
Guía para desarrolladores de la versión 1.x

AWS SDK para Java 1.x

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AWS SDK para Java 1.x: Guía para desarrolladores de la versión 1.x

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Table of Contents
.. viii
AWS SDK para Java 1.x .. 1

Versión 2 del SDK publicada .. 1
Documentación y recursos adicionales ... 1
Compatibilidad con el IDE de Eclipse ... 2
Desarrollo de aplicaciones para Android .. 2
Consulta del historial de revisiones del SDK .. 2
Creación de documentación de referencia de Java para versiones del SDK anteriores 2

Introducción .. 4
Configuración básica ... 4

Descripción general .. 4
Inicie sesión en el portal de acceso a AWS .. 5
Configurar los archivos de configuración compartidos .. 5
Instalar un entorno de desarrollo de Java. .. 7

Maneras de obtener el AWS SDK para Java ... 7
Requisitos previos ... 7
Usar una herramienta de compilación ... 8
Descargar el jar precompilado ... 8
Compilar desde el origen ... 8

Usar herramientas de compilación .. 9
Usar el SDK con Apache Maven ... 10
Usar el SDK con Gradle. .. 13

Credenciales temporales y región ... 16
Configurar credenciales temporales ... 17
Actualización de credenciales IMDS .. 18
Definir la Región de AWS .. 18

Usando el AWS SDK para Java .. 20
Mejores prácticas para el AWS desarrollo con el AWS SDK para Java 20

S3 .. 20
Creación de clientes de servicio ... 21

Obtención de un creador de clientes ... 21
Creación de clientes asíncronos .. 23
Usando DefaultClient .. 23
Ciclo de vida del cliente ... 24

iii

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Proporcionar credenciales temporales .. 24
Uso de la cadena predeterminada de proveedores de credenciales 25
Especificar un proveedor de credenciales o una cadena de proveedores 28
Especificar explícitamente credenciales temporales .. 29
Más información .. 30

Región de AWS Selección .. 30
Comprobación de la disponibilidad del servicio en una región .. 30
Selección de una región ... 30
Selección de un punto de enlace específico ... 31
Determinar automáticamente la región desde el entorno .. 32

Tratamiento de excepciones ... 33
¿Por qué usar excepciones no controladas? ... 33
AmazonServiceException (y subclases) ... 34
AmazonClientException .. 35

Programación asíncrona .. 35
Objetos Future de Java .. 35
Devoluciones de llamadas asíncronas ... 37
Prácticas recomendadas .. 38

Registro de llamadas AWS SDK para Java ... 39
Descarga del archivo JAR de Log4J ... 40
Definición del classpath .. 40
Errores y advertencias específicos del servicio ... 40
Registro de resumen de solicitudes y respuestas ... 41
Registro detallado en red ... 42
Registro de métricas de latencia .. 43

Configuración de los clientes .. 43
Configuración del proxy .. 44
Configuración del transporte HTTP .. 44
Sugerencias del tamaño del búfer del socket TCP .. 45

Política de control de acceso .. 46
Amazon S3 Ejemplo ... 47
Amazon SQS Ejemplo .. 47
Ejemplo de Amazon SNS ... 48

Configurar el TTL de JVM para las búsquedas de nombres DNS ... 48
Cómo configurar el TTL de JVM .. 49

Habilitación de métricas para AWS SDK para Java ... 49

iv

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Cómo habilitar la generación de métricas de SDK .. 50
Tipos de métricas disponibles .. 51
Más información .. 54

Ejemplos de código .. 56
AWS SDK para Java 2.x ... 56
Amazon CloudWatchEjemplos de .. 56

Obtención de métricas de CloudWatch .. 57
Publicación de datos de métricas personalizadas ... 59
Uso de alarmas de CloudWatch .. 60
Uso de acciones de alarma en CloudWatch .. 63
Envío de eventos de a CloudWatch .. 65

Amazon DynamoDBEjemplos de ... 68
Uso de puntos de conexión basados en cuentas de AWS .. 68
Uso de tablas en DynamoDB ... 69
Uso de elementos en DynamoDB .. 76

Amazon EC2Ejemplos de .. 83
Tutorial: Inicio de una instancia EC2 ... 84
Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en AWS 89
Tutorial: Instancias de spot de Amazon EC2 ... 95
Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 107
Administración de instancias de Amazon EC2 .. 124
Uso de direcciones IP elásticas en Amazon EC2 .. 130
Usar regiones y zonas de disponibilidad ... 133
Uso de pares de claves de Amazon EC2 .. 136
Uso de grupos de seguridad en Amazon EC2 .. 138

Ejemplos de AWS Identity and Access Management (IAM) .. 141
Administración de las claves de acceso de IAM ... 142
Administración de usuarios de IAM .. 147
Uso de alias de cuenta de IAM ... 150
Uso de políticas de IAM ... 152
Uso de certificados de servidor de IAM ... 157

Ejemplos de Amazon Lambda .. 161
Operaciones de servicio ... 161

Amazon PinpointEjemplos de .. 165
Creación y eliminación de aplicaciones en Amazon Pinpoint .. 166
Creación de puntos de conexón en Amazon Pinpoint ... 167

v

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Creación de segmentos en Amazon Pinpoint .. 170
Creación de campañas en Amazon Pinpoint ... 171
Actualización de canales en Amazon Pinpoint .. 173

Amazon S3Ejemplos de ... 174
Creación, enumeración y eliminación de buckets de Amazon S3 ... 175
Realizar operaciones en objetos de Amazon S3 ... 180
Administración de permisos de acceso de Amazon S3 para buckets y objetos 185
Administración del acceso a los buckets de Amazon S3 mediante políticas de buckets 190
Uso de TransferManager para operaciones de Amazon S3 .. 193
Configuración de un bucket de Amazon S3 como un sitio web ... 206
Usar cifrado del cliente de Amazon S3 ... 209

Amazon SQSEjemplos de .. 216
Uso de colas de mensajes de Amazon SQS ... 216
Envío, recepción y eliminación de mensajes de Amazon SQS ... 219
Habilitar sondeos largos para las colas de mensajes de Amazon SQS 222
Configuración del tiempo de espera de visibilidad en Amazon SQS 224
Uso de colas de mensajes fallidos en Amazon SQS .. 226

Amazon SWFEjemplos de ... 229
Conceptos básicos de SWF ... 230
Creación de una aplicación de Amazon SWF sencilla .. 231
LambdaTareas de ... 252
Cerrar correctamente los procesos de trabajo de actividad y flujo de trabajo 257
Registro de dominios .. 259
Visualización de los dominios .. 260

Ejemplos de código incluidos con el SDK .. 261
Cómo obtener los ejemplos .. 261
Compilación y ejecución de los ejemplos mediante la línea de comandos 261
Compilación y ejecución de los ejemplos mediante el IDE de Eclipse 263

Seguridad .. 264
Protección de datos ... 265
Aplicación de una versión mínima de TLS ... 266

Cómo verificar la versión de TLS ... 266
Aplicación de una versión mínima de TLS .. 266

Gestión de identidad y acceso .. 267
Público ... 267
Autenticación con identidades .. 268

vi

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Administración del acceso con políticas .. 269
¿Cómo Servicios de AWS trabajar con IAM .. 271
Solución de problemas de AWS identidad y acceso ... 271

Validación de la conformidad .. 273
Resiliencia .. 274
Seguridad de infraestructuras ... 274
Migración de clientes de cifrado de S3 ... 275

Requisitos previos ... 275
Información general sobre la migración ... 275
Actualizar los clientes existentes para leer nuevos formatos ... 276
Migrar clientes de cifrado y descifrado a la versión V2 ... 277
Ejemplos adicionales .. 280

Clave OpenPGP ... 282
Clave actual ... 282
Claves anteriores ... 288

Historial de documentos ... 295

vii

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

La AWS SDK para Java 1.x se alcanzó end-of-support el 31 de diciembre de 2025. Le
recomendamos que migre a AWS SDK for Java 2.x para seguir recibiendo nuevas características,
mejoras de disponibilidad y actualizaciones de seguridad.

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la
traducción y la version original de inglés, prevalecerá la version en inglés.

viii

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Guía para desarrolladores. AWS SDK para Java 1.x

El AWS SDK para Java proporciona una API de Java para los servicios de AWS. Con el SDK, le
resultará fácil crear aplicaciones Java que funcionen con Amazon S3, Amazon EC2, DynamoDB y
otras soluciones. Añadimos periódicamente nuevos servicios a AWS SDK para Java. Para obtener
una lista de los servicios admitidos y las versiones de API que se incluyen con cada versión del SDK,
consulte las notas de la versión correspondientes a la versión con la que está trabajando.

Versión 2 del SDK publicada

Eche un vistazo al nuevo AWS SDK para Java 2.x en https://github.com/aws/aws-sdk-java-v2/.
Incluye muchas de las características esperadas, como una forma de conectar una implementación
HTTP. Para empezar consulte la Guía para desarrolladores del AWS SDK para Java 2.x.

Documentación y recursos adicionales

Además de esta guía, estos son algunos otros recursos online útiles para los desarrolladores de
AWS SDK para Java:

• AWS SDK para Java Referencia de la API de

• Blog para desarrolladores de Java

• Foros para desarrolladores de Java

• GitHub:

• Código fuente de documentación

• Problemas de documentación

• Código fuente del SDK

• Problemas del SDK

• Ejemplos de SDK

• Canal de Gitter

• la AWS Code Sample Catalog

• @awsforjava (Twitter)

• notas de la versión
Versión 2 del SDK publicada 1

https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java#release-notes
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://aws.amazon.com/blogs/developer/category/java
https://forums.aws.amazon.com/forum.jspa?forumID=70
https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide/issues
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/issues
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://gitter.im/aws/aws-sdk-java
https://docs.aws.amazon.com/code-samples/latest/catalog/
https://twitter.com/awsforjava
https://github.com/aws/aws-sdk-java#release-notes

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Compatibilidad con el IDE de Eclipse

Si desarrolla código utilizando el IDE de Eclipse, puede utilizar AWS Toolkit for Eclipse para añadir
AWS SDK para Java a un proyecto de Eclipse existente o crear un nuevo proyecto de AWS SDK
para Java. El conjunto de herramientas permite también crear y cargar funciones Lambda, lanzar y
monitorizar instancias Amazon EC2 y administrar usuarios y grupos de seguridad de IAM, e incluye
un editor de plantillas de AWS CloudFormation y otro contenido.

Para ver la documentación, consulte la Guía del usuario de AWS Toolkit for Eclipse.

Desarrollo de aplicaciones para Android

Si es un desarrollador de Android, Amazon Web Services publica un SDK diseñado específicamente
para el desarrollo en Android: Amplify Android (AWS SDK para Android).

Consulta del historial de revisiones del SDK

Para ver el historial de versiones de AWS SDK para Java, incluidos los cambios y los servicios
compatibles en cada versión del SDK, consulte las notas de la versión del SDK.

Creación de documentación de referencia de Java para versiones
del SDK anteriores

La Referencia de la API AWS SDK para Java representa la compilación más reciente de la versión
1.x del SDK. Si utiliza una compilación anterior de la versión 1.x, puede acceder a la documentación
de referencia del SDK correspondiente a la versión que está utilizando.

La forma más sencilla de crear la documentación es utilizar la herramienta de compilación Maven de
Apache. Descargue e instale Maven primero si todavía no lo tiene en su sistema y, a continuación,
utilice las siguientes instrucciones para crear la documentación de referencia.

1. Busque y seleccione la versión del SDK que está utilizando en la página de versiones del
repositorio de SDK en GitHub.

2. Elija el enlace zip (para la mayoría de las plataformas, incluido Windows) o tar.gz (Linux,
macOs O Unix) para descargar el SDK en su equipo.

3. Extraiga el archivo en un directorio local.

Compatibilidad con el IDE de Eclipse 2

https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://github.com/aws/aws-sdk-java#release-notes
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://maven.apache.org/
https://github.com/aws/aws-sdk-java/releases

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

4. En la línea de comandos, vaya al directorio donde desempaquetó los archivos y escriba lo
siguiente.

mvn javadoc:javadoc

5. Una vez realizada la compilación, encontrará la documentación HTML generada en el directorio
aws-java-sdk/target/site/apidocs/.

Creación de documentación de referencia de Java para versiones del SDK anteriores 3

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Introducción

Esta sección proporciona información sobre cómo instalar, configurar y utilizar AWS SDK para Java.

Temas

• Configuración básica para trabajar con Servicios de AWS

• Maneras de obtener el AWS SDK para Java

• Usar herramientas de compilación

• Configurar credenciales temporales de AWS y Región de AWS para desarrollo

Configuración básica para trabajar con Servicios de AWS

Descripción general

Para desarrollar con éxito aplicaciones que accedan a Servicios de AWS utilizando el AWS SDK para
Java, se requieren las siguientes condiciones:

• Debe poder iniciar sesión en el portal de acceso a AWS disponible en el AWS IAM Identity Center.

• Los permisos del rol de IAM configurados para el SDK deben permitir el acceso a los Servicios
de AWS que requiera su aplicación. Los permisos asociados a la política administrada de AWS
PowerUserAccess son suficientes para la mayoría de las necesidades de desarrollo.

• Un entorno de desarrollo con los siguientes elementos:

• Archivos de configuración compartidos que se configuran de una de las siguientes maneras:

• El archivo config contiene un perfil predeterminado que especifica un Región de AWS.

• El archivo credentials contiene credenciales temporales como parte de un perfil
predeterminado.

• Una instalación adecuada de Java.

• Una herramienta de automatización de compilaciones, como Maven o Gradle.

• Un editor de texto para trabajar con código.

• (Opcional, pero recomendado) Un IDE (entorno de desarrollo integrado) como IntelliJ IDEA
Eclipse o NetBeans.

Configuración básica 4

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://maven.apache.org/download.cgi
https://gradle.org/install/
https://www.jetbrains.com/idea/download/#section=windows
https://www.eclipse.org/ide/
https://netbeans.org/downloads/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Si utiliza un IDE, también puede integrar AWS Toolkit para trabajar más fácilmente con Servicios
de AWS. El AWS Toolkit para IntelliJ y el AWS Toolkit for Eclipse son dos kits de herramientas
que puede utilizar para el desarrollo de Java.

Important

En las instrucciones de esta sección de configuración se supone que usted o su organización
utilizan el Centro de identidad de IAM. Si su organización utiliza un proveedor de identidad
externo que funciona de forma independiente del Centro de identidades de IAM, averigüe
cómo puede obtener credenciales temporales para que las utilice el SDK para Java. Siga
estas instrucciones para añadir credenciales temporales al archivo ~/.aws/credentials.
Si su proveedor de identidad agrega credenciales temporales automáticamente al archivo
~/.aws/credentials, asegúrese de que el nombre del perfil sea [default] para que no
necesite proporcionarlo al SDK o AWS CLI.

Inicie sesión en el portal de acceso a AWS

El portal de acceso a AWS es la ubicación web en la que se inicia sesión manualmente en el
Centro de identidades de IAM. El formato de la URL es d-xxxxxxxxxx.awsapps.com/start o
your_subdomain.awsapps.com/start.

Si no está familiarizado con el portal de acceso a AWS, siga las orientaciones para el acceso a
cuentas en el tema de Paso 1 de la autenticación del Centro de identidades IAM de la Guía de
referencia de SDK y herramientas de AWS. No siga el paso 2 porque el AWS SDK para Java 1.x no
admite la actualización automática de los tokens ni la recuperación automática de las credenciales
temporales para el SDK que se describen en el paso 2.

Configurar los archivos de configuración compartidos

Los archivos de configuración compartidos residen en la estación de trabajo de desarrollo y
contienen los ajustes básicos que utilizan todos los AWS SDK y la AWS Command Line Interface
(CLI). Los archivos de configuración compartidos pueden contener varios ajustes, pero estas
instrucciones configuran los elementos básicos necesarios para funcionar con el SDK.

Configuración del archivo compartido config

El ejemplo siguiente muestra el contenido de un archivo config compartido.

Inicie sesión en el portal de acceso a AWS 5

https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html#idcGettingStarted
https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

[default]
region=us-east-1
output=json

Para fines de desarrollo, use la Región de AWS más cercana al lugar donde planea ejecutar el
código. Para obtener una lista de los códigos de región que se van a usar en el archivo config,
consulte la guía Referencia general de Amazon Web Services. El ajuste json del formato de salida
es uno de varios valores posibles.

Siga las instrucciones de esta sección para crear el archivo config.

Configure credenciales temporales para el SDK.

Después de tener acceso a un rol Cuenta de AWS y de IAM a través del portal de acceso a AWS,
configure su entorno de desarrollo con credenciales temporales para que el SDK tenga acceso.

Pasos para configurar un archivo credentials local con credenciales temporales

1. Crear un archivo de credentials compartido.

2. En el archivo credentials, pegue el siguiente texto de marcador de posición hasta que pegue
las credenciales temporales que funcionen.

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

3. Guarde el archivo. El archivo ~/.aws/credentials debería existir ahora en su sistema de
desarrollo local. Este archivo contiene el perfil [predeterminado] que el SDK para Java utiliza si
no se especifica un perfil con nombre específico.

4. Inicie sesión en el portal de acceso de AWS.

5. Siga las instrucciones de Actualizar manualmente las credenciales para copiar el rol de IAM
desde el portal de acceso de AWS.

a. Para el paso 4 de las instrucciones vinculadas, elija el nombre del rol de IAM que le
concede acceso para sus necesidades de desarrollo. Este rol suele tener un nombre como
PowerUserAccess o Developer.

b. Para el paso 7, seleccione la opción Agregar manualmente un perfil a su archivo de
credenciales de AWS y copie el contenido.

Configurar los archivos de configuración compartidos 6

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-profile
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosignin.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

6. Pegue las credenciales copiadas en su archivo credentials local y elimine cualquier nombre
de perfil que se haya pegado. Su archivo debería parecerse a lo siguiente:

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

7. Guarde el archivo credentials.

El SDK para Java accederá a estas credenciales temporales cuando cree un cliente de servicio y
las utilizará para cada solicitud. La configuración del rol de IAM elegido en el paso 5a determina el
tiempo de validez de las credenciales temporales. La duración máxima es de doce horas.

Cuando las credenciales temporales caduquen, repita los pasos del 4 al 7.

Instalar un entorno de desarrollo de Java.

AWS SDK para Java V1 requiere un JDK Java 7 o posterior y se admiten todas las versiones de JDK
Java LTS (soporte duradero). Si usa la versión 1.12.767 o anterior del SDK, puede usar Java 7, pero
si usa la versión 1.12.768 o posterior del SDK, se requiere Java 8. El repositorio central de Maven
muestra la última versión del SDK de Java.

AWS SDK para Java funciona con el Kit de desarrollo Java SE de Oracle y con distribuciones del
Open Java Development Kit (OpenJDK), como Amazon Corretto, Red Hat OpenJDK y Adoptium.

Maneras de obtener el AWS SDK para Java

Requisitos previos

Para usar AWS SDK para Java, debe tener:

• Debe poder iniciar sesión en el portal de acceso a AWS disponible en el AWS IAM Identity Center.

• Una instalación adecuada de Java.

• Credenciales temporales configuradas en su archivo credentials compartido local.

Consulte el tema the section called “Configuración básica” para obtener instrucciones sobre cómo
configurar el uso del SDK para Java.

Instalar un entorno de desarrollo de Java. 7

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosessionduration.html
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom
https://www.oracle.com/java/technologies/downloads/
https://aws.amazon.com/corretto
https://developers.redhat.com/products/openjdk/overview
https://adoptium.net/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Uso de una herramienta de compilación para administrar las dependencias
del SDK para Java (recomendado)

Le recomendamos usar Apache Maven o Gradle con su proyecto para acceder a las dependencias
requeridas del SDK para Java. Esta sección describe cómo utilizar esas herramientas.

Descargar y extraer el SDK (no recomendable)

Recomendamos utilizar una herramienta de compilación para acceder al SDK de su proyecto. Sin
embargo, puede descargar un jar precompilado de la última versión del SDK.

Note

Para obtener información acerca de cómo descargar y compilar las versiones anteriores del
SDK, consulte Instalación de las versiones anteriores del SDK.

1. Descargar el SDK desde https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip.

2. Después de descargar el SDK, extraiga el contenido en un directorio local.

El SDK contiene los siguientes directorios:

• documentation: contiene la documentación de la API (también disponible en la web: Referencia
de la API de AWS SDK para Java).

• lib: contiene los archivos .jar del SDK.

• samples: contiene código de ejemplo funcional que muestra cómo utilizar el SDK.

• third-party/lib: contiene bibliotecas de terceros utilizadas por el SDK, como Apache
commons registro, AspectJ y la plataforma Spring.

Para usar el SDK, añada la ruta completa de los directorios lib y third-party a las dependencias
en el archivo de compilación y a CLASSPATH de Java para ejecutar el código.

Compilar versiones anteriores del SDK desde el código fuente (no se
recomienda)

Solo la última versión del SDK se proporciona en el formato precompilado como archivo jar
descargable. Sin embargo, puede compilar una versión anterior del SDK a través de Apache Maven

Usar una herramienta de compilación 8

https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

(código abierto). Maven descargará todas las dependencias necesarias, y compilará e instalará el
SDK en un solo paso. Visite http://maven.apache.org/ para obtener instrucciones de instalación y
más información.

1. Vaya a la página de GitHub del SDK en: AWS SDK para Java(GitHub).

2. Elija la etiqueta correspondiente al número de versión del SDK que desee. Por ejemplo, 1.6.10.

3. Haga clic en el botón Download ZIP (Descargar ZIP) para descargar la versión del SDK que ha
seleccionado.

4. Descomprima el archivo en un directorio de su sistema de desarrollo. En muchos sistemas, puede
utilizar el administrador gráfico de archivos para realizar esta tarea o la utilidad unzip en una
ventana de terminal.

5. En una ventana de terminal, vaya al directorio donde descomprimió el código fuente del SDK.

6. Compile e instale el SDK con el siguiente comando (Maven) necesario:

mvn clean install -Dgpg.skip=true

El archivo .jar resultante se compila en el directorio target.

7. (Opcional) Compile la documentación de referencia de la API usando el siguiente comando:

mvn javadoc:javadoc

La documentación se compila en el directorio target/site/apidocs/.

Usar herramientas de compilación

El uso de herramientas de compilación ayuda a gestionar el desarrollo de los proyectos de Java. Hay
varias herramientas de compilación disponibles, pero mostramos cómo ponerlas en marcha con dos
herramientas de compilación populares: Maven y Gradle. En este tema, se muestra cómo utilizar
estas herramientas de compilación para gestionar las dependencias del SDK para Java que necesita
para sus proyectos.

Temas

• Usar el SDK con Apache Maven

• Usar el SDK con Gradle.

Usar herramientas de compilación 9

http://maven.apache.org/
https://github.com/aws/aws-sdk-java
https://maven.apache.org/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Usar el SDK con Apache Maven

Puede utilizar Apache Maven para configurar y compilar proyectos de AWS SDK para Java o para
compilar el propio SDK.

Note

Debe tener Maven instalado para utilizar las instrucciones de este tema. Si aún no está
instalado, visite http://maven.apache.org/ para descargarlo e instalarlo.

Creación de un nuevo paquete de Maven

Para crear un paquete de Maven básico, abra un ventana de terminal (línea de comandos) y ejecute:

mvn -B archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DgroupId=org.example.basicapp \
 -DartifactId=myapp

Sustituya org.example.basicapp por el espacio de nombres del paquete completo de su aplicación y
myapp por el nombre del proyecto (este será el nombre del directorio de su proyecto).

De forma predeterminada, crea una plantilla de proyecto que utiliza el arquetipo de inicio rápido, lo
que constituye un buen punto de partida para muchos proyectos. Hay más arquetipos disponibles;
visite la página Arquetipos de Maven para obtener una lista de arquetipos del paquete. Puede
elegir un determinado arquetipo añadiendo el argumento -DarchetypeArtifactId al comando
archetype:generate. Por ejemplo:

mvn archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-webapp \
 -DgroupId=org.example.webapp \
 -DartifactId=mywebapp

Note

Encontrará mucha más información sobre la creación y configuración de proyectos en la
Guía de introducción a Maven.

Usar el SDK con Apache Maven 10

https://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/archetypes/maven-archetype-quickstart/
https://maven.apache.org/archetypes/index.html
https://maven.apache.org/guides/getting-started/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Configuración del SDK como una dependencia de Maven

Para utilizar AWS SDK para Java en el proyecto, tendrá que declararlo como una dependencia en el
archivo pom.xml del proyecto. A partir de la versión 1.9.0, puede importar componentes individuales
o todo el SDK.

Especificación de módulos del SDK individuales

Para seleccionar módulos individuales del SDK, utilice la lista de materiales (BOM) de AWS SDK
para Java para Maven, con lo que se asegurará de que los módulos que especifique utilicen la
misma versión del SDK y que sean compatibles entre sí.

Para utilizar la lista de materiales, añada una sección <dependencyManagement> al archivo
pom.xml de su aplicación, añadiendo aws-java-sdk-bom como una dependencia y especificando
la versión del SDK que desee utilizar:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.1000</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Para ver la última versión de la lista de materiales de AWS SDK para Java disponible en Maven
Central, visite: https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom. También puede
utilizar esta página para ver qué módulos (dependencias) administrados por la lista de materiales
puede incluir en la sección <dependencies> del archivo pom.xml de su proyecto.

Ahora puede seleccionar los módulos individuales del SDK que desea usar en su aplicación. Como
ya ha declarado la versión del SDK en la lista de materiales, no necesita especificar el número de
versión de cada componente.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>

Usar el SDK con Apache Maven 11

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-dynamodb</artifactId>
 </dependency>
</dependencies>

También puede consultar el AWS Code Sample Catalog para saber qué dependencias utilizar para
un servicio de Servicio de AWS determinado. Consulte el archivo POM en un ejemplo de servicio
específico. Por ejemplo, si está interesado en las dependencias del servicio AWS S3, consulte el
ejemplo completo en GitHub. (Vea el pom en /java/example_code/s3).

Importación de todos los módulos del SDK

Si desea incluir todo el SDK como una dependencia, no utilice el método de lista de materiales;
simplemente declárelo en su archivo pom.xml de la manera siguiente:

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

Compilación del proyecto

Una vez que haya configurado su proyecto, puede compilarlo mediante el comando package de
Maven:

mvn package

Esto creará el archivo 0jar en el directorio target.

Compilación del SDK con Maven

Puede utilizar Apache Maven para compilar el SDK desde el origen. Para ello, descargue el código
del SDK de GitHub, desempaquételo localmente y, a continuación, ejecute el siguiente comando de
Maven:

mvn clean install

Usar el SDK con Apache Maven 12

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Usar el SDK con Gradle.

Para administrar las dependencias del SDK en su proyecto Gradle importe la BOM de Maven para el
AWS SDK para Java en el archivo build.gradle de la aplicación.

Note

En los ejemplos siguientes, sustituya 1.12.529 en el archivo de compilación por una versión
válida del AWS SDK para Java. Busque la última versión disponible en el repositorio central
de Maven.

Configuración del proyecto en Gradle 4.6 o posterior

A partir de Gradle 4.6, puede utilizar la característica de soporte de POM mejorada de Gradle para
importar archivos de lista de materiales (BOM) declarando una dependencia en una BOM.

1. Si está utilizando Gradle 5.0 o posterior, vaya al paso 2. De lo contrario, habilite la característica
IMPROVED_POM_SUPPORT en el archivo settings.gradle.

enableFeaturePreview('IMPROVED_POM_SUPPORT')

2. Añada la BOM a la sección de dependencias del archivo build.gradle.

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')

 // Declare individual SDK dependencies without version
 ...
}

3. Especifique los módulos del SDK que desea usar en la sección dependencias. Por ejemplo, el
siguiente incluye una dependencia para Amazon Simple Storage Service (Amazon S3).

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
 ...

Usar el SDK con Gradle. 13

https://gradle.com/
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://docs.gradle.org/4.6/release-notes.html#bom-import

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

}

Gradle resuelve automáticamente la versión correcta de las dependencias del SDK con la
información de la BOM.

El siguiente es un ejemplo de un archivo build.gradle completo que incluye una dependencia
para Amazon S3.

group 'aws.test'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Note

En el ejemplo anterior, sustituya la dependencia para Amazon S3 por las dependencias
de los servicios de AWS que utilizará en su proyecto. Los módulos (dependencias) que
administra la BOM de AWS SDK para Java se enumeran en el repositorio central de Maven.

Configuración del proyecto para versiones de Gradle anteriores a 4.6

Las versiones de Gradle anteriores a 4.6 carecen de soporte de BOM nativo. Para administrar
dependencias de AWS SDK para Java para su proyecto, use el complemento de administración de
dependencias de Spring para Gradle para importar la BOM de Maven para el SDK.

1. Añada el complemento de administración de dependencias a su archivo build.gradle de
aplicación.

Usar el SDK con Gradle. 14

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

2. Añada la lista de materiales a la sección dependencyManagement del archivo.

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

3. Especifique los módulos del SDK que va a usar en la sección dependencies. Por ejemplo, en el
siguiente se incluye una dependencia para Amazon S3.

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
}

Gradle resuelve automáticamente la versión correcta de las dependencias del SDK con la
información de la BOM.

El siguiente es un ejemplo de un archivo build.gradle completo que incluye una dependencia
para Amazon S3.

group 'aws.test'
version '1.0'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {

Usar el SDK con Gradle. 15

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 mavenCentral()
}

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
 testCompile group: 'junit', name: 'junit', version: '4.11'
}

Note

En el ejemplo anterior, sustituya la dependencia para Amazon S3 por las dependencias del
servicio de AWS que utilizará en su proyecto. Los módulos (dependencias) que administra la
BOM de AWS SDK para Java se enumeran en el repositorio central de Maven.

Para obtener más información sobre cómo especificar las dependencias del SDK mediante la BOM,
consulte Uso del SDK con Apache Maven.

Configurar credenciales temporales de AWS y Región de AWS
para desarrollo

Para conectarse a cualquiera de los servicios compatibles con AWS SDK para Java, debe
proporcionar las credenciales de AWS. Los SDK de AWS y las CLI de AWS usan cadenas de

Credenciales temporales y región 16

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

proveedores para buscar las credenciales de AWS en diversos lugares; por ejemplo, en las variables
de entorno del sistema o del usuario y en los archivos de configuración de AWS.

En este tema se proporciona información básica acerca de cómo configurar las credenciales de AWS
para el desarrollo de aplicaciones locales mediante AWS SDK para Java. Si necesita configurar
las credenciales para utilizarlas en una instancia EC2 o si utiliza el IDE de Eclipse para desarrollo,
consulte los siguientes temas:

• Cuando utilice una instancia EC2, cree un rol de IAM y conceda acceso a la instancia EC2 a
dicho rol como se indica en Uso de roles de IAM para conceder acceso a los recursos de AWS en
Amazon EC2.

• Configurar credenciales de AWS en Eclipse mediante AWS Toolkit for Eclipse. Consulte
Configuración de credenciales de AWS en la Guía del usuario de AWS Toolkit for Eclipse.

Configurar credenciales temporales

Puede configurar las credenciales temporales para el AWS SDK para Java de varias maneras, pero
a continuación se indican los enfoques recomendados:

• Configure las credenciales temporales en el archivo de perfil de credenciales de AWS del sistema
local, situado en:

• ~/.aws/credentials en Linux, macOS o Unix

• C:\Users\USERNAME\.aws\credentials en Windows

Consulte las the section called “Configure credenciales temporales para el SDK.” en esta guía para
sabre cómo obtener sus credenciales temporales.

• Establezca las variables de entorno AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY y
AWS_SESSION_TOKEN.

Para establecer estas variables en Linux, MacOS, o Unix, utilice :

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key
export AWS_SESSION_TOKEN=your_session_token

Para establecer estas variables en Windows, utilice :

set AWS_ACCESS_KEY_ID=your_access_key_id

Configurar credenciales temporales 17

https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

set AWS_SECRET_ACCESS_KEY=your_secret_access_key
set AWS_SESSION_TOKEN=your_session_token

• Para una instancia EC2, especifique un rol de IAM y conceda a la instancia EC2 acceso a dicho
rol. Consulte los roles de IAM para Amazon EC2 en la Guía del usuario de Amazon EC2 para
instancias de Linux para obtener información detallada sobre su funcionamiento.

Una vez que haya establecido sus credenciales de AWS utilizando alguno de estos métodos, AWS
SDK para Java las cargará automáticamente mediante la cadena predeterminada de proveedores de
credenciales. Para obtener más información sobre cómo trabajar con credenciales de AWS en sus
aplicaciones Java, consulte Uso de credenciales de AWS.

Actualización de credenciales IMDS

El AWS SDK para Java admite seleccionar la actualización de credenciales IMDS en segundo
plano cada 1 minuto, independientemente del plazo de vencimiento de la credencial. Esto le permite
actualizar las credenciales con más frecuencia y reduce la posibilidad de que no alcanzar IMDS
afecte a la disponibilidad de AWS percibida.

 1. // Refresh credentials using a background thread, automatically every minute. This
 will log an error if IMDS is down during
 2. // a refresh, but your service calls will continue using the cached credentials
 until the credentials are refreshed
 3. // again one minute later.
 4.
 5. InstanceProfileCredentialsProvider credentials =
 6. InstanceProfileCredentialsProvider.createAsyncRefreshingProvider(true);
 7.
 8. AmazonS3Client.builder()
 9. .withCredentials(credentials)
 10. .build();
 11.
 12. // This is new: When you are done with the credentials provider, you must close it
 to release the background thread.
 13. credentials.close();

Definir la Región de AWS

Debe definir la región de Región de AWS predeterminada que se usará para obtener acceso a
los servicios de AWS con el AWS SDK para Java. Para disfrutar de un rendimiento de red óptimo,

Actualización de credenciales IMDS 18

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

elija una región que esté geográficamente cerca de usted (o de sus clientes). Para ver una lista de
las regiones, consulte Regiones y puntos de conexión en la Referencia general de Amazon Web
Services.

Note

Si no selecciona una región, se usará us-east-1 de forma predeterminada.

Puede utilizar técnicas similares a las de la configuración de credenciales para definir la región de
AWS predeterminada:

• Defina la región de Región de AWS en el archivo de configuración de AWS en su sistema local,
situado en:

• ~/.aws/config en Linux, macOS o Unix

• C:\Users\USERNAME\.aws\config on Windows

Este archivo debe contener líneas con el siguiente formato:

+

[default]
region = your_aws_region

+

Sustituya su Región de AWS (por ejemplo, "us-east-1") por su_region_aws.

• Establezca la variable de entorno AWS_REGION.

En Linux, macOS o Unix, utilice :

export AWS_REGION=your_aws_region

En Windows, use :

set AWS_REGION=your_aws_region

Donde su_región_de_aws es el nombre de la región de Región de AWS que desee.

Definir la Región de AWS 19

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Usando el AWS SDK para Java
En esta sección se proporciona información general importante sobre la programación, AWS SDK
para Java que se aplica a todos los servicios que pueda utilizar con el SDK.

Para obtener información y ejemplos de programación específicos de un servicio (para Amazon EC2,
Amazon S3, Amazon SWF, etc.), consulte Ejemplos de AWS SDK para Java código.

Temas

• Mejores prácticas para el AWS desarrollo con el AWS SDK para Java

• Creación de clientes de servicio

• Proporcione credenciales temporales al AWS SDK para Java

• Región de AWS Selección

• Tratamiento de excepciones

• Programación asíncrona

• Registro de llamadas AWS SDK para Java

• Configuración de los clientes

• Política de control de acceso

• Configurar el TTL de JVM para las búsquedas de nombres DNS

• Habilitación de métricas para AWS SDK para Java

Mejores prácticas para el AWS desarrollo con el AWS SDK para
Java

Las siguientes prácticas recomendadas pueden ayudarle a evitar problemas o problemas
al desarrollar AWS aplicaciones con AWS SDK para Java. Hemos organizado las prácticas
recomendadas por servicio.

S3

Evite ResetExceptions

Al cargar objetos Amazon S3 mediante transmisiones (ya sea a través de un AmazonS3 cliente
oTransferManager), es posible que se produzcan problemas de conectividad de red o de

Mejores prácticas para el AWS desarrollo con el AWS SDK para Java 20

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

tiempo de espera. De forma predeterminada, los AWS SDK para Java intentos de reintentar
realizar transferencias fallidas marcando el flujo de entrada antes del inicio de la transferencia y
restableciéndolo antes de volver a intentarlo.

Si la transmisión no admite marcar y restablecer, el SDK lanza una ResetExceptioncuando hay
errores transitorios y los reintentos están habilitados.

Práctica recomendada

Le recomendamos que utilice secuencias que admitan operaciones de marcado y restablecimiento.

La forma más fiable de evitar un ResetExceptiones proporcionar datos mediante un archivo o
FileInputStream, que AWS SDK para Java puedan gestionar sin verse limitados por los límites de
marcar y restablecer.

Si la transmisión no es una, FileInputStreampero admite marcar y restablecer, puedes establecer
el límite de marcas mediante el setReadLimit método de RequestClientOptions. Su valor
predeterminado es 128 KB. Si se establece el valor límite de lectura en un byte mayor que el tamaño
de la transmisión, se evitará de forma fiable un ResetException.

Por ejemplo, si el tamaño máximo esperado de una secuencia es de 100 000 bytes, defina el límite
de lectura en 100 001 (100 000+1) bytes. Las operaciones de marca y restablecimiento siempre
funcionan para 100 000 bytes o menos. Tenga en cuenta que esto puede provocar que algunas
secuencias almacenen ese número de bytes en memoria.

Creación de clientes de servicio

Para realizar solicitudes Amazon Web Services, primero debe crear un objeto de cliente de servicio.
La manera recomendada es utilizar el creador de clientes de servicio.

Cada uno Servicio de AWS tiene una interfaz de servicio con métodos para cada acción
en la API de servicio. Por ejemplo, la interfaz de servicio de DynamoDB recibe el nombre.
AmazonDynamoDBClient Cada interfaz de servicio cuenta con su creador de clientes
correspondiente, que puede utilizar para crear una implementación de la interfaz de servicio. La clase
de creación de clientes para DynamoDB se denomina AmazonDynamo DBClient Builder.

Obtención de un creador de clientes

Para obtener una instancia del creador de clientes, use el método de fábrica estático standard, tal y
como se muestra en el siguiente ejemplo.

Creación de clientes de servicio 21

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/RequestClientOptions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClientBuilder.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClientBuilder.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AmazonDynamoDBClientBuilder builder = AmazonDynamoDBClientBuilder.standard();

Una vez que tenga un creador, puede personalizar las propiedades del cliente mediante el uso de
funciones setter Fluent en la API del compilador. Por ejemplo, puede definir una región personalizada
y un proveedor de credenciales personalizado, tal y como se indica a continuación.

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

Note

Los métodos withXXX Fluent devuelven el objeto builder para que pueda encadenar
fácilmente las llamadas a los métodos y para simplificar la lectura del código. Después de
configurar las propiedades que desee, puede llamar al método build para crear el cliente.
Una vez que se crea un cliente, este es inmutable y todas las llamadas a setRegion o
setEndpoint producirán un error.

Un creador puede crear varios clientes con la misma configuración. Cuando escriba su aplicación,
debe ser consciente de que el creador es mutable y no es seguro para subprocesos.

El código siguiente utiliza el creador como una fábrica de instancias de cliente.

public class DynamoDBClientFactory {
 private final AmazonDynamoDBClientBuilder builder =
 AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"));

 public AmazonDynamoDB createClient() {
 return builder.build();
 }
}

El generador también expone los setters fluidos para ClientConfigurationy RequestMetricCollector, y
una lista personalizada de RequestHandler 2.

A continuación se presenta un ejemplo completo que invalida todas las propiedades configurables.

Obtención de un creador de clientes 22

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/RequestMetricCollector.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .withClientConfiguration(new ClientConfiguration().withRequestTimeout(5000))
 .withMetricsCollector(new MyCustomMetricsCollector())
 .withRequestHandlers(new MyCustomRequestHandler(), new
 MyOtherCustomRequestHandler)
 .build();

Creación de clientes asíncronos

AWS SDK para Java Tiene clientes asíncronos (o asíncronos) para cada servicio (excepto) y el
correspondiente generador de clientes asíncronos para Amazon S3 cada servicio.

Para crear un cliente de DynamoDB asíncrono con el valor predeterminado
ExecutorService

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

Además de las opciones de configuración que admite el generador de clientes síncronos
(o sincronizados), el cliente asíncrono permite configurar una configuración personalizada
ExecutorFactorypara cambiar la que utiliza el cliente asíncrono. ExecutorService
ExecutorFactoryes una interfaz funcional, por lo que interopera con las expresiones lambda y las
referencias a métodos de Java 8.

Para crear un cliente asíncrono con un ejecutor personalizado

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withExecutorFactory(() -> Executors.newFixedThreadPool(10))
 .build();

Usando DefaultClient

Los creador de clientes síncronos y asíncronos tienen otro método de fábrica denominado
defaultClient. Este método crea un servicio de cliente con la configuración predeterminada,

Creación de clientes asíncronos 23

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/client/builder/ExecutorFactory.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

utilizando la cadena de proveedores predeterminada para cargar las credenciales y la región Región
de AWS. Si las credenciales o la región no se pueden determinar a partir del entorno en el que
se ejecuta la aplicación, la llamada a defaultClient produce un error. Consulte Trabajar con
AWS las credenciales y la Región de AWS selección para obtener más información sobre cómo se
determinan las credenciales y la región.

Para crear un cliente de servicio predeterminado

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

Ciclo de vida del cliente

Los clientes de servicio del SDK son seguros para subprocesos y, para obtener el mejor rendimiento,
deben tratarse como objetos de larga duración. Cada cliente tiene su propio recurso de grupo de
conexiones. Cierre los clientes de forma explícita cuando dejen de ser necesarios para evitar que se
filtren recursos.

Para cerrar un cliente de forma explícita, llame al método shutdown. Después de llamar a
shutdown, todos los recursos del cliente se liberan y ya no se puede utilizar el cliente.

Para cerrar un cliente

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.shutdown();
// Client is now unusable

Proporcione credenciales temporales al AWS SDK para Java

Para realizar solicitudes Amazon Web Services, debe proporcionar credenciales AWS temporales
para AWS SDK para Java que las utilice cuando llame a los servicios. Puede hacerlo de las
siguientes maneras:

• Utilice la cadena predeterminada de proveedores de credenciales (recomendado).

• Utilice un proveedor de credenciales específico o una cadena de proveedores (o cree el suyo
propio).

• Proporcione usted mismo las credenciales temporales en código.

Ciclo de vida del cliente 24

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Uso de la cadena predeterminada de proveedores de credenciales

Al inicializar un nuevo cliente de servicio sin proporcionar ningún argumento, AWS SDK para Java
intenta encontrar credenciales temporales utilizando la cadena de proveedores de credenciales
predeterminada implementada por la clase AWSCredentialsProviderChainDefault. La cadena
predeterminada de proveedores de credenciales busca las credenciales en este orden:

1. Variables de entorno: AWS_ACCESS_KEY_ID, AWS_SECRET_KEY o
AWS_SECRET_ACCESS_KEY y AWS_SESSION_TOKEN. AWS SDK para Java Usa la
EnvironmentVariableCredentialsProviderclase para cargar estas credenciales.

2. Propiedades del sistema Java: aws.accessKeyId, aws.secretKey (pero no
aws.secretAccessKey) y aws.sessionToken. AWS SDK para Java Usa el
SystemPropertiesCredentialsProviderpara cargar estas credenciales.

3. Credenciales de Web Identity Token del entorno o contenedor.

4. El archivo de perfiles de credenciales predeterminado, que normalmente se encuentra en
~/.aws/credentials (la ubicación puede variar según la plataforma) y lo comparten
muchos de ellos AWS SDKs y entre ellos. AWS CLI AWS SDK para Java Utiliza el
ProfileCredentialsProviderpara cargar estas credenciales.

Puede crear un archivo de credenciales mediante el aws configure comando proporcionado
por el AWS CLI, o puede crearlo editando el archivo con un editor de texto. Para obtener
información sobre el formato del archivo de credenciales, consulte Formato del archivo de
credenciales de AWS.

5. Credenciales del contenedor de Amazon ECS: cargadas desde Amazon ECS si se ha establecido
la variable de entorno AWS_CONTAINER_CREDENTIALS_RELATIVE_URI. AWS SDK para Java
Utiliza el ContainerCredentialsProviderpara cargar estas credenciales. Puede especificar la
dirección IP para este valor.

6. Credenciales de perfil de instancia: se utilizan en EC2 las instancias y se entregan
a través del servicio de Amazon EC2 metadatos. AWS SDK para Java Utiliza las
InstanceProfileCredentialsProviderpara cargar estas credenciales. Puede especificar la dirección
IP para este valor.

Uso de la cadena predeterminada de proveedores de credenciales 25

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EnvironmentVariableCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/SystemPropertiesCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/profile/ProfileCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/ContainerCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Note

Las credenciales del perfil de instancia se utilizan únicamente si no se ha establecido
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI. Para obtener más información,
consulte EC2ContainerCredentialsProviderWrapper.

Utilizar credenciales temporales

Para poder usar credenciales AWS temporales, deben estar configuradas en al menos una de las
ubicaciones anteriores. Para obtener información sobre la configuración de las credenciales, consulte
los siguientes temas:

• Para especificar credenciales en el entorno o en el archivo de perfiles de credenciales
predeterminado, consulte the section called “Configurar credenciales temporales”.

• Para establecer propiedades del sistema Java, consulte el tutorial System Properties en el sitio
web oficial Java Tutorials.

• Para configurar y usar las credenciales del perfil de la instancia con sus EC2 instancias, consulte
Uso de las funciones de IAM para conceder acceso a AWS los recursos en Amazon EC2 ellas.

Configurar un perfil de credenciales alternativo

AWS SDK para Java Utiliza el perfil predeterminado de forma predeterminada, pero hay formas de
personalizar el perfil que proviene del archivo de credenciales.

Puede usar la variable AWS de entorno Profile para cambiar el perfil cargado por el SDK.

Por ejemplo, en Linux; macOS o Unix ejecutaría el comando siguiente para cambiar el perfil a
myProfile.

export AWS_PROFILE="myProfile"

En Windows, usaría el siguiente comando.

set AWS_PROFILE="myProfile"

Uso de la cadena predeterminada de proveedores de credenciales 26

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EC2ContainerCredentialsProviderWrapper.html
http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

La configuración de la variable de AWS_PROFILE entorno afecta a la carga de credenciales de todas
las herramientas AWS SDKs y compatibles oficialmente (incluidas la AWS CLI y la AWS Tools for
Windows PowerShell). Para cambiar únicamente el perfil de una aplicación Java, puede utilizar la
propiedad del sistema aws.profile en su lugar.

Note

La variable de entorno prevalece sobre la propiedad del sistema.

Configurar una ubicación del archivo de credenciales alternativa

AWS SDK para Java Carga las credenciales AWS temporales automáticamente desde la ubicación
predeterminada del archivo de credenciales. Sin embargo, también puede especificar la ubicación
estableciendo la variable de entorno AWS_CREDENTIAL_PROFILES_FILE con la ruta completa del
archivo de credenciales.

Puede utilizar esta función para cambiar temporalmente la ubicación en la que AWS SDK para
Java busca su archivo de credenciales (por ejemplo, configurando esta variable con la línea de
comandos). También puede establecer la variable de entorno en el entorno del usuario o del sistema
para cambiarlo para el usuario o para todo el sistema.

Para invalidar la ubicación predeterminada del archivo de credenciales

• Defina la variable de AWS_CREDENTIAL_PROFILES_FILE entorno en la ubicación del archivo de
AWS credenciales.

• En Linux, macOS o Unix, utilice:

export AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

• En Windows, use:

set AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

Formato de archivo de Credentials

Siguiendo las instrucciones de la configuración básica de esta guía, el archivo de credenciales debe
tener el siguiente formato básico.

Uso de la cadena predeterminada de proveedores de credenciales 27

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

[profile2]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

El nombre de perfil se especifica entre corchetes (por ejemplo, [default]), seguido de los campos
configurables en ese perfil como pares de clave-valor. Puede tener varios perfiles en su archivo de
credentials, que puede añadir o editar mediante aws configure --profile PROFILE_NAME
para seleccionar el perfil que se va a configurar.

Puede especificar campos adicionales, como metadata_service_timeout y
metadata_service_num_attempts. Estos no se pueden configurar con la CLI; debe editar
el archivo manualmente si desea utilizarlos. Para obtener más información sobre el archivo de
configuración y sus campos disponibles, consulte Configuración del archivo AWS Command Line
Interface en la Guía del AWS Command Line Interface usuario.

Cargar credenciales

Después de definir las credenciales temporales, el SDK las carga mediante la cadena
predeterminada de proveedores de credenciales.

Para ello, se crea una instancia de un Servicio de AWS cliente sin proporcionar las credenciales de
forma explícita al generador, como se indica a continuación.

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

Especificar un proveedor de credenciales o una cadena de proveedores

Puede especificar un proveedor de credenciales diferente de la cadena de proveedores de
credenciales predeterminada mediante el creador del cliente.

Especificar un proveedor de credenciales o una cadena de proveedores 28

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Se proporciona una instancia de un proveedor de credenciales o una cadena de proveedores a un
creador de clientes que toma como entrada una interfaz AWSCredentialsde proveedor. El siguiente
ejemplo muestra cómo utilizar credenciales de entorno específicamente.

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new EnvironmentVariableCredentialsProvider())
 .build();

Para ver la lista completa de proveedores AWS SDK para Java de credenciales y cadenas
de proveedores suministrados, consulte Todas las clases de implementación conocidas en
AWSCredentials Provider.

Note

Puede utilizar esta técnica para suministrar proveedores de credenciales o cadenas
de proveedores que cree utilizando su propio proveedor de credenciales que
implemente la AWSCredentialsProvider interfaz o subclasificando la clase.
AWSCredentialsProviderChain

Especificar explícitamente credenciales temporales

Si la cadena de credenciales predeterminada o un proveedor o cadena de proveedores específicos
o personalizados no funcionan para su código, puede configurar credenciales que proporcione
explícitamente. Si ha obtenido credenciales temporales utilizando este método AWS STS, utilice este
método para especificar las credenciales de acceso. AWS

1. Cree una instancia de la BasicSessionCredentialsclase y suministre la clave de AWS acceso, la
clave AWS secreta y el token de AWS sesión que el SDK utilizará para la conexión.

2. Crea una AWSStaticCredentialsProvidercon el AWSCredentials objeto.

3. Configure el creador del cliente con AWSStaticCredentialsProvider y compile el cliente.

A continuación se muestra un ejemplo.

BasicSessionCredentials awsCreds = new BasicSessionCredentials("access_key_id",
 "secret_key_id", "session_token");
AmazonS3 s3Client = AmazonS3ClientBuilder.standard()

Especificar explícitamente credenciales temporales 29

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProviderChain.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/BasicSessionCredentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSStaticCredentialsProvider.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withCredentials(new AWSStaticCredentialsProvider(awsCreds))
 .build();

Más información

• Regístrese AWS y cree un usuario de IAM

• Configure AWS las credenciales y la región para el desarrollo

• Uso de las funciones de IAM para conceder acceso a AWS los recursos en Amazon EC2

Región de AWS Selección

Las regiones le permiten acceder a AWS los servicios que residen físicamente en un área geográfica
específica. Esto puede ser útil para evitar redundancias y para que sus datos y aplicaciones se
ejecuten cerca del lugar desde donde usted y sus usuarios obtendrán acceso a ellos.

Comprobación de la disponibilidad del servicio en una región

Para ver si una determinada región Servicio de AWS está disponible en una región, usa el
isServiceSupported método de la región que quieras usar.

Region.getRegion(Regions.US_WEST_2)
 .isServiceSupported(AmazonDynamoDB.ENDPOINT_PREFIX);

Consulte la documentación de la clase Regions para saber las regiones que puede especificar y
use el prefijo de punto de enlace del servicio que desea consultar. Cada prefijo de punto de enlace
del servicio se define en la interfaz del servicio. Por ejemplo, el prefijo del DynamoDB punto final se
define en la AmazonDynamobase de datos.

Selección de una región

A partir de la versión 1.4 del AWS SDK para Java, puedes especificar el nombre de una región y el
SDK elegirá automáticamente el punto de conexión adecuado para ti. Para elegir usted mismo el
punto de enlace, consulte Selección de un punto de enlace específico.

Para configurar de forma explícita una región, le recomendamos que utilice la enumeración Regions.
Esta es una enumeración de todas las regiones disponibles públicamente. Para crear un cliente con
una región desde la enumeración, utilice el siguiente código.

Más información 30

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

Si la región que intenta utilizar no está en la enumeración Regions, puede configurar la región
mediante una cadena que represente el nombre de la región.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion("{region_api_default}")
 .build();

Note

Después de compilar un cliente con el creador, este es inmutable y la región no puede
modificarse. Si trabaja con varios Regiones de AWS para el mismo servicio, debe crear
varios clientes, uno por región.

Selección de un punto de enlace específico

Cada AWS cliente se puede configurar para usar un punto final específico dentro de una región
llamando al withEndpointConfiguration método al crear el cliente.

Por ejemplo, para configurar el Amazon S3 cliente para que utilice la región Europa (Irlanda), utilice
el siguiente código.

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withEndpointConfiguration(new EndpointConfiguration(
 "https://s3.eu-west-1.amazonaws.com",
 "eu-west-1"))
 .withCredentials(CREDENTIALS_PROVIDER)
 .build();

Consulte Regiones y puntos de enlace para ver la lista actual de regiones y sus puntos de enlace
correspondientes para todos los AWS servicios.

Selección de un punto de enlace específico 31

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Determinar automáticamente la región desde el entorno

Important

Esta sección solo se aplica cuando se utiliza un generador de clientes para acceder
AWS a los servicios. AWS los clientes creados mediante el constructor de clientes no
determinarán automáticamente la región del entorno y, en su lugar, utilizarán la región del
SDK predeterminada (USEast1).

Cuando se ejecuta en Lambda Amazon EC2 o Lambda, es posible que desee configurar los clientes
para que usen la misma región en la que se ejecuta el código. De esta forma, el código se desacopla
del entorno en el que se está ejecutando y es más sencillo implementar la aplicación en varias
regiones para reducir la latencia o la redundancia.

Debe utilizar creadores de clientes para que el SDK detecte automáticamente la región en la que se
ejecuta el código.

Para usar la cadena de credential/region proveedores predeterminada para determinar la región a
partir del entorno, utilice el defaultClient método del creador de clientes.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

Es lo mismo que usar standard seguido de build.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .build();

Si no configura explícitamente una región mediante los métodos withRegion, el SDK consulta la
cadena predeterminada de proveedores de regiones para intentar determinar la región que se va a
usar.

Cadena predeterminada de proveedores de regiones

A continuación se muestra el proceso de búsqueda de regiones:

1. Cualquier región explícita establecida mediante withRegion o setRegion en el propio creador
prevalece sobre todas las demás.

Determinar automáticamente la región desde el entorno 32

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

2. Se comprueba la variable de entorno AWS_REGION. Si se ha establecido, se usa esa región para
configurar el cliente.

Note

El Lambda contenedor establece esta variable de entorno.

3. El SDK comprueba el archivo de configuración AWS compartido (que normalmente se encuentra
en~/.aws/config). Si la propiedad region está presente, el SDK la utiliza.

• La variable de entorno AWS_CONFIG_FILE se puede utilizar para personalizar la ubicación del
archivo de configuración compartida.

• La variable de entorno AWS_PROFILE o la propiedad del sistema aws.profile se pueden
utilizar para personalizar el perfil que carga el SDK.

4. El SDK intenta usar el servicio de metadatos de la Amazon EC2 instancia para determinar la
región de la Amazon EC2 instancia que se está ejecutando actualmente.

5. Si el SDK todavía no ha encontrado una región en ese momento, la creación del cliente produce
una excepción.

Al desarrollar AWS aplicaciones, un enfoque habitual consiste en utilizar el archivo de configuración
compartido (que se describe en la sección Uso de la cadena de proveedores de credenciales
predeterminada) para establecer la región para el desarrollo local, y utilizar la cadena de
proveedores de regiones predeterminada para determinar la región cuando se ejecuta en la AWS
infraestructura. Esto simplifica enormemente la creación del cliente y dota de portabilidad a su
aplicación.

Tratamiento de excepciones

Entender cómo y cuándo se AWS SDK para Java producen excepciones es importante para crear
aplicaciones de alta calidad mediante el SDK. En las siguientes secciones se describen los diferentes
casos de excepciones que produce el SDK y cómo tratarlas correctamente.

¿Por qué usar excepciones no controladas?

AWS SDK para Java Utiliza excepciones en tiempo de ejecución (o no comprobadas) en lugar de
excepciones comprobadas por los siguientes motivos:

Tratamiento de excepciones 33

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Para permitir a los desarrolladores un control minucioso de los errores que desean administrar sin
obligarles a abordar casos excepcionales que no les preocupan (o que les obligan a detallar su
código en exceso)

• Para evitar problemas de escalabilidad inherentes a las excepciones controladas en aplicaciones
grandes

En general, las excepciones controladas funcionan bien a pequeña escala, pero pueden ser
problemáticas cuando las aplicaciones crecen y se vuelven más complejas.

Para obtener más información sobre el uso de excepciones controladas y no controladas, consulte:

• Excepciones no controladas: la controversia

• The Trouble with Checked Exceptions

• Java's checked exceptions were a mistake (and here's what I would like to do about it)

AmazonServiceException (y subclases)

AmazonServiceExceptiones la excepción más común que experimentará al AWS SDK para
Java usar. Esta excepción representa una respuesta de error de un servicio de Servicio
de AWS. Por ejemplo, si intentas terminar una Amazon EC2 instancia que no existe, EC2
devolverá una respuesta de error y todos los detalles de esa respuesta de error se incluirán en
la AmazonServiceException que se arroje. En algunos casos, se produce una subclase de
AmazonServiceException para permitir a los desarrolladores un control minucioso del tratamiento
de casos de error a través de bloques de captura.

Cuando encuentres unaAmazonServiceException, sabrás que tu solicitud se envió
correctamente, Servicio de AWS pero que no se pudo procesar correctamente. Esto puede ser
debido a errores en los parámetros de la solicitud o a problemas en el servicio.

AmazonServiceException proporciona información como:

• Código de estado HTTP devuelto

• Código AWS de error devuelto

• Mensaje de error detallado del servicio

• AWS ID de solicitud de la solicitud fallida

AmazonServiceException (y subclases) 34

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.artima.com/intv/handcuffs2.html
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AmazonServiceExceptiontambién incluye información sobre si la solicitud fallida fue culpa de la
persona que llamó (una solicitud con valores no válidos) o fue culpa Servicio de AWS de la persona
que llamó (un error de servicio interno).

AmazonClientException

AmazonClientExceptionindica que se ha producido un problema en el código del cliente de
Java, ya sea al intentar enviar una solicitud AWS o al analizar una respuesta desde AWSél.
Un AmazonClientException es generalmente más grave que uno e indica un problema
importante que impide que el cliente realice llamadas de servicio a AWS los servicios.
AmazonServiceException Por ejemplo, AmazonClientException si no hay ninguna conexión
de red disponible cuando se intenta llamar a una operación en uno de los clientes. AWS SDK para
Java

Programación asíncrona

Puede utilizar métodos síncronos o asíncronos para llamar a las operaciones de los servicios. AWS
Los métodos síncronos bloquean la ejecución de los subprocesos hasta que el cliente recibe una
respuesta del servicio. Los métodos asíncronos terminan de ejecutarse inmediatamente, devolviendo
el control al subproceso que realiza la llamada sin esperar una respuesta.

Como un método asíncrono termina de ejecutarse antes de que haya una respuesta disponible,
necesita una forma de obtener la respuesta cuando esté lista. AWS SDK para Java Proporciona dos
formas: objetos futuros y métodos de devolución de llamada.

Objetos Future de Java

Los métodos asíncronos AWS SDK para Java devuelven un objeto Future que contiene los
resultados de la operación asincrónica en el futuro.

Llame al método Future isDone() para saber si el servicio ya ha proporcionado un objeto de
respuesta. Cuando la respuesta esté lista, podrá obtener el objeto de respuesta llamando al método
Future get(). Puede utilizar este mecanismo para sondear periódicamente los resultados de las
operaciones asíncronas mientras su aplicación sigue trabajando en otras cosas.

Este es un ejemplo de una operación asíncrona que llama a una Lambda función y recibe una que
puede contener un objeto. Future InvokeResult El objeto InvokeResult solo se recupera cuando
isDone() es true.

AmazonClientException 35

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeResult.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.lambda.AWSLambdaAsyncClient;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class InvokeLambdaFunctionAsync
{
 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req);

 System.out.print("Waiting for future");
 while (future_res.isDone() == false) {
 System.out.print(".");
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("\nThread.sleep() was interrupted!");
 System.exit(1);
 }
 }

 try {
 InvokeResult res = future_res.get();
 if (res.getStatusCode() == 200) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 }
 else {
 System.out.format("Received a non-OK response from {AWS}: %d\n",
 res.getStatusCode());

Objetos Future de Java 36

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 }
 }
 catch (InterruptedException | ExecutionException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 System.exit(0);
 }
}

Devoluciones de llamadas asíncronas

Además de utilizar el Future objeto Java para supervisar el estado de las solicitudes
asincrónicas, el SDK también permite implementar una clase que utilice la interfaz. AsyncHandler
AsyncHandlerproporciona dos métodos a los que se invoca en función de cómo se haya
completado la solicitud: y. onSuccess onError

La principal ventaja del enfoque de la interfaz de devolución de llamada es que se le permite sondear
el objeto Future para saber si la solicitud se ha completado. El código puede iniciar inmediatamente
su siguiente actividad y usar el SDK para llamar a su identificador en el momento oportuno.

import com.amazonaws.services.lambda.AWSLambdaAsync;
import com.amazonaws.services.lambda.AWSLambdaAsyncClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.handlers.AsyncHandler;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;

public class InvokeLambdaFunctionCallback
{
 private class AsyncLambdaHandler implements AsyncHandler<InvokeRequest,
 InvokeResult>
 {
 public void onSuccess(InvokeRequest req, InvokeResult res) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 System.exit(0);
 }

Devoluciones de llamadas asíncronas 37

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/AsyncHandler.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 public void onError(Exception e) {
 System.out.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req, new
 AsyncLambdaHandler());

 System.out.print("Waiting for async callback");
 while (!future_res.isDone() && !future_res.isCancelled()) {
 // perform some other tasks...
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("Thread.sleep() was interrupted!");
 System.exit(0);
 }
 System.out.print(".");
 }
 }
}

Prácticas recomendadas

Ejecución de la devolución de llamada

Su implementación de AsyncHandler se ejecuta dentro del grupo de subprocesos propiedad
del cliente asíncrono. El código breve que se ejecuta rápidamente es más apropiado para su
implementación de AsyncHandler. El código de bloqueo o de ejecución prolongada de sus
métodos de identificador puede provocar controversia en el grupo de subprocesos usado por

Prácticas recomendadas 38

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

el cliente asíncrono y pueden impedir que el cliente ejecute las solicitudes. Si tiene una tarea
de ejecución prolongada que debe iniciarse desde una devolución de llamada, permita que la
devolución de llamada ejecute su tarea en un nuevo subproceso o en un grupo de subprocesos
administrado por su aplicación.

Configuración del grupo de subprocesos

Los clientes asíncronos del servidor AWS SDK para Java proporcionan un grupo de subprocesos
predeterminado que debería funcionar para la mayoría de las aplicaciones. Puede implementar una
personalizada ExecutorServicey pasarla a clientes AWS SDK para Java asíncronos para tener un
mayor control sobre la forma en que se administran los grupos de subprocesos.

Por ejemplo, puedes proporcionar una ExecutorService implementación que utilice una
personalización ThreadFactorypara controlar el nombre de los subprocesos del grupo o para
registrar información adicional sobre el uso de los subprocesos.

Acceso asíncrono

La TransferManagerclase del SDK ofrece soporte asíncrono para trabajar con ellos. Amazon
S3TransferManagergestiona las cargas y descargas asíncronas, proporciona informes detallados
sobre el progreso de las transferencias y admite la devolución de llamadas a distintos eventos.

Registro de llamadas AWS SDK para Java

AWS SDK para Java Está equipado con Apache Commons Logging, que es una capa de abstracción
que permite el uso de cualquiera de los varios sistemas de registro en tiempo de ejecución.

Los sistemas de registro admitidos incluyen Java Logging Framework y Apache Log4j, entre otros.
En este tema se muestra cómo utilizar Log4j. Puede utilizar la funcionalidad de registro del SDK sin
necesidad de realizar cambios en el código de la aplicación.

Para obtener más información sobre Log4j, consulte el sitio web de Apache.

Note

Este tema se centra en Log4j 1.x. Log4j2 no admite directamente Apache Commons Logging,
pero ofrece un adaptador que dirige automáticamente las llamadas de registro a Log4j2
utilizando la interfaz de Apache Commons Logging. Para obtener más información, consulte
Commons Logging Bridge en la documentación de Log4j2.

Registro de llamadas AWS SDK para Java 39

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ThreadFactory.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/TransferManager.html
http://commons.apache.org/proper/commons-logging/guide.html
http://logging.apache.org/log4j/2.x/
http://www.apache.org/
https://logging.apache.org/log4j/2.x/log4j-jcl.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Descarga del archivo JAR de Log4J

Para utilizar Log4j con el SDK, debe descargar el archivo JAR de Log4j JAR del sitio web de Apache.
El SDK no incluye el archivo JAR. Copie el archivo JAR en una ubicación que esté en el classpath.

Log4j usa un archivo de configuración, log4j.properties. A continuación, se muestran ejemplos de
archivos de configuración. Copie este archivo de configuración en un directorio del classpath. El
archivo JAR de Log4j y el archivo log4j.properties no necesitan estar en el mismo directorio.

El archivo de configuración log4j.properties especifica propiedades, como el nivel de registro, dónde
se envía la salida del registro (por ejemplo, a un archivo o a la consola) y el formato de la salida.
El nivel de registro es el detalle de la salida que genera el registrador. Log4j admite el concepto
de varias jerarquías de registro. El nivel de registro se define de forma independiente para cada
jerarquía. Las siguientes dos jerarquías de registro están disponibles en AWS SDK para Java:

• log4j.logger.com.amazonaws

• log4j.logger.org.apache.http.wire

Definición del classpath

El archivo JAR de Log4j y el archivo log4j.properties deben estar en el classpath. Si utiliza Apache
Ant, establezca el classpath en el elemento path en su archivo Ant. El ejemplo siguiente muestra un
elemento de la ruta del archivo Ant para el ejemplo de Amazon S3 incluido en el SDK.

<path id="aws.java.sdk.classpath">
 <fileset dir="../../third-party" includes="**/*.jar"/>
 <fileset dir="../../lib" includes="**/*.jar"/>
 <pathelement location="."/>
</path>

Si utiliza el IDE de Eclipse, puede establecer el classpath abriendo el menú y yendo a Project
(Proyecto) | Properties (Propiedades) | Java Build Path (Ruta de compilación de Java).

Errores y advertencias específicos del servicio

Le recomendamos que siempre deje la jerarquía del registrador "com.amazonaws" establecida
en "WARN" para identificar los mensajes importantes de las bibliotecas cliente. Por ejemplo, si
el Amazon S3 cliente detecta que su aplicación no ha cerrado correctamente InputStream y

Descarga del archivo JAR de Log4J 40

http://logging.apache.org/log4j/2.x/manual/configuration.html#Loggers
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/layouts.html
http://ant.apache.org/manual/
http://ant.apache.org/manual/
https://github.com/aws/aws-sdk-java/blob/master/src/samples/AmazonS3/build.xml

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

podría estar filtrando recursos, el cliente S3 lo notificará mediante un mensaje de advertencia en los
registros. Esto también garantiza que se registren los mensajes si el cliente tiene algún problema con
el tratamiento de las solicitudes o respuestas.

El siguiente archivo log4j.properties establece rootLogger en WARN, lo que hace que se incluyan
los mensajes de advertencia y de error de todos los registradores de la jerarquía "com.amazonaws".
Otra opción consiste en establecer de forma explícita el registrador com.amazonaws en WARN.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Or you can explicitly enable WARN and ERROR messages for the {AWS} Java clients
log4j.logger.com.amazonaws=WARN

Registro de resumen de solicitudes y respuestas

Cada solicitud a an Servicio de AWS genera un identificador de AWS solicitud único que resulta útil si
tienes algún problema con la forma en que an Servicio de AWS gestiona una solicitud. AWS IDs Se
puede acceder a las solicitudes mediante programación a través de los objetos Exception del SDK
para cualquier llamada de servicio fallida, y también se pueden informar a través del nivel de registro
DEBUG, en el registrador «com.amazonaws.request».

El siguiente archivo log4j.properties permite obtener un resumen de las solicitudes y respuestas,
incluida la solicitud. AWS IDs

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Turn on DEBUG logging in com.amazonaws.request to log
a summary of requests/responses with {AWS} request IDs
log4j.logger.com.amazonaws.request=DEBUG

Este es un ejemplo del resultado del registro.

2009-12-17 09:53:04,269 [main] DEBUG com.amazonaws.request - Sending
Request: POST https://rds.amazonaws.com / Parameters: (MaxRecords: 20,
Action: DescribeEngineDefaultParameters, SignatureMethod: HmacSHA256,
AWSAccessKeyId: ACCESSKEYID, Version: 2009-10-16, SignatureVersion: 2,

Registro de resumen de solicitudes y respuestas 41

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Engine: mysql5.1, Timestamp: 2009-12-17T17:53:04.267Z, Signature:
q963XH63Lcovl5Rr71APlzlye99rmWwT9DfuQaNznkD,) 2009-12-17 09:53:04,464
[main] DEBUG com.amazonaws.request - Received successful response: 200, {AWS}
Request ID: 694d1242-cee0-c85e-f31f-5dab1ea18bc6 2009-12-17 09:53:04,469
[main] DEBUG com.amazonaws.request - Sending Request: POST
https://rds.amazonaws.com / Parameters: (ResetAllParameters: true, Action:
ResetDBParameterGroup, SignatureMethod: HmacSHA256, DBParameterGroupName:
java-integ-test-param-group-0000000000000, AWSAccessKeyId: ACCESSKEYID,
Version: 2009-10-16, SignatureVersion: 2, Timestamp:
2009-12-17T17:53:04.467Z, Signature:
9WcgfPwTobvLVcpyhbrdN7P7l3uH0oviYQ4yZ+TQjsQ=,)

2009-12-17 09:53:04,646 [main] DEBUG com.amazonaws.request - Received
successful response: 200, {AWS} Request ID:
694d1242-cee0-c85e-f31f-5dab1ea18bc6

Registro detallado en red

En algunos casos, puede resultar útil ver las solicitudes y respuestas exactas que AWS SDK
para Java envían y reciben. No deberías habilitar este registro en los sistemas de producción, ya
que escribir solicitudes o respuestas de gran tamaño (por ejemplo, un archivo en el que se está
cargando Amazon S3) o respuestas puede ralentizar considerablemente la aplicación. Si realmente
necesita acceder a esta información, puede habilitarla temporalmente a través del registrador Apache
HttpClient 4. La activación del nivel DEBUG en el registrador org.apache.http.wire permite
registrar todos los datos de las solicitudes y respuestas.

El siguiente archivo log4j.properties activa el registro completo en Apache HttpClient 4 y solo debe
activarse temporalmente, ya que puede tener un impacto significativo en el rendimiento de la
aplicación.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Log all HTTP content (headers, parameters, content, etc) for
all requests and responses. Use caution with this since it can
be very expensive to log such verbose data!
log4j.logger.org.apache.http.wire=DEBUG

Registro detallado en red 42

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Registro de métricas de latencia

Si está solucionando problemas y desea ver métricas; por ejemplo, qué proceso está tardando más
o si es mayor la latencia del cliente o del servidor, el registrador de latencia puede resultarle muy útil.
Para habilitar este registrador, configure el registrador com.amazonaws.latency en DEBUG.

Note

Este registrador solo está disponible si se habilitan las métricas de SDK. Para obtener más
información sobre el paquete de métricas de SDK, consulte Habilitación de métricas para el
AWS SDK para Java.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
log4j.logger.com.amazonaws.latency=DEBUG

Este es un ejemplo del resultado del registro.

com.amazonaws.latency - ServiceName=[{S3}], StatusCode=[200],
ServiceEndpoint=[https://list-objects-integ-test-test.s3.amazonaws.com],
RequestType=[ListObjectsV2Request], AWSRequestID=[REQUESTID],
 HttpClientPoolPendingCount=0,
RetryCapacityConsumed=0, HttpClientPoolAvailableCount=0, RequestCount=1,
HttpClientPoolLeasedCount=0, ResponseProcessingTime=[52.154],
 ClientExecuteTime=[487.041],
HttpClientSendRequestTime=[192.931], HttpRequestTime=[431.652],
 RequestSigningTime=[0.357],
CredentialsRequestTime=[0.011, 0.001], HttpClientReceiveResponseTime=[146.272]

Configuración de los clientes

AWS SDK para Java Esto le permite cambiar la configuración predeterminada del cliente, lo que
resulta útil cuando desea:

• Conectarse a Internet a través del proxy

Registro de métricas de latencia 43

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Cambiar la configuración del transporte HTTP, como el tiempo de espera y los reintentos de
solicitud de conexión

• Especificar sugerencias del tamaño del búfer del socket TCP

Configuración del proxy

Al crear un objeto de cliente, puede pasar un ClientConfigurationobjeto opcional para personalizar la
configuración del cliente.

Si se conecta a Internet a través de un servidor proxy, tendrá que configurar las opciones del
servidor proxy (host del proxy, puerto y nombre de usuario/contraseña) a través del objeto
ClientConfiguration.

Configuración del transporte HTTP

Puede configurar varias opciones de transporte HTTP mediante el ClientConfigurationobjeto. De vez
en cuando se añaden nuevas opciones; para ver la lista completa de opciones que puede recuperar
o configurar, consulte la referencia de la AWS SDK para Java API.

Note

Cada uno de los valores configurables tiene un valor predeterminado definido por una
constante. Para obtener una lista de los valores constantes deClientConfiguration,
consulte Valores de campo constantes en la referencia de la AWS SDK para Java API.

Número máximo de conexiones

Puede establecer el número máximo permitido de conexiones HTTP abiertas mediante
ClientConfiguration. setMaxConnectionsmétodo.

Important

Para evitar problemas de conexión y un desempeño deficiente, establezca el número máximo
de conexiones en el número de conexiones simultáneas. Para ver el valor máximo de
conexiones predeterminado, consulta los valores de campo constantes en la referencia de la
AWS SDK para Java API.

Configuración del proxy 44

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxConnections-int-
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Tiempos de espera y tratamiento de errores

Puede configurar opciones relacionadas con los tiempos de espera y el tratamiento de errores con
conexiones HTTP.

• Tiempo de espera de conexión

El tiempo de espera de conexión es la cantidad de tiempo (en milisegundos) que la conexión HTTP
esperará a que se establezca una conexión antes de desistir. El valor predeterminado es 10 000
ms.

Para establecer este valor usted mismo, utilice ClientConfiguration. setConnectionTimeoutmétodo.

• Tiempo de vida (TTL) de la conexión

De forma predeterminada, el SDK intentará volver a utilizar las conexiones HTTP siempre que sea
posible. En situaciones en las que no es posible establecer una conexión con un servidor que está
fuera de servicio, disponer de un TTL finito puede ayudarle a recuperar la aplicación. Por ejemplo,
si configura un TTL de 15 minutos, se asegurará de que aunque tenga establecida una conexión
con un servidor que está experimentando problemas, se restablecerá una conexión con un nuevo
servidor en un plazo de 15 minutos.

Para configurar el TTL de la conexión HTTP, utilice el método
ClientConfiguration.setConnectionTTL.

• Número máximo de reintentos con error

El número máximo predeterminado de reintentos para errores recuperables es 3. Puede establecer
un valor diferente mediante. ClientConfiguration setMaxErrorMétodo de reintento.

Dirección local

Para establecer la dirección local a la que se enlazará el cliente HTTP, utiliceClientConfiguration.
setLocalAddress.

Sugerencias del tamaño del búfer del socket TCP

Los usuarios avanzados que deseen ajustar los parámetros TCP de bajo nivel también pueden
configurar sugerencias sobre el tamaño del búfer TCP a través del ClientConfigurationobjeto. La
mayoría de los usuarios nunca necesitarás ajustar estos valores, pero se proporcionan para los
usuarios avanzados.

Sugerencias del tamaño del búfer del socket TCP 45

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTimeout-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTTL-long-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Los tamaños del búfer TCP óptimos para una aplicación dependen en gran medida de la red y de la
configuración y funciones del sistema operativo. Por ejemplo, la mayoría de los sistemas operativos
modernos proporcionan lógica de ajuste automático para los tamaños del búfer TCP. Esto puede
afectar considerablemente al desempeño de las conexiones TCP que se mantienen abiertas el
tiempo suficiente para que el ajuste automático optimice los tamaños del búfer.

Los tamaños de búfer grandes (p. ej., 2 MB) permiten al sistema operativo almacenar más datos en
memoria sin requerir que el servidor remoto confirme la recepción de esa información y pueden ser
especialmente útiles cuando la red tiene alta latencia.

Esto es solo una sugerencia y puede que el sistema operativo no la aplique. Cuando se utiliza esta
opción, los usuarios deben comprobar siempre los límites y valores predeterminados del sistema
operativo. La mayoría de los sistemas operativos tienen un límite máximo de tamaño del búfer TCP
configurado y no permiten que se supere ese límite a menos que se aumente explícitamente el límite
máximo del tamaño del búfer TCP.

Hay muchos recursos disponibles que le pueden ayudar a configurar los tamaños del búfer TCP y las
opciones de TCP específicas del sistema operativo, incluidas las siguientes:

• Host Tuning

Política de control de acceso

AWS las políticas de control de acceso le permiten especificar controles de acceso detallados en sus
recursos. AWS Una política de control de acceso se compone de un conjunto de instrucciones, con el
siguiente formato:

La cuenta A tiene permiso para realizar la acción B en el recurso C donde se aplica la condición D.

Donde:

• A es el principal: el Cuenta de AWS que solicita el acceso o la modificación de uno de sus
recursos. AWS

• B es la acción: la forma en que se accede a un AWS recurso o se lo modifica, por ejemplo,
enviando un mensaje a una Amazon SQS cola o almacenando un objeto en un Amazon S3
depósito.

• C es el recurso: la AWS entidad a la que el principal quiere acceder, como una Amazon SQS cola
o un objeto almacenado. Amazon S3

Política de control de acceso 46

http://fasterdata.es.net/host-tuning/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• D es un conjunto de condiciones: las limitaciones opcionales que se especifican para permitir
o denegar el acceso al recurso de la entidad principal. Hay muchas condiciones expresivas
disponibles, algunas específicas de cada servicio. Por ejemplo, puede utilizar condiciones de fecha
para permitir el acceso a los recursos únicamente después o antes de un momento específico.

Amazon S3 Ejemplo

En el siguiente ejemplo, se muestra una política que permite a cualquier persona acceder a todos
los objetos de un depósito, pero restringe el acceso a la carga de objetos a ese depósito a dos tipos
Cuenta de AWS específicos (además de la cuenta del propietario del depósito).

Statement allowPublicReadStatement = new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));
Statement allowRestrictedWriteStatement = new Statement(Effect.Allow)
 .withPrincipals(new Principal("123456789"), new Principal("876543210"))
 .withActions(S3Actions.PutObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));

Policy policy = new Policy()
 .withStatements(allowPublicReadStatement, allowRestrictedWriteStatement);

AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
s3.setBucketPolicy(myBucketName, policy.toJson());

Amazon SQS Ejemplo

Un uso común de las políticas es autorizar una Amazon SQS cola para recibir mensajes de un tema
de Amazon SNS.

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SQSActions.SendMessage)
 .withConditions(ConditionFactory.newSourceArnCondition(myTopicArn)));

Map queueAttributes = new HashMap();
queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson());

Amazon S3 Ejemplo 47

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.setQueueAttributes(new SetQueueAttributesRequest(myQueueUrl, queueAttributes));

Ejemplo de Amazon SNS

Algunos servicios ofrecen condiciones adicionales que pueden utilizarse en las políticas. Amazon
SNS establece condiciones para permitir o denegar suscripciones a temas de SNS según el
protocolo (por ejemplo, correo electrónico, HTTP, HTTPS Amazon SQS) y el punto final (por ejemplo,
dirección de correo electrónico, URL, Amazon SQS ARN) de la solicitud de suscripción a un tema.

Condition endpointCondition =
 SNSConditionFactory.newEndpointCondition("*@mycompany.com");

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SNSActions.Subscribe)
 .withConditions(endpointCondition));

AmazonSNS sns = AmazonSNSClientBuilder.defaultClient();
sns.setTopicAttributes(
 new SetTopicAttributesRequest(myTopicArn, "Policy", policy.toJson()));

Configurar el TTL de JVM para las búsquedas de nombres DNS
La máquina virtual de Java (JVM) almacena en caché las búsquedas de nombres DNS. Cuando la
JVM convierte un nombre de host en una dirección IP, guarda en caché la dirección IP durante un
período de tiempo específico, conocido como TTL. time-to-live

Como AWS los recursos utilizan entradas de nombres DNS que cambian de vez en cuando, le
recomendamos que configure la JVM con un valor TTL de 5 segundos. Con esto se asegurará de
que cuando cambie la dirección IP de un recurso, su aplicación pueda recibir y utilizar la nueva
dirección IP del recurso volviendo a consultar el DNS.

En algunas configuraciones de Java, el TTL predeterminado de JVM está establecido de forma que
nunca se actualicen las entradas DNS hasta que se reinicie la JVM. Por lo tanto, si la dirección IP de
un AWS recurso cambia mientras la aplicación aún se está ejecutando, no podrá usar ese recurso
hasta que reinicie manualmente la JVM y se actualice la información de IP almacenada en caché.
En este caso, es fundamental establecer el TTL de la JVM de forma que actualice periódicamente la
información de las direcciones IP almacenada en caché.

Ejemplo de Amazon SNS 48

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Cómo configurar el TTL de JVM

Para modificar el TTL de la JVM, defina el valor de la propiedad de seguridad
networkaddress.cache.ttl y establezca la propiedad networkaddress.cache.ttl en el archivo
$JAVA_HOME/jre/lib/security/java.security para Java 8 o en el archivo $JAVA_HOME/
conf/security/java.security para Java 11 o superior.

A continuación se ofrece muestra un fragmento de archivo java.security que muestra la caché
de TTL configurada en 5 segundos.

#
This is the "master security properties file".
#
An alternate java.security properties file may be specified
...
The Java-level namelookup cache policy for successful lookups:
#
any negative value: caching forever
any positive value: the number of seconds to cache an address for
zero: do not cache
...
networkaddress.cache.ttl=5
...

Todas las aplicaciones que se ejecutan en la JVM representada por la variable de entorno
$JAVA_HOME utilizan esta configuración.

Habilitación de métricas para AWS SDK para Java

AWS SDK para Java Pueden generar métricas para la visualización y el monitoreo con Amazon
CloudWatch que midan:

• el rendimiento de su aplicación al acceder AWS

• el rendimiento de tu JVMs cuando se usa con AWS

• los detalles del entorno en tiempo de ejecución, como la memoria del montón, el número de
subprocesos y los descriptores de archivos abiertos

Cómo configurar el TTL de JVM 49

https://docs.oracle.com/en/java/javase/17/core/java-networking.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Cómo habilitar la generación de métricas de SDK

Debe agregar la siguiente dependencia de Maven para permitir que el SDK envíe métricas a
CloudWatch.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.12.490*</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-cloudwatchmetrics</artifactId>
 <scope>provided</scope>
 </dependency>
 <!-- Other SDK dependencies. -->
</dependencies>

*Sustituya el número de versión por la última versión del SDK disponible en Maven Central.

AWS SDK para Java las métricas están deshabilitadas de forma predeterminada. Para habilitarlas
en el entorno de desarrollo local, incluya una propiedad del sistema que apunte al archivo de
credenciales de seguridad de AWS cuando inicie la JVM. Por ejemplo:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/aws.properties

Debe especificar la ruta al archivo de credenciales para que el SDK pueda cargar los puntos de
datos recopilados CloudWatch para analizarlos más adelante.

Note

Si accedes AWS desde una Amazon EC2 instancia mediante el servicio de metadatos de la
Amazon EC2 instancia, no necesitas especificar un archivo de credenciales. En este caso,
solo debe especificar:

Cómo habilitar la generación de métricas de SDK 50

https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

-Dcom.amazonaws.sdk.enableDefaultMetrics

Todas las métricas capturadas por el AWS SDK para Java están en el espacio de nombres
AWSSDK/Java y se cargan en la región CloudWatch predeterminada (us-east-1). Para cambiar
la región, especifíquela usando el atributo cloudwatchRegion en la propiedad del sistema. Por
ejemplo, para establecer la CloudWatch región en us-east-1, usa:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,cloudwatchRegion={region_api_default}

Una vez que active la función, cada vez que se reciba una solicitud de servicio AWS desde el
AWS SDK para Java, se generarán puntos de datos métricos, se pondrán en cola para obtener un
resumen estadístico y se cargarán de forma asíncrona aproximadamente una vez cada minuto.
CloudWatch Una vez que se hayan cargado las métricas, puede consultarlas mediante la consola
de administración de Consola de administración de AWS y definir alarmas para posibles problemas
como fuga de memoria, fuga de descriptores de archivos, etc.

Tipos de métricas disponibles

El conjunto predeterminado de métricas se divide en tres categorías principales:

AWS Solicita métricas

• Cubren áreas como la latencia de la solicitud/respuesta HTTP, el número de solicitudes, las
excepciones y los reintentos.

Tipos de métricas disponibles 51

https://console.aws.amazon.com/console/home

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Servicio de AWS Métricas

• Incluya datos Servicio de AWS específicos, como el rendimiento y el recuento de bytes de las
cargas y descargas de S3.

Tipos de métricas disponibles 52

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Métricas de la máquina

• Cubren el entorno en tiempo de ejecución, como la memoria del montón, el número de
subprocesos y los descriptores de archivos abiertos.

Tipos de métricas disponibles 53

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Si desea excluir las métricas de la máquina, añada excludeMachineMetrics a la propiedad
del sistema:

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,excludeMachineMetrics

Más información

• Consulte amazonaws/metrics package summary para ver una lista completa de los principales
tipos de métricas predefinidas.

• Obtenga información sobre cómo trabajar con el CloudWatch uso del AWS SDK para Java en los
CloudWatch ejemplos de uso del AWS SDK para Java.

Más información 54

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/package-summary.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Obtenga más información sobre el ajuste del rendimiento en la entrada del blog Tuning the AWS
SDK para Java to Improve Resiliency.

Más información 55

https://aws.amazon.com/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency
https://aws.amazon.com/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AWS SDK para JavaEjemplos de código de
En esta sección se proporcionan tutoriales y ejemplos de cómo utilizar AWS SDK para Java v1 para
programar servicios de AWS.

Busque el código fuente de estos ejemplos y otros en la documentación de AWS repositorio de
ejemplos de código en GitHub.

Para proponer un nuevo ejemplo de código para que el equipo de documentación de AWS considere
la posibilidad de crearlo, cree una nueva solicitud. El equipo está buscando crear ejemplos de código
que abarquen situaciones y casos de uso más amplios, en comparación con fragmentos de código
sencillos que tratan solo llamadas a la API individuales. Para obtener instrucciones, consulte las
pautas de contribución en el repositorio de ejemplos de código en GitHub.

AWS SDK para Java 2.x

En 2018, AWS lanzó el AWS SDK for Java 2.x. Esta guía contiene instrucciones sobre el uso de la
versión más reciente del SDK de Java, junto con un código de ejemplo.

Note

Consulte Documentación y recursos adicionales para obtener más ejemplos y recursos
adicionales disponibles para los desarrolladores de AWS SDK para Java.

Ejemplos de CloudWatch con AWS SDK para Java

En esta sección se proporcionan ejemplos de programación de CloudWatch mediante AWS SDK
para Java.

Amazon CloudWatch monitorea sus recursos Amazon Web Services (AWS) y las aplicaciones que
ejecuta en AWS en tiempo real. Puede utilizar CloudWatch para recopilar y hacer un seguimiento
de métricas, que son las variables que puede medir en los recursos y aplicaciones. Las alarmas de
CloudWatch envían notificaciones o efectúan cambios automáticamente en los recursos que está
supervisando basándose en las reglas que defina.

Para obtener más información sobre CloudWatch, consulte la Guía del usuario de Amazon
CloudWatch.

AWS SDK para Java 2.x 56

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Note

Los ejemplos incluyen únicamente el código necesario para demostrar cada técnica. El
código de ejemplo completo está disponible en GitHub. Desde allí, puede descargar un único
archivo de código fuente o clonar el repositorio localmente para obtener todos los ejemplos
para compilarlos y ejecutarlos.

Temas

• Obtención de métricas de CloudWatch

• Publicación de datos de métricas personalizadas

• Uso de alarmas de CloudWatch

• Uso de acciones de alarma en CloudWatch

• Envío de eventos de a CloudWatch

Obtención de métricas de CloudWatch

Mostrar métricas

Para enumerar las métricas de CloudWatch, cree un objeto ListMetricsRequest y llame al método
listMetrics del AmazonCloudWatchClient. Puede utilizar el objeto ListMetricsRequest para
filtrar las métricas devueltas por espacio de nombres, nombre de métrica o dimensiones.

Note

Puede encontrar una lista de las métricas y dimensiones publicadas por los servicios de AWS
en {https://--docs-aws-amazon-com-AmazonCloudWatch-latest-Monitoring-CW-Support-for-
AWS-html}Referencia de métricas y dimensiones de Amazon CloudWatch] de la Guía del
usuario de Amazon CloudWatch.

Importaciones

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ListMetricsRequest;

Obtención de métricas de CloudWatch 57

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.cloudwatch.model.ListMetricsResult;
import com.amazonaws.services.cloudwatch.model.Metric;

Código de

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

ListMetricsRequest request = new ListMetricsRequest()
 .withMetricName(name)
 .withNamespace(namespace);

boolean done = false;

while(!done) {
 ListMetricsResult response = cw.listMetrics(request);

 for(Metric metric : response.getMetrics()) {
 System.out.printf(
 "Retrieved metric %s", metric.getMetricName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

Las métricas se devuelven en un objeto ListMetricsResult llamando a su método getMetrics.
Los resultados puede que estén paginados. Para recuperar el siguiente lote de resultados,
llame a setNextToken en el objeto de la solicitud original con el valor devuelto del método
ListMetricsResult del objeto getNextToken y pase el objeto de la solicitud modificado a otra
llamada a listMetrics.

Más información

• ListMetrics en la Referencia de la API de Amazon CloudWatch

Obtención de métricas de CloudWatch 58

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsResult.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Publicación de datos de métricas personalizadas

Algunos servicios de AWS publican sus propias métricas en espacios de nombres que comienzan
por "AWS". También puede publicar datos de métricas personalizadas usando su propio espacio de
nombres (siempre y cuando no comience por "AWS").

Publicación de datos de métricas personalizadas

Para publicar sus propios datos de métricas, llame al método putMetricData de
AmazonCloudWatchClient con un objeto PutMetricDataRequest. El PutMetricDataRequest debe
incluir el espacio de nombres personalizado que se va a usar para los datos e información sobre el
propio punto de datos en un objeto MetricDatum.

Note

No puede especificar un espacio de nombres que comience por "AWS". Los espacios de
nombres que comienzan por "AWS" están reservados para su uso por los productos de
Amazon Web Services.

Importaciones

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.MetricDatum;
import com.amazonaws.services.cloudwatch.model.PutMetricDataRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricDataResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;

Código de

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("UNIQUE_PAGES")
 .withValue("URLS");

MetricDatum datum = new MetricDatum()
 .withMetricName("PAGES_VISITED")

Publicación de datos de métricas personalizadas 59

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricDataRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/MetricDatum.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withUnit(StandardUnit.None)
 .withValue(data_point)
 .withDimensions(dimension);

PutMetricDataRequest request = new PutMetricDataRequest()
 .withNamespace("SITE/TRAFFIC")
 .withMetricData(datum);

PutMetricDataResult response = cw.putMetricData(request);

Más información

• Uso de Métricas de Amazon CloudWatch en la Guía del usuario de Amazon CloudWatch.

• Espacios de nombres de AWS en la Guía del usuario de Amazon CloudWatch.

• PutMetricData en la Referencia de la API de Amazon CloudWatch.

Uso de alarmas de CloudWatch

Crear una alarma

Para crear una alarma basada en una métrica de CloudWatch, llame al método putMetricAlarm
de AmazonCloudWatchClient con un objeto PutMetricAlarmRequest en el que se especifiquen las
condiciones de la alarma.

Importaciones

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ComparisonOperator;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;
import com.amazonaws.services.cloudwatch.model.Statistic;

Código de

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()

Uso de alarmas de CloudWatch 60

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withName("InstanceId")
 .withValue(instanceId);

PutMetricAlarmRequest request = new PutMetricAlarmRequest()
 .withAlarmName(alarmName)
 .withComparisonOperator(
 ComparisonOperator.GreaterThanThreshold)
 .withEvaluationPeriods(1)
 .withMetricName("CPUUtilization")
 .withNamespace("{AWS}/EC2")
 .withPeriod(60)
 .withStatistic(Statistic.Average)
 .withThreshold(70.0)
 .withActionsEnabled(false)
 .withAlarmDescription(
 "Alarm when server CPU utilization exceeds 70%")
 .withUnit(StandardUnit.Seconds)
 .withDimensions(dimension);

PutMetricAlarmResult response = cw.putMetricAlarm(request);

Mostrar alarmas

Para mostrar las alarmas de CloudWatch que ha creado, llame al método describeAlarms de
AmazonCloudWatchClient con un objeto DescribeAlarmsRequest que puede utilizar para establecer
opciones para el resultado.

Importaciones

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsResult;
import com.amazonaws.services.cloudwatch.model.MetricAlarm;

Código de

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

boolean done = false;
DescribeAlarmsRequest request = new DescribeAlarmsRequest();

Uso de alarmas de CloudWatch 61

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

while(!done) {

 DescribeAlarmsResult response = cw.describeAlarms(request);

 for(MetricAlarm alarm : response.getMetricAlarms()) {
 System.out.printf("Retrieved alarm %s", alarm.getAlarmName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

La lista de alarmas se puede obtener llamando a getMetricAlarms en el objeto
DescribeAlarmsResult que devuelve describeAlarms.

Los resultados puede que estén paginados. Para recuperar el siguiente lote de resultados,
llame a setNextToken en el objeto de la solicitud original con el valor devuelto del método
DescribeAlarmsResult del objeto getNextToken y pase el objeto de la solicitud modificado a
otra llamada a describeAlarms.

Note

También puede recuperar alarmas para una métrica específica mediante el método
describeAlarmsForMetric de AmazonCloudWatchClient. Su uso es similar a
describeAlarms.

Eliminar alarmas

Para eliminar alarmas de CloudWatch, llame al método deleteAlarms de
AmazonCloudWatchClient con un objeto DeleteAlarmsRequest que contenga uno o más nombres de
alarma que desea eliminar.

Importaciones

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsRequest;

Uso de alarmas de CloudWatch 62

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DeleteAlarmsRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.cloudwatch.model.DeleteAlarmsResult;

Código de

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DeleteAlarmsRequest request = new DeleteAlarmsRequest()
 .withAlarmNames(alarm_name);

DeleteAlarmsResult response = cw.deleteAlarms(request);

Más información

• Creación de una capa de Amazon CloudWatch en la Guía del usuario de Amazon CloudWatch

• PutMetricalArm en la Referencia de la API de Amazon CloudWatch

• DescribeAlarms en la referencia de la API de Amazon CloudWatch

• DeleteAlarms en la referencia de la API de Amazon CloudWatch

Uso de acciones de alarma en CloudWatch

Mediante las acciones de alarma, puede crear alarmas que realicen acciones como detener,
terminar, reiniciar, o recuperar automáticamente instancias de Amazon EC2.

Note

Las acciones de alarma se pueden añadir a una alarma mediante el método de
PutMetricAlarmRequestsetAlarmActions al crear una alarma.

Habilitar acciones de alarma

Para habilitar acciones de alarma para una alarma de CloudWatch, llame al enableAlarmActions
de AmazonCloudWatchClient con un objeto EnableAlarmActionsRequest que contenga uno o varios
nombres de alarma cuyas acciones desee habilitar.

Importaciones

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;

Uso de acciones de alarma en CloudWatch 63

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DescribeAlarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DeleteAlarms.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/EnableAlarmActionsRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsResult;

Código de

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

EnableAlarmActionsRequest request = new EnableAlarmActionsRequest()
 .withAlarmNames(alarm);

EnableAlarmActionsResult response = cw.enableAlarmActions(request);

Deshabilitar acciones de alarma

Para deshabilitar acciones de alarma para una alarma de CloudWatch, llame al
disableAlarmActions del AmazonCloudWatchClient con un objeto DisableAlarmActionsRequest
que contenga uno o varios nombres de alarma cuyas acciones desee deshabilitar.

Importaciones

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsResult;

Código de

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DisableAlarmActionsRequest request = new DisableAlarmActionsRequest()
 .withAlarmNames(alarmName);

DisableAlarmActionsResult response = cw.disableAlarmActions(request);

Más información

• Crear alarmas para detener, terminar, reiniciar o recuperar una instancia en la Guía del usuario de
Amazon CloudWatch

Uso de acciones de alarma en CloudWatch 64

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DisableAlarmActionsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• PutMetricalArm en la Referencia de la API de Amazon CloudWatch

• EnableAlarmActions en la Referencia de la API de Amazon CloudWatch

• DisableAlarmActions en la Referencia de la API de Amazon CloudWatch

Envío de eventos de a CloudWatch

CloudWatch permite la transmisión casi en tiempo real de eventos del sistema que describen
cambios en los recursos de AWS a instancias Amazon EC2, funciones Lambda, secuencias de
Kinesis, tareas de Amazon ECS, máquinas de estado de Step Functions, temas de Amazon SNS,
colas de Amazon SQS o destinos integrados. Mediante reglas sencillas, puede asignar los eventos y
dirigirlos a una o más secuencias o funciones de destino.

Añadir eventos

Para añadir eventos de CloudWatch personalizados, llame al método putEvents del cliente
AmazonCloudWatchEventsClient con un objeto PutEventsRequest que contenga uno o varios
objetos PutEventsRequestEntry que proporcionen detalles sobre cada evento. Puede especificar
varios parámetros para la entrada como el origen y el tipo del evento, los recursos asociados con el
evento, etc.

Note

Puede especificar un máximo de 10 eventos para cada llamada a putEvents.

Importaciones

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequestEntry;
import com.amazonaws.services.cloudwatchevents.model.PutEventsResult;

Código de

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

Envío de eventos de a CloudWatch 65

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_EnableAlarmActions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DisableAlarmActions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequestEntry.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

final String EVENT_DETAILS =
 "{ \"key1\": \"value1\", \"key2\": \"value2\" }";

PutEventsRequestEntry request_entry = new PutEventsRequestEntry()
 .withDetail(EVENT_DETAILS)
 .withDetailType("sampleSubmitted")
 .withResources(resource_arn)
 .withSource("aws-sdk-java-cloudwatch-example");

PutEventsRequest request = new PutEventsRequest()
 .withEntries(request_entry);

PutEventsResult response = cwe.putEvents(request);

Añadir reglas

Para crear o actualizar una regla, llame al método putRule de AmazonCloudWatchEventsClient
con un objeto PutRuleRequest con el nombre de la regla y parámetros opcionales como el patrón del
evento, el rol de IAM que se va a asociar a la regla y una expresión de programación que describa
con qué frecuencia se ejecuta la regla.

Importaciones

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutRuleRequest;
import com.amazonaws.services.cloudwatchevents.model.PutRuleResult;
import com.amazonaws.services.cloudwatchevents.model.RuleState;

Código de

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

PutRuleRequest request = new PutRuleRequest()
 .withName(rule_name)
 .withRoleArn(role_arn)
 .withScheduleExpression("rate(5 minutes)")
 .withState(RuleState.ENABLED);

PutRuleResult response = cwe.putRule(request);

Envío de eventos de a CloudWatch 66

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutRuleRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Añadir destinos

Los destinos son los recursos que se invocan cuando se activa una regla. Algunos destinos de
ejemplo son instancias Amazon EC2, funciones Lambda, secuencias de Kinesis, tareas de Amazon
ECS, máquinas de estado de Step Functions y destinos integrados.

Para añadir una regla a un destino, llame al método putTargets de
AmazonCloudWatchEventsClient con un objeto PutTargetsRequest que contenga la regla para
actualizar y la lista de destinos que se van a añadir a la regla.

Importaciones

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsResult;
import com.amazonaws.services.cloudwatchevents.model.Target;

Código de

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

Target target = new Target()
 .withArn(function_arn)
 .withId(target_id);

PutTargetsRequest request = new PutTargetsRequest()
 .withTargets(target)
 .withRule(rule_name);

PutTargetsResult response = cwe.putTargets(request);

Más información

• Añadir eventos con PutEvents en la Guía del usuario del Amazon CloudWatch Events

• Programar expresiones para reglas en la Guía del usuario del Amazon CloudWatch Events

• Tipos de eventos para los eventos de CloudWatch en la Guía del usuario del Amazon CloudWatch
Events

• Eventos y patrones de eventos en la Guía del usuario del Amazon CloudWatch Events

Envío de eventos de a CloudWatch 67

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutTargetsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/EventTypes.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• PutEvents en la Referencia de la API de Amazon CloudWatch Events

• PutTargets en la Referencia de la API de Amazon CloudWatch Events

• PutRule en la Referencia de la API de Amazon CloudWatch Events

DynamoDB Ejemplos de usando la AWS SDK para Java

En esta sección se proporcionan ejemplos de programación de DynamoDB mediante AWS SDK para
Java.

Note

Los ejemplos incluyen únicamente el código necesario para demostrar cada técnica. El
código de ejemplo completo está disponible en GitHub. Desde allí, puede descargar un único
archivo de código fuente o clonar el repositorio localmente para obtener todos los ejemplos
para compilarlos y ejecutarlos.

Temas

• Uso de puntos de conexión basados en cuentas de AWS

• Uso de tablas en DynamoDB

• Uso de elementos en DynamoDB

Uso de puntos de conexión basados en cuentas de AWS

DynamoDB ofrece puntos de conexión basados en cuentas de AWS que pueden mejorar el
rendimiento al utilizar su ID de cuenta de AWS para optimizar el enrutamiento de solicitudes.

Para aprovechar esta característica, debe utilizar la versión 1.12.771 o superior del versión 1 de
AWS SDK para Java. Encontrará la última versión del SDK en el repositorio central de Maven. Una
vez que se active una versión compatible del SDK, utilizará automáticamente los nuevos puntos de
conexión.

Si desea desactivar el enrutamiento basado en cuentas, dispone de cuatro opciones:

• Configure un cliente de servicio de DynamoDB con AccountIdEndpointMode establecido como
DISABLED.

Amazon DynamoDBEjemplos de 68

https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutRule.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.SDKOverview.html#Programming.SDKs.endpoints
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Establezca una variable de entorno.

• Establezca una propiedad del sistema JVM.

• Actualice el ajuste del archivo de configuración compartido de AWS.

El siguiente fragmento es un ejemplo de cómo deshabilitar el enrutamiento basado en cuentas
mediante la configuración de un cliente de servicio de DynamoDB:

ClientConfiguration config = new ClientConfiguration()
 .withAccountIdEndpointMode(AccountIdEndpointMode.DISABLED);
AWSCredentialsProvider credentialsProvider = new
 EnvironmentVariableCredentialsProvider();

AmazonDynamoDB dynamodb = AmazonDynamoDBClientBuilder.standard()
 .withClientConfiguration(config)
 .withCredentials(credentialsProvider)
 .withRegion(Regions.US_WEST_2)
 .build();

La guía de referencia de las herramientas y los SDK de AWS proporciona más información sobre las
tres últimas opciones de configuración.

Uso de tablas en DynamoDB

Las tablas son los contenedores de todos los elementos de una base de datos de DynamoDB. Para
poder añadir o eliminar datos de DynamoDB, debe crear una tabla.

Para cada tabla, debe definir:

• Un nombre de tabla que sea único para su cuenta y región.

• Una clave principal para la que cada valor debe ser único; no puede haber dos elementos de la
tabla que tengan el mismo valor de clave principal.

Una clave principal puede ser simple, formada por una sola clave de partición (HASH) o
compuesta, formada por una clave de partición y una clave de ordenación (RANGE).

Cada valor de clave tiene un tipo de datos asociado enumerado por la clase ScalarAttributeType.
El valor de clave puede ser binario (B), numérico (N) o una cadena (S). Para obtener más
información, consulte Reglas de nomenclatura y tipos de datos en la Guía para desarrolladores de
Amazon DynamoDB.

Uso de tablas en DynamoDB 69

https://docs.aws.amazon.com/sdkref/latest/guide/feature-account-endpoints.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ScalarAttributeType.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Valores de rendimiento aprovisionado que definan el número de unidades de capacidad de lectura/
escritura reservadas para la tabla.

Note

Los precios de Amazon DynamoDB se basan en los valores de desempeño aprovisionado
que puede definir en sus tablas para que solo se reserve la capacidad que piensa que va a
necesitar para la tabla.

El desempeño aprovisionado para una tabla se puede modificar en cualquier momento, por lo que
puede ajustar la capacidad si cambian sus necesidades.

Crear una tabla

Use el método del cliente de DynamoDB para crear una nueva tabla de DynamoDB. Debe crear los
atributos de la tabla y un esquema de tabla, que se pueden usar para identificar la clave principal de
la tabla. También debe proporcionar los valores iniciales de desempeño aprovisionado y el nombre
de una tabla. Defina solo los atributos clave de la tabla al crear su tabla de DynamoDB.

Note

Si ya existe una tabla con el nombre elegido, se producirá una excepción
AmazonServiceException.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.CreateTableResult;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.ScalarAttributeType;

Uso de tablas en DynamoDB 70

https://aws.amazon.com/dynamodb/pricing/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Creación de una tabla con una clave principal simple

Este código crea una tabla con una clave principal simple ("Name").

Código de

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(new AttributeDefinition(
 "Name", ScalarAttributeType.S))
 .withKeySchema(new KeySchemaElement("Name", KeyType.HASH))
 .withProvisionedThroughput(new ProvisionedThroughput(
 new Long(10), new Long(10)))
 .withTableName(table_name);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 CreateTableResult result = ddb.createTable(request);
 System.out.println(result.getTableDescription().getTableName());
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Creación de una tabla con una clave primaria compuesta

Añada otro objeto AttributeDefinition y KeySchemaElement a CreateTableRequest.

Código de

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(
 new AttributeDefinition("Language", ScalarAttributeType.S),
 new AttributeDefinition("Greeting", ScalarAttributeType.S))
 .withKeySchema(
 new KeySchemaElement("Language", KeyType.HASH),
 new KeySchemaElement("Greeting", KeyType.RANGE))
 .withProvisionedThroughput(
 new ProvisionedThroughput(new Long(10), new Long(10)))
 .withTableName(table_name);

Consulte el ejemplo completo en GitHub.

Uso de tablas en DynamoDB 71

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeDefinition.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/KeySchemaElement.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/CreateTableRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTableCompositeKey.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Mostrar tablas

Puede mostrar las tablas de una región determinada llamando al método listTables del cliente de
DynamoDB.

Note

Si la tabla designada no existe para su cuenta y región, se produce una excepción
ResourceNotFoundException.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ListTablesRequest;
import com.amazonaws.services.dynamodbv2.model.ListTablesResult;

Código de

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

ListTablesRequest request;

boolean more_tables = true;
String last_name = null;

while(more_tables) {
 try {
 if (last_name == null) {
 request = new ListTablesRequest().withLimit(10);
 }
 else {
 request = new ListTablesRequest()
 .withLimit(10)
 .withExclusiveStartTableName(last_name);
 }

 ListTablesResult table_list = ddb.listTables(request);
 List<String> table_names = table_list.getTableNames();

Uso de tablas en DynamoDB 72

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 if (table_names.size() > 0) {
 for (String cur_name : table_names) {
 System.out.format("* %s\n", cur_name);
 }
 } else {
 System.out.println("No tables found!");
 System.exit(0);
 }

 last_name = table_list.getLastEvaluatedTableName();
 if (last_name == null) {
 more_tables = false;
 }

De forma predeterminada, se devuelve un máximo de 100 tablas para cada llamada: utilice el
getLastEvaluatedTableName en el objeto ListTablesResult devuelto para obtener la última tabla
que se evaluó. Puede utilizar este valor para iniciar la enumeración después del último valor devuelto
de la enumeración anterior.

Consulte el ejemplo completo en GitHub.

Describir una tabla (obtener información de ella)

Llame al método describeTable del cliente de DynamoDB.

Note

Si la tabla designada no existe para su cuenta y región, se produce una excepción
ResourceNotFoundException.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughputDescription;
import com.amazonaws.services.dynamodbv2.model.TableDescription;

Código de

Uso de tablas en DynamoDB 73

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/model/ListTablesResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/ListTables.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 TableDescription table_info =
 ddb.describeTable(table_name).getTable();

 if (table_info != null) {
 System.out.format("Table name : %s\n",
 table_info.getTableName());
 System.out.format("Table ARN : %s\n",
 table_info.getTableArn());
 System.out.format("Status : %s\n",
 table_info.getTableStatus());
 System.out.format("Item count : %d\n",
 table_info.getItemCount().longValue());
 System.out.format("Size (bytes): %d\n",
 table_info.getTableSizeBytes().longValue());

 ProvisionedThroughputDescription throughput_info =
 table_info.getProvisionedThroughput();
 System.out.println("Throughput");
 System.out.format(" Read Capacity : %d\n",
 throughput_info.getReadCapacityUnits().longValue());
 System.out.format(" Write Capacity: %d\n",
 throughput_info.getWriteCapacityUnits().longValue());

 List<AttributeDefinition> attributes =
 table_info.getAttributeDefinitions();
 System.out.println("Attributes");
 for (AttributeDefinition a : attributes) {
 System.out.format(" %s (%s)\n",
 a.getAttributeName(), a.getAttributeType());
 }
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Uso de tablas en DynamoDB 74

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DescribeTable.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Modificar (actualizar) una tabla

Puede modificar los valores de desempeño aprovisionado de la tabla en cualquier momento
llamando al método updateTable del cliente de DynamoDB.

Note

Si la tabla designada no existe para su cuenta y región, se produce una excepción
ResourceNotFoundException.

Importaciones

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.AmazonServiceException;

Código de

ProvisionedThroughput table_throughput = new ProvisionedThroughput(
 read_capacity, write_capacity);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateTable(table_name, table_throughput);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Eliminar una tabla

Llame al método deleteTable del cliente de DynamoDB y pase el nombre de la tabla.

Uso de tablas en DynamoDB 75

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Note

Si la tabla designada no existe para su cuenta y región, se produce una excepción
ResourceNotFoundException.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

Código de

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.deleteTable(table_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Más información

• Prácticas recomendadas para trabajar con tablas en la Guía para desarrolladores de Amazon
DynamoDB

• Trabajar con tablas en DynamoDB en la Guía para desarrolladores de Amazon DynamoDB

Uso de elementos en DynamoDB

En DynamoDB, un elemento es una colección de atributos, cada uno de los cuales tiene un nombre
y un valor. Los valores de los atributos pueden ser escalares, conjuntos o tipos de documentos.
Para obtener más información, consulte Reglas de nomenclatura y tipos de datos en la Guía para
desarrolladores de Amazon DynamoDB.

Uso de elementos en DynamoDB 76

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DeleteTable.java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Recuperar (obtener) un elemento de una tabla

Llame al método getItem de AmazonDynamoDB y pase un objeto GetItemRequest con el nombre
de la tabla y el valor de clave principal del elemento que desee. Este método devuelve un objeto
GetItemResult.

Puede utilizar el método getItem() del objeto GetItemResult para recuperar un mapa de pares
de clave (cadena) y valor (AttributeValue) asociados al elemento.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import java.util.HashMap;
import java.util.Map;

Código de

HashMap<String,AttributeValue> key_to_get =
 new HashMap<String,AttributeValue>();

key_to_get.put("DATABASE_NAME", new AttributeValue(name));

GetItemRequest request = null;
if (projection_expression != null) {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name)
 .withProjectionExpression(projection_expression);
} else {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name);
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 Map<String,AttributeValue> returned_item =

Uso de elementos en DynamoDB 77

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemResult.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeValue.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 ddb.getItem(request).getItem();
 if (returned_item != null) {
 Set<String> keys = returned_item.keySet();
 for (String key : keys) {
 System.out.format("%s: %s\n",
 key, returned_item.get(key).toString());
 }
 } else {
 System.out.format("No item found with the key %s!\n", name);
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

Consulte el ejemplo completo en GitHub.

Añadir un nuevo elemento a una tabla

Cree un mapa de pares de clave-valor que represente los atributos del elemento. Estos deben incluir
valores para los campos de la clave principal de la tabla. Si el elemento identificado por la clave
principal ya existe, la solicitud actualiza sus campos.

Note

Si la tabla designada no existe para su cuenta y región, se produce una excepción
ResourceNotFoundException.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Código de

HashMap<String,AttributeValue> item_values =

Uso de elementos en DynamoDB 78

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/GetItem.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 new HashMap<String,AttributeValue>();

item_values.put("Name", new AttributeValue(name));

for (String[] field : extra_fields) {
 item_values.put(field[0], new AttributeValue(field[1]));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.putItem(table_name, item_values);
} catch (ResourceNotFoundException e) {
 System.err.format("Error: The table \"%s\" can't be found.\n", table_name);
 System.err.println("Be sure that it exists and that you've typed its name
 correctly!");
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

Consulte el ejemplo completo en GitHub.

Actualizar un elemento existente en una tabla

Puede actualizar un atributo de un elemento que ya existe en una tabla mediante el método
updateItem de AmazonDynamoDB, proporcionando el nombre de la tabla, el valor de clave
principal y un mapa de los campos que se van a actualizar.

Note

Si la tabla designada no existe para su cuenta y región o si el elemento identificado
por la clave principal que ha pasado no existe, se produce una excepción
ResourceNotFoundException.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

Uso de elementos en DynamoDB 79

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/PutItem.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.dynamodbv2.model.AttributeAction;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.AttributeValueUpdate;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Código de

HashMap<String,AttributeValue> item_key =
 new HashMap<String,AttributeValue>();

item_key.put("Name", new AttributeValue(name));

HashMap<String,AttributeValueUpdate> updated_values =
 new HashMap<String,AttributeValueUpdate>();

for (String[] field : extra_fields) {
 updated_values.put(field[0], new AttributeValueUpdate(
 new AttributeValue(field[1]), AttributeAction.PUT));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateItem(table_name, item_key, updated_values);
} catch (ResourceNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

Consulte el ejemplo completo en GitHub.

Uso de la clase DynamoDBMapper

El AWS SDK para Java proporciona la clase DynamoDBMapper que permite mapear las clases
del cliente a las tablas de Amazon DynamoDB. Para utilizar la clase DynamoDBMapper, defina la
relación entre los elementos de una tabla de DynamoDB y sus instancias de objeto correspondientes
en el código mediante anotaciones (como se muestra en el ejemplo de código siguiente). La clase
DynamoDBMapper permite obtener acceso a las tablas, realizar varias operaciones de creación,
lectura, actualización y eliminación (CRUD, Create, Read, Update and Delete) y ejecutar consultas.

Uso de elementos en DynamoDB 80

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateItem.java
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Note

La clase DynamoDBMapper no permite crear, actualizar o eliminar tablas.

Importaciones

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBRangeKey;
import com.amazonaws.services.dynamodbv2.model.AmazonDynamoDBException;

Código de

En el siguiente ejemplo de código Java se muestra cómo añadir contenido a la tabla Music (Música)
mediante la clase DynamoDBMapper . Después de agregar el contenido a la tabla, observe que
se carga un elemento mediante las claves Partition (Partición) y Sort (Ordenar) . A continuación,
se actualiza el elemento Awards (Premios) . Para obtener información sobre la creación de la tabla
Música, consulte Crear una tabla en la Guía para desarrolladores de Amazon DynamoDB.

 AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 MusicItems items = new MusicItems();

 try{
 // Add new content to the Music table
 items.setArtist(artist);
 items.setSongTitle(songTitle);
 items.setAlbumTitle(albumTitle);
 items.setAwards(Integer.parseInt(awards)); //convert to an int

 // Save the item
 DynamoDBMapper mapper = new DynamoDBMapper(client);
 mapper.save(items);

 // Load an item based on the Partition Key and Sort Key
 // Both values need to be passed to the mapper.load method
 String artistName = artist;
 String songQueryTitle = songTitle;

Uso de elementos en DynamoDB 81

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 // Retrieve the item
 MusicItems itemRetrieved = mapper.load(MusicItems.class, artistName,
 songQueryTitle);
 System.out.println("Item retrieved:");
 System.out.println(itemRetrieved);

 // Modify the Award value
 itemRetrieved.setAwards(2);
 mapper.save(itemRetrieved);
 System.out.println("Item updated:");
 System.out.println(itemRetrieved);

 System.out.print("Done");
 } catch (AmazonDynamoDBException e) {
 e.getStackTrace();
 }
 }

 @DynamoDBTable(tableName="Music")
 public static class MusicItems {

 //Set up Data Members that correspond to columns in the Music table
 private String artist;
 private String songTitle;
 private String albumTitle;
 private int awards;

 @DynamoDBHashKey(attributeName="Artist")
 public String getArtist() {
 return this.artist;
 }

 public void setArtist(String artist) {
 this.artist = artist;
 }

 @DynamoDBRangeKey(attributeName="SongTitle")
 public String getSongTitle() {
 return this.songTitle;
 }

 public void setSongTitle(String title) {
 this.songTitle = title;

Uso de elementos en DynamoDB 82

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 }

 @DynamoDBAttribute(attributeName="AlbumTitle")
 public String getAlbumTitle() {
 return this.albumTitle;
 }

 public void setAlbumTitle(String title) {
 this.albumTitle = title;
 }

 @DynamoDBAttribute(attributeName="Awards")
 public int getAwards() {
 return this.awards;
 }

 public void setAwards(int awards) {
 this.awards = awards;
 }
 }

Consulte el ejemplo completo en GitHub.

Más información

• Prácticas recomendadas para el uso de elementos en la Guía para desarrolladores de Amazon
DynamoDB

• Uso de elementos DynamoDB en la Guía para desarrolladores de Amazon DynamoDB

Amazon EC2 Ejemplos de usando la AWS SDK para Java

En esta sección se proporcionan ejemplos de programación en Amazon EC2 mediante AWS SDK
para Java.

Temas

• Tutorial: Inicio de una instancia EC2

• Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en AWS

• Tutorial: Instancias de spot de Amazon EC2

• Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2

Amazon EC2Ejemplos de 83

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UseDynamoMapping.java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForItems.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://aws.amazon.com/ec2/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Administración de instancias de Amazon EC2

• Uso de direcciones IP elásticas en Amazon EC2

• Usar regiones y zonas de disponibilidad

• Uso de pares de claves de Amazon EC2

• Uso de grupos de seguridad en Amazon EC2

Tutorial: Inicio de una instancia EC2

Este tutorial muestra cómo utilizar AWS SDK para Java para iniciar una instancia EC2.

Temas

• Requisitos previos

• Cree un grupo de seguridad de Amazon EC2

• Creación de un par de claves

• Ejecutar una instancia de Amazon EC2

Requisitos previos

Antes de empezar, asegúrese de haber creado una Cuenta de AWS y configurado las credenciales
AWS. Para obtener más información, consulte Introducción.

Cree un grupo de seguridad de Amazon EC2

Retirada de EC2-Classic

Warning

Vamos a retirar EC2-Classic el 15 de agosto de 2022. Le recomendamos que migre de EC2-
Classic a una VPC. Para obtener más información, consulte la entrada del blog EC2-Classic-
Classic Networking is Retiring – Here's How to Prepare.

Cree un grupo de seguridad, que funciona como un firewall virtual que controla el tráfico de red de
una o varias instancias EC2. De forma predeterminada, Amazon EC2 asocia sus instancias con
un grupo de seguridad que no permite el tráfico entrante. Puede crear un grupo de seguridad que
permita a sus instancias EC2 aceptar un tráfico determinado. Por ejemplo, si necesita conectarse a

Tutorial: Inicio de una instancia EC2 84

https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

una instancia Linux, debe configurar el grupo de seguridad para permitir el tráfico SSH. Puede crear
un grupo de seguridad mediante la consola de Amazon EC2 o AWS SDK para Java.

Puede crear un grupo de seguridad para usarlo en EC2-Classic o en EC2-VPC. Para obtener más
información sobre EC2-Classic y EC2-VPC, consulte Plataformas admitidas en la Guía del usuario de
Amazon EC2 para instancias de Linux.

Para obtener más información sobre los grupos de seguridad, con la consola de Amazon EC2,
consulte Grupos de seguridad de Amazon EC2 en la Guía del usuario de Amazon EC2 para
instancias de Linux.

1. Cree e inicialice una instancia de CreateSecurityGroupRequest. Utilice el método withGroupName
para establecer el nombre del grupo de seguridad y el método withDescription para establecer la
descripción del grupo de seguridad, tal y como se indica a continuación:

CreateSecurityGroupRequest csgr = new CreateSecurityGroupRequest();
csgr.withGroupName("JavaSecurityGroup").withDescription("My security group");

El nombre del grupo de seguridad debe ser único dentro de la región de AWS en la que inicializa
el cliente de Amazon EC2. Debe utilizar caracteres US-ASCII para el nombre y la descripción del
grupo de seguridad.

2. Pase el objeto de la solicitud como un parámetro al método createSecurityGroup. El método
devuelve un objeto CreateSecurityGroupResult, de la manera siguiente:

CreateSecurityGroupResult createSecurityGroupResult =
 amazonEC2Client.createSecurityGroup(csgr);

Si intenta crear un grupo de seguridad con el mismo nombre que un grupo de seguridad existente,
se produce una excepción createSecurityGroup.

De forma predeterminada, un nuevo grupo de seguridad no permite el tráfico entrante a su instancia
Amazon EC2. Para permitir el tráfico entrante, debe autorizarlo de forma explícita en el grupo de
seguridad. Puede autorizar el tráfico entrante para direcciones IP individuales, para un intervalo de
direcciones IP, para un protocolo específico y para puertos TCP/UDP.

1. Cree e inicialice una instancia de IpPermission. Utilice el método withIpv4Ranges para definir
el intervalo de direcciones IP para el que se autoriza el tráfico entrante y use el método
withIpProtocol para definir el protocolo IP. Utilice los métodos withFromPort y withToPort para

Tutorial: Inicio de una instancia EC2 85

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withGroupName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withDescription-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createSecurityGroup-com.amazonaws.services.ec2.model.CreateSecurityGroupRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpv4Ranges-java.util.Collection-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpProtocol-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withFromPort-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withToPort-java.lang.Integer-

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

especificar el intervalo de puertos para los que se autoriza el tráfico entrante, como se indica a
continuación:

IpPermission ipPermission =
 new IpPermission();

IpRange ipRange1 = new IpRange().withCidrIp("111.111.111.111/32");
IpRange ipRange2 = new IpRange().withCidrIp("150.150.150.150/32");

ipPermission.withIpv4Ranges(Arrays.asList(new IpRange[] {ipRange1, ipRange2}))
 .withIpProtocol("tcp")
 .withFromPort(22)
 .withToPort(22);

Todas las condiciones que especifique en el objeto IpPermission se deben cumplir para
permitir el tráfico entrante.

Especifique la dirección IP con la notación CIDR. Si especifica el protocolo como TCP/UDP,
debe proporcionar un puerto de origen y un puerto de destino. Solo puede autorizar puertos si
especifica TCP o UDP.

2. Cree e inicialice una instancia de AuthorizeSecurityGroupIngressRequest. Utilice el método
withGroupName para especificar el nombre del grupo de seguridad y pase el objeto
IpPermission que inicializó anteriormente al método withIpPermissions, como se indica a
continuación:

AuthorizeSecurityGroupIngressRequest authorizeSecurityGroupIngressRequest =
 new AuthorizeSecurityGroupIngressRequest();

authorizeSecurityGroupIngressRequest.withGroupName("JavaSecurityGroup")
 .withIpPermissions(ipPermission);

3. Pase el objeto de la solicitud al método authorizeSecurityGroupIngress, de la siguiente manera:

amazonEC2Client.authorizeSecurityGroupIngress(authorizeSecurityGroupIngressRequest);

Si llama a authorizeSecurityGroupIngress con direcciones IP para las que ya se ha
autorizado el tráfico entrante, el método produce una excepción. Cree y inicialice un nuevo
objeto IpPermission para autorizar el tráfico entrante para diferentes direcciones IP, puertos y
protocolos antes de llamar a AuthorizeSecurityGroupIngress.

Tutorial: Inicio de una instancia EC2 86

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html#withIpPermissions-com.amazonaws.services.ec2.model.IpPermission%E2%80%A6%E2%80%8B-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Siempre que llama a los métodos authorizeSecurityGroupIngress o authorizeSecurityGroupEgress,
se añade una regla al grupo de seguridad.

Creación de un par de claves

Al conectarse a la instancia, debe especificar un par de claves al lanzar una instancia EC2 y la clave
privada del par de claves. Puede crear un par de claves o usar un par de claves existente que haya
utilizado al lanzar otras instancias. Para obtener más información, consulte Pares de claves de
Amazon EC2 en la Guía del usuario de Amazon EC2 para instancias de Linux.

1. Cree e inicialice una instancia de CreateKeyPairRequest. Utilice el método withKeyName para
definir el nombre del par de claves, tal y como se indica a continuación:

CreateKeyPairRequest createKeyPairRequest = new CreateKeyPairRequest();

createKeyPairRequest.withKeyName(keyName);

Important

Los nombres de pares de claves deben ser únicos. Si intenta crear un par de claves con el
mismo nombre de clave que un par de claves existente, se producirá una excepción.

2. Pase el objeto de solicitud al método createKeyPair. El método devuelve una instancia de
CreateKeyPairResult, de la manera siguiente:

CreateKeyPairResult createKeyPairResult =
 amazonEC2Client.createKeyPair(createKeyPairRequest);

3. Llame al método getKeyPair del objeto resultante para obtener un objeto KeyPair. Llame al
método getKeyMaterial del objeto KeyPair para obtener la clave privada codificada en PEM
descifrada, como se indica a continuación:

KeyPair keyPair = new KeyPair();

keyPair = createKeyPairResult.getKeyPair();

String privateKey = keyPair.getKeyMaterial();

Tutorial: Inicio de una instancia EC2 87

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupEgress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupEgressRequest-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html#withKeyName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createKeyPair-com.amazonaws.services.ec2.model.CreateKeyPairRequest--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html#getKeyPair--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html#getKeyMaterial--

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Ejecutar una instancia de Amazon EC2

Use el siguiente procedimiento para lanzar una o más instancias EC2 con la misma configuración
de la misma Imagen de máquina de Amazon (AMI). Después de crear las instancias EC2, puede
comprobar sus estados. Una vez que las instancias EC2 se están ejecutando, puede conectarse a
ellas.

1. Cree e inicialice una instancia de RunInstancesRequest. Asegúrese de que la AMI, el par de
claves y el grupo de seguridad que especifique existen en la región indicada al crear el objeto de
cliente.

RunInstancesRequest runInstancesRequest =
 new RunInstancesRequest();

runInstancesRequest.withImageId("ami-a9d09ed1")
 .withInstanceType(InstanceType.T1Micro)
 .withMinCount(1)
 .withMaxCount(1)
 .withKeyName("my-key-pair")
 .withSecurityGroups("my-security-group");

withImageId

• Es el ID de la AMI. Para obtener más información sobre cómo buscar una AMI pública
proporcionada por Amazon o crear la suya, consulte Imagen de máquina de Amazon (AMI).

withInstanceType

• Se trata de un tipo de instancia que es compatible con la AMI especificada. Para obtener
más información, consulte Tipos de instancias en la Guía del usuario de Amazon EC2 para
instancias de Linux.

withMinCount

• Se trata del número mínimo de instancias EC2 que se van a lanzar. Si hay más instancias de
las que Amazon EC2 puede lanzar en la zona de disponibilidad de destino, Amazon EC2 no
lanzará ninguna instancia.

withMaxCount

• Se trata del número máximo de instancias EC2 que se van a lanzar. Si hay más instancias
de las que Amazon EC2 puede lanzar en la zona de disponibilidad de destino, Amazon EC2
lanzará el mayor número posible de instancias por encima del MinCount. Puede lanzar
entre una y el número máximo de instancias permitido para el tipo de instancia. Para obtener

Tutorial: Inicio de una instancia EC2 88

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withImageId-java.lang.String-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withInstanceType-java.lang.String-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMinCount-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMaxCount-java.lang.Integer-

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

más información, consulte ¿Cuántas instancias puedo ejecutar en Amazon EC2? en las
preguntas frecuentes de Amazon EC2.

withKeyName

• Se trata del nombre del par de claves de EC2. Si lanza una instancia sin especificar un par
de claves, no podrá conectarse a ella. Para obtener más información, consulte la sección
Crear un par de claves.

withSecurityGroups

• Uno o varios grupos de seguridad. Para obtener más información, consulte Crear de un
grupo de seguridad de Amazon EC2.

2. Lance las instancias pasando el objeto solicitado al método runInstances. El método devuelve un
objeto RunInstancesResult, de la manera siguiente:

RunInstancesResult result = amazonEC2Client.runInstances(
 runInstancesRequest);

Una vez ejecutada la instancia, puede conectarse a ella usando el par de claves. Para obtener más
información, consulte Conexión con su instancia de Linux en la Guía del usuario de Amazon EC2
para instancias de Linux.

Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en
AWS

Todas las solicitudes a Amazon Web Services (AWS) deben firmarse criptográficamente mediante
credenciales emitidas por AWS. Puede utilizar roles de IAM como un método sencillo para conceder
acceso seguro a los recursos de AWS desde sus instancias de Amazon EC2.

En este tema se proporciona información acerca de cómo utilizar los roles de con aplicaciones del
SDK de Java que se ejecutan en Amazon EC2. Para obtener más información sobre los roles de IAM
consulte Roles de IAM para Amazon EC2 en la Guía del usuario de Amazon EC2 para instancias de
Linux.

Cadena predeterminada de proveedores y perfiles de instancias EC2

Si su aplicación crea un cliente de AWS utilizando el constructor predeterminado, el cliente buscará
las credenciales mediante la cadena predeterminada de proveedores de credenciales, en el orden
siguiente:

Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en AWS 89

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withKeyName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withSecurityGroups-java.util.Collection-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#runInstances-com.amazonaws.services.ec2.model.RunInstancesRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesResult.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

1. En las propiedades del sistema Java: aws.accessKeyId y aws.secretKey.

2. En las variables de entorno del sistema: AWS_ACCESS_KEY_ID y AWS_SECRET_ACCESS_KEY.

3. En el archivo de credenciales (la ubicación de este archivo varía en función de la plataforma).

4. Las credenciales entregadas a través del servicio de contenedor de Amazon EC2 si se establece
la variable de entorno AWS_CONTAINER_CREDENTIALS_RELATIVE_URI y el administrador de
seguridad tiene permiso para acceder a la variable.

5. En las credenciales del perfil de la instancia, que residen en los metadatos de la instancia
asociadas con la función de IAM para la instancia EC2.

6. Credenciales de Web Identity Token del entorno o contenedor.

El paso credenciales del perfil de la instancia en la cadena predeterminada de proveedores solo está
disponible cuando la aplicación se ejecuta en una instancia Amazon EC2, pero es el método más
sencillo y más seguro cuando se trabaja con instancias Amazon EC2. También puede pasar una
instancia de InstanceProfileCredentialsProvider directamente al constructor del cliente para obtener
las credenciales del perfil de la instancia sin recorrer toda la cadena predeterminada de proveedores.

Por ejemplo:

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withCredentials(new InstanceProfileCredentialsProvider(false))
 .build();

Cuando se utiliza este enfoque, el SDK recupera las credenciales temporales de AWS que
tienen los mismos permisos que los asociados al rol de IAM asociado a la instancia Amazon
EC2 en su perfil de instancia. Aunque estas credenciales son temporales y acaban caducando,
InstanceProfileCredentialsProvider las actualiza periódicamente para que sigan
permitiendo el acceso a AWS.

Important

La actualización automática de las credenciales solo se realiza cuando utiliza el constructor
del cliente predeterminado, que crea su propio InstanceProfileCredentialsProvider
como parte de la cadena predeterminada de proveedores, o cuando pasa una instancia
de InstanceProfileCredentialsProvider directamente al constructor del cliente.
Si utiliza otro método para obtener o pasar credenciales del perfil de la instancia, usted es
responsable de comprobar y actualizar las credenciales que hayan caducado.

Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en AWS 90

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Si el constructor del cliente no encuentra las credenciales con la cadena de proveedores de
credenciales, produce una excepción AmazonClientException.

Tutorial: Uso de roles de IAM para instancias EC2

El siguiente tutorial muestra cómo recuperar un objeto de Amazon S3 mediante un rol de IAM para
administrar el acceso.

Creación de un rol de IAM

Cree un rol de IAM que conceda acceso de solo lectura a Amazon S3.

1. Abra la consola de IAM.

2. En el panel de navegación, seleccione Roles y después Create New Role (Crear nuevo rol).

3. Escriba un nombre para la función y, a continuación, seleccione Next Step (Paso siguiente).
Recuerde este nombre, ya que lo necesitará cuando lance su instancia Amazon EC2.

4. En la página Seleccionar tipo de rol, en Roles de Servicio de AWS, seleccione Amazon EC2.

5. En la página Definir permisos, bajo Seleccionar plantilla de política, seleccione Acceso de solo
lectura de Amazon S3 y después Siguiente paso.

6. En la página Review (Revisar), seleccione Create Role (Crear rol).

Lanzar una instancia EC2 y especificar el rol de IAM

Puede lanzar una instancia de Amazon EC2 con un rol de IAM mediante la consola de Amazon EC2
o el AWS SDK para Java.

• Para lanzar una instancia de Amazon EC2 mediante la consola, siga las instrucciones de
Introducción a las instancias de Linux de Amazon EC2 en la Guía del usuario de instancias de
Linux.

Cuando llegue a la página Revisar lanzamiento de instancia, seleccione Editar detalles de la
instancia. En Rol de IAM, elija el rol de IAM que creó anteriormente. Complete el procedimiento
siguiendo las instrucciones.

Note

Deberá crear o usar un grupo de seguridad y un par de claves existentes para conectarse
a la instancia.

Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en AWS 91

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html
https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Para lanzar una instancia de Amazon EC2 con un rol de IAM mediante el AWS SDK para Java,
consulte Amazon EC2Ejecución de una instancia de .

Creación de una aplicación

Vamos a compilar la aplicación de ejemplo para que se ejecute en la instancia EC2. En primer
lugar, cree el directorio que va a usar para almacenar los archivos del tutorial (por ejemplo,
GetS3ObjectApp).

A continuación, copie las bibliotecas de AWS SDK para Java en el directorio recién creado. Si ha
descargado AWS SDK para Java en su directorio ~/Downloads, puede copiarlos utilizando los
siguientes comandos:

cp -r ~/Downloads/aws-java-sdk-{1.7.5}/lib .
cp -r ~/Downloads/aws-java-sdk-{1.7.5}/third-party .

Abra un nuevo archivo, llámelo GetS3Object.javay añada el siguiente código:

import java.io.*;

import com.amazonaws.auth.*;
import com.amazonaws.services.s3.*;
import com.amazonaws.services.s3.model.*;
import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;

public class GetS3Object {
 private static final String bucketName = "text-content";
 private static final String key = "text-object.txt";

 public static void main(String[] args) throws IOException
 {
 AmazonS3 s3Client = AmazonS3ClientBuilder.defaultClient();

 try {
 System.out.println("Downloading an object");
 S3Object s3object = s3Client.getObject(
 new GetObjectRequest(bucketName, key));
 displayTextInputStream(s3object.getObjectContent());
 }
 catch(AmazonServiceException ase) {

Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en AWS 92

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 System.err.println("Exception was thrown by the service");
 }
 catch(AmazonClientException ace) {
 System.err.println("Exception was thrown by the client");
 }
 }

 private static void displayTextInputStream(InputStream input) throws IOException
 {
 // Read one text line at a time and display.
 BufferedReader reader = new BufferedReader(new InputStreamReader(input));
 while(true)
 {
 String line = reader.readLine();
 if(line == null) break;
 System.out.println(" " + line);
 }
 System.out.println();
 }
}

Abra un nuevo archivo, llámelo build.xmly añada las líneas siguientes:

<project name="Get {S3} Object" default="run" basedir=".">
 <path id="aws.java.sdk.classpath">
 <fileset dir="./lib" includes="**/*.jar"/>
 <fileset dir="./third-party" includes="**/*.jar"/>
 <pathelement location="lib"/>
 <pathelement location="."/>
 </path>

 <target name="build">
 <javac debug="true"
 includeantruntime="false"
 srcdir="."
 destdir="."
 classpathref="aws.java.sdk.classpath"/>
 </target>

 <target name="run" depends="build">
 <java classname="GetS3Object" classpathref="aws.java.sdk.classpath" fork="true"/>
 </target>
</project>

Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en AWS 93

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Compile y ejecute el programa modificado. Tenga en cuenta que no hay credenciales almacenadas
en el programa. Por lo tanto, a menos que ya haya especificado las credenciales de AWS, el código
producirá una AmazonServiceException. Por ejemplo:

$ ant
Buildfile: /path/to/my/GetS3ObjectApp/build.xml

build:
 [javac] Compiling 1 source file to /path/to/my/GetS3ObjectApp

run:
 [java] Downloading an object
 [java] AmazonServiceException

BUILD SUCCESSFUL

Transferir el programa compilado a la instancia EC2

Transfiera el programa a su instancia Amazon EC2 mediante la copia segura (), junto con las
bibliotecas de AWS SDK para Java. La secuencia de comandos debe ser similar a la siguiente.

scp -p -i {my-key-pair}.pem GetS3Object.class ec2-user@{public_dns}:GetS3Object.class
scp -p -i {my-key-pair}.pem build.xml ec2-user@{public_dns}:build.xml
scp -r -p -i {my-key-pair}.pem lib ec2-user@{public_dns}:lib
scp -r -p -i {my-key-pair}.pem third-party ec2-user@{public_dns}:third-party

Note

En función de la distribución Linux que haya utilizado, el nombre de usuario podría ser
"ec2-user", "root" o "ubuntu". Para obtener el nombre DNS público de la instancia, abra la
consola de EC2 y busque el valor de Public DNS (DNS público) en la pestaña Description
(Descripción) (por ejemplo, ec2-198-51-100-1.compute-1.amazonaws.com).

En los comandos anteriores:

• GetS3Object.class es el programa compilado

• build.xml es el archivo ant que se utiliza para compilar y ejecutar el programa

• los directorios lib y third-party son las carpetas de las bibliotecas de AWS SDK para Java
correspondientes.

Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en AWS 94

https://console.aws.amazon.com/ec2/home

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• El modificador -r indica que scp debe realizar una copia recursiva de todo el contenido de los
directorios library y third-party en la distribución de AWS SDK para Java.

• El modificador -p indica que scp deben conservar los permisos de los archivos de código fuente
cuando se copien en el destino.

Note

El conmutador -p solo funciona en Linux, macOS o Unix. Si va a copiar archivos de
Windows, es posible que tenga que corregir los permisos del archivo en su instancia
mediante el siguiente comando:

chmod -R u+rwx GetS3Object.class build.xml lib third-party

Ejecutar el programa de ejemplo en la instancia EC2

Para ejecutar el programa, conéctese a la instancia Amazon EC2. Para obtener más información,
consulte Conexión con su instancia de Linux en la Guía del usuario de Amazon EC2 para instancias
de Linux.

Si ant no está disponible en la instancia, instálelo con el siguiente comando:

sudo yum install ant

A continuación, ejecute el programa mediante ant del siguiente modo:

ant run

El programa escribirá el contenido del objeto de Amazon S3 en la ventana de comandos.

Tutorial: Instancias de spot de Amazon EC2

Descripción general

Las instancias de spot permiten pujar por capacidad de Amazon Elastic Compute Cloud (Amazon
EC2) sin utilizar hasta el 90 % frente al precio de instancia bajo demanda y ejecutar las instancias
adquiridas, siempre y cuando su puja sea superior al precio de spot actual. Amazon EC2 cambia
periódicamente el precio de spot en función de la oferta y la demanda; los clientes cuyas pujas

Tutorial: Instancias de spot de Amazon EC2 95

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

igualen o superen este precio tendrán acceso a las instancias de spot disponibles. Al igual que las
instancias bajo demanda y las instancias reservadas, las instancias de spot proporcionan otra opción
para obtener una mayor capacidad de cómputo.

Las instancias de spot pueden reducir de forma significativa los costos de Amazon EC2 del
procesamiento por lotes, la investigación científica, el procesamiento de imágenes, la codificación
de vídeo, el rastreo web y de datos, el análisis financiero y la realización de pruebas. Además,
las instancias de spot le permiten obtener acceso a una gran cantidad de capacidad adicional en
aquellas situaciones en las que la necesidad de esa capacidad no es urgente.

Para usar instancias de spot, coloque una solicitud de instancia de spot que especifique el precio
máximo que está dispuesto a pagar por hora de instancia; esta es su puja. Si el importe de su puja
es mayor que el precio de spot actual, se atenderá su solicitud y sus instancias se ejecutarán hasta
que decida terminarlas o hasta que el precio de spot sea mayor que su puja (lo que suceda antes).

Es importante tener en cuenta lo siguiente:

• Con frecuencia pagará por hora un importe inferior al de su puja. Amazon EC2 ajusta el precio de
spot periódicamente a medida que llegan las solicitudes y que cambia la oferta disponible. Todo el
mundo paga el mismo precio de spot para ese período independientemente de que su puja fuera
más alta. Por lo tanto, puede pagar un importe inferior al de su puja, pero nunca pagará un importe
superior al de esta.

• Si ejecuta instancias de spot y su puja ya no coincide con el precio de spot actual ni lo supera, se
terminarán sus instancias. Esto significa que querrá asegurarse de que sus cargas de trabajo y
aplicaciones son lo suficientemente flexibles para aprovechar esta oportunista capacidad.

Las instancias de spot funcionan exactamente igual que otras instancias Amazon EC2 mientras se
ejecutan y, al igual que otras instancias Amazon EC2, se pueden terminar cuando ya no las necesita.
Si termina su instancia, pagará por las horas parciales empleadas (como lo haría en el caso de las
instancias bajo demanda o reservadas). Sin embargo, si el precio de spot es superior al importe de
su puja y Amazon EC2 termina su instancia, no se le cobrará por las horas de uso parciales.

Este tutorial muestra cómo utilizar AWS SDK para Java para realizar las siguientes tareas.

• Enviar una solicitud de spot

• Determinar cuándo se atiende la solicitud de spot

• Cancelar la solicitud de spot

• Terminar las instancias asociadas

Tutorial: Instancias de spot de Amazon EC2 96

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Requisitos previos

Para utilizar este tutorial, debe tener AWS SDK para Java instalado, así como los requisitos previos
de instalación básicos. Para obtener más información, consulte Configuración de AWS SDK para
Java.

Paso 1: Configuración de las credenciales

Para empezar a usar este ejemplo de código, debe configurar las credenciales de AWS. Consulte
Configuración de credenciales y regiones de AWS para desarrollo para ver instrucciones sobre cómo
hacerlo.

Note

Le recomendamos que utilice las credenciales de un usuario de IAM para proporcionar
estos valores. Para obtener más información, consulte Inscripción en AWS y creación de un
usuario de IAM.

Ahora que ha configurado sus opciones, puede empezar a utilizar el código del ejemplo.

Paso 2: Configuración de un grupo de seguridad

Un grupo de seguridad funciona como un firewall que controla el tráfico permitido de entrada y salida
de un grupo de instancias. De forma predeterminada, una instancia se inicia sin ningún grupo de
seguridad, lo que significa que se denegará todo el tráfico IP entrante, en cualquier puerto TCP. Por
lo tanto, antes de enviar una solicitud de spot, vamos a configurar un grupo de seguridad que permita
el tráfico de red necesario. A efectos de este tutorial, vamos a crear un nuevo grupo de seguridad
llamado "GettingStarted" que permita el tráfico Secure Shell (SSH) desde la dirección IP en la que
se ejecuta su aplicación. Para configurar un nuevo grupo de seguridad, debe incluir o ejecutar el
siguiente ejemplo de código, que configura el grupo de seguridad mediante programación.

Después, creamos un objeto cliente AmazonEC2 y un objeto CreateSecurityGroupRequest con
el nombre, "GettingStarted" y una descripción para el grupo de seguridad. A continuación, llamamos
a la API ec2.createSecurityGroup para crear el grupo.

Para habilitar el acceso al grupo, creamos un objeto ipPermission con el intervalo de direcciones
IP establecido en la representación CIDR de la subred del equipo local; el sufijo "/10" en la

Tutorial: Instancias de spot de Amazon EC2 97

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

dirección IP indica la subred de la dirección IP especificada. También configuramos el objeto
ipPermission con el protocolo TCP y el puerto 22 (SSH). El último paso consiste en llamar a
ec2.authorizeSecurityGroupIngress con el nombre de nuestro grupo de seguridad y el
objeto ipPermission.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest = new
 CreateSecurityGroupRequest("GettingStartedGroup", "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security
// Group by default to the ip range associated with your subnet.
try {
 InetAddress addr = InetAddress.getLocalHost();

 // Get IP Address
 ipAddr = addr.getHostAddress()+"/10";
} catch (UnknownHostException e) {
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP
// from above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

Tutorial: Instancias de spot de Amazon EC2 98

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest("GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
} catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has
 // already been authorized.
 System.out.println(ase.getMessage());
}

Tenga en cuenta que solo necesita ejecutar esta aplicación una vez para crear un nuevo grupo de
seguridad.

También puede crear el grupo de seguridad mediante AWS Toolkit for Eclipse. Consulte
Administración de grupos de seguridad desde AWS Cost Explorer para obtener más información.

Paso 3: Envío de la solicitud de spot

Para enviar una solicitud de spot, primero es necesario determinar el tipo de instancia, la imagen
de máquina de Amazon (AMI) y el precio de puja máximo que desea usar. También debe incluir el
grupo de seguridad que hemos configurado anteriormente, de modo que pueda iniciar sesión en la
instancia si lo desea.

Hay varios tipos de instancia para elegir; vaya a Tipos de instancias Amazon EC2 para obtener una
lista completa. En este tutorial, utilizaremos t1.micro, el tipo de instancia más económica disponible.
A continuación, determinaremos el tipo de AMI que desea utilizar. Utilizaremos ami-a9d09ed1, la AMI
de Amazon Linux más actualizada disponible cuando escribimos este tutorial. La AMI más reciente
puede cambiar con el tiempo, pero siempre puede determinar la última versión de la AMI siguiendo
estos pasos:

1. Abra la consola de Amazon EC2.

2. Elija el botón Launch Instance (Lanzar instancia).

3. La primera ventana muestra las AMI disponibles. El ID de AMI aparece al lado del título de cada
AMI. También puede utilizar la API DescribeImages, pero el uso de este comando queda fuera
del alcance de este tutorial.

Existen muchas formas de pujar por instancias de spot; para obtener una descripción general de
los diferentes enfoques, vea el vídeo Bidding for Spot Instances. Sin embargo, para comenzar,

Tutorial: Instancias de spot de Amazon EC2 99

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://console.aws.amazon.com/ec2/home
https://www.youtube.com/watch?v=WD9N73F3Fao&feature=player_embedded

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

describiremos tres estrategias comunes: pujar para garantizar que el costo sea menor que el precio
bajo demanda, pujar en función del valor de la computación resultante y pujar con el fin de adquirir
capacidad de computación con la mayor rapidez posible.

• Reducir el costo por debajo del precio bajo demanda Tiene una tarea de procesamiento por lotes
que tardará en ejecutarse una cantidad determinada de horas o días. Sin embargo, es flexible
con respecto a cuándo comienza y finaliza. Desea ver si puede completarla por menos del valor
del costo de las instancias bajo demanda. Puede examinar el historial de precios de subasta para
tipos de instancia mediante la Consola de administración de AWS o la API de Amazon EC2. Para
obtener más información, consulte Historial de precios de instancias de spot. Una vez que haya
analizado el historial de precios para su tipo de instancia deseado en una zona de disponibilidad
especificada, tendrá dos enfoques alternativos para su puja:

• Podría pujar en el extremo superior del rango de precios de spot (que aún son inferiores al
precio bajo demanda), contando con que lo más probable es que su solicitud de spot puntual se
atienda y se ejecute durante un tiempo de computación consecutivo suficiente para completar la
tarea.

• O bien, puede especificar la cantidad que está dispuesto a pagar por las instancias de spot
como un porcentaje del precio de la instancia bajo demanda, así como combinar muchas
instancias lanzadas a lo largo del tiempo a través de una solicitud persistente. Si se supera el
precio especificado, la instancia de spot terminará. (Explicaremos cómo automatizar esta tarea
más adelante en este tutorial).

• No pagar un importe superior al valor del resultado Tiene una tarea de procesamiento de datos
que ejecutar. Conoce las ventajas de los resultados de la tarea lo suficientemente bien como para
saber lo valiosos que son en términos de costos de computación. Una vez que haya analizado
el historial de precios de spot para el tipo de instancia, podrá elegir un precio de puja en el que
el costo del tiempo de computación no sea superior al valor de los resultados de la tarea. Puede
crear una puja persistente y permitir su ejecución intermitente a medida que el precio de spot
fluctúa en torno a su puja o por debajo de esta.

• Adquirir capacidad de computación rápidamente Tiene una necesidad a corto plazo no anticipada
de capacidad adicional que no está disponible a través de las instancias bajo demanda. Una vez
que haya analizado el historial de precios de spot para el tipo de instancia, podrá pujar por encima
del precio histórico más alto para tener mayores probabilidades de que su solicitud se atienda con
rapidez y continúe computándose hasta completarse.

Una vez que haya elegido el precio de puja, estará listo para solicitar una instancia de spot. Para
los fines de este tutorial, pujaremos por el precio bajo demanda (0,03 USD) para maximizar las

Tutorial: Instancias de spot de Amazon EC2 100

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

posibilidades de que se atienda la puja. Puede determinar los tipos de instancias disponibles y los
precios bajo demanda para instancias yendo a la página de precios de Amazon EC2. Cuando una
instancia de spot está en ejecución, paga el precio de spot vigente durante el período de tiempo
en que se ejecutan las instancias. Amazon EC2 define los precios de las instancias de spot y estos
se ajustan gradualmente en función de las tendencias a largo plazo de la oferta y la demanda de
capacidad de este tipo de instancia. También puede especificar el importe que está dispuesto a
pagar por una instancia de spot como porcentaje del precio de la instancia bajo demanda. Para
solicitar una instancia de spot, solo tiene que crear su solicitud con los parámetros que eligió
anteriormente. Comencemos creando un objeto RequestSpotInstanceRequest. El objeto de la
solicitud requiere el número de instancias que desea para comenzar y el precio de puja. Además,
necesita establecer LaunchSpecification para la solicitud, que incluye el tipo de instancia, el ID
de la AMI y el grupo de seguridad que desea utilizar. Una vez rellenada la solicitud, llama al método
requestSpotInstances en el objeto AmazonEC2Client. En el siguiente ejemplo se muestra
cómo solicitar una instancia de spot.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Setup the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specifications to the request.
requestRequest.setLaunchSpecification(launchSpecification);

Tutorial: Instancias de spot de Amazon EC2 101

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Al ejecutarse este código se lanzará una nueva solicitud de instancia de spot. Hay otras
opciones que puede usar para configurar las solicitudes de spot. Para obtener más información,
consulte Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 o la clase
RequestSpotInstances en la Referencia de la API de AWS SDK para Java.

Note

Se le cobrará por las instancias de spot que se de verdad se lancen, de modo que asegúrese
de cancelar cualquier solicitud y terminar las instancias que lance para reducir las tarifas
asociadas.

Paso 4: Determinación del estado de la solicitud de spot

A continuación, queremos crear código para esperar hasta que la solicitud de spot alcance el estado
"activo" antes de continuar con el último paso. Para determinar el estado de nuestra solicitud de spot,
usamos el método describeSpotInstanceRequests para obtener el estado del ID de solicitud de spot
que deseamos monitorizar.

El ID de solicitud creado en el paso 2 se inserta en la respuesta a nuestra solicitud
requestSpotInstances. El siguiente ejemplo muestra cómo obtener los ID de solicitud de la
respuesta requestSpotInstances y utilizarlos para rellenar una ArrayList.

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// Setup an arraylist to collect all of the request ids we want to
// watch hit the running state.
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add all of the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());

Tutorial: Instancias de spot de Amazon EC2 102

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#describeSpotInstanceRequests

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

}

Para monitorizar su ID de solicitud, llame al método describeSpotInstanceRequests para
determinar el estado de la solicitud. A continuación, recorra en bucle la solicitud hasta que deje
de tener el estado "abierto". Tenga en cuenta que buscamos un estado distinto de "abierto" en
lugar de, por ejemplo, un estado "activo", porque la solicitud podría pasar directamente al estado
"cerrado" si surgiera algún problema con los argumentos de la solicitud. El siguiente ejemplo de
código proporciona los detalles de cómo realizar esta tarea.

// Create a variable that will track whether there are any
// requests still in the open state.
boolean anyOpen;

do {
 // Create the describeRequest object with all of the request ids
 // to monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false - which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen=false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);
 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all in
 // the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we attempted
 // to request it. There is the potential for it to transition
 // almost immediately to closed or cancelled so we compare
 // against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }

Tutorial: Instancias de spot de Amazon EC2 103

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 }
} catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out of
 // the loop. This prevents the scenario where there was
 // blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

Después de ejecutar este código, su solicitud de instancia de spot se habrá completado o habrá
producido un error que se mostrará en la pantalla. En cualquier caso, podemos continuar con el
siguiente paso para limpiar todas las solicitudes activas y terminar todas las instancias en ejecución.

Paso 5: Limpieza de las instancias y solicitudes de spot

Por último, tenemos que limpiar nuestras solicitudes e instancias. Esto es importante tanto para
cancelar cualquier solicitud pendiente como para terminar cualquier instancia. Las instancias no
terminarán con solo cancelarse las solicitudes, lo que significa que se le seguirá cobrando por ellas.
Si termina las instancias, es posible que se cancelen las solicitudes de spot, pero hay algunos
escenarios (por ejemplo, si usa pujas persistentes), donde terminar las instancias no es suficiente
para evitar que la solicitud vuelva a atenderse. Por lo tanto, se recomienda tanto cancelar cualquier
puja activa como terminar cualquier instancia en ejecución.

En el siguiente código se muestra cómo cancelar las solicitudes.

try {
 // Cancel requests.
 CancelSpotInstanceRequestsRequest cancelRequest =
 new CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());

Tutorial: Instancias de spot de Amazon EC2 104

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Para terminar todas las instancias pendientes, necesitará el ID de la instancia asociada a la solicitud
que las inició. El siguiente ejemplo se basa en el código original de monitorización de instancias en
el que se ha añadido una ArrayList en la que almacenamos los ID de instancia asociados a la
respuesta describeInstance.

// Create a variable that will track whether there are any requests
// still in the open state.
boolean anyOpen;
// Initialize variables.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 // Create the describeRequest with all of the request ids to
 // monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false, which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen = false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all
 // in the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we
 // attempted to request it. There is the potential for
 // it to transition almost immediately to closed or
 // cancelled so we compare against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true; break;

Tutorial: Instancias de spot de Amazon EC2 105

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 }
 // Add the instance id to the list we will
 // eventually terminate.
 instanceIds.add(describeResponse.getInstanceId());
 }
 } catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out
 // of the loop. This prevents the scenario where there
 // was blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

Usando los ID de instancia almacenados en ArrayList, termine todas las instancias en ejecución
con el siguiente fragmento de código.

try {
 // Terminate instances.
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Operación conjunta

Para realizar todas estas operaciones a la vez, ofrecemos un enfoque más orientado a objetos, que
combina los pasos mostrados: inicializar el cliente de EC2, enviar la solicitud de spot, determinar
el momento en el que las solicitudes de spot ya no tienen el estado abierto y limpiar todas las

Tutorial: Instancias de spot de Amazon EC2 106

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

solicitudes de spot pendientes y las instancias asociadas. Creamos una clase llamada Requests
que realiza estas acciones.

También creamos una clase GettingStartedApp, que tiene un método principal donde realizamos
las llamadas a funciones de alto nivel. En concreto, inicializamos el objeto Requests descrito
anteriormente. Enviamos la solicitud de instancia de spot. A continuación, esperamos a que la
solicitud de spot alcance el estado "activo". Por último, limpiamos las solicitudes y las instancias.

El código fuente completo de este ejemplo se puede consultar o descargar en GitHub.

¡Enhorabuena! Ha completado el tutorial de introducción al desarrollo de software de instancias de
spot con AWS SDK para Java.

Siguientes pasos

Continúe con el Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2.

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2

Las instancias de spot de Amazon EC2 le permiten pujar por capacidad de Amazon EC2 sin usar y
ejecutar esas instancias mientras su puja supere el precio de spot actual. Amazon EC2 cambia el
precio de spot periódicamente en función de la oferta y la demanda. Para más información acerca
de las instancias de spot, consulte Instancias de spot en la Guía del usuario de Amazon EC2 para
instancias de Linux.

Requisitos previos

Para utilizar este tutorial, debe tener AWS SDK para Java instalado, así como los requisitos previos
de instalación básicos. Para obtener más información, consulte Configuración de AWS SDK para
Java.

Configuración de las credenciales

Para empezar a usar este ejemplo de código, debe configurar las credenciales de AWS. Consulte
Configuración de credenciales y regiones de AWS para desarrollo para ver instrucciones sobre cómo
hacerlo.

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 107

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-GettingStarted
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Note

Le recomendamos que utilice las credenciales de un usuario de IAM para proporcionar
estos valores. Para obtener más información, consulte Inscripción en AWS y creación de un
usuario de IAM.

Ahora que ha configurado sus opciones, puede empezar a utilizar el código del ejemplo.

Configuración de un grupo de seguridad

Un grupo de seguridad funciona como un firewall que controla el tráfico permitido de entrada y salida
de un grupo de instancias. De forma predeterminada, una instancia se inicia sin ningún grupo de
seguridad, lo que significa que se denegará todo el tráfico IP entrante, en cualquier puerto TCP. Por
lo tanto, antes de enviar una solicitud de spot, vamos a configurar un grupo de seguridad que permita
el tráfico de red necesario. A efectos de este tutorial, vamos a crear un nuevo grupo de seguridad
llamado "GettingStarted" que permita el tráfico Secure Shell (SSH) desde la dirección IP en la que
se ejecuta su aplicación. Para configurar un nuevo grupo de seguridad, debe incluir o ejecutar el
siguiente ejemplo de código, que configura el grupo de seguridad mediante programación.

Después, creamos un objeto cliente AmazonEC2 y un objeto CreateSecurityGroupRequest con
el nombre, "GettingStarted" y una descripción para el grupo de seguridad. A continuación, llamamos
a la API ec2.createSecurityGroup para crear el grupo.

Para habilitar el acceso al grupo, creamos un objeto ipPermission con el intervalo de direcciones
IP establecido en la representación CIDR de la subred del equipo local; el sufijo "/10" en la
dirección IP indica la subred de la dirección IP especificada. También configuramos el objeto
ipPermission con el protocolo TCP y el puerto 22 (SSH). El último paso consiste en llamar a
ec2 .authorizeSecurityGroupIngress con el nombre de nuestro grupo de seguridad y el
objeto ipPermission.

(El siguiente código es el mismo que el que usamos en el primer tutorial).

// Create the AmazonEC2Client object so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withCredentials(credentials)
 .build();

// Create a new security group.
try {

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 108

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 CreateSecurityGroupRequest securityGroupRequest =
 new CreateSecurityGroupRequest("GettingStartedGroup",
 "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security Group
// by default to the ip range associated with your subnet.
try {
 // Get IP Address
 InetAddress addr = InetAddress.getLocalHost();
 ipAddr = addr.getHostAddress()+"/10";
}
catch (UnknownHostException e) {
 // Fail here...
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP from
// above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest(
 "GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
}
catch (AmazonServiceException ase) {

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 109

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 // Ignore because this likely means the zone has already
 // been authorized.
 System.out.println(ase.getMessage());
}

Puede ver este ejemplo de código completo en el ejemplo de código
advanced.CreateSecurityGroupApp.java. Tenga en cuenta que solo necesita ejecutar esta
aplicación una vez para crear un nuevo grupo de seguridad.

Note

También puede crear el grupo de seguridad mediante AWS Toolkit for Eclipse. Consulte
Administración de grupos de seguridad desde AWS Cost Explorer en la Guía del usuario de
AWS Toolkit for Eclipse para obtener más información.

Opciones detalladas de creación de solicitudes de instancias de spot

Como hemos explicado en el Tutorial: Instancias de spot de Amazon EC2, debe crear la solicitud con
un tipo de instancia, una Imagen de máquina de Amazon (AMI) y un precio de puja máximo.

Comencemos creando un objeto RequestSpotInstanceRequest. El objeto de la solicitud
requiere el número de instancias que desee y el precio de puja. Además, necesitamos establecer
LaunchSpecification para la solicitud, que incluye el tipo de instancia, el ID de la AMI y
el grupo de seguridad que desea utilizar. Una vez rellenada la solicitud, llamamos al método
requestSpotInstances en el objeto AmazonEC2Client. A continuación se incluye un ejemplo
de cómo solicitar una instancia de spot.

(El siguiente código es el mismo que el que usamos en el primer tutorial).

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 110

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Solicitudes persistentes y solicitudes puntuales

Cuando se crea una solicitud de spot, puede especificar varios parámetros opcionales. El primero
es si la solicitud es puntual o persistente. De forma predeterminada, es una solicitud puntual.
Una solicitud puntual se puede tramitar solo una vez, y una vez que se terminan las instancias
solicitadas, la solicitud se cierra. Una solicitud persistente se puede tramitar siempre que no haya
ninguna instancia de spot ejecutándose para la misma solicitud. Para especificar el tipo de solicitud,
simplemente tiene que establecer el tipo en la solicitud de spot. Esto se puede hacer con el siguiente
código.

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 111

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest =
 new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the type of the bid to persistent.
requestRequest.setType("persistent");

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Limitación de la duración de una solicitud

De forma opcional, puede especificar el tiempo que su solicitud seguirá estando en vigor. Puede
especificar una hora de inicio y finalización para este periodo. De forma predeterminada, una
solicitud de spot se puede tramitar desde el momento en que se crea hasta que se tramita o se
cancela. Sin embargo, puede restringir el periodo de validez en caso de que sea necesario. En el
siguiente código se muestra un ejemplo de cómo especificar este periodo.

// Create the AmazonEC2 client so we can call various APIs.

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 112

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the valid start time to be two minutes from now.
Calendar cal = Calendar.getInstance();
cal.add(Calendar.MINUTE, 2);
requestRequest.setValidFrom(cal.getTime());

// Set the valid end time to be two minutes and two hours from now.
cal.add(Calendar.HOUR, 2);
requestRequest.setValidUntil(cal.getTime());

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro)

// and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon
// Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Agrupación de solicitudes de instancias de spot de Amazon EC2

Tiene la opción de agrupar sus solicitudes de instancias de spot de diferentes maneras. Veamos las
ventajas de utilizar grupos de lanzamiento, grupos de zonas de disponibilidad y grupos de ubicación.

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 113

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Si desea garantizar que las instancias de spot se lancen y terminen a la vez, puede usar un grupo
de lanzamiento. Un grupo de lanzamiento es una etiqueta que agrupa un conjunto de pujas. Todas
las instancias en un grupo de inicialización se inician y se terminan juntas. Tenga en cuenta que si
las instancias de un grupo de lanzamiento ya se han tramitado, no hay ninguna garantía de que se
tramiten también las nuevas instancias lanzadas con el mismo grupo de lanzamiento. Un ejemplo de
cómo configurar un grupo de lanzamiento se muestra en el siguiente ejemplo de código.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the launch group.
requestRequest.setLaunchGroup("ADVANCED-DEMO-LAUNCH-GROUP");

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Si desea asegurarse de que todas las instancias de una solicitud se lancen en la misma zona de
disponibilidad y no tener que preocuparse de cuál de ellas se va a lanzar, puede utilizar grupos

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 114

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

de zonas de disponibilidad. Un grupo de zonas de disponibilidad es una etiqueta que agrupa un
conjunto de instancias de forma conjunta en la misma zona de disponibilidad. Todas las instancias
que comparten un grupo de zonas de disponibilidad y que se tramitan al mismo tiempo se iniciarán
en la misma zona de disponibilidad. A continuación se incluye un ejemplo de cómo configurar un
grupo de zonas de disponibilidad.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the availability zone group.
requestRequest.setAvailabilityZoneGroup("ADVANCED-DEMO-AZ-GROUP");

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Puede especificar la zona de disponibilidad que desee para sus instancias de spot. El siguiente
ejemplo de código muestra cómo definir una zona de disponibilidad.

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 115

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the availability zone to use. Note we could retrieve the
// availability zones using the ec2.describeAvailabilityZones() API. For
// this demo we will just use us-east-1a.
SpotPlacement placement = new SpotPlacement("us-east-1b");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Por último, puede especificar un grupo de ubicación si utiliza instancias de spot de informática de alto
rendimiento (HPC), como instancias de informática en clúster o instancias de GPU de clúster. Los
grupos de ubicación ofrecen baja latencia y conectividad de alto ancho de banda entre las instancias.
A continuación se incluye un ejemplo de cómo configurar un grupo de ubicación.

// Create the AmazonEC2 client so we can call various APIs.

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 116

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.

LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the placement group to use with whatever name you desire.
// For this demo we will just use "ADVANCED-DEMO-PLACEMENT-GROUP".
SpotPlacement placement = new SpotPlacement();
placement.setGroupName("ADVANCED-DEMO-PLACEMENT-GROUP");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Todos los parámetros que se muestran en esta sección son opcionales. También es importante
tener en cuenta que la mayoría de estos parámetros, con la excepción de si su puja es
puntual o persistente, pueden reducir la probabilidad de que se atienda su puja. Por lo tanto,
es importante que utilice estas opciones solo si las necesita. Todos los ejemplos de código
anteriores se combinan en un único ejemplo de código mayor, que se puede encontrar en la clase
com.amazonaws.codesamples.advanced.InlineGettingStartedCodeSampleApp.java.

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 117

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Cómo conservar una partición raíz después de una interrupción o terminación

Una de las formas más sencillas de administrar la interrupción de sus instancias de spot es
garantizar que sus datos se someten comprobación en un volumen de Amazon Elastic Block Store
(Amazon Amazon EBS) a un ritmo regular. Mediante la creación de puntos de comprobación de
forma periódica, si hay una interrupción, solo perderá los datos creados desde el último punto de
comprobación (suponiendo que no se realicen otras acciones no idempotentes entre medias). Para
simplificar ese proceso, puede configurar la solicitud de spot para garantizar que la partición raíz no
se elimine debido a una interrupción o terminación. Hemos introducido nuevo código en el siguiente
ejemplo que muestra cómo permitir este escenario.

En el código añadido, creamos un objeto BlockDeviceMapping y establecemos su Amazon
Elastic Block Store (Amazon EBS) en un objeto de Amazon EBS que hemos configurado
como para que not se elimine si la instancia de spot termina. A continuación, añadimos este
BlockDeviceMapping al ArrayList de asignaciones que incluimos en la especificación de
lanzamiento.

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 118

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Create the block device mapping to describe the root partition.
BlockDeviceMapping blockDeviceMapping = new BlockDeviceMapping();
blockDeviceMapping.setDeviceName("/dev/sda1");

// Set the delete on termination flag to false.
EbsBlockDevice ebs = new EbsBlockDevice();
ebs.setDeleteOnTermination(Boolean.FALSE);
blockDeviceMapping.setEbs(ebs);

// Add the block device mapping to the block list.
ArrayList<BlockDeviceMapping> blockList = new ArrayList<BlockDeviceMapping>();
blockList.add(blockDeviceMapping);

// Set the block device mapping configuration in the launch specifications.
launchSpecification.setBlockDeviceMappings(blockList);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

En el caso de que desee volver a asociar este volumen a la instancia durante el inicio, también
puede utilizar los ajustes de mapeo de dispositivos de bloques. Si la instancia está asociada a un
partición distinta de la partición raíz, también puede especificar los volúmenes de Amazon Amazon
EBS que desea asociar a la instancia de spot una vez que esta se reanude. Para ello, solo tiene que
especificar un ID de snapshot en su EbsBlockDevice y un nombre de dispositivo alternativo en sus
objetos BlockDeviceMapping. Mediante el uso de mapeos de dispositivos de bloques, puede ser
más sencillo arrancar su instancia.

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 119

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

El uso de la partición raíz para aplicar un punto de comprobación a su datos críticos es una forma
excelente de administrar la posibilidad de que se interrumpan sus instancias. Para conocer otros
métodos de administración de posibles interrupciones, vea el vídeo Managing Interruption.

Cómo etiquetar sus solicitudes e instancias de spot

Añadir etiquetas a los recursos de Amazon EC2 puede simplificar la administración de la
infraestructura de la nube. Las etiquetas, un tipo de metadatos, se pueden utilizar para crear
nombres sencillos, mejorar la capacidad de búsqueda y mejorar la coordinación entre varios
usuarios. También puede utilizar las etiquetas para automatizar scripts y partes de sus procesos.
Para obtener más información sobre cómo etiquetar recursos de Amazon EC2, consulte Uso de
etiquetas en la Guía del usuario de Amazon EC2 para instancias de Linux.

Etiquetado de solicitudes

Para añadir etiquetas a sus solicitudes de spot, tiene que etiquetarlas después de que se
hayan solicitado. El valor devuelto de requestSpotInstances() proporciona un objeto
RequestSpotInstancesResult que puede utilizar para obtener los ID de las solicitudes de spot que
desea etiquetar:

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// A list of request IDs to tag
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

Cuando tenga los ID, puede etiquetar las solicitudes añadiendo sus ID a una CreateTagsRequest y
llamando al método createTags() del cliente de Amazon EC2:

// The list of tags to create
ArrayList<Tag> requestTags = new ArrayList<Tag>();
requestTags.add(new Tag("keyname1","value1"));

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 120

https://www.youtube.com/watch?feature=player_embedded&v=wcPNnUo60pc
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateTagsRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

// Create the tag request
CreateTagsRequest createTagsRequest_requests = new CreateTagsRequest();
createTagsRequest_requests.setResources(spotInstanceRequestIds);
createTagsRequest_requests.setTags(requestTags);

// Tag the spot request
try {
 ec2.createTags(createTagsRequest_requests);
}
catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Etiquetado de instancias

De forma similar a las solicitudes de spot, solo puede etiquetar una instancia una vez que se haya
creado, lo que ocurrirá cuando se haya satisfecho la solicitud de spot (cuando ya no tenga el estado
abierto).

Puede comprobar el estado de sus solicitudes llamando al método
describeSpotInstanceRequests() del cliente de Amazon EC2 con un objeto
DescribeSpotInstanceRequestsRequest. El objeto DescribeSpotInstanceRequestsResult devuelto
contiene una lista de objetos SpotInstanceRequest que puede usar para consultar el estado de sus
solicitudes de spot y obtener sus ID de instancia cuando ya no tengan el estado abierto.

Cuando la solicitud de spot deje de estar abierta, puede recuperar su ID de instancia del objeto
SpotInstanceRequest llamando a su método getInstanceId().

boolean anyOpen; // tracks whether any requests are still open

// a list of instances to tag.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 DescribeSpotInstanceRequestsRequest describeRequest =
 new DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 121

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/SpotInstanceRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 anyOpen=false; // assume no requests are still open

 try {
 // Get the requests to monitor
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // are any requests open?
 for (SpotInstanceRequest describeResponse : describeResponses) {
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 // get the corresponding instance ID of the spot request
 instanceIds.add(describeResponse.getInstanceId());
 }
 }
 catch (AmazonServiceException e) {
 // Don't break the loop due to an exception (it may be a temporary issue)
 anyOpen = true;
 }

 try {
 Thread.sleep(60*1000); // sleep 60s.
 }
 catch (Exception e) {
 // Do nothing if the thread woke up early.
 }
} while (anyOpen);

Ahora puede etiquetar las instancias que se devuelven:

// Create a list of tags to create
ArrayList<Tag> instanceTags = new ArrayList<Tag>();
instanceTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_instances = new CreateTagsRequest();
createTagsRequest_instances.setResources(instanceIds);

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 122

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

createTagsRequest_instances.setTags(instanceTags);

// Tag the instance
try {
 ec2.createTags(createTagsRequest_instances);
}
catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Cancelación de solicitudes de spot y terminación de instancias

Cancelación de una solicitud de spot

Para cancelar una solicitud de instancia de spot, llame a cancelSpotInstanceRequests en el
cliente de Amazon EC2 con un objeto CancelSpotInstanceRequestsRequest.

try {
 CancelSpotInstanceRequestsRequest cancelRequest = new
 CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Terminación de instancias de spot

Puede terminar las instancias de spot que se estén ejecutando pasando sus ID al método
terminateInstances() del cliente de Amazon EC2.

try {
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);

Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2 123

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CancelSpotInstanceRequestsRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Operación conjunta

Para realizar todas estas operaciones a la vez, ofrecemos un enfoque más orientado a objetos,
que combina los pasos mostrados en este tutorial en una clase fácil de usar. Creamos una
instancia de una clase llamada Requests que realiza estas acciones. También creamos una clase
GettingStartedApp, que tiene un método principal donde realizamos las llamadas a funciones de
alto nivel.

El código fuente completo de este ejemplo se puede consultar o descargar en GitHub.

¡Enhorabuena! Ha completado el tutorial de características avanzadas de solicitudes para el
desarrollo de instancias de spot con AWS SDK para Java.

Administración de instancias de Amazon EC2

Crear una instancia

Cree una nueva instancia de Amazon EC2 llamando al método runInstances de
AmazonEC2Client, proporcionando un objeto RunInstancesRequest que contenga la Imagen de
máquina de Amazon (AMI) que se va a usar y un tipo de instancia.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.InstanceType;
import com.amazonaws.services.ec2.model.RunInstancesRequest;
import com.amazonaws.services.ec2.model.RunInstancesResult;
import com.amazonaws.services.ec2.model.Tag;

Código de

RunInstancesRequest run_request = new RunInstancesRequest()

Administración de instancias de Amazon EC2 124

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-Advanced
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withImageId(ami_id)
 .withInstanceType(InstanceType.T1Micro)
 .withMaxCount(1)
 .withMinCount(1);

RunInstancesResult run_response = ec2.runInstances(run_request);

String reservation_id =
 run_response.getReservation().getInstances().get(0).getInstanceId();

Consulte el ejemplo completo

Iniciar una instancia

Para iniciar una instancia Amazon EC2, llame al método startInstances de AmazonEC2Client,
proporcionando un objeto StartInstancesRequest que contenga el ID de la instancia que se va a
iniciar.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StartInstancesRequest;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StartInstancesRequest request = new StartInstancesRequest()
 .withInstanceIds(instance_id);

ec2.startInstances(request);

Consulte el ejemplo completo

Detener una instancia

Para detener una instancia Amazon EC2, llame al método stopInstances de AmazonEC2Client,
proporcionando un objeto StopInstancesRequest que contenga el ID de la instancia que se va a
detener.

Administración de instancias de Amazon EC2 125

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StartInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StopInstancesRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StopInstancesRequest;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StopInstancesRequest request = new StopInstancesRequest()
 .withInstanceIds(instance_id);

ec2.stopInstances(request);

Consulte el ejemplo completo

Reiniciar una instancia

Para reiniciar una instancia Amazon EC2, llame al método rebootInstances de
AmazonEC2Client, proporcionando un objeto RebootInstancesRequest que contenga el ID de la
instancia que se va a reiniciar.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.RebootInstancesRequest;
import com.amazonaws.services.ec2.model.RebootInstancesResult;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

RebootInstancesRequest request = new RebootInstancesRequest()
 .withInstanceIds(instance_id);

RebootInstancesResult response = ec2.rebootInstances(request);

Consulte el ejemplo completo

Administración de instancias de Amazon EC2 126

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RebootInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/RebootInstance.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Describir instancias

Para enumerar sus instancias, cree un objeto DescribeInstancesRequest y llame al método
describeInstances de AmazonEC2Client. Se devolverá un objeto DescribeInstancesResult que
puede utilizar para mostrar las instancias Amazon EC2 de su cuenta y región.

Las instancias se agrupan por reserva. Cada reserva se corresponde con la llamada a
startInstances que lanzó la instancia. Para mostrar sus instancias, primero debe llamar
al método getReservations' method, and then call `getInstances de la clase
DescribeInstancesResult en cada objeto Reservation devuelto.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.Reservation;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();
boolean done = false;

DescribeInstancesRequest request = new DescribeInstancesRequest();
while(!done) {
 DescribeInstancesResult response = ec2.describeInstances(request);

 for(Reservation reservation : response.getReservations()) {
 for(Instance instance : reservation.getInstances()) {
 System.out.printf(
 "Found instance with id %s, " +
 "AMI %s, " +
 "type %s, " +
 "state %s " +
 "and monitoring state %s",
 instance.getInstanceId(),
 instance.getImageId(),
 instance.getInstanceType(),
 instance.getState().getName(),
 instance.getMonitoring().getState());

Administración de instancias de Amazon EC2 127

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Reservation.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 }
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

Los resultados se paginan; puede obtener más resultados pasando el valor devuelto del método
getNextToken del objeto resultante al método setNextToken del objeto de la solicitud original,
usando el mismo objeto de la solicitud en la siguiente llamada a describeInstances.

Consulte el ejemplo completo

Monitorizar una instancia

Puede monitorizar distintos aspectos de las instancias Amazon EC2, como el uso de la CPU y la
red, la memoria disponible y el espacio en disco restante. Para obtener más información sobre la
supervisión de instancias, consulte Supervisión Amazon EC2 en la Guía del usuario de Amazon EC2
para instancias Linux.

Para iniciar la monitorización de una instancia, debe crear un objeto MonitorInstancesRequest
con el ID de la instancia que se va a monitorizar y pasarlo al método monitorInstances de
AmazonEC2Client.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.MonitorInstancesRequest;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

MonitorInstancesRequest request = new MonitorInstancesRequest()
 .withInstanceIds(instance_id);

Administración de instancias de Amazon EC2 128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeInstances.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/MonitorInstancesRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

ec2.monitorInstances(request);

Consulte el ejemplo completo

Detener la monitorización de instancias

Para detener la monitorización de una instancia, cree un objeto UnmonitorInstancesRequest
con el ID de la instancia cuya monitorización se va a detener y pase el objeto al método de
AmazonEC2Client.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.UnmonitorInstancesRequest;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

UnmonitorInstancesRequest request = new UnmonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.unmonitorInstances(request);

Consulte el ejemplo completo

Más información

• RunInstances en la referencia de la API de Amazon EC2

• DescribeInstances en la referencia de la API de Amazon EC2

• StartInstances en la referencia de la API de Amazon EC2

• StopInstances en la referencia de la API de Amazon EC2

• RebootInstances en la referencia de la API de Amazon EC2

• MonitorInstances en la referencia de la API de Amazon EC2

• UnmonitorInstances en la referencia de la API de Amazon EC2

Administración de instancias de Amazon EC2 129

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/UnmonitorInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StartInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StopInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RebootInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_MonitorInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_UnmonitorInstances.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Uso de direcciones IP elásticas en Amazon EC2

Retirada de EC2-Classic

Warning

Vamos a retirar EC2-Classic el 15 de agosto de 2022. Le recomendamos que migre de EC2-
Classic a una VPC. Para obtener más información, consulte la entrada del blog EC2-Classic-
Classic Networking is Retiring – Here's How to Prepare.

Asignación de una dirección IP elástica

Para utilizar una dirección IP elástica, primero asigne una a su cuenta y, a continuación, asóciela a
su instancia o a una interfaz de red.

Para asignar una dirección IP elástica, llame al método allocateAddress del cliente
AmazonEC2Client con un objeto AllocateAddressRequest que contenga el tipo de red (EC2 clásico o
VPC).

El AllocateAddressResult devuelto contiene un ID de asignación que puede utilizar para asociar
la dirección a una instancia, pasando el ID de asignación y el ID de instancia en un objeto
AssociateAddressRequest al método associateAddress de AmazonEC2Client.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AllocateAddressRequest;
import com.amazonaws.services.ec2.model.AllocateAddressResult;
import com.amazonaws.services.ec2.model.AssociateAddressRequest;
import com.amazonaws.services.ec2.model.AssociateAddressResult;
import com.amazonaws.services.ec2.model.DomainType;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

AllocateAddressRequest allocate_request = new AllocateAddressRequest()

Uso de direcciones IP elásticas en Amazon EC2 130

https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AssociateAddressRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withDomain(DomainType.Vpc);

AllocateAddressResult allocate_response =
 ec2.allocateAddress(allocate_request);

String allocation_id = allocate_response.getAllocationId();

AssociateAddressRequest associate_request =
 new AssociateAddressRequest()
 .withInstanceId(instance_id)
 .withAllocationId(allocation_id);

AssociateAddressResult associate_response =
 ec2.associateAddress(associate_request);

Consulte el ejemplo completo

Descripción de direcciones IP elásticas

Para listar las direcciones IP elásticas asignadas a su cuenta, llame al método
describeAddresses de AmazonEC2Client. Este método devuelve un objeto
DescribeAddressesResult que puede utilizar para obtener una lista de objetos Address que
representan las direcciones IP elásticas de su cuenta.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.Address;
import com.amazonaws.services.ec2.model.DescribeAddressesResult;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeAddressesResult response = ec2.describeAddresses();

for(Address address : response.getAddresses()) {
 System.out.printf(
 "Found address with public IP %s, " +
 "domain %s, " +
 "allocation id %s " +

Uso de direcciones IP elásticas en Amazon EC2 131

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/AllocateAddress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAddressesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Address.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 "and NIC id %s",
 address.getPublicIp(),
 address.getDomain(),
 address.getAllocationId(),
 address.getNetworkInterfaceId());
}

Consulte el ejemplo completo

Liberación de una dirección IP elástica

Para liberar una dirección IP elástica, llame al método releaseAddress de AmazonEC2Client
pasando un objeto ReleaseAddressRequest que contenga el ID de asignación de la dirección IP
elástica que quiere liberar.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.ReleaseAddressRequest;
import com.amazonaws.services.ec2.model.ReleaseAddressResult;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

ReleaseAddressRequest request = new ReleaseAddressRequest()
 .withAllocationId(alloc_id);

ReleaseAddressResult response = ec2.releaseAddress(request);

Tras liberar una dirección IP elástica, esta se libera del grupo de direcciones IP de AWS y puede
que no esté disponible para usarla más adelante. Asegúrese de actualizar sus registros DNS y
los servidores o dispositivos que se comunican con la dirección. Si intenta liberar una dirección IP
elástica que ya ha liberado, obtendrá un error AuthFailure si la dirección ya se ha asignado a otra
cuenta de Cuenta de AWS.

Si utiliza EC2-Classic o una VPC predeterminada, al liberar una dirección IP elástica esta se
desvincula automáticamente de cualquier instancia a la que esté asociada. Para desvincular una
dirección IP elástica sin liberarla, utilice el método disassociateAddress de AmazonEC2Client.

Uso de direcciones IP elásticas en Amazon EC2 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAddresses.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/ReleaseAddressRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Si utiliza una VPC distinta de la predeterminada, debe usar disassociateAddress para
desvincular la dirección IP elástica antes de intentar liberarla. De lo contrario, Amazon EC2 devuelve
un error (InvalidIPAddress.InUse).

Consulte el ejemplo completo

Más información

• Direcciones IP elásticas en la Guía del usuario de Amazon EC2 para instancias de Linux

• AllocateAddress en la referencia de la API Amazon EC2

• DescribeAddresses en la referencia de la API Amazon EC2

• ReleaseAddress en la referencia de la API Amazon EC2

Usar regiones y zonas de disponibilidad

Describir regiones

Para mostrar las regiones disponibles para su cuenta, llame al método describeRegions del
AmazonEC2Client. Este método devuelve un objeto DescribeRegionsResult. Llame al método
getRegions del objeto devuelto para obtener una lista de objetos Region que representan cada
región.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

Código de

DescribeRegionsResult regions_response = ec2.describeRegions();

for(Region region : regions_response.getRegions()) {
 System.out.printf(
 "Found region %s " +
 "with endpoint %s",
 region.getRegionName(),

Usar regiones y zonas de disponibilidad 133

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/ReleaseAddress.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AllocateAddress.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAddresses.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ReleaseAddress.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeRegionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Region.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 region.getEndpoint());
}

Consulte el ejemplo completo

Describir zonas de disponibilidad

Para mostrar las zonas de disponibilidad disponibles para su cuenta, llame al método
describeAvailabilityZones del AmazonEc2Client. Este método devuelve un objeto
DescribeAvailabilityZonesResult. Llame al método getAvailabilityZones del objeto devuelto
para obtener una lista de objetos AvailabilityZone que representan cada zona de disponibilidad.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

Código de

DescribeAvailabilityZonesResult zones_response =
 ec2.describeAvailabilityZones();

for(AvailabilityZone zone : zones_response.getAvailabilityZones()) {
 System.out.printf(
 "Found availability zone %s " +
 "with status %s " +
 "in region %s",
 zone.getZoneName(),
 zone.getState(),
 zone.getRegionName());
}

Consulte el ejemplo completo

Describir cuentas

Para describir su cuenta, llame al método describeAccountAttributes del AmazonEC2Client.
Este método devuelve un objeto DescribeAccountAttributesResult. Invoque el método

Usar regiones y zonas de disponibilidad 134

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAvailabilityZonesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AvailabilityZone.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAccountAttributesResult.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

getAccountAttributes de este objeto para obtener una lista de objetos AccountAttribute. Puede
recorrer en iteración la lista para recuperar un objeto AccountAttribute.

Puede obtener los valores de los atributos de su cuenta invocando el método
getAttributeValues del objeto AccountAttribute. Este método devuelve una lista de objetos
AccountAttributeValue. Puede recorrer en iteración esta segunda lista para mostrar el valor de los
atributos (consulte el siguiente ejemplo de código).

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AccountAttributeValue;
import com.amazonaws.services.ec2.model.DescribeAccountAttributesResult;
import com.amazonaws.services.ec2.model.AccountAttribute;
import java.util.List;
import java.util.ListIterator;

Código de

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

try{
 DescribeAccountAttributesResult accountResults = ec2.describeAccountAttributes();
 List<AccountAttribute> accountList = accountResults.getAccountAttributes();

 for (ListIterator iter = accountList.listIterator(); iter.hasNext();) {

 AccountAttribute attribute = (AccountAttribute) iter.next();
 System.out.print("\n The name of the attribute is
 "+attribute.getAttributeName());
 List<AccountAttributeValue> values = attribute.getAttributeValues();

 //iterate through the attribute values
 for (ListIterator iterVals = values.listIterator(); iterVals.hasNext();) {
 AccountAttributeValue myValue = (AccountAttributeValue) iterVals.next();
 System.out.print("\n The value of the attribute is
 "+myValue.getAttributeValue());
 }
 }
 System.out.print("Done");
}

Usar regiones y zonas de disponibilidad 135

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttributeValue.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

catch (Exception e)
{
 e.getStackTrace();
}

Consulte el ejemplo completo en GitHub.

Más información

• Regiones y zonas de disponibilidad en la Guía del usuario de Amazon EC2 para instancias de
Linux

• DescribeRegions en la Referencia de la API de Amazon EC2

• DescribeAvailabilityZones en la Referencia de la API de Amazon EC2

Uso de pares de claves de Amazon EC2

Creación de un par de claves

Para crear un par de claves, llame al método createKeyPair del AmazonEC2Client con una
CreateKeyPairRequest que contenga el nombre de la clave.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateKeyPairRequest;
import com.amazonaws.services.ec2.model.CreateKeyPairResult;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateKeyPairRequest request = new CreateKeyPairRequest()
 .withKeyName(key_name);

CreateKeyPairResult response = ec2.createKeyPair(request);

Consulte el ejemplo completo

Uso de pares de claves de Amazon EC2 136

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAccount.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeRegions.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateKeyPair.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Descripción de pares de claves

Para mostrar sus pares de claves o para obtener información sobre ellos, llame al método
describeKeyPairs de AmazonEC2Client. Este método devuelve DescribeKeyPairsResult, que
se puede utilizar para obtener acceso a la lista de pares de claves mediante la llamada a su método
getKeyPairs, que devuelve una lista de objetos KeyPairInfo.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeKeyPairsResult;
import com.amazonaws.services.ec2.model.KeyPairInfo;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeKeyPairsResult response = ec2.describeKeyPairs();

for(KeyPairInfo key_pair : response.getKeyPairs()) {
 System.out.printf(
 "Found key pair with name %s " +
 "and fingerprint %s",
 key_pair.getKeyName(),
 key_pair.getKeyFingerprint());
}

Consulte el ejemplo completo

Eliminación de un par de claves

Para eliminar un par de claves, llame al método deleteKeyPair de AmazonEC2Client, pasando un
objeto DeleteKeyPairRequest que contenga el nombre del par de claves que desea eliminar.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteKeyPairRequest;
import com.amazonaws.services.ec2.model.DeleteKeyPairResult;

Uso de pares de claves de Amazon EC2 137

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeKeyPairsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPairInfo.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeKeyPairs.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteKeyPairRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteKeyPairRequest request = new DeleteKeyPairRequest()
 .withKeyName(key_name);

DeleteKeyPairResult response = ec2.deleteKeyPair(request);

Consulte el ejemplo completo

Más información

• Pares de claves Amazon EC2 en la Guía del usuario de Amazon EC2 para instancias de Linux

• CreateKeyPairs en la Referencia de la API de Amazon EC2

• DescribeKeyPairs en la referencia de la API de Amazon EC2

• DeleteKeyPair en la Referencia de la API de Amazon EC2

Uso de grupos de seguridad en Amazon EC2

Creación de un grupo de seguridad

Para crear un grupo de seguridad, llame al método createSecurityGroup de AmazonEC2Client
con una CreateSecurityGroupRequest que contenga el nombre de la clave.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateSecurityGroupRequest create_request = new
 CreateSecurityGroupRequest()
 .withGroupName(group_name)
 .withDescription(group_desc)

Uso de grupos de seguridad en Amazon EC2 138

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteKeyPair.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateKeyPair.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeKeyPairs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteKeyPair.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withVpcId(vpc_id);

CreateSecurityGroupResult create_response =
 ec2.createSecurityGroup(create_request);

Consulte el ejemplo completo

Configuración de un grupo de seguridad

Un grupo de seguridad puede controlar el tráfico de entrada y salida a sus instancias Amazon EC2.

Para añadir reglas de entrada al grupo de seguridad, utilice el método
authorizeSecurityGroupIngress de AmazonEC2Client, proporcionando el nombre del grupo
de seguridad y las reglas de acceso (IpPermission) que desea asignar al grupo dentro de un objeto
AuthorizeSecurityGroupIngressRequest. El siguiente ejemplo muestra cómo añadir permisos de IP a
un grupo de seguridad.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Código de

IpRange ip_range = new IpRange()
 .withCidrIp("0.0.0.0/0");

IpPermission ip_perm = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(80)
 .withFromPort(80)
 .withIpv4Ranges(ip_range);

IpPermission ip_perm2 = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(22)
 .withFromPort(22)
 .withIpv4Ranges(ip_range);

AuthorizeSecurityGroupIngressRequest auth_request = new

Uso de grupos de seguridad en Amazon EC2 139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupIngressRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 AuthorizeSecurityGroupIngressRequest()
 .withGroupName(group_name)
 .withIpPermissions(ip_perm, ip_perm2);

AuthorizeSecurityGroupIngressResult auth_response =
 ec2.authorizeSecurityGroupIngress(auth_request);

Para agregar una regla de salida al grupo de seguridad, proporcione datos similares en un objeto
AuthorizeSecurityGroupEgressRequest al método authorizeSecurityGroupEgress de
AmazonEC2Client.

Consulte el ejemplo completo

Descripción de grupos de seguridad

Para describir los grupos de seguridad o para obtener información sobre ellos, llame
al método describeSecurityGroups de AmazonEC2Client. Este método devuelve
DescribeSecurityGroupsResult, que puede usar para obtener acceso a la lista de grupos de
seguridad llamando a su método getSecurityGroups, que devuelve una lista de objetos
SecurityGroup.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsRequest;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsResult;

Código de

final String USAGE =
 "To run this example, supply a group id\n" +
 "Ex: DescribeSecurityGroups <group-id>\n";

if (args.length != 1) {
 System.out.println(USAGE);
 System.exit(1);
}

String group_id = args[0];

Consulte el ejemplo completo

Uso de grupos de seguridad en Amazon EC2 140

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSecurityGroupsResult.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/SecurityGroup.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeSecurityGroups.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Eliminación de un grupo de seguridad

Para eliminar un grupo de seguridad, llame al método deleteSecurityGroup de
AmazonEC2Client, pasando un DeleteSecurityGroupRequest que contenga el ID del grupo de
seguridad que desea eliminar.

Importaciones

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupResult;

Código de

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteSecurityGroupRequest request = new DeleteSecurityGroupRequest()
 .withGroupId(group_id);

DeleteSecurityGroupResult response = ec2.deleteSecurityGroup(request);

Consulte el ejemplo completo

Más información

• Grupos de seguridad de Amazon EC2 en la Guía del usuario de Amazon EC2 para instancias de
Linux

• Autorización del tráfico entrante para sus instancias de Linux en la Guía del usuario de Amazon
EC2 para instancias de Linux

• CreateSecurityGroup en la Referencia de la API de Amazon EC2

• DescribeSecurityGroups en la Referencia de la API de Amazon EC2

• DeleteSecurityGroup en la Referencia de la API de Amazon EC2

• AuthorizeSecurityGroupIngress en la Referencia de la API de Amazon EC2

Ejemplos de (IAM) con AWS SDK para Java

En esta sección se proporcionan ejemplos de programación de IAM mediante AWS SDK para Java.

Ejemplos de AWS Identity and Access Management (IAM) 141

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteSecurityGroupRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteSecurityGroup.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteSecurityGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AuthorizeSecurityGroupIngress.html
https://aws.amazon.com/iam/
https://aws.amazon.com/sdk-for-java/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AWS Identity and Access Management (IAM) permite controlar de forma segura el acceso a los
servicios y recursos de AWS de los usuarios. Con IAM puede crear y administrar usuarios y grupos
de AWS, así como utilizar permisos para conceder o denegar el acceso de estos a los recursos de
AWS. Para obtener instrucciones completas de IAM, consulte la Guía del usuario de IAM.

Note

Los ejemplos incluyen únicamente el código necesario para demostrar cada técnica. El
código de ejemplo completo está disponible en GitHub. Desde allí, puede descargar un único
archivo de código fuente o clonar el repositorio localmente para obtener todos los ejemplos
para compilarlos y ejecutarlos.

Temas

• Administración de las claves de acceso de IAM

• Administración de usuarios de IAM

• Uso de alias de cuenta de IAM

• Uso de políticas de IAM

• Uso de certificados de servidor de IAM

Administración de las claves de acceso de IAM

Creación de una clave de acceso

Para crear una clave de acceso de IAM, llame al método createAccessKey de
AmazonIdentityManagementClient con un objeto CreateAccessKeyRequest.

CreateAccessKeyRequest tiene dos constructores: uno que toma un nombre de usuario y otro sin
parámetros. Si utiliza la versión que no toma parámetros, debe definir el nombre de usuario mediante
el método setter withUserName antes de pasarlo al método createAccessKey.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyResult;

Administración de las claves de acceso de IAM 142

https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccessKeyRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccessKeyRequest request = new CreateAccessKeyRequest()
 .withUserName(user);

CreateAccessKeyResult response = iam.createAccessKey(request);

Consulte el ejemplo completo en GitHub.

Mostrar claves de acceso

Para enumerar las claves de acceso de un determinado usuario, cree un objeto
ListAccessKeysRequest que contenga el nombre de usuario cuyas claves desea enumerar y páselo
al método listAccessKeys de AmazonIdentityManagementClient.

Note

Si no proporciona un nombre de usuario a listAccessKeys, intentará enumerar las claves
de acceso asociadas a la Cuenta de AWS que firmó la solicitud.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AccessKeyMetadata;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysRequest;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListAccessKeysRequest request = new ListAccessKeysRequest()
 .withUserName(username);

Administración de las claves de acceso de IAM 143

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccessKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

while (!done) {

 ListAccessKeysResult response = iam.listAccessKeys(request);

 for (AccessKeyMetadata metadata :
 response.getAccessKeyMetadata()) {
 System.out.format("Retrieved access key %s",
 metadata.getAccessKeyId());
 }

 request.setMarker(response.getMarker());

 if (!response.getIsTruncated()) {
 done = true;
 }
}

Los resultados de listAccessKeys están paginados (con un máximo de 100 registros por
llamada). Puede llamar a getIsTruncated en el objeto ListAccessKeysResult devuelto para
saber si la consulta ha devuelto menos resultados de los que están disponibles. En tal caso, llame a
setMarker en el objeto ListAccessKeysRequest y vuelva a pasarlo a la siguiente invocación de
listAccessKeys.

Consulte el ejemplo completo en GitHub.

Recuperar el momento en que se usó por última vez una clave de acceso

Para obtener el momento en el que se usó por última vez una clave de acceso, llame al método
getAccessKeyLastUsed de AmazonIdentityManagementClient con el ID de la clave de acceso
(que se puede pasar mediante un objeto GetAccessKeyLastUsedRequest) o directamente a la
sobrecarga que toma el ID de clave de acceso.

A continuación, puede utilizar el objeto GetAccessKeyLastUsedResult devuelto para recuperar el
momento en que se usó por última vez la clave.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedRequest;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedResult;

Administración de las claves de acceso de IAM 144

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccessKeys.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedResult.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetAccessKeyLastUsedRequest request = new GetAccessKeyLastUsedRequest()
 .withAccessKeyId(access_id);

GetAccessKeyLastUsedResult response = iam.getAccessKeyLastUsed(request);

System.out.println("Access key was last used at: " +
 response.getAccessKeyLastUsed().getLastUsedDate());

Consulte el ejemplo completo en GitHub.

Activación o desactivación de claves de acceso

Puede activar o desactivar una clave de acceso creando un objeto UpdateAccessKeyRequest,
proporcionando el ID de clave de acceso, el nombre de usuario (de forma opcional) y el
estado deseado y, a continuación, pasando el objeto al método updateAccessKey de
AmazonIdentityManagementClient.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateAccessKeyRequest request = new UpdateAccessKeyRequest()
 .withAccessKeyId(access_id)
 .withUserName(username)
 .withStatus(status);

UpdateAccessKeyResult response = iam.updateAccessKey(request);

Consulte el ejemplo completo en GitHub.

Administración de las claves de acceso de IAM 145

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AccessKeyLastUsed.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateAccessKeyRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/StatusType.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateAccessKey.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Eliminación de una clave de acceso

Para eliminar de forma permanente una clave de acceso, llame al método deleteKey de
AmazonIdentityManagementClient, proporcionando un objeto DeleteAccessKeyRequest que
contenga el ID de clave de acceso y el nombre de usuario.

Note

Una vez eliminada una clave, ya no se puede recuperar ni utilizar. Para desactivar
temporalmente una clave de forma que pueda activarse de nuevo más adelante, utilice el
método updateAccessKey en su lugar.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccessKeyRequest request = new DeleteAccessKeyRequest()
 .withAccessKeyId(access_key)
 .withUserName(username);

DeleteAccessKeyResult response = iam.deleteAccessKey(request);

Consulte el ejemplo completo en GitHub.

Más información

• CreateAccessKey en la Referencia de la API de IAM

• ListAccessKeys en la referencia de la API de IAM

• GetAccessKeyLastUsed en la referencia de la API de IAM

• UpdateAccessKey en la Referencia de la API de IAM

Administración de las claves de acceso de IAM 146

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccessKeyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccessKey.java
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• DeleteAccessKey en la Referencia de la API de IAM

Administración de usuarios de IAM

Crear un usuario

Cree un nuevo usuario de IAM proporcionando el nombre del usuario al método createUser de
AmazonIdentityManagementClient, ya sea directamente o a través de un objeto CreateUserRequest
que contenga el nombre de usuario.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateUserRequest;
import com.amazonaws.services.identitymanagement.model.CreateUserResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateUserRequest request = new CreateUserRequest()
 .withUserName(username);

CreateUserResult response = iam.createUser(request);

Consulte el ejemplo completo en GitHub.

Mostrar usuarios

Para mostrar los usuarios de IAM de su cuenta, cree un nuevo objeto ListUsersRequest y páselo
al método listUsers de AmazonIdentityManagementClient. Puede recuperar la lista de usuarios
llamando a getUsers en el objeto ListUsersResult devuelto.

La lista de usuarios devuelta por listUsers está paginada. Puede comprobar que no haya
más resultados que recuperar llamando al método getIsTruncated del objeto de respuesta. Si
devuelve true, llame al método setMarker() del objeto de solicitud pasando el valor devuelto del
método getMarker() del objeto de respuesta.

Administración de usuarios de IAM 147

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateUserRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListUsersRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListUsersResult.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListUsersRequest;
import com.amazonaws.services.identitymanagement.model.ListUsersResult;
import com.amazonaws.services.identitymanagement.model.User;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListUsersRequest request = new ListUsersRequest();

while(!done) {
 ListUsersResult response = iam.listUsers(request);

 for(User user : response.getUsers()) {
 System.out.format("Retrieved user %s", user.getUserName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

Consulte el ejemplo completo en GitHub.

Actualizar un usuario

Para actualizar un usuario, llame al método updateUser de AmazonIdentityManagementClient, que
toma un objeto UpdateUserRequest que puede utilizar para cambiar el nombre o la ruta del usuario.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateUserRequest;

Administración de usuarios de IAM 148

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListUsers.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.identitymanagement.model.UpdateUserResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateUserRequest request = new UpdateUserRequest()
 .withUserName(cur_name)
 .withNewUserName(new_name);

UpdateUserResult response = iam.updateUser(request);

Consulte el ejemplo completo en GitHub.

Eliminar un usuario

Para eliminar un usuario, llame a la solicitud deleteUser de AmazonIdentityManagementClient con
un objeto UpdateUserRequest definido con el nombre de usuario que desea eliminar.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteConflictException;
import com.amazonaws.services.identitymanagement.model.DeleteUserRequest;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteUserRequest request = new DeleteUserRequest()
 .withUserName(username);

try {
 iam.deleteUser(request);
} catch (DeleteConflictException e) {
 System.out.println("Unable to delete user. Verify user is not" +
 " associated with any resources");
 throw e;

Administración de usuarios de IAM 149

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

}

Consulte el ejemplo completo en GitHub.

Más información

• Usuarios de IAM en la Guía del usuario de IAM

• Gestión de usuarios de IAM en la Guía del usuario de IAM

• CreateUser en la Referencia de la API de IAM

• ListUsers en la Referencia de la API de IAM

• UpdateUser en la referencia de la API de IAM

• DeleteUser en la referencia de la API de IAM

Uso de alias de cuenta de IAM

Si quiere que la dirección URL de la página de inicio de sesión contenga el nombre de su empresa u
otro identificador intuitivo en lugar de su ID de Cuenta de AWS, puede crear un alias para su Cuenta
de AWS.

Note

AWS admite exactamente un alias de cuenta por cuenta.

Creación de un alias de cuenta

Para crear un alias de cuenta, llame al método createAccountAlias de
AmazonIdentityManagementClient con un objeto CreateAccountAliasRequest que contenga el
nombre del alias.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasResult;

Código de

Uso de alias de cuenta de IAM 150

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteUser.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUser.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccountAliasRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccountAliasRequest request = new CreateAccountAliasRequest()
 .withAccountAlias(alias);

CreateAccountAliasResult response = iam.createAccountAlias(request);

Consulte el ejemplo completo en GitHub.

Mostrar alias de cuenta

Para mostrar sus alias de cuenta, si hay alguno, llame al método listAccountAliases de
AmazonIdentityManagementClient.

Note

El ListAccountAliasesResult devuelto admite los mismos métodos getIsTruncated y
getMarker que otros métodos list de AWS SDK para Java, pero una Cuenta de AWS solo
puede tener un alias de cuenta.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAccountAliasesResult;

code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAccountAliasesResult response = iam.listAccountAliases();

for (String alias : response.getAccountAliases()) {
 System.out.printf("Retrieved account alias %s", alias);
}

Consulte el ejemplo completo en GitHub.

Uso de alias de cuenta de IAM 151

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccountAlias.java
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListAccountAliasesResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccountAliases.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Eliminación de un alias de cuenta

Para mostrar sus alias de cuenta, si hay alguno, llame al método deleteAccountAlias de
AmazonIdentityManagementClient. Al eliminar un alias de cuenta, debe proporcionar su nombre
mediante un objeto DeleteAccountAliasRequest.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccountAliasRequest request = new DeleteAccountAliasRequest()
 .withAccountAlias(alias);

DeleteAccountAliasResult response = iam.deleteAccountAlias(request);

Consulte el ejemplo completo en GitHub.

Más información

• Su ID de cuenta AWS y su alias en la Guía del usuario de IAM

• CreateAccountAlias en la referencia de la API de IAM

• ListAccountAliases en la referencia de la API de IAM

• DeleteAccountAlias en la referencia de la API de IAM

Uso de políticas de IAM

Creación de una política

Para crear una nueva política, proporcione el nombre de la política y un documento de
política en formato JSON en un objeto CreatePolicyRequest al método createPolicy de
AmazonIdentityManagementClient.

Uso de políticas de IAM 152

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccountAliasRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccountAlias.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccountAlias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccountAliases.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountAlias.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreatePolicyRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreatePolicyRequest;
import com.amazonaws.services.identitymanagement.model.CreatePolicyResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreatePolicyRequest request = new CreatePolicyRequest()
 .withPolicyName(policy_name)
 .withPolicyDocument(POLICY_DOCUMENT);

CreatePolicyResult response = iam.createPolicy(request);

Los documentos de política de IAM; son cadenas JSON con una sintaxis bien documentada. Este es
un ejemplo que proporciona acceso para realizar determinadas solicitudes a DynamoDB.

public static final String POLICY_DOCUMENT =
 "{" +
 " \"Version\": \"2012-10-17\", " +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": \"logs:CreateLogGroup\"," +
 " \"Resource\": \"%s\"" +
 " }," +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"dynamodb:DeleteItem\"," +
 " \"dynamodb:GetItem\"," +
 " \"dynamodb:PutItem\"," +
 " \"dynamodb:Scan\"," +
 " \"dynamodb:UpdateItem\"" +
 "]," +
 " \"Resource\": \"RESOURCE_ARN\"" +
 " }" +
 "]" +

Uso de políticas de IAM 153

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 "}";

Consulte el ejemplo completo en GitHub.

Obtención de una política

Para recuperar una política existente, llame al método getPolicy de
AmazonIdentityManagementClient, proporcionando el ARN de la política en un objeto
GetPolicyRequest.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetPolicyRequest;
import com.amazonaws.services.identitymanagement.model.GetPolicyResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetPolicyRequest request = new GetPolicyRequest()
 .withPolicyArn(policy_arn);

GetPolicyResult response = iam.getPolicy(request);

Consulte el ejemplo completo en GitHub.

Asociar una política de rol

Puede adjuntar una política a un IAM http://docs.aws.amazon.com/IAM/latest/UserGuide/
id_roles.html[rol] llamando al attachRolePolicy método de AmazonIdentityManagementClient y
proporcionándole el nombre del rol y el ARN de la política en una AttachRolePolicyRequest.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AttachRolePolicyRequest;

Uso de políticas de IAM 154

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreatePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetPolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetPolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/AttachRolePolicyRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.identitymanagement.model.AttachedPolicy;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

AttachRolePolicyRequest attach_request =
 new AttachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(POLICY_ARN);

iam.attachRolePolicy(attach_request);

Consulte el ejemplo completo en GitHub.

Mostrar las políticas de rol asociadas

Enumerar las políticas asociadas a un rol llamando al método listAttachedRolePolicies de
AmazonIdentityManagementClient. Este método toma un objeto ListAttachedRolePoliciesRequest
que contiene el nombre del rol para el que se desea mostrar las políticas.

Llame a getAttachedPolicies en el objeto ListAttachedRolePoliciesResult devuelto para
obtener la lista de políticas asociadas. Los resultados pueden aparecer truncados; si el método
ListAttachedRolePoliciesResult del objeto getIsTruncated devuelve true, llame al
método ListAttachedRolePoliciesRequest del objeto setMarker y úselo para llamar a
listAttachedRolePolicies de nuevo para obtener el siguiente lote de resultados.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesRequest;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesResult;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

Código de

final AmazonIdentityManagement iam =

Uso de políticas de IAM 155

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesResult.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 AmazonIdentityManagementClientBuilder.defaultClient();

ListAttachedRolePoliciesRequest request =
 new ListAttachedRolePoliciesRequest()
 .withRoleName(role_name);

List<AttachedPolicy> matching_policies = new ArrayList<>();

boolean done = false;

while(!done) {
 ListAttachedRolePoliciesResult response =
 iam.listAttachedRolePolicies(request);

 matching_policies.addAll(
 response.getAttachedPolicies()
 .stream()
 .filter(p -> p.getPolicyName().equals(role_name))
 .collect(Collectors.toList()));

 if(!response.getIsTruncated()) {
 done = true;
 }
 request.setMarker(response.getMarker());
}

Consulte el ejemplo completo en GitHub.

Desvincular una política de rol

Para desvincular una política de un rol, llame al método detachRolePolicy de
AmazonIdentityManagementClient proporcionando el nombre de rol y el ARN de política en un objeto
DetachRolePolicyRequest.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyResult;

Código de

Uso de políticas de IAM 156

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DetachRolePolicyRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DetachRolePolicyRequest request = new DetachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(policy_arn);

DetachRolePolicyResult response = iam.detachRolePolicy(request);

Consulte el ejemplo completo en GitHub.

Más información

• Descripción general de políticas de IAM en la Guía del usuario de IAM.

• Referencia de políticas de AWS IAM en la Guía del usuario de IAM.

• CreatePolicy en la referencia de la API de IAM

• GetPolicy en la referencia de la API de IAM

• AttachRolePolicy en la referencia de la API de IAM

• ListAttachedRolePolicies en la referencia de la API de IAM

• DetachRolePolicy en la referencia de la API de IAM

Uso de certificados de servidor de IAM

Para habilitar las conexiones HTTPS en su sitio web o aplicación en AWS, necesita un certificado
de servidor SSL/TLS. Puede utilizar un certificado de servidor proporcionado por AWS Certificate
Manager o uno que haya obtenido de un proveedor externo.

Es recomendable utilizar ACM para aprovisionar, administrar e implementar los certificados de
servidor. Con ACM puede solicitar un certificado, implementarlo en los recursos de AWS y dejar que
ACM se ocupe de la renovación de los certificados. Los certificados proporcionados por ACM son
gratuitos. Para obtener más información acerca de ACM, consulte la Guía del usuario de ACM.

Obtener un certificado de servidor

Puede recuperar un certificado de servidor llamando al método getServerCertificate de
AmazonIdentityManagementClient, pasando un objeto GetServerCertificateRequest con el nombre
del certificado.

Uso de certificados de servidor de IAM 157

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DetachRolePolicy.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html
https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetServerCertificateRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetServerCertificateRequest request = new GetServerCertificateRequest()
 .withServerCertificateName(cert_name);

GetServerCertificateResult response = iam.getServerCertificate(request);

Consulte el ejemplo completo en GitHub.

Mostrar certificados de servidor

Para mostrar sus certificados de servidor, llame al método listServerCertificates de
AmazonIdentityManagementClient con un objeto ListServerCertificatesRequest. Este método
devuelve un objeto ListServerCertificatesResult.

Llame al método getServerCertificateMetadataList del objeto
ListServerCertificateResult devuelto para obtener una lista de objetos
ServerCertificateMetadata que puede usar para obtener información de cada certificado.

Los resultados pueden aparecer truncados; si el método ListServerCertificateResult del
objeto getIsTruncated devuelve true, llame al método ListServerCertificatesRequest
del objeto setMarker y úselo para llamar a listServerCertificates de nuevo para obtener el
siguiente lote de resultados.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesRequest;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesResult;

Uso de certificados de servidor de IAM 158

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetServerCertificate.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ServerCertificateMetadata.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.identitymanagement.model.ServerCertificateMetadata;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListServerCertificatesRequest request =
 new ListServerCertificatesRequest();

while(!done) {

 ListServerCertificatesResult response =
 iam.listServerCertificates(request);

 for(ServerCertificateMetadata metadata :
 response.getServerCertificateMetadataList()) {
 System.out.printf("Retrieved server certificate %s",
 metadata.getServerCertificateName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;
 }
}

Consulte el ejemplo completo en GitHub.

Actualizar un certificado de servidor

Puede actualizar el nombre o la ruta de un certificado de servidor llamando al método
updateServerCertificate de AmazonIdentityManagementClient. Este método toma un objeto
UpdateServerCertificateRequest establecido con el nombre actual del certificado de servidor o el
nuevo nombre o la nueva ruta que se va a usar.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;

Uso de certificados de servidor de IAM 159

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListServerCertificates.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateServerCertificateRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateServerCertificateRequest request =
 new UpdateServerCertificateRequest()
 .withServerCertificateName(cur_name)
 .withNewServerCertificateName(new_name);

UpdateServerCertificateResult response =
 iam.updateServerCertificate(request);

Consulte el ejemplo completo en GitHub.

Eliminar un certificado de servidor

Para eliminar un certificado de servidor, llame al método deleteServerCertificate de
AmazonIdentityManagementClient, con un objeto DeleteServerCertificateRequest que contenga el
nombre del certificado.

Importaciones

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateResult;

Código de

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteServerCertificateRequest request =
 new DeleteServerCertificateRequest()
 .withServerCertificateName(cert_name);

DeleteServerCertificateResult response =

Uso de certificados de servidor de IAM 160

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateServerCertificate.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteServerCertificateRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 iam.deleteServerCertificate(request);

Consulte el ejemplo completo en GitHub.

Más información

• Uso de certificados de servidor en la Guía del usuario de IAM

• GetServerCertificate en la referencia de la API de IAM

• ListServerCertificates en la referencia de la API de IAM

• UpdateServerCertificate en la referencia de la API de IAM

• DeleteServerCertificate en la referencia de la API de IAM

• Guía del usuario de ACM

Lambda Ejemplos de usando la AWS SDK para Java

En esta sección se proporcionan ejemplos de programación en Lambda mediante AWS SDK para
Java.

Note

Los ejemplos incluyen únicamente el código necesario para demostrar cada técnica. El
código de ejemplo completo está disponible en GitHub. Desde allí, puede descargar un único
archivo de código fuente o clonar el repositorio localmente para obtener todos los ejemplos
para compilarlos y ejecutarlos.

Temas

• Invocar, enumerar y eliminar funciones de Lambda

Invocar, enumerar y eliminar funciones de Lambda

En esta sección se proporcionan ejemplos de programación con el cliente de servicio de Lambda
mediante el AWS SDK para Java. Para aprender a crear una función Lambda, consulte Cómo crear
funciones AWS Lambda.

Temas

Ejemplos de Amazon Lambda 161

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteServerCertificate.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificates.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServerCertificate.html
https://docs.aws.amazon.com/acm/latest/userguide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Invocar una función

• Lista de funciones

• Eliminar una función

Invocar una función

Puede invocar una función Lambda creando un objeto AWSLambda e invocando su método
invoke. Cree un objeto InvokeRequest para especificar información adicional, como el nombre de
la función y la carga útil que pasar a la función Lambda. Los nombres de funciones aparecen como
arn:aws:lambda:us-east-1:555556330391:function:HelloFunction. Puede recuperar el valor viendo la
función en la Consola de administración de AWS.

Para pasar datos de carga útil a una función, invoque el método withPayload del objeto
InvokerEquest y especifique una cadena en formato JSON, como se muestra en el siguiente ejemplo
de código.

Importaciones

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.services.lambda.model.ServiceException;

import java.nio.charset.StandardCharsets;

Código de

En el ejemplo de código siguiente se muestra cómo invocar una función Lambda.

 String functionName = args[0];

 InvokeRequest invokeRequest = new InvokeRequest()
 .withFunctionName(functionName)
 .withPayload("{\n" +
 " \"Hello \": \"Paris\",\n" +
 " \"countryCode\": \"FR\"\n" +

Operaciones de servicio 162

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 "}");
 InvokeResult invokeResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 invokeResult = awsLambda.invoke(invokeRequest);

 String ans = new String(invokeResult.getPayload().array(),
 StandardCharsets.UTF_8);

 //write out the return value
 System.out.println(ans);

 } catch (ServiceException e) {
 System.out.println(e);
 }

 System.out.println(invokeResult.getStatusCode());

Consulte el ejemplo completo en Github.

Lista de funciones

Construya un objeto AWSLambda e invoque su método listFunctions. Este método devuelve un
objeto ListFunctionsResult. Puede invocar el método getFunctions de este objeto para devolver
una lista de objetos FunctionConfiguration. Puede recorrer la lista en iteración para recuperar
información sobre las funciones. Por ejemplo, el siguiente ejemplo de código Java muestra cómo
obtener el nombre de cada función.

Importaciones

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.FunctionConfiguration;
import com.amazonaws.services.lambda.model.ListFunctionsResult;
import com.amazonaws.services.lambda.model.ServiceException;
import java.util.Iterator;

Operaciones de servicio 163

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/LambdaInvokeFunction.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/ListFunctionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/FunctionConfiguration.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import java.util.List;

Código de

El siguiente ejemplo de código Java muestra cómo recuperar una lista de nombres de funciones de
Lambda.

 ListFunctionsResult functionResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 functionResult = awsLambda.listFunctions();

 List<FunctionConfiguration> list = functionResult.getFunctions();

 for (Iterator iter = list.iterator(); iter.hasNext();) {
 FunctionConfiguration config = (FunctionConfiguration)iter.next();

 System.out.println("The function name is "+config.getFunctionName());
 }

 } catch (ServiceException e) {
 System.out.println(e);
 }

Consulte el ejemplo completo en Github.

Eliminar una función

Construya un objeto AWSLambda e invoque su método deleteFunction. Cree un objeto
DeleteFunctionRequest y páselo al método deleteFunction. Este objeto contiene información
como el nombre de la función que se va a eliminar. Los nombres de funciones aparecen como
arn:aws:lambda:us-east-1:555556330391:function:HelloFunction. Puede recuperar el valor viendo la
función en la Consola de administración de AWS.

Importaciones

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

Operaciones de servicio 164

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/ListFunctions.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/DeleteFunctionRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.ServiceException;
import com.amazonaws.services.lambda.model.DeleteFunctionRequest;

Código de

El siguiente código Java muestra cómo eliminar una función Lambda.

 String functionName = args[0];
 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 DeleteFunctionRequest delFunc = new DeleteFunctionRequest();
 delFunc.withFunctionName(functionName);

 //Delete the function
 awsLambda.deleteFunction(delFunc);
 System.out.println("The function is deleted");

 } catch (ServiceException e) {
 System.out.println(e);
 }

Consulte el ejemplo completo en Github.

Amazon Pinpoint Ejemplos de usando la AWS SDK para Java

En esta sección se proporcionan ejemplos de programación de Amazon Pinpoint mediante AWS
SDK para Java.

Note

Los ejemplos incluyen únicamente el código necesario para demostrar cada técnica. El
código de ejemplo completo está disponible en GitHub. Desde allí, puede descargar un único
archivo de código fuente o clonar el repositorio localmente para obtener todos los ejemplos
para compilarlos y ejecutarlos.

Amazon PinpointEjemplos de 165

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/DeleteFunction.java
https://aws.amazon.com/pinpoint/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Temas

• Creación y eliminación de aplicaciones en Amazon Pinpoint

• Creación de puntos de conexón en Amazon Pinpoint

• Creación de segmentos en Amazon Pinpoint

• Creación de campañas en Amazon Pinpoint

• Actualización de canales en Amazon Pinpoint

Creación y eliminación de aplicaciones en Amazon Pinpoint

Una aplicación es un proyecto de Amazon Pinpoint en el que se define el público de una aplicación
y se intenta atraer a dicho público con mensajes personalizados. Los ejemplos de esta página
demuestran cómo crear una aplicación o cómo eliminar una existente.

Crear una aplicación

Para crear una aplicación en Amazon Pinpoint, proporcione un nombre de aplicación al
objeto CreateAppRequest y, a continuación, pase dicho objeto al método createApp de
AmazonPinpointClient.

Importaciones

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateAppRequest;
import com.amazonaws.services.pinpoint.model.CreateAppResult;
import com.amazonaws.services.pinpoint.model.CreateApplicationRequest;

Código de

CreateApplicationRequest appRequest = new CreateApplicationRequest()
 .withName(appName);

CreateAppRequest request = new CreateAppRequest();
request.withCreateApplicationRequest(appRequest);
CreateAppResult result = pinpoint.createApp(request);

Consulte el ejemplo completo en GitHub.

Creación y eliminación de aplicaciones en Amazon Pinpoint 166

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateAppRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Eliminar una aplicación

Para eliminar una aplicación, llame a la solicitud deleteApp de AmazonPinpointClient con un objeto
DeleteAppRequest en el que se indica el nombre de la aplicación que se va a eliminar.

Importaciones

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;

Código de

DeleteAppRequest deleteRequest = new DeleteAppRequest()
 .withApplicationId(appID);

pinpoint.deleteApp(deleteRequest);

Consulte el ejemplo completo en GitHub.

Más información

• Apps en la Referencia de la API de Amazon Pinpoint

• App en la Referencia de la API de Amazon Pinpoint

Creación de puntos de conexón en Amazon Pinpoint

Un punto de enlace identifica de forma exclusiva el dispositivo de un usuario al que puede enviar
notificaciones de inserción con Amazon Pinpoint. Si la aplicación está habilitada con la compatibilidad
con Amazon Pinpoint, registra automáticamente un punto de enlace en Amazon Pinpoint cuando la
abre un nuevo usuario. En el siguiente ejemplo se muestra cómo añadir un nuevo punto de enlace
mediante programación.

Crear un punto de conexión

Para crear un punto de enlace en Amazon Pinpoint, proporcione los datos correspondientes a este
en un objeto EndpointRequest.

Importaciones

Creación de puntos de conexón en Amazon Pinpoint 167

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/DeleteAppRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/DeleteApp.java
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apps.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-app.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/EndpointRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.UpdateEndpointRequest;
import com.amazonaws.services.pinpoint.model.UpdateEndpointResult;
import com.amazonaws.services.pinpoint.model.EndpointDemographic;
import com.amazonaws.services.pinpoint.model.EndpointLocation;
import com.amazonaws.services.pinpoint.model.EndpointRequest;
import com.amazonaws.services.pinpoint.model.EndpointResponse;
import com.amazonaws.services.pinpoint.model.EndpointUser;
import com.amazonaws.services.pinpoint.model.GetEndpointRequest;
import com.amazonaws.services.pinpoint.model.GetEndpointResult;

Código de

HashMap<String, List<String>> customAttributes = new HashMap<>();
List<String> favoriteTeams = new ArrayList<>();
favoriteTeams.add("Lakers");
favoriteTeams.add("Warriors");
customAttributes.put("team", favoriteTeams);

EndpointDemographic demographic = new EndpointDemographic()
 .withAppVersion("1.0")
 .withMake("apple")
 .withModel("iPhone")
 .withModelVersion("7")
 .withPlatform("ios")
 .withPlatformVersion("10.1.1")
 .withTimezone("America/Los_Angeles");

EndpointLocation location = new EndpointLocation()
 .withCity("Los Angeles")
 .withCountry("US")
 .withLatitude(34.0)
 .withLongitude(-118.2)
 .withPostalCode("90068")
 .withRegion("CA");

Map<String,Double> metrics = new HashMap<>();
metrics.put("health", 100.00);
metrics.put("luck", 75.00);

EndpointUser user = new EndpointUser()

Creación de puntos de conexón en Amazon Pinpoint 168

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withUserId(UUID.randomUUID().toString());

DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm'Z'"); // Quoted "Z" to
 indicate UTC, no timezone offset
String nowAsISO = df.format(new Date());

EndpointRequest endpointRequest = new EndpointRequest()
 .withAddress(UUID.randomUUID().toString())
 .withAttributes(customAttributes)
 .withChannelType("APNS")
 .withDemographic(demographic)
 .withEffectiveDate(nowAsISO)
 .withLocation(location)
 .withMetrics(metrics)
 .withOptOut("NONE")
 .withRequestId(UUID.randomUUID().toString())
 .withUser(user);

A continuación, cree un objeto UpdateEndpointRequest con ese objeto EndpointRequest. Por último,
pase el objeto UpdateEndpointRequest al método updateEndpoint de AmazonPinpointClient.

Código de

UpdateEndpointRequest updateEndpointRequest = new UpdateEndpointRequest()
 .withApplicationId(appId)
 .withEndpointId(endpointId)
 .withEndpointRequest(endpointRequest);

UpdateEndpointResult updateEndpointResponse =
 client.updateEndpoint(updateEndpointRequest);
System.out.println("Update Endpoint Response: " +
 updateEndpointResponse.getMessageBody());

Consulte el ejemplo completo en GitHub.

Más información

• Añadir punto de conexión en la Guía para desarrolladores de Amazon Pinpoint

• Endpoint en la referencia de la APP de Amazon Pinpoint

Creación de puntos de conexón en Amazon Pinpoint 169

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateEndpointRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateEndpoint.java
https://docs.aws.amazon.com/pinpoint/latest/developerguide/endpoints.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-endpoint.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Creación de segmentos en Amazon Pinpoint

Un segmento de usuarios representa un subconjunto de los usuarios basado en ciertas
características compartidas, por ejemplo, cuándo abrió el usuario la aplicación por última vez o qué
dispositivo utiliza. El siguiente ejemplo muestra cómo definir un segmento de usuarios.

Crear un segmento

Para crear un segmento en Amazon Pinpoint, defina las dimensiones del segmento en un objeto
SegmentDimensions.

Importaciones

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateSegmentRequest;
import com.amazonaws.services.pinpoint.model.CreateSegmentResult;
import com.amazonaws.services.pinpoint.model.AttributeDimension;
import com.amazonaws.services.pinpoint.model.AttributeType;
import com.amazonaws.services.pinpoint.model.RecencyDimension;
import com.amazonaws.services.pinpoint.model.SegmentBehaviors;
import com.amazonaws.services.pinpoint.model.SegmentDemographics;
import com.amazonaws.services.pinpoint.model.SegmentDimensions;
import com.amazonaws.services.pinpoint.model.SegmentLocation;
import com.amazonaws.services.pinpoint.model.SegmentResponse;
import com.amazonaws.services.pinpoint.model.WriteSegmentRequest;

Código de

Pinpoint pinpoint =
 AmazonPinpointClientBuilder.standard().withRegion(Regions.US_EAST_1).build();
Map<String, AttributeDimension> segmentAttributes = new HashMap<>();
segmentAttributes.put("Team", new
 AttributeDimension().withAttributeType(AttributeType.INCLUSIVE).withValues("Lakers"));

SegmentBehaviors segmentBehaviors = new SegmentBehaviors();
SegmentDemographics segmentDemographics = new SegmentDemographics();
SegmentLocation segmentLocation = new SegmentLocation();

RecencyDimension recencyDimension = new RecencyDimension();
recencyDimension.withDuration("DAY_30").withRecencyType("ACTIVE");
segmentBehaviors.setRecency(recencyDimension);

Creación de segmentos en Amazon Pinpoint 170

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

SegmentDimensions dimensions = new SegmentDimensions()
 .withAttributes(segmentAttributes)
 .withBehavior(segmentBehaviors)
 .withDemographic(segmentDemographics)
 .withLocation(segmentLocation);

A continuación, establezca el objeto SegmentDimensions en una solicitud WriteSegmentRequest
que, a su vez, se utiliza para crear un objeto CreateSegmentRequest. Después, pase el objeto
CreateSegmentRequest al método createSegment de AmazonPinpointClient.

Código de

WriteSegmentRequest writeSegmentRequest = new WriteSegmentRequest()
 .withName("MySegment").withDimensions(dimensions);

CreateSegmentRequest createSegmentRequest = new CreateSegmentRequest()
 .withApplicationId(appId).withWriteSegmentRequest(writeSegmentRequest);

CreateSegmentResult createSegmentResult = client.createSegment(createSegmentRequest);

Consulte el ejemplo completo en GitHub.

Más información

• Segmentos de Amazon Pinpoint en la Guía del usuario de Amazon Pinpoint

• Crear segmentos en la Guía para desarrolladores de Amazon Pinpoint.

• Segmentos en la referencia de la API de Amazon Pinpoint

• Segmento en la Referencia de la API de Amazon Pinpoint

Creación de campañas en Amazon Pinpoint

Use las campañas para ayudar a aumentar la conexión entre la aplicación y los usuarios. Puede
crear una campaña que se dirija a un segmento de usuarios concretos, con mensajes personalizados
o promociones especiales. Este ejemplo demuestra cómo crear una campaña estándar que envía
una notificación de inserción personalizada a un segmento especificado.

Crear una campaña

Antes de crear una campaña, debe definir un valor para Schedule y Message y establecer ambos
valores en un objeto WriteCampaignRequest.

Creación de campañas en Amazon Pinpoint 171

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteSegmentRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateSegmentRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateSegment.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/segments.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/segments.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segments.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segment.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Schedule.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Message.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateCampaignRequest;
import com.amazonaws.services.pinpoint.model.CreateCampaignResult;
import com.amazonaws.services.pinpoint.model.Action;
import com.amazonaws.services.pinpoint.model.CampaignResponse;
import com.amazonaws.services.pinpoint.model.Message;
import com.amazonaws.services.pinpoint.model.MessageConfiguration;
import com.amazonaws.services.pinpoint.model.Schedule;
import com.amazonaws.services.pinpoint.model.WriteCampaignRequest;

Código de

Schedule schedule = new Schedule()
 .withStartTime("IMMEDIATE");

Message defaultMessage = new Message()
 .withAction(Action.OPEN_APP)
 .withBody("My message body.")
 .withTitle("My message title.");

MessageConfiguration messageConfiguration = new MessageConfiguration()
 .withDefaultMessage(defaultMessage);

WriteCampaignRequest request = new WriteCampaignRequest()
 .withDescription("My description.")
 .withSchedule(schedule)
 .withSegmentId(segmentId)
 .withName("MyCampaign")
 .withMessageConfiguration(messageConfiguration);

A continuación, cree una campaña en Amazon Pinpoint. Para ello, proporcione el elemento
WriteCampaignRequest con la configuración de la campaña a un objeto CreateCampaignRequest.
Por último, pase el objeto CreateCampaignRequest al método createCampaign de
AmazonPinpointClient.

Código de

CreateCampaignRequest createCampaignRequest = new CreateCampaignRequest()

Creación de campañas en Amazon Pinpoint 172

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/pinpoint/model/CreateCampaignRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withApplicationId(appId).withWriteCampaignRequest(request);

CreateCampaignResult result = client.createCampaign(createCampaignRequest);

Consulte el ejemplo completo en GitHub.

Más información

• Campañas de Amazon Pinpoint en la Guía del usuario de Amazon Pinpoint

• Creación de campañas en la Guía para desarrolladores de Amazon Pinpoint.

• Campañas en la Referencia de la API de Amazon Pinpoint

• Campaña en la Referencia de la API de Amazon Pinpoint

• Actividades de campaña en la Referencia de la API de Amazon Pinpoint

• Versiones de campaña en la Referencia de la API de Amazon Pinpoint

• Versión de campaña en la Referencia de la API de Amazon Pinpoint

Actualización de canales en Amazon Pinpoint

Un canal define los tipos de plataformas a los que puede entregar mensajes. Este ejemplo muestra
cómo utilizar los canales de APNS para enviar un mensaje.

Actualizar un canal

Para habilitar un canal en Amazon Pinpoint, proporcione un ID de aplicación y un objeto de solicitud
del tipo de canal que desea actualizar. En este ejemplo se actualiza el canal de APNS, que requiere
el objeto APNSChannelRequest. Defina estos valores en UpdateApnsChannelRequest y pase el
objeto al método updateApnsChannel de AmazonPinpointClient.

Importaciones

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.APNSChannelRequest;
import com.amazonaws.services.pinpoint.model.APNSChannelResponse;
import com.amazonaws.services.pinpoint.model.GetApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.GetApnsChannelResult;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelRequest;

Actualización de canales en Amazon Pinpoint 173

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-activities.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-versions.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-version.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/APNSChannelRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateApnsChannelRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.pinpoint.model.UpdateApnsChannelResult;

Código de

APNSChannelRequest request = new APNSChannelRequest()
 .withEnabled(enabled);

UpdateApnsChannelRequest updateRequest = new UpdateApnsChannelRequest()
 .withAPNSChannelRequest(request)
 .withApplicationId(appId);
UpdateApnsChannelResult result = client.updateApnsChannel(updateRequest);

Consulte el ejemplo completo en GitHub.

Más información

• Canales de Amazon Pinpoint en la Guía del usuario de Amazon Pinpoint

• ADM Channel en la referencia de la API de Amazon Pinpoint

• APNs Channel en la referencia de la API de Amazon Pinpoint

• APNs Sandbox Channel en la referencia de la API de Amazon Pinpoint

• APNs VoIP Channel en la referencia de la API de Amazon Pinpoint

• APNs VoIP Sandbox Channel en la referencia de la API de Amazon Pinpoint

• Baidu Channel en la referencia de la API de Amazon Pinpoint

• Email Channel en la referencia de la API de Amazon Pinpoint

• GCM Channel en la referencia de la API de Amazon Pinpoint

• SMS Channel en la referencia de la API de Amazon Pinpoint

Amazon S3 Ejemplos de usando la AWS SDK para Java

En esta sección se proporcionan ejemplos de programación de Amazon S3 mediante AWS SDK para
Java.

Note

Los ejemplos incluyen únicamente el código necesario para demostrar cada técnica. El
código de ejemplo completo está disponible en GitHub. Desde allí, puede descargar un único

Amazon S3Ejemplos de 174

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/UpdateChannel.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-adm-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-sandbox-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-sandbox-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-baidu-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-email-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-gcm-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-sms-channel.html
https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

archivo de código fuente o clonar el repositorio localmente para obtener todos los ejemplos
para compilarlos y ejecutarlos.

Temas

• Creación, enumeración y eliminación de buckets de Amazon S3

• Realizar operaciones en objetos de Amazon S3

• Administración de permisos de acceso de Amazon S3 para buckets y objetos

• Administración del acceso a los buckets de Amazon S3 mediante políticas de buckets

• Uso de TransferManager para operaciones de Amazon S3

• Configuración de un bucket de Amazon S3 como un sitio web

• Usar cifrado del cliente de Amazon S3

Creación, enumeración y eliminación de buckets de Amazon S3

Todos los objetos (archivos) de Amazon S3 deben residir en un bucket, que representa una
colección (contenedor) de objetos. Cada bucket se designa por medio de una clave (nombre),
que debe ser única. Para obtener información detallada acerca de los buckets y su configuración,
consulte Uso de buckets de Amazon S3 en la Guía del usuario de Amazon Simple Storage Service.

Note

Práctica recomendada
Le recomendamos que habilite la regla del ciclo de vida AbortIncompleteMultipartUpload en
los buckets de Amazon S3.
Esta regla le indica a Amazon S3 que anule las cargas multiparte que no se completen en un
número especificado de días después de iniciarse. Cuando se supera el plazo establecido,
Amazon S3 anula la carga y, a continuación, elimina la carga de datos incompleta.
Para obtener más información, consulte Configuración de ciclo de vida para un bucket con
control de versiones en la Guía del usuario de Amazon S3.

Note

En estos ejemplos de código se presupone que conoce la información que se describe en
Uso del AWS SDK para Java y que ha configurado credenciales de AWS predeterminadas

Creación, enumeración y eliminación de buckets de Amazon S3 175

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

mediante la información de Configuración de credenciales y regiones de AWS para
desarrollo.

Crear un bucket

Utilizar el método createBucket del cliente AmazonS3. Se devuelve el nuevo bucket. El método
createBucket producirá una excepción si el bucket ya existe.

Note

Para comprobar si un bucket ya existe antes de intentar crear uno con el mismo nombre,
llame al método doesBucketExist. Este método devolverá true si el bucket existe y
false en caso contrario.

Importaciones

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

Código de

if (s3.doesBucketExistV2(bucket_name)) {
 System.out.format("Bucket %s already exists.\n", bucket_name);
 b = getBucket(bucket_name);
} else {
 try {
 b = s3.createBucket(bucket_name);
 } catch (AmazonS3Exception e) {
 System.err.println(e.getErrorMessage());
 }
}
return b;

Creación, enumeración y eliminación de buckets de Amazon S3 176

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Consulte el ejemplo completo en GitHub.

Lista de buckets

Utilizar el método listBucket del cliente AmazonS3. Si se ejecuta correctamente, se devuelve una
lista de buckets.

Importaciones

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

Código de

List<Bucket> buckets = s3.listBuckets();
System.out.println("Your {S3} buckets are:");
for (Bucket b : buckets) {
 System.out.println("* " + b.getName());
}

Consulte el ejemplo completo en GitHub.

Eliminar un bucket

Antes de eliminar un bucket de Amazon S3, debe asegurarse de que el bucket está vacío o se
producirá un error. Si tiene un bucket con control de versiones, también debe eliminar todos los
objetos con control de versiones asociados al bucket.

Note

El ejemplo completo incluye cada uno de estos pasos en orden, lo que constituye una
solución completa para eliminar un bucket de Amazon S3 y su contenido.

Temas

Creación, enumeración y eliminación de buckets de Amazon S3 177

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CreateBucket.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListBuckets.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Eliminar objetos de un bucket sin control de versiones antes de eliminarlo

• Eliminar objetos de un bucket con control de versiones antes de eliminarlo

• Eliminar un bucket vacío

Eliminar objetos de un bucket sin control de versiones antes de eliminarlo

Utilice el método listObjects del cliente AmazonS3 para recuperar la lista de objetos y
deleteObject para eliminar cada uno de ellos.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Código de

System.out.println(" - removing objects from bucket");
ObjectListing object_listing = s3.listObjects(bucket_name);
while (true) {
 for (Iterator<?> iterator =
 object_listing.getObjectSummaries().iterator();
 iterator.hasNext();) {
 S3ObjectSummary summary = (S3ObjectSummary) iterator.next();
 s3.deleteObject(bucket_name, summary.getKey());
 }

 // more object_listing to retrieve?
 if (object_listing.isTruncated()) {
 object_listing = s3.listNextBatchOfObjects(object_listing);
 } else {
 break;
 }
}

Consulte el ejemplo completo en GitHub.

Creación, enumeración y eliminación de buckets de Amazon S3 178

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Eliminar objetos de un bucket con control de versiones antes de eliminarlo

Si utiliza un bucket con control de versiones, también tendrá que eliminar todas las versiones
almacenadas de los objetos del bucket para poder eliminarlo.

Siguiendo un patrón similar al utilizado para eliminar objetos dentro de un bucket, elimine los objetos
con control de versiones utilizando el método listVersions del cliente AmazonS3 para mostrar
todos los objetos con control de versiones y después deleteVersion para eliminar cada uno de
ellos.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Código de

System.out.println(" - removing versions from bucket");
VersionListing version_listing = s3.listVersions(
 new ListVersionsRequest().withBucketName(bucket_name));
while (true) {
 for (Iterator<?> iterator =
 version_listing.getVersionSummaries().iterator();
 iterator.hasNext();) {
 S3VersionSummary vs = (S3VersionSummary) iterator.next();
 s3.deleteVersion(
 bucket_name, vs.getKey(), vs.getVersionId());
 }

 if (version_listing.isTruncated()) {
 version_listing = s3.listNextBatchOfVersions(
 version_listing);
 } else {
 break;
 }
}

Creación, enumeración y eliminación de buckets de Amazon S3 179

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Consulte el ejemplo completo en GitHub.

Eliminar un bucket vacío

Después de eliminar los objetos de un bucket (incluidos los objetos con control de versiones), puede
eliminar el propio bucket mediante el método deleteBucket del cliente AmazonS3.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Código de

System.out.println(" OK, bucket ready to delete!");
s3.deleteBucket(bucket_name);

Consulte el ejemplo completo en GitHub.

Realizar operaciones en objetos de Amazon S3

Un objeto de Amazon S3 representa un archivo o conjunto de datos. Cada objeto debe residir en un
bucket.

Note

En estos ejemplos de código se presupone que conoce la información que se describe en
Uso del AWS SDK para Java y que ha configurado credenciales de AWS predeterminadas
mediante la información de Configuración de credenciales y regiones de AWS para
desarrollo.

Temas

• Carga de un objeto

Realizar operaciones en objetos de Amazon S3 180

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Lista de objetos

• Descarga de un objeto

• Copiar, mover o cambiar de nombre objetos

• Eliminar un objeto

• Eliminación de varios objetos a la vez

Carga de un objeto

Utilice el método putObject del cliente AmazonS3, proporcionando un nombre de bucket, un
nombre de clave y el archivo que se va a cargar. El bucket debe existir o se producirá un error.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Código de

System.out.format("Uploading %s to S3 bucket %s...\n", file_path, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.putObject(bucket_name, key_name, new File(file_path));
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Lista de objetos

Para obtener una lista de objetos dentro de un bucket, utilice el método listObjects del cliente
AmazonS3, proporcionando el nombre de un bucket.

El método listObjects devuelve un objeto ObjectListing que proporciona información
acerca de los objetos del bucket. Para mostrar los nombres de objeto (claves), utilice el método

Realizar operaciones en objetos de Amazon S3 181

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/PutObject.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/ObjectListing.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

getObjectSummaries para obtener una lista de objetos S3ObjectSummary, cada uno de los
cuales representa un solo objeto del bucket. A continuación, llame a su método getKey para
recuperar el nombre del objeto.

Importaciones

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListObjectsV2Result;
import com.amazonaws.services.s3.model.S3ObjectSummary;

Código de

System.out.format("Objects in S3 bucket %s:\n", bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
ListObjectsV2Result result = s3.listObjectsV2(bucket_name);
List<S3ObjectSummary> objects = result.getObjectSummaries();
for (S3ObjectSummary os : objects) {
 System.out.println("* " + os.getKey());
}

Consulte el ejemplo completo en GitHub.

Descarga de un objeto

Utilice el método getObject del cliente AmazonS3, pasando el nombre del bucket y el objeto que
se van a descargar. Si se ejecuta correctamente, el método devuelve un S3Object. El bucket y la
clave de objeto especificados deben existir o se producirá un error.

Puede obtener el contenido del objeto llamando a getObjectContent en el S3Object. Esto
devuelve un S3ObjectInputStream que se comporta como un objeto InputStream Java estándar.

El siguiente ejemplo descarga un objeto de S3 y guarda su contenido en un archivo (con el mismo
nombre que la clave del objeto).

Importaciones

import com.amazonaws.AmazonServiceException;

Realizar operaciones en objetos de Amazon S3 182

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectSummary.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListObjects.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3Object.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectInputStream.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectInputStream;

import java.io.File;

Código de

System.out.format("Downloading %s from S3 bucket %s...\n", key_name, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 S3Object o = s3.getObject(bucket_name, key_name);
 S3ObjectInputStream s3is = o.getObjectContent();
 FileOutputStream fos = new FileOutputStream(new File(key_name));
 byte[] read_buf = new byte[1024];
 int read_len = 0;
 while ((read_len = s3is.read(read_buf)) > 0) {
 fos.write(read_buf, 0, read_len);
 }
 s3is.close();
 fos.close();
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
} catch (FileNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (IOException e) {
 System.err.println(e.getMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Copiar, mover o cambiar de nombre objetos

Puede copiar un objeto de un bucket en otro mediante el método copyObject del cliente
AmazonS3. Este método toma el nombre del bucket desde el que se va a realizar la copia, el objeto
destino de la copia y el nombre del bucket de destino.

Realizar operaciones en objetos de Amazon S3 183

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetObject.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

Código de

try {
 s3.copyObject(from_bucket, object_key, to_bucket, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
System.out.println("Done!");

Consulte el ejemplo completo en GitHub.

Note

Puede utilizar copyObject con deleteObject para mover o cambiar de nombre un objeto.
Para ello, primero copie el objeto en un nuevo nombre (puede utilizar el mismo bucket como
origen y destino) y, a continuación, elimine el objeto de su antigua ubicación.

Eliminar un objeto

Utilice el método deleteObject del cliente AmazonS3, pasando el nombre del bucket y el objeto
que se van a eliminar. El bucket y la clave de objeto especificados deben existir o se producirá un
error.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

Código de

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {

Realizar operaciones en objetos de Amazon S3 184

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CopyObject.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 s3.deleteObject(bucket_name, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Eliminación de varios objetos a la vez

Con el método deleteObjects del cliente AmazonS3, puede eliminar varios objetos del mismo
bucket pasando sus nombres al método link:sdk-for-java/v1/reference/com/amazonaws/services/s3/
model/DeleteObjectsRequest.html.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Código de

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 DeleteObjectsRequest dor = new DeleteObjectsRequest(bucket_name)
 .withKeys(object_keys);
 s3.deleteObjects(dor);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Administración de permisos de acceso de Amazon S3 para buckets y
objetos

Puede utilizar listas de control de acceso (ACL) para los buckets y objetos de Amazon S3 para
obtener un control detallado de los recursos de Amazon S3.

Administración de permisos de acceso de Amazon S3 para buckets y objetos 185

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObject.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObjects.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Note

En estos ejemplos de código se presupone que conoce la información que se describe en
Uso del AWS SDK para Java y que ha configurado credenciales de AWS predeterminadas
mediante la información de Configuración de credenciales y regiones de AWS para
desarrollo.

Obtener la lista de control de acceso de un bucket

Para obtener la ACL actual de un bucket, llame al método getBucketAcl de AmazonS3, pasando
el nombre de bucket que se desea consultar. Este método devuelve un objeto AccessControlList.
Para obtener cada concesión de acceso en la lista, llame a su método getGrantsAsList, que
devuelve una lista Java estándar de objetos Grant.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Código de

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Administración de permisos de acceso de Amazon S3 para buckets y objetos 186

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Establecer la lista de control de acceso de un bucket

Para añadir o modificar permisos de la ACL de un bucket, llame al método setBucketAcl
de AmazonS3. Este método toma un objeto AccessControlList que contiene una lista de los
destinatarios del acceso y los niveles de acceso que se van a establecer.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

Código de

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 // get the current ACL
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setBucketAcl(bucket_name, acl);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note

Puede proporcionar directamente el identificador único del destinatario del acceso mediante
la clase Grantee o puede usar la clase EmailAddressGrantee para definir el destinatario del
acceso por correo electrónico, como hemos hecho aquí.

Consulte el ejemplo completo en GitHub.

Administración de permisos de acceso de Amazon S3 para buckets y objetos 187

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Obtener la lista de control de acceso de un objeto

Para obtener la ACL actual de un objeto, llame al método getObjectAcl de AmazonS3, pasando
el nombre de bucket y el nombre de objeto que se desea consultar. Al igual que getBucketAcl,
este método devuelve un objeto AccessControlList, que puede utilizar para examinar cada uno de los
objetos Grant.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Código de

try {
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Establecer la lista de control de acceso de un objeto

Para añadir o modificar permisos para la ACL de un objeto, llame al método setObjectAcl
de AmazonS3. Este método toma un objeto AccessControlList que contiene una lista de los
destinatarios del acceso y los niveles de acceso que se van a establecer.

Importaciones

import com.amazonaws.AmazonServiceException;

Administración de permisos de acceso de Amazon S3 para buckets y objetos 188

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

Código de

 try {
 // get the current ACL
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setObjectAcl(bucket_name, object_key, acl);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }
}

Note

Puede proporcionar directamente el identificador único del destinatario del acceso mediante
la clase Grantee o puede usar la clase EmailAddressGrantee para definir el destinatario del
acceso por correo electrónico, como hemos hecho aquí.

Consulte el ejemplo completo en GitHub.

Más información

• GET Bucket acl en la referencia de la API de Amazon S3

• PUT Bucket acl en la referencia de la API de Amazon S3

• GET Object acl en la referencia de la API de Amazon S3

• PUT Object acl en la referencia de la API de Amazon S3

Administración de permisos de acceso de Amazon S3 para buckets y objetos 189

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Administración del acceso a los buckets de Amazon S3 mediante políticas
de buckets

Puede definir, obtener o eliminar una política de bucket para administrar el acceso a los buckets de
Amazon S3.

Definir una política de bucket

Puede definir la política de bucket para un determinado bucket de S3:

• Llamando al setBucketPolicy de AmazonS3 client y proporcionándole un
SetBucketPolicyRequest

• Estableciendo la política directamente mediante la sobrecarga setBucketPolicy, que toma un
nombre de bucket y el texto de la política (en formato JSON)

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.policy.Policy;
import com.amazonaws.auth.policy.Principal;

Código de

 s3.setBucketPolicy(bucket_name, policy_text);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Usar la clase Class para generar o validar una política

Cuando proporciona una política de bucket a setBucketPolicy, puede hacer lo siguiente:

• Especificar la política directamente como una cadena de texto con formato JSON

• Crear la política con la clase Policy

Si utiliza la clase Policy, no tendrá que preocuparse de formatear correctamente la cadena de
texto. Para obtener el texto de la política JSON de la clase Policy, utilice su método toJson.

Administración del acceso a los buckets de Amazon S3 mediante políticas de buckets 190

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/SetBucketPolicyRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/policy/Policy.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.actions.S3Actions;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Código de

 new Statement(Statement.Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new Resource(
 "{region-arn}s3:::" + bucket_name + "/*")));
return bucket_policy.toJson();

La clase Policy proporciona también un método fromJson que intenta crear una política
mediante una cadena JSON que se haya pasado. El método valida la cadena para garantizar
que el texto se pueda transformar en una estructura de política válida y dará un error
IllegalArgumentException si el texto de la política no es válido.

Policy bucket_policy = null;
try {
 bucket_policy = Policy.fromJson(file_text.toString());
} catch (IllegalArgumentException e) {
 System.out.format("Invalid policy text in file: \"%s\"",
 policy_file);
 System.out.println(e.getMessage());
}

Puede utilizar esta técnica para validar previamente una política leída de un archivo o por otros
medios.

Consulte el ejemplo completo en GitHub.

Obtener una política de bucket

Para recuperar la política de un bucket de Amazon S3, llame al método getBucketPolicy del
AmazonS3 client pasando el nombre del bucket del que se va a obtener la política.

Administración del acceso a los buckets de Amazon S3 mediante políticas de buckets 191

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetBucketPolicy.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Código de

 try {
 BucketPolicy bucket_policy = s3.getBucketPolicy(bucket_name);
 policy_text = bucket_policy.getPolicyText();
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

Si el bucket especificado no existe, si no tiene acceso a él o si no tiene una política de bucket, se
produce la excepción AmazonServiceException.

Consulte el ejemplo completo en GitHub.

Eliminar una política de bucket

Para eliminar una política de bucket, llame al deleteBucketPolicy de AmazonS3 client
proporcionando el nombre del bucket.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Código de

 try {
 s3.deleteBucketPolicy(bucket_name);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

Administración del acceso a los buckets de Amazon S3 mediante políticas de buckets 192

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetBucketPolicy.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 }

Este método se ejecuta correctamente aunque el bucket aún no tenga una política. Si especifica
el nombre de un bucket que no existe o si no tiene acceso al bucket, se produce la excepción
AmazonServiceException.

Consulte el ejemplo completo en GitHub.

Más información

• Información general del lenguaje de la política de acceso en la Guía del usuario de Amazon Simple
Storage Service

• Ejemplos de política de bucket en la Guía del usuario de Amazon Simple Storage Service

Uso de TransferManager para operaciones de Amazon S3

Puede utilizar la clase AWS SDK para Java TransferManager para transferir archivos de forma
fiable desde el entorno local a Amazon S3 y para copiar objetos de una ubicación de S3 a otra.
TransferManager puede obtener el progreso de la transferencia y detener o reanudar las cargas y
descargas.

Note

Práctica recomendada
Le recomendamos que habilite la regla del ciclo de vida AbortIncompleteMultipartUpload en
los buckets de Amazon S3.
Esta regla le indica a Amazon S3 que anule las cargas multiparte que no se completen en un
número especificado de días después de iniciarse. Cuando se supera el plazo establecido,
Amazon S3 anula la carga y, a continuación, elimina la carga de datos incompleta.
Para obtener más información, consulte Configuración de ciclo de vida para un bucket con
control de versiones en la Guía del usuario de Amazon S3.

Note

En estos ejemplos de código se presupone que conoce la información que se describe en
Uso del AWS SDK para Java y que ha configurado credenciales de AWS predeterminadas

Uso de TransferManager para operaciones de Amazon S3 193

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucketPolicy.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

mediante la información de Configuración de credenciales y regiones de AWS para
desarrollo.

Carga de archivos y directorios

TransferManager puede cargar archivos, listas de archivos y directorios en cualquier bucket de
Amazon S3 que haya creado previamente.

Temas

• Carga de un solo archivo

• Carga de una lista de archivos

• Carga de un directorio

Carga de un solo archivo

Llame al método upload de TransferManager, proporcionando un nombre de bucket de Amazon
S3, un nombre de clave (objeto) y un objeto File Java estándar que represente el archivo que se va a
cargar.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Código de

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload xfer = xfer_mgr.upload(bucket_name, key_name, f);

Uso de TransferManager para operaciones de Amazon S3 194

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

El método upload regresa inmediatamente, proporcionando el objeto Upload que se va a usar para
comprobar el estado de la transferencia o esperar a que se complete.

Consulte Esperar a que se complete una transferencia para obtener información sobre cómo usar
waitForCompletion para completar correctamente una transferencia antes de llamar al método
shutdownNow de TransferManager. Mientras espera a que se complete la transferencia, puede
buscar o atender las actualizaciones sobre su estado y su progreso. Consulte Obtener el estado y el
progreso de una transferencia para obtener más información.

Consulte el ejemplo completo en GitHub.

Carga de una lista de archivos

Para cargar varios archivos en una sola operación, llame al método uploadFileList de
TransferManager, proporcionando lo siguiente:

• Un nombre de bucket de Amazon S3

• Un prefijo de clave para adjuntarlo a los nombres de los objetos creados (la ruta en el bucket en el
que se colocan los objetos)

• Un objeto File que represente el directorio relativo desde el que crean las rutas de archivo

• Un objeto List que contenga el conjunto de objetos File que se van a cargar

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

Uso de TransferManager para operaciones de Amazon S3 195

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/List.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Código de

ArrayList<File> files = new ArrayList<File>();
for (String path : file_paths) {
 files.add(new File(path));
}

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadFileList(bucket_name,
 key_prefix, new File("."), files);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Consulte Esperar a que se complete una transferencia para obtener información sobre cómo usar
waitForCompletion para completar correctamente una transferencia antes de llamar al método
shutdownNow de TransferManager. Mientras espera a que se complete la transferencia, puede
buscar o atender las actualizaciones sobre su estado y su progreso. Consulte Obtener el estado y el
progreso de una transferencia para obtener más información.

El objeto MultipleFileUpload devuelto por uploadFileList se puede usar para consultar el estado
o el progreso de la transferencia. Consulte Sondear el progreso actual de una transferencia y
Obtener el progreso de una transferencia con ProgressListener para obtener más información.

También puede usar el método MultipleFileUpload de getSubTransfers para obtener los
distintos objetos Upload para cada archivo que se va a transferir. Para obtener más información,
consulte Obtener el progreso de las transferencias secundarias.

Consulte el ejemplo completo en GitHub.

Uso de TransferManager para operaciones de Amazon S3 196

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Carga de un directorio

Puede utilizar el método uploadDirectory de TransferManager para cargar un directorio de
archivos completo, con la opción de copiar archivos en subdirectorios recursivamente. Proporciona
el nombre de un bucket de Amazon S3, un prefijo de clave de S3, un objeto File que representa el
directorio local donde se va a realizar la copia y un valor boolean que indica si desea copiar los
subdirectorios recursivamente (true o false).

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Código de

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadDirectory(bucket_name,
 key_prefix, new File(dir_path), recursive);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Consulte Esperar a que se complete una transferencia para obtener información sobre cómo usar
waitForCompletion para completar correctamente una transferencia antes de llamar al método
shutdownNow de TransferManager. Mientras espera a que se complete la transferencia, puede
buscar o atender las actualizaciones sobre su estado y su progreso. Consulte Obtener el estado y el
progreso de una transferencia para obtener más información.

Uso de TransferManager para operaciones de Amazon S3 197

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

El objeto MultipleFileUpload devuelto por uploadFileList se puede usar para consultar el estado
o el progreso de la transferencia. Consulte Sondear el progreso actual de una transferencia y
Obtener el progreso de una transferencia con ProgressListener para obtener más información.

También puede usar el método MultipleFileUpload de getSubTransfers para obtener los
distintos objetos Upload para cada archivo que se va a transferir. Para obtener más información,
consulte Obtener el progreso de las transferencias secundarias.

Consulte el ejemplo completo en GitHub.

Descarga de archivos o directorios

Utilice la clase TransferManager para descargar un solo archivo (objeto Amazon S3) o un directorio
(el nombre de un bucket de Amazon S3 seguido de un prefijo de objeto) de Amazon S3.

Temas

• Descarga de un solo archivo

• Descarga de un directorio

Descarga de un solo archivo

Utilice el método download de TransferManager, proporcionando el nombre del bucket de Amazon
S3 que contiene el objeto que desea descargar, la clave (nombre de objeto) y un objeto File que
represente el archivo que va a crear en su sistema local.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

Código de

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {

Uso de TransferManager para operaciones de Amazon S3 198

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 Download xfer = xfer_mgr.download(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Consulte Esperar a que se complete una transferencia para obtener información sobre cómo usar
waitForCompletion para completar correctamente una transferencia antes de llamar al método
shutdownNow de TransferManager. Mientras espera a que se complete la transferencia, puede
buscar o atender las actualizaciones sobre su estado y su progreso. Consulte Obtener el estado y el
progreso de una transferencia para obtener más información.

Consulte el ejemplo completo en GitHub.

Descarga de un directorio

Para descargar un conjunto de archivos que comparten un prefijo de clave común (similar a un
directorio en un sistema de archivos) desde Amazon S3, utilice el método downloadDirectory de
TransferManager. El método toma el nombre del bucket de Amazon S3 que contiene los objetos que
desea descargar, el prefijo de objeto compartido por todos los objetos y un objeto File que representa
el directorio en el que se van a descargar los archivos en su sistema local. Si el directorio designado
aún no existe, se creará.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

Código de

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();

Uso de TransferManager para operaciones de Amazon S3 199

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

try {
 MultipleFileDownload xfer = xfer_mgr.downloadDirectory(
 bucket_name, key_prefix, new File(dir_path));
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Consulte Esperar a que se complete una transferencia para obtener información sobre cómo usar
waitForCompletion para completar correctamente una transferencia antes de llamar al método
shutdownNow de TransferManager. Mientras espera a que se complete la transferencia, puede
buscar o atender las actualizaciones sobre su estado y su progreso. Consulte Obtener el estado y el
progreso de una transferencia para obtener más información.

Consulte el ejemplo completo en GitHub.

Copia de objetos

Para copiar un objeto en un bucket de S3 en otro, utilice el método copy de TransferManager.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Copy;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

Código de

System.out.println("Copying s3 object: " + from_key);
System.out.println(" from bucket: " + from_bucket);
System.out.println(" to s3 object: " + to_key);
System.out.println(" in bucket: " + to_bucket);

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Copy xfer = xfer_mgr.copy(from_bucket, from_key, to_bucket, to_key);

Uso de TransferManager para operaciones de Amazon S3 200

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Consulte el ejemplo completo en GitHub.

Esperar a que se complete una transferencia

Si la aplicación (o subproceso) se puede bloquear hasta que se complete la transferencia, puede
utilizar el método waitForCompletion de la interfaz Transfer para aplicar un bloqueo hasta que se
complete la transferencia o se produzca una excepción.

try {
 xfer.waitForCompletion();
} catch (AmazonServiceException e) {
 System.err.println("Amazon service error: " + e.getMessage());
 System.exit(1);
} catch (AmazonClientException e) {
 System.err.println("Amazon client error: " + e.getMessage());
 System.exit(1);
} catch (InterruptedException e) {
 System.err.println("Transfer interrupted: " + e.getMessage());
 System.exit(1);
}

Puede obtener el progreso de las transferencias si sondea eventos antes de llamar a
waitForCompletion, implementar un mecanismo de sondeo en un subproceso distinto o recibir
actualizaciones sobre el progreso de forma asíncrona utilizando un ProgressListener.

Consulte el ejemplo completo en GitHub.

Obtener el estado y el progreso de una transferencia

Cada una de las clases devueltas por los métodos upload*, download* y copy de
TransferManager devuelve una instancia de una de las siguientes clases, en función de si se trata de
una operación en un solo archivo o en varios.

Uso de TransferManager para operaciones de Amazon S3 201

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrCopy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Clase Devuelta por

Copiar copy

Descarga de download

MultipleFileDownload downloadDirectory

Cargar upload

MultipleFileUpload uploadFileList , uploadDirectory

Todas estas clases implementan la interfaz Transfer. Transfer proporciona métodos útiles para
obtener el progreso de una transferencia, detener o reanudar la transferencia y obtener el estado
actual o final de la transferencia.

Temas

• Sondear el progreso actual de una transferencia

• Obtener el progreso de una transferencia con ProgressListener

• Obtener el progreso de las transferencias secundarias

Sondear el progreso actual de una transferencia

Este bucle muestra el progreso de una transferencia, examina su progreso actual mientras se ejecuta
y, cuando se completa, muestra su estado final.

Importaciones

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Uso de TransferManager para operaciones de Amazon S3 202

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Copy.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Download.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileDownload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Código de

// print the transfer's human-readable description
System.out.println(xfer.getDescription());
// print an empty progress bar...
printProgressBar(0.0);
// update the progress bar while the xfer is ongoing.
do {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 return;
 }
 // Note: so_far and total aren't used, they're just for
 // documentation purposes.
 TransferProgress progress = xfer.getProgress();
 long so_far = progress.getBytesTransferred();
 long total = progress.getTotalBytesToTransfer();
 double pct = progress.getPercentTransferred();
 eraseProgressBar();
 printProgressBar(pct);
} while (xfer.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = xfer.getState();
System.out.println(": " + xfer_state);

Consulte el ejemplo completo en GitHub.

Obtener el progreso de una transferencia con ProgressListener

Puede asociar ProgressListener a cualquier transferencia mediante el método
addProgressListener de la interfaz Transfer.

Un ProgressListener requiere solo un método progressChanged, que toma un objeto
ProgressEvent. Puede utilizar el objeto para obtener el total de bytes de la operación llamando a
su método getBytes y el número de bytes que se han transferido hasta el momento llamando a
getBytesTransferred.

Importaciones

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;

Uso de TransferManager para operaciones de Amazon S3 203

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressEvent.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Código de

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload u = xfer_mgr.upload(bucket_name, key_name, f);
 // print an empty progress bar...
 printProgressBar(0.0);
 u.addProgressListener(new ProgressListener() {
 public void progressChanged(ProgressEvent e) {
 double pct = e.getBytesTransferred() * 100.0 / e.getBytes();
 eraseProgressBar();
 printProgressBar(pct);
 }
 });
 // block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(u);
 // print the final state of the transfer.
 TransferState xfer_state = u.getState();
 System.out.println(": " + xfer_state);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Consulte el ejemplo completo en GitHub.

Obtener el progreso de las transferencias secundarias

La clase MultipleFileUpload puede devolver información sobre sus transferencias secundarias
llamando a su método getSubTransfers. Devuelve una colección no modificable de objetos
Upload que proporcionan el estado y el progreso de cada transferencia secundaria.

Uso de TransferManager para operaciones de Amazon S3 204

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Collection.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Código de

Collection<? extends Upload> sub_xfers = new ArrayList<Upload>();
sub_xfers = multi_upload.getSubTransfers();

do {
 System.out.println("\nSubtransfer progress:\n");
 for (Upload u : sub_xfers) {
 System.out.println(" " + u.getDescription());
 if (u.isDone()) {
 TransferState xfer_state = u.getState();
 System.out.println(" " + xfer_state);
 } else {
 TransferProgress progress = u.getProgress();
 double pct = progress.getPercentTransferred();
 printProgressBar(pct);
 System.out.println();
 }
 }

 // wait a bit before the next update.
 try {
 Thread.sleep(200);
 } catch (InterruptedException e) {
 return;
 }
} while (multi_upload.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = multi_upload.getState();
System.out.println("\nMultipleFileUpload " + xfer_state);

Uso de TransferManager para operaciones de Amazon S3 205

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Consulte el ejemplo completo en GitHub.

Más información

• Claves de objeto en la Guía del usuario de Amazon Simple Storage Service

Configuración de un bucket de Amazon S3 como un sitio web

Puede configurar un bucket de Amazon S3 para que se comporte como un sitio web. Para ello, debe
establecer la configuración de su sitio web.

Note

En estos ejemplos de código se presupone que conoce la información que se describe en
Uso del AWS SDK para Java y que ha configurado credenciales de AWS predeterminadas
mediante la información de Configuración de credenciales y regiones de AWS para
desarrollo.

Establecimiento de la configuración de sitio web de un bucket

Para establecer la configuración de sitio web de un bucket de Amazon S3, llame al método
setWebsiteConfiguration de AmazonS3 con el nombre del bucket para el que se va a
establecer la configuración y un objeto BucketWebsiteConfiguration que contenga la configuración de
sitio web del bucket.

Es obligatorio establecer un documento de índice; todos los demás parámetros son opcionales.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

Código de

 String bucket_name, String index_doc, String error_doc) {

Configuración de un bucket de Amazon S3 como un sitio web 206

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

BucketWebsiteConfiguration website_config = null;

if (index_doc == null) {
 website_config = new BucketWebsiteConfiguration();
} else if (error_doc == null) {
 website_config = new BucketWebsiteConfiguration(index_doc);
} else {
 website_config = new BucketWebsiteConfiguration(index_doc, error_doc);
}

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.setBucketWebsiteConfiguration(bucket_name, website_config);
} catch (AmazonServiceException e) {
 System.out.format(
 "Failed to set website configuration for bucket '%s'!\n",
 bucket_name);
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note

El establecimiento de la configuración de sitio web no modifica los permisos de acceso del
bucket. Para que los archivos estén visibles en la web, también deberá definir una política de
bucket que permita el acceso de lectura pública a los archivos del bucket. Para obtener más
información, consulte Administración del acceso a buckets de Amazon S3 mediante políticas
de buckets.

Consulte el ejemplo completo en GitHub.

Obtener la configuración de sitio web de un bucket

Para obtener la configuración de sitio web de un bucket de Amazon S3, llame al método
getWebsiteConfiguration de AmazonS3 con el nombre del bucket para el que desea recuperar
la configuración.

La configuración se devolverá como un objeto BucketWebsiteConfiguration. Si no hay ninguna
configuración de sitio web para el bucket, se devolverá null.

Configuración de un bucket de Amazon S3 como un sitio web 207

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetWebsiteConfiguration.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

Código de

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 BucketWebsiteConfiguration config =
 s3.getBucketWebsiteConfiguration(bucket_name);
 if (config == null) {
 System.out.println("No website configuration found!");
 } else {
 System.out.format("Index document: %s\n",
 config.getIndexDocumentSuffix());
 System.out.format("Error document: %s\n",
 config.getErrorDocument());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to get website configuration!");
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Eliminar la configuración de sitio web de un bucket

Para eliminar la configuración de sitio web de un bucket de Amazon S3, llame al método
deleteWebsiteConfiguration de AmazonS3 con el nombre del bucket del que se va a eliminar
la configuración.

Importaciones

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Configuración de un bucket de Amazon S3 como un sitio web 208

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetWebsiteConfiguration.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Código de

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteBucketWebsiteConfiguration(bucket_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to delete website configuration!");
 System.exit(1);
}

Consulte el ejemplo completo en GitHub.

Más información

• Sitio web PUT Bucket en la referencia de la API de Amazon S3

• El sitio web GET Bucket en la referencia de la API de Amazon S3

• Sitio web DELETE Bucket en la referencia de la API de Amazon S3

Usar cifrado del cliente de Amazon S3

El cifrado de los datos con el cliente Amazon S3 para este fin es una forma de proporcionar una capa
de protección adicional para la información confidencial que almacena en Amazon S3. Los ejemplos
de esta sección demuestran cómo crear y configurar el cliente de cifrado de Amazon S3 para la
aplicación.

Si es la primera vez que utiliza la criptografía, consulte Conceptos básicos de criptografía en la Guía
para desarrolladores de AWS KMS para obtener información general básica sobre los términos y los
algoritmos de criptografía. Para obtener información sobre la compatibilidad con la criptografía en
todos los SDK de AWS, consulte Soporte de SDK de AWS para cifrado del cliente para Amazon S3
en la Referencia general de Amazon Web Services.

Note

En estos ejemplos de código se presupone que conoce la información que se describe en
Uso del AWS SDK para Java y que ha configurado credenciales de AWS predeterminadas

Usar cifrado del cliente de Amazon S3 209

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteWebsiteConfiguration.java
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
https://docs.aws.amazon.com/kms/latest/developerguide/crypto-intro.html
https://docs.aws.amazon.com/general/latest/gr/aws_sdk_cryptography.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

mediante la información de Configuración de credenciales y regiones de AWS para
desarrollo.

Si utiliza la versión 1.11.836 o una anterior del AWS SDK para Java, consulte Migración de clientes
de cifrado de Amazon S3 para obtener información sobre la migración de sus aplicaciones a
versiones posteriores. Si no puede migrar, consulte este ejemplo completo en GitHub.

De lo contrario, si utiliza la versión 1.11.837 o posterior de AWS SDK para Java, explore los temas
de ejemplo que se enumeran a continuación para usar el cifrado del cliente de Amazon S3.

Temas

• Cifrado del cliente de Amazon S3 con claves maestras de cliente

• Cifrado del cliente Amazon S3 con claves administradas por AWS KMS

Cifrado del cliente de Amazon S3 con claves maestras de cliente

Los siguientes ejemplos utilizan la clase AmazonS3EncryptionClientV2Builder para crear un cliente
Amazon S3 que tenga habilitado el cifrado del cliente. Una vez habilitado, los objetos que se cargan
en Amazon S3 con este cliente se cifrarán. Cualquier objeto que se obtenga de Amazon S3 con este
cliente se descifrará automáticamente.

Note

En los siguientes ejemplos se muestra cómo utilizar el cifrado del cliente de Amazon S3 con
claves maestras administradas por el cliente. Para obtener información sobre cómo usar el
cifrado con las claves administradas de AWS KMS, consulte Cifrado del cliente de Amazon
S3 con claves administradas por AWS KMS.

Puede elegir entre dos modos de cifrado al activar el cifrado Amazon S3 del cliente: autenticación
estricta o autenticación. En las secciones siguientes se muestran cómo habilitar cada uno de estos
tipos. Para saber qué algoritmos utiliza cada modo, consulte la definición de CryptoMode.

Importaciones requeridas

Importe las clases siguientes para estos ejemplos.

Importaciones

Usar cifrado del cliente de Amazon S3 210

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;

Cifrado de autenticado estricto

El cifrado de autenticado estricto es el modo predeterminado si no se especifica CryptoMode.

Para habilitar de manera explícita este modo, especifique el valor
StrictAuthenticatedEncryption en el método withCryptoConfiguration.

Note

Para utilizar el cifrado autenticado del lado del cliente, debe incluir el archivo Bouncy Castle
jar más reciente en el classpath de la aplicación.

Código de

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY2, "This is the 2nd content to
 encrypt");

Modo de cifrado autenticado

Al utilizar el modo AuthenticatedEncryption, se aplica un algoritmo de encapsulamiento de
clave mejorado durante el cifrado. Cuando se descifra en este modo, el algoritmo puede verificar la
integridad del objeto descifrado e iniciar una excepción si la comprobación falla. Para más detalles

Usar cifrado del cliente de Amazon S3 211

https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

sobre cómo funciona el cifrado autenticado, consulte la entrada del blog Cifrado autenticado del
cliente Amazon S3.

Note

Para utilizar el cifrado autenticado del lado del cliente, debe incluir el archivo Bouncy Castle
jar más reciente en el classpath de la aplicación.

Para habilitar este modo, especifique el valor AuthenticatedEncryption en el método
withCryptoConfiguration.

Código de

AmazonS3EncryptionV2 s3EncryptionClientV2 =
 AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.DEFAULT_REGION)
 .withClientConfiguration(new ClientConfiguration())
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode(CryptoMode.AuthenticatedEncryption))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3EncryptionClientV2.putObject(bucket_name, ENCRYPTED_KEY1, "This is the 1st content to
 encrypt");

Cifrado del cliente Amazon S3 con claves administradas por AWS KMS

Los siguientes ejemplos utilizan la clase AmazonS3EncryptionClientV2Builder para crear un cliente
Amazon S3 que tenga habilitado el cifrado del cliente. Una vez configurado, los objetos que se
cargan en Amazon S3 con este cliente se cifrarán. Cualquier objeto que se obtenga de Amazon S3
con este cliente, se descifrará automáticamente.

Note

En los siguientes ejemplos se muestra cómo utilizar el cifrado del cliente Amazon S3 con
claves administradas por AWS KMS. Para obtener información sobre cómo utilizar el cifrado
con sus propias claves, consulte Cifrado del cliente Amazon S3 con claves maestras de
cliente.

Usar cifrado del cliente de Amazon S3 212

https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/download/bouncy-castle-java/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Puede elegir entre dos modos de cifrado al activar el cifrado Amazon S3 del cliente: autenticación
estricta o autenticación. En las secciones siguientes se muestran cómo habilitar cada uno de estos
tipos. Para saber qué algoritmos utiliza cada modo, consulte la definición de CryptoMode.

Importaciones requeridas

Importe las clases siguientes para estos ejemplos.

Importaciones

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.kms.AWSKMS;
import com.amazonaws.services.kms.AWSKMSClientBuilder;
import com.amazonaws.services.kms.model.GenerateDataKeyRequest;
import com.amazonaws.services.kms.model.GenerateDataKeyResult;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;

Cifrado de autenticado estricto

El cifrado de autenticado estricto es el modo predeterminado si no se especifica CryptoMode.

Para habilitar de manera explícita este modo, especifique el valor
StrictAuthenticatedEncryption en el método withCryptoConfiguration.

Note

Para utilizar el cifrado autenticado del lado del cliente, debe incluir el archivo Bouncy Castle
jar más reciente en el classpath de la aplicación.

Código de

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)

Usar cifrado del cliente de Amazon S3 213

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");
System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

Llame al método putObject en el cliente de cifrado de Amazon S3 para cargar objetos.

Código de

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");

Para recuperar el objeto, puede utilizar el mismo cliente. Este ejemplo llama al método
getObjectAsString para recuperar la cadena que se almacenó.

Código de

System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

Modo de cifrado autenticado

Al utilizar el modo AuthenticatedEncryption, se aplica un algoritmo de encapsulamiento de
clave mejorado durante el cifrado. Cuando se descifra en este modo, el algoritmo puede verificar la
integridad del objeto descifrado e iniciar una excepción si la comprobación falla. Para más detalles
sobre cómo funciona el cifrado autenticado, consulte la entrada del blog Cifrado autenticado del
cliente Amazon S3.

Note

Para utilizar el cifrado autenticado del lado del cliente, debe incluir el archivo Bouncy Castle
jar más reciente en el classpath de la aplicación.

Para habilitar este modo, especifique el valor AuthenticatedEncryption en el método
withCryptoConfiguration.

Usar cifrado del cliente de Amazon S3 214

https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Código de

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Configuración del cliente AWS KMS

El cliente de cifrado Amazon S3 crea un cliente AWS KMS de forma predeterminada, a menos que
se especifique uno de forma explícita.

Para establecer la región de este cliente AWS KMS creado automáticamente, defina el
awsKmsRegion.

Código de

Region kmsRegion = Region.getRegion(Regions.AP_NORTHEAST_1);

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withAwsKmsRegion(kmsRegion))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Si lo prefiere, puede utilizar su propio cliente AWS KMS para inicializar el cliente de cifrado.

Código de

AWSKMS kmsClient = AWSKMSClientBuilder.standard()
 .withRegion(Regions.US_WEST_2);
 .build();

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withKmsClient(kmsClient)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))

Usar cifrado del cliente de Amazon S3 215

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .build();

Amazon SQS Ejemplos de usando la AWS SDK para Java

En esta sección se proporcionan ejemplos de programación de Amazon SQS mediante AWS SDK
para Java.

Note

Los ejemplos incluyen únicamente el código necesario para demostrar cada técnica. El
código de ejemplo completo está disponible en GitHub. Desde allí, puede descargar un único
archivo de código fuente o clonar el repositorio localmente para obtener todos los ejemplos
para compilarlos y ejecutarlos.

Temas

• Uso de colas de mensajes de Amazon SQS

• Envío, recepción y eliminación de mensajes de Amazon SQS

• Habilitar sondeos largos para las colas de mensajes de Amazon SQS

• Configuración del tiempo de espera de visibilidad en Amazon SQS

• Uso de colas de mensajes fallidos en Amazon SQS

Uso de colas de mensajes de Amazon SQS

Una cola de mensajes es el contenedor lógico utilizado para enviar mensajes de forma fiable en
Amazon SQS. Existen dos tipos de colas: estándar y primero en entrar, primero en salir (FIFO). Para
obtener más información sobre las colas y las diferencias entre estos tipos, consulte la Guía para
desarrolladores de Amazon SQS.

En este tema se describe cómo crear, mostrar, eliminar y obtener la dirección URL de un cola de
Amazon SQS mediante AWS SDK para Java.

Creación de una cola

Use el método createQueue del cliente AmazonSQS, proporcionando un objeto
CreateQueueRequest que describa los parámetros de la cola.

Amazon SQSEjemplos de 216

https://aws.amazon.com/sqs/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Código de

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
CreateQueueRequest create_request = new CreateQueueRequest(QUEUE_NAME)
 .addAttributesEntry("DelaySeconds", "60")
 .addAttributesEntry("MessageRetentionPeriod", "86400");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

Puede utilizar el formato simplificado createQueue, que solo necesita el nombre de una cola, para
crear una cola estándar.

sqs.createQueue("MyQueue" + new Date().getTime());

Consulte el ejemplo completo en GitHub.

Mostrar colas

Para enumerar las colas de Amazon SQS de su cuenta, llame al método listQueues del cliente
AmazonSQS.

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesResult;

Código de

Uso de colas de mensajes de Amazon SQS 217

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
ListQueuesResult lq_result = sqs.listQueues();
System.out.println("Your SQS Queue URLs:");
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

El uso de la sobrecarga listQueues sin parámetros devuelve todas las colas. Puede filtrar los
resultados devueltos pasando un objeto ListQueuesRequest.

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesRequest;

Código de

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String name_prefix = "Queue";
lq_result = sqs.listQueues(new ListQueuesRequest(name_prefix));
System.out.println("Queue URLs with prefix: " + name_prefix);
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

Consulte el ejemplo completo en GitHub.

Obtener la URL de una cola

Llame al método getQueueUrl del cliente AmazonSQS.

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Código de

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

Uso de colas de mensajes de Amazon SQS 218

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

String queue_url = sqs.getQueueUrl(QUEUE_NAME).getQueueUrl();

Consulte el ejemplo completo en GitHub.

Eliminar una cola

Proporcione la URL de la cola al método del cliente AmazonSQS.

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Código de

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.deleteQueue(queue_url);

Consulte el ejemplo completo en GitHub.

Más información

• Cómo funcionan las colas de Amazon SQS en la Guía para desarrolladores de Amazon SQS

• CreateQueue en la Referencia de la API de Amazon SQS

• GetQueueUrl en la referencia de la API de Amazon SQS

• ListQueues en la Referencia de la API de Amazon SQS

• DeleteQueues en la referencia de la API de Amazon SQS

Envío, recepción y eliminación de mensajes de Amazon SQS

En este tema se describe cómo enviar, recibir y eliminar mensajes de Amazon SQS. Los mensajes
se envían siempre a través de una cola de SQS.

Enviar un mensaje

Añada un único mensaje a una cola de Amazon SQS llamando al método sendMessage del cliente
AmazonSQS. Proporcione un objeto SendMessageRequest que contenga la URL de la cola, el
cuerpo del mensaje y el valor de retraso opcional (en segundos).

Envío, recepción y eliminación de mensajes de Amazon SQS 219

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueues.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.SendMessageRequest;

Código de

SendMessageRequest send_msg_request = new SendMessageRequest()
 .withQueueUrl(queueUrl)
 .withMessageBody("hello world")
 .withDelaySeconds(5);
sqs.sendMessage(send_msg_request);

Consulte el ejemplo completo en GitHub.

Enviar varios mensajes a la vez

Puede enviar más de un mensaje en una única solicitud. Para enviar varios mensajes,
utilice el método sendMessageBatch del cliente AmazonSQS, que toma un objeto
SendMessageBatchRequest con la URL de la cola y una lista de mensajes (un objeto
SendMessageBatchRequestEntry para cada uno) que se van a enviar. También puede definir un
valor de retraso opcional para cada mensaje.

Importaciones

import com.amazonaws.services.sqs.model.SendMessageBatchRequest;
import com.amazonaws.services.sqs.model.SendMessageBatchRequestEntry;

Código de

SendMessageBatchRequest send_batch_request = new SendMessageBatchRequest()
 .withQueueUrl(queueUrl)
 .withEntries(
 new SendMessageBatchRequestEntry(
 "msg_1", "Hello from message 1"),
 new SendMessageBatchRequestEntry(
 "msg_2", "Hello from message 2")
 .withDelaySeconds(10));
sqs.sendMessageBatch(send_batch_request);

Envío, recepción y eliminación de mensajes de Amazon SQS 220

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequestEntry.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Consulte el ejemplo completo en GitHub.

Recibir mensajes

Recupere todos los mensajes que se encuentran actualmente en la cola llamando al método
receiveMessage del cliente AmazonSQS, pasando la URL de la cola. Los mensajes se devuelven
como una lista de objetos Message.

Importaciones

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.SendMessageBatchRequest;

Código de

List<Message> messages = sqs.receiveMessage(queueUrl).getMessages();

Eliminar mensajes después de su recepción

Tras recibir un mensaje y procesar su contenido, elimine el mensaje de la cola enviando el
identificador de recepción y la URL de la cola del mensaje al método deleteMessage de
AmazonSQS.

Código de

for (Message m : messages) {
 sqs.deleteMessage(queueUrl, m.getReceiptHandle());
}

Consulte el ejemplo completo en GitHub.

Más información

• Cómo funcionan las colas de Amazon SQS en la Guía para desarrolladores de Amazon SQS

• SendMessage en la referencia de la API de Amazon SQS

• SendMessageBatch en la referencia de la API de Amazon SQS

• ReceiveMessage en la Referencia de la API de Amazon SQS

Envío, recepción y eliminación de mensajes de Amazon SQS 221

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/Message.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• DeleteMessage en la Referencia de la API de Amazon SQS

Habilitar sondeos largos para las colas de mensajes de Amazon SQS

Amazon SQS utiliza el sondeo corto de forma predeterminada; consulta únicamente un subconjunto
de los servidores (en función de una distribución aleatoria ponderada) para determinar si hay algún
mensaje disponible para su inclusión en la respuesta.

El sondeo largo ayuda a reducir el costo de uso de Amazon SQS al reducir el número de respuestas
vacías (cuando no hay ningún mensaje disponible para devolver como respuesta a una solicitud
ReceiveMessage enviada a una cola de Amazon SQS) y eliminar falsas respuestas vacías.

Note

Puede definir una frecuencia de sondeo largo de 1-20 segundos.

Habilitar el sondeo largo al crear una cola

Para habilitar el sondeo largo al crear una cola de Amazon SQS, establezca el atributo
ReceiveMessageWaitTimeSeconds en el objeto CreateQueueRequest antes de llamar al método
createQueue de la clase AmazonSQS.

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Código de

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Enable long polling when creating a queue
CreateQueueRequest create_request = new CreateQueueRequest()
 .withQueueName(queue_name)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");

try {

Habilitar sondeos largos para las colas de mensajes de Amazon SQS 222

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

Consulte el ejemplo completo en GitHub.

Habilitar el sondeo largo en una cola existente

Además de habilitar el sondeo largo al crear una cola, también puede habilitarlo en una cola
existente estableciendo ReceiveMessageWaitTimeSeconds en SetQueueAttributesRequest antes
de llamar al método setQueueAttributes de la clase AmazonSQS.

Importaciones

import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Código de

SetQueueAttributesRequest set_attrs_request = new SetQueueAttributesRequest()
 .withQueueUrl(queue_url)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");
sqs.setQueueAttributes(set_attrs_request);

Consulte el ejemplo completo en GitHub.

Habilitar el sondeo largo al recibir un mensaje

Puede habilitar el sondeo largo al recibir un mensaje estableciendo el tiempo de espera en segundos
en el objeto ReceiveMessageRequest que proporciona al método receiveMessage de la clase
AmazonSQS.

Note

Debe asegurarse de que el tiempo de espera de la solicitud del cliente de AWS sea mayor
que el tiempo del sondeo largo (20 segundos) para que no se agote el tiempo de espera de
sus solicitudes receiveMessage mientras espera al siguiente evento de sondeo.

Habilitar sondeos largos para las colas de mensajes de Amazon SQS 223

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Importaciones

import com.amazonaws.services.sqs.model.ReceiveMessageRequest;

Código de

ReceiveMessageRequest receive_request = new ReceiveMessageRequest()
 .withQueueUrl(queue_url)
 .withWaitTimeSeconds(20);
sqs.receiveMessage(receive_request);

Consulte el ejemplo completo en GitHub.

Más información

• Amazon SQSPolíticas de claves en la Guía para desarrolladores de Amazon SQS

• CreateQueue en la Referencia de la API de Amazon SQS

• ReceiveMessage en la Referencia de la API de Amazon SQS

• SetQueueAttributes en la Referencia de la API de Amazon SQS

Configuración del tiempo de espera de visibilidad en Amazon SQS

Cuando se recibe un mensaje en Amazon SQS, este permanece en la cola hasta que se elimina
a fin de garantizar su recepción. Un mensaje que se ha recibido, pero no se ha eliminado, estará
disponible en las solicitudes posteriores después de un determinado tiempo de espera de visibilidad
para ayudar a evitar que el mensaje se reciba más de una vez antes de que pueda procesarse y
eliminarse.

Note

Cuando se utilizan colas estándar, el tiempo de espera de visibilidad no es una garantía de
que un mensaje no se reciba dos veces. Si utiliza una cola estándar, asegúrese de que el
código pueda tratar aquellas situaciones en las que el mismo mensaje se entrega más de
una vez.

Configuración del tiempo de espera de visibilidad en Amazon SQS 224

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Configuración del tiempo de espera de visibilidad de los mensajes para un solo
mensaje

Cuando haya recibido un mensaje, puede modificar su tiempo de espera de visibilidad pasando
su identificador de recepción en el objeto ChangeMessageVisibilityRequest que pasa al método
changeMessageVisibility de AmazonSQS class.

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Código de

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Get the receipt handle for the first message in the queue.
String receipt = sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle();

sqs.changeMessageVisibility(queue_url, receipt, timeout);

Consulte el ejemplo completo en GitHub.

Configuración del tiempo de espera de visibilidad de los mensajes para varios
mensajes a la vez

Para configurar el tiempo de espera de visibilidad para varios mensajes, cree una lista de objetos
ChangeMessageVisibilityBatchRequestEntry, cada uno con un ID de cadena y un identificador de
recepción únicos. A continuación, pase la lista al método Amazon SQS de la clase del cliente de
changeMessageVisibilityBatch.

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ChangeMessageVisibilityBatchRequestEntry;
import java.util.ArrayList;
import java.util.List;

Configuración del tiempo de espera de visibilidad en Amazon SQS 225

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityBatchRequestEntry.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Código de

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

List<ChangeMessageVisibilityBatchRequestEntry> entries =
 new ArrayList<ChangeMessageVisibilityBatchRequestEntry>();

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg1",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout));

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg2",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout + 200));

sqs.changeMessageVisibilityBatch(queue_url, entries);

Consulte el ejemplo completo en GitHub.

Más información

• Tiempo de espera de visibilidad en la Guía para desarrolladores de Amazon SQS

• SetQueueAttributes en la Referencia de la API de Amazon SQS

• GetQueueAttributes en la Referencia de la API de Amazon SQS

• ReceiveMessage en la Referencia de la API de Amazon SQS

• ChangeMessageVisibility en la Referencia de la API de Amazon SQS

• ChangeMessageVisibilityBatch en la Referencia de la API de Amazon SQS

Uso de colas de mensajes fallidos en Amazon SQS

Amazon SQS añade compatibilidad para las colas de mensajes fallidos. Una cola de mensajes
fallidos es una cola a la que otras pueden enviar mensajes que no se pueden procesar

Uso de colas de mensajes fallidos en Amazon SQS 226

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

correctamente. Puede apartar y aislar estos mensajes en la cola de mensajes fallidos para
determinar por qué no se procesaron correctamente.

Creación de una cola de mensajes fallidos

Una cola de mensajes fallidos se crea de la misma forma que una cola normal, pero con las
siguientes restricciones:

• Una cola de mensajes fallidos debe ser el mismo tipo de cola (FIFO o estándar) que la cola de
origen.

• Una cola de mensajes fallidos se debe crear con la misma cuenta y región de Cuenta de AWS que
la cola de origen.

Aquí creamos dos colas de Amazon SQS idénticas, una de los cuales actuará como la cola de
mensajes fallidos:

Importaciones

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;

Código de

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Create source queue
try {
 sqs.createQueue(src_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

// Create dead-letter queue
try {
 sqs.createQueue(dl_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {

Uso de colas de mensajes fallidos en Amazon SQS 227

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 throw e;
 }
}

Consulte el ejemplo completo en GitHub.

Designación de una cola de mensajes fallidos para una cola de origen

Para designar una cola de mensajes fallidos, primero debe crear una política de redireccionamiento
y, a continuación, configurar la política en los atributos de la cola. Una política de redireccionamiento
se especifica en JSON e indica el ARN de la cola de mensajes fallidos y el número máximo de veces
que se puede recibir y no procesar el mensaje antes de que se envíe a la cola de mensajes fallidos.

Para establecer la política de redireccionamiento de la cola de origen, llame al método de la clase de
setQueueAttributes de AmazonSQS con un objeto SetQueueAttributesRequest para el que haya
establecido el atributo RedrivePolicy con su política de redireccionamiento JSON.

Importaciones

import com.amazonaws.services.sqs.model.GetQueueAttributesRequest;
import com.amazonaws.services.sqs.model.GetQueueAttributesResult;
import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Código de

String dl_queue_url = sqs.getQueueUrl(dl_queue_name)
 .getQueueUrl();

GetQueueAttributesResult queue_attrs = sqs.getQueueAttributes(
 new GetQueueAttributesRequest(dl_queue_url)
 .withAttributeNames("QueueArn"));

String dl_queue_arn = queue_attrs.getAttributes().get("QueueArn");

// Set dead letter queue with redrive policy on source queue.
String src_queue_url = sqs.getQueueUrl(src_queue_name)
 .getQueueUrl();

SetQueueAttributesRequest request = new SetQueueAttributesRequest()
 .withQueueUrl(src_queue_url)
 .addAttributesEntry("RedrivePolicy",

Uso de colas de mensajes fallidos en Amazon SQS 228

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 "{\"maxReceiveCount\":\"5\", \"deadLetterTargetArn\":\""
 + dl_queue_arn + "\"}");

sqs.setQueueAttributes(request);

Consulte el ejemplo completo en GitHub.

Más información

• Uso de colas de cartas muertas de Amazon SQS en la Guía para desarrolladores de Amazon SQS

• SetQueueAttributes en la Referencia de la API de Amazon SQS

Amazon SWF Ejemplos de usando la AWS SDK para Java

Amazon SWF es un servicio de administración de flujos de trabajo que ayuda a los desarrolladores
a crear y escalar flujos de trabajo distribuidos que pueden tener pasos paralelos o secuenciales
compuestos de actividades, flujos de trabajo secundarios o incluso tareas Lambda.

Existen dos maneras de trabajar con Amazon SWF mediante AWS SDK para Java: utilizando el
objeto client de SWF o mediante AWS Flow Framework para Java. AWS Flow Framework es más
difícil de configurar inicialmente, ya que hace un uso intensivo de las anotaciones y se basa en
otras bibliotecas como AspectJ y Spring Framework. Sin embargo, en el caso de proyectos grandes
y complejos, con AWS Flow Framework se ahorrará tiempo de programación. Para obtener más
información, consulte la Guía para desarrolladores del AWS Flow Framework para Java.

En esta sección se proporciona ejemplos de programación en Amazon SWF que utilizan
directamente el cliente de AWS SDK para Java.

Temas

• Conceptos básicos de SWF

• Creación de una aplicación de Amazon SWF sencilla

• LambdaTareas de

• Cerrar correctamente los procesos de trabajo de actividad y flujo de trabajo

• Registro de dominios

• Visualización de los dominios

Amazon SWFEjemplos de 229

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://aws.amazon.com/swf/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Conceptos básicos de SWF

Estos son los patrones generales para trabajar con Amazon SWF mediante AWS SDK para Java.
Se han diseñado principalmente como referencia. Para obtener un tutorial de introducción más
completo, consulte Creación de una aplicación de Amazon SWF sencilla.

Dependencias

Las aplicaciones básicas de Amazon SWF requerirán las siguientes dependencias, que se incluyen
con AWS SDK para Java:

• aws-java-sdk-1.12.*.jar

• commons-logging-1.2.*.jar

• httpclient-4.3.*.jar

• httpcore-4.3.*.jar

• jackson-annotations-2.12.*.jar

• jackson-core-2.12.*.jar

• jackson-databind-2.12.*.jar

• joda-time-2.8.*.jar

Note

Los números de versión de estos paquetes serán diferentes en función de la versión del
SDK que tenga, pero las versiones que se proporcionan con el SDK se han probado para
garantizar su compatibilidad y son las que debe utilizar.

Las aplicaciones de AWS Flow Framework para Java requieren configuración adicional y
dependencias adicionales. Consulte la Guía para desarrolladores de AWS Flow Framework para
Java para obtener más información acerca de cómo utilizar la plataforma.

Importaciones

En general, puede utilizar las siguientes importaciones para el desarrollo de código:

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;

Conceptos básicos de SWF 230

https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.simpleworkflow.model.*;

Sin embargo, es aconsejable que importe solamente las clases que necesite. Lo
más probable es que acabe especificando clases concretas en el área de trabajo
com.amazonaws.services.simpleworkflow.model:

import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

Si utiliza AWS Flow Framework para Java, importará clases del área de trabajo de
com.amazonaws.services.simpleworkflow.flow. Por ejemplo:

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

Note

El AWS Flow Framework para Java tiene requisitos adicionales además de los del AWS SDK
para Java básico. Para obtener más información, consulte la Guía para desarrolladores del
AWS Flow Framework para Java.

Uso de la clase del cliente SWF

La interfaz básica con Amazon SWF se realiza a través de las clases AmazonSimpleWorkflowClient
o AmazonSimpleWorkflowAsyncClient. La diferencia principal entre estas clases es que la clase
*AsyncClient devuelve objetos Future para la programación simultánea (asíncrona).

AmazonSimpleWorkflowClient swf = AmazonSimpleWorkflowClientBuilder.defaultClient();

Creación de una aplicación de Amazon SWF sencilla

Este tema es una introducción a la programación de aplicaciones de Amazon SWF con el AWS SDK
para Java, en la que se describen algunos conceptos importantes.

Creación de una aplicación de Amazon SWF sencilla 231

https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowAsyncClient.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://aws.amazon.com/swf/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Acerca del ejemplo

El proyecto de ejemplo creará un flujo de trabajo con una única actividad que acepta datos del flujo
de trabajo pasados a través de la nube de AWS (siguiendo la tradición de HelloWorld, será el nombre
de una persona a la que se saluda) y, a continuación, mostrará un saludo como respuesta.

Aunque puedan parecer muy sencillas, las aplicaciones de Amazon SWF se componen de varias
partes que funcionan conjuntamente:

• Un dominio, utilizado como un contenedor lógico para los datos de ejecución del flujo de trabajo.

• Uno o varios flujos de trabajo que representan los componentes de código que definen el orden
lógico de ejecución de las actividades del flujo de trabajo y los flujos de trabajo secundarios.

• Un proceso de trabajo de flujo de trabajo, también conocido como decisor, que busca tareas de
decisión y actividades de programación o flujos de trabajo secundarios como respuesta.

• Una o varias actividades, cada una de las cuales representa una unidad de trabajo del flujo de
trabajo.

• Un proceso de trabajo de actividad que busca tareas de actividad y ejecuta métodos de actividad
como respuesta.

• Una o varias listas de tareas, que son colas mantenidas por Amazon SWF utilizadas para emitir
solicitudes a los procesos de trabajo del flujo de trabajo o actividad. Las tareas de una lista de
tareas dirigidas a los procesos de trabajo de flujo de trabajo se denominan tareas de decisión. Las
dirigidas a los procesos de trabajo de actividad se denominan tareas de actividad.

• Un iniciador del flujo de trabajo que inicia la ejecución del flujo de trabajo.

Entre bambalinas, Amazon SWF organiza la operación de estos componentes, coordinando su
flujo desde la nube de AWS, pasando datos entre ellos, administrando los tiempos de espera y las
notificaciones de latido, y registrando el historial de ejecución del flujo de trabajo.

Requisitos previos

Entorno de desarrollo

El entorno de desarrollo que se utiliza en este tutorial se compone de:

• La AWS SDK para Java.

• Apache Maven (3.3.1).

Creación de una aplicación de Amazon SWF sencilla 232

https://aws.amazon.com/sdk-for-java/
http://maven.apache.org/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• JDK 1.7 o posterior. Este tutorial se ha desarrollado y probado con JDK 1.8.0.

• Un buen editor de texto de Java (el que prefiera).

Note

Si utiliza un sistema de compilación distinto de Maven, puede crear igualmente un
proyecto realizando los pasos correspondientes de su entorno y usar los conceptos que
se proporcionan aquí durante el proceso. En la sección AWS SDK para JavaIntroducción
se proporciona más información sobre cómo configurar y usar con distintos sistemas de
compilación.
Del mismo modo, pero con más esfuerzo, los pasos que se muestran aquí se pueden
implementar con cualquiera de los SDK de AWS admitidos para Amazon SWF.

Todas las dependencias externas necesarias se incluyen con AWS SDK para Java, por lo que no
necesita descargar nada más.

Acceso a AWS

Para completar correctamente este tutorial, debe tener acceso al portal de acceso a AWS como se
describe en la sección de configuración básica de esta guía.

Las instrucciones describen cómo acceder a las credenciales temporales que se copian y pegan en
el archivo de credentials compartido local. Las credenciales temporales que pegue deben estar
asociadas a un rol de IAM en AWS IAM Identity Center que tenga permisos para acceder a Amazon
SWF. Tras pegar las credenciales temporales, el archivo de credentials debería tener un aspecto
similar al siguiente.

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

Estas credenciales temporales están asociadas al perfil default.

Creación de un proyecto de SWF

1. Inicie un nuevo proyecto con Maven:

Creación de una aplicación de Amazon SWF sencilla 233

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

mvn archetype:generate -DartifactId=helloswf \
-DgroupId=aws.example.helloswf -DinteractiveMode=false

Se creará un nuevo proyecto con una estructura de proyecto de Maven estándar:

helloswf
pom.xml
src
 ### main
 # ### java
 # ### aws
 # ### example
 # ### helloswf
 # ### App.java
 ### test
 ### ...

Puede omitir o eliminar el directorio test y todo su contenido; no lo usaremos en este tutorial.
También puede eliminar App.java, ya que lo reemplazaremos por nuevas clases.

2. Edite el archivo pom.xml del proyecto y añada el módulo aws-java-sdk-simpleworkflow añadiendo
una dependencia para él en el bloque <dependencies>.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-simpleworkflow</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

3. Asegúrese de que Maven compila su proyecto de manera que sea compatible con JDK. Añada lo
siguiente a su proyecto (delante o detrás del bloque <dependencies>) en pom.xml:

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.1</version>
 <configuration>
 <source>1.8</source>

Creación de una aplicación de Amazon SWF sencilla 234

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
</build>

Codificación del proyecto

El proyecto de ejemplo consta de cuatro aplicaciones distintas, que examinaremos de una en una:

• HelloTypes.java: contiene el dominio del proyecto y los datos de tipos de actividad y flujo de
trabajo, compartidos con los demás componentes. También se encarga de registrar estos tipos con
SWF.

• ActivityWorker.java: contiene el proceso de trabajo de actividad, que busca tareas de actividad y
ejecuta actividades como respuesta.

• WorkflowWorker.java: contiene el proceso de trabajo de flujo de trabajo (decisor), que busca tareas
de decisión y programa nuevas actividades.

• WorkflowStarter.java: contiene el iniciador del flujo de trabajo, que inicia la ejecución de un nuevo
flujo de trabajo, que hará que SWF empiece a generar tareas de decisión y flujo de trabajo para los
procesos de trabajo.

Pasos comunes para todos los archivos de código fuente

Todos los archivos que crea para alojar sus clases Java tendrán algunas cosas en común. Para
ahorrar tiempo, estos pasos estarán implícitos cada vez que añada un nuevo archivo al proyecto:

1. Cree el archivo en el directorio src/main/java/aws/example/helloswf/ del proyecto.

2. Añada una declaración package al principio de cada archivo para declarar su espacio de
nombres. El proyecto de ejemplo usa:

package aws.example.helloswf;

3. Añada declaraciones import para la clase AmazonSimpleWorkflowClient y para varias clases del
espacio de nombres com.amazonaws.services.simpleworkflow.model. Para simplificar
las cosas, vamos a utilizar:

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;

Creación de una aplicación de Amazon SWF sencilla 235

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

Registro de un dominio y de tipos de flujo de trabajo y actividad

Comenzaremos creando una nueva clase ejecutable, HelloTypes.java. Este archivo contendrá
datos compartidos que necesitarán conocer las distintas partes de su flujo de trabajo, como el
nombre y la versión de sus tipos de actividad y flujo de trabajo, el nombre de dominio y el nombre de
la lista de tareas.

1. Abra su editor de texto y cree el archivo HelloTypes.java, añadiendo una declaración del
paquete y funciones import de acuerdo con los pasos comunes.

2. Declare la clase HelloTypes y proporcione los valores que se van a usar para los tipos de
actividad y flujo de trabajo registrados:

 public static final String DOMAIN = "HelloDomain";
 public static final String TASKLIST = "HelloTasklist";
 public static final String WORKFLOW = "HelloWorkflow";
 public static final String WORKFLOW_VERSION = "1.0";
 public static final String ACTIVITY = "HelloActivity";
 public static final String ACTIVITY_VERSION = "1.0";

Estos valores se utilizarán en todo el código.

3. Detrás de las declaraciones de cadena, cree una instancia de la clase
AmazonSimpleWorkflowClient. Esta es la interfaz básica a los métodos de Amazon SWF
proporcionados por AWS SDK para Java.

private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

En el fragmento anterior se presupone que las credenciales temporales están asociadas al perfil
default. Si usa un perfil diferente, modifique el código anterior de la siguiente manera y sustituya
profile_name por el nombre del perfil real.

private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder
 .standard()

Creación de una aplicación de Amazon SWF sencilla 236

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withCredentials(new ProfileCredentialsProvider("profile_name"))
 .withRegion(Regions.DEFAULT_REGION)
 .build();

4. Añada una nueva función para registrar un dominio de SWF. Un dominio es un contenedor lógico
para una serie de tipos de actividad y flujo de trabajo de SWF relacionados. Los componentes de
SWF solo pueden comunicarse entre sí si se encuentran en el mismo dominio.

 try {
 System.out.println("** Registering the domain '" + DOMAIN + "'.");
 swf.registerDomain(new RegisterDomainRequest()
 .withName(DOMAIN)
 .withWorkflowExecutionRetentionPeriodInDays("1"));
 } catch (DomainAlreadyExistsException e) {
 System.out.println("** Domain already exists!");
 }

Cuando registra un dominio, proporciona un nombre (cualquier conjunto de 1-256 caracteres
excepto :, /, |, caracteres de control o la cadena literal 'arn') y un periodo de retención, que es
el número de días que Amazon SWF conservará los datos del historial de ejecución del flujo de
trabajo una vez completada la ejecución del flujo de trabajo. El periodo máximo de retención de
ejecución del flujo de trabajo es de 90 días. Consulte RegisterDomainRequest para obtener más
información.

Si ya existe un dominio con ese nombre, se produce una excepción
DomainAlreadyExistsException. Como no nos interesa si se ha creado o no se ha creado el
dominio, podemos omitir esta excepción.

Note

Este código muestra un patrón común cuando se trabaja con métodos de AWS SDK
para Java: los datos del método los proporciona una clase del espacio de nombres
simpleworkflow.model, de la que se crea una instancia y se rellena mediante la
ejecución en cadena de métodos 0with*.

5. Añada una función para registrar un nuevo tipo de actividad. Una actividad representa una unidad
de trabajo de su flujo de trabajo.

 try {
 System.out.println("** Registering the activity type '" + ACTIVITY +

Creación de una aplicación de Amazon SWF sencilla 237

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 "-" + ACTIVITY_VERSION + "'.");
 swf.registerActivityType(new RegisterActivityTypeRequest()
 .withDomain(DOMAIN)
 .withName(ACTIVITY)
 .withVersion(ACTIVITY_VERSION)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskScheduleToStartTimeout("30")
 .withDefaultTaskStartToCloseTimeout("600")
 .withDefaultTaskScheduleToCloseTimeout("630")
 .withDefaultTaskHeartbeatTimeout("10"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Activity type already exists!");
 }

Un tipo de actividad se identifica mediante un nombre y una versión, que se utilizan para identificar
de forma inequívoca la actividad de otras actividades que se han registrado en el dominio. Las
actividades también contienen una serie de parámetros opcionales, como la lista de tareas
predeterminadas para recibir las tareas y los datos de SWF, y una serie de tiempos de espera
diferentes que puede utilizar para aplicar restricciones sobre cuánto tiempo pueden tardar las
distintas partes de la ejecución de la actividad. Consulte RegisterActivityTypeRequest para
obtener más información.

Note

Todos los valores de tiempo de espera se especifican en segundos. Consulte Tipos de
tiempo de espera de Amazon SWF para obtener una descripción completa de cómo los
tiempos de espera afectan a las ejecuciones del flujo de trabajo.

Si el tipo de actividad que intenta registrar ya existe, se produce una excepción
TypeAlreadyExistsException. Añada una función para registrar un nuevo tipo de flujo de trabajo. Un
flujo de trabajo, denominado también decisor, representa la lógica de la ejecución del flujo de trabajo.

+

 try {
 System.out.println("** Registering the workflow type '" + WORKFLOW +
 "-" + WORKFLOW_VERSION + "'.");
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)

Creación de una aplicación de Amazon SWF sencilla 238

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterActivityTypeRequest.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 .withName(WORKFLOW)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Workflow type already exists!");
 }

+

Al igual que los tipos de actividad, los tipos de flujos de trabajo se identifican mediante
un nombre y una versión, y también tienen tiempos de espera configurables. Consulte
RegisterWorkflowTypeRequest para obtener más información.

+

Si el tipo de flujo de trabajo que intenta registrar ya existe, se produce una excepción
TypeAlreadyExistsException. Por último, cree la clase ejecutable proporcionando un método main,
que registrará el dominio, el tipo de actividad y el tipo de flujo de trabajo:

+

 registerDomain();
 registerWorkflowType();
 registerActivityType();

Puede compilar y ejecutar la aplicación ahora para ejecutar el script de registro o continuar
programando los procesos de trabajo de actividad y flujo de trabajo. Una vez que el dominio, el
flujo de trabajo y la actividad se hayan registrado, no necesitará ejecutar esto de nuevo: estos tipos
persisten hasta que los deja de utilizar.

Implementación del proceso de trabajo de actividad

Una actividad es la unidad básica de trabajo de su flujo de trabajo. Un flujo de trabajo proporciona la
lógica, programando las actividades que se van a ejecutar (u otras acciones que se deben llevar a
cabo) en respuesta a las tareas de decisión. Un flujo de trabajo típico normalmente se compone de
una serie de actividades que se pueden ejecutar de forma síncrona, asíncrona o de ambas formas.

El proceso de trabajo de actividad es la parte del código que busca las tareas de actividad generadas
por Amazon SWF en respuesta a las decisiones del flujo de trabajo. Cuando recibe una tarea de

Creación de una aplicación de Amazon SWF sencilla 239

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

actividad, ejecuta la actividad correspondiente y devuelve una respuesta de éxito/error al flujo de
trabajo.

Vamos a implementar un proceso de trabajo de actividad sencillo que se encarga de una sola
actividad.

1. Abra su editor de texto y cree el archivo ActivityWorker.java, añadiendo una declaración del
paquete y funciones import de acuerdo con los pasos comunes.

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

2. Añada la clase ActivityWorker al archivo y proporcione un miembro de datos para almacenar
el cliente de SWF que usaremos para interactuar con Amazon SWF:

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

3. Añada el método que usaremos como actividad:

private static String sayHello(String input) throws Throwable {
 return "Hello, " + input + "!";
}

La actividad simplemente toma una cadena, la combina en un saludo y devuelve el resultado.
Aunque no es muy probable que esta actividad produzca una excepción, es aconsejable que
diseñe actividades que puedan producir un error si algo va mal.

4. Añada un método main que utilizaremos como el método de sondeo de tareas de actividad.
Empezaremos añadiendo código para buscar tareas de actividad en la lista de tareas:

 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(
 new PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(

Creación de una aplicación de Amazon SWF sencilla 240

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 new TaskList().withName(HelloTypes.TASKLIST)));

 String task_token = task.getTaskToken();

La actividad recibe tareas de Amazon SWF llamando al método pollForActivityTask del
cliente de SWF, especificando el dominio y la lista de tareas que se van a utilizar en el objeto
PollForActivityTaskRequest pasado al método.

Una vez que se recibe una tarea, recuperamos un identificador único llamando al método
getTaskToken de la tarea.

5. A continuación, escribimos código para procesar las tareas que llegan. Añada lo siguiente al
método main, justo detrás del código que busca la tarea y recupera su token de tarea.

 if (task_token != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '" +
 task.getInput() + "'.");
 result = sayHello(task.getInput());
 } catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(task_token)
 .withResult(result));
 } else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(task_token)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }

Creación de una aplicación de Amazon SWF sencilla 241

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForActivityTaskRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 }

Si el token de tarea no es null, podemos empezar a ejecutar el método de actividad
(sayHello), facilitándole los datos de entrada que se enviaron con la tarea.

Si la tarea se ejecuta correctamente (no se genera ningún error), el proceso de trabajo responde
a SWF llamando al método respondActivityTaskCompleted del cliente de SWF con un
objeto RespondActivityTaskCompletedRequest que contiene el token de la tarea y los datos de los
resultados de la actividad.

Sin embargo, si la tarea ha producido un error, respondemos llamando al método
respondActivityTaskFailed con un objeto RespondActivityTaskFailedRequest,
proporcionándole el token de la tarea e información sobre el error.

Note

Esta actividad no se cerrará correctamente si se cancela. Aunque está fuera del alcance
de este tutorial, una implementación alternativa de este proceso de trabajo de actividad se
proporciona en el tema complementario Cerrar correctamente los procesos de trabajo de
actividad y flujo de trabajo.

Implementación del proceso de trabajo del flujo de trabajo

La lógica del flujo de trabajo reside en una parte del código denominada proceso de trabajo de flujo
de trabajo. El proceso de trabajo de flujo de trabajo busca tareas de decisión enviadas por Amazon
SWF en el dominio y en la lista de tareas predeterminada en los que se ha registrado este tipo de
flujo de trabajo.

Cuando el proceso de trabajo de flujo de trabajo recibe una tarea, toma algún tipo de decisión
(normalmente si se va a programar o no una nueva actividad) y realiza la actividad correspondiente
(como programar la actividad).

1. Abra su editor de texto y cree el archivo WorkflowWorker.java, añadiendo una declaración del
paquete y funciones import de acuerdo con los pasos comunes.

2. Añada algunas funciones import adicionales al archivo:

import com.amazonaws.regions.Regions;

Creación de una aplicación de Amazon SWF sencilla 242

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskCompletedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskFailedRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

3. Declare la clase WorkflowWorker y cree una instancia de la clase AmazonSimpleWorkflowClient
utilizada para obtener acceso a los métodos de SWF.

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

4. Añada el método main. Este método se ejecuta en bucle continuamente en busca de tareas
de decisión usando el método pollForDecisionTask del cliente de SWF. El objeto
PollForDecisionTaskRequest proporciona los detalles.

 PollForDecisionTaskRequest task_request =
 new PollForDecisionTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST));

 while (true) {
 System.out.println(
 "Polling for a decision task from the tasklist '" +
 HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 DecisionTask task = swf.pollForDecisionTask(task_request);

 String taskToken = task.getTaskToken();
 if (taskToken != null) {
 try {
 executeDecisionTask(taskToken, task.getEvents());
 } catch (Throwable th) {
 th.printStackTrace();
 }
 }
 }

Creación de una aplicación de Amazon SWF sencilla 243

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForDecisionTaskRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Una vez que se recibe una tarea, llamamos a su método getTaskToken, que devuelve una
cadena que se puede utilizar para identificar la tarea. Si el token devuelto no es null, lo seguimos
procesando en el método executeDecisionTask, pasándole el token de la tarea y la lista de
objetos HistoryEvent enviados con la tarea.

5. Añada el método executeDecisionTask, tomando el token de tarea (String) y la lista
HistoryEvent.

 List<Decision> decisions = new ArrayList<Decision>();
 String workflow_input = null;
 int scheduled_activities = 0;
 int open_activities = 0;
 boolean activity_completed = false;
 String result = null;

También configuramos algunos miembros de datos para realizar un seguimiento de cosas como:

• Una lista de objetos Decision usados para registrar los resultados de procesar la tarea

• Una cadena para almacenar la entrada del flujo de trabajo proporcionada por el evento
"WorkflowExecutionStarted"

• Un recuento de las actividades programadas y abiertas (en ejecución) para evitar programar la
misma actividad cuando ya se ha programado o se está ejecutando en este momento

• Un valor booleano para indicar que la actividad se ha completado

• Una cadena para almacenar los resultados de la actividad, que se devolverán como el resultado
del flujo de trabajo

6. A continuación, añada código a executeDecisionTask para procesar los objetos
HistoryEvent que se han enviado a la tarea, en función del tipo de evento notificado por el
método getEventType.

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 switch(event.getEventType()) {
 case "WorkflowExecutionStarted":
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case "ActivityTaskScheduled":

Creación de una aplicación de Amazon SWF sencilla 244

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 scheduled_activities++;
 break;
 case "ScheduleActivityTaskFailed":
 scheduled_activities--;
 break;
 case "ActivityTaskStarted":
 scheduled_activities--;
 open_activities++;
 break;
 case "ActivityTaskCompleted":
 open_activities--;
 activity_completed = true;
 result = event.getActivityTaskCompletedEventAttributes()
 .getResult();
 break;
 case "ActivityTaskFailed":
 open_activities--;
 break;
 case "ActivityTaskTimedOut":
 open_activities--;
 break;
 }
}
System.out.println("]");

A efectos de nuestro flujo de trabajo, lo que más nos interesa es:

• El evento "WorkflowExecutionStarted", que indica que ha comenzado la ejecución del flujo de
trabajo (lo que normalmente significa que debe ejecutar la primera actividad del flujo de trabajo)
y que ofrece la entrada inicial proporcionada en el flujo de trabajo. En este caso, es la parte del
nombre del saludo, por lo que se guarda como una cadena para usarla al programar la actividad
que se debe ejecutar.

• El evento "ActivityTaskCompleted", que se envía una vez que se haya completado la
actividad programada. Los datos del evento también incluyen el valor devuelto de la actividad
completada. Como solo tenemos una actividad, usaremos el valor como el resultado de todo el
flujo de trabajo.

Los demás tipos de eventos se pueden utilizar si el flujo de trabajo así lo requiere. Consulte la
descripción de la clase HistoryEvent para obtener información acerca de cada tipo de evento.

Creación de una aplicación de Amazon SWF sencilla 245

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

+ NOTA: las cadenas de switch se introdujeron en Java 7. Si utiliza una versión anterior
de Java, puede utilizar la clase EventType para convertir el valor String devuelto por
history_event.getType() en un valor enum y luego en un valor String si es necesario:

EventType et = EventType.fromValue(event.getEventType());

1. Detrás de la instrucción switch, añada más código para responder con una decisión adecuada
en función de la tarea que se ha recibido.

if (activity_completed) {
 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.CompleteWorkflowExecution)
 .withCompleteWorkflowExecutionDecisionAttributes(
 new CompleteWorkflowExecutionDecisionAttributes()
 .withResult(result)));
} else {
 if (open_activities == 0 && scheduled_activities == 0) {

 ScheduleActivityTaskDecisionAttributes attrs =
 new ScheduleActivityTaskDecisionAttributes()
 .withActivityType(new ActivityType()
 .withName(HelloTypes.ACTIVITY)
 .withVersion(HelloTypes.ACTIVITY_VERSION))
 .withActivityId(UUID.randomUUID().toString())
 .withInput(workflow_input);

 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.ScheduleActivityTask)
 .withScheduleActivityTaskDecisionAttributes(attrs));
 } else {
 // an instance of HelloActivity is already scheduled or running. Do nothing,
 another
 // task will be scheduled once the activity completes, fails or times out
 }
}

System.out.println("Exiting the decision task with the decisions " + decisions);

Creación de una aplicación de Amazon SWF sencilla 246

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Si la actividad aún no se ha programado, respondemos con una decisión
ScheduleActivityTask, que proporciona información en una estructura
ScheduleActivityTaskDecisionAttributes sobre la actividad que Amazon SWF debería programar
a continuación, incluyendo también los datos que Amazon SWF debe enviar a la actividad.

• Si la actividad se ha completado, consideramos que se ha completado todo el flujo de trabajo y
respondemos con una decisión CompletedWorkflowExecution, rellenando una estructura
CompleteWorkflowExecutionDecisionAttributes para proporcionar información sobre el flujo de
trabajo completado. En este caso, devolvemos el resultado de la actividad.

En cualquier caso, la información de la decisión se añade a la lista Decision que se declaró
encima del método.

2. Complete la tarea de decisión devolviendo la lista de objetos Decision recopilados al procesar la
tarea. Añada este código al final del método executeDecisionTask que hemos escrito:

swf.respondDecisionTaskCompleted(
 new RespondDecisionTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withDecisions(decisions));

El método respondDecisionTaskCompleted del cliente de SWF toma el token de la tarea que
identifica la tarea, así como la lista de objetos Decision.

Implementación del iniciador del flujo de trabajo

Por último, escribiremos código para iniciar la ejecución del flujo de trabajo.

1. Abra su editor de texto y cree el archivo WorkflowStarter.java, añadiendo una declaración
del paquete y funciones import de acuerdo con los pasos comunes.

2. Añada la clase WorkflowStarter:

package aws.example.helloswf;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

Creación de una aplicación de Amazon SWF sencilla 247

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/CompleteWorkflowExecutionDecisionAttributes.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

public class WorkflowStarter {
 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 public static final String WORKFLOW_EXECUTION = "HelloWorldWorkflowExecution";

 public static void main(String[] args) {
 String workflow_input = "{SWF}";
 if (args.length > 0) {
 workflow_input = args[0];
 }

 System.out.println("Starting the workflow execution '" + WORKFLOW_EXECUTION +
 "' with input '" + workflow_input + "'.");

 WorkflowType wf_type = new WorkflowType()
 .withName(HelloTypes.WORKFLOW)
 .withVersion(HelloTypes.WORKFLOW_VERSION);

 Run run = swf.startWorkflowExecution(new StartWorkflowExecutionRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withWorkflowType(wf_type)
 .withWorkflowId(WORKFLOW_EXECUTION)
 .withInput(workflow_input)
 .withExecutionStartToCloseTimeout("90"));

 System.out.println("Workflow execution started with the run id '" +
 run.getRunId() + "'.");
 }
}

La clase WorkflowStarter consta de un único método, mainque toma un argumento opcional
pasado en la línea de comandos como datos de entrada para el flujo de trabajo.

El método del cliente de SWF, startWorkflowExecution, toma un objeto
StartWorkflowExecutionRequest como entrada. Aquí, además de especificar el dominio y tipo de
flujo de trabajo que se va a ejecutar, proporcionamos:

• Un nombre de ejecución de flujo de trabajo en lenguaje natural

• Los datos de entrada del flujo de trabajo (proporcionados en la línea de comandos en nuestro
ejemplo)

Creación de una aplicación de Amazon SWF sencilla 248

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/StartWorkflowExecutionRequest.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Un valor de tiempo de espera que representa cuánto tiempo, en segundos, debe tardar en
ejecutarse todo el flujo de trabajo

El objeto Run que devuelve startWorkflowExecution proporciona un ID de ejecución, que es
un valor que se puede utilizar para identificar esta ejecución del flujo de trabajo en concreto en el
historial de ejecuciones del flujo de trabajo de Amazon SWF.

+ NOTA: el ID de ejecución lo genera Amazon SWF y no es el mismo que el nombre de ejecución
del flujo de trabajo que se pasa al iniciar la ejecución del flujo de trabajo.

Compilación del ejemplo

Para crear el proyecto de ejemplo con Maven, vaya al directorio helloswf y escriba:

mvn package

El helloswf-1.0.jar resultante se generará en el directorio target.

Ejecución del ejemplo

El ejemplo consta de cuatro clases ejecutable distintas, que se ejecutan de forma independiente
entre sí.

Note

Si utiliza un sistema Linux, macOS o Unix, puede ejecutarlas todas ellas, una detrás de otra,
en una sola ventana del terminal. Si ejecuta Windows, debe abrir dos instancias de línea de
comandos adicionales e ir al directorio helloswf de cada una de ellas.

Definición del classpath Java

Aunque Maven se encarga de las dependencias por usted, para ejecutar el ejemplo, tendrá que
proporcionar la biblioteca del SDK de AWS y sus dependencias en el classpath Java. Puede
establecer la variable de entorno CLASSPATH en la ubicación de las bibliotecas del SDK de AWS y el
directorio third-party/lib del SDK, que incluye las dependencias necesarias:

export CLASSPATH='target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/
lib/*'

Creación de una aplicación de Amazon SWF sencilla 249

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Run.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

java example.swf.hello.HelloTypes

O puede usar la opción -cp del comando java para establecer el classpath mientras se ejecuta
cada una de las aplicaciones.

java -cp target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/lib/* \
 example.swf.hello.HelloTypes

Usted decide el método que desea utilizar. Si no ha tenido problemas al compilar el código, pero al
intentar ejecutar los ejemplos ha recibido una serie de errores "NoClassDefFound", es probable que
el classpath esté establecido de forma incorrecta.

Registro del dominio y de los tipos de flujo de trabajo y actividad

Antes de ejecutar sus procesos de trabajo y el iniciador del flujo de trabajo, tendrá que registrar el
dominio y sus tipos de flujo de trabajo y actividad. El código para esto se ha implementado en la
sección Registro de un dominio y de tipos de flujo de trabajo y actividad.

Después de la compilación, si ha establecido el CLASSPATH, puede ejecutar el código de registro
ejecutando el comando:

 echo 'Supply the name of one of the example classes as an argument.'

Inicio de los procesos de trabajo de actividad y flujo de trabajo

Ahora que los tipos se han registrado, puede iniciar los procesos de trabajo de actividad y flujo de
trabajo. Estos se seguirán ejecutando y buscarán tareas hasta que se cancelen, por lo que deberá
ejecutarlos en ventanas de terminal diferentes o, si utiliza Linux, macOS o Unix, puede usar el
operador & para hacer que cada uno de ellos genere un proceso distinto cuando se ejecuten.

 echo 'If there are arguments to the class, put them in quotes after the class
 name.'
 exit 1

Si ejecuta estos comandos en ventanas distintas, omita el operador & al final de cada línea.

Inicio de la ejecución del flujo de trabajo

Ahora que los procesos de trabajo de actividad y flujo de trabajo están realizando operaciones de
sondeo, puede iniciar la ejecución del flujo de trabajo. Este proceso se ejecutará hasta que el flujo de

Creación de una aplicación de Amazon SWF sencilla 250

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

trabajo devuelva un estado completado. Debe ejecutarlo en una nueva ventana de terminal (a menos
que ejecute sus procesos de trabajo como nuevos procesos generados mediante el operador &).

fi

Note

Si desea proporcionar sus propios datos de entrada, que se pasarán primero al flujo de
trabajo y después a la actividad, añádalos a la línea de comandos. Por ejemplo:

echo "## Running $className..."

Una vez que comience la ejecución del flujo de trabajo, debería empezar a ver los resultados
enviados por ambos procesos de trabajo y por la propia ejecución del flujo de trabajo. Cuando el flujo
de trabajo termine de completarse, el resultado se mostrará en la pantalla.

Código fuente completo de este ejemplo

Puede buscar el código fuente completo de este ejemplo en Github en el repositorio aws-java-
developer-guide.

Para obtener más información

• Los procesos de trabajo presentados aquí pueden ocasionar la pérdida de tareas si se cierran
mientras se ejecuta un sondeo del flujo de trabajo. Para saber cómo cerrar correctamente los
procesos de trabajo, consulte Cerrar correctamente los procesos de trabajo de actividad y flujo de
trabajo.

• Para obtener más información sobre Amazon SWF, visite la página principal de Amazon SWF o
consulte la Guía para desarrolladores de Amazon SWF.

• Puede utilizar AWS Flow Framework para Java para crear flujos de trabajo más complejos en un
estilo Java elegante mediante anotaciones. Para obtener más información, consulte la Guía para
desarrolladores de AWS Flow Framework para Java.

Creación de una aplicación de Amazon SWF sencilla 251

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java/example_code/swf
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

LambdaTareas de

Como alternativa a las actividades de Amazon SWF, o en combinación con ellas, puede utilizar
funciones Lambda que representen unidades de trabajo en sus flujos de trabajo y programarlas de
manera similar en actividades.

Este tema se centra en cómo implementar tareas Amazon SWF Lambda mediante AWS SDK para
Java. Para obtener más información acerca de las tareas de Lambda, consulte Tareas AWS Lambda
en la Guía para desarrolladores de Amazon SWF.

Configuración de un rol de IAM de varios servicios para ejecutar su función Lambda

Para que Amazon SWF pueda ejecutar su función Lambda, debe configurar un rol de IAM para
conceder a Amazon SWF permiso para ejecutar funciones Lambda en su nombre. Para obtener
información completa al respecto, consulte AWS LambdaTareas de .

Necesitará el Nombre de recurso de Amazon (ARN) de este rol de IAM cuando registre un flujo de
trabajo que utilice tareas de Lambda.

Crear una función de Lambda

Puede crear funciones Lambda en diferentes lenguajes, incluido Java. Para obtener información
completa sobre cómo crear, implementar y utilizar funciones Lambda, consulte la AWS LambdaGuía
para desarrolladores de .

Note

Independientemente del lenguaje que use para crear la función Lambda, puede programarla
y ejecutarla mediante cualquier flujo de trabajo de Amazon SWF, sea cual sea el lenguaje en
el que esté escrito el código del flujo de trabajo. Amazon SWF se encarga de los detalles de
la ejecución de la función y de pasar los datos.

A continuación se incluye una función Lambda sencilla que se puede utilizar en lugar de la actividad
que se indica en Creación de una aplicación de Amazon SWF sencilla.

• Esta versión está escrita en JavaScript y se puede introducir directamente con la Consola de
administración de AWS:

exports.handler = function(event, context) {

LambdaTareas de 252

https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/console/home

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 context.succeed("Hello, " + event.who + "!");
};

• Esta es la misma función escrita en Java, que también podría implementar y ejecutar en Lambda:

package example.swf.hellolambda;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.util.json.JSONException;
import com.amazonaws.util.json.JSONObject;

public class SwfHelloLambdaFunction implements RequestHandler<Object, Object> {
 @Override
 public Object handleRequest(Object input, Context context) {
 String who = "{SWF}";
 if (input != null) {
 JSONObject jso = null;
 try {
 jso = new JSONObject(input.toString());
 who = jso.getString("who");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
 return ("Hello, " + who + "!");
 }
}

Note

Para obtener más información acerca de la implementación de funciones Java en Lambda,
consulte Creación de un cómo crear un paquete de implementación (Java) en la Guía
para desarrolladores de AWS Lambda. Puede consultar también la sección sobre cómo
programar modelos de programación para crear funciones Lambda en Java.

Las funciones Lambda toman un evento u objeto de entrada como el primer parámetro y un objeto
de contexto como el segundo, que proporciona información sobre la solicitud para ejecutar la función
Lambda. Esta función en concreto espera que la entrada esté en formato JSON, con un campo who
establecido en el nombre usado para crear el saludo.

LambdaTareas de 253

https://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Registrar un flujo de trabajo para su uso con Lambda

Para que un flujo de trabajo programe una función Lambda, debe proporcionar el nombre del rol
de IAM que proporciona Amazon SWF con permiso para invocar funciones Lambda. Puede definir
esto durante el registro del flujo de trabajo mediante los métodos withDefaultLambdaRole o
setDefaultLambdaRole de RegisterWorkflowTypeRequest.

System.out.println("** Registering the workflow type '" + WORKFLOW + "-" +
 WORKFLOW_VERSION
 + "'.");
try {
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withDefaultLambdaRole(lambda_role_arn)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
}
catch (TypeAlreadyExistsException e) {

Programación de una tarea de Lambda

Programar un tarea de Lambda es similar a programar una actividad. Usted
proporciona una Decisión con un DecisionType `ScheduleLambdaFunction` y con
ScheduleLambdaFunctionDecisionAttributes.

running_functions == 0 && scheduled_functions == 0) {
AWSLambda lam = AWSLambdaClientBuilder.defaultClient();
GetFunctionConfigurationResult function_config =
 lam.getFunctionConfiguration(
 new GetFunctionConfigurationRequest()
 .withFunctionName("HelloFunction"));
String function_arn = function_config.getFunctionArn();

ScheduleLambdaFunctionDecisionAttributes attrs =
 new ScheduleLambdaFunctionDecisionAttributes()
 .withId("HelloFunction (Lambda task example)")
 .withName(function_arn)
 .withInput(workflow_input);

LambdaTareas de 254

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DecisionType.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleLambdaFunctionDecisionAttributes.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

decisions.add(

En ScheduleLambdaFuntionDecisionAttributes debe proporcionar un nombre, que es el
ARN de la función Lambda que se va a llamar, y un id, que es el nombre que Amazon SWF usará
para identificar la función Lambda en los registros del historial.

También puede proporcionar una entrada opcional para la función Lambda y establecer su valor de
tiempo de espera de inicio a cierre, que es el número de segundos que la función Lambda se puede
ejecutar antes de generar un evento LambdaFunctionTimedOut.

Note

Este código utiliza AWSLambdaClient para recuperar el ARN de la función Lambda, dado el
nombre de la función. Puede utilizar esta técnica para evitar codificar de forma rígida el ARN
completo (que incluye el ID de Cuenta de AWS) en el código.

Controlar eventos de funciones de Lambda en su decisor

Las tareas de Lambda generarán una serie de eventos a partir de los cuales puede emprender
acciones cuando se sondeen las tareas de decisión en el proceso de trabajo de flujo de trabajo,
correspondientes al ciclo de vida de su tarea de Lambda, con valores de EventType como
LambdaFunctionScheduled, LambdaFunctionStarted y LambdaFunctionCompleted. Si la
función Lambda produce un error o tarda más tiempo en ejecutarse que el valor de tiempo de espera
establecido, recibirá un tipo de evento LambdaFunctionFailed o LambdaFunctionTimedOut,
respectivamente.

boolean function_completed = false;
String result = null;

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 EventType event_type = EventType.fromValue(event.getEventType());
 switch(event_type) {
 case WorkflowExecutionStarted:
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;

LambdaTareas de 255

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambdaClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 case LambdaFunctionScheduled:
 scheduled_functions++;
 break;
 case ScheduleLambdaFunctionFailed:
 scheduled_functions--;
 break;
 case LambdaFunctionStarted:
 scheduled_functions--;
 running_functions++;
 break;
 case LambdaFunctionCompleted:
 running_functions--;
 function_completed = true;
 result = event.getLambdaFunctionCompletedEventAttributes()
 .getResult();
 break;
 case LambdaFunctionFailed:
 running_functions--;
 break;
 case LambdaFunctionTimedOut:
 running_functions--;
 break;

Recibir la salida de su función Lambda

Cuando recibe un LambdaFunctionCompleted`EventType, you can
retrieve your 0 function’s return value by first calling
`getLambdaFunctionCompletedEventAttributes en el HistoryEvent para obtener un objeto
LambdaFunctionCompletedEventAttributes, y luego llamar a su método getResult para recuperar
la salida de la función Lambda:

 LambdaFunctionCompleted:
running_functions--;

Código fuente completo de este ejemplo

Puede buscar el código fuente completo :github:<awsdocs/aws-java-developer-guide/tree/master/
doc_source/snippets/helloswf_lambda/> de este ejemplo en Github en el repositorio aws-java-
developer-guide.

LambdaTareas de 256

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/LambdaFunctionCompletedEventAttributes.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Cerrar correctamente los procesos de trabajo de actividad y flujo de trabajo

En el tema Creación de una aplicación de Amazon SWF sencilla se proporciona una implementación
completa de una aplicación de flujo de trabajo sencilla que consta de una solicitud de registro, un
proceso de trabajo de actividad y flujo de trabajo y un iniciador de flujo de trabajo.

Las clases de los procesos de trabajo se han diseñado para que se ejecuten continuamente en
busca de tareas enviadas por Amazon SWF para ejecutar actividades o devolver decisiones. Una
vez que se realiza una solicitud de sondeo, Amazon SWF registra el sondeador e intentará asignarle
una tarea.

Si el proceso de trabajo de flujo de trabajo se termina durante un sondeo de larga duración, Amazon
SWF puede seguir intentando enviar una tarea al proceso de trabajo terminado, lo que desembocará
en una tarea perdida (hasta que se agote el tiempo de espera de la tarea).

Una forma de abordar esta situación es esperar a que todas las solicitudes de sondeo de larga
duración finalicen antes de que termine el proceso de trabajo.

En este tema, reescribiremos el proceso de trabajo de actividad de helloswf, utilizando enlaces de
cierre de Java para cerrar correctamente el proceso de trabajo de actividad.

Este es el código completo:

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.ActivityTask;
import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

public class ActivityWorkerWithGracefulShutdown {

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 private static final CountDownLatch waitForTermination = new CountDownLatch(1);
 private static volatile boolean terminate = false;

Cerrar correctamente los procesos de trabajo de actividad y flujo de trabajo 257

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 private static String executeActivityTask(String input) throws Throwable {
 return "Hello, " + input + "!";
 }

 public static void main(String[] args) {
 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 try {
 terminate = true;
 System.out.println("Waiting for the current poll request" +
 " to return before shutting down.");
 waitForTermination.await(60, TimeUnit.SECONDS);
 }
 catch (InterruptedException e) {
 // ignore
 }
 }
 });
 try {
 pollAndExecute();
 }
 finally {
 waitForTermination.countDown();
 }
 }

 public static void pollAndExecute() {
 while (!terminate) {
 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(new
 PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST)));

 String taskToken = task.getTaskToken();

 if (taskToken != null) {
 String result = null;
 Throwable error = null;

Cerrar correctamente los procesos de trabajo de actividad y flujo de trabajo 258

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 try {
 System.out.println("Executing the activity task with input '"
 + task.getInput() + "'.");
 result = executeActivityTask(task.getInput());
 }
 catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withResult(result));
 }
 else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(taskToken)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }
 }
 }
}

En esta versión, el código de sondeo que estaba en la función main en la versión original se ha
movido a su propio método, pollAndExecute.

La función main ahora utiliza CountDownLatch junto con un enlace de cierre para hacer que el
subproceso espere hasta 60 segundos después de que se solicite su terminación y antes de permitir
que se cierre el subproceso.

Registro de dominios

Cada flujo de trabajo y actividad de Amazon SWF requiere un dominio en el que ejecutarse.

Registro de dominios 259

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/Runtime.html
https://aws.amazon.com/swf/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

1. Cree un nuevo objeto RegisterDomainRequest, proporcionando al menos el nombre de dominio y
el periodo de retención de ejecución del flujo de trabajo (estos parámetros son obligatorios).

2. Llame al método AmazonSimpleWorkflowClient.registerDomain con el objeto
RegisterDomainRequest.

3. Capture la excepción DomainAlreadyExistsException si el dominio que solicita ya existe (en cuyo
caso, no se suele requerir ninguna acción).

El siguiente código muestra este procedimiento:

public void register_swf_domain(AmazonSimpleWorkflowClient swf, String name)
{
 RegisterDomainRequest request = new RegisterDomainRequest().withName(name);
 request.setWorkflowExecutionRetentionPeriodInDays("10");
 try
 {
 swf.registerDomain(request);
 }
 catch (DomainAlreadyExistsException e)
 {
 System.out.println("Domain already exists!");
 }
}

Visualización de los dominios

Puede mostrar los dominios de Amazon SWF asociados a su cuenta y región de AWS por tipo de
registro.

1. Cree un objeto ListDomainsRequest y especifique el estado de registro de los dominios en los que
está interesado (obligatorio).

2. Llame a AmazonSimpleWorkflowClient.listDomains con el objeto ListDomainRequest. Los
resultados se proporcionan en un objeto DomainInfos.

3. Llame a getDomainInfos devuelto en el objeto devuelto para obtener una lista de objetos
DomainInfo.

4. Llame a getName en cada objeto DomainInfo para obtener su nombre.

El siguiente código muestra este procedimiento:

Visualización de los dominios 260

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#registerDomain-com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ListDomainsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#listDomains-com.amazonaws.services.simpleworkflow.model.ListDomainsRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html#getDomainInfos--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html#getName--

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

public void list_swf_domains(AmazonSimpleWorkflowClient swf)
{
 ListDomainsRequest request = new ListDomainsRequest();
 request.setRegistrationStatus("REGISTERED");
 DomainInfos domains = swf.listDomains(request);
 System.out.println("Current Domains:");
 for (DomainInfo di : domains.getDomainInfos())
 {
 System.out.println(" * " + di.getName());
 }
}

Ejemplos de código incluidos con el SDK

AWS SDK para Java incluye ejemplos de código que muestran muchas de las características del
SDK en programas compilables y ejecutables. Puede estudiar o modificar estos ejemplos para
implementar sus propias soluciones de AWS utilizando el AWS SDK para Java.

Cómo obtener los ejemplos

Los ejemplos de código de AWS SDK para Java se proporcionan en el directorio samples del SDK.
Si ha descargado e instalado el SDK usando la información de Configuración del AWS SDK para
Java, ya tiene los ejemplos en su sistema.

También puede consultar los últimos ejemplos en el repositorio de GitHub de AWS SDK para Java
en el directorio src/samples.

Compilación y ejecución de los ejemplos mediante la línea de comandos

Los ejemplos incluyen scripts de compilación Ant para que pueda compilarlos y ejecutarlos
fácilmente desde la línea de comandos. Cada ejemplo contiene también un archivo README en
formato HTML que incluye información específica de cada ejemplo.

Note

Si examina el código de ejemplo en GitHub, haga clic en el botón Raw de la pantalla de
código fuente cuando consulte el archivo README.html del ejemplo. En modo "raw", el
HTML se mostrará de acuerdo con los requisitos del navegador.

Ejemplos de código incluidos con el SDK 261

https://github.com/aws/aws-sdk-java/tree/master/src/samples
http://ant.apache.org/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Requisitos previos

Antes de ejecutar alguno de los ejemplos de AWS SDK para Java, necesitará configurar las
credenciales de AWS en el entorno o con la AWS CLI, tal y como se especifica en Configuración de
credenciales y regiones de AWS para desarrollo. Los ejemplos utilizan la cadena predeterminada de
proveedores de credenciales siempre que sea posible. Por lo tanto, configurando las credenciales
de esta forma, puede evitar el procedimiento arriesgado de insertar las credenciales de AWS en
los archivos del directorio de código fuente (en el que puede activarlas sin querer y compartirlas
públicamente).

Ejecución de los ejemplos

1. Vaya al directorio que contiene el código del ejemplo. Por ejemplo, si está en el directorio raíz de
la descarga del SDK de AWS y desea ejecutar el ejemplo AwsConsoleApp, escriba:

cd samples/AwsConsoleApp

2. Compile y ejecute el ejemplo con Ant. El destino de la compilación predeterminado realiza ambas
opciones, por lo que solo puede introducir:

ant

El ejemplo muestra información en la salida estándar:

===

Welcome to the {AWS} Java SDK!

===
You have access to 4 Availability Zones.

You have 0 {EC2} instance(s) running.

You have 13 Amazon SimpleDB domain(s) containing a total of 62 items.

You have 23 {S3} bucket(s), containing 44 objects with a total size of 154767691 bytes.

Compilación y ejecución de los ejemplos mediante la línea de comandos 262

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Compilación y ejecución de los ejemplos mediante el IDE de Eclipse

Si utiliza AWS Toolkit for Eclipse, también puede iniciar un nuevo proyecto en Eclipse basado en
AWS SDK para Java o añadir el SDK a un proyecto de Java existente.

Requisitos previos

Una vez instalado AWS Toolkit for Eclipse, le recomendamos que configure el conjunto de
herramientas con sus credenciales de seguridad. Puede hacer esto en cualquier momento eligiendo
Preferencias en el menú Ventana de Eclipse y eligiendo la sección Toolkit de AWS.

Ejecución de los ejemplos

1. Abra Eclipse.

2. Crear un nuevo proyecto Java de AWS En Eclipse, en el menú File (Archivo), elija New (Nuevo) y
haga clic en Project (Proyecto). Se abre el asistente New Project (Nuevo proyecto).

3. Expanda la categoría AWS y, a continuación, elija Proyecto Java de AWS.

4. Elija Siguiente. Se muestra la página de configuración del proyecto.

5. Introduzca el nombre en el cuadro Project Name (Nombre del proyecto). El grupo de ejemplos de
AWS SDK para Java muestra los disponibles en el SDK, descritos anteriormente.

6. Seleccione los ejemplos que desea incluir en su proyecto seleccionando cada casilla de
verificación.

7. Introduzca las credenciales de AWS Si ya ha configurado AWS Toolkit for Eclipse con sus
credenciales, estas se rellenan automáticamente.

8. Seleccione Finalizar. El proyecto se crea y se añade a Project Explorer (Explorador de proyectos).

9. Elija el archivo .java del ejemplo que desea ejecutar. Por ejemplo, en el caso del ejemplo de
Amazon S3, elija S3Sample.java.

10.Elija Run (Ejecutar) en el menú Run (Ejecutar).

11.Haga clic con el botón derecho en el proyecto en Project Explorer (Explorador de proyectos),
seleccione Build Path (Ruta de compilación) y, a continuación, seleccione Add Libraries (Añadir
bibliotecas).

12.Elija SDK de Java AWS, seleccione Siguiente y, a continuación, siga las instrucciones que
aparecen en pantalla.

Compilación y ejecución de los ejemplos mediante el IDE de Eclipse 263

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Seguridad para el AWS SDK para Java

La seguridad en la nube de Amazon Web Services (AWS) es la máxima prioridad. Como cliente
de AWS, se beneficia de una arquitectura de red y un centro de datos que se han diseñado para
satisfacer los requisitos de seguridad de las organizaciones más exigentes. La seguridad es una
responsabilidad compartida entre AWS usted y usted. En el modelo de responsabilidad compartida,
se habla de “seguridad de la nube” y “seguridad en la nube”:

Seguridad de la nube: AWS se encarga de proteger la infraestructura en la que se ejecutan todos
los servicios que se ofrecen en la AWS nube y de proporcionarle servicios que pueda utilizar de
forma segura. Nuestra responsabilidad en materia de seguridad es nuestra máxima prioridad AWS,
y auditores externos comprueban y verifican periódicamente la eficacia de nuestra seguridad como
parte de los programas de AWS conformidad.

Seguridad en la nube: su responsabilidad viene determinada por el AWS servicio que utilice y otros
factores, como la confidencialidad de sus datos, los requisitos de su organización y las leyes y
reglamentos aplicables.

Este AWS producto o servicio sigue el modelo de responsabilidad compartida a través de los
servicios específicos de Amazon Web Services (AWS) a los que da soporte. Para obtener
información sobre la seguridad de los AWS servicios, consulte la página de documentación sobre la
seguridad del AWS servicio y AWS los servicios que se encuentran dentro del ámbito de aplicación
de AWS las medidas de conformidad establecidas por el programa de conformidad.

Temas

• Protección de datos en AWS SDK para Java 1.x

• AWS SDK para Java soporte para TLS

• Gestión de identidad y acceso

• Validación de la conformidad de este AWS producto o servicio

• Resiliencia de este AWS producto o servicio

• Seguridad de la infraestructura para este AWS producto o servicio

• Amazon S3 Migración de clientes de cifrado

264

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Protección de datos en AWS SDK para Java 1.x

El modelo de responsabilidad compartida se aplica a la protección de datos en este AWS producto
o servicio. Como se describe en este modelo, AWS es responsable de proteger la infraestructura
global en la que se ejecuta toda la AWS nube. Usted es responsable de mantener el control sobre
el contenido alojado en esta infraestructura. Este contenido incluye la configuración de seguridad y
las tareas de administración de los servicios de AWS que usted utiliza. Para obtener más información
sobre la privacidad de datos, consulte las Preguntas frecuentes sobre la privacidad de datos. Para
obtener información sobre la protección de datos en Europa, consulte la entrada del blog sobre el
modelo de responsabilidad AWS compartida y el RGPD en el blog AWS de seguridad.

Para proteger los datos, le recomendamos que proteja Cuenta de AWS las credenciales y configure
cuentas de usuario individuales con AWS Identity and Access Management (IAM). De esta manera,
cada usuario recibe únicamente los permisos necesarios para cumplir con sus obligaciones
laborales. También recomendamos proteger sus datos de las siguientes maneras:

• Utiliza la autenticación multifactor (MFA) en cada cuenta.

• Se utiliza SSL/TLS para comunicarse con AWS los recursos.

• Configure la API y el registro de actividad de los usuarios con AWS CloudTrail.

• Utilice soluciones de AWS cifrado, con todos los controles de seguridad predeterminados en AWS
los servicios.

• Utilice servicios de seguridad administrados avanzados, como Amazon Macie, que lo ayuden a
detectar y proteger los datos personales almacenados en Amazon S3.

• Si necesita módulos criptográficos validados por FIPS 140-2 para acceder a AWS través de una
interfaz de línea de comandos o una API, utilice un punto final FIPS. Para obtener más información
acerca de los puntos de conexión de FIPS disponibles, consulte Estándar de procesamiento de la
información federal (FIPS) 140-2.

Le recomendamos encarecidamente que nunca introduzca información de identificación confidencial,
como, por ejemplo, números de cuenta de sus clientes, en los campos de formato libre, como
el campo Nombre. Esto incluye cuando trabaja con este AWS producto o servicio u otros AWS
servicios mediante la consola, la API o. AWS CLI AWS SDKs Todos los datos que introduzcas en
este AWS producto o servicio o en otros servicios podrían recopilarse para incluirlos en los registros
de diagnóstico. Cuando le proporcione una URL a un servidor externo, no incluya información sobre
las credenciales en la URL para validar la solicitud en ese servidor.

Protección de datos 265

https://aws.amazon.com/compliance/shared-responsibility-model
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr
https://aws.amazon.com/compliance/fips
https://aws.amazon.com/compliance/fips

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

AWS SDK para Java soporte para TLS

La siguiente información se aplica únicamente a la implementación de SSL de Java (la
implementación de SSL predeterminada en el AWS SDK para Java). Si está usando una
implementación SSL distinta, consulte su implementación SSL específica para saber cómo aplicar
versiones de TLS.

Cómo verificar la versión de TLS

Consulte la documentación del proveedor de su máquina virtual Java (JVM) para determinar qué
versiones de TLS son compatibles con su plataforma. Para algunos JVMs, el siguiente código
mostrará qué versiones de SSL son compatibles.

System.out.println(Arrays.toString(SSLContext.getDefault().getSupportedSSLParameters().getProtocols()));

Para ver el protocolo de enlace SSL en acción y qué versión de TLS se utiliza, puede utilizar la
propiedad del sistema javax.net.debug.

java app.jar -Djavax.net.debug=ssl

Note

TLS 1.3 no es compatible con las versiones 1.9.5 a 1.10.31 del SDK para Java. Para obtener
más información, consulte la siguiente entrada del blog:
https://aws.amazon.com/blogs/desarrollador/tls-1-3- - -1-9-5-to-1-10-31/ incompatibility-with-
aws-sdk for-java-versions

Aplicación de una versión mínima de TLS

El SDK siempre prefiere la última versión de TLS compatible con la plataforma y el servicio. Si desea
aplicar una versión mínima específica de TLS, consulte la documentación de su JVM. Para los
basados en OpenJDK JVMs, puede usar la propiedad del sistema. jdk.tls.client.protocols

java app.jar -Djdk.tls.client.protocols=PROTOCOLS

Consulte la documentación de su JVM para conocer los valores admitidos de los PROTOCOLOS.

Aplicación de una versión mínima de TLS 266

https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/
https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Gestión de identidad y acceso

AWS Identity and Access Management (IAM) es una herramienta Servicio de AWS que ayuda al
administrador a controlar de forma segura el acceso a los AWS recursos. Los administradores de
IAM controlan quién puede autenticarse (iniciar sesión) y quién puede autorizarse (tener permisos)
para usar los recursos. AWS La IAM es una Servicio de AWS opción que puede utilizar sin coste
adicional.

Temas

• Público

• Autenticación con identidades

• Administración del acceso con políticas

• ¿Cómo Servicios de AWS trabajar con IAM

• Solución de problemas de AWS identidad y acceso

Público

La forma de usar AWS Identity and Access Management (IAM) varía según el trabajo en el que se
realice. AWS

Usuario del servicio: si Servicios de AWS solía hacer su trabajo, el administrador le proporcionará las
credenciales y los permisos que necesita. A medida que vaya utilizando más AWS funciones para
realizar su trabajo, es posible que necesite permisos adicionales. Entender cómo se administra el
acceso puede ayudarlo a solicitar los permisos correctos al administrador. Si no puede acceder a una
función de AWS, consulte Solución de problemas de AWS identidad y acceso o consulte la guía del
usuario de la Servicio de AWS que está utilizando.

Administrador de servicios: si está a cargo de AWS los recursos de su empresa, probablemente
tenga acceso total a ellos AWS. Su trabajo consiste en determinar a qué AWS funciones y recursos
deben acceder los usuarios del servicio. Luego, debe enviar solicitudes a su administrador de IAM
para cambiar los permisos de los usuarios de su servicio. Revise la información de esta página
para conocer los conceptos básicos de IAM. Para obtener más información sobre cómo su empresa
puede utilizar la IAM AWS, consulte la guía del usuario del Servicio de AWS que está utilizando.

Administrador de IAM: si es un administrador de IAM, es posible que quiera conocer más detalles
sobre cómo escribir políticas para administrar el acceso a AWS. Para ver ejemplos de políticas AWS

Gestión de identidad y acceso 267

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

basadas en la identidad que puede utilizar en IAM, consulte la guía del usuario de la Servicio de
AWS que está utilizando.

Autenticación con identidades

La autenticación es la forma de iniciar sesión AWS con sus credenciales de identidad. Debe
autenticarse como usuario de Usuario raíz de la cuenta de AWS IAM o asumir una función de IAM.

Puede iniciar sesión como una identidad federada con las credenciales de una fuente de identidad,
como AWS IAM Identity Center (IAM Identity Center), la autenticación de inicio de sesión único o las
credenciales. Google/Facebook Para obtener más información sobre el inicio de sesión, consulte
Cómo iniciar sesión en la Cuenta de AWS en la Guía del usuario de AWS Sign-In .

Para el acceso programático, AWS proporciona un SDK y una CLI para firmar criptográficamente las
solicitudes. Para obtener más información, consulte AWS Signature Version 4 para solicitudes de API
en la Guía del usuario de IAM.

Cuenta de AWS usuario root

Al crear un Cuenta de AWS, se comienza con una identidad de inicio de sesión denominada
usuario Cuenta de AWS raíz que tiene acceso completo a todos Servicios de AWS los recursos. Se
recomiendaencarecidamente que no utilice el usuario raíz para las tareas diarias. Para ver las tareas
que requieren credenciales de usuario raíz, consulte Tareas que requieren credenciales de usuario
raíz en la Guía del usuario de IAM.

Identidad federada

Como práctica recomendada, exija a los usuarios humanos que utilicen la federación con un
proveedor de identidades para acceder Servicios de AWS mediante credenciales temporales.

Una identidad federada es un usuario del directorio empresarial, del proveedor de identidades web
o al Directory Service que se accede Servicios de AWS mediante credenciales de una fuente de
identidad. Las identidades federadas asumen roles que proporcionan credenciales temporales.

Para una administración de acceso centralizada, se recomienda AWS IAM Identity Center. Para
obtener más información, consulte ¿Qué es el Centro de identidades de IAM? en la Guía del usuario
de AWS IAM Identity Center .

Autenticación con identidades 268

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Usuarios y grupos de IAM

Un usuario de IAM es una identidad con permisos específicos para una sola persona o aplicación.
Recomendamos el uso de credenciales temporales en lugar de usuarios de IAM con credenciales de
larga duración. Para obtener más información, consulte Exigir a los usuarios humanos que utilicen la
federación con un proveedor de identidad para acceder AWS mediante credenciales temporales en
la Guía del usuario de IAM.

Un grupo de IAM especifica un conjunto de usuarios de IAM y facilita la administración de los
permisos para grupos grandes de usuarios. Para obtener más información, consulte Casos de uso
para usuarios de IAM en la Guía del usuario de IAM.

Roles de IAM

Un Rol de IAM es una identidad con permisos específicos que proporciona credenciales temporales.
Puede asumir un rol cambiando de un rol de usuario a uno de IAM (consola) o llamando a una AWS
CLI operación de AWS API. Para obtener más información, consulte Métodos para asumir un rol en
la Guía del usuario de IAM.

Las funciones de IAM son útiles para el acceso de usuarios federados, los permisos de usuario
de IAM temporales, el acceso entre cuentas, el acceso entre servicios y las aplicaciones que se
ejecutan en Amazon. EC2 Para obtener más información, consulte Acceso a recursos entre cuentas
en IAM en la Guía del usuario de IAM.

Administración del acceso con políticas

El acceso se controla creando políticas y AWS adjuntándolas a identidades o recursos. AWS Una
política define los permisos cuando están asociados a una identidad o un recurso. AWS evalúa estas
políticas cuando un director hace una solicitud. La mayoría de las políticas se almacenan AWS como
documentos JSON. Para obtener más información sobre los documentos de políticas de JSON,
consulte Información general de políticas de JSON en la Guía del usuario de IAM.

Mediante las políticas, los administradores especifican quién tiene acceso a qué, definiendo qué
entidad principal puede realizar acciones sobre qué recursos y en qué condiciones.

De forma predeterminada, los usuarios y los roles no tienen permisos. Un administrador de IAM crea
políticas de IAM y las agrega a roles, que los usuarios pueden asumir posteriormente. Las políticas
de IAM definen permisos independientemente del método que se utilice para realizar la operación.

Administración del acceso con políticas 269

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Políticas basadas en identidades

Las políticas basadas en identidad son documentos de política de permisos JSON que asocia a
una identidad (usuario, grupo o rol). Estas políticas controlan qué acciones pueden realizar las
identidades, en qué recursos y en qué condiciones. Para obtener más información sobre cómo crear
una política basada en la identidad, consulte Definición de permisos de IAM personalizados con
políticas administradas por el cliente en la Guía del usuario de IAM.

Las políticas basadas en identidad pueden ser políticas insertadas (incrustadas directamente en una
sola identidad) o políticas administradas (políticas independientes asociadas a varias identidades).
Para obtener información sobre cómo elegir entre políticas administradas e insertadas, consulte
Selección entre políticas administradas y políticas insertadas en la Guía del usuario de IAM.

Políticas basadas en recursos

Las políticas basadas en recursos son documentos de políticas JSON que se asocian a un recurso.
Los ejemplos incluyen las Políticas de confianza de roles de IAM y las Políticas de bucket de Amazon
S3. En los servicios que admiten políticas basadas en recursos, los administradores de servicios
pueden utilizarlos para controlar el acceso a un recurso específico. Debe especificar una entidad
principal en una política basada en recursos.

Las políticas basadas en recursos son políticas insertadas que se encuentran en ese servicio. No
puedes usar políticas AWS gestionadas de IAM en una política basada en recursos.

Listas de control de acceso () ACLs

Las listas de control de acceso (ACLs) controlan qué responsables (miembros de la cuenta, usuarios
o roles) tienen permisos para acceder a un recurso. ACLs son similares a las políticas basadas en
recursos, aunque no utilizan el formato de documento de políticas JSON.

Amazon S3 y Amazon VPC son ejemplos de servicios compatibles. AWS WAF ACLs Para obtener
más información ACLs, consulte la descripción general de la lista de control de acceso (ACL) en la
Guía para desarrolladores de Amazon Simple Storage Service.

Otros tipos de políticas

AWS admite tipos de políticas adicionales que pueden establecer los permisos máximos otorgados
por los tipos de políticas más comunes:

Administración del acceso con políticas 270

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Límites de permisos: establecen los permisos máximos que una política basada en identidad
puede conceder a una entidad de IAM. Para obtener más información, consulte Límites de
permisos para las entidades de IAM en la Guía del usuario de IAM.

• Políticas de control de servicios (SCPs): especifican los permisos máximos para una organización
o unidad organizativa en AWS Organizations. Para obtener más información, consulte Políticas de
control de servicios en la Guía del usuario de AWS Organizations .

• Políticas de control de recursos (RCPs): establece los permisos máximos disponibles para los
recursos de tus cuentas. Para obtener más información, consulte Políticas de control de recursos
(RCPs) en la Guía del AWS Organizations usuario.

• Políticas de sesión: políticas avanzadas que se pasan como parámetro cuando se crea una sesión
temporal para un rol o un usuario federado. Para obtener más información, consulte Políticas de
sesión en la Guía del usuario de IAM.

Varios tipos de políticas

Cuando se aplican varios tipos de políticas a una solicitud, los permisos resultantes son más
complicados de entender. Para saber cómo se AWS determina si se debe permitir una solicitud
cuando se trata de varios tipos de políticas, consulte la lógica de evaluación de políticas en la Guía
del usuario de IAM.

¿Cómo Servicios de AWS trabajar con IAM

Para obtener una visión general de cómo Servicios de AWS trabajar con la mayoría de las funciones
de IAM, consulte AWS los servicios que funcionan con IAM en la Guía del usuario de IAM.

Para obtener información sobre cómo utilizar una función específica Servicio de AWS con IAM,
consulte la sección de seguridad de la guía del usuario del servicio correspondiente.

Solución de problemas de AWS identidad y acceso

Utilice la siguiente información como ayuda para diagnosticar y solucionar los problemas habituales
que pueden surgir al trabajar con un AWS IAM.

Temas

• No estoy autorizado a realizar ninguna acción en AWS

• No estoy autorizado a realizar tareas como: PassRole

• Quiero permitir que personas ajenas a mí accedan Cuenta de AWS a mis AWS recursos

¿Cómo Servicios de AWS trabajar con IAM 271

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

No estoy autorizado a realizar ninguna acción en AWS

Si recibe un error que indica que no tiene autorización para realizar una acción, las políticas se
deben actualizar para permitirle realizar la acción.

En el siguiente ejemplo, el error se produce cuando el usuario de IAM mateojackson intenta utilizar
la consola para consultar los detalles acerca de un recurso ficticio my-example-widget, pero no
tiene los permisos ficticios awes:GetWidget.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

En este caso, la política del usuario mateojackson debe actualizarse para permitir el acceso al
recurso my-example-widget mediante la acción awes:GetWidget.

Si necesita ayuda, póngase en contacto con su AWS administrador. El administrador es la persona
que le proporcionó las credenciales de inicio de sesión.

No estoy autorizado a realizar tareas como: PassRole

Si recibe un error que indica que no tiene autorización para realizar la acción iam:PassRole, las
políticas deben actualizarse a fin de permitirle pasar un rol a AWS.

Algunas Servicios de AWS permiten transferir una función existente a ese servicio en lugar de crear
una nueva función de servicio o una función vinculada a un servicio. Para ello, debe tener permisos
para transferir la función al servicio.

En el siguiente ejemplo, el error se produce cuando un usuario de IAM denominado marymajor
intenta utilizar la consola para realizar una acción en AWS. Sin embargo, la acción requiere que el
servicio cuente con permisos que otorguen un rol de servicio. Mary no tiene permisos para transferir
el rol al servicio.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

En este caso, las políticas de Mary se deben actualizar para permitirle realizar la acción
iam:PassRole.

Si necesita ayuda, póngase en contacto con su AWS administrador. El administrador es la persona
que le proporcionó las credenciales de inicio de sesión.

Solución de problemas de AWS identidad y acceso 272

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Quiero permitir que personas ajenas a mí accedan Cuenta de AWS a mis AWS
recursos

Se puede crear un rol que los usuarios de otras cuentas o las personas externas a la organización
puedan utilizar para acceder a sus recursos. Se puede especificar una persona de confianza para
que asuma el rol. En el caso de los servicios que respaldan las políticas basadas en recursos o
las listas de control de acceso (ACLs), puedes usar esas políticas para permitir que las personas
accedan a tus recursos.

Para obtener más información, consulte lo siguiente:

• Para saber si AWS es compatible con estas funciones, consulte. ¿Cómo Servicios de AWS
trabajar con IAM

• Para obtener información sobre cómo proporcionar acceso a los recursos de su Cuentas de AWS
propiedad, consulte Proporcionar acceso a un usuario de IAM en otro usuario de su propiedad
Cuenta de AWS en la Guía del usuario de IAM.

• Para obtener información sobre cómo proporcionar acceso a tus recursos a terceros Cuentas de
AWS, consulta Cómo proporcionar acceso a recursos que Cuentas de AWS son propiedad de
terceros en la Guía del usuario de IAM.

• Para obtener información sobre cómo proporcionar acceso mediante una federación de
identidades, consulte Proporcionar acceso a usuarios autenticados externamente (identidad
federada) en la Guía del usuario de IAM.

• Para conocer sobre la diferencia entre las políticas basadas en roles y en recursos para el acceso
entre cuentas, consulte Acceso a recursos entre cuentas en IAM en la Guía del usuario de IAM.

Validación de la conformidad de este AWS producto o servicio

Para saber si un programa de cumplimiento Servicio de AWS está dentro del ámbito de aplicación
de programas de cumplimiento específicos, consulte Servicios de AWS Alcance por programa de de
cumplimiento y elija el programa de cumplimiento que le interese. Para obtener información general,
consulte Programas de AWS cumplimiento > Programas AWS .

Puede descargar informes de auditoría de terceros utilizando AWS Artifact. Para obtener más
información, consulte Descarga de informes en AWS Artifact .

Su responsabilidad de cumplimiento al Servicios de AWS utilizarlos viene determinada por
la confidencialidad de sus datos, los objetivos de cumplimiento de su empresa y las leyes y

Validación de la conformidad 273

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

reglamentos aplicables. Para obtener más información sobre su responsabilidad de conformidad al
utilizarlos Servicios de AWS, consulte AWS la documentación de seguridad.

Este AWS producto o servicio sigue el modelo de responsabilidad compartida a través de los
servicios específicos de Amazon Web Services (AWS) a los que da soporte. Para obtener
información sobre la seguridad de los AWS servicios, consulte la página de documentación sobre la
seguridad del AWS servicio y AWS los servicios que se encuentran dentro del ámbito de aplicación
de AWS las medidas de conformidad establecidas por el programa de conformidad.

Resiliencia de este AWS producto o servicio
La infraestructura AWS global se basa en Regiones de AWS zonas de disponibilidad.

Regiones de AWS proporcionan varias zonas de disponibilidad aisladas y separadas físicamente,
que están conectadas mediante redes de baja latencia, alto rendimiento y alta redundancia.

Con las zonas de disponibilidad, puede diseñar y utilizar aplicaciones y bases de datos que realizan
una conmutación por error automática entre las zonas sin interrupciones. Las zonas de disponibilidad
tienen una mayor disponibilidad, tolerancia a errores y escalabilidad que las infraestructuras
tradicionales de uno o varios centros de datos.

Para obtener más información sobre AWS las regiones y las zonas de disponibilidad, consulte
Infraestructura global.AWS

Este AWS producto o servicio sigue el modelo de responsabilidad compartida a través de los
servicios específicos de Amazon Web Services (AWS) a los que da soporte. Para obtener
información sobre la seguridad de los AWS servicios, consulte la página de documentación sobre la
seguridad del AWS servicio y AWS los servicios que se encuentran dentro del ámbito de aplicación
de AWS las medidas de conformidad establecidas por el programa de conformidad.

Seguridad de la infraestructura para este AWS producto o servicio
Este AWS producto o servicio utiliza servicios gestionados y, por lo tanto, está protegido por la
seguridad de la red AWS global. Para obtener información sobre los servicios AWS de seguridad y
cómo se AWS protege la infraestructura, consulte Seguridad AWS en la nube. Para diseñar su AWS
entorno utilizando las mejores prácticas de seguridad de la infraestructura, consulte Protección de
infraestructuras en un marco de buena AWS arquitectura basado en el pilar de la seguridad.

Utiliza las llamadas a la API AWS publicadas para acceder a este AWS producto o servicio a través
de la red. Los clientes deben admitir lo siguiente:

Resiliencia 274

https://docs.aws.amazon.com/security/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

• Seguridad de la capa de transporte (TLS). Exigimos TLS 1.2 y recomendamos TLS 1.3.

• Conjuntos de cifrado con confidencialidad directa total (PFS) como DHE (Ephemeral Diffie-
Hellman) o ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). La mayoría de los sistemas
modernos como Java 7 y posteriores son compatibles con estos modos.

Además, las solicitudes deben estar firmadas mediante un ID de clave de acceso y una clave de
acceso secreta que esté asociada a una entidad principal de IAM. También puedes utilizar AWS
Security Token Service (AWS STS) para generar credenciales de seguridad temporales para firmar
solicitudes.

Este AWS producto o servicio sigue el modelo de responsabilidad compartida a través de los
servicios específicos de Amazon Web Services (AWS) a los que da soporte. Para obtener
información sobre la seguridad de los AWS servicios, consulte la página de documentación sobre la
seguridad del AWS servicio y AWS los servicios que se encuentran dentro del ámbito de aplicación
de AWS las medidas de conformidad establecidas por el programa de conformidad.

Amazon S3 Migración de clientes de cifrado

En este tema, se muestra cómo migrar las aplicaciones de la versión 1 (V1) del cliente de cifrado
Amazon Simple Storage Service (Amazon S3) a la versión 2 (V2) y cómo garantizar la disponibilidad
de las aplicaciones durante todo el proceso de migración.

Requisitos previos

Amazon S3 El cifrado del lado del cliente requiere lo siguiente:

• Java 8 o una versión posterior instalada en el entorno de la aplicación. AWS SDK para Java
Funciona con el kit de desarrollo Java SE de Oracle y con distribuciones del Open Java
Development Kit (OpenJDK) Amazon Corretto, como Red Hat OpenJDK y JDK. AdoptOpen

• El paquete criptográfico Bouncy Castle. Puede colocar el archivo .jar de Bouncy Castle en la ruta
de clases del entorno de su aplicación o añadir una dependencia del ArtifactiD bcprov-ext-
jdk15on (con el GroupID de org.bouncycastle) a su archivo Maven pom.xml.

Información general sobre la migración

Esta migración se produce en dos fases:

Migración de clientes de cifrado de S3 275

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://www.oracle.com/java/technologies/javase-downloads.html
https://adoptopenjdk.net/
https://aws.amazon.com/corretto/
https://developers.redhat.com/products/openjdk
https://adoptopenjdk.net/
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

1. Actualizar los clientes existentes para leer nuevos formatos. Actualice la aplicación para que
utilice la versión 1.11.837 o posterior y vuelva a implementar la aplicación. AWS SDK para Java
Esto permite a los clientes del servicio de cifrado Amazon S3 del lado del cliente de su aplicación
descifrar los objetos creados por los clientes del servicio V2. Si su aplicación usa varios AWS
SDKs, debe actualizar cada SDK por separado.

2. Migue los clientes de cifrado y descifrado a la versión V2. Una vez que todos sus clientes de
cifrado V1 puedan leer los formatos de cifrado V2, actualice los Amazon S3 clientes de cifrado y
descifrado del lado del cliente en el código de su aplicación para usar sus equivalentes V2.

Actualizar los clientes existentes para leer nuevos formatos

El cliente de cifrado V2 utiliza algoritmos de cifrado que las versiones anteriores no admiten. AWS
SDK para Java

El primer paso de la migración consiste en actualizar los clientes de cifrado de la versión 1 para que
utilicen la versión 1.11.837 o posterior del AWS SDK para Java. (Le recomendamos que actualice
a la versión más reciente, que encontrará en la versión 1.x de la Referencia de la API de Java).
Para ello, actualice la dependencia en la configuración de su proyecto. Una vez actualizada la
configuración del proyecto, reconstruya el proyecto y vuelva a implementarlo.

Cuando haya completado estos pasos, los clientes de cifrado V1 de su aplicación podrán leer los
objetos escritos por los clientes de cifrado V2.

Actualizar la dependencia en la configuración de su proyecto.

Modificar el archivo de configuración del proyecto (por ejemplo, pom.xml o build.gradle) para usar
la versión 1.11.837 o posterior de AWS SDK para Java. A continuación, reconstruya su proyecto y
vuelva a implementarlo.

Completar este paso antes de implementar el nuevo código de aplicación ayuda a garantizar que las
operaciones de cifrado y descifrado permanezcan consistentes en toda la flota durante el proceso de
migración.

Ejemplo de uso de Maven

Fragmento de un archivo pom.xml:

<dependencyManagement>

Actualizar los clientes existentes para leer nuevos formatos 276

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.837</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Ejemplo de uso de Gradle

Fragmento de un archivo build.gradle:

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.11.837')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Migrar clientes de cifrado y descifrado a la versión V2

Una vez que tu proyecto se haya actualizado con la última versión del SDK, puede modificar el
código de la aplicación para usar el cliente V2. Para ello, primero actualice el código para usar el
nuevo generador de clientes de servicios. A continuación, proporcione los materiales de cifrado
mediante un método del generador al que se le haya cambiado el nombre y configure el cliente de
servicio según sea necesario.

Estos fragmentos de código muestran cómo utilizar el cifrado del lado del cliente con los AWS SDK
para Java clientes de cifrado V1 y V2 y proporcionan comparaciones entre ellos.

V1

// minimal configuration in V1; default CryptoMode.EncryptionOnly.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3Encryption encryptionClient = AmazonS3EncryptionClient.encryptionBuilder()
 .withEncryptionMaterials(encryptionMaterialsProvider)
 .build();

V2

Migrar clientes de cifrado y descifrado a la versión V2 277

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

// minimal configuration in V2; default CryptoMode.StrictAuthenticatedEncryption.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3EncryptionV2 encryptionClient = AmazonS3EncryptionClientV2.encryptionBuilder()
 .withEncryptionMaterialsProvider(encryptionMaterialsProvider)
 .withCryptoConfiguration(new CryptoConfigurationV2()
 // The following setting allows the client to read V1
 encrypted objects
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
)
 .build();

En el ejemplo anterior se establece el cryptoMode como AuthenticatedEncryption. Esta
es una configuración que permite a un cliente de cifrado V2 leer objetos escritos por un cliente de
cifrado V1. Si su cliente no necesita leer objetos escritos por un cliente V1, le recomendamos que
utilice la configuración predeterminada StrictAuthenticatedEncryption.

Crear un cliente de cifrado V2

El cliente de cifrado V2 se puede crear llamando a EncryptionClientAmazonS3 v2.encryptionBuilder
().

Puede sustituir todos sus clientes de cifrado V1 existentes por clientes de cifrado V2. Un cliente
de cifrado V2 siempre podrá leer cualquier objeto que haya escrito un cliente de cifrado V1
siempre y cuando usted lo permita configurando el cliente de cifrado V2 para que utilice `.
AuthenticatedEncryption `cryptoMode

La creación de un nuevo cliente de cifrado V2 es muy similar a la creación de un cliente de cifrado
V1. Sin embargo, hay algunas diferencias:

• Utilizará un objeto CryptoConfigurationV2 para configurar el cliente en lugar de un objeto
CryptoConfiguration. Este parámetro es obligatorio.

• La configuración cryptoMode predeterminada para el cliente de cifrado V2 es
StrictAuthenticatedEncryption. Para el cliente de cifrado V1 esEncryptionOnly.

• Se ha cambiado el nombre del método withEncryptionMaterials() del generador del cliente de
cifrado a withEncryptionMaterialsProvider (). Se trata simplemente de un cambio estético que
refleja con mayor precisión el tipo de argumento. Debe utilizar el nuevo método al configurar el
cliente de servicio.

Migrar clientes de cifrado y descifrado a la versión V2 278

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Note

Al descifrar con AES-GCM, lea todo el objeto hasta el final antes de empezar a utilizar los
datos descifrados. Esto se hace para verificar que el objeto no se ha modificado desde que
se cifró.

Utilizar proveedores de materiales de cifrado

Puede seguir utilizando los mismos proveedores de materiales de cifrado y los mismos objetos de
materiales de cifrado que ya utiliza con el cliente de cifrado V1. Estas clases son responsables de
proporcionar las claves que el cliente de cifrado utiliza para proteger sus datos. Se pueden usar
indistintamente con el cliente de cifrado V2 y V1.

Configurar el cliente de cifrado V2

El cliente de cifrado V2 se configura con un objeto CryptoConfigurationV2. Este objeto
se puede crear llamando a su constructor predeterminado y, a continuación, modificando sus
propiedades según sea necesario a partir de los valores predeterminados.

Los valores predeterminados para CryptoConfigurationV2 son:

• cryptoMode = CryptoMode.StrictAuthenticatedEncryption

• storageMode = CryptoStorageMode.ObjectMetadata

• secureRandom = instancia de SecureRandom

• rangeGetMode = CryptoRangeGetMode.DISABLED

• unsafeUndecryptableObjectPassthrough = false

Tenga en cuenta que no EncryptionOnlyes compatible con cryptoMode el cliente de cifrado V2. El
cliente de cifrado V2 siempre cifra el contenido mediante un cifrado autenticado y protege las claves
de cifrado del contenido (CEKs) mediante objetos V2. KeyWrap

En el siguiente ejemplo, se muestra cómo especificar la configuración criptográfica en la versión 1 y
cómo crear una instancia de un objeto de la CryptoConfigurationversión 2 para pasarlo al generador
de clientes de cifrado de la versión 2.

V1

Migrar clientes de cifrado y descifrado a la versión V2 279

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

CryptoConfiguration cryptoConfiguration = new CryptoConfiguration()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

V2

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

Ejemplos adicionales

Los ejemplos siguientes muestran cómo abordar casos prácticos específicos relacionados con la
migración de la V1 a la V2.

Configurar un cliente de servicio para leer los objetos creados por el cliente de cifrado
V1

Para leer objetos que se escribieron anteriormente con un cliente de cifrado V1, defina cryptoMode
como AuthenticatedEncryption. El siguiente fragmento de código muestra cómo crear un
objeto de configuración con esta configuración.

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption);

Configurar un cliente de servicio para obtener rangos de bytes de objetos

Para poder get un rango de bytes de un objeto S3 cifrado, habilite el nuevo ajuste de configuración
rangeGetMode. Esta configuración está deshabilitada en el cliente de cifrado V2 de forma
predeterminada. Tenga en cuenta que, aunque esté activado, un get con rango solo funciona en
objetos que se hayan cifrado mediante algoritmos compatibles con la configuración cryptoMode del
cliente. Para obtener más información, consulta la referencia CryptoRangeGetModede la AWS SDK
para Java API.

Si planea utilizar el Amazon S3 TransferManager para realizar descargas multiparte de Amazon
S3 objetos cifrados mediante el cliente de cifrado V2, primero debe habilitar la rangeGetMode
configuración en el cliente de cifrado V2.

El siguiente fragmento de código muestra cómo configurar el cliente V2 para efectuar un get con
rango.

Ejemplos adicionales 280

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoRangeGetMode.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

// Allows range gets using AES/CTR, for V2 encrypted objects only
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withRangeGetMode(CryptoRangeGetMode.ALL);

// Allows range gets using AES/CTR and AES/CBC, for V1 and V2 objects
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
 .withRangeGetMode(CryptoRangeGetMode.ALL);

Ejemplos adicionales 281

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Clave OpenPGP para AWS SDK para Java
Todos los artefactos de Maven disponibles públicamente para AWS SDK para Java están firmados
con el estándar OpenPGP. La clave pública que necesita para verificar la firma de un artefacto está
disponible en la siguiente sección.

Clave actual
En la siguiente tabla se muestra la información clave de OpenPGP para las versiones actuales del
SDK para Java 1x y del SDK para Java 2.x.

ID de clave 0xAC107B386692DADD

Tipo RSA

Tamaño 4096/4096

Created (Creado) 30-06-2016

Expires 27-09-2026

ID de usuario SDK de AWS y herramientas < aws-dr-to
ols@amazon.com >

Huella digital clave FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

Para copiar la siguiente clave pública de OpenPGP para el SDK para Java en el portapapeles,
seleccione el icono “Copiar” en la esquina superior derecha.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV

Clave actual 282

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJo12ZrBQkTQxnmAAoJEKwQezhmktrdi18P/A3De83MBx8bdcWJ
Fot71Vk1TyBQFErgrtcytSU0czEHx3tGbzgQLbMlyzjirOT03usxEkOeqTVK+RU+
5uFXNZYQLwMJlHJ6S8tnfLe/ExM5WQ2KPwIUPfZs1GDDRQB2dIKSc+qYrP1O1vf4
O4iPgfLHMW2bFh3zjjxcaHCJyqc7Cau33eZFBAsRni1jOUo7MeyX0hlXfW8pd48Q
wZllQVZ/6KmDiFWA0CZ+2svJ5cL0tgPoh1OQjoz0nHpNfuDILMrZ+e7tx2VTlkGH
UGeNSydnrK8v9ztFn34KtU/k7NEWoVSyEi+5ICZL18FBwPqTwdVWXwXrqZCKiIpr
8ZdJWDz2sJfgDFNCC6rKgCQ6FrmaD9G76dYWkQ4AbZqABlUzU3q36W1K0r3iOAb5
G4tdOt4yqXHTe1x+ZUNaeW7gaCmtXAxLw0OfeJrcq/44b/SQP+qJ8sSOv76Yg2oF
BsF5DWOVUFghbTyokHAoVROyhBR4dUUisY39AqLSL8+Lp9Pr3wNuGl9GLrMD5701
piUb88B3Gwe1EiKV1gaKrvZ3mECDUiSMVO0Z5iG8E4QDpNmVbJbV1uT821ubvtOv
2Ko10Fa0uwCYGssdRGqEXNy6jz/Er8LAC3+nmGINDJQzrF+loYoSSkI2Nu7lhMuL
7iWwUPF7OhDXoVSAn4X3x6q2rGK0wsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZTsFCRNDGLYACgkQ
rBB7OGaS2t0/Ow//YIv51vHtD+kwMmIvk3zpizDHY0zW2dOezAo+C/DsSyC7wDll
Dixw34EQ1yLXH5xLR8CH1zupl3JmmEp1ucdQggoefbidxDl8Fld7tJOD1y3GGnTD
0jAl2ZC+W65Oh+wS1mD1FlaKjMGGkvJf0dA7RtU2T8dv3vt8dsxg76FMFS3+fqlC
FNOAsNTn9zWR1SqBIfkMJK83aq6s/rcEV9VrAYgDgqex58fygB5EuTf842/IF7WZ
Q9gd6fupB0mMZP5YWd2uj/vsBTYakG+mgQwDxZuKPeEzAqnqqS7biSQOUO6Wozlq
Yy4fSczE9GkBAvg0pGmbko+zHvpnjvX/h1CUpC6odvFyOAhZp6zyhs0QWz9thfqV
lU8WlbgJ2atFDn5GUSxF/fe0Yzovlbbs6sbYXuvMG9RiEOuJ1mBbZR3aIdZ1U6Do
BHc/vjc5mWcV7JQSP7i4W/8W7X3UAuN9LdxB+IvF3Cwrgtlw2BWvA5Alco5Tnz8t
P/CIVmBjk+sLme8W4kfLK3IWEbwClOdNnErI/MHRm65A2Y5EMIhwjrOi07SU1Pxa
nPpg3OYJCdvjzdB8QE3/DBiMfOl4dISfKDVEWnfK8mZaYd/BeRm2gUAa9UrqSFCG
BlA7Lg+eLI3US0FvwWJ4j5bBJqgLu+y7crIkiUOPAQuLk3lO+5uYU/I3DuLCwZQE
EwEKAD4CGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AWIQT+uSCfLy8/RmSEHlWs
EHs4ZpLa3QUCZwAXCAUJEWvKgwAKCRCsEHs4ZpLa3ZdTEACMBLg2q9zk8ZH02nDz
Sg5zc8Wlqq8WdxU0Pj8qx4UOrrMca7wyiUvrgoxPW5lh1RVNUeMkDRfu9pSXcOVI
V9LvmYE/WnwKROubgGbsC4T7M/LqV0/AulXil4d7IXcO6l4toa8LTNWtD5bODgrN
gvay1AzCU8kq1Qw1cKZ2gAfvA3Ba7PWyLeUN4HTlGrXcw73G+0CofY1L8wqWxHCJ
29XqQzeTEc6MDEeIlNlVdUcy8Qr5uwkEsl34H9AxS5F1opJ4TqvXiDZsrSRRv57R
XYmRZDWeYT+9PZaMsHXza5qgej7BfATxhYfICsNaY6MK3x6b+nDSKkoZgO+i09zh
1YjpahhQe6G336v/3mRj0dKGCRQ6znQ9ghUaB5z9zfvgH5AOEkTe3l8MqM+j5A6P
VjSBBJAHKejxr7+wKJKIA6P+DqpsYAunzftwUzrLVqb+BZQ+DcTmVrE7OPcMYJD5
QglX/Le+WmWZHI154NXgpWWUOUgZUbUge4DKrT+zCJ9iecPLKTW7OcULyXO+rjb8
8BGrD5GPlHB3dOUXXTlMKCqg3qy1Bu2KnZTQiaEEdZgSIGQbrW0JTMmmXJkKjokd
JMA4vYeg5en51G9nRQjScPngx77IxvByNyFWTJdG1ENpJpsK9TtmENcpyUJtJZTJ

Clave actual 283

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

ZSOIRVPP5RzR5vInuXWq6VV0BMLBlAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMB
AAIeAQIXgBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEoiBQkPj/2dAAoJEKwQ
ezhmktrdx1YP/0vvym3jgX/pwnR7K1rafZMb1iKQBr0ISG8cdbaf4pqX5vuUZnyj
w9Cl/oONn7jJjnQxOIIzuBoxne2WN28ftM2w0nVXm85mAmz2fwQz/fdKDyonXcOh
pfD2iMqn7gESjhEgRE7wMDYMDuLdqHI7OKWGVfgrh7xEmKapLh45h7cnumo2VjL9
uDYY1aOBHz993T7oE41y43rhk+6kKbGFd2uuo7h5j1ZF8Lj6sYfcEzXOU1OhRlD0
nyBjDy9MYWu0YNouc70WgMceGx6hjvCAM/5fxP7SZFecZ7ePeB0GpvVA24hSNENE
0r3tUekuOf1I0FunMnMnbh7ZO9rPYqWvWDNIpU3S4CjFhY82L+IeKnmLy8N6ASRk
HsPiNCOHSK8C/0ynrd9xLhX8Jsk/TGiQYaleoHhWkNLlZsL86QHL8SKEqkqZCQf5
AEqghDP6NEGS7lnOenA7JjIrA9KLlT7fnNWZOwFi5X+o/CymE2ytEMS0Yf3nmY4U
n9x56Wgn6J2zqB5nqOXf6NxGdAIgOBm098YEnKCIFzk+yhoDlprVpHcnd2b5f6Oq
uh8KYOEbKgpMJ3zZuWSL5kwGF1nNoYiAkonMaz9H3pOQnOMVYCUeUTDRsiO/prrd
UhNlry4TAsBMpeXnFhdLVM3vFQZVpByadGOJNmnaN/Wavw2a00UGBFa4wsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJhMqGaBQkLnlUVAAoJEKwQ
ezhmktrd2sQP/3YHM+U+BbOy1nSEAfykZ71+uCM2hkHMLdxQYWB/rBWkmg/pbu+d
r4t45RsTASrNjRcZOntlPMQRIq973ymHfpmeS+noFwvTGH7zDv1BRBR9wPrd1XUz
iSuEUHGi/fqxUVXQ5mbonzfThX8tuXeuiQmeToqoB00FYlZm6xsNnEHcjVl66mC4
IPoJLWnZJs4rOCeoRf5XvDTgX6xt5/kLYRZf79qaWGFvaZpsc1CH+rQJUdVa/D4T
7pI7hX6zy0S91z4iuC5HZUiOTF+y5auEZHGTdTWNS1kvOvfcCTi0XK/GkGL82SZu
7X2VGnpCeUnFyViRGlk+KaDG1sVyDY+lcBPg6ilr45M6MQV0iHS5OF04QNXSKt5+
UnzJH7lldgNsR6ibRMyNV3k5v3fyUcSBvIYyLORTTBiVEjQDSbk1QNqbrQlX9CWz
+EJWn16BFTmMFvxBSWPm640GncHP5J3/0MbMw3Cm90x7k8UfNANIemcrJrSxIDwm
g9cVAg3a+D+wxjrVe8jGg0ejvECpm+0yswigj5x6Lqj09A4UgdjEauN+/pn0nhBo
Gv7DzMXtM/LoDtgp6wn93qZVN2TsuHnkEk4UyntB6eWJbBdXHWUr47exiWh0dvQN
tpwCWPT6I7ZTPtA5K/zx+q9m6797BLgAkTYc6gloQL3vs1Z1S3m/hZNawsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJgmrz2BQkLBnBxAAoJEKwQ
ezhmktrd36oP/2rB2EkwSOCKC4m0heWSfDWi6OBKoEbbDtFtc6/HwqBW8SPsiKlq
zV0e3qBY/LVju04+ktJEK+EGXLnC3iC36MegrQ8zt391kEx/Zv9LIuVOCX90QIAX
dL8MVUkkjRLCFFH8pTgRy1cJYWk1X4dYdXWYc29fCwNVartNdNBhsb2ht3VJeKDE
kUivBHmkjuISDPEnI1coY7Lj0ZtY5cHdRF2eZpB0RkTBpsIt18rCYyHkERZrhmvb
j3rOyPyvOa+1/dQS8/hv5pEmbKx8cy8RdJkmbUHYatPBsjHkJSWr7O7G9VFW4GoN
9CRAI4KkbDSEDjCL5dv2pq0Sew1MkLuWJGULAMgiIUlWcOs5SZZGFSksNQrtSFV9
Z/wGocecMGkGQNXQ06JV/Fry/TvyphBlmylEqL+NLqEcEjnlz90IVu+ZA+M09J96
UlHO7V5GvBgM+QK/q/dJeMHPWrNlo1gA6Nwl/HBdM0DqzdZ2jEPvsQSABvZrPMty
+BAqEar4wqY1AH4X5ccEjO7nJQoBQSDRSki1fkBsc1nx44N/m0kHdIa0Z/Y+Mw4v
WiZhREkOospG1I4lBa3CNTVAhSs9msGsYfkqvFJGHL7sZY8XSv82GBBvA0nUNrsJ
bLBwo2FaQG9eoatRAGkqp4b/OtNtBuGeiQoNwFGbfUZTAaStj5/zZj0swsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJe+9bwBQkJZ4plAAoJEKwQ
ezhmktrd+ScP/RoaUKriVVAgLHOGs+/mnfKtnfTlClzi5dsdI9/6H0vLpmSWK/Cl
2cT6gary45VMgAeVK+H1lQXafYj+FY++I5kYoe2GrSvIXhpjaFAJyNf/dKleTsqR
Tm371i8b3FDYs5kvy2CnTbmHB8MsOGxck8/YHd1x+g8WpO2IgF89yYCSF3CAdxC3
6bHbs6Z3C3lcM/3SoWF+Yie2P8XeBMPCGp/BcjQzUcHF6G06TwDDYhixucUi6vEY
EH5JtOwVVQ7bubT8OFeOoJwVxlzYz4UoqxjKDWymarTzu03AUIT0PXPece94bJAK
mSh68ItQe3H8tSPMubERWz2tEV3lVkChDGXcC7BYQmxHseolxz/qzCtJ0iX9BvZR

Clave actual 284

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

dniZNeNJ/Cu8M2pDp47zdNFXzf/Q/sQ9pQlws22G2g119rWDneBku9n1vTP80/er
SB+VLTBjDiArlCY5y9+BG8wbscExJySoQxkB9j/nlMzPY5rgk0SyxsNj9GbqH+hr
EjS3/uacNwSLxGcOT2E9Teot5pfTEO6fQVq+35QhfAlP8c8jze01W/+u+wXu1Ui9
azRSzYtCHanGyyet6U1mlBpAkqkZzH6t3CA5czc9i6FbzjvFVZnbRUZIRzfISYew
lF5WqgTn2iYVdxagPRvLF5kjd696brGW9d5HwirCVGaK04VsXWlAblB9wsF9BBMB
CgAnBQJXdYAFAhsDBQkHhh+ABQsJCAcDBRUKCQgLBRYCAwEAAh4BAheAAAoJEKwQ
ezhmktrdWigP/3QWl7aO81BUWyby4HEhN4SdAoWGY/FLqO4mCtuplcnMgRUCSiL9
l2BSCTMCtUcdSWtYwOgSChN2mMsdi1U2FNR5HvNunYR/pFdqjfQurf1ZmKVeG5/4
uuKaOxMw9e8pK5uYAfs+O7gr8gu/f6/Drp7NZk3/yVKpf4WCY9oX9TA1q9O/11nN
cwS45U/d7YP+N1YM9cBXa1DnDcdfm0BlykzouAF0qd1Lwi/tmLENvybD3+2c2WsE
rlFZGSa5ZafO0tTIWXh5k6wh5FdRRycrnSyRK3B9N9+yaXfMQ0XpOypa8dqQEnCi
IsngDCJPxtTrhMWKhBFRUMzK/WZTDboTQSQDK+YVRrE4K8MtoZSKwZLV2r9O3TpX
kpbKsPVYmexerfdMeZfjZMF1bC7BmEs7jciH6JjbqAoAPnHzN0481aeNarINSViX
PQWr2mp9qShei2/RavLtx2ZNrvmGW72ZKpF8E3WWUDpBJqFVeGNRvOm3aZj8o/Hl
ewtNjcT4ouJfqlfKiULv+g7ANEMDLQTFDTg5twRdvmZlB7oTBsavf+LwxPIXhH32
IR7TX7VeicMMxmZnmZK2ANT/QBi3laf+ojVHvB+f6D74eLNq0Zqjfi/3UFNYsYjg
E+YgCqEUBpHbl61nOHwGOSsQwfap2uKKlzukD/KxH5SPBC3DYGBI+KCbzsFNBFd1
gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+hV6XulGA
HAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go7xHIxgFj
C046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FKVYR/j9ue
nEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQlQ1Kou+3
dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjypUwgp0MT
o25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGwsMDyHNqyJ
eYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6QxaZje9YSZU
ijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KDOSn5CbmX
pAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVgroUVtprs
mHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs/Hd981Fd
VghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQABwsF8BBgB
CgAmAhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZm4FCRNDGegACgkQrBB7
OGaS2t3y5g/7BFXp/fdanzuQPToJTPen7AVwhLloKaiYhG3GjdXfMPLvu6UtaaGm
qynLolUNNooobptFqc1G9BKoAghQrta7CsDHtsQF2xyc3Mfu0gmpL/7X5a7sFIeJ
j08UjfweHx4DSG4LEZgNaAoWFjZltp4+8cqijkAHXt+r+1ayQG4VVHOWyXXqmSH4
9HqtbPcPyRzxdoVLeshZC9jmhHhhKqw/LwGyipWSOUKQDjWarBwdyhNmWCaLvxH1
ndMp4tq8DPGC3G4T9tYAbANrn7nKfZgHebMSzMw9kSp0L6QvwwTDjJyIWz85WyeH
WHeBysDaBOit3XDlehUew27y7N6a9hQSYjnXuwvre5mjDIOqJon/31R6ui2Z1y9P
a+bC11hbLXXh9tLCXRuoOt6thh9Cq5X1a76PPpEv30o3bpsb6l2hbrut1OKezwvK
l7txito/jfMiWfsZHA9O4SoM+8GnmVingHtZ805n1T4RddJvT/vaqplfI6zf7jmf
a69lALP420riFOQcwntNUM5tVmFUZsnFp2YRd4Ls7MiXVjtABahlSbb94l5WSVc0
jrOLDf94edvzk4R8i2Ob8CfVZNqEsTR6bHz8dT7Q+xQzEdjUujyyZY1UUl157Qeb
OsHjhCtuZYCI04X9hZ37nKnZXSxRlRDCnt5BEiyFu2WD1RscUe6PcVDCwXwEGAEK
ACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCaNdlPQUJE0MYuAAKCRCsEHs4
ZpLa3XCpD/42DrcveE+q2ulrAIYPDlUlHiwIMejqBDRm6zmr1KSAeb4E6/MFcP4s
rXSSscMlrqG6NVynjNCXjD2YzWii68EwoXLJkgoD3r2ifzkV62EX2MIEeNZAVwuy
KNxorzmy6bhuWltRYNK/hITs2AG5orOk9ADEJ8PixKymrWlhesPaWX6Yhp9/tWaC

Clave actual 285

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

RHOSRiLbRVaJ+7sqT88urLmkV9Hqx949Zxv4+cgBVUGL6WXKsfWhHjbDMNJnozWB
SZaIJznLApOM8z+1DNrqUYyfR8SkF4IOVmg6HDzoyuseJJ8JvMAlkvT6F9VBq/iE
yeDYdEEQxwHwozKrEx5Ybxl5mntbqwCXy6kHSx2+/3RZWpZQ8K29YP9QEk0KeGF8
9Vap3jjNrX4u3cuRNQpeblQc4uFn3Nzaj+cVV4YzcRw94NifecXpujSvk8XU2ytJ
/JgMBxPIBKglN4eEMet9b4FRB5XeBdPAm19/LXyb4IlIipGNXlgNz/HCuBzidzHT
QQdqfA9rZVx1hwFr7AJCVqWaXVsx1oEAhKqpTtsLMyj594DvnRuwKw5Vse+1eydW
MIHYdbxmJccsTGIt/hsOpc8zfm+QYk5752jshhOKEBy+Ey3QZI1WbO547NOb2Hwr
Pgt7fw2NCKMPElSu98zmneFPhqNHf7L5urBe5gADj81E8lm6t/oVxcLBfAQYAQoA
JgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJnABcLBQkRa8qFAAoJEKwQezhm
ktrde3MP/13CLWp99XvRROrzD/bWOfWjAenT2PE/tYdOY9YcTQFbnIUhaVUDWAo3
pibR3D4u9LlY4olpGfJ7BTIHFa9myfpaVvmrNjueYI4omli24JQ/CKqNdY8Qzxz+
/QyiNK7Aw5cEBWIu84WGB1SsefWWT3rZe9YBb77gNcWHZ15pXTXrcgUxGY4808MC
I9YFWq8EA0iHawtFnmB3UFfClWt37Hy3PKvr1is3uG60+ULI8RQz3/+ZwSG8U+xt
b+I7H9+gITc1eFCb+tIwp5xWflyxcFXYk6UzOL7y3Fg2tIEuSNtIHUC9NDVobf6c
I0KAzZcMvKiPQiuBnVOjgDLmCZM5H6axj9x+gi4oVh6ea3HLqMzyjm5JkeCGgKWv
H0gD3yGEZDvcbavkQOle5T+4JefndKzCPrluX0iyx+oQiiOL8WieSSkSB6BsZcUN
SeuGJwM79Y7Oqld/YVrQNBZj5Vz+m3nZ+0EWDDMI0hRgMpSEIc+dnTC0u103Z+Rc
c2IJq8INmU653sUcfCZE12ParW4rF7ib6kViYrABT8f4e2TP0aOyP5kp51ied9qL
azaBA6tt/C9X1V2EJZK4srXtmcZO2Im45RAiVXyfpBAmmiF3eZWCbKe7qBC4rDRh
LZG4RQW/S86Da0BID7gQz9IFSkaG504MsDhvnA7iAqaHUHUepCsiwsF8BBgBCgAm
AhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiQFCQ+P/Z8ACgkQrBB7OGaS
2t3AwA/9GkXKUgvjKGCxwE4SdDt7c2jw6to2TTP9iFJ3Xbk3+5BURT3gkZCuu9D7
gt+97aVo/B4EM7Xz8DQKyY7Ic9VAwDRra/Hwi1V0hw1zyIWQ/gAnX3baU6qLRWHR
vVR5meV8r35C+rg9DaWFYmvS7PIv9LfxESwBPUjbmx8k4/5EJpHUwf12bzkTnot5
7q5lHxKQa6IvqQak+Hp9ZM2KPdsgKO2HWJJIIvYcI5byW9zBKV0O7YR8gtRAJKp9
IbtsXx0WT6cqHOFVc5SSzdcaMt0gLFl7BTnJyvKK2l9GABGBmzYDjeCyF2J+Ippf
oqxqfTe6EoOsuEMc2PbLTs9SsWjyCC2VGlX8+uUH9SoKwL0VQ6LFsP6fhkVKqi/a
rB6UuPR/iZnrKIuxMNQ4U+t2Q6UdMlmXsAXTNdkwzoK9oJRokIrH0ZV1KtH4sjjA
tCic+tOddq+GQLiKe2WpJfxlA0uESCB0TxjAwQmfn1H+dUhPeLlbNimHlH0/hXPd
ifuNGozzADIRseQDyzjl8xGL1qRZLD3cfmda6RyZ+S3dQRuaRrcFCDccpY/pO+F8
jbx64zyqqNs+KV+SkQGOcKFhWTZGCfQ/zMDtDmQKjb3eTAkv1zdEOMw9zEjjmS0q
8FNl+2wO3VnvXwvBbtDdVCIaIq+jVcsy5XtnnV+bJ19Q9yue/XvCwWUEGAEKAA8C
GwwFAmEyoZoFCQueVRUACgkQrBB7OGaS2t1uHBAAhOYVvrtchRmzCvdNER1DtkIs
bgQPJ9OxbyfvmvoD06qxH7PrycLZKbt7yYpAUU/CMc86GwaEe0I5Nm1CTs6NvDIv
g3e7EPIS859tyQflbM56NlwbsopCuoCJYknuroIf/M6dW6vJKNXLMmnL/AtalUBw
X+5pblmGUUJep49oTOxQEnvnuqyvaGjXgFXix5PVFJD2ed5NnQeFpvfCpc/ioNOj
z7ORO82j1ht5nWqPraXX5AYhQFM/kwR1cK4LV7gVDd/q+dfGYHzpxQ/HtyX/Lasi
N6I52QqA95SM1ZZLPFLaNh6EvnB7uC9pLCYS8nvilX7/cez5PFff1e1gXCOT0jv3
mJ2exLmXV0BbfKgjccFCxhrdRLtukfiDfJkySy1zdscnpfng8wJ3xKRv43cUTz7M
Z24OYNMqK26aJZVXEQUYjCwsBylY/F5wjYAwgwZ8yF5RFix28P/K8JsIHb3QrAJK
sNWQAb03ZWis3N3spR5M9Mw3VuDZ3WUXq7mxB5M3kpVoZ3vETU5cwTbADYNPf4Sw
BDK2uIVtxabezxSBtz0FcyYoF+OW8q7r4WvoyC9/+3GfnozZLJcEIVDk4W2pMW4A
UhG/6drKTm3HkSDWIDu7d1sHWMffLEYfUHtN5DKkDkGoPfHvZvu9teR5yLfUrPTf
ktihPn/JMrmwa9pwi8LCwWUEGAEKAA8CGwwFAmCavPcFCQsGcHIACgkQrBB7OGaS

Clave actual 286

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

2t0uaA//UWRaRiHEAKeRqBG/T2ak+XZJNu7QHfNgoUEAub9Zru8oPPXx2AJLcHEN
KWmeFlLxADdWOZs4Bm9oOew3VQnR/dBqjnXfob9Rc+eYUjA3rXazM/QrqcU8Syi3
MjNGUmjdL5aQF+IppAMgOBLG1TEnM7C5/PvrGJuYpGEnkKEwMK/GYhqg2V60pHEV
Pvs66mefJpCzbZSy56qtknSt6yBNWc14XgDX6VTn2kW4CV/3vVJUuvjvYs9SPyY8
mKEXa6QvUd3PcXv6RiWk4lGYuT1+jh2VkcFQ+JnUwv9TbKFB9b5jq1bvW9+LMDEl
YXux7pBP5RPk+OLpyiExIRFWhi3x7aMWOzQ+I9yuNTeYkTHiEAQRUhs/1Fh4oLgI
v9QZgC0mRSN3zm8plQdivs1ZlAosAqqkA9BQwqsgosQe7P92irYIJqay0si9wGCD
wSMsmeXdIF6wW3/UMJZl66aarPeiZApGX0QdTZwjMh/QK/8gTKyeZulKmNkNfwWq
O17OirWqLKssVHtg3VUM8EIdh+oNqDDXSeWtYUmpPpWp+yWZ0x1MFFZhUQHQZTGu
TIj4A92LQzbrfj/jXRvWm2SrJMivUoiDUn+qxKIpVwFlI5gVb+uyTFhw89PCkphr
JwRi052RLoU9yd6Ek46UH4XfZZWrZuzY+zzB7oqGONphLgi/h3DCwWUEGAEKAA8C
GwwFAl771b8FCQlniTUACgkQrBB7OGaS2t2/MxAAjoEGPdzavhsOlXdPCRd1D5QJ
r8T/NSEV2z1cp8ZvdrkjNF09TBP4qsBnKJiuvY1Iw7OGX9W2okvXxgJizE45v9MH
WEMz4hmIjmAfRwcqENgpOc1IY/T0/+kkCW8dB6d30J1kT0n2PCRzN9L5vPqZXGTG
mLvd9MOjH1256w4uxLb+e1HMDTCqEN1ppq9G+EAR/29q8JZWs1marbZZWxSWcg/E
1YYbNafzklgjq4CLh/j8AEWSvLr39zRy9uvQ/yqAKZ4K4aZfh/SPupGDvsD6ZK54
EPHxErQ7aiXTbUHtvwhxWLOP6WmxFA3Shr6L6YUb6jq+0PVliFC517g3mxFHJtwt
yXGNIKhmzmr0l9OlsHafulJ/9QPfK3Ce32SkPhW/11MYA8HzduMv5Arp7cBczXSP
EUTmNIVKv3gTjSQrzRhwhHmMuqyDZ/rXQQ1jl2sxIDjO4MUMvVjYKF+OCNm42gVs
8ca3/wN9ZNU6hyFWeKQDuCAqPPbT5GO/DKseFEwB+07wwyH1RXbyl0v4fneg605X
S7lqhNtw2p1hDL0HYHDiV+aPZ+LoOmX6+dmnqE6bQJaIlVb922KWmliO7F3DkqP7
0jFlhoE1gfiXWkxP4Gy8wOobNfEMgvz02djkGQy+oQqeNdIcZFZgzPTGKB/nVgpt
9CcRDWjPltFCd2e1FBbCwWUEGAEKAA8FAld1gAUCGwwFCQeGH4AACgkQrBB7OGaS
2t1PIQ//Qc5VYfBCxpaMysaPQ44wXPEZSjxIGZhhMGzb1UzzAEYOw+RgKN5nNTXq
L2KoOkOrGnKqZOKByMdXwIPH/rGwwEsbbIpopnibf5ic5B/+xCTIK+qLIwX2ZLuk
NhbL6Y+E+7DxMMh+KqBWHONKkgwVY+rFWOfoops839ABKvc9/Ry4/qqkcb40AzpD
l1iQJ5vK/DMuaDWxWeKXqJLIl3WMGPcPfheuBZL1u7LEEHYKMgzvpbF81WIn3MBo
8jvxf2/o+kMafSSDqgvOu6yu8GOhmScpCbRJn7jV/HrG+tM+zy48TN6/MkGWSR7q
TD34pqBjyatVfVl6dGD6xj/i/Emt5hZB6qXruCDH7AWMoNx+FkDubs4sc4PKysZU
Itya6KdQFo2UeYsNwZhdn6QwKhd85um4JUHJCY0mARvjsQgWXH/5MR40cow77bbE
vVq0XNd+QRVlyT42CEtnIUOFLeDVuZrum5Tuvvna6ImMDoi/z6QcNeL79XsY2m6I
QVRiHr1BDb/8JLkfnWiwL8GRv169Kf8unx0y5u1YBpcMYkyDD2+pnnk3TY0rR+8X
8goecaS8fbyu/Q48K85ZMD8wKW/bzLQ+tK9y8xed24u2QERftMhIw9b6f45Nrrf/
PhgV8RnuwUusSbdDe8kw3eYTmLdzD4kZc9K7SdO2CqT+hm//9JI=
=uGHC
-----END PGP PUBLIC KEY BLOCK-----

Clave actual 287

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Claves anteriores

Important

Las nuevas claves se crean antes de que se venzan las anteriores. Como resultado, en
un momento dado, puede ser válida más de una clave. Las claves se utilizan para firmar
artefactos a partir del día en que se crean. Por tanto, utilice la última clave emitida cuando la
validez de las claves se solape.

Fecha de vencimiento: 04-10-2025

ID de clave 0xAC107B386692DADD

Tipo RSA

Tamaño 4096/4096

Created (Creado) 30-06-2016

Fecha de vencimiento 2025-10-04

ID de usuario SDK de AWS y herramientas < aws-dr-to
ols@amazon.com >

Huella digital clave FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

Para copiar la siguiente clave pública de OpenPGP para el SDK para Java en el portapapeles,
seleccione el icono “Copiar” en la esquina superior derecha.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej

Claves anteriores 288

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJnABcIBQkRa8qDAAoJEKwQezhmktrdl1MQAIwEuDar3OTxkfTa
cPNKDnNzxaWqrxZ3FTQ+PyrHhQ6usxxrvDKJS+uCjE9bmWHVFU1R4yQNF+72lJdw
5UhX0u+ZgT9afApE65uAZuwLhPsz8upXT8C6VeKXh3shdw7qXi2hrwtM1a0Pls4O
Cs2C9rLUDMJTySrVDDVwpnaAB+8DcFrs9bIt5Q3gdOUatdzDvcb7QKh9jUvzCpbE
cInb1epDN5MRzowMR4iU2VV1RzLxCvm7CQSyXfgf0DFLkXWiknhOq9eINmytJFG/
ntFdiZFkNZ5hP709loywdfNrmqB6PsF8BPGFh8gKw1pjowrfHpv6cNIqShmA76LT
3OHViOlqGFB7obffq//eZGPR0oYJFDrOdD2CFRoHnP3N++AfkA4SRN7eXwyoz6Pk
Do9WNIEEkAcp6PGvv7AokogDo/4OqmxgC6fN+3BTOstWpv4FlD4NxOZWsTs49wxg
kPlCCVf8t75aZZkcjXng1eClZZQ5SBlRtSB7gMqtP7MIn2J5w8spNbs5xQvJc76u
NvzwEasPkY+UcHd05RddOUwoKqDerLUG7YqdlNCJoQR1mBIgZButbQlMyaZcmQqO
iR0kwDi9h6Dl6fnUb2dFCNJw+eDHvsjG8HI3IVZMl0bUQ2kmmwr1O2YQ1ynJQm0l
lMllI4hFU8/lHNHm8ie5darpVXQEwsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiIFCQ+P/Z0ACgkQ
rBB7OGaS2t3HVg//S+/KbeOBf+nCdHsrWtp9kxvWIpAGvQhIbxx1tp/impfm+5Rm
fKPD0KX+g42fuMmOdDE4gjO4GjGd7ZY3bx+0zbDSdVebzmYCbPZ/BDP990oPKidd
w6Gl8PaIyqfuARKOESBETvAwNgwO4t2ocjs4pYZV+CuHvESYpqkuHjmHtye6ajZW
Mv24NhjVo4EfP33dPugTjXLjeuGT7qQpsYV3a66juHmPVkXwuPqxh9wTNc5TU6FG
UPSfIGMPL0xha7Rg2i5zvRaAxx4bHqGO8IAz/l/E/tJkV5xnt494HQam9UDbiFI0
Q0TSve1R6S45/UjQW6cycyduHtk72s9ipa9YM0ilTdLgKMWFjzYv4h4qeYvLw3oB
JGQew+I0I4dIrwL/TKet33EuFfwmyT9MaJBhqV6geFaQ0uVmwvzpAcvxIoSqSpkJ
B/kASqCEM/o0QZLuWc56cDsmMisD0ouVPt+c1Zk7AWLlf6j8LKYTbK0QxLRh/eeZ
jhSf3HnpaCfonbOoHmeo5d/o3EZ0AiA4GbT3xgScoIgXOT7KGgOWmtWkdyd3Zvl/
o6q6Hwpg4RsqCkwnfNm5ZIvmTAYXWc2hiICSicxrP0fek5Cc4xVgJR5RMNGyI7+m
ut1SE2WvLhMCwEyl5ecWF0tUze8VBlWkHJp0Y4k2ado39Zq/DZrTRQYEVrjCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmEyoZoFCQueVRUACgkQ
rBB7OGaS2t3axA//dgcz5T4Fs7LWdIQB/KRnvX64IzaGQcwt3FBhYH+sFaSaD+lu
752vi3jlGxMBKs2NFxk6e2U8xBEir3vfKYd+mZ5L6egXC9MYfvMO/UFEFH3A+t3V
dTOJK4RQcaL9+rFRVdDmZuifN9OFfy25d66JCZ5OiqgHTQViVmbrGw2cQdyNWXrq
YLgg+gktadkmzis4J6hF/le8NOBfrG3n+QthFl/v2ppYYW9pmmxzUIf6tAlR1Vr8
PhPukjuFfrPLRL3XPiK4LkdlSI5MX7Llq4RkcZN1NY1LWS8699wJOLRcr8aQYvzZ
Jm7tfZUaekJ5ScXJWJEaWT4poMbWxXINj6VwE+DqKWvjkzoxBXSIdLk4XThA1dIq
3n5SfMkfuWV2A2xHqJtEzI1XeTm/d/JRxIG8hjIs5FNMGJUSNANJuTVA2putCVf0
JbP4QlafXoEVOYwW/EFJY+brjQadwc/knf/QxszDcKb3THuTxR80A0h6ZysmtLEg
PCaD1xUCDdr4P7DGOtV7yMaDR6O8QKmb7TKzCKCPnHouqPT0DhSB2MRq437+mfSe
EGga/sPMxe0z8ugO2CnrCf3eplU3ZOy4eeQSThTKe0Hp5YlsF1cdZSvjt7GJaHR2

Claves anteriores 289

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

9A22nAJY9PojtlM+0Dkr/PH6r2brv3sEuACRNhzqCWhAve+zVnVLeb+Fk1rCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmCavPYFCQsGcHEACgkQ
rBB7OGaS2t3fqg//asHYSTBI4IoLibSF5ZJ8NaLo4EqgRtsO0W1zr8fCoFbxI+yI
qWrNXR7eoFj8tWO7Tj6S0kQr4QZcucLeILfox6CtDzO3f3WQTH9m/0si5U4Jf3RA
gBd0vwxVSSSNEsIUUfylOBHLVwlhaTVfh1h1dZhzb18LA1Vqu0100GGxvaG3dUl4
oMSRSK8EeaSO4hIM8ScjVyhjsuPRm1jlwd1EXZ5mkHRGRMGmwi3XysJjIeQRFmuG
a9uPes7I/K85r7X91BLz+G/mkSZsrHxzLxF0mSZtQdhq08GyMeQlJavs7sb1UVbg
ag30JEAjgqRsNIQOMIvl2/amrRJ7DUyQu5YkZQsAyCIhSVZw6zlJlkYVKSw1Cu1I
VX1n/Aahx5wwaQZA1dDTolX8WvL9O/KmEGWbKUSov40uoRwSOeXP3QhW75kD4zT0
n3pSUc7tXka8GAz5Ar+r90l4wc9as2WjWADo3CX8cF0zQOrN1naMQ++xBIAG9ms8
y3L4ECoRqvjCpjUAfhflxwSM7uclCgFBINFKSLV+QGxzWfHjg3+bSQd0hrRn9j4z
Di9aJmFESQ6iykbUjiUFrcI1NUCFKz2awaxh+Sq8UkYcvuxljxdK/zYYEG8DSdQ2
uwlssHCjYVpAb16hq1EAaSqnhv86020G4Z6JCg3AUZt9RlMBpK2Pn/NmPSzCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAl771vAFCQlnimUACgkQ
rBB7OGaS2t35Jw/9GhpQquJVUCAsc4az7+ad8q2d9OUKXOLl2x0j3/ofS8umZJYr
8KXZxPqBqvLjlUyAB5Ur4fWVBdp9iP4Vj74jmRih7YatK8heGmNoUAnI1/90qV5O
ypFObfvWLxvcUNizmS/LYKdNuYcHwyw4bFyTz9gd3XH6Dxak7YiAXz3JgJIXcIB3
ELfpsduzpncLeVwz/dKhYX5iJ7Y/xd4Ew8Ian8FyNDNRwcXobTpPAMNiGLG5xSLq
8RgQfkm07BVVDtu5tPw4V46gnBXGXNjPhSirGMoNbKZqtPO7TcBQhPQ9c95x73hs
kAqZKHrwi1B7cfy1I8y5sRFbPa0RXeVWQKEMZdwLsFhCbEex6iXHP+rMK0nSJf0G
9lF2eJk140n8K7wzakOnjvN00VfN/9D+xD2lCXCzbYbaDXX2tYOd4GS72fW9M/zT
96tIH5UtMGMOICuUJjnL34EbzBuxwTEnJKhDGQH2P+eUzM9jmuCTRLLGw2P0Zuof
6GsSNLf+5pw3BIvEZw5PYT1N6i3ml9MQ7p9BWr7flCF8CU/xzyPN7TVb/677Be7V
SL1rNFLNi0IdqcbLJ63pTWaUGkCSqRnMfq3cIDlzNz2LoVvOO8VVmdtFRkhHN8hJ
h7CUXlaqBOfaJhV3FqA9G8sXmSN3r3pusZb13kfCKsJUZorThWxdaUBuUH3CwX0E
EwEKACcFAld1gAUCGwMFCQeGH4AFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AACgkQ
rBB7OGaS2t1aKA//dBaXto7zUFRbJvLgcSE3hJ0ChYZj8Uuo7iYK26mVycyBFQJK
Iv2XYFIJMwK1Rx1Ja1jA6BIKE3aYyx2LVTYU1Hke826dhH+kV2qN9C6t/VmYpV4b
n/i64po7EzD17ykrm5gB+z47uCvyC79/r8Ouns1mTf/JUql/hYJj2hf1MDWr07/X
Wc1zBLjlT93tg/43Vgz1wFdrUOcNx1+bQGXKTOi4AXSp3UvCL+2YsQ2/JsPf7ZzZ
awSuUVkZJrllp87S1MhZeHmTrCHkV1FHJyudLJErcH0337Jpd8xDRek7Klrx2pAS
cKIiyeAMIk/G1OuExYqEEVFQzMr9ZlMNuhNBJAMr5hVGsTgrwy2hlIrBktXav07d
OleSlsqw9ViZ7F6t90x5l+NkwXVsLsGYSzuNyIfomNuoCgA+cfM3TjzVp41qsg1J
WJc9Bavaan2pKF6Lb9Fq8u3HZk2u+YZbvZkqkXwTdZZQOkEmoVV4Y1G86bdpmPyj
8eV7C02NxPii4l+qV8qJQu/6DsA0QwMtBMUNODm3BF2+ZmUHuhMGxq9/4vDE8heE
ffYhHtNftV6JwwzGZmeZkrYA1P9AGLeVp/6iNUe8H5/oPvh4s2rRmqN+L/dQU1ix
iOAT5iAKoRQGkduXrWc4fAY5KxDB9qna4oqXO6QP8rEflI8ELcNgYEj4oJvOwU0E
V3WABQEQALzM0Cs9Zvd08xOEvbEBj59LrS9d0HVKQ61gmkNakWC+jR35VD6FXpe6
UYAcBLrEbVYfKw9P0p6MhFKAsb570JoznKGzE1rVYUZQzhD0RKje35rvkajvEcjG
AWMLTjr87pWHeD0389ER64bzORncfa/l+YP56PI+CThb2wUvTTONGJkPQUpVhH+P
256cQL/Y0Fwu4XLerpwN+YKgMQ47raRcydobPeSfMQr9fVKRyOzFEOrvNpCVDUqi
77d0gLDLjHlIlDyOX5554S8XYLb91eYOiFvnu2pTCKiiExRCSYK29mAQePKlTCCn
QxOjbmBbGS8mVIkpQ5vpvXvzpY3JIjMXaDGqWSQSYGXhECyxCR5eOtKYbCwwPIc2
rIl5gW6yXyw9pKmj5XafTP7YHTvRSr7CZ/VLkDkWl6AfQ9nPOg1mjwjpDFpmN71h

Claves anteriores 290

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

JlSKMaZkh0QGV5FW3dK+GLwxiWdqx3htbZErWyvumWQF/xBF7puKJBEXcoM5KfkJ
uZekBwcnVkfNFF2RdkM1ALq8InGzLXc7ROuEm0BXVirfju7JRtWLb3UhJWCuhRW2
muyYegSTkag5MduD1IJK37GL8WIlAL65taYgZegUoxHdSaEOefOhspxuduz8d33z
UV1WCFhi+r/+BMCQmTRbF8ao7fTC1dGd084DRP6qE/dMT4u0ZEn7ABEBAAHCwXwE
GAEKACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCZwAXCwUJEWvKhQAKCRCs
EHs4ZpLa3XtzD/9dwi1qffV70UTq8w/21jn1owHp09jxP7WHTmPWHE0BW5yFIWlV
A1gKN6Ym0dw+LvS5WOKJaRnyewUyBxWvZsn6Wlb5qzY7nmCOKJpYtuCUPwiqjXWP
EM8c/v0MojSuwMOXBAViLvOFhgdUrHn1lk962XvWAW++4DXFh2deaV0163IFMRmO
PNPDAiPWBVqvBANIh2sLRZ5gd1BXwpVrd+x8tzyr69YrN7hutPlCyPEUM9//mcEh
vFPsbW/iOx/foCE3NXhQm/rSMKecVn5csXBV2JOlMzi+8txYNrSBLkjbSB1AvTQ1
aG3+nCNCgM2XDLyoj0IrgZ1To4Ay5gmTOR+msY/cfoIuKFYenmtxy6jM8o5uSZHg
hoClrx9IA98hhGQ73G2r5EDpXuU/uCXn53Sswj65bl9IssfqEIoji/FonkkpEgeg
bGXFDUnrhicDO/WOzqpXf2Fa0DQWY+Vc/pt52ftBFgwzCNIUYDKUhCHPnZ0wtLtd
N2fkXHNiCavCDZlOud7FHHwmRNdj2q1uKxe4m+pFYmKwAU/H+Htkz9Gjsj+ZKedY
nnfai2s2gQOrbfwvV9VdhCWSuLK17ZnGTtiJuOUQIlV8n6QQJpohd3mVgmynu6gQ
uKw0YS2RuEUFv0vOg2tASA+4EM/SBUpGhudODLA4b5wO4gKmh1B1HqQrIsLBfAQY
AQoAJgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEokBQkPj/2fAAoJEKwQ
ezhmktrdwMAP/RpFylIL4yhgscBOEnQ7e3No8OraNk0z/YhSd125N/uQVEU94JGQ
rrvQ+4Lfve2laPweBDO18/A0CsmOyHPVQMA0a2vx8ItVdIcNc8iFkP4AJ1922lOq
i0Vh0b1UeZnlfK9+Qvq4PQ2lhWJr0uzyL/S38REsAT1I25sfJOP+RCaR1MH9dm85
E56Lee6uZR8SkGuiL6kGpPh6fWTNij3bICjth1iSSCL2HCOW8lvcwSldDu2EfILU
QCSqfSG7bF8dFk+nKhzhVXOUks3XGjLdICxZewU5ycryitpfRgARgZs2A43gshdi
fiKaX6Ksan03uhKDrLhDHNj2y07PUrFo8ggtlRpV/PrlB/UqCsC9FUOixbD+n4ZF
Sqov2qwelLj0f4mZ6yiLsTDUOFPrdkOlHTJZl7AF0zXZMM6CvaCUaJCKx9GVdSrR
+LI4wLQonPrTnXavhkC4intlqSX8ZQNLhEggdE8YwMEJn59R/nVIT3i5WzYph5R9
P4Vz3Yn7jRqM8wAyEbHkA8s45fMRi9akWSw93H5nWukcmfkt3UEbmka3BQg3HKWP
6TvhfI28euM8qqjbPilfkpEBjnChYVk2Rgn0P8zA7Q5kCo293kwJL9c3RDjMPcxI
45ktKvBTZftsDt1Z718LwW7Q3VQiGiKvo1XLMuV7Z51fmydfUPcrnv17wsFlBBgB
CgAPAhsMBQJhMqGaBQkLnlUVAAoJEKwQezhmktrdbhwQAITmFb67XIUZswr3TREd
Q7ZCLG4EDyfTsW8n75r6A9OqsR+z68nC2Sm7e8mKQFFPwjHPOhsGhHtCOTZtQk7O
jbwyL4N3uxDyEvOfbckH5WzOejZcG7KKQrqAiWJJ7q6CH/zOnVurySjVyzJpy/wL
WpVAcF/uaW5ZhlFCXqePaEzsUBJ757qsr2ho14BV4seT1RSQ9nneTZ0Hhab3wqXP
4qDTo8+zkTvNo9YbeZ1qj62l1+QGIUBTP5MEdXCuC1e4FQ3f6vnXxmB86cUPx7cl
/y2rIjeiOdkKgPeUjNWWSzxS2jYehL5we7gvaSwmEvJ74pV+/3Hs+TxX39XtYFwj
k9I795idnsS5l1dAW3yoI3HBQsYa3US7bpH4g3yZMkstc3bHJ6X54PMCd8Skb+N3
FE8+zGduDmDTKitumiWVVxEFGIwsLAcpWPxecI2AMIMGfMheURYsdvD/yvCbCB29
0KwCSrDVkAG9N2VorNzd7KUeTPTMN1bg2d1lF6u5sQeTN5KVaGd7xE1OXME2wA2D
T3+EsAQytriFbcWm3s8Ugbc9BXMmKBfjlvKu6+Fr6Mgvf/txn56M2SyXBCFQ5OFt
qTFuAFIRv+nayk5tx5Eg1iA7u3dbB1jH3yxGH1B7TeQypA5BqD3x72b7vbXkeci3
1Kz035LYoT5/yTK5sGvacIvCwsFlBBgBCgAPAhsMBQJgmrz3BQkLBnByAAoJEKwQ
ezhmktrdLmgP/1FkWkYhxACnkagRv09mpPl2STbu0B3zYKFBALm/Wa7vKDz18dgC
S3BxDSlpnhZS8QA3VjmbOAZvaDnsN1UJ0f3Qao5136G/UXPnmFIwN612szP0K6nF
PEsotzIzRlJo3S+WkBfiKaQDIDgSxtUxJzOwufz76xibmKRhJ5ChMDCvxmIaoNle
tKRxFT77OupnnyaQs22UsueqrZJ0resgTVnNeF4A1+lU59pFuAlf971SVLr472LP

Claves anteriores 291

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Uj8mPJihF2ukL1Hdz3F7+kYlpOJRmLk9fo4dlZHBUPiZ1ML/U2yhQfW+Y6tW71vf
izAxJWF7se6QT+UT5Pji6cohMSERVoYt8e2jFjs0PiPcrjU3mJEx4hAEEVIbP9RY
eKC4CL/UGYAtJkUjd85vKZUHYr7NWZQKLAKqpAPQUMKrIKLEHuz/doq2CCamstLI
vcBgg8EjLJnl3SBesFt/1DCWZeummqz3omQKRl9EHU2cIzIf0Cv/IEysnmbpSpjZ
DX8Fqjtezoq1qiyrLFR7YN1VDPBCHYfqDagw10nlrWFJqT6VqfslmdMdTBRWYVEB
0GUxrkyI+APdi0M2634/410b1ptkqyTIr1KIg1J/qsSiKVcBZSOYFW/rskxYcPPT
wpKYaycEYtOdkS6FPcnehJOOlB+F32WVq2bs2Ps8we6KhjjaYS4Iv4dwwsFlBBgB
CgAPAhsMBQJe+9W/BQkJZ4k1AAoJEKwQezhmktrdvzMQAI6BBj3c2r4bDpV3TwkX
dQ+UCa/E/zUhFds9XKfGb3a5IzRdPUwT+KrAZyiYrr2NSMOzhl/VtqJL18YCYsxO
Ob/TB1hDM+IZiI5gH0cHKhDYKTnNSGP09P/pJAlvHQend9CdZE9J9jwkczfS+bz6
mVxkxpi73fTDox9duesOLsS2/ntRzA0wqhDdaaavRvhAEf9vavCWVrNZmq22WVsU
lnIPxNWGGzWn85JYI6uAi4f4/ABFkry69/c0cvbr0P8qgCmeCuGmX4f0j7qRg77A
+mSueBDx8RK0O2ol021B7b8IcVizj+lpsRQN0oa+i+mFG+o6vtD1ZYhQude4N5sR
RybcLclxjSCoZs5q9JfTpbB2n7pSf/UD3ytwnt9kpD4Vv9dTGAPB83bjL+QK6e3A
XM10jxFE5jSFSr94E40kK80YcIR5jLqsg2f610ENY5drMSA4zuDFDL1Y2ChfjgjZ
uNoFbPHGt/8DfWTVOochVnikA7ggKjz20+RjvwyrHhRMAftO8MMh9UV28pdL+H53
oOtOV0u5aoTbcNqdYQy9B2Bw4lfmj2fi6Dpl+vnZp6hOm0CWiJVW/dtilppYjuxd
w5Kj+9IxZYaBNYH4l1pMT+BsvMDqGzXxDIL89NnY5BkMvqEKnjXSHGRWYMz0xigf
51YKbfQnEQ1oz5bRQndntRQWwsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQ
ezhmktrdTyEP/0HOVWHwQsaWjMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCje
ZzU16i9iqDpDqxpyqmTigcjHV8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF
9mS7pDYWy+mPhPuw8TDIfiqgVhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+
NAM6Q5dYkCebyvwzLmg1sVnil6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNVi
J9zAaPI78X9v6PpDGn0kg6oLzrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJB
lkke6kw9+KagY8mrVX1ZenRg+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHOD
ysrGVCLcmuinUBaNlHmLDcGYXZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKM
O+22xL1atFzXfkEVZck+NghLZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7
GNpuiEFUYh69QQ2//CS5H51osC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02N
K0fvF/IKHnGkvH28rv0OPCvOWTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+O
Ta63/z4YFfEZ7sFLrEm3Q3vJMN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=bboB
-----END PGP PUBLIC KEY BLOCK-----

Fecha de vencimiento: 08-10-2024

ID de clave 0xAC107B386692DADD

Tipo RSA

Tamaño 4096/4096

Created (Creado) 30-06-2016

Claves anteriores 292

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Fecha de vencimiento 08-10-2024

ID de usuario SDK de AWS y herramientas < aws-dr-to
ols@amazon.com >

Huella digital clave FEB9 209F 2F2F 3F46 6484 1E55 AC10 7B38
6692 DADD

Para copiar la siguiente clave pública de OpenPGP para el SDK para Java en el portapapeles,
seleccione el icono “Copiar” en la esquina superior derecha.

-----BEGIN PGP PUBLIC KEY BLOCK-----

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zsFNBFd1gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+
hV6XulGAHAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go
7xHIxgFjC046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FK
VYR/j9uenEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQ
lQ1Kou+3dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjy
pUwgp0MTo25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGws
MDyHNqyJeYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6Qxa
Zje9YSZUijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KD
OSn5CbmXpAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVg
roUVtprsmHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs
/Hd981FdVghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQAB
wsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQezhmktrdTyEP/0HOVWHwQsaW
jMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCjeZzU16i9iqDpDqxpyqmTigcjH
V8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF9mS7pDYWy+mPhPuw8TDIfiqg
VhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+NAM6Q5dYkCebyvwzLmg1sVni
l6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNViJ9zAaPI78X9v6PpDGn0kg6oL
zrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJBlkke6kw9+KagY8mrVX1ZenRg

Claves anteriores 293

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHODysrGVCLcmuinUBaNlHmLDcGY
XZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKMO+22xL1atFzXfkEVZck+NghL
ZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7GNpuiEFUYh69QQ2//CS5H51o
sC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02NK0fvF/IKHnGkvH28rv0OPCvO
WTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+OTa63/z4YFfEZ7sFLrEm3Q3vJ
MN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=Z9u3
-----END PGP PUBLIC KEY BLOCK-----

Claves anteriores 294

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

Historial de documentos
En esta página se describen los cambios importantes en la Guía para desarrolladores de AWS SDK
para Java a lo largo de su historia.

Esta guía se publicó el: 1 de octubre de 2025.

1 de octubre de 2025

Agregue una nueva clave PGP que caduque el 27 de septiembre de 2026.

5 de octubre de 2024

Actualice la información clave actual de OpenPGP.

4 de septiembre de 2024

Agregue información sobre los puntos de conexión basados en cuentas de AWS para
DynamoDB. Consulte , the section called “Uso de puntos de conexión basados en cuentas de
AWS”.

21 de mayo de 2024, 2024

Elimine las instrucciones para establecer la propiedad de seguridad
networkaddress.cache.ttl mediante una propiedad del sistema de línea de comandos de
Java. Consulte , Cómo configurar el TTL de JVM.

12 de enero de 2024

Añadir banner que anuncia el fin del soporte para AWS SDK para Java v1.x.

6 de diciembre de 2023

• Proporcionar la clave OpenPGP actual.

14 de marzo de 2023

• Se ha actualizado la guía para implementar las prácticas recomendadas de IAM. Para obtener
más información, consulte Prácticas recomendadas de seguridad en IAM.

28 de julio de 2022

• La plataforma EC2-Classic se retirará el 15 de agosto de 2022.

22 de marzo de 2018

• Se eliminó el ejemplo de administración de sesiones de Tomcat en DynamoDB porque dicha
herramienta ya no es compatible.

295

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

2 de noviembre de 2017

• Se han añadido ejemplos de criptografía para el cliente de cifrado Amazon S3, incluyendo
nuevos temas: Utilizar el cifrado del cliente Amazon S3 y el cifrado del cliente Amazon S3 con
claves gestionadas por KMS AWS y el cifrado del cliente Amazon S3 con claves maestras de
cliente.

14 de abril de 2017

• Se han realizado varias actualizaciones en la sección Ejemplos de Amazon S3 utilizando el
AWS SDK para Java, incluyendo nuevos temas: Administrar los permisos de acceso a Amazon
S3 para buckets y objetos y Configurar un bucket Amazon S3 como sitio web.

04 de abril de 2017

• Un nuevo tema, Habilitación de métricas para el AWS SDK para Java, describe cómo generar
métricas de aplicación y de rendimiento de AWS SDK para Java.

03 de abril de 2017

• Se han añadido nuevos ejemplos de CloudWatch a la sección Ejemplos de CloudWatch
utilizando el AWS SDK para Java: Obtener métricas de CloudWatch, Publicar datos de
métricas personalizadas, Trabajar con alarmas de CloudWatch, Utilizar acciones de alarma en
CloudWatch y Enviar eventos a CloudWatch

27 de marzo de 2017

• Se han agregado más ejemplos de Amazon EC2 a la sección Ejemplos de Amazon EC2
mediante el uso de AWS SDK para Java: Administrar instancias de Amazon EC2, Uso de
direcciones IP elásticas en Amazon EC2, Uso de regiones y zonas de disponibilidad, Uso de
pares de claves de Amazon EC2y Uso de grupos de seguridad en Amazon EC2.

21 de marzo de 2017

• Se ha añadido un nuevo conjunto de ejemplos de IAM a la sección Ejemplos de IAM utilizando
el AWS SDK para Java: Administrar claves de acceso IAM, Administrar usuarios de IAM,
Utilizar alias de cuentas de IAM, Trabajar con políticas de IAM y Trabajar con certificados de
servidor IAM

13 de marzo de 2017

• Añadidos tres nuevos temas a la sección Amazon SQS: Activación del Sondeo Largo para
las Colas de Mensajes Amazon SQS, Configuración del Tiempo de Espera de Visibilidad en
Amazon SQS, y Utilización de las colas de mensajes fallidos en Amazon SQS.

296

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

26 de enero de 2017

• Se ha añadido un nuevo tema Amazon S3, Uso de TransferManager para las operaciones
Amazon S3, y un nuevo tema Prácticas recomendadas de desarrollo de AWS con el AWS SDK
para Java en la sección Uso del AWS SDK para Java.

16 de enero de 2017

• Se añadió un nuevo tema de Amazon S3, Administración del acceso a buckets de Amazon S3
mediante políticas de buckets, y dos nuevos temas de Amazon SQS, Trabajar con colas de
mensajes de Amazon SQS y Envío, recepción y eliminación de mensajes de Amazon SQS.

16 de diciembre de 2016

• Se añadieron nuevos temas de ejemplo de DynamoDB: Uso de tablas en DynamoDB y
Trabajar con elementos en DynamoDB.

26 de septiembre de 2016

• Los temas de la sección Avanzada se movieron a Uso del AWS SDK para Java, ya que son
fundamentales para usar el SDK.

25 de agosto de 2016

• Se añadió un nuevo tema, Creación de clientes de servicio, a Uso del AWS SDK para Java,
que muestra cómo usar compiladores de clientes para simplificar la creación de clientes de
Servicio de AWS.

La sección Ejemplos de código de AWS SDK para Java se actualizó con nuevos ejemplos de
S3 respaldados por un repositorio en GitHub que contiene el código de ejemplo completo.

02 de mayo de 2016

• Se añadió un nuevo tema, Programación asíncrona, a la sección Uso del AWS SDK para Java,
que describe cómo trabajar con métodos de cliente asíncronos que devuelven objetos Future
o que toman un objeto AsyncHandler.

26 de abril de 2016

• Se eliminó el tema Requisitos de certificados de SSL, ya que no es relevante. El soporte para
los certificados firmados por SHA-1 se retiró en 2015 y se eliminó el sitio que alojaba los scripts
de prueba.

14 de marzo de 2016

• Se añadió un nuevo tema a la sección de Amazon SWF, Tareas Lambda, que describe cómo
implementar un flujo de trabajo de Amazon SWF que llama a funciones Lambda como tareas
como una alternativa a usar actividades de Amazon SWF tradicionales.

297

https://github.com/awsdocs/aws-doc-sdk-examples

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

04 de marzo de 2016

• La sección Ejemplos de Amazon SWF usando el AWS SDK para Java se actualizó con nuevo
contenido:

• Conceptos básicos de Amazon SWF: ofrece información básica acerca de cómo incluir SWF
en sus proyectos.

• Creación de una aplicación de Amazon SWF sencilla: un nuevo tutorial que proporciona
instrucciones paso a paso para los desarrolladores de Java que no tienen experiencia con
Amazon SWF.

• Cerrar correctamente los procesos de trabajo de actividad y flujo de trabajo: describe cómo
cerrar correctamente las clases de procesos de trabajo de Amazon SWF mediante clases de
simultaneidad de Java.

23 de febrero de 2016

• La fuente para la Guía para el desarrollador de AWS SDK para Java se ha trasladado a aws-
java-developer-guide.

28 de diciembre de 2015

• the section called “Configurar el TTL de JVM para las búsquedas de nombres DNS” se ha
movido de la sección Avanzada a Uso de AWS SDK para Java, y se ha vuelto a escribir para
mayor claridad.

Uso del SDK con Apache Maven se actualizó con información sobre cómo incluir la lista de
materiales (BOM) del SDK en un proyecto.

04 de agosto de 2015

• Requisitos de certificados SSL es un nuevo tema de la sección Introducción que describe
la migración de AWS a certificados firmados con SHA256 para las conexiones SSL y cómo
corregir los entornos de Java anteriores a la versión 1.6 para usar estos certificados, que son
necesarios para el acceso de AWS desde el 30 de septiembre de 2015.

Note

Java 1.7+ ya es capaz de trabajar con certificados firmados con SHA256.

14 de mayo de 2014

• El material de Introducción y Primeros pasos se ha revisado en su totalidad para adaptarlo
a la nueva estructura de las guías y ahora incluye instrucciones sobre cómo Configurar
credenciales y regiones de AWS para desarrollo.

298

https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide

AWS SDK para Java 1.x Guía para desarrolladores de la versión 1.x

La descripción de ejemplos de código se ha movido a su propio tema en la sección
Documentación y recursos adicionales.

La información sobre cómo consultar el historial de revisiones del SDK se ha movido a la
introducción.

9 de mayo de 2014

• La estructura general de la documentación de AWS SDK para Java se ha simplificado, y los
temas Introducción y Documentos y recursos adicionales se han actualizado.

Se han añadido nuevos temas:

• Trabajo con de credenciales de AWS: describe las distintas maneras en las que puede
especificar credenciales para su uso con AWS SDK para Java.

• Uso de roles de IAM para conceder acceso a los recursos de AWS en Amazon EC2:
proporciona información sobre cómo especificar credenciales de forma segura para las
aplicaciones que se ejecutan en instancias EC2.

9 de septiembre de 2013

• Este tema, Historial de documentos, hace un seguimiento de los cambios en la Guía para
desarrolladores de AWS SDK para Java. Su uso previsto es acompañar el historial de notas de
la versión.

299

	AWS SDK para Java 1.x
	Table of Contents
	
	Guía para desarrolladores. AWS SDK para Java 1.x
	Versión 2 del SDK publicada
	Documentación y recursos adicionales
	Compatibilidad con el IDE de Eclipse
	Desarrollo de aplicaciones para Android
	Consulta del historial de revisiones del SDK
	Creación de documentación de referencia de Java para versiones del SDK anteriores

	Introducción
	Configuración básica para trabajar con Servicios de AWS
	Descripción general
	Inicie sesión en el portal de acceso a AWS
	Configurar los archivos de configuración compartidos
	Configuración del archivo compartido config
	Configure credenciales temporales para el SDK.

	Instalar un entorno de desarrollo de Java.

	Maneras de obtener el AWS SDK para Java
	Requisitos previos
	Uso de una herramienta de compilación para administrar las dependencias del SDK para Java (recomendado)
	Descargar y extraer el SDK (no recomendable)
	Compilar versiones anteriores del SDK desde el código fuente (no se recomienda)

	Usar herramientas de compilación
	Usar el SDK con Apache Maven
	Creación de un nuevo paquete de Maven
	Configuración del SDK como una dependencia de Maven
	Especificación de módulos del SDK individuales
	Importación de todos los módulos del SDK

	Compilación del proyecto
	Compilación del SDK con Maven

	Usar el SDK con Gradle.
	Configuración del proyecto en Gradle 4.6 o posterior
	Configuración del proyecto para versiones de Gradle anteriores a 4.6

	Configurar credenciales temporales de AWS y Región de AWS para desarrollo
	Configurar credenciales temporales
	Actualización de credenciales IMDS
	Definir la Región de AWS

	Usando el AWS SDK para Java
	Mejores prácticas para el AWS desarrollo con el AWS SDK para Java
	S3
	Evite ResetExceptions

	Creación de clientes de servicio
	Obtención de un creador de clientes
	Creación de clientes asíncronos
	Para crear un cliente de DynamoDB asíncrono con el valor predeterminado ExecutorService
	Para crear un cliente asíncrono con un ejecutor personalizado

	Usando DefaultClient
	Para crear un cliente de servicio predeterminado

	Ciclo de vida del cliente
	Para cerrar un cliente

	Proporcione credenciales temporales al AWS SDK para Java
	Uso de la cadena predeterminada de proveedores de credenciales
	Utilizar credenciales temporales
	Configurar un perfil de credenciales alternativo
	Configurar una ubicación del archivo de credenciales alternativa
	Para invalidar la ubicación predeterminada del archivo de credenciales

	Formato de archivo de Credentials
	Cargar credenciales

	Especificar un proveedor de credenciales o una cadena de proveedores
	Especificar explícitamente credenciales temporales
	Más información

	Región de AWS Selección
	Comprobación de la disponibilidad del servicio en una región
	Selección de una región
	Selección de un punto de enlace específico
	Determinar automáticamente la región desde el entorno
	Cadena predeterminada de proveedores de regiones

	Tratamiento de excepciones
	¿Por qué usar excepciones no controladas?
	AmazonServiceException (y subclases)
	AmazonClientException

	Programación asíncrona
	Objetos Future de Java
	Devoluciones de llamadas asíncronas
	Prácticas recomendadas
	Ejecución de la devolución de llamada
	Configuración del grupo de subprocesos
	Acceso asíncrono

	Registro de llamadas AWS SDK para Java
	Descarga del archivo JAR de Log4J
	Definición del classpath
	Errores y advertencias específicos del servicio
	Registro de resumen de solicitudes y respuestas
	Registro detallado en red
	Registro de métricas de latencia

	Configuración de los clientes
	Configuración del proxy
	Configuración del transporte HTTP
	Número máximo de conexiones
	Tiempos de espera y tratamiento de errores
	Dirección local

	Sugerencias del tamaño del búfer del socket TCP

	Política de control de acceso
	Amazon S3 Ejemplo
	Amazon SQS Ejemplo
	Ejemplo de Amazon SNS

	Configurar el TTL de JVM para las búsquedas de nombres DNS
	Cómo configurar el TTL de JVM

	Habilitación de métricas para AWS SDK para Java
	Cómo habilitar la generación de métricas de SDK
	Tipos de métricas disponibles
	Más información

	AWS SDK para JavaEjemplos de código de
	AWS SDK para Java 2.x
	Ejemplos de CloudWatch con AWS SDK para Java
	Obtención de métricas de CloudWatch
	Mostrar métricas
	Más información

	Publicación de datos de métricas personalizadas
	Publicación de datos de métricas personalizadas
	Más información

	Uso de alarmas de CloudWatch
	Crear una alarma
	Mostrar alarmas
	Eliminar alarmas
	Más información

	Uso de acciones de alarma en CloudWatch
	Habilitar acciones de alarma
	Deshabilitar acciones de alarma
	Más información

	Envío de eventos de a CloudWatch
	Añadir eventos
	Añadir reglas
	Añadir destinos
	Más información

	DynamoDB Ejemplos de usando la AWS SDK para Java
	Uso de puntos de conexión basados en cuentas de AWS
	Uso de tablas en DynamoDB
	Crear una tabla
	Creación de una tabla con una clave principal simple
	Creación de una tabla con una clave primaria compuesta

	Mostrar tablas
	Describir una tabla (obtener información de ella)
	Modificar (actualizar) una tabla
	Eliminar una tabla
	Más información

	Uso de elementos en DynamoDB
	Recuperar (obtener) un elemento de una tabla
	Añadir un nuevo elemento a una tabla
	Actualizar un elemento existente en una tabla
	Uso de la clase DynamoDBMapper
	Más información

	Amazon EC2 Ejemplos de usando la AWS SDK para Java
	Tutorial: Inicio de una instancia EC2
	Requisitos previos
	Cree un grupo de seguridad de Amazon EC2
	Retirada de EC2-Classic

	Creación de un par de claves
	Ejecutar una instancia de Amazon EC2

	Uso de roles de IAM para conceder acceso a recursos de Amazon EC2 en AWS
	Cadena predeterminada de proveedores y perfiles de instancias EC2
	Tutorial: Uso de roles de IAM para instancias EC2
	Creación de un rol de IAM
	Lanzar una instancia EC2 y especificar el rol de IAM
	Creación de una aplicación
	Transferir el programa compilado a la instancia EC2
	Ejecutar el programa de ejemplo en la instancia EC2

	Tutorial: Instancias de spot de Amazon EC2
	Descripción general
	Requisitos previos
	Paso 1: Configuración de las credenciales
	Paso 2: Configuración de un grupo de seguridad
	Paso 3: Envío de la solicitud de spot
	Paso 4: Determinación del estado de la solicitud de spot
	Paso 5: Limpieza de las instancias y solicitudes de spot
	Operación conjunta
	Siguientes pasos

	Tutorial: Administración avanzada de solicitudes de spot de Amazon EC2
	Requisitos previos
	Configuración de las credenciales
	Configuración de un grupo de seguridad
	Opciones detalladas de creación de solicitudes de instancias de spot
	Solicitudes persistentes y solicitudes puntuales
	Limitación de la duración de una solicitud
	Agrupación de solicitudes de instancias de spot de Amazon EC2
	Cómo conservar una partición raíz después de una interrupción o terminación
	Cómo etiquetar sus solicitudes e instancias de spot
	Etiquetado de solicitudes
	Etiquetado de instancias

	Cancelación de solicitudes de spot y terminación de instancias
	Cancelación de una solicitud de spot
	Terminación de instancias de spot

	Operación conjunta

	Administración de instancias de Amazon EC2
	Crear una instancia
	Iniciar una instancia
	Detener una instancia
	Reiniciar una instancia
	Describir instancias
	Monitorizar una instancia
	Detener la monitorización de instancias
	Más información

	Uso de direcciones IP elásticas en Amazon EC2
	Retirada de EC2-Classic
	Asignación de una dirección IP elástica
	Descripción de direcciones IP elásticas
	Liberación de una dirección IP elástica
	Más información

	Usar regiones y zonas de disponibilidad
	Describir regiones
	Describir zonas de disponibilidad
	Describir cuentas
	Más información

	Uso de pares de claves de Amazon EC2
	Creación de un par de claves
	Descripción de pares de claves
	Eliminación de un par de claves
	Más información

	Uso de grupos de seguridad en Amazon EC2
	Creación de un grupo de seguridad
	Configuración de un grupo de seguridad
	Descripción de grupos de seguridad
	Eliminación de un grupo de seguridad
	Más información

	Ejemplos de (IAM) con AWS SDK para Java
	Administración de las claves de acceso de IAM
	Creación de una clave de acceso
	Mostrar claves de acceso
	Recuperar el momento en que se usó por última vez una clave de acceso
	Activación o desactivación de claves de acceso
	Eliminación de una clave de acceso
	Más información

	Administración de usuarios de IAM
	Crear un usuario
	Mostrar usuarios
	Actualizar un usuario
	Eliminar un usuario
	Más información

	Uso de alias de cuenta de IAM
	Creación de un alias de cuenta
	Mostrar alias de cuenta
	Eliminación de un alias de cuenta
	Más información

	Uso de políticas de IAM
	Creación de una política
	Obtención de una política
	Asociar una política de rol
	Mostrar las políticas de rol asociadas
	Desvincular una política de rol
	Más información

	Uso de certificados de servidor de IAM
	Obtener un certificado de servidor
	Mostrar certificados de servidor
	Actualizar un certificado de servidor
	Eliminar un certificado de servidor
	Más información

	Lambda Ejemplos de usando la AWS SDK para Java
	Invocar, enumerar y eliminar funciones de Lambda
	Invocar una función
	Lista de funciones
	Eliminar una función

	Amazon Pinpoint Ejemplos de usando la AWS SDK para Java
	Creación y eliminación de aplicaciones en Amazon Pinpoint
	Crear una aplicación
	Eliminar una aplicación
	Más información

	Creación de puntos de conexón en Amazon Pinpoint
	Crear un punto de conexión
	Más información

	Creación de segmentos en Amazon Pinpoint
	Crear un segmento
	Más información

	Creación de campañas en Amazon Pinpoint
	Crear una campaña
	Más información

	Actualización de canales en Amazon Pinpoint
	Actualizar un canal
	Más información

	Amazon S3 Ejemplos de usando la AWS SDK para Java
	Creación, enumeración y eliminación de buckets de Amazon S3
	Crear un bucket
	Lista de buckets
	Eliminar un bucket
	Eliminar objetos de un bucket sin control de versiones antes de eliminarlo
	Eliminar objetos de un bucket con control de versiones antes de eliminarlo
	Eliminar un bucket vacío

	Realizar operaciones en objetos de Amazon S3
	Carga de un objeto
	Lista de objetos
	Descarga de un objeto
	Copiar, mover o cambiar de nombre objetos
	Eliminar un objeto
	Eliminación de varios objetos a la vez

	Administración de permisos de acceso de Amazon S3 para buckets y objetos
	Obtener la lista de control de acceso de un bucket
	Establecer la lista de control de acceso de un bucket
	Obtener la lista de control de acceso de un objeto
	Establecer la lista de control de acceso de un objeto
	Más información

	Administración del acceso a los buckets de Amazon S3 mediante políticas de buckets
	Definir una política de bucket
	Usar la clase Class para generar o validar una política

	Obtener una política de bucket
	Eliminar una política de bucket
	Más información

	Uso de TransferManager para operaciones de Amazon S3
	Carga de archivos y directorios
	Carga de un solo archivo
	Carga de una lista de archivos
	Carga de un directorio

	Descarga de archivos o directorios
	Descarga de un solo archivo
	Descarga de un directorio

	Copia de objetos
	Esperar a que se complete una transferencia
	Obtener el estado y el progreso de una transferencia
	Sondear el progreso actual de una transferencia
	Obtener el progreso de una transferencia con ProgressListener
	Obtener el progreso de las transferencias secundarias

	Más información

	Configuración de un bucket de Amazon S3 como un sitio web
	Establecimiento de la configuración de sitio web de un bucket
	Obtener la configuración de sitio web de un bucket
	Eliminar la configuración de sitio web de un bucket
	Más información

	Usar cifrado del cliente de Amazon S3
	Cifrado del cliente de Amazon S3 con claves maestras de cliente
	Importaciones requeridas
	Cifrado de autenticado estricto
	Modo de cifrado autenticado

	Cifrado del cliente Amazon S3 con claves administradas por AWS KMS
	Importaciones requeridas
	Cifrado de autenticado estricto
	Modo de cifrado autenticado
	Configuración del cliente AWS KMS

	Amazon SQS Ejemplos de usando la AWS SDK para Java
	Uso de colas de mensajes de Amazon SQS
	Creación de una cola
	Mostrar colas
	Obtener la URL de una cola
	Eliminar una cola
	Más información

	Envío, recepción y eliminación de mensajes de Amazon SQS
	Enviar un mensaje
	Enviar varios mensajes a la vez

	Recibir mensajes
	Eliminar mensajes después de su recepción
	Más información

	Habilitar sondeos largos para las colas de mensajes de Amazon SQS
	Habilitar el sondeo largo al crear una cola
	Habilitar el sondeo largo en una cola existente
	Habilitar el sondeo largo al recibir un mensaje
	Más información

	Configuración del tiempo de espera de visibilidad en Amazon SQS
	Configuración del tiempo de espera de visibilidad de los mensajes para un solo mensaje
	Configuración del tiempo de espera de visibilidad de los mensajes para varios mensajes a la vez
	Más información

	Uso de colas de mensajes fallidos en Amazon SQS
	Creación de una cola de mensajes fallidos
	Designación de una cola de mensajes fallidos para una cola de origen
	Más información

	Amazon SWF Ejemplos de usando la AWS SDK para Java
	Conceptos básicos de SWF
	Dependencias
	Importaciones
	Uso de la clase del cliente SWF

	Creación de una aplicación de Amazon SWF sencilla
	Acerca del ejemplo
	Requisitos previos
	Entorno de desarrollo
	Acceso a AWS

	Creación de un proyecto de SWF
	Codificación del proyecto
	Pasos comunes para todos los archivos de código fuente
	Registro de un dominio y de tipos de flujo de trabajo y actividad
	Implementación del proceso de trabajo de actividad
	Implementación del proceso de trabajo del flujo de trabajo
	Implementación del iniciador del flujo de trabajo

	Compilación del ejemplo
	Ejecución del ejemplo
	Definición del classpath Java
	Registro del dominio y de los tipos de flujo de trabajo y actividad
	Inicio de los procesos de trabajo de actividad y flujo de trabajo
	Inicio de la ejecución del flujo de trabajo

	Código fuente completo de este ejemplo
	Para obtener más información

	LambdaTareas de
	Configuración de un rol de IAM de varios servicios para ejecutar su función Lambda
	Crear una función de Lambda
	Registrar un flujo de trabajo para su uso con Lambda
	Programación de una tarea de Lambda
	Controlar eventos de funciones de Lambda en su decisor
	Recibir la salida de su función Lambda
	Código fuente completo de este ejemplo

	Cerrar correctamente los procesos de trabajo de actividad y flujo de trabajo
	Registro de dominios
	Visualización de los dominios

	Ejemplos de código incluidos con el SDK
	Cómo obtener los ejemplos
	Compilación y ejecución de los ejemplos mediante la línea de comandos
	Requisitos previos
	Ejecución de los ejemplos

	Compilación y ejecución de los ejemplos mediante el IDE de Eclipse
	Requisitos previos
	Ejecución de los ejemplos

	Seguridad para el AWS SDK para Java
	Protección de datos en AWS SDK para Java 1.x
	AWS SDK para Java soporte para TLS
	Cómo verificar la versión de TLS
	Aplicación de una versión mínima de TLS

	Gestión de identidad y acceso
	Público
	Autenticación con identidades
	Cuenta de AWS usuario root
	Identidad federada
	Usuarios y grupos de IAM
	Roles de IAM

	Administración del acceso con políticas
	Políticas basadas en identidades
	Políticas basadas en recursos
	Listas de control de acceso () ACLs
	Otros tipos de políticas
	Varios tipos de políticas

	¿Cómo Servicios de AWS trabajar con IAM
	Solución de problemas de AWS identidad y acceso
	No estoy autorizado a realizar ninguna acción en AWS
	No estoy autorizado a realizar tareas como: PassRole
	Quiero permitir que personas ajenas a mí accedan Cuenta de AWS a mis AWS recursos

	Validación de la conformidad de este AWS producto o servicio
	Resiliencia de este AWS producto o servicio
	Seguridad de la infraestructura para este AWS producto o servicio
	Amazon S3 Migración de clientes de cifrado
	Requisitos previos
	Información general sobre la migración
	Actualizar los clientes existentes para leer nuevos formatos
	Actualizar la dependencia en la configuración de su proyecto.
	Ejemplo de uso de Maven
	Ejemplo de uso de Gradle

	Migrar clientes de cifrado y descifrado a la versión V2
	Crear un cliente de cifrado V2
	Utilizar proveedores de materiales de cifrado
	Configurar el cliente de cifrado V2

	Ejemplos adicionales
	Configurar un cliente de servicio para leer los objetos creados por el cliente de cifrado V1
	Configurar un cliente de servicio para obtener rangos de bytes de objetos

	Clave OpenPGP para AWS SDK para Java
	Clave actual
	Claves anteriores
	Fecha de vencimiento: 04-10-2025
	Fecha de vencimiento: 08-10-2024

	Historial de documentos

