamserviceaccounts using config file, you will be looking to set iam.withOIDC:
true and list account you want under iam.serviceAccount.

All of the commands support --config-file, you can manage iamserviceaccounts the same

way as nodegroups. The eksctl create iamserviceaccount command supports --include
and - -exclude flags (see this section for more details about how these work). And the eksctl
delete iamserviceaccount command supports --only-missing as well, so you can perform
deletions the same way as nodegroups.

(® Note

IAM service accounts are scoped within a namespace, i.e. two service accounts with the
same name may exist in different namespaces. Thus, to uniquely define a service account
as part of --include, --exclude flags, you will need to pass the name string in the
namespace/name format. E.g.

eksctl create iamserviceaccount --config-file=<path> --include backend-apps/s3-reader

The option to enable wellKnownPolicies is included for using IRSA with well-known use cases
like cluster-autoscaler and cert-manager, as a shorthand for lists of policies.

Supported well-known policies and other properties of serviceAccounts are documented at the
config schema.

You use the following config example with eksctl create cluster:

An example of ClusterConfig with IAMServiceAccounts:

apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

Usage with config files 148

https://geoffcline.github.io/eksctl-schema-demo/#iam-serviceAccounts
https://geoffcline.github.io/eksctl-schema-demo/#iam-serviceAccounts

Eksctl User Guide Amazon EKS

metadata:
name: cluster-13
region: us-west-2

iam:
withOIDC: true
serviceAccounts:
- metadata:
name: s3-reader
if no namespace is set, "default" will be used;
the namespace will be created if it doesn't exist already
namespace: backend-apps
labels: {aws-usage: "application"}
attachPolicyARNs:
- "arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess"
tags:
Owner: "John Doe"
Team: "Some Team"
- metadata:
name: cache-access
namespace: backend-apps
labels: {aws-usage: "application"}
attachPolicyARNs:
- "arn:aws:iam::aws:policy/AmazonDynamoDBReadOnlyAccess
- "arn:aws:iam::aws:policy/AmazonElastiCacheFullAccess"

- metadata:
name: cluster-autoscaler
namespace: kube-system
labels: {aws-usage: "cluster-ops"}
wellKnownPolicies:
autoScaler: true
roleName: eksctl-cluster-autoscaler-role
roleOnly: true
- metadata:
name: some-app
namespace: default
attachRoleARN: arn:aws:iam::123:role/already-created-role-for-app
nodeGroups:
- name: "ng-1"
tags:
EC2 tags required for cluster-autoscaler auto-discovery
k8s.io/cluster-autoscaler/enabled: "true"
k8s.io/cluster-autoscaler/cluster-13: "owned"

Usage with config files 149

Eksctl User Guide Amazon EKS

desiredCapacity: 1

If you create a cluster without these fields set, you can use the following commands to enable all
you need:

eksctl utils associate-iam-oidc-provider --config-file=<path>
eksctl create iamserviceaccount --config-file=<path>

Further information

« Introducing Fine-grained IAM Roles For Service Accounts

+ EKS User Guide - IAM Roles For Service Accounts

« Mapping IAM users and role to Kubernetes RBAC roles

EKS Pod Identity Associations

AWS EKS has introduced a new enhanced mechanism called Pod Identity Association for cluster
administrators to configure Kubernetes applications to receive IAM permissions required to connect
with AWS services outside of the cluster. Pod Identity Association leverages IRSA, however, it makes
it configurable directly through the EKS API, eliminating the need for using IAM API altogether.

As a result, IAM roles no longer need to reference an OIDC provider and hence won't be tied to a

single cluster anymore. This means, IAM roles can now be used across multiple EKS clusters without
the need to update the role trust policy each time a new cluster is created. This in turn, eliminates
the need for role duplication and simplifies the process of automating IRSA altogether.

Prerequisites

Behind the scenes, the implementation of pod identity associations is running an agent as a
daemonset on the worker nodes. To run the pre-requisite agent on the cluster, EKS provides a new
add-on called EKS Pod Identity Agent. Therefore, creating pod identity associations (in general, and
with eksctl) requires the eks-pod-identity-agent addon pre-installed on the cluster. This
addon can be created using eksctl in the same fashion any other supported addon is.

eksctl create addon --cluster my-cluster --name eks-pod-identity-agent

Further information 150

https://aws.amazon.com/blogs/opensource/introducing-fine-grained-iam-roles-service-accounts/
https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions

Eksctl User Guide Amazon EKS

Additionally, if using a pre-existing IAM role when creating a pod identity association,
you must configure the role to trust the newly introduced EKS service principal
(pods.eks.amazonaws.com). An example IAM trust policy can be found below:

Error: No files found with UUID: 44d1085a-03ca-431a-9774-b786a9774200

If instead you do not provide the ARN of an existing role to the create command, eksctl will
create one behind the scenes and configure the above trust policy.

Creating Pod Identity Associations

For manipulating pod identity associations, eksctl has added a new field under
iam.podIdentityAssociations, e.g.

iam:
podIdentityAssociations:
- namespace: <string> #required
serviceAccountName: <string> #required
createServiceAccount: true #optional, default is false
roleARN: <string> #required if none of permissionPolicyARNs, permissionPolicy and
wellKnownPolicies is specified. Also, cannot be used together with any of the three
other referenced fields.
roleName: <string> #optional, generated automatically if not provided, ignored if
roleARN is provided
permissionPolicy: {3} #optional
permissionPolicyARNs: [] #optional
wellKnownPolicies: {} #optional
permissionsBoundaryARN: <string> #optional
tags: {} #optional

For a complete example, refer to pod-identity-associations.yaml.

® Note

Apart from permissionPolicy which is used as an inline policy document, all other fields
have a CLI flag counterpart.

Creating pod identity associations can be achieved in the following ways. During cluster creation,
by specifying the desired pod identity associations as part of the config file and running:

Creating Pod Identity Associations 151

https://github.com/eksctl-io/eksctl/blob/main/examples/39-pod-identity-association.yaml

Eksctl User Guide Amazon EKS

eksctl create cluster -f config.yaml

Post cluster creation, using either a config file e.q.

eksctl create podidentityassociation -f config.yaml

OR using CLI flags e.qg.

eksctl create podidentityassociation \
--cluster my-cluster \
--namespace default \
--service-account-name s3-reader \
--permission-policy-arns="arn:aws:iam::111122223333:policy/permission-policy-1,

arn:aws:iam::111122223333:policy/permission-policy-2" \

--well-known-policies="autoScaler,externalDNS" \
--permissions-boundary-arn arn:aws:iam::111122223333:policy/permissions-boundary

(@ Note

Only a single IAM role can be associated with a service account at a time. Therefore, trying
to create a second pod identity association for the same service account will result in an

error.

Fetching Pod Identity Associations

To retrieve all pod identity associations for a certain cluster, run one of the following commands:
eksctl get podidentityassociation -f config.yaml

OR
eksctl get podidentityassociation --cluster my-cluster

Additionally, to retrieve only the pod identity associations within a given namespace, use the - -

namespace flag, e.g.

eksctl get podidentityassociation --cluster my-cluster --namespace default

Fetching Pod Identity Associations 152

Eksctl User Guide Amazon EKS

Finally, to retrieve a single association, corresponding to a certain K8s service account, also include
the --service-account-name to the command above, i.e.

eksctl get podidentityassociation --cluster my-cluster --namespace default --service-
account-name s3-reader

Updating Pod Identity Associations

To update the IAM role of one or more pod identity associations, either pass the new roleARN(s)
to the config file e.g.

iam:
podIdentityAssociations:

- namespace: default
serviceAccountName: s3-reader
roleARN: new-role-arn-1

- namespace: dev
serviceAccountName: app-cache-access
roleARN: new-role-arn-2

and run:

eksctl update podidentityassociation -f config.yaml

OR (to update a single association) pass the new --role-arn via CLI flags:

eksctl update podidentityassociation --cluster my-cluster --namespace default --
service-account-name s3-reader --role-arn new-role-arn

Deleting Pod Identity Associations

To delete one or more pod identity associations, either pass namespace(s) and
serviceAccountName(s) to the config file e.g.

iam:
podIdentityAssociations:
- namespace: default
serviceAccountName: s3-reader
- namespace: dev
serviceAccountName: app-cache-access

Updating Pod Identity Associations 153

Eksctl User Guide Amazon EKS

and run:

eksctl delete podidentityassociation -f config.yaml

OR (to delete a single association) pass the --namespace and --service-account-name via CLI
flags:

eksctl delete podidentityassociation --cluster my-cluster --namespace default --
service-account-name s3-reader

EKS Add-ons support for pod identity associations

EKS Add-ons also support receiving IAM permissions via EKS Pod Identity

Associations. The config file exposes three fields that allow configuring these:
addon.podIdentityAssociations, addonsConfig.autoApplyPodIdentityAssociations
and addon.useDefaultPodIdentityAssociations. You can either explicitly configure

the desired pod identity associations, using addon.podIdentityAssociations,

or have eksctl automatically resolve (and apply) the recommended pod identity

configuration, using either addonsConfig.autoApplyPodIdentityAssociations or
addon.useDefaultPodIdentityAssociations.

(® Note

Not all EKS Add-ons will support pod identity associations at launch. For this case, required
IAM permissions shall continue to be provided using IRSA settings.

Creating addons with IAM permissions

When creating an addon that requires IAM permissions, eksctl will first check if either pod
identity associations or IRSA settings are being explicitly configured as part of the config file, and if
so, use one of those to configure the permissions for the addon. e.g.

addons:
- name: vpc-cni
podIdentityAssociations:
- serviceAccountName: aws-node
permissionPolicyARNs: ["arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy"]

EKS Add-ons support for pod identity associations 154

Eksctl User Guide Amazon EKS

and run

eksctl create addon -f config.yaml
2024-05-13 15:38:58 [#] pod identity associations are set for "vpc-cni" addon; will use
these to configure required IAM permissions

® Note

Setting both pod identities and IRSA at the same time is not allowed, and will result in a
validation error.

For EKS Add-ons that support pod identities, eksctl offers the option to automatically configure
any recommended IAM permissions, on addon creation. This can be achieved by simply setting
addonsConfig.autoApplyPodIdentityAssociations: true in the configfile. e.g.

addonsConfig:
autoApplyPodIdentityAssociations: true
bear in mind that if either pod identity or IRSA configuration is explicitly set in
the config file,
or if the addon does not support pod identities,
addonsConfig.autoApplyPodIdentityAssociations won't have any effect.
addons:
- name: vpc-cni

and run

eksctl create addon -f config.yaml
2024-05-13 15:38:58 [#] "addonsConfig.autoApplyPodIdentityAssociations" is set to true;
will lookup recommended pod identity configuration for "vpc-cni" addon

Equivalently, the same can be done via CLI flags e.qg.

eksctl create addon --cluster my-cluster --name vpc-cni --auto-apply-pod-identity-
associations

To migrate an existing addon to use pod identity with the recommended IAM policies, use

addons:

EKS Add-ons support for pod identity associations 155

Eksctl User Guide Amazon EKS

- name: vpc-cni
useDefaultPodIdentityAssociations: true

eksctl update addon -f config.yaml

Updating addons with IAM permissions

When updating an addon, specifying addon.PodIdentityAssociations will represent the
single source of truth for the state that the addon shall have, after the update operation is
completed. Behind the scenes, different types of operations are performed in order to achieve the
desired state i.e.

» create pod identites that are present in the config file, but missing on the cluster

« delete existing pod identites that were removed from the config file, together with any
associated IAM resources

» update existing pod identities that are also present in the config file, and for which the set of
IAM permissions has changed

(® Note

The lifecycle of pod identity associations owned by EKS Add-ons is directly handled by the
EKS Addons API.

You can't use eksctl update podidentityassociation (to update IAM permissions) or
eksctl delete podidentityassociations (to remove the association) for associations used
with an Amazon EKS Add-on. Instead, eksctl update addonoreksctl delete addon shall
be used.

Let's see an example for the above, starting by analyzing the initial pod identity config for the
addon:

eksctl get podidentityassociation --cluster my-cluster --namespace opentelemetry-
operator-system --output json
[

{

"ServiceAccountName": "adot-col-prom-metrics",

EKS Add-ons support for pod identity associations 156

Eksctl User Guide Amazon EKS

"RoleARN": "arn:aws:iam::111122223333:ro0le/eksctl-my-cluster-addon-adot-
podident-Rolel-JwrGA4mnlNy8",
OwnerARN is populated when the pod identity lifecycle is handled by the EKS
Addons API
"OwnerARN": "arn:aws:eks:us-west-2:111122223333:addon/my-cluster/adot/
b2c7bb45-4090-bf34-ec78-a2298b864316"
},
{

"ServiceAccountName": "adot-col-otlp-ingest",
"RoleARN": "arn:aws:iam::111122223333:ro0le/eksctl-my-cluster-addon-adot-
podident-Rolel-Xc7qVg5fgCqr",
"OwnerARN": "arn:aws:eks:us-west-2:111122223333:addon/my-cluster/adot/
b2c7bb45-4090-bf34-ec78-a2298b864316"
}

Now use the below configuration:

addons:
- name: adot
podIdentityAssociations:

For the first association, the permissions policy of the role will be updated
- serviceAccountName: adot-col-prom-metrics

permissionPolicyARNs:

#- arn:aws:iam::aws:policy/AmazonPrometheusRemoteWriteAccess

- arn:aws:iam::aws:policy/CloudWatchAgentServerPolicy

The second association will be deleted, as it's been removed from the config file
#- serviceAccountName: adot-col-otlp-ingest

permissionPolicyARNs:

- arn:aws:iam::aws:policy/AWSXrayWriteOnlyAccess

The third association will be created, as it's been added to the config file
- serviceAccountName: adot-col-container-logs

permissionPolicyARNs:
- arn:aws:iam::aws:policy/CloudWatchAgentServerPolicy

and run

eksctl update addon -f config.yaml

EKS Add-ons support for pod identity associations

157

Eksctl User Guide Amazon EKS

updating the permission policy for the first association

2024-05-14 13:27:43 [#] updating IAM resources stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-prom-metrics" for pod identity association "a-
reaxk2uzliknwazwij"

2024-05-14 13:27:44 [#] waiting for CloudFormation changeset "eksctl-opentelemetry-
operator-system-adot-col-prom-metrics-update-1715682463" for stack "eksctl-my-cluster-
addon-adot-podidentityrole-adot-col-prom-metrics"

2024-05-14 13:28:47 [#] waiting for CloudFormation stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-prom-metrics"

2024-05-14 13:28:47 [#] updated IAM resources stack "eksctl-my-cluster-addon-adot-
podidentityrole-adot-col-prom-metrics" for "a-reaxk2uzliknwazwj"

creating the IAM role for the second association

2024-05-14 13:28:48 [#] deploying stack "eksctl-my-cluster-addon-adot-podidentityrole-
adot-col-container-logs"

2024-05-14 13:28:48 [#] waiting for CloudFormation stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-container-logs"

2024-05-14 13:29:19 [#] waiting for CloudFormation stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-container-logs"

updating the addon, which handles the pod identity config changes behind the scenes
2024-05-14 13:29:19 [#] updating addon

deleting the IAM role for the third association

2024-05-14 13:29:19 [#] deleting IAM resources for pod identity service account adot-
col-otlp-ingest

2024-05-14 13:29:20 [#] will delete stack "eksctl-my-cluster-addon-adot-
podidentityrole-adot-col-otlp-ingest"

2024-05-14 13:29:20 [#] waiting for stack "eksctl-my-cluster-addon-adot-
podidentityrole-adot-col-otlp-ingest" to get deleted

2024-05-14 13:29:51 [#] waiting for CloudFormation stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-otlp-ingest"”

2024-05-14 13:29:51 [#] deleted IAM resources for addon adot

now check that pod identity config was updated correctly

eksctl get podidentityassociation --cluster my-cluster --output json

[

"ServiceAccountName": "adot-col-prom-metrics",
"RoleARN": "arn:aws:iam::111122223333:ro0le/eksctl-my-cluster-addon-adot-
podident-Rolel-nQAlp@KktS2A",
"OwnerARN": "arn:aws:eks:us-west-2:111122223333:addon/my-cluster/
adot/lec7bb63-8c4e-ca@a-f947-310c4b55052¢e"
1,

EKS Add-ons support for pod identity associations 158

Eksctl User Guide Amazon EKS

{

"ServiceAccountName": "adot-col-otlp-ingest",
"RoleARN": "arn:aws:iam::111122223333:r0le/eksctl-my-cluster-addon-adot-
podident-Rolel-1k1XhAdziGzX",
"OwnerARN": "arn:aws:eks:us-west-2:111122223333:addon/my-cluster/
adot/lec7bb63-8c4e-ca@a-f947-310c4b55052e"
}

To remove all pod identity associations from an addon, addon.PodIdentityAssociations
must be explicitly set to [], e.g.

addons:

- name: vpc-cni
omitting the “podIdentityAssociations’™ field from the config file,
instead of explicitly setting it to [], will result in a validation error
podIdentityAssociations: []

and run

eksctl update addon -f config.yaml

Deleting addons with IAM permissions

Deleting an addon will also remove all pod identities associated with the addon. Deleting the
cluster will achieve the same effect, for all addons. Any IAM roles for pod identities, created by
eksctl, will be deleted as-well.

Migrating existing iamserviceaccounts and addons to pod identity
associations

There is an eksct1 utils command for migrating existing IAM Roles for service accounts to pod
identity associations, i.e.

eksctl utils migrate-to-pod-identity --cluster my-cluster --approve

Behind the scenes, the command will apply the following steps:

« install the eks-pod-identity-agent addon if not already active on the cluster

Migrating existing iamserviceaccounts and addons to pod identity associations 159

Eksctl User Guide

Amazon EKS

identify all IAM Roles that are associated with iamserviceaccounts

identify all IAM Roles that are associated with EKS addons that support pod identity associations

update the IAM trust policy of all identified roles, with an additional trusted entity, pointing to
the new EKS Service principal (and, optionally, remove exising OIDC provider trust relationship)

create pod identity associations for filtered roles associated with iamserviceaccounts

update EKS addons with pod identities (EKS API will create the pod identities behind the scenes)

Running the command without the --approve flag will only output a plan consisting of a set of
tasks reflecting the steps above, e.g.

[#] (plan) would migrate 2 iamserviceaccount(s) and 2 addon(s) to pod identity
association(s) by executing the following tasks
[#]1 (plan)

3 sequential tasks: { install eks-pod-identity-agent addon,
tasks for migrating the addons
2 parallel sub-tasks: {
2 sequential sub-tasks: {
update trust policy for owned role "eksctl-my-cluster--Rolel-DDuMLoeZ8weD",
migrate addon aws-ebs-csi-driver to pod identity,
},
2 sequential sub-tasks: {
update trust policy for owned role "eksctl-my-cluster--Rolel-xYiPFOVplael",
migrate addon vpc-cni to pod identity,
},
1,

tasks for migrating the iamserviceaccounts
2 parallel sub-tasks: {
2 sequential sub-tasks: {
update trust policy for owned role "eksctl-my-cluster--Rolel-QLXqHcq901AR",
create pod identity association for service account "default/sal",
b
2 sequential sub-tasks: {
update trust policy for unowned role "Unowned-Rolel",
create pod identity association for service account "default/sa2",

b
}
}
[#] all tasks were skipped
[!T no changes were applied, run again with '--approve' to apply the changes

Migrating existing iamserviceaccounts and addons to pod identity associations

160

Eksctl User Guide Amazon EKS

The existing OIDC provider trust relationship is always being removed from IAM Roles associated
with EKS Add-ons. Additionally, to remove the existing OIDC provider trust relationship from IAM
Roles associated with iamserviceaccounts, run the command with --remove-oidc-provider-
trust-relationship flag, e.q.

eksctl utils migrate-to-pod-identity --cluster my-cluster --approve --remove-oidc-
provider-trust-relationship

Cross Account Pod Identity Support

eksctl supports EKS Pod Identity cross-account access. This feature allows pods running in your EKS
cluster to access AWS resources in a different AWS account.

Usage

To create a pod identity association with cross-account access, first set up IAM Roles and Policies
allowing access from a source AWS account (with the cluster) to a target AWS account (with the
resources the cluster can access). For an example of this, see "Amazon EKS Pod Identity streamlines
cross account access."

Once an IAM Role is configured in each account, use eksctl to create the pod identity associations:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig
metadata:
The cluster name and service account name should match the target
account policy's trust relationship.
name: my-cluster
region: us-west-2
version: "1.32"

addons:
- name: vpc-cni
- name: coredns
- name: kube-proxy
- name: eks-pod-identity-agent

iam:
podIdentityAssociations:
- namespace: default
serviceAccountName: demo-app-sa

Cross Account Pod Identity Support 161

https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/blogs/containers/amazon-eks-pod-identity-streamlines-cross-account-access/
https://aws.amazon.com/blogs/containers/amazon-eks-pod-identity-streamlines-cross-account-access/

Eksctl User Guide Amazon EKS

createServiceAccount: true

The source role in the same account as the cluster
roleARN: arn:aws:iam::1111111111:role/account-a-role

The target role in a different account

targetRoleARN: arn:aws:iam::2222222222:role/account-b-role
Optional: Disable session tags

disableSessionTags: false

managedNodeGroups:

- name: my-cluster
instanceType: m6a.large
privateNetworking: true
minSize: 2
desiredCapacity: 2
maxSize: 3

Further references

Official AWS Userdocs for EKS Add-ons support for pod identities

Official AWS Blog Post on Pod Identity Associations

Official AWS userdocs for Pod Identity Associations

Further references 162

https://docs.aws.eu/eks/latest/userguide/add-ons-iam.html
https://aws.amazon.com/blogs/aws/amazon-eks-pod-identity-simplifies-iam-permissions-for-applications-on-amazon-eks-clusters/
https://docs.aws.eu/eks/latest/userguide/pod-identities.html

Eksctl User Guide Amazon EKS

Deployment options

This chapter covers using eksctl to manage EKS clusters deployed to alternate environments.

For the most accurate information about EKS deployment options, see Deploy Amazon EKS clusters

across cloud and on-premises environments in the EKS User Guide.

Topics:

« the section called "EKS Anywhere”

» Use eksctl with Amazon EKS Anywhere clusters.

« Amazon EKS Anywhere is container management software built by AWS that makes it easier to
run and manage Kubernetes on-premises and at the edge.

» the section called "AWS Outposts Support”
» Use eksctl with EKS clusters on AWS Outposts.

« AWS Outposts is a family of fully managed solutions delivering AWS infrastructure and
services to virtually any on-premises or edge location for a truly consistent hybrid experience.

« AWS Outposts support in eksctl lets you create local clusters with the entire Kubernetes
cluster, including the EKS control plane and worker nodes, running locally on AWS Outposts.

» the section called “"EKS Hybrid Nodes”

« Run on-premises and edge applications on customer-managed infrastructure with the same
AWS EKS clusters, features, and tools you use in the AWS Cloud.

EKS Anywhere

eksctl provides access to AWS' feature called EKS Anywhere with the sub command eksctl
anywhere. This requires the eksctl-anywhere binary present on PATH. Please follow the
instruction outlined here Install eksctl-anywhere to install it.

Once done, execute anywhere commands by running:

eksctl anywhere version
v0.5.0

For more information about EKS Anywhere, please visit EKS Anywhere Website.

Topics: 163

https://docs.aws.eu/eks/latest/userguide/eks-deployment-options.html
https://docs.aws.eu/eks/latest/userguide/eks-deployment-options.html
https://anywhere.eks.amazonaws.com/docs/getting-started/install/
https://anywhere.eks.amazonaws.com/

Eksctl User Guide Amazon EKS

AWS Outposts Support

/A Warning
EKS Managed Nodegroups are not supported on Outposts.

Extending existing clusters to AWS Outposts

You can extend an existing EKS cluster running in an AWS region to AWS Outposts by setting
nodeGroup.outpostARN for new nodegroups to create nodegroups on Outposts, as in:

extended-cluster.yaml

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: existing-cluster
region: us-west-2

nodeGroups:
Nodegroup will be created in an AWS region.
- name: ng

Nodegroup will be created on the specified Outpost.
- name: outpost-ng
privateNetworking: true
outpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"

eksctl create nodegroup -f extended-cluster.yaml

In this setup, the EKS control plane runs in an AWS region while nodegroups with outpostARN set
run on the specified Outpost. When a nodegroup is being created on Outposts for the first time,
eksctl extends the VPC by creating subnets on the specified Outpost. These subnets are used to
create nodegroups that have outpostARN set.

Customers with a pre-existing VPC are required to create the subnets on Outposts and pass them in
nodeGroup.subnets, asin:

AWS Outposts Support 164

Eksctl User Guide Amazon EKS

extended-cluster-vpc.yaml
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: extended-cluster-vpc
region: us-west-2

vpc:
id: vpc-1234
subnets:
private:
outpost-subnet-1:
id: subnet-1234

nodeGroups:
Nodegroup will be created in an AWS region.
- name: ng

Nodegroup will be created on the specified Outpost.
- name: outpost-ng
privateNetworking: true
Subnet IDs for subnets created on Outpost.
subnets: [subnet-5678]
outpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"

Creating a local cluster on AWS Outposts

(® Note

Local clusters support Outpost racks only.

(® Note

Only Amazon Linux 2 is supported for nodegroups when the control plane is on Outposts.
Only EBS gp2 volume types are supported for nodegroups on Outposts.

Creating a local cluster on AWS Outposts 165

Eksctl User Guide Amazon EKS

AWS Outposts support in eksctl lets you create local clusters with the entire Kubernetes cluster,
including the EKS control plane and worker nodes, running locally on AWS Outposts. Customers
can either create a local cluster with both the EKS control plane and worker nodes running locally
on AWS Outposts, or they can extend an existing EKS cluster running in an AWS region to AWS
Outposts by creating worker nodes on Outposts.

To create the EKS control plane and nodegroups on AWS Outposts, set
outpost.controlPlaneOutpostARN to the Outpost ARN, as in:

outpost.yaml

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: outpost
region: us-west-2

outpost:
Required.
controlPlaneOutpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"
Optional, defaults to the smallest available instance type on the Outpost.
controlPlanelInstanceType: m5d.large

eksctl create cluster -f outpost.yaml

This instructs eksctl to create the EKS control plane and subnets on the specified Outpost. Since
an Outposts rack exists in a single availability zone, eksctl creates only one public and private
subnet. eksctl does not associate the created VPC with a local gateway and, as such, eksctl will
lack connectivity to the API server and will be unable to create nodegroups. Therefore, if the
ClusterConfig contains any nodegroups during cluster creation, the command must be run with
--without-nodegroup, asin:

eksctl create cluster -f outpost.yaml --without-nodegroup

It is the customer’s responsibility to associate the eksctl-created VPC with the local gateway after
cluster creation to enable connectivity to the API server. After this step, nodegroups can be created
using eksctl create nodegroup.

Creating a local cluster on AWS Outposts 166

https://docs.aws.eu/eks/latest/userguide/eks-outposts.html
https://docs.aws.eu/outposts/latest/userguide/outposts-local-gateways.html

Eksctl User Guide Amazon EKS

You can optionally specify the instance type for the control plane nodes in
outpost.controlPlaneInstanceType or for the nodegroups in nodeGroup.instanceType,
but the instance type must exist on Outpost or eksctl will return an error. By default, eksctl
attempts to choose the smallest available instance type on Outpost for the control plane nodes
and nodegroups.

When the control plane is on Outposts, nodegroups are created on that Outpost. You can
optionally specify the Outpost ARN for the nodegroup in nodeGroup.outpostARN but it must
match the control plane’'s Outpost ARN.

outpost-fully-private.yaml
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: outpost-fully-private
region: us-west-2

privateCluster:
enabled: true

outpost:
Required.
controlPlaneOutpostARN: "arn:aws:outposts:us-west-2:1234:0outpost/op-1234"
Optional, defaults to the smallest available instance type on the Outpost.
controlPlaneInstanceType: m5d.large

outpost.yaml
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: outpost
region: us-west-2

outpost:
Required.
controlPlaneOutpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"
Optional, defaults to the smallest available instance type on the Outpost.
controlPlaneInstanceType: m5d.large

Creating a local cluster on AWS Outposts 167

Eksctl User Guide Amazon EKS

controlPlanePlacement:
groupName: placement-group-name

Existing VPC

Customers with an existing VPC can create local clusters on AWS Outposts by specifying the subnet
configuration in vpc.subnets, as in:

outpost-existing-vpc.yaml
apiVersion: eksctl.io/vlalpha5
kind: ClusterConfig

metadata:
name: outpost
region: us-west-2

vpc:
id: vpc-1234
subnets:
private:
outpost-subnet-1:
id: subnet-1234

nodeGroups:
- name: outpost-ng
privateNetworking: true

outpost:
Required.
controlPlaneOutpostARN: "arn:aws:outposts:us-west-2:1234:0outpost/op-1234"
Optional, defaults to the smallest available instance type on the Outpost.
controlPlaneInstanceType: m5d.large

eksctl create cluster -f outpost-existing-vpc.yaml

The subnets must exist on the Outpost specified in outpost.controlPlaneOutpostARN or
eksctl will return an error. You can also specify nodegroups during cluster creation if you have
access to the local gateway for the subnet, or have connectivity to VPC resources.

Creating a local cluster on AWS Outposts 168

Eksctl User Guide Amazon EKS

Features unsupported on local clusters

« Addons
« |AM Roles for Service Accounts

o |IPV6

« Identity Providers

» Fargate
o KMS Encryption

e Local Zones

» Karpenter
« Instance Selector

« Availability Zones cannot be specified as it defaults to the Outpost availability zone.
e vpc.publicAccessCIDRs and vpc.autoAllocateIPv6 are not supported.

» Public endpoint access to the API server is not supported as a local cluster can only be created
with private-only endpoint access.

Further information

Amazon EKS on AWS Outposts

Local clusters for Amazon EKS on AWS Outposts

Creating local clusters

Launching self-managed Amazon Linux nodes on an Outpost

Features unsupported on local clusters 169

https://github.com/eksctl-io/eksctl/blob/main/examples/27-oidc-provider.yaml
https://github.com/eksctl-io/eksctl/blob/main/examples/33-local-zones.yaml
https://docs.aws.eu/eks/latest/userguide/eks-outposts.html
https://docs.aws.eu/eks/latest/userguide/eks-outposts-local-cluster-overview.html
https://docs.aws.eu/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.eu/eks/latest/userguide/eks-outposts-self-managed-nodes.html

Eksctl User Guide Amazon EKS

Security

eksctl provides some options that can improve the security of your EKS cluster.

withOIDC

Enable withOIDC to automatically create an IRSA for the amazon CNI plugin and limit permissions
granted to nodes in your cluster, instead granting the necessary permissions only to the CNI service
account.

The background is described in this AWS documentation.

disablePodIMDS

For managed and unmanaged nodegroups, disablePodIMDS option is available prevents all non

host networking pods running in this nodegroup from making IMDS requests.

(® Note

This can not be used together with withAddonPolicies.

KMS Envelope Encryption for EKS clusters

® Note

Amazon Elastic Kubernetes Service (Amazon EKS) provides default envelope encryption for
all Kubernetes API data in EKS clusters running Kubernetes version 1.28 or higher. For more
information, see Default envelope encryption for all Kubernetes API Data in the EKS User
Guide.

EKS supports using AWS KMS keys to provide envelope encryption of Kubernetes secrets stored in
EKS. Envelope encryption adds an addition, customer-managed layer of encryption for application
secrets or user data that is stored within a Kubernetes cluster.

Previously, Amazon EKS supported enabling envelope encryption using KMS keys only during

cluster creation. Now, you can enable envelope encryption for Amazon EKS clusters at any time.

withOIDC 170

https://geoffcline.github.io/eksctl-schema-demo/#iam-withOIDC
https://docs.aws.eu/eks/latest/userguide/cni-iam-role.html
https://geoffcline.github.io/eksctl-schema-demo/#nodeGroups-disablePodIMDS
https://docs.aws.eu/eks/latest/userguide/envelope-encryption.html
https://aws.amazon.com/about-aws/whats-new/2021/03/amazon-eks-supports-adding-kms-envelope-encryption-to-existing-clusters/
https://aws.amazon.com/about-aws/whats-new/2020/03/amazon-eks-adds-envelope-encryption-for-secrets-with-aws-kms/

Eksctl User Guide Amazon EKS

Read more about Using EKS encryption provider support for defense-in-depth post on the AWS
containers blog.

Creating a cluster with KMS encryption enabled

kms-cluster.yaml
A cluster with KMS encryption enabled

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: kms-cluster
region: us-west-2
managedNodeGroups:
- name: ng
more config
secretsEncryption:

KMS key used for envelope encryption of Kubernetes secrets
keyARN: arn:aws:kms:us-west-2:<account>:key/<key>

eksctl create cluster -f kms-cluster.yaml

Enabling KMS encryption on an existing cluster

To enable KMS encryption on a cluster that doesn’t already have it enabled, run

eksctl utils enable-secrets-encryption -f kms-cluster.yaml

or without a config file:

eksctl utils enable-secrets-encryption --cluster=kms-cluster --key-arn=arn:aws:kms:us-
west-2:<account>:key/<key> --region=<region>

In addition to enabling KMS encryption on the EKS cluster, eksctl also re-encrypts all existing
Kubernetes secrets using the new KMS key by updating them with the annotation eksctl.io/
kms-encryption-timestamp. This behaviour can be disabled by passing --encrypt-
existing-secrets=false, asin:

Creating a cluster with KMS encryption enabled 171

https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

Eksctl User Guide Amazon EKS

eksctl utils enable-secrets-encryption --cluster=kms-cluster --key-arn=arn:aws:kms:us-
west-2:<account>:key/<key> --encrypt-existing-secrets=false --region=<region>

If a cluster already has KMS encryption enabled, eksctl will proceed to re-encrypting all existing
secrets.

(® Note

Once KMS encryption is enabled, it cannot be disabled or updated to use a different KMS
key.

Enabling KMS encryption on an existing cluster 172

Eksctl User Guide Amazon EKS

Troubleshooting

This topic includes instructions on how to resolve common errors with Eksctl.

Failed stack creation

You can use the --cfn-disable-rollback flag to stop Cloudformation from rolling back failed
stacks to make debugging easier.

subnet ID "subnet-11111111" is not the same as
"subnet-22222222"

Given a config file specifying subnets for a VPC like the following:

apiVersion: eksctl.io/vlalpha5s
kind: ClusterConfig

metadata:
name: test
region: us-east-1

vpc:
subnets:

public:
us-east-la: {id: subnet-11111111}
us-east-1b: {id: subnet-22222222}

private:
us-east-la: {id: subnet-33333333}
us-east-1b: {id: subnet-444444447%

nodeGroups: []

An error subnet ID "subnet-11111111" is not the same as "subnet-22222222"
means that the subnets specified are not placed in the right Availability zone. Check in the AWS
console which is the right subnet ID for each Availability Zone.

In this example, the correct configuration for the VPC would be:

vpc:

Failed stack creation 173

Eksctl User Guide Amazon EKS

subnets:
public:
us-east-la: {id: subnet-22222222}
us-east-1b: {id: subnet-11111111}
private:
us-east-la: {id: subnet-33333333}
us-east-1b: {id: subnet-44444444%

Deletion issues

If your delete does not work, or you forget to add --wait on the delete, you may need to go to
use amazon's other tools to delete the cloudformation stacks. This can be accomplished via the gui
or with the aws cli.

kubectl logs and kubectl run fails with Authorization Error

If your nodes are deployed in a private subnet and kubectl logs or kubectl run fail with an
error such as the following:

Error attaching, falling back to logs: unable to upgrade connection: Authorization
error (user=kube-apiserver-kubelet-client, verb=create, resource=nodes,
subresource=proxy)

Error from server (InternalError): Internal error occurred: Authorization error
(user=kube-apiserver-kubelet-client, verb=get, resource=nodes, subresource=proxy)

Then you might need to set enableDnsHostnames. More details can be found in this issue.

Deletion issues 174

https://docs.aws.eu/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://github.com/eksctl-io/eksctl/issues/4645

Eksctl User Guide Amazon EKS

Announcements

This topic covers past annoucements of new Eksctl features.

Managed Nodegroups Default

As of eksctl v0.58.0, eksctl creates managed nodegroups by default when a ClusterConfig file

isn't specified for eksctl create cluster and eksctl create nodegroup. To create a self-
managed nodegroup, pass --managed=false. This may break scripts not using a config file if a
feature not supported in managed nodegroups, e.g., Windows nodegroups, is being used. To fix
this, pass --managed=false, or specify your nodegroup config in a ClusterConfig file using
the nodeGroups field which creates a self-managed nodegroup.

Nodegroup Bootstrap Override For Custom AMls

This change was announced in the issue Breaking: overrideBootstrapCommand soon.... Now, it has

come to pass in this PR. Please read the attached issue carefully about why we decided to move
away from supporting custom AMIs without bootstrap scripts or with partial bootstrap scripts.

We still provide a helper! Migrating hopefully is not that painful. eksct1 still provides a script,
which when sourced, will export a couple of helpful environment properties and settings. This
script is located here.

The following environment properties will be at your disposal:

API_SERVER_URL

B64_CLUSTER_CA

INSTANCE_ID

INSTANCE_LIFECYCLE

CLUSTER_DNS

NODE_TAINTS

MAX_PODS

NODE_LABELS

CLUSTER_NAME

CONTAINER_RUNTIME # default is docker
KUBELET_EXTRA_ARGS # for details, look at the script

Managed Nodegroups Default 175

https://github.com/eksctl-io/eksctl/releases/tag/0.58.0
https://github.com/eksctl-io/eksctl/issues/3563
https://github.com/eksctl-io/eksctl/pull/4968
https://github.com/eksctl-io/eksctl/blob/70a289d62e3c82e6177930cf2469c2572c82e104/pkg/nodebootstrap/assets/scripts/bootstrap.helper.sh

Eksctl User Guide Amazon EKS

The minimum that needs to be used when overriding so eksctl doesn't fail, is labels! eksctl
relies on a specific set of labels to be on the node, so it can find them. When defining the override,
please provide this bare minimum override command:

overrideBootstrapCommand: |
#1/bin/bash

source /var/lib/cloud/scripts/eksctl/bootstrap.helper.sh

Note "--node-labels=${NODE_LABELS}" needs the above helper sourced to work,
otherwise will have to be defined manually.

/etc/eks/bootstrap.sh ${CLUSTER_NAME} --container-runtime containerd --kubelet-
extra-args "--node-labels=${NODE_LABELS}"

For nodegroups that have no outbound internet access, you'll need to supply --apiserver-
endpoint and --b64-cluster-ca to the bootstrap script as follows:

overrideBootstrapCommand: |
#!/bin/bash

source /var/lib/cloud/scripts/eksctl/bootstrap.helper.sh

Note "--node-labels=${NODE_LABELS}" needs the above helper sourced to work,
otherwise will have to be defined manually.
/etc/eks/bootstrap.sh ${CLUSTER_NAME} --container-runtime containerd --kubelet-
extra-args "--node-labels=${NODE_LABELS}" \
--apiserver-endpoint ${API_SERVER_URL} --b64-cluster-ca ${B64_CLUSTER_CA}

Note the '--node-labels " setting. If this is not defined, the node will join the cluster, but eksctl
will ultimately time out on the last step when it's waiting for the nodes to be Ready. It's

doing a Kubernetes lookup for nodes that have the label alpha.eksctl.io/nodegroup-
name=<cluster-name>. This is only true for unmanaged nodegroups. For managed it's using a
different label.

If, at all, it's possible to switch to managed nodegroups to avoid this overhead, the time has come
now to do that. Makes all the overriding a lot easier.

Nodegroup Bootstrap Override For Custom AMls 176

	Eksctl User Guide
	Table of Contents
	What is Eksctl?
	Features
	Eksctl FAQ
	General
	Nodegroups
	Ingress
	Kubectl

	Dry Run
	One-off Options in eksctl

	Tutorial
	Step 1: Install eksctl
	Step 2: Create cluster config file
	Step 3: Create cluster
	Optional: Delete Cluster

	Next Steps

	Installation options for Eksctl
	Prerequisite
	For Unix
	For Windows
	Using Git Bash:

	Homebrew
	Docker
	Shell Completion
	Bash
	Zsh
	Fish
	Powershell

	Updates

	Clusters
	Topics:
	Creating and managing clusters
	Creating a simple cluster
	Considerations

	Create cluster using config file
	Update kubeconfig for new cluster
	Delete cluster
	Dry Run

	EKS Auto Mode
	Creating an EKS cluster with Auto Mode enabled
	Updating an EKS cluster to use Auto Mode
	Disabling Auto Mode
	Further information

	EKS Access Entries
	Cluster authentication mode
	Set authentication mode with a YAML file
	Update authentication mode with a command

	Access Entry Resources
	IAM Entities
	Managed nodegroups and Fargate
	Self-managed nodegroups

	Create access entry
	Get access entry
	Delete access entry
	Migrate from aws-auth ConfigMap
	Disable cluster creator admin permissions

	Non eksctl-created clusters
	Supported commands
	Creating nodegroups

	Registering non-EKS clusters with EKS Connector
	Register Cluster
	Deregister cluster
	Further information

	Customizing kubelet configuration
	kubeReserved calculation

	CloudWatch logging
	Enabling CloudWatch logging
	ClusterConfig Examples
	Disable all logs
	Enable all logs
	Enable one or more logs
	Log retention period
	Complete example

	EKS Fully-Private Cluster
	Creating a fully-private cluster
	Configuring private access to additional AWS services
	Skipping endpoint creations

	Nodegroups
	Cluster Endpoint Access
	User-supplied VPC and subnets
	Managing a fully-private cluster
	Force-delete a fully-private cluster
	Limitations
	Outbound access via HTTP proxy servers
	Further information

	Addons
	Creating addons
	Listing enabled addons
	Setting the addon’s version
	Discovering addons
	Discovering the configuration schema for addons
	Working with configuration values
	Using custom namespace
	Using config file
	Using CLI flag

	Updating addons
	Deleting addons
	Cluster creation flexibility for default networking addons

	Enabling Access for Amazon EMR
	EKS Fargate Support
	Creating a cluster with Fargate support
	Creating a cluster with Fargate support using a config file
	Designing Fargate profiles
	Example: scheduling workload in Fargate

	Managing Fargate profiles
	Further reading

	Cluster upgrades
	Updating control plane version

	Default add-on updates
	Update pre-installed add-on

	Support for Zonal Shift in EKS clusters
	Creating a cluster with zonal shift enabled
	Enabling zonal shift on an existing cluster
	Further information

	Karpenter Support
	Automatic Security Group Tagging

	Cluster Config Schema
	Nodegroups
	Topics:
	Work with node groups
	Creating nodegroups
	Creating a nodegroup from a config file
	Load Balancing

	Nodegroup selection in config files
	Include and exclude rules

	Listing nodegroups
	Nodegroup immutability
	Scaling nodegroups
	Scaling a single nodegroup
	Scaling multiple nodegroups

	Deleting and draining nodegroups
	Other features
	Update labels
	SSH Access

	Unmanaged nodegroups
	Updating multiple nodegroups
	Updating with config file

	Updating default add-ons

	EKS managed nodegroups
	Creating managed nodegroups
	New clusters
	Existing clusters

	Upgrading managed nodegroups
	Handling parallel upgrades for nodes
	Updating managed nodegroups
	Nodegroup Health issues
	Managing Labels
	Scaling Managed Nodegroups
	Further information

	Node bootstrapping
	AmazonLinux2023
	Default settings for AL2
	Configuring the bootstrapping process

	Launch Template support for Managed Nodegroups
	Creating managed nodegroups using a provided launch template
	Upgrading a managed nodegroup to use a different launch template version
	Notes on custom AMI and launch template support

	Custom subnets
	Why
	TL;DR

	How
	Deleting the cluster

	Custom DNS
	Taints
	Instance Selector
	Create cluster and nodegroups
	Dry Run

	Spot instances
	Managed Nodegroups
	Further information

	Unmanaged Nodegroups
	Parameters in instancesDistribution

	GPU Support
	ARM Support
	Auto Scaling
	Enable Auto Scaling
	Scaling up from 0
	Zone-aware Auto Scaling

	Custom AMI support
	Setting the node AMI ID
	Setting the node AMI Family
	Windows custom AMI support
	Bottlerocket custom AMI support

	Windows Worker Nodes
	Creating a new cluster with Windows support
	Adding Windows support to an existing Linux cluster
	Further information

	Additional Volume Mappings
	EKS Hybrid Nodes
	Introduction
	Networking
	Credentials
	Add-ons support
	Further references

	Support for Node Repair Config in EKS Managed Nodegroups
	Creating a cluster a managed nodegroup with node repair enabled
	Further information

	Networking
	Topics:
	VPC Configuration
	Dedicated VPC for Cluster
	Change VPC CIDR
	Use an existing VPC: shared with kops
	Use existing VPC: other custom configuration
	Custom Shared Node Security Group
	NAT Gateway

	Subnet Settings
	Use private subnets for initial nodegroup
	Custom subnet topology

	Cluster Access
	Managing Access to the Kubernetes API Server Endpoints
	Restricting Access to the EKS Kubernetes Public API endpoint

	Updating control plane subnets and security groups
	Updating control plane subnets
	Updating control plane security groups

	IPv6 Support
	Define IP Family

	IAM
	Topics:
	Minimum IAM policies
	IAM permissions boundary
	Setting the VPC CNI Permission Boundary

	IAM policies
	Supported IAM add-on policies
	Image Builder Policy
	EBS Policy
	Cert Manager Policy

	Adding a custom instance role
	Attaching inline policies
	Attaching policies by ARN

	Manage IAM users and roles
	Edit ConfigMap with a CLI Command
	Edit ConfigMap using a ClusterConfig file

	IAM Roles for Service Accounts
	How it works
	Usage from CLI
	Usage with config files
	Further information

	EKS Pod Identity Associations
	Prerequisites
	Creating Pod Identity Associations
	Fetching Pod Identity Associations
	Updating Pod Identity Associations
	Deleting Pod Identity Associations
	EKS Add-ons support for pod identity associations
	Creating addons with IAM permissions
	Updating addons with IAM permissions
	Deleting addons with IAM permissions

	Migrating existing iamserviceaccounts and addons to pod identity associations
	Cross Account Pod Identity Support
	Usage

	Further references

	Deployment options
	Topics:
	EKS Anywhere
	AWS Outposts Support
	Extending existing clusters to AWS Outposts
	Creating a local cluster on AWS Outposts
	Existing VPC

	Features unsupported on local clusters
	Further information

	Security
	withOIDC
	disablePodIMDS
	KMS Envelope Encryption for EKS clusters
	Creating a cluster with KMS encryption enabled
	Enabling KMS encryption on an existing cluster

	Troubleshooting
	Failed stack creation
	subnet ID "subnet-11111111" is not the same as "subnet-22222222"
	Deletion issues
	kubectl logs and kubectl run fails with Authorization Error

	Announcements
	Managed Nodegroups Default
	Nodegroup Bootstrap Override For Custom AMIs

