
User Guide

Elastic Load Balancing

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Elastic Load Balancing User Guide

Elastic Load Balancing: User Guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

This documentation is a draft for private preview for regions in the AWS European Sovereign
Cloud. Documentation content will continue to evolve. Published: January 8, 2026.

Elastic Load Balancing User Guide

Table of Contents

What is ELB? .. 1
Load balancer benefits .. 1
Features of ELB ... 1
Accessing ELB .. 2
Related services .. 2
Pricing ... 3

How ELB works .. 4
Availability Zones and load balancer nodes ... 4

Cross-zone load balancing .. 5
Zonal shift ... 7

Request routing .. 7
Routing algorithm ... 8
HTTP connections ... 9
HTTP headers .. 10
HTTP header limits ... 10

Load balancer scheme ... 11
IP address types ... 11
Network MTU .. 13

Getting started .. 15
Security .. 16

Data protection ... 17
Encryption at rest ... 17
Encryption in transit .. 18

Identity and access management ... 18
Audience .. 18
Authenticating with identities .. 19
Managing access using policies .. 20
How ELB works with IAM .. 22
Resource tagging API permissions .. 33
Service-linked role .. 35
AWS managed policies .. 36

Compliance validation ... 39
Resilience .. 39
Infrastructure security ... 40

iii

Elastic Load Balancing User Guide

Network isolation .. 40
Controlling network traffic ... 40

AWS PrivateLink ... 41
Create an interface endpoint for ELB ... 42
Create a VPC endpoint policy for ELB .. 42

API request throttling ... 43
How throttling is applied ... 43
Request rate limiting ... 43
Request token bucket sizes and refill rates .. 44
Monitoring API requests ... 47

Billing and usage reports .. 48
Application Load Balancers .. 48
Network Load Balancers ... 49
Gateway Load Balancers ... 49
Classic Load Balancers .. 49

Log API calls .. 50
ELB management events in CloudTrail .. 51
ELB event examples ... 51

Migrate your Classic Load Balancer ... 56
Benefits of migrating .. 56
Migration wizard ... 57
Copy utility migration ... 59
Manual migration ... 59
Prevent users from creating Classic Load Balancers ... 62

iv

Elastic Load Balancing User Guide

What is ELB?

ELB automatically distributes your incoming traffic across multiple targets, such as EC2 instances,
containers, and IP addresses, in one or more Availability Zones. It monitors the health of its
registered targets, and routes traffic only to the healthy targets. ELB scales your load balancer
capacity automatically in response to changes in incoming traffic.

Load balancer benefits

A load balancer distributes workloads across multiple compute resources, such as virtual servers.
Using a load balancer increases the availability and fault tolerance of your applications.

You can add and remove compute resources from your load balancer as your needs change,
without disrupting the overall flow of requests to your applications.

You can configure health checks, which monitor the health of the compute resources, so that the
load balancer sends requests only to the healthy ones. You can also offload the work of encryption
and decryption to your load balancer so that your compute resources can focus on their main work.

Features of ELB

ELB supports multiple load balancer types. You can select the type of load balancer that best suits
your needs. .

For more information about the current generation load balancers, see the following
documentation:

• User Guide for Application Load Balancers

• User Guide for Network Load Balancers

• User Guide for Gateway Load Balancers

Classic Load Balancers are the previous generation of load balancers from ELB. We recommend
that you migrate to a current generation load balancer. For more information, see Migrate your
Classic Load Balancer.

Load balancer benefits 1

https://docs.aws.eu/elasticloadbalancing/latest/application/
https://docs.aws.eu/elasticloadbalancing/latest/network/
https://docs.aws.eu/elasticloadbalancing/latest/gateway/
https://docs.aws.eu/elasticloadbalancing/latest/userguide/migrate-classic-load-balancer.html
https://docs.aws.eu/elasticloadbalancing/latest/userguide/migrate-classic-load-balancer.html

Elastic Load Balancing User Guide

Accessing ELB

You can create, access, and manage your load balancers using any of the following interfaces:

• AWS Management Console — Provides a web interface that you can use to access ELB.

• AWS Command Line Interface (AWS CLI) — Provides commands for a broad set of AWS services,
including ELB. The AWS CLI is supported on Windows, macOS, and Linux. For more information,
see AWS Command Line Interface.

• AWS SDKs — Provide language-specific APIs and take care of many of the connection
details, such as calculating signatures, handling request retries, and error handling. For more
information, see AWS SDKs.

• Query API— Provides low-level API actions that you call using HTTPS requests. Using the Query
API is the most direct way to access ELB. However, the Query API requires that your application
handle low-level details such as generating the hash to sign the request, and error handling. For
more information, see the following:

• Application Load Balancers, Network Load Balancers, and Gateway Load Balancers — API
version 2015-12-01

• Classic Load Balancers — API version 2012-06-01

Related services

ELB works with the following services to improve the availability and scalability of your
applications.

• Amazon EC2 — Virtual servers that run your applications in the cloud. You can configure your
load balancer to route traffic to your EC2 instances. For more information, see the Amazon EC2
User Guide.

• Amazon EC2 Auto Scaling — Ensures that you are running your desired number of instances,
even if an instance fails. Amazon EC2 Auto Scaling also enables you to automatically increase or
decrease the number of instances as the demand on your instances changes. If you enable Auto
Scaling with ELB, instances that are launched by Auto Scaling are automatically registered with
the load balancer. Likewise, instances that are terminated by Auto Scaling are automatically de-
registered from the load balancer. For more information, see the Amazon EC2 Auto Scaling User
Guide.

Accessing ELB 2

https://aws.amazon.com/cli/
https://aws.amazon.com/developer/tools/
https://docs.aws.eu/elasticloadbalancing/latest/APIReference/
https://docs.aws.eu/elasticloadbalancing/latest/APIReference/
https://docs.aws.eu/elasticloadbalancing/2012-06-01/APIReference/
https://docs.aws.eu/AWSEC2/latest/UserGuide/
https://docs.aws.eu/AWSEC2/latest/UserGuide/
https://docs.aws.eu/autoscaling/ec2/userguide/
https://docs.aws.eu/autoscaling/ec2/userguide/

Elastic Load Balancing User Guide

• AWS Certificate Manager — When you create an HTTPS listener, you can specify certificates
provided by ACM. The load balancer uses certificates to terminate connections and decrypt
requests from clients.

• Amazon CloudWatch — Enables you to monitor your load balancer and to take action as
needed. For more information, see the Amazon CloudWatch User Guide.

• Amazon ECS — Enables you to run, stop, and manage Docker containers on a cluster of EC2
instances. You can configure your load balancer to route traffic to your containers. For more
information, see the Amazon Elastic Container Service Developer Guide.

• AWS Global Accelerator — Improves the availability and performance of your application. Use
an accelerator to distribute traffic across multiple load balancers in one or more AWS Regions.
For more information, see the AWS Global Accelerator Developer Guide.

• Route 53 — Provides a reliable and cost-effective way to route visitors to websites by translating
domain names into the numeric IP addresses that computers use to connect to each other. For
example, it would translate www.example.com into the numeric IP address 192.0.2.1. AWS
assigns URLs to your resources, such as load balancers. However, you might want a URL that is
easy for users to remember. For example, you can map your domain name to a load balancer. For
more information, see the Amazon Route 53 Developer Guide.

• AWS WAF — You can use AWS WAF with your Application Load Balancer to allow or block
requests based on the rules in a web access control list (web ACL). For more information, see the
AWS WAF Developer Guide.

Pricing

With your load balancer, you pay only for what you use. For more information, see ELB pricing.

Pricing 3

https://docs.aws.eu/AmazonCloudWatch/latest/monitoring/
https://docs.aws.eu/AmazonECS/latest/developerguide/
https://docs.aws.eu/global-accelerator/latest/dg/
https://docs.aws.eu/Route53/latest/DeveloperGuide/
https://docs.aws.eu/waf/latest/developerguide/
https://aws.eu/elasticloadbalancing/pricing/

Elastic Load Balancing User Guide

How ELB works

A load balancer accepts incoming traffic from clients and routes requests to its registered targets
(such as EC2 instances) in one or more Availability Zones. The load balancer also monitors the
health of its registered targets and ensures that it routes traffic only to healthy targets. When the
load balancer detects an unhealthy target, it stops routing traffic to that target. It then resumes
routing traffic to that target when it detects that the target is healthy again.

You configure your load balancer to accept incoming traffic by specifying one or more listeners. A
listener is a process that checks for connection requests. It is configured with a protocol and port
number for connections from clients to the load balancer. Likewise, it is configured with a protocol
and port number for connections from the load balancer to the targets.

Contents

• Availability Zones and load balancer nodes

• Request routing

• Load balancer scheme

• IP address types

• Network MTU for your load balancer

Availability Zones and load balancer nodes

When you enable an Availability Zone for your load balancer, ELB creates a load balancer node
in the Availability Zone. If you register targets in an Availability Zone but do not enable the
Availability Zone, these registered targets do not receive traffic. Your load balancer is most
effective when you ensure that each enabled Availability Zone has at least one registered target.

We recommend enabling multiple Availability Zones for all load balancers. With an Application
Load Balancer however, it is a requirement that you enable at least two or more Availability
Zones. This configuration helps ensure that the load balancer can continue to route traffic. If one
Availability Zone becomes unavailable or has no healthy targets, the load balancer can route traffic
to the healthy targets in another Availability Zone.

After you disable an Availability Zone, the targets in that Availability Zone remain registered with
the load balancer. However, even though they remain registered, the load balancer does not route
traffic to them.

Availability Zones and load balancer nodes 4

Elastic Load Balancing User Guide

Cross-zone load balancing

The nodes for your load balancer distribute requests from clients to registered targets. When cross-
zone load balancing is enabled, each load balancer node distributes traffic across the registered
targets in all enabled Availability Zones. When cross-zone load balancing is disabled, each load
balancer node distributes traffic only across the registered targets in its Availability Zone.

The following diagrams demonstrate the effect of cross-zone load balancing with round robin
as the default routing algorithm. There are two enabled Availability Zones, with two targets in
Availability Zone A and eight targets in Availability Zone B. Clients send requests, and Amazon
Route 53 responds to each request with the IP address of one of the load balancer nodes. Based on
the round robin routing algorithm, traffic is distributed such that each load balancer node receives
50% of the traffic from the clients. Each load balancer node distributes its share of the traffic
across the registered targets in its scope.

If cross-zone load balancing is enabled, each of the 10 targets receives 10% of the traffic. This is
because each load balancer node can route its 50% of the client traffic to all 10 targets.

If cross-zone load balancing is disabled:

• Each of the two targets in Availability Zone A receives 25% of the traffic.

• Each of the eight targets in Availability Zone B receives 6.25% of the traffic.

Cross-zone load balancing 5

Elastic Load Balancing User Guide

This is because each load balancer node can route its 50% of the client traffic only to targets in its
Availability Zone.

With Application Load Balancers, cross-zone load balancing is always enabled at the load balancer
level. At the target group level, cross-zone load balancing can be disabled. For more information,
see Turn off cross-zone load balancing in the User Guide for Application Load Balancers.

With Network Load Balancers and Gateway Load Balancers, cross-zone load balancing is disabled
by default. After you create the load balancer, you can enable or disable cross-zone load balancing
at any time. For more information, see Cross-zone load balancing in the User Guide for Network
Load Balancers.

When you create a Classic Load Balancer, the default for cross-zone load balancing depends on
how you create the load balancer. With the API or CLI, cross-zone load balancing is disabled by
default. With the AWS Management Console, the option to enable cross-zone load balancing is
selected by default. After you create a Classic Load Balancer, you can enable or disable cross-zone
load balancing at any time. For more information, see Enable cross-zone load balancing in the User
Guide for Classic Load Balancers.

Cross-zone load balancing 6

https://docs.aws.eu/elasticloadbalancing/latest/application/edit-target-group-attributes.html#cross_zone_console_disable
https://docs.aws.eu/elasticloadbalancing/latest/network/edit-target-group-attributes.html#target-group-cross-zone
https://docs.aws.eu/elasticloadbalancing/latest/classic/enable-disable-crosszone-lb.html#enable-cross-zone

Elastic Load Balancing User Guide

Zonal shift

Zonal shift is a capability in Amazon Application Recovery Controller (ARC) (ARC). With zonal shift,
you can shift a load balancer resource away from an impaired Availability Zone with a single action.
This way, you can continue operating from other healthy Availability Zones in an AWS Region.

When you start a zonal shift, your load balancer stops sending traffic for the resource to the
affected Availability Zone. ARC creates the zonal shift immediately. However, it can take a short
time, typically up to a few minutes, to complete existing, in-progress connections in the affected
Availability Zone. For more information, see How a zonal shift works: health checks and zonal IP
addresses in the Amazon Application Recovery Controller (ARC) Developer Guide.

Before you use a zonal shift, review the following:

• Zonal shift is supported when you use a Network Load Balancer with cross-zone load balancing
turned on or off.

• You can start a zonal shift for a specific load balancer only for a single Availability Zone. You
can't start a zonal shift for multiple Availability Zones.

• AWS proactively removes zonal load balancer IP addresses from DNS when multiple
infrastructure issues impact services. Always check current Availability Zone capacity before you
start a zonal shift. If your load balancers have cross-zone load balancing turned off and you use a
zonal shift to remove a zonal load balancer IP address, the Availability Zone affected by the zonal
shift also loses target capacity.

For more guidance and information, see Best practices for zonal shifts in ARC in the Amazon
Application Recovery Controller (ARC) Developer Guide.

Request routing

Before a client sends a request to your load balancer, it resolves the load balancer's domain name
using a Domain Name System (DNS) server. The DNS entry is controlled by Amazon, because your
load balancers are in the amazonaws.com domain. The Amazon DNS servers return one or more
IP addresses to the client. These are the IP addresses of the load balancer nodes for your load
balancer. With Network Load Balancers, ELB creates a network interface for each Availability Zone
that you enable, and uses it to get a static IP address. You can optionally associate one Elastic IP
address with each network interface when you create the Network Load Balancer.

Zonal shift 7

https://docs.aws.eu/r53recovery/latest/dg/arc-zonal-shift.how-it-works.html
https://docs.aws.eu/r53recovery/latest/dg/arc-zonal-shift.how-it-works.html
https://docs.aws.eu/r53recovery/latest/dg/route53-arc-best-practices.zonal-shifts.html

Elastic Load Balancing User Guide

As traffic to your application changes over time, ELB scales your load balancer and updates the
DNS entry. The DNS entry also specifies the time-to-live (TTL) of 60 seconds. This helps ensure that
the IP addresses can be remapped quickly in response to changing traffic.

The client determines which IP address to use to send requests to the load balancer. The load
balancer node that receives the request selects a healthy registered target and sends the request to
the target using its private IP address.

For more information, see Routing traffic to an ELB load balancer in the Amazon Route 53
Developer Guide.

Routing algorithm

With Application Load Balancers, the load balancer node that receives the request uses the
following process:

1. Evaluates the listener rules in priority order to determine which rule to apply.

2. Selects a target from the target group for the rule action, using the routing algorithm
configured for the target group. The default routing algorithm is round robin. Routing is
performed independently for each target group, even when a target is registered with multiple
target groups.

With Network Load Balancers, the load balancer node that receives the connection uses the
following process:

1. Selects a target from the target group for the default rule using a flow hash algorithm. It bases
the algorithm on:

• The protocol

• The source IP address and source port

• The destination IP address and destination port

• The TCP sequence number

2. Routes each individual TCP connection to a single target for the life of the connection. The TCP
connections from a client have different source ports and sequence numbers, and can be routed
to different targets.

With Gateway Load Balancers, the load balancer node that receives the connection uses a 5-
tuple flow hash algorithm to select a target appliance. After a flow is established, all packets for

Routing algorithm 8

https://docs.aws.eu/Route53/latest/DeveloperGuide/routing-to-elb-load-balancer.html

Elastic Load Balancing User Guide

the same flow are consistently routed to the same target appliance. The load balancer and target
appliances exchange traffic using the GENEVE protocol on port 6081.

With Classic Load Balancers, the load balancer node that receives the request selects a registered
instance as follows:

• Uses the round robin routing algorithm for TCP listeners

• Uses the least outstanding requests routing algorithm for HTTP and HTTPS listeners

HTTP connections

Classic Load Balancers use pre-open connections, but Application Load Balancers do not. Both
Classic Load Balancers and Application Load Balancers use connection multiplexing. This means
that requests from multiple clients on multiple front-end connections can be routed to a given
target through a single backend connection. Connection multiplexing improves latency and
reduces the load on your applications. To prevent connection multiplexing, disable HTTP keep-
alive headers by setting the Connection: close header in your HTTP responses.

Application Load Balancers and Classic Load Balancers support pipelined HTTP on front-end
connections. They do not support pipelined HTTP on backend connections.

Application Load Balancers support the following HTTP request methods: GET, HEAD, POST, PUT,
DELETE, OPTIONS, and PATCH.

Application Load Balancers support the following protocols on front-end connections: HTTP/0.9,
HTTP/1.0, HTTP/1.1, and HTTP/2. You can use HTTP/2 only with HTTPS listeners, and can send
up to 128 requests in parallel using one HTTP/2 connection. Application Load Balancers also
support connection upgrades from HTTP to WebSockets. However, if there is a connection upgrade,
Application Load Balancer listener routing rules and AWS WAF integrations no longer apply.

Application Load Balancers use HTTP/1.1 on backend connections (load balancer to registered
target) by default. However, you can use the protocol version to send the request to the targets
using HTTP/2 or gRPC. For more information, see Protocol versions. The keep-alive header is
supported on backend connections by default. For HTTP/1.0 requests from clients that do not have
a host header, the load balancer generates a host header for the HTTP/1.1 requests sent on the
backend connections. The host header contains the DNS name of the load balancer.

Classic Load Balancers support the following protocols on front-end connections (client to load
balancer): HTTP/0.9, HTTP/1.0, and HTTP/1.1. They use HTTP/1.1 on backend connections (load

HTTP connections 9

https://docs.aws.eu/elasticloadbalancing/latest/application/load-balancer-target-groups.html#target-group-protocol-version

Elastic Load Balancing User Guide

balancer to registered target). The keep-alive header is supported on backend connections
by default. For HTTP/1.0 requests from clients that do not have a host header, the load balancer
generates a host header for the HTTP/1.1 requests sent on the backend connections. The host
header contains the IP address of the load balancer node.

HTTP headers

Application Load Balancers and Classic Load Balancers automatically add X-Forwarded-For, X-
Forwarded-Proto, and X-Forwarded-Port headers to the request.

Application Load Balancers convert the hostnames in HTTP host headers to lower case before
sending them to targets.

For front-end connections that use HTTP/2, the header names are in lowercase. Before the request
is sent to the target using HTTP/1.1, the following header names are converted to mixed case: X-
Forwarded-For, X-Forwarded-Proto, X-Forwarded-Port, Host, X-Amzn-Trace-Id, Upgrade, and
Connection. All other header names are in lowercase.

Application Load Balancers and Classic Load Balancers honor the connection header from the
incoming client request after proxying the response back to the client.

When Application Load Balancers and Classic Load Balancers using HTTP/1.1 receive an Expect:
100-Continue header, they immediately respond with HTTP/1.1 100 Continue without testing the
content length header. The Expect: 100-Continue request header is not forwarded to its targets.

When using HTTP/2, Application Load Balancers do not support the Expect: 100-Continue header
from client requests. The Application Load Balancer will not respond with HTTP/2 100 Continue or
forward this header to its targets.

HTTP header limits

The following size limits for Application Load Balancers are hard limits that cannot be changed:

• Request line: 16 K

• Single header: 16 K

• Entire response header: 32 K

• Entire request header: 64 K

HTTP headers 10

Elastic Load Balancing User Guide

Load balancer scheme

When you create a load balancer, you must choose whether to make it an internal load balancer or
an internet-facing load balancer.

The nodes of an internet-facing load balancer have public IP addresses. The DNS name of an
internet-facing load balancer is publicly resolvable to the public IP addresses of the nodes.
Therefore, internet-facing load balancers can route requests from clients over the internet.

The nodes of an internal load balancer have only private IP addresses. The DNS name of an internal
load balancer is publicly resolvable to the private IP addresses of the nodes. Therefore, internal
load balancers can only route requests from clients with access to the VPC for the load balancer.

Both internet-facing and internal load balancers route requests to your targets using private IP
addresses. Therefore, your targets do not need public IP addresses to receive requests from an
internal or an internet-facing load balancer.

If your application has multiple tiers, you can design an architecture that uses both internal and
internet-facing load balancers. For example, this is true if your application uses web servers that
must be connected to the internet, and application servers that are only connected to the web
servers. Create an internet-facing load balancer and register the web servers with it. Create an
internal load balancer and register the application servers with it. The web servers receive requests
from the internet-facing load balancer and send requests for the application servers to the internal
load balancer. The application servers receive requests from the internal load balancer.

IP address types

The IP address type that you specify for your load balancer determines how clients can
communicate with the load balancer.

• IPv4 only – Clients communicate using public and private IPv4 addresses. The subnets that you
select for your load balancer must have IPv4 address ranges.

• Dualstack – Clients communicate using public and private IPv4 and IPv6 addresses. The subnets
that you select for your load balancer must have IPv4 and IPv6 address ranges.

• Dualstack without public IPv4 – Clients communicate using public and private IPv6 addresses
and private IPv4 addresses. The subnets that you select for your load balancer must have IPv4
and IPv6 address ranges. This option is not supported with the internal load balancer scheme.

Load balancer scheme 11

Elastic Load Balancing User Guide

The following table describes the IP address types supported for each load balancer type.

Load balancer type IPv4 only Dualstack Dualstack
without public
IPv4

Application Load Balancer
Yes Yes Yes

Network Load Balancer
Yes Yes No

Gateway Load Balancer
Yes Yes No

Classic Load Balancer
Yes No No

The IP address type that you specify for your target group determines how the load balancer can
communicate with targets.

• IPv4 only – The load balancer communicates using private IPv4 addresses. You must register
targets with IPv4 addresses with an IPv4 target group.

• IPv6 only – The load balancer communicates using IPv6 addresses. You must register targets
with IPv6 addresses with an IPv6 target group. The target group must be used with a dualstack
load balancer.

The following table describes IP address types supported for each target group protocol.

Target group protocol IPv4 only IPv6 only

HTTP and HTTPS
Yes Yes

TCP
Yes Yes

IP address types 12

Elastic Load Balancing User Guide

Target group protocol IPv4 only IPv6 only

TLS
Yes Yes

UDP and TCP_UDP
Yes Yes

GENEVE - -

Network MTU for your load balancer

The maximum transmission unit (MTU) determines the size, in bytes, for the largest packet that can
be sent over the network. The larger the MTU of a connection, the more data that can be passed in
a single packet. Ethernet frames consist of the packet, or the actual data you are sending, and the
network overhead information that surrounds it. Traffic sent over an internet gateway has an MTU
of 1500. This means that if a packet is over 1500 bytes, it is fragmented to be sent using multiple
frames, or it is dropped if the Don't Fragment is set in the IP header.

The MTU size on load balancer nodes is not configurable. Jumbo frames (9001 MTU) are standard
across load balancer nodes for Application Load Balancers, Network Load Balancers, and Classic
Load Balancers. Gateway Load Balancers support 8500 MTU. For more information, see Maximum
transmission unit (MTU) in the User Guide for Gateway Load Balancers.

The path MTU is the maximum packet size that is supported on the path between the originating
host and the receiving host. Path MTU Discovery (PMTUD) is used to determine the path MTU
between two devices. Path MTU Discovery is especially important if the client or target does not
support jumbo frames.

When a host sends a packet that is larger than the MTU of the receiving host or larger than the
MTU of a device along the path, the receiving host or device drops the packet, and then returns
the following ICMP message: Destination Unreachable: Fragmentation Needed and
Don't Fragment was Set (Type 3, Code 4). This instructs the transmitting host to split
the payload into multiple smaller packets, and retransmit them.

If packets larger than the MTU size of the client or target interface continue to be dropped, it
is likely that Path MTU Discovery (PMTUD) is not working. To avoid this, ensure that Path MTU
Discovery is working end to end, and that you have enabled jumbo frames on your clients and

Network MTU 13

https://docs.aws.eu/elasticloadbalancing/latest/gateway/gateway-load-balancers.html#mtu
https://docs.aws.eu/elasticloadbalancing/latest/gateway/gateway-load-balancers.html#mtu

Elastic Load Balancing User Guide

targets. For more information about Path MTU Discovery and enabling jumbo frames, see Path
MTU Discovery in the Amazon EC2 User Guide.

Network MTU 14

https://docs.aws.eu/AWSEC2/latest/UserGuide/network_mtu.html#path_mtu_discovery
https://docs.aws.eu/AWSEC2/latest/UserGuide/network_mtu.html#path_mtu_discovery

Elastic Load Balancing User Guide

Getting started with ELB

ELB supports multiple load balancer types. You can select the type of load balancer that best suits
your needs. .

Load balancers

• Create an Application Load Balancer

• Create a Network Load Balancer

• Create a Gateway Load Balancer

For demos of common load balancer configurations, see ELB demos.

If you have an existing Classic Load Balancer, you can migrate to an Application Load Balancer or a
Network Load Balancer. For more information, see Migrate your Classic Load Balancer.

15

https://docs.aws.eu/elasticloadbalancing/latest/application/create-application-load-balancer.html
https://docs.aws.eu/elasticloadbalancing/latest/network/create-network-load-balancer.html
https://docs.aws.eu/elasticloadbalancing/latest/gateway/create-load-balancer.html
https://exampleloadbalancer.com/

Elastic Load Balancing User Guide

Security in Elastic Load Balancing

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The describes this as security of the cloud
and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the .

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using ELB. It shows you how to configure ELB to meet your security and compliance objectives. You
also learn how to use other AWS services that help you to monitor and secure your ELB resources.

With a Gateway Load Balancer, you are responsible for choosing and qualifying software from
appliance vendors. You must trust the appliance software to inspect or modify traffic from the
load balancer, which operates at the layer 3 of the Open Systems Interconnection (OSI) model, the
network layer. The appliance vendors listed as ELB Partners have integrated and qualified their
appliance software with AWS. You can place a higher degree of trust in the appliance software
from vendors in this list. However, AWS does not guarantee the security or reliability of software
from these vendors.

Contents

• Data protection in Elastic Load Balancing

• Identity and access management for ELB

• Compliance validation for Elastic Load Balancing

• Resilience in Elastic Load Balancing

• Infrastructure security in Elastic Load Balancing

• Access ELB using an interface endpoint (AWS PrivateLink)

16

https://docs.aws.eu/elasticloadbalancing/latest/gateway/
https://aws.amazon.com/elasticloadbalancing/partners/

Elastic Load Balancing User Guide

Data protection in Elastic Load Balancing

The AWS applies to data protection in ELB. As described in this model, AWS is responsible for
protecting the global infrastructure that runs all of the AWS Cloud. You are responsible for
maintaining control over your content that is hosted on this infrastructure. You are also responsible
for the security configuration and management tasks for the AWS services that you use. For more
information about data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with ELB or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any
data that you enter into tags or free-form text fields used for names may be used for billing or
diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not
include credentials information in the URL to validate your request to that server.

Encryption at rest

If you enable server-side encryption with Amazon S3-managed encryption keys (SSE-S3) for your
S3 bucket for ELB access logs, ELB automatically encrypts each access log file before it is stored

Data protection 17

https://aws.amazon.com/compliance/data-privacy-faq/
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

Elastic Load Balancing User Guide

in your S3 bucket. ELB also decrypts the access log files when you access them. Each log file is
encrypted with a unique key, which is itself encrypted with a KMS key that is regularly rotated.

Encryption in transit

ELB simplifies the process of building secure web applications by terminating HTTPS and TLS
traffic from clients at the load balancer. The load balancer performs the work of encrypting
and decrypting the traffic, instead of requiring each EC2 instance to handle the work for TLS
termination. When you configure a secure listener, you specify the cipher suites and protocol
versions that are supported by your application, and a server certificate to install on your load
balancer. You can use AWS Certificate Manager (ACM) or AWS Identity and Access Management
(IAM) to manage your server certificates. Application Load Balancers support HTTPS listeners.
Network Load Balancers support TLS listeners. Classic Load Balancers support both HTTPS and TLS
listeners.

Identity and access management for ELB

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use ELB resources. IAM is an AWS service that you can use
with no additional charge.

Contents

• Audience

• Authenticating with identities

• Managing access using policies

• How ELB works with IAM

• ELB API permissions to tag resources during creation

• ELB service-linked role

• AWS managed policies for ELB

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in ELB.

Encryption in transit 18

Elastic Load Balancing User Guide

Service user – If you use the ELB service to do your job, then your administrator provides you with
the credentials and permissions that you need. As you use more ELB features to do your work, you
might need additional permissions. Understanding how access is managed can help you request
the right permissions from your administrator.

Service administrator – If you're in charge of ELB resources at your company, you probably have
full access to ELB. It's your job to determine which ELB features and resources your service users
should access. You must then submit requests to your IAM administrator to change the permissions
of your service users. Review the information on this page to understand the basic concepts of IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to ELB.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated as the AWS account root user, an IAM user, or by assuming an IAM role.

You can sign in as a federated identity using credentials from an identity source like AWS
IAM Identity Center (IAM Identity Center), single sign-on authentication, or Google/Facebook
credentials. For more information about signing in, see How to sign in to your AWS account in the
AWS Sign-In User Guide.

For programmatic access, AWS provides an SDK and CLI to cryptographically sign requests. For
more information, see AWS Signature Version 4 for API requests in the IAM User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity called the AWS account root
user that has complete access to all AWS services and resources. We strongly recommend that you
don't use the root user for everyday tasks. For tasks that require root user credentials, see Tasks
that require root user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users to use federation with an identity provider to access AWS
services using temporary credentials.

A federated identity is a user from your enterprise directory, web identity provider, or Directory
Service that accesses AWS services using credentials from an identity source. Federated identities
assume roles that provide temporary credentials.

Authenticating with identities 19

https://docs.aws.eu/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.eu/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.eu/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Elastic Load Balancing User Guide

For centralized access management, we recommend AWS IAM Identity Center. For more
information, see What is IAM Identity Center? in the AWS IAM Identity Center User Guide.

IAM users and groups

An IAM user is an identity with specific permissions for a single person or application. We
recommend using temporary credentials instead of IAM users with long-term credentials. For more
information, see Require human users to use federation with an identity provider to access AWS
using temporary credentials in the IAM User Guide.

An IAM group specifies a collection of IAM users and makes permissions easier to manage for large
sets of users. For more information, see Use cases for IAM users in the IAM User Guide.

IAM roles

An IAM role is an identity with specific permissions that provides temporary credentials. You can
assume a role by switching from a user to an IAM role (console) or by calling an AWS CLI or AWS
API operation. For more information, see Methods to assume a role in the IAM User Guide.

IAM roles are useful for federated user access, temporary IAM user permissions, cross-account
access, cross-service access, and applications running on Amazon EC2. For more information, see
Cross account resource access in IAM in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy defines permissions when associated with an identity or resource. AWS evaluates these
policies when a principal makes a request. Most policies are stored in AWS as JSON documents. For
more information about JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Using policies, administrators specify who has access to what by defining which principal can
perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. An IAM administrator creates IAM policies and
adds them to roles, which users can then assume. IAM policies define permissions regardless of the
method used to perform the operation.

Managing access using policies 20

https://docs.aws.eu/singlesignon/latest/userguide/what-is.html
https://docs.aws.eu/IAM/latest/UserGuide/id_users.html
https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.eu/IAM/latest/UserGuide/id_groups.html
https://docs.aws.eu/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies.html#access_policies-json

Elastic Load Balancing User Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you attach to an identity (user,
group, or role). These policies control what actions identities can perform, on which resources, and
under what conditions. To learn how to create an identity-based policy, see Define custom IAM
permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be inline policies (embedded directly into a single identity) or managed
policies (standalone policies attached to multiple identities). To learn how to choose between
managed and inline policies, see Choose between managed policies and inline policies in the IAM
User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples
include IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. You
must specify a principal in a resource-based policy.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Other policy types

AWS supports additional policy types that can set the maximum permissions granted by more
common policy types:

• Permissions boundaries – Set the maximum permissions that an identity-based policy can grant
to an IAM entity. For more information, see Permissions boundaries for IAM entities in the IAM
User Guide.

• Service control policies (SCPs) – Specify the maximum permissions for an organization or
organizational unit in AWS Organizations. For more information, see Service control policies in
the AWS Organizations User Guide.

• Resource control policies (RCPs) – Set the maximum available permissions for resources in your
accounts. For more information, see Resource control policies (RCPs) in the AWS Organizations
User Guide.

• Session policies – Advanced policies passed as a parameter when creating a temporary session
for a role or federated user. For more information, see Session policies in the IAM User Guide.

Managing access using policies 21

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.eu/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.eu/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies.html#policies_session

Elastic Load Balancing User Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How ELB works with IAM

Before you use IAM to manage access to ELB, learn what IAM features are available to use with ELB.

IAM features you can use with ELB

IAM feature ELB support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles No

Service-linked roles Yes

Identity-based policies for ELB

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can

How ELB works with IAM 22

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Elastic Load Balancing User Guide

perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. To learn about all of the elements
that you can use in a JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

Resource-based policies within ELB

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. For more information, see Cross account
resource access in IAM in the IAM User Guide.

Policy actions for ELB

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Include actions in a policy to grant permissions to perform the associated
operation.

To see a list of ELB actions, see Actions defined by ELB V2 and Actions defined by ELB V1 in the
Service Authorization Reference.

Policy actions in ELB use the following prefix before the action:

elasticloadbalancing

How ELB works with IAM 23

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancingv2.html#awselasticloadbalancingv2-actions-as-permissions
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancing.html#awselasticloadbalancing-actions-as-permissions

Elastic Load Balancing User Guide

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "elasticloadbalancing:action1",
 "elasticloadbalancing:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "elasticloadbalancing:Describe*"

For the complete list of the API actions for ELB, see the following documentation:

• Application Load Balancers, Network Load Balancers, and Gateway Load Balancers — API
Reference version 2015-12-01

• Classic Load Balancers — API Reference version 2012-06-01

Policy resources for ELB

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. As
a best practice, specify a resource using its Amazon Resource Name (ARN). For actions that don't
support resource-level permissions, use a wildcard (*) to indicate that the statement applies to all
resources.

"Resource": "*"

Some ELB API actions support multiple resources. To specify multiple resources in a single
statement, separate the ARNs with commas.

"Resource": [
 "resource1",
 "resource2"
]

How ELB works with IAM 24

https://docs.aws.eu/elasticloadbalancing/latest/APIReference/
https://docs.aws.eu/elasticloadbalancing/latest/APIReference/
https://docs.aws.eu/elasticloadbalancing/2012-06-01/APIReference/
https://docs.aws.eu/IAM/latest/UserGuide/reference-arns.html

Elastic Load Balancing User Guide

To see a list of ELB resource types and their ARNs, see Resources defined by ELB V2 and Resources
defined by ELB V1 in the Service Authorization Reference. To learn with which actions you can
specify the ARN of each resource, see Actions defined by ELB V2 and Actions defined by ELB V1.

Policy condition keys for ELB

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element specifies when statements execute based on defined criteria. You can
create conditional expressions that use condition operators, such as equals or less than, to match
the condition in the policy with values in the request. To see all AWS global condition keys, see
AWS global condition context keys in the IAM User Guide.

To see a list of ELB condition keys, see Condition keys for ELB V2 and Condition keys for ELB V1
in the Service Authorization Reference. To learn with which actions and resources you can use a
condition key, see Actions defined by ELB V2 and Actions defined by ELB V1.

Condition keys

• elasticloadbalancing:ListenerProtocol condition key

• elasticloadbalancing:SecurityPolicy condition key

• elasticloadbalancing:Scheme condition key

• elasticloadbalancing:SecurityGroup condition key

• elasticloadbalancing:Subnet condition key

• elasticloadbalancing:ResourceTag condition key

elasticloadbalancing:ListenerProtocol condition key

The elasticloadbalancing:ListenerProtocol condition key can be used for conditions that
define the types of listeners that can be created and used. The policy is available for Application
Load Balancers, Network Load Balancers, and Classic Load Balancers. The following actions support
this condition key:

API version 2015-12-01

• CreateListener

How ELB works with IAM 25

https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancingv2.html#awselasticloadbalancingv2-resources-for-iam-policies
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancing.html#awselasticloadbalancing-resources-for-iam-policies
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancing.html#awselasticloadbalancing-resources-for-iam-policies
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancingv2.html#awselasticloadbalancingv2-actions-as-permissions
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancing.html#awselasticloadbalancing-actions-as-permissions
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancingv2.html#awselasticloadbalancingv2-policy-keys
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancing.html#awselasticloadbalancing-policy-keys
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancingv2.html#awselasticloadbalancingv2-actions-as-permissions
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancing.html#awselasticloadbalancing-actions-as-permissions

Elastic Load Balancing User Guide

• ModifyListener

API version 2012-06-01

• CreateLoadBalancer

• CreateLoadBalancerListeners

The following example policy requires users to select the HTTPS protocol for the listeners for their
Application Load Balancers and the TLS protocol for the listeners for their Network Load Balancers.

JSON

{
 "Version":"2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:CreateListener",
 "elasticloadbalancing:ModifyListener"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "elasticloadbalancing:ListenerProtocol": [
 "HTTPS",
 "TLS"
]
 }
 }
 }
}

With a Classic Load Balancer, you can specify multiple listeners in a single call. Therefore, your
policy must use a multi-value context key, as shown in the following example.

JSON

{

How ELB works with IAM 26

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition_examples-multi-valued-context-keys.html

Elastic Load Balancing User Guide

 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:CreateLoadBalancerListeners"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "elasticloadbalancing:ListenerProtocol": [
 "TCP",
 "HTTP",
 "HTTPS"
]
 }
 }
 }
]
}

elasticloadbalancing:SecurityPolicy condition key

The elasticloadbalancing:SecurityPolicy condition key can be used for conditions that
define and enforce specific security policies on the load balancers. The policy is available for
Application Load Balancers, Network Load Balancers and Classic Load Balancers. The following
actions support this condition key:

API version 2015-12-01

• CreateListener

• ModifyListener

API version 2012-06-01

• CreateLoadBalancerPolicy

• SetLoadBalancerPoliciesOfListener

How ELB works with IAM 27

Elastic Load Balancing User Guide

The following example policy requires users to select one of the specified security policies for their
Application Load Balancers and Network Load Balancers.

JSON

{
 "Version":"2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:CreateListener",
 "elasticloadbalancing:ModifyListener"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "elasticloadbalancing:SecurityPolicy": [
 "ELBSecurityPolicy-TLS13-1-2-2021-06",
 "ELBSecurityPolicy-TLS13-1-2-Res-2021-06",
 "ELBSEcurityPolicy-TLS13-1-1-2021-06"
]
 }
 }
 }
}

elasticloadbalancing:Scheme condition key

The elasticloadbalancing:Scheme condition key can be used for conditions that define which
scheme can be selected during load balancer creation. The policy is available for Application Load
Balancers, Network Load Balancers, and Classic Load Balancers. The following actions support this
condition key:

API version 2015-12-01

• CreateLoadBalancer

API version 2012-06-01

• CreateLoadBalancer

How ELB works with IAM 28

Elastic Load Balancing User Guide

The following example policy requires users to select the specified scheme for their load balancers.

JSON

{
 "Version":"2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "elasticloadbalancing:CreateLoadBalancer",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "elasticloadbalancing:Scheme": "internal"
 }
 }
 }
}

elasticloadbalancing:SecurityGroup condition key

Important

ELB accepts all capitalizations of security group IDs. However, make sure to use the
appropriate case insensitive condition operators, for example StringEqualsIgnoreCase.

The elasticloadbalancing:SecurityGroup condition key can be used for conditions that
define which security groups can be applied to the load balancers. The policy is available for
Application Load Balancers, Network Load Balancers and Classic Load Balancers. The following
actions support this condition key:

API version 2015-12-01

• CreateLoadBalancer

• SetSecurityGroups

API version 2012-06-01

• CreateLoadBalancer

How ELB works with IAM 29

Elastic Load Balancing User Guide

• ApplySecurityGroupsToLoadBalancer

The following example policy requires users to select one of the specified security groups for their
load balancers.

 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:SetSecurityGroup"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEqualsIgnoreCase":{
 "elasticloadbalancing:SecurityGroup": [
 "sg-51530134",
 "sg-51530144",
 "sg-51530139"
]
 },
 }
 }
}

elasticloadbalancing:Subnet condition key

Important

ELB accepts all capitalizations of subnet IDs. However, make sure to use the appropriate
case insensitive condition operators, for example StringEqualsIgnoreCase.

The elasticloadbalancing:Subnet condition key can be used for conditions that define which
subnets can be created and attached to load balancers. The policy is available for Application
Load Balancers, Network Load Balancers, Gateway Load Balancers and Classic Load Balancers. The
following actions support this condition key:

How ELB works with IAM 30

Elastic Load Balancing User Guide

API version 2015-12-01

• CreateLoadBalancer

• SetSubnets

API version 2012-06-01

• CreateLoadBalancer

• AttachLoadBalancerToSubnets

The following example policy requires users to select one of the specified subnets for their load
balancers.

JSON

{
 "Version":"2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:SetSubnets"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEqualsIgnoreCase": {
 "elasticloadbalancing:Subnet": [
 "subnet-01234567890abcdef",
 "subnet-01234567890abcdeg "
]
 }
 }
 }
}

elasticloadbalancing:ResourceTag condition key

The elasticloadbalancing:ResourceTag/key condition key is specific to ELB. All mutating
actions support this condition key.

How ELB works with IAM 31

Elastic Load Balancing User Guide

ACLs in ELB

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with ELB

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes called tags. You can attach tags to IAM entities and AWS resources, then design ABAC
policies to allow operations when the principal's tag matches the tag on the resource.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using temporary credentials with ELB

Supports temporary credentials: Yes

Temporary credentials provide short-term access to AWS resources and are automatically created
when you use federation or switch roles. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM and AWS services that work with IAM in the IAM User Guide.

Cross-service principal permissions for ELB

Supports forward access sessions (FAS): Yes

How ELB works with IAM 32

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.eu/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.eu/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.eu/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.eu/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Elastic Load Balancing User Guide

Forward access sessions (FAS) use the permissions of the principal calling an AWS service,
combined with the requesting AWS service to make requests to downstream services. For policy
details when making FAS requests, see Forward access sessions.

Service roles for ELB

Supports service roles: No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Service-linked roles for ELB

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing ELB service-linked roles, see ELB service-linked role.

ELB API permissions to tag resources during creation

For users to tag resources during creation, they must have permissions to use the action
that creates the resource, such as elasticloadbalancing:CreateLoadBalancer or
elasticloadbalancing:CreateTargetGroup. If tags are specified in the resource-creating
action, additional authorization is required on the elasticloadbalancing:AddTags action to
verify if users have permissions to apply tags to the resources being created. Therefore, users must
also have explicit permissions to use the elasticloadbalancing:AddTags action.

In the IAM policy definition for the elasticloadbalancing:AddTags action, you can use the
Condition element with the elasticloadbalancing:CreateAction condition key to give
tagging permissions to the action that creates the resource.

The following example demonstrates a policy that allows users to create target groups and apply
any tags to them during creation. Users are not permitted to tag any existing resources (they can't
call the elasticloadbalancing:AddTags action directly).

Resource tagging API permissions 33

https://docs.aws.eu/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_create_for-service.html

Elastic Load Balancing User Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:CreateTargetGroup"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:AddTags"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "elasticloadbalancing:CreateAction" : "CreateTargetGroup"
 }
 }
 }
]
}

Similarly, the following policy allows users to create a load balancer and apply tags
during creation. Users are not permitted to tag any existing resources (they can't call the
elasticloadbalancing:AddTags action directly).

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:CreateLoadBalancer"

Resource tagging API permissions 34

Elastic Load Balancing User Guide

],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:AddTags"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "elasticloadbalancing:CreateAction" : "CreateLoadBalancer"
 }
 }
 }
]
}

The elasticloadbalancing:AddTags action is only evaluated if tags are applied
during the resource-creating action. Therefore, a user that has permissions to create a
resource (assuming there are no tagging conditions) does not require permissions to use the
elasticloadbalancing:AddTags action if no tags are specified in the request. However, if the
user attempts to create a resource with tags, the request fails if the user does not have permissions
to use the elasticloadbalancing:AddTags action.

ELB service-linked role

ELB uses a service-linked role for the permissions that it requires to call other AWS services on your
behalf. For more information, see Service-linked roles in the IAM User Guide.

Permissions granted by the service-linked role

ELB uses the service-linked role named AWSServiceRoleForElasticLoadBalancing to call other AWS
services on your behalf.

AWSServiceRoleForElasticLoadBalancing trusts the elasticloadbalancing.amazonaws.com
service to assume the role.

The role permissions policy is AWSElasticLoadBalancingServiceRolePolicy. To view the permissions
for this policy, see AWSElasticLoadBalancingServiceRolePolicy in the AWS Managed Policy
Reference.

Service-linked role 35

https://docs.aws.eu/IAM/latest/UserGuide/id_roles_create-service-linked-role.html
https://docs.aws.eu/aws-managed-policy/latest/reference/AWSElasticLoadBalancingServiceRolePolicy.html

Elastic Load Balancing User Guide

Create the service-linked role

You don't need to manually create the AWSServiceRoleForElasticLoadBalancing role. ELB creates
this role for you when you create a load balancer or a target group.

For ELB to create a service-linked role on your behalf, you must have the required permissions. For
more information, see Service-linked role permissions in the IAM User Guide.

Edit the service-linked role

You can edit the description of AWSServiceRoleForElasticLoadBalancing using IAM. For more
information, see Edit a service-linked role description in the IAM User Guide.

Delete the service-linked role

If you no longer need to use ELB, we recommend that you delete
AWSServiceRoleForElasticLoadBalancing.

You can delete this service-linked role only after you delete all load balancers in your AWS account.
This ensures that you can't inadvertently remove permission to access your load balancers. For
more information, see Delete an Application Load Balancer, Delete a Network Load Balancer, and
Delete a Classic Load Balancer.

You can use the IAM console, the IAM CLI, or the IAM API to delete service-linked roles. For more
information, see Delete a service-linked role in the IAM User Guide.

After you delete AWSServiceRoleForElasticLoadBalancing, ELB creates the role again if you create a
load balancer.

AWS managed policies for ELB

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

AWS managed policies 36

https://docs.aws.eu/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#service-linked-role-permissions
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_update-service-linked-role.html#edit-service-linked-role-iam-console
https://docs.aws.eu/elasticloadbalancing/latest/application/load-balancer-delete.html
https://docs.aws.eu/elasticloadbalancing/latest/network/load-balancer-delete.html
https://docs.aws.eu/elasticloadbalancing/latest/classic/elb-getting-started.html#delete-load-balancer
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_manage_delete.html#id_roles_manage_delete_slr
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

Elastic Load Balancing User Guide

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AWSElasticLoadBalancingClassicServiceRolePolicy

This policy includes all the permissions that ELB (Classic Load Balancer) requires to call other AWS
services on your behalf. Service-linked roles are predefined. With predefined roles you don't have
to manually add the necessary permissions for ELB to complete actions on your behalf. You cannot
attach, detach, modify, or delete this policy.

To view the permissions for this policy, see AWSElasticLoadBalancingClassicServiceRolePolicy in the
AWS Managed Policy Reference.

AWS managed policy: AWSElasticLoadBalancingServiceRolePolicy

This policy includes all the permissions that ELB requires to call other AWS services on your behalf.
Service-linked roles are predefined. With predefined roles you don't have to manually add the
necessary permissions for ELB to complete actions on your behalf. You cannot attach, detach,
modify, or delete this policy.

To view the permissions for this policy, see AWSElasticLoadBalancingServiceRolePolicy in the AWS
Managed Policy Reference.

AWS managed policy: ElasticLoadBalancingFullAccess

This policy gives full access to the ELB service and limited access to other services via the AWS
Management Console.

To view the permissions for this policy, see ElasticLoadBalancingFullAccess in the AWS Managed
Policy Reference.

AWS managed policy: ElasticLoadBalancingReadOnly

This policy provides read-only access to ELB and dependent services.

AWS managed policies 37

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.eu/aws-managed-policy/latest/reference/AWSElasticLoadBalancingClassicServiceRolePolicy.html
https://docs.aws.eu/aws-managed-policy/latest/reference/AWSElasticLoadBalancingServiceRolePolicy.html
https://docs.aws.eu/aws-managed-policy/latest/reference/ElasticLoadBalancingFullAccess.html

Elastic Load Balancing User Guide

To view the permissions for this policy, see ElasticLoadBalancingReadOnly in the AWS Managed
Policy Reference.

ELB updates to AWS managed policies

View details about updates to AWS managed policies for ELB since this service began tracking
these changes.

Change Description Date

AWSElasticLoadBalancingServ
iceRolePolicy - Update to an
existing policy

Added the ec2:AllocateIpamPoolCidr
action to grant permissions to allocate CIDR
blocks from IPAM pools.

February 17,
2025

ElasticLoadBalancingFullAcc
ess - Update to an existing
policy

Added the arc-zonal-shift:* actions to
grant permissions required for zonal shift.

November
28, 2023

ElasticLoadBalancingReadOnl
y - Update to an existing
policy

Added the following actions to grant
permissions required for zonal shift: arc-
zonal-shift:GetManagedResource ,
arc-zonal-shift:ListManaged
Resources and arc-zonal-shift:Li
stZonalShifts .

November
28, 2023

AWSElasticLoadBalancingServ
iceRolePolicy - Update to an
existing policy

Added the ec2:DescribeVpcPee
ringConnections action to grant
permissions required for peering connections.

October 11,
2021

ElasticLoadBalancingFullAcc
ess - Update to an existing
policy

Added the ec2:DescribeVpcPee
ringConnections action to grant
permissions required for peering connections.

October 11,
2021

ElasticLoadBalancingFullAcc
ess - New policy

Provides full access to ELB and dependent
services.

September
20, 2018

ElasticLoadBalancingReadOnl
y - New policy

Provides read-only access to ELB and
dependent services.

September
20, 2018

AWS managed policies 38

https://docs.aws.eu/aws-managed-policy/latest/reference/ElasticLoadBalancingReadOnly.html

Elastic Load Balancing User Guide

Change Description Date

ELB started tracking changes ELB started tracking changes for its AWS
managed policies.

September
20, 2018

Compliance validation for Elastic Load Balancing

To learn whether an AWS service is within the scope of specific compliance programs, see and
choose the compliance program that you are interested in. For general information, see .

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. For more
information about your compliance responsibility when using AWS services, see AWS Security
Documentation.

Resilience in Elastic Load Balancing

The AWS global infrastructure is built around AWS Regions and Availability Zones. Regions provide
multiple physically separated and isolated Availability Zones, which are connected through
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS Global Infrastructure, ELB provides the following features to support your
data resiliency:

• Distributes incoming traffic across multiple instances in a single Availability Zone or multiple
Availability Zones.

• You can use AWS Global Accelerator with your Application Load Balancers to distribute incoming
traffic across multiple load balancers in one or more AWS Regions. For more information, see the
AWS Global Accelerator Developer Guide.

• Amazon ECS enables you to run, stop, and manage Docker containers on a cluster of EC2
instances. You can configure your Amazon ECS service to use a load balancer to distribute

Compliance validation 39

https://docs.aws.eu/security/
https://docs.aws.eu/security/
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.eu/global-accelerator/latest/dg/

Elastic Load Balancing User Guide

incoming traffic across the services in a cluster. For more information, see the Amazon Elastic
Container Service Developer Guide.

Infrastructure security in Elastic Load Balancing

As a managed service, ELB is protected by AWS global network security. For information about
AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To design your
AWS environment using the best practices for infrastructure security, see Infrastructure Protection
in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access ELB through the network. Clients must support the
following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Network isolation

A virtual private cloud (VPC) is a virtual network in your own logically isolated area in the AWS
Cloud. A subnet is a range of IP addresses in a VPC. When you create a load balancer, you can
specify one or more subnets for the load balancer nodes. You can deploy EC2 instances in the
subnets of your VPC and register them with your load balancer. For more information about VPC
and subnets, see the Amazon VPC User Guide.

When you create a load balancer in a VPC, it can be either internet-facing or internal. An internal
load balancer can only route requests that come from clients with access to the VPC for the load
balancer.

Your load balancer sends requests to its registered targets using private IP addresses. Therefore,
your targets do not need public IP addresses in order to receive requests from a load balancer.

To call the ELB API from your VPC using private IP addresses, use AWS PrivateLink. For more
information, see Access ELB using an interface endpoint (AWS PrivateLink).

Controlling network traffic

Consider the following options for securing network traffic when you use a load balancer:

Infrastructure security 40

https://docs.aws.eu/AmazonECS/latest/developerguide/
https://docs.aws.eu/AmazonECS/latest/developerguide/
https://aws.amazon.com/security/
https://docs.aws.eu/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.eu/vpc/latest/userguide/

Elastic Load Balancing User Guide

• Use secure listeners to support encrypted communication between clients and your load
balancers. Application Load Balancers support HTTPS listeners. Network Load Balancers support
TLS listeners. Classic Load Balancers support both HTTPS and TLS listeners. You can choose
from predefined security policies for your load balancer to specify the cipher suites and protocol
versions that are supported by your application. You can use AWS Certificate Manager (ACM) or
AWS Identity and Access Management (IAM) to manage the server certificates installed on your
load balancer. You can use the Server Name Indication (SNI) protocol to serve multiple secure
websites using a single secure listener. SNI is automatically enabled for your load balancer when
you associate more than one server certificate with a secure listener.

• Configure the security groups for your Application Load Balancers and Classic Load Balancers to
accept traffic only from specific clients. These security groups must allow inbound traffic from
clients on the listener ports and outbound traffic to the clients.

• Configure the security groups for your Amazon EC2 instances to accept traffic only from the load
balancer. These security groups must allow inbound traffic from the load balancer on the listener
ports and the health check ports.

• Configure your Application Load Balancer to securely authenticate users through an identity
provider or using corporate identities. For more information, see Authenticate users using an
Application Load Balancer.

• Use AWS WAF with your Application Load Balancers to allow or block requests based on the rules
in a web access control list (web ACL).

Access ELB using an interface endpoint (AWS PrivateLink)

You can establish a private connection between your virtual private cloud (VPC) and the ELB API by
creating an interface VPC endpoint. You can use this connection to call the ELB API from your VPC
without requiring that you attach an internet gateway, NAT instance, or VPN connection to your
VPC. The endpoint provides reliable, scalable connectivity to the ELB API, versions 2015-12-01 and
2012-06-01, which you use to create and manage your load balancers.

Interface VPC endpoints are powered by AWS PrivateLink, a feature that enables communication
between your applications and AWS services using private IP addresses. For more information, see
AWS PrivateLink.

Limit

AWS PrivateLink does not support Network Load Balancers with more than 50 listeners.

AWS PrivateLink 41

https://docs.aws.eu/elasticloadbalancing/latest/application/listener-authenticate-users.html
https://docs.aws.eu/elasticloadbalancing/latest/application/listener-authenticate-users.html
https://docs.aws.eu/waf/latest/developerguide/waf-chapter.html
https://aws.amazon.com/privatelink/

Elastic Load Balancing User Guide

Create an interface endpoint for ELB

Create an endpoint for ELB using the following service name:

com.amazonaws.region.elasticloadbalancing

For more information, see Create an interface endpoint in the AWS PrivateLink Guide.

Create a VPC endpoint policy for ELB

You can attach a policy to your VPC endpoint to control access to the ELB API. The policy specifies:

• The principal that can perform actions.

• The actions that can be performed.

• The resource on which the actions can be performed.

The following example shows a VPC endpoint policy that denies everyone permission to create
a load balancer through the endpoint. The example policy also grants everyone permission to
perform all other actions.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "elasticloadbalancing:CreateLoadBalancer",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": "*"
 }
]
}

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Create an interface endpoint for ELB 42

https://docs.aws.eu/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.eu/vpc/latest/privatelink/vpc-endpoints-access.html

Elastic Load Balancing User Guide

Request throttling for the ELB API

ELB throttles its API requests for each AWS account on a per-Region basis. We do this to help the
performance and availability of the service. Throttling ensures that requests to the ELB API do
not exceed the maximum allowed API request limits. API requests are subject to the request limits
whether you call them or they are called on your behalf (for example, by the AWS Management
Console or a third-party application).

If you exceed an ELB API throttling limit, you get the ThrottlingException error code and a
Rate exceeded error message.

We recommend that you prepare to handle throttling gracefully. For more information, see
Timeouts, retries, and backoff with jitter. If you experience a high level of throttling, you can
contact AWS Support to help you evaluate your API usage and potential solutions. Each case is
evaluated individually. Support might increase your limits within the safety limits of the system, to
maintain high availability and predictable performance.

How throttling is applied

ELB uses the token bucket algorithm to implement API throttling. With this algorithm, your
account has a bucket that holds a specific number of tokens. The number of tokens in the bucket
represents your throttling limit at any given second.

ELB provides two sets of API actions. ELB API version 2 supports the following types of load
balancers: Application Load Balancers, Network Load Balancers, and Gateway Load Balancers. ELB
API version 1 supports Classic Load Balancers. Each ELB API version has its own buckets and tokens.

Services that call the ELB API on your behalf, such as Amazon EC2, Amazon ECS, Amazon EC2 Auto
Scaling, and AWS CloudFormation have their own account-level buckets. These services do not
consume tokens from your buckets.

Request rate limiting

With request rate limiting, you are throttled on the number of API requests that you make. Each
request that you make removes one token from the bucket. For example, the token bucket size for
non-mutating API actions is 40 tokens. You can make up to 40 Describe* requests in one second.
If you exceed 40 Describe* requests in one second, you are throttled and the remaining requests
within that second fail.

How throttling is applied 43

https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
https://en.wikipedia.org/wiki/Token_bucket

Elastic Load Balancing User Guide

Buckets automatically refill at a set rate. If a bucket is below its maximum capacity, a set number of
tokens is added back every second until the bucket reaches its maximum capacity. If a bucket is full
when refill tokens arrive, they are discarded. A bucket can't hold more than its maximum number
of tokens. For example, the bucket size for non-mutating API actions is 40 tokens and the refill rate
is 10 tokens per second. If you make 40 DescribeLoadBalancers requests in one second, the
bucket is reduced to zero (0) tokens. We add 10 refill tokens to the bucket every second, until it
reaches its maximum capacity of 40 tokens. This means that it takes 4 seconds for an empty bucket
to reach its maximum capacity, if no requests are made during that time.

You do not need to wait for a bucket to be completely full before you can make API requests. You
can use tokens as they are added to a bucket. If you immediately use the refill tokens, the bucket
does not reach its maximum capacity.

There is an account-level throttling limit that is shared across all ELB API actions. The capacity of
the account-level bucket is 40 tokens and the refill rate is 10 request tokens per second.

Request token bucket sizes and refill rates

For request rate limiting purposes, API actions are grouped into categories. Each category has its
own limits.

Categories

• Mutating actions — API actions that create, modify, or delete resources. This category generally
includes all API actions that are not categorized as non-mutating actions. These actions have a
lower throttling limit than non-mutating API actions.

• Non-mutating actions — API actions that retrieve data about resources. These API actions
typically have the highest API throttling limits.

• Resource-intensive actions — API actions that take the most time and consume the most
resources to complete. These actions have an even lower throttling limit than mutating actions.
These actions are throttled separately from other mutating actions.

• Registration actions — API actions that register or deregister targets. These API actions are
throttled separately from other mutating actions.

• Uncategorized actions — These API actions receive their own token bucket sizes and refill rates,
even though they fall under one of the other categories.

Request token bucket sizes and refill rates 44

Elastic Load Balancing User Guide

The following table shows the default capacity and refill rates for the categorized request token
buckets.

Category ELBv2 actions ELBv1 actions Bucket
capacity

Refill
rate
(per
second)

Resource-
intensive

CreateLoadBalancer ,
SetSubnets

CreateLoadBalancer
, AttachLoadBalancer

ToSubnets , DetachLoa
dBalancerFromSubne
ts , EnableAva
ilabilityZonesForL
oadBalancer ,
DisableAvailabilit
yZonesForLoadBalan
cer

10 0.2 †

Registration RegisterTargets ,
DeregisterTargets

RegisterInstancesW
ithLoadBalancer ,
DeregisterInstance
sFromLoadBalancer

20 4

Non-mutat
ing

DescribeAccountLim
its , DescribeC
apacityReservation

, DescribeListenerAt
tributes , DescribeL
istenerCertificate
s , DescribeListeners ,
DescribeLoadBalanc
erAttributes ,
DescribeLoadBalanc
ers , DescribeRules ,
DescribeSSLPolicie
s , DescribeTags ,

Describe* 40 10

Request token bucket sizes and refill rates 45

Elastic Load Balancing User Guide

Category ELBv2 actions ELBv1 actions Bucket
capacity

Refill
rate
(per
second)

DescribeTargetGrou
pAttributes ,
DescribeTargetGrou
ps , DescribeT
argetHealth

Mutating AddListenerCertifi
cates , AddTags,
CreateListener ,
CreateRule , CreateTar
getGroup , DeleteLis
tener , DeleteLoa
dBalancer , DeleteRul
e , DeleteTargetGroup ,
ModifyCapacityRese
rvation , ModifyIpP
ools , ModifyListener ,
ModifyListenerAttr
ibutes , ModifyLoa
dBalancerAttribute
s , ModifyRule ,
ModifyTargetGroup ,
ModifyTargetGroupA
ttributes , RemoveLis
tenerCertificates ,
RemoveTags , SetIpAddr
essType , SetRulePr
iorities , SetSecuri
tyGroups

AddTags, ApplySecu
rityGroupsToLoadBa
lancer , Configure
HealthCheck ,
CreateAppCookieSti
ckinessPolicy ,
CreateLbCookieStic
kinessPolicy ,
CreateLoadBalancer
Listener , CreateLoa
dBalancerPolicy ,
Delete*, ModifyLoa
dBalancerAttribute
s , RemoveTags ,
SetLoadBalancer*

20 3

Request token bucket sizes and refill rates 46

Elastic Load Balancing User Guide

The following table shows the default capacity and refill rates for the uncategorized request token
buckets for ELBv2.

ELBv2 actions Bucket capacity Refill rate (per
second)

CreateTrustStore 10 0.2 †

AddTrustStoreRevocations ,
DeleteSharedTrustStoreAssoc
iation , DeleteTrustStore , ModifyTru
stStore , RemoveTrustStoreRe
vocations

10 0.2 †

GetResourcePolicy , GetTrustS
toreCaCertificatesBundle ,
GetTrustStoreRevocationContent

20 4

DescribeTrustStoreAssociations ,
DescribeTrustStoreRevocations ,
DescribeTrustStores

40 10

† Fractional refill rates require several seconds to generate one full token.

Monitoring API requests

You can use AWS CloudTrail to monitor your ELB API requests. For more information, see Log API
calls for ELB using AWS CloudTrail.

Monitoring API requests 47

Elastic Load Balancing User Guide

Understand codes for ELB in billing and usage reports

When you use ELB, we include related codes in your AWS billing and usage reports. Reviewing
these codes helps you understand your load balancer costs and usage patterns. Tracking and
managing your expenses is essential for optimizing your costs.

For more information, see ELB pricing.

The following tables describe the codes for ELB that appear in your billing and usage reports.
The units are hours or load balancer capacity units (LCU). Each load balancer type has a specific
definition of LCU. For information about the LCUs for each load balancer type, see ELB pricing. For
a list of the Region codes used in the billing and usage reports, see AWS Region billing codes.

Application Load Balancers

Code Description Units

region-LoadBala
ncerUsage

The running time. Hours

region-LCUUsage The LCUs used. LCU

region-IdleProv
isionedLB
Capacity

The LCUs reserved but not used. LCU

region-TS-LoadB
alancerUsage

The time that a trust store is used by Mutual
TLS.

Hours

region-Outposts
-LoadBala
ncerUsage

The running time on Outposts. Hours

region-Outposts
-LCUUsage

The LCUs used on Outposts. LCU

region-Reserved
LCUUsage

The LCUs reserved. LCU

Application Load Balancers 48

https://aws.eu/elasticloadbalancing/pricing/
https://aws.eu/elasticloadbalancing/pricing/
https://docs.aws.eu/global-infrastructure/latest/regions/aws-region-billing-codes.html

Elastic Load Balancing User Guide

Network Load Balancers

Code Description Units

region-LoadBala
ncerUsage

The running time. Hours

region-LCUUsage The LCUs used. LCU

Gateway Load Balancers

Code Description Units

region-LoadBala
ncerUsage

The running time. Hours

region-LCUUsage The LCUs used. LCU

Classic Load Balancers

Code Description Units

region-LoadBala
ncerUsage

The running time. Hours

region-DataProc
essing-Bytes

The data processed. GB

region-IdleProv
isionedLB
Capacity

The LCUs reserved but not used. LCU

Network Load Balancers 49

Elastic Load Balancing User Guide

Log API calls for ELB using AWS CloudTrail

ELB is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user,
role, or an AWS service. CloudTrail captures API calls for ELB as events. The calls captured include
calls from the AWS Management Console and code calls to the ELB API operations. Using the
information collected by CloudTrail, you can determine the request that was made to ELB, the IP
address from which the request was made, when it was made, and additional details.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

CloudTrail is active in your AWS account when you create the account and you automatically
have access to the CloudTrail Event history. The CloudTrail Event history provides a viewable,
searchable, downloadable, and immutable record of the past 90 days of recorded management
events in an AWS Region. For more information, see Working with CloudTrail Event history in the
AWS CloudTrail User Guide. There are no CloudTrail charges for viewing the Event history.

For an ongoing record of events in your AWS account past 90 days, create a trail or a CloudTrail
Lake event data store.

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
AWS Management Console are multi-Region. You can create a single-Region or a multi-Region
trail by using the AWS CLI. Creating a multi-Region trail is recommended because you capture
activity in all AWS Regions in your account. If you create a single-Region trail, you can view only
the events logged in the trail's AWS Region. For more information about trails, see Creating a
trail for your AWS account and Creating a trail for an organization in the AWS CloudTrail User
Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at no
charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges. For

50

https://docs.aws.eu/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.eu/awscloudtrail/latest/userguide/creating-trail-organization.html

Elastic Load Balancing User Guide

more information about CloudTrail pricing, see AWS CloudTrail Pricing. For information about
Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing
events in row-based JSON format to Apache ORC format. ORC is a columnar storage format
that is optimized for fast retrieval of data. Events are aggregated into event data stores, which
are immutable collections of events based on criteria that you select by applying advanced
event selectors. The selectors that you apply to an event data store control which events persist
and are available for you to query. For more information about CloudTrail Lake, see Working
with AWS CloudTrail Lake in the AWS CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data
store, you choose the pricing option you want to use for the event data store. The pricing
option determines the cost for ingesting and storing events, and the default and maximum
retention period for the event data store. For more information about CloudTrail pricing, see
AWS CloudTrail Pricing.

ELB management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your AWS account. These are also known as control plane operations. By default,
CloudTrail logs management events.

ELB logs control plane operations as management events. For a list of the control plane operations,
see the following:

• Application Load Balancers — Elastic Load Balancing API Reference version 2015-12-01

• Network Load Balancers — Elastic Load Balancing API Reference version 2015-12-01

• Gateway Load Balancers — Elastic Load Balancing API Reference version 2015-12-01

• Classic Load Balancers — Elastic Load Balancing API Reference version 2012-06-01

ELB event examples

An event represents a single request from any source and includes information about the requested
API operation, the date and time of the operation, request parameters, and so on. CloudTrail log

ELB management events in CloudTrail 51

https://aws.eu/cloudtrail/pricing/
https://aws.eu/s3/pricing/
https://orc.apache.org/
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://aws.eu/cloudtrail/pricing/
https://docs.aws.eu/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.aws.eu/elasticloadbalancing/latest/APIReference/
https://docs.aws.eu/elasticloadbalancing/latest/APIReference/
https://docs.aws.eu/elasticloadbalancing/latest/APIReference/
https://docs.aws.eu/elasticloadbalancing/2012-06-01/APIReference/

Elastic Load Balancing User Guide

files aren't an ordered stack trace of the public API calls, so events don't appear in any specific
order.

The following examples show CloudTrail events for a user who created a load balancer and then
deleted it using the AWS CLI. You can identify the CLI using the userAgent elements. You can
identify the requested API calls using the eventName elements. Information about the user
(Alice) can be found in the userIdentity element.

Example Example 1: CreateLoadBalancer from the ELBv2 API

{
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "123456789012",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alice"
 },
 "eventTime": "2016-04-01T15:31:48Z",
 "eventSource": "elasticloadbalancing.amazonaws.com",
 "eventName": "CreateLoadBalancer",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "198.51.100.1",
 "userAgent": "aws-cli/1.10.10 Python/2.7.9 Windows/7 botocore/1.4.1",
 "requestParameters": {
 "subnets": ["subnet-8360a9e7","subnet-b7d581c0"],
 "securityGroups": ["sg-5943793c"],
 "name": "my-load-balancer",
 "scheme": "internet-facing"
 },
 "responseElements": {
 "loadBalancers":[{
 "type": "application",
 "loadBalancerName": "my-load-balancer",
 "vpcId": "vpc-3ac0fb5f",
 "securityGroups": ["sg-5943793c"],
 "state": {"code":"provisioning"},
 "availabilityZones": [
 {"subnetId":"subnet-8360a9e7","zoneName":"us-west-2a"},
 {"subnetId":"subnet-b7d581c0","zoneName":"us-west-2b"}
],

ELB event examples 52

Elastic Load Balancing User Guide

 "dNSName": "my-load-balancer-1836718677.us-west-2.elb.amazonaws.com",
 "canonicalHostedZoneId": "Z2P70J7HTTTPLU",
 "createdTime": "Apr 11, 2016 5:23:50 PM",
 "loadBalancerArn": "arn:aws:elasticloadbalancing:us-
west-2:123456789012:loadbalancer/app/my-load-balancer/ffcddace1759e1d0",
 "scheme": "internet-facing"
 }]
 },
 "requestID": "b9960276-b9b2-11e3-8a13-f1ef1EXAMPLE",
 "eventID": "6f4ab5bd-2daa-4d00-be14-d92efEXAMPLE",
 "eventType": "AwsApiCall",
 "apiVersion": "2015-12-01",
 "recipientAccountId": "123456789012"
}

Example Example 2: DeleteLoadBalancer from the ELBv2 API

{
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "123456789012",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alice"
 },
 "eventTime": "2016-04-01T15:31:48Z",
 "eventSource": "elasticloadbalancing.amazonaws.com",
 "eventName": "DeleteLoadBalancer",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "198.51.100.1",
 "userAgent": "aws-cli/1.10.10 Python/2.7.9 Windows/7 botocore/1.4.1",
 "requestParameters": {
 "loadBalancerArn": "arn:aws:elasticloadbalancing:us-
west-2:123456789012:loadbalancer/app/my-load-balancer/ffcddace1759e1d0"
 },
 "responseElements": null,
 "requestID": "349598b3-000e-11e6-a82b-298133eEXAMPLE",
 "eventID": "75e81c95-4012-421f-a0cf-babdaEXAMPLE",
 "eventType": "AwsApiCall",
 "apiVersion": "2015-12-01",
 "recipientAccountId": "123456789012"

ELB event examples 53

Elastic Load Balancing User Guide

}

Example Example 3: CreateLoadBalancer from the ELB API

{
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJDPLRKLG7UEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alice"
 },
 "eventTime": "2016-04-01T15:31:48Z",
 "eventSource": "elasticloadbalancing.amazonaws.com",
 "eventName": "CreateLoadBalancer",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "198.51.100.1",
 "userAgent": "aws-cli/1.10.10 Python/2.7.9 Windows/7 botocore/1.4.1",
 "requestParameters": {
 "subnets": ["subnet-12345678","subnet-76543210"],
 "loadBalancerName": "my-load-balancer",
 "listeners": [{
 "protocol": "HTTP",
 "loadBalancerPort": 80,
 "instanceProtocol": "HTTP",
 "instancePort": 80
 }]
 },
 "responseElements": {
 "dNSName": "my-loadbalancer-1234567890.elb.amazonaws.com"
 },
 "requestID": "b9960276-b9b2-11e3-8a13-f1ef1EXAMPLE",
 "eventID": "6f4ab5bd-2daa-4d00-be14-d92efEXAMPLE",
 "eventType": "AwsApiCall",
 "apiVersion": "2012-06-01",
 "recipientAccountId": "123456789012"
}

Example Example 4: DeleteLoadBalancer from the ELB API

{

ELB event examples 54

Elastic Load Balancing User Guide

 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJDPLRKLG7UEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alice"
 },
 "eventTime": "2016-04-08T12:39:25Z",
 "eventSource": "elasticloadbalancing.amazonaws.com",
 "eventName": "DeleteLoadBalancer",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "198.51.100.1",
 "userAgent": "aws-cli/1.10.10 Python/2.7.9 Windows/7 botocore/1.4.1",
 "requestParameters": {
 "loadBalancerName": "my-load-balancer"
 },
 "responseElements": null,
 "requestID": "f0f17bb6-b9ba-11e3-9b20-999fdEXAMPLE",
 "eventID": "4f99f0e8-5cf8-4c30-b6da-3b69fEXAMPLE"
 "eventType": "AwsApiCall",
 "apiVersion": "2012-06-01",
 "recipientAccountId": "123456789012"
}

For information about CloudTrail record contents, see CloudTrail record contents in the AWS
CloudTrail User Guide.

ELB event examples 55

https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html

Elastic Load Balancing User Guide

Migrate your Classic Load Balancer

Elastic Load Balancing supports the following types of load balancers: Application Load Balancers,
Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. For information
about the different features of each load balancer type, see ELB features.

You can also choose to migrate an existing Classic Load Balancer in a VPC, to an Application Load
Balancer or a Network Load Balancer.

Benefits of migrating from a Classic Load Balancer

Each type of load balancer has its own unique features, functions, and configurations. Review the
benefits of each load balancer to help decide which one is best for you.

Application Load Balancer

Using an Application Load Balancer instead of a Classic Load Balancer has the following
benefits:

Support for:

• Path conditions, Host conditions, and HTTP header conditions.

• Redirecting requests from one URL to another, and routing requests to multiple applications
on a single EC2 instance.

• Returning custom HTTP responses.

• Registering targets by IP address, and registering Lambda functions as targets. Including
targets outside the VPC for the load balancer.

• Authenticating users through corporate or social identities.

• Amazon Elastic Container Service (Amazon ECS) containerized applications.

• Independently monitoring the health of each service.

Access logs contain additional information and are stored in a compressed format.

Improved load balancer performance overall.

Benefits of migrating 56

https://aws.eu/elasticloadbalancing/features/
https://docs.aws.eu/elasticloadbalancing/latest/application/load-balancer-listeners.html#path-conditions
https://docs.aws.eu/elasticloadbalancing/latest/application/load-balancer-listeners.html#host-conditions
https://docs.aws.eu/elasticloadbalancing/latest/application/load-balancer-listeners.html#http-header-conditions

Elastic Load Balancing User Guide

Network Load Balancer

Using a Network Load Balancer instead of a Classic Load Balancer has the following
benefits:

Support for:

• Static IP addresses, which allow assigning one Elastic IP address per subnet enabled for the
load balancer.

• Registering targets by IP address, including targets outside the VPC for the load balancer.

• Routing requests to multiple applications on a single EC2 instance.

• Amazon Elastic Container Service (Amazon ECS) containerized applications.

• Independently monitoring the health of each service.

Ability to handle volatile workloads and scale to millions of requests per second.

Migrate using migration wizard

Migration wizard uses the configuration of your Classic Load Balancer to create an equivalent
Application Load Balancer or Network Load Balancer. It reduces the time and effort required to
migrate a Classic Load Balancer compared to other methods.

Note

The wizard creates a new load balancer. The wizard doesn't convert the existing Classic
Load Balancer to an Application Load Balancer or Network Load Balancer. You must
manually redirect the traffic to the newly created load balancer.

Limitations

• The name of the new load balancer can't be the same as an existing load balancer of the same
type, in the same region.

• If the Classic Load Balancer has any tags containing the aws: prefix in their key, those tags are
not migrated.

Migration wizard 57

Elastic Load Balancing User Guide

When migrating to an Application Load Balancer

• If the Classic Load Balancer has only one subnet, you must specify a second subnet.

• If the Classic Load Balancer has HTTP/HTTPS listeners that use TCP health checks, the health
check protocol is updated to HTTP and the path is set to "/".

• If the Classic Load Balancer has HTTPS listeners using a custom or unsupported security policy,
migration wizard uses the default security policy for the new load balancer type.

When migrating to a Network Load Balancer

• The following instance types will not be registered with the new target group: C1, CC1, CC2, CG1,
CG2, CR1, CS1, G1, G2, HI1, HS1, M1, M2, M3, T1

• Certain health check settings from your Classic Load Balancer may not be transferrable to the
new target group. These cases will be indicated as a change in the summary section of the
migration wizard.

• If the Classic Load Balancer has SSL listeners, migration wizard creates a TLS listener using the
certificate and security policy from the SSL listener.

Migration wizard process

To migrate a Classic Load Balancer using migration wizard

1. Open the Amazon EC2 console at https://eusc-de-east-1.console.amazonaws-eusc.eu/ec2/.

2. On the navigation pane, under Load Balancing, choose Load Balancers.

3. Select the Classic Load Balancer you want to migrate.

4. In the load balancers Details section, choose Launch migration wizard.

5. Choose Migrate to Application Load Balancer, or Migrate to Network Load Balancer, to open
migration wizard.

6. Under Name new load balancer, for Load balancer name enter a name for your new load
balancer.

7. Under Name new target group and review targets, for Target group name enter a name for
your new target group.

8. (Optional) Under Targets, you can review the target instances that will be registered with the
new target group.

Migration wizard 58

https://eusc-de-east-1.console.amazonaws-eusc.eu/ec2/

Elastic Load Balancing User Guide

9. (Optional) Under Review tags, you can review the tags that will be applied to your new load
balancer

10. Under Summary for Application Load Balancer, or Summary for Network Load Balancer,
review and verify the configuration options assigned by migration wizard.

11. After you're satisfied with the configuration summary, choose Create Application Load
Balancer, or Create Network Load Balancer, to start the migration.

Migrate using the load balancer copy utility

The load balancer copy utilities are available within the ELB Tools repository, on the AWS GitHub
page.

Resources

• ELB Tools

• Classic Load Balancer to Application Load Balancer copy utility

• Classic Load Balancer to Network Load Balancer copy utility

Migrate your load balancer manually

The following information provides general instructions for manually creating a new Application
Load Balancer or Network Load Balancer based on an existing Classic Load Balancer in a VPC.
You can migrate using the AWS Management Console, the AWS CLI, or an AWS SDK. For more
information, see Getting started with ELB.

After you have completed the migration process, you can take advantage of the features of your
new load balancer.

Manual migration process

Step 1: Create a new load balancer

Create a load balancer with a configuration that is equivalent to the Classic Load Balancer to
migrate.

1. Create a new load balancer, with the same scheme (internet-facing or internal), subnets, and
security groups as the Classic Load Balancer.

Copy utility migration 59

https://github.com/aws/elastic-load-balancing-tools
https://github.com/aws/elastic-load-balancing-tools/tree/master/application-load-balancer-copy-utility
https://github.com/aws/elastic-load-balancing-tools/tree/master/network-load-balancer-copy-utility

Elastic Load Balancing User Guide

2. Create one target group for your load balancer, with the same health check settings that you
have for your Classic Load Balancer.

3. Do one of the following:

• If your Classic Load Balancer is attached to an Auto Scaling group, attach your target group to
the Auto Scaling group. This also registers the Auto Scaling instances with the target group.

• Register your EC2 instances with your target group.

4. Create one or more listeners, each with a default rule that forwards requests to the target group.
If you create an HTTPS listener, you can specify the same certificate that you specified for your
Classic Load Balancer. We recommend that you use the default security policy.

5. If your Classic Load Balancer has tags, review them and add the relevant tags to your new load
balancer.

Step 2: Gradually redirect traffic to your new load balancer

After your instances are registered with your new load balancer, you can begin the process of
redirecting traffic from the old load balancer to the new load balancer. This enables you to test
your new load balancer while minimizing risk to the availability of your application.

To redirect traffic gradually to your new load balancer

1. Paste the DNS name of your new load balancer into the address field of an internet-
connected web browser. If everything is working, the browser displays the default page of your
application.

2. Create a new DNS record that associates your domain name with your new load balancer.
If your DNS service supports weighting, specify a weight of 1 in the new DNS record and a
weight of 9 in the existing DNS record for your old load balancer. This directs 10% of the
traffic to the new load balancer and 90% of the traffic to the old load balancer.

3. Monitor your new load balancer to verify that it is receiving traffic and routing requests to your
instances.

Important

The time-to-live (TTL) in the DNS record is 60 seconds. This means that any DNS
server that resolves your domain name keeps the record information in its cache for
60 seconds, while the changes propagate. Therefore, these DNS servers can still route

Manual migration 60

Elastic Load Balancing User Guide

traffic to your old load balancer for up to 60 seconds after you complete the previous
step. During propagation, traffic could be directed to either load balancer.

4. Continue to update the weight of your DNS records until all traffic is directed to your new load
balancer. When you are finished, you can delete the DNS record for your old load balancer.

Step 3: Update policies, scripts, and code

If you migrated your Classic Load Balancer to an Application Load Balancer or Network Load
Balancer, be sure to do the following:

• Update IAM policies that use API version 2012-06-01 to use version 2015-12-01.

• Update processes that use CloudWatch metrics in the AWS/ELB namespace to use metrics from
the AWS/ApplicationELB or AWS/NetworkELB namespace.

• Update scripts that use aws elb AWS CLI commands to use aws elbv2 AWS CLI commands.

• Update CloudFormation templates that use the
AWS::ElasticLoadBalancing::LoadBalancer resource to use the
AWS::ElasticLoadBalancingV2 resources.

• Update code that uses ELB API version 2012-06-01 to use version 2015-12-01.

Resources

• elbv2 in the AWS CLI Command Reference

• Elastic Load Balancing API Reference version 2015-12-01

• Identity and access management for ELB

• Application Load Balancer metrics in the User Guide for Application Load Balancers

• Network Load Balancer metrics in the User Guide for Network Load Balancers

• AWS::ElasticLoadBalancingV2::LoadBalancer in the AWS CloudFormation User Guide

Step 4: Delete the old load balancer

You can delete the old Classic Load Balancer after:

• You have redirected all traffic from the old load balancer to the new load balancer.

• All existing requests that were routed to the old load balancer have completed.

Manual migration 61

https://docs.aws.eu/cli/latest/reference/elbv2/index.html
https://docs.aws.eu/elasticloadbalancing/latest/APIReference/
https://docs.aws.eu/elasticloadbalancing/latest/application/load-balancer-cloudwatch-metrics.html#load-balancer-metrics-alb
https://docs.aws.eu/elasticloadbalancing/latest/network/load-balancer-cloudwatch-metrics.html#load-balancer-metrics-nlb
https://docs.aws.eu/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html

Elastic Load Balancing User Guide

Prevent users from creating Classic Load Balancers

You can create an IAM policy that prevents users from creating Classic Load Balancers in your
account.

Both the ELB V2 and ELB V1 APIs provide a CreateLoadBalancer API action. When you create
a Classic Load Balancer, you use the V1 API action, which creates both the load balancer and
listeners. When you create an Application Load Balancer, Network Load Balancer, or Gateway Load
Balancer, you use the V2 API action, which creates only the load balancer. The V2 API provides a
CreateListener action, which you use to create listeners for a load balancer after you create it.

The following policy denies users permission to create a load balancer if the listener protocol is
specified. Because you must configure at least one listener when you create a Classic Load Balancer,
this policy prevents users from creating Classic Load Balancers. It does not prevent users from
creating other types of load balancers, because there are separate API actions for creating those
load balancers and their listeners.

{
 "Version": "2012-10-17",
 "Effect": "Deny",
 "Action": "elasticloadbalancing:CreateLoadBalancer",
 "Resource": [
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/*"
],
 "Condition": {
 "Null": {
 "elasticloadbalancing:ListenerProtocol": false
 }
 }
}

Prevent users from creating Classic Load Balancers 62

https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancingv2.html
https://docs.aws.eu/service-authorization/latest/reference/list_awselasticloadbalancing.html

	Elastic Load Balancing
	Table of Contents
	What is ELB?
	Load balancer benefits
	Features of ELB
	Accessing ELB
	Related services
	Pricing

	How ELB works
	Availability Zones and load balancer nodes
	Cross-zone load balancing
	Zonal shift

	Request routing
	Routing algorithm
	HTTP connections
	HTTP headers
	HTTP header limits

	Load balancer scheme
	IP address types
	Network MTU for your load balancer

	Getting started with ELB
	Security in Elastic Load Balancing
	Data protection in Elastic Load Balancing
	Encryption at rest
	Encryption in transit

	Identity and access management for ELB
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Other policy types
	Multiple policy types

	How ELB works with IAM
	Identity-based policies for ELB
	Resource-based policies within ELB
	Policy actions for ELB
	Policy resources for ELB
	Policy condition keys for ELB
	elasticloadbalancing:ListenerProtocol condition key
	elasticloadbalancing:SecurityPolicy condition key
	elasticloadbalancing:Scheme condition key
	elasticloadbalancing:SecurityGroup condition key
	elasticloadbalancing:Subnet condition key
	elasticloadbalancing:ResourceTag condition key

	ACLs in ELB
	ABAC with ELB
	Using temporary credentials with ELB
	Cross-service principal permissions for ELB
	Service roles for ELB
	Service-linked roles for ELB

	ELB API permissions to tag resources during creation
	ELB service-linked role
	Permissions granted by the service-linked role
	Create the service-linked role
	Edit the service-linked role
	Delete the service-linked role

	AWS managed policies for ELB
	AWS managed policy: AWSElasticLoadBalancingClassicServiceRolePolicy
	AWS managed policy: AWSElasticLoadBalancingServiceRolePolicy
	AWS managed policy: ElasticLoadBalancingFullAccess
	AWS managed policy: ElasticLoadBalancingReadOnly
	ELB updates to AWS managed policies

	Compliance validation for Elastic Load Balancing
	Resilience in Elastic Load Balancing
	Infrastructure security in Elastic Load Balancing
	Network isolation
	Controlling network traffic

	Access ELB using an interface endpoint (AWS PrivateLink)
	Create an interface endpoint for ELB
	Create a VPC endpoint policy for ELB

	Request throttling for the ELB API
	How throttling is applied
	Request rate limiting
	Request token bucket sizes and refill rates
	Monitoring API requests

	Understand codes for ELB in billing and usage reports
	Application Load Balancers
	Network Load Balancers
	Gateway Load Balancers
	Classic Load Balancers

	Log API calls for ELB using AWS CloudTrail
	ELB management events in CloudTrail
	ELB event examples

	Migrate your Classic Load Balancer
	Benefits of migrating from a Classic Load Balancer
	Migrate using migration wizard
	Migration wizard process

	Migrate using the load balancer copy utility
	Migrate your load balancer manually
	Manual migration process

	Prevent users from creating Classic Load Balancers

