Ejecute un trabajo de entrenamiento en paralelo del modelo distribuido de SageMaker con paralelismo de tensores - Amazon SageMaker AI

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Ejecute un trabajo de entrenamiento en paralelo del modelo distribuido de SageMaker con paralelismo de tensores

En esta sección, aprenderá lo siguiente:

  • Cómo configurar un estimador PyTorch de SageMaker y la opción de paralelismo del modelo SageMaker para utilizar el paralelismo de tensores.

  • Cómo adaptar el script de su entrenamiento mediante los módulos smdistributed.modelparallel ampliados para el paralelismo de tensores.

Para obtener más información sobre los módulos smdistributed.modelparallel, consulte las API paralelas del modelo de SageMaker en la documentación de SageMaker Python SDK.

Paralelismo tensorial por sí solo

A continuación se muestra un ejemplo de una opción de entrenamiento distribuido para activar solo el paralelismo de tensores, sin el paralelismo de canalización. Configure los diccionarios mpi_options y smp_options para especificar opciones de entrenamiento distribuidas en el estimador PyTorch de SageMaker.

nota

Las características ampliadas de ahorro de memoria están disponibles mediante los contenedores de aprendizaje profundo para PyTorch, que implementa la biblioteca de paralelismo de modelos SageMaker v1.6.0 o versiones posteriores.

Configurar un estimador PyTorch de SageMaker

mpi_options = { "enabled" : True, "processes_per_host" : 8,               # 8 processes "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none " }                 smp_options = { "enabled":True, "parameters": { "pipeline_parallel_degree": 1,    # alias for "partitions" "placement_strategy": "cluster", "tensor_parallel_degree": 4,      # tp over 4 devices "ddp": True } }                smp_estimator = PyTorch(    entry_point='your_training_script.py', # Specify    role=role,    instance_type='ml.p3.16xlarge',    sagemaker_session=sagemaker_session,    framework_version='1.13.1', py_version='py36',    instance_count=1,    distribution={        "smdistributed": {"modelparallel": smp_options},        "mpi": mpi_options    },    base_job_name="SMD-MP-demo", ) smp_estimator.fit('s3://my_bucket/my_training_data/')
sugerencia

Para obtener una lista completa de parámetros para distribution, consulte Parámetros de configuración para el paralelismo de modelos en la documentación de SageMaker Python SDK.

Adapte su script de entrenamiento de PyTorch

El siguiente ejemplo de script de entrenamiento muestra cómo adaptar la biblioteca de paralelismo de modelos de SageMaker a un script de entrenamiento. En este ejemplo, se asume que el script se llama your_training_script.py.

import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchnet.dataset import SplitDataset from torchvision import datasets import smdistributed.modelparallel.torch as smp class Net(nn.Module):     def __init__(self):         super(Net, self).__init__()         self.conv1 = nn.Conv2d(1, 32, 3, 1)         self.conv2 = nn.Conv2d(32, 64, 3, 1)         self.fc1 = nn.Linear(9216, 128)         self.fc2 = nn.Linear(128, 10)     def forward(self, x):         x = self.conv1(x)         x = F.relu(x)         x = self.conv2(x)         x = F.relu(x)         x = F.max_pool2d(x, 2)         x = torch.flatten(x, 1)         x = self.fc1(x)         x = F.relu(x)         x = self.fc2(x)         return F.log_softmax(x, 1) def train(model, device, train_loader, optimizer):     model.train()     for batch_idx, (data, target) in enumerate(train_loader):         # smdistributed: Move input tensors to the GPU ID used by         # the current process, based on the set_device call.         data, target = data.to(device), target.to(device)         optimizer.zero_grad()         output = model(data)         loss = F.nll_loss(output, target, reduction="mean")         loss.backward()         optimizer.step() # smdistributed: Initialize the backend smp.init() # smdistributed: Set the device to the GPU ID used by the current process. # Input tensors should be transferred to this device. torch.cuda.set_device(smp.local_rank()) device = torch.device("cuda") # smdistributed: Download only on a single process per instance. # When this is not present, the file is corrupted by multiple processes trying # to download and extract at the same time if smp.local_rank() == 0:     dataset = datasets.MNIST("../data", train=True, download=False) smp.barrier() # smdistributed: Shard the dataset based on data parallel ranks if smp.dp_size() > 1:     partitions_dict = {f"{i}": 1 / smp.dp_size() for i in range(smp.dp_size())}     dataset = SplitDataset(dataset, partitions=partitions_dict)     dataset.select(f"{smp.dp_rank()}") train_loader = torch.utils.data.DataLoader(dataset, batch_size=64) # smdistributed: Enable tensor parallelism for all supported modules in the model # i.e., nn.Linear in this case. Alternatively, we can use # smp.set_tensor_parallelism(model.fc1, True) # to enable it only for model.fc1 with smp.tensor_parallelism():     model = Net() # smdistributed: Use the DistributedModel wrapper to distribute the # modules for which tensor parallelism is enabled model = smp.DistributedModel(model) optimizer = optim.AdaDelta(model.parameters(), lr=4.0) optimizer = smp.DistributedOptimizer(optimizer) train(model, device, train_loader, optimizer)

Paralelismo tensorial combinado con paralelismo de canalización

A continuación se muestra un ejemplo de una opción de entrenamiento distribuido que permite combinar el paralelismo de tensores con el paralelismo de canalización. Configure los parámetros mpi_options y smp_options para especificar las opciones paralelas del modelo con paralelismo de tensores al configurar un estimador PyTorch de SageMaker.

nota

Las características ampliadas de ahorro de memoria están disponibles mediante los contenedores de aprendizaje profundo para PyTorch, que implementa la biblioteca de paralelismo de modelos SageMaker v1.6.0 o versiones posteriores.

Configurar un estimador PyTorch de SageMaker

mpi_options = { "enabled" : True, "processes_per_host" : 8,               # 8 processes "custom_mpi_options" : "--mca btl_vader_single_copy_mechanism none " }                 smp_options = { "enabled":True, "parameters": { "microbatches": 4, "pipeline_parallel_degree": 2,    # alias for "partitions" "placement_strategy": "cluster", "tensor_parallel_degree": 2,      # tp over 2 devices "ddp": True } }                smp_estimator = PyTorch(    entry_point='your_training_script.py', # Specify    role=role,    instance_type='ml.p3.16xlarge',    sagemaker_session=sagemaker_session,    framework_version='1.13.1', py_version='py36',    instance_count=1,    distribution={        "smdistributed": {"modelparallel": smp_options},        "mpi": mpi_options    },    base_job_name="SMD-MP-demo", ) smp_estimator.fit('s3://my_bucket/my_training_data/')  

Adaptar su script de entrenamiento de PyTorch

El siguiente ejemplo de script de entrenamiento muestra cómo adaptar la biblioteca de paralelismo de modelos de SageMaker a un script de entrenamiento. Tenga en cuenta que el script de entrenamiento ahora incluye el decorador smp.step:

import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchnet.dataset import SplitDataset from torchvision import datasets import smdistributed.modelparallel.torch as smp class Net(nn.Module):     def __init__(self):         super(Net, self).__init__()         self.conv1 = nn.Conv2d(1, 32, 3, 1)         self.conv2 = nn.Conv2d(32, 64, 3, 1)         self.fc1 = nn.Linear(9216, 128)         self.fc2 = nn.Linear(128, 10)     def forward(self, x):         x = self.conv1(x)         x = F.relu(x)         x = self.conv2(x)         x = F.relu(x)         x = F.max_pool2d(x, 2)         x = torch.flatten(x, 1)         x = self.fc1(x)         x = F.relu(x)         x = self.fc2(x)         return F.log_softmax(x, 1) # smdistributed: Define smp.step. Return any tensors needed outside. @smp.step def train_step(model, data, target):     output = model(data)     loss = F.nll_loss(output, target, reduction="mean")     model.backward(loss)     return output, loss def train(model, device, train_loader, optimizer):     model.train()     for batch_idx, (data, target) in enumerate(train_loader):         # smdistributed: Move input tensors to the GPU ID used by         # the current process, based on the set_device call.         data, target = data.to(device), target.to(device)         optimizer.zero_grad()         # Return value, loss_mb is a StepOutput object         _, loss_mb = train_step(model, data, target)         # smdistributed: Average the loss across microbatches.         loss = loss_mb.reduce_mean()         optimizer.step() # smdistributed: Initialize the backend smp.init() # smdistributed: Set the device to the GPU ID used by the current process. # Input tensors should be transferred to this device. torch.cuda.set_device(smp.local_rank()) device = torch.device("cuda") # smdistributed: Download only on a single process per instance. # When this is not present, the file is corrupted by multiple processes trying # to download and extract at the same time if smp.local_rank() == 0:     dataset = datasets.MNIST("../data", train=True, download=False) smp.barrier() # smdistributed: Shard the dataset based on data parallel ranks if smp.dp_size() > 1:     partitions_dict = {f"{i}": 1 / smp.dp_size() for i in range(smp.dp_size())}     dataset = SplitDataset(dataset, partitions=partitions_dict)     dataset.select(f"{smp.dp_rank()}") # smdistributed: Set drop_last=True to ensure that batch size is always divisible # by the number of microbatches train_loader = torch.utils.data.DataLoader(dataset, batch_size=64, drop_last=True) model = Net() # smdistributed: enable tensor parallelism only for model.fc1 smp.set_tensor_parallelism(model.fc1, True) # smdistributed: Use the DistributedModel container to provide the model # to be partitioned across different ranks. For the rest of the script, # the returned DistributedModel object should be used in place of # the model provided for DistributedModel class instantiation. model = smp.DistributedModel(model) optimizer = optim.AdaDelta(model.parameters(), lr=4.0) optimizer = smp.DistributedOptimizer(optimizer) train(model, device, train_loader, optimizer)