
Amazon EKS

Eksctl User Guide

Copyright © 2026 Copyright informaiton pending.

Eksctl User Guide Amazon EKS

Eksctl User Guide: Amazon EKS

Copyright © 2026 Copyright informaiton pending.

Copyright information pending.

Eksctl User Guide Amazon EKS

Table of Contents

What is Eksctl? ... 1
Features .. 1
Eksctl FAQ .. 2

General .. 2
Nodegroups .. 2
Ingress .. 3
Kubectl ... 3

Dry Run ... 3
One-off Options in eksctl .. 5

Tutorial ... 7
Step 1: Install eksctl .. 7
Step 2: Create cluster config file .. 8
Step 3: Create cluster .. 8

Optional: Delete Cluster .. 9
Next Steps .. 9

Installation options for Eksctl .. 10
Prerequisite .. 10
For Unix .. 10
For Windows .. 11

Using Git Bash: .. 12
Homebrew .. 12
Docker ... 13
Shell Completion .. 13

Bash .. 13
Zsh .. 13
Fish ... 13
Powershell .. 14

Updates .. 14
Clusters ... 15

Topics: ... 15
Creating and managing clusters ... 17

Creating a simple cluster .. 17
Create cluster using config file .. 17
Update kubeconfig for new cluster .. 19

iii

Eksctl User Guide Amazon EKS

Delete cluster ... 20
Dry Run ... 21

EKS Auto Mode ... 21
Creating an EKS cluster with Auto Mode enabled ... 21
Updating an EKS cluster to use Auto Mode .. 22
Disabling Auto Mode .. 23
Further information .. 23

EKS Access Entries ... 23
Cluster authentication mode .. 24
Access Entry Resources .. 25
Create access entry ... 27
Get access entry .. 27
Delete access entry ... 27
Migrate from aws-auth ConfigMap ... 28
Disable cluster creator admin permissions .. 29

Non eksctl-created clusters .. 29
Supported commands .. 29
Creating nodegroups .. 31

EKS Connector .. 32
Register Cluster ... 32
Deregister cluster .. 33
Further information .. 23

Configure kubelet ... 33
kubeReserved calculation .. 35

CloudWatch logging .. 35
Enabling CloudWatch logging .. 35
ClusterConfig Examples .. 37

EKS Fully-Private Cluster .. 38
Creating a fully-private cluster .. 39
Configuring private access to additional AWS services ... 39
Nodegroups .. 41
Cluster Endpoint Access .. 41
User-supplied VPC and subnets ... 41
Managing a fully-private cluster ... 42
Force-delete a fully-private cluster ... 43
Limitations .. 43

iv

Eksctl User Guide Amazon EKS

Outbound access via HTTP proxy servers .. 43
Further information .. 23

Addons .. 44
Creating addons .. 44
Listing enabled addons ... 46
Setting the addon’s version .. 47
Discovering addons ... 47
Discovering the configuration schema for addons .. 48
Working with configuration values ... 48
Using custom namespace .. 49
Updating addons ... 50
Deleting addons .. 51
Cluster creation flexibility for default networking addons .. 51

Amazon EMR ... 52
EKS Fargate Support ... 52

Creating a cluster with Fargate support .. 52
Creating a cluster with Fargate support using a config file ... 54
Designing Fargate profiles .. 56
Managing Fargate profiles .. 57
Further reading ... 60

Cluster upgrades .. 61
Updating control plane version ... 61

Default add-on updates .. 62
Update pre-installed add-on .. 63

Enable Zonal Shift ... 63
Creating a cluster with zonal shift enabled .. 64
Enabling zonal shift on an existing cluster ... 64
Further information .. 23

Karpenter Support ... 64
Automatic Security Group Tagging ... 67

Cluster Config Schema .. 68
Nodegroups .. 69

Topics: ... 15
Work with node groups .. 71

Creating nodegroups .. 71
Nodegroup selection in config files .. 74

v

Eksctl User Guide Amazon EKS

Listing nodegroups ... 75
Nodegroup immutability ... 75
Scaling nodegroups .. 75
Deleting and draining nodegroups ... 76
Other features ... 77

Unmanaged nodegroups .. 78
Updating multiple nodegroups .. 79
Updating default add-ons ... 80

EKS managed nodegroups ... 80
Creating managed nodegroups ... 81
Upgrading managed nodegroups .. 85
Handling parallel upgrades for nodes .. 86
Updating managed nodegroups .. 87
Nodegroup Health issues .. 87
Managing Labels ... 87
Scaling Managed Nodegroups ... 88
Further information .. 23

Node bootstrapping ... 88
AmazonLinux2023 .. 88

Launch template support ... 90
Creating managed nodegroups using a provided launch template .. 90
Upgrading a managed nodegroup to use a different launch template version 91
Notes on custom AMI and launch template support .. 91

Custom subnets .. 91
Why .. 92
How .. 92
Deleting the cluster .. 93

Custom DNS .. 93
Taints ... 94
Instance Selector .. 95

Create cluster and nodegroups .. 95
Spot instances ... 98

Managed Nodegroups .. 98
Unmanaged Nodegroups .. 100

GPU Support ... 102
ARM Support .. 103

vi

Eksctl User Guide Amazon EKS

Auto Scaling .. 105
Enable Auto Scaling ... 105

Custom AMI support ... 107
Setting the node AMI ID ... 107
Setting the node AMI Family ... 109
Windows custom AMI support ... 111
Bottlerocket custom AMI support ... 112

Windows Worker Nodes ... 112
Creating a new cluster with Windows support .. 113
Adding Windows support to an existing Linux cluster ... 114

Additional Volume Mappings .. 114
EKS Hybrid Nodes .. 115

Introduction ... 115
Networking ... 116
Credentials ... 117
Add-ons support ... 118
Further references .. 119

Node Repair Config ... 119
Creating a cluster a managed nodegroup with node repair enabled 119
Further information .. 23

Networking .. 121
Topics: ... 15
VPC Configuration ... 122

Dedicated VPC for Cluster .. 122
Change VPC CIDR ... 122
Use an existing VPC: shared with kops .. 122
Use existing VPC: other custom configuration ... 123
Custom Shared Node Security Group .. 126
NAT Gateway ... 127

Subnet Settings .. 128
Use private subnets for initial nodegroup .. 128
Custom subnet topology .. 128

Cluster Access ... 130
Managing Access to the Kubernetes API Server Endpoints ... 130
Restricting Access to the EKS Kubernetes Public API endpoint .. 132

Control plane networking .. 133

vii

Eksctl User Guide Amazon EKS

Updating control plane subnets .. 133
Updating control plane security groups .. 134

IPv6 Support ... 135
Define IP Family .. 135

IAM ... 137
Topics: ... 15
Minimum IAM policies .. 138
IAM permissions boundary .. 139

Setting the VPC CNI Permission Boundary ... 140
IAM policies ... 140

Supported IAM add-on policies ... 140
Adding a custom instance role .. 141
Attaching inline policies .. 142
Attaching policies by ARN .. 142

Manage IAM users and roles ... 143
Edit ConfigMap with a CLI Command .. 143
Edit ConfigMap using a ClusterConfig file .. 144

IAM Roles for Service Accounts .. 145
How it works ... 145
Usage from CLI ... 146
Usage with config files .. 148
Further information .. 23

EKS Pod Identity Associations ... 150
Prerequisites .. 150
Creating Pod Identity Associations ... 151
Fetching Pod Identity Associations ... 152
Updating Pod Identity Associations ... 153
Deleting Pod Identity Associations ... 153
EKS Add-ons support for pod identity associations .. 154
Migrating existing iamserviceaccounts and addons to pod identity associations 159
Cross Account Pod Identity Support .. 161
Further references .. 119

Deployment options .. 163
Topics: ... 15
EKS Anywhere ... 163
AWS Outposts Support .. 164

viii

Eksctl User Guide Amazon EKS

Extending existing clusters to AWS Outposts .. 164
Creating a local cluster on AWS Outposts .. 165
Features unsupported on local clusters ... 169
Further information .. 23

Security .. 170
withOIDC .. 170
disablePodIMDS .. 170
KMS Encryption .. 170

Creating a cluster with KMS encryption enabled .. 171
Enabling KMS encryption on an existing cluster ... 171

Troubleshooting ... 173
Failed stack creation ... 173
subnet ID "subnet-11111111" is not the same as "subnet-22222222" .. 173
Deletion issues .. 174
kubectl logs and kubectl run fails with Authorization Error ... 174

Announcements ... 175
Managed Nodegroups Default .. 175
Nodegroup Bootstrap Override For Custom AMIs .. 175

ix

Eksctl User Guide Amazon EKS

What is Eksctl?

eksctl is a command-line utility tool that automates and simplifies the process of creating,
managing, and operating Amazon Elastic Kubernetes Service (Amazon EKS) clusters. Written
in Go, eksctl provides a declarative syntax through YAML configurations and CLI commands to
handle complex EKS cluster operations that would otherwise require multiple manual steps across
different AWS services.

eksctl is particularly valuable for DevOps engineers, platform teams, and Kubernetes
administrators who need to consistently deploy and manage EKS clusters at scale. It’s especially
useful for organizations transitioning from self-managed Kubernetes to EKS, or those
implementing infrastructure as code (IaC) practices, as it can be integrated into existing CI/CD
pipelines and automation workflows. The tool abstracts away many of the complex interactions
between AWS services required for EKS cluster setup, such as VPC configuration, IAM role creation,
and security group management.

Key features of eksctl include the ability to create fully functional EKS clusters with a single
command, support for custom networking configurations, automated node group management,
and GitOps workflow integration. The tool manages cluster upgrades, scales node groups, and
handles add-on management through a declarative approach. eksctl also provides advanced
capabilities such as Fargate profile configuration, managed node group customization, and spot
instance integration, while maintaining compatibility with other AWS tools and services through
native AWS SDK integration.

Features

The features that are currently implemented are:

• Create, get, list and delete clusters

• Create, drain and delete nodegroups

• Scale a nodegroup

• Update a cluster

• Use custom AMIs

• Configure VPC Networking

• Configure access to API endpoints

• Support for GPU nodegroups

Features 1

Eksctl User Guide Amazon EKS

• Spot instances and mixed instances

• IAM Management and Add-on Policies

• List cluster Cloudformation stacks

• Install coredns

• Write kubeconfig file for a cluster

Eksctl FAQ

General

Can I use eksctl to manage clusters which weren’t created by eksctl?

Yes! From version 0.40.0 you can run eksctl against any cluster, whether it was created by
eksctl or not. For more information, see the section called “Non eksctl-created clusters”.

Nodegroups

How can I change the instance type of my nodegroup?

From the point of view of eksctl, nodegroups are immutable. This means that once created the
only thing eksctl can do is scale the nodegroup up or down.

To change the instance type, create a new nodegroup with the desired instance type, then drain
it so that the workloads move to the new one. After that step is complete you can delete the old
nodegroup.

How can I see the generated userdata for a nodegroup?

First you’ll need the name of the Cloudformation stack that manages the nodegroup:

eksctl utils describe-stacks --region=us-west-2 --cluster NAME

You’ll see a name similar to eksctl-CLUSTER_NAME-nodegroup-NODEGROUP_NAME.

You can execute the following to get the userdata. Note the final line which decodes from base64
and decompresses the gzipped data.

NG_STACK=eksctl-scrumptious-monster-1595247364-nodegroup-ng-29b8862f # your stack here
LAUNCH_TEMPLATE_ID=$(aws cloudformation describe-stack-resources --stack-name $NG_STACK
 \

Eksctl FAQ 2

Eksctl User Guide Amazon EKS

| jq -r '.StackResources | map(select(.LogicalResourceId == "NodeGroupLaunchTemplate")
 \
| .PhysicalResourceId)[0]')
aws ec2 describe-launch-template-versions --launch-template-id $LAUNCH_TEMPLATE_ID \
| jq -r '.LaunchTemplateVersions[0].LaunchTemplateData.UserData' \
| base64 -d | gunzip

Ingress

How do I set up ingress with eksctl?

We recommend using the AWS Load Balancer Controller. Documentation on how to deploy the
controller to your cluster, as well as how to migrate from the old ALB Ingress Controller, can be
found here.

For the Nginx Ingress Controller, setup would be the same as any on other Kubernetes cluster.

Kubectl

I’m using an HTTPS proxy and cluster certificate validation fails, how can I use the system CAs?

Set the environment variable KUBECONFIG_USE_SYSTEM_CA to make kubeconfig respect the
system certificate authorities.

Dry Run

The dry-run feature allows you to inspect and change the instances matched by the instance
selector before proceeding to creating a nodegroup.

When eksctl create cluster is called with the instance selector options and --dry-run,
eksctl will output a ClusterConfig file containing a nodegroup representing the CLI options and the
instance types set to the instances matched by the instance selector resource criteria.

eksctl create cluster --name development --dry-run

apiVersion: eksctl.io/v1alpha5
cloudWatch:
 clusterLogging: {}
iam:
 vpcResourceControllerPolicy: true
 withOIDC: false

Ingress 3

https://github.com/kubernetes-sigs/aws-load-balancer-controller
https://docs.aws.eu/eks/latest/userguide/alb-ingress.html
https://kubernetes.github.io/ingress-nginx/deploy/#aws

Eksctl User Guide Amazon EKS

kind: ClusterConfig
managedNodeGroups:
- amiFamily: AmazonLinux2
 desiredCapacity: 2
 disableIMDSv1: true
 disablePodIMDS: false
 iam:
 withAddonPolicies:
 albIngress: false
 appMesh: false
 appMeshPreview: false
 autoScaler: false
 certManager: false
 cloudWatch: false
 ebs: false
 efs: false
 externalDNS: false
 fsx: false
 imageBuilder: false
 xRay: false
 instanceSelector: {}
 instanceType: m5.large
 labels:
 alpha.eksctl.io/cluster-name: development
 alpha.eksctl.io/nodegroup-name: ng-4aba8a47
 maxSize: 2
 minSize: 2
 name: ng-4aba8a47
 privateNetworking: false
 securityGroups:
 withLocal: null
 withShared: null
 ssh:
 allow: false
 enableSsm: false
 publicKeyPath: ""
 tags:
 alpha.eksctl.io/nodegroup-name: ng-4aba8a47
 alpha.eksctl.io/nodegroup-type: managed
 volumeIOPS: 3000
 volumeSize: 80
 volumeThroughput: 125
 volumeType: gp3
metadata:

Dry Run 4

Eksctl User Guide Amazon EKS

 name: development
 region: us-west-2
 version: "1.24"
privateCluster:
 enabled: false
vpc:
 autoAllocateIPv6: false
 cidr: 192.168.0.0/16
 clusterEndpoints:
 privateAccess: false
 publicAccess: true
 manageSharedNodeSecurityGroupRules: true
 nat:
 gateway: Single

The generated ClusterConfig can then be passed to eksctl create cluster:

eksctl create cluster -f generated-cluster.yaml

When a ClusterConfig file is passed with --dry-run, eksctl will output a ClusterConfig file
containing the values set in the file.

One-off Options in eksctl

There are certain one-off options that cannot be represented in the ClusterConfig file, e.g., --
install-vpc-controllers.

It is expected that:

eksctl create cluster --<options...> --dry-run > config.yaml

followed by:

eksctl create cluster -f config.yaml

would be equivalent to running the first command without --dry-run.

eksctl therefore disallows passing options that cannot be represented in the config file when --
dry-run is passed.

One-off Options in eksctl 5

Eksctl User Guide Amazon EKS

Important

If you need to pass an AWS profile, set the AWS_PROFILE environment variable, instead of
passing the --profile CLI option.

One-off Options in eksctl 6

Eksctl User Guide Amazon EKS

Tutorial

This topic walks you through installing and configuring eksctl, then using it to create an Amazon
EKS cluster.

Step 1: Install eksctl

Complete the following steps to download and install the latest version of eksctl on your Linux or
macOS device:

To install eksctl with Homebrew

1. (Prerequisite) Install Homebrew.

2. Add the AWS tap:

brew tap aws/tap

3. Install eksctl

brew install aws/tap/eksctl

Before using eksctl, complete these configuration steps:

1. Install prerequisites:

• Install AWS CLI version 2.x or later.

• Install kubectl using Homebrew:

brew install kubernetes-cli

2. Configure AWS credentials in your environment:

aws configure

3. Verify AWS CLI configuration:

aws sts get-caller-identity

Step 1: Install eksctl 7

https://brew.sh/
https://docs.aws.eu/cli/latest/userguide/getting-started-install.html
https://formulae.brew.sh/formula/kubernetes-cli
https://docs.aws.eu/cli/latest/userguide/cli-chap-configure.html

Eksctl User Guide Amazon EKS

Step 2: Create cluster config file

Create a cluster configuration file using these steps:

1. Create a new file named cluster.yaml:

touch cluster.yaml

2. Add the following basic cluster configuration:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: basic-cluster
 region: us-west-2

nodeGroups:
 - name: ng-1
 instanceType: m5.large
 desiredCapacity: 2
 minSize: 1
 maxSize: 3
 ssh:
 allow: false

3. Customize the configuration:

• Update the region to match your desired AWS region.

• Modify the instanceType based on your workload requirements.

• Adjust the desiredCapacity, minSize, and maxSize according to your needs.

4. Validate the configuration file:

eksctl create cluster -f cluster.yaml --dry-run

Step 3: Create cluster

Follow these steps to create your EKS cluster:

1. Create the cluster using the configuration file:

Step 2: Create cluster config file 8

Eksctl User Guide Amazon EKS

eksctl create cluster -f cluster.yaml

2. Wait for cluster creation (this typically takes 15-20 minutes).

3. Verify cluster creation:

eksctl get cluster

4. Configure kubectl to use your new cluster:

aws eks update-kubeconfig --name basic-cluster --region us-west-2

5. Verify cluster connectivity:

kubectl get nodes

Your cluster is now ready to use.

Optional: Delete Cluster

Remember to delete the cluster when you’re done to avoid unnecessary charges:

eksctl delete cluster -f cluster.yaml

Note

Cluster creation can incur AWS charges. Make sure to review the Amazon EKS pricing before
creating a cluster.

Next Steps

• Configure Kubectl to connect to the cluster

• Deploy a sample app

Optional: Delete Cluster 9

https://aws.eu/eks/pricing/

Eksctl User Guide Amazon EKS

Installation options for Eksctl

eksctl is available to install from official releases as described below. We recommend that you
install eksctl from only the official GitHub releases. You may opt to use a third-party installer, but
please be advised that AWS does not maintain nor support these methods of installation. Use them
at your own discretion.

Prerequisite

You will need to have AWS API credentials configured. What works for AWS CLI or any other tools
(kops, Terraform, etc.) should be sufficient. You can use ~/.aws/credentials file or environment
variables. For more information, see the AWS CLI Reference.

You will also need AWS IAM Authenticator for Kubernetes command (either aws-iam-
authenticator or aws eks get-token (available in version 1.16.156 or greater of AWS CLI) in
your PATH.

The IAM account used for EKS cluster creation should have these minimal access levels.

AWS Service Access Level

CloudFormation Full Access

EC2 Full: Tagging Limited: List, Read, Write

EC2 Auto Scaling Limited: List, Write

EKS Full Access

IAM Limited: List, Read, Write, Permissions
Management

Systems Manager Limited: List, Read

For Unix

To download the latest release, run:

Prerequisite 10

https://docs.aws.eu/cli/latest/userguide/cli-config-files.html
https://docs.aws.eu/cli/latest/userguide/cli-environment.html
https://docs.aws.eu/cli/latest/userguide/cli-environment.html
https://docs.aws.eu/cli/latest/userguide/cli-environment.html
https://github.com/kubernetes-sigs/aws-iam-authenticator

Eksctl User Guide Amazon EKS

for ARM systems, set ARCH to: `arm64`, `armv6` or `armv7`
ARCH=amd64
PLATFORM=$(uname -s)_$ARCH

curl -sLO "https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_
$PLATFORM.tar.gz"

(Optional) Verify checksum
curl -sL "https://github.com/eksctl-io/eksctl/releases/latest/download/
eksctl_checksums.txt" | grep $PLATFORM | sha256sum --check

tar -xzf eksctl_$PLATFORM.tar.gz -C /tmp && rm eksctl_$PLATFORM.tar.gz

sudo install -m 0755 /tmp/eksctl /usr/local/bin && rm /tmp/eksctl

For Windows

Direct download (latest release):

• AMD64/x86_64

• ARMv6

• ARMv7

• ARM64

Make sure to unzip the archive to a folder in the PATH variable.

Optionally, verify the checksum:

1. Download the checksum file: latest

2. Use Command Prompt to manually compare CertUtil's output to the checksum file
downloaded.

 REM Replace amd64 with armv6, armv7 or arm64
 CertUtil -hashfile eksctl_Windows_amd64.zip SHA256

3. Using PowerShell to automate the verification using the -eq operator to get a True or False
result:

Replace amd64 with armv6, armv7 or arm64

For Windows 11

https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_windows_amd64.zip
https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_windows_armv6.zip
https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_windows_armv7.zip
https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_windows_arm64.zip
https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_checksums.txt

Eksctl User Guide Amazon EKS

 (Get-FileHash -Algorithm SHA256 .\eksctl_Windows_amd64.zip).Hash -eq ((Get-Content .
\eksctl_checksums.txt) -match 'eksctl_Windows_amd64.zip' -split ' ')[0]

Using Git Bash:

for ARM systems, set ARCH to: `arm64`, `armv6` or `armv7`
ARCH=amd64
PLATFORM=windows_$ARCH

curl -sLO "https://github.com/eksctl-io/eksctl/releases/latest/download/eksctl_
$PLATFORM.zip"

(Optional) Verify checksum
curl -sL "https://github.com/eksctl-io/eksctl/releases/latest/download/
eksctl_checksums.txt" | grep $PLATFORM | sha256sum --check

unzip eksctl_$PLATFORM.zip -d $HOME/bin

rm eksctl_$PLATFORM.zip

The eksctl executable is placed in $HOME/bin, which is in $PATH from Git Bash.

Homebrew

You can use Homebrew to install software on MacOS and Linux.

AWS maintains a Homebrew tap including eksctl.

For more information about the Homebrew tap, see the project on Github and the Homebrew
formula for eksctl.

To install eksctl with Homebrew

1. (Prerequisite) Install Homebrew

2. Add the AWS tap

brew tap aws/tap

3. Install eksctl

Using Git Bash: 12

https://github.com/aws/homebrew-tap
https://github.com/aws/homebrew-tap/blob/master/Formula/eksctl.rb
https://github.com/aws/homebrew-tap/blob/master/Formula/eksctl.rb
https://brew.sh/

Eksctl User Guide Amazon EKS

brew install aws/tap/eksctl

Docker

For every release and RC a container image is pushed to ECR repository public.ecr.aws/
eksctl/eksctl. Learn more about the usage on ECR Public Gallery - eksctl. For example,

docker run --rm -it public.ecr.aws/eksctl/eksctl version

Shell Completion

Bash

To enable bash completion, run the following, or put it in ~/.bashrc or ~/.profile:

. <(eksctl completion bash)

Zsh

For zsh completion, please run:

mkdir -p ~/.zsh/completion/
eksctl completion zsh > ~/.zsh/completion/_eksctl

and put the following in ~/.zshrc:

fpath=($fpath ~/.zsh/completion)

Note if you’re not running a distribution like oh-my-zsh you may first have to enable
autocompletion (and put in ~/.zshrc to make it persistent):

autoload -U compinit
compinit

Fish

The below commands can be used for fish auto completion:

Docker 13

https://gallery.ecr.aws/eksctl/eksctl

Eksctl User Guide Amazon EKS

mkdir -p ~/.config/fish/completions
eksctl completion fish > ~/.config/fish/completions/eksctl.fish

Powershell

The below command can be referred for setting it up. Please note that the path might be different
depending on your system settings.

eksctl completion powershell > C:\Users\Documents\WindowsPowerShell\Scripts\eksctl.ps1

Updates

Important

If you install eksctl by directly downloading it (not using a package manager) you need to
manually update it.

Powershell 14

Eksctl User Guide Amazon EKS

Clusters

This chapter covers creating and configuring EKS clusters using eksctl. It also includes add-ons and
EKS Auto Mode.

Topics:

• the section called “EKS Access Entries”

• Simplify Kubernetes RBAC management by replacing aws-auth ConfigMap with EKS access
entries

• Migrate existing IAM identity mappings from aws-auth ConfigMap to access entries

• Configure cluster authentication modes and control cluster creator admin permissions

• the section called “Default add-on updates”

• Keep clusters secure by updating default EKS add-ons on older clusters

• the section called “Addons”

• Automate routine tasks for installing, updating, and removing add-ons.

• Amazon EKS Add-ons include AWS add-ons, open source community add-ons, and
marketplace add-ons.

• the section called “EKS Auto Mode”

• Reduce operational overhead by letting AWS manage your EKS infrastructure

• Configure custom node pools instead of default general-purpose and system pools

• Convert existing EKS clusters to use Auto Mode

• the section called “CloudWatch logging”

• Troubleshoot cluster issues by enabling logs for specific EKS control plane components

• Configure log retention periods for EKS cluster logs

• Modify existing cluster logging settings using eksctl commands

• the section called “Cluster upgrades”

• Maintain security and stability by safely upgrading EKS control plane versions

• Roll out upgrades across nodegroups by replacing old groups with new ones

• Update default cluster add-ons

• the section called “Creating and managing clusters”
Topics: 15

Eksctl User Guide Amazon EKS

• Start quickly with basic EKS clusters using default managed nodegroups

• Create customized clusters using config files with specific configurations

• Deploy clusters in existing VPCs with private networking and custom IAM policies

• the section called “Configure kubelet”

• Prevent node resource starvation by configuring kubelet and system daemon reservations

• Customize eviction thresholds for memory and filesystem availability

• Enable or disable specific kubelet feature gates across node groups

• the section called “EKS Connector”

• Centralize management of hybrid Kubernetes deployments through EKS Console

• Configure IAM roles and permissions for external cluster access

• Remove external clusters and cleanup associated AWS resources

• the section called “EKS Fully-Private Cluster”

• Meet security requirements with fully-private EKS clusters having no outbound internet access

• Configure private access to AWS services through VPC endpoints

• Create and manage private nodegroups with explicit networking settings

• the section called “Karpenter Support”

• Automate node provisioning

• Create custom Karpenter provisioner configurations

• Set up Karpenter with spot instance interruption handling

• the section called “Amazon EMR”

• Create IAM identity mapping between EMR and EKS cluster

• the section called “EKS Fargate Support”

• Define custom Fargate profiles for pod scheduling

• Manage Fargate profiles through creation and configuration updates

• the section called “Non eksctl-created clusters”

• Standardize management of clusters created outside eksctl

• Use eksctl commands on existing non-eksctl clusters

• the section called “Enable Zonal Shift”

• Improve application availability by enabling rapid zone failover capabilities

• Configure zonal shift on new EKS cluster deployments
Topics: 16

Eksctl User Guide Amazon EKS

• Enable zonal shift features on existing EKS clusters

Creating and managing clusters

This topic covers how to create and delete EKS clusters using Eksctl. You can create clusters with a
CLI command, or by creating a cluster configuration YAML file.

Creating a simple cluster

Create a simple cluster with the following command:

eksctl create cluster

That will create an EKS cluster in your default region (as specified by your AWS CLI configuration)
with one managed nodegroup containing two m5.large nodes.

eksctl now creates a managed nodegroup by default when a config file isn’t used. To create a self-
managed nodegroup, pass --managed=false to eksctl create cluster or eksctl create
nodegroup.

Considerations

• When creating clusters in us-east-1, you might encounter an
UnsupportedAvailabilityZoneException. If this happens, copy the suggested zones and
pass the --zones flag, for example: eksctl create cluster --region=us-east-1 --
zones=us-east-1a,us-east-1b,us-east-1d. This issue may occur in other regions but is
less common. In most cases, you won’t need to use the --zone flag.

Create cluster using config file

You can create a cluster using a config file instead of flags.

First, create cluster.yaml file:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

Creating and managing clusters 17

Eksctl User Guide Amazon EKS

metadata:
 name: basic-cluster
 region: eu-north-1

nodeGroups:
 - name: ng-1
 instanceType: m5.large
 desiredCapacity: 10
 volumeSize: 80
 ssh:
 allow: true # will use ~/.ssh/id_rsa.pub as the default ssh key
 - name: ng-2
 instanceType: m5.xlarge
 desiredCapacity: 2
 volumeSize: 100
 ssh:
 publicKeyPath: ~/.ssh/ec2_id_rsa.pub

Next, run this command:

eksctl create cluster -f cluster.yaml

This will create a cluster as described.

If you needed to use an existing VPC, you can use a config file like this:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-in-existing-vpc
 region: eu-north-1

vpc:
 subnets:
 private:
 eu-north-1a: { id: subnet-0ff156e0c4a6d300c }
 eu-north-1b: { id: subnet-0549cdab573695c03 }
 eu-north-1c: { id: subnet-0426fb4a607393184 }

nodeGroups:
 - name: ng-1-workers
 labels: { role: workers }

Create cluster using config file 18

Eksctl User Guide Amazon EKS

 instanceType: m5.xlarge
 desiredCapacity: 10
 privateNetworking: true
 - name: ng-2-builders
 labels: { role: builders }
 instanceType: m5.2xlarge
 desiredCapacity: 2
 privateNetworking: true
 iam:
 withAddonPolicies:
 imageBuilder: true

The cluster name or nodegroup name must contain only alphanumeric characters (case-sensitive)
and hyphens. It must start with an alphabetic character and can’t exceed 128 characters, or you
will receive a validation error. For more information, see Create a stack from the CloudFormation
console in the AWS CLoudFormation user guide.

Update kubeconfig for new cluster

After the cluster has been created, the appropriate kubernetes configuration will be added to your
kubeconfig file. This is, the file that you have configured in the environment variable KUBECONFIG
or ~/.kube/config by default. The path to the kubeconfig file can be overridden using the --
kubeconfig flag.

Other flags that can change how the kubeconfig file is written:

flag type use default value

--kubeconfig string path to write
kubeconfig (incompat
ible with --auto-ku
beconfig)

$KUBECONFIG or
~/.kube/config

--set-kubeconfig-c
ontext

bool if true then current-
context will be set
in kubeconfig; if a
context is already
set then it will be
overwritten

true

Update kubeconfig for new cluster 19

https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/cfn-using-console-create-stack-parameters.html
https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/cfn-using-console-create-stack-parameters.html

Eksctl User Guide Amazon EKS

flag type use default value

--auto-kubeconfig bool save kubeconfig file
by cluster name

true

--write-kubeconfig bool toggle writing of
kubeconfig

true

Delete cluster

To delete this cluster, run:

eksctl delete cluster -f cluster.yaml

Warning

Use the --wait flag with delete operations to ensure deletion errors are properly reported.

Without the --wait flag, eksctl will only issue a delete operation to the cluster’s CloudFormation
stack and won’t wait for its deletion. In some cases, AWS resources using the cluster or its VPC may
cause cluster deletion to fail. If your delete fails or you forget the wait flag, you may have to go to
the CloudFormation GUI and delete the eks stacks from there.

Warning

PDB policies may block node removal during cluster deletion.

When deleting a cluster with nodegroups, Pod Disruption Budget (PDB) policies can prevent nodes
from being removed successfully. For example, clusters with aws-ebs-csi-driver installed
typically have two pods with a PDB policy allowing only one pod to be unavailable at a time,
making the other pod unevictable during deletion. To successfully delete the cluster in these
scenarios, use the disable-nodegroup-eviction flag to bypass PDB policy checks:

eksctl delete cluster -f cluster.yaml --disable-nodegroup-eviction

Delete cluster 20

Eksctl User Guide Amazon EKS

See the examples/ directory in the eksctl GitHub repo for more sample config files.

Dry Run

The dry-run feature enables generating a ClusterConfig file that skips cluster creation and outputs
a ClusterConfig file that represents the supplied CLI options and contains the default values set by
eksctl.

More info can be found on the Dry Run page.

EKS Auto Mode

eksctl supports EKS Auto Mode, a feature that extends AWS management of Kubernetes clusters
beyond the cluster itself, to allow AWS to also set up and manage the infrastructure that enables
the smooth operation of your workloads. This allows you to delegate key infrastructure decisions
and leverage the expertise of AWS for day-to-day operations. Cluster infrastructure managed by
AWS includes many Kubernetes capabilities as core components, as opposed to add-ons, such as
compute autoscaling, pod and service networking, application load balancing, cluster DNS, block
storage, and GPU support.

Creating an EKS cluster with Auto Mode enabled

eksctl has added a new autoModeConfig field to enable and configure Auto Mode. The shape
of the autoModeConfig field is

autoModeConfig:
 # defaults to false
 enabled: boolean
 # optional, defaults to [general-purpose, system].
 # To disable creation of nodePools, set it to the empty array ([]).
 nodePools: []string
 # optional, eksctl creates a new role if this is not supplied
 # and nodePools are present.
 nodeRoleARN: string

If autoModeConfig.enabled is true, eksctl creates an EKS cluster by passing
computeConfig.enabled: true,
kubernetesNetworkConfig.elasticLoadBalancing.enabled: true, and

Dry Run 21

https://github.com/eksctl-io/eksctl/tree/master/examples
https://docs.aws.eu/eks/latest/userguide/automode.html

Eksctl User Guide Amazon EKS

storageConfig.blockStorage.enabled: true to the EKS API, enabling management of
data plane components like compute, storage and networking.

To create an EKS cluster with Auto Mode enabled, set autoModeConfig.enabled: true, as in

auto-mode-cluster.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 name: auto-mode-cluster
 region: us-west-2

autoModeConfig:
 enabled: true

eksctl create cluster -f auto-mode-cluster.yaml

eksctl creates a node role to use for nodes launched by Auto Mode. eksctl also creates the
general-purpose and system node pools. To disable creation of the default node pools, e.g., to
configure your own node pools that use a different set of subnets, set nodePools: [], as in

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 name: auto-mode-cluster
 region: us-west-2

autoModeConfig:
 enabled: true
 nodePools: [] # disables creation of default node pools.

Updating an EKS cluster to use Auto Mode

To update an existing EKS cluster to use Auto Mode, run

cluster.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 name: cluster
 region: us-west-2

Updating an EKS cluster to use Auto Mode 22

Eksctl User Guide Amazon EKS

autoModeConfig:
 enabled: true

eksctl update auto-mode-config -f cluster.yaml

Note

If the cluster was created by eksctl, and it uses public subnets as cluster subnets, Auto
Mode will launch nodes in public subnets. To use private subnets for worker nodes
launched by Auto Mode, update the cluster to use private subnets.

Disabling Auto Mode

To disable Auto Mode, set autoModeConfig.enabled: false and run

cluster.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 name: auto-mode-cluster
 region: us-west-2

autoModeConfig:
 enabled: false

eksctl update auto-mode-config -f cluster.yaml

Further information

• EKS Auto Mode

EKS Access Entries

You can use eksctl to manage EKS Access Entries. Use access entries to grant Kubernetes
permissions to AWS IAM Identities. For example, you might grant a developer role permission to
read Kubernetes resources in a cluster.

Disabling Auto Mode 23

https://docs.aws.eu/eks/latest/userguide/automode.html

Eksctl User Guide Amazon EKS

This topic covers how to use eksctl to manage access entries. For general information about access
entries, see Grant IAM users access to Kubernetes with EKS access entries.

You can attach Kubernetes access policies defined by AWS, or assocoiate an IAM Identity with a
Kubernetes group.

For more information about the available pre-defined policies, see Associate access policies with
access entries.

If you need to define customer Kubernetes policies, associate the IAM Identity with a Kubernetes
group, and grant permissions to that group.

Cluster authentication mode

You can only use access entries if the authentication mode of the cluster permits it.

For more information, see Set Cluster Authentication Mode

Set authentication mode with a YAML file

eksctl has added a new accessConfig.authenticationMode field under ClusterConfig,
which can be set to one of the following three values:

• CONFIG_MAP - default in EKS API - only aws-auth ConfigMap will be used

• API - only access entries API will be used

• API_AND_CONFIG_MAP - default in eksctl - both aws-auth ConfigMap and access entries API
can be used

Set authentication mode in ClusterConfig YAML:

accessConfig:
 authenticationMode: <>

Update authentication mode with a command

If you want to use access entries on an already existing, non-eksctl created, cluster, where
CONFIG_MAP option is used, the user will need to first set authenticationMode to
API_AND_CONFIG_MAP. For that, eksctl has introduced a new command for updating the cluster
authentication mode, which works both with CLI flags e.g.

Cluster authentication mode 24

https://docs.aws.eu/eks/latest/userguide/access-entries.html
https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions
https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions
https://docs.aws.eu/eks/latest/userguide/grant-k8s-access.html#set-cam

Eksctl User Guide Amazon EKS

eksctl utils update-authentication-mode --cluster my-cluster --authentication-mode
 API_AND_CONFIG_MAP

Access Entry Resources

Access entries have a type, such as STANDARD or EC2_LINUX. The type depends on how you are
using the access entry.

• The standard type is for granting Kubernetes permissions to IAM Users and IAM Roles.

• For example, you can view Kubernetes resources in the AWS console by attaching an access
policy to the Role or User you use to access the console.

• The EC2_LINUX and EC2_WINDOWS types are for granting Kubernetes permissions to EC2
instances. Instances use these permissions to join the cluster.

For more information about the types of access entries, see Create access entries

IAM Entities

You can use access entries to grant Kubernetes permissions to IAM Identities such as IAM Users and
IAM Roles.

Use the accessConfig.accessEntries field to associate the ARN of an IAM resource with a
Access Entries EKS API. For example:

accessConfig:
 authenticationMode: API_AND_CONFIG_MAP
 accessEntries:
 - principalARN: arn:aws:iam::111122223333:user/my-user-name
 type: STANDARD
 kubernetesGroups: # optional Kubernetes groups
 - group1 # groups can used to give permissions via RBAC
 - group2

 - principalARN: arn:aws:iam::111122223333:role/role-name-1
 accessPolicies: # optional access polices
 - policyARN: arn:aws:eks::aws:cluster-access-policy/AmazonEKSViewPolicy
 accessScope:
 type: namespace
 namespaces:
 - default

Access Entry Resources 25

https://docs.aws.eu/eks/latest/userguide/creating-access-entries.html
https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions

Eksctl User Guide Amazon EKS

 - my-namespace
 - dev-*

 - principalARN: arn:aws:iam::111122223333:role/admin-role
 accessPolicies: # optional access polices
 - policyARN: arn:aws:eks::aws:cluster-access-policy/AmazonEKSClusterAdminPolicy
 accessScope:
 type: cluster

 - principalARN: arn:aws:iam::111122223333:role/role-name-2
 type: EC2_LINUX

In addition to associating EKS policies, one can also specify the Kubernetes groups to which an IAM
entity belongs, thus granting permissions via RBAC.

Managed nodegroups and Fargate

The integration with access entries for these resources will be achieved behind the scenes, by the
EKS API. Newly created managed node groups and Fargate pods will create API access entries,
rather than using pre-loaded RBAC resources. Existing node groups and Fargate pods will not be
changed, and continue to rely on the entries in the aws-auth config map.

Self-managed nodegroups

Each access entry has a type. For authorizing self-managed nodegroups, eksctl will create a
unique access entry for each nodegroup with the principal ARN set to the node role ARN and type
set to either EC2_LINUX or EC2_WINDOWS depending on nodegroup amiFamily.

When creating your own access entries, you can also specify EC2_LINUX (for an IAM role used with
Linux or Bottlerocket self-managed nodes), EC2_WINDOWS (for an IAM roles used with Windows
self-managed nodes), FARGATE_LINUX (for an IAM roles used with AWS Fargate (Fargate)), or
STANDARD as a type. If you don’t specify a type, the default type is set to STANDARD.

Note

When deleting a nodegroup created with a pre-existing instanceRoleARN, it is the user’s
responsibility to delete the corresponding access entry when no more nodegroups are
associated with it. This is because eksctl does not attempt to find out if an access entry is
still in use by non-eksctl created self-managed nodegroups as it is a complicated process.

Access Entry Resources 26

Eksctl User Guide Amazon EKS

Create access entry

This can be done in two different ways, either during cluster creation, specifying the desired access
entries as part of the config file and running:

eksctl create cluster -f config.yaml

OR post cluster creation, by running:

eksctl create accessentry -f config.yaml

For an example config file for creating access entries, see 40-access-entries.yaml in the eksctl
GitHub repo.

Get access entry

The user can retieve all access entries associated with a certain cluster by running one of the
following:

eksctl get accessentry -f config.yaml

OR

eksctl get accessentry --cluster my-cluster

Alternatively, to retrieve only the access entry corresponding to a certain IAM entity one shall use
the --principal-arn flag. e.g.

eksctl get accessentry --cluster my-cluster --principal-arn
 arn:aws:iam::111122223333:user/admin

Delete access entry

To delete a single access entry at a time use:

eksctl delete accessentry --cluster my-cluster --principal-arn
 arn:aws:iam::111122223333:user/admin

Create access entry 27

https://github.com/eksctl-io/eksctl/blob/main/examples/40-access-entries.yaml

Eksctl User Guide Amazon EKS

To delete multiple access entries, use the --config-file flag and specify all the
principalARN’s corresponding with the access entries, under the top-level accessEntry field,
e.g.

...
accessEntry:
 - principalARN: arn:aws:iam::111122223333:user/my-user-name
 - principalARN: arn:aws:iam::111122223333:role/role-name-1
 - principalARN: arn:aws:iam::111122223333:role/admin-role

eksctl delete accessentry -f config.yaml

Migrate from aws-auth ConfigMap

The user can migrate their existing IAM identities from aws-auth configmap to access entries by
running the following:

eksctl utils migrate-to-access-entry --cluster my-cluster --target-authentication-mode
 <API or API_AND_CONFIG_MAP>

When --target-authentication-mode flag is set to API, authentication mode is switched
to API mode (skipped if already in API mode), IAM identity mappings will be migrated to access
entries, and aws-auth configmap is deleted from the cluster.

When --target-authentication-mode flag is set to API_AND_CONFIG_MAP, authentication
mode is switched to API_AND_CONFIG_MAP mode (skipped if already in API_AND_CONFIG_MAP
mode), IAM identity mappings will be migrated to access entries, but aws-auth configmap is
preserved.

Note

When --target-authentication-mode flag is set to API, this command will not
update authentication mode to API mode if aws-auth configmap has one of the below
constraints.

• There is an Account level identity mapping.

Migrate from aws-auth ConfigMap 28

Eksctl User Guide Amazon EKS

• One or more Roles/Users are mapped to the kubernetes group(s) which begin with prefix
system: (except for EKS specific groups i.e. system:masters, system:bootstrappers,
system:nodes etc).

• One or more IAM identity mapping(s) are for a [Service Linked Role](link:IAM/latest/UserGuide/
using-service-linked-roles.html).

Disable cluster creator admin permissions

eksctl has added a new field
accessConfig.bootstrapClusterCreatorAdminPermissions: boolean that, when set to
false, disables granting cluster-admin permissions to the IAM identity creating the cluster. i.e.

add the option to the config file:

accessConfig:
 bootstrapClusterCreatorAdminPermissions: false

and run:

eksctl create cluster -f config.yaml

Non eksctl-created clusters

You can run eksctl commands against clusters which were not created by eksctl.

Note

Eksctl can only support unowned clusters with names which are compatible with AWS
CloudFormation. Any cluster names which do not match this will fail CloudFormation API
validation check.

Supported commands

The following commands can be used against clusters created by any means other than eksctl.
The commands, flags and config file options can be used in exactly the same way.

Disable cluster creator admin permissions 29

Eksctl User Guide Amazon EKS

If we have missed some functionality, please let us know.

✓ Create:

✓ eksctl create nodegroup (see note below)

✓ eksctl create fargateprofile

✓ eksctl create iamserviceaccount

✓ eksctl create iamidentitymapping

✓ Get:

✓ eksctl get clusters/cluster

✓ eksctl get fargateprofile

✓ eksctl get nodegroup

✓ eksctl get labels

✓ Delete:

✓ eksctl delete cluster

✓ eksctl delete nodegroup

✓ eksctl delete fargateprofile

✓ eksctl delete iamserviceaccount

✓ eksctl delete iamidentitymapping

✓ Upgrade:

✓ eksctl upgrade cluster

✓ eksctl upgrade nodegroup

✓ Set/Unset:

✓ eksctl set labels

✓ eksctl unset labels

✓ Scale:

✓ eksctl scale nodegroup

✓ Drain:

✓ eksctl drain nodegroup

✓ Enable:

✓ eksctl enable profile

✓ eksctl enable repo
Supported commands 30

https://github.com/eksctl-io/eksctl/issues

Eksctl User Guide Amazon EKS

✓ Utils:

✓ eksctl utils associate-iam-oidc-provider

✓ eksctl utils describe-stacks

✓ eksctl utils install-vpc-controllers

✓ eksctl utils nodegroup-health

✓ eksctl utils set-public-access-cidrs

✓ eksctl utils update-cluster-endpoints

✓ eksctl utils update-cluster-logging

✓ eksctl utils write-kubeconfig

✓ eksctl utils update-coredns

✓ eksctl utils update-aws-node

✓ eksctl utils update-kube-proxy

Creating nodegroups

eksctl create nodegroup is the only command which requires specific input from the user.

Since users can create their clusters with any networking configuration they like, for the time-
being, eksctl will not attempt to retrieve or guess these values. This may change in the future as
we learn more about how people are using this command on non eksctl-created clusters.

This means that in order to create nodegroups or managed nodegroups on a cluster which was not
created by eksctl, a config file containing VPC details must be provided. At a minimum:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: non-eksctl-created-cluster
 region: us-west-2

vpc:
 id: "vpc-12345"
 securityGroup: "sg-12345" # this is the ControlPlaneSecurityGroup
 subnets:
 private:

Creating nodegroups 31

Eksctl User Guide Amazon EKS

 private1:
 id: "subnet-12345"
 private2:
 id: "subnet-67890"
 public:
 public1:
 id: "subnet-12345"
 public2:
 id: "subnet-67890"

...

Fore more information on VPC configuration options, see Networking.

Registering non-EKS clusters with EKS Connector

You can use the EKS Connector to view clusters outside of AWS in the EKS Console. This process
requires registering the cluster with EKS and running the EKS Connector agent on the external
Kubernetes cluster.

eksctl simplifies registering non-EKS clusters by creating the required AWS resources and
generating Kubernetes manifests for EKS Connector to apply to the external cluster.

Register Cluster

To register or connect a non-EKS Kubernetes cluster, run

eksctl register cluster --name <name> --provider <provider>
2021-08-19 13:47:26 [#] creating IAM role "eksctl-20210819194112186040"
2021-08-19 13:47:26 [#] registered cluster "<name>" successfully
2021-08-19 13:47:26 [#] wrote file eks-connector.yaml to <current directory>
2021-08-19 13:47:26 [#] wrote file eks-connector-clusterrole.yaml to <current
 directory>
2021-08-19 13:47:26 [#] wrote file eks-connector-console-dashboard-full-access-
group.yaml to <current directory>
2021-08-19 13:47:26 [!] note: "eks-connector-clusterrole.yaml" and "eks-connector-
console-dashboard-full-access-group.yaml" give full EKS Console access to IAM identity
 "<aws-arn>", edit if required; read https://eksctl.io/usage/eks-connector for more
 info
2021-08-19 13:47:26 [#] run `kubectl apply -f eks-connector.yaml,eks-connector-
clusterrole.yaml,eks-connector-console-dashboard-full-access-group.yaml` before
 <expiry> to connect the cluster

EKS Connector 32

https://docs.aws.eu/eks/latest/userguide/eks-connector.html

Eksctl User Guide Amazon EKS

This command will register the cluster and write three files that contain the Kubernetes manifests
for EKS Connector that must be applied to the external cluster before the registration expires.

Note

eks-connector-clusterrole.yaml and eks-connector-console-dashboard-
full-access-clusterrole.yaml give get and list permissions for Kubernetes
resources in all namespaces to the calling IAM identity and must be edited accordingly
if required before applying them to the cluster. To configure more restricted access, see
Granting access to a user to view a cluster.

To provide an existing IAM role to use for EKS Connector, pass it via --role-arn as in:

eksctl register cluster --name <name> --provider <provider> --role-arn=<role-arn>

If the cluster already exists, eksctl will return an error.

Deregister cluster

To deregister or disconnect a registered cluster, run

eksctl deregister cluster --name <name>
2021-08-19 16:04:09 [#] unregistered cluster "<name>" successfully
2021-08-19 16:04:09 [#] run `kubectl delete namespace eks-connector` and `kubectl
 delete -f eks-connector-binding.yaml` on your cluster to remove EKS Connector
 resources

This command will deregister the external cluster and remove its associated AWS resources, but
you are required to remove the EKS connector Kubernetes resources from the cluster.

Further information

• EKS Connector

Customizing kubelet configuration

System resources can be reserved through the configuration of the kubelet. This is recommended,
because in the case of resource starvation the kubelet might not be able to evict pods

Deregister cluster 33

https://docs.aws.eu/eks/latest/userguide/connector-grant-access.html
https://docs.aws.eu/eks/latest/userguide/eks-connector.html

Eksctl User Guide Amazon EKS

and eventually make the node become NotReady. To do this, config files can include the
kubeletExtraConfig field which accepts a free form yaml that will be embedded into the
kubelet.yaml.

Some fields in the kubelet.yaml are set by eksctl and therefore are not overwritable, such as the
address, clusterDomain, authentication, authorization, or serverTLSBootstrap.

The following example config file creates a nodegroup that reserves 300m vCPU, 300Mi of
memory and 1Gi of ephemeral-storage for the kubelet; 300m vCPU, 300Mi of memory and 1Giof
ephemeral storage for OS system daemons; and kicks in eviction of pods when there is less than
200Mi of memory available or less than 10% of the root filesystem.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: dev-cluster-1
 region: eu-north-1

nodeGroups:
 - name: ng-1
 instanceType: m5a.xlarge
 desiredCapacity: 1
 kubeletExtraConfig:
 kubeReserved:
 cpu: "300m"
 memory: "300Mi"
 ephemeral-storage: "1Gi"
 kubeReservedCgroup: "/kube-reserved"
 systemReserved:
 cpu: "300m"
 memory: "300Mi"
 ephemeral-storage: "1Gi"
 evictionHard:
 memory.available: "200Mi"
 nodefs.available: "10%"
 featureGates:
 RotateKubeletServerCertificate: true # has to be enabled, otherwise it will
 be disabled

In this example, given instances of type m5a.xlarge which have 4 vCPUs and 16GiB of memory,
the Allocatable amount of CPUs would be 3.4 and 15.4 GiB of memory. It is important to

Configure kubelet 34

Eksctl User Guide Amazon EKS

know that the values specified in the config file for the the fields in kubeletExtraconfig
will completely overwrite the default values specified by eksctl. However, omitting one or more
kubeReserved parameters will cause the missing parameters to be defaulted to sane values
based on the aws instance type being used.

kubeReserved calculation

While it is generally recommended to configure a mixed instance NodeGroup
to use instances with the same CPU and RAM configuration; that’s not a strict
requirement. Therefore the kubeReserved calculation uses the smallest instance in the
InstanceDistribution.InstanceTypes field. This way NodeGroups with disparate instance
types will not reserve too many resources on the smallest instance. However, this could lead to a
reservation that is too small for the largest instance type.

Warning

By default eksctl sets featureGates.RotateKubeletServerCertificate=true,
but when custom featureGates are provided, it will be unset. You should always include
featureGates.RotateKubeletServerCertificate=true, unless you have to disable
it.

CloudWatch logging

This topic explains how to configure Amazon CloudWatch logging for your EKS cluster’s control
plane components. CloudWatch logging provides visibility into your cluster’s control plane
operations, which is essential for troubleshooting issues, auditing cluster activities, and monitoring
the health of your Kubernetes components.

Enabling CloudWatch logging

CloudWatch logging for EKS control plane is not enabled by default due to data ingestion and
storage costs.

To enable control plane logging when cluster is created, you will need to define
cloudWatch.clusterLogging.enableTypes setting in your ClusterConfig (see below for
examples).

kubeReserved calculation 35

https://docs.aws.eu/eks/latest/userguide/control-plane-logs.html

Eksctl User Guide Amazon EKS

So if you have a config file with correct cloudWatch.clusterLogging.enableTypes setting,
you can create a cluster with eksctl create cluster --config-file=<path>.

If you have created a cluster already, you can use eksctl utils update-cluster-logging.

Note

this command runs in plan mode by default, you will need to specify --approve flag to
apply the changes to your cluster.

If you are using a config file, run:

eksctl utils update-cluster-logging --config-file=<path>

Alternatively, you can use CLI flags.

To enable all types of logs, run:

eksctl utils update-cluster-logging --enable-types all

To enable audit logs, run:

eksctl utils update-cluster-logging --enable-types audit

To enable all but controllerManager logs, run:

eksctl utils update-cluster-logging --enable-types=all --disable-
types=controllerManager

If the api and scheduler log types were already enabled, to disable scheduler and enable
controllerManager at the same time, run:

eksctl utils update-cluster-logging --enable-types=controllerManager --disable-
types=scheduler

This will leave api and controllerManager as the only log types enabled.

Enabling CloudWatch logging 36

Eksctl User Guide Amazon EKS

To disable all types of logs, run:

eksctl utils update-cluster-logging --disable-types all

ClusterConfig Examples

In an EKS cluster, the enableTypes field under clusterLogging can take a list of possible values
to enable the different types of logs for the control plane components.

The following are the possible values:

• api: Enables the Kubernetes API server logs.

• audit: Enables the Kubernetes audit logs.

• authenticator: Enables the authenticator logs.

• controllerManager: Enables the Kubernetes controller manager logs.

• scheduler: Enables the Kubernetes scheduler logs.

To learn more, see EKS documentation.

Disable all logs

To disable all types, use [] or remove the cloudWatch section completely.

Enable all logs

You can enable all types with "*" or "all". For example:

cloudWatch:
 clusterLogging:
 enableTypes: ["*"]

Enable one or more logs

You can enable a subset of types by listing the types you want to enable. For example:

cloudWatch:
 clusterLogging:

ClusterConfig Examples 37

https://docs.aws.eu/eks/latest/userguide/control-plane-logs.html

Eksctl User Guide Amazon EKS

 enableTypes:
 - "audit"
 - "authenticator"

Log retention period

By default, logs are stored in CloudWatch Logs, indefinitely. You can specify the number of days for
which the control plane logs should be retained in CloudWatch Logs. The following example retains
logs for 7 days:

cloudWatch:
 clusterLogging:
 logRetentionInDays: 7

Complete example

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-11
 region: eu-west-2

nodeGroups:
 - name: ng-1
 instanceType: m5.large
 desiredCapacity: 1

cloudWatch:
 clusterLogging:
 enableTypes: ["audit", "authenticator"]
 logRetentionInDays: 7

EKS Fully-Private Cluster

eksctl supports creation of fully-private clusters that have no outbound internet access and have
only private subnets. VPC endpoints are used to enable private access to AWS services.

This guide describes how to create a private cluster without outbound internet access.

EKS Fully-Private Cluster 38

Eksctl User Guide Amazon EKS

Creating a fully-private cluster

The only required field to create a fully-private cluster is privateCluster.enabled:

privateCluster:
 enabled: true

Post cluster creation, eksctl commands that need access to the Kubernetes API server will have
to be run from within the cluster’s VPC, a peered VPC or using some other means like AWS Direct
Connect. eksctl commands that need access to the EKS APIs will not work if they’re being run from
within the cluster’s VPC. To fix this, create an interface endpoint for Amazon EKS to privately access
the Amazon Elastic Kubernetes Service (Amazon EKS) management APIs from your Amazon Virtual
Private Cloud (VPC). In a future release, eksctl will add support to create this endpoint so it does
not need to be manually created. Commands that need access to the OpenID Connect provider URL
will need to be run from outside of your cluster’s VPC once you’ve enabled AWS PrivateLink for
Amazon EKS.

Creating managed nodegroups will continue to work, and creating self-managed nodegroups will
work as it needs access to the API server via the EKS interface endpoint if the command is run from
within the cluster’s VPC, a peered VPC or using some other means like AWS Direct Connect.

Note

VPC endpoints are charged by the hour and based on usage. More details about pricing can
be found at AWS PrivateLink pricing

Warning

Fully-private clusters are not supported in eu-south-1.

Configuring private access to additional AWS services

To enable worker nodes to access AWS services privately, eksctl creates VPC endpoints for the
following services:

• Interface endpoints for ECR (both ecr.api and ecr.dkr) to pull container images (AWS CNI
plugin etc)

Creating a fully-private cluster 39

https://docs.aws.eu/eks/latest/userguide/vpc-interface-endpoints.html
https://aws.amazon.com/about-aws/whats-new/2022/12/amazon-eks-supports-aws-privatelink/
https://aws.eu/privatelink/pricing/

Eksctl User Guide Amazon EKS

• A gateway endpoint for S3 to pull the actual image layers

• An interface endpoint for EC2 required by the aws-cloud-provider integration

• An interface endpoint for STS to support Fargate and IAM Roles for Services Accounts (IRSA)

• An interface endpoint for CloudWatch logging (logs) if CloudWatch logging is enabled

These VPC endpoints are essential for a functional private cluster, and as such, eksctl does not
support configuring or disabling them. However, a cluster might need private access to other AWS
services (e.g., Autoscaling required by the Cluster Autoscaler). These services can be specified in
privateCluster.additionalEndpointServices, which instructs eksctl to create a VPC
endpoint for each of them.

For example, to allow private access to Autoscaling and CloudWatch logging:

privateCluster:
 enabled: true
 additionalEndpointServices:
 # For Cluster Autoscaler
 - "autoscaling"
 # CloudWatch logging
 - "logs"

The endpoints supported in additionalEndpointServices are autoscaling,
cloudformation and logs.

Skipping endpoint creations

If a VPC has already been created with the necessary AWS endpoints set up and linked to the
subnets described in the EKS documentation, eksctl can skip creating them by providing the
option skipEndpointCreation like this:

privateCluster:
 enabled: true
 skipEndpointCreation: true

This setting cannot be used together with additionalEndpointServices. It will skip all
endpoint creation. Also, this setting is only recommended if the endpoint <# subnet topology
is correctly set up. If subnet ids are correct, vpce routing is set up with prefix addresses, all the
necessary EKS endpoints are created and linked to the provided VPC. eksctl will not alter any of
these resources.

Configuring private access to additional AWS services 40

Eksctl User Guide Amazon EKS

Nodegroups

Only private nodegroups (both managed and self-managed) are supported in a fully-private cluster
because the cluster’s VPC is created without any public subnets. The privateNetworking field
(nodeGroup[].privateNetworking and managedNodeGroup[) must be explicitly set. It is an
error to leave privateNetworking unset in a fully-private cluster.

nodeGroups:
- name: ng1
 instanceType: m5.large
 desiredCapacity: 2
 # privateNetworking must be explicitly set for a fully-private cluster
 # Rather than defaulting this field to `true`,
 # we require users to explicitly set it to make the behaviour
 # explicit and avoid confusion.
 privateNetworking: true

managedNodeGroups:
- name: m1
 instanceType: m5.large
 desiredCapacity: 2
 privateNetworking: true

Cluster Endpoint Access

A fully-private cluster does not support modifying clusterEndpointAccess during
cluster creation. It is an error to set either clusterEndpoints.publicAccess or
clusterEndpoints.privateAccess, as a fully-private cluster can have private access only, and
allowing modification of these fields can break the cluster.

User-supplied VPC and subnets

eksctl supports creation of fully-private clusters using a pre-existing VPC and subnets. Only private
subnets can be specified and it’s an error to specify subnets under vpc.subnets.public.

eksctl creates VPC endpoints in the supplied VPC and modifies route tables for the supplied
subnets. Each subnet should have an explicit route table associated with it because eksctl does not
modify the main route table.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

Nodegroups 41

Eksctl User Guide Amazon EKS

metadata:
 name: private-cluster
 region: us-west-2

privateCluster:
 enabled: true
 additionalEndpointServices:
 - "autoscaling"

vpc:
 subnets:
 private:
 us-west-2b:
 id: subnet-0818beec303f8419b
 us-west-2c:
 id: subnet-0d42ef09490805e2a
 us-west-2d:
 id: subnet-0da7418077077c5f9

nodeGroups:
- name: ng1
 instanceType: m5.large
 desiredCapacity: 2
 # privateNetworking must be explicitly set for a fully-private cluster
 # Rather than defaulting this field to true for a fully-private cluster, we require
 users to explicitly set it
 # to make the behaviour explicit and avoid confusion.
 privateNetworking: true

managedNodeGroups:
- name: m1
 instanceType: m5.large
 desiredCapacity: 2
 privateNetworking: true

Managing a fully-private cluster

For all commands to work post cluster creation, eksctl will need private access to the EKS API
server endpoint, and outbound internet access (for EKS:DescribeCluster). Commands that do
not need access to the API server will be supported if eksctl has outbound internet access.

Managing a fully-private cluster 42

Eksctl User Guide Amazon EKS

Force-delete a fully-private cluster

Errors are likely to occur when deleting a fully-private cluster through eksctl since eksctl does not
automatically have access to all of the cluster’s resources. --force exists to solve this: it will force
delete the cluster and continue when errors occur.

Limitations

A limitation of the current implementation is that eksctl initially creates the cluster with both
public and private endpoint access enabled, and disables public endpoint access after all
operations have completed. This is required because eksctl needs access to the Kubernetes API
server to allow self-managed nodes to join the cluster and to support GitOps and Fargate. After
these operations have completed, eksctl switches the cluster endpoint access to private-only. This
additional update does mean that creation of a fully-private cluster will take longer than for a
standard cluster. In the future, eksctl may switch to a VPC-enabled Lambda function to perform
these API operations.

Outbound access via HTTP proxy servers

eksctl is able to talk to the AWS APIs via a configured HTTP(S) proxy server, however you will need
to ensure you set your proxy exclusion list correctly.

Generally, you will need to ensure that requests for the VPC endpoint for your cluster are not
routed via your proxies by setting an appropriate no_proxy environment variable including the
value .eks.amazonaws.com.

If your proxy server performs "SSL interception" and you are using IAM Roles for Service Accounts
(IRSA), you will need to ensure that you explicitly bypass SSL Man-in-the-Middle for the domain
oidc.<region>.amazonaws.com. Failure to do so will result in eksctl obtaining the incorrect
root certificate thumbprint for the OIDC provider, and the AWS VPC CNI plugin will fail to start due
to being unable to obtain IAM credentials, rendering your cluster inoperative.

Further information

• EKS Private Clusters

Force-delete a fully-private cluster 43

https://docs.aws.eu/eks/latest/userguide/private-clusters.html

Eksctl User Guide Amazon EKS

Addons

This topic describes how to manage Amazon EKS Add-Ons for your Amazon EKS clusters using
eksctl. EKS Add-Ons is a feature that lets you enable and manage Kubernetes operational software
through the EKS API, simplifying the process of installing, configuring, and updating cluster add-
ons.

Warning

eksctl now installs default addons (vpc-cni, coredns, kube-proxy) as EKS addons instead
of self-managed addons. This means you should use eksctl update addon instead of
eksctl utils update-* commands for clusters created with eksctl v0.184.0 and above.

You can create clusters without any default networking addons when you want to use alternative
CNI plugins like Cilium and Calico.

EKS Add-ons now support receiving IAM permissions via EKS Pod Identity Associations, allowing
them to connect with AWS services outside of the cluster

Creating addons

Eksctl provides more flexibility for managing cluster addons:

In your config file, you can specify the addons you want and (if required) the role or policies to
attach to them:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 name: example-cluster
 region: us-west-2

iam:
 withOIDC: true

addons:
- name: vpc-cni
 # all below properties are optional
 version: 1.7.5
 tags:

Addons 44

Eksctl User Guide Amazon EKS

 team: eks
 # you can specify at most one of:
 attachPolicyARNs:
 - arn:aws:iam::account:policy/AmazonEKS_CNI_Policy
 # or
 serviceAccountRoleARN: arn:aws:iam::account:role/AmazonEKSCNIAccess
 # or
 attachPolicy:
 Statement:
 - Effect: Allow
 Action:
 - ec2:AssignPrivateIpAddresses
 - ec2:AttachNetworkInterface
 - ec2:CreateNetworkInterface
 - ec2:DeleteNetworkInterface
 - ec2:DescribeInstances
 - ec2:DescribeTags
 - ec2:DescribeNetworkInterfaces
 - ec2:DescribeInstanceTypes
 - ec2:DetachNetworkInterface
 - ec2:ModifyNetworkInterfaceAttribute
 - ec2:UnassignPrivateIpAddresses
 Resource: '*'

You can specify at most one of attachPolicy, attachPolicyARNs and
serviceAccountRoleARN.

If none of these are specified, the addon will be created with a role that has all recommended
policies attached.

Note

In order to attach policies to addons your cluster must have OIDC enabled. If it’s not
enabled we ignore any policies attached.

You can then either have these addons created during the cluster creation process:

eksctl create cluster -f config.yaml

Or create the addons explicitly after cluster creation using the config file or CLI flags:

Creating addons 45

Eksctl User Guide Amazon EKS

eksctl create addon -f config.yaml

eksctl create addon --name vpc-cni --version 1.7.5 --service-account-role-arn <role-
arn>

eksctl create addon --name aws-ebs-csi-driver --namespace-config 'namespace=custom-
namespace'

Tip

Use the --namespace-config flag to deploy addons to a custom namespace instead of
the default namespace.

During addon creation, if a self-managed version of the addon already exists on the cluster, you
can choose how potential configMap conflicts shall be resolved by setting resolveConflicts
option via the config file, e.g.

addons:
- name: vpc-cni
 attachPolicyARNs:
 - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
 resolveConflicts: overwrite

For addon create, the resolveConflicts field supports three distinct values:

• none - EKS doesn’t change the value. The create might fail.

• overwrite - EKS overwrites any config changes back to EKS default values.

• preserve - EKS doesn’t change the value. The create might fail. (Similarly to none, but different
from preserve in updating addons).

Listing enabled addons

You can see what addons are enabled in your cluster by running:

eksctl get addons --cluster <cluster-name>

Listing enabled addons 46

Eksctl User Guide Amazon EKS

or

eksctl get addons -f config.yaml

Setting the addon’s version

Setting the version of the addon is optional. If the version field is left empty eksctl will resolve
the default version for the addon. More information about which version is the default version for
specific addons can be found in the AWS documentation about EKS. Note that the default version
might not necessarily be the latest version available.

The addon version can be set to latest. Alternatively, the version can be set with the EKS build
tag specified, such as v1.7.5-eksbuild.1 or v1.7.5-eksbuild.2. It can also be set to the
release version of the addon, such as v1.7.5 or 1.7.5, and the eksbuild suffix tag will be
discovered and set for you.

See the section below on how to discover available addons and their versions.

Discovering addons

You can discover what addons are available to install on your cluster by running:

eksctl utils describe-addon-versions --cluster <cluster-name>

This will discover your cluster’s kubernetes version and filter on that. Alternatively if you want to
see what addons are available for a particular kubernetes version you can run:

eksctl utils describe-addon-versions --kubernetes-version <version>

You can also discover addons by filtering on their type, owner and/or publisher. For e.g., to see
addons for a particular owner and type you can run:

eksctl utils describe-addon-versions --kubernetes-version 1.22 --types "infra-
management, policy-management" --owners "aws-marketplace"

The types, owners and publishers flags are optional and can be specified together or
individually to filter the results.

Setting the addon’s version 47

Eksctl User Guide Amazon EKS

Discovering the configuration schema for addons

After discovering the addon and version, you can view the customization options by fetching its
JSON configuration schema.

eksctl utils describe-addon-configuration --name vpc-cni --version v1.12.0-eksbuild.1

This returns a JSON schema of the various options available for this addon.

Working with configuration values

ConfigurationValues can be provided in the configuration file during the creation or update of
addons. Only JSON and YAML formats are supported.

For eg.,

addons:
- name: coredns
 configurationValues: |-
 replicaCount: 2

addons:
- name: coredns
 version: latest
 configurationValues: "{\"replicaCount\":3}"
 resolveConflicts: overwrite

Note

Bear in mind that when addon configuration values are being modified, configuration
conflicts will arise.

Thus, we need to specify how to deal with those by setting the `resolveConflicts` field
 accordingly.
As in this scenario we want to modify these values, we'd set `resolveConflicts:
 overwrite`.

Additionally, the get command will now also retrieve ConfigurationValues for the addon. e.g.

Discovering the configuration schema for addons 48

Eksctl User Guide Amazon EKS

eksctl get addon --cluster my-cluster --output yaml

- ConfigurationValues: '{"replicaCount":3}'
 IAMRole: ""
 Issues: null
 Name: coredns
 NewerVersion: ""
 Status: ACTIVE
 Version: v1.8.7-eksbuild.3

Using custom namespace

A custom namespace can be provided in the configuration file during the creation of addons. A
namespace can’t be updated once an addon is created.

Using config file

addons:
 - name: aws-ebs-csi-driver
 version: latest
 namespaceConfig:
 namespace: custom-namespace

Using CLI flag

Alternatively, you can specify a custom namespace using the --namespace-config flag:

eksctl create addon --cluster my-cluster --name aws-ebs-csi-driver --namespace-config
 'namespace=custom-namespace'

The get command will also retrieve the namespace value for the addon

- ConfigurationValues: ""
 IAMRole: ""
 Issues: null
 Name: aws-ebs-csi-driver
 NamespaceConfig:
 namespace: custom-namespace
 NewerVersion: ""

Using custom namespace 49

Eksctl User Guide Amazon EKS

 PodIdentityAssociations: null
 Status: ACTIVE
 Version: v1.47.0-eksbuild.1

Updating addons

You can update your addons to newer versions and change what policies are attached by running:

eksctl update addon -f config.yaml

eksctl update addon --name vpc-cni --version 1.8.0 --service-account-role-arn <new-
role>

Note

The namespace configuration cannot be updated once an addon is created. The --
namespace-config flag is only available during addon creation.

Similarly to addon creation, When updating an addon, you have full control over the config
changes that you may have previously applied on that add-on’s configMap. Specifically, you can
preserve, or overwrite them. This optional functionality is available via the same config file field
resolveConflicts. e.g.,

addons:
- name: vpc-cni
 attachPolicyARNs:
 - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
 resolveConflicts: preserve

For addon update, the resolveConflicts field accepts three distinct values:

• none - EKS doesn’t change the value. The update might fail.

• overwrite - EKS overwrites any config changes back to EKS default values.

• preserve - EKS preserves the value. If you choose this option, we recommend that you test
any field and value changes on a non-production cluster before updating the add-on on your
production cluster.

Updating addons 50

Eksctl User Guide Amazon EKS

Deleting addons

You can delete an addon by running:

eksctl delete addon --cluster <cluster-name> --name <addon-name>

This will delete the addon and any IAM roles associated to it.

When you delete your cluster all IAM roles associated to addons are also deleted.

Cluster creation flexibility for default networking addons

When a cluster is created, EKS automatically installs VPC CNI, CoreDNS and kube-proxy as self-
managed addons. To disable this behavior in order to use other CNI plugins like Cilium and Calico,
eksctl now supports creating a cluster without any default networking addons. To create such a
cluster, set addonsConfig.disableDefaultAddons, as in:

addonsConfig:
 disableDefaultAddons: true

eksctl create cluster -f cluster.yaml

To create a cluster with only CoreDNS and kube-proxy and not VPC CNI, specify the addons
explicitly in addons and set addonsConfig.disableDefaultAddons, as in:

addonsConfig:
 disableDefaultAddons: true
addons:
 - name: kube-proxy
 - name: coredns

eksctl create cluster -f cluster.yaml

As part of this change, eksctl now installs default addons as EKS addons instead of self-managed
addons during cluster creation if addonsConfig.disableDefaultAddons is not explicitly set to
true. As such, eksctl utils update-* commands can no longer be used for updating addons
for clusters created with eksctl v0.184.0 and above:

• eksctl utils update-aws-node

Deleting addons 51

Eksctl User Guide Amazon EKS

• eksctl utils update-coredns

• eksctl utils update-kube-proxy

Instead, eksctl update addon should be used now.

To learn more, see Amazon EKS introduces cluster creation flexibility for networking add-ons.

Enabling Access for Amazon EMR

In order to allow EMR to perform operations on the Kubernetes API, its SLR needs to be granted
the required RBAC permissions. eksctl provides a command that creates the required RBAC
resources for EMR, and updates the aws-auth ConfigMap to bind the role with the SLR for EMR.

eksctl create iamidentitymapping --cluster dev --service-name emr-containers --
namespace default

EKS Fargate Support

AWS Fargate is a managed compute engine for Amazon ECS that can run containers. In Fargate you
don’t need to manage servers or clusters.

Amazon EKS can now launch pods onto AWS Fargate. This removes the need to worry about how
you provision or manage infrastructure for pods and makes it easier to build and run performant,
highly-available Kubernetes applications on AWS.

Creating a cluster with Fargate support

You can add a cluster with Fargate support with:

eksctl create cluster --fargate
[#] eksctl version 0.11.0
[#] using region ap-northeast-1
[#] setting availability zones to [ap-northeast-1a ap-northeast-1d ap-northeast-1c]
[#] subnets for ap-northeast-1a - public:192.168.0.0/19 private:192.168.96.0/19
[#] subnets for ap-northeast-1d - public:192.168.32.0/19 private:192.168.128.0/19
[#] subnets for ap-northeast-1c - public:192.168.64.0/19 private:192.168.160.0/19
[#] nodegroup "ng-dba9d731" will use "ami-02e124a380df41614" [AmazonLinux2/1.14]
[#] using Kubernetes version 1.14

Amazon EMR 52

https://aws.amazon.com/about-aws/whats-new/2024/06/amazon-eks-cluster-creation-flexibility-networking-add-ons/
https://aws.amazon.com/emr/
https://aws.amazon.com/fargate/
https://docs.aws.eu/eks/latest/userguide/fargate.html

Eksctl User Guide Amazon EKS

[#] creating EKS cluster "ridiculous-painting-1574859263" in "ap-northeast-1" region
[#] will create 2 separate CloudFormation stacks for cluster itself and the initial
 nodegroup
[#] if you encounter any issues, check CloudFormation console or try 'eksctl utils
 describe-stacks --region=ap-northeast-1 --cluster=ridiculous-painting-1574859263'
[#] CloudWatch logging will not be enabled for cluster "ridiculous-
painting-1574859263" in "ap-northeast-1"
[#] you can enable it with 'eksctl utils update-cluster-logging --enable-
types={SPECIFY-YOUR-LOG-TYPES-HERE (e.g. all)} --region=ap-northeast-1 --
cluster=ridiculous-painting-1574859263'
[#] Kubernetes API endpoint access will use default of {publicAccess=true,
 privateAccess=false} for cluster "ridiculous-painting-1574859263" in "ap-northeast-1"
[#] 2 sequential tasks: { create cluster control plane "ridiculous-
painting-1574859263", create nodegroup "ng-dba9d731" }
[#] building cluster stack "eksctl-ridiculous-painting-1574859263-cluster"
[#] deploying stack "eksctl-ridiculous-painting-1574859263-cluster"
[#] building nodegroup stack "eksctl-ridiculous-painting-1574859263-nodegroup-ng-
dba9d731"
[#] --nodes-min=2 was set automatically for nodegroup ng-dba9d731
[#] --nodes-max=2 was set automatically for nodegroup ng-dba9d731
[#] deploying stack "eksctl-ridiculous-painting-1574859263-nodegroup-ng-dba9d731"
[#] all EKS cluster resources for "ridiculous-painting-1574859263" have been created
[#] saved kubeconfig as "/Users/marc/.kube/config"
[#] adding identity "arn:aws:iam::123456789012:role/eksctl-ridiculous-painting-157485-
NodeInstanceRole-104DXUJOFDPO5" to auth ConfigMap
[#] nodegroup "ng-dba9d731" has 0 node(s)
[#] waiting for at least 2 node(s) to become ready in "ng-dba9d731"
[#] nodegroup "ng-dba9d731" has 2 node(s)
[#] node "ip-192-168-27-156.ap-northeast-1.compute.internal" is ready
[#] node "ip-192-168-95-177.ap-northeast-1.compute.internal" is ready
[#] creating Fargate profile "default" on EKS cluster "ridiculous-painting-1574859263"
[#] created Fargate profile "default" on EKS cluster "ridiculous-painting-1574859263"
[#] kubectl command should work with "/Users/marc/.kube/config", try 'kubectl get
 nodes'
[#] EKS cluster "ridiculous-painting-1574859263" in "ap-northeast-1" region is ready

This command will have created a cluster and a Fargate profile. This profile contains certain
information needed by AWS to instantiate pods in Fargate. These are:

• pod execution role to define the permissions required to run the pod and the networking
location (subnet) to run the pod. This allows the same networking and security permissions to
be applied to multiple Fargate pods and makes it easier to migrate existing pods on a cluster to
Fargate.

Creating a cluster with Fargate support 53

Eksctl User Guide Amazon EKS

• Selector to define which pods should run on Fargate. This is composed by a namespace and
labels.

When the profile is not specified but support for Fargate is enabled with --fargate a default
Fargate profile is created. This profile targets the default and the kube-system namespaces so
pods in those namespaces will run on Fargate.

The Fargate profile that was created can be checked with the following command:

eksctl get fargateprofile --cluster ridiculous-painting-1574859263 -o yaml
- name: fp-default
 podExecutionRoleARN: arn:aws:iam::123456789012:role/eksctl-ridiculous-
painting-1574859263-ServiceRole-EIFQOH0S1GE7
 selectors:
 - namespace: default
 - namespace: kube-system
 subnets:
 - subnet-0b3a5522f3b48a742
 - subnet-0c35f1497067363f3
 - subnet-0a29aa00b25082021

To learn more about selectors see Designing Fargate profiles.

Creating a cluster with Fargate support using a config file

The following config file declares an EKS cluster with both a nodegroup composed of one EC2
m5.large instance and two Fargate profiles. All pods defined in the default and kube-
system namespaces will run on Fargate. All pods in the dev namespace that also have the label
dev=passed will also run on Fargate. Any other pods will be scheduled on the node in ng-1.

An example of ClusterConfig with a normal nodegroup and a Fargate profile.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: fargate-cluster
 region: ap-northeast-1

nodeGroups:
 - name: ng-1

Creating a cluster with Fargate support using a config file 54

Eksctl User Guide Amazon EKS

 instanceType: m5.large
 desiredCapacity: 1

fargateProfiles:
 - name: fp-default
 selectors:
 # All workloads in the "default" Kubernetes namespace will be
 # scheduled onto Fargate:
 - namespace: default
 # All workloads in the "kube-system" Kubernetes namespace will be
 # scheduled onto Fargate:
 - namespace: kube-system
 - name: fp-dev
 selectors:
 # All workloads in the "dev" Kubernetes namespace matching the following
 # label selectors will be scheduled onto Fargate:
 - namespace: dev
 labels:
 env: dev
 checks: passed

eksctl create cluster -f cluster-fargate.yaml
[#] eksctl version 0.11.0
[#] using region ap-northeast-1
[#] setting availability zones to [ap-northeast-1c ap-northeast-1a ap-northeast-1d]
[#] subnets for ap-northeast-1c - public:192.168.0.0/19 private:192.168.96.0/19
[#] subnets for ap-northeast-1a - public:192.168.32.0/19 private:192.168.128.0/19
[#] subnets for ap-northeast-1d - public:192.168.64.0/19 private:192.168.160.0/19
[#] nodegroup "ng-1" will use "ami-02e124a380df41614" [AmazonLinux2/1.14]
[#] using Kubernetes version 1.14
[#] creating EKS cluster "fargate-cluster" in "ap-northeast-1" region with Fargate
 profile and un-managed nodes
[#] 1 nodegroup (ng-1) was included (based on the include/exclude rules)
[#] will create a CloudFormation stack for cluster itself and 1 nodegroup stack(s)
[#] will create a CloudFormation stack for cluster itself and 0 managed nodegroup
 stack(s)
[#] if you encounter any issues, check CloudFormation console or try 'eksctl utils
 describe-stacks --region=ap-northeast-1 --cluster=fargate-cluster'
[#] CloudWatch logging will not be enabled for cluster "fargate-cluster" in "ap-
northeast-1"
[#] you can enable it with 'eksctl utils update-cluster-logging --enable-
types={SPECIFY-YOUR-LOG-TYPES-HERE (e.g. all)} --region=ap-northeast-1 --
cluster=fargate-cluster'

Creating a cluster with Fargate support using a config file 55

Eksctl User Guide Amazon EKS

[#] Kubernetes API endpoint access will use default of {publicAccess=true,
 privateAccess=false} for cluster "fargate-cluster" in "ap-northeast-1"
[#] 2 sequential tasks: { create cluster control plane "fargate-cluster", create
 nodegroup "ng-1" }
[#] building cluster stack "eksctl-fargate-cluster-cluster"
[#] deploying stack "eksctl-fargate-cluster-cluster"
[#] building nodegroup stack "eksctl-fargate-cluster-nodegroup-ng-1"
[#] --nodes-min=1 was set automatically for nodegroup ng-1
[#] --nodes-max=1 was set automatically for nodegroup ng-1
[#] deploying stack "eksctl-fargate-cluster-nodegroup-ng-1"
[#] all EKS cluster resources for "fargate-cluster" have been created
[#] saved kubeconfig as "/home/user1/.kube/config"
[#] adding identity "arn:aws:iam::123456789012:role/eksctl-fargate-cluster-nod-
NodeInstanceRole-42Q80B2Z147I" to auth ConfigMap
[#] nodegroup "ng-1" has 0 node(s)
[#] waiting for at least 1 node(s) to become ready in "ng-1"
[#] nodegroup "ng-1" has 1 node(s)
[#] node "ip-192-168-71-83.ap-northeast-1.compute.internal" is ready
[#] creating Fargate profile "fp-default" on EKS cluster "fargate-cluster"
[#] created Fargate profile "fp-default" on EKS cluster "fargate-cluster"
[#] creating Fargate profile "fp-dev" on EKS cluster "fargate-cluster"
[#] created Fargate profile "fp-dev" on EKS cluster "fargate-cluster"
[#] "coredns" is now schedulable onto Fargate
[#] "coredns" is now scheduled onto Fargate
[#] "coredns" is now scheduled onto Fargate
[#] "coredns" pods are now scheduled onto Fargate
[#] kubectl command should work with "/home/user1/.kube/config", try 'kubectl get
 nodes'
[#] EKS cluster "fargate-cluster" in "ap-northeast-1" region is ready

Designing Fargate profiles

Each selector entry has up to two components, namespace and a list of key-value pairs. Only the
namespace component is required to create a selector entry. All rules (namespaces, key value pairs)
must apply to a pod to match a selector entry. A pod only needs to match one selector entry to run
on the profile. Any pod that matches all the conditions in a selector field would be scheduled to
be run on Fargate. Any pods not matching either the whitelisted Namespaces but where the user
manually set the scheduler: fargate-scheduler filed would be stuck in a Pending state, as they were
not authorized to run on Fargate.

Profiles must meet the following requirements:

Designing Fargate profiles 56

Eksctl User Guide Amazon EKS

• One selector is mandatory per profile

• Each selector must include a namespace; labels are optional

Example: scheduling workload in Fargate

To schedule pods on Fargate for the example mentioned above, one could, for example, create a
namespace called dev and deploy the workload there:

kubectl create namespace dev
namespace/dev created

kubectl run nginx --image=nginx --restart=Never --namespace dev
pod/nginx created

kubectl get pods --all-namespaces --output wide
NAMESPACE NAME READY STATUS AGE IP NODE
dev nginx 1/1 Running 75s 192.168.183.140
 fargate-ip-192-168-183-140.ap-northeast-1.compute.internal
kube-system aws-node-44qst 1/1 Running 21m 192.168.70.246
 ip-192-168-70-246.ap-northeast-1.compute.internal
kube-system aws-node-4vr66 1/1 Running 21m 192.168.23.122
 ip-192-168-23-122.ap-northeast-1.compute.internal
kube-system coredns-699bb99bf8-84x74 1/1 Running 26m 192.168.2.95
 ip-192-168-23-122.ap-northeast-1.compute.internal
kube-system coredns-699bb99bf8-f6x6n 1/1 Running 26m 192.168.90.73
 ip-192-168-70-246.ap-northeast-1.compute.internal
kube-system kube-proxy-brxhg 1/1 Running 21m 192.168.23.122
 ip-192-168-23-122.ap-northeast-1.compute.internal
kube-system kube-proxy-zd7s8 1/1 Running 21m 192.168.70.246
 ip-192-168-70-246.ap-northeast-1.compute.internal

From the output of the last kubectl get pods command we can see that the
nginx pod is deployed in a node called fargate-ip-192-168-183-140.ap-
northeast-1.compute.internal.

Managing Fargate profiles

To deploy Kubernetes workloads on Fargate, EKS needs a Fargate profile. When creating a cluster
like in the examples above, eksctl takes care of this by creating a default profile. Given an
already existing cluster, it’s also possible to create a Fargate profile with the eksctl create
fargateprofile command:

Managing Fargate profiles 57

Eksctl User Guide Amazon EKS

Note

This operation is only supported on clusters that run on the EKS platform version eks.5 or
higher.

Note

If the existing was created with a version of eksctl prior to 0.11.0, you will need to run
eksctl upgrade cluster before creating the Fargate profile.

eksctl create fargateprofile --namespace dev --cluster fargate-example-cluster
[#] creating Fargate profile "fp-9bfc77ad" on EKS cluster "fargate-example-cluster"
[#] created Fargate profile "fp-9bfc77ad" on EKS cluster "fargate-example-cluster"

You can also specify the name of the Fargate profile to be created. This name must not start with
the prefix eks-.

eksctl create fargateprofile --namespace dev --cluster fargate-example-cluster --name
 fp-development
[#] created Fargate profile "fp-development" on EKS cluster "fargate-example-cluster"

Using this command with CLI flags eksctl can only create a single Fargate profile with a simple
selector. For more complex selectors, for example with more namespaces, eksctl supports using a
config file:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: fargate-example-cluster
 region: ap-northeast-1

fargateProfiles:
 - name: fp-default
 selectors:
 # All workloads in the "default" Kubernetes namespace will be
 # scheduled onto Fargate:

Managing Fargate profiles 58

Eksctl User Guide Amazon EKS

 - namespace: default
 # All workloads in the "kube-system" Kubernetes namespace will be
 # scheduled onto Fargate:
 - namespace: kube-system
 - name: fp-dev
 selectors:
 # All workloads in the "dev" Kubernetes namespace matching the following
 # label selectors will be scheduled onto Fargate:
 - namespace: dev
 labels:
 env: dev
 checks: passed

eksctl create fargateprofile -f fargate-example-cluster.yaml
[#] creating Fargate profile "fp-default" on EKS cluster "fargate-example-cluster"
[#] created Fargate profile "fp-default" on EKS cluster "fargate-example-cluster"
[#] creating Fargate profile "fp-dev" on EKS cluster "fargate-example-cluster"
[#] created Fargate profile "fp-dev" on EKS cluster "fargate-example-cluster"
[#] "coredns" is now scheduled onto Fargate
[#] "coredns" pods are now scheduled onto Fargate

To see existing Fargate profiles in a cluster:

eksctl get fargateprofile --cluster fargate-example-cluster
NAME SELECTOR_NAMESPACE SELECTOR_LABELS POD_EXECUTION_ROLE_ARN
 SUBNETS
fp-9bfc77ad dev <none> arn:aws:iam::123456789012:role/
eksctl-fargate-example-cluster-ServiceRole-1T5F78E5FSH79
 subnet-00adf1d8c99f83381,subnet-04affb163ffab17d4,subnet-035b34379d5ef5473

And to see them in yaml format:

eksctl get fargateprofile --cluster fargate-example-cluster -o yaml
- name: fp-9bfc77ad
 podExecutionRoleARN: arn:aws:iam::123456789012:role/eksctl-fargate-example-cluster-
ServiceRole-1T5F78E5FSH79
 selectors:
 - namespace: dev
 subnets:
 - subnet-00adf1d8c99f83381
 - subnet-04affb163ffab17d4
 - subnet-035b34379d5ef5473

Managing Fargate profiles 59

Eksctl User Guide Amazon EKS

Or in json format:

eksctl get fargateprofile --cluster fargate-example-cluster -o json
[
 {
 "name": "fp-9bfc77ad",
 "podExecutionRoleARN": "arn:aws:iam::123456789012:role/eksctl-fargate-example-
cluster-ServiceRole-1T5F78E5FSH79",
 "selectors": [
 {
 "namespace": "dev"
 }
],
 "subnets": [
 "subnet-00adf1d8c99f83381",
 "subnet-04affb163ffab17d4",
 "subnet-035b34379d5ef5473"
]
 }
]

Fargate profiles are immutable by design. To change something, create a new Fargate profile
with the desired changes and delete the old one with the eksctl delete fargateprofile
command like in the following example:

eksctl delete fargateprofile --cluster fargate-example-cluster --name fp-9bfc77ad --
wait
2019-11-27T19:04:26+09:00 [#] deleting Fargate profile "fp-9bfc77ad"
 ClusterName: "fargate-example-cluster",
 FargateProfileName: "fp-9bfc77ad"
}

Note that the profile deletion is a process that can take up to a few minutes. When the --wait
flag is not specified, eksctl optimistically expects the profile to be deleted and returns as soon as
the AWS API request has been sent. To make eksctl wait until the profile has been successfully
deleted, use --wait like in the example above.

Further reading

• AWS Fargate

• Amazon EKS can now launch pods onto AWS Fargate

Further reading 60

https://aws.amazon.com/fargate/
https://docs.aws.eu/eks/latest/userguide/fargate.html

Eksctl User Guide Amazon EKS

Cluster upgrades

An `eksctl`-managed cluster can be upgraded in 3 easy steps:

1. upgrade control plane version with eksctl upgrade cluster

2. upgrade nodegroups

3. update the default networking add-ons (For more information, see the section called “Default
add-on updates”):

Carefully review cluster upgrade related resources:

• Update existing cluster to new Kubernetes version in the Amazon EKS User Guide

• Best Practices for Cluster Upgrades in the EKS Best Practices Guide

Note

The old eksctl update cluster will be deprecated. Use eksctl upgrade cluster
instead.

Updating control plane version

Control plane version upgrades must be done for one minor version at a time.

To upgrade control plane to the next available version run:

eksctl upgrade cluster --name=<clusterName>

This command will not apply any changes right away, you will need to re-run it with --approve to
apply the changes.

The target version for the cluster upgrade can be specified both with the CLI flag:

eksctl upgrade cluster --name=<clusterName> --version=1.16

or with the config file

Cluster upgrades 61

https://docs.aws.eu/eks/latest/userguide/update-cluster.html
https://docs.aws.eu/eks/latest/best-practices/cluster-upgrades.html

Eksctl User Guide Amazon EKS

cat cluster1.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-1
 region: eu-north-1
 version: "1.16"

eksctl upgrade cluster --config-file cluster1.yaml

Warning

The only values allowed for the --version and metadata.version arguments are the
current version of the cluster or one version higher. Upgrades of more than one Kubernetes
version are not supported.

Default add-on updates

This topic explains how to update the default pre-installed add-ons that are included on EKS
clusters.

Warning

eksctl now installs default addons as EKS addons instead of self-managed addons. Read
more about its implications in Cluster creation flexibility for default networking addons.
For updating addons, eksctl utils update-<addon> cannot be used for clusters
created with eksctl v0.184.0 and above. This guide is only valid for clusters created before
this change.

There are 3 default add-ons that get included in each EKS cluster:

• kube-proxy

• aws-node

• coredns

Default add-on updates 62

Eksctl User Guide Amazon EKS

Update pre-installed add-on

For official EKS addons that are created manually through eksctl create addons or upon
cluster creation, the way to manage them is through eksctl create/get/update/delete
addon. In such cases, please refer to the docs about EKS Add-Ons.

The process for updating each of them is different, hence there are 3 distinct commands that
you will need to run. All of the following commands accept --config-file. By default each of
these commands runs in plan mode, if you are happy with the proposed changes, re-run with --
approve.

To update kube-proxy, run:

eksctl utils update-kube-proxy --cluster=<clusterName>

To update aws-node, run:

eksctl utils update-aws-node --cluster=<clusterName>

To update coredns, run:

eksctl utils update-coredns --cluster=<clusterName>

Once upgraded, be sure to run kubectl get pods -n kube-system and check if all addon
pods are in ready state, you should see something like this:

NAME READY STATUS RESTARTS AGE
aws-node-g5ghn 1/1 Running 0 2m
aws-node-zfc9s 1/1 Running 0 2m
coredns-7bcbfc4774-g6gg8 1/1 Running 0 1m
coredns-7bcbfc4774-hftng 1/1 Running 0 1m
kube-proxy-djkp7 1/1 Running 0 3m
kube-proxy-mpdsp 1/1 Running 0 3m

Support for Zonal Shift in EKS clusters

EKS now supports Amazon Application Recovery Controller (ARC) zonal shift and zonal autoshift
that enhances the resiliency of multi-AZ cluster environments. With AWS Zonal Shift, customers

Update pre-installed add-on 63

Eksctl User Guide Amazon EKS

can shift in-cluster traffic away from an impaired availability zone, ensuring new Kubernetes pods
and nodes are launched in healthy availability zones only.

Creating a cluster with zonal shift enabled

zonal-shift-cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: highly-available-cluster
 region: us-west-2

zonalShiftConfig:
 enabled: true

eksctl create cluster -f zonal-shift-cluster.yaml

Enabling zonal shift on an existing cluster

To enable or disable zonal shift on an existing cluster, run

eksctl utils update-zonal-shift-config -f zonal-shift-cluster.yaml

or without a config file:

eksctl utils update-zonal-shift-config --cluster=zonal-shift-cluster --enabled

Further information

• EKS Zonal Shift

Karpenter Support

eksctl provides support for adding Karpenter to a newly created cluster. It will create all the
necessary prerequisites outlined in Karpenter’s Getting Started section including installing

Creating a cluster with zonal shift enabled 64

https://docs.aws.eu/eks/latest/userguide/zone-shift.html
https://karpenter.sh/
https://karpenter.sh/docs/getting-started/

Eksctl User Guide Amazon EKS

Karpenter itself using Helm. We currently support installing versions 0.28.0+. See the Karpenter
compatibility section for further details.

The following cluster configuration outlines a typical Karpenter installation:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-with-karpenter
 region: us-west-2
 version: '1.32' # requires a version of Kubernetes compatible with Karpenter
 tags:
 karpenter.sh/discovery: cluster-with-karpenter # here, it is set to the cluster
 name
iam:
 withOIDC: true # required

karpenter:
 version: '1.2.1' # Exact version should be specified according to the Karpenter
 compatibility matrix

managedNodeGroups:
 - name: managed-ng-1
 minSize: 1
 maxSize: 2
 desiredCapacity: 1

The version is Karpenter’s version as it can be found in their Helm Repository. The following
options are also available to be set:

karpenter:
 version: '1.2.1'
 createServiceAccount: true # default is false
 defaultInstanceProfile: 'KarpenterNodeInstanceProfile' # default is to use the IAM
 instance profile created by eksctl
 withSpotInterruptionQueue: true # adds all required policies and rules for supporting
 Spot Interruption Queue, default is false

OIDC must be defined in order to install Karpenter.

Karpenter Support 65

https://karpenter.sh/docs/upgrading/compatibility/
https://karpenter.sh/docs/upgrading/compatibility/

Eksctl User Guide Amazon EKS

Once Karpenter is successfully installed, add NodePool(s) and NodeClass(es) to allow Karpenter to
start adding nodes to the cluster.

The NodePool’s nodeClassRef section must match the name of an EC2NodeClass. For example:

apiVersion: karpenter.sh/v1
kind: NodePool
metadata:
 name: example
 annotations:
 kubernetes.io/description: "Example NodePool"
spec:
 template:
 spec:
 requirements:
 - key: kubernetes.io/arch
 operator: In
 values: ["amd64"]
 - key: kubernetes.io/os
 operator: In
 values: ["linux"]
 - key: karpenter.sh/capacity-type
 operator: In
 values: ["on-demand"]
 - key: karpenter.k8s.aws/instance-category
 operator: In
 values: ["c", "m", "r"]
 - key: karpenter.k8s.aws/instance-generation
 operator: Gt
 values: ["2"]
 nodeClassRef:
 group: karpenter.k8s.aws
 kind: EC2NodeClass
 name: example # must match the name of an EC2NodeClass

apiVersion: karpenter.k8s.aws/v1
kind: EC2NodeClass
metadata:
 name: example
 annotations:
 kubernetes.io/description: "Example EC2NodeClass"
spec:
 role: "eksctl-KarpenterNodeRole-${CLUSTER_NAME}" # replace with your cluster name

Karpenter Support 66

https://karpenter.sh/docs/concepts/nodepools/
https://karpenter.sh/docs/concepts/nodeclasses/

Eksctl User Guide Amazon EKS

 subnetSelectorTerms:
 - tags:
 karpenter.sh/discovery: "${CLUSTER_NAME}" # replace with your cluster name
 securityGroupSelectorTerms:
 - tags:
 karpenter.sh/discovery: "${CLUSTER_NAME}" # replace with your cluster name
 amiSelectorTerms:
 - alias: al2023@latest # Amazon Linux 2023

Note that you must specify one of role or instanceProfile for lauch nodes. If you choose to
use instanceProfile the name of the profile created by eksctl follows the pattern: eksctl-
KarpenterNodeInstanceProfile-<cluster-name>.

Automatic Security Group Tagging

eksctl automatically tags the cluster’s shared node security group with karpenter.sh/
discovery when both Karpenter is enabled (karpenter.version specified) and the
karpenter.sh/discovery tag exists in metadata.tags. This enables AWS Load Balancer
Controller compatibility.

Note with karpenter 0.32.0+, Provisioners have been deprecated and replaced by NodePool.

Automatic Security Group Tagging 67

https://karpenter.sh/docs/concepts/nodepools/

Eksctl User Guide Amazon EKS

Cluster Config Schema

Note

The location of the schema is currently being migrated.

You can use a yaml file to create a cluster. View the schema reference.

For example:

eksctl create cluster -f cluster.yaml

The schema reference for this file is available on GitHub.

For more information about using the file, see the section called “Creating and managing clusters”.

68

https://schema.eksctl.io/
https://schema.eksctl.io/

Eksctl User Guide Amazon EKS

Nodegroups

This chapter includes information about how you create and configure Nodegroups with Eksctl.
Nodegroups are groups of EC2 instances attached to an EKS cluster.

Topics:

• the section called “Spot instances”

• Create and manage EKS clusters with Spot instances using managed node groups

• Configure Spot instances for unmanaged node groups using the MixedInstancesPolicy

• Distinguish Spot and On-Demand instances using the node-lifecycle Kubernetes label

• the section called “Auto Scaling”

• Enable automatic scaling of Kubernetes cluster nodes by creating a cluster or nodegroup with
IAM role that allows the use of the cluster autoscaler

• Configure nodegroup definitions to include necessary tags and annotations for the cluster
autoscaler to scale the nodegroup

• Create separate nodegroups for each availability zone if workloads have zone-specific
requirements, such as zone-specific storage or affinity rules

• the section called “EKS managed nodegroups”

• Provision and manage EC2 instances (nodes) for Amazon EKS Kubernetes clusters

• Easily apply bug fixes, security patches, and update nodes to the latest Kubernetes versions

• the section called “EKS Hybrid Nodes”

• Enable running on-premises and edge applications on customer-managed infrastructure with
the same AWS EKS clusters, features, and tools used in the AWS Cloud

• Configure networking to connect on-premises networks to an AWS VPC, using options like
AWS Site-to-Site VPN or AWS Direct Connect

• Set up credentials for remote nodes to authenticate with the EKS cluster, using either AWS
Systems Manager (SSM) or AWS IAM Roles Anywhere

• the section called “Node Repair Config”

• Enabling Node Repair for EKS Managed Nodegroups to automatically monitor and replace or
reboot unhealthy worker nodes

• the section called “ARM Support”

Topics: 69

Eksctl User Guide Amazon EKS

• Create an EKS cluster with ARM-based Graviton instances for improved performance and cost-
efficiency

• the section called “Taints”

• Apply taints to specific node groups in a Kubernetes cluster

• Control scheduling and eviction of pods based on taint keys, values, and effects

• the section called “Launch template support”

• Launching managed node groups using a provided EC2 Launch Template

• Upgrading a managed node group to use a different version of a Launch Template

• Understanding limitations and considerations when using custom AMIs and Launch Templates
with managed node groups

• the section called “Work with node groups”

• Enable SSH access to EC2 instances in the node group

• Scale the number of nodes in a node group up or down

• the section called “Custom subnets”

• Extend an existing VPC with a new subnet and add a Nodegroup to that subnet

• the section called “Node bootstrapping”

• Understand the new node initialization process (nodeadm) introduced in AmazonLinux2023

• Learn about the default NodeConfig settings applied by eksctl for self-managed and EKS-
managed nodes

• Customize the node bootstrapping process by providing an overrideBootstrapCommand with a
custom NodeConfig

• the section called “Unmanaged nodegroups”

• Create or update unmanaged node groups in an EKS cluster

• Update default Kubernetes add-ons like kube-proxy, aws-node, and CoreDNS

• the section called “GPU Support”

• Eksctl supports selecting GPU instance types for nodegroups, enabling the use of GPU-
accelerated workloads on EKS clusters.

• Eksctl automatically installs the NVIDIA Kubernetes device plugin when a GPU-enabled
instance type is selected, facilitating the use of GPU resources in the cluster.

• Users can disable automatic plugin installation and manually install a specific version of the
NVIDIA Kubernetes device plugin using the provided commands.Topics: 70

Eksctl User Guide Amazon EKS

• the section called “Instance Selector”

• Automatically generate a list of suitable EC2 instance types based on resource criteria like
vCPUs, memory, GPUs, and CPU architecture

• Create clusters and node groups with the instance types matched by the specified instance
selector criteria

• Perform a dry run to inspect and modify the instance types matched by the instance selector
before creating a node group

• the section called “Additional Volume Mappings”

• Configure additional volume mappings for a managed node group in an EKS cluster

• Customize volume properties like size, type, encryption, IOPS, and throughput for the
additional volumes

• Attach existing EBS snapshots as additional volumes to the node group

• the section called “Windows Worker Nodes”

• Add Windows node groups to an existing Linux Kubernetes cluster to enable running Windows
workloads

• Schedule workloads on the appropriate operating system (Windows or Linux) using node
selectors based on the kubernetes.io/os and kubernetes.io/arch labels

• the section called “Custom AMI support”

• Use the --node-ami flag to specify a custom AMI for node groups, query AWS for the latest
EKS-optimized AMI, or use AWS Systems Manager Parameter Store to find the AMI.

• Set the --node-ami-family flag to specify the operating system family for the node group
AMI, such as AmazonLinux2, Ubuntu2204, or WindowsServer2022CoreContainer.

• For Windows node groups, specify a custom AMI and provide a PowerShell bootstrap script via
the overrideBootstrapCommand.

• the section called “Custom DNS”

• Overwrite the DNS server IP address used for internal and external DNS lookups

Work with node groups

Creating nodegroups

You can add one or more nodegroups in addition to the initial nodegroup created along with the
cluster.

Work with node groups 71

Eksctl User Guide Amazon EKS

To create an additional nodegroup, use:

eksctl create nodegroup --cluster=<clusterName> [--name=<nodegroupName>]

Note

--version flag is not supported for managed nodegroups. It always inherits the version
from control plane.

By default, new unmanaged nodegroups inherit the version from the control plane (--
version=auto), but you can specify a different version, you can also use --version=latest to
force use of whichever is the latest version.

Additionally, you can use the same config file used for eksctl create cluster:

eksctl create nodegroup --config-file=<path>

Creating a nodegroup from a config file

Nodegroups can also be created through a cluster definition or config file. Given the following
example config file and an existing cluster called dev-cluster:

dev-cluster.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: dev-cluster
 region: eu-north-1

managedNodeGroups:
 - name: ng-1-workers
 labels: { role: workers }
 instanceType: m5.xlarge
 desiredCapacity: 10
 volumeSize: 80
 privateNetworking: true
 - name: ng-2-builders
 labels: { role: builders }

Creating nodegroups 72

Eksctl User Guide Amazon EKS

 instanceType: m5.2xlarge
 desiredCapacity: 2
 volumeSize: 100
 privateNetworking: true

The nodegroups ng-1-workers and ng-2-builders can be created with this command:

eksctl create nodegroup --config-file=dev-cluster.yaml

Load Balancing

If you have already prepared for attaching existing classic load balancers or/and target groups
to the nodegroups, you can specify these in the config file. The classic load balancers or/and
target groups are automatically associated with the ASG when creating nodegroups. This is only
supported for self-managed nodegroups defined via the nodeGroups field.

dev-cluster-with-lb.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: dev-cluster
 region: eu-north-1

nodeGroups:
 - name: ng-1-web
 labels: { role: web }
 instanceType: m5.xlarge
 desiredCapacity: 10
 privateNetworking: true
 classicLoadBalancerNames:
 - dev-clb-1
 - dev-clb-2
 asgMetricsCollection:
 - granularity: 1Minute
 metrics:
 - GroupMinSize
 - GroupMaxSize
 - GroupDesiredCapacity
 - GroupInServiceInstances
 - GroupPendingInstances
 - GroupStandbyInstances

Creating nodegroups 73

Eksctl User Guide Amazon EKS

 - GroupTerminatingInstances
 - GroupTotalInstances
 - name: ng-2-api
 labels: { role: api }
 instanceType: m5.2xlarge
 desiredCapacity: 2
 privateNetworking: true
 targetGroupARNs:
 - arn:aws:elasticloadbalancing:eu-north-1:01234567890:targetgroup/dev-target-
group-1/abcdef0123456789

Nodegroup selection in config files

To perform a create or delete operation on only a subset of the nodegroups specified in a
config file, there are two CLI flags that accept a list of globs, 0 and 1, e.g.:

eksctl create nodegroup --config-file=<path> --include='ng-prod-*-??' --exclude='ng-
test-1-ml-a,ng-test-2-?'

Using the example config file above, one can create all the workers nodegroup except the workers
one with the following command:

eksctl create nodegroup --config-file=dev-cluster.yaml --exclude=ng-1-workers

Or one could delete the builders nodegroup with:

eksctl delete nodegroup --config-file=dev-cluster.yaml --include=ng-2-builders --
approve

In this case, we also need to supply the --approve command to actually delete the nodegroup.

Include and exclude rules

• if no --include or --exclude is specified everything is included

• if only --include is specified, only nodegroups that match those globs will be included

• if only --exclude is specified, all nodegroups that do not match those globs are included

• if both are specified then --exclude rules take precedence over --include (i.e. nodegroups
that match rules in both groups will be excluded)

Nodegroup selection in config files 74

Eksctl User Guide Amazon EKS

Listing nodegroups

To list the details about a nodegroup or all of the nodegroups, use:

eksctl get nodegroup --cluster=<clusterName> [--name=<nodegroupName>]

To list one or more nodegroups in YAML or JSON format, which outputs more info than the default
log table, use:

YAML format
eksctl get nodegroup --cluster=<clusterName> [--name=<nodegroupName>] --output=yaml

JSON format
eksctl get nodegroup --cluster=<clusterName> [--name=<nodegroupName>] --output=json

Nodegroup immutability

By design, nodegroups are immutable. This means that if you need to change something (other
than scaling) like the AMI or the instance type of a nodegroup, you would need to create a new
nodegroup with the desired changes, move the load and delete the old one. See the Deleting and
draining nodegroups section.

Scaling nodegroups

Nodegroup scaling is a process that can take up to a few minutes. When the --wait flag is not
specified, eksctl optimistically expects the nodegroup to be scaled and returns as soon as the
AWS API request has been sent. To make eksctl wait until the nodes are available, add a --wait
flag like the example below.

Note

Scaling a nodegroup down/in (i.e. reducing the number of nodes) may result in errors as we
rely purely on changes to the ASG. This means that the node(s) being removed/terminated
aren’t explicitly drained. This may be an area for improvement in the future.

Scaling a managed nodegroup is achieved by directly calling the EKS API that updates a managed
node group configuration.

Listing nodegroups 75

Eksctl User Guide Amazon EKS

Scaling a single nodegroup

A nodegroup can be scaled by using the eksctl scale nodegroup command:

eksctl scale nodegroup --cluster=<clusterName> --nodes=<desiredCount> --
name=<nodegroupName> [--nodes-min=<minSize>] [--nodes-max=<maxSize>] --wait

For example, to scale nodegroup ng-a345f4e1 in cluster-1 to 5 nodes, run:

eksctl scale nodegroup --cluster=cluster-1 --nodes=5 ng-a345f4e1

A nodegroup can also be scaled by using a config file passed to --config-file and specifying
the name of the nodegroup that should be scaled with --name. Eksctl will search the config file
and discover that nodegroup as well as its scaling configuration values.

If the desired number of nodes is NOT within the range of current minimum and current maximum
number nodes, one specific error will be shown. These values can also be passed with flags --
nodes-min and --nodes-max respectively.

Scaling multiple nodegroups

Eksctl can discover and scale all the nodegroups found in a config file that is passed with --
config-file.

Similarly to scaling a single nodegroup, the same set of validations apply to each nodegroup. For
example, the desired number of nodes must be within the range of the minimum and maximum
number of nodes.

Deleting and draining nodegroups

To delete a nodegroup, run:

eksctl delete nodegroup --cluster=<clusterName> --name=<nodegroupName>

Include and exclude rules can also be used with this command.

Note

This will drain all pods from that nodegroup before the instances are deleted.

Deleting and draining nodegroups 76

Eksctl User Guide Amazon EKS

To skip eviction rules during the drain process, run:

eksctl delete nodegroup --cluster=<clusterName> --name=<nodegroupName> --disable-
eviction

All nodes are cordoned and all pods are evicted from a nodegroup on deletion, but if you need to
drain a nodegroup without deleting it, run:

eksctl drain nodegroup --cluster=<clusterName> --name=<nodegroupName>

To uncordon a nodegroup, run:

eksctl drain nodegroup --cluster=<clusterName> --name=<nodegroupName> --undo

To ignore eviction rules such as PodDisruptionBudget settings, run:

eksctl drain nodegroup --cluster=<clusterName> --name=<nodegroupName> --disable-
eviction

To speed up the drain process you can specify --parallel <value> for the number of nodes to
drain in parallel.

Other features

You can also enable SSH, ASG access and other features for a nodegroup, e.g.:

eksctl create nodegroup --cluster=cluster-1 --node-
labels="autoscaling=enabled,purpose=ci-worker" --asg-access --full-ecr-access --ssh-
access

Update labels

There are no specific commands in eksctl to update the labels of a nodegroup, but it can easily
be achieved using kubectl, e.g.:

kubectl label nodes -l alpha.eksctl.io/nodegroup-name=ng-1 new-label=foo

Other features 77

Eksctl User Guide Amazon EKS

SSH Access

You can enable SSH access for nodegroups by configuring one of publicKey, publicKeyName
and publicKeyPath in your nodegroup configuration. Alternatively you can use AWS Systems
Manager (SSM) to SSH onto nodes, by configuring the nodegroup with enableSsm:

managedNodeGroups:
 - name: ng-1
 instanceType: m5.large
 desiredCapacity: 1
 ssh: # import public key from file
 publicKeyPath: ~/.ssh/id_rsa_tests.pub
 - name: ng-2
 instanceType: m5.large
 desiredCapacity: 1
 ssh: # use existing EC2 key
 publicKeyName: ec2_dev_key
 - name: ng-3
 instanceType: m5.large
 desiredCapacity: 1
 ssh: # import inline public key
 publicKey: "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDqZEdzvHnK/GVP8nLngRHu/
GDi/3PeES7+Bx6l3koXn/Oi/UmM9/jcW5XGziZ/
oe1cPJ777eZV7muEvXg5ZMQBrYxUtYCdvd8Rt6DIoSqDLsIPqbuuNlQoBHq/PU2IjpWnp/
wrJQXMk94IIrGjY8QHfCnpuMENCucVaifgAhwyeyuO5KiqUmD8E0RmcsotHKBV9X8H5eqLXd8zMQaPl
+Ub7j5PG+9KftQu0F/QhdFvpSLsHaxvBzA5nhIltjkaFcwGQnD1rpCM3+UnQE7Izoa5Yt1xoUWRwnF
+L2TKovW7+bYQ1kxsuuiX149jXTCJDVjkYCqi7HkrXYqcC1sbsror someuser@hostname"
 - name: ng-4
 instanceType: m5.large
 desiredCapacity: 1
 ssh: # enable SSH using SSM
 enableSsm: true

Unmanaged nodegroups

In eksctl, setting --managed=false or using the nodeGroups field creates an unmanaged
nodegroup. Bear in mind that unmanaged nodegroups do not appear in the EKS console, which as
a general rule only knows about EKS-managed nodegroups.

You should be upgrading nodegroups only after you ran eksctl upgrade cluster. (See
Upgrading clusters.)

Unmanaged nodegroups 78

https://docs.aws.eu/systems-manager/latest/userguide/session-manager-working-with-sessions-start.html#sessions-start-cli
https://docs.aws.eu/systems-manager/latest/userguide/session-manager-working-with-sessions-start.html#sessions-start-cli

Eksctl User Guide Amazon EKS

If you have a simple cluster with just an initial nodegroup (i.e. created with eksctl create
cluster), the process is very simple:

1. Get the name of old nodegroup:

 eksctl get nodegroups --cluster=<clusterName> --region=<region>

Note

You should see only one nodegroup here, if you see more - read the next
 section.

2. Create a new nodegroup:

 eksctl create nodegroup --cluster=<clusterName> --region=<region> --
name=<newNodeGroupName> --managed=false

3. Delete the old nodegroup:

 eksctl delete nodegroup --cluster=<clusterName> --region=<region> --
name=<oldNodeGroupName>

Note

This will drain all pods from that nodegroup before the instances are deleted.
 In some scenarios, Pod Disruption Budget (PDB) policies can prevent pods to
 be evicted. To delete the nodegroup regardless of PDB, one should use the `--
disable-eviction` flag, will bypass checking PDB policies.

Updating multiple nodegroups

If you have multiple nodegroups, it’s your responsibility to track how each one was configured. You
can do this by using config files, but if you haven’t used it already, you will need to inspect your
cluster to find out how each nodegroup was configured.

In general terms, you are looking to:

Updating multiple nodegroups 79

Eksctl User Guide Amazon EKS

• review which nodegroups you have and which ones can be deleted or must be replaced for the
new version

• note down configuration of each nodegroup, consider using config file to ease upgrades next
time

Updating with config file

If you are using config file, you will need to do the following.

Edit config file to add new nodegroups, and remove old nodegroups. If you just want to upgrade
nodegroups and keep the same configuration, you can just change nodegroup names, e.g. append
-v2 to the name.

To create all of new nodegroups defined in the config file, run:

eksctl create nodegroup --config-file=<path>

Once you have new nodegroups in place, you can delete old ones:

eksctl delete nodegroup --config-file=<path> --only-missing

Note

First run is in plan mode, if you are happy with the proposed changes, re-run with --
approve.

Updating default add-ons

You may need to update the networking add-ons installed on your cluster. For more information,
see the section called “Default add-on updates”.

EKS managed nodegroups

Amazon EKS managed nodegroups is a feature that automates the provisioning and lifecycle
management of nodes (EC2 instances) for Amazon EKS Kubernetes clusters. Customers can
provision optimized groups of nodes for their clusters and EKS will keep their nodes up to date
with the latest Kubernetes and host OS versions.

Updating default add-ons 80

https://docs.aws.eu/eks/latest/userguide/managed-node-groups.html

Eksctl User Guide Amazon EKS

An EKS managed node group is an autoscaling group and associated EC2 instances that are
managed by AWS for an Amazon EKS cluster. Each node group uses the Amazon EKS-optimized
Amazon Linux 2 AMI. Amazon EKS makes it easy to apply bug fixes and security patches to nodes,
as well as update them to the latest Kubernetes versions. Each node group launches an autoscaling
group for your cluster, which can span multiple AWS VPC availability zones and subnets for high-
availability.

NEW Launch Template support for managed nodegroups

Note

The term "unmanaged nodegroups" has been used to refer to nodegroups that eksctl
has supported since the beginning (represented via the nodeGroups field). The
ClusterConfig file continues to use the nodeGroups field for defining unmanaged
nodegroups, and managed nodegroups are defined with the managedNodeGroups field.

Creating managed nodegroups

$ eksctl create nodegroup

New clusters

To create a new cluster with a managed nodegroup, run

eksctl create cluster

To create multiple managed nodegroups and have more control over the configuration, a config
file can be used.

Note

Managed nodegroups do not have complete feature parity with unmanaged nodegroups.

cluster.yaml
A cluster with two managed nodegroups

Creating managed nodegroups 81

Eksctl User Guide Amazon EKS

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: managed-cluster
 region: us-west-2

managedNodeGroups:
 - name: managed-ng-1
 minSize: 2
 maxSize: 4
 desiredCapacity: 3
 volumeSize: 20
 ssh:
 allow: true
 publicKeyPath: ~/.ssh/ec2_id_rsa.pub
 # new feature for restricting SSH access to certain AWS security group IDs
 sourceSecurityGroupIds: ["sg-00241fbb12c607007"]
 labels: {role: worker}
 tags:
 nodegroup-role: worker
 iam:
 withAddonPolicies:
 externalDNS: true
 certManager: true

 - name: managed-ng-2
 instanceType: t2.large
 minSize: 2
 maxSize: 3

Another example of a config file for creating a managed nodegroup can be found here.

It’s possible to have a cluster with both managed and unmanaged nodegroups. Unmanaged
nodegroups do not show up in the AWS EKS console but eksctl get nodegroup will list both
types of nodegroups.

cluster.yaml
A cluster with an unmanaged nodegroup and two managed nodegroups.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

Creating managed nodegroups 82

https://github.com/eksctl-io/eksctl/blob/main/examples/15-managed-nodes.yaml

Eksctl User Guide Amazon EKS

metadata:
 name: managed-cluster
 region: us-west-2

nodeGroups:
 - name: ng-1
 minSize: 2

managedNodeGroups:
 - name: managed-ng-1
 minSize: 2
 maxSize: 4
 desiredCapacity: 3
 volumeSize: 20
 ssh:
 allow: true
 publicKeyPath: ~/.ssh/ec2_id_rsa.pub
 # new feature for restricting SSH access to certain AWS security group IDs
 sourceSecurityGroupIds: ["sg-00241fbb12c607007"]
 labels: {role: worker}
 tags:
 nodegroup-role: worker
 iam:
 withAddonPolicies:
 externalDNS: true
 certManager: true

 - name: managed-ng-2
 instanceType: t2.large
 privateNetworking: true
 minSize: 2
 maxSize: 3

NEW Support for custom AMI, security groups, instancePrefix, instanceName,
ebsOptimized, volumeType, volumeName, volumeEncrypted, volumeKmsKeyID,
volumeIOPS, maxPodsPerNode, preBootstrapCommands, overrideBootstrapCommand, and
disableIMDSv1

cluster.yaml
A cluster with a managed nodegroup with customization.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

Creating managed nodegroups 83

Eksctl User Guide Amazon EKS

metadata:
 name: managed-cluster
 region: us-west-2

managedNodeGroups:
 - name: custom-ng
 ami: ami-0e124de4755b2734d
 securityGroups:
 attachIDs: ["sg-1234"]
 maxPodsPerNode: 80
 ssh:
 allow: true
 volumeSize: 100
 volumeName: /dev/xvda
 volumeEncrypted: true
 # defaults to true, which enforces the use of IMDSv2 tokens
 disableIMDSv1: false
 overrideBootstrapCommand: |
 #!/bin/bash
 /etc/eks/bootstrap.sh managed-cluster --kubelet-extra-args '--node-
labels=eks.amazonaws.com/nodegroup=custom-ng,eks.amazonaws.com/nodegroup-
image=ami-0e124de4755b2734d'

If you are requesting an instance type that is only available in one zone (and the eksctl config
requires specification of two) make sure to add the availability zone to your node group request:

cluster.yaml
A cluster with a managed nodegroup with "availabilityZones"

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: flux-cluster
 region: us-east-2
 version: "1.23"

availabilityZones: ["us-east-2b", "us-east-2c"]
managedNodeGroups:
 - name: workers
 instanceType: hpc6a.48xlarge

Creating managed nodegroups 84

Eksctl User Guide Amazon EKS

 minSize: 64
 maxSize: 64
 labels: { "fluxoperator": "true" }
 availabilityZones: ["us-east-2b"]
 efaEnabled: true
 placement:
 groupName: eks-efa-testing

This can be true for instance types like the Hpc6 family that are only available in one zone.

Existing clusters

eksctl create nodegroup --managed

Tip : if you are using a ClusterConfig file to describe your whole cluster, describe your new
managed node group in the managedNodeGroups field and run:

eksctl create nodegroup --config-file=YOUR_CLUSTER.yaml

Upgrading managed nodegroups

You can update a nodegroup to the latest EKS-optimized AMI release version for the AMI type you
are using at any time.

If your nodegroup is the same Kubernetes version as the cluster, you can update to the latest AMI
release version for that Kubernetes version of the AMI type you are using. If your nodegroup is the
previous Kubernetes version from the cluster’s Kubernetes version, you can update the nodegroup
to the latest AMI release version that matches the nodegroup’s Kubernetes version, or update to
the latest AMI release version that matches the clusters Kubernetes version. You cannot roll back a
nodegroup to an earlier Kubernetes version.

To upgrade a managed nodegroup to the latest AMI release version:

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster

The nodegroup can be upgraded to the latest AMI release for a specified Kubernetes version using:

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster --kubernetes-
version=<kubernetes-version>

Upgrading managed nodegroups 85

https://aws.amazon.com/ec2/instance-types/hpc6/

Eksctl User Guide Amazon EKS

To upgrade to a specific AMI release version instead of the latest version, pass --release-
version:

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster --release-
version=1.19.6-20210310

Note

If the managed nodes are deployed using custom AMIs, the following workflow must be
followed in order to deploy a new version of the custom AMI.

• initial deployment of the nodegroup must be done using a launch template. e.g.

managedNodeGroups:
 - name: launch-template-ng
 launchTemplate:
 id: lt-1234
 version: "2" #optional (uses the default version of the launch template if
 unspecified)

• create a new version of the custom AMI (using AWS EKS console).

• create a new launch template version with the new AMI ID (using AWS EKS console).

• upgrade the nodes to the new version of the launch template. e.g.

eksctl upgrade nodegroup --name nodegroup-name --cluster cluster-name --launch-
template-version new-template-version

Handling parallel upgrades for nodes

Multiple managed nodes can be upgraded simultaneously. To configure parallel upgrades, define
the updateConfig of a nodegroup when creating the nodegroup. An example updateConfig
can be found here.

To avoid any downtime to your workloads due to upgrading multiple nodes at once, you can limit
the number of nodes that can become unavailable during an upgrade by specifying this in the
maxUnavailable field of an updateConfig. Alternatively, use maxUnavailablePercentage,

Handling parallel upgrades for nodes 86

https://github.com/eksctl-io/eksctl/blob/main/examples/15-managed-nodes.yaml

Eksctl User Guide Amazon EKS

which defines the maximum number of unavailable nodes as a percentage of the total number of
nodes.

Note that maxUnavailable cannot be higher than maxSize. Also, maxUnavailable and
maxUnavailablePercentage cannot be used simultaneously.

This feature is only available for managed nodes.

Updating managed nodegroups

eksctl allows updating the UpdateConfig section of a managed nodegroup. This section
defines two fields. MaxUnavailable and MaxUnavailablePercentage. Your nodegroups are
unaffected during the update, thus downtime shouldn’t be expected.

The command update nodegroup should be used with a config file using the --config-file
flag. The nodegroup should contain an nodeGroup.updateConfig section. More information can
be found here.

Nodegroup Health issues

EKS Managed Nodegroups automatically checks the configuration of your nodegroup and nodes
for health issues and reports them through the EKS API and console. To view health issues for a
nodegroup:

eksctl utils nodegroup-health --name=managed-ng-1 --cluster=managed-cluster

Managing Labels

EKS Managed Nodegroups supports attaching labels that are applied to the Kubernetes nodes in
the nodegroup. This is specified via the labels field in eksctl during cluster or nodegroup creation.

To set new labels or updating existing labels on a nodegroup:

eksctl set labels --cluster managed-cluster --nodegroup managed-ng-1 --labels
 kubernetes.io/managed-by=eks,kubernetes.io/role=worker

To unset or remove labels from a nodegroup:

eksctl unset labels --cluster managed-cluster --nodegroup managed-ng-1 --labels
 kubernetes.io/managed-by,kubernetes.io/role

Updating managed nodegroups 87

https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/aws-properties-eks-nodegroup-updateconfig.html
https://geoffcline.github.io/eksctl-schema-demo/#nodeGroups-updateConfig

Eksctl User Guide Amazon EKS

To view all labels set on a nodegroup:

eksctl get labels --cluster managed-cluster --nodegroup managed-ng-1

Scaling Managed Nodegroups

eksctl scale nodegroup also supports managed nodegroups. The syntax for scaling a
managed or unmanaged nodegroup is the same.

eksctl scale nodegroup --name=managed-ng-1 --cluster=managed-cluster --nodes=4 --nodes-
min=3 --nodes-max=5

Further information

• EKS Managed Nodegroups

Node bootstrapping

AmazonLinux2023

AL2023 introduced a new node initialization process nodeadm that uses a YAML configuration
schema, dropping the use of /etc/eks/bootstrap.sh script.

Note

With Kubernetes versions 1.30 and above, Amazon Linux 2023 is the default OS.

Default settings for AL2

For self-managed nodes and EKS-managed nodes based on custom AMIs, eksctl creates a
default, minimal, NodeConfig and automatically injects it into the nodegroups’s launch template
userdata. i.e.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=//

Scaling Managed Nodegroups 88

https://docs.aws.eu/eks/latest/userguide/managed-node-groups.html
https://awslabs.github.io/amazon-eks-ami/nodeadm/

Eksctl User Guide Amazon EKS

--//
Content-Type: application/node.eks.aws

apiVersion: node.eks.aws/v1alpha1
kind: NodeConfig
spec:
 cluster:
 apiServerEndpoint: https://XXXX.us-west-2.eks.amazonaws.com
 certificateAuthority: XXXX
 cidr: 10.100.0.0/16
 name: my-cluster
 kubelet:
 config:
 clusterDNS:
 - 10.100.0.10
 flags:
 - --node-labels=alpha.eksctl.io/cluster-name=my-cluster,alpha.eksctl.io/nodegroup-
name=my-nodegroup
 - --register-with-taints=special=true:NoSchedule

--//--

For EKS-managed nodes based on native AMIs, the default NodeConfig is being added by EKS
MNG under the hood, appended directly to the EC2’s userdata. Thus, in this scenario, eksctl does
not need to include it within the launch template.

Configuring the bootstrapping process

To set advanced properties of NodeConfig, or simply override the default values, eksctl allows
you to specify a custom NodeConfig via nodeGroup.overrideBootstrapCommand or
managedNodeGroup.overrideBootstrapCommand e.g.

managedNodeGroups:
 - name: mng-1
 amiFamily: AmazonLinux2023
 ami: ami-0253856dd7ab7dbc8
 overrideBootstrapCommand: |
 apiVersion: node.eks.aws/v1alpha1
 kind: NodeConfig
 spec:
 instance:
 localStorage:

AmazonLinux2023 89

Eksctl User Guide Amazon EKS

 strategy: RAID0

This custom config will be prepended to the userdata by eksctl, and merged by nodeadm with the
default config. Read more about nodeadm's capability of merging multiple configuration objects
here.

Launch Template support for Managed Nodegroups

eksctl supports launching managed nodegroups using a provided EC2 Launch Template. This
enables multiple customization options for nodegroups including providing custom AMIs and
security groups, and passing user data for node bootstrapping.

Creating managed nodegroups using a provided launch template

managed-cluster.yaml
A cluster with two managed nodegroups

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: managed-cluster
 region: us-west-2

managedNodeGroups:
 - name: managed-ng-1
 launchTemplate:
 id: lt-12345
 version: "2" # optional (uses the default launch template version if unspecified)

 - name: managed-ng-2
 minSize: 2
 desiredCapacity: 2
 maxSize: 4
 labels:
 role: worker
 tags:
 nodegroup-name: managed-ng-2
 privateNetworking: true
 launchTemplate:
 id: lt-12345

Launch template support 90

https://awslabs.github.io/amazon-eks-ami/nodeadm/doc/examples/#merging-multiple-configuration-objects
https://docs.aws.eu/AWSEC2/latest/UserGuide/ec2-launch-templates.html

Eksctl User Guide Amazon EKS

Upgrading a managed nodegroup to use a different launch template
version

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster --launch-
template-version=3

Note

If a launch template is using a custom AMI, then the new version should also use a custom
AMI or the upgrade operation will fail

If a launch template is not using a custom AMI, the Kubernetes version to upgrade to can also be
specified:

eksctl upgrade nodegroup --name=managed-ng-1 --cluster=managed-cluster --launch-
template-version=3 --kubernetes-version=1.17

Notes on custom AMI and launch template support

• When a launch template is provided, the following fields are not supported: instanceType,
ami, ssh.allow, ssh.sourceSecurityGroupIds, securityGroups, instancePrefix,
instanceName, ebsOptimized, volumeEncrypted, volumeKmsKeyID, volumeIOPS,
maxPodsPerNode, preBootstrapCommands, overrideBootstrapCommand and
disableIMDSv1.

• When using a custom AMI (ami), overrideBootstrapCommand must also be set to perform the
bootstrapping.

• overrideBootstrapCommand can only be set when using a custom AMI.

• When a launch template is provided, tags specified in the nodegroup config apply to the EKS
Nodegroup resource only and are not propagated to EC2 instances.

Custom subnets

It’s possible to extend an existing VPC with a new subnet and add a Nodegroup to that subnet.

Upgrading a managed nodegroup to use a different launch template version 91

Eksctl User Guide Amazon EKS

Why

Should the cluster run out of pre-configured IPs, it’s possible to resize the existing VPC with a new
CIDR to add a new subnet to it. To see how to do that, read this guide on AWS Extending VPCs.

TL;DR

Go to the VPC’s configuration and add click on Actions->Edit CIDRs and add a new range. For
example:

192.168.0.0/19 -> existing CIDR
+ 192.169.0.0/19 -> new CIDR

Now you need to add a new Subnet. Depending on if it’s a new Private or a Public subnet, you will
have to copy the routing information from a private or a public subnet respectively.

Once the subnet is created, add routing, and copy either the NAT gateway ID or the Internet
Gateway from another subnet in the VPC. Take care that if it’s a public subnet Enable Automatic IP
Assignment. Actions->Modify auto-assign IP settings->Enable auto-assign public IPv4 address.

Don’t forget to also copy the TAGS of the existing subnets depending on Public or Private subnet
configuration. This is important, otherwise the subnet will not be part of the cluster and instances
in the subnet will be unable to join.

When finished, copy the new subnet’s ID. Repeat as often as necessary.

How

To create a nodegroup in the created subnet(s) run the following command:

eksctl create nodegroup --cluster <cluster-name> --name my-new-subnet --subnet-ids
 subnet-0edeb3a04bec27141,subnet-0edeb3a04bec27142,subnet-0edeb3a04bec27143
or for a single subnet id
eksctl create nodegroup --cluster <cluster-name> --name my-new-subnet --subnet-ids
 subnet-0edeb3a04bec27141

Or, use the configuration as such:

eksctl create nodegroup -f cluster-managed.yaml

Why 92

https://docs.aws.eu/vpc/latest/userguide/VPC_Subnets.html#vpc-resize

Eksctl User Guide Amazon EKS

With a configuration like this:

A simple example of ClusterConfig object with two nodegroups:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-3
 region: eu-north-1

nodeGroups:
 - name: new-subnet-nodegroup
 instanceType: m5.large
 desiredCapacity: 1
 subnets:
 - subnet-id1
 - subnet-id2

Wait for the nodegroup to be created and the new instances should have the new IP ranges of the
subnet(s).

Deleting the cluster

Since the new addition modified the existing VPC by adding a dependency outside of the
CloudFormation stack, CloudFormation can no longer remove the cluster.

Before deleting the cluster, remove all created extra subnets by hand, then proceed by calling
eksctl:

eksctl delete cluster -n <cluster-name> --wait

Custom DNS

There are two ways of overwriting the DNS server IP address used for all the internal and external
DNS lookups. This is the equivalent of the --cluster-dns flag for the kubelet.

The first, is through the clusterDNS field. Config files accepts a string field called clusterDNS
with the IP address of the DNS server to use. This will be passed to the kubelet that in turn will

Deleting the cluster 93

Eksctl User Guide Amazon EKS

pass it to the pods through the /etc/resolv.conf file. For more information, see the schema of
the config file.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-1
 region: eu-north-1

nodeGroups:
- name: ng-1
 clusterDNS: 169.254.20.10

Note that this configuration only accepts one IP address. To specify more than one address, use the
kubeletExtraConfig parameter:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-1
 region: eu-north-1

nodeGroups:
 - name: ng-1
 kubeletExtraConfig:
 clusterDNS: ["169.254.20.10","172.20.0.10"]

Taints

To apply taints to a specific nodegroup use the taints config section like this:

 taints:
 - key: your.domain.com/db
 value: "true"
 effect: NoSchedule
 - key: your.domain.com/production
 value: "true"
 effect: NoExecute

Taints 94

https://geoffcline.github.io/eksctl-schema-demo/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Eksctl User Guide Amazon EKS

A full example can be found here.

Instance Selector

eksctl supports specifying multiple instance types for managed and self-managed nodegroups,
but with over 270 EC2 instance types, users have to spend time figuring out which instance types
would be well suited for their nodegroup. It’s even harder when using Spot instances because you
need to choose a set of instances that works together well with the Cluster Autoscaler.

eksctl now integrates with the EC2 instance selector, which addresses this problem by generating
a list of instance types based on resource criteria: vCPUs, memory, # of GPUs and CPU architecture.
When the instance selector criteria is passed, eksctl creates a nodegroup with the instance types set
to the instance types matching the supplied criteria.

Create cluster and nodegroups

To create a cluster with a single nodegroup that uses instance types matched by the instance
selector resource criteria passed to eksctl, run

eksctl create cluster --instance-selector-vcpus=2 --instance-selector-memory=4

This will create a cluster and a managed nodegroup with the instanceTypes field set to
[c5.large, c5a.large, c5ad.large, c5d.large, t2.medium, t3.medium,
t3a.medium] (the set of instance types returned may change).

For unmanaged nodegroups, the instancesDistribution.instanceTypes field will be set:

eksctl create cluster --managed=false --instance-selector-vcpus=2 --instance-selector-
memory=4

The instance selector criteria can also be specified in ClusterConfig:

instance-selector-cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster
 region: us-west-2

Instance Selector 95

https://github.com/eksctl-io/eksctl/blob/main/examples/34-taints.yaml
https://github.com/aws/amazon-ec2-instance-selector

Eksctl User Guide Amazon EKS

nodeGroups:
- name: ng
 instanceSelector:
 vCPUs: 2
 memory: "4" # 4 GiB, unit defaults to GiB

managedNodeGroups:
- name: mng
 instanceSelector:
 vCPUs: 2
 memory: 2GiB #
 cpuArchitecture: x86_64 # default value

eksctl create cluster -f instance-selector-cluster.yaml

The following instance selector CLI options are supported by eksctl create cluster and
eksctl create nodegroup:

--instance-selector-vcpus, --instance-selector-memory, --instance-selector-
gpus and instance-selector-cpu-architecture

An example file can be found here.

Dry Run

The dry-run feature allows you to inspect and change the instances matched by the instance
selector before proceeding to creating a nodegroup.

eksctl create cluster --name development --instance-selector-vcpus=2 --instance-
selector-memory=4 --dry-run

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
...
managedNodeGroups:
- amiFamily: AmazonLinux2
 instanceSelector:
 memory: "4"
 vCPUs: 2
 instanceTypes:
 - c5.large

Create cluster and nodegroups 96

https://github.com/eksctl-io/eksctl/blob/main/examples/28-instance-selector.yaml

Eksctl User Guide Amazon EKS

 - c5a.large
 - c5ad.large
 - c5d.large
 - t2.medium
 - t3.medium
 - t3a.medium
...
other config

The generated ClusterConfig can then be passed to eksctl create cluster:

eksctl create cluster -f generated-cluster.yaml

The instanceSelector field representing the CLI options will also be added to the ClusterConfig
file for visibility and documentation purposes. When --dry-run is omitted, this field will be
ignored and the instanceTypes field will be used, otherwise any changes to instanceTypes
would get overridden by eksctl.

When a ClusterConfig file is passed with --dry-run, eksctl will output a ClusterConfig file
containing the same set of nodegroups after expanding each nodegroup’s instance selector
resource criteria.

instance-selector-cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster
 region: us-west-2

nodeGroups:
- name: ng
 instanceSelector:
 vCPUs: 2
 memory: 4 # 4 GiB, unit defaults to GiB

managedNodeGroups:
- name: mng
 instanceSelector:
 vCPUs: 2
 memory: 2GiB #

Create cluster and nodegroups 97

Eksctl User Guide Amazon EKS

 cpuArchitecture: x86_64 # default value

eksctl create cluster -f instance-selector-cluster.yaml --dry-run

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
...
managedNodeGroups:
- amiFamily: AmazonLinux2
 # ...
 instanceSelector:
 cpuArchitecture: x86_64
 memory: 2GiB
 vCPUs: 2
 instanceTypes:
 - t3.small
 - t3a.small
nodeGroups:
- amiFamily: AmazonLinux2
 # ...
 instanceSelector:
 memory: "4"
 vCPUs: 2
 instanceType: mixed
 instancesDistribution:
 capacityRebalance: false
 instanceTypes:
 - c5.large
 - c5a.large
 - c5ad.large
 - c5d.large
 - t2.medium
 - t3.medium
 - t3a.medium
...

Spot instances

Managed Nodegroups

eksctl supports Spot worker nodes using EKS Managed Nodegroups, a feature that allows EKS
customers with fault-tolerant applications to easily provision and manage EC2 Spot Instances for

Spot instances 98

https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-provisioning-and-managing-ec2-spot-instances-in-managed-node-groups/

Eksctl User Guide Amazon EKS

their EKS clusters. EKS Managed Nodegroup will configure and launch an EC2 Autoscaling group
of Spot Instances following Spot best practices and draining Spot worker nodes automatically
before the instances are interrupted by AWS. There is no incremental charge to use this feature and
customers pay only for using the AWS resources, such as EC2 Spot Instances and EBS volumes.

To create a cluster with a managed nodegroup using Spot instances, pass the --spot flag and an
optional list of instance types:

eksctl create cluster --spot --instance-types=c3.large,c4.large,c5.large

To create a managed nodegroup using Spot instances on an existing cluster:

eksctl create nodegroup --cluster=<clusterName> --spot --instance-
types=c3.large,c4.large,c5.large

To create Spot instances using managed nodegroups via a config file:

spot-cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: spot-cluster
 region: us-west-2

managedNodeGroups:
- name: spot
 instanceTypes: ["c3.large","c4.large","c5.large","c5d.large","c5n.large","c5a.large"]
 spot: true

`instanceTypes` defaults to [`m5.large`]
- name: spot-2
 spot: true

On-Demand instances
- name: on-demand
 instanceTypes: ["c3.large", "c4.large", "c5.large"]

eksctl create cluster -f spot-cluster.yaml

Managed Nodegroups 99

Eksctl User Guide Amazon EKS

Note

Unmanaged nodegroups do not support the spot and instanceTypes fields, instead the
instancesDistribution field is used to configure Spot instances. See below

Further information

• EKS Spot Nodegroups

• EKS Managed Nodegroup Capacity Types

Unmanaged Nodegroups

eksctl has support for spot instances through the MixedInstancesPolicy for Auto Scaling Groups.

Here is an example of a nodegroup that uses 50% spot instances and 50% on demand instances:

nodeGroups:
 - name: ng-1
 minSize: 2
 maxSize: 5
 instancesDistribution:
 maxPrice: 0.017
 instanceTypes: ["t3.small", "t3.medium"] # At least one instance type should be
 specified
 onDemandBaseCapacity: 0
 onDemandPercentageAboveBaseCapacity: 50
 spotInstancePools: 2

Note that the nodeGroups.X.instanceType field shouldn’t be set when using the
instancesDistribution field.

This example uses GPU instances:

nodeGroups:
 - name: ng-gpu
 instanceType: mixed
 desiredCapacity: 1
 instancesDistribution:

Unmanaged Nodegroups 100

https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-provisioning-and-managing-ec2-spot-instances-in-managed-node-groups/
https://docs.aws.eu/eks/latest/userguide/managed-node-groups.html#managed-node-group-capacity-types

Eksctl User Guide Amazon EKS

 instanceTypes:
 - p2.xlarge
 - p2.8xlarge
 - p2.16xlarge
 maxPrice: 0.50

This example uses the capacity-optimized spot allocation strategy:

nodeGroups:
 - name: ng-capacity-optimized
 minSize: 2
 maxSize: 5
 instancesDistribution:
 maxPrice: 0.017
 instanceTypes: ["t3.small", "t3.medium"] # At least one instance type should be
 specified
 onDemandBaseCapacity: 0
 onDemandPercentageAboveBaseCapacity: 50
 spotAllocationStrategy: "capacity-optimized"

This example uses the capacity-optimized-prioritized spot allocation strategy:

nodeGroups:
 - name: ng-capacity-optimized-prioritized
 minSize: 2
 maxSize: 5
 instancesDistribution:
 maxPrice: 0.017
 instanceTypes: ["t3a.small", "t3.small"] # At least two instance types should be
 specified
 onDemandBaseCapacity: 0
 onDemandPercentageAboveBaseCapacity: 0
 spotAllocationStrategy: "capacity-optimized-prioritized"

Use the capacity-optimized-prioritized allocation strategy and then set the order of
instance types in the list of launch template overrides from highest to lowest priority (first to
last in the list). Amazon EC2 Auto Scaling honors the instance type priorities on a best-effort
basis but optimizes for capacity first. This is a good option for workloads where the possibility of
disruption must be minimized, but also the preference for certain instance types matters.For more
information, see ASG Purchase Options.

Unmanaged Nodegroups 101

https://docs.aws.eu/autoscaling/ec2/userguide/asg-purchase-options.html#asg-spot-strategy

Eksctl User Guide Amazon EKS

Note that the spotInstancePools field shouldn’t be set when using the
spotAllocationStrategy field. If the spotAllocationStrategy is not specified, EC2 will
default to use the lowest-price strategy.

Here is a minimal example:

nodeGroups:
 - name: ng-1
 instancesDistribution:
 instanceTypes: ["t3.small", "t3.medium"] # At least one instance type should be
 specified

To distinguish nodes between spot or on-demand instances you can use the kubernetes label
node-lifecycle which will have the value spot or on-demand depending on its type.

Parameters in instancesDistribution

Please see the cluster config schema for details.

GPU Support

Eksctl supports selecting GPU instance types for nodegroups. Simply supply a compatible instance
type to the create command, or via the config file.

eksctl create cluster --node-type=p2.xlarge

Note

It is no longer necessary to subscribe to the marketplace AMI for GPU support on EKS.

The AMI resolvers (auto and auto-ssm) will see that you want to use a GPU instance type and
they will select the correct EKS optimized accelerated AMI.

Eksctl will detect that an AMI with a GPU-enabled instance type has been selected and will install
the NVIDIA Kubernetes device plugin automatically.

GPU Support 102

https://github.com/NVIDIA/k8s-device-plugin

Eksctl User Guide Amazon EKS

Note

Windows and Ubuntu AMIs do not ship with GPU drivers installed, hence running GPU-
accelerated workloads will not work out of the box.

To disable the automatic plugin installation, and manually install a specific version, use --
install-nvidia-plugin=false with the create command. For example:

eksctl create cluster --node-type=p2.xlarge --install-nvidia-plugin=false

and, for versions 0.15.0 and above,

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/<VERSION>/
deployments/static/nvidia-device-plugin.yml

or, for older versions,

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/<VERSION>/
nvidia-device-plugin.yml

The installation of the NVIDIA Kubernetes device plugin will be skipped if the cluster only includes
Bottlerocket nodegroups, since Bottlerocket already handles the execution of the device plugin.
If you use different AMI families in your cluster’s configurations, you may need to use taints and
tolerations to keep the device plugin from running on Bottlerocket nodes.

ARM Support

This topic covers how to create a cluster with an ARM node group, and how to add an ARM node
group to an existing cluster.

EKS supports 64-bit ARM architecture with its Graviton processors. To create a cluster, select one of
the Graviton-based instance types (a1, t4g, m6g, m7g, m6gd, c6g, c7g, c6gd, r6g, r7g, r6gd, m8g,
r8g, c8g) and run:

eksctl create cluster --node-type=a1.large

or use a config file:

ARM Support 103

https://github.com/NVIDIA/k8s-device-plugin
https://aws.amazon.com/ec2/graviton/

Eksctl User Guide Amazon EKS

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-arm-1
 region: us-west-2

nodeGroups:
 - name: ng-arm-1
 instanceType: m6g.medium
 desiredCapacity: 1

eksctl create cluster -f cluster-arm-1.yaml

ARM is also supported in managed nodegroups:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-arm-2
 region: us-west-2

managedNodeGroups:
 - name: mng-arm-1
 instanceType: m6g.medium
 desiredCapacity: 1

eksctl create cluster -f cluster-arm-2.yaml

The AMI resolvers, auto and auto-ssm, will infer the correct AMI based on the ARM instance type.
Only AmazonLinux2023, AmazonLinux2 and Bottlerocket families have EKS optimized AMIs for
ARM.

Note

ARM is supported for clusters with version 1.15 and higher.

ARM Support 104

Eksctl User Guide Amazon EKS

Auto Scaling

Enable Auto Scaling

You can create a cluster (or nodegroup in an existing cluster) with IAM role that will allow use of
cluster autoscaler:

eksctl create cluster --asg-access

This flag also sets k8s.io/cluster-autoscaler/enabled and k8s.io/cluster-
autoscaler/<clusterName> tags, so nodegroup discovery should work.

Once the cluster is running, you will need to install Cluster Autoscaler itself.

You should also add the following to your managed or unmanaged nodegroup definition(s) to add
the tags required for the Cluster Autoscaler to scale the nodegroup:

nodeGroups:
 - name: ng1-public
 iam:
 withAddonPolicies:
 autoScaler: true

Scaling up from 0

If you would like to be able to scale your node group up from 0 and you have labels and/or taints
defined on your nodegroups, you will need to propagate these as tags on your Auto Scaling Groups
(ASGs).

One way to do this is by setting the ASG tags in the tags field of your nodegroup definitions. For
example, given a nodegroup with the following labels and taints:

nodeGroups:
 - name: ng1-public
 ...
 labels:
 my-cool-label: pizza
 taints:
 key: feaster
 value: "true"
 effect: NoSchedule

Auto Scaling 105

https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md

Eksctl User Guide Amazon EKS

You would need to add the following ASG tags:

nodeGroups:
 - name: ng1-public
 ...
 labels:
 my-cool-label: pizza
 taints:
 feaster: "true:NoSchedule"
 tags:
 k8s.io/cluster-autoscaler/node-template/label/my-cool-label: pizza
 k8s.io/cluster-autoscaler/node-template/taint/feaster: "true:NoSchedule"

For both managed and unmanaged nodegroups, this can be done automatically by setting
propagateASGTags to true, which will add the labels and taints as tags to the Auto Scaling
group:

nodeGroups:
 - name: ng1-public
 ...
 labels:
 my-cool-label: pizza
 taints:
 feaster: "true:NoSchedule"
 propagateASGTags: true

Zone-aware Auto Scaling

If your workloads are zone-specific you’ll need to create separate nodegroups for each zone. This is
because the cluster-autoscaler assumes that all nodes in a group are exactly equivalent. So,
for example, if a scale-up event is triggered by a pod which needs a zone-specific PVC (e.g. an EBS
volume), the new node might get scheduled in the wrong AZ and the pod will fail to start.

You won’t need a separate nodegroup for each AZ if your environment meets the following criteria:

• No zone-specific storage requirements.

• No required podAffinity with topology other than host.

• No required nodeAffinity on zone label.

• No nodeSelector on a zone label.

Enable Auto Scaling 106

Eksctl User Guide Amazon EKS

(Read more here and here.)

If you meet all of the above requirements (and possibly others) then you should be safe with a
single nodegroup which spans multiple AZs. Otherwise you’ll want to create separate, single-AZ
nodegroups:

BEFORE:

nodeGroups:
 - name: ng1-public
 instanceType: m5.xlarge
 # availabilityZones: ["eu-west-2a", "eu-west-2b"]

AFTER:

nodeGroups:
 - name: ng1-public-2a
 instanceType: m5.xlarge
 availabilityZones: ["eu-west-2a"]
 - name: ng1-public-2b
 instanceType: m5.xlarge
 availabilityZones: ["eu-west-2b"]

Custom AMI support

Setting the node AMI ID

The --node-ami flag enables a number of advanced use cases such as using a custom AMI or
querying AWS in realtime to determine which AMI to use. The flag can be used for both non-GPU
and GPU images.

The flag can take the AMI image id for an image to explicitly use. It also can take the following
'special' keywords:

Keyword Description

auto Indicates that the AMI to use for the nodes
should be found by querying AWS EC2. This
relates to the auto resolver.

Custom AMI support 107

https://github.com/kubernetes/autoscaler/pull/1802#issuecomment-474295002
https://github.com/eksctl-io/eksctl/pull/647#issuecomment-474698054

Eksctl User Guide Amazon EKS

Keyword Description

auto-ssm Indicates that the AMI to use for the nodes
should be found by querying AWS SSM
Parameter Store.

Note

At the moment, EKS managed nodegroups only support the following AMI Families
when working with custom AMIs: AmazonLinux2023, AmazonLinux2, Bottlerocket,
Ubuntu2004, UbuntuPro2004, Ubuntu2204 and Ubuntu2404

When setting --node-ami to an ID string, eksctl will assume that a custom AMI has been
requested. For AmazonLinux2 and Ubuntu nodes, both EKS managed and self-managed,
this will mean that overrideBootstrapCommand is required. For AmazonLinux2023, since
it stops using the /etc/eks/bootstrap.sh script for node bootstrapping, in favour of a
nodeadm initialization process (for more information, please refer to node bootstrapping docs),
overrideBootstrapCommand is not supported.

CLI flag examples:

eksctl create cluster --node-ami=auto

with a custom ami id
eksctl create cluster --node-ami=ami-custom1234

Config file example:

nodeGroups:
 - name: ng1
 instanceType: p2.xlarge
 amiFamily: AmazonLinux2
 ami: auto
 - name: ng2
 instanceType: m5.large
 amiFamily: AmazonLinux2
 ami: ami-custom1234

Setting the node AMI ID 108

https://github.com/eksctl-io/eksctl/blob/main/pkg/nodebootstrap/README.md

Eksctl User Guide Amazon EKS

managedNodeGroups:
 - name: m-ng-2
 amiFamily: AmazonLinux2
 ami: ami-custom1234
 instanceType: m5.large
 overrideBootstrapCommand: |
 #!/bin/bash
 /etc/eks/bootstrap.sh <cluster-name>

The --node-ami flag can also be used with eksctl create nodegroup.

Setting the node AMI Family

The --node-ami-family can take following keywords:

Keyword Description

AmazonLinux2 Indicates that the EKS AMI image based on
Amazon Linux 2 should be used (default).

AmazonLinux2023 Indicates that the EKS AMI image based
on Amazon Linux 2023 should be used.

Ubuntu2004 Indicates that the EKS AMI image based
on Ubuntu 20.04 LTS (Focal) should
be used (supported for EKS ⇐ 1.29).

UbuntuPro2004 Indicates that the EKS AMI image based
on Ubuntu Pro 20.04 LTS (Focal) should be

used (available for EKS >= 1.27, ⇐ 1.29).

Ubuntu2204 Indicates that the EKS AMI image based
on Ubuntu 22.04 LTS (Jammy) should

be used (available for EKS >= 1.29).

UbuntuPro2204 Indicates that the EKS AMI image based
on Ubuntu Pro 22.04 LTS (Jammy) should

be used (available for EKS >= 1.29).

Setting the node AMI Family 109

Eksctl User Guide Amazon EKS

Keyword Description

Ubuntu2404 Indicates that the EKS AMI image based
on Ubuntu 24.04 LTS (Noble) should
be used (available for EKS >= 1.31).

UbuntuPro2404 Indicates that the EKS AMI image based
on Ubuntu Pro 24.04 LTS (Noble) should

be used (available for EKS >= 1.31).

Bottlerocket Indicates that the EKS AMI image
based on Bottlerocket should be used.

WindowsServer2019FullContainer Indicates that the EKS AMI image
based on Windows Server 2019
Full Container should be used.

WindowsServer2019CoreContainer Indicates that the EKS AMI image
based on Windows Server 2019
Core Container should be used.

WindowsServer2022FullContainer Indicates that the EKS AMI image
based on Windows Server 2022
Full Container should be used.

WindowsServer2022CoreContainer Indicates that the EKS AMI image
based on Windows Server 2022
Core Container should be used.

CLI flag example:

eksctl create cluster --node-ami-family=AmazonLinux2

Config file example:

nodeGroups:
 - name: ng1
 instanceType: m5.large
 amiFamily: AmazonLinux2

Setting the node AMI Family 110

Eksctl User Guide Amazon EKS

managedNodeGroups:
 - name: m-ng-2
 instanceType: m5.large
 amiFamily: Ubuntu2204

The --node-ami-family flag can also be used with eksctl create nodegroup. eksctl
requires AMI Family to be explicitly set via config file or via --node-ami-family CLI flag,
whenever working with a custom AMI.

Note

At the moment, EKS managed nodegroups only support the following AMI Families
when working with custom AMIs: AmazonLinux2023, AmazonLinux2, Bottlerocket,
Ubuntu2004, UbuntuPro2004, Ubuntu2204 and Ubuntu2404

Windows custom AMI support

Only self-managed Windows nodegroups can specify a custom AMI. amiFamily should be set to a
valid Windows AMI family.

The following PowerShell variables will be available to the bootstrap script:

$EKSBootstrapScriptFile
$EKSClusterName
$APIServerEndpoint
$Base64ClusterCA
$ServiceCIDR
$KubeletExtraArgs
$KubeletExtraArgsMap: A hashtable containing arguments for the kubelet, e.g., @{ 'node-
labels' = ''; 'register-with-taints' = ''; 'max-pods' = '10'}
$DNSClusterIP
$ContainerRuntime

Config file example:

nodeGroups:
 - name: custom-windows
 amiFamily: WindowsServer2022FullContainer
 ami: ami-01579b74557facaf7
 overrideBootstrapCommand: |

Windows custom AMI support 111

Eksctl User Guide Amazon EKS

 & $EKSBootstrapScriptFile -EKSClusterName "$EKSClusterName" -APIServerEndpoint
 "$APIServerEndpoint" -Base64ClusterCA "$Base64ClusterCA" -ContainerRuntime
 "containerd" -KubeletExtraArgs "$KubeletExtraArgs" 3>&1 4>&1 5>&1 6>&1

Bottlerocket custom AMI support

For Bottlerocket nodes, the overrideBootstrapCommand is not supported. Instead, to
designate their own bootstrap container, one should use the bottlerocket field as part of the
configuration file. E.g.

 nodeGroups:
 - name: bottlerocket-ng
 ami: ami-custom1234
 amiFamily: Bottlerocket
 bottlerocket:
 enableAdminContainer: true
 settings:
 bootstrap-containers:
 bootstrap:
 source: <MY-CONTAINER-URI>

Windows Worker Nodes

From version 1.14, Amazon EKS supports Windows Nodes that allow running Windows containers.
In addition to having Windows nodes, a Linux node in the cluster is required to run CoreDNS,
as Microsoft doesn’t support host-networking mode yet. Thus, a Windows EKS cluster will be
a mixture of Windows nodes and at least one Linux node. The Linux nodes are critical to the
functioning of the cluster, and thus, for a production-grade cluster, it’s recommended to have at
least two t2.large Linux nodes for HA.

Note

You no longer need to install the VPC resource controller on Linux worker nodes to run
Windows workloads in EKS clusters created after October 22, 2021. You can enable
Windows IP address management on the EKS control plane via a ConfigMap setting (see
link:eks/latest/userguide/windows-support.html for details). eksctl will automatically
patch the ConfigMap to enable Windows IP address management when a Windows
nodegroup is created.

Bottlerocket custom AMI support 112

https://docs.aws.eu/eks/latest/userguide/windows-support.html

Eksctl User Guide Amazon EKS

Creating a new cluster with Windows support

The config file syntax allows creating a fully-functioning cluster with Windows support in a single
command:

cluster.yaml
An example of ClusterConfig containing Windows and Linux node groups to support
 Windows workloads

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: windows-cluster
 region: us-west-2

nodeGroups:
 - name: windows-ng
 amiFamily: WindowsServer2019FullContainer
 minSize: 2
 maxSize: 3

managedNodeGroups:
 - name: linux-ng
 instanceType: t2.large
 minSize: 2
 maxSize: 3

 - name: windows-managed-ng
 amiFamily: WindowsServer2019FullContainer
 minSize: 2
 maxSize: 3

eksctl create cluster -f cluster.yaml

To create a new cluster with Windows un-managed nodegroup without using a config file, issue the
following commands:

eksctl create cluster --managed=false --name=windows-cluster --node-ami-
family=WindowsServer2019CoreContainer

Creating a new cluster with Windows support 113

Eksctl User Guide Amazon EKS

Adding Windows support to an existing Linux cluster

To enable running Windows workloads on an existing cluster with Linux nodes (AmazonLinux2
AMI family), you need to add a Windows nodegroup.

NEW Support for Windows managed nodegroup has been added (--managed=true or omit the
flag).

eksctl create nodegroup --managed=false --cluster=existing-cluster --node-ami-
family=WindowsServer2019CoreContainer
eksctl create nodegroup --cluster=existing-cluster --node-ami-
family=WindowsServer2019CoreContainer

To ensure workloads are scheduled on the right OS, they must have a nodeSelector targeting the
OS it must run on:

Targeting Windows
 nodeSelector:
 kubernetes.io/os: windows
 kubernetes.io/arch: amd64

Targeting Linux
 nodeSelector:
 kubernetes.io/os: linux
 kubernetes.io/arch: amd64

If you are using a cluster older than 1.19 the kubernetes.io/os and kubernetes.io/arch
labels need to be replaced with beta.kubernetes.io/os and beta.kubernetes.io/arch
respectively.

Further information

• EKS Windows Support

Additional Volume Mappings

As an additional configuration option, when dealing with volume mappings, it’s possible to
configure extra mappings when the nodegroup is created.

To do this, set the field additionalVolumes as follows:

Adding Windows support to an existing Linux cluster 114

https://docs.aws.eu/eks/latest/userguide/windows-support.html

Eksctl User Guide Amazon EKS

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: dev-cluster
 region: eu-north-1

managedNodeGroups:
 - name: ng-1-workers
 labels: { role: workers }
 instanceType: m5.xlarge
 desiredCapacity: 10
 volumeSize: 80
 additionalVolumes:
 - volumeName: '/tmp/mount-1' # required
 volumeSize: 80
 volumeType: 'gp3'
 volumeEncrypted: true
 volumeKmsKeyID: 'id'
 volumeIOPS: 3000
 volumeThroughput: 125
 - volumeName: '/tmp/mount-2' # required
 volumeSize: 80
 volumeType: 'gp2'
 snapshotID: 'snapshot-id'

For more details about selecting volumeNames, see the device naming documentation. To find out
more about EBS volumes, Instance volume limits or Block device mappings visit this page.

EKS Hybrid Nodes

Introduction

AWS EKS introduces Hybrid Nodes, a new feature that enables you to run on-premises and edge
applications on customer-managed infrastructure with the same AWS EKS clusters, features, and
tools you use in the AWS Cloud. AWS EKS Hybird Nodes brings an AWS-managed Kubernetes
experience to on-premises environments for customers to simplify and standardize how you run
applications across on-premises, edge and cloud environments. Read more at EKS Hybrid Nodes.

To facilitate support for this feature, eksctl introduces a new top-level field called
remoteNetworkConfig. Any Hybrid Nodes related configuration shall be set up via this field,

EKS Hybrid Nodes 115

https://docs.aws.eu/AWSEC2/latest/UserGuide/device_naming.html
https://docs.aws.eu/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.eu/eks/latest/userguide/hybrid-nodes-overview.html

Eksctl User Guide Amazon EKS

as part of the config file; there are no CLI flags counterparts. Additionally, at launch, any remote
network config can only be set up during cluster creation and cannot be updated afterwards. This
means, you won’t be able to update existing clusters to use Hybrid Nodes.

The remoteNetworkConfig section of the config file allows you to setup the two core areas when
it comes to joining remote nodes to you EKS clusters: networking and credentials.

Networking

EKS Hybrid Nodes is flexible to your preferred method of connecting your on-premises network(s)
to an AWS VPC. There are several documented options available, including AWS Site-to-Site
VPN and AWS Direct Connect, and you can choose the method that best fits your use case. In
most of the methods you might choose, your VPC will be attached to either a virtual private
gateway (VGW) or a transit gateway (TGW). If you rely on eksctl to create a VPC for you, eksctl will
also configure, within the scope of your VPC, any networking related pre-requisites in order to
facilitate communication between your EKS control plane and the remote nodes i.e.

• ingress/egress SG rules

• routes in the private subnets' route tables

• the VPC gateway attachment to the given TGW or VGW

Example config file:

remoteNetworkConfig:
 vpcGatewayID: tgw-xxxx # either VGW or TGW to be attached to your VPC
 remoteNodeNetworks:
 # eksctl will create, behind the scenes, SG rules, routes, and a VPC gateway
 attachment,
 # to facilitate communication between remote network(s) and EKS control plane, via
 the attached gateway
 - cidrs: ["10.80.146.0/24"]
 remotePodNetworks:
 - cidrs: ["10.86.30.0/23"]

If your connectivity method of choice does not involve using a TGW or VGW, you must not rely on
eksctl to create the VPC for you, and instead provide a pre-existing one. On a related note, if you
are using a pre-existing VPC, eksctl won’t make any amendments to it, and ensuring all networking
requirements are in place falls under your responsibility.

Networking 116

https://docs.aws.eu/whitepapers/latest/aws-vpc-connectivity-options/network-to-amazon-vpc-connectivity-options.html

Eksctl User Guide Amazon EKS

Note

eksctl does not setup any networking infrastructure outside your AWS VPC (i.e. any
infrastructure from VGW/TGW to the remote networks)

Credentials

EKS Hybrid Nodes use the AWS IAM Authenticator and temporary IAM credentials provisioned by
either AWS SSM or AWS IAM Roles Anywhere to authenticate with the EKS cluster. Similar to the
self-managed nodegroups, if not otherwise provided, eksctl will create for you a Hybrid Nodes
IAM Role to be assumed by the remote nodes. Additioanlly, when using IAM Roles Anywhere as
your credentials provider, eksctl will setup a profile, and trust anchor based on a given certificate
authority bundle (iam.caBundleCert) e.g.

remoteNetworkConfig:
 iam:
 # the provider for temporary IAM credentials. Default is SSM.
 provider: IRA
 # the certificate authority bundle that serves as the root of trust,
 # used to validate the X.509 certificates provided by your nodes.
 # can only be set when provider is IAMRolesAnywhere.
 caBundleCert: xxxx

The ARN of the Hybrid Nodes Role created by eksctl is needed later in the process of joining your
remote nodes to the cluster, to setup NodeConfig for nodeadm, and to create activations (if using
SSM). To fetch it, use:

aws cloudformation describe-stacks \
 --stack-name eksctl-<CLUSTER_NAME>-cluster \
 --query 'Stacks[].Outputs[?OutputKey==`RemoteNodesRoleARN`].[OutputValue]' \
 --output text

Similarly, if using IAM Roles Anywhere, you can fetch the ARN of the trust anchor
and of the anywhere profile created by eksctl, amending the previous command
by replacing RemoteNodesRoleARN with RemoteNodesTrustAnchorARN or
RemoteNodesAnywhereProfileARN, respectively.

Credentials 117

Eksctl User Guide Amazon EKS

If you have a pre-existing IAM Roles Anywhere configuration in place, or you are using SSM, you
can provide a IAM Role for Hybrid nodes via remoteNetworkConfig.iam.roleARN. Bear in mind
that in this scenario, eksctl won’t create the trust anchor and anywhere profile for you. e.g.

remoteNetworkConfig:
 iam:
 roleARN: arn:aws:iam::000011112222:role/HybridNodesRole

To map the role to a Kubernetes identity and authorise the remote nodes to join the EKS
cluster, eksctl creates an access entry with Hybrid Nodes IAM Role as principal ARN and of type
HYBRID_LINUX. i.e.

eksctl get accessentry --cluster my-cluster --principal-arn
 arn:aws:iam::000011112222:role/eksctl-my-cluster-clust-HybridNodesSSMRole-XiIAg0d29PkO
 --output json
[
 {
 "principalARN": "arn:aws:iam::000011112222:role/eksctl-my-cluster-clust-
HybridNodesSSMRole-XiIAg0d29PkO",
 "kubernetesGroups": [
 "system:nodes"
]
 }
]

Add-ons support

Container Networking Interface (CNI): The AWS VPC CNI can’t be used with hybrid nodes. The core
capabilities of Cilium and Calico are supported for use with hybrid nodes. You can manage your
CNI with your choice of tooling such as Helm. For more information, see Configure a CNI for hybrid
nodes.

Note

If you install VPC CNI in your cluster for your self-managed or EKS-managed nodegroups,
you have to use v1.19.0-eksbuild.1 or later, as this includes an udpate to the add-on’s
daemonset to exclude it from being installed on Hybrid Nodes.

Add-ons support 118

https://docs.aws.eu/eks/latest/userguide/hybrid-nodes-cni.html
https://docs.aws.eu/eks/latest/userguide/hybrid-nodes-cni.html

Eksctl User Guide Amazon EKS

Further references

• EKS Hybrid Nodes UserDocs

• Launch Announcement

Support for Node Repair Config in EKS Managed Nodegroups

EKS Managed Nodegroups now supports Node Repair, where the health of managed nodes are
monitored, and unhealthy worker nodes are replaced or rebooted in response.

Creating a cluster a managed nodegroup with node repair enabled

To create a cluster with a managed nodegroup using node repair, pass the --enable-node-
repair flag:

eksctl create cluster --enable-node-repair

To create a managed nodegroup using node repair on an existing cluster:

eksctl create nodegroup --cluster=<clusterName> --enable-node-repair

To create a cluster with a managed nodegroup using node repair via a config file:

node-repair-nodegroup-cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-44
 region: us-west-2

managedNodeGroups:
- name: ng-1
 nodeRepairConfig:
 enabled: true

eksctl create cluster -f node-repair-nodegroup-cluster.yaml

Further references 119

https://docs.aws.eu/eks/latest/userguide/hybrid-nodes-overview.html
https://aws.amazon.com/about-aws/whats-new/2024/12/amazon-eks-hybrid-nodes

Eksctl User Guide Amazon EKS

Further information

• EKS Managed Nodegroup Node Health

Further information 120

https://docs.aws.eu/eks/latest/userguide/node-health.html

Eksctl User Guide Amazon EKS

Networking

This chapter includes information about how Eksctl creates Virtual Private Cloud (VPC) networks
for EKS clusters.

Topics:

• the section called “VPC Configuration”

• Modify the VPC CIDR range and configure IPv6 addressing

• Use an existing VPC

• Customize the VPC, subnets, security groups, and NAT gateways for the new EKS cluster

• the section called “Subnet Settings”

• Use private subnets for the initial nodegroup to isolate it from the public internet

• Customize subnet topology by listing multiple subnets per availability zone and specifying
subnets in nodegroup configurations

• Restrict nodegroups to specific named subnets in the VPC configuration

• When using private subnets for nodegroups, set privateNetworking to true

• Provide a complete subnet specification with both public and private configurations in the
VPC spec

• Only one of subnets or availabilityZones can be provided in nodegroup configuration

• the section called “Cluster Access”

• Manage public and private access to the Kubernetes API server endpoints in an EKS cluster

• Restrict access to the EKS Kubernetes public API endpoint by specifying allowed CIDR ranges

• Update the API server endpoint access configuration and public access CIDR restrictions for an
existing cluster

• the section called “Control plane networking”

• Update the subnets used by the EKS control plane for a cluster

• the section called “IPv6 Support”

• Specify the IP version (IPv4 or IPv6) to be used when creating a VPC with EKS cluster

Topics: 121

Eksctl User Guide Amazon EKS

VPC Configuration

Dedicated VPC for Cluster

By default eksctl create cluster will create a dedicated VPC for the cluster. This is done in
order to avoid interference with existing resources for a variety of reasons, including security, but
also because it is challenging to detect all settings in an existing VPC.

• The default VPC CIDR used by eksctl is 192.168.0.0/16.

• It is divided into 8 (/19) subnets (3 private, 3 public & 2 reserved).

• The initial nodegroup is created in public subnets.

• SSH access is disabled unless --allow-ssh is specified.

• The nodegroup by default allows inbound traffic from the control plane security group on ports
1025 - 65535.

Note

In us-east-1 eksctl only creates 2 public and 2 private subnets by default.

Change VPC CIDR

If you need to set up peering with another VPC, or simply need a larger or smaller range of IPs, you
can use --vpc-cidr flag to change it. Please refer to the AWS docs for guides on choosing CIDR
blocks which are permitted for use in an AWS VPC.

If you are creating an IPv6 cluster you can configure VPC.IPv6Cidr in the cluser config file. This
setting is only in the config file, not in a CLI flag.

If you own an IPv6 IP address block, you can also bring your own IPv6 pool. See Bring your own IP
addresses (BYOIP) to Amazon EC2 on how to import your own pool. Then use the VPC.IPv6Cidr
in the cluser config file to configure Eksctl.

Use an existing VPC: shared with kops

You can use the VPC of an existing Kubernetes cluster managed by kops. This feature is provided to
facilitate migration and/or cluster peering.

VPC Configuration 122

https://docs.aws.eu/vpc/latest/userguide/VPC_Subnets.html#VPC_Sizing
https://docs.aws.eu/AWSEC2/latest/UserGuide/ec2-byoip.html
https://docs.aws.eu/AWSEC2/latest/UserGuide/ec2-byoip.html
https://github.com/kubernetes/kops

Eksctl User Guide Amazon EKS

If you have previously created a cluster with kops, e.g. using commands similar to this:

export KOPS_STATE_STORE=s3://kops
kops create cluster cluster-1.k8s.local --zones=us-west-2c,us-west-2b,us-west-2a --
networking=weave --yes

You can create an EKS cluster in the same AZs using the same VPC subnets (NOTE: at least 2 AZs/
subnets are required):

eksctl create cluster --name=cluster-2 --region=us-west-2 --vpc-from-kops-
cluster=cluster-1.k8s.local

Use existing VPC: other custom configuration

eksctl provides some, but not complete, flexibility for custom VPC and subnet topologies.

You can use an existing VPC by supplying private and/or public subnets using the --vpc-
private-subnets and --vpc-public-subnets flags. It is up to you to ensure the subnets
you use are categorised correctly, as there is no simple way to verify whether a subnet is actually
private or public, because configurations vary.

Given these flags, eksctl create cluster will determine the VPC ID automatically, but it will
not create any routing tables or other resources, such as internet/NAT gateways. It will, however,
create dedicated security groups for the initial nodegroup and the control plane.

You must ensure to provide at least 2 subnets in different AZs and this condition is checked by
EKS. If you use an existing VPC, the following requirements aren’t enforced or checked by EKS
or Eksctl and EKS creates the cluster. Some basic functions of the cluster work without these
requirements. (For example, tagging is not strictly necessary, tests have shown that it is possible to
create a functional cluster without any tags set on the subnets, however there is no guarantee that
this will always hold and tagging is recommended.)

Standard requirements:

• all given subnets must be in the same VPC, within the same block of IPs

• a sufficient number IP addresses are available, based on needs

• sufficient number of subnets (minimum 2), based on needs

• subnets are tagged with at least the following:

• kubernetes.io/cluster/<name> tag set to either shared or owned

Use existing VPC: other custom configuration 123

Eksctl User Guide Amazon EKS

• kubernetes.io/role/internal-elb tag set to 1 for private subnets

• kubernetes.io/role/elb tag set to 1 for public subnets

• correctly configured internet and/or NAT gateways

• routing tables have correct entries and the network is functional

• NEW: all public subnets should have the property MapPublicIpOnLaunch enabled (i.e. Auto-
assign public IPv4 address in the AWS console). Managed node groups and Fargate don’t
assign public IPv4 addresses, the property must be set on the subnet.

There may be other requirements imposed by EKS or Kubernetes, and it is entirely up to you to
stay up-to-date on any requirements and/or recommendations, and implement those as needed/
possible.

Default security group settings applied by eksctl may or may not be sufficient for sharing access
with resources in other security groups. If you wish to modify the ingress/egress rules of the
security groups, you might need to use another tool to automate changes, or do it via EC2 console.

When in doubt, don’t use a custom VPC. Using eksctl create cluster without any --vpc-*
flags will always configure the cluster with a fully-functional dedicated VPC.

Examples

Create a cluster using a custom VPC with 2x private and 2x public subnets:

eksctl create cluster \
 --vpc-private-subnets=subnet-0ff156e0c4a6d300c,subnet-0426fb4a607393184 \
 --vpc-public-subnets=subnet-0153e560b3129a696,subnet-009fa0199ec203c37

or use the following equivalent config file:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: my-test
 region: us-west-2

vpc:
 id: "vpc-11111"
 subnets:

Use existing VPC: other custom configuration 124

Eksctl User Guide Amazon EKS

 private:
 us-west-2a:
 id: "subnet-0ff156e0c4a6d300c"
 us-west-2c:
 id: "subnet-0426fb4a607393184"
 public:
 us-west-2a:
 id: "subnet-0153e560b3129a696"
 us-west-2c:
 id: "subnet-009fa0199ec203c37"

nodeGroups:
 - name: ng-1

Create a cluster using a custom VPC with 3x private subnets and make initial nodegroup use those
subnets:

eksctl create cluster \
 --vpc-private-
subnets=subnet-0ff156e0c4a6d300c,subnet-0549cdab573695c03,subnet-0426fb4a607393184 \
 --node-private-networking

or use the following equivalent config file:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: my-test
 region: us-west-2

vpc:
 id: "vpc-11111"
 subnets:
 private:
 us-west-2d:
 id: "subnet-0ff156e0c4a6d300c"
 us-west-2c:
 id: "subnet-0549cdab573695c03"
 us-west-2a:
 id: "subnet-0426fb4a607393184"

nodeGroups:

Use existing VPC: other custom configuration 125

Eksctl User Guide Amazon EKS

 - name: ng-1
 privateNetworking: true

Create a cluster using a custom VPC 4x public subnets:

eksctl create cluster \
 --vpc-public-
subnets=subnet-0153e560b3129a696,subnet-0cc9c5aebe75083fd,subnet-009fa0199ec203c37,subnet-018fa0176ba320e45

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: my-test
 region: us-west-2

vpc:
 id: "vpc-11111"
 subnets:
 public:
 us-west-2d:
 id: "subnet-0153e560b3129a696"
 us-west-2c:
 id: "subnet-0cc9c5aebe75083fd"
 us-west-2a:
 id: "subnet-009fa0199ec203c37"
 us-west-2b:
 id: "subnet-018fa0176ba320e45"

nodeGroups:
 - name: ng-1

More examples can be found in the repo’s examples folder:

• using an existing VPC

• using a custom VPC CIDR

Custom Shared Node Security Group

eksctl will create and manage a shared node security group that allows communication between
unmanaged nodes and the cluster control plane and managed nodes.

Custom Shared Node Security Group 126

https://github.com/eksctl-io/eksctl/blob/master/examples/04-existing-vpc.yaml
https://github.com/eksctl-io/eksctl/blob/master/examples/02-custom-vpc-cidr-no-nodes.yaml

Eksctl User Guide Amazon EKS

If you wish to provide your own custom security group instead, you may override the
sharedNodeSecurityGroup field in the config file:

vpc:
 sharedNodeSecurityGroup: sg-0123456789

By default, when creating the cluster, eksctl will add rules to this security group to allow
communication to and from the default cluster security group that EKS creates. The default cluster
security group is used by both the EKS control plane and managed node groups.

If you wish to manage the security group rules yourself, you may prevent eksctl from creating the
rules by setting manageSharedNodeSecurityGroupRules to false in the config file:

vpc:
 sharedNodeSecurityGroup: sg-0123456789
 manageSharedNodeSecurityGroupRules: false

NAT Gateway

The NAT Gateway for a cluster can be configured to be Disable, Single (default) or
HighlyAvailable. The HighlyAvailable option will deploy a NAT Gateway in each
Availability Zone of the Region, so that if an AZ is down, nodes in the other AZs will still be able to
communicate to the Internet.

It can be specified through the --vpc-nat-mode CLI flag or in the cluster config file like the
example below:

vpc:
 nat:
 gateway: HighlyAvailable # other options: Disable, Single (default)

See the complete example here.

Note

Specifying the NAT Gateway is only supported during cluster creation. It isn’t touched
during a cluster upgrade.

NAT Gateway 127

https://github.com/eksctl-io/eksctl/blob/master/examples/09-nat-gateways.yaml

Eksctl User Guide Amazon EKS

Subnet Settings

Use private subnets for initial nodegroup

If you prefer to isolate the initial nodegroup from the public internet, you can use the --node-
private-networking flag. When used in conjunction with the --ssh-access flag, the SSH port
can only be accessed from inside the VPC.

Note

Using the --node-private-networking flag will result in outgoing traffic to go through
the NAT gateway using its Elastic IP. On the other hand, if the nodes are in a public subnet,
the outgoing traffic won’t go through the NAT gateway and hence the outgoing traffic has
the IP of each individual node.

Custom subnet topology

eksctl version 0.32.0 introduced further subnet topology customisation with the ability to:

• List multiple subnets per AZ in VPC configuration

• Specify subnets in nodegroup configuration

In earlier versions custom subnets had to be provided by availability zone, meaning just one subnet
per AZ could be listed. From 0.32.0 the identifying keys can be arbitrary.

vpc:
 id: "vpc-11111"
 subnets:
 public:
 public-one: # arbitrary key
 id: "subnet-0153e560b3129a696"
 public-two:
 id: "subnet-0cc9c5aebe75083fd"
 us-west-2b: # or list by AZ
 id: "subnet-018fa0176ba320e45"
 private:
 private-one:
 id: "subnet-0153e560b3129a696"

Subnet Settings 128

Eksctl User Guide Amazon EKS

 private-two:
 id: "subnet-0cc9c5aebe75083fd"

Important

If using the AZ as the identifying key, the az value can be omitted.

If using an arbitrary string as the identifying key, like above, either:

• id must be set (az and cidr optional)

• or az must be set (cidr optional)

If a user specifies a subnet by AZ without specifying CIDR and ID, a subnet in that AZ will be chosen
from the VPC, arbitrarily if multiple such subnets exist.

Note

A complete subnet spec must be provided, i.e. both public and private configurations
declared in the VPC spec.

Nodegroups can be restricted to named subnets via the configuration. When specifying subnets on
nodegroup configuration, use the identifying key as given in the VPC spec not the subnet id. For
example:

vpc:
 id: "vpc-11111"
 subnets:
 public:
 public-one:
 id: "subnet-0153e560b3129a696"
 ... # subnet spec continued

nodeGroups:
 - name: ng-1
 instanceType: m5.xlarge
 desiredCapacity: 2
 subnets:

Custom subnet topology 129

Eksctl User Guide Amazon EKS

 - public-one

Note

Only one of subnets or availabilityZones can be provided in nodegroup
configuration.

When placing nodegroups inside a private subnet, privateNetworking must be set to true on
the nodegroup:

vpc:
 id: "vpc-11111"
 subnets:
 public:
 private-one:
 id: "subnet-0153e560b3129a696"
 ... # subnet spec continued

nodeGroups:
 - name: ng-1
 instanceType: m5.xlarge
 desiredCapacity: 2
 privateNetworking: true
 subnets:
 - private-one

See 24-nodegroup-subnets.yaml in the eksctl GitHub repo for a full configuration example.

Cluster Access

Managing Access to the Kubernetes API Server Endpoints

By default, an EKS cluster exposes the Kubernetes API server publicly but not directly from within
the VPC subnets (public=true, private=false). Traffic destined for the API server from within the
VPC must first exit the VPC networks (but not Amazon’s network) and then re-enter to reach the
API server.

The Kubernetes API server endpoint access for a cluster can be configured for public and private
access when creating the cluster using the cluster config file. Example below:

Cluster Access 130

https://github.com/eksctl-io/eksctl/blob/master/examples/24-nodegroup-subnets.yaml

Eksctl User Guide Amazon EKS

vpc:
 clusterEndpoints:
 publicAccess: <true|false>
 privateAccess: <true|false>

There are some additional caveats when configuring Kubernetes API endpoint access:

1. EKS doesn’t allow clusters without either private or public access enabled.

2. EKS does allow creating a configuration that allows only private access to be enabled, but eksctl
doesn’t support it during cluster creation as it prevents eksctl from being able to join the worker
nodes to the cluster.

3. Updating a cluster to have private only Kubernetes API endpoint access means that Kubernetes
commands, by default, (e.g. kubectl) as well as eksctl delete cluster, eksctl utils
write-kubeconfig, and possibly the command eksctl utils update-kube-proxy must
be run within the cluster VPC.

• This requires some changes to various AWS resources. For more information, see Cluster API
server endpoint.

• You can provide vpc.extraCIDRs which will append additional CIDR ranges to the
ControlPlaneSecurityGroup, allowing subnets outside the VPC to reach the kubernetes API
endpoint. Similarly you can provide vpc.extraIPv6CIDRs to append IPv6 CIDR ranges as
well.

The following is an example of how one could configure the Kubernetes API endpoint access using
the utils sub-command:

eksctl utils update-cluster-vpc-config --cluster=<clustername> --private-access=true --
public-access=false

To update the setting using a ClusterConfig file, use:

eksctl utils update-cluster-vpc-config -f config.yaml --approve

Note that if you don’t pass a flag, it will keep the current value. Once you are satisfied with the
proposed changes, add the approve flag to make the change to the running cluster.

Managing Access to the Kubernetes API Server Endpoints 131

https://docs.aws.eu/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.eu/eks/latest/userguide/cluster-endpoint.html

Eksctl User Guide Amazon EKS

Restricting Access to the EKS Kubernetes Public API endpoint

The default creation of an EKS cluster exposes the Kubernetes API server publicly.

This feature only applies to the public endpoint. The API server endpoint access configuration
options won’t change, and you will still have the option to disable the public endpoint so your
cluster is not accessible from the internet. (Source: https://github.com/aws/containers-roadmap/
issues/108#issuecomment-552766489)

To restrict access to the public API endpoint to a set of CIDRs when creating a cluster, set the
publicAccessCIDRs field:

vpc:
 publicAccessCIDRs: ["1.1.1.1/32", "2.2.2.0/24"]

To update the restrictions on an existing cluster, use:

eksctl utils update-cluster-vpc-config --cluster=<cluster> 1.1.1.1/32,2.2.2.0/24

To update the restrictions using a ClusterConfig file, set the new CIDRs in
vpc.publicAccessCIDRs and run:

eksctl utils update-cluster-vpc-config -f config.yaml

Important

If setting publicAccessCIDRs and creating node-groups either privateAccess should
be set to true or the nodes' IPs should be added to the publicAccessCIDRs list.

If nodes cannot access the cluster API endpoint due to restricted access, cluster creation will fail
with context deadline exceeded due to the nodes being unable to access the public endpoint
and failing to join the cluster.

To update both API server endpoint access and public access CIDRs for a cluster in a single
command, run:

eksctl utils update-cluster-vpc-config --cluster=<cluster> --public-access=true --
private-access=true --public-access-cidrs=1.1.1.1/32,2.2.2.0/24

Restricting Access to the EKS Kubernetes Public API endpoint 132

https://docs.aws.eu/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.eu/eks/latest/userguide/cluster-endpoint.html

Eksctl User Guide Amazon EKS

To update the setting using a config file:

vpc:
 clusterEndpoints:
 publicAccess: <true|false>
 privateAccess: <true|false>
 publicAccessCIDRs: ["1.1.1.1/32"]

eksctl utils update-cluster-vpc-config --cluster=<cluster> -f config.yaml

Updating control plane subnets and security groups

This documentation explains how to modify the networking configuration of your EKS cluster’s
control plane after initial creation. This includes updating the control plane subnets and security
groups.

Updating control plane subnets

When a cluster is created with eksctl, a set of public and private subnets are created and passed to
the EKS API. EKS creates 2 to 4 cross-account elastic network interfaces (ENIs) in those subnets to
enable communication between the EKS managed Kubernetes control plane and your VPC.

To update the subnets used by the EKS control plane, run:

eksctl utils update-cluster-vpc-config --cluster=<cluster> --control-plane-subnet-
ids=subnet-1234,subnet-5678

To update the setting using a config file:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 name: cluster
 region: us-west-2

vpc:
 controlPlaneSubnetIDs: [subnet-1234, subnet-5678]

eksctl utils update-cluster-vpc-config -f config.yaml

Control plane networking 133

Eksctl User Guide Amazon EKS

Without the --approve flag, eksctl only logs the proposed changes. Once you are satisfied with
the proposed changes, rerun the command with the --approve flag.

Updating control plane security groups

To manage traffic between the control plane and worker nodes, EKS supports passing additional
security groups that are applied to the cross-account network interfaces provisioned by EKS. To
update the security groups for the EKS control plane, run:

eksctl utils update-cluster-vpc-config --cluster=<cluster> --control-plane-security-
group-ids=sg-1234,sg-5678

To update the setting using a config file:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 name: cluster
 region: us-west-2

vpc:
 controlPlaneSecurityGroupIDs: [sg-1234, sg-5678]

eksctl utils update-cluster-vpc-config -f config.yaml

To update both control plane subnets and security groups for a cluster, run:

eksctl utils update-cluster-vpc-config --cluster=<cluster> --control-plane-subnet-
ids=<> --control-plane-security-group-ids=<>

To update both fields using a config file:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 name: cluster
 region: us-west-2

vpc:
 controlPlaneSubnetIDs: [subnet-1234, subnet-5678]

Updating control plane security groups 134

Eksctl User Guide Amazon EKS

 controlPlaneSecurityGroupIDs: [sg-1234, sg-5678]

eksctl utils update-cluster-vpc-config -f config.yaml

For a complete example, refer to cluster-subnets-sgs.yaml.

Without the --approve flag, eksctl only logs the proposed changes. Once you are satisfied with
the proposed changes, rerun the command with the --approve flag.

IPv6 Support

Define IP Family

When eksctl creates a vpc, you can define the IP version that will be used. The following options
are available to be configured:

• IPv4

• IPv6

The default value is IPv4.

To define it, use the following example:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: my-test
 region: us-west-2
 version: "1.21"

kubernetesNetworkConfig:
 ipFamily: IPv6 # or IPv4

addons:
 - name: vpc-cni
 - name: coredns
 - name: kube-proxy

iam:

IPv6 Support 135

https://github.com/eksctl-io/eksctl/blob/main/examples/38-cluster-subnets-sgs.yaml

Eksctl User Guide Amazon EKS

 withOIDC: true

Note

This setting is only in the config file, not in a CLI flag.

If you use IPv6, you must configure the following requirements:

• OIDC is enabled

• managed addons are defined as shows above

• cluster version must be => 1.21

• vpc-cni addon version must be => 1.10.0

• self-managed nodegroups are not supported with IPv6 clusters

• managed nodegroups are not supported with un-owned IPv6 clusters

• vpc.nat and serviceIPv4CIDR fields are created by eksctl for ipv6 clusters and are not
supported configuration options

• AutoAllocateIPv6 is not supported together with IPv6

• For IPv6 cluster, the IAM role for vpc-cni must have required IAM policies for IPv6 mode
associated

Private networking can be done with IPv6 IP family as well. Please follow the instruction outlined
under EKS Private Cluster.

Define IP Family 136

https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/iam-policy.md#ipv6-mode

Eksctl User Guide Amazon EKS

IAM

This chapter includes information about working with AWS IAM.

Topics:

• the section called “Manage IAM users and roles”

• Manage IAM user and role mappings to control access to an EKS cluster

• Configure IAM identity mappings through the cluster config file or CLI commands

• the section called “IAM Roles for Service Accounts”

• Manage fine-grained permissions for applications running on Amazon EKS that use other AWS
services

• Create and configure IAM Roles and Kubernetes Service Account pairs using eksctl

• Enable IAM OpenID Connect Provider for an EKS cluster to enable IAM Roles for Service
Accounts

• the section called “IAM permissions boundary”

• Control the maximum permissions granted to IAM entities (users or roles) by setting a
permissions boundary

• the section called “EKS Pod Identity Associations”

• Configure IAM permissions for EKS add-ons using recommended pod identity associations

• Enable Kubernetes applications to receive required IAM permissions to connect with AWS
services outside the cluster

• Simplify the process of automating IAM roles and service accounts across multiple EKS clusters

• the section called “IAM policies”

• Manage IAM policies for EKS node groups, including support for various add-on policies like
image builder, auto scaler, external DNS, cert manager, and more.

• Attach custom instance roles or inline policies to node groups for additional permissions.

• Attach specific AWS managed policies by ARN to node groups, ensuring required policies like
AmazonEKSWorkerNodePolicy and AmazonEKS_CNI_Policy are included.

• the section called “Minimum IAM policies”

• Manage AWS EC2 resources, including load balancers, auto-scaling groups, and CloudWatch
monitoring

Topics: 137

Eksctl User Guide Amazon EKS

• Create and manage AWS CloudFormation stacks

• Manage Amazon Elastic Kubernetes Service (EKS) clusters, node groups, and related resources
like IAM roles and policies

Minimum IAM policies

This document describes the minimum IAM policies needed to run the main use cases of eksctl.
These are the ones used to run the integration tests.

Note

Remember to replace <account_id> with your own.

Note

An AWS Managed Policy is created and administered by AWS. You cannot change the
permissions defined in AWS managed policies.

AmazonEC2FullAccess (AWS Managed Policy)

View AmazonEC2FullAccess policy definition.

AWSCloudFormationFullAccess (AWS Managed Policy)

View AWSCloudFormationFullAccess policy definition.

EksAllAccess

Error: No files found with UUID: 27ad3ff9-60be-4128-8b83-f8833a6e39aa

IamLimitedAccess

Error: No files found with UUID: 5500eeb9-bf3d-498d-999b-7f8036e705a5

Minimum IAM policies 138

https://docs.aws.eu/aws-managed-policy/latest/reference/AmazonEC2FullAccess.html
https://docs.aws.eu/aws-managed-policy/latest/reference/AWSCloudFormationFullAccess.html

Eksctl User Guide Amazon EKS

IAM permissions boundary

A permissions boundary is an advanced AWS IAM feature in which the maximum permissions that
an identity-based policy can grant to an IAM entity have been set; where those entities are either
users or roles. When a permissions boundary is set for an entity, that entity can only perform the
actions that are allowed by both its identity-based policies and its permissions boundaries.

You can provide your permissions boundary so that all identity-based entities created by eksctl
are created within that boundary. This example demonstrates how a permissions boundary can be
provided to the various identity-based entities that are created by eksctl:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-17
 region: us-west-2

iam:
 withOIDC: true
 serviceRolePermissionsBoundary: "arn:aws:iam::11111:policy/entity/boundary"
 fargatePodExecutionRolePermissionsBoundary: "arn:aws:iam::11111:policy/entity/
boundary"
 serviceAccounts:
 - metadata:
 name: s3-reader
 attachPolicyARNs:
 - "arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess"
 permissionsBoundary: "arn:aws:iam::11111:policy/entity/boundary"

nodeGroups:
 - name: "ng-1"
 desiredCapacity: 1
 iam:
 instanceRolePermissionsBoundary: "arn:aws:iam::11111:policy/entity/boundary"

Warning

It is not possible to provide both a role ARN and a permissions boundary.

IAM permissions boundary 139

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_boundaries.html

Eksctl User Guide Amazon EKS

Setting the VPC CNI Permission Boundary

Please note that when you create a cluster with OIDC enabled eksctl will automatically create an
iamserviceaccount for the VPC-CNI for security reasons. If you would like to add a permission
boundary to it then you must specify the iamserviceaccount in your config file manually:

iam:
 serviceAccounts:
 - metadata:
 name: aws-node
 namespace: kube-system
 attachPolicyARNs:
 - "arn:aws:iam::<arn>:policy/AmazonEKS_CNI_Policy"
 permissionsBoundary: "arn:aws:iam::11111:policy/entity/boundary"

IAM policies

You can attach Instance Roles to node groups. Workloads running on the node will receive IAM
permissions from the node. For mroe information, see IAM roles for Amazon EC2.

This page lists the pre-defined IAM policy templates available in eksctl. These templates simplify
the process of granting your EKS nodes the appropriate AWS service permissions without having to
manually create custom IAM policies.

Supported IAM add-on policies

Example of all supported add-on policies:

nodeGroups:
 - name: ng-1
 instanceType: m5.xlarge
 desiredCapacity: 1
 iam:
 withAddonPolicies:
 imageBuilder: true
 autoScaler: true
 externalDNS: true
 certManager: true
 appMesh: true
 appMeshPreview: true

Setting the VPC CNI Permission Boundary 140

https://docs.aws.eu/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Eksctl User Guide Amazon EKS

 ebs: true
 fsx: true
 efs: true
 awsLoadBalancerController: true
 xRay: true
 cloudWatch: true

Image Builder Policy

The imageBuilder policy allows for full ECR (Elastic Container Registry) access. This is useful for
building, for example, a CI server that needs to push images to ECR.

EBS Policy

The ebs policy enables the new EBS CSI (Elastic Block Store Container Storage Interface) driver.

Cert Manager Policy

The certManager policy enables the ability to add records to Route 53 in order to solve the
DNS01 challenge. More information can be found here.

Adding a custom instance role

This example creates a nodegroup that reuses an existing IAM Instance Role from another cluster:

apiVersion: eksctl.io/v1alpha4
kind: ClusterConfig
metadata:
 name: test-cluster-c-1
 region: eu-north-1

nodeGroups:
 - name: ng2-private
 instanceType: m5.large
 desiredCapacity: 1
 iam:
 instanceProfileARN: "arn:aws:iam::123:instance-profile/eksctl-test-cluster-a-3-
nodegroup-ng2-private-NodeInstanceProfile-Y4YKHLNINMXC"
 instanceRoleARN: "arn:aws:iam::123:role/eksctl-test-cluster-a-3-nodegroup-
NodeInstanceRole-DNGMQTQHQHBJ"

Adding a custom instance role 141

https://cert-manager.io/docs/configuration/acme/dns01/route53/#set-up-a-iam-role

Eksctl User Guide Amazon EKS

Attaching inline policies

nodeGroups:
 - name: my-special-nodegroup
 iam:
 attachPolicy:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Action:
 - 's3:GetObject'
 Resource: 'arn:aws:s3:::example-bucket/*'

Attaching policies by ARN

nodeGroups:
 - name: my-special-nodegroup
 iam:
 attachPolicyARNs:
 - arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy
 - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
 - arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryPullOnly
 - arn:aws:iam::aws:policy/ElasticLoadBalancingFullAccess
 - arn:aws:iam::1111111111:policy/kube2iam
 withAddonPolicies:
 autoScaler: true
 imageBuilder: true

Warning

If a nodegroup includes the attachPolicyARNs it must also include the default
node policies, like AmazonEKSWorkerNodePolicy, AmazonEKS_CNI_Policy and
AmazonEC2ContainerRegistryPullOnly in this example.

Attaching inline policies 142

Eksctl User Guide Amazon EKS

Manage IAM users and roles

Note

AWS suggests migraitng to the section called “EKS Pod Identity Associations” from the
aws-auth ConfigMap.

EKS clusters use IAM users and roles to control access to the cluster. The rules are implemented in a
config map

Edit ConfigMap with a CLI Command

called aws-auth. eksctl provides commands to read and edit this config map.

Get all identity mappings:

eksctl get iamidentitymapping --cluster <clusterName> --region=<region>

Get all identity mappings matching an arn:

eksctl get iamidentitymapping --cluster <clusterName> --region=<region> --arn
 arn:aws:iam::123456:role/testing-role

Create an identity mapping:

 eksctl create iamidentitymapping --cluster <clusterName> --region=<region> --arn
 arn:aws:iam::123456:role/testing --group system:masters --username admin

Delete an identity mapping:

eksctl delete iamidentitymapping --cluster <clusterName> --region=<region> --arn
 arn:aws:iam::123456:role/testing

Note

Above command deletes a single mapping FIFO unless --all is given in which case it
removes all matching. Will warn if more mappings matching this role are found.

Manage IAM users and roles 143

Eksctl User Guide Amazon EKS

Create an account mapping:

 eksctl create iamidentitymapping --cluster <clusterName> --region=<region> --account
 user-account

Delete an account mapping:

 eksctl delete iamidentitymapping --cluster <clusterName> --region=<region> --account
 user-account

Edit ConfigMap using a ClusterConfig file

The identity mappings can also be specified in ClusterConfig:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: cluster-with-iamidentitymappings
 region: us-east-1

iamIdentityMappings:
 - arn: arn:aws:iam::000000000000:role/myAdminRole
 groups:
 - system:masters
 username: admin
 noDuplicateARNs: true # prevents shadowing of ARNs

 - arn: arn:aws:iam::000000000000:user/myUser
 username: myUser
 noDuplicateARNs: true # prevents shadowing of ARNs

 - serviceName: emr-containers
 namespace: emr # serviceName requires namespace

 - account: "000000000000" # account must be configured with no other options

nodeGroups:
 - name: ng-1
 instanceType: m5.large
 desiredCapacity: 1

Edit ConfigMap using a ClusterConfig file 144

Eksctl User Guide Amazon EKS

 eksctl create iamidentitymapping -f cluster-with-iamidentitymappings.yaml

IAM Roles for Service Accounts

Tip

eksctl supports configuring fine-grained permissions to EKS running apps via EKS Pod
Identity Associations

Amazon EKS supports here Roles for Service Accounts (IRSA)] that allows cluster operators to map
AWS IAM Roles to Kubernetes Service Accounts.

This provides fine-grained permission management for apps that run on EKS and use other AWS
services. These could be apps that use S3, any other data services (RDS, MQ, STS, DynamoDB), or
Kubernetes components like AWS Load Balancer controller or ExternalDNS.

You can easily create IAM Role and Service Account pairs with eksctl.

Note

If you used instance roles, and are considering to use IRSA instead, you shouldn’t mix the
two.

How it works

It works via IAM OpenID Connect Provider (OIDC) that EKS exposes, and IAM Roles must be
constructed with reference to the IAM OIDC Provider (specific to a given EKS cluster), and a
reference to the Kubernetes Service Account it will be bound to. Once an IAM Role is created, a
service account should include the ARN of that role as an annotation (eks.amazonaws.com/
role-arn). By default the service account will be created or updated to include the role
annotation, this can be disabled using the flag --role-only.

Inside EKS, there is an admission controller that injects AWS session credentials into pods
respectively of the roles based on the annotation on the Service Account used by the pod. The
credentials will get exposed by AWS_ROLE_ARN & AWS_WEB_IDENTITY_TOKEN_FILE environment

IAM Roles for Service Accounts 145

https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions
https://github.com/aws/amazon-eks-pod-identity-webhook/

Eksctl User Guide Amazon EKS

variables. Given a recent version of AWS SDK is used (see here for details of exact version), the
application will use these credentials.

In eksctl the name of the resource is iamserviceaccount, which represents an IAM Role and
Service Account pair.

Usage from CLI

Note

IAM Roles for Service Accounts require Kubernetes version 1.13 or above.

The IAM OIDC Provider is not enabled by default, you can use the following command to enable it,
or use config file (see below):

eksctl utils associate-iam-oidc-provider --cluster=<clusterName>

Once you have the IAM OIDC Provider associated with the cluster, to create a IAM role bound to a
service account, run:

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
namespace=<serviceAccountNamespace> --attach-policy-arn=<policyARN>

Note

You can specify --attach-policy-arn multiple times to use more than one policy.

More specifically, you can create a service account with read-only access to S3 by running:

eksctl create iamserviceaccount --cluster=<clusterName> --name=s3-read-only --attach-
policy-arn=arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

By default, it will be created in default namespace, but you can specify any other namespace,
e.g.:

eksctl create iamserviceaccount --cluster=<clusterName> --name=s3-read-only --
namespace=s3-app --attach-policy-arn=arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

Usage from CLI 146

https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions

Eksctl User Guide Amazon EKS

Note

If the namespace doesn’t exist already, it will be created.

If you have service account already created in the cluster (without an IAM Role), you will need to
use --override-existing-serviceaccounts flag.

Custom tagging may also be applied to the IAM Role by specifying --tags:

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
tags "Owner=John Doe,Team=Some Team"

CloudFormation will generate a role name that includes a random string. If you prefer a
predetermined role name you can specify --role-name:

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
role-name "custom-role-name"

When the service account is created and managed by some other tool, such as helm, use --
role-only to prevent conflicts. The other tool is then responsible for maintaining the role
ARN annotation. Note that --override-existing-serviceaccounts has no effect on
roleOnly/--role-only service accounts, the role will always be created.

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
role-only --role-name=<customRoleName>

When you have an existing role which you want to use with a service account, you can provide
the --attach-role-arn flag instead of providing the policies. To ensure the role can only be
assumed by the specified service account, you should set a here relationship policy document].

eksctl create iamserviceaccount --cluster=<clusterName> --name=<serviceAccountName> --
attach-role-arn=<customRoleARN>

To update a service accounts roles permissions you can run eksctl update
iamserviceaccount.

Usage from CLI 147

https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions

Eksctl User Guide Amazon EKS

Note

eksctl delete iamserviceaccount deletes Kubernetes ServiceAccounts even if
they were not created by eksctl.

Usage with config files

To manage iamserviceaccounts using config file, you will be looking to set iam.withOIDC:
true and list account you want under iam.serviceAccount.

All of the commands support --config-file, you can manage iamserviceaccounts the same
way as nodegroups. The eksctl create iamserviceaccount command supports --include
and --exclude flags (see this section for more details about how these work). And the eksctl
delete iamserviceaccount command supports --only-missing as well, so you can perform
deletions the same way as nodegroups.

Note

IAM service accounts are scoped within a namespace, i.e. two service accounts with the
same name may exist in different namespaces. Thus, to uniquely define a service account
as part of --include, --exclude flags, you will need to pass the name string in the
namespace/name format. E.g.

eksctl create iamserviceaccount --config-file=<path> --include backend-apps/s3-reader

The option to enable wellKnownPolicies is included for using IRSA with well-known use cases
like cluster-autoscaler and cert-manager, as a shorthand for lists of policies.

Supported well-known policies and other properties of serviceAccounts are documented at the
config schema.

You use the following config example with eksctl create cluster:

An example of ClusterConfig with IAMServiceAccounts:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

Usage with config files 148

https://geoffcline.github.io/eksctl-schema-demo/#iam-serviceAccounts
https://geoffcline.github.io/eksctl-schema-demo/#iam-serviceAccounts

Eksctl User Guide Amazon EKS

metadata:
 name: cluster-13
 region: us-west-2

iam:
 withOIDC: true
 serviceAccounts:
 - metadata:
 name: s3-reader
 # if no namespace is set, "default" will be used;
 # the namespace will be created if it doesn't exist already
 namespace: backend-apps
 labels: {aws-usage: "application"}
 attachPolicyARNs:
 - "arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess"
 tags:
 Owner: "John Doe"
 Team: "Some Team"
 - metadata:
 name: cache-access
 namespace: backend-apps
 labels: {aws-usage: "application"}
 attachPolicyARNs:
 - "arn:aws:iam::aws:policy/AmazonDynamoDBReadOnlyAccess"
 - "arn:aws:iam::aws:policy/AmazonElastiCacheFullAccess"
 - metadata:
 name: cluster-autoscaler
 namespace: kube-system
 labels: {aws-usage: "cluster-ops"}
 wellKnownPolicies:
 autoScaler: true
 roleName: eksctl-cluster-autoscaler-role
 roleOnly: true
 - metadata:
 name: some-app
 namespace: default
 attachRoleARN: arn:aws:iam::123:role/already-created-role-for-app
nodeGroups:
 - name: "ng-1"
 tags:
 # EC2 tags required for cluster-autoscaler auto-discovery
 k8s.io/cluster-autoscaler/enabled: "true"
 k8s.io/cluster-autoscaler/cluster-13: "owned"

Usage with config files 149

Eksctl User Guide Amazon EKS

 desiredCapacity: 1

If you create a cluster without these fields set, you can use the following commands to enable all
you need:

eksctl utils associate-iam-oidc-provider --config-file=<path>
eksctl create iamserviceaccount --config-file=<path>

Further information

• Introducing Fine-grained IAM Roles For Service Accounts

• EKS User Guide - IAM Roles For Service Accounts

• Mapping IAM users and role to Kubernetes RBAC roles

EKS Pod Identity Associations

AWS EKS has introduced a new enhanced mechanism called Pod Identity Association for cluster
administrators to configure Kubernetes applications to receive IAM permissions required to connect
with AWS services outside of the cluster. Pod Identity Association leverages IRSA, however, it makes
it configurable directly through the EKS API, eliminating the need for using IAM API altogether.

As a result, IAM roles no longer need to reference an OIDC provider and hence won’t be tied to a
single cluster anymore. This means, IAM roles can now be used across multiple EKS clusters without
the need to update the role trust policy each time a new cluster is created. This in turn, eliminates
the need for role duplication and simplifies the process of automating IRSA altogether.

Prerequisites

Behind the scenes, the implementation of pod identity associations is running an agent as a
daemonset on the worker nodes. To run the pre-requisite agent on the cluster, EKS provides a new
add-on called EKS Pod Identity Agent. Therefore, creating pod identity associations (in general, and
with eksctl) requires the eks-pod-identity-agent addon pre-installed on the cluster. This
addon can be created using eksctl in the same fashion any other supported addon is.

eksctl create addon --cluster my-cluster --name eks-pod-identity-agent

Further information 150

https://aws.amazon.com/blogs/opensource/introducing-fine-grained-iam-roles-service-accounts/
https://docs.aws.eu/eks/latest/userguide/access-policies.html#access-policy-permissions

Eksctl User Guide Amazon EKS

Additionally, if using a pre-existing IAM role when creating a pod identity association,
you must configure the role to trust the newly introduced EKS service principal
(pods.eks.amazonaws.com). An example IAM trust policy can be found below:

Error: No files found with UUID: 44d1085a-03ca-431a-9774-b786a9774200

If instead you do not provide the ARN of an existing role to the create command, eksctl will
create one behind the scenes and configure the above trust policy.

Creating Pod Identity Associations

For manipulating pod identity associations, eksctl has added a new field under
iam.podIdentityAssociations, e.g.

iam:
 podIdentityAssociations:
 - namespace: <string> #required
 serviceAccountName: <string> #required
 createServiceAccount: true #optional, default is false
 roleARN: <string> #required if none of permissionPolicyARNs, permissionPolicy and
 wellKnownPolicies is specified. Also, cannot be used together with any of the three
 other referenced fields.
 roleName: <string> #optional, generated automatically if not provided, ignored if
 roleARN is provided
 permissionPolicy: {} #optional
 permissionPolicyARNs: [] #optional
 wellKnownPolicies: {} #optional
 permissionsBoundaryARN: <string> #optional
 tags: {} #optional

For a complete example, refer to pod-identity-associations.yaml.

Note

Apart from permissionPolicy which is used as an inline policy document, all other fields
have a CLI flag counterpart.

Creating pod identity associations can be achieved in the following ways. During cluster creation,
by specifying the desired pod identity associations as part of the config file and running:

Creating Pod Identity Associations 151

https://github.com/eksctl-io/eksctl/blob/main/examples/39-pod-identity-association.yaml

Eksctl User Guide Amazon EKS

eksctl create cluster -f config.yaml

Post cluster creation, using either a config file e.g.

eksctl create podidentityassociation -f config.yaml

OR using CLI flags e.g.

eksctl create podidentityassociation \
 --cluster my-cluster \
 --namespace default \
 --service-account-name s3-reader \
 --permission-policy-arns="arn:aws:iam::111122223333:policy/permission-policy-1,
 arn:aws:iam::111122223333:policy/permission-policy-2" \
 --well-known-policies="autoScaler,externalDNS" \
 --permissions-boundary-arn arn:aws:iam::111122223333:policy/permissions-boundary

Note

Only a single IAM role can be associated with a service account at a time. Therefore, trying
to create a second pod identity association for the same service account will result in an
error.

Fetching Pod Identity Associations

To retrieve all pod identity associations for a certain cluster, run one of the following commands:

eksctl get podidentityassociation -f config.yaml

OR

eksctl get podidentityassociation --cluster my-cluster

Additionally, to retrieve only the pod identity associations within a given namespace, use the --
namespace flag, e.g.

eksctl get podidentityassociation --cluster my-cluster --namespace default

Fetching Pod Identity Associations 152

Eksctl User Guide Amazon EKS

Finally, to retrieve a single association, corresponding to a certain K8s service account, also include
the --service-account-name to the command above, i.e.

eksctl get podidentityassociation --cluster my-cluster --namespace default --service-
account-name s3-reader

Updating Pod Identity Associations

To update the IAM role of one or more pod identity associations, either pass the new roleARN(s)
to the config file e.g.

iam:
 podIdentityAssociations:
 - namespace: default
 serviceAccountName: s3-reader
 roleARN: new-role-arn-1
 - namespace: dev
 serviceAccountName: app-cache-access
 roleARN: new-role-arn-2

and run:

eksctl update podidentityassociation -f config.yaml

OR (to update a single association) pass the new --role-arn via CLI flags:

eksctl update podidentityassociation --cluster my-cluster --namespace default --
service-account-name s3-reader --role-arn new-role-arn

Deleting Pod Identity Associations

To delete one or more pod identity associations, either pass namespace(s) and
serviceAccountName(s) to the config file e.g.

iam:
 podIdentityAssociations:
 - namespace: default
 serviceAccountName: s3-reader
 - namespace: dev
 serviceAccountName: app-cache-access

Updating Pod Identity Associations 153

Eksctl User Guide Amazon EKS

and run:

eksctl delete podidentityassociation -f config.yaml

OR (to delete a single association) pass the --namespace and --service-account-name via CLI
flags:

eksctl delete podidentityassociation --cluster my-cluster --namespace default --
service-account-name s3-reader

EKS Add-ons support for pod identity associations

EKS Add-ons also support receiving IAM permissions via EKS Pod Identity
Associations. The config file exposes three fields that allow configuring these:
addon.podIdentityAssociations, addonsConfig.autoApplyPodIdentityAssociations
and addon.useDefaultPodIdentityAssociations. You can either explicitly configure
the desired pod identity associations, using addon.podIdentityAssociations,
or have eksctl automatically resolve (and apply) the recommended pod identity
configuration, using either addonsConfig.autoApplyPodIdentityAssociations or
addon.useDefaultPodIdentityAssociations.

Note

Not all EKS Add-ons will support pod identity associations at launch. For this case, required
IAM permissions shall continue to be provided using IRSA settings.

Creating addons with IAM permissions

When creating an addon that requires IAM permissions, eksctl will first check if either pod
identity associations or IRSA settings are being explicitly configured as part of the config file, and if
so, use one of those to configure the permissions for the addon. e.g.

addons:
- name: vpc-cni
 podIdentityAssociations:
 - serviceAccountName: aws-node
 permissionPolicyARNs: ["arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy"]

EKS Add-ons support for pod identity associations 154

Eksctl User Guide Amazon EKS

and run

eksctl create addon -f config.yaml
2024-05-13 15:38:58 [#] pod identity associations are set for "vpc-cni" addon; will use
 these to configure required IAM permissions

Note

Setting both pod identities and IRSA at the same time is not allowed, and will result in a
validation error.

For EKS Add-ons that support pod identities, eksctl offers the option to automatically configure
any recommended IAM permissions, on addon creation. This can be achieved by simply setting
addonsConfig.autoApplyPodIdentityAssociations: true in the config file. e.g.

addonsConfig:
 autoApplyPodIdentityAssociations: true
bear in mind that if either pod identity or IRSA configuration is explicitly set in
 the config file,
or if the addon does not support pod identities,
addonsConfig.autoApplyPodIdentityAssociations won't have any effect.
addons:
- name: vpc-cni

and run

eksctl create addon -f config.yaml
2024-05-13 15:38:58 [#] "addonsConfig.autoApplyPodIdentityAssociations" is set to true;
 will lookup recommended pod identity configuration for "vpc-cni" addon

Equivalently, the same can be done via CLI flags e.g.

eksctl create addon --cluster my-cluster --name vpc-cni --auto-apply-pod-identity-
associations

To migrate an existing addon to use pod identity with the recommended IAM policies, use

addons:

EKS Add-ons support for pod identity associations 155

Eksctl User Guide Amazon EKS

- name: vpc-cni
 useDefaultPodIdentityAssociations: true

eksctl update addon -f config.yaml

Updating addons with IAM permissions

When updating an addon, specifying addon.PodIdentityAssociations will represent the
single source of truth for the state that the addon shall have, after the update operation is
completed. Behind the scenes, different types of operations are performed in order to achieve the
desired state i.e.

• create pod identites that are present in the config file, but missing on the cluster

• delete existing pod identites that were removed from the config file, together with any
associated IAM resources

• update existing pod identities that are also present in the config file, and for which the set of
IAM permissions has changed

Note

The lifecycle of pod identity associations owned by EKS Add-ons is directly handled by the
EKS Addons API.

You can’t use eksctl update podidentityassociation (to update IAM permissions) or
eksctl delete podidentityassociations (to remove the association) for associations used
with an Amazon EKS Add-on. Instead, eksctl update addon or eksctl delete addon shall
be used.

Let’s see an example for the above, starting by analyzing the initial pod identity config for the
addon:

eksctl get podidentityassociation --cluster my-cluster --namespace opentelemetry-
operator-system --output json
[
 {
 ...
 "ServiceAccountName": "adot-col-prom-metrics",

EKS Add-ons support for pod identity associations 156

Eksctl User Guide Amazon EKS

 "RoleARN": "arn:aws:iam::111122223333:role/eksctl-my-cluster-addon-adot-
podident-Role1-JwrGA4mn1Ny8",
 # OwnerARN is populated when the pod identity lifecycle is handled by the EKS
 Addons API
 "OwnerARN": "arn:aws:eks:us-west-2:111122223333:addon/my-cluster/adot/
b2c7bb45-4090-bf34-ec78-a2298b8643f6"
 },
 {
 ...
 "ServiceAccountName": "adot-col-otlp-ingest",
 "RoleARN": "arn:aws:iam::111122223333:role/eksctl-my-cluster-addon-adot-
podident-Role1-Xc7qVg5fgCqr",
 "OwnerARN": "arn:aws:eks:us-west-2:111122223333:addon/my-cluster/adot/
b2c7bb45-4090-bf34-ec78-a2298b8643f6"
 }
]

Now use the below configuration:

addons:
- name: adot
 podIdentityAssociations:

 # For the first association, the permissions policy of the role will be updated
 - serviceAccountName: adot-col-prom-metrics
 permissionPolicyARNs:
 #- arn:aws:iam::aws:policy/AmazonPrometheusRemoteWriteAccess
 - arn:aws:iam::aws:policy/CloudWatchAgentServerPolicy

 # The second association will be deleted, as it's been removed from the config file
 #- serviceAccountName: adot-col-otlp-ingest
 # permissionPolicyARNs:
 # - arn:aws:iam::aws:policy/AWSXrayWriteOnlyAccess

 # The third association will be created, as it's been added to the config file
 - serviceAccountName: adot-col-container-logs
 permissionPolicyARNs:
 - arn:aws:iam::aws:policy/CloudWatchAgentServerPolicy

and run

eksctl update addon -f config.yaml
...

EKS Add-ons support for pod identity associations 157

Eksctl User Guide Amazon EKS

updating the permission policy for the first association
2024-05-14 13:27:43 [#] updating IAM resources stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-prom-metrics" for pod identity association "a-
reaxk2uz1iknwazwj"
2024-05-14 13:27:44 [#] waiting for CloudFormation changeset "eksctl-opentelemetry-
operator-system-adot-col-prom-metrics-update-1715682463" for stack "eksctl-my-cluster-
addon-adot-podidentityrole-adot-col-prom-metrics"
2024-05-14 13:28:47 [#] waiting for CloudFormation stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-prom-metrics"
2024-05-14 13:28:47 [#] updated IAM resources stack "eksctl-my-cluster-addon-adot-
podidentityrole-adot-col-prom-metrics" for "a-reaxk2uz1iknwazwj"
creating the IAM role for the second association
2024-05-14 13:28:48 [#] deploying stack "eksctl-my-cluster-addon-adot-podidentityrole-
adot-col-container-logs"
2024-05-14 13:28:48 [#] waiting for CloudFormation stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-container-logs"
2024-05-14 13:29:19 [#] waiting for CloudFormation stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-container-logs"
updating the addon, which handles the pod identity config changes behind the scenes
2024-05-14 13:29:19 [#] updating addon
deleting the IAM role for the third association
2024-05-14 13:29:19 [#] deleting IAM resources for pod identity service account adot-
col-otlp-ingest
2024-05-14 13:29:20 [#] will delete stack "eksctl-my-cluster-addon-adot-
podidentityrole-adot-col-otlp-ingest"
2024-05-14 13:29:20 [#] waiting for stack "eksctl-my-cluster-addon-adot-
podidentityrole-adot-col-otlp-ingest" to get deleted
2024-05-14 13:29:51 [#] waiting for CloudFormation stack "eksctl-my-cluster-addon-
adot-podidentityrole-adot-col-otlp-ingest"
2024-05-14 13:29:51 [#] deleted IAM resources for addon adot

now check that pod identity config was updated correctly

eksctl get podidentityassociation --cluster my-cluster --output json
[
 {
 ...
 "ServiceAccountName": "adot-col-prom-metrics",
 "RoleARN": "arn:aws:iam::111122223333:role/eksctl-my-cluster-addon-adot-
podident-Role1-nQAlp0KktS2A",
 "OwnerARN": "arn:aws:eks:us-west-2:111122223333:addon/my-cluster/
adot/1ec7bb63-8c4e-ca0a-f947-310c4b55052e"
 },

EKS Add-ons support for pod identity associations 158

Eksctl User Guide Amazon EKS

 {
 ...
 "ServiceAccountName": "adot-col-otlp-ingest",
 "RoleARN": "arn:aws:iam::111122223333:role/eksctl-my-cluster-addon-adot-
podident-Role1-1k1XhAdziGzX",
 "OwnerARN": "arn:aws:eks:us-west-2:111122223333:addon/my-cluster/
adot/1ec7bb63-8c4e-ca0a-f947-310c4b55052e"
 }
]

To remove all pod identity associations from an addon, addon.PodIdentityAssociations
must be explicitly set to [], e.g.

addons:
- name: vpc-cni
 # omitting the `podIdentityAssociations` field from the config file,
 # instead of explicitly setting it to [], will result in a validation error
 podIdentityAssociations: []

and run

eksctl update addon -f config.yaml

Deleting addons with IAM permissions

Deleting an addon will also remove all pod identities associated with the addon. Deleting the
cluster will achieve the same effect, for all addons. Any IAM roles for pod identities, created by
eksctl, will be deleted as-well.

Migrating existing iamserviceaccounts and addons to pod identity
associations

There is an eksctl utils command for migrating existing IAM Roles for service accounts to pod
identity associations, i.e.

eksctl utils migrate-to-pod-identity --cluster my-cluster --approve

Behind the scenes, the command will apply the following steps:

• install the eks-pod-identity-agent addon if not already active on the cluster

Migrating existing iamserviceaccounts and addons to pod identity associations 159

Eksctl User Guide Amazon EKS

• identify all IAM Roles that are associated with iamserviceaccounts

• identify all IAM Roles that are associated with EKS addons that support pod identity associations

• update the IAM trust policy of all identified roles, with an additional trusted entity, pointing to
the new EKS Service principal (and, optionally, remove exising OIDC provider trust relationship)

• create pod identity associations for filtered roles associated with iamserviceaccounts

• update EKS addons with pod identities (EKS API will create the pod identities behind the scenes)

Running the command without the --approve flag will only output a plan consisting of a set of
tasks reflecting the steps above, e.g.

[#] (plan) would migrate 2 iamserviceaccount(s) and 2 addon(s) to pod identity
 association(s) by executing the following tasks
[#] (plan)

3 sequential tasks: { install eks-pod-identity-agent addon,
 ## tasks for migrating the addons
 2 parallel sub-tasks: {
 2 sequential sub-tasks: {
 update trust policy for owned role "eksctl-my-cluster--Role1-DDuMLoeZ8weD",
 migrate addon aws-ebs-csi-driver to pod identity,
 },
 2 sequential sub-tasks: {
 update trust policy for owned role "eksctl-my-cluster--Role1-xYiPFOVp1aeI",
 migrate addon vpc-cni to pod identity,
 },
 },
 ## tasks for migrating the iamserviceaccounts
 2 parallel sub-tasks: {
 2 sequential sub-tasks: {
 update trust policy for owned role "eksctl-my-cluster--Role1-QLXqHcq9O1AR",
 create pod identity association for service account "default/sa1",
 },
 2 sequential sub-tasks: {
 update trust policy for unowned role "Unowned-Role1",
 create pod identity association for service account "default/sa2",
 },
 }
}
[#] all tasks were skipped
[!] no changes were applied, run again with '--approve' to apply the changes

Migrating existing iamserviceaccounts and addons to pod identity associations 160

Eksctl User Guide Amazon EKS

The existing OIDC provider trust relationship is always being removed from IAM Roles associated
with EKS Add-ons. Additionally, to remove the existing OIDC provider trust relationship from IAM
Roles associated with iamserviceaccounts, run the command with --remove-oidc-provider-
trust-relationship flag, e.g.

eksctl utils migrate-to-pod-identity --cluster my-cluster --approve --remove-oidc-
provider-trust-relationship

Cross Account Pod Identity Support

eksctl supports EKS Pod Identity cross-account access. This feature allows pods running in your EKS
cluster to access AWS resources in a different AWS account.

Usage

To create a pod identity association with cross-account access, first set up IAM Roles and Policies
allowing access from a source AWS account (with the cluster) to a target AWS account (with the
resources the cluster can access). For an example of this, see "Amazon EKS Pod Identity streamlines
cross account access."

Once an IAM Role is configured in each account, use eksctl to create the pod identity associations:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 # The cluster name and service account name should match the target
 # account policy's trust relationship.
 name: my-cluster
 region: us-west-2
 version: "1.32"

addons:
 - name: vpc-cni
 - name: coredns
 - name: kube-proxy
 - name: eks-pod-identity-agent

iam:
 podIdentityAssociations:
 - namespace: default
 serviceAccountName: demo-app-sa

Cross Account Pod Identity Support 161

https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/blogs/containers/amazon-eks-pod-identity-streamlines-cross-account-access/
https://aws.amazon.com/blogs/containers/amazon-eks-pod-identity-streamlines-cross-account-access/

Eksctl User Guide Amazon EKS

 createServiceAccount: true
 # The source role in the same account as the cluster
 roleARN: arn:aws:iam::1111111111:role/account-a-role
 # The target role in a different account
 targetRoleARN: arn:aws:iam::2222222222:role/account-b-role
 # Optional: Disable session tags
 disableSessionTags: false

managedNodeGroups:
 - name: my-cluster
 instanceType: m6a.large
 privateNetworking: true
 minSize: 2
 desiredCapacity: 2
 maxSize: 3

Further references

Official AWS Userdocs for EKS Add-ons support for pod identities

Official AWS Blog Post on Pod Identity Associations

Official AWS userdocs for Pod Identity Associations

Further references 162

https://docs.aws.eu/eks/latest/userguide/add-ons-iam.html
https://aws.amazon.com/blogs/aws/amazon-eks-pod-identity-simplifies-iam-permissions-for-applications-on-amazon-eks-clusters/
https://docs.aws.eu/eks/latest/userguide/pod-identities.html

Eksctl User Guide Amazon EKS

Deployment options

This chapter covers using eksctl to manage EKS clusters deployed to alternate environments.

For the most accurate information about EKS deployment options, see Deploy Amazon EKS clusters
across cloud and on-premises environments in the EKS User Guide.

Topics:

• the section called “EKS Anywhere”

• Use eksctl with Amazon EKS Anywhere clusters.

• Amazon EKS Anywhere is container management software built by AWS that makes it easier to
run and manage Kubernetes on-premises and at the edge.

• the section called “AWS Outposts Support”

• Use eksctl with EKS clusters on AWS Outposts.

• AWS Outposts is a family of fully managed solutions delivering AWS infrastructure and
services to virtually any on-premises or edge location for a truly consistent hybrid experience.

• AWS Outposts support in eksctl lets you create local clusters with the entire Kubernetes
cluster, including the EKS control plane and worker nodes, running locally on AWS Outposts.

• the section called “EKS Hybrid Nodes”

• Run on-premises and edge applications on customer-managed infrastructure with the same
AWS EKS clusters, features, and tools you use in the AWS Cloud.

EKS Anywhere

eksctl provides access to AWS' feature called EKS Anywhere with the sub command eksctl
anywhere. This requires the eksctl-anywhere binary present on PATH. Please follow the
instruction outlined here Install eksctl-anywhere to install it.

Once done, execute anywhere commands by running:

eksctl anywhere version
v0.5.0

For more information about EKS Anywhere, please visit EKS Anywhere Website.

Topics: 163

https://docs.aws.eu/eks/latest/userguide/eks-deployment-options.html
https://docs.aws.eu/eks/latest/userguide/eks-deployment-options.html
https://anywhere.eks.amazonaws.com/docs/getting-started/install/
https://anywhere.eks.amazonaws.com/

Eksctl User Guide Amazon EKS

AWS Outposts Support

Warning

EKS Managed Nodegroups are not supported on Outposts.

Extending existing clusters to AWS Outposts

You can extend an existing EKS cluster running in an AWS region to AWS Outposts by setting
nodeGroup.outpostARN for new nodegroups to create nodegroups on Outposts, as in:

extended-cluster.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: existing-cluster
 region: us-west-2

nodeGroups:
 # Nodegroup will be created in an AWS region.
 - name: ng

 # Nodegroup will be created on the specified Outpost.
 - name: outpost-ng
 privateNetworking: true
 outpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"

eksctl create nodegroup -f extended-cluster.yaml

In this setup, the EKS control plane runs in an AWS region while nodegroups with outpostARN set
run on the specified Outpost. When a nodegroup is being created on Outposts for the first time,
eksctl extends the VPC by creating subnets on the specified Outpost. These subnets are used to
create nodegroups that have outpostARN set.

Customers with a pre-existing VPC are required to create the subnets on Outposts and pass them in
nodeGroup.subnets, as in:

AWS Outposts Support 164

Eksctl User Guide Amazon EKS

extended-cluster-vpc.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: extended-cluster-vpc
 region: us-west-2

vpc:
 id: vpc-1234
 subnets:
 private:
 outpost-subnet-1:
 id: subnet-1234

nodeGroups:
 # Nodegroup will be created in an AWS region.
 - name: ng

 # Nodegroup will be created on the specified Outpost.
 - name: outpost-ng
 privateNetworking: true
 # Subnet IDs for subnets created on Outpost.
 subnets: [subnet-5678]
 outpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"

Creating a local cluster on AWS Outposts

Note

Local clusters support Outpost racks only.

Note

Only Amazon Linux 2 is supported for nodegroups when the control plane is on Outposts.
Only EBS gp2 volume types are supported for nodegroups on Outposts.

Creating a local cluster on AWS Outposts 165

Eksctl User Guide Amazon EKS

AWS Outposts support in eksctl lets you create local clusters with the entire Kubernetes cluster,
including the EKS control plane and worker nodes, running locally on AWS Outposts. Customers
can either create a local cluster with both the EKS control plane and worker nodes running locally
on AWS Outposts, or they can extend an existing EKS cluster running in an AWS region to AWS
Outposts by creating worker nodes on Outposts.

To create the EKS control plane and nodegroups on AWS Outposts, set
outpost.controlPlaneOutpostARN to the Outpost ARN, as in:

outpost.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: outpost
 region: us-west-2

outpost:
 # Required.
 controlPlaneOutpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"
 # Optional, defaults to the smallest available instance type on the Outpost.
 controlPlaneInstanceType: m5d.large

eksctl create cluster -f outpost.yaml

This instructs eksctl to create the EKS control plane and subnets on the specified Outpost. Since
an Outposts rack exists in a single availability zone, eksctl creates only one public and private
subnet. eksctl does not associate the created VPC with a local gateway and, as such, eksctl will
lack connectivity to the API server and will be unable to create nodegroups. Therefore, if the
ClusterConfig contains any nodegroups during cluster creation, the command must be run with
--without-nodegroup, as in:

eksctl create cluster -f outpost.yaml --without-nodegroup

It is the customer’s responsibility to associate the eksctl-created VPC with the local gateway after
cluster creation to enable connectivity to the API server. After this step, nodegroups can be created
using eksctl create nodegroup.

Creating a local cluster on AWS Outposts 166

https://docs.aws.eu/eks/latest/userguide/eks-outposts.html
https://docs.aws.eu/outposts/latest/userguide/outposts-local-gateways.html

Eksctl User Guide Amazon EKS

You can optionally specify the instance type for the control plane nodes in
outpost.controlPlaneInstanceType or for the nodegroups in nodeGroup.instanceType,
but the instance type must exist on Outpost or eksctl will return an error. By default, eksctl
attempts to choose the smallest available instance type on Outpost for the control plane nodes
and nodegroups.

When the control plane is on Outposts, nodegroups are created on that Outpost. You can
optionally specify the Outpost ARN for the nodegroup in nodeGroup.outpostARN but it must
match the control plane’s Outpost ARN.

outpost-fully-private.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: outpost-fully-private
 region: us-west-2

privateCluster:
 enabled: true

outpost:
 # Required.
 controlPlaneOutpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"
 # Optional, defaults to the smallest available instance type on the Outpost.
 controlPlaneInstanceType: m5d.large

outpost.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: outpost
 region: us-west-2

outpost:
 # Required.
 controlPlaneOutpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"
 # Optional, defaults to the smallest available instance type on the Outpost.
 controlPlaneInstanceType: m5d.large

Creating a local cluster on AWS Outposts 167

Eksctl User Guide Amazon EKS

 controlPlanePlacement:
 groupName: placement-group-name

Existing VPC

Customers with an existing VPC can create local clusters on AWS Outposts by specifying the subnet
configuration in vpc.subnets, as in:

outpost-existing-vpc.yaml

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: outpost
 region: us-west-2

vpc:
 id: vpc-1234
 subnets:
 private:
 outpost-subnet-1:
 id: subnet-1234

nodeGroups:
 - name: outpost-ng
 privateNetworking: true

outpost:
 # Required.
 controlPlaneOutpostARN: "arn:aws:outposts:us-west-2:1234:outpost/op-1234"
 # Optional, defaults to the smallest available instance type on the Outpost.
 controlPlaneInstanceType: m5d.large

eksctl create cluster -f outpost-existing-vpc.yaml

The subnets must exist on the Outpost specified in outpost.controlPlaneOutpostARN or
eksctl will return an error. You can also specify nodegroups during cluster creation if you have
access to the local gateway for the subnet, or have connectivity to VPC resources.

Creating a local cluster on AWS Outposts 168

Eksctl User Guide Amazon EKS

Features unsupported on local clusters

• Addons

• IAM Roles for Service Accounts

• IPv6

• Identity Providers

• Fargate

• KMS Encryption

• Local Zones

• Karpenter

• Instance Selector

• Availability Zones cannot be specified as it defaults to the Outpost availability zone.

• vpc.publicAccessCIDRs and vpc.autoAllocateIPv6 are not supported.

• Public endpoint access to the API server is not supported as a local cluster can only be created
with private-only endpoint access.

Further information

• Amazon EKS on AWS Outposts

• Local clusters for Amazon EKS on AWS Outposts

• Creating local clusters

• Launching self-managed Amazon Linux nodes on an Outpost

Features unsupported on local clusters 169

https://github.com/eksctl-io/eksctl/blob/main/examples/27-oidc-provider.yaml
https://github.com/eksctl-io/eksctl/blob/main/examples/33-local-zones.yaml
https://docs.aws.eu/eks/latest/userguide/eks-outposts.html
https://docs.aws.eu/eks/latest/userguide/eks-outposts-local-cluster-overview.html
https://docs.aws.eu/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.eu/eks/latest/userguide/eks-outposts-self-managed-nodes.html

Eksctl User Guide Amazon EKS

Security

eksctl provides some options that can improve the security of your EKS cluster.

withOIDC

Enable withOIDC to automatically create an IRSA for the amazon CNI plugin and limit permissions
granted to nodes in your cluster, instead granting the necessary permissions only to the CNI service
account.

The background is described in this AWS documentation.

disablePodIMDS

For managed and unmanaged nodegroups, disablePodIMDS option is available prevents all non
host networking pods running in this nodegroup from making IMDS requests.

Note

This can not be used together with withAddonPolicies.

KMS Envelope Encryption for EKS clusters

Note

Amazon Elastic Kubernetes Service (Amazon EKS) provides default envelope encryption for
all Kubernetes API data in EKS clusters running Kubernetes version 1.28 or higher. For more
information, see Default envelope encryption for all Kubernetes API Data in the EKS User
Guide.

EKS supports using AWS KMS keys to provide envelope encryption of Kubernetes secrets stored in
EKS. Envelope encryption adds an addition, customer-managed layer of encryption for application
secrets or user data that is stored within a Kubernetes cluster.

Previously, Amazon EKS supported enabling envelope encryption using KMS keys only during
cluster creation. Now, you can enable envelope encryption for Amazon EKS clusters at any time.

withOIDC 170

https://geoffcline.github.io/eksctl-schema-demo/#iam-withOIDC
https://docs.aws.eu/eks/latest/userguide/cni-iam-role.html
https://geoffcline.github.io/eksctl-schema-demo/#nodeGroups-disablePodIMDS
https://docs.aws.eu/eks/latest/userguide/envelope-encryption.html
https://aws.amazon.com/about-aws/whats-new/2021/03/amazon-eks-supports-adding-kms-envelope-encryption-to-existing-clusters/
https://aws.amazon.com/about-aws/whats-new/2020/03/amazon-eks-adds-envelope-encryption-for-secrets-with-aws-kms/

Eksctl User Guide Amazon EKS

Read more about Using EKS encryption provider support for defense-in-depth post on the AWS
containers blog.

Creating a cluster with KMS encryption enabled

kms-cluster.yaml
A cluster with KMS encryption enabled

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: kms-cluster
 region: us-west-2

managedNodeGroups:
- name: ng
more config

secretsEncryption:
 # KMS key used for envelope encryption of Kubernetes secrets
 keyARN: arn:aws:kms:us-west-2:<account>:key/<key>

eksctl create cluster -f kms-cluster.yaml

Enabling KMS encryption on an existing cluster

To enable KMS encryption on a cluster that doesn’t already have it enabled, run

eksctl utils enable-secrets-encryption -f kms-cluster.yaml

or without a config file:

eksctl utils enable-secrets-encryption --cluster=kms-cluster --key-arn=arn:aws:kms:us-
west-2:<account>:key/<key> --region=<region>

In addition to enabling KMS encryption on the EKS cluster, eksctl also re-encrypts all existing
Kubernetes secrets using the new KMS key by updating them with the annotation eksctl.io/
kms-encryption-timestamp. This behaviour can be disabled by passing --encrypt-
existing-secrets=false, as in:

Creating a cluster with KMS encryption enabled 171

https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/
https://aws.amazon.com/blogs/containers/using-eks-encryption-provider-support-for-defense-in-depth/

Eksctl User Guide Amazon EKS

eksctl utils enable-secrets-encryption --cluster=kms-cluster --key-arn=arn:aws:kms:us-
west-2:<account>:key/<key> --encrypt-existing-secrets=false --region=<region>

If a cluster already has KMS encryption enabled, eksctl will proceed to re-encrypting all existing
secrets.

Note

Once KMS encryption is enabled, it cannot be disabled or updated to use a different KMS
key.

Enabling KMS encryption on an existing cluster 172

Eksctl User Guide Amazon EKS

Troubleshooting

This topic includes instructions on how to resolve common errors with Eksctl.

Failed stack creation

You can use the --cfn-disable-rollback flag to stop Cloudformation from rolling back failed
stacks to make debugging easier.

subnet ID "subnet-11111111" is not the same as
"subnet-22222222"

Given a config file specifying subnets for a VPC like the following:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: test
 region: us-east-1

vpc:
 subnets:
 public:
 us-east-1a: {id: subnet-11111111}
 us-east-1b: {id: subnet-22222222}
 private:
 us-east-1a: {id: subnet-33333333}
 us-east-1b: {id: subnet-44444444}

nodeGroups: []

An error subnet ID "subnet-11111111" is not the same as "subnet-22222222"
means that the subnets specified are not placed in the right Availability zone. Check in the AWS
console which is the right subnet ID for each Availability Zone.

In this example, the correct configuration for the VPC would be:

vpc:

Failed stack creation 173

Eksctl User Guide Amazon EKS

 subnets:
 public:
 us-east-1a: {id: subnet-22222222}
 us-east-1b: {id: subnet-11111111}
 private:
 us-east-1a: {id: subnet-33333333}
 us-east-1b: {id: subnet-44444444}

Deletion issues

If your delete does not work, or you forget to add --wait on the delete, you may need to go to
use amazon’s other tools to delete the cloudformation stacks. This can be accomplished via the gui
or with the aws cli.

kubectl logs and kubectl run fails with Authorization Error

If your nodes are deployed in a private subnet and kubectl logs or kubectl run fail with an
error such as the following:

Error attaching, falling back to logs: unable to upgrade connection: Authorization
 error (user=kube-apiserver-kubelet-client, verb=create, resource=nodes,
 subresource=proxy)

Error from server (InternalError): Internal error occurred: Authorization error
 (user=kube-apiserver-kubelet-client, verb=get, resource=nodes, subresource=proxy)

Then you might need to set enableDnsHostnames. More details can be found in this issue.

Deletion issues 174

https://docs.aws.eu/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://github.com/eksctl-io/eksctl/issues/4645

Eksctl User Guide Amazon EKS

Announcements

This topic covers past annoucements of new Eksctl features.

Managed Nodegroups Default

As of eksctl v0.58.0, eksctl creates managed nodegroups by default when a ClusterConfig file
isn’t specified for eksctl create cluster and eksctl create nodegroup. To create a self-
managed nodegroup, pass --managed=false. This may break scripts not using a config file if a
feature not supported in managed nodegroups, e.g., Windows nodegroups, is being used. To fix
this, pass --managed=false, or specify your nodegroup config in a ClusterConfig file using
the nodeGroups field which creates a self-managed nodegroup.

Nodegroup Bootstrap Override For Custom AMIs

This change was announced in the issue Breaking: overrideBootstrapCommand soon…. Now, it has
come to pass in this PR. Please read the attached issue carefully about why we decided to move
away from supporting custom AMIs without bootstrap scripts or with partial bootstrap scripts.

We still provide a helper! Migrating hopefully is not that painful. eksctl still provides a script,
which when sourced, will export a couple of helpful environment properties and settings. This
script is located here.

The following environment properties will be at your disposal:

API_SERVER_URL
B64_CLUSTER_CA
INSTANCE_ID
INSTANCE_LIFECYCLE
CLUSTER_DNS
NODE_TAINTS
MAX_PODS
NODE_LABELS
CLUSTER_NAME
CONTAINER_RUNTIME # default is docker
KUBELET_EXTRA_ARGS # for details, look at the script

Managed Nodegroups Default 175

https://github.com/eksctl-io/eksctl/releases/tag/0.58.0
https://github.com/eksctl-io/eksctl/issues/3563
https://github.com/eksctl-io/eksctl/pull/4968
https://github.com/eksctl-io/eksctl/blob/70a289d62e3c82e6177930cf2469c2572c82e104/pkg/nodebootstrap/assets/scripts/bootstrap.helper.sh

Eksctl User Guide Amazon EKS

The minimum that needs to be used when overriding so eksctl doesn’t fail, is labels! eksctl
relies on a specific set of labels to be on the node, so it can find them. When defining the override,
please provide this bare minimum override command:

 overrideBootstrapCommand: |
 #!/bin/bash

 source /var/lib/cloud/scripts/eksctl/bootstrap.helper.sh

 # Note "--node-labels=${NODE_LABELS}" needs the above helper sourced to work,
 otherwise will have to be defined manually.
 /etc/eks/bootstrap.sh ${CLUSTER_NAME} --container-runtime containerd --kubelet-
extra-args "--node-labels=${NODE_LABELS}"

For nodegroups that have no outbound internet access, you’ll need to supply --apiserver-
endpoint and --b64-cluster-ca to the bootstrap script as follows:

 overrideBootstrapCommand: |
 #!/bin/bash

 source /var/lib/cloud/scripts/eksctl/bootstrap.helper.sh

 # Note "--node-labels=${NODE_LABELS}" needs the above helper sourced to work,
 otherwise will have to be defined manually.
 /etc/eks/bootstrap.sh ${CLUSTER_NAME} --container-runtime containerd --kubelet-
extra-args "--node-labels=${NODE_LABELS}" \
 --apiserver-endpoint ${API_SERVER_URL} --b64-cluster-ca ${B64_CLUSTER_CA}

Note the `--node-labels` setting. If this is not defined, the node will join the cluster, but eksctl
will ultimately time out on the last step when it’s waiting for the nodes to be Ready. It’s
doing a Kubernetes lookup for nodes that have the label alpha.eksctl.io/nodegroup-
name=<cluster-name>. This is only true for unmanaged nodegroups. For managed it’s using a
different label.

If, at all, it’s possible to switch to managed nodegroups to avoid this overhead, the time has come
now to do that. Makes all the overriding a lot easier.

Nodegroup Bootstrap Override For Custom AMIs 176

	Eksctl User Guide
	Table of Contents
	What is Eksctl?
	Features
	Eksctl FAQ
	General
	Nodegroups
	Ingress
	Kubectl

	Dry Run
	One-off Options in eksctl

	Tutorial
	Step 1: Install eksctl
	Step 2: Create cluster config file
	Step 3: Create cluster
	Optional: Delete Cluster

	Next Steps

	Installation options for Eksctl
	Prerequisite
	For Unix
	For Windows
	Using Git Bash:

	Homebrew
	Docker
	Shell Completion
	Bash
	Zsh
	Fish
	Powershell

	Updates

	Clusters
	Topics:
	Creating and managing clusters
	Creating a simple cluster
	Considerations

	Create cluster using config file
	Update kubeconfig for new cluster
	Delete cluster
	Dry Run

	EKS Auto Mode
	Creating an EKS cluster with Auto Mode enabled
	Updating an EKS cluster to use Auto Mode
	Disabling Auto Mode
	Further information

	EKS Access Entries
	Cluster authentication mode
	Set authentication mode with a YAML file
	Update authentication mode with a command

	Access Entry Resources
	IAM Entities
	Managed nodegroups and Fargate
	Self-managed nodegroups

	Create access entry
	Get access entry
	Delete access entry
	Migrate from aws-auth ConfigMap
	Disable cluster creator admin permissions

	Non eksctl-created clusters
	Supported commands
	Creating nodegroups

	Registering non-EKS clusters with EKS Connector
	Register Cluster
	Deregister cluster
	Further information

	Customizing kubelet configuration
	kubeReserved calculation

	CloudWatch logging
	Enabling CloudWatch logging
	ClusterConfig Examples
	Disable all logs
	Enable all logs
	Enable one or more logs
	Log retention period
	Complete example

	EKS Fully-Private Cluster
	Creating a fully-private cluster
	Configuring private access to additional AWS services
	Skipping endpoint creations

	Nodegroups
	Cluster Endpoint Access
	User-supplied VPC and subnets
	Managing a fully-private cluster
	Force-delete a fully-private cluster
	Limitations
	Outbound access via HTTP proxy servers
	Further information

	Addons
	Creating addons
	Listing enabled addons
	Setting the addon’s version
	Discovering addons
	Discovering the configuration schema for addons
	Working with configuration values
	Using custom namespace
	Using config file
	Using CLI flag

	Updating addons
	Deleting addons
	Cluster creation flexibility for default networking addons

	Enabling Access for Amazon EMR
	EKS Fargate Support
	Creating a cluster with Fargate support
	Creating a cluster with Fargate support using a config file
	Designing Fargate profiles
	Example: scheduling workload in Fargate

	Managing Fargate profiles
	Further reading

	Cluster upgrades
	Updating control plane version

	Default add-on updates
	Update pre-installed add-on

	Support for Zonal Shift in EKS clusters
	Creating a cluster with zonal shift enabled
	Enabling zonal shift on an existing cluster
	Further information

	Karpenter Support
	Automatic Security Group Tagging

	Cluster Config Schema
	Nodegroups
	Topics:
	Work with node groups
	Creating nodegroups
	Creating a nodegroup from a config file
	Load Balancing

	Nodegroup selection in config files
	Include and exclude rules

	Listing nodegroups
	Nodegroup immutability
	Scaling nodegroups
	Scaling a single nodegroup
	Scaling multiple nodegroups

	Deleting and draining nodegroups
	Other features
	Update labels
	SSH Access

	Unmanaged nodegroups
	Updating multiple nodegroups
	Updating with config file

	Updating default add-ons

	EKS managed nodegroups
	Creating managed nodegroups
	New clusters
	Existing clusters

	Upgrading managed nodegroups
	Handling parallel upgrades for nodes
	Updating managed nodegroups
	Nodegroup Health issues
	Managing Labels
	Scaling Managed Nodegroups
	Further information

	Node bootstrapping
	AmazonLinux2023
	Default settings for AL2
	Configuring the bootstrapping process

	Launch Template support for Managed Nodegroups
	Creating managed nodegroups using a provided launch template
	Upgrading a managed nodegroup to use a different launch template version
	Notes on custom AMI and launch template support

	Custom subnets
	Why
	TL;DR

	How
	Deleting the cluster

	Custom DNS
	Taints
	Instance Selector
	Create cluster and nodegroups
	Dry Run

	Spot instances
	Managed Nodegroups
	Further information

	Unmanaged Nodegroups
	Parameters in instancesDistribution

	GPU Support
	ARM Support
	Auto Scaling
	Enable Auto Scaling
	Scaling up from 0
	Zone-aware Auto Scaling

	Custom AMI support
	Setting the node AMI ID
	Setting the node AMI Family
	Windows custom AMI support
	Bottlerocket custom AMI support

	Windows Worker Nodes
	Creating a new cluster with Windows support
	Adding Windows support to an existing Linux cluster
	Further information

	Additional Volume Mappings
	EKS Hybrid Nodes
	Introduction
	Networking
	Credentials
	Add-ons support
	Further references

	Support for Node Repair Config in EKS Managed Nodegroups
	Creating a cluster a managed nodegroup with node repair enabled
	Further information

	Networking
	Topics:
	VPC Configuration
	Dedicated VPC for Cluster
	Change VPC CIDR
	Use an existing VPC: shared with kops
	Use existing VPC: other custom configuration
	Custom Shared Node Security Group
	NAT Gateway

	Subnet Settings
	Use private subnets for initial nodegroup
	Custom subnet topology

	Cluster Access
	Managing Access to the Kubernetes API Server Endpoints
	Restricting Access to the EKS Kubernetes Public API endpoint

	Updating control plane subnets and security groups
	Updating control plane subnets
	Updating control plane security groups

	IPv6 Support
	Define IP Family

	IAM
	Topics:
	Minimum IAM policies
	IAM permissions boundary
	Setting the VPC CNI Permission Boundary

	IAM policies
	Supported IAM add-on policies
	Image Builder Policy
	EBS Policy
	Cert Manager Policy

	Adding a custom instance role
	Attaching inline policies
	Attaching policies by ARN

	Manage IAM users and roles
	Edit ConfigMap with a CLI Command
	Edit ConfigMap using a ClusterConfig file

	IAM Roles for Service Accounts
	How it works
	Usage from CLI
	Usage with config files
	Further information

	EKS Pod Identity Associations
	Prerequisites
	Creating Pod Identity Associations
	Fetching Pod Identity Associations
	Updating Pod Identity Associations
	Deleting Pod Identity Associations
	EKS Add-ons support for pod identity associations
	Creating addons with IAM permissions
	Updating addons with IAM permissions
	Deleting addons with IAM permissions

	Migrating existing iamserviceaccounts and addons to pod identity associations
	Cross Account Pod Identity Support
	Usage

	Further references

	Deployment options
	Topics:
	EKS Anywhere
	AWS Outposts Support
	Extending existing clusters to AWS Outposts
	Creating a local cluster on AWS Outposts
	Existing VPC

	Features unsupported on local clusters
	Further information

	Security
	withOIDC
	disablePodIMDS
	KMS Envelope Encryption for EKS clusters
	Creating a cluster with KMS encryption enabled
	Enabling KMS encryption on an existing cluster

	Troubleshooting
	Failed stack creation
	subnet ID "subnet-11111111" is not the same as "subnet-22222222"
	Deletion issues
	kubectl logs and kubectl run fails with Authorization Error

	Announcements
	Managed Nodegroups Default
	Nodegroup Bootstrap Override For Custom AMIs

