
Guide du développeur

AWS Flow Framework pour Java

Version de l'API 2021-04-28

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Flow Framework pour Java Guide du développeur

AWS Flow Framework pour Java: Guide du développeur

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Les marques commerciales et la présentation commerciale d’Amazon ne peuvent pas être utilisées
en relation avec un produit ou un service extérieur à Amazon, d’une manière susceptible d’entraîner
une confusion chez les clients, ou d’une manière qui dénigre ou discrédite Amazon. Toutes les autres
marques commerciales qui ne sont pas la propriété d’Amazon appartiennent à leurs propriétaires
respectifs, qui peuvent ou non être affiliés ou connectés à Amazon, ou sponsorisés par Amazon.

AWS Flow Framework pour Java Guide du développeur

Table of Contents
Qu'est-ce que le AWS Flow Framework pour Java ? .. 1

Présentation de ce guide .. 1
Démarrage .. 3

Configuration de l'infrastructure ... 3
Ajouter le framework de flux avec Maven .. 4

HelloWorld Demande ... 4
HelloWorld Mise en œuvre des activités .. 5
HelloWorld Travailleur du workflow .. 6
HelloWorld Démarreur de workflow .. 7

HelloWorldWorkflow Demande .. 8
HelloWorldWorkflow Travailleur des activités ... 10
HelloWorldWorkflow Travailleur du workflow ... 12
HelloWorldWorkflow Mise en œuvre des flux de travail et activités ... 17
HelloWorldWorkflow Démarreur ... 21

HelloWorldWorkflowAsyncDemande ... 26
HelloWorldWorkflowAsync Mise en œuvre des activités ... 27
HelloWorldWorkflowAsync Mise en œuvre du workflow .. 28
HelloWorldWorkflowAsyncWorkflow et activités Host and Starter ... 30

HelloWorldWorkflowDistributed Demande ... 31
HelloWorldWorkflowParallelDemande ... 34

HelloWorldWorkflowParallelTravailleur des activités .. 35
HelloWorldWorkflowParallelTravailleur du workflow ... 36
HelloWorldWorkflowParallel Workflow et activités Host and Starter .. 38

Compréhension AWS Flow Framework ... 39
Structure d'application ... 39

Rôle de l'exécuteur d'activité .. 41
Rôle de l'exécuteur de flux de travail ... 41
Rôle du démarreur de flux de travail ... 42
Comment Amazon SWF interagit avec votre application ... 42
Pour en savoir plus .. 43

Exécution fiable ... 43
Assurer une communication fiable ... 43
S'assurer qu'aucun résultat n'est perdu ... 44
Gestion des composants distribués ayant échoué ... 45

Version de l'API 2021-04-28 iii

AWS Flow Framework pour Java Guide du développeur

Exécution distribuée .. 45
Reproduction des flux de travail ... 45
Reproduction et méthodes de flux de travail asynchrones .. 47
Implémentation de reproduction et de flux de travail ... 47

Listes et exécution de tâches ... 47
Applications scalables ... 50
Échange de données entre les activités et les flux de travail ... 51

Le Promesse <T> Type .. 51
Convertisseurs de données et regroupement .. 53

Échange de données entre les applications et les exécutions de flux de travail 53
Types de délai ... 54

Délais liés au flux de travail et aux tâches de décision ... 54
Délais des tâches d'activité .. 56

Comprendre les tâches .. 58
Tâche ... 58
Ordre d'exécution ... 59
Exécution de flux de travail ... 61
Non-déterminisme .. 63

Guide de programmation ... 65
Implémentation des applications de flux de travail ... 65
Contrats de flux de travail et d'activité .. 67
Enregistrement des types de flux de travail et d'activité ... 70

Nom et version de type de flux de travail .. 71
Nom du signal ... 71
Nom et version de type de flux d'activité ... 71
Default Task List ... 72
Autres options d'enregistrement ... 72

Clients d'activité et de flux de travail .. 73
Clients de flux de travail ... 73
Clients d'activité .. 82
Options de planification .. 86
Clients dynamiques ... 87

Implémentation de flux de travail .. 89
Contexte décisionnel ... 90
Exposition de l'état d'exécution .. 90
Locales de flux de travail ... 93

Version de l'API 2021-04-28 iv

AWS Flow Framework pour Java Guide du développeur

Implémentation d'activité ... 94
Finalisation manuelle des activités ... 95

Implémentation de tâches Lambda ... 96
À propos AWS Lambda .. 97
Avantages et limites de l'utilisation des tâches Lambda .. 97
Utilisation de tâches Lambda dans vos flux de travail AWS Flow Framework pour Java 98
Voir l' HelloLambda échantillon .. 102

Exécution de programmes écrits avec le AWS Flow Framework pour Java 103
WorkflowWorker .. 104
ActivityWorker ... 104
Modèle de thread d'exécuteur .. 105
Extensibilité de l'exécuteur ... 107

Contexte d'exécution ... 108
Contexte décisionnel ... 108
Contexte d'exécution d'une activité .. 111

Exécutions de flux de travail enfant .. 112
Flux de travail continus ... 114
Définition de la priorité des tâches ... 115

Définition d'une priorité de tâche pour les flux de travail ... 116
Définition d'une priorité de tâche pour les activités ... 117

DataConverters .. 118
Transmission des données aux méthodes asynchrones .. 119

Transmission des collections et des cartes aux méthodes asynchrones 119
Définissable <T> ... 120
@NoWait ... 121
Promets- <Vide> ... 122
AndPromise et OrPromise .. 122

Testabilité et injection de dépendances .. 122
Intégration de Spring .. 123
JUnit Integration .. 130

Gestion des erreurs ... 136
TryCatchFinally Sémantique ... 138
Annulation ... 139
Imbriqué TryCatchFinally .. 144

Relance des activités ayant échoué ... 145
Retry-Until-Success Stratégie ... 146

Version de l'API 2021-04-28 v

AWS Flow Framework pour Java Guide du développeur

Stratégie de nouvelle tentative exponentielle ... 148
Stratégie de nouvelle tentative personnalisée .. 156

Tâches démon ... 158
Comportement de reproduction ... 160

Exemple 1 : Reproduction synchrone ... 161
Exemple 2 : Reproduction asynchrone ... 163
consultez aussi ... 163

Bonnes pratiques .. 164
Modifications du code décideur ... 164

Le processus de reproduction et les modifications de code .. 164
Exemple de scénario .. 165
Solutions .. 172

Résolution des problèmes .. 177
Erreurs de compilation .. 177
Défaillance de ressource inconnue ... 177
Exceptions lors de l'appel à get () sur une promesse .. 178
Workflows non déterministes ... 178
Problèmes liés à la gestion des versions ... 179
Résolution des problèmes et débogage de l'exécution d'un flux de travail 179
Tâches perdues ... 181
Échec de validation dû à des contraintes de longueur des paramètres de l'API 181

Référence ... 183
Annotations .. 183

@Activités ... 183
@Activité ... 184
@ActivityRegistrationOptions .. 184
@Asynchrone .. 186
@Execute .. 186
@ExponentialRetry ... 186
@GetState ... 187
@ManualActivityCompletion ... 188
@Signal ... 188
@SkipRegistration ... 188
@Wait et @ NoWait ... 188
@Flux de travail .. 189
@WorkflowRegistrationOptions .. 190

Version de l'API 2021-04-28 vi

AWS Flow Framework pour Java Guide du développeur

Exceptions .. 191
ActivityFailureException .. 192
ActivityTaskException ... 192
ActivityTaskFailedException .. 192
ActivityTaskTimedOutException .. 192
ChildWorkflowException .. 193
ChildWorkflowFailedException .. 193
ChildWorkflowTerminatedException ... 193
ChildWorkflowTimedOutException .. 193
DataConverterException ... 193
DecisionException ... 194
ScheduleActivityTaskFailedException ... 194
SignalExternalWorkflowException ... 194
StartChildWorkflowFailedException .. 194
StartTimerFailedException .. 194
TimerException ... 194
WorkflowException .. 195

Packages ... 195
Historique du document ... 197
.. cxcix

Version de l'API 2021-04-28 vii

AWS Flow Framework pour Java Guide du développeur

Qu'est-ce que le AWS Flow Framework pour Java ?
Vous pouvez ainsi vous concentrer sur la AWS Flow Framework mise en œuvre de votre logique de
flux de travail. Dans les coulisses, le framework utilise les fonctionnalités de planification, de routage
et de gestion des états d'Amazon SWF pour gérer l'exécution de votre flux de travail et le rendre
évolutif, fiable et auditable. AWS Flow Framework les flux de travail basés sur la technologie sont
hautement simultanés. Les flux de travail peuvent être répartis sur plusieurs composants, qui peuvent
être exécutés en tant que processus distincts sur des ordinateurs distincts et être dimensionnés
indépendamment. L'application peut continuer à progresser si l'un de ses composants est en cours
d'exécution, ce qui la rend très tolérante aux pannes.

Présentation de ce guide
Ce guide contient des informations sur l'installation, la configuration et l'utilisation AWS Flow
Framework pour créer des applications Amazon SWF.

Commencer à utiliser le AWS Flow Framework pour Java

Si vous débutez avec le AWS Flow Framework pour Java, lisez la Commencer à utiliser le AWS
Flow Framework pour Java section. Il vous expliquera comment télécharger et installer le AWS
Flow Framework pour Java, comment configurer votre environnement de développement et vous
expliquera un exemple simple de création d'un flux de travail.

Comprendre AWS Flow Framework Java

Présente Amazon SWF et ses AWS Flow Framework concepts de base, décrivant la structure
de base d'une AWS Flow Framework application et la manière dont les données sont échangées
entre les différentes parties d'un flux de travail distribué.

AWS Flow Framework pour le guide de programmation Java

Ce chapitre fournit des conseils de programmation de base AWS Flow Framework pour le
développement d'applications de flux de travail avec Java, notamment comment enregistrer les
types d'activité et de flux de travail, implémenter des clients de flux de travail, créer des flux de
travail enfants, gérer les erreurs, etc.

Comprendre une tâche dans AWS Flow Framework for Java

Ce chapitre fournit un aperçu plus détaillé du AWS Flow Framework fonctionnement de Java,
en vous fournissant des informations supplémentaires sur l'ordre d'exécution des flux de travail
asynchrones et une étape logique de l'exécution d'un flux de travail standard.

Présentation de ce guide Version de l'API 2021-04-28 1

AWS Flow Framework pour Java Guide du développeur

Conseils de dépannage et de débogage AWS Flow Framework pour Java

Ce chapitre fournit des informations sur les erreurs courantes que vous pouvez utiliser pour
dépanner vos flux de travail, ou pour apprendre à éviter les erreurs courantes.

AWS Flow Framework pour Java Reference

Ce chapitre fait référence aux annotations, exceptions et packages que le AWS Flow Framework
for Java ajoute au SDK pour Java.

Présentation de ce guide Version de l'API 2021-04-28 2

AWS Flow Framework pour Java Guide du développeur

Commencer à utiliser le AWS Flow Framework pour Java
Cette section les présente AWS Flow Framework en vous présentant une série d'exemples
d'applications simples qui présentent le modèle de programmation de base et l'API. Les exemples
d'applications sont basés sur l'application standard Hello World, utilisée pour présenter le langage
C et des langages de programmation associés. Voici une implémentation Java classique de Hello
World :

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Les informations suivantes constituent une brève description des exemples d'applications. Elles
incluent le code source complet, de sorte que vous puissiez implémenter et exécuter vous-même
les applications. Avant de commencer, vous devez d'abord configurer votre environnement de
développement et créer un projet AWS Flow Framework pour Java, comme dansConfiguration du
AWS Flow Framework pour Java.

• HelloWorld Demande présente des applications de flux de travail via l'implémentation de Hello
World en tant qu'application Java standard, mais structurée comme une application de flux de
travail.

• HelloWorldWorkflow Demandeutilise le AWS Flow Framework for Java pour le HelloWorld convertir
en un flux de travail Amazon SWF.

• HelloWorldWorkflowAsyncDemande modifie HelloWorldWorkflow afin d'utiliser une méthode de
flux de travail asynchrone.

• HelloWorldWorkflowDistributed Demande modifie HelloWorldWorkflowAsync de sorte que les
objets exécuteur de flux de travail et d'activité puissent être exécutés sur des systèmes distincts.

• HelloWorldWorkflowParallelDemande modifie HelloWorldWorkflow afin d'exécuter deux
activités en parallèle.

Configuration du AWS Flow Framework pour Java

Le AWS Flow Framework pour Java est inclus dans le AWS SDK pour Java. Si vous n'avez pas
encore configuré le AWS SDK pour Java, consultez la section Getting Started du guide du AWS SDK

Configuration de l'infrastructure Version de l'API 2021-04-28 3

https://aws.amazon.com/sdkforjava/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/getting-started.html

AWS Flow Framework pour Java Guide du développeur

pour Java développeur pour obtenir des informations sur l'installation et la configuration du SDK lui-
même.

Ajouter le framework de flux avec Maven

Les outils de génération Amazon SWF sont open source. Pour consulter ou télécharger le code ou
pour créer les outils vous-même, consultez le référentiel à l'adresse. https://github.com/aws/aws-swf-
build-tools

Amazon fournit des outils de création Amazon SWF dans le référentiel central Maven.

Pour configurer l'infrastructure de flux de travail pour Maven, ajoutez la dépendance suivante au
fichier pom.xml de votre projet :

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-swf-build-tools</artifactId>
 <version>2.0.0</version>
</dependency>

HelloWorld Demande

Pour présenter la structure des applications Amazon SWF, nous allons créer une application Java
qui se comporte comme un flux de travail, mais qui s'exécute localement dans le cadre d'un seul
processus. Aucune connexion à Amazon Web Services n'est requise.

Note

L'HelloWorldWorkflowexemple s'appuie sur celui-ci, en se connectant à Amazon SWF pour
gérer le flux de travail.

Une application de flux de travail consiste en trois composants de base :

• Un exécuteur d'activité prend en charge un ensemble d'activités, dont chacune est une méthode
qui s'exécute indépendamment pour effectuer une tâche particulière.

• Un exécuteur d'activité orchestre l'exécution des activités et gère le flux de données. Il s'agit
de la réalisation par programmation d'une topologie de flux de travail, qui est essentiellement

Ajouter le framework de flux avec Maven Version de l'API 2021-04-28 4

https://github.com/aws/aws-swf-build-tools
https://github.com/aws/aws-swf-build-tools
https://mvnrepository.com/artifact/com.amazonaws/aws-swf-build-tools

AWS Flow Framework pour Java Guide du développeur

un diagramme de flux qui définit le moment où les différentes activités s'exécutent, qu'elles
s'exécutent dans l'ordre ou simultanément, etc.

• Un démarreur de flux de travail lance une instance de flux de travail, appelée exécution, et peut
interagir avec elle pendant l'opération.

HelloWorld est implémenté sous la forme de trois classes et de deux interfaces associées, décrites
dans les sections suivantes. Avant de commencer, vous devez configurer votre environnement de
développement et créer un nouveau projet AWS Java comme décrit dansConfiguration du AWS
Flow Framework pour Java. Les packages utilisés pour les procédures suivantes sont tous nommés
helloWorld.XYZ. Pour utiliser ces noms, définissez l'attribut within dans aop.xml comme suit :

...
<weaver options="-verbose">
 <include within="helloWorld..*"/>
</weaver>

Pour l'implémenter HelloWorld, créez un nouveau package Java dans votre projet AWS SDK nommé
helloWorld.HelloWorld et ajoutez les fichiers suivants :

• Un fichier d'interface nommé GreeterActivities.java

• Un fichier de classe nommé GreeterActivitiesImpl.java qui implémente l'exécuteur
d'activité.

• Un fichier d'interface nommé GreeterWorkflow.java.

• Un fichier de classe nommé GreeterWorkflowImpl.java qui implémente l'exécuteur de flux de
travail.

• Un fichier de classe nommé GreeterMain.java qui implémente le démarreur de flux de travail.

Les détails sont présentés dans les sections suivantes et incluent le code complet de chaque
composant, que vous pouvez ajouter au fichier approprié.

HelloWorld Mise en œuvre des activités

HelloWorld divise la tâche globale d'impression d'un "Hello World!" message d'accueil sur la
console en trois tâches, chacune étant exécutée par une méthode d'activité. Les méthode d'activité
sont définies dans l'interface GreeterActivities, comme suit.

public interface GreeterActivities {

HelloWorld Mise en œuvre des activités Version de l'API 2021-04-28 5

AWS Flow Framework pour Java Guide du développeur

 public String getName();
 public String getGreeting(String name);
 public void say(String what);
}

HelloWorld a une implémentation d'activitéGreeterActivitiesImpl, qui fournit les
GreeterActivities méthodes indiquées :

public class GreeterActivitiesImpl implements GreeterActivities {
 @Override
 public String getName() {
 return "World";
 }

 @Override
 public String getGreeting(String name) {
 return "Hello " + name + "!";
 }

 @Override
 public void say(String what) {
 System.out.println(what);
 }
}

Les activités sont indépendantes les unes des autres et peuvent être souvent utilisées par différents
flux de travail. Par exemple, n'importe quel flux de travail peut utiliser l'activité say pour imprimer une
chaîne dans la console. Les flux de travail peuvent également plusieurs implémentations d'activité,
chacune exécutant un ensemble différent de tâches.

HelloWorld Travailleur du workflow

Pour imprimer « Hello World ! » sur la console, les tâches d'activité doivent être exécutées en
séquence dans le bon ordre avec les données correctes. Le travailleur du HelloWorld flux de travail
orchestre l'exécution des activités sur la base d'une topologie de flux de travail linéaire simple,
illustrée dans la figure suivante.

HelloWorld Travailleur du workflow Version de l'API 2021-04-28 6

AWS Flow Framework pour Java Guide du développeur

Les trois activités s'exécutent séquentiellement, et les flux de données depuis une activité vers la
suivante.

Le HelloWorld gestionnaire de flux de travail utilise une seule méthode, le point d'entrée du flux de
travail, qui est définie dans l'GreeterWorkflowinterface, comme suit :

public interface GreeterWorkflow {
 public void greet();
}

La classe GreeterWorkflowImpl implémente cette interface, comme suit :

public class GreeterWorkflowImpl implements GreeterWorkflow{
 private GreeterActivities operations = new GreeterActivitiesImpl();

 public void greet() {
 String name = operations.getName();
 String greeting = operations.getGreeting(name);
 operations.say(greeting);
 }
}

La greet méthode implémente la HelloWorld topologie en créant une instance
deGreeterActivitiesImpl, en appelant chaque méthode d'activité dans le bon ordre et en
transmettant les données appropriées à chaque méthode.

HelloWorld Démarreur de workflow

Un démarreur du flux de travail est une application qui lance une exécution de flux de travail, et peut
également communiquer avec le flux de travail pendant qu'il s'exécute. La GreeterMain classe
implémente le démarreur HelloWorld de flux de travail, comme suit :

public class GreeterMain {
 public static void main(String[] args) {
 GreeterWorkflow greeter = new GreeterWorkflowImpl();
 greeter.greet();
 }
}

HelloWorld Démarreur de workflow Version de l'API 2021-04-28 7

AWS Flow Framework pour Java Guide du développeur

GreeterMain crée une instance de GreeterWorkflowImpl et appelle greet pour lancer
l'exécuteur de flux de travail. Exécutez GreeterMain en tant qu'application Java et vous devriez voir
« Hello World ! » dans la sortie de la console.

HelloWorldWorkflow Demande

Bien que l'HelloWorldexemple de base soit structuré comme un flux de travail, il diffère d'un flux de
travail Amazon SWF à plusieurs égards essentiels :

Applications de flux de travail classiques et Amazon SWF

HelloWorld Flux de travail Amazon SWF

S'exécute localement sous la forme
d'un processus unique.

S'exécute sous la forme de plusieurs processus qui
peuvent être répartis sur plusieurs systèmes, notamment
EC2 des instances Amazon, des centres de données
privés, des ordinateurs clients, etc. Ces derniers n'ont
pas besoin d'être exécutés sur le même système
d'exploitation.

Les activités sont des méthodes
synchrones, qui sont bloquées tant
qu'elles ne sont pas terminées.

Les activités sont représentées par des méthodes
asynchrones, qui renvoient des données immédiatement
et qui permettent au flux de travail d'exécuter d'autres
tâches en attendant la fin de l'exécution de l'activité.

L'exécuteur de flux de travail interagit
avec un exécuteur d'activités en
appelant la méthode appropriée.

Les travailleurs du flux de travail interagissent avec les
travailleurs des activités à l'aide de requêtes HTTP,
Amazon SWF jouant le rôle d'intermédiaire.

Le démarreur de flux de travail
interagit avec un objet exécuteur de
flux de travail en appelant la méthode
appropriée.

Les initiateurs de flux de travail interagissent avec les
travailleurs de flux de travail à l'aide de requêtes HTTP,
Amazon SWF jouant le rôle d'intermédiaire.

Vous pouvez implémenter une application de flux de travail asynchrone réparti à partir de rien,
par exemple, en faisant en sorte que votre objet exécuteur de flux de travail interagisse avec un
objet de travail d'activités directement via des appels de services web. Toutefois, vous devez alors
implémenter tout le code compliqué nécessaire à la gestion de l'exécution asynchrone de plusieurs

HelloWorldWorkflow Demande Version de l'API 2021-04-28 8

AWS Flow Framework pour Java Guide du développeur

activités, gérer le flux de données, etc. AWS Flow Framework for Java et Amazon SWF s'occupent
de tous ces détails, ce qui vous permet de vous concentrer sur la mise en œuvre de la logique métier.

HelloWorldWorkflow est une version modifiée de HelloWorld qui s'exécute en tant que flux de travail
Amazon SWF. Le schéma suivant résume le fonctionnement des deux applications.

HelloWorld s'exécute comme un processus unique et le démarreur, le responsable du flux de
travail et le responsable des activités interagissent à l'aide d'appels de méthode conventionnels.
AvecHelloWorldWorkflow, le démarreur, le gestionnaire de flux de travail et le gestionnaire
d'activités sont des composants distribués qui interagissent via Amazon SWF à l'aide de requêtes
HTTP. Amazon SWF gère l'interaction en tenant à jour des listes de tâches de flux de travail et
d'activités, qu'il distribue aux composants respectifs. Cette section décrit le fonctionnement du
framework HelloWorldWorkflow.

HelloWorldWorkflow est implémenté à l'aide de l'API AWS Flow Framework for Java, qui gère
les détails parfois complexes liés à l'interaction avec Amazon SWF en arrière-plan et simplifie
considérablement le processus de développement. Vous pouvez utiliser le même projet que celui
pour lequel vous l'avez fait HelloWorld, qui est déjà configuré AWS Flow Framework pour les
applications Java. Toutefois, pour exécuter l'application, vous devez configurer un compte Amazon
SWF, comme suit :

HelloWorldWorkflow Demande Version de l'API 2021-04-28 9

AWS Flow Framework pour Java Guide du développeur

• Ouvrez un AWS compte, si vous n'en avez pas déjà un, sur Amazon Web Services.

• Attribuez l'ID d'accès et l'ID secret de votre compte aux variables d' AWS_SECRET_KEY
environnement AWS_ACCESS_KEY_ID et, respectivement. Il est conseillé de ne pas afficher
les valeurs de clé littérale dans votre code. Le stockage de ces clés dans les variables
d'environnement vous permet de respecter cette pratique.

• Ouvrez un compte Amazon SWF sur Amazon Simple Workflow Service.

• Connectez-vous au service Amazon SWF AWS Management Console et sélectionnez-le.

• Choisissez Gérer les domaines dans le coin supérieur droit et enregistrez un nouveau domaine
Amazon SWF. Un domaine est un conteneur logique pour vos ressources d'application,
comme les types de flux de travail et d'activité, et les exécutions de flux de travail. Vous pouvez
utiliser n'importe quel nom de domaine pratique, mais les procédures pas à pas utilisent
« »helloWorldWalkthrough.

Pour implémenter le HelloWorldWorkflow, créez une copie de HelloWorld. HelloWorld placez le
package dans le répertoire de votre projet et nommez-le HelloWorld. HelloWorldWorkflow. Les
sections suivantes décrivent comment modifier le HelloWorld code d'origine afin d'utiliser le AWS
Flow Framework pour Java et de l'exécuter en tant qu'application de flux de travail Amazon SWF.

HelloWorldWorkflow Travailleur des activités

HelloWorld a mis en œuvre ses activités de travailleur en tant que classe unique. Un outil AWS Flow
Framework de travail pour les activités Java comporte trois composants de base :

• Les méthodes d'activité, qui exécutent les tâches réelles, sont définies dans une interface et
implémentées dans une classe associée.

• Une ActivityWorkerclasse gère l'interaction entre les méthodes d'activité et Amazon SWF.

• Une application hôte d'activités enregistre et démarre l'exécuteur d'activités, et gère les nettoyages.

Cette section présente les méthodes d'activité ; les deux autres classes seront présentées
ultérieurement.

HelloWorldWorkflow définit l'interface des activités dansGreeterActivities, comme suit :

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

HelloWorldWorkflow Travailleur des activités Version de l'API 2021-04-28 10

https://aws.amazon.com/
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html

AWS Flow Framework pour Java Guide du développeur

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
@Activities(version="1.0")

public interface GreeterActivities {
 public String getName();
 public String getGreeting(String name);
 public void say(String what);
}

Cette interface n'était pas strictement nécessaire pour HelloWorld, mais elle l'est AWS Flow
Framework pour une application Java. Notez que la définition de l'interface elle-même n'a pas
changé. Cependant, vous devez en appliquer deux AWS Flow Framework pour les annotations
Java @ActivityRegistrationOptions et @Activités pour la définition de l'interface. Les annotations
fournissent des informations de configuration et indiquent au processeur d'annotations AWS
Flow Framework pour Java d'utiliser la définition de l'interface pour générer une classe de clients
d'activités, dont il sera question plus loin.

@ActivityRegistrationOptionspossède plusieurs valeurs nommées qui sont utilisées pour
configurer le comportement des activités. HelloWorldWorkflow spécifie deux délais d'expiration :

• defaultTaskScheduleToStartTimeoutSeconds indique combien de temps les tâches
peuvent rester dans la liste des tâches d'activités ; ce délai est défini sur 300 secondes (5 minutes).

• defaultTaskStartToCloseTimeoutSeconds indique le temps maximal dont une activité peut
disposer pour exécuter la tâche ; ce délai est défini sur 10 secondes.

Ces délais d'attente permettent de s'assurer que l'activité exécute sa tâche dans un délai
raisonnable. Si l'un de ces délais est dépassé, la structure génère une erreur et l'objet exécuteur de
flux de travail doit décider de la façon dont le problème sera résolu. Pour obtenir des informations sur
la façon de gérer ces erreurs, consultez Gestion des erreurs.

@Activities comporte plusieurs valeurs, mais généralement cet élément définit
simplement le numéro de version des activités, ce qui vous permet de conserver une trace
des différentes générations d'implémentations d'activité. Si vous modifiez une interface
d'activité après l'avoir enregistrée auprès d'Amazon SWF, notamment en modifiant les
@ActivityRegistrationOptions valeurs, vous devez utiliser un nouveau numéro de version.

HelloWorldWorkflow implémente les méthodes GreeterActivitiesImpl d'activité comme suit :

HelloWorldWorkflow Travailleur des activités Version de l'API 2021-04-28 11

AWS Flow Framework pour Java Guide du développeur

public class GreeterActivitiesImpl implements GreeterActivities {
 @Override
 public String getName() {
 return "World";
 }
 @Override
 public String getGreeting(String name) {
 return "Hello " + name;
 }
 @Override
 public void say(String what) {
 System.out.println(what);
 }
}

Notez que le code est identique à l' HelloWorld implémentation. À la base, une AWS Flow Framework
activité n'est qu'une méthode qui exécute du code et renvoie peut-être un résultat. La différence entre
une application standard et une application de flux de travail Amazon SWF réside dans la manière
dont le flux de travail exécute les activités, dans quel endroit les activités s'exécutent et dans la
manière dont les résultats sont renvoyés au gestionnaire du flux de travail.

HelloWorldWorkflow Travailleur du workflow

Un gestionnaire de flux de travail Amazon SWF comporte trois composants de base.

• Une implémentation de flux de travail, qui est une classe exécutant des tâches liés aux flux de
travail.

• Une classe client d'activités, qui est à la base un proxy destiné à la classe d'activités et qui est
utilisé par une implémentation de flux de travail pour exécuter les méthodes d'activité de façon
asynchrone.

• Une WorkflowWorkerclasse qui gère l'interaction entre le flux de travail et Amazon SWF.

Cette section présente l'implémentation de flux de travail et le client d'activités ; la classe
WorkflowWorker sera présentée ultérieurement.

HelloWorldWorkflow définit l'interface du flux GreeterWorkflow de travail comme suit :

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

HelloWorldWorkflow Travailleur du workflow Version de l'API 2021-04-28 12

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework pour Java Guide du développeur

import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {
 @Execute(version = "1.0")
 public void greet();
}

Cette interface n'est pas non plus strictement nécessaire HelloWorld mais essentielle AWS Flow
Framework pour une application Java. Vous devez en appliquer deux AWS Flow Framework
pour les annotations Java @Flux de travail et @WorkflowRegistrationOptions pour la définition
de l'interface du flux de travail. Les annotations fournissent des informations de configuration et
indiquent également au processeur d'annotations AWS Flow Framework pour Java de générer une
classe client de flux de travail basée sur l'interface, comme indiqué plus loin.

@Workflowpossède un paramètre facultatif, DataConverter, qui est souvent utilisé avec sa valeur
par défaut, qui indique qu' NullDataConverteril doit être utilisé. JsonDataConverter

@WorkflowRegistrationOptions comporte aussi un certain nombre de paramètres facultatifs
qui peuvent être utilisés pour configurer l'objet exécuteur de flux de travail. Ici, nous avons défini la
durée pendant defaultExecutionStartToCloseTimeoutSeconds laquelle le flux de travail
peut s'exécuter à 3 600 secondes (1 heure).

La définition de GreeterWorkflow l'interface diffère HelloWorld de l'@Executeannotation sur un
point important. Les interfaces de flux de travail définissent les méthodes pouvant être appelées
par les applications telles que le démarreur de flux de travail, et sont limitées à une poignée de
méthodes , chacune avec un rôle particulier. Le framework ne spécifie pas de nom ou de liste de
paramètres pour les méthodes d'interface de flux de travail ; vous utilisez une liste de noms et de
paramètres adaptée à votre flux de travail et vous appliquez une annotation AWS Flow Framework
pour Java pour identifier le rôle de la méthode.

@Execute a deux objectifs :

• Il identifie greet comme le point d'entrée du flux de travail, c'est-à-dire la méthode que le
démarreur de flux de travail appelle pour démarrer le flux de travail. En général, un point d'entrée
peut être associé à un ou plusieurs paramètres, ce qui permet au démarreur d'initialiser le flux de
travail, mais cet exemple ne requiert pas d'initialisation.

HelloWorldWorkflow Travailleur du workflow Version de l'API 2021-04-28 13

AWS Flow Framework pour Java Guide du développeur

• Il définit le numéro de version du flux de travail, ce qui vous permet de conserver une trace des
différentes générations d'implémentations de flux de travail. Pour modifier une interface de flux de
travail après l'avoir enregistrée auprès d'Amazon SWF, notamment pour modifier les valeurs de
délai d'expiration, vous devez utiliser un nouveau numéro de version.

Pour obtenir des informations sur les autres méthodes pouvant être incluses dans une interface de
flux de travail, consultez Contrats de flux de travail et d'activité.

HelloWorldWorkflow implémente le flux GreeterWorkflowImpl de travail comme suit :

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = operations.getGreeting(name);
 operations.say(greeting);
 }
}

Le code est similaire HelloWorld, mais avec deux différences importantes.

• GreeterWorkflowImpl crée une instance de GreeterActivitiesClientImpl, le client
d'activité, au lieu de GreeterActivitiesImpl, et exécute les activités en appelant des
méthodes sur l'objet client.

• Les activités de nom et de salutation renvoient des objets Promise<String> au lieu d'objets
String.

HelloWorld est une application Java standard qui s'exécute localement en tant que processus
unique. Elle GreeterWorkflowImpl peut donc implémenter la topologie du flux de travail en
créant simplement une instance deGreeterActivitiesImpl, en appelant les méthodes dans
l'ordre et en transmettant les valeurs de retour d'une activité à l'autre. Avec un flux de travail
Amazon SWF, la tâche d'une activité est toujours exécutée par une méthode d'activité provenant
de. GreeterActivitiesImpl Toutefois, la méthode ne s'exécute pas forcément dans le même
processus que le flux de travail (elle peut même ne pas s'exécuter sur le même système) et le flux

HelloWorldWorkflow Travailleur du workflow Version de l'API 2021-04-28 14

AWS Flow Framework pour Java Guide du développeur

de travail a besoin d'exécuter l'activité de façon asynchrone. Ces conditions requises posent les
problèmes suivants :

• Comment exécuter une méthode d'activité qui peut être exécutée dans un processus différent,
voire même sur un système différent ?

• Comment exécuter une méthode d'activité de façon asynchrone ?

• Comment gérer les valeurs d'entrée et les valeurs de retour des activités ? Par exemple, si la
valeur renvoyée par l'activité A est une valeur d'entrée de l'activité B, vous devez vous assurer que
l'activité B ne s'exécute pas tant que l'activité A n'est pas terminée.

Vous pouvez implémenter diverses topologies de flux de travail via le flux de contrôle de l'application
en utilisant le contrôle de flux Java courant avec le client d'activités et l'élément Promise<T>.

Client d'activités

GreeterActivitiesClientImpl est à la base un proxy destiné à GreeterActivitiesImpl
qui permet à une implémentation de flux de travail d'exécuter les méthodes
GreeterActivitiesImpl de façon asynchrone.

Les classes GreeterActivitiesClient et GreeterActivitiesClientImpl sont générées
automatiquement à partir des informations fournies dans les annotations appliquées à votre classe
GreeterActivities. Vous n'avez pas besoin de les implémenter vous-même.

Note

Eclipse génère ces classes lorsque vous sauvegardez votre projet. Vous pouvez afficher le
code généré dans le sous-répertoire .apt_generated de votre répertoire de projet.
Afin d'éviter les erreurs de compilation dans votre classe GreeterWorkflowImpl, il
est conseillé de déplacer le répertoire .apt_generated vers le haut de l'onglet Order
and Export (Ordonner et exporter) dans la boîte de dialogue Java Build Path (Chemin de
génération Java).

Un objet exécuteur de flux de travail exécute une activité en appelant la méthode de client
correspondante. Cette méthode est asynchrone et renvoie immédiatement un objet Promise<T>,
où T représente le type de retour de l'activité. L'objet Promise<T> renvoyé est à la base un espace
réservé pour la valeur finalement renvoyée par la méthode d'activité.

HelloWorldWorkflow Travailleur du workflow Version de l'API 2021-04-28 15

AWS Flow Framework pour Java Guide du développeur

• Lorsque la méthode du client d'activités renvoie des données, l'objet Promise<T> est initialement
à l'état non prêt, ce qui indique que l'objet ne représente pas pour l'instant un valeur de retour
valide.

• Lorsque la méthode d'activité correspondante a terminé et renvoyé sa tâche, l'infrastructure affecte
la valeur de retour à l'objet Promise<T> et le place dans l'état prêt.

Promets- <T> Type

Le premier objectif des objets Promise<T> est de gérer le flux de données entre les composants
asynchrones et le contrôle lorsqu'ils s'exécutent. Il évitent à votre application de devoir gérer de
façon explicite la synchronisation ou de dépendre de mécanismes tels que les temporisateurs
pour s'assurer que les composants asynchrones ne s'exécutent pas prématurément. Lorsque
vous appelez une méthode de client d'activités, elle renvoie immédiatement des données mais
l'infrastructure diffère l'exécution de la méthode d'activité correspondante jusqu'à ce qu'un objet
d'entrée Promise<T> soit prêt et représente des données valides.

À partir de la perspective GreeterWorkflowImpl, les trois méthodes de client d'activités renvoient
des données immédiatement. À partir de la perspective GreeterActivitiesImpl, l'infrastructure
n'appelle pas getGreeting tan que name n'a pas terminé son exécution et n'appelle pas say tant
que getGreeting n'a pas non plus terminé son exécution.

L'utilisation de Promise<T> pour transmettre des données d'une activité à la suivante permet
à HelloWorldWorkflow de s'assurer que les méthodes d'activité ne tentent pas d'utiliser des
données non valides, mais aussi de contrôler le moment auquel les activités s'exécutent et,
implicitement, de définir la topologie du flux de travail. La transmission de la valeur de retour
Promise<T> de chaque activité à l'activité suivante nécessite que l'activité suivante s'exécute
séquentiellement, en définissant la topologie linéaire présentée préalablement. Avec AWS Flow
Framework for Java, vous n'avez pas besoin d'utiliser de code de modélisation spécial pour
définir des topologies, même complexes, il suffit d'utiliser un contrôle de flux Java standard
etPromise<T>. Pour obtenir un exemple d'implémentation d'une topologie parallèle simple,
consultez HelloWorldWorkflowParallelTravailleur des activités.

Note

Lorsqu'une méthode d'activité telle que say ne renvoie pas de valeur, la méthode du
client correspondante renvoie un objet Promise<Void>. Cet objet ne représente pas des
données, mais il est initialement à l'état non prêt et il devient prêt lorsque l'exécution d'une

HelloWorldWorkflow Travailleur du workflow Version de l'API 2021-04-28 16

AWS Flow Framework pour Java Guide du développeur

activité se termine. Vous pouvez donc transmettre un objet Promise<Void> aux autres
méthodes de client d'activités afin de vous assurer qu'elles diffèrent l'exécution jusqu'à ce que
l'activité initiale soit terminée.

Promise<T> permet à une implémentation de flux de travail d'utiliser les méthodes de client
d'activités et leurs valeurs de retour de la même manière que les méthodes synchrones. Toutefois,
vous devez être prudent lors de l'accès à la valeur d'un objet Promise<T>. Contrairement au
type Java Future<T>, l'infrastructure gère la synchronisation pour Promise<T>, pas l'application.
Si vous appelez Promise<T>.get et que l'objet n'est pas prêt, get émet une exception. Notez
que HelloWorldWorkflow n'accède jamais directement à un objet Promise<T> ; il transmet
simplement les objets d'une activité à la suivante. Lorsqu'un objet devient prêt, l'infrastructure extrait
la valeur et la transmet à la méthode d'activité sous la forme d'un type standard.

Les objets Promise<T> doivent être accessibles uniquement par le code asynchrone, où
l'infrastructure garantit que l'objet est prêt et représente une valeur valide. HelloWorldWorkflow
traite ce problème en transmettant les objets Promise<T> uniquement aux activités des méthodes
client. Vous pouvez accéder à la valeur d'un objet Promise<T> dans l'implémentation du flux de
travail en transmettant l'objet à une méthode de flux de travail asynchrone, qui se comporte de façon
similaire à une activité. Pour obtenir un exemple, consultez HelloWorldWorkflowAsyncDemande.

HelloWorldWorkflow Mise en œuvre des flux de travail et activités

Les implémentations du flux de travail et des activités ont des classes de travail associées,
ActivityWorkeret WorkflowWorker. Ils gèrent la communication entre Amazon SWF et les activités et
implémentations de flux de travail en interrogeant la liste de tâches Amazon SWF appropriée pour les
tâches, en exécutant la méthode appropriée pour chaque tâche et en gérant le flux de données. Pour
plus d’informations, consultez AWS Flow Framework Concepts de base : structure de l'application.

Pour associer les implémentations de flux de travail et d'activités aux objets exécuteurs
correspondants, vous implémentez une ou plusieurs applications de travail qui effectuent les tâches
suivantes :

• Enregistrez des flux de travail ou des activités avec Amazon SWF.

• Création d'objets exécuteur et association de ces derniers avec les implémentations de travail
d'activité ou de flux de travail

• Demandez aux objets de travail de commencer à communiquer avec Amazon SWF.

HelloWorldWorkflow Mise en œuvre des flux de travail et activités Version de l'API 2021-04-28 17

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework pour Java Guide du développeur

Si vous souhaitez exécuter le flux de travail et les activités sous forme de processus distincts, vous
devez implémenter des hôtes d'exécuteur de flux de travail et d'activités distincts. Pour obtenir
un exemple, consultez HelloWorldWorkflowDistributed Demande. Pour des raisons de simplicité,
HelloWorldWorkflow implémente un hôte de travail unique qui exécute les activités et les travailleurs
du flux de travail dans le même processus, comme suit :

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

GreeterWorkern'a pas d' HelloWorld équivalent, vous devez donc ajouter une classe Java
nommée GreeterWorker au projet et copier l'exemple de code dans ce fichier.

HelloWorldWorkflow Mise en œuvre des flux de travail et activités Version de l'API 2021-04-28 18

AWS Flow Framework pour Java Guide du développeur

La première étape consiste à créer et à configurer un AmazonSimpleWorkflowClientobjet qui invoque
les méthodes de service Amazon SWF sous-jacentes. Pour ce faire, GreeterWorker :

1. Crée un ClientConfigurationobjet et spécifie un délai d'expiration du socket de 70 secondes. Cette
valeur définit combien de temps le système attend que les données soient transférées via une
connexion ouverte établie avant de fermer le socket.

2. Crée un AWSCredentials objet Basic pour identifier le AWS compte et transmet les clés du compte
au constructeur. Pour plus de commodité et afin d'éviter de les afficher en texte brut dans le code,
les clés sont stockées sous forme de variables d'environnement.

3. Crée un AmazonSimpleWorkflowClientobjet pour représenter le flux de travail et transmet les
ClientConfiguration objets BasicAWSCredentials et au constructeur.

4. Définit l'URL du point de terminaison de service de l'objet client. Amazon SWF est actuellement
disponible dans toutes les AWS régions.

Pour plus de commodité, GreeterWorker définit deux constantes de chaîne :

• domainest le nom de domaine Amazon SWF du flux de travail, que vous avez créé lors de la
configuration de votre compte Amazon SWF. HelloWorldWorkflowsuppose que vous exécutez
le flux de travail dans le domaine helloWorldWalkthrough « ».

• taskListToPollest le nom des listes de tâches qu'Amazon SWF utilise pour gérer la
communication entre les travailleurs du flux de travail et des activités. Vous pouvez attribuer au
nom n'importe quelle chaîne appropriée. HelloWorldWorkflow utilise « HelloWorldList » pour les
listes de tâches liées aux flux de travail et aux activités. En arrière-plan, les noms se terminent par
des espaces de noms différents ; les listes de tâches sont donc distinctes.

GreeterWorkerutilise les constantes de chaîne et l'AmazonSimpleWorkflowClientobjet pour créer
des objets de travail, qui gèrent l'interaction entre les activités et les implémentations de travail et
Amazon SWF. Les objets exécuteur gèrent en particulier la tâche de recherche de tâches dans la
liste des tâches appropriée.

GreeterWorker crée un objet ActivityWorker et le configure pour gérer
GreeterActivitiesImpl en ajoutant une nouvelle instance de classe. GreeterWorker appelle
ensuite la méthode start de l'objet ActivityWorker, qui indique à l'objet de commencer à
interroger la liste des tâches des activités spécifiées.

GreeterWorker crée un objet WorkflowWorker et le configure pour gérer
GreeterWorkflowImpl en ajoutant le nom de fichier de classe GreeterWorkflowImpl.class.

HelloWorldWorkflow Mise en œuvre des flux de travail et activités Version de l'API 2021-04-28 19

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/BasicAWSCredentials.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework pour Java Guide du développeur

IL appelle ensuite dans l'objet WorkflowWorker la méthode start qui indique à l'objet qu'il doit
lancer la recherche des tâches dans la liste de tâches de flux de travail spécifiée.

Vous pouvez exécuter GreeterWorker avec succès à partir de ce moment. Il enregistre le flux de
travail et les activités dans Amazon SWF et lance les objets de travail à interroger leurs listes de
tâches respectives. Pour vérifier cela, exécutez GreeterWorker et accédez à la console Amazon
SWF, puis sélectionnez un helloWorldWalkthrough domaine dans la liste des domaines. Si
vous choisissez Workflow Types (Types de flux de travail) dans le volet Navigation, vous devez voir
GreeterWorkflow.greet:

Si vous choisissez Activity Types (Types d'activités), les méthodes GreeterActivities
s'affichent :

HelloWorldWorkflow Mise en œuvre des flux de travail et activités Version de l'API 2021-04-28 20

AWS Flow Framework pour Java Guide du développeur

Toutefois, si vous choisissez Workflow Executions (Exécutions de flux de travail), vous ne verrez
aucune exécution active. Bien que les exécuteurs d'activités et de flux de travail soient en train de
rechercher les tâches, nous n'avons pas encore démarré une exécution du flux de travail.

HelloWorldWorkflow Démarreur

La dernière pièce du puzzle consiste à implémenter le démarreur de flux de travail, qui est une
application lançant l'exécution du flux de travail. L'état d'exécution est stocké par Amazon SWF, afin
que vous puissiez consulter son historique et son état d'exécution. HelloWorldWorkflow implémente
un démarreur de flux de travail en modifiant la GreeterMain classe, comme suit :

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;

HelloWorldWorkflow Démarreur Version de l'API 2021-04-28 21

AWS Flow Framework pour Java Guide du développeur

public class GreeterMain {

 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";

 GreeterWorkflowClientExternalFactory factory = new
 GreeterWorkflowClientExternalFactoryImpl(service, domain);
 GreeterWorkflowClientExternal greeter = factory.getClient("someID");
 greeter.greet();
 }
}

GreeterMain crée un objet AmazonSimpleWorkflowClient en utilisant le même code
que GreeterWorker. Il crée ensuite un objet GreeterWorkflowClientExternal qui agit
comme un proxy pour le flux de travail, de la même manière que le client d'activités créé dans
GreeterWorkflowClientImpl agit comme un proxy pour les méthodes d'activité. Au lieu de créer
un objet de client de flux de travail en utilisant new, vous devez :

1. Créez un objet d'usine client externe et transmettez l'AmazonSimpleWorkflowClientobjet
et le nom de domaine Amazon SWF au constructeur. L'objet client factory est créé par le
processeur d'annotation du framework, qui crée le nom de l'objet en ajoutant simplement
« ClientExternalFactoryImpl » au nom de l'interface du flux de travail.

2. Créez un objet client externe en appelant la getClient méthode de l'objet d'usine, qui crée le
nom de l'objet en ajoutant « ClientExternal » au nom de l'interface du flux de travail. Vous pouvez
éventuellement transmettre getClient une chaîne qu'Amazon SWF utilisera pour identifier cette
instance du flux de travail. Sinon, Amazon SWF représente une instance de flux de travail à l'aide
d'un GUID généré.

HelloWorldWorkflow Démarreur Version de l'API 2021-04-28 22

AWS Flow Framework pour Java Guide du développeur

Le client renvoyé par l'usine créera uniquement des flux de travail nommés avec la chaîne transmise
à la méthode GetClient (le client renvoyé par l'usine possède déjà un état dans Amazon SWF). Pour
exécuter un flux de travail avec un ID différent, vous devez revenir à la fabrique et créer un nouveau
client avec l'ID différent spécifié.

Le client du flux de travail affiche une méthode greet qui est appelée par GreeterMain pour
commencer l'exécution du flux de travail, car greet() est la méthode qui a été spécifiée avec
l'annotation @Execute.

Note

Le processeur d'annotations crée aussi un objet de fabrique de clients interne qui est utilisé
pour créer des flux de travail enfants. Pour en savoir plus, consultez Exécutions de flux de
travail enfant.

Arrêtez GreeterWorker pour le moment s'il est toujours en cours d'exécution, et exécutez
GreeterMain. Vous devriez maintenant voir SomeID dans la liste des exécutions de flux de travail
actives de la console Amazon SWF :.

Si vous choisissez someID et que vous choisissez l'onglet Events (Événements), les événements
suivants s'affichent :

HelloWorldWorkflow Démarreur Version de l'API 2021-04-28 23

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowClientFactoryExternal.html#getClient(java.lang.String)

AWS Flow Framework pour Java Guide du développeur

Note

Si vous avez déjà démarré GreeterWorker et qu'il est toujours en cours d'exécution, vous
verrez une liste d'événements plus longue pour des raisons que nous évoquerons plus loin.
Arrêtez GreeterWorker et essayez d'exécuter à nouveau GreaterMain.

L'onglet Events (Événements) affiche seulement deux événements :

• WorkflowExecutionStarted indique que le flux de travail a commencé son exécution.

• DecisionTaskScheduledindique qu'Amazon SWF a mis en file d'attente la première tâche de
décision.

La raison pour laquelle le flux de travail est bloqué sur la première tâche de décision est que le flux
de travail est réparti entre deux applications, GreeterMain et GreeterWorker. GreeterMain
a démarré l'exécution du flux de travail, mais GreeterWorker n'est pas en cours d'exécution, de
telle sorte que les applications de travail n'interrogent pas les listes et n'exécutent pas les tâches.
Vous pouvez exécuter l'une ou l'autre des applications de façon indépendante, mais vous avez
besoin des deux pour que l'exécution du flux de travail aille au-delà de la première tâche de décision.
Si vous exécutez à présent GreeterWorker, les objets exécuteur de flux de travail et d'activité
vont commencer à interroger les listes et les diverses tâches seront rapidement exécutées. Si vous
consultez à présent l'onglet Events, le premier lot d'événements s'affiche.

HelloWorldWorkflow Démarreur Version de l'API 2021-04-28 24

AWS Flow Framework pour Java Guide du développeur

Vous pouvez choisir des événements individuels pour obtenir plus d'informations. Lorsque vous
aurez fini de chercher, le flux de travail devrait avoir imprimé « Hello World ! » sur votre console.

Une fois que le flux de travail est terminé, il ne s'affiche plus dans la liste des exécutions actives.
Toutefois, si vous souhaitez le passer en revue, choisissez le bouton de statut d'exécution Closed
(Fermé), puis choisissez List Executions (Liste des exécutions). Vous affichez ainsi la totalité des
instances de flux de travail terminées dans le domaine spécifié (helloWorldWalkthrough) et
qui n'ont pas dépassé leur durée de conservation maximale (durée que vous avez définie lors de la
création du domaine).

HelloWorldWorkflow Démarreur Version de l'API 2021-04-28 25

AWS Flow Framework pour Java Guide du développeur

Notez que chaque instance de flux de travail possède une valeur Run ID (ID d'exécution) unique.
Vous pouvez utiliser le même identifiant de flux de travail pour différentes instances de flux de travail,
mais uniquement pour une exécution active à la fois.

HelloWorldWorkflowAsyncDemande

Il est parfois préférable de faire exécuter certaines tâches en local par un flux de travail au lieu
d'utiliser une activité. Cependant, les tâches de flux de travail impliquent souvent le traitement des
valeurs représentées par des objets Promise<T>. Si vous transmettez un objet Promise<T>
à une méthode de flux de travail synchrone, la méthode s'exécute immédiatement mais elle ne
peut pas accéder à la valeur de l'objet Promise<T> tant que l'objet n'est pas prêt. Vous pouvez
interroger l'objet Promise<T>.isReady jusqu'à ce qu'il renvoie true, mais cela s'avère inefficace
et la méthode peut se bloquer pendant longtemps. Une meilleure approche consiste à utiliser une
méthode asynchrone.

Une méthode asynchrone est implémentée de la même manière qu'une méthode standard, souvent
en tant que membre de la classe d'implémentation du flux de travail, et s'exécute dans le contexte de

HelloWorldWorkflowAsyncDemande Version de l'API 2021-04-28 26

AWS Flow Framework pour Java Guide du développeur

l'implémentation du flux de travail. Vous la désignez en tant que méthode asynchrone en appliquant
une annotation @Asynchronous qui demande à l'infrastructure de la traiter comme une activité.

• Quand une implémentation de flux de travail appelle une méthode asynchrone, elle renvoie
immédiatement un résultat. Les méthodes asynchrones renvoient généralement un objet
Promise<T> qui devient prêt quand la méthode se termine.

• Si vous transmettez à une méthode asynchrone un ou plusieurs objets Promise<T>, cela diffère
l'exécution jusqu'à ce que tous les objets d'entrée soient prêts. Une méthode asynchrone peut
donc accéder à ses valeurs Promise<T> d'entrée sans risquer une exception.

Note

En raison de la façon dont AWS Flow Framework for Java exécute le flux de travail, les
méthodes asynchrones s'exécutent généralement plusieurs fois. Vous ne devez donc les
utiliser que pour des tâches rapides et peu coûteuses. Il est conseillée d'utiliser des activités
pour effectuer des tâches de longue durée comme des calculs volumineux. Pour en savoir
plus, consultez AWS Flow Framework Concepts de base : exécution distribuée.

Cette rubrique est une présentation détaillée d' HelloWorldWorkflowAsyncune version modifiée
HelloWorldWorkflow qui remplace l'une des activités par une méthode asynchrone. Pour implémenter
l'application, créez une copie de HelloWorld. HelloWorldWorkflow placez le package dans le
répertoire de votre projet et nommez-le HelloWorld. HelloWorldWorkflowAsync.

Note

Cette rubrique s'appuie sur les concepts et les fichiers présentés dans les rubriques
HelloWorld Demande et HelloWorldWorkflow Demande. Familiarisez-vous avec les fichiers et
les concepts présentés dans ces rubriques avant de continuer.

Les sections suivantes décrivent comment modifier le HelloWorldWorkflow code d'origine pour utiliser
une méthode asynchrone.

HelloWorldWorkflowAsync Mise en œuvre des activités

HelloWorldWorkflowAsync implémente son interface de travail des activitésGreeterActivities,
comme suit :

HelloWorldWorkflowAsync Mise en œuvre des activités Version de l'API 2021-04-28 27

AWS Flow Framework pour Java Guide du développeur

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="2.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public void say(String what);
}

Cette interface est similaire à celle utilisée par HelloWorldWorkflow, avec les exceptions suivantes :

• Elle omet l'activité getGreeting ; cette tâche est maintenant traitée par une méthode
asynchrone.

• Le numéro de version est défini sur 2.0. Une fois que vous avez enregistré une interface d'activités
auprès d'Amazon SWF, vous ne pouvez pas la modifier à moins de changer le numéro de version.

Les implémentations de méthodes d'activité restantes sont identiques à HelloWorldWorkflow.
Supprimez juste getGreeting de GreeterActivitiesImpl.

HelloWorldWorkflowAsync Mise en œuvre du workflow

HelloWorldWorkflowAsync définit l'interface du flux de travail comme suit :

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

 @Execute(version = "2.0")
 public void greet();
}

HelloWorldWorkflowAsync Mise en œuvre du workflow Version de l'API 2021-04-28 28

AWS Flow Framework pour Java Guide du développeur

L'interface est identique à l' HelloWorldWorkflow exception d'un nouveau numéro de version. Comme
avec les activités, si vous souhaitez modifier un flux de travail enregistré, vous devez changer sa
version.

HelloWorldWorkflowAsync implémente le flux de travail comme suit :

import com.amazonaws.services.simpleworkflow.flow.annotations.Asynchronous;
import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 @Override
 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = getGreeting(name);
 operations.say(greeting);
 }

 @Asynchronous
 private Promise<String> getGreeting(Promise<String> name) {
 String returnString = "Hello " + name.get() + "!";
 return Promise.asPromise(returnString);
 }
}

HelloWorldWorkflowAsync remplace l'getGreetingactivité par une méthode getGreeting
asynchrone mais la greet méthode fonctionne à peu près de la même manière :

1. Elle exécute l'activité getName qui renvoie immédiatement un objet Promise<String>, name,
qui représente le nom.

2. Appelez la méthode asynchrone getGreeting et transmettez-lui l'objet name. getGreeting
renvoie immédiatement un objet Promise<String>, greeting, qui représente la salutation.

3. Elle exécute l'activité say et la transmet à l'objet greeting.

4. Lorsque getName se termine, name devient prêt et getGreeting utilise sa valeur pour construire
la salutation.

5. Lorsque getGreeting se termine, greeting devient prêt et say affiche la chaîne sur la console.

HelloWorldWorkflowAsync Mise en œuvre du workflow Version de l'API 2021-04-28 29

AWS Flow Framework pour Java Guide du développeur

La différence est que, au lieu d'appeler le client d'activités pour exécuter une activité getGreeting,
la salutation appelle la méthode getGreeting asynchrone. le résultat est le même, mais la méthode
getGreeting fonctionne quelque peu différemment de l'activité getGreeting.

• L'exécuteur de flux de travail utilise une sémantique d'appel de fonction standard pour exécuter
getGreeting. Toutefois, l'exécution asynchrone de l'activité est assurée par Amazon SWF.

• getGreeting s'exécute dans le processus d'implémentation de flux de travail.

• getGreeting renvoie un objet Promise<String> au lieu d'un objet String. Pour obtenir la
valeur de chaîne détenue par Promise, vous appelez sa méthode get(). Cependant, étant donné
que l'activité est exécutée de manière asynchrone, sa valeur de retour peut ne pas être prête
immédiatement ; cela get() déclenchera une exception jusqu'à ce que la valeur de retour de la
méthode asynchrone soit disponible.

Pour plus d'informations sur la façon dont Promise fonctionne, consultez AWS Flow Framework
Concepts de base : échange de données entre les activités et les flux de travail.

getGreeting crée une valeur de retour en transmettant la chaîne de salutation à la méthode
Promise.asPromise statique. Cette méthode crée un objet Promise<T> du type approprié, définit
la valeur et le met à l'état prêt.

HelloWorldWorkflowAsyncWorkflow et activités Host and Starter

HelloWorldWorkflowAsync implémente en GreeterWorker tant que classe
hôte pour les implémentations de flux de travail et d'activités. Il est identique à l'
HelloWorldWorkflowimplémentation à l'exception du taskListToPoll nom, qui est défini sur
« HelloWorldAsyncList ».

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

HelloWorldWorkflowAsyncWorkflow et activités Host and Starter Version de l'API 2021-04-28 30

AWS Flow Framework pour Java Guide du développeur

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";
 String taskListToPoll = "HelloWorldAsyncList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

HelloWorldWorkflowAsync implémente le démarreur du flux de travail dans GreeterMain ; il est
identique à l' HelloWorldWorkflow implémentation.

Pour exécuter le flux de travail, exécutez GreeterWorker etGreeterMain, comme avec
HelloWorldWorkflow.

HelloWorldWorkflowDistributed Demande

Avec HelloWorldWorkflow et HelloWorldWorkflowAsync, Amazon SWF assure l'interaction entre les
implémentations du flux de travail et des activités, mais celles-ci s'exécutent localement en tant que
processus unique. GreeterMainfait l'objet d'un processus distinct, mais il fonctionne toujours sur le
même système.

L'une des principales fonctionnalités d'Amazon SWF est qu'il prend en charge les applications
distribuées. Par exemple, vous pouvez exécuter le gestionnaire de flux de travail sur une EC2
instance Amazon, le démarreur de flux de travail sur un ordinateur de centre de données et les
activités sur un ordinateur de bureau client. Vous pouvez même exécuter différentes activités sur
différent systèmes.

HelloWorldWorkflowDistributed Demande Version de l'API 2021-04-28 31

AWS Flow Framework pour Java Guide du développeur

L' HelloWorldWorkflowDistributed application s'étend HelloWorldWorkflowAsync pour distribuer
l'application sur deux systèmes et trois processus.

• Le flux de travail et le démarreur de flux de travail s'exécutent en tant que processus distincts sur
un système.

• Les activités s'exécutent sur un système distinct.

Pour implémenter l'application, créez une copie de HelloWorld. HelloWorldWorkflowAsync placez le
package dans le répertoire de votre projet et nommez-le HelloWorld. HelloWorldWorkflowDistributed.
Les sections suivantes décrivent comment modifier le HelloWorldWorkflowAsync code d'origine pour
distribuer l'application sur deux systèmes et trois processus.

Vous n'avez pas besoin de modifier les implémentations de flux de travail ou d'activités pour les
exécuter sur des systèmes distincts, même pas les numéros de version. Vous n'avez pas non plus
besoin de modifier GreeterMain. Vous devez uniquement modifier l'hôte d'activités et de flux de
travail.

Avec HelloWorldWorkflowAsync, une seule application sert d'hôte du flux de travail et de l'activité.
Pour exécuter les implémentations de flux de travail et d'activité sur des systèmes distincts, vous
devez implémenter des applications distinctes. Supprimer GreeterWorker du projet et ajouter deux
nouveaux fichiers de classe, GreeterWorkflowWorker et GreeterActivitiesWorker.

HelloWorldWorkflowDistributed implémente ses activités hébergées dans GreeterActivitiesWorker,
comme suit :

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

public class GreeterActivitiesWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");

HelloWorldWorkflowDistributed Demande Version de l'API 2021-04-28 32

AWS Flow Framework pour Java Guide du développeur

 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();
 }
}

HelloWorldWorkflowDistributed implémente son hôte de flux de travail
dansGreeterWorkflowWorker, comme suit :

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorkflowWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

HelloWorldWorkflowDistributed Demande Version de l'API 2021-04-28 33

AWS Flow Framework pour Java Guide du développeur

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

Notez que GreeterActivitiesWorker est seulement GreeterWorker sans le code
WorkflowWorker et que GreeterWorkflowWorker est seulement GreeterWorker sans le code
ActivityWorker.

Pour exécuter le flux de travail :

1. Créez un fichier JAR exécutable avec GreeterActivitiesWorker comme point d'entrée.

2. Copiez le fichier JAR de l'étape 1 vers un autre système, qui peut exécuter tout système
d'exploitation prenant en charge Java.

3. Assurez-vous que les AWS informations d'identification permettant d'accéder au même domaine
Amazon SWF sont disponibles sur l'autre système.

4. Exécutez le fichier JAR.

5. Sur votre système de développement, utilisez Eclipse pour exécuter GreeterWorkflowWorker
et GreeterMain.

Hormis le fait que les activités s'exécutent sur un système différent de celui du gestionnaire du flux
de travail et du démarreur du flux de travail, le flux de travail fonctionne exactement de la même
manière que HelloWorldAsync. Cependant, parce que println call that imprime « Hello World ! » si
la console est dans l'sayactivité, la sortie apparaîtra sur le système qui exécute le gestionnaire des
activités.

HelloWorldWorkflowParallelDemande

Les versions précédentes de Hello World ! toutes utiliser une topologie de workflow linéaire. Amazon
SWF ne se limite toutefois pas aux topologies linéaires. L' HelloWorldWorkflowParallel application
est une version modifiée HelloWorldWorkflow qui utilise une topologie parallèle, comme le montre la
figure suivante.

HelloWorldWorkflowParallelDemande Version de l'API 2021-04-28 34

AWS Flow Framework pour Java Guide du développeur

Avec HelloWorldWorkflowParallel, getName et getGreeting run in parallel et chacun renvoie une
partie du message d'accueil. sayfusionne ensuite les deux chaînes dans un message d'accueil et
l'imprime sur la console.

Pour implémenter l'application, créez une copie de HelloWorld. HelloWorldWorkflow placez le
package dans le répertoire de votre projet et nommez-le HelloWorld. HelloWorldWorkflowParallel.
Les sections suivantes décrivent comment modifier le HelloWorldWorkflow code d'origine pour qu'il
soit exécuté getName et getGreeting en parallèle.

HelloWorldWorkflowParallelTravailleur des activités

L'interface HelloWorldWorkflowParallel des activités est implémentée dansGreeterActivities,
comme indiqué dans l'exemple suivant.

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="5.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public String getGreeting();
 public void say(String greeting, String name);
}

L'interface est similaire à HelloWorldWorkflow, avec les exceptions suivantes :

• getGreeting ne prend aucun paramètre en entrée, mais renvoie simplement une chaîne de
message d'accueil.

• say prend deux paramètres de type chaîne en entrée, le message d'accueil et le nom.

• L'interface possède un nouveau numéro de version qui est requis chaque fois que vous modifiez
une interface enregistrée.

HelloWorldWorkflowParallelTravailleur des activités Version de l'API 2021-04-28 35

AWS Flow Framework pour Java Guide du développeur

HelloWorldWorkflowParallel met en œuvre les activités dans GreeterActivitiesImpl les
domaines suivants :

public class GreeterActivitiesImpl implements GreeterActivities {

 @Override
 public String getName() {
 return "World!";
 }

 @Override
 public String getGreeting() {
 return "Hello ";
 }

 @Override
 public void say(String greeting, String name) {
 System.out.println(greeting + name);
 }
}

getName et getGreeting renvoient maintenant la moitié de la chaîne de salutation. say concatène
les deux parties pour produire la phrase complète et l'affiche sur la console.

HelloWorldWorkflowParallelTravailleur du workflow

L'interface HelloWorldWorkflowParallel de flux de travail est GreeterWorkflow implémentée
comme suit :

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

 @Execute(version = "5.0")
 public void greet();
}

HelloWorldWorkflowParallelTravailleur du workflow Version de l'API 2021-04-28 36

AWS Flow Framework pour Java Guide du développeur

La classe est identique à la HelloWorldWorkflow version, sauf que le numéro de version a été modifié
pour correspondre au travailleur des activités.

Le flux de travail est implémenté dans GreeterWorkflowImpl, comme suit :

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = operations.getGreeting();
 operations.say(greeting, name);
 }
}

En un coup d'œil, cette implémentation ressemble beaucoup aux HelloWorldWorkflow trois activités
que les méthodes client exécutent en séquence. Pourtant, ce n'est pas le cas des activités.

• HelloWorldWorkflow transmis name àgetGreeting. Étant donné que name était un objet
Promise<T>, getGreeting a reporté l'exécution de l'activité jusqu'à ce que getName soit
terminé, ainsi les deux activités ont été exécutées séquentiellement.

• HelloWorldWorkflowParallel ne transmet aucune entrée getName ougetGreeting. Aucune des
méthodes ne reporte l'exécution et les méthodes d'activité associées s'exécutent immédiatement
en parallèle.

L'activité say prend greeting et name en tant que paramètres d'entrée. Puisqu'ils sont des objets
Promise<T>, say reporte l'exécution jusqu'à ce que les deux activités soient terminées, puis
construit et imprime le message d'accueil.

Notez qu' HelloWorldWorkflowParallel aucun code de modélisation spécial n'est utilisé pour définir la
topologie du flux de travail. Il le fait implicitement en utilisant le contrôle de flux Java standard et en
tirant parti des propriétés des Promise<T> objets. AWS Flow Framework pour Java, les applications
peuvent implémenter des topologies même complexes simplement en utilisant Promise<T> des
objets en conjonction avec des structures de flux de contrôle Java classiques.

HelloWorldWorkflowParallelTravailleur du workflow Version de l'API 2021-04-28 37

AWS Flow Framework pour Java Guide du développeur

HelloWorldWorkflowParallel Workflow et activités Host and Starter

HelloWorldWorkflowParallel implémente en GreeterWorker tant que classe hôte pour
les implémentations de flux de travail et d'activités. Il est identique à l' HelloWorldWorkflow
implémentation à l'exception du taskListToPoll nom, qui est défini sur « HelloWorldParallelList ».

HelloWorldWorkflowParallelimplémente le démarreur du flux de travail dansGreeterMain, et
il est identique à l' HelloWorldWorkflow implémentation.

Pour exécuter le flux de travail, lancez GreeterWorker et GreeterMain, de la même manière
qu'avec HelloWorldWorkflow.

HelloWorldWorkflowParallel Workflow et activités Host and Starter Version de l'API 2021-04-28 38

AWS Flow Framework pour Java Guide du développeur

Comprendre AWS Flow Framework Java

Le AWS Flow Framework for Java fonctionne avec Amazon SWF pour faciliter la création
d'applications évolutives et tolérantes aux pannes afin d'effectuer des tâches asynchrones qui
peuvent être longues, distantes, ou les deux. Le « Hello World ! » les exemples présentés Qu'est-
ce que le AWS Flow Framework pour Java ? ont présenté les bases de l'utilisation du pour AWS
Flow Framework implémenter des applications de flux de travail de base. Cette section fournit
des informations conceptuelles sur le fonctionnement AWS Flow Framework des applications. La
première section résume la structure de base d'une AWS Flow Framework application, et les autres
sections fournissent des détails supplémentaires sur le fonctionnement AWS Flow Framework des
applications.

Rubriques

• AWS Flow Framework Concepts de base : structure de l'application

• AWS Flow Framework Concepts de base : exécution fiable

• AWS Flow Framework Concepts de base : exécution distribuée

• AWS Flow Framework Concepts de base : listes de tâches et exécution des tâches

• AWS Flow Framework Concepts de base : applications évolutives

• AWS Flow Framework Concepts de base : échange de données entre les activités et les flux de
travail

• AWS Flow Framework Concepts de base : échange de données entre applications et exécutions
de flux de travail

• Types de délai d'expiration Amazon SWF

AWS Flow Framework Concepts de base : structure de l'application

Conceptuellement, une AWS Flow Framework application se compose de trois composants de base :
les démarreurs de flux de travail, les travailleurs de flux de travail et les travailleurs d'activité. Une
ou plusieurs applications hôtes sont chargées d'enregistrer les travailleurs (flux de travail et activité)
auprès d'Amazon SWF, de démarrer les travailleurs et de gérer le nettoyage. Les exécuteurs gèrent
les mécanismes d'exécution du flux de travail et peuvent être implémentés sur plusieurs hôtes.

Ce schéma représente une AWS Flow Framework application de base :

Structure d'application Version de l'API 2021-04-28 39

AWS Flow Framework pour Java Guide du développeur

Note

L'implémentation de ces composants dans trois applications distinctes est pratique d'un
point de vue conceptuel, mais vous pouvez créer des applications pour implémenter cette
fonctionnalité de différentes façons. Par exemple, vous pouvez utiliser une application hôte
unique pour les exécuteurs d'activité et de flux de travail, ou utiliser des hôtes d'activité et de
flux de travail distincts. Vous pouvez également avoir plusieurs exécuteurs d'activité, traitant
chacun un ensemble d'activités différent sur des hôtes distincts, etc.

Les trois AWS Flow Framework composants interagissent indirectement en envoyant des requêtes
HTTP à Amazon SWF, qui gère les demandes. Amazon SWF effectue les opérations suivantes :

• Il gère une ou plusieurs listes de tâches de décision, qui déterminent l'étape suivante à exécuter
par un exécuteur de flux de travail.

Structure d'application Version de l'API 2021-04-28 40

AWS Flow Framework pour Java Guide du développeur

• Il gère une ou plusieurs listes de tâches d'activité, qui déterminent les tâches qui seront exécutées
par un exécuteur d'activité.

• Conserve un step-by-step historique détaillé de l'exécution du flux de travail.

Avec le AWS Flow Framework, le code de votre application n'a pas besoin de traiter directement
de nombreux détails illustrés dans la figure, tels que l'envoi de requêtes HTTP à Amazon SWF. Il
vous suffit d'appeler AWS Flow Framework des méthodes et le framework gère les détails dans les
coulisses.

Rôle de l'exécuteur d'activité

L'exécuteur d'activité exécute les différentes tâches que le flux de travail doit réaliser. Il comprend les
éléments suivants :

• L'implémentation des activités, qui comprend un ensemble de méthodes d'activité exécutant des
tâches particulières pour le flux de travail.

• Un ActivityWorkerobjet qui utilise de longues requêtes de sondage HTTP pour interroger Amazon
SWF afin de déterminer les tâches d'activité à effectuer. Lorsqu'une tâche est nécessaire, Amazon
SWF répond à la demande en envoyant les informations nécessaires à l'exécution de la tâche.
L'ActivityWorkerobjet appelle ensuite la méthode d'activité appropriée et renvoie les résultats à
Amazon SWF.

Rôle de l'exécuteur de flux de travail

L'exécuteur de flux de travail orchestre l'exécution des différentes activités, gère le flux de données et
traite les activités ayant échoué. Il comprend les éléments suivants :

• L'implémentation de flux de travail, qui comprend la logique d'orchestration des activités, gère les
activités ayant échoué, etc.

• Un client d'activités, qui tient lieu de proxy pour l'exécuteur d'activité et permet au travail de flux de
travail de planifier des activités à exécuter de façon asynchrone.

• Un WorkflowWorkerobjet qui utilise de longues requêtes HTTP pour interroger Amazon SWF dans
le cadre de tâches décisionnelles. Si des tâches figurent dans la liste des tâches du flux de travail,
Amazon SWF répond à la demande en renvoyant les informations nécessaires à l'exécution de
la tâche. Le framework exécute ensuite le flux de travail pour effectuer la tâche et renvoie les
résultats à Amazon SWF.

Rôle de l'exécuteur d'activité Version de l'API 2021-04-28 41

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework pour Java Guide du développeur

Rôle du démarreur de flux de travail

Le démarreur de flux de travail démarre une instance de flux de travail, également appelée exécution
de flux de travail, et peut interagir avec une instance lors de l'exécution pour transmettre des données
supplémentaires à l'exécuteur de flux de travail ou obtenir l'état actuel du flux de travail.

Le démarreur de flux de travail utilise un client de flux de travail pour lancer l'exécution de flux de
travail, interagit avec le flux de travail si nécessaire lors de l'exécution et gère le nettoyage. Le
démarreur du flux de travail peut être une application exécutée localement, une application Web,
AWS CLI ou même le. AWS Management Console

Comment Amazon SWF interagit avec votre application

Amazon SWF assure l'interaction entre les composants du flux de travail et conserve un historique
détaillé du flux de travail. Amazon SWF n'initie pas la communication avec les composants ; il
attend les requêtes HTTP provenant des composants et gère les demandes selon les besoins. Par
exemple :

• Si la demande provient d'un travailleur qui interroge les tâches disponibles, Amazon SWF
répond directement au travailleur si une tâche est disponible. Pour plus d'informations sur
le fonctionnement de l'interrogation, consultez Attente active des tâches dans le Manuel du
développeur Amazon Simple Workflow Service.

• Si la demande est une notification d'un travailleur d'activité indiquant qu'une tâche est terminée,
Amazon SWF enregistre les informations dans l'historique d'exécution et ajoute une tâche à la liste
des tâches de décision pour informer le travailleur du flux de travail que la tâche est terminée, lui
permettant ainsi de passer à l'étape suivante.

• Si la demande provient du travailleur du flux de travail pour exécuter une activité, Amazon SWF
enregistre les informations dans l'historique d'exécution et ajoute une tâche à la liste des tâches
des activités pour demander au travailleur d'exécuter la méthode d'activité appropriée.

Cette approche permet aux employés de fonctionner sur n'importe quel système connecté à Internet,
y compris les EC2 instances Amazon, les centres de données d'entreprise, les ordinateurs clients,
etc. Les travaux n'ont même pas besoin d'être exécutés sur le même système d'exploitation.
Comme les demandes HTTP sont initiées avec les exécuteurs, aucun port visible en externe n'est
nécessaire ; les exécuteurs peuvent s'exécuter derrière un pare-feu.

Rôle du démarreur de flux de travail Version de l'API 2021-04-28 42

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-comm-proto

AWS Flow Framework pour Java Guide du développeur

Pour en savoir plus

Pour une discussion plus approfondie du fonctionnement d'Amazon SWF, consultez le guide du
développeur d'Amazon Simple Workflow Service.

AWS Flow Framework Concepts de base : exécution fiable
Les applications distribuées asynchrones doivent résoudre des problèmes de fiabilité auxquels ne
sont pas confrontées les applications conventionnelles, notamment :

• Comment assurer une communication fiable entre des composants distribués asynchrones comme
des composants de longue durée sur des systèmes distants.

• Comment s'assurer qu'aucun résultat n'est perdu si un composant échoue ou est déconnecté, en
particulier pour les applications de longue durée.

• Comment gérer les composants distribués ayant échoué.

Les applications peuvent compter sur Amazon SWF AWS Flow Framework et Amazon pour gérer
ces problèmes. Nous verrons comment Amazon SWF fournit des mécanismes garantissant que vos
flux de travail fonctionnent de manière fiable et prévisible, même lorsqu'ils sont de longue durée et
dépendent de tâches asynchrones effectuées par calcul et avec interaction humaine.

Assurer une communication fiable

AWS Flow Framework fournit une communication fiable entre un travailleur du flux de travail et ses
employés des activités en utilisant Amazon SWF pour répartir les tâches entre les travailleurs des
activités distribuées et renvoyer les résultats au travailleur du flux de travail. Amazon SWF utilise les
méthodes suivantes pour garantir une communication fiable entre un collaborateur et ses activités :

• Amazon SWF stocke de manière durable les activités planifiées et les tâches de flux de travail et
garantit qu'elles seront exécutées au plus une fois.

• Amazon SWF garantit qu'une tâche d'activité s'achèvera correctement et renverra un résultat
valide ou qu'elle informera le travailleur du flux de travail que la tâche a échoué.

• Amazon SWF stocke de manière durable le résultat de chaque activité terminée ou, en cas d'échec
des activités, stocke les informations d'erreur pertinentes.

Il utilise AWS Flow Framework ensuite les résultats d'activité d'Amazon SWF pour déterminer
comment procéder à l'exécution du flux de travail.

Pour en savoir plus Version de l'API 2021-04-28 43

https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework pour Java Guide du développeur

S'assurer qu'aucun résultat n'est perdu

Gestion de l'historique du flux de travail

Une activité qui exécute des opérations d'exploration de données sur un pétaoctet de données peut
prendre des heures à se terminer et une activité qui exige qu'un être humain effectue une tâche
complexe peut même prendre des jours, voire des semaines à s'exécuter !

Pour s'adapter à de tels scénarios, les AWS Flow Framework flux de travail et les activités peuvent
prendre un temps arbitrairement long : jusqu'à une limite d'un an pour l'exécution d'un flux de travail.
Une exécution fiable des processus de longue durée exige un mécanisme pour stoker durablement
l'historique d'exécution du flux de travail de façon continue.

Il AWS Flow Framework gère cela en s'appuyant sur Amazon SWF, qui conserve un historique
d'exécution de chaque instance de flux de travail. L'historique du flux de travail fournit un
enregistrement complet et fiable de la progression du flux de travail, avec notamment toutes les
tâches de flux de travail et d'activité qui ont été planifiées et terminées, et les informations renvoyées
par les activités terminées ou ayant échoué.

AWS Flow Framework les applications n'ont généralement pas besoin d'interagir directement avec
l'historique du flux de travail, bien qu'elles puissent y accéder si nécessaire. Dans la plupart des cas,
les applications peuvent simplement laisser l'infrastructure interagir avec l'historique du flux de travail
en arrière-plan. Pour une discussion complète sur l'historique des flux de travail, consultez l'historique
des flux de travail dans le guide du développeur Amazon Simple Workflow Service.

Exécution sans état

L'historique d'exécution permet à des exécuteurs de flux de travail d'être sans état. Si vous disposez
de plusieurs instances d'un exécuteur de flux de travail ou d'activité, n'importe quel exécuteur peut
exécuter toute tâche. Le travailleur reçoit toutes les informations d'état dont il a besoin pour exécuter
la tâche depuis Amazon SWF.

Cette approche rend les flux de travail plus fiables. Par exemple, si un exécuteur de flux de travail
échoue, vous n'avez pas à redémarrer le flux de travail. Il vous suffit de redémarrer l'exécuteur qui
va interroger la liste de tâches et traiter toutes les tâches de la liste, quel que soit le moment où la
défaillance a eu lieu. Vous pouvez rendre votre flux de travail global tolérant aux défaillances en
utilisant plusieurs exécuteurs de flux de travail et d'activité, peut-être sur des systèmes distincts.
Ainsi, si l'un des exécuteurs échoue, les autres continueront de traiter les tâches planifiées sans
interruption dans la progression du flux de travail.

S'assurer qu'aucun résultat n'est perdu Version de l'API 2021-04-28 44

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history

AWS Flow Framework pour Java Guide du développeur

Gestion des composants distribués ayant échoué

Les activités échouent souvent pour des raisons éphémères comme une brève déconnexion. Une
stratégie courante pour gérer des activités ayant échoué consiste donc à relancer l'activité. Au lieu
de traiter le processus de nouvelle tentative en implémentant un message complexe transmettant
des stratégies, les applications peuvent s'appuyer sur AWS Flow Framework. Ce dernier fournit
plusieurs mécanismes pour relancer les activités ayant échoué et offre un mécanisme de traitement
des exceptions intégré qui fonctionne avec l'exécution distribuée asynchrone des tâches d'un flux de
travail.

AWS Flow Framework Concepts de base : exécution distribuée
Une instance de flux de travail est essentiellement un fil d'exécution virtuel qui peut couvrir les
activités et la logique d'orchestration exécutées sur plusieurs ordinateurs distants. Amazon SWF et
la AWS Flow Framework fonction en tant que système d'exploitation qui gère les instances de flux de
travail sur un processeur virtuel en :

• Maintenant l'état d'exécution de chaque instance.

• Basculant entre les instances.

• Reprenant l'exécution d'une instance à l'endroit où elle avait été basculée.

Reproduction des flux de travail

Étant donné que les activités peuvent être de longue durée, il n'est pas souhaitable que le flux de
travail soit simplement bloqué jusqu'à ce qu'il soit terminé. Il AWS Flow Framework gère plutôt
l'exécution du flux de travail à l'aide d'un mécanisme de rediffusion, qui s'appuie sur l'historique du
flux de travail conservé par Amazon SWF pour exécuter le flux de travail par épisodes.

Chaque épisode reproduit la logique du flux de travail de façon à exécuter chaque activité une seule
fois, et veille à ce que les activités et les méthodes asynchrones ne s'exécutent pas avant que leurs
objets Promise soient prêts.

Le démarreur de flux de travail lance le premier épisode de reproduction en même temps que
l'exécution du flux de travail. L'infrastructure appelle la méthode de point d'entrée du flux de travail
et :

1. Exécute toutes les tâches de flux de travail qui ne dépendent pas de la fin de l'activité, y compris
appeler toutes les méthodes client d'activité.

Gestion des composants distribués ayant échoué Version de l'API 2021-04-28 45

AWS Flow Framework pour Java Guide du développeur

2. Fournit à Amazon SWF une liste d'activités et de tâches dont l'exécution doit être planifiée. Pour
le premier épisode, cette liste comporte uniquement les activités qui ne dépendent pas d'un objet
Promise et peuvent être exécutées immédiatement.

3. Indique à Amazon SWF que l'épisode est terminé.

Amazon SWF enregistre les tâches d'activité dans l'historique du flux de travail et planifie leur
exécution en les plaçant dans la liste des tâches d'activité. Les exécuteurs d'activité interrogent la
liste de tâches et exécute ces dernières.

Lorsqu'un travailleur d'activité termine une tâche, il renvoie le résultat à Amazon SWF, qui l'enregistre
dans l'historique d'exécution du flux de travail et planifie une nouvelle tâche de flux de travail pour
le travailleur de flux de travail en le plaçant sur la liste des tâches du flux de travail. L'exécuteur de
flux de travail interroge la liste de tâches et lorsqu'il reçoit la tâche, il exécute le prochain épisode de
reproduction, comme suit:

1. L'infrastructure exécute de nouveau la méthode de point d'entrée du flux de travail et :

• Exécute toutes les tâches de flux de travail qui ne dépendent pas de la fin de l'activité, y
compris appeler toutes les méthodes client d'activité. Pourtant, l'infrastructure vérifie l'historique
d'exécution et ne planifie aucune tâche d'activité en double.

• Vérifie l'historique pour consulter les tâches d'activité qui ont été terminées et exécute n'importe
quelle méthode de flux de travail asynchrone qui dépend de ces activités.

2. Lorsque toutes les tâches de flux de travail pouvant être exécutées sont terminées, le framework
envoie un rapport à Amazon SWF :

• Il fournit à Amazon SWF une liste de toutes les activités dont les Promise<T> objets d'entrée
sont prêts depuis le dernier épisode et dont l'exécution peut être planifiée.

• Si l'épisode n'a généré aucune tâche d'activité supplémentaire mais que des activités sont
toujours inachevées, le framework indique à Amazon SWF que l'épisode est terminé. Ensuite, il
attend qu'une autre activité soit terminée, en lançant le prochain épisode de reproduction.

• Si l'épisode n'a généré aucune tâche d'activité supplémentaire et que toutes les activités sont
terminées, le framework indique à Amazon SWF que l'exécution du flux de travail est terminée.

Pour obtenir des exemples du comportement de reproduction, consultez AWS Flow Framework pour
Java Replay Behavior.

Reproduction des flux de travail Version de l'API 2021-04-28 46

AWS Flow Framework pour Java Guide du développeur

Reproduction et méthodes de flux de travail asynchrones

Les méthodes de flux de travail asynchrones sont souvent utilisées comme les activités, car la
méthode diffère l'exécution jusqu'à ce que tous les objets Promise<T> d'entrée soient prêts.
Pourtant, le mécanisme de reproduction gère les méthodes asynchrones différemment des activités.

• La reproduction ne garantit pas qu'une méthode asynchrone s'exécutera seulement une fois. Elle
diffère l'exécution sur une méthode asynchrone jusqu'à ce que ses objets Promise d'entrée soient
prêts, mais elle exécute ensuite cette méthode pour tous les épisodes suivants.

• Lorsqu'une méthode asynchrone se termine, elle ne lance pas un nouvel épisode.

Un exemple de reproduction d'un flux de travail asynchrone est proposé dans AWS Flow Framework
pour Java Replay Behavior.

Implémentation de reproduction et de flux de travail

Dans la plupart des cas, vous n'avez pas besoin de vous préoccuper des détails du mécanisme de
reproduction. Il s'agit essentiellement d'une opération qui se déroule en arrière-plan. Pourtant, la
reproduction possède deux implications importantes pour l'implémentation de votre flux de travail.

• N'utilisez pas de méthodes de flux de travail pour exécuter des tâches de longue durée, car la
reproduction répétera cette tâche plusieurs fois. Même les méthodes asynchrones s'exécutent
généralement plus d'une fois. À la place, utilisez les activités pour les tâches de longue durée ; la
reproduction exécute les activités une seule fois.

• Votre logique de flux de travail doit être totalement déterministe ; chaque épisode doit prendre le
même chemin de flux de contrôle. Par exemple, le chemin de flux de contrôle ne doit pas dépendre
de l'heure actuelle. Pour obtenir une description détaillée de la reproduction et des exigences en
matière de déterminisme, consultez Non-déterminisme.

AWS Flow Framework Concepts de base : listes de tâches et
exécution des tâches

Amazon SWF gère les tâches liées au flux de travail et aux activités en les publiant dans des listes
nominatives. Amazon SWF gère au moins deux listes de tâches, l'une pour les travailleurs du flux de
travail et l'autre pour les travailleurs des activités.

Reproduction et méthodes de flux de travail asynchrones Version de l'API 2021-04-28 47

AWS Flow Framework pour Java Guide du développeur

Note

Vous pouvez spécifier autant de listes de tâches que nécessaire, différents exécuteurs
pouvant être affectés à chaque liste. Le nombre de listes de tâches est illimité. En règle
générale, vous spécifiez la liste des tâches d'un exécuteur dans l'application hôte de ce
dernier lorsque vous créez l'objet exécuteur.

L'extrait suivant tiré de l'application hôte HelloWorldWorkflow crée un nouvel exécuteur d'activité
et l'affecte à la liste de tâches des activités HelloWorldList.

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ...
 String domain = " helloWorldExamples";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();
 ...
 }
}

Par défaut, Amazon SWF planifie les tâches du travailleur dans la HelloWorldList liste.
L'exécuteur recherche ensuite les tâches dans cette liste. Vous pouvez affecter n'importe quel nom
à une liste de tâches. Vous pouvez même utiliser le même nom pour les listes de flux de travail
et d'activités. En interne, Amazon SWF place les noms des flux de travail et des listes de tâches
d'activité dans différents espaces de noms, de sorte que les deux listes seront distinctes.

Si vous ne spécifiez pas de liste de tâches, une liste par défaut est spécifiée lorsque le travailleur
enregistre le type auprès d'Amazon SWF. AWS Flow Framework Pour de plus amples informations,
veuillez consulter Enregistrement des types de flux de travail et d'activité.

Il est parfois utile de faire exécuter certaines tâches par un exécuteur ou un groupe d'exécuteurs. Par
exemple, un flux de travail de traitement d'image peut utiliser une activité pour télécharger une image
et une autre pour traiter l'image. Il est plus efficace d'exécuter les deux tâches sur le même système
et d'éviter la surcharge liée au transfert de fichiers volumineux sur le réseau.

Listes et exécution de tâches Version de l'API 2021-04-28 48

AWS Flow Framework pour Java Guide du développeur

Pour prendre en charge ce type de scénario, vous pouvez spécifier explicitement une liste de
tâches lorsque vous appelez une méthode de client d'activité en utilisant une surcharge qui inclut un
paramètre schedulingOptions. Vous spécifiez la liste des tâches en transmettant à la méthode un
ActivitySchedulingOptions objet configuré de manière appropriée.

Supposons, par exemple, que l'activité say de l'application HelloWorldWorkflow soit hébergée
par un exécuteur d'activité autre que getName et getGreeting. L'exemple suivant montre comment
s'assurer que say utilise la même liste de tâches que getName et getGreeting, même si elles ont
été affectées à l'origine à des listes différentes.

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations1 = new GreeterActivitiesClientImpl1(); //
getGreeting and getName
 private GreeterActivitiesClient operations2 = new GreeterActivitiesClientImpl2(); //
say
 @Override
 public void greet() {
 Promise<String> name = operations1.getName();
 Promise<String> greeting = operations1.getGreeting(name);
 runSay(greeting);
 }
 @Asynchronous
 private void runSay(Promise<String> greeting){
 String taskList = operations1.getSchedulingOptions().getTaskList();
 ActivitySchedulingOptions schedulingOptions = new ActivitySchedulingOptions();
 schedulingOptions.setTaskList(taskList);
 operations2.say(greeting, schedulingOptions);
 }
}

La méthode asynchrone runSay obtient la liste de tâches getGreeting à partir de son objet
client. Ensuite, elle crée et configure un objet ActivitySchedulingOptions qui vérifie que say
interroge la même liste de tâches que getGreeting.

Note

Lorsque vous transmettez un paramètre schedulingOptions à une méthode de client
d'activité, il remplace la liste de tâches d'origine uniquement pour l'exécution de l'activité en
question. Si vous appelez à nouveau la méthode client des activités sans spécifier de liste

Listes et exécution de tâches Version de l'API 2021-04-28 49

AWS Flow Framework pour Java Guide du développeur

de tâches, Amazon SWF affecte la tâche à la liste d'origine et le responsable de l'activité
interrogera cette liste.

AWS Flow Framework Concepts de base : applications évolutives

Amazon SWF possède deux fonctionnalités clés qui facilitent le dimensionnement d'une application
de flux de travail pour gérer la charge actuelle :

• Un historique de flux de travail complet qui vous permet d'implémenter une application sans état.

• La planification des tâches est couplée de façon souple avec l'exécution des tâches, ce qui vous
permet de mettre votre application facilement à l'échelle pour répondre aux demandes actuelles.

Amazon SWF planifie les tâches en les publiant dans des listes de tâches allouées dynamiquement,
et non en communiquant directement avec les responsables des flux de travail et des activités. Au
lieu de cela, les exécuteurs utilisent des demandes HTTP pour rechercher les tâches dans leurs
listes respectives. Cette approche associe vaguement la planification des tâches à l'exécution des
tâches et permet aux employés de fonctionner sur n'importe quel système approprié, y compris les
EC2 instances Amazon, les centres de données d'entreprise, les ordinateurs clients, etc. Comme les
requêtes HTTP proviennent des opérateurs, il n'est pas nécessaire de recourir à des ports visibles de
l'extérieur, ce qui permet même aux utilisateurs de courir derrière un pare-feu.

Le mécanisme d'attente active de longue durée (interrogation longue) utilisé par les exécuteurs
pour rechercher les tâches évite à ceux-ci d'être surchargés. Même en cas de pic dans les
tâches planifiées, les exécuteurs extraient les tâches à leur propre rythme. Cependant, comme
les exécuteurs sont sans état, vous pouvez mettre une application à l'échelle pour répondre à
l'augmentation de la charge en démarrant des instances de travail supplémentaires. Même si les
instances s'exécutent sur des systèmes différents, chacune d'entre elles interroge la même liste
de tâches et la première instance de travail disponible exécute chaque tâche, quels que soient
l'emplacement de l'exécuteur et le moment où il est démarré. Lorsque la charge diminue, vous
pouvez réduire le nombre d'exécuteurs en conséquence.

Applications scalables Version de l'API 2021-04-28 50

AWS Flow Framework pour Java Guide du développeur

AWS Flow Framework Concepts de base : échange de données
entre les activités et les flux de travail

Lorsque vous appelez une méthode client d'activité asynchrone, elle renvoie immédiatement un objet
Promise (également appelé Future), qui représente la valeur de renvoi de la méthode d'activité. Au
départ, l'objet Promise est à l'état non prêt et la valeur de renvoi est non définie. Lorsque la méthode
d'activité a terminé et renvoyé la tâche, l'infrastructure regroupe la valeur de renvoi via le réseau sur
l'exécuteur du flux de travail, qui affecte une valeur à Promise et place l'objet à l'état prêt.

Même si une méthode d'activité n'a aucune valeur de renvoi, vous pouvez utiliser l'objet Promise
pour gérer l'exécution du flux de travail. Si vous transmettez à une méthode client d'activité ou à une
méthode de flux de travail asynchrone un objet Promise renvoyé, l'exécution est différée jusqu'à ce
que l'objet soit prêt.

Si vous transmettez à une méthode client d'activité un ou plusieurs objets Promise, l'infrastructure
place la tâche en file d'attente mais en diffère la planification jusqu'à ce que tous les objets soient
prêts. Elle extrait ensuite les données de chaque objet Promise et les regroupe via Internet sur
l'exécuteur d'activité, qui les transmet à la méthode d'activité en tant que type standard.

Note

Si vous avez besoin de transférer de grandes quantités de données entre un flux de travail
et des exécuteurs d'activité, la méthode à privilégier consiste à stocker les données dans
un emplacement approprié et transmettre uniquement les informations de récupération. Par
exemple, vous pouvez stocker les données dans un compartiment Amazon S3 et transmettre
l'URL associée.

Le Promesse <T> Type

Le type Promise<T> est relativement similaire au type Java Future<T>. Ces deux types
représentent des valeurs renvoyées par des méthodes asynchrones et sont, au départ, non définis.
You accédez à la valeur d'un objet en appelant sa méthode get. Au-delà de ça, les deux types ont
un comportement assez différent.

• Future<T> est une construction de synchronisation qui permet à une application d'attendre la fin
d'une méthode asynchrone. Si vous appelez get et que l'objet n'est pas prêt, la méthode se bloque
jusqu'à ce que l'objet soit prêt.

Échange de données entre les activités et les flux de travail Version de l'API 2021-04-28 51

AWS Flow Framework pour Java Guide du développeur

• Avec Promise<T>, la synchronisation est gérée par l'infrastructure. Si vous appelez get et que
l'objet n'est pas prêt, get émet une exception.

L'objectif principal de Promise<T> consiste à gérer le flux de données d'une activité à une autre.
Cela permet de s'assurer qu'une activité ne s'exécute pas tant que les données d'entrée ne sont
pas valides. Dans de nombreux cas, les exécuteurs de flux de travail n'ont pas besoin d'accéder
directement aux objets Promise<T> ; ils transmettent simplement les objets d'une activité à une
autre et laisse l'infrastructure et les travaux d'activité gérer les détails. Pour accéder à la valeur d'un
objet Promise<T> dans un exécuteur de flux de travail, vous devez être sûr que l'objet est prêt avant
d'appeler sa méthode get.

• L'approche préférentielle consiste à transmettre l'objet Promise<T> à une méthode de flux de
travail asynchrone et à traiter les valeurs à ce niveau. Une méthode asynchrone diffère l'exécution
jusqu'à ce que tous ses objets Promise<T> d'entrée soient prêts, ce qui garantit que vous pouvez
accéder en toute sécurité à leurs valeurs.

• Promise<T> expose une méthode isReady qui renvoie true si l'objet est prêt. Il n'est pas
recommandé d'utiliser isReady pour interroger un objet Promise<T>, mais isReady est utile
dans certaines circonstances.

Le AWS Flow Framework for Java inclut également un Settable<T> type dérivé de Promise<T>
et ayant un comportement similaire. La différence est que le framework définit généralement la
valeur d'un Promise<T> objet et que le travailleur du flux de travail est chargé de définir la valeur de
Settable<T> a.

Dans certaines circonstances, un exécuteur de flux de travail doit créer un objet Promise<T> et
définir sa valeur. Par exemple, une méthode asynchrone qui renvoie un objet Promise<T> doit créer
une valeur de renvoi.

• Pour créer un objet qui représente une valeur typée, appelez la méthode statique
Promise.asPromise, qui crée un objet Promise<T> du type approprié, définit sa valeur et le
place à l'état prêt.

• Pour créer un objet Promise<Void>, appelez la méthode statique Promise.Void.

Le Promesse <T> Type Version de l'API 2021-04-28 52

AWS Flow Framework pour Java Guide du développeur

Note

Promise<T> peut représenter n'importe quel type valide. Toutefois, si les données doivent
être regroupées via Internet, le type doit être compatible avec le convertisseur de données.
Pour en savoir plus, consultez la section suivante.

Convertisseurs de données et regroupement

Il AWS Flow Framework rassemble les données sur Internet à l'aide d'un convertisseur de données.
Par défaut, l'infrastructure utilise un convertisseur de données basé sur le processeur Jackson JSON.
Toutefois, ce convertisseur présente certaines limitations. Par exemple, il ne peut pas regrouper les
mappages qui n'utilisent pas des chaînes en tant que clés. Si le convertisseur par défaut n'est pas
suffisant pour votre application, vous pouvez implémenter un convertisseur de données personnalisé.
Pour en savoir plus, consultez DataConverters.

AWS Flow Framework Concepts de base : échange de données
entre applications et exécutions de flux de travail

Une méthode de point d'entrée de flux de travail peut comporter un ou plusieurs paramètres, ce qui
permet au démarreur de flux de travail de transmettre les données initiales au flux de travail. Elle
peut également s'avérer utile pour fournir des données supplémentaires au flux de travail pendant
l'exécution. Par exemple, si un client change son adresse de livraison, vous pouvez avertir le flux de
travail de traitement des commandes pour qu'il puisse effectuer les modifications appropriées.

Amazon SWF permet aux flux de travail d'implémenter une méthode de signal, qui permet à des
applications telles que le démarreur de flux de travail de transmettre des données au flux de travail à
tout moment. Une méthode signal peut avoir n'importe quel nom et n'importe quels paramètres utiles.
Vous la désignez en tant que méthode signal en l'incluant dans votre définition d'interface de flux de
travail et en appliquant une annotation @Signal à la déclaration de la méthode.

L'exemple suivant illustre une interface de flux de travail de traitement des commandes qui déclare
une méthode signal, changeOrder, qui permet au démarreur de flux de travail de modifier la
commande initiale après que le flux de travail a démarré.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 300)

Convertisseurs de données et regroupement Version de l'API 2021-04-28 53

https://github.com/codehaus/jackson

AWS Flow Framework pour Java Guide du développeur

public interface WaitForSignalWorkflow {
 @Execute(version = "1.0")
 public void placeOrder(int amount);
 @Signal
 public void changeOrder(int amount);
}

Le processeur d'annotation de l'infrastructure crée une méthode de client de flux de travail avec le
même nom que la méthode signal, et le démarreur de flux de travail appelle la méthode de client pour
transmettre des données au flux de travail. Pour un exemple, voir AWS Flow Framework Recettes

Types de délai d'expiration Amazon SWF

Pour garantir que les exécutions des flux de travail s'exécutent correctement, vous pouvez définir
différents types de délais d'expiration avec Amazon SWF. Certains délais spécifient la durée totale
d'exécution du flux de travail. D'autres délais définissent combien de temps les tâches d'activité
peuvent prendre avant d'être affectées à un outil de traitement, ainsi que combien de temps elles
peuvent prendre pour se terminer à compter de l'heure où elles sont planifiées. Tous les délais
d'expiration de l'API Amazon SWF sont spécifiés en secondes. Amazon SWF prend également
en charge la chaîne en NONE tant que valeur de délai d'attente, ce qui indique l'absence de délai
d'expiration.

Pour les délais liés aux tâches de décision et aux tâches d'activité, Amazon SWF ajoute un
événement à l'historique d'exécution du flux de travail. Les attributs de l'événement fournissent des
informations sur le type de délai d'attente qui s'est produit et sur la tâche de décision ou d'activité
affectée. Amazon SWF planifie également une tâche de décision. Lorsque le décideur reçoit la
nouvelle tâche de décision, il voit l'événement de temporisation dans l'historique et prend l'action
appropriée en l'RespondDecisionTaskCompletedappelant.

Une tâche est considérée comme ouverte depuis le moment où elle est planifiée jusqu'à ce qu'elle
soit fermée. Par conséquent, une tâche est indiquée comme ouverte lorsqu'un outil de traitement
s'en occupe. Une tâche est fermée lorsqu'un outil de traitement la signale comme terminée, comme
annulée ou comme ayant échoué. Une tâche peut également être fermée par Amazon SWF en raison
d'un délai d'attente.

Délais liés au flux de travail et aux tâches de décision

Le schéma suivant illustre comment les délais de flux de travail et de décision sont liés à la durée de
vie d'un flux de travail :

Types de délai Version de l'API 2021-04-28 54

https://aws.amazon.com/code/2535278400103493
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework pour Java Guide du développeur

Il existe deux types de délai qui s'appliquent aux tâches du flux de travail et aux tâches de décision :

• Du début à la fermeture du flux de travail (timeoutType: START_TO_CLOSE) : ce délai indique
la durée maximale d'exécution d'un flux de travail. Il est défini comme valeur par défaut lors de
l'enregistrement du flux de travail, mais peut être remplacé par une autre valeur lorsque le flux de
travail est lancé. Si ce délai est dépassé, Amazon SWF ferme l'exécution du flux de travail et ajoute
un événement de WorkflowExecutionTimedOuttype à l'historique d'exécution du flux de travail.
Outre timeoutType, les attributs de l'événement spécifient la stratégie childPolicy qui est en
vigueur pour cette exécution de flux de travail. La stratégie enfant définit comment les exécutions
de flux de travail enfant sont gérées si l'exécution de flux de travail parent expire ou si elle est
arrêtée. Par exemple, si la stratégie childPolicy est définie sur TERMINATE, les exécutions
de flux de travail enfant sont arrêtées. Une fois qu'une exécution de flux de travail expire, vous ne
pouvez plus effectuer que les appels de visibilité.

• Début de la fin de la tâche de décision (timeoutType: START_TO_CLOSE) : ce délai indique le
temps maximum que le décideur correspondant peut prendre pour terminer une tâche de décision.
Il est défini lors de l'enregistrement du type de flux de travail. Si ce délai est dépassé, la tâche est
marquée comme expirée dans l'historique d'exécution du flux de travail, et Amazon SWF ajoute
un événement de DecisionTaskTimedOuttype à l'historique du flux de travail. Les attributs de
l'événement incluront IDs les événements correspondant au moment où cette tâche de décision
a été planifiée (scheduledEventId) et à son lancement (startedEventId). Outre l'ajout de
l'événement, Amazon SWF planifie également une nouvelle tâche de décision pour avertir le
décideur que le délai imparti pour cette tâche de décision a expiré. Après expiration de ce délai,
toute tentative de finalisation de la décision avec RespondDecisionTaskCompleted échoue.

Délais liés au flux de travail et aux tâches de décision Version de l'API 2021-04-28 55

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html

AWS Flow Framework pour Java Guide du développeur

Délais des tâches d'activité

Le schéma suivant illustre le lien entre les délais d'attente et la durée de vie d'une tâche d'activité :

Quatre types de délai s'appliquent aux tâches d'activité :

• Début de la fin de la tâche d'activité (timeoutType: START_TO_CLOSE) : ce délai
indique le temps maximum qu'un agent d'activité peut prendre pour traiter une tâche une
fois qu'il l'a reçue. Les tentatives de clôture d'une tâche d'activité dont le délai imparti
a expiré à l'aide de RespondActivityTaskCanceledRespondActivityTaskCompleted, et
RespondActivityTaskFailedéchoueront.

• Activity Task Heartbeat (timeoutType: HEARTBEAT) : ce délai indique la durée maximale
pendant laquelle une tâche peut être exécutée avant de fournir sa progression au cours de
l'RecordActivityTaskHeartbeataction.

• Planification des tâches d'activité jusqu'au début (timeoutType: SCHEDULE_TO_START) : ce
délai indique la durée pendant laquelle Amazon SWF attend avant de mettre fin à la tâche d'activité
si aucun collaborateur n'est disponible pour effectuer la tâche. Lorsque la tâche arrive à expiration,
elle n'est pas attribuée à un autre outil de traitement.

• Calendrier de clôture des tâches d'activité (timeoutType: SCHEDULE_TO_CLOSE) : ce délai
indique le temps que la tâche peut prendre entre le moment où elle est planifiée et le moment où
elle est terminée. Il est recommandé que cette valeur ne soit pas supérieure à la somme du délai
d'expiration de la tâche et du schedule-to-start délai d'expiration de la tâche start-to-close.

Délais des tâches d'activité Version de l'API 2021-04-28 56

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework pour Java Guide du développeur

Note

Chacun des types de délai a une valeur par défaut, généralement définie sur NONE (infini).
Toutefois, la durée maximale de toute exécution d'activité est limitée à un an.

Vous définissez ces valeurs par défaut lors de l'enregistrement du type d'activité, mais vous pouvez
les remplacer par d'autres valeurs lorsque vous planifiez la tâche d'activité. Lorsque l'un de ces délais
se produit, Amazon SWF ajoute un événement de ActivityTaskTimedOuttype à l'historique du flux de
travail. La valeur d'attribut timeoutType de cet événement indique quel délai a expiré. Pour chaque
délai, la valeur timeoutType est indiquée entre parenthèses. Les attributs d'événement incluront
également IDs les événements correspondant au moment où la tâche d'activité a été planifiée
(scheduledEventId) et à son lancement (startedEventId). Outre l'ajout de l'événement,
Amazon SWF planifie également une nouvelle tâche de décision pour avertir le décideur que le délai
imparti s'est écoulé.

Délais des tâches d'activité Version de l'API 2021-04-28 57

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

AWS Flow Framework pour Java Guide du développeur

Comprendre une tâche dans AWS Flow Framework for Java
Rubriques

• Tâche

• Ordre d'exécution

• Exécution de flux de travail

• Non-déterminisme

Tâche

La primitive sous-jacente que Java utilise AWS Flow Framework pour gérer l'exécution du code
asynchrone est la Task classe. Un objet de type Task représente le travail qui doit être effectué
de manière asynchrone. Lorsque vous appelez une méthode asynchrone, l'infrastructure crée un
objet Task pour exécuter le code dans cette méthode et le place dans une liste pour une exécution
ultérieure. De même, lorsque vous appelez un objet Activity, un objet Task est créé. L'appel de
méthode revient après cela, en revoyant généralement un objet Promise<T> comme futur résultat
de l'appel.

La classe Task est publique et peut être utilisée directement. Par exemple, nous pouvons réécrire
l'exemple Hello World pour utiliser un objet Task à la place d'une méthode asynchrone.

@Override
public void startHelloWorld(){
 final Promise<String> greeting = client.getName();
 new Task(greeting) {
 @Override
 protected void doExecute() throws Throwable {
 client.printGreeting("Hello " + greeting.get() +"!");
 }
 };
}

L'infrastructure appelle la méthode doExecute() lorsque tous les objets Promise transmis au
constructeur de l'objet Task sont prêts. Pour plus de détails sur la Task classe, consultez la AWS
SDK pour Java documentation.

Tâche Version de l'API 2021-04-28 58

AWS Flow Framework pour Java Guide du développeur

L'infrastructure inclut également une classe appelée Functor qui représente un objet Task qui est
également un objet Promise<T>. L'objet Functor est prêt lorsque l'objet Task est terminé. Dans
l'exemple suivant, un objet Functor est créé pour récupérer le message d'accueil :

Promise<String> greeting = new Functor<String>() {
 @Override
 protected Promise<String> doExecute() throws Throwable {
 return client.getGreeting();
 }
};
client.printGreeting(greeting);

Ordre d'exécution

Les tâches deviennent éligibles à l'exécution uniquement lorsque tous les paramètres de type
Promise<T>, transmis à la méthode ou activité asynchrone correspondante, sont prêts. Un objet
Task prêt pour l'exécution est logiquement déplacé dans une file d'attente des processus prêts. En
d'autres termes, elle est planifiée pour l'exécution. La classe de travail exécute la tâche en invoquant
le code que vous avez écrit dans le corps de la méthode asynchrone ou en planifiant une tâche
d'activité dans Amazon Simple Workflow Service (AWS) dans le cas d'une méthode d'activité.

À mesure que les tâches s'exécutent et produisent des résultats, d'autres tâches deviennent prêtes
et l'exécution du programme se poursuit. La manière dont l'infrastructure exécute les tâches est
essentielle pour comprendre l'ordre dans lequel votre code asynchrone s'exécute. Un code qui
apparaît séquentiellement dans votre programme peut ne pas s'exécuter dans cette ordre.

Promise<String> name = getUserName();
printHelloName(name);
printHelloWorld();
System.out.println("Hello, Amazon!");

@Asynchronous
private Promise<String> getUserName(){
 return Promise.asPromise("Bob");
}
@Asynchronous
private void printHelloName(Promise<String> name){
 System.out.println("Hello, " + name.get() + "!");
}

Ordre d'exécution Version de l'API 2021-04-28 59

AWS Flow Framework pour Java Guide du développeur

@Asynchronous
private void printHelloWorld(){
 System.out.println("Hello, World!");
}

Le code dans la liste ci-dessus imprimera les éléments suivants :

Hello, Amazon!
Hello, World!
Hello, Bob

Cela peut différer de vos attentes mais peut s'expliquer aisément en réfléchissant à la manière dont
les tâches ont été exécutées pour les méthodes asynchrones :

1. L'appel à getUserName crée un objet Task. Appelons-le Task1. Parce qu'getUserNameil ne
prend aucun paramètre, Task1 il est immédiatement placé dans la file d'attente prête.

2. Ensuite, l'appel à printHelloName crée un objet Task qui doit attendre le résultat de
getUserName. Appelons-le Task2. Comme la valeur requise n'est pas encore prête, elle Task2
est ajoutée à la liste d'attente.

3. Ensuite, une tâche pour printHelloWorld est créée et ajoutée à la file d'attente des processus
prêts. Appelons-le Task3.

4. La println déclaration affiche ensuite « Hello, Amazon ! » à la console.

5. À ce stade, les objets Task1 et Task3 sont placés dans la file d'attente des processus prêts et
l'objet Task2 dans la file d'attente.

6. L'application de travail exécute Task1, et son résultat rend Task2 prêt. Task2 se retrouve ajoutée
à la file d'attente derrière Task3.

7. Les objets Task3 et Task2 sont ensuite exécutés dans cette ordre.

L'exécution des activités suit le même modèle. Lorsque vous appelez une méthode sur le client
d'activité, celle-ci crée une méthode Task qui, lors de son exécution, planifie une activité dans
Amazon SWF.

L'infrastructure s'appuie sur des fonctions comme la génération de code et les proxys dynamiques
pour injecter la logique afin de convertir les appels de méthode en appels d'activité et tâches
asynchrones dans votre programme.

Ordre d'exécution Version de l'API 2021-04-28 60

AWS Flow Framework pour Java Guide du développeur

Exécution de flux de travail

L'exécution de l'implémentation de flux de travail est également gérée par la classe de l'exécuteur.
Lorsque vous appelez une méthode sur le client de flux de travail, celui-ci appelle Amazon SWF pour
créer une instance de flux de travail. Les tâches d'Amazon SWF ne doivent pas être confondues
avec celles du framework. Dans Amazon SWF, une tâche est soit une tâche d'activité, soit une tâche
de décision. L'exécution des tâches d'activité est simple. La classe Activity Worker reçoit les tâches
d'activité d'Amazon SWF, invoque la méthode d'activité appropriée dans votre implémentation et
renvoie le résultat à Amazon SWF.

L'exécution des tâches décisionnelles est plus impliquée. Le gestionnaire de flux de travail reçoit des
tâches de décision d'Amazon SWF. Une tâche de décision demande à la logique de flux de travail ce
qu'il faut faire ensuite. La première tâche de décision est générée pour une instance de flux de travail
lorsqu'elle est lancée via le client de flux de travail. Lors de la réception de cette tâche de décision,
l'infrastructure lance l'exécution du code dans la méthode de flux de travail annotée avec @Execute.
Cette méthode exécute la logique de coordination qui planifie les activités. Lorsque l'état de l'instance
de flux de travail change, par exemple lorsqu'une activité se termine, d'autres tâches décisionnelles
sont planifiées. À ce stade, la logique de flux de travail peut décider d'entreprendre une action basée
sur le résultat de l'activité ; par exemple, elle peut décider de planifier une autre activité.

L'infrastructure cache tous ces détails aux développeurs en traduisant sans heurts les tâches
décisionnelles dans la logique de flux de travail. Du point de vue du développeur, le code ressemble
à un programme normal. En guise de couverture, le framework l'associe aux appels à Amazon
SWF et aux tâches de décision en utilisant l'historique géré par Amazon SWF. Lorsqu'une tâche de
décision arrive, l'infrastructure reproduit la connexion de l'exécution du programme dans les résultats
des activités terminées jusqu'à présent. Les méthodes et activités asynchrones qui attendaient ces
résultats se débloquent, et l'exécution du programme se poursuit.

L'exécution de flux de travail de traitement de l'exemple d'image et de l'historique correspondant est
illustrée dans le tableau suivant.

Exécution de flux de travail miniatures

Exécution du programme de flux de travail Historique géré par Amazon SWF

Exécution initiale

1. Boucle de distribution

2. getImageUrls

1. Instance de flux de travail lancée, id="1"

2. downloadImage planifié

Exécution de flux de travail Version de l'API 2021-04-28 61

AWS Flow Framework pour Java Guide du développeur

Exécution du programme de flux de travail Historique géré par Amazon SWF

3. downloadImage

4. createThumbnail (tâche dans file d'attente)

5. uploadImage (tâche dans file d'attente)

6. <prochaine itération de la boucle>

Relire

1. Boucle de distribution

2. getImageUrls

3. Chemin downloadImage image="foo"

4. createThumbnail

5. uploadImage (tâche dans file d'attente)

6. <prochaine itération de la boucle>

1. Instance de flux de travail lancée, id="1"

2. downloadImage planifié

3. downloadImage terminé, retour="foo"

4. createThumbnail planifié

Relire

1. Boucle de distribution

2. getImageUrls

3. Chemin downloadImage image="foo"

4. Chemin de miniatures createThu
mbnail="bar"

5. uploadImage

6. <prochaine itération de la boucle>

1. Instance de flux de travail lancée, id="1"

2. downloadImage planifié

3. downloadImage terminé, retour="foo"

4. createThumbnail planifié

5. createThumbnail terminé, retour="bar"

6. uploadImage planifié

Relire

Exécution de flux de travail Version de l'API 2021-04-28 62

AWS Flow Framework pour Java Guide du développeur

Exécution du programme de flux de travail Historique géré par Amazon SWF

1. Boucle de distribution

2. getImageUrls

3. Chemin downloadImage image="foo"

4. Chemin de miniatures createThu
mbnail="bar"

5. uploadImage

6. <prochaine itération de la boucle>

1. Instance de flux de travail lancée, id="1"

2. downloadImage planifié

3. downloadImage terminé, retour="foo"

4. createThumbnail planifié

5. createThumbnail terminé, retour="bar"

6. uploadImage planifié

7. uploadImage terminé

...

Lorsqu'un appel processImage est effectué, le framework crée une nouvelle instance de flux de
travail dans Amazon SWF. Il s'agit d'un enregistrement durable de l'instance de flux de travail lancée.
Le programme s'exécute jusqu'à l'appel à l'downloadImageactivité, qui demande à Amazon SWF
de planifier une activité. Le flux de travail poursuit son exécution et crée des tâches pour les activités
suivantes, mais elles ne peuvent pas être exécutées tant que l'downloadImageactivité n'est pas
terminée ; cet épisode de rediffusion prend donc fin. Amazon SWF répartit la tâche en fonction
de l'downloadImageactivité pour exécution, et une fois qu'elle est terminée, un enregistrement
est enregistré dans l'historique avec le résultat. Le flux de travail est maintenant prêt à avancer et
une tâche de décision est générée par Amazon SWF. L'infrastructure reçoit la tâche de décision et
reproduit la connexion de flux de travail dans le résultat de l'image téléchargée comme enregistré
dans l'historique. Cela permet de débloquer la tâche et de createThumbnail poursuivre l'exécution
du programme en planifiant la tâche createThumbnail d'activité dans Amazon SWF. Le même
processus se répète pour uploadImage. L'exécution du programme continue de cette façon jusqu'à
ce que le flux de travail ait traité toutes les images et aucune tâche n'est en attente. Comme aucun
état d'exécution n'est stocké localement, chaque tâche de décision peut être exécutée sur une
machine différente. Cela vous permet d'écrire facilement des programmes tolérants aux pannes et
évolutifs.

Non-déterminisme

Comme le framework repose sur le replay, il est important que le code d'orchestration (tout le code
du flux de travail à l'exception des implémentations d'activités) soit déterministe. Par exemple, le flux
de contrôle dans votre programme ne doit pas dépendre d'un nombre aléatoire ou de l'heure actuelle.

Non-déterminisme Version de l'API 2021-04-28 63

AWS Flow Framework pour Java Guide du développeur

Comme ces éléments peuvent changer entre les invocations, il est possible que la rediffusion ne
suive pas le même chemin dans la logique d'orchestration. Cela entraînera des résultats inattendus
ou des erreurs. L'infrastructure fournit un objet WorkflowClock que vous pouvez utiliser pour
obtenir l'heure actuelle de manière déterministe. Pour en savoir plus, consultez la section sur
Contexte d'exécution.

Note

Une connexion Spring incorrecte des objets d'implémentation de flux de travail peut
également mener à un non-déterminisme . Les beans d'implémentations de flux de travail
ainsi que les beans dont ils dépendent doivent être dans la portée de flux de travail
(WorkflowScope). Par exemple, la connexion d'un bean d'implémentation de flux de
travail à un bean qui conserve un état et se trouve dans un contexte global entraîne un
comportement inattendu. Pour en savoir plus, consultez la section Intégration de Spring.

Non-déterminisme Version de l'API 2021-04-28 64

AWS Flow Framework pour Java Guide du développeur

AWS Flow Framework pour le guide de programmation Java
Cette section explique comment utiliser les fonctionnalités de AWS Flow Framework for Java pour
implémenter des applications de flux de travail.

Rubriques

• Implémentation d'applications de flux de travail avec AWS Flow Framework

• Contrats de flux de travail et d'activité

• Enregistrement des types de flux de travail et d'activité

• Clients d'activité et de flux de travail

• Implémentation de flux de travail

• Implémentation d'activité

• Mise en œuvre AWS Lambda des tâches

• Exécution de programmes écrits avec le AWS Flow Framework pour Java

• Contexte d'exécution

• Exécutions de flux de travail enfant

• Flux de travail continus

• Définition de la priorité des tâches dans Amazon SWF

• DataConverters

• Transmission des données aux méthodes asynchrones

• Testabilité et injection de dépendances

• Gestion des erreurs

• Relance des activités ayant échoué

• Tâches démon

• AWS Flow Framework pour Java Replay Behavior

Implémentation d'applications de flux de travail avec AWS Flow
Framework

Les étapes typiques du développement d'un flux de travail avec le AWS Flow Framework sont les
suivantes :

Implémentation des applications de flux de travail Version de l'API 2021-04-28 65

AWS Flow Framework pour Java Guide du développeur

1. Définir les contrats d'activité et de flux de travail. Analysez les exigences de votre application,
puis déterminez les activités et la topologie de flux de travail requises. Les activités gèrent les
tâches de traitement requises, tandis que la topologie de flux de travail définit la structure de
base de flux de travail et la logique métier.

Prenons l'exemple d'une application de traitement multimédia ayant besoin de télécharger
un fichier, de le traiter, puis de charger le fichier traité dans un compartiment Amazon Simple
Storage Service (S3). Cette opération peut être divisée en quatre tâches d'activités :

1. Télécharger le fichier à partir d'un serveur

2. Traiter le fichier (par exemple, en le transcodant dans un format multimédia différent)

3. Charger le fichier dans le compartiment S3

4. Effectuer un nettoyage en supprimant les fichiers locaux

Ce flux de travail aurait une méthode de point d'entrée et implémenterait une topologie linéaire
simple qui exécute les activités séquentiellement, à l'image de la HelloWorldWorkflow Demande.

2. Implémenter les interfaces d'activité et de flux de travail. Les contrats d'activité et de flux de
travail sont définis par des interfaces Java, en rendant leurs conventions d'appel prévisibles par
SWF, et en vous offrant de la flexibilité lorsque vous implémentez votre logique de flux de travail
et vos tâches d'activité. Les différentes parties de votre programme peuvent utiliser les données
des autres, mais n'ont pas besoin d'être au courant des détails d'implémentation des autres
parties.

Par exemple, vous pouvez définir une interface FileProcessingWorkflow et fournir
différentes implémentations de flux de travail pour l'encodage vidéo, la compression, les
miniatures, etc. Chacun de ces flux de travail peut avoir différents flux de contrôle et peut appeler
différentes méthodes d'activité ; votre démarreur de flux de travail n'a pas besoin de savoir.
Grâce à des interfaces, vous pouvez aussi tester simplement vos flux de travail en utilisant des
implémentations fictives qui peuvent être remplacées ultérieurement avec du code pratique.

3. Générer des clients d'activité et de flux de travail. Cela vous AWS Flow Framework évite d'avoir
à implémenter les détails de la gestion de l'exécution asynchrone, de l'envoi de requêtes HTTP,
du marshaling des données, etc. À la place, le démarreur de flux de travail crée une instance de
flux de travail en appelant une méthode sur le client de flux de travail, et l'implémentation du flux
de travail exécute les activités en appelant des méthodes sur le client d'activité. L'infrastructure
gère les détails de ces interactions en arrière-plan.

Implémentation des applications de flux de travail Version de l'API 2021-04-28 66

AWS Flow Framework pour Java Guide du développeur

Si vous utilisez Eclipse et que vous avez configuré votre projet, comme dansConfiguration du
AWS Flow Framework pour Java, le processeur AWS Flow Framework d'annotations utilise les
définitions d'interface pour générer automatiquement des clients de flux de travail et d'activités
qui exposent le même ensemble de méthodes que l'interface correspondante.

4. Implémenter les applications hôtes d'activité et de flux de travail. Vos implémentations de flux
de travail et d'activités doivent être intégrées dans les applications hôtes qui interrogent Amazon
SWF pour les tâches, rassemblent les données et appellent les méthodes d'implémentation
appropriées. AWS Flow Framework pour Java inclut WorkflowWorkeret ActivityWorkerclasse qui
simplifient et simplifient la mise en œuvre d'applications hôtes.

5. Testez votre flux de travail. AWS Flow Framework for Java fournit une JUnit intégration que vous
pouvez utiliser pour tester vos flux de travail en ligne et localement.

6. Déployer les exécuteurs. Vous pouvez déployer vos employés comme il convient. Par exemple,
vous pouvez les déployer sur des EC2 instances Amazon ou sur des ordinateurs de votre centre
de données. Une fois le déploiement et le démarrage terminés, les opérateurs commencent à
interroger Amazon SWF pour les tâches et à les gérer selon les besoins.

7. Lancer des exécutions. Une application lance une instance de flux de travail à l'aide du client de
flux de travail pour appeler le point d'entrée de flux de travail. Vous pouvez également démarrer
des flux de travail à l'aide de la console Amazon SWF. Quelle que soit la manière dont vous
démarrez une instance de flux de travail, vous pouvez utiliser la console Amazon SWF pour
surveiller l'instance de flux de travail en cours d'exécution et examiner l'historique des instances
en cours d'exécution, terminées et ayant échoué.

AWS SDK pour JavaIl inclut un ensemble AWS Flow Framework de quatre exemples Java que vous
pouvez parcourir et exécuter en suivant les instructions du fichier readme.html situé dans le répertoire
racine. Il existe également un ensemble de recettes, des applications simples, qui montrent comment
traiter divers problèmes de programmation spécifiques, disponibles sur AWS Flow Framework
Recipes.

Contrats de flux de travail et d'activité

Les interfaces Java sont utilisées pour déclarer les signatures des flux de travail et activités.
L'interface forme le contrat entre l'implémentation de flux de travail (ou activité) et le client de ce flux
de travail (ou activité). Par exemple, un type de flux de travail MyWorkflow est défini à l'aide d'une
interface annotée avec @Workflow :

Contrats de flux de travail et d'activité Version de l'API 2021-04-28 67

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://aws.amazon.com/sdkforjava/
https://aws.amazon.com/code/2535278400103493
https://aws.amazon.com/code/2535278400103493

AWS Flow Framework pour Java Guide du développeur

@Workflow
@WorkflowRegistrationOptions(
 defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface MyWorkflow
{
 @Execute(version = "1.0")
 void startMyWF(int a, String b);

 @Signal
 void signal1(int a, int b, String c);

 @GetState
 MyWorkflowState getState();
}

Le contrat ne possède aucun paramètre propre à l'implémentation. Cette utilisation des contrats à
implémentation neutre permet aux clients d'être découplés de l'implémentation et donc fournit la
flexibilité pour modifier les détails d'implémentation sans casser le client. À l'inverse, vous pouvez
également modifier le client sans modifier le flux de travail ou l'activité en cours d'utilisation. Par
exemple, le client peut être modifié pour appeler une activité de manière asynchrone à l'aide d'objets
Promises (Promise<T>) sans que l'implémentation d'activité ait besoin d'être modifiée. De même,
la mise en œuvre de l'activité peut être modifiée afin qu'elle soit réalisée de manière asynchrone, par
exemple, par une personne envoyant un e-mail, sans qu'il soit nécessaire de modifier les clients de
l'activité.

Dans l'exemple ci-dessus, l'interface de flux de travail MyWorkflow contient une méthode,
startMyWF, pour lancer une nouvelle exécution. Cette méthode est annotée avec @Execute et
doit posséder un type de retour void ou Promise<>. Dans une interface de flux de travail donnée,
une méthode maximum peut être annotée avec cette annotation. Cette méthode constitue le point
d'entrée de la logique de flux de travail, et l'infrastructure appelle cette méthode pour exécuter la
logique de flux de travail lorsqu'une tâche de décision est reçue.

L'interface de flux de travail définit également les signaux qui peuvent être envoyés au flux de
travail. La méthode de signal est appelée lorsqu'un signal avec un nom correspondant est reçu par
l'exécution de flux de travail. Par exemple, l'interface MyWorkflow déclare une méthode de signal,
signal1, annotée avec @Signal.

L'annotation @Signal est requise sur les méthodes de signal. Le type de retour d'une méthode de
signal doit être void. Une interface de flux de travail peut comporter zéro ou plusieurs méthodes de

Contrats de flux de travail et d'activité Version de l'API 2021-04-28 68

AWS Flow Framework pour Java Guide du développeur

signal définies. Vous pouvez déclarer une interface de flux de travail sans une méthode @Execute et
certaines méthodes @Signal pour générer des clients qui ne peuvent pas lancer leur exécution mais
qui peuvent envoyer des signaux pour lancer des exécutions.

Les méthodes annotées avec @Execute et @Signal peuvent disposer d'un nombre de paramètres
de tout type autre que Promise<T> ou ses dérivés. Cela vous permet de transmettre des entrées
fortement typées à une exécution de flux de travail au lancement et pendant l'exécution. Le type de
retour de la méthode @Execute doit être void ou Promise<>.

De plus, vous pouvez également déclarer une méthode dans l'interface de flux de travail pour
signaler le dernier état d'une exécution de flux de travail, par exemple, la méthode getState
de l'exemple précédent. Cet état ne représente pas l'état entier de l'application du flux de travail.
L'utilisation souhaitée de cette fonction est de vous permettre de stocker jusqu'à 32 Ko de données
pour indiquer le dernier état de l'exécution. Par exemple, dans un flux de travail de traitement des
commandes, vous pouvez stocker une chaîne qui indique que la commande a été reçue, traitée
ou annulée. Cette méthode est appelée par l'infrastructure chaque fois qu'une tâche de décision
est terminée pour obtenir le dernier état. L'état est stocké dans Amazon Simple Workflow Service
(Amazon SWF) et peut être récupéré à l'aide du client externe généré. Cela vous permet de vérifier le
dernier état d'une exécution de flux de travail. Les méthodes annotées avec @GetState ne doivent
pas prendre n'importe quel argument et ne doivent pas disposer d'un type de retour void. À partir
de cette méthode, vous pouvez renvoyer n'importe quel type correspondant à vos besoins. Dans
l'exemple ci-dessus, un objet MyWorkflowState (consultez la définition ci-dessous) est renvoyé
par la méthode utilisée pour stocker une chaîne correspondant à l'état et un pourcentage numérique
d'exécution. La méthode est censée effectuer un accès en lecture seule de l'objet d'implémentation
de flux de travail et est appelée de manière synchrone, ce qui n'autorise pas l'utilisation de toute
opération asynchrone comme l'appel de méthodes annotées avec @Asynchronous. Une méthode
maximum dans une interface de flux de travail peut être annotée avec @GetState.

public class MyWorkflowState {
 public String status;
 public int percentComplete;
}

De même, un ensemble d'activités est défini à l'aide d'une interface annotée avec @Activities.
Chaque méthode de l'interface correspond à une activité, par exemple :

@Activities(version = "1.0")
@ActivityRegistrationOptions(

Contrats de flux de travail et d'activité Version de l'API 2021-04-28 69

AWS Flow Framework pour Java Guide du développeur

 defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface MyActivities {
 // Overrides values from annotation found on the interface
 @ActivityRegistrationOptions(description = "This is a sample activity",
 defaultTaskScheduleToStartTimeoutSeconds = 100,
 defaultTaskStartToCloseTimeoutSeconds = 60)
 int activity1();

 void activity2(int a);
}

L'interface vous permet de regrouper un ensemble d'activités associées. Vous pouvez définir
n'importe quel nombre d'activités dans une interface d'activité, et autant d'interfaces d'activité que
vous le souhaitez. De même que pour les méthodes @Execute et @Signal, les méthodes d'activité
peuvent prendre n'importe quel nombre d'arguments de tout type autre que Promise<T> ou ses
dérivés. Le type de retour d'une activité ne doit pas être Promise<T> ou ses dérivés.

Enregistrement des types de flux de travail et d'activité

Amazon SWF exige que les types d'activité et de flux de travail soient enregistrés avant de
pouvoir être utilisés. L'infrastructure enregistre automatiquement les flux de travail et les activités
dans les implémentations que vous ajoutez à l'exécuteur. Le framework recherche les types qui
implémentent des flux de travail et des activités et les enregistre auprès d'Amazon SWF. Par défaut,
l'infrastructure utilise les définitions d'interface pour déduire des options d'enregistrement pour les
types de flux de travail et d'activité. Toutes les interfaces de flux de travail doivent avoir l'annotation
@WorkflowRegistrationOptions ou l'annotation @SkipRegistration. L'exécuteur de flux de
travail enregistre tous les types de flux de travail avec lesquels il est configuré qui ont l'annotation
@WorkflowRegistrationOptions. De même, chaque méthode d'activité doit être annotée
avec l'annotation @ActivityRegistrationOptions ou l'annotation @SkipRegistration,
ou l'une de ces annotations doivent être présente dans l'interface @Activities. L'exécuteur
d'activité enregistre tous les types d'activité avec lesquelles il est configuré auxquelles une
annotation @ActivityRegistrationOptions s'applique. L'enregistrement est effectué
automatiquement lorsque vous démarrez l'un des exécuteurs. Les flux de travail et types
d'activité ayant l'annotation @SkipRegistration ne sont pas enregistrés. Les annotations
@ActivityRegistrationOptions et @SkipRegistration remplacent les annotations
sémantiques et la plus spécifique est appliquée à un type d'activité.

Enregistrement des types de flux de travail et d'activité Version de l'API 2021-04-28 70

AWS Flow Framework pour Java Guide du développeur

Notez qu'Amazon SWF ne vous permet pas de réenregistrer ou de modifier le type une fois celui-ci
enregistré. L'infrastructure tente d'enregistrer tous les types, mais si le type est déjà enregistré, celui-
ci n'est pas réenregistré et aucune erreur n'est signalée.

Si vous devez modifier des paramètres enregistrés, vous devez enregistrer une nouvelle version
du type. Vous pouvez également remplacer des paramètres enregistrés quand vous démarrez une
nouvelle exécution ou quand vous appelez une activité qui utilise les clients générés.

L'enregistrement nécessite un nom de type et d'autres options d'enregistrement. L'implémentation par
défaut détermine ces options comme suit :

Nom et version de type de flux de travail

L'infrastructure détermine le nom du type de flux de travail à partir de l'interface de flux de travail.
La forme du nom du type de flux de travail par défaut est {prefix} {name}. Le {prefix} est
défini sur le nom de l'@Workflowinterface suivi d'un «. » et le {name} est défini sur le nom de la
@Execute méthode. Le nom par défaut du type de flux de travail dans l'exemple précédent est
MyWorkflow.startMyWF. Vous pouvez remplacer le nom par défaut à l'aide du paramètre de
nom de la méthode @Execute. Le nom par défaut du type de flux de travail dans l'exemple est
startMyWF. Le nom ne doit pas être une chaîne vide. Notez que lorsque vous remplacez le nom
à l'aide de la méthode @Execute, l'infrastructure ne le fait pas précéder automatiquement par une
préfixe. Vous êtes libre d'utiliser votre propre schéma d'attribution de noms.

La version de flux de travail est spécifiée à l'aide du paramètre version de l'annotation @Execute. Il
n'existe pas de valeur par défaut pour version et celle-ci doit être spécifiée explicitement ; version
est une chaîne de forme libre, et vous pouvez utiliser votre propre schéma de gestion des versions.

Nom du signal

La nom du signal peut être spécifié à l'aide du paramètre de nom de l'annotation @Signal. S'il n'est
pas spécifié, il prend par défaut le nom de la méthode signal.

Nom et version de type de flux d'activité

L'infrastructure détermine le nom du type d'activité à partir de l'interface d'activités. La forme du
nom du type d'activité par défaut est {prefix} {name}. Le {prefix} est défini sur le nom de
l'@Activitiesinterface suivi d'un «. » et le {name} est défini sur le nom de la méthode. La valeur
par défaut {prefix} peut être remplacée dans l'@Activitiesannotation de l'interface des activités.
Vous pouvez également spécifier le nom de type d'activité à l'aide de l'annotation @Activity sur la
méthode d'activité. Notez que lorsque vous remplacez le nom à l'aide de la méthode @Activity,

Nom et version de type de flux de travail Version de l'API 2021-04-28 71

AWS Flow Framework pour Java Guide du développeur

l'infrastructure ne le fera pas précéder automatiquement par une préfixe. Vous êtes libre d'utiliser
votre propre schéma d'attribution de noms.

La version d'activité est spécifiée à l'aide du paramètre de version de l'annotation @Activities.
Cette version est utilisée comme version par défaut pour toutes les activités définies dans l'interface
et peut être remplacée pour une activité individuelle à l'aide de l'annotation @Activity.

Default Task List

La liste de tâches par défaut peut être configurée en utilisant les annotations
@WorkflowRegistrationOptions et @ActivityRegistrationOptions, et en définissant
le paramètre defaultTaskList. Par défaut, l’attribut est défini sur USE_WORKER_TASK_LIST.
Il s'agit d'une valeur spéciale qui demande à l'infrastructure d'utiliser la liste de tâches configurée
sur l'exécuteur qui est utilisé pour enregistrer le type d'activité ou de flux de travail. Vous pouvez
également choisir de ne pas enregistrer de liste de tâches par défaut en définissant la liste de tâches
par défaut sur NO_DEFAULT_TASK_LIST à l'aide de ces annotations. Vous pouvez utiliser cette
option si vous souhaitez que la liste de tâches soit spécifiée lors de l'exécution. Si aucune liste de
tâches n'a été enregistrée, vous devez spécifier la liste de tâches lorsque vous démarrez le flux de
travail ou que vous appelez la méthode d'activité à l'aide des paramètres StartWorkflowOptions
et ActivitySchedulingOptions sur la surcharge des méthodes respectives du client généré.

Autres options d'enregistrement

Toutes les options d'enregistrement des flux de travail et des types d'activités autorisées par l'API
Amazon SWF peuvent être spécifiées via le framework.

Pour accéder à une liste complète des options d'enregistrement de flux de travail, consultez les
sections suivantes :

• @Flux de travail

• @Execute

• @WorkflowRegistrationOptions

• @Signal

Pour accéder à une liste complète des options d'enregistrement d'activité, consultez les sections
suivantes :

• @Activité

Default Task List Version de l'API 2021-04-28 72

AWS Flow Framework pour Java Guide du développeur

• @Activités

• @ActivityRegistrationOptions

Si vous voulez exercer un contrôle complet sur le type d'enregistrement, consultez Extensibilité de
l'exécuteur.

Clients d'activité et de flux de travail
Les clients d'activité et de flux de travail sont générés par l'infrastructure sur la base des interfaces
@Workflow et @Activities. Des interfaces client séparées sont générées. Elles contiennent
des méthodes et des paramètres qui n'ont de sens que pour le client. Si vous développez à l'aide
d'Eclipse, cela est effectué par le plug-in Amazon SWF Eclipse chaque fois que vous enregistrez
le fichier contenant l'interface appropriée. Le code généré est placé dans le répertoire des sources
générées de votre projet, dans le même package que l'interface.

Note

Notez que le nom de répertoire par défaut utilisé par Eclipse est .apt_generated. Eclipse
ne montre pas les répertoires dont le nom commence par un « . » dans Package Explorer.
Utilisez un autre nom de répertoire pour afficher les fichiers générés dans Project Explorer.
Dans Eclipse, cliquez avec le bouton droit sur le package dans Package Explorer,
sélectionnez Properties (Propriétés), Java Compiler (Compilateur Java), Annotation
processing (Traitement des annotations), puis modifiez le paramètre Generate source
directory (Générer le répertoire des sources).

Clients de flux de travail

Les artefacts générés pour le flux de travail contiennent trois interfaces côté client et les classes qui
les implémentent. Les clients générés sont les suivants :

• Un client asynchrone destiné à être consommé à partir d'une implémentation de flux de travail qui
fournit des méthodes asynchrones pour démarrer les exécutions de flux de travail et envoyer des
signaux

• Un client externe qui peut être utilisé pour démarrer des exécutions, envoyer des signaux et
récupérer l'état du flux de travail en dehors du cadre d'une implémentation de flux de travail

• Un client auto-généré qui peut être utilisé pour créer des flux de travail continus

Clients d'activité et de flux de travail Version de l'API 2021-04-28 73

AWS Flow Framework pour Java Guide du développeur

Par exemple, les interfaces client générées pour l'exemple d'interface MyWorkflow sont :

//Client for use from within a workflow
public interface MyWorkflowClient extends WorkflowClient
{
 Promise<Void> startMyWF(
 int a, String b);

 Promise<Void> startMyWF(
 int a, String b,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 void signal1(
 int a, int b, String c);
}

//External client for use outside workflows
public interface MyWorkflowClientExternal extends WorkflowClientExternal
{
 void startMyWF(
 int a, String b);

 void startMyWF(
 int a, String b,

Clients de flux de travail Version de l'API 2021-04-28 74

AWS Flow Framework pour Java Guide du développeur

 StartWorkflowOptions optionsOverride);

 void signal1(
 int a, int b, String c);

 MyWorkflowState getState();
}

//self client for creating continuous workflows
public interface MyWorkflowSelfClient extends WorkflowSelfClient
{
 void startMyWF(
 int a, String b);

 void startMyWF(
 int a, String b,
 Promise<?>... waitFor);

 void startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

Les interfaces ont des méthodes surchargées correspondant à chaque méthode dans l'interface
@Workflow que vous avez déclarée.

Le client externe reflète les méthodes de l'interface @Workflow avec une surcharge supplémentaire
de la méthode @Execute qui prend StartWorkflowOptions. Vous pouvez utiliser cette surcharge

Clients de flux de travail Version de l'API 2021-04-28 75

AWS Flow Framework pour Java Guide du développeur

pour transmettre des options supplémentaires lors du lancement d'une nouvelle exécution de flux de
travail. Ces options vous permettent de remplacer la liste de tâches par défaut, les paramètres de
délai d'attente et d'associer des balises à l'exécution du flux de travail.

D'autre part, le client asynchrone dispose de méthodes qui permettent d'effectuer un appel
asynchrone de la méthode @Execute. Les surcharges de méthode suivantes sont générées dans
l'interface client pour la méthode @Execute dans l'interface de flux de travail :

1. Une surcharge qui prend les arguments initiaux en l'état. Le type de retour de cette surcharge
sera Promise<Void> si la méthode initiale a renvoyé void. Sinon, ce sera Promise<>, tel que
déclaré sur la méthode initiale. Par exemple :

Méthode initiale :

void startMyWF(int a, String b);

Méthode générée :

Promise<Void> startMyWF(int a, String b);

Cette surcharge doit être utilisée lorsque tous les arguments du flux de travail sont disponibles et
qu'il n'est pas nécessaire de les attendre.

2. Une surcharge qui prend les arguments initiaux en l'état et des arguments variables
supplémentaires de type Promise<?>. Le type de retour de cette surcharge sera
Promise<Void> si la méthode initiale a renvoyé void. Sinon, ce sera Promise<>, tel que
déclaré sur la méthode initiale. Par exemple :

Méthode initiale :

void startMyWF(int a, String b);

Méthode générée :

Promise<void> startMyWF(int a, String b, Promise<?>...waitFor);

Cette surcharge doit être utilisée lorsque tous les arguments du flux de travail sont disponibles
et qu'il n'est pas nécessaire de les attendre, mais que vous voulez attendre que d'autres objets
Promise soient prêts. L'argument variable peut être utilisé pour transmettre ces objets Promise<?

Clients de flux de travail Version de l'API 2021-04-28 76

AWS Flow Framework pour Java Guide du développeur

> qui n'ont pas été déclarés comme arguments, mais que vous voulez attendre avant d'exécuter
l'appel.

3. Une surcharge qui prend les arguments initiaux en l'état, un argument supplémentaire de type
StartWorkflowOptions et des arguments variables supplémentaires de type Promise<?>.
Le type de retour de cette surcharge sera Promise<Void> si la méthode initiale a renvoyé void.
Sinon, ce sera Promise<>, tel que déclaré sur la méthode initiale. Par exemple :

Méthode initiale :

void startMyWF(int a, String b);

Méthode générée :

Promise<void> startMyWF(
 int a,
 String b,
 StartWorkflowOptions optionOverrides,
 Promise<?>...waitFor);

Cette surcharge doit être utilisée lorsque tous les arguments du flux de travail sont disponibles
et qu'il n'est pas nécessaire de les attendre, lorsque vous voulez remplacer les paramètres par
défaut utilisés pour démarrer l'exécution du flux de travail ou lorsque vous voulez attendre que
d'autres objets Promise soient prêts. L'argument variable peut être utilisé pour transmettre ces
objets Promise<?> qui n'ont pas été déclarés comme arguments, mais que vous voulez attendre
avant d'exécuter l'appel.

4. Une surcharge dont chaque argument de la méthode initiale est remplacé par un wrapper
Promise<>. Le type de retour de cette surcharge sera Promise<Void> si la méthode initiale a
renvoyé void. Sinon, ce sera Promise<>, tel que déclaré sur la méthode initiale. Par exemple :

Méthode initiale :

void startMyWF(int a, String b);

Méthode générée :

Promise<Void> startMyWF(
 Promise<Integer> a,

Clients de flux de travail Version de l'API 2021-04-28 77

AWS Flow Framework pour Java Guide du développeur

 Promise<String> b);

Cette surcharge doit être utilisée lorsque les arguments à transmettre pour l'exécution du flux de
travail doivent être évalués de manière asynchrone. Un appel à cette surcharge de méthode sera
exécuté uniquement lorsque tous les arguments qui lui auront été transmis seront prêts.

Si certains arguments sont déjà prêts, convertissez-les en un Promise qui est déjà prêt à l'aide de
la méthode Promise.asPromise(value). Par exemple :

Promise<Integer> a = getA();
String b = getB();
startMyWF(a, Promise.asPromise(b));

5. Une surcharge dont chaque argument de la méthode initiale est remplacé par un wrapper
Promise<>. La surcharge a aussi des arguments variables supplémentaires de type Promise<?
>. Le type de retour de cette surcharge sera Promise<Void> si la méthode initiale a renvoyé
void. Sinon, ce sera Promise<>, tel que déclaré sur la méthode initiale. Par exemple :

Méthode initiale :

void startMyWF(int a, String b);

Méthode générée :

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>...waitFor);

Cette surcharge doit être utilisée lorsque les arguments à transmettre à l'exécution du flux de
travail doivent être évalués de manière asynchrone et que vous voulez attendre que d'autres
objets Promise soient également prêts. Un appel à cette surcharge de méthode sera exécuté
uniquement lorsque tous les arguments qui lui auront été transmis seront prêts.

6. Une surcharge dont chaque argument de la méthode initiale est remplacé par un
wrapper Promise<?>. La surcharge a aussi un argument supplémentaire de type
StartWorkflowOptions et des arguments variables de type Promise<?>. Le type de retour
de cette surcharge sera Promise<Void> si la méthode initiale a renvoyé void. Sinon, ce sera
Promise<>, tel que déclaré sur la méthode initiale. Par exemple :

Clients de flux de travail Version de l'API 2021-04-28 78

AWS Flow Framework pour Java Guide du développeur

Méthode initiale :

void startMyWF(int a, String b);

Méthode générée :

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionOverrides,
 Promise<?>...waitFor);

Utilisez cette surcharge lorsque les arguments à transmettre pour l'exécution du flux de travail
seront évalués de manière asynchrone et que vous souhaitez remplacer les paramètres par défaut
utilisés pour lancer l'exécution du flux de travail. Un appel à cette surcharge de méthode sera
exécuté uniquement lorsque tous les arguments qui lui auront été transmis seront prêts.

Une méthode est également générée correspondant à chaque signal de l'interface du flux de travail,
par exemple :

Méthode initiale :

void signal1(int a, int b, String c);

Méthode générée :

void signal1(int a, int b, String c);

Le client asynchrone ne contient pas de méthode correspondant à la méthode annotée avec
@GetState dans l'interface initiale. Comme la récupération de l'état nécessite un appel de service
Web, elle n'est pas adaptée à une utilisation dans un flux de travail. C'est pourquoi elle n'est fournie
que par l'intermédiaire du client externe.

Le client auto-généré est destiné à être utilisé depuis un flux de travail pour démarrer une nouvelle
exécution à la fin de l'exécution en cours. Les méthodes sur ce client sont similaires à celles qui
sont utilisées sur le client asynchrone, mais elles renvoient void. Ce client n'a pas de méthodes

Clients de flux de travail Version de l'API 2021-04-28 79

AWS Flow Framework pour Java Guide du développeur

correspondant aux méthodes annotées avec @Signal et @GetState. Pour plus de détails,
consultez Flux de travail continus.

Les clients générés dérivent des interfaces de base WorkflowClient et
WorkflowClientExternal, respectivement. Elles fournissent des méthodes que vous pouvez
utiliser pour annuler ou interrompre l'exécution du flux de travail. Pour plus de détails sur ces
interfaces, consultez la documentation AWS SDK pour Java .

Les clients générés vous permettent d'interagir avec les exécutions de flux de travail d'une manière
fortement typée. Une fois créée, une instance d'un client généré est liée à une exécution de flux de
travail spécifique et ne peut être utilisée que pour cette exécution. En outre, l'infrastructure fournit
également des clients dynamiques qui ne sont pas propres à une exécution ou à un type de flux de
travail. Les clients générés s'appuient sur ce client. Vous pouvez également utiliser directement ces
clients. Consultez la section Clients dynamiques.

L'infrastructure génère également des fabriques pour la création de clients fortement typés. Les
fabriques de clients générées pour l'exemple d'interface MyWorkflow sont :

//Factory for clients to be used from within a workflow
public interface MyWorkflowClientFactory
 extends WorkflowClientFactory<MyWorkflowClient>
{
}

//Factory for clients to be used outside the scope of a workflow
public interface MyWorkflowClientExternalFactory
{
 GenericWorkflowClientExternal getGenericClient();
 void setGenericClient(GenericWorkflowClientExternal genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);
 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 MyWorkflowClientExternal getClient();
 MyWorkflowClientExternal getClient(String workflowId);
 MyWorkflowClientExternal getClient(WorkflowExecution workflowExecution);
 MyWorkflowClientExternal getClient(
 WorkflowExecution workflowExecution,
 GenericWorkflowClientExternal genericClient,
 DataConverter dataConverter,
 StartWorkflowOptions options);

Clients de flux de travail Version de l'API 2021-04-28 80

AWS Flow Framework pour Java Guide du développeur

}

L'interface de base WorkflowClientFactory est :

public interface WorkflowClientFactory<T> {
 GenericWorkflowClient getGenericClient();
 void setGenericClient(GenericWorkflowClient genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);
 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 T getClient();
 T getClient(String workflowId);
 T getClient(WorkflowExecution execution);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options,
 DataConverter dataConverter);
}

Il est conseillé d'utiliser ces fabriques pour créer des instances du client. La fabrique vous permet
de configurer le client générique (celui-ci doit être utilisé pour fournir une implémentation client
personnalisée). DataConverter doit, pour sa part, être utilisé par le client pour rassembler
les données, ainsi que les options utilisées pour démarrer l'exécution du flux de travail. Pour
en savoir plus, consultez les sections DataConverters et Exécutions de flux de travail enfant.
StartWorkflowOptionsIl contient des paramètres que vous pouvez utiliser pour remplacer les
valeurs par défaut, par exemple les délais d'expiration, spécifiées au moment de l'enregistrement.
Pour plus de détails sur la StartWorkflowOptions classe, consultez la AWS SDK pour Java
documentation.

Le client externe peut être utilisé pour lancer des exécutions de flux de travail en dehors d'un tel flux,
tandis que le client asynchrone peut être utilisé pour lancer une exécution de flux de travail à partir du
code inscrit dans un tel flux. Pour lancer une exécution, il suffit d'utiliser le client généré pour appeler
la méthode qui correspond à la méthode annotée avec @Execute dans l'interface de flux de travail.

L'infrastructure génère également des classes d'implémentation pour les interfaces client. Ces clients
créent et envoient des demandes à Amazon SWF pour effectuer l'action appropriée. La version client
de la @Execute méthode lance une nouvelle exécution de flux de travail ou crée une exécution de

Clients de flux de travail Version de l'API 2021-04-28 81

AWS Flow Framework pour Java Guide du développeur

flux de travail secondaire à l'aide d'Amazon SWF APIs. De même, la version client de la @Signal
méthode utilise Amazon SWF APIs pour envoyer un signal.

Note

Le client de flux de travail externe doit être configuré avec le client et le domaine Amazon
SWF. Vous pouvez soit utiliser le constructeur client factory qui les prend en tant que
paramètres, soit transmettre une implémentation client générique déjà configurée avec le
client et le domaine Amazon SWF.
L'infrastructure suit la hiérarchie des types de l'interface de flux de travail. Elle génère
également des interfaces client pour les interfaces de flux de travail parent et en dérive.

Clients d'activité

Comme pour le client de flux de travail, un client est généré pour chaque interface annotée avec
@Activities. Les artefacts générés incluent une interface côté client et une classe client.
L'interface générée pour l'exemple d'interface @Activities ci-dessus (MyActivities) est la
suivante :

public interface MyActivitiesClient extends ActivitiesClient
{
 Promise<Integer> activity1();
 Promise<Integer> activity1(Promise<?>... waitFor);
 Promise<Integer> activity1(ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(int a);
 Promise<Void> activity2(int a,
 Promise<?>... waitFor);
 Promise<Void> activity2(int a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a);
 Promise<Void> activity2(Promise<Integer> a,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
}

Clients d'activité Version de l'API 2021-04-28 82

AWS Flow Framework pour Java Guide du développeur

L'interface contient un ensemble de méthodes surchargées correspondant à chaque méthode
d'activité dans l'interface @Activities. Ces surcharges sont fournies pour des raisons pratiques
et permettent des activités d'appel asynchrones. Pour chaque méthode d'activité de l'interface
@Activities, les surcharges de méthode suivantes sont générées dans l'interface client :

1. Une surcharge qui prend les arguments initiaux en l'état. Le type de retour de cette surcharge est
Promise<T>, où T est le type de retour de la méthode initiale. Par exemple :

Méthode initiale :

void activity2(int foo);

Méthode générée :

Promise<Void> activity2(int foo);

Cette surcharge doit être utilisée lorsque tous les arguments du flux de travail sont disponibles et
qu'il n'est pas nécessaire de les attendre.

2. Une surcharge qui prend les arguments initiaux en l'état, un argument de type
ActivitySchedulingOptions et des arguments variables supplémentaires de type
Promise<?>. Le type de retour de cette surcharge est Promise<T>, où T est le type de retour de
la méthode initiale. Par exemple :

Méthode initiale :

void activity2(int foo);

Méthode générée :

Promise<Void> activity2(
 int foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);

Cette surcharge doit être utilisée lorsque tous les arguments du flux de travail sont disponibles
et qu'il n'est pas nécessaire de les attendre, lorsque vous voulez remplacer les paramètres
par défaut, ou lorsque vous voulez attendre que des objets Promise supplémentaires soient
prêts. Les arguments variables peuvent être utilisés pour transmettre des objets Promise<?>

Clients d'activité Version de l'API 2021-04-28 83

AWS Flow Framework pour Java Guide du développeur

supplémentaires qui n'ont pas été déclarés comme arguments, mais que vous voulez attendre
avant d'exécuter l'appel.

3. Une surcharge dont chaque argument de la méthode initiale est remplacé par un wrapper
Promise<>. Le type de retour de cette surcharge est Promise<T>, où T est le type de retour de
la méthode initiale. Par exemple :

Méthode initiale :

void activity2(int foo);

Méthode générée :

Promise<Void> activity2(Promise<Integer> foo);

Cette surcharge doit être utilisée lorsque les arguments à transmettre à l'activité seront évalués de
manière asynchrone. Un appel à cette surcharge de méthode sera exécuté uniquement lorsque
tous les arguments qui lui auront été transmis seront prêts.

4. Une surcharge dont chaque argument de la méthode initiale est remplacé par un
wrapper Promise<>. La surcharge a aussi un argument supplémentaire de type
ActivitySchedulingOptions et des arguments variables de type Promise<?>. Le type de
retour de cette surcharge est Promise<T>, où T est le type de retour de la méthode initiale. Par
exemple :

Méthode initiale :

void activity2(int foo);

Méthode générée :

Promise<Void> activity2(
 Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

Cette surcharge doit être utilisée lorsque les arguments à transmettre à l'activité seront évalués de
manière asynchrone, lorsque vous voulez remplacer les paramètres par défaut enregistrés avec
le type, ou lorsque vous voulez attendre que des objets Promise supplémentaires soient prêts.

Clients d'activité Version de l'API 2021-04-28 84

AWS Flow Framework pour Java Guide du développeur

Un appel à cette surcharge de méthode sera exécuté uniquement lorsque tous les arguments
qui lui auront été transmis seront prêts. La classe du client généré implémente cette interface.
L'implémentation de chaque méthode d'interface crée et envoie une demande à Amazon SWF
pour planifier une tâche d'activité du type approprié à l'aide d'Amazon SWF. APIs

5. Une surcharge qui prend les arguments initiaux en l'état et des arguments variables
supplémentaires de type Promise<?>. Le type de retour de cette surcharge est Promise<T>, où
T est le type de retour de la méthode initiale. Par exemple :

Méthode initiale :

void activity2(int foo);

Méthode générée :

Promise< Void > activity2(int foo,
 Promise<?>...waitFor);

Cette surcharge doit être utilisée lorsque tous les arguments de l'activité sont disponibles et qu'il
n'est pas nécessaire de les attendre, mais que vous voulez attendre que d'autres objets Promise
soient prêts.

6. Une surcharge dont chaque argument de la méthode initiale est remplacé par un wrapper
Promise et avec des arguments variables supplémentaires de type Promise<?>. Le type de
retour de cette surcharge est Promise<T>, où T est le type de retour de la méthode initiale. Par
exemple :

Méthode initiale :

void activity2(int foo);

Méthode générée :

Promise<Void> activity2(
 Promise<Integer> foo,
 Promise<?>... waitFor);

Cette surcharge doit être utilisée lorsque tous les arguments de l'activité font l'objet d'une attente
asynchrone et que vous voulez aussi attendre que d'autres Promise soient prêts. Un appel à

Clients d'activité Version de l'API 2021-04-28 85

AWS Flow Framework pour Java Guide du développeur

cette surcharge de méthode s'exécutera de manière asynchrone lorsque tous les objets Promise
transmis seront prêts.

Le client d'activité généré possède également une méthode protégée correspondant à chaque
méthode d'activité, nommée {activity method name}Impl(), que toutes les surcharges
d'activité appellent. Vous pouvez remplacer cette méthode pour créer des implémentations client
factices. Cette méthode prend comme arguments tous les arguments de la méthode initiale dans
les wrappers Promise<>, ActivitySchedulingOptions, et les arguments variables de type
Promise<?>. Par exemple :

Méthode initiale :

void activity2(int foo);

Méthode générée :

Promise<Void> activity2Impl(
 Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

Options de planification

Le client d'activité généré vous permet de transmettre ActivitySchedulingOptions comme
argument. La ActivitySchedulingOptions structure contient des paramètres qui déterminent
la configuration de la tâche d'activité planifiée par le framework dans Amazon SWF. Ces paramètres
remplacent les valeurs par défaut qui sont spécifiées comme options d'enregistrement. Pour spécifier
dynamiquement les options de planification, créez un objet ActivitySchedulingOptions,
configurez-le comme vous le souhaitez et transmettez-le à la méthode d'activité. Dans l'exemple
suivant, nous avons spécifié la liste des tâches à utiliser pour la tâche d'activité. Elle remplacera la
liste des tâches enregistrées par défaut pour cet appel de l'activité.

public class OrderProcessingWorkflowImpl implements OrderProcessingWorkflow {

 OrderProcessingActivitiesClient activitiesClient
 = new OrderProcessingActivitiesClientImpl();

 // Workflow entry point
 @Override

Options de planification Version de l'API 2021-04-28 86

AWS Flow Framework pour Java Guide du développeur

 public void processOrder(Order order) {
 Promise<Void> paymentProcessed = activitiesClient.processPayment(order);
 ActivitySchedulingOptions schedulingOptions
 = new ActivitySchedulingOptions();
 if (order.getLocation() == "Japan") {
 schedulingOptions.setTaskList("TasklistAsia");
 } else {
 schedulingOptions.setTaskList("TasklistNorthAmerica");
 }

 activitiesClient.shipOrder(order,
 schedulingOptions,
 paymentProcessed);
 }
}

Clients dynamiques

Outre les clients générés, le framework fournit également des clients à usage général
DynamicActivityClient (DynamicWorkflowClientet) que vous pouvez utiliser pour démarrer
dynamiquement des exécutions de flux de travail, envoyer des signaux, planifier des activités,
etc. Par exemple, vous pouvez planifier une activité dont le type n'est pas connu au moment de la
conception. Vous pouvez utiliser DynamicActivityClient pour planifier une telle tâche d'activité.
De même, vous pouvez planifier dynamiquement l'exécution d'un flux de travail enfant en utilisant
DynamicWorkflowClient. Dans l'exemple suivant, le flux de travail recherche l'activité dans une
base de données et utilise le client d'activité dynamique pour la planifier :

//Workflow entrypoint
@Override
public void start() {
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<ActivityType> activityType
 = client.lookUpActivityFromDB();
 Promise<String> input = client.getInput(activityType);
 scheduleDynamicActivity(activityType,
 input);
}
@Asynchronous
void scheduleDynamicActivity(Promise<ActivityType> type,
 Promise<String> input){
 Promise<?>[] args = new Promise<?>[1];
 args[0] = input;

Clients dynamiques Version de l'API 2021-04-28 87

AWS Flow Framework pour Java Guide du développeur

 DynamicActivitiesClient activityClient
 = new DynamicActivitiesClientImpl();
 activityClient.scheduleActivity(type.get(),
 args,
 null,
 Void.class);
}

Pour plus de détails, consultez la AWS SDK pour Java documentation.

Signalisation et annulation des exécutions de flux de travail

Le client de flux de travail généré possède des méthodes correspondant à chaque signal qui peut
être envoyé au flux. Vous pouvez les utiliser à partir d'un flux de travail pour envoyer des signaux
à d'autres exécutions de flux de travail. Ceci fournit un mécanisme typé pour l'envoi de signaux.
Cependant, vous devrez parfois déterminer dynamiquement le nom du signal, par exemple lorsque le
nom du signal est reçu dans un message. Dans ce cas, vous pouvez utiliser le client de flux de travail
dynamique pour envoyer dynamiquement des signaux à n'importe quelle exécution de flux de travail.
De même, vous pouvez utiliser le client pour demander l'annulation d'une autre exécution de flux de
travail.

Dans l'exemple suivant, le flux de travail recherche l'exécution à laquelle envoyer un signal à partir
d'une base de données et envoie le signal dynamiquement en utilisant le client de flux de travail
dynamique.

//Workflow entrypoint
public void start()
{
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<WorkflowExecution> execution = client.lookUpExecutionInDB();
 Promise<String> signalName = client.getSignalToSend();
 Promise<String> input = client.getInput(signalName);
 sendDynamicSignal(execution, signalName, input);
}

@Asynchronous
void sendDynamicSignal(
 Promise<WorkflowExecution> execution,
 Promise<String> signalName,
 Promise<String> input)
{
 DynamicWorkflowClient workflowClient

Clients dynamiques Version de l'API 2021-04-28 88

AWS Flow Framework pour Java Guide du développeur

 = new DynamicWorkflowClientImpl(execution.get());
 Object[] args = new Promise<?>[1];
 args[0] = input.get();
 workflowClient.signalWorkflowExecution(signalName.get(), args);
}

Implémentation de flux de travail

Afin d'implémenter un flux de travail, vous écrivez une classe qui implémente l'interface @Workflow
souhaitée. Par exemple, l'exemple d'interface de flux de travail (MyWorkflow) peut être implémentée
comme suit :

public class MyWFImpl implements MyWorkflow
{
 MyActivitiesClient client = new MyActivitiesClientImpl();
 @Override
 public void startMyWF(int a, String b){
 Promise<Integer> result = client.activity1();
 client.activity2(result);
 }
 @Override
 public void signal1(int a, int b, String c){
 //Process signal
 client.activity2(a + b);
 }
}

La méthode @Execute dans cette classe est le point d'entrée de la logique de flux de travail. Comme
le framework utilise le replay pour reconstruire l'état de l'objet lorsqu'une tâche de décision doit être
traitée, un nouvel objet est créé pour chaque tâche de décision.

L'utilisation de Promise<T> en tant que paramètre n'est pas autorisée dans la méthode @Execute
au sein d'une interface @Workflow, car la décision d'effectuer un appel asynchrone repose
entièrement sur l'appelant. L'implémentation de flux de travail en elle-même ne varie pas selon
que l'appel est synchrone ou asynchrone. Par conséquent, l'interface client générée possède
des surcharges qui prennent des paramètres Promise<T>, afin que ces méthodes puissent être
appelées de manière asynchrone.

Le type de retour d'une méthode @Execute peut uniquement être void ou Promise<T>. Notez que
le type de retour du client externe correspondant est void et non pas Promise<>. Comme le client

Implémentation de flux de travail Version de l'API 2021-04-28 89

AWS Flow Framework pour Java Guide du développeur

externe n'est pas destiné à être utilisé à partir du code asynchrone, il ne renvoie Promise aucun
objet. Pour obtenir les résultats des exécutions de flux de travail définies en externe, vous pouvez
concevoir le flux de travail de manière à mettre à jour l'état dans un magasin de données externe par
le biais d'une activité. La visibilité d'Amazon SWF APIs peut également être utilisée pour récupérer le
résultat d'un flux de travail à des fins de diagnostic. Il n'est généralement pas recommandé d'utiliser
la visibilité APIs pour récupérer les résultats des exécutions de flux de travail, car ces appels d'API
peuvent être limités par Amazon SWF. La visibilité vous APIs oblige à identifier l'exécution du flux de
travail à l'aide d'une WorkflowExecution structure. Vous pouvez récupérer cette structure auprès
du client de flux de travail généré en appelant la méthode getWorkflowExecution. Cette méthode
renvoie la structure WorkflowExecution correspondant à l'exécution de flux de travail à laquelle
le client est lié. Consultez le manuel Amazon Simple Workflow Service API Reference pour plus de
détails sur la visibilité APIs.

Lorsque vous appelez des activités à partir de l'implémentation de votre flux de travail, vous devez
utiliser le client d'activité généré. De même, pour envoyer des signaux, vous utilisez les clients de flux
de travail générés.

Contexte décisionnel

L'infrastructure fournit un contexte ambiant chaque fois qu'un code de flux de travail est exécuté
par l'infrastructure. Ce contexte fournit une fonctionnalité propre au contexte à laquelle vous pouvez
accéder dans l'implémentation de votre flux de travail, comme la création d'un minuteur. Pour plus
d'informations, consultez la section Contexte d'exécution.

Exposition de l'état d'exécution

Amazon SWF vous permet d'ajouter un état personnalisé dans l'historique du flux de travail. Le
dernier état signalé par l'exécution du flux de travail vous est renvoyé par le biais d'appels de
visibilité adressés au service Amazon SWF et dans la console Amazon SWF. Par exemple, dans
un flux de travail de traitement des commandes, vous pouvez signaler l'état de la commande à
différentes étapes tel que « commande reçue », « commande expédiée », etc. Dans le cas AWS
Flow Framework de Java, cela se fait par le biais d'une méthode sur votre interface de flux de
travail annotée avec l'@GetStateannotation. Lorsque le décideur a terminé de traiter une tâche de
décision, il appelle cette méthode pour récupérer le dernier état de l'implémentation de flux de travail.
Outre les appels de visibilité, l'état peut également être récupéré à l'aide du client externe généré (qui
utilise les appels de visibilité en interne).

L'exemple suivant montre comment définir le contexte d'exécution.

Contexte décisionnel Version de l'API 2021-04-28 90

https://docs.aws.amazon.com/amazonswf/latest/apireference/

AWS Flow Framework pour Java Guide du développeur

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();

 @GetState
 String getState();
}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();

}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 private PeriodicActivityClient activityClient
 = new PeriodicActivityClientImpl();

 private String state;

 @Override
 public void periodicWorkflow() {
 state = "Just Started";
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor)
 {

Exposition de l'état d'exécution Version de l'API 2021-04-28 91

AWS Flow Framework pour Java Guide du développeur

 if(count == 100) {
 state = "Finished Processing";
 return;
 }

 // call activity
 activityClient.activity1();

 // Repeat the activity after 1 hour.
 Promise<Void> timer = clock.createTimer(3600);
 state = "Waiting for timer to fire. Count = "+count;
 callPeriodicActivity(count+1, timer);
 }

 @Override
 public String getState() {
 return state;
 }
}

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public static void activity1()
 {
 ...
 }
}

Le client externe généré peut être utilisé pour récupérer à tout moment le dernier état de l'exécution
de flux de travail.

PeriodicWorkflowClientExternal client
 = new PeriodicWorkflowClientExternalFactoryImpl().getClient();
System.out.println(client.getState());

Dans l'exemple ci-dessus, l'état d'exécution est signalé à différentes étapes. Lorsque l'instance de
flux de travail démarre, periodicWorkflow signale l'état initial comme « Just Started » (Vient de
démarrer). Chaque appel à callPeriodicActivity met à jour l'état de flux de travail. Une fois
que activity1 a été appelé 100 fois, la méthode est renvoyée et l'instance de flux de travail se
termine.

Exposition de l'état d'exécution Version de l'API 2021-04-28 92

AWS Flow Framework pour Java Guide du développeur

Locales de flux de travail

Il arrive que vous ayez besoin d'utiliser des variables statiques dans l'implémentation de votre flux
de travail. Par exemple, il se peut que vous souhaitiez stocker un compteur accessible depuis
plusieurs emplacements (éventuellement différentes classes) dans l'implémentation de flux de
travail. Toutefois, vous ne pouvez pas compter sur les variables statiques de votre flux de travail
car ces dernières sont partagées entre les threads, ce qui pose problème car un exécuteur peut
traiter différentes tâches décisionnelles sur différents threads au même moment. Vous pouvez
également stocker un tel état dans un champ sur l'implémentation de flux de travail, mais vous aurez
ensuite besoin de distribuer l'objet d'implémentation. Pour répondre à ce besoin, l'infrastructure
fournit une classe WorkflowExecutionLocal<?>. N'importe quel état ayant besoin d'une variable
statique, comme des sémantiques, doit être conservé en tant que locale d'instance à l'aide de
WorkflowExecutionLocal<?>. Vous pouvez déclarer et utiliser une variable statique de ce type.
Par exemple, dans le code suivant, un objet WorkflowExecutionLocal<String> est utilisé pour
stocker un nom d'utilisateur.

public class MyWFImpl implements MyWF {
 public static WorkflowExecutionLocal<String> username
 = new WorkflowExecutionLocal<String>();

 @Override
 public void start(String username){
 this.username.set(username);
 Processor p = new Processor();
 p.updateLastLogin();
 p.greetUser();
 }

 public static WorkflowExecutionLocal<String> getUsername() {
 return username;
 }

 public static void setUsername(WorkflowExecutionLocal<String> username) {
 MyWFImpl.username = username;
 }
}

public class Processor {
 void updateLastLogin(){
 UserActivitiesClient c = new UserActivitiesClientImpl();
 c.refreshLastLogin(MyWFImpl.getUsername().get());

Locales de flux de travail Version de l'API 2021-04-28 93

AWS Flow Framework pour Java Guide du développeur

 }
 void greetUser(){
 GreetingActivitiesClient c = new GreetingActivitiesClientImpl();
 c.greetUser(MyWFImpl.getUsername().get());
 }
}

Implémentation d'activité
L'implémentation de l'interface @Activities permet d'implémenter les activités. AWS Flow
Framework for Java utilise les instances d'implémentation d'activité configurées sur le travailleur
pour traiter les tâches d'activité au moment de l'exécution. L'exécuteur recherche automatiquement
l'implémentation de l'activité du type approprié.

Vous pouvez utiliser des propriétés et des champs pour transmettre des ressources à des
instances d'activité, par exemple à des connexions de base de données. Étant donné que l'objet
d'implémentation de l'activité est accessible à partir de plusieurs threads, les ressources partagées
doivent être sûres pour les threads.

Notez que l'implémentation de l'activité n'accepte pas les paramètres de type Promise<> ou les
objets de retour de ce type. En effet, l'implémentation de l'activité ne doit pas dépendre de la manière
dont elle a été invoquée (de manière synchrone ou asynchrone).

L'interface des activités ci-dessus peut être implémentée comme suit :

public class MyActivitiesImpl implements MyActivities {

 @Override
 @ManualActivityCompletion
 public int activity1(){
 //implementation
 }

 @Override
 public void activity2(int foo){
 //implementation
 }
}

Un contexte local de thread est disponible pour l'implémentation de l'activité utilisable pour récupérer
l'objet de tâche, l'objet convertisseur de données utilisé, etc. Le contexte actuel est accessible via

Implémentation d'activité Version de l'API 2021-04-28 94

AWS Flow Framework pour Java Guide du développeur

ActivityExecutionContextProvider.getActivityExecutionContext(). Pour plus
de détails, consultez la AWS SDK pour Java documentation ActivityExecutionContext et la
sectionContexte d'exécution.

Finalisation manuelle des activités

Dans l'exemple ci-dessus, l'annotation @ManualActivityCompletion est facultative. Elle est
autorisée uniquement sur les méthodes qui implémentent une activité. Elle est utilisée pour configurer
l'activité afin qu'elle ne se termine pas automatiquement lorsque la méthode d'activité est renvoyée.
Cela peut être utile lorsque vous souhaitez effectuer l'activité de manière asynchrone, par exemple
manuellement une fois qu'une action humaine est terminée.

Par défaut, l'infrastructure considère que l'activité est terminée lorsque votre méthode d'activité
est renvoyée. Cela signifie que le responsable de l'activité signale l'achèvement des tâches
d'activité à Amazon SWF et lui fournit les résultats (le cas échéant). Dans certains cas d'utilisation,
vous ne souhaitez pas que la tâche d'activité soit marquée comme terminée lorsque la méthode
d'activité est renvoyée. Cette approche est utile lorsque vous modélisez des tâches manuelles.
Par exemple, la méthode d'activité peut envoyer un e-mail à une personne qui doit terminer un
travail avant la fin de la tâche d'activité. Dans ces cas, vous pouvez annoter la méthode d'activité
avec @ManualActivityCompletion pour indiquer à l'exécuteur d'activité qu'il ne doit pas
terminer l'activité automatiquement. Pour effectuer l'activité manuellement, vous pouvez soit utiliser
la méthode ManualActivityCompletionClient fournie dans le framework, soit utiliser la
RespondActivityTaskCompleted méthode du client Java Amazon SWF fourni dans le SDK
Amazon SWF. Pour plus de détails, consultez la AWS SDK pour Java documentation.

Pour mettre fin à la tâche d'activité, vous devez fournir un jeton de tâche. Le jeton de tâche
est utilisé par Amazon SWF pour identifier les tâches de manière unique. Vous pouvez
accéder à ce jeton à partir de ActivityExecutionContext dans l'implémentation
de votre activité. Vous devez transmettre ce jeton à la personne chargée de mettre fin à
la tâche. Vous pouvez extraire le jeton de ActivityExecutionContext en appelant
ActivityExecutionContextProvider.getActivityExecutionContext().getTaskToken().

L'activité getName de l'exemple Hello World peut être implémentée pour envoyer un e-mail
demandant à quelqu'un de proposer un message d'accueil :

@ManualActivityCompletion
@Override
public String getName() throws InterruptedException {
 ActivityExecutionContext executionContext

Finalisation manuelle des activités Version de l'API 2021-04-28 95

AWS Flow Framework pour Java Guide du développeur

 = contextProvider.getActivityExecutionContext();
 String taskToken = executionContext.getTaskToken();
 sendEmail("abc@xyz.com",
 "Please provide a name for the greeting message and close task with token: " +
 taskToken);
 return "This will not be returned to the caller";
}

L'extrait de code suivant peut être utilisé pour fournir le message d'accueil et fermer la tâche en
utilisant ManualActivityCompletionClient. Vous pouvez également faire échouer la tâche :

public class CompleteActivityTask {

 public void completeGetNameActivity(String taskToken) {

 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(...); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 String result = "Hello World!";
 manualCompletionClient.complete(result);
 }

 public void failGetNameActivity(String taskToken, Throwable failure) {
 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(...); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 manualCompletionClient.fail(failure);
 }
}

Mise en œuvre AWS Lambda des tâches

Rubriques

• À propos AWS Lambda

• Avantages et limites de l'utilisation des tâches Lambda

Implémentation de tâches Lambda Version de l'API 2021-04-28 96

AWS Flow Framework pour Java Guide du développeur

• Utilisation de tâches Lambda dans vos flux de travail AWS Flow Framework pour Java

• Voir l' HelloLambda échantillon

À propos AWS Lambda

AWS Lambda est un service de calcul entièrement géré qui exécute votre code en réponse à
des événements générés par du code personnalisé ou par divers AWS services tels qu'Amazon
S3, DynamoDB, Amazon Kinesis, Amazon SNS et Amazon Cognito. Pour plus d'informations sur
Lambda, consultez le guide du développeur AWS Lambda.

Amazon Simple Workflow Service fournit une tâche Lambda qui vous permet d'exécuter des
fonctions Lambda à la place ou en parallèle des activités Amazon SWF traditionnelles.

Important

Votre AWS compte sera débité pour les exécutions Lambda (requêtes) exécutées par
Amazon SWF en votre nom. Pour plus de détails sur la tarification Lambda, consultez la
section tarification/https://aws.amazon.com/lambda/.

Avantages et limites de l'utilisation des tâches Lambda

L'utilisation de tâches Lambda au lieu d'une activité Amazon SWF traditionnelle présente de
nombreux avantages :

• Les tâches Lambda n'ont pas besoin d'être enregistrées ou versionnées comme les types d'activité
Amazon SWF.

• Vous pouvez utiliser toutes les fonctions Lambda existantes que vous avez déjà définies dans vos
flux de travail.

• Les fonctions Lambda sont appelées directement par Amazon SWF ; il n'est pas nécessaire
d'implémenter un programme de travail pour les exécuter, comme c'est le cas pour les activités
traditionnelles.

• Lambda vous fournit des métriques et des journaux pour suivre et analyser les exécutions de vos
fonctions.

Vous devez également connaître les quelques limites qui s'appliquent aux tâches Lambda :

À propos AWS Lambda Version de l'API 2021-04-28 97

https://docs.aws.amazon.com/lambda/latest/dg/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/

AWS Flow Framework pour Java Guide du développeur

• Les tâches Lambda ne peuvent être exécutées que dans AWS les régions qui prennent en charge
Lambda. Consultez la section Régions et points de terminaison Lambda dans le manuel Amazon
Web Services General Reference pour en savoir plus sur les régions actuellement prises en charge
pour Lambda.

• Les tâches Lambda ne sont actuellement prises en charge que par l'API HTTP SWF de base et
pour Java. AWS Flow Framework Les tâches Lambda ne sont actuellement pas prises en charge
dans AWS Flow Framework for Ruby.

Utilisation de tâches Lambda dans vos flux de travail AWS Flow Framework
pour Java

Trois conditions sont requises pour utiliser les tâches Lambda dans vos flux de travail AWS Flow
Framework pour Java :

• Une fonction Lambda à exécuter. Vous pouvez utiliser n'importe quelle fonction Lambda que vous
avez définie. Pour plus d'informations sur la création de fonctions Lambda, consultez le manuel du
AWS Lambda développeur.

• Rôle IAM qui permet d'exécuter des fonctions Lambda à partir de vos flux de travail Amazon SWF.

• Code permettant de planifier la tâche Lambda depuis votre flux de travail.

Configuration d'un rôle IAM

Avant de pouvoir invoquer des fonctions Lambda depuis Amazon SWF, vous devez fournir un rôle
IAM qui permet d'accéder à Lambda depuis Amazon SWF. Vous avez le choix entre les options
suivantes :

• choisissez un rôle prédéfini, Role, AWSLambda pour autoriser vos flux de travail à invoquer
n'importe quelle fonction Lambda associée à votre compte.

• définissez votre propre politique et le rôle associé pour autoriser les flux de travail à invoquer des
fonctions Lambda spécifiques, spécifiées par leur Amazon Resource Names ()ARNs.

Limiter les autorisations sur un rôle IAM

Vous pouvez limiter les autorisations sur un rôle IAM que vous fournissez à Amazon SWF en utilisant
les clés de contexte SourceAccount et SourceArn de votre politique de confiance en matière de
ressources. Ces clés limitent l'utilisation d'une politique IAM afin qu'elle ne soit utilisée qu'à partir des

Utilisation de tâches Lambda dans vos flux de travail AWS Flow Framework pour Java Version de l'API 2021-04-28 98

https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/lambda/latest/dg/

AWS Flow Framework pour Java Guide du développeur

exécutions d'Amazon Simple Workflow Service appartenant à l'ARN du domaine spécifié. Si vous
utilisez les deux clés contextuelles de condition globale, la aws:SourceAccount valeur et le compte
référencés dans la aws:SourceArn valeur doivent utiliser le même identifiant de compte lorsqu'ils
sont utilisés dans la même déclaration de politique.

Dans l'exemple suivant, la clé de SourceArn contexte restreint l'utilisation du rôle de service IAM
uniquement dans les exécutions d'Amazon Simple Workflow Service appartenant someDomain au
compte,. 123456789012

• Déclaration 1

Principal : "Service": "swf.amazonaws.com"

Action : sts:AssumeRole

"Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:swf:*:123456789012:/domain/someDomain"
 }
}

Dans l'exemple suivant, la clé de SourceAccount contexte restreint l'utilisation du rôle de service
IAM uniquement dans le cadre des exécutions d'Amazon Simple Workflow Service dans le compte.
123456789012

"Condition": {
 "StringLike": {
 "aws:SourceAccount": "123456789012"
 }
}

Fournir à Amazon SWF l'accès lui permettant d'invoquer n'importe quel rôle Lambda

Vous pouvez utiliser le rôle prédéfini, Role, AWSLambda pour permettre à vos flux de travail Amazon
SWF d'invoquer n'importe quelle fonction Lambda associée à votre compte.

Pour utiliser AWSLambda Role pour autoriser Amazon SWF à invoquer des fonctions Lambda

1. Ouvrez la console Amazon IAM.

Utilisation de tâches Lambda dans vos flux de travail AWS Flow Framework pour Java Version de l'API 2021-04-28 99

https://console.aws.amazon.com/iam/

AWS Flow Framework pour Java Guide du développeur

2. Choisissez Rôles, puis Créer un rôle.

3. Attribuez un nom à votre rôle, tel que swf-lambda, puis choisissez Étape suivante.

4. Sous Rôles de AWS service, sélectionnez Amazon SWF, puis Next Step.

5. Sur l'écran Attach Policy, choisissez Role AWSLambdadans la liste.

6. Choisissez Étape suivante, puis Créer un rôle une fois que vous avez vérifié le rôle.

Définition d'un rôle IAM pour fournir un accès permettant d'invoquer une fonction Lambda spécifique

Si vous souhaitez fournir un accès pour invoquer une fonction Lambda spécifique depuis votre flux de
travail, vous devez définir votre propre politique IAM.

Pour créer une politique IAM afin de fournir l'accès à une fonction Lambda particulière

1. Ouvrez la console Amazon IAM.

2. Choisissez Stratégies, puis Créer une stratégie.

3. Choisissez Copier une politique AWS gérée et sélectionnez AWSLambdaRôle dans la liste. Une
stratégie sera générée pour vous. Au besoin, modifiez son nom et sa description.

4. Dans le champ Ressource du document de politique, ajoutez l'ARN de vos fonctions Lambda.
Par exemple :

• Ressource : arn:aws:lambda:us-
east-1:111122223333:function:hello_lambda_function

Note

Pour une description complète de la manière de spécifier les ressources dans un rôle
IAM, voir Présentation des politiques IAM dans Using IAM.

5. Choisissez Créer une stratégie afin de finaliser la création de la stratégie.

Vous pouvez ensuite sélectionner cette politique lors de la création d'un nouveau rôle IAM et utiliser
ce rôle pour donner un accès d'appel à vos flux de travail Amazon SWF. Cette procédure est très
similaire à la création d'un rôle avec la politique des AWSLambdarôles. Choisissez plutôt votre propre
politique lors de la création du rôle.

Utilisation de tâches Lambda dans vos flux de travail AWS Flow Framework pour Java Version de l'API 2021-04-28 100

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html

AWS Flow Framework pour Java Guide du développeur

Pour créer un rôle Amazon SWF à l'aide de votre politique Lambda

1. Ouvrez la console Amazon IAM.

2. Choisissez Rôles, puis Créer un rôle.

3. Attribuez un nom à votre rôle, tel que swf-lambda-function, puis choisissez Étape suivante.

4. Sous Rôles de AWS service, sélectionnez Amazon SWF, puis Next Step.

5. Sur l'écran Attach Policy, choisissez votre politique spécifique à la fonction Lambda dans la liste.

6. Choisissez Étape suivante, puis Créer un rôle une fois que vous avez vérifié le rôle.

Planifier l'exécution d'une tâche Lambda

Une fois que vous avez défini un rôle IAM qui vous permet d'invoquer des fonctions Lambda, vous
pouvez planifier leur exécution dans le cadre de votre flux de travail.

Note

Ce processus est pleinement démontré par l'HelloLambda échantillon du AWS SDK pour
Java.

Pour planifier l'exécution d'une tâche Lambda

1. Dans l'implémentation de votre flux de travail, obtenez une instance de
LambdaFunctionClient en appelant getLambdaFunctionClient() sur une instance
DecisionContext.

// Get a LambdaFunctionClient instance
DecisionContextProvider decisionProvider = new DecisionContextProviderImpl();
DecisionContext decisionContext = decisionProvider.getDecisionContext();
LambdaFunctionClient lambdaClient = decisionContext.getLambdaFunctionClient();

2. Planifiez la tâche à l'aide de la scheduleLambdaFunction() méthode indiquée sur
leLambdaFunctionClient, en lui transmettant le nom de la fonction Lambda que vous avez
créée et toutes les données d'entrée pour la tâche Lambda.

// Schedule the Lambda function for execution, using your IAM role for access.

Utilisation de tâches Lambda dans vos flux de travail AWS Flow Framework pour Java Version de l'API 2021-04-28 101

https://console.aws.amazon.com/iam/

AWS Flow Framework pour Java Guide du développeur

String lambda_function_name = "The name of your Lambda function.";
String lambda_function_input = "Input data for your Lambda task.";

lambdaClient.scheduleLambdaFunction(lambda_function_name, lambda_function_input);

3. Dans votre outil de démarrage d'exécution de flux de travail, ajoutez
le rôle IAM lambda à vos options de flux de travail par défaut en
utilisantStartWorkflowOptions.withLambdaRole(), puis transmettez les options lors du
démarrage du flux de travail.

// Workflow client classes are generated for you when you use the @Workflow
// annotation on your workflow interface declaration.
MyWorkflowClientExternalFactory clientFactory =
 new MyWorkflowClientExternalFactoryImpl(sdk_swf_client, swf_domain);

MyWorkflowClientExternal workflow_client = clientFactory.getClient();

// Give the ARN of an IAM role that allows SWF to invoke Lambda functions on
// your behalf.
String lambda_iam_role = "arn:aws:iam::111111000000:role/swf_lambda_role";

StartWorkflowOptions workflow_options =
 new StartWorkflowOptions().withLambdaRole(lambda_iam_role);

// Start the workflow execution
workflow_client.helloWorld("User", workflow_options);

Voir l' HelloLambda échantillon

Un exemple d'implémentation d'un flux de travail utilisant une tâche Lambda est fourni dans le. AWS
SDK pour Java Pour voir and/or Run it, téléchargez le code source.

Une description complète de la façon de créer et d'exécuter l'HelloLambdaexemple est fournie dans
le fichier README fourni avec les exemples AWS Flow Framework pour Java.

Voir l' HelloLambda échantillon Version de l'API 2021-04-28 102

https://aws.amazon.com/code/3015904745387737

AWS Flow Framework pour Java Guide du développeur

Exécution de programmes écrits avec le AWS Flow Framework
pour Java

Rubriques

• WorkflowWorker

• ActivityWorker

• Modèle de thread d'exécuteur

• Extensibilité de l'exécuteur

Le framework fournit des classes de travail pour initialiser le runtime AWS Flow Framework for Java
et communiquer avec Amazon SWF. Pour implémenter un objet exécuteur de flux de travail ou
d'activité, vous devez créer et démarrer une instance de classe d'exécuteur. Ces classes de travail
sont chargées de gérer les opérations asynchrones en cours, d'invoquer des méthodes asynchrones
qui sont débloquées et de communiquer avec Amazon SWF. Elles peuvent être configurées avec des
implémentations de flux de travail et d'activité, le nombre de threads, la liste des tâches à interroger,
etc.

L'infrastructure est livrée avec deux classes d'exécuteur, une pour les activités et une pour les
flux de travail. Pour exécuter la logique de flux de travail, utilisez la classe WorkflowWorker.
De même, la classe ActivityWorker est utilisée pour les activités. Ces classes interrogent
automatiquement Amazon SWF pour les tâches d'activité et invoquent les méthodes appropriées
dans votre implémentation.

L'exemple suivant montre comment instancier une classe WorkflowWorker et lancer l'interrogation
pour la recherche de tâches :

AmazonSimpleWorkflow swfClient = new AmazonSimpleWorkflowClient(awsCredentials);
WorkflowWorker worker = new WorkflowWorker(swfClient, "domain1", "tasklist1");
// Add workflow implementation types
worker.addWorkflowImplementationType(MyWorkflowImpl.class);

// Start worker
worker.start();

Les étapes de base pour créer une instance de la classe ActivityWorker et lancer l'interrogation
pour la recherche de tâches sont les suivantes :

Exécution de programmes écrits avec le AWS Flow Framework pour Java Version de l'API 2021-04-28 103

AWS Flow Framework pour Java Guide du développeur

AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(awsCredentials);
ActivityWorker worker = new ActivityWorker(swfClient,
 "domain1",
 "tasklist1");
worker.addActivitiesImplementation(new MyActivitiesImpl());

// Start worker
worker.start();

Lorsque vous souhaitez arrêter une activité ou un décideur, votre application doit arrêter les instances
des classes de travail utilisées ainsi que l'instance du client Java Amazon SWF. Cela permet de
s'assurer que toutes les ressources utilisées par les classes d'exécuteur sont correctement libérées.

worker.shutdown();
worker.awaitTermination(1, TimeUnit.MINUTES);

Pour démarrer une exécution, créez simplement une instance du client externe généré et appelez la
méthode @Execute.

MyWorkflowClientExternalFactory factory = new MyWorkflowClientExternalFactoryImpl();
MyWorkflowClientExternal client = factory.getClient();
client.start();

WorkflowWorker

Comme son nom l'indique, cette classe d'exécuteur est destinée à être utilisée par l'implémentation
de flux de travail. Elle est configurée avec une liste de tâches et le type d'implémentation du flux de
travail. La classe d'exécuteur exécute une boucle pour rechercher les tâches de décision dans la
liste des tâches spécifiée. Lors de la réception d'une tâche de décision, elle crée une instance de
l'implémentation du flux de travail et appelle la méthode @Execute pour traiter la tâche.

ActivityWorker

Pour implémenter des exécuteurs d'activité, vous pouvez utiliser la classe ActivityWorker pour
rechercher facilement des tâches d'activité dans une liste de tâches. Vous configurez l'exécuteur
d'activité avec les objets d'implémentation d'activité. Cette classe d'exécuteur exécute une boucle

WorkflowWorker Version de l'API 2021-04-28 104

AWS Flow Framework pour Java Guide du développeur

pour rechercher les tâches d'activité dans la liste des tâches spécifiée. Lors de la réception d'une
tâche d'activité, elle recherche l'implémentation appropriée que vous avez fournie et appelle la
méthode d'activité pour traiter la tâche. Contrairement à WorkflowWorker, qui appelle la fabrique
à créer une nouvelle instance pour chaque tâche de décision, ActivityWorker utilise simplement
l'objet que vous avez fourni.

La ActivityWorker classe utilise les annotations AWS Flow Framework for Java pour déterminer
les options d'enregistrement et d'exécution.

Modèle de thread d'exécuteur

Dans Java, AWS Flow Framework l'incarnation d'une activité ou d'un décideur est une instance de la
classe ouvrière. Votre application est responsable de la configuration et de l'instanciation de l'objet
exécuteur sur chaque machine, ainsi que du processus agissant en tant qu'exécuteur. L'objet de
travail reçoit ensuite automatiquement les tâches d'Amazon SWF, les répartit vers votre activité ou
votre implémentation de flux de travail et communique les résultats à Amazon SWF. Une instance de
flux de travail peut couvrir de nombreux exécuteurs. Lorsqu'Amazon SWF a une ou plusieurs tâches
d'activité en attente, il affecte une tâche au premier travailleur disponible, puis au suivant, etc. Ainsi,
des tâches appartenant à la même instance de flux de travail peuvent être traitées simultanément sur
des exécuteurs différents.

Modèle de thread d'exécuteur Version de l'API 2021-04-28 105

AWS Flow Framework pour Java Guide du développeur

De plus, chaque exécuteur peut être configuré pour traiter des tâches sur plusieurs threads.
Cela signifie que les tâches d'activité d'une instance de flux de travail peuvent être exécutées
simultanément même s'il n'y a qu'un exécuteur.

Les tâches de décision se comportent de la même manière, à l'exception du fait qu'Amazon SWF
garantit que pour l'exécution d'un flux de travail donné, une seule décision peut être exécutée à la
fois. Généralement, une exécution de flux de travail requiert plusieurs tâches de décision ; cela peut
donc entraîner l'exécution sur plusieurs processus et threads. Le décideur est configuré avec le type
d'implémentation du flux de travail. Lors de la réception d'une tâche de décision par le décideur, une
instance (objet) de l'implémentation du flux de travail est créée. L'infrastructure fournit un schéma de
fabrique extensible pour la création de ces instances. La fabrique de flux de travail par défaut crée
à chaque fois un nouvel objet. Vous pouvez fournir des fabriques personnalisées pour remplacer ce
comportement.

Contrairement aux décideurs, qui sont configurés avec des types d'implémentation de flux de
travail, les exécuteurs d'activité sont configurés avec des instances (objets) d'implémentation
d'activité. Lorsqu'une tâche d'activité est reçue par l'exécuteur d'activité , elle est envoyée vers l'objet
d'implémentation d'activité approprié.

Le gestionnaire de flux de travail gère un pool unique de threads et exécute le flux de travail sur le
même thread que celui utilisé pour interroger Amazon SWF pour la tâche. Les activités étant longues
(du moins si on les compare à la logique du flux de travail), la classe Activity Worker gère deux
groupes de threads distincts : l'un pour interroger Amazon SWF pour les tâches d'activité et l'autre
pour traiter les tâches en exécutant l'implémentation de l'activité. Cela vous permet de configurer le
nombre de threads dans lequel rechercher des tâches indépendamment du nombre de threads pour
les exécuter. Par exemple, vous pouvez avoir un petit nombre de threads pour la recherche et un
grand nombre de threads pour l'exécution des tâches. La classe Activity Worker interroge Amazon

Modèle de thread d'exécuteur Version de l'API 2021-04-28 106

AWS Flow Framework pour Java Guide du développeur

SWF pour une tâche uniquement lorsqu'elle dispose d'un fil de sondage gratuit ainsi que d'un fil de
discussion libre pour traiter la tâche.

Ce comportement de thread et d'instanciation implique que :

1. Les implémentations d'activité doivent être sans état. Vous ne devez pas utiliser des variables
d'instance pour stocker un état d'application dans des objets d'activité. Vous pouvez cependant
utiliser des champs pour stocker des ressources telles que des connexions de base de données.

2. Les implémentations d'activité doivent être thread-safe. Comme la même instance peut être
utilisée pour traiter des tâches provenant de différents threads en même temps, l'accès aux
ressources partagées à partir du code d'activité doit être synchronisé.

3. L'implémentation d'un flux de travail peut inclure un état, les variables d'instance pouvant être
utilisées pour stocker l'état. Même si une nouvelle instance de l'implémentation du flux de travail
est créée pour traiter chaque tâche de décision, l'infrastructure s'assurera ensuite que l'état est
recréé correctement. Toutefois, l'implémentation du flux de travail doit être déterministe. Pour en
savoir plus, consultez la section Comprendre une tâche dans AWS Flow Framework for Java.

4. Les implémentations de flux de travail ne doivent pas nécessairement être thread-safe lorsque
la fabrique par défaut est utilisée. L'implémentation par défaut garantit qu'un seul thread à la fois
utilise une instance d'implémentation du flux de travail.

Extensibilité de l'exécuteur

Le AWS Flow Framework for Java contient également quelques classes de travail de bas niveau qui
vous offrent un contrôle précis ainsi qu'une extensibilité. Leur utilisation vous permet de personnaliser
complètement l'enregistrement du type de flux de travail et d'activité, et de définir des fabriques
pour la création d'objets d'implémentation. Ces exécuteurs sont GenericWorkflowWorker et
GenericActivityWorker.

GenericWorkflowWorker peut être configuré avec une fabrique pour la création de fabriques de
définition de flux de travail. La fabrique de définition de flux de travail est responsable de la création
d'instances d'implémentation de flux de travail et de la fourniture des paramètres de configuration
tels que les options d'enregistrement. Dans des circonstance normales, vous devez utiliser la
classe WorkflowWorker directement. Celle-ci crée et configure automatiquement l'implémentation
des fabriques fournies dans l'infrastructure, POJOWorkflowDefinitionFactoryFactory et
POJOWorkflowDefinitionFactory. La fabrique nécessite que la classe d'implémentation de
flux de travail ait un constructeur sans argument. Ce constructeur est utilisé pour créer des instances
de l'objet de flux de travail lors de l'exécution. La fabrique regarde les annotations que vous avez

Extensibilité de l'exécuteur Version de l'API 2021-04-28 107

AWS Flow Framework pour Java Guide du développeur

utilisées sur l'interface et l'implémentation de flux de travail pour créer les options d'enregistrement et
d'exécution appropriées.

Vous pouvez fournir votre propre implémentation des fabriques via WorkflowDefinitionFactory,
WorkflowDefinitionFactoryFactory et WorkflowDefinition. La classe
WorkflowDefinition est utilisée par la classe de l'exécuteur pour répartir les tâches et
les signaux de décision. En implémentant ces classes de base, vous pouvez personnaliser
complètement la fabrique et la répartition des demandes transmises à l'implémentation du flux
de travail. Par exemple, vous pouvez utiliser ces points d'extensibilité pour fournir un modèle
de programmation personnalisé pour écrire des flux de travail, par exemple, basés sur vos
propres annotations, ou en générer un à partir de WSDL au lieu de l'approche de code utilisée
par l'infrastructure. Pour utiliser vos fabriques personnalisées, vous devrez utiliser la classe
GenericWorkflowWorker. Pour plus de détails sur ces classes, consultez la AWS SDK pour Java
documentation.

De même, GenericActivityWorker vous permet de fournir une fabrique d'implémentation
d'activité personnalisée. En implémentant les classes ActivityImplementationFactory et
ActivityImplementation, vous pouvez contrôler complètement l'instanciation d'activité et
personnaliser les options d'enregistrement et d'exécution. Pour plus de détails sur ces classes,
consultez la AWS SDK pour Java documentation.

Contexte d'exécution

Rubriques

• Contexte décisionnel

• Contexte d'exécution d'une activité

L'infrastructure fournit un contexte ambiant aux implémentations de flux de travail et d'activité. Ce
contexte est propre à la tâche en cours de traitement et fournit certains utilitaires que vous pouvez
utiliser dans votre implémentation. Un objet de contexte est créé chaque fois qu'une nouvelle tâche
est traitée par l'exécuteur.

Contexte décisionnel

Lorsqu'une tâche de décision est exécutée, elle fournit le contexte de la mise en œuvre du flux
de travail grâce à la classe DecisionContext. DecisionContext fournit des informations

Contexte d'exécution Version de l'API 2021-04-28 108

AWS Flow Framework pour Java Guide du développeur

contextuelles telles que les ID d'exécution de flux de travail, et les fonctionnalités d'horloge et de
minuteur.

Accès lors de DecisionContext l'implémentation du flux de travail

Vous pouvez accéder à la classe DecisionContext dans l'implémentation de votre flux de travail à
l'aide de la classe DecisionContextProviderImpl. Vous pouvez également injecter le contexte
dans un champ ou une propriété de l'implémentation de votre flux de travail à l'aide de Spring comme
illustré dans la section Injection de la testabilité et de la dépendance.

DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();
DecisionContext context = contextProvider.getDecisionContext();

Création d'une horloge et d'un minuteur

La classe DecisionContext contient une propriété de type WorkflowClock qui fournit une
fonction de minuteur et d'horloge. La logique du flux de travail devant être déterministe, vous ne
devez pas utiliser directement l'horloge système dans l'implémentation de votre flux de travail. La
méthode currentTimeMills sur la classe WorkflowClock renvoie l'heure de l'événement de
début de la décision en cours de traitement. Cela veille à ce que vous obteniez la même valeur
temporelle pendant la reproduction, d'où l'importance d'une logique de flux de travail déterministe.

La classe WorkflowClock possède également une méthode createTimer qui renvoie un
objet Promise qui sera prêt après l'intervalle spécifié. Vous pouvez utiliser cette valeur en tant
que paramètre pour les autres méthodes asynchrones afin de retarder leur exécution de la durée
spécifiée. De cette manière, vous pouvez efficacement planifier une méthode ou une activité
asynchrone en vue d'une exécution ultérieure.

L'exemple de la liste suivante montre comment utiliser appeler une activité périodiquement.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();
}

@Activities(version = "1.0")

Contexte décisionnel Version de l'API 2021-04-28 109

AWS Flow Framework pour Java Guide du développeur

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();
}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void periodicWorkflow() {
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor) {
 if (count == 100) {
 return;
 }
 PeriodicActivityClient client = new PeriodicActivityClientImpl();
 // call activity
 Promise<Void> activityCompletion = client.activity1();

 Promise<Void> timer = clock.createTimer(3600);

 // Repeat the activity either after 1 hour or after previous activity run
 // if it takes longer than 1 hour
 callPeriodicActivity(count + 1, timer, activityCompletion);
 }
}

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public void activity1() {
 ...
 }

Contexte décisionnel Version de l'API 2021-04-28 110

AWS Flow Framework pour Java Guide du développeur

}

Dans la liste ci-dessus, la méthode asynchrone callPeriodicActivity appelle un objet
activity1, puis crée un minuteur à l'aide de la classe AsyncDecisionContext actuelle.
Elle transmet l'objet Promise renvoyé en tant qu'argument à un appel récursif à elle-même. Cet
appel récursif patiente jusqu'à ce que le minuteur se déclenche (1 heure dans cet exemple) avant
l'exécution.

Contexte d'exécution d'une activité

De la même manière que la classe DecisionContext fournit des informations contextuelles
lorsqu'une tâche de décision est traitée, la classe ActivityExecutionContext
fournit des informations contextuelles similaires lorsqu'une tâche d'activité est en cours
de traitement. Ce contexte est disponible depuis votre code d'activité via la classe
ActivityExecutionContextProviderImpl.

ActivityExecutionContextProvider provider
 = new ActivityExecutionContextProviderImpl();
ActivityExecutionContext aec = provider.getActivityExecutionContext();

À l'aide la classe ActivityExecutionContext, vous pouvez exécuter les activités suivantes :

Vérification des pulsations d'une activité de longue durée

Si l'activité dure longtemps, elle doit régulièrement signaler sa progression à Amazon SWF pour lui
indiquer que la tâche progresse toujours. En cas d'absence de pulsations, le délai d'attente de la
tâche peut être dépassé si un délai de pulsation de la tâche a été défini lors de l'enregistrement du
type d'activité ou de la planification de l'activité. Afin d'envoyer une pulsation, vous pouvez utiliser la
méthode recordActivityHeartbeat sur la classe ActivityExecutionContext. Heartbeat
fournit également un mécanisme pour annuler les activités en cours. Consultez la section Gestion
des erreurs pour en savoir plus et obtenir un exemple.

Obtention des détails de la tâche d'activité

Si vous le souhaitez, vous pouvez obtenir tous les détails de la tâche d'activité transmise par Amazon
SWF lorsque l'exécuteur a reçu la tâche. Cela comprend les informations concernant les entrées de
la tâche, son type, son jeton, etc. Si vous souhaitez implémenter une activité exécutée manuellement,
par exemple par une action humaine, vous devez utiliser le pour récupérer le jeton de tâche et le

Contexte d'exécution d'une activité Version de l'API 2021-04-28 111

AWS Flow Framework pour Java Guide du développeur

transmettre ActivityExecutionContext au processus qui finira par terminer la tâche d'activité.
Pour en savoir plus, consultez la section sur Finalisation manuelle des activités.

Obtenez l'objet client Amazon SWF utilisé par l'exécuteur

L'objet client Amazon SWF utilisé par l'exécuteur peut être récupéré en appelant getService
method on. ActivityExecutionContext Cela est utile si vous souhaitez appeler directement le
service Amazon SWF.

Exécutions de flux de travail enfant

Dans les exemples jusqu'ici, nous avons démarré une exécution de flux de travail directement depuis
une application. Cependant, une exécution de flux de travail peut être démarrée depuis un flux de
travail en appelant la méthode de point d'entrée du flux de travail sur le client généré. Lorsqu'une
exécution de flux de travail est démarrée depuis le contexte de l'exécution d'un autre flux de travail,
celle-ci est appelée exécution de flux de travail enfant. Cela vous permet de remanier des flux de
travail complexes en unités plus petites et de les partager potentiellement entre différents flux de
travail. Par exemple, vous pouvez créer un flux de travail de traitement des paiements et l'appeler à
partir d'un flux de travail de traitement des commandes.

Sur le plan sémantique, le flux de travail enfant se comporte comme un flux de travail autonome, à
l'exception des différences suivantes :

1. Lorsque le flux de travail parent se termine en raison d'une action explicite de l'utilisateur, par
exemple en appelant l'API TerminateWorkflowExecution Amazon SWF, ou s'il est interrompu
en raison d'un délai imparti, le sort de l'exécution du flux de travail enfant sera déterminé par une
politique relative aux enfants. Vous pouvez définir cette stratégie enfant pour arrêter, annuler ou
abandonner (continuer d'exécuter) les exécutions de flux de travail enfant.

2. La sortie du flux de travail enfant (valeur de retour de la méthode de point d'entrée) peut être
utilisée par l'exécution de flux de travail parent tout comme l'objet Promise<T> renvoyé par une
méthode asynchrone. Cela est différent des exécutions autonomes où l'application doit obtenir le
résultat à l'aide d'Amazon APIs SWF.

Dans l'exemple suivant, le flux de travail OrderProcessor crée un flux de travail enfant
PaymentProcessor :

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,

Exécutions de flux de travail enfant Version de l'API 2021-04-28 112

AWS Flow Framework pour Java Guide du développeur

 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface OrderProcessor {

 @Execute(version = "1.0")
 void processOrder(Order order);
}

public class OrderProcessorImpl implements OrderProcessor {
 PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();

 @Override
 public void processOrder(Order order) {
 float amount = order.getAmount();
 CardInfo cardInfo = order.getCardInfo();

 PaymentProcessorClient childWorkflowClient = factory.getClient();
 childWorkflowClient.processPayment(amount, cardInfo);
 }

}

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PaymentProcessor {

 @Execute(version = "1.0")
 void processPayment(float amount, CardInfo cardInfo);

}

public class PaymentProcessorImpl implements PaymentProcessor {
 PaymentActivitiesClient activitiesClient = new PaymentActivitiesClientImpl();

 @Override
 public void processPayment(float amount, CardInfo cardInfo) {
 Promise<PaymentType> payType = activitiesClient.getPaymentType(cardInfo);
 switch(payType.get()) {
 case Visa:
 activitiesClient.processVisa(amount, cardInfo);
 break;
 case Amex:
 activitiesClient.processAmex(amount, cardInfo);

Exécutions de flux de travail enfant Version de l'API 2021-04-28 113

AWS Flow Framework pour Java Guide du développeur

 break;
 default:
 throw new UnSupportedPaymentTypeException();
 }
 }

}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 3600,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PaymentActivities {

 PaymentType getPaymentType(CardInfo cardInfo);

 void processVisa(float amount, CardInfo cardInfo);

 void processAmex(float amount, CardInfo cardInfo);

}

Flux de travail continus

Dans certains cas d'utilisation, vous pouvez avoir besoin d'un flux de travail qui s'exécute pendant
longtemps ou indéfiniment, par exemple, un flux de travail qui vérifie l'état d'un parc de serveurs.

Note

Dans la mesure où Amazon SWF conserve l'historique complet de l'exécution d'un flux de
travail, celui-ci ne cessera de croître au fil du temps. L'infrastructure récupère cet historique
depuis Amazon SWF lorsqu'elle effectue une relecture et cette opération va devenir coûteuse
si l'historique est trop volumineux. Dans ces flux de travail de longue durée et continus, vous
devez fermer périodiquement l'exécution actuelle et en démarrer une nouvelle pour continuer
le traitement.

Il s'agit de la continuation logique de l'exécution de flux de travail. Le client auto-généré peut être
utilisé à cette fin. Dans l'implémentation de votre flux de travail, il vous suffit d'appeler la méthode
@Execute sur le client auto-généré. Une fois que l'exécution actuelle est terminée, l'infrastructure
démarre une nouvelle exécution en utilisant le même ID de flux de travail.

Flux de travail continus Version de l'API 2021-04-28 114

AWS Flow Framework pour Java Guide du développeur

Vous pouvez également continuer l'exécution en appelant la méthode
continueAsNewOnCompletion sur l'objet GenericWorkflowClient que vous pouvez récupérer
depuis le DecisionContext actuel. Par exemple, l'implémentation de flux de travail suivante définit
un temporisateur à déclencher après un jour et appelle son propre point d'entrée pour démarrer une
nouvelle exécution.

public class ContinueAsNewWorkflowImpl implements ContinueAsNewWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private ContinueAsNewWorkflowSelfClient selfClient
 = new ContinueAsNewWorkflowSelfClientImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void startWorkflow() {
 Promise<Void> timer = clock.createTimer(86400);
 continueAsNew(timer);
 }

 @Asynchronous
 void continueAsNew(Promise<Void> timer) {
 selfClient.startWorkflow();
 }
}

Lorsqu'un flux de travail s'appelle lui-même de façon récursive, l'infrastructure ferme le flux de travail
actuel quand toutes les tâches en attente sont terminées et démarre une nouvelle exécution de
flux de travail. Notez que tant que des tâches sont en attente, l'exécution de flux de travail actuelle
ne se fermera pas. La nouvelle exécution hérite automatique de tout historique ou des données
de l'exécution initiale. Si vous souhaitez transmettre un état à la nouvelle exécution, vous devez le
transmettre explicitement en tant qu'entrée.

Définition de la priorité des tâches dans Amazon SWF

Par défaut, les tâches d'une liste des tâches dépendent de leur heure d'arrivée : celles qui sont
planifiées en premier sont généralement exécutées en premier, aussi loin que possible. En

Définition de la priorité des tâches Version de l'API 2021-04-28 115

AWS Flow Framework pour Java Guide du développeur

définissant une priorité de tâche facultative, vous pouvez donner la priorité à certaines tâches :
Amazon SWF essaiera de fournir les tâches les plus prioritaires d'une liste de tâches avant celles
dont la priorité est inférieure.

Vous pouvez définir des priorités de tâche pour les flux de travail et les activités. La priorité de tâche
d'un flux de travail n'a pas d'incidence sur la priorité des tâches d'activité qu'il planifie, ni sur les
flux de travail enfants qu'il démarre. La priorité par défaut d'une activité ou d'un flux de travail est
définie (par vous ou par Amazon SWF) lors de l'enregistrement, et la priorité de tâche enregistrée est
toujours utilisée, sauf si elle est remplacée lors de la planification de l'activité ou du démarrage d'une
exécution de flux de travail.

Les valeurs de priorité des tâche peuvent aller de « -2147483648 » à « 2147483647 » (le nombre le
plus élevé indique une priorité supérieure). Si vous ne définissez la priorité de tâche d'une activité ou
d'un flux de travail, la priorité zéro (« 0 ») lui est attribuée.

Rubriques

• Définition d'une priorité de tâche pour les flux de travail

• Définition d'une priorité de tâche pour les activités

Définition d'une priorité de tâche pour les flux de travail

Vous pouvez définir la priorité de tâche d'un flux de travail lorsque vous l'enregistrez ou lorsque
vous le lancez. La priorité de tâche définie lorsque le type de flux de travail est enregistré est utilisée
comme valeur par défaut pour toutes les exécutions de flux de travail de ce type, sauf si elle est
remplacée lors du lancement de l'exécution de flux de travail.

Pour enregistrer un type de flux de travail avec une priorité de tâche par défaut, définissez
l'defaultTaskPriorityoption WorkflowRegistrationOptionslors de sa déclaration :

@Workflow
@WorkflowRegistrationOptions(
 defaultTaskPriority = 10,
 defaultTaskStartToCloseTimeoutSeconds = 240)
public interface PriorityWorkflow
{
 @Execute(version = "1.0")
 void startWorkflow(int a);
}

Définition d'une priorité de tâche pour les flux de travail Version de l'API 2021-04-28 116

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/WorkflowRegistrationOptions.html

AWS Flow Framework pour Java Guide du développeur

Vous pouvez également définir taskPriority pour un flux de travail lorsque vous la lancez, en
remplaçant la priorité de tâche enregistrée par défaut.

StartWorkflowOptions priorityWorkflowOptions
 = new StartWorkflowOptions().withTaskPriority(10);

PriorityWorkflowClientExternalFactory cf
 = new PriorityWorkflowClientExternalFactoryImpl(swfService, domain);

priority_workflow_client = cf.getClient();

priority_workflow_client.startWorkflow(
 "Smith, John", priorityWorkflowOptions);

De plus, vous pouvez définir la priorité de tâche lorsque vous lancez un flux de travail
enfant ou poursuivez un flux de travail en tant que nouveau. Par exemple, vous pouvez
définir l'option TaskPriority dans ContinueAsNewWorkflowExecutionParametersou dans.
StartChildWorkflowExecutionParameters

Définition d'une priorité de tâche pour les activités

Vous pouvez définir la priorité de tâche d'une activité lors de son enregistrement ou de sa
planification. La priorité de tâche définie lors de l'enregistrement d'un type d'activité est utilisée
comme priorité par défaut lorsque l'activité est exécutée, sauf si elle est remplacée lors de la
planification de l'activité.

Pour enregistrer un type d'activité avec une priorité de tâche par défaut, définissez
l'defaultTaskPriorityoption ActivityRegistrationOptionslors de sa déclaration :

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskPriority = 10,
 defaultTaskStartToCloseTimeoutSeconds = 120)
public interface ImportantActivities {
 int doSomethingImportant();
}

Vous pouvez également définir taskPriority pour une activité lorsque vous la planifiez, en remplaçant
la priorité de tâche enregistrée par défaut.

Définition d'une priorité de tâche pour les activités Version de l'API 2021-04-28 117

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/ContinueAsNewWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/StartChildWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/ActivityRegistrationOptions.html

AWS Flow Framework pour Java Guide du développeur

ActivitySchedulingOptions activityOptions = new
 ActivitySchedulingOptions.withTaskPriority(10);

ImportantActivitiesClient activityClient = new ImportantActivitiesClientImpl();

activityClient.doSomethingImportant(activityOptions);

DataConverters

Lorsque l'implémentation de votre flux de travail appelle une activité à distance, les entrées la
transmettent et le résultat de l'exécution de l'activité doit être sérialisé afin de pouvoir être envoyé
sur le réseau. Le framework utilise la DataConverter classe à cette fin. Il s'agit d'une classe abstraite
que vous pouvez implémenter pour fournir votre propre sérialiseur. Une implémentation par
défaut basée sur le sérialiseur Jackson est fournie dans JsonDataConverter le framework.
Pour plus d'informations, consultez la documentation AWS SDK pour Java. Reportez-vous à la
documentation du processeur Jackson JSON pour obtenir des détails sur la façon dont Jackson
effectue la sérialisation ainsi que les annotations qui peuvent être utilisées pour l'influencer. Le format
de connexion utilisé est considéré comme faisant partie du contrat. Par conséquent, vous pouvez
spécifier un objet DataConverter sur vos activités et interfaces de flux de travail en définissant la
propriété DataConverter des annotations @Activities et @Workflow.

L'infrastructure crée des objets du type DataConverter que vous spécifiez sur l'annotation
@Activities afin de sérialiser les entrées vers l'activité et de désérialiser son résultat. De
même, les objets du type DataConverter que vous spécifiez sur l'annotation @Workflow sont
utilisés pour sérialiser les paramètres transmis au flux de travail, et en cas de flux de travail enfant,
pour désérialiser le résultat. Outre les entrées, le framework transmet également des données
supplémentaires à Amazon SWF, par exemple les détails des exceptions. Le sérialiseur de flux de
travail sera également utilisé pour sérialiser ces données.

Vous pouvez également fournir une instance de la classe DataConverter si vous ne souhaitez
pas que l'infrastructure la crée automatiquement. Les clients générés disposent de surcharges de
constructeur qui prennent un objet DataConverter.

Si vous ne spécifiez pas un type DataConverter et ne transmettez pas un objet DataConverter,
la classe JsonDataConverter est utilisée par défaut.

DataConverters Version de l'API 2021-04-28 118

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html

AWS Flow Framework pour Java Guide du développeur

Transmission des données aux méthodes asynchrones

Rubriques

• Transmission des collections et des cartes aux méthodes asynchrones

• Définissable <T>

• @NoWait

• Promets- <Vide>

• AndPromise et OrPromise

L'utilisation de Promise<T> a été expliquée dans les sections précédentes. Certains cas d'utilisation
avancés de Promise<T> sont présentés ici.

Transmission des collections et des cartes aux méthodes asynchrones

L'infrastructure prend en charge la transmission des tableaux, collections et cartes comme types
Promise vers des méthodes asynchrones. Par exemple, une méthode asynchrone peut prendre
Promise<ArrayList<String>> comme un argument, comme illustré dans la liste suivante.

@Asynchronous
public void printList(Promise<List<String>> list) {
 for (String s: list.get()) {
 activityClient.printActivity(s);
 }
}

Sur le plan sémantique, cela se comporte comme tout autre paramètre de type Promise et la
méthode asynchrone patientera jusqu'à ce que la collection soit disponible avant l'exécution. Si les
membres d'une collection sont des objets Promise, alors vous pouvez faire patienter l'infrastructure
jusqu'à ce que tous les membres soient prêts, comme illustré dans le code suivant. Cela fera
patienter la méthode asynchrone jusqu'à ce que chaque membre de la collection soit disponible.

@Asynchronous
public void printList(@Wait List<Promise<String>> list) {
 for (Promise<String> s: list) {
 activityClient.printActivity(s);
 }
}

Transmission des données aux méthodes asynchrones Version de l'API 2021-04-28 119

AWS Flow Framework pour Java Guide du développeur

Notez que l'annotation @Wait doit être utilisée sur le paramètre pour indiquer qu'il contient des objets
Promise.

Notez également que l'activité printActivity prend un argument String, mais que la méthode
correspondante dans le client généré prend le type Promise<String>. Nous appelons la méthode sur
le client mais pas directement la méthode d'activité.

Définissable <T>

L'objet Settable<T> est un type dérivé d'un objet Promise<T> qui fournit une méthode qui vous
permet de définir manuellement la valeur d'un objet Promise. Par exemple, le flux de travail suivant
attend de recevoir un signal en attendant un objet Settable<?>, qui est définit dans la méthode de
signal :

public class MyWorkflowImpl implements MyWorkflow{
 final Settable<String> result = new Settable<String>();

 //@Execute method
 @Override
 public Promise<String> start() {
 return done(result);
 }

 //Signal
 @Override
 public void manualProcessCompletedSignal(String data) {
 result.set(data);
 }

 @Asynchronous
 public Promise<String> done(Settable<String> result){
 return result;
 }
}

Un objet Settable<?> peut également être lié à un autre objet Promise à la fois. Vous pouvez
utiliser les objets AndPromise et OrPromise pour regrouper les objets Promise. Vous pouvez
délier un objet Settable lié en appelant la méthode unchain(). Une fois liés, les objets
Settable<?> seront automatiquement prêts lorsque l'objet Promise lié sera prêt. L'action de lier
est particulièrement utile lorsque vous souhaitez utiliser un objet Promise renvoyé depuis la portée
d'un bloc doTry() dans d'autres parties de votre programme. Comme elle TryCatchFinally

Définissable <T> Version de l'API 2021-04-28 120

AWS Flow Framework pour Java Guide du développeur

est utilisée comme classe imbriquée, vous ne pouvez pas déclarer un Promise<> dans le champ
d'application du parent et le définir. doTry() Cela s'explique car Java exige que les variables soient
déclarées dans la portée du parent et utilisées dans des classes imbriquées pour être marquées
comme finales. Par exemple :

@Asynchronous
public Promise<String> chain(final Promise<String> input) {
 final Settable<String> result = new Settable<String>();

 new TryFinally() {

 @Override
 protected void doTry() throws Throwable {
 Promise<String> resultToChain = activity1(input);
 activity2(resultToChain);

 // Chain the promise to Settable
 result.chain(resultToChain);
 }

 @Override
 protected void doFinally() throws Throwable {
 if (result.isReady()) { // Was a result returned before the exception?
 // Do cleanup here
 }
 }
 };

 return result;
}

Un objet Settable peut également être lié à un seul objet Promise à la fois. Vous pouvez délier un
objet Settable lié en appelant la méthode unchain().

@NoWait

Lorsque vous transmettez un objet Promise à une méthode asynchrone, l'infrastructure attend que
les objets Promise soient prêts avant d'exécuter la méthode (sauf pour les types de collection). Vous
pouvez remplacer ce comportement à l'aide de l'annotation @NoWait sur les paramètres dans la
déclaration de la méthode asynchrone. Cela est utile si vous transmettez Settable<T>, qui sera
défini par la méthode asynchrone elle-même.

@NoWait Version de l'API 2021-04-28 121

AWS Flow Framework pour Java Guide du développeur

Promets- <Vide>

Les dépendances dans les méthodes asynchrones sont implémentées en transmettant l'objet
Promise renvoyé par une méthode en tant qu'argument à une autre méthode. Pourtant, il existe
des cas où vous souhaitez renvoyer void depuis une méthode, mais souhaitez toujours que les
autres méthodes asynchrone s'exécutent après la fin de celle-ci. Dans ces cas-là, vous pouvez
utiliser le type Promise<Void> en tant que type de retour de la méthode. La classe Promise
fournit une méthode Void statique que vous pouvez utiliser pour créer un objet Promise<Void>.
Cet objet Promise sera prêt lorsque la méthode asynchrone terminera l'exécution. Vous pouvez
transmettre cet objet Promise à une autre méthode asynchrone comme tout autre objet Promise.
Si vous utilisez le type Settable<Void>, appelez ensuite la méthode de définition avec null pour la
préparer.

AndPromise et OrPromise

Les objets AndPromise et OrPromise vous permettent de regrouper plusieurs objets Promise<>
dans un objet Promise logique unique. Un objet AndPromise sera prêt lorsque tous les objets
Promise utilisés pour le construire seront prêts. Un objet OrPromise sera prêt lorsque n'importe
quel objet Promise de la collection d'objets Promise utilisés pour le construire sera prêt. Vous pouvez
appeler getValues() sur les objets AndPromise et OrPromise pour récupérer la liste des valeurs
des objets Promise qui les composent.

Testabilité et injection de dépendances

Rubriques

• Intégration de Spring

• JUnit Integration

L'infrastructure est conçue pour être compatible avec l'inversion de contrôle (IoC). Les
implémentations d'activité et de flux de travail ainsi que les exécuteurs et les objets de contexte
fournis par l'infrastructure peuvent être configurés et instanciés via des conteneurs comme Spring.
Par défaut, l'infrastructure permet une intégration avec le framework Spring. En outre, l'intégration
JUnit a été fournie pour les implémentations de flux de travail et d'activités de test unitaires.

Promets- <Vide> Version de l'API 2021-04-28 122

AWS Flow Framework pour Java Guide du développeur

Intégration de Spring

Le package com.amazonaws.services.simpleworkflow.flow.spring contient des classes qui
facilitent l'utilisation du framework Spring dans vos applications. Ces classes incluent une portée
(Scope) personnalisée et des exécuteurs d'activité et de flux de travail compatibles avec Spring :
WorkflowScope, SpringWorkflowWorker et SpringActivityWorker. Ces classes vous
permettent de configurer totalement via Spring vos implémentations d'activité et de flux de travail
ainsi que les exécuteurs.

WorkflowScope

WorkflowScope est une implémentation de portée (Scope) Spring personnalisée fournie par
l'infrastructure. Cette portée vous permet de créer des objets dans le conteneur Spring dont la
durée de vie dépend de celle d'une tâche de décision. Les beans de cette portée sont instanciés
chaque fois qu'une nouvelle tâche de décision est reçue par l'exécuteur. Vous devez utiliser cette
portée pour les beans d'implémentation de flux de travail et pour tous les autres beans dont elle
dépend. Les portées singleton et prototype fournies par Spring ne doivent pas être utilisées pour les
beans d'implémentation de flux de travail car l'infrastructure requiert qu'un nouveau bean soit crée
pour chaque tâche de décision. Si vous ne respectez pas cette règle, vous risquez d'obtenir des
comportements inattendus.

L'exemple suivant présente un extrait de configuration Spring qui enregistre la portée
WorkflowScope puis l'utilise pour la configuration d'un bean d'implémentation de flux de travail et
d'un bean de client d'activité.

<!-- register AWS Flow Framework for Java WorkflowScope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">

Intégration de Spring Version de l'API 2021-04-28 123

AWS Flow Framework pour Java Guide du développeur

 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

La ligne de configuration <aop:scoped-proxy proxy-target-class="false" />, utilisée
dans la configuration du bean workflowImpl, est obligatoire car la portée WorkflowScope ne
prend pas en charge la mise en place de proxy avec CGLIB. Vous devez utiliser cette configuration
pour tout bean de la portée WorkflowScope qui est lié à un autre bean d'une autre portée. Dans ce
cas, le bean workflowImpl a besoin d'être lié à un bean d'objet exécuteur de flux de travail dans
une portée singleton (reportez-vous à l'exemple complet ci-dessous).

Vous trouverez de plus amples informations sur l'utilisation de portées personnalisées dans la
documentation du framework Spring.

Exécuteurs compatibles avec Spring

Lorsque vous utilisez Spring, vous devez utiliser les classes d'exécuteur compatibles avec
Spring fournies par l'infrastructure : SpringWorkflowWorker et SpringActivityWorker.
Ces exécuteurs peuvent être injectés dans votre application en utilisant Spring comme décrit
dans l'exemple suivant. Les exécuteurs compatibles avec Spring implémentent l'interface
SmartLifecycle de Spring et, par défaut, démarrent automatiquement la recherche des tâches
lors de l'initialisation du contexte Spring. Vous pouvez désactiver cette fonctionnalité en définissant la
propriété disableAutoStartup de l'exécuteur sur true.

L'exemple suivant montre comment configurer un décideur. Cet exemple utilise les
interfaces MyActivities et MyWorkflow (non présentées ici) et les implémentations
correspondantes, MyActivitiesImpl et MyWorkflowImpl. Les interfaces et les
implémentations de client générées sont MyWorkflowClient/MyWorkflowClientImpl et
MyActivitiesClient/MyActivitiesClientImpl (également non présentées ici).

Le client des activités est injecté dans l'implémentation du flux de travail via la fonction auto wire
(liaison automatique) de Spring :

public class MyWorkflowImpl implements MyWorkflow {
 @Autowired
 public MyActivitiesClient client;

Intégration de Spring Version de l'API 2021-04-28 124

AWS Flow Framework pour Java Guide du développeur

 @Override
 public void start() {
 client.activity1();
 }
}

La configuration Spring pour le décideur se présente comme suit :

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/
spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>
 <context:annotation-config/>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

Intégration de Spring Version de l'API 2021-04-28 125

AWS Flow Framework pour Java Guide du développeur

 <!-- Amazon SWF client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <!-- workflow worker -->
 <bean id="workflowWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringWorkflowWorker">
 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />
 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 </bean>
</beans>

Étant donné que le SpringWorkflowWorker est entièrement configuré dans Spring et commence
automatiquement à interroger lorsque le contexte Spring est initialisé, le processus hôte pour le
décideur est simple :

public class WorkflowHost {
 public static void main(String[] args){
 ApplicationContext context

Intégration de Spring Version de l'API 2021-04-28 126

AWS Flow Framework pour Java Guide du développeur

 = new FileSystemXmlApplicationContext("resources/spring/
WorkflowHostBean.xml");
 System.out.println("Workflow worker started");
 }
}

De même, l'exécuteur d'activité peut être configuré comme suit :

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/
spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean

 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- Amazon SWF client -->

Intégration de Spring Version de l'API 2021-04-28 127

AWS Flow Framework pour Java Guide du développeur

 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities impl -->
 <bean name="activitiesImpl" class="asadj.spring.test.MyActivitiesImpl">
 </bean>

 <!-- activity worker -->
 <bean id="activityWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringActivityWorker">
 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />
 <property name="activitiesImplementations">
 <list>
 <ref bean="activitiesImpl" />
 </list>
 </property>
 </bean>
</beans>

Le processus hôte de l'exécuteur d'activité est similaire au décideur :

public class ActivityHost {
 public static void main(String[] args) {
 ApplicationContext context = new FileSystemXmlApplicationContext(
 "resources/spring/ActivityHostBean.xml");
 System.out.println("Activity worker started");
 }
}

Injection de contexte décisionnel

Si l'implémentation de votre flux de travail dépend des objets de contexte, vous pouvez facilement
les injecter via Spring. L'infrastructure enregistre automatiquement les beans liés au contexte dans
le conteneur Spring. Par exemple, dans l'extrait suivant, les divers objets de contexte ont été liés

Intégration de Spring Version de l'API 2021-04-28 128

AWS Flow Framework pour Java Guide du développeur

automatiquement via la fonction auto wire. Aucune autre configuration Spring des objets de contexte
n'est requise.

public class MyWorkflowImpl implements MyWorkflow {
 @Autowired
 public MyActivitiesClient client;
 @Autowired
 public WorkflowClock clock;
 @Autowired
 public DecisionContext dcContext;
 @Autowired
 public GenericActivityClient activityClient;
 @Autowired
 public GenericWorkflowClient workflowClient;
 @Autowired
 public WorkflowContext wfContext;
 @Override
 public void start() {
 client.activity1();
 }
}

Si vous souhaitez configurer les objets de contexte dans l'implémentation de flux de
travail via la configuration XML Spring, utilisez les noms de beans déclarés dans la classe
WorkflowScopeBeanNames dans le package com.amazonaws.services.simpleworkflow.flow.spring.
Par exemple :

<!-- workflow implementation -->
<bean id="workflowImpl" class="asadj.spring.test.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <property name="clock" ref="workflowClock"/>
 <property name="activityClient" ref="genericActivityClient"/>
 <property name="dcContext" ref="decisionContext"/>
 <property name="workflowClient" ref="genericWorkflowClient"/>
 <property name="wfContext" ref="workflowContext"/>
 <aop:scoped-proxy proxy-target-class="false" />
</bean>

Sinon, vous pouvez injecter un élément DecisionContextProvider dans le bean
d'implémentation de flux de travail et l'utiliser pour créer le contexte. Cela peut être utile si vous
souhaitez fournir des implémentations personnalisées du fournisseur et du contexte.

Intégration de Spring Version de l'API 2021-04-28 129

AWS Flow Framework pour Java Guide du développeur

Injection des ressources dans des activités

Vous pouvez instancier et configurer des implémentations d'activité en utilisant un conteneur
d'inversion de contrôle (IoC) et injecter facilement des ressources telles que des connexions de
bases de données en les déclarant en tant que propriétés de la classe d'implémentation d'activité.
Ces ressources sont généralement définies comme des portées de type singleton. Notez que les
implémentations d'activité sont appelées par l'exécuteur d'activité sur plusieurs threads. L'accès aux
ressources partagées doit donc être synchronisé.

JUnit Integration

Le framework fournit des JUnit extensions ainsi que des implémentations de test des objets
contextuels, telles qu'une horloge de test, que vous pouvez utiliser pour écrire et exécuter des JUnit
tests unitaires. Ces extensions vous permettent de tester l'implémentation de votre flux de travail
localement en ligne.

Écriture d'un test unitaire simple

Pour écrire des tests pour votre flux de travail, utilisez la classe WorkflowTest du package
com.amazonaws.services.simpleworkflow.flow.junit. Cette classe est une JUnit MethodRule
implémentation spécifique au framework et exécute le code de votre flux de travail localement, en
appelant les activités en ligne au lieu de passer par Amazon SWF. Cela vous permet d'exécuter vos
tests aussi souvent que vous le souhaitez, sans encourir aucun frais.

Pour utiliser cette classe, déclarez simplement un champ de type WorkflowTest et annotez-le avec
l'annotation @Rule. Avant d'exécuter vos tests, créez un nouvel objet WorkflowTest et ajoutez-lui
vos implémentations d'activité et de flux de travail. Vous pouvez ensuite utiliser la fabrique de clients
de flux de travail générée pour créer un client et lancer l'exécution du flux de travail. Le framework
fournit également un exécuteur JUnit personnaliséFlowBlockJUnit4ClassRunner, que vous
devez utiliser pour vos tests de flux de travail. Par exemple :

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory

JUnit Integration Version de l'API 2021-04-28 130

AWS Flow Framework pour Java Guide du développeur

 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {
 trace = new ArrayList<String>();
 // Register activity implementation to be used during test run
 BookingActivities activities = new BookingActivitiesImpl(trace);
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);
 }

 @After
 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);
 }
}

Vous pouvez également spécifier une liste de tâches distincte pour chaque implémentation d'activité
que vous ajoutez à WorkflowTest. Par exemple, si vous avez une implémentation de flux de travail
qui planifie des activités dans des listes de tâches propres à chaque hôte, vous pouvez enregistrer
l'activité dans la liste de tâches de chaque hôte :

for (int i = 0; i < 10; i++) {
 String hostname = "host" + i;
 workflowTest.addActivitiesImplementation(hostname,
 new ImageProcessingActivities(hostname));
}

Notez que le code dans @Test est asynchrone. Vous devez donc utiliser le client de flux de travail
asynchrone pour lancer une exécution. Pour vérifier les résultats de votre test, une classe d'aide
AsyncAssert est également fournie. Cette classe vous permet d'attendre que les objets attendus

JUnit Integration Version de l'API 2021-04-28 131

AWS Flow Framework pour Java Guide du développeur

passent à l'état prêt avant de vérifier les résultats. Dans cet exemple, nous attendons que le résultat
de l'exécution du flux de travail soit prêt pour vérifier la sortie du test.

Si vous utilisez Spring, la classe SpringWorkflowTest peut être utilisé au lieu de la classe
WorkflowTest. SpringWorkflowTest fournit les propriétés que vous pouvez utiliser pour
configurer des implémentations d'activité et de flux de travail facilement via la configuration de Spring.
Tout comme vous pourriez le faire avec les exécuteurs compatibles Spring, vous devez utiliser la
portée WorkflowScope pour configurer les beans d'implémentation de flux de travail. Cela permet
de s'assurer qu'un nouveau bean d'implémentation de flux de travail est créé pour chaque tâche de
décision. Assurez-vous de configurer ces beans avec le proxy-target-class paramètre scoped-proxy
défini sur. false Pour plus d'informations, consultez la section Intégration de Spring. L'exemple de
configuration Spring présenté dans la section Intégration de Spring peut être modifié pour tester le
flux de travail à l'aide de SpringWorkflowTest :

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://
www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframe
work.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>
 <context:annotation-config />
 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}" />
 <constructor-arg value="{AWS.Secret.Key}" />
 </bean>

JUnit Integration Version de l'API 2021-04-28 132

AWS Flow Framework pour Java Guide du développeur

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- Amazon SWF client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl"
 scope="workflow">
 <property name="client" ref="activitiesClient" />
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <!-- WorkflowTest -->
 <bean id="workflowTest"
 class="com.amazonaws.services.simpleworkflow.flow.junit.spring.SpringWorkflowTest">
 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 <property name="taskListActivitiesImplementationMap">
 <map>
 <entry>
 <key>
 <value>list1</value>
 </key>
 <ref bean="activitiesImplHost1" />
 </entry>
 </map>
 </property>
 </bean>

JUnit Integration Version de l'API 2021-04-28 133

AWS Flow Framework pour Java Guide du développeur

</beans>

Simulation d'implémentations d'activité

Vous pouvez utiliser des implémentations d'activité réelles pendant les tests, mais si vous souhaitez
effectuer un test unitaire uniquement sur la logique de flux de travail, vous devez simuler les activités.
Vous pouvez le faire en fournissant une implémentation factice de l'interface d'activités à la classe
WorkflowTest. Par exemple :

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory
 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {
 trace = new ArrayList<String>();
 // Create and register mock activity implementation to be used during test run
 BookingActivities activities = new BookingActivities() {

 @Override
 public void sendConfirmationActivity(int customerId) {
 trace.add("sendConfirmation-" + customerId);
 }

 @Override
 public void reserveCar(int requestId) {
 trace.add("reserveCar-" + requestId);
 }

 @Override
 public void reserveAirline(int requestId) {
 trace.add("reserveAirline-" + requestId);
 }
 };
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);

JUnit Integration Version de l'API 2021-04-28 134

AWS Flow Framework pour Java Guide du développeur

 }

 @After
 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);
 }
}

Sinon, vous pouvez aussi fournir une implémentation factice du client d'activités et l'injecter dans
l'implémentation de votre flux de travail.

Objets de contexte de test

Si l'implémentation de votre flux de travail dépend des objets contextuels du framework, par
exemple, DecisionContext vous n'avez rien à faire de spécial pour tester de tels flux de
travail. Lorsqu'un test est exécuté via WorkflowTest, il injecte automatiquement les objets de
contexte de test. Lorsque votre implémentation de flux de travail accède aux objets de contexte,
par exemple en utilisant, DecisionContextProviderImpl elle obtient l'implémentation de test.
Vous pouvez manipuler ces objets de contexte de test dans votre code de test (méthode @Test)
pour créer des cas de test intéressants. Par exemple, si votre flux de travail crée un temporisateur,
vous pouvez faire en sorte qu'il se déclenche en appelant la méthode clockAdvanceSeconds
sur la classe WorkflowTest pour déclencher l'horloge. Vous pouvez également accélérer
l'horloge afin que les temporisateurs se déclenchent plus tôt qu'ils ne le feraient normalement en
utilisant la propriété ClockAccelerationCoefficient sur WorkflowTest. Par exemple,
si votre flux de travail crée un temporisateur pour un heure, vous pouvez définir le coefficient
ClockAccelerationCoefficient sur 60 afin que le temporisateur se déclenche au bout d'une
minute. Par défaut, ClockAccelerationCoefficient est défini sur 1.

JUnit Integration Version de l'API 2021-04-28 135

AWS Flow Framework pour Java Guide du développeur

Pour plus d'informations sur les packages com.amazonaws.services.simpleworkflow.flow.test et
com.amazonaws.services.simpleworkflow.flow.junit, consultez la documentation AWS SDK pour
Java .

Gestion des erreurs

Rubriques

• TryCatchFinally Sémantique

• Annulation

• Imbriqué TryCatchFinally

Les blocs try/catch/finally intégrés à Java simplifient la gestion des erreurs et sont
abondamment utilisés. Ils vous permettent d'associer des gestionnaires d'erreurs à un bloc de code.
En interne, cela se concrétise par l'ajout de métadonnées supplémentaires sur les gestionnaires
d'erreurs dans la pile d'appel. Lorsqu'une exception est levée, l'environnement d'exécution recherche
dans la pile d'appels un gestionnaire d'erreurs associé et l'appelle. S'il ne trouve aucun gestionnaire
d'erreurs approprié, il propage l'exception dans la chaîne d'appel.

Cela fonctionne bien pour le code synchrone, mais la gestion des erreurs est asynchrone et les
programmes distribués posent des problèmes supplémentaires. Comme un appel asynchrone est
renvoyé immédiatement, l'appelant n'est pas dans la pile d'appels lorsque le code asynchrone
s'exécute. Cela signifie que les exceptions non gérées dans le code asynchrone ne peuvent pas
être gérées par l'appelant de façon classique. Généralement, les exceptions provenant du code
asynchrone sont gérées en transmettant l'état d'erreur à un rappel qui est transmis à la méthode
asynchrone. Sinon, si un élément Future<?> est utilisé, il signale une erreur lorsque vous tentez
d'y accéder. Ce processus n'est pas idéal, car le code qui reçoit l'exception (le rappel ou le code
qui utilise l'élément Future<?>) ne dispose pas du contexte de l'appel initial et peut ne pas être
capable de gérer correctement l'exception. En outre, dans un système asynchrone distribué dont
les composants s'exécutent simultanément, plusieurs erreurs peuvent se produire simultanément.
Ces erreurs peuvent être de différents types et niveaux de gravité ; elles doivent donc être gérées de
façon appropriée.

Le nettoyage de la ressource après un appel asynchrone est également difficile. Contrairement
au code synchrone, vous ne pouvez pas utiliser try/catch/finally le code d'appel pour nettoyer les
ressources, car le travail initié dans le bloc try peut toujours être en cours lorsque le bloc final
s'exécute.

Gestion des erreurs Version de l'API 2021-04-28 136

AWS Flow Framework pour Java Guide du développeur

Le framework fournit un mécanisme qui rend la gestion des erreurs dans le code asynchrone
distribué similaire et presque aussi simple que celle de Java. try/catch/finally

ImageProcessingActivitiesClient activitiesClient
 = new ImageProcessingActivitiesClientImpl();

public void createThumbnail(final String webPageUrl) {

 new TryCatchFinally() {

 @Override
 protected void doTry() throws Throwable {
 List<String> images = getImageUrls(webPageUrl);
 for (String image: images) {
 Promise<String> localImage
 = activitiesClient.downloadImage(image);
 Promise<String> thumbnailFile
 = activitiesClient.createThumbnail(localImage);
 activitiesClient.uploadImage(thumbnailFile);
 }
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {

 // Handle exception and rethrow failures
 LoggingActivitiesClient logClient = new LoggingActivitiesClientImpl();
 logClient.reportError(e);
 throw new RuntimeException("Failed to process images", e);
 }

 @Override
 protected void doFinally() throws Throwable {
 activitiesClient.cleanUp();
 }
 };
}

La classe TryCatchFinally et ses variantes, TryFinally et TryCatch, fonctionnent de
façon similaire à l'ensemble de blocs Java try/catch/finally. Elle vous permet d'associer des
gestionnaires d'exceptions à des blocs de code de flux de travail qui peuvent s'exécuter sous forme
de tâches asynchrones et distantes. La méthode doTry() est logiquement équivalente au bloc try.

Gestion des erreurs Version de l'API 2021-04-28 137

AWS Flow Framework pour Java Guide du développeur

L'infrastructure exécute automatiquement le code dans doTry(). Une liste d'objets Promise peut
être transmise au constructeur de TryCatchFinally. La méthode doTry est exécutée lorsque
tous les objets Promise transmis au constructeur sont prêts. Si une exception est levée par le code
qui a été appelé de façon asynchrone à partir de doTry(), tout travail en attente dans doTry()
est annulé et doCatch() est appelé pour gérer l'exception. Par exemple, dans la liste ci-dessus, si
downloadImage lève une exception, createThumbnail et uploadImage sont annulés. Enfin,
doFinally() est appelé lorsque tous les travaux asynchrones sont terminés (terminés avec
succès, en échec ou annulés). Il peut être utilisé pour le nettoyage des ressources. Vous pouvez
également imbriquer ces classes en fonction de vos besoins.

Lorsqu'une exception est signalée dans doCatch(), l'infrastructure fournit une pile d'appels logique
complète qui inclut les appels asynchrones et les appels distants. Cela peut être utile pour le
débogage, en particulier si des méthodes asynchrones appellent d'autres méthodes asynchrones.
Par exemple, une exception provenant de downloadImage générera une exception similaire à la
suivante :

RuntimeException: error downloading image
 at downloadImage(Main.java:35)
 at ---continuation---.(repeated:1)
 at errorHandlingAsync$1.doTry(Main.java:24)
 at ---continuation---.(repeated:1)
…

TryCatchFinally Sémantique

L'exécution d'un programme AWS Flow Framework pour Java peut être visualisée sous la forme d'un
arbre de branches s'exécutant simultanément. Un appel à une méthode asynchrone, une activité
et l'élément TryCatchFinally lui-même créent une nouvelle branche dans cette arborescence
d'exécution. Par exemple, le flux de travail de traitement d'image peut être représenté sous la forme
de l'arborescence présentée dans le schéma suivant :

TryCatchFinally Sémantique Version de l'API 2021-04-28 138

AWS Flow Framework pour Java Guide du développeur

Une erreur dans une branche d'exécution provoque le déroulement de cette branche, tout comme
une exception provoque le déroulement de la pile d'appels dans un programme Java. Le déroulement
poursuit sa remontée dans la branche d'exécution jusqu'à ce que l'erreur soit résolue ou que la racine
de l'arborescence soit atteinte, auquel cas l'exécution du flux de travail est terminée.

L'infrastructure signale les erreurs qui se produisent tout en procédant au traitement des tâches sous
la forme d'exceptions. Elle associe les gestionnaires d'exceptions (méthodes doCatch()) définis
dans TryCatchFinally à toutes les tâches qui sont créées par le code dans l'élément doTry()
correspondant. Si une tâche échoue, par exemple en raison d'un délai d'attente ou d'une exception
non gérée, l'exception appropriée sera levée et la correspondante doCatch() sera invoquée pour
la gérer. Pour ce faire, le framework fonctionne en tandem avec Amazon SWF pour propager les
erreurs distantes et les ressusciter sous forme d'exceptions dans le contexte de l'appelant.

Annulation

Lorsqu'une exception se produit dans du code synchrone, le contrôle est directement passé au bloc
catch, en omettant tout code restant dans le bloc try. Par exemple :

try {
 a();
 b();
 c();
}
catch (Exception e) {
 e.printStackTrace();
}

Dans ce code, si b() lève une exception, c() n'est jamais appelé. Comparons cela à un flux de
travail :

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 activityA();
 activityB();
 activityC();
 }

 @Override

Annulation Version de l'API 2021-04-28 139

AWS Flow Framework pour Java Guide du développeur

 protected void doCatch(Throwable e) throws Throwable {
 e.printStackTrace();
 }
};

Dans ce cas, les appels à activityA, activityB et activityC renvoient tous des données
avec succès et entraînent la création de trois tâches qui seront exécutées de manière asynchrone.
Supposons qu'ultérieurement, la tâche associée à activityB engendre une erreur. Cette erreur
est enregistrée dans l'historique par Amazon SWF. Pour gérer cela, l'infrastructure tente tout d'abord
d'annuler toutes les autres tâches qui ont pour origine le même élément doTry() ; dans le cas
présent, activityA et activityC. Lorsque toutes ces tâches sont terminées (annulées, en échec
ou exécutées avec succès), la méthode doCatch() appropriée est invoquée pour gérer l'erreur.

Contrairement à l'exemple du code synchrone, où c() n'a jamais été exécuté, activityC a
été appelé et une tâche a été programmée pour être exécutée ; l'infrastructure va donc tenter de
l'annuler, mais rien ne garantit qu'elle sera annulée. Cette annulation ne peut pas être garantie car
l'activité peut être déjà exécutée et terminée, peut ignorer la demande d'annulation ou peut échouer
en raison d'une erreur. Toutefois, l'infrastructure garantit que doCatch() n'est appelé qu'une fois
que toutes les tâches qui ont démarré à partir de l'élément doTry() correspondant sont terminées.
Elle garantit également que doFinally() n'est appelé qu'une fois que toutes les tâches démarrées
à partir de doTry() et doCatch() sont terminées. Si, par exemple, les activités décrites dans
l'exemple ci-dessus dépendent les unes des autres, disons activityB dépendent de activityA
et activityC deactivityB, l'annulation activityC sera immédiate car elle n'est planifiée dans
Amazon SWF qu'activityBune fois terminée :

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 Promise<Void> a = activityA();
 Promise<Void> b = activityB(a);
 activityC(b);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 e.printStackTrace();
 }
};

Annulation Version de l'API 2021-04-28 140

AWS Flow Framework pour Java Guide du développeur

Pulsations de l'activité

Le mécanisme d'annulation coopératif de AWS Flow Framework for Java permet d'annuler facilement
les tâches liées aux activités en vol. Lorsque l'annulation est déclenchée, les tâches qui sont
bloquées ou qui attendent d'être affectées à un exécuteur sont automatiquement annulées. Toutefois,
si une tâche est déjà affectée à un exécuteur, l'infrastructure demandera à l'activité de l'annuler.
L'implémentation de votre activité doit gérer explicitement ce type de demandes d'annulation. Pour
cela, un rapport sur les pulsations de votre activité est émis.

Le fait d'émettre un rapport sur les pulsations permet à l'implémentation d'activité de signaler la
progression d'une tâche d'activité en cours, ce qui est utile pour la surveillance et permet à l'activité
de détecter les demandes d'annulation. La méthode recordActivityHeartbeat lève une
exception CancellationException si une annulation a été demandée. L'implémentation d'activité
peut intercepter cette exception et agir sur la demande d'annulation ou ignorer la demande en
digérant l'exception. Pour honorer la demande d'annulation, l'activité doit effectuer le nettoyage
souhaité, le cas échéant, puis renvoyer une CancellationException. Lorsque cette exception est
levée à partir de l'implémentation d'une activité, l'infrastructure enregistre que cette tâche d'activité
s'est terminée à l'état annulé.

L'exemple suivant montre une activité qui télécharge et traite des images. Les pulsations varient
après le traitement de chaque image et, si l'annulation est demandée, l'activité supprime puis lève à
nouveau l'exception pour accuser réception de l'annulation.

@Override
public void processImages(List<String> urls) {
 int imageCounter = 0;
 for (String url: urls) {
 imageCounter++;
 Image image = download(url);
 process(image);
 try {
 ActivityExecutionContext context
 = contextProvider.getActivityExecutionContext();
 context.recordActivityHeartbeat(Integer.toString(imageCounter));
 } catch(CancellationException ex) {
 cleanDownloadFolder();
 throw ex;
 }
 }
}

Annulation Version de l'API 2021-04-28 141

AWS Flow Framework pour Java Guide du développeur

L'émission d'un rapport sur les pulsations de l'activité n'est pas obligatoire, mais elle est
recommandée si votre activité s'exécute sur une longue durée ou exécute des opérations onéreuses
que vous souhaitez annuler en cas d'erreur. Vous devez appeler heartbeatActivityTask
périodiquement à partir de l'implémentation de l'activité.

Si l'activité dépasse le délai d'attente qui lui est imparti, l'exception
ActivityTaskTimedOutException est levée et l'élément getDetails lancé sur l'objet
d'exception renvoie les données transmises au dernier appel à heartbeatActivityTask ayant
abouti pour la tâche d'activité correspondante. L'implémentation de flux de travail peut utiliser ces
informations pour déterminer le niveau de progression atteint au moment où la tâche d'activité a
dépassé le délai qui lui était imparti.

Note

Il n'est pas recommandé de battre trop fréquemment, car Amazon SWF peut ralentir les
demandes de pulsation. Consultez le guide du développeur Amazon Simple Workflow
Service pour connaître les limites fixées par Amazon SWF.

Annulation explicite d'une tâche

Outre les conditions d'erreur, il existe d'autres cas où vous pouvez être amené à annuler
explicitement une tâche. Par exemple, une activité de traitement des règlements à l'aide d'une carte
de crédit peut nécessiter une annulation si l'utilisateur annule sa demande. L'infrastructure vous
permet d'annuler explicitement des tâches créées dans un bloc TryCatchFinally. Dans l'exemple
suivant, la tâche de règlement est annulée si un signal est reçu pendant le traitement du règlement.

public class OrderProcessorImpl implements OrderProcessor {
 private PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();
 boolean processingPayment = false;
 private TryCatchFinally paymentTask = null;

 @Override
 public void processOrder(int orderId, final float amount) {
 paymentTask = new TryCatchFinally() {

 @Override
 protected void doTry() throws Throwable {
 processingPayment = true;

Annulation Version de l'API 2021-04-28 142

https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework pour Java Guide du développeur

 PaymentProcessorClient paymentClient = factory.getClient();
 paymentClient.processPayment(amount);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 if (e instanceof CancellationException) {
 paymentClient.log("Payment canceled.");
 } else {
 throw e;
 }
 }

 @Override
 protected void doFinally() throws Throwable {
 processingPayment = false;
 }
 };

 }

 @Override
 public void cancelPayment() {
 if (processingPayment) {
 paymentTask.cancel(null);
 }
 }
}

Réception d'une notification des tâches annulées

Lorsqu'une tâche se termine à l'état annulé, l'infrastructure informe la logique de flux de travail en
levant une exception CancellationException. Lorsqu'une activité se termine à l'état annulé,
un enregistrement est créé dans l'historique et l'infrastructure appelle la méthode doCatch()
appropriée avec une exception CancellationException. Comme décrit dans l'exemple
précédent, lorsque la tâche de traitement du règlement est annulée, le flux de travail reçoit une
exception CancellationException.

Une exception CancellationException non résolue est propagée dans la branche d'exécution,
comme c'est le cas pour toute autre exception. Toutefois, la méthode doCatch() ne reçoit

Annulation Version de l'API 2021-04-28 143

AWS Flow Framework pour Java Guide du développeur

l'exception CancellationException que s'il n'y a aucune autre exception dans la portée ; les
autres exceptions ont une priorité supérieure à celle de l'annulation.

Imbriqué TryCatchFinally

Vous pouvez imbriquer les blocs TryCatchFinally en fonction de vos besoins. Comme
chacune TryCatchFinally crée une nouvelle branche dans l'arbre d'exécution, vous pouvez
créer des étendues imbriquées. Les exceptions de la portée parent provoquent des tentatives
d'annulation de toutes les tâches initiées par les blocs TryCatchFinally imbriqués qu'elle
contient. Toutefois, les exceptions présentes dans un bloc TryCatchFinally imbriqué ne se
propagent pas automatiquement vers le parent. Si vous souhaitez propager une exception d'un bloc
TryCatchFinally imbriqué vers le bloc TryCatchFinally dans lequel il est imbriqué, vous
devez lever à nouveau l'exception dans doCatch(). En d'autres termes, seules les exceptions non
résolues sont remontées, tout comme avec les éléments Java try/catch. Si vous annulez un bloc
TryCatchFinally imbriqué en appelant la méthode cancel, le bloc TryCatchFinally imbriqué
est annulé, mais le bloc TryCatchFinally dans lequel il est imbriqué n'est pas automatiquement
annulé.

new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 activityA();

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 activityB();
 }

 @Override

Imbriqué TryCatchFinally Version de l'API 2021-04-28 144

AWS Flow Framework pour Java Guide du développeur

 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
 };

 activityC();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
};

Relance des activités ayant échoué

Les activités échouent parfois pour des raisons éphémères comme une perte temporaire de
connectivité. L'activité peut réussir à un autre moment. La méthode appropriée pour résoudre des
échecs d'activité consiste donc souvent à relancer l'activité, peut-être plusieurs fois.

Il existe différentes stratégies pour relancer des activités ; celle qui convient le mieux dépend des
détails de votre flux de travail. Les stratégies se répartissent en trois catégories de base :

• La retry-until-success stratégie continue simplement de réessayer l'activité jusqu'à ce qu'elle soit
terminée.

• La stratégie de nouvelle tentative exponentielle augmente de façon exponentielle l'intervalle de
temps entre les tentatives jusqu'à ce que l'activité se termine ou que le processus atteigne un point
d'arrêt spécifié, comme un nombre maximal de tentatives.

• La stratégie de nouvelle tentative personnalisée décide s'il faut relancer l'activité après chaque
tentative ayant échoué et de quelle manière.

Les sections suivantes expliquent comment implémenter ces stratégies. Les exemples de exécuteurs
de flux de travail utilisent tous une activité unique, unreliableActivity, qui exécute de façon
aléatoire les actions suivantes :

• Elle se termine immédiatement

• Elle échoue intentionnellement en dépassant la valeur de délai d'expiration

• Elle échoue intentionnellement en déclenchant l'exception IllegalStateException

Relance des activités ayant échoué Version de l'API 2021-04-28 145

AWS Flow Framework pour Java Guide du développeur

Retry-Until-Success Stratégie

La stratégie de nouvelle tentative la plus simple consiste à relancer chaque fois l'activité jusqu'à ce
que celle-ci réussisse. Le modèle de base est le suivant :

1. Implémenter une classe TryCatch ou TryCatchFinally imbriquée dans la méthode de point
d'entrée de votre flux de travail.

2. Exécuter l'activité dans doTry.

3. Si l'activité échoue, l'infrastructure appelle doCatch, qui exécute à nouveau la méthode de point
d'entrée.

4. Répéter les étapes 2 à 3 jusqu'à ce que l'activité se termine correctement.

Le flux de travail suivant met en œuvre la retry-until-success stratégie. L'interface de flux de
travail est implémentée dans RetryActivityRecipeWorkflow et comporte une méthode,
runUnreliableActivityTillSuccess, qui est le point d'entrée du flux de travail. L'exécuteur de
flux de travail est implémenté dans RetryActivityRecipeWorkflowImpl, comme suit :

public class RetryActivityRecipeWorkflowImpl
 implements RetryActivityRecipeWorkflow {

 @Override
 public void runUnreliableActivityTillSuccess() {
 final Settable<Boolean> retryActivity = new Settable<Boolean>();

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 Promise<Void> activityRanSuccessfully
 = client.unreliableActivity();
 setRetryActivityToFalse(activityRanSuccessfully, retryActivity);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 retryActivity.set(true);
 }
 };
 restartRunUnreliableActivityTillSuccess(retryActivity);
 }

Retry-Until-Success Stratégie Version de l'API 2021-04-28 146

AWS Flow Framework pour Java Guide du développeur

 @Asynchronous
 private void setRetryActivityToFalse(
 Promise<Void> activityRanSuccessfully,
 @NoWait Settable<Boolean> retryActivity) {
 retryActivity.set(false);
 }

 @Asynchronous
 private void restartRunUnreliableActivityTillSuccess(
 Settable<Boolean> retryActivity) {
 if (retryActivity.get()) {
 runUnreliableActivityTillSuccess();
 }
 }
}

Le flux de travail fonctionne comme suit :

1. runUnreliableActivityTillSuccess crée un objet Settable<Boolean> nommé
retryActivity qui est utilisé pour indiquer si l'activité a échoué et doit être réessayée.
Settable<T> est dérivé de Promise<T> et fonctionne de la même manière, mais vous
définissez une valeur de l'objet Settable<T> manuellement.

2. runUnreliableActivityTillSuccess implémente une classe TryCatch imbriquée
anonyme pour traiter les exceptions qui sont déclenchées par l'activité unreliableActivity.
Pour en savoir plus sur le traitement des exceptions déclenchées par un code asynchrone,
consultez Gestion des erreurs.

3. doTry exécute l'activité unreliableActivity qui renvoie un objet Promise<Void> nommé
activityRanSuccessfully.

4. doTry appelle la méthode setRetryActivityToFalse asynchrone et lui transmet deux
paramètres :

• activityRanSuccessfully prend l'objet Promise<Void> renvoyé par l'activité
unreliableActivity.

• retryActivity prend l'objet retryActivity.

Si unreliableActivity se termine, activityRanSuccessfully devient
prêt et setRetryActivityToFalse définit retryActivity sur false. Sinon,
activityRanSuccessfully ne devient jamais prêt et setRetryActivityToFalse ne
s'exécute pas.

Retry-Until-Success Stratégie Version de l'API 2021-04-28 147

AWS Flow Framework pour Java Guide du développeur

5. Si unreliableActivity déclenche une exception, l'infrastructure appelle doCatch et lui
transmet l'objet d'exception. doCatch définit retryActivity avec la valeur true.

6. runUnreliableActivityTillSuccess appelle la méthode
restartRunUnreliableActivityTillSuccess asynchrone et lui transmet
l'objet retryActivity. Comme retryActivity est de type Promise<T>,
restartRunUnreliableActivityTillSuccess diffère l'exécution jusqu'à ce que
retryActivity soit prêt, ce qui a lieu une fois que TryCatch est terminé.

7. Quand retryActivity est prêt, restartRunUnreliableActivityTillSuccess extrait la
valeur.

• Si la valeur est false, la nouvelle tentative a réussi.
restartRunUnreliableActivityTillSuccess ne fait rien et la séquence de nouvelle
tentative est arrêtée.

• Si la valeur est true, la nouvelle tentative a échoué.
restartRunUnreliableActivityTillSuccess appelle
runUnreliableActivityTillSuccess pour exécuter l'activité à nouveau.

8. Le flux de travail répète les étapes 1 à 7 jusqu'à ce que unreliableActivity se termine.

Note

doCatch ne traite pas l'exception ; il définit simplement l'objet retryActivity sur true
pour indiquer que l'activité a échoué. La nouvelle tentative est traitée par la méthode
restartRunUnreliableActivityTillSuccess asynchrone, ce qui diffère l'exécution
jusqu'à ce que TryCatch se termine. La raison de cette approche est que si vous relancez
une activité dans doCatch, vous ne pouvez pas l'annuler. La relance de l'activité dans
restartRunUnreliableActivityTillSuccess vous permet d'exécuter des activités
annulables.

Stratégie de nouvelle tentative exponentielle

Avec la stratégie de nouvelle tentative exponentielle, l'infrastructure exécute à nouveau une activité
ayant échoué après une période de temps spécifiée, N secondes. Si cette tentative échoue,
l'infrastructure exécute à nouveau l'activité après 2N secondes, puis après 4N secondes, et ainsi de
suite. Comme le temps d'attente peut devenir très long, vous arrêtez généralement les nouvelles
tentatives après un certain temps plutôt que de continuer indéfiniment.

Stratégie de nouvelle tentative exponentielle Version de l'API 2021-04-28 148

AWS Flow Framework pour Java Guide du développeur

L'infrastructure fournit trois façons d'implémenter une stratégie de nouvelle tentative exponentielle :

• L'annotation @ExponentialRetry est l'approche la plus simple, mais vous devez définir les
options de configuration de nouvelle tentative lors de la compilation.

• La classe RetryDecorator vous permet de définir la configuration de nouvelle tentative lors de
l'exécution et de la modifier si nécessaire.

• La classe AsyncRetryingExecutor vous permet de définir la configuration de nouvelle tentative
lors de l'exécution et de la modifier si nécessaire. En outre, l'infrastructure appelle une méthode
AsyncRunnable.run implémentée par l'utilisateur pour exécuter chaque nouvelle tentative.

Toutes les approches prennent en charge les options de configuration suivantes, où les valeurs de
temps sont exprimées en secondes :

• Le temps d'attente initial avant une nouvelle tentative.

• Le coefficient de recul qui est utilisé pour calculer les intervalles de nouvelle tentative, comme suit :

retryInterval = initialRetryIntervalSeconds * Math.pow(backoffCoefficient,
 numberOfTries - 2)

La valeur par défaut est 2.0.

• Le nombre maximum de nouvelles tentatives autorisées. La valeur par défaut est unlimited
(illimité).

• L'intervalle maximum de nouvelle tentative. La valeur par défaut est unlimited (illimité).

• Le délai d'expiration. Les nouvelles tentatives s'arrêtent lorsque la durée totale du processus
dépasse cette valeur. La valeur par défaut est unlimited (illimité).

• Les exceptions qui déclenchent le processus de nouvelle tentative. Par défaut, toutes les
exceptions déclenchent le processus de nouvelle tentative.

• Les exceptions qui ne déclenchent pas le processus de nouvelle tentative. Par défaut, aucune
exception n'est exclue.

Les sections suivantes décrivent les différentes façons d'implémenter une stratégie de nouvelle
tentative exponentielle.

Stratégie de nouvelle tentative exponentielle Version de l'API 2021-04-28 149

AWS Flow Framework pour Java Guide du développeur

Réessayer de façon exponentielle avec @ ExponentialRetry

La façon la plus simple d'implémenter une stratégie de nouvelle tentative exponentielle pour
une activité est d'appliquer une annotation @ExponentialRetry à l'activité dans la définition
d'interface. Si l'activité échoue, l'infrastructure gère automatiquement le processus de nouvelle
tentative en fonction des valeurs d'option spécifiées. Le modèle de base est le suivant :

1. Appliquer @ExponentialRetry aux activités appropriées et spécifier la configuration de nouvelle
tentative.

2. Si une activité annotée échoue, l'infrastructure la relance automatiquement en fonction de la
configuration spécifiée par les arguments de l'annotation.

L'exécuteur de flux de travail ExponentialRetryAnnotationWorkflow implémente la
stratégie de nouvelle tentative exponentielle en utilisant une annotation @ExponentialRetry.
Il utilise une activité unreliableActivity dont la définition d'interface est implémentée dans
ExponentialRetryAnnotationActivities comme suit :

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskScheduleToStartTimeoutSeconds = 30,
 defaultTaskStartToCloseTimeoutSeconds = 30)
public interface ExponentialRetryAnnotationActivities {
 @ExponentialRetry(
 initialRetryIntervalSeconds = 5,
 maximumAttempts = 5,
 exceptionsToRetry = IllegalStateException.class)
 public void unreliableActivity();
}

Les options @ExponentialRetry spécifient la stratégie suivante :

• Effectuer une nouvelle tentative uniquement si l'activité déclenche IllegalStateException.

• Utiliser un temps d'attente initial de 5 secondes.

• Pas plus de 5 nouvelles tentatives.

L'interface de flux de travail est implémentée dans RetryWorkflow et comporte une méthode,
process, qui est le point d'entrée du flux de travail. L'exécuteur de flux de travail est implémenté
dans ExponentialRetryAnnotationWorkflowImpl, comme suit :

Stratégie de nouvelle tentative exponentielle Version de l'API 2021-04-28 150

AWS Flow Framework pour Java Guide du développeur

public class ExponentialRetryAnnotationWorkflowImpl implements RetryWorkflow {
 public void process() {
 handleUnreliableActivity();
 }

 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

Le flux de travail fonctionne comme suit :

1. process exécute la méthode handleUnreliableActivity synchrone.

2. handleUnreliableActivity exécute l'activité unreliableActivity.

Si l'activité échoue en déclenchant IllegalStateException, l'infrastructure
exécute automatiquement la stratégie de nouvelle tentative spécifiée dans
ExponentialRetryAnnotationActivities.

Réessai exponentiel avec la classe RetryDecorator

@ExponentialRetry est simple à utiliser. Par contre, la configuration est statique et définie lors de
la compilation. L'infrastructure utilise donc la même stratégie de nouvelle tentative chaque fois que
l'activité échoue. Vous pouvez implémenter une stratégie de nouvelle tentative exponentielle plus
flexible à l'aide de la classe RetryDecorator, qui vous permet de spécifier la configuration pendant
l'exécution et de la modifier si nécessaire. Le modèle de base est le suivant :

1. Créer et configurer un objet ExponentialRetryPolicy qui spécifie la configuration de nouvelle
tentative.

2. Créer un objet RetryDecorator et transmettre l'objet ExponentialRetryPolicy de l'étape 1
au constructeur.

3. Appliquer l'objet décorateur à l'activité en transmettant le nom de classe du client d'activité à la
méthode de décoration de l'objet RetryDecorator.

4. Exécuter l'activité.

Stratégie de nouvelle tentative exponentielle Version de l'API 2021-04-28 151

AWS Flow Framework pour Java Guide du développeur

Si l'activité échoue, l'infrastructure la relance automatiquement en fonction de la configuration de
l'objet ExponentialRetryPolicy. Vous pouvez modifier la configuration de nouvelle tentative si
nécessaire en modifiant cet objet.

Note

L'annotation @ExponentialRetry et la classe RetryDecorator s'excluent mutuellement.
Vous ne pouvez pas utiliser RetryDecorator pour remplacer dynamiquement une stratégie
de nouvelle tentative spécifiée par une annotation @ExponentialRetry.

L'implémentation de flux de travail suivante montre comment utiliser la classe RetryDecorator
pour implémenter une stratégie de nouvelle tentative exponentielle. Elle utilise une activité
unreliableActivity qui ne comporte pas d'annotation @ExponentialRetry. L'interface
de flux de travail est implémentée dans RetryWorkflow et comporte une méthode, process,
qui est le point d'entrée du flux de travail. L'exécuteur de flux de travail est implémenté dans
DecoratorRetryWorkflowImpl, comme suit :

public class DecoratorRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 ExponentialRetryPolicy retryPolicy = new ExponentialRetryPolicy(
 initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);

 Decorator retryDecorator = new RetryDecorator(retryPolicy);
 client = retryDecorator.decorate(RetryActivitiesClient.class, client);
 handleUnreliableActivity();
 }

 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

Le flux de travail fonctionne comme suit :

1. process crée et configure un objet ExponentialRetryPolicy en :

• Transmettant l'intervalle de nouvelle tentative initial au constructeur.

Stratégie de nouvelle tentative exponentielle Version de l'API 2021-04-28 152

AWS Flow Framework pour Java Guide du développeur

• Appel de la méthode withMaximumAttempts de l'objet pour définir le nombre maximal de
tentatives sur 5. ExponentialRetryPolicy expose d'autres objets with que vous pouvez
utiliser pour spécifier d'autres options de configuration.

2. process crée un objet RetryDecorator nommé retryDecorator et transmet l'objet
ExponentialRetryPolicy de l'étape 1 au constructeur.

3. process applique l'objet décorateur à l'activité en appelant la méthode
retryDecorator.decorate et en lui transmettant le nom de classe du client d'activité.

4. handleUnreliableActivity exécute l'activité.

Si une activité échoue, l'infrastructure la relance en fonction de la configuration spécifiée à l'étape 1.

Note

Plusieurs des méthodes with de la classe ExponentialRetryPolicy ont une
méthode set correspondante que vous pouvez appeler pour modifier l'option
de configuration correspondante à tout moment : setBackoffCoefficient,
setMaximumAttempts, setMaximumRetryIntervalSeconds et
setMaximumRetryExpirationIntervalSeconds.

Réessai exponentiel avec la classe AsyncRetryingExecutor

La classe RetryDecorator offre plus de flexibilité pour la configuration du processus de nouvelle
tentative que @ExponentialRetry, mais l'infrastructure exécute toujours les nouvelles tentatives
automatiquement, en fonction de la configuration actuelle de l'objet ExponentialRetryPolicy.
Une approche plus souple consiste à utiliser la classe AsyncRetryingExecutor. En plus de vous
permettre de configurer le processus de nouvelle tentative pendant l'exécution, l'infrastructure appelle
une méthode AsyncRunnable.run implémentée par l'utilisateur pour exécuter chaque nouvelle
tentative au lieu de simplement exécuter l'activité.

Le modèle de base est le suivant :

1. Créer et configurer un objet ExponentialRetryPolicy pour spécifier la configuration de
nouvelle tentative.

2. Créer un objet AsyncRetryingExecutor, et lui transmettre l'objet ExponentialRetryPolicy
et une instance de l'horloge de flux de travail.

Stratégie de nouvelle tentative exponentielle Version de l'API 2021-04-28 153

AWS Flow Framework pour Java Guide du développeur

3. Implémenter une classe TryCatch ou TryCatchFinally imbriquée anonyme.

4. Implémenter une classe AsyncRunnable anonyme et remplacer la méthode run pour
implémenter un code personnalisé afin d'exécuter l'activité.

5. Remplacer doTry pour appeler la méthode execute de l'objet AsyncRetryingExecutor et lui
transmettre la classe AsyncRunnable de l'étape 4. L'objet AsyncRetryingExecutor appelle
AsyncRunnable.run pour exécuter l'activité.

6. Si l'activité échoue, l'objet AsyncRetryingExecutor appelle à nouveau la méthode
AsyncRunnable.run, en fonction de la stratégie de nouvelle tentative spécifiée à l'étape 1.

Le flux de travail suivant montre comment utiliser la classe AsyncRetryingExecutor
pour implémenter une stratégie de nouvelle tentative exponentielle. Il utilise la même activité
unreliableActivity que le flux de travail DecoratorRetryWorkflow présenté précédemment.
L'interface de flux de travail est implémentée dans RetryWorkflow et comporte une méthode,
process, qui est le point d'entrée du flux de travail. L'exécuteur de flux de travail est implémenté
dans AsyncExecutorRetryWorkflowImpl, comme suit :

public class AsyncExecutorRetryWorkflowImpl implements RetryWorkflow {
 private final RetryActivitiesClient client = new RetryActivitiesClientImpl();
 private final DecisionContextProvider contextProvider = new
 DecisionContextProviderImpl();
 private final WorkflowClock clock =
 contextProvider.getDecisionContext().getWorkflowClock();

 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 handleUnreliableActivity(initialRetryIntervalSeconds, maximumAttempts);
 }
 public void handleUnreliableActivity(long initialRetryIntervalSeconds, int
 maximumAttempts) {

 ExponentialRetryPolicy retryPolicy = new
 ExponentialRetryPolicy(initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);
 final AsyncExecutor executor = new AsyncRetryingExecutor(retryPolicy, clock);

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 executor.execute(new AsyncRunnable() {
 @Override

Stratégie de nouvelle tentative exponentielle Version de l'API 2021-04-28 154

AWS Flow Framework pour Java Guide du développeur

 public void run() throws Throwable {
 client.unreliableActivity();
 }
 });
 }
 @Override
 protected void doCatch(Throwable e) throws Throwable {
 }
 };
 }
}

Le flux de travail fonctionne comme suit :

1. process appelle la méthode handleUnreliableActivity et lui transmet les paramètres de
configuration.

2. handleUnreliableActivity utilise les paramètres de configuration de l'étape 1 pour créer un
objet ExponentialRetryPolicy, retryPolicy.

3. handleUnreliableActivity crée un objet AsyncRetryExecutor, executor, et transmet
l'objet ExponentialRetryPolicy de l'étape 2 et une instance de l'horloge de flux de travail au
constructeur.

4. handleUnreliableActivity implémente une classe TryCatch imbriquée anonyme, et
remplace les méthodes doTry et doCatch pour exécuter les nouvelles tentatives et traiter les
exceptions.

5. doTry crée une classe AsyncRunnable anonyme et remplace la méthode run pour implémenter
un code personnalisé afin d'exécuter unreliableActivity. Pour des raisons de simplicité, run
exécute seulement l'activité, mais vous pouvez implémenter des approches plus sophistiquées le
cas échéant.

6. doTry appelle executor.execute et transmet l'objet AsyncRunnable. execute appelle la
méthode run de l'objet AsyncRunnable pour exécuter l'activité.

7. Si l'activité échoue, l'exécuteur appelle à nouveau run en fonction de la configuration de l'objet
retryPolicy.

Pour en savoir plus sur l'utilisation de la classe TryCatch pour gérer des erreurs, consultez AWS
Flow Framework pour les exceptions Java.

Stratégie de nouvelle tentative exponentielle Version de l'API 2021-04-28 155

AWS Flow Framework pour Java Guide du développeur

Stratégie de nouvelle tentative personnalisée

L'approche la plus flexible pour réessayer les activités ayant échoué est une stratégie personnalisée,
qui appelle de manière récursive une méthode asynchrone qui exécute la nouvelle tentative, un peu
comme la stratégie. retry-until-success Par contre, au lieu de relancer simplement l'activité, vous
implémentez une logique personnalisée qui décide si chaque nouvelle tentative successive doit être
exécutée et de quelle façon. Le modèle de base est le suivant :

1. Créer un objet de statut Settable<T> qui est utilisé pour indiquer si l'activité a échoué.

2. Implémenter une classe TryCatch ou TryCatchFinally imbriquée.

3. doTry exécute l'activité.

4. Si l'activité échoue, doCatch définit l'objet de statut pour indiquer que l'activité a échoué.

5. Appeler une méthode de gestion des défaillances et lui transmettre l'objet de statut. La méthode
diffère l'exécution jusqu'à ce que TryCatch ou TryCatchFinally soit terminé.

6. La méthode de gestion des défaillances décide s'il faut relancer l'activité, et si oui, quand.

Le flux de travail suivant montre comment implémenter une stratégie de nouvelle tentative
personnalisée. Il utilise la même activité unreliableActivity que les flux de travail
DecoratorRetryWorkflow et AsyncExecutorRetryWorkflow. L'interface de flux de
travail est implémentée dans RetryWorkflow et comporte une méthode, process, qui
est le point d'entrée du flux de travail. L'exécuteur de flux de travail est implémenté dans
CustomLogicRetryWorkflowImpl, comme suit :

public class CustomLogicRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 callActivityWithRetry();
 }
 @Asynchronous
 public void callActivityWithRetry() {
 final Settable<Throwable> failure = new Settable<Throwable>();
 new TryCatchFinally() {
 protected void doTry() throws Throwable {
 client.unreliableActivity();
 }
 protected void doCatch(Throwable e) {
 failure.set(e);
 }

Stratégie de nouvelle tentative personnalisée Version de l'API 2021-04-28 156

AWS Flow Framework pour Java Guide du développeur

 protected void doFinally() throws Throwable {
 if (!failure.isReady()) {
 failure.set(null);
 }
 }
 };
 retryOnFailure(failure);
 }
 @Asynchronous
 private void retryOnFailure(Promise<Throwable> failureP) {
 Throwable failure = failureP.get();
 if (failure != null && shouldRetry(failure)) {
 callActivityWithRetry();
 }
 }
 protected Boolean shouldRetry(Throwable e) {
 //custom logic to decide to retry the activity or not
 return true;
 }
}

Le flux de travail fonctionne comme suit :

1. process appelle la méthode callActivityWithRetry asynchrone.

2. callActivityWithRetry crée un objet Settable<Throwable> nommé failure qui est utilisé
pour indiquer si l'activité a échoué. Settable<T> est dérivé de Promise<T> et fonctionne de la
même manière, mais vous définissez une valeur de l'objet Settable<T> manuellement.

3. callActivityWithRetry implémente une classe TryCatchFinally imbriquée anonyme pour
traiter les exceptions qui sont déclenchées par unreliableActivity. Pour en savoir plus sur le
traitement des exceptions déclenchées par un code asynchrone, consultez AWS Flow Framework
pour les exceptions Java.

4. doTry exécute unreliableActivity.

5. Si unreliableActivity lève une exception, le framework appelle doCatch et transmet l'objet
d'exception. doCatch définit failure sur l'objet d'exception, ce qui indique que l'activité a
échoué et place l'objet dans l'état prêt.

6. doFinally vérifie si failure est prêt, ce qui est vrai seulement si failure a été défini par
doCatch.

• S'il failure est prêt, il doFinally ne fait rien.

Stratégie de nouvelle tentative personnalisée Version de l'API 2021-04-28 157

AWS Flow Framework pour Java Guide du développeur

• Si failure n'est pas prêt, l'activité est terminée et doFinally définit la défaillance (failure) sur
null.

7. callActivityWithRetry appelle la méthode retryOnFailure asynchrone et lui transmet
« failure ». Comme « failure » est de type Settable<T>, callActivityWithRetry diffère
l'exécution jusqu'à ce que « failure » soit prêt, ce qui a lieu une fois que TryCatchFinally est
terminé.

8. retryOnFailure extrait la valeur de « failure ».

• Si l'objet failure est défini avec la valeur null, la nouvelle tentative est réussie. retryOnFailure
ne fait rien, ce qui arrête le processus de nouvelle tentative.

• Si « failure » est défini sur un objet d'exception et que shouldRetry renvoie true,
retryOnFailure appelle callActivityWithRetry pour relancer l'activité.

shouldRetry implémente une logique personnalisée qui décide s'il faut relancer une activité
ayant échoué. Pour des raisons de simplicité, shouldRetry renvoie toujours true et
retryOnFailure exécute immédiatement l'activité, mais vous pouvez implémenter une
logique plus sophistiquée le cas échéant.

9. Les étapes 2 à 8 se répètent jusqu'à ce que unreliableActivity le processus soit terminé ou
qu'il soit shouldRetry décidé d'arrêter le processus.

Note

doCatch ne traite pas le processus de nouvelle tentative ; il définit simplement « failure »
pour indiquer que l'activité a échoué. Le processus de nouvelle tentative est géré par la
méthode retryOnFailure asynchrone, qui diffère l'exécution jusqu'à ce que TryCatch se
termine. La raison de cette approche est que si vous relancez une activité dans doCatch,
vous ne pouvez pas l'annuler. La relance de l'activité dans retryOnFailure vous permet
d'exécuter des activités annulables.

Tâches démon

Le AWS Flow Framework for Java permet de marquer certaines tâches commedaemon. Cela permet
de créer des tâches pour effectuer du travail en arrière-plan qui doit être annulé lorsque tout le reste
du travail est terminé. Par exemple, une tâche de vérification de l'état doit être annulée lorsque le
reste du flux de travail est terminé. Vous pouvez accomplir cela en définissant le drapeau daemon sur

Tâches démon Version de l'API 2021-04-28 158

AWS Flow Framework pour Java Guide du développeur

une méthode asynchrone ou une instance TryCatchFinally. Dans l'exemple suivant, la méthode
asynchrone monitorHealth() est marquée en tant que daemon.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 monitorHealth();
 }

 @Asynchronous(daemon=true)
 void monitorHealth(Promise<?>... waitFor) {
 activitiesClient.monitoringActivity();
 }
}

Dans l'exemple ci-dessus, lorsque doUsefulWorkActivity se termine, la méthode
monitoringHealth est automatiquement annulée. Cela entraîne l'annulation de la branche
d'exécution entière issue de cette méthode asynchrone. Les sémantiques de l'annulation
sont les mêmes que dans TryCatchFinally. De même, vous pouvez marquer un démon
TryCatchFinally en passant un drapeau booléen au constructeur.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 new TryFinally(true) {
 @Override
 protected void doTry() throws Throwable {
 activitiesClient.monitoringActivity();
 }

 @Override
 protected void doFinally() throws Throwable {
 // clean up
 }

Tâches démon Version de l'API 2021-04-28 159

AWS Flow Framework pour Java Guide du développeur

 };
 }
}

Une tâche daemon démarrée dans un TryCatchFinally est limitée au contexte dans lequel elle a
été créée, c'est-à-dire qu'elle sera limitée aux méthodes, ou. doTry() doCatch() doFinally()
Par exemple, dans l'exemple suivant, la méthode asynchrone startMonitoring est marquée en tant
que démon et appelée à partir de doTry(). La tâche ainsi créée est annulée dès que les autres
tâches (doUsefulWorkActivity dans ce cas) lancées dans doTry() sont terminées.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 new TryFinally() {
 @Override
 protected void doTry() throws Throwable {
 activitiesClient.doUsefulWorkActivity();
 startMonitoring();
 }

 @Override
 protected void doFinally() throws Throwable {
 // Clean up
 }
 };
 }

 @Asynchronous(daemon = true)
 void startMonitoring(){
 activitiesClient.monitoringActivity();
 }

AWS Flow Framework pour Java Replay Behavior

Cette rubrique présente des exemples de comportements de reproduction, grâce aux exemples
de la section Qu'est-ce que le AWS Flow Framework pour Java ?. Les scénarios synchrones et
asynchrones sont présentés.

Comportement de reproduction Version de l'API 2021-04-28 160

AWS Flow Framework pour Java Guide du développeur

Exemple 1 : Reproduction synchrone

Pour un exemple du fonctionnement du replay dans un flux de travail synchrone, modifiez les
implémentations du HelloWorldWorkflowflux de travail et des activités en ajoutant des println
appels dans leurs implémentations respectives, comme suit :

public class GreeterWorkflowImpl implements GreeterWorkflow {
...
 public void greet() {
 System.out.println("greet executes");
 Promise<String> name = operations.getName();
 System.out.println("client.getName returns");
 Promise<String> greeting = operations.getGreeting(name);
 System.out.println("client.greeting returns");
 operations.say(greeting);
 System.out.println("client.say returns");
 }
}

public class GreeterActivitiesImpl implements GreeterActivities {
 public String getName() {
 System.out.println("activity.getName completes");
 return "World";
 }

 public String getGreeting(String name) {
 System.out.println("activity.getGreeting completes");
 return "Hello " + name + "!";
 }

 public void say(String what) {
 System.out.println(what);
 }
}

Pour plus de détails sur le code, consultez HelloWorldWorkflow Demande. Voici une version modifiée
du résultat, avec des commentaires qui indiquent le début de chaque épisode de reproduction.

//Episode 1
greet executes
client.getName returns
client.greeting returns

Exemple 1 : Reproduction synchrone Version de l'API 2021-04-28 161

AWS Flow Framework pour Java Guide du développeur

client.say returns

activity.getName completes
//Episode 2
greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getGreeting completes
//Episode 3
greet executes
client.getName returns
client.greeting returns
client.say returns

Hello World! //say completes
//Episode 4
greet executes
client.getName returns
client.greeting returns
client.say returns

Le processus de reproduction pour cet exemple fonctionne comme suit :

• Le premier épisode planifie la tâche d'activité getName qui ne possède aucune dépendance.

• Le deuxième épisode planifie la tâche d'activité getGreeting qui dépend de getName.

• Le troisième épisode planifie la tâche d'activité say qui dépend de getGreeting.

• Le dernier épisode ne planifie aucune tâche supplémentaire et ne trouve aucune activité
inachevée, ce qui termine l'exécution de flux de travail.

Note

Les trois méthodes de client d'activité sont appelées une fois pour chaque épisode. Pourtant,
seul un de ces appels se traduit par une tâche d'activité, ainsi chaque tâche n'est exécutée
qu'une fois.

Exemple 1 : Reproduction synchrone Version de l'API 2021-04-28 162

AWS Flow Framework pour Java Guide du développeur

Exemple 2 : Reproduction asynchrone

De même que pour l'exemple de reproduction synchrone, vous pouvez modifier la
HelloWorldWorkflowAsyncDemande pour observer le fonctionnement d'une reproduction asynchrone.
Cela produit le résultat suivant :

//Episode 1
greet executes
client.name returns
workflow.getGreeting returns
client.say returns

activity.getName completes
//Episode 2
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

Hello World! //say completes
//Episode 3
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

HelloWorldAsync utilise trois épisodes en replay car il n'y a que deux activités. L'activité
getGreeting a été remplacée par la méthode de flux de travail asynchrone getGreeting qui ne
lance pas un épisode de reproduction lorsqu'elle est terminée.

Le premier épisode n'appelle pas getGreeting, car il dépend de la fin de l'activité name. Pourtant,
après la fin de getName, la reproduction appelle getGreeting une fois pour chaque épisode suivant.

consultez aussi

• AWS Flow Framework Concepts de base : exécution distribuée

Exemple 2 : Reproduction asynchrone Version de l'API 2021-04-28 163

AWS Flow Framework pour Java Guide du développeur

Bonnes pratiques
Utilisez ces bonnes pratiques pour tirer le meilleur parti AWS Flow Framework de Java.

Rubriques

• Modifications du code décideur : Gestion des versions et indicateurs de fonction

Modifications du code décideur : Gestion des versions et
indicateurs de fonction

Cette section explique comment éviter les modifications irréversibles apportées à un décideur à l'aide
des deux méthodes suivantes :

• La gestion des versions offre une solution basique.

• La gestion des versions avec indicateurs de fonction s'appuie sur la solution de gestion des
versions : Aucune nouvelle version du flux de travail n'est présentée, et il n'y a aucun besoin de
renvoyer un nouveau code pour mettre à jour la version.

Avant de tester ces solutions, familiarisez-vous avec la section Exemple de scénario qui explique les
causes et les effets des modifications irréversibles apportées à un décideur.

Le processus de reproduction et les modifications de code

Lorsqu'un AWS Flow Framework outil de décision pour Java exécute une tâche de décision, il doit
d'abord reconstruire l'état actuel de l'exécution avant de pouvoir y ajouter des étapes. Pour ce faire,
le décideur utilise un processus appelé reproduction.

Le processus de reproduction exécute de nouveau le code décideur depuis le début, tout en
parcourant simultanément l'historique des événements passés. Le fait de parcourir l'historique des
événements permet à l'infrastructure de réagir aux signaux ou aux fins de tâches et de débloquer des
objets Promise dans le code.

Lorsque le framework exécute le code du décideur, il attribue un identifiant à chaque tâche planifiée
(une activité, une fonction Lambda, un minuteur, un flux de travail enfant ou un signal sortant) en
incrémentant un compteur. Le framework communique cet identifiant à Amazon SWF et l'ajoute aux
événements historiques, tels que. ActivityTaskCompleted

Modifications du code décideur Version de l'API 2021-04-28 164

AWS Flow Framework pour Java Guide du développeur

Pour que le processus de reproduction fonctionne, il est essentiel que le code décideur soit
déterministe, et qu'il planifie les mêmes tâches dans le même ordre pour chaque décision dans
chaque exécution de flux de travail. Si vous ne respectez pas cette exigence, l'infrastructure
pourrait, par exemple, entraîner l'échec de correspondance de l'ID dans un événement
ActivityTaskCompleted à un objet Promise existant.

Exemple de scénario

Il existe une classe de modifications de code considérée comme irréversibles. Ces modifications
incluent des mises à jour qui modifient le nombre, le type ou l'ordre des tâches planifiées. Prenez
l’exemple suivant :

Vous écrivez du code décideur pour planifier deux tâches de minuteur. Vous commencez une
exécution et exécutez une décision. Par conséquent, deux tâches chronométrées sont planifiées,
avec IDs 1 et2.

Si vous mettez à jour le code décideur pour planifier uniquement un minuteur avant l'exécution de la
prochaine décision, lors de la prochaine tâche de décision l'infrastructure ne pourra pas reproduire le
deuxième événement TimerFired, car l'ID 2 ne correspond à aucune tâche de minuteur produite
par le code.

Aperçu du scénario

L'aperçu suivant décrit les étapes de ce scénario. L'objectif final du scénario est de migrer vers un
système qui ne planifie qu'un minuteur, mais n'entraîne aucun échec des exécutions lancées avant la
migration.

1. La version initiale du décideur

a. Écrivez le décideur.

b. Lancez le décideur.

c. Le décideur planifie deux minuteurs.

d. Le décideur lance cinq exécutions.

e. Arrêtez le décideur.

2. Une modification irréversible du décideur

a. Modifiez le décideur.

b. Lancez le décideur.

c. Le décideur planifie un minuteur.

Exemple de scénario Version de l'API 2021-04-28 165

AWS Flow Framework pour Java Guide du développeur

d. Le décideur lance cinq exécutions.

Les sections suivantes incluent des exemples de code Java qui montrent comment implémenter ce
scénario. Les exemples de code dans la section Solutions montrent différents moyens de corriger des
modifications irréversibles.

Note

Vous pouvez utiliser la dernière version de AWS SDK pour Java pour exécuter ce code.

Code commun

Le code Java suivant ne change pas entre les exemples de ce scénario.

SampleBase.java

package sample;

import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.flow.JsonDataConverter;
import com.amazonaws.services.simpleworkflow.model.DescribeWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.DomainAlreadyExistsException;
import com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest;
import com.amazonaws.services.simpleworkflow.model.Run;
import com.amazonaws.services.simpleworkflow.model.StartWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;
import com.amazonaws.services.simpleworkflow.model.WorkflowExecution;
import com.amazonaws.services.simpleworkflow.model.WorkflowExecutionDetail;
import com.amazonaws.services.simpleworkflow.model.WorkflowType;

public class SampleBase {

 protected String domain = "DeciderChangeSample";
 protected String taskList = "DeciderChangeSample-" + UUID.randomUUID().toString();
 protected AmazonSimpleWorkflow service =
 AmazonSimpleWorkflowClientBuilder.defaultClient();

Exemple de scénario Version de l'API 2021-04-28 166

https://aws.amazon.com/sdk-for-java/

AWS Flow Framework pour Java Guide du développeur

 {
 try {
 AmazonSimpleWorkflowClientBuilder.defaultClient().registerDomain(new
 RegisterDomainRequest().withName(domain).withDescription("desc").withWorkflowExecutionRetentionPeriodInDays("7"));
 } catch (DomainAlreadyExistsException e) {
 }
 }

 protected List<WorkflowExecution> workflowExecutions = new ArrayList<>();

 protected void startFiveExecutions(String workflow, String version, Object input) {
 for (int i = 0; i < 5; i++) {
 String id = UUID.randomUUID().toString();
 Run startWorkflowExecution = service.startWorkflowExecution(
 new
 StartWorkflowExecutionRequest().withDomain(domain).withTaskList(new
 TaskList().withName(taskList)).withInput(new JsonDataConverter().toData(new
 Object[] { input })).withWorkflowId(id).withWorkflowType(new
 WorkflowType().withName(workflow).withVersion(version)));
 workflowExecutions.add(new
 WorkflowExecution().withWorkflowId(id).withRunId(startWorkflowExecution.getRunId()));
 sleep(1000);
 }
 }

 protected void printExecutionResults() {
 waitForExecutionsToClose();
 System.out.println("\nResults:");
 for (WorkflowExecution wid : workflowExecutions) {
 WorkflowExecutionDetail details = service.describeWorkflowExecution(new
 DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
 System.out.println(wid.getWorkflowId() + " " +
 details.getExecutionInfo().getCloseStatus());
 }
 }

 protected void waitForExecutionsToClose() {
 loop: while (true) {
 for (WorkflowExecution wid : workflowExecutions) {
 WorkflowExecutionDetail details = service.describeWorkflowExecution(new
 DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
 if ("OPEN".equals(details.getExecutionInfo().getExecutionStatus())) {
 sleep(1000);
 continue loop;

Exemple de scénario Version de l'API 2021-04-28 167

AWS Flow Framework pour Java Guide du développeur

 }
 }
 return;
 }
 }

 protected void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }

}

Input.java

package sample;

public class Input {

 private Boolean skipSecondTimer;

 public Input() {
 }

 public Input(Boolean skipSecondTimer) {
 this.skipSecondTimer = skipSecondTimer;
 }

 public Boolean getSkipSecondTimer() {
 return skipSecondTimer != null && skipSecondTimer;
 }

 public Input setSkipSecondTimer(Boolean skipSecondTimer) {
 this.skipSecondTimer = skipSecondTimer;
 return this;
 }

}

Exemple de scénario Version de l'API 2021-04-28 168

AWS Flow Framework pour Java Guide du développeur

Écriture du code décideur initial

Voici le code Java initial du décideur. Il est enregistré en tant que version 1 et planifie deux tâches de
minuteur de cinq secondes.

InitialDecider.java

package sample.v1;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 clock.createTimer(5);
 }

 }
}

Exemple de scénario Version de l'API 2021-04-28 169

AWS Flow Framework pour Java Guide du développeur

Simulation d'une modification irréversible

Le code Java modifié suivant du décideur est un bon exemple de modification irréversible. Le code
est toujours enregistré en tant que version 1, mais il ne planifie qu'un minuteur.

ModifiedDecider.java

package sample.v1.modified;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1 modified) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 }

 }
}

Exemple de scénario Version de l'API 2021-04-28 170

AWS Flow Framework pour Java Guide du développeur

Le code Java suivant vous permet de simuler le problème des modifications irréversibles en
exécutant le décideur modifié.

RunModifiedDecider.java

package sample;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class BadChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new BadChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start the modified version of the decider
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.modified.Foo.Impl.class);
 after.start();

 // Start a few more executions
 startFiveExecutions("Foo.sample", "1", new Input());

 printExecutionResults();
 }

}

Exemple de scénario Version de l'API 2021-04-28 171

AWS Flow Framework pour Java Guide du développeur

Lorsque vous exécutez le programme, les trois exécutions qui échouent sont celles lancées sous la
version initiale du décideur et poursuivies après la migration.

Solutions

Vous pouvez utiliser les solutions suivantes pour éviter les modifications irréversibles. Pour plus
d'informations, consultez Modifications du code décideur et Exemple de scénario.

Utilisation de la gestion des versions

Dans cette solution, vous copiez le décideur dans une nouvelle classe, vous le modifiez, puis vous
l'enregistrez sous une nouvelle version de flux de travail.

VersionedDecider.java

package sample.v2;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "2")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {

Solutions Version de l'API 2021-04-28 172

AWS Flow Framework pour Java Guide du développeur

 System.out.println("Decision (V2) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 }

 }

}

Dans le code Java mis à jour, le deuxième exécuteur de décision exécute les deux versions du flux
de travail, permettant de poursuivre les exécutions à la volée indépendamment des modifications
apportées à la version 2.

RunVersionedDecider.java

package sample;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class VersionedChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new VersionedChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider, with workflow version 1
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions with version 1
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start a worker with both the previous version of the decider (workflow
 version 1)

Solutions Version de l'API 2021-04-28 173

AWS Flow Framework pour Java Guide du développeur

 // and the modified code (workflow version 2)
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 after.addWorkflowImplementationType(sample.v2.Foo.Impl.class);
 after.start();

 // Start a few more executions with version 2
 startFiveExecutions("Foo.sample", "2", new Input());

 printExecutionResults();
 }

}

Lorsque vous lancez le programme, toutes les exécutions se terminent avec succès.

Utilisation des indicateurs de fonction

L'autre solution pour éviter les modifications irréversibles est de créer des branches de code qui
prennent en charge deux implémentations de la même classe basées sur des données d'entrée au
lieu des versions de flux de travail.

Lorsque vous choisissez cette approche, vous ajoutez des champs à vos objets d'entrée (ou en
modifiez des champs existants) chaque fois que vous apportez de petites modifications. Pour
les exécutions qui démarrent avant la migration, l'objet d'entrée ne disposera pas du champ (ou
possédera une valeur différente). Ainsi, vous n'avez pas à augmenter le numéro de version.

Note

Si vous ajoutez de nouveaux champs, veillez à ce que le processus de désérialisation JSON
soit irréversible. Les objets sérialisés avant la présentation du champ doivent toujours être
désérialisés avec succès après la migration. Étant donné que JSON définit une valeur null
dès qu'un champ est manquant, utilisez toujours des types enveloppes (Boolean au lieu de
boolean) et occupez-vous des cas dans lesquels la valeur est null.

FeatureFlagDecider.java

package sample.v1.featureflag;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

Solutions Version de l'API 2021-04-28 174

AWS Flow Framework pour Java Guide du développeur

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1 feature flag) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 if (!input.getSkipSecondTimer()) {
 clock.createTimer(5);
 }
 }

 }
}

Dans le code Java mis à jour, le code des deux versions du flux de travail est toujours enregistré
pour la version 1. Pourtant, après la migration, de nouvelles exécutions démarrent avec le champ
skipSecondTimer des données d'entrée définies sur true.

RunFeatureFlagDecider.java

package sample;

Solutions Version de l'API 2021-04-28 175

AWS Flow Framework pour Java Guide du développeur

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class FeatureFlagChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new FeatureFlagChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start a new version of the decider that introduces a change
 // while preserving backwards compatibility based on input fields
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.featureflag.Foo.Impl.class);
 after.start();

 // Start a few more executions and enable the new feature through the input
 data
 startFiveExecutions("Foo.sample", "1", new Input().setSkipSecondTimer(true));

 printExecutionResults();
 }

}

Lorsque vous lancez le programme, toutes les exécutions se terminent avec succès.

Solutions Version de l'API 2021-04-28 176

AWS Flow Framework pour Java Guide du développeur

Conseils de dépannage et de débogage AWS Flow
Framework pour Java
Rubriques

• Erreurs de compilation

• Défaillance de ressource inconnue

• Exceptions lors de l'appel à get () sur une promesse

• Workflows non déterministes

• Problèmes liés à la gestion des versions

• Résolution des problèmes et débogage de l'exécution d'un flux de travail

• Tâches perdues

• Échec de validation dû à des contraintes de longueur des paramètres de l'API

Cette section décrit certains écueils courants que vous pourriez rencontrer lors du développement
de flux de travail à l'aide AWS Flow Framework de Java. Il fournit également des conseils pour vous
aider à diagnostiquer et déboguer des problèmes.

Erreurs de compilation

Si vous utilisez l'option de tissage de compilation d'AspectJ, vous risquez de rencontrer des erreurs
de compilation dans lesquelles le compilateur ne parvient pas à trouver les classes client générées
pour votre flux de travail et vos activités. La cause la plus probable de ces erreurs de compilation est
que le générateur AspectJ a ignoré les clients générés lors de la compilation. Vous pouvez résoudre
cette erreur en supprimant AspectJ du projet et en le réactivant. Notez que vous devrez procéder de
la sorte à chaque fois que vos interfaces de flux de travail ou d'activité sont modifiées. En raison de
ce problème, nous vous recommandons d'utiliser plutôt l'option de tissage de temps de chargement.
Pour en savoir plus, consultez la section Configuration du AWS Flow Framework pour Java.

Défaillance de ressource inconnue

Amazon SWF renvoie une erreur de ressource inconnue lorsque vous essayez d'effectuer une
opération sur une ressource qui n'est pas disponible. Les causes courantes de cette anomalie sont :

Erreurs de compilation Version de l'API 2021-04-28 177

AWS Flow Framework pour Java Guide du développeur

• Vous configurez un exécuteur avec un domaine qui n'existe pas. Pour résoudre ce problème,
enregistrez d'abord le domaine à l'aide de la console Amazon SWF ou de l'API du service Amazon
SWF.

• Vous essayez de créer une exécution de flux de travail ou des tâches d'activité dont les types n'ont
pas encre été enregistrés. Cela peut se produire si vous essayez de créer l'exécution de flux de
travail avant que les exécuteurs soient exécutés. Étant donné que les travailleurs enregistrent leurs
types lorsqu'ils sont exécutés pour la première fois, vous devez les exécuter au moins une fois
avant de tenter de démarrer les exécutions (ou enregistrer manuellement les types à l'aide de la
console ou de l'API du service). Notez qu'une fois que les types ont été enregistrés, vous pouvez
créer des exécutions même si aucun exécuteur n'est en cours d'exécution.

• Un travail exécuteur de terminer une tâche dont le délai d'attente est déjà dépassé. Par exemple,
si un collaborateur met trop de temps à traiter une tâche et dépasse le délai imparti, il sera
victime d'une UnknownResource erreur s'il tente de terminer ou d'échouer la tâche. Les AWS
Flow Framework travailleurs continueront à interroger Amazon SWF et à effectuer des tâches
supplémentaires. Toutefois, vous devez envisager d'ajuster le délai d'attente. L'ajustement du
temps d'attente nécessite l'enregistrement d'une nouvelle version du type d'activité.

Exceptions lors de l'appel à get () sur une promesse

Contrairement à Java Future, Promise est une construction sans blocage, et l'appel get() sur un
argument Promise qui n'est pas encore prêt émet une exception au lieu d'un blocage. La bonne
façon d'utiliser a Promise est de le transmettre à une méthode asynchrone (ou à une tâche) et
d'accéder à sa valeur dans la méthode asynchrone. AWS Flow Framework for Java garantit qu'une
méthode asynchrone n'est appelée que lorsque tous les Promise arguments qui lui sont transmis
sont prêts. Si vous pensez que votre code est correct ou si vous le rencontrez lors de l'exécution
de l'un des AWS Flow Framework exemples, cela est probablement dû au fait qu'AspectJ n'est
pas correctement configuré. Pour en savoir plus, consultez la section Configuration du AWS Flow
Framework pour Java.

Workflows non déterministes

Comme décrit dans la section Non-déterminisme, l'implémentation de votre flux de travail doit être
déterministe. Certaines erreurs courantes qui peuvent mener au non-déterminisme sont l'utilisation
de l'horloge système, l'utilisation de nombres aléatoires et la génération de. GUIDs Étant donné que
ces structures peuvent renvoyer des valeurs différentes à différents moments, le flux de contrôle de
votre flux de travail peut emprunter des chemins différents à chaque fois qu'il est exécuté (consultez

Exceptions lors de l'appel à get () sur une promesse Version de l'API 2021-04-28 178

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-register-domain-console.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html

AWS Flow Framework pour Java Guide du développeur

les sections AWS Flow Framework Concepts de base : exécution distribuée et Comprendre une
tâche dans AWS Flow Framework for Java pour plus de détails). Si l'infrastructure détecte un non
déterminisme lors de l'exécution du flux de travail, une exception est émise.

Problèmes liés à la gestion des versions

Lorsque vous implémentez une nouvelle version de votre flux de travail ou de votre activité, par
exemple, lorsque vous ajoutez une nouvelle fonctionnalité, vous devez augmenter la version du type
en utilisant l'annotation appropriée :, ou. @Workflow @Activites @Activity Souvent, lorsque de
nouvelles versions d'un flux de travail sont déployées, des exécutions de la version existante sont
déjà en cours. Vous devez donc vous assurer que les tâches soient transmises aux exécuteurs avec
la version appropriée de votre flux de travail et de vos activités. Pour ce faire, vous pouvez utiliser
un ensemble de listes de tâches différent pour chaque version. Par exemple, vous pouvez ajouter
le numéro de version au nom de la liste de tâches. Cela permet de vous assurer que les tâches
appartenant à des versions différentes du flux de travail et des activités sont affectées aux exécuteurs
appropriés.

Résolution des problèmes et débogage de l'exécution d'un flux de
travail

La première étape pour résoudre les problèmes liés à l'exécution d'un flux de travail consiste à utiliser
la console Amazon SWF pour consulter l'historique du flux de travail. L'historique du flux de travail
est un enregistrement complet et fiable de tous les événements qui ont modifié l'état d'exécution
de l'exécution du flux de travail. Cet historique est conservé par Amazon SWF et est très utile pour
diagnostiquer les problèmes. La console Amazon SWF vous permet de rechercher des exécutions de
flux de travail et d'accéder à des événements historiques individuels.

AWS Flow Framework fournit une WorkflowReplayer classe que vous pouvez utiliser pour
rejouer l'exécution d'un flux de travail localement et le déboguer. À l'aide de cette classe,
vous pouvez déboguer les exécutions de flux de travail fermées et en cours d'exécution.
WorkflowReplayers'appuie sur l'historique stocké dans Amazon SWF pour effectuer la rediffusion.
Vous pouvez le rediriger vers une exécution de flux de travail dans votre compte Amazon SWF ou lui
fournir l'historique des événements (par exemple, vous pouvez récupérer l'historique depuis Amazon
SWF et le sérialiser localement pour une utilisation ultérieure). Lorsque vous relisez une exécution
de flux de travail avec WorkflowReplayer, cette opération n'a pas d'impact sur l'exécution de flux
de travail en cours dans votre compte. La relecture est faite entièrement sur le client. Vous pouvez

Problèmes liés à la gestion des versions Version de l'API 2021-04-28 179

AWS Flow Framework pour Java Guide du développeur

déboguer le flux de travail, créer des points d'arrêt et marquer des étapes dans le code à l'aide des
outils de débogage habituels. Si vous utilisez Eclipse, pensez à ajouter des filtres d'étape pour filtrer
les AWS Flow Framework packages.

Par exemple, l'extrait de code suivant peut être utilisé pour relire une exécution de flux de travail :

String workflowId = "testWorkflow";
String runId = "<run id>";
Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
 swfService, domain, workflowExecution, workflowImplementationType);

System.out.println("Beginning workflow replay for " + workflowExecution);
Object workflow = replayer.loadWorkflow();
System.out.println("Workflow implementation object:");
System.out.println(workflow);
System.out.println("Done workflow replay for " + workflowExecution);

AWS Flow Framework vous permet également d'obtenir un thread dump asynchrone de l'exécution
de votre flux de travail. Ce vidage de thread vous donne les piles d'appel de toutes les tâches
asynchrones ouvertes. Cette information peut être utile pour déterminer quelles sont les tâches de
l'exécution en attente et possiblement bloquées. Par exemple :

String workflowId = "testWorkflow";
String runId = "<run id>";
Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
 swfService, domain, workflowExecution, workflowImplementationType);

try {
 String flowThreadDump = replayer.getAsynchronousThreadDumpAsString();
 System.out.println("Workflow asynchronous thread dump:");
 System.out.println(flowThreadDump);
}

Résolution des problèmes et débogage de l'exécution d'un flux de travail Version de l'API 2021-04-28 180

AWS Flow Framework pour Java Guide du développeur

catch (WorkflowException e) {
 System.out.println("No asynchronous thread dump available as workflow has failed: "
 + e);
}

Tâches perdues

Il arrive parfois que vous arrêtiez des exécuteurs et en lanciez de nouveaux rapidement uniquement
pour détecter que des tâches ont été distribuées aux anciens exécuteurs. Cela peut se produire
en raison de conditions de concurrence dans le système, qui est réparti sur plusieurs processus.
Le problème peut également se produire lorsque vous exécutez des tests d'unité dans une boucle
étroite. L'arrêt d'un test dans Eclipse peut aussi parfois provoquer cela car les gestionnaires d'arrêt
peuvent ne pas être appelés.

Afin de vous assurer que le problème est en réalité dû à l'obtention des tâches par les anciens
exécuteurs, consultez l'historique du flux de travail pour déterminer quel processus a reçu
la tâche que vous attendiez que le nouvel exécuteur reçoive. Par exemple, l'événement
DecisionTaskStarted de l'historique contient l'identité de l'exécuteur de flux de travail ayant reçu
la tâche. L'identifiant utilisé par le Flow Framework est de la forme : {processId} @ {host name}.
Par exemple, voici les détails de l'DecisionTaskStartedévénement dans la console Amazon SWF
pour un exemple d'exécution :

Horodatage d'événement Mon Feb 20 11:52:40 GMT-800 2012

Identity 2276 @ip -0A6C1 DF5

ID d'événement planifié 33

Afin d'éviter cette situation, utilisez des listes de tâches différentes pour chaque test. Pensez
également à ajouter un délai entre l'arrêt des anciens exécuteurs et le démarrage des nouveaux.

Échec de validation dû à des contraintes de longueur des
paramètres de l'API

Amazon SWF applique des contraintes de longueur aux paramètres d'API. Vous recevrez un
HTTP 400 message d'erreur si la mise en œuvre de votre flux de travail ou de votre activité

Tâches perdues Version de l'API 2021-04-28 181

AWS Flow Framework pour Java Guide du développeur

dépasse les contraintes. Par exemple, lors d'un appel recordActivityHeartbeat pour
ActivityExecutionContext envoyer un battement de cœur pour une activité en cours, la chaîne
ne doit pas comporter plus de 2 048 caractères.

Un autre scénario courant est celui où une activité échoue en raison d'une exception. Le framework
signale un échec d'activité à Amazon SWF en appelant RespondActivityTaskFailedavec l'exception
sérialisée comme détails. L'appel d'API signalera une erreur 400 si l'exception sérialisée a une
longueur supérieure à 32 768 octets. Pour remédier à cette situation, vous pouvez tronquer le
message d'exception ou les causes afin de respecter la contrainte de longueur.

Échec de validation dû à des contraintes de longueur des paramètres de l'API Version de l'API 2021-04-28 182

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework pour Java Guide du développeur

AWS Flow Framework pour Java Reference
Rubriques

• AWS Flow Framework pour les annotations Java

• AWS Flow Framework pour les exceptions Java

• AWS Flow Framework pour les packages Java

AWS Flow Framework pour les annotations Java

Rubriques

• @Activités

• @Activité

• @ActivityRegistrationOptions

• @Asynchrone

• @Execute

• @ExponentialRetry

• @GetState

• @ManualActivityCompletion

• @Signal

• @SkipRegistration

• @Wait et @ NoWait

• @Flux de travail

• @WorkflowRegistrationOptions

@Activités

Cette annotation peut être utilisée dans une interface pour déclarer un ensemble de types d'activités.
Chaque méthode de l'interface comportant cette annotation représente un type d'activité. Une
interface ne peut pas avoir à la fois des annotations @Workflow et @Activities.

Les paramètres suivants peuvent être spécifiés sur cette annotation :

Annotations Version de l'API 2021-04-28 183

AWS Flow Framework pour Java Guide du développeur

activityNamePrefix

Spécifie le préfixe du nom des types d'activité déclarés dans l'interface. S'il est défini sur une
chaîne vide (valeur par défaut), le nom de l'interface suivi d'un point (.) est utilisé comme préfixe.

version

Spécifie la version par défaut des types d'activité déclarés dans l'interface. La valeur par défaut
est 1.0.

dataConverter

Spécifie le type de serializing/deserializing données DataConverter à utiliser lors de la création
de tâches de ce type d'activité et ses résultats. Défini sur NullDataConverter par défaut, ce
qui indique que JsonDataConverter doit être utilisé.

@Activité

Cette annotation peut être utilisée sur des méthodes au sein d'une interface annotée avec
@Activities.

Les paramètres suivants peuvent être spécifiés sur cette annotation :

name

Spécifie le nom du type d'activité. La valeur par défaut est une chaîne vide, qui indique que le
préfixe par défaut et le nom de la méthode d'activité doivent être utilisés pour déterminer le nom
du type d'activité (au format {{préfixe}{{nom}). Notez que lorsque vous spécifiez un nom dans une
annotation @Activity, l'infrastructure ne lui ajoutera pas automatiquement un préfixe. Vous êtes
libre d'utiliser votre propre schéma d'attribution de noms.

version

Spécifie la version du type d'activité. Remplace la version par défaut spécifiée dans l'annotation
@Activities sur l'interface qui la contient. La valeur par défaut est une chaîne vide.

@ActivityRegistrationOptions

Spécifie les options d'enregistrement d'un type d'activité. Cette annotation peut être utilisée dans une
interface annotée avec @Activities ou les méthodes qu'elle contient. Si elle est spécifiée aux deux
endroits, l'annotation utilisée sur la méthode prend effet.

@Activité Version de l'API 2021-04-28 184

AWS Flow Framework pour Java Guide du développeur

Les paramètres suivants peuvent être spécifiés sur cette annotation :

defaultTasklist

Spécifie la liste de tâches par défaut à enregistrer auprès d'Amazon SWF pour ce type
d'activité. Cette valeur par défaut peut être remplacée lors de l'appel de la méthode d'activité
sur le client généré à l'aide du paramètre ActivitySchedulingOptions. Définie sur
USE_WORKER_TASK_LIST par défaut. Il s'agit d'une valeur spéciale qui indique que la liste de
tâches utilisée par l'exécuteur, qui effectue l'enregistrement, doit être utilisée.

defaultTaskScheduleToStartTimeoutSeconds

Spécifie le defaultTaskSchedule ToStartTimeout fichier enregistré auprès d'Amazon SWF pour ce
type d'activité. Il s'agit du temps d'attente maximum autorisé pour une tâche de ce type d'activité
avant qu'elle soit affectée à un exécuteur. Consultez le manuel Amazon Simple Workflow Service
API Reference pour plus de détails.

defaultTaskHeartbeatTimeoutSeconds

Spécifie le defaultTaskHeartbeatTimeout fichier enregistré auprès d'Amazon SWF pour ce
type d'activité. Les exécuteurs doivent indiquer les pulsations pendant cette durée, faute de quoi
la tâche sera interrompue. Défini sur -1 par défaut, qui est une valeur spéciale qui indique que
ce délai d'attente doit être désactivé. Consultez le manuel Amazon Simple Workflow Service API
Reference pour plus de détails.

defaultTaskStartToCloseTimeoutSeconds

Spécifie le defaultTaskStart ToCloseTimeout fichier enregistré auprès d'Amazon SWF pour
ce type d'activité. Ce délai d'attente détermine le temps maximum de traitement d'une tâche
d'activité de ce type par un exécuteur. Consultez le manuel Amazon Simple Workflow Service API
Reference pour plus de détails.

defaultTaskScheduleToCloseTimeoutSeconds

Spécifie le defaultScheduleToCloseTimeout fichier enregistré auprès d'Amazon SWF pour
ce type d'activité. Ce délai détermine la durée totale pendant laquelle la tâche peut rester ouverte.
Défini sur -1 par défaut, qui est une valeur spéciale qui indique que ce délai d'attente doit être
désactivé. Consultez le manuel Amazon Simple Workflow Service API Reference pour plus de
détails.

@ActivityRegistrationOptions Version de l'API 2021-04-28 185

AWS Flow Framework pour Java Guide du développeur

@Asynchrone

Lorsqu'elle est utilisée sur une méthode dans la logique de coordination du flux de travail, indique
que la méthode doit être exécutée de manière asynchrone. Un appel à la méthode renverra
immédiatement une valeur, mais l'exécution réelle se fera de manière asynchrone lorsque tous
les paramètres Promise<> transmis aux méthodes seront prêts. Les méthodes annotées avec
@Asynchronous doivent avoir le type de retour Promise<> ou être vides.

daemon

Indique si la tâche créée pour la méthode asynchrone doit être une tâche démon. False par
défaut.

@Execute

En cas d'utilisation sur une méthode dans une interface annotée avec l'annotation @Workflow,
identifie le point d'entrée du flux de travail.

Important

Une seule méthode de l'interface peut être décorée avec @Execute.

Les paramètres suivants peuvent être spécifiés sur cette annotation :

name

Spécifie le nom du type de flux de travail. S'il n'est pas défini, le nom par défaut {préfixe}{nom},
où{préfixe} est le nom de l'interface du flux de travail suivi par un '.' et par {nom} est le nom de la
méthode décorée @Execute du flux de travail.

version

Spécifie la version du type de flux de travail.

@ExponentialRetry

En cas d'utilisation sur une activité ou une méthode asynchrone, définit une stratégie de nouvelle
tentative exponentielle si la méthode lève une exception non gérée. Une nouvelle tentative est
effectuée après une période d'interruption, qui est calculée en fonction du nombre de tentatives.

@Asynchrone Version de l'API 2021-04-28 186

AWS Flow Framework pour Java Guide du développeur

Les paramètres suivants peuvent être spécifiés sur cette annotation :

intialRetryIntervalSeconds

Spécifie la durée d'attente avant la première tentative de relance. Cette valeur ne doit pas être
supérieure à maximumRetryIntervalSeconds et retryExpirationSeconds.

maximumRetryIntervalSeconds

Spécifie la durée maximale entre les tentatives de relance. Une fois le délai atteint, l'intervalle de
nouvelle tentative est plafonné à cette valeur. La valeur par défaut est -1, ce qui signifie une durée
illimitée.

retryExpirationSeconds

Spécifie la durée après laquelle la stratégie de nouvelle tentative exponentielle s'arrêtera. La
valeur par défaut est -1, ce qui signifie qu'elle n'expire pas.

backoffCoefficient

Spécifie le coefficient utilisé pour calculer l'intervalle de nouvelle tentative. Consultez Stratégie de
nouvelle tentative exponentielle.

maximumAttempts

Indique le nombre de tentatives après lequel la stratégie de nouvelle tentative exponentielle
s'arrêtera. La valeur par défaut est -1, ce qui signifie que le nombre de nouvelles tentatives est
illimité.

exceptionsToRetry

Spécifie le nombre de fois que le client NFS doit déclencher une nouvelle tentative. L'exception
non gérée de ces types ne se propagera plus et la méthode sera retentée après l'intervalle de
nouvelle tentative calculé. Par défaut, la liste contient Throwable.

excludeExceptions

Spécifie la liste des types d'exception qui ne doivent pas déclencher de nouvelle tentative. Les
exceptions non gérées de ce type seront autorisées à se propager. Par défaut, la liste est vide.

@GetState

En cas d'utilisation sur une méthode dans une interface annotée avec @Workflow, identifie que la
méthode est utilisée pour récupérer le dernier état d'exécution du flux de travail. Au maximum, il peut

@GetState Version de l'API 2021-04-28 187

AWS Flow Framework pour Java Guide du développeur

y avoir une méthode avec cette annotation dans une interface portant l'annotation @Workflow. Les
méthodes ainsi annotées ne doivent pas prendre n'importe quel paramètre et leur type de retour doit
impérativement être void.

@ManualActivityCompletion

Cette annotation peut être utilisée sur une méthode d'activité pour indiquer que la tâche d'activité
ne doit pas être terminée lorsque la méthode est renvoyée. La tâche d'activité ne sera pas
automatiquement terminée et devra être effectuée manuellement directement à l'aide de l'API
Amazon SWF. Ceci est utile lorsque la tâche d'activité est déléguée à un système externe qui n'est
pas automatisé ou nécessite une intervention humaine pour être terminée.

@Signal

En cas d'utilisation sur une méthode dans une interface annotée avec @Workflow, identifie un signal
qui peut être reçu par des exécutions du type de flux de travail déclaré par l'interface. L'utilisation de
cette annotation est nécessaire pour définir une méthode de signal.

Les paramètres suivants peuvent être spécifiés sur cette annotation :

name

Spécifie la partie nom du nom du signal. Si ce paramètre n'est pas défini, le nom de la méthode
est utilisé.

@SkipRegistration

Lorsqu'il est utilisé sur une interface annotée avec l'@Workflowannotation, cela indique que le
type de flux de travail ne doit pas être enregistré auprès d'Amazon SWF. L'une des annotations
@WorkflowRegistrationOptions et @SkipRegistrationOptions doit être utilisée sur une
interface annotée avec @Workflow, mais pas les deux.

@Wait et @ NoWait

Ces annotations peuvent être utilisées sur un paramètre de type Promise<> pour indiquer si le
AWS Flow Framework for Java doit attendre qu'il soit prêt avant d'exécuter la méthode. Par défaut,
les paramètres Promise<> transmis aux méthodes @Asynchronous doivent être prêts avant
l'exécution de la méthode. Dans certaines situations, il est nécessaire de remplacer ce comportement

@ManualActivityCompletion Version de l'API 2021-04-28 188

AWS Flow Framework pour Java Guide du développeur

par défaut. Les paramètres Promise<> passés dans les méthodes @Asynchronous et annotée
avec @NoWait ne sont pas attendus.

Les paramètres des collections (ou sous-classes) qui contiennent des objets Promise comme
List<Promise<Int>>, doivent être annotés avec @Wait. Par défaut, l'infrastructure n'attend pas
les membres d'une collection.

@Flux de travail

Cette annotation est utilisée sur une interface pour déclarer un type de flux de travail. Une interface
décorée avec cette annotation doit contenir exactement une méthode qui est décorée avec
@Execute pour déclarer un point d'entrée pour votre flux de travail.

Note

Dans une interface, les annotations @Workflow et @Activities ne peuvent pas être
déclarées en même temps ; elles sont mutuellement exclusives.

Les paramètres suivants peuvent être spécifiés sur cette annotation :

dataConverter

Spécifie quel DataConverter utiliser lors de l'envoi de demandes et de la réception de résultats
pour les exécutions de flux de travail de ce type de flux de travail.

La valeur par défaut est NullDataConverter celle qui, à son tour, revient
JsonDataConverter à traiter toutes les données de demande et de réponse en tant que
notation d' JavaScriptobjet (JSON).

exemple

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Flux de travail Version de l'API 2021-04-28 189

AWS Flow Framework pour Java Guide du développeur

 @Execute(version = "1.0")
 public void greet();
}

@WorkflowRegistrationOptions

Lorsqu'il est utilisé sur une interface annotée avec@Workflow, fournit les paramètres par défaut
utilisés par Amazon SWF lors de l'enregistrement du type de flux de travail.

Note

Vous devez utiliser @WorkflowRegistrationOptions ou
@SkipRegistrationOptions dans une interface annotée avec @Workflow, mais vous ne
pouvez pas spécifier les deux.

Les paramètres suivants peuvent être spécifiés sur cette annotation :

Description

Texte descriptif facultatif du type de flux de travail.

defaultExecutionStartToCloseTimeoutSeconds

Spécifie le defaultExecutionStartToCloseTimeout type de flux de travail enregistré
auprès d'Amazon SWF. Durée totale autorisée pour qu'une exécution de flux de travail de ce type
se termine.

Pour plus d'informations sur les délais d'expiration des flux de travail, consultez la section Types
de délai d'expiration Amazon SWF .

defaultTaskStartToCloseTimeoutSeconds

Spécifie le defaultTaskStartToCloseTimeout type de flux de travail enregistré auprès
d'Amazon SWF. Ce paramètre spécifie le temps maximum autorisé pour qu'une tâche de décision
unique d'une exécution de flux de travail de ce type se termine.

Si vous ne spécifiez pas defaultTaskStartToCloseTimeout, la valeur par défaut est
30 secondes.

Pour plus d'informations sur les délais d'expiration des flux de travail, consultez la section Types
de délai d'expiration Amazon SWF .

@WorkflowRegistrationOptions Version de l'API 2021-04-28 190

AWS Flow Framework pour Java Guide du développeur

defaultTaskList

Liste de tâches par défaut utilisée pour les tâches de décision pour les exécutions de ce type de
flux de travail. Cette valeur par défaut peut être remplacée en utilisant StartWorkflowOptions
lors du démarrage d'une exécution de flux de travail.

Si vous ne spécifiez pas defaultTaskList, la valeur USE_WORKER_TASK_LIST sera utilisée
par défaut. Ce paramètre indique que la liste de tâches utilisée par l'exécuteur qui effectue
l'enregistrement du flux de travail doit être utilisée.

defaultChildPolicy

Spécifie la stratégie à utiliser pour les exécutions de flux de travail enfant si une exécution de ce
type est arrêtée. La valeur par défaut est ABANDON. Les valeurs possibles sont :

• ABANDON— Permettre aux exécutions du flux de travail de l'enfant de continuer

• TERMINATE— Résout les exécutions de flux de travail pour enfants

• REQUEST_CANCEL— Demande l'annulation des exécutions du flux de travail enfant

AWS Flow Framework pour les exceptions Java

Les exceptions suivantes sont utilisées par AWS Flow Framework for Java. Cette section fournit une
présentation de l'exception. Pour plus de détails, consultez la AWS SDK pour Java documentation
des exceptions individuelles.

Rubriques

• ActivityFailureException

• ActivityTaskException

• ActivityTaskFailedException

• ActivityTaskTimedOutException

• ChildWorkflowException

• ChildWorkflowFailedException

• ChildWorkflowTerminatedException

• ChildWorkflowTimedOutException

• DataConverterException

• DecisionException

• ScheduleActivityTaskFailedException

Exceptions Version de l'API 2021-04-28 191

AWS Flow Framework pour Java Guide du développeur

• SignalExternalWorkflowException

• StartChildWorkflowFailedException

• StartTimerFailedException

• TimerException

• WorkflowException

ActivityFailureException

Cette exception est utilisée en interne par l'infrastructure pour communiquer un échec de
l'activité. Lorsqu'une activité échoue en raison d'une exception non gérée, elle est encapsulée
ActivityFailureException et signalée à Amazon SWF. Vous devez traiter cette exception
uniquement si vous utilisez les points d'extensibilité de l'exécuteur d'activité. Votre code d'application
ne devra jamais traiter cette exception.

ActivityTaskException

Il s'agit de la classe de base pour les exceptions d'échec de tâche d'activité :
ScheduleActivityTaskFailedException, ActivityTaskFailedException,
ActivityTaskTimedoutException. Elle contient l'ID de tâche et le type d'activité de la tâche
ayant échoué. Vous pouvez détecter cette exception dans l'implémentation de votre flux de travail
pour gérer les échecs d'activité de manière générique.

ActivityTaskFailedException

Les exceptions non gérées dans les activités sont signalées à l'implémentation de flux de travail via
l'envoi d'une exception ActivityTaskFailedException. L'exception d'origine peut être extraite
à partir de la propriété cause de cette exception. L'exception fournit également d'autres informations
utiles à des fins de débogage, telles que l'identifiant d'activité unique dans l'historique.

L'infrastructure peut fournir l'exception distante en sérialisant l'exception d'origine à partir de
l'exécuteur d'activité.

ActivityTaskTimedOutException

Cette exception est levée si le délai imparti à une activité a été dépassé par Amazon SWF. Cela peut
se produire si la tâche d'activité n'a pas pu être affectée à l'exécuteur pendant la période de temps
requise ou n'a pas pu être effectuée par l'exécuteur dans le temps requis. Vous pouvez définir ces

ActivityFailureException Version de l'API 2021-04-28 192

AWS Flow Framework pour Java Guide du développeur

délais d'attente sur l'activité par l'intermédiaire de l'annotation @ActivityRegistrationOptions
ou du paramètre ActivitySchedulingOptions lors de l'appel de la méthode d'activité.

ChildWorkflowException

Classe de base pour des exceptions utilisées pour signaler l'échec d'exécution d'un flux de travail
enfant. L'exception contient l'ID de l'exécution du flux de travail enfant, ainsi que son type de flux de
travail. Vous pouvez détecter cette exception pour gérer les échecs d'exécution de flux de travail
enfant de manière générique.

ChildWorkflowFailedException

Les exceptions non gérées dans les flux de travail enfants sont signalées à l'implémentation de
flux de travail parent via l'envoi d'une exception ChildWorkflowFailedException. L'exception
d'origine peut être extraite à partir de la propriété cause de cette exception. L'exception fournit
également d'autres informations utiles à des fins de débogage, telles que les identifiants uniques de
l'exécution enfant.

ChildWorkflowTerminatedException

Cette exception est levée dans l'exécution du flux de travail parent pour signaler la résiliation
d'une exécution de flux de travail enfant. Vous devez détecter cette exception si vous souhaitez
gérer la résiliation d'un flux de travail enfant, par exemple, pour procéder à un nettoyage ou à une
compensation.

ChildWorkflowTimedOutException

Cette exception est émise lors de l'exécution du flux de travail parent pour signaler que l'exécution
d'un flux de travail enfant a expiré et a été clôturée par Amazon SWF. Vous devez détecter cette
exception si vous souhaitez gérer la fermeture forcée d'un flux de travail enfant, par exemple, pour
procéder à un nettoyage ou à une compensation.

DataConverterException

L'infrastructure utilise le composant DataConverter pour regrouper ou dégrouper des données
envoyées sur le réseau. Cette exception est émise si le composant DataConverter ne parvient
pas à grouper ou à dégrouper les données. Cela peut se produire pour des raisons différentes, par
exemple, à cause d'une incohérence dans les composants DataConverter utilisés pour grouper et
dégrouper les données.

ChildWorkflowException Version de l'API 2021-04-28 193

AWS Flow Framework pour Java Guide du développeur

DecisionException

Il s'agit de la classe de base pour les exceptions qui représentent l'échec de la mise en œuvre
d'une décision d'Amazon SWF. Vous pouvez détecter cette exception pour gérer ces exceptions de
manière générique.

ScheduleActivityTaskFailedException

Cette exception est levée si Amazon SWF ne parvient pas à planifier une tâche d'activité. Cela peut
se produire pour diverses raisons : par exemple, l'activité a été abandonnée ou une limite Amazon
SWF a été atteinte sur votre compte. La propriété failureCause de l'exception spécifie la raison
exacte de l'échec de planification de l'activité.

SignalExternalWorkflowException

Cette exception est levée si Amazon SWF ne parvient pas à traiter une demande par l'exécution du
flux de travail pour signaler une autre exécution du flux de travail. Cela se produit si l'exécution du
flux de travail cible est introuvable, c'est-à-dire si l'exécution du flux de travail que vous avez spécifiée
n'existe pas ou est fermée.

StartChildWorkflowFailedException

Cette exception est levée si Amazon SWF ne parvient pas à démarrer l'exécution d'un flux de
travail enfant. Cela peut se produire pour diverses raisons : par exemple, le type de flux de travail
enfant spécifié est obsolète ou la limite Amazon SWF de votre compte a été atteinte. La propriété
failureCause de l'exception spécifie la raison exacte de l'échec du lancement de l'exécution du
flux de travail enfant.

StartTimerFailedException

Cette exception est levée si Amazon SWF ne parvient pas à démarrer un temporisateur demandé par
l'exécution du flux de travail. Cela peut se produire si l'identifiant du temporisateur spécifié est déjà
utilisé ou si une limite Amazon SWF a été atteinte sur votre compte. La propriété failureCause de
l'exception spécifie la raison exacte de l'échec.

TimerException

Il s'agit de la classe de base pour les exceptions liées aux minuteurs.

DecisionException Version de l'API 2021-04-28 194

AWS Flow Framework pour Java Guide du développeur

WorkflowException

Cette exception est utilisée en interne par l'infrastructure pour signaler des échecs dans l'exécution
d'un flux de travail. Vous devez traiter cette exception uniquement si vous utilisez un point
d'extensibilité d'un exécuteur de flux de travail.

AWS Flow Framework pour les packages Java

Cette section fournit une vue d'ensemble des packages inclus dans le AWS Flow
Framework pour Java. Pour plus d'informations sur chaque package, consultez le fichier
com.amazonaws.services.simpleworkflow.flow dans le guide de référence des API.AWS SDK pour
Java

com.amazonaws.services.simpleworkflow.flow

Contient des composants qui s'intègrent à Amazon SWF.

com.amazonaws.services.simpleworkflow.flow.annotations

Contient les annotations utilisées par le modèle de programmation AWS Flow Framework pour
Java.

com.amazonaws.services.simpleworkflow.flow.aspectj

Contient AWS Flow Framework pour Java les composants requis pour des fonctionnalités telles
que @Asynchrone et@ExponentialRetry.

com.amazonaws.services.simpleworkflow.flow.common

Contient des utilitaires communs tels que des constantes définies par l'infrastructure.

com.amazonaws.services.simpleworkflow.flow.core

Contient des fonctions telles que Task et Promise.

com.amazonaws.services.simpleworkflow.flow.generic

Contient des composants essentiels, tels que des clients génériques, sur lesquels d'autres
fonctions s'appuient.

com.amazonaws.services.simpleworkflow.flow.interceptors

Contient des implémentations de décorateurs fournis par l'infrastructure dont RetryDecorator.

WorkflowException Version de l'API 2021-04-28 195

https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/aspectj/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/common/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/core/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/interceptors/package-summary.html

AWS Flow Framework pour Java Guide du développeur

com.amazonaws.services.simpleworkflow.flow.junit

Contient des composants qui fournissent une intégration Junit.

com.amazonaws.services.simpleworkflow.flow.pojo

Contient des classes qui implémentent des définitions d'activité et de flux de travail pour le modèle
de programmation basé sur les annotations.

com.amazonaws.services.simpleworkflow.flow.spring

Contient des composants qui fournissent une intégration Spring.

com.amazonaws.services.simpleworkflow.flow.test

Contient des classes d'assistance, telles que TestWorkflowClock, pour les tests unitaires
d'implémentations de flux de travail.

com.amazonaws.services.simpleworkflow.flow.worker

Contient les implémentations d'exécuteurs d'activité et de flux de travail

Packages Version de l'API 2021-04-28 196

https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/junit/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/pojo/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/spring/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/test/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/worker/package-summary.html

AWS Flow Framework pour Java Guide du développeur

Historique du document
Le tableau suivant décrit les modifications importantes apportées à la documentation depuis la
dernière version du guide du développeur AWS Flow Framework pour Java.

• Version de l'API : 2012-01-25

• Dernière mise à jour de la documentation : 25 juin 2018

Modification Description Date de
modification

Mettre à jour Correction d'une erreur dans la description de backoffCo
efficient pour @ExponentialRetry . Consultez
@ExponentialRetry.

25 juin 2018

Mettre à jour Les exemples de code ont été nettoyés dans ce guide. 5 juin 2017

Mettre à jour Simplification et amélioration de l'organisation et du
contenu de ce guide.

19 mai 2017

Mettre à jour Simplification et amélioration de la section Modifications
du code décideur : Gestion des versions et indicateurs de
fonction.

10 avril 2017

Mettre à jour Nouvelle section Bonnes pratiques ajoutée avec de
nouveaux conseils sur la façon de modifier le code
décideur.

3 mars 2017

Nouvelle fonctionn
alité

Vous pouvez spécifier des tâches Lambda en plus des
tâches d'activité traditionnelles dans vos flux de travail.
Pour de plus amples informations, veuillez consulter Mise
en œuvre AWS Lambda des tâches.

21 juillet 2015

Nouvelle fonctionn
alité

Amazon SWF prend en charge la définition de la priorité
des tâches sur une liste de tâches, en essayant de fournir
les tâches les plus prioritaires avant les tâches les moins
prioritaires. Pour de plus amples informations, veuillez

17 décembre
2014

Version de l'API 2021-04-28 197

AWS Flow Framework pour Java Guide du développeur

Modification Description Date de
modification

consulter Définition de la priorité des tâches dans Amazon
SWF.

Mettre à jour Mises à jour et correctifs appliqués. 1er août
2013

Mettre à jour • Mises à jour et correctifs appliqués, y compris les mises
à jour des instructions de configuration pour Eclipse 4.3
et AWS SDK pour Java 1.4.7.

• Ajout d'un nouvel ensemble de didacticiels pour l'élabora
tion de scénarios de démarrage

28 juin 2013

Nouvelle fonctionn
alité

La version initiale du AWS Flow Framework pour Java. 27 février 2012

Version de l'API 2021-04-28 198

AWS Flow Framework pour Java Guide du développeur

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le
contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Version de l'API 2021-04-28 cxcix

	AWS Flow Framework pour Java
	Table of Contents
	Qu'est-ce que le AWS Flow Framework pour Java ?
	Présentation de ce guide

	Commencer à utiliser le AWS Flow Framework pour Java
	Configuration du AWS Flow Framework pour Java
	Ajouter le framework de flux avec Maven

	HelloWorld Demande
	HelloWorld Mise en euvre des activités
	HelloWorld Travailleur du workflow
	HelloWorld Démarreur de workflow

	HelloWorldWorkflow Demande
	HelloWorldWorkflow Travailleur des activités
	HelloWorldWorkflow Travailleur du workflow
	Client d'activités
	Promets- <T> Type

	HelloWorldWorkflow Mise en euvre des flux de travail et activités
	HelloWorldWorkflow Démarreur

	HelloWorldWorkflowAsyncDemande
	HelloWorldWorkflowAsync Mise en euvre des activités
	HelloWorldWorkflowAsync Mise en euvre du workflow
	HelloWorldWorkflowAsyncWorkflow et activités Host and Starter

	HelloWorldWorkflowDistributed Demande
	HelloWorldWorkflowParallelDemande
	HelloWorldWorkflowParallelTravailleur des activités
	HelloWorldWorkflowParallelTravailleur du workflow
	HelloWorldWorkflowParallel Workflow et activités Host and Starter

	Comprendre AWS Flow Framework Java
	AWS Flow Framework Concepts de base : structure de l'application
	Rôle de l'exécuteur d'activité
	Rôle de l'exécuteur de flux de travail
	Rôle du démarreur de flux de travail
	Comment Amazon SWF interagit avec votre application
	Pour en savoir plus

	AWS Flow Framework Concepts de base : exécution fiable
	Assurer une communication fiable
	S'assurer qu'aucun résultat n'est perdu
	Gestion de l'historique du flux de travail
	Exécution sans état

	Gestion des composants distribués ayant échoué

	AWS Flow Framework Concepts de base : exécution distribuée
	Reproduction des flux de travail
	Reproduction et méthodes de flux de travail asynchrones
	Implémentation de reproduction et de flux de travail

	AWS Flow Framework Concepts de base : listes de tâches et exécution des tâches
	AWS Flow Framework Concepts de base : applications évolutives
	AWS Flow Framework Concepts de base : échange de données entre les activités et les flux de travail
	Le Promesse <T> Type
	Convertisseurs de données et regroupement

	AWS Flow Framework Concepts de base : échange de données entre applications et exécutions de flux de travail
	Types de délai d'expiration Amazon SWF
	Délais liés au flux de travail et aux tâches de décision
	Délais des tâches d'activité

	Comprendre une tâche dans AWS Flow Framework for Java
	Tâche
	Ordre d'exécution
	Exécution de flux de travail
	Non-déterminisme

	AWS Flow Framework pour le guide de programmation Java
	Implémentation d'applications de flux de travail avec AWS Flow Framework
	Contrats de flux de travail et d'activité
	Enregistrement des types de flux de travail et d'activité
	Nom et version de type de flux de travail
	Nom du signal
	Nom et version de type de flux d'activité
	Default Task List
	Autres options d'enregistrement

	Clients d'activité et de flux de travail
	Clients de flux de travail
	Clients d'activité
	Options de planification
	Clients dynamiques
	Signalisation et annulation des exécutions de flux de travail

	Implémentation de flux de travail
	Contexte décisionnel
	Exposition de l'état d'exécution
	Locales de flux de travail

	Implémentation d'activité
	Finalisation manuelle des activités

	Mise en euvre AWS Lambda des tâches
	À propos AWS Lambda
	Avantages et limites de l'utilisation des tâches Lambda
	Utilisation de tâches Lambda dans vos flux de travail AWS Flow Framework pour Java
	Configuration d'un rôle IAM
	Limiter les autorisations sur un rôle IAM
	Fournir à Amazon SWF l'accès lui permettant d'invoquer n'importe quel rôle Lambda
	Définition d'un rôle IAM pour fournir un accès permettant d'invoquer une fonction Lambda spécifique

	Planifier l'exécution d'une tâche Lambda

	Voir l' HelloLambda échantillon

	Exécution de programmes écrits avec le AWS Flow Framework pour Java
	WorkflowWorker
	ActivityWorker
	Modèle de thread d'exécuteur
	Extensibilité de l'exécuteur

	Contexte d'exécution
	Contexte décisionnel
	Accès lors de DecisionContext l'implémentation du flux de travail
	Création d'une horloge et d'un minuteur

	Contexte d'exécution d'une activité
	Vérification des pulsations d'une activité de longue durée
	Obtention des détails de la tâche d'activité
	Obtenez l'objet client Amazon SWF utilisé par l'exécuteur

	Exécutions de flux de travail enfant
	Flux de travail continus
	Définition de la priorité des tâches dans Amazon SWF
	Définition d'une priorité de tâche pour les flux de travail
	Définition d'une priorité de tâche pour les activités

	DataConverters
	Transmission des données aux méthodes asynchrones
	Transmission des collections et des cartes aux méthodes asynchrones
	Définissable <T>
	@NoWait
	Promets- <Vide>
	AndPromise et OrPromise

	Testabilité et injection de dépendances
	Intégration de Spring
	WorkflowScope
	Exécuteurs compatibles avec Spring
	Injection de contexte décisionnel
	Injection des ressources dans des activités

	JUnit Integration
	Écriture d'un test unitaire simple
	Simulation d'implémentations d'activité

	Objets de contexte de test

	Gestion des erreurs
	TryCatchFinally Sémantique
	Annulation
	Pulsations de l'activité
	Annulation explicite d'une tâche
	Réception d'une notification des tâches annulées

	Imbriqué TryCatchFinally

	Relance des activités ayant échoué
	Retry-Until-Success Stratégie
	Stratégie de nouvelle tentative exponentielle
	Réessayer de façon exponentielle avec @ ExponentialRetry
	Réessai exponentiel avec la classe RetryDecorator
	Réessai exponentiel avec la classe AsyncRetryingExecutor

	Stratégie de nouvelle tentative personnalisée

	Tâches démon
	AWS Flow Framework pour Java Replay Behavior
	Exemple 1 : Reproduction synchrone
	Exemple 2 : Reproduction asynchrone
	consultez aussi

	Bonnes pratiques
	Modifications du code décideur : Gestion des versions et indicateurs de fonction
	Le processus de reproduction et les modifications de code
	Exemple de scénario
	Aperçu du scénario
	Code commun
	Écriture du code décideur initial
	Simulation d'une modification irréversible

	Solutions
	Utilisation de la gestion des versions
	Utilisation des indicateurs de fonction

	Conseils de dépannage et de débogage AWS Flow Framework pour Java
	Erreurs de compilation
	Défaillance de ressource inconnue
	Exceptions lors de l'appel à get () sur une promesse
	Workflows non déterministes
	Problèmes liés à la gestion des versions
	Résolution des problèmes et débogage de l'exécution d'un flux de travail
	Tâches perdues
	Échec de validation dû à des contraintes de longueur des paramètres de l'API

	AWS Flow Framework pour Java Reference
	AWS Flow Framework pour les annotations Java
	@Activités
	@Activité
	@ActivityRegistrationOptions
	@Asynchrone
	@Execute
	@ExponentialRetry
	@GetState
	@ManualActivityCompletion
	@Signal
	@SkipRegistration
	@Wait et @ NoWait
	@Flux de travail
	exemple

	@WorkflowRegistrationOptions

	AWS Flow Framework pour les exceptions Java
	ActivityFailureException
	ActivityTaskException
	ActivityTaskFailedException
	ActivityTaskTimedOutException
	ChildWorkflowException
	ChildWorkflowFailedException
	ChildWorkflowTerminatedException
	ChildWorkflowTimedOutException
	DataConverterException
	DecisionException
	ScheduleActivityTaskFailedException
	SignalExternalWorkflowException
	StartChildWorkflowFailedException
	StartTimerFailedException
	TimerException
	WorkflowException

	AWS Flow Framework pour les packages Java

	Historique du document
	

