
Guide de l'utilisateur de Hooks

CloudFormation

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

CloudFormation Guide de l'utilisateur de Hooks

CloudFormation: Guide de l'utilisateur de Hooks

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Les marques et la présentation commerciale d’Amazon ne peuvent être utilisées en relation avec
un produit ou un service qui n’est pas d’Amazon, d’une manière susceptible de créer une confusion
parmi les clients, ou d’une manière qui dénigre ou discrédite Amazon. Toutes les autres marques
commerciales qui ne sont pas la propriété d’Amazon appartiennent à leurs propriétaires respectifs,
qui peuvent ou non être affiliés ou connectés à Amazon, ou sponsorisés par Amazon.

CloudFormation Guide de l'utilisateur de Hooks

Table of Contents
Que sont les CloudFormation Hooks ? .. 1

Options d'implémentation de Hook ... 1
AWS Control Tower contrôles proactifs ... 1
Règles de garde ... 1
Fonctions Lambda .. 2
Crochets personnalisés .. 2

Création et gestion de Hooks .. 3
Concepts .. 6

Crochet .. 6
Mode de défaillance ... 6
Crochet et cibles ... 7
Actions ciblées .. 7
Annotations ... 7
Manipulateur de crochets ... 8
Limites de délai et de nouvelles tentatives .. 8

Contrôles proactifs sous forme de hooks ... 8
AWS CLI commandes pour travailler avec les Hooks ... 9
Activez un Hook basé sur le contrôle proactif ... 9
Supprimer les Hooks basés sur le contrôle proactif .. 13

Hooks Guard .. 15
AWS CLI commandes pour travailler avec Guard Hooks .. 15
Règles de Write Guard pour les Hooks ... 15
Préparez-vous à créer un crochet de protection .. 30
Activer un crochet de protection .. 32
Afficher les journaux de Guard Hooks ... 37
Supprimer les crochets de garde ... 38

Hooks Lambda ... 39
AWS CLI commandes pour travailler avec les Hooks Lambda ... 40
Création de fonctions Lambda pour les Hooks .. 40
Préparez-vous à créer un crochet Lambda .. 64
Activer un crochet Lambda ... 66
Afficher les journaux des Lambda Hooks .. 71
Supprimer les crochets Lambda ... 71

Crochets personnalisés ... 73

iii

CloudFormation Guide de l'utilisateur de Hooks

Prérequis ... 74
Lancer un projet Hooks .. 76
Crochets de modélisation ... 79
Enregistrement des Hooks ... 147
Crochets de test ... 151
Mettre à jour les hooks ... 161
Annulation de l'enregistrement de Hooks ... 162
Hooks de publication .. 162
Syntaxe du schéma .. 170

Désactiver/activer les Hooks .. 180
Désactiver et activer un Hook (console) ... 180
Désactiver et activer un Hook (AWS CLI) .. 181

Afficher les résultats d'invocation de Hook .. 182
Afficher les résultats des appels (console) ... 182

Afficher les résultats pour tous les Hooks .. 182
Afficher l'historique des invocations pour des Hooks individuels ... 183
Afficher les résultats des invocations spécifiques à une pile ... 183

Afficher les résultats de l'invocation ()AWS CLI ... 184
Schéma de configuration ... 189

Propriétés du schéma de configuration des crochets ... 189
Exemples de configuration de crochets .. 191
Filtres au niveau de la pile .. 191

FilteringCriteria .. 193
StackNames ... 193
StackRoles ... 194
Include et Exclude .. 195
Exemples de filtres au niveau de la pile .. 195

Filtres cibles ... 199
Exemples de filtres cibles ... 201

Utilisation de caractères génériques ... 203
Créez des Hooks à l'aide CloudFormation de modèles .. 212
Accorder des autorisations IAM ... 214

Autoriser un utilisateur à gérer les Hooks ... 215
Autoriser un utilisateur à publier des Hooks personnalisés publiquement 216
Autoriser un utilisateur à consulter les résultats d'invocation de Hook 217

Résultats d'invocation de List Hook ... 217

iv

CloudFormation Guide de l'utilisateur de Hooks

Autoriser un utilisateur à afficher les résultats détaillés de l'invocation de Hook 220
AWS KMS politique et autorisations clés .. 221

Présentation de ... 221
Contexte de chiffrement ... 222
Stratégie de clé KMS gérée par le client ... 223
Autorisations KMS pour SetTypeConfiguration l'API ... 226
Autorisations KMS pour GetHookResult l'API .. 227

Historique de la documentation ... 229
... ccxxxiii

v

CloudFormation Guide de l'utilisateur de Hooks

Que sont les CloudFormation Hooks ?
CloudFormation Hooks est une fonctionnalité qui permet de garantir que vos CloudFormation
ressources, vos piles et vos ensembles de modifications sont conformes aux meilleures pratiques de
votre organisation en matière de sécurité, d'exploitation et d'optimisation des coûts. CloudFormation
Les Hooks peuvent également garantir ce même niveau de conformité pour vos API de commande
du Cloud AWS ressources. Avec CloudFormation Hooks, vous pouvez fournir du code qui inspecte
de manière proactive la configuration de vos AWS ressources avant le provisionnement. Si
des ressources non conformes sont détectées, CloudFormation l'opération échoue et empêche
le provisionnement des ressources ou émet un avertissement et permet à l'opération de
provisionnement de se poursuivre.

Vous pouvez utiliser les Hooks pour appliquer diverses exigences et directives. Par exemple, un
Hook lié à la sécurité peut vérifier que les groupes de sécurité disposent de règles de trafic entrant et
sortant appropriées pour votre Amazon VPC. Un Hook lié aux coûts peut limiter les environnements
de développement à n'utiliser que des types d' EC2instances Amazon plus petits. Un Hook conçu
pour la disponibilité des données peut imposer des sauvegardes automatiques pour Amazon RDS.

Options d'implémentation de Hook

CloudFormation propose plusieurs options pour implémenter des Hooks, ce qui vous permet de
choisir l'approche la mieux adaptée à vos besoins.

AWS Control Tower contrôles proactifs

Le catalogue AWS Control Tower de contrôles propose des contrôles proactifs standardisés que
vous pouvez implémenter sous forme de Hooks. Cette approche permet de gagner du temps
de configuration et de valider les configurations des ressources par rapport aux AWS meilleures
pratiques au sein de votre organisation sans écrire de code.

Règles de garde

AWS CloudFormation Guard est un outil policy-as-code d'évaluation qui fournit un langage spécifique
au domaine pour écrire une logique d'évaluation personnalisée pour Hooks. Cette approche vous
permet de définir des contrôles de conformité à l'aide de la syntaxe déclarative de Guard, ce qui
facilite la création et la maintenance de votre logique d'évaluation sans connaissances approfondies
en programmation.

Options d'implémentation de Hook 1

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

CloudFormation Guide de l'utilisateur de Hooks

Fonctions Lambda

Vous pouvez également implémenter des Hooks à l'aide des fonctions Lambda, ce qui vous permet
de tirer parti de toute la puissance et de la flexibilité de Lambda pour votre logique d'évaluation. Vous
pouvez utiliser n'importe quel langage d'exécution compatible avec Lambda et intégrer d'autres AWS
services selon vos besoins.

Crochets personnalisés

Pour les cas d'utilisation avancés, vous pouvez écrire votre propre logique d'évaluation à l'aide
des langages de programmation pris en charge par la CloudFormation CLI. Cette approche offre
une flexibilité maximale pour la mise en œuvre des exigences de gouvernance spécifiques à
l'organisation. En tant que type d'extension pris en charge dans le CloudFormation registre, vos
Hooks personnalisés peuvent être distribués et activés à la fois publiquement et en privé.

Fonctions Lambda 2

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry.html

CloudFormation Guide de l'utilisateur de Hooks

Création et gestion de CloudFormation Hooks

CloudFormation Les hooks fournissent un mécanisme permettant d'évaluer vos CloudFormation
ressources avant d'autoriser la création, la modification ou la suppression de piles. Cette
fonctionnalité vous permet de vous assurer que vos CloudFormation ressources sont conformes aux
meilleures pratiques de votre organisation en matière de sécurité, d'exploitation et d'optimisation des
coûts.

Pour créer un Hook, quatre options s'offrent à vous.

• Contrôles proactifs sous forme de crochets : évalue les ressources à l'aide des contrôles proactifs
du catalogue de AWS Control Tower contrôle.

• Guard Hook — Évalue les ressources à l'aide d'une AWS CloudFormation Guard règle.

• Lambda Hook — Transfère les demandes d'évaluation des ressources à une AWS Lambda
fonction.

• Crochet personnalisé — Utilise un gestionnaire de crochet personnalisé que vous développez
manuellement.

Proactive controls as Hooks

Pour créer un Hook à partir de contrôles proactifs, procédez comme suit :

1. Accédez à la CloudFormation console et commencez à créer un Hook.

2. Choisissez des contrôles spécifiques dans le catalogue de contrôles par rapport auxquels
vous souhaitez que votre Hook évalue les ressources.

Ces contrôles s'appliquent automatiquement chaque fois que des ressources spécifiées
sont créées ou mises à jour. Votre sélection détermine les types de ressources que le Hook
évaluera.

3. Définissez le mode Hook pour avertir les utilisateurs en cas de non-conformité ou pour
empêcher les opérations non conformes.

4. Configurez des filtres facultatifs pour inclure ou exclure des piles par nom de pile ou par rôle
de pile.

5. Une fois la configuration terminée, activez le Hook pour commencer l'application.

3

CloudFormation Guide de l'utilisateur de Hooks

Guard Hook

Pour créer un crochet de protection, procédez comme suit :

1. Écrivez votre logique d'évaluation des ressources sous forme de règle de politique Guard en
utilisant le langage spécifique au domaine Guard (DSL).

2. Stockez la règle de politique Guard dans un compartiment Amazon S3.

3. Accédez à la CloudFormation console et commencez à créer un crochet de protection.

4. Indiquez le chemin Amazon S3 vers votre règle Guard.

5. Choisissez les types de cibles spécifiques que le Hook évaluera.

• CloudFormation ressources (RESOURCE)

• Modèles de pile complète (STACK)

• Ensembles de modifications (CHANGE_SET)

• Ressources de l'API Cloud Control (CLOUD_CONTROL)

6. Choisissez les actions de déploiement (créer, mettre à jour, supprimer) qui appelleront votre
Hook.

7. Choisissez la façon dont le Hook répond en cas d'échec de l'évaluation.

8. Configurez des filtres facultatifs pour spécifier les types de ressources que le Hook doit
évaluer

9. Configurez des filtres facultatifs pour inclure ou exclure des piles par nom de pile ou par rôle
de pile.

10. Une fois la configuration terminée, activez le Hook pour commencer l'application.

Lambda Hook

Pour créer un Lambda Hook, procédez comme suit :

1. Écrivez votre logique d'évaluation des ressources sous forme de fonction Lambda.

2. Accédez à la CloudFormation console et commencez à créer un Lambda Hook.

3. Fournissez le nom de ressource Amazon (ARN) pour votre fonction Lambda.

4. Choisissez les types de cibles spécifiques que le Hook évaluera.

• CloudFormation ressources (RESOURCE)

• Modèles de pile complète (STACK)

4

CloudFormation Guide de l'utilisateur de Hooks

• Ensembles de modifications (CHANGE_SET)

• Ressources de l'API Cloud Control (CLOUD_CONTROL)

5. Choisissez les actions de déploiement (créer, mettre à jour, supprimer) qui appelleront votre
Hook.

6. Choisissez la façon dont le Hook répond en cas d'échec de l'évaluation.

7. Configurez des filtres facultatifs pour spécifier les types de ressources que le Hook doit
évaluer

8. Configurez des filtres facultatifs pour inclure ou exclure des piles par nom de pile ou par rôle
de pile.

9. Une fois la configuration terminée, activez le Hook pour commencer l'application.

Custom Hook

Les hooks personnalisés sont des extensions que vous enregistrez dans le CloudFormation
registre à l'aide de l'interface de ligne de CloudFormation commande (CFN-CLI).

Pour créer un Hook personnalisé, suivez les étapes principales suivantes :

1. Lancez le projet — Générez les fichiers nécessaires au développement d'un Hook
personnalisé.

2. Modéliser le Hook — Écrivez un schéma qui définit le Hook et les gestionnaires qui spécifient
les opérations qui peuvent appeler le Hook.

3. Enregistrez et activez le Hook — Après avoir créé un Hook, vous devez l'enregistrer dans le
compte et dans la région où vous souhaitez l'utiliser pour l'activer.

Les rubriques suivantes fournissent des informations supplémentaires sur la création et la gestion
des Hooks.

Rubriques

• CloudFormation Concepts de crochets

• AWS Control Tower contrôles proactifs sous forme de Hooks

• Hooks Guard

• Hooks Lambda

• Développement de Hooks personnalisés à l'aide de la CloudFormation CLI

5

CloudFormation Guide de l'utilisateur de Hooks

CloudFormation Concepts de crochets
La terminologie et les concepts suivants sont essentiels à votre compréhension et à votre utilisation
des CloudFormation Hooks.

Crochet

Un Hook contient du code qui est invoqué immédiatement avant la CloudFormation création, la mise
à jour ou la suppression de piles ou de ressources spécifiques. Il peut également être invoqué lors
d'une opération de création d'un ensemble de modifications. Les Hooks peuvent inspecter le modèle,
les ressources ou l'ensemble de modifications qui CloudFormation est sur le point d'être provisionné.
En outre, les Hooks peuvent être invoqués immédiatement avant que l'API Cloud Control ne crée, ne
mette à jour ou ne supprime des ressources spécifiques.

Si un Hook identifie des configurations qui ne sont pas conformes aux directives organisationnelles
définies dans votre logique Hook, vous pouvez choisir d'utiliser WARN les utilisateurs ou FAIL d'
CloudFormation empêcher le provisionnement de la ressource.

Les crochets présentent les caractéristiques suivantes :

• Validation proactive : réduit les risques, les frais opérationnels et les coûts en identifiant les
ressources non conformes avant leur création, leur mise à jour ou leur suppression.

• Application automatique : assure l'application dans votre système afin Compte AWS d'empêcher le
provisionnement de ressources non conformes par. CloudFormation

Mode de défaillance

Votre logique Hook peut renvoyer un succès ou un échec. Une réponse positive permettra à
l'opération de se poursuivre. Une défaillance due à des ressources non conformes peut avoir les
conséquences suivantes :

• FAIL— Arrête l'opération de provisionnement.

• WARN— Permet de poursuivre le provisionnement avec un message d'avertissement.

La création de Hooks en WARN mode est un moyen efficace de surveiller le comportement des Hooks
sans affecter les opérations de stack. Activez d'abord le WARN mode Hooks pour comprendre quelles
opérations seront affectées. Après avoir évalué les effets potentiels, vous pouvez passer en FAIL
mode Hook pour commencer à empêcher les opérations non conformes.

Concepts 6

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

CloudFormation Guide de l'utilisateur de Hooks

Crochet et cibles

Les cibles Hook spécifient les opérations qu'un Hook évaluera. Il peut s'agir d'opérations sur :

• Ressources soutenues par CloudFormation (RESOURCE)

• Modèles de pile (STACK)

• Ensembles de modifications (CHANGE_SET)

• Ressources prises en charge par l'API Cloud Control (CLOUD_CONTROL)

Vous définissez une ou plusieurs cibles qui spécifient les opérations les plus larges que le Hook
évaluera. Par exemple, vous pouvez créer un ciblage Hook RESOURCE pour cibler toutes les AWS
ressources et STACK tous les modèles de stack.

Actions ciblées

Les actions cibles définissent les actions spécifiques (CREATE,UPDATE, ouDELETE) qui appelleront
un Hook. Pour RESOURCESTACK, et les CLOUD_CONTROL cibles, toutes les actions cibles sont
applicables. Pour CHANGE_SET les cibles, seule l'CREATEaction est applicable.

Annotations

GetHookResultles réponses peuvent renvoyer des annotations fournissant les résultats détaillés
des contrôles de conformité et des conseils de correction pour chaque ressource évaluée. Pour
plus de détails sur la structure d'annotation de l'API, voir Annotation dans la référence de l'AWS
CloudFormation API. Pour obtenir des instructions sur l'affichage de ces résultats de validation,
consultezAfficher les résultats d'invocation pour les Hooks CloudFormation.

Vous pouvez chiffrer les annotations nécessaires pour les informations de conformité sensibles en
spécifiant votre propre clé KMS lors de la configuration du Hook. Pour de plus amples informations,
veuillez consulter Référence syntaxique du schéma de configuration Hook. Pour plus d'informations
sur la configuration de la politique de clé dont vous avez besoin lorsque vous spécifiez votre clé
KMS pour les Hooks, consultezAWS KMS politique clé et autorisations pour chiffrer les résultats de
CloudFormation Hooks au repos.

Crochet et cibles 7

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_Annotation.html

CloudFormation Guide de l'utilisateur de Hooks

Important

Notez que l'KmsKeyIdoption permettant de spécifier une clé gérée par le client n'est
actuellement disponible que lorsque vous utilisez le AWS CLI pour configurer votre Hook.

Manipulateur de crochets

Pour les Hooks personnalisés, c'est le code qui gère l'évaluation. Il est associé à un point d'invocation
cible et à une action cible qui marquent le point exact où un Hook s'exécute. Vous écrivez des
gestionnaires qui hébergent la logique pour ces points spécifiques. Par exemple, un point d'appel
PRE cible avec une action CREATE cible crée un gestionnaire preCreate Hook. Le code du
gestionnaire Hook s'exécute lorsqu'un point d'appel cible et un service correspondants exécutent une
action cible associée.

Valeurs valides : (preCreate| preUpdate |preDelete)

Important

Les opérations de pile dont le résultat est le statut de UpdateCleanup n'invoquent pas de
Hook. Par exemple, dans les deux scénarios suivants, le preDelete gestionnaire du Hook
n'est pas invoqué :

• la pile est mise à jour après la suppression d'une ressource du modèle.

• une ressource dont le type de mise à jour est remplacé est supprimée.

Limites de délai et de nouvelles tentatives

Les Hooks ont un délai d'expiration de 30 secondes par invocation et sont limités à 3 tentatives
de nouvelle tentative. Si un appel dépasse le délai imparti, nous renvoyons un message d'erreur
indiquant que le délai d'exécution de Hook a expiré. Après la troisième tentative, CloudFormation
marque l'échec de l'exécution du Hook.

AWS Control Tower contrôles proactifs sous forme de Hooks

Le catalogue AWS Control Tower de contrôles fournit des règles de conformité prédéfinies (contrôles
proactifs) que vous pouvez implémenter sous forme de Hooks. Cette approche permet de gagner

Manipulateur de crochets 8

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html#update-replacement

CloudFormation Guide de l'utilisateur de Hooks

du temps de configuration et de valider les configurations des ressources par rapport aux AWS
meilleures pratiques au sein de votre organisation sans écrire de code.

Les contrôles proactifs évaluent les AWS ressources avant le déploiement, empêchant ainsi la
création de ressources non conformes plutôt que de détecter les problèmes ultérieurement. Ils
vérifient les configurations par rapport aux normes de sécurité, opérationnelles et de gouvernance
établies.

Pour commencer, activez simplement les Hooks basés sur le contrôle proactif dans le compte et la
région de votre choix. Ces Hooks évalueront ensuite des types de cibles spécifiques pour garantir la
conformité avec les contrôles que vous avez sélectionnés.

Pour plus d'informations sur les contrôles proactifs disponibles, consultez le catalogue AWS Control
Tower de contrôles.

Rubriques

• AWS CLI commandes pour travailler avec les Hooks

• Activez un hook basé sur le contrôle proactif dans votre compte

• Supprimez les Hooks basés sur le contrôle proactif de votre compte

AWS CLI commandes pour travailler avec les Hooks

Les AWS CLI commandes permettant de travailler avec des Hooks basés sur le contrôle proactif sont
les suivantes :

• activate-typepour démarrer le processus d'activation d'un Hook basé sur le contrôle proactif.

• set-type-configurationpour spécifier les contrôles à appliquer à un Hook basé sur le contrôle
proactif dans votre compte.

• list-typespour répertorier les Hooks de votre compte.

• describe-typepour renvoyer des informations détaillées sur un Hook spécifique ou une version
spécifique de Hook, y compris les données de configuration actuelles.

• deactivate-typepour supprimer un Hook précédemment activé de votre compte.

Activez un hook basé sur le contrôle proactif dans votre compte

La rubrique suivante explique comment activer un Hook basé sur le contrôle proactif dans votre
compte, afin de le rendre utilisable dans le compte et la région dans lesquels il a été activé.

AWS CLI commandes pour travailler avec les Hooks 9

https://docs.aws.amazon.com/controltower/latest/controlreference/controls-reference.html
https://docs.aws.amazon.com/controltower/latest/controlreference/controls-reference.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Guide de l'utilisateur de Hooks

Important

Avant de continuer, vérifiez que vous disposez des autorisations requises pour utiliser les
Hooks et consulter les contrôles proactifs depuis la CloudFormation console. Pour de plus
amples informations, veuillez consulter Accorder des autorisations IAM pour les Hooks
CloudFormation.

Rubriques

• Activer un Hook basé sur le contrôle proactif (console)

• Activez un Hook basé sur le contrôle proactif ()AWS CLI

Activer un Hook basé sur le contrôle proactif (console)

Pour activer un Hook basé sur le contrôle proactif à utiliser dans votre compte

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS endroit où vous
souhaitez créer le Hook in.

3. Dans le volet de navigation de gauche, choisissez Hooks.

4. Sur la page Hooks, choisissez Create a Hook, puis choisissez With the Control Catalog.

5. Sur la page Sélectionner les contrôles, pour les contrôles proactifs, sélectionnez un ou plusieurs
contrôles proactifs à utiliser.

Ces contrôles s'appliquent automatiquement chaque fois que des ressources spécifiées sont
créées ou mises à jour. Votre sélection détermine les types de ressources que le Hook évaluera.

6. Choisissez Suivant.

7. Pour le nom du crochet, choisissez l'une des options suivantes :

• Entrez un nom court et descriptif qui sera ajouté par la suitePrivate::Controls::.
Par exemple, si vous entrezMyTestHook, le nom complet du Hook
devientPrivate::Controls::MyTestHook.

• Fournissez le nom complet du Hook (également appelé alias) en utilisant ce
format :Provider::ServiceName::HookName.

Activez un Hook basé sur le contrôle proactif 10

https://console.aws.amazon.com/cloudformation/

CloudFormation Guide de l'utilisateur de Hooks

8. Pour le mode Hook, choisissez la façon dont le Hook répond lorsque les contrôles échouent à
leur évaluation :

• Avertir — Émet des avertissements aux utilisateurs mais autorise la poursuite des actions.
Cela est utile pour les validations non critiques ou les contrôles informatifs.

• Echec : empêche le déroulement de l'action. Cela est utile pour appliquer des politiques de
conformité ou de sécurité strictes.

9. Choisissez Suivant.

10. (Facultatif) Pour les filtres Hook, procédez comme suit :

a. Pour les critères de filtrage, choisissez la logique d'application des filtres de nom de pile et
de rôle de pile :

• Tous les noms de pile et tous les rôles de pile — Le Hook ne sera invoqué que lorsque
tous les filtres spécifiés correspondent.

• Tous les noms de pile et rôles de pile — Le Hook sera invoqué si au moins l'un des filtres
spécifiés correspond.

b. Pour les noms de pile, incluez ou excluez des piles spécifiques des invocations Hook.

• Pour Inclure, spécifiez les noms des piles à inclure. Utilisez-le lorsque vous souhaitez
cibler un petit ensemble de piles spécifiques. Seules les piles spécifiées dans cette liste
invoqueront le Hook.

• Pour Exclure, spécifiez les noms des piles à exclure. Utilisez-le lorsque vous souhaitez
invoquer le Hook sur la plupart des piles, mais en exclure quelques unes en particulier.
Toutes les piles, à l'exception de celles répertoriées ici, invoqueront le Hook.

c. Pour les rôles Stack, incluez ou excluez des piles spécifiques des invocations Hook en
fonction de leurs rôles IAM associés.

• Pour Inclure, spécifiez un ou plusieurs rôles IAM ARNs pour cibler les piles associées à
ces rôles. Seules les opérations de stack initiées par ces rôles invoqueront le Hook.

• Pour Exclure, spécifiez un ou plusieurs rôles IAM ARNs pour les piles que vous souhaitez
exclure. Le Hook sera invoqué sur toutes les piles sauf celles initiées par les rôles
spécifiés.

11. Choisissez Suivant.

12. Sur la page Vérifier et activer, passez en revue vos choix. Pour apporter des modifications,
choisissez Modifier dans la section correspondante.

Activez un Hook basé sur le contrôle proactif 11

CloudFormation Guide de l'utilisateur de Hooks

13. Lorsque vous êtes prêt à continuer, choisissez Activate Hook.

Activez un Hook basé sur le contrôle proactif ()AWS CLI

Avant de continuer, vérifiez que vous avez identifié les contrôles proactifs que vous utiliserez avec ce
Hook. Pour plus d'informations, consultez le catalogue AWS Control Tower de contrôle.

Pour activer un Hook basé sur le contrôle proactif à utiliser dans votre compte ()AWS CLI

1. Pour commencer à activer un Hook, utilisez la activate-typecommande suivante en remplaçant
les espaces réservés par vos valeurs spécifiques.

aws cloudformation activate-type --type HOOK \
 --type-name AWS::ControlTower::Hook \
 --publisher-id aws-hooks \
 --type-name-alias MyOrg::Security::ComplianceHook \
 --region us-west-2

2. Pour terminer l'activation du Hook, vous devez le configurer à l'aide d'un fichier de configuration
JSON.

Utilisez la cat commande pour créer un fichier JSON avec la structure suivante. Pour de plus
amples informations, veuillez consulter Référence syntaxique du schéma de configuration Hook.

L'exemple suivant configure un Hook qui invoque des ressources IAM, Amazon et Amazon EC2
S3 spécifiques pendant et pendant CREATE les opérations. UPDATE Il applique trois contrôles
proactifs (CT.IAM.PR.5,CT.EC2.PR.17,CT.S3.PR.12) pour valider ces ressources par
rapport aux normes de conformité. Le hook fonctionne en WARN mode, ce qui signifie qu'il
signalera les ressources non conformes par des avertissements mais ne bloquera pas les
déploiements.

$ cat > config.json
{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": ["RESOURCE"],
 "FailureMode": "WARN",
 "Properties": {
 "ControlsToApply": "CT.IAM.PR.5,CT.EC2.PR.17,CT.S3.PR.12"
 },

Activez un Hook basé sur le contrôle proactif 12

https://docs.aws.amazon.com/controltower/latest/controlreference/controls-reference.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html

CloudFormation Guide de l'utilisateur de Hooks

 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE"
]
 }
 }
 }
}

• HookInvocationStatus: défini sur ENABLED pour activer le Hook.

• TargetOperations: défini sur RESOURCE car il s'agit de la seule valeur prise en charge pour
un Hook basé sur le contrôle proactif.

• FailureMode : Définissez sur FAIL ou WARN.

• ControlsToApply: Spécifiez le contrôle IDs des contrôles proactifs à utiliser. Pour plus
d'informations, consultez le catalogue AWS Control Tower de contrôle.

• (Facultatif) TargetFilters : PourActions, vous pouvez spécifier CREATE ou UPDATE les
deux (par défaut) pour contrôler le moment où le Hook est invoqué. Le fait de spécifier CREATE
uniquement limite le Hook aux CREATE opérations uniquement. TargetFiltersLes autres
propriétés n'ont aucun effet.

3. Utilisez la set-type-configurationcommande suivante, ainsi que le fichier JSON que vous
avez créé, pour appliquer la configuration. Remplacez les espaces réservés par vos valeurs
spécifiques.

aws cloudformation set-type-configuration \
 --configuration file://config.json \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook" \
 --region us-west-2

Supprimez les Hooks basés sur le contrôle proactif de votre compte

Lorsque vous n'avez plus besoin d'un Hook activé basé sur le contrôle proactif, suivez les procédures
suivantes pour le supprimer de votre compte.

Pour désactiver temporairement un Hook au lieu de le supprimer, consultezDésactiver et activer les
CloudFormation Hooks.

Supprimer les Hooks basés sur le contrôle proactif 13

https://docs.aws.amazon.com/controltower/latest/controlreference/controls-reference.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html

CloudFormation Guide de l'utilisateur de Hooks

Rubriques

• Supprimer un Hook basé sur le contrôle proactif dans votre compte (console)

• Supprimer un Hook basé sur le contrôle proactif dans votre compte ()AWS CLI

Supprimer un Hook basé sur le contrôle proactif dans votre compte (console)

Pour supprimer un Hook basé sur le contrôle proactif de votre compte

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS emplacement du
crochet.

3. Dans le volet de navigation, choisissez Hooks.

4. Sur la page Hooks, recherchez le Hook basé sur le contrôle proactif que vous souhaitez
supprimer.

5. Cochez la case à côté de votre Hook et choisissez Supprimer.

6. Lorsque vous êtes invité à confirmer, saisissez le nom du crochet pour confirmer la suppression
du crochet spécifié, puis choisissez Supprimer.

Supprimer un Hook basé sur le contrôle proactif dans votre compte ()AWS CLI

Note

Avant de pouvoir supprimer le Hook, vous devez d'abord le désactiver. Pour de plus amples
informations, veuillez consulter Désactiver et activer un Hook dans votre compte (AWS CLI).

Utilisez la deactivate-typecommande suivante pour désactiver un Hook, ce qui le supprimera de votre
compte. Remplacez les espaces réservés par vos valeurs spécifiques.

aws cloudformation deactivate-type \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook" \
 --region us-west-2

Supprimer les Hooks basés sur le contrôle proactif 14

https://console.aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Guide de l'utilisateur de Hooks

Hooks Guard

Pour utiliser un AWS CloudFormation Guard Hook dans votre compte, vous devez activer le Hook
pour le compte et la région dans lesquels vous souhaitez l'utiliser. L'activation d'un Hook le rend
utilisable dans les opérations de stack du compte et de la région où il est activé.

Lorsque vous activez un Guard Hook, il CloudFormation crée une entrée dans le registre de votre
compte pour le Hook activé en tant que Hook privé. Cela vous permet de définir toutes les propriétés
de configuration incluses dans le Hook. Les propriétés de configuration définissent la manière dont le
Hook est configuré pour une région Compte AWS et une région données.

Rubriques

• AWS CLI commandes pour travailler avec Guard Hooks

• Rédiger des règles de garde pour évaluer les ressources pour Guard Hooks

• Préparez-vous à créer un crochet de protection

• Activez un Guard Hook dans votre compte

• Afficher les journaux des Guard Hooks sur votre compte

• Supprimer Guard Hooks de votre compte

AWS CLI commandes pour travailler avec Guard Hooks

Les AWS CLI commandes permettant d'utiliser les Guard Hooks sont les suivantes :

• activate-typepour démarrer le processus d'activation d'un Guard Hook.

• set-type-configurationpour spécifier les données de configuration d'un Hook dans votre compte.

• list-typespour répertorier les Hooks de votre compte.

• describe-typepour renvoyer des informations détaillées sur un Hook spécifique ou une version
spécifique de Hook, y compris les données de configuration actuelles.

• deactivate-typepour supprimer un Hook précédemment activé de votre compte.

Rédiger des règles de garde pour évaluer les ressources pour Guard Hooks

AWS CloudFormation Guard est un langage spécifique à un domaine (DSL) open source et à usage
général que vous pouvez utiliser pour créer. policy-as-code Cette rubrique explique comment utiliser
Guard pour créer des exemples de règles qui peuvent être exécutées dans Guard Hook pour une

Hooks Guard 15

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Guide de l'utilisateur de Hooks

évaluation CloudFormation et API de commande du Cloud AWS des opérations automatiques. Il se
concentrera également sur les différents types d'entrées disponibles pour vos règles de garde en
fonction du moment où votre crochet de garde fonctionne. Un Guard Hook peut être configuré pour
s'exécuter lors des types d'opérations suivants :

• Opérations de ressources

• Opérations de pile

• Modifier les opérations du set

Pour plus d'informations sur la rédaction des règles Guard, voir AWS CloudFormation Guard Règles
d'écriture

Rubriques

• Règles relatives à l'exploitation des ressources

• Règles de Stack Operation Guard

• Modifier les règles du jeu Operation Guard

Règles relatives à l'exploitation des ressources

Chaque fois que vous créez, mettez à jour ou supprimez une ressource, cela est considéré comme
une opération de ressource. Par exemple, si vous exécutez la mise à jour d'une CloudFormation
pile qui crée une nouvelle ressource, vous avez terminé une opération sur la ressource. Lorsque
vous créez, mettez à jour ou supprimez une ressource à l'aide de l'API Cloud Control, cela est
également considéré comme une opération de ressource. Vous pouvez configurer votre Guard Hook
en fonction du RESOURCE ciblage et CLOUD_CONTROL des opérations dans la TargetOperations
configuration de votre Hook. Lorsque votre Guard Hook évalue une opération de ressource, le moteur
Guard évalue une entrée de ressource.

Rubriques

• Syntaxe d'entrée des ressources Guard

• Exemple d'entrée d'opération de ressource Guard

• Règles de protection en cas de modification des ressources

Règles de Write Guard pour les Hooks 16

https://docs.aws.amazon.com/cfn-guard/latest/ug/writing-rules.html
https://docs.aws.amazon.com/cfn-guard/latest/ug/writing-rules.html

CloudFormation Guide de l'utilisateur de Hooks

Syntaxe d'entrée des ressources Guard

Les ressources d'entrée du Guard sont les données mises à la disposition de vos règles Guard à des
fins d'évaluation.

Voici un exemple de forme d'entrée de ressource :

HookContext:
 AWSAccountID: String
 StackId: String
 HookTypeName: String
 HookTypeVersion: String
 InvocationPoint: [CREATE_PRE_PROVISION, UPDATE_PRE_PROVISION, DELETE_PRE_PROVISION]
 TargetName: String
 TargetType: RESOURCE
 TargetLogicalId: String
 ChangeSetId: String
Resources:
 {ResourceLogicalID}:
 ResourceType: {ResourceType}
 ResourceProperties:
 {ResourceProperties}
Previous:
 ResourceLogicalID:
 ResourceType: {ResourceType}
 ResourceProperties:
 {PreviousResourceProperties}

HookContext

AWSAccountID

ID du Compte AWS contenant la ressource en cours d'évaluation.

StackId

ID de pile de la CloudFormation pile faisant partie de l'opération de ressource. Ce champ est
vide si l'appelant est l'API Cloud Control.

HookTypeName

Le nom du Hook en cours d'exécution.

HookTypeVersion

Version du Hook en cours d'exécution.

Règles de Write Guard pour les Hooks 17

CloudFormation Guide de l'utilisateur de Hooks

InvocationPoint

Point exact de la logique de provisionnement où le Hook s'exécute.

Valeurs valides : (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

TargetName

Le type de cible évalué, par exemple,AWS::S3::Bucket.

TargetType

Le type de cible évalué, par exempleAWS::S3::Bucket. Pour les ressources fournies avec
l'API Cloud Control, cette valeur seraRESOURCE.

TargetLogicalId

Le TargetLogicalId de la ressource en cours d'évaluation. Si l'origine du Hook est
CloudFormation, il s'agira de l'ID logique (également appelé nom logique) de la ressource. Si
l'origine du Hook est l'API Cloud Control, il s'agira d'une valeur construite.

ChangeSetId

L'ID de l'ensemble de modifications qui a été exécuté pour provoquer l'invocation du Hook.
Cette valeur est vide si le changement de ressource a été initié par l'API Cloud Control ou par
les delete-stack opérations create-stackupdate-stack, ou.

Resources

ResourceLogicalID

Lorsque l'opération est initiée par CloudFormation, ResourceLogicalID il s'agit de l'ID
logique de la ressource dans le CloudFormation modèle.

Lorsque l'opération est initiée par l'API Cloud Control, ResourceLogicalID il s'agit d'une
combinaison du type de ressource, du nom, de l'ID de l'opération et de l'ID de demande.

ResourceType

Le nom du type de la ressource (exemple :AWS::S3::Bucket).

ResourceProperties

Les propriétés proposées pour la ressource en cours de modification. Lorsque le Guard Hook
s'exécute contre les modifications CloudFormation des ressources, toutes les fonctions, tous

Règles de Write Guard pour les Hooks 18

CloudFormation Guide de l'utilisateur de Hooks

les paramètres et toutes les transformations seront entièrement résolus. Si la ressource est
supprimée, cette valeur sera vide.

Previous

ResourceLogicalID

Lorsque l'opération est initiée par CloudFormation, ResourceLogicalID il s'agit de l'ID
logique de la ressource dans le CloudFormation modèle.

Lorsque l'opération est initiée par l'API Cloud Control, ResourceLogicalID il s'agit d'une
combinaison du type de ressource, du nom, de l'ID de l'opération et de l'ID de demande.

ResourceType

Le nom du type de la ressource (exemple :AWS::S3::Bucket).

ResourceProperties

Les propriétés actuelles associées à la ressource en cours de modification. Si la ressource est
supprimée, cette valeur sera vide.

Exemple d'entrée d'opération de ressource Guard

L'exemple d'entrée suivant montre un Guard Hook qui recevra la définition de la AWS::S3::Bucket
ressource à mettre à jour. Il s'agit des données mises à la disposition de Guard à des fins
d'évaluation.

HookContext:
 AwsAccountId: "123456789012"
 StackId: "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000"
 HookTypeName: org::s3policy::hook
 HookTypeVersion: "00001"
 InvocationPoint: UPDATE_PRE_PROVISION
 TargetName: AWS::S3::Bucket
 TargetType: RESOURCE
 TargetLogicalId: MyS3Bucket
 ChangeSetId: ""
Resources:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:

Règles de Write Guard pour les Hooks 19

CloudFormation Guide de l'utilisateur de Hooks

 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: true
Previous:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: false

Pour voir toutes les propriétés disponibles pour le type de ressource, consultez AWS::S3::Bucket.

Règles de protection en cas de modification des ressources

Lorsqu'un Guard Hook évalue les modifications des ressources, il commence par télécharger toutes
les règles configurées avec le Hook. Ces règles sont ensuite évaluées par rapport à l'entrée de
ressources. Le Hook échouera si l'une des règles échoue à son évaluation. S'il n'y a aucun échec, le
Hook réussira.

L'exemple suivant est une règle de protection qui évalue si la ObjectLockEnabled propriété est
true destinée à un type de AWS::S3::Bucket ressource quelconque.

let s3_buckets_default_lock_enabled = Resources.*[Type == 'AWS::S3::Bucket']

rule S3_BUCKET_DEFAULT_LOCK_ENABLED when %s3_buckets_default_lock_enabled !empty {
 %s3_buckets_default_lock_enabled.Properties.ObjectLockEnabled exists
 %s3_buckets_default_lock_enabled.Properties.ObjectLockEnabled == true
 <<
 Violation: S3 Bucket ObjectLockEnabled must be set to true.
 Fix: Set the S3 property ObjectLockEnabled parameter to true.
 >>
}

Lorsque cette règle est exécutée à l'encontre de l'entrée suivante, elle échoue car la
ObjectLockEnabled propriété n'est pas définie surtrue.

Resources:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: false

Règles de Write Guard pour les Hooks 20

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-s3-bucket.html

CloudFormation Guide de l'utilisateur de Hooks

Lorsque cette règle est exécutée à l'encontre de l'entrée suivante, elle est transmise car elle
ObjectLockEnabled est définie surtrue.

Resources:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: true

Lorsqu'un Hook échoue, les règles qui ont échoué sont repropagées vers l' CloudFormation API
Cloud Control. Si un bucket de journalisation a été configuré pour le Guard Hook, des informations
supplémentaires sur les règles y seront fournies. Ces commentaires supplémentaires incluent les
Fix informations Violation et.

Règles de Stack Operation Guard

Lorsqu'une CloudFormation pile est créée, mise à jour ou supprimée, vous pouvez configurer votre
Guard Hook pour commencer par évaluer le nouveau modèle et éventuellement empêcher l'opération
de pile de se poursuivre. Vous pouvez configurer votre Guard Hook pour cibler STACK les opérations
dans la TargetOperations configuration de votre Hook.

Rubriques

• Syntaxe d'entrée Guard Stack

• Exemple d'entrée d'opération Guard Stack

• Règles de protection en cas de changement de pile

Syntaxe d'entrée Guard Stack

L'entrée pour les opérations Guard Stack fournit le CloudFormation modèle complet pour l'évaluation
de vos règles Guard.

Voici un exemple de forme d'entrée de pile :

HookContext:
 AWSAccountID: String
 StackId: String
 HookTypeName: String
 HookTypeVersion: String

Règles de Write Guard pour les Hooks 21

CloudFormation Guide de l'utilisateur de Hooks

 InvocationPoint: [CREATE_PRE_PROVISION, UPDATE_PRE_PROVISION, DELETE_PRE_PROVISION]
 TargetName: String
 TargetType:STACK
 ChangeSetId: String
{Proposed CloudFormation Template}
Previous:
 {CloudFormation Template}

HookContext

AWSAccountID

L'ID du Compte AWS conteneur de la ressource.

StackId

L'ID de pile de la CloudFormation pile qui fait partie de l'opération de pile.

HookTypeName

Le nom du Hook en cours d'exécution.

HookTypeVersion

Version du Hook en cours d'exécution.

InvocationPoint

Point exact de la logique de provisionnement où le Hook s'exécute.

Valeurs valides : (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

TargetName

Nom de la pile en cours d'évaluation.

TargetType

Cette valeur sera utilisée STACK lors de l'exécution en tant que Hook au niveau de la pile.

ChangeSetId

L'ID de l'ensemble de modifications qui a été exécuté pour provoquer l'invocation du Hook.
Cette valeur est vide si l'opération de pile a été initiée par une delete-stack opération
create-stackupdate-stack, ou.

Règles de Write Guard pour les Hooks 22

CloudFormation Guide de l'utilisateur de Hooks

Proposed CloudFormation Template

La valeur complète du CloudFormation modèle qui a été transmise à CloudFormation create-
stack nos update-stack opérations. Cela inclut des éléments tels que ResourcesOutputs,
etProperties. Il peut s'agir d'une chaîne JSON ou YAML en fonction de ce qui a été fourni.
CloudFormation

Dans delete-stack les opérations, cette valeur sera vide.

Previous

Le dernier CloudFormation modèle déployé avec succès. Cette valeur est vide si la pile est créée
ou supprimée.

Dans delete-stack les opérations, cette valeur sera vide.

Note

Les modèles fournis correspondent à ce qui est transmis aux opérations create ou à celles
qui sont update empilées. Lors de la suppression d'une pile, aucune valeur de modèle n'est
fournie.

Exemple d'entrée d'opération Guard Stack

L'exemple d'entrée suivant montre un Guard Hook qui recevra un modèle complet et le modèle
précédemment déployé. Le modèle de cet exemple utilise le format JSON.

HookContext:
 AwsAccountId: 123456789012
 StackId: "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000"
 HookTypeName: org::templatechecker::hook
 HookTypeVersion: "00001"
 InvocationPoint: UPDATE_PRE_PROVISION
 TargetName: MyStack
 TargetType: CHANGE_SET
 TargetLogicalId: arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000
 ChangeSetId: arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000

Règles de Write Guard pour les Hooks 23

CloudFormation Guide de l'utilisateur de Hooks

Resources: {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {"ServerSideEncryptionByDefault":
 {"SSEAlgorithm": "aws:kms",
 "KMSMasterKeyID": "KMS-KEY-ARN" },
 "BucketKeyEnabled": true }
]
 }
 }
}
Previous: {
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {}
 }
 }
}

Règles de protection en cas de changement de pile

Lorsqu'un Guard Hook évalue les modifications de pile, il commence par télécharger toutes les règles
configurées avec le Hook. Ces règles sont ensuite évaluées par rapport à l'entrée de ressources. Le
Hook échouera si l'une des règles échoue à son évaluation. S'il n'y a aucun échec, le Hook réussira.

L'exemple suivant est une règle de protection qui évalue s'il existe des types de AWS::S3::Bucket
ressources contenant une propriété appeléeBucketEncryption, avec la valeur SSEAlgorithm
définie sur aws:kms ouAES256.

let s3_buckets_s3_default_encryption = Resources.*[Type == 'AWS::S3::Bucket']

rule S3_DEFAULT_ENCRYPTION_KMS when %s3_buckets_s3_default_encryption !empty {
 %s3_buckets_s3_default_encryption.Properties.BucketEncryption exists

 %s3_buckets_s3_default_encryption.Properties.BucketEncryption.ServerSideEncryptionConfiguration[*].ServerSideEncryptionByDefault.SSEAlgorithm
 in ["aws:kms","AES256"]
 <<
 Violation: S3 Bucket default encryption must be set.

Règles de Write Guard pour les Hooks 24

CloudFormation Guide de l'utilisateur de Hooks

 Fix: Set the S3 Bucket property
 BucketEncryption.ServerSideEncryptionConfiguration.ServerSideEncryptionByDefault.SSEAlgorithm
 to either "aws:kms" or "AES256"
 >>
}

Lorsque la règle s'exécute sur le modèle suivant, elle le serafail.

AWSTemplateFormatVersion: 2010-09-09
Description: S3 bucket without default encryption
Resources:
 EncryptedS3Bucket:
 Type: 'AWS::S3::Bucket'
 Properties:
 BucketName: !Sub 'encryptedbucket-${AWS::Region}-${AWS::AccountId}'

Lorsque la règle s'exécute sur le modèle suivant, elle le serapass.

AWSTemplateFormatVersion: 2010-09-09
Description: S3 bucket with default encryption using SSE-KMS with an S3 Bucket Key
Resources:
 EncryptedS3Bucket:
 Type: 'AWS::S3::Bucket'
 Properties:
 BucketName: !Sub 'encryptedbucket-${AWS::Region}-${AWS::AccountId}'
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: KMS-KEY-ARN
 BucketKeyEnabled: true

Modifier les règles du jeu Operation Guard

Lorsqu'un ensemble de CloudFormation modifications est créé, vous pouvez configurer votre Guard
Hook pour évaluer le modèle et les modifications proposées dans l'ensemble de modifications afin de
bloquer l'exécution de l'ensemble de modifications.

Rubriques

• Syntaxe d'entrée Guard Change Set

• Exemple d'entrée d'opération du kit Guard Change

Règles de Write Guard pour les Hooks 25

CloudFormation Guide de l'utilisateur de Hooks

• Règle de protection pour les opérations relatives aux ensembles de modifications

Syntaxe d'entrée Guard Change Set

Les données entrées dans le set de modifications de Guard sont les données mises à la disposition
de vos règles Guard à des fins d'évaluation.

Voici un exemple de forme d'entrée d'un ensemble de modifications :

HookContext:
 AWSAccountID: String
 StackId: String
 HookTypeName: String
 HookTypeVersion: String
 InvocationPoint: [CREATE_PRE_PROVISION, UPDATE_PRE_PROVISION, DELETE_PRE_PROVISION]
 TargetName: CHANGE_SET
 TargetType:CHANGE_SET
 TargetLogicalId:ChangeSet ID
 ChangeSetId: String
{Proposed CloudFormation Template}
Previous:
 {CloudFormation Template}
Changes: [{ResourceChange}]

La syntaxe ResourceChange du modèle est la suivante :

logicalResourceId: String
resourceType: String
action: CREATE, UPDATE, DELETE
Numéro de ligne: Number
Avant le contexte: JSON String
Après le contexte: JSON String

HookContext

AWSAccountID

L'ID du Compte AWS conteneur de la ressource.

StackId

L'ID de pile de la CloudFormation pile qui fait partie de l'opération de pile.

Règles de Write Guard pour les Hooks 26

CloudFormation Guide de l'utilisateur de Hooks

HookTypeName

Le nom du Hook en cours d'exécution.

HookTypeVersion

Version du Hook en cours d'exécution.

InvocationPoint

Point exact de la logique de provisionnement où le Hook s'exécute.

Valeurs valides : (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

TargetName

Nom de la pile en cours d'évaluation.

TargetType

Cette valeur sera utilisée CHANGE_SET lors de l'exécution en tant que Hook au niveau de
l'ensemble de modifications.

TargetLogicalId

Cette valeur sera l'ARN de l'ensemble de modifications.

ChangeSetId

L'ID de l'ensemble de modifications qui a été exécuté pour provoquer l'invocation du Hook.
Cette valeur est vide si l'opération de pile a été initiée par une delete-stack opération
create-stackupdate-stack, ou.

Proposed CloudFormation Template

CloudFormation Modèle complet fourni à une create-change-set opération. Il peut s'agir
d'une chaîne JSON ou YAML en fonction de ce qui a été fourni. CloudFormation

Previous

Le dernier CloudFormation modèle déployé avec succès. Cette valeur est vide si la pile est créée
ou supprimée.

Changes

Le Changes modèle. Ceci répertorie les modifications apportées aux ressources.

Règles de Write Guard pour les Hooks 27

CloudFormation Guide de l'utilisateur de Hooks

Modifications

logicalResourceId

Le nom de ressource logique de la ressource modifiée.

resourceType

Type de ressource qui sera modifié.

action

Type d'opération effectuée sur la ressource.

Valeurs valides : (CREATE| UPDATE |DELETE)

Numéro de ligne

Numéro de ligne du modèle associé à la modification.

Avant le contexte

Une chaîne JSON contenant les propriétés de la ressource avant la modification :

{"properties": {"property1": "value"}}

Après le contexte

Une chaîne JSON contenant les propriétés de la ressource après la modification :

{"properties": {"property1": "new value"}}

Exemple d'entrée d'opération du kit Guard Change

L'exemple d'entrée suivant montre un Guard Hook qui recevra un modèle complet, le modèle
précédemment déployé et une liste des modifications apportées aux ressources. Le modèle de cet
exemple utilise le format JSON.

HookContext:
 AwsAccountId: "00000000"
 StackId: MyStack
 HookTypeName: org::templatechecker::hook
 HookTypeVersion: "00001"
 InvocationPoint: UPDATE_PRE_PROVISION
 TargetName: my-example-stack

Règles de Write Guard pour les Hooks 28

CloudFormation Guide de l'utilisateur de Hooks

 TargetType:STACK
 TargetLogicalId: arn...:changeSet/change-set
 ChangeSetId: ""
Resources: {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketName": "amzn-s3-demo-bucket",
 "VersioningConfiguration":{
 "Status": "Enabled"
 }
 }
 }
Previous: {
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketName": "amzn-s3-demo-bucket",
 "VersioningConfiguration":{
 "Status": "Suspended"
 }
 }
 }
 }
}
Changes: [
 {
 "logicalResourceId": "S3Bucket",
 "resourceType": "AWS::S3::Bucket",
 "action": "UPDATE",
 "lineNumber": 5,
 "beforeContext": "{\"Properties\":{\"VersioningConfiguration\":{\"Status\":
\"Suspended\"}}}",
 "afterContext": "{\"Properties\":{\"VersioningConfiguration\":{\"Status\":\"Enabled
\"}}}"
 }
]

Règles de Write Guard pour les Hooks 29

CloudFormation Guide de l'utilisateur de Hooks

Règle de protection pour les opérations relatives aux ensembles de modifications

L'exemple suivant est une règle Guard qui évalue les modifications apportées aux compartiments
Amazon S3 et garantit qu'elles ne VersionConfiguration sont pas désactivées.

let s3_buckets_changing = Changes[resourceType == 'AWS::S3::Bucket']

rule S3_VERSIONING_STAY_ENABLED when %s3_buckets_changing !empty {
 let afterContext = json_parse(%s3_buckets_changing.afterContext)
 when %afterContext.Properties.VersioningConfiguration.Status !empty {
 %afterContext.Properties.VersioningConfiguration.Status == 'Enabled'
 }
}

Préparez-vous à créer un crochet de protection

Avant de créer un Guard Hook, vous devez remplir les conditions préalables suivantes :

• Vous devez déjà avoir créé une règle de garde. Pour de plus amples informations, veuillez
consulter Règles de Write Guard pour les Hooks.

• L'utilisateur ou le rôle qui crée le Hook doit disposer des autorisations suffisantes pour activer les
Hooks. Pour de plus amples informations, veuillez consulter Accorder des autorisations IAM pour
les Hooks CloudFormation.

• Pour utiliser le SDK AWS CLI ou un SDK pour créer un Guard Hook, vous devez créer
manuellement un rôle d'exécution avec des autorisations IAM et une politique de confiance
CloudFormation permettant d'invoquer un Guard Hook.

Création d'un rôle d'exécution pour un Guard Hook

Un Hook utilise un rôle d'exécution pour les autorisations dont il a besoin pour invoquer ce Hook dans
votre Compte AWS.

Ce rôle peut être créé automatiquement si vous créez un Guard Hook à partir du AWS Management
Console ; sinon, vous devez créer ce rôle vous-même.

La section suivante explique comment configurer les autorisations pour créer votre Guard Hook.

Préparez-vous à créer un crochet de protection 30

CloudFormation Guide de l'utilisateur de Hooks

Autorisations requises

Suivez les instructions de la section Créer un rôle à l’aide de stratégies de confiance personnalisées
dans le Guide de l’utilisateur IAM pour créer un rôle avec une stratégie de confiance personnalisée.

Effectuez ensuite les étapes suivantes pour configurer vos autorisations :

1. Associez la politique de privilèges minimaux suivante au rôle IAM que vous souhaitez utiliser
pour créer le Guard Hook.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::my-guard-output-bucket/*",
 "arn:aws:s3:::my-guard-rules-bucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::my-guard-output-bucket/*"
]
 }
]
}

2. Donnez à votre Hook l'autorisation d'assumer le rôle en ajoutant une politique de confiance au
rôle. Voici un exemple de politique de confiance que vous pouvez utiliser.

Préparez-vous à créer un crochet de protection 31

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

CloudFormation Guide de l'utilisateur de Hooks

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "hooks.cloudformation.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Activez un Guard Hook dans votre compte

La rubrique suivante explique comment activer un Guard Hook dans votre compte, afin de le rendre
utilisable dans le compte et la région dans lesquels il a été activé.

Rubriques

• Activer un crochet de protection (console)

• Activer un crochet de protection (AWS CLI)

• Ressources connexes

Activer un crochet de protection (console)

Pour activer un Guard Hook à utiliser sur votre compte

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS endroit où vous
souhaitez créer le Hook in.

3. Dans le volet de navigation de gauche, choisissez Hooks.

Activer un crochet de protection 32

https://console.aws.amazon.com/cloudformation/

CloudFormation Guide de l'utilisateur de Hooks

4. Sur la page Hooks, choisissez Create a Hook, puis With Guard.

5. Si vous n'avez pas encore créé de règle Guard, créez votre règle Guard, stockez-la dans
Amazon S3, puis revenez à cette procédure. Reportez-vous aux exemples de règles Rédiger des
règles de garde pour évaluer les ressources pour Guard Hooks présentés pour commencer.

Si vous avez déjà créé votre règle Guard et que vous l'avez stockée dans S3, passez à l'étape
suivante.

Note

L'objet stocké dans S3 doit avoir l'une des extensions de fichier suivantes :
.guard.zip, ou.tar.gz.

6. Pour la source Guard Hook, stockez vos règles Guard dans S3, procédez comme suit :

• Pour l'URI S3, spécifiez le chemin S3 vers votre fichier de règles ou utilisez le bouton Parcourir
S3 pour ouvrir une boîte de dialogue permettant de rechercher et de sélectionner l'objet S3.

• (Facultatif) Pour la version de l'objet, si le contrôle de version de votre compartiment S3 est
activé, vous pouvez sélectionner une version spécifique de l'objet S3.

Le Guard Hook télécharge vos règles depuis S3 chaque fois que le Hook est invoqué. Pour
éviter toute modification ou suppression accidentelle, nous vous recommandons d'utiliser une
version lors de la configuration de votre Guard Hook.

7. (Facultatif) Pour le rapport de sortie du compartiment S3 pour Guard, spécifiez un compartiment
S3 pour stocker le rapport de sortie Guard. Ce rapport contient les résultats de vos validations
des règles Guard.

Pour configurer la destination du rapport de sortie, choisissez l'une des options suivantes :

• Cochez la case Utiliser le même compartiment dans lequel les règles de mon Guard sont
stockées pour utiliser le même compartiment que celui dans lequel se trouvent vos règles
Guard.

• Choisissez un autre nom de compartiment S3 pour stocker le rapport de sortie Guard.

8. (Facultatif) Développez les paramètres d'entrée de la règle Guard, puis fournissez les
informations suivantes sous Stocker les paramètres d'entrée de la règle Guard dans S3 :

• Pour l'URI S3, spécifiez le chemin S3 vers un fichier de paramètres ou utilisez le bouton
Parcourir S3 pour ouvrir une boîte de dialogue afin de rechercher et de sélectionner l'objet S3.

Activer un crochet de protection 33

CloudFormation Guide de l'utilisateur de Hooks

• (Facultatif) Pour la version de l'objet, si le contrôle de version de votre compartiment S3 est
activé, vous pouvez sélectionner une version spécifique de l'objet S3.

9. Choisissez Suivant.

10. Pour le nom du crochet, choisissez l'une des options suivantes :

• Entrez un nom court et descriptif qui sera ajouté par la suitePrivate::Guard::.
Par exemple, si vous entrezMyTestHook, le nom complet du Hook
devientPrivate::Guard::MyTestHook.

• Fournissez le nom complet du Hook (également appelé alias) en utilisant le format suivant :
Provider::ServiceName::HookName

11. Pour les cibles Hook, choisissez les éléments à évaluer :

• Piles : évalue les modèles de pile lorsque les utilisateurs créent, mettent à jour ou suppriment
des piles.

• Ressources — Évalue les modifications individuelles des ressources lorsque les utilisateurs
mettent à jour les piles.

• Ensembles de modifications : évalue les mises à jour planifiées lorsque les utilisateurs créent
des ensembles de modifications.

• API Cloud Control — Évalue les opérations de création, de mise à jour ou de suppression
initiées par l'API Cloud Control.

12. Pour Actions, choisissez les actions (créer, mettre à jour, supprimer) qui appelleront votre Hook.

13. Pour le mode Hook, choisissez la façon dont le Hook répond lorsque l'évaluation des règles
échoue :

• Avertir : émet des avertissements à l'intention des utilisateurs, mais autorise la poursuite des
actions. Cela est utile pour les validations non critiques ou les contrôles informatifs.

• Echec : empêche le déroulement de l'action. Cela est utile pour appliquer des politiques de
conformité ou de sécurité strictes.

14. Pour le rôle d'exécution, choisissez le rôle IAM que le Hook assume pour récupérer vos règles
Guard depuis S3 et éventuellement rédiger un rapport de sortie Guard détaillé. Vous pouvez soit
CloudFormation autoriser la création automatique d'un rôle d'exécution pour vous, soit spécifier
un rôle que vous avez créé.

15. Choisissez Suivant.

16. (Facultatif) Pour les filtres Hook, procédez comme suit :

Activer un crochet de protection 34

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

CloudFormation Guide de l'utilisateur de Hooks

a. Pour le filtre de ressources, spécifiez les types de ressources qui peuvent appeler le Hook.
Cela garantit que le Hook n'est invoqué que pour les ressources pertinentes.

b. Pour les critères de filtrage, choisissez la logique d'application des filtres de nom de pile et
de rôle de pile :

• Tous les noms de pile et tous les rôles de pile — Le Hook ne sera invoqué que lorsque
tous les filtres spécifiés correspondent.

• Tous les noms de pile et rôles de pile — Le Hook sera invoqué si au moins l'un des filtres
spécifiés correspond.

Note

Pour les opérations de l'API Cloud Control, tous les filtres relatifs aux noms de pile
et aux rôles de pile sont ignorés.

c. Pour les noms de pile, incluez ou excluez des piles spécifiques des invocations Hook.

• Pour Inclure, spécifiez les noms des piles à inclure. Utilisez-le lorsque vous souhaitez
cibler un petit ensemble de piles spécifiques. Seules les piles spécifiées dans cette liste
invoqueront le Hook.

• Pour Exclure, spécifiez les noms des piles à exclure. Utilisez-le lorsque vous souhaitez
invoquer le Hook sur la plupart des piles, mais en exclure quelques unes en particulier.
Toutes les piles, à l'exception de celles répertoriées ici, invoqueront le Hook.

d. Pour les rôles Stack, incluez ou excluez des piles spécifiques des invocations Hook en
fonction de leurs rôles IAM associés.

• Pour Inclure, spécifiez un ou plusieurs rôles IAM ARNs pour cibler les piles associées à
ces rôles. Seules les opérations de stack initiées par ces rôles invoqueront le Hook.

• Pour Exclure, spécifiez un ou plusieurs rôles IAM ARNs pour les piles que vous souhaitez
exclure. Le Hook sera invoqué sur toutes les piles sauf celles initiées par les rôles
spécifiés.

17. Choisissez Suivant.

18. Sur la page Vérifier et activer, passez en revue vos choix. Pour apporter des modifications,
sélectionnez Modifier dans la section correspondante.

19. Lorsque vous êtes prêt à continuer, choisissez Activate Hook.

Activer un crochet de protection 35

CloudFormation Guide de l'utilisateur de Hooks

Activer un crochet de protection (AWS CLI)

Avant de continuer, vérifiez que vous avez créé la règle Guard et le rôle d'exécution que vous allez
utiliser avec ce Hook. Pour plus d’informations, consultez Rédiger des règles de garde pour évaluer
les ressources pour Guard Hooks et Création d'un rôle d'exécution pour un Guard Hook.

Pour activer un Guard Hook à utiliser sur votre compte (AWS CLI)

1. Pour commencer à activer un Hook, utilisez la activate-typecommande suivante en remplaçant
les espaces réservés par vos valeurs spécifiques. Cette commande autorise le Hook à utiliser un
rôle d'exécution spécifié par votre Compte AWS.

aws cloudformation activate-type --type HOOK \
 --type-name AWS::Hooks::GuardHook \
 --publisher-id aws-hooks \
 --type-name-alias Private::Guard::MyTestHook \
 --execution-role-arn arn:aws:iam::123456789012:role/my-execution-role \
 --region us-west-2

2. Pour terminer l'activation du Hook, vous devez le configurer à l'aide d'un fichier de configuration
JSON.

Utilisez la cat commande pour créer un fichier JSON avec la structure suivante. Pour de plus
amples informations, veuillez consulter Référence syntaxique du schéma de configuration Hook.

$ cat > config.json
{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE",
 "CHANGE_SET"
],
 "FailureMode": "WARN",
 "Properties": {
 "ruleLocation": "s3://amzn-s3-demo-bucket/MyGuardRules.guard",
 "logBucket": "amzn-s3-demo-logging-bucket"
 },
 "TargetFilters": {
 "Actions": [

Activer un crochet de protection 36

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html

CloudFormation Guide de l'utilisateur de Hooks

 "CREATE",
 "UPDATE",
 "DELETE"
]
 }
 }
 }
}

• HookInvocationStatus: défini sur ENABLED pour activer le Hook.

• TargetOperations: Spécifiez les opérations que le Hook évaluera.

• FailureMode : Définissez sur FAIL ou WARN.

• ruleLocation: remplacez-le par l'URI S3 dans lequel votre règle est stockée. L'objet stocké
dans S3 doit avoir l'une des extensions de fichier suivantes : .guard.zip, et.tar.gz.

• logBucket: (Facultatif) Spécifiez le nom d'un compartiment S3 pour les rapports Guard
JSON.

• TargetFilters: Spécifiez les types d'actions qui appelleront le Hook.

3. Utilisez la set-type-configurationcommande suivante, ainsi que le fichier JSON que vous
avez créé, pour appliquer la configuration. Remplacez les espaces réservés par vos valeurs
spécifiques.

aws cloudformation set-type-configuration \
 --configuration file://config.json \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Ressources connexes

Nous fournissons des exemples de modèles que vous pouvez utiliser pour comprendre comment
déclarer un Guard Hook dans un modèle de CloudFormation pile. Pour plus d’informations, consultez
AWS::CloudFormation::GuardHook dans le Guide de l’utilisateur AWS CloudFormation .

Afficher les journaux des Guard Hooks sur votre compte

Lorsque vous activez un Guard Hook, vous pouvez spécifier un compartiment Amazon S3 comme
destination pour le rapport de sortie Hook. Une fois activé, le Hook stocke automatiquement les

Afficher les journaux de Guard Hooks 37

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-guardhook.html

CloudFormation Guide de l'utilisateur de Hooks

résultats de vos validations de règles Guard dans le compartiment spécifié. Vous pouvez ensuite
consulter ces résultats dans la console Amazon S3.

Afficher les journaux Guard Hook dans la console Amazon S3

Pour consulter le fichier journal de sortie de Guard Hook

1. Connectez-vous au. https://console.aws.amazon.com/s3/

2. Dans la barre de navigation, en haut de l’écran, sélectionnez votre Région AWS.

3. Choisissez Buckets.

4. Choisissez le compartiment que vous avez sélectionné pour votre rapport de sortie Guard.

5. Choisissez le fichier journal du rapport de sortie de validation souhaité.

6. Choisissez si vous souhaitez télécharger le fichier ou l'ouvrir pour l'afficher.

Supprimer Guard Hooks de votre compte

Lorsque vous n'avez plus besoin d'un Guard Hook activé, suivez les procédures suivantes pour le
supprimer de votre compte.

Pour désactiver temporairement un Hook au lieu de le supprimer, consultezDésactiver et activer les
CloudFormation Hooks.

Rubriques

• Supprimer un Guard Hook dans votre compte (console)

• Supprimer un Guard Hook dans votre compte (AWS CLI)

Supprimer un Guard Hook dans votre compte (console)

Pour supprimer un Guard Hook de votre compte

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS emplacement du
crochet.

3. Dans le volet de navigation, choisissez Hooks.

Supprimer les crochets de garde 38

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/cloudformation/

CloudFormation Guide de l'utilisateur de Hooks

4. Sur la page Hooks, trouvez le Guard Hook que vous souhaitez supprimer.

5. Cochez la case à côté de votre Hook et choisissez Supprimer.

6. Lorsque vous êtes invité à confirmer, saisissez le nom du crochet pour confirmer la suppression
du crochet spécifié, puis choisissez Supprimer.

Supprimer un Guard Hook dans votre compte (AWS CLI)

Note

Avant de pouvoir supprimer le Hook, vous devez d'abord le désactiver. Pour de plus amples
informations, veuillez consulter Désactiver et activer un Hook dans votre compte (AWS CLI).

Utilisez la deactivate-typecommande suivante pour désactiver un Hook, ce qui le supprimera de votre
compte. Remplacez les espaces réservés par vos valeurs spécifiques.

aws cloudformation deactivate-type \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Hooks Lambda

Pour utiliser un AWS Lambda Hook dans votre compte, vous devez d'abord activer le Hook pour le
compte et la région dans lesquels vous souhaitez l'utiliser. L'activation d'un Hook le rend utilisable
dans les opérations de stack du compte et de la région où il est activé.

Lorsque vous activez un Lambda Hook, CloudFormation crée une entrée dans le registre de votre
compte pour le Hook activé en tant que Hook privé. Cela vous permet de définir toutes les propriétés
de configuration incluses dans le Hook. Les propriétés de configuration définissent la manière dont le
Hook est configuré pour une région Compte AWS et une région données.

Rubriques

• AWS CLI commandes pour travailler avec les Hooks Lambda

• Créez des fonctions Lambda pour évaluer les ressources pour les Lambda Hooks

• Préparez-vous à créer un crochet Lambda

Hooks Lambda 39

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Guide de l'utilisateur de Hooks

• Activez un Lambda Hook dans votre compte

• Afficher les journaux des Lambda Hooks dans votre compte

• Supprimer les Lambda Hooks de votre compte

AWS CLI commandes pour travailler avec les Hooks Lambda

Les AWS CLI commandes permettant d'utiliser les Hooks Lambda sont les suivantes :

• activate-typepour démarrer le processus d'activation d'un Lambda Hook.

• set-type-configurationpour spécifier les données de configuration d'un Hook dans votre compte.

• list-typespour répertorier les Hooks de votre compte.

• describe-typepour renvoyer des informations détaillées sur un Hook spécifique ou une version
spécifique de Hook, y compris les données de configuration actuelles.

• deactivate-typepour supprimer un Hook précédemment activé de votre compte.

Créez des fonctions Lambda pour évaluer les ressources pour les Lambda
Hooks

CloudFormation Lambda Hooks vous permet d'évaluer CloudFormation et d'effectuer API de
commande du Cloud AWS des opérations par rapport à votre propre code personnalisé. Votre Hook
peut bloquer le déroulement d'une opération ou envoyer un avertissement à l'appelant et autoriser
le déroulement de l'opération. Lorsque vous créez un Lambda Hook, vous pouvez le configurer pour
intercepter et évaluer les opérations suivantes : CloudFormation

• Opérations de ressources

• Opérations de pile

• Modifier les opérations du set

Rubriques

• Développement d'un hook Lambda

• Évaluation des opérations sur les ressources avec les Lambda Hooks

• Évaluation des opérations de stack avec les Lambda Hooks

• Évaluation des opérations relatives aux ensembles de modifications à l'aide de Lambda Hooks

AWS CLI commandes pour travailler avec les Hooks Lambda 40

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Guide de l'utilisateur de Hooks

Développement d'un hook Lambda

Lorsque les Hooks invoquent votre Lambda, le Lambda attend jusqu'à 30 secondes pour évaluer
l'entrée. Le Lambda renverra une réponse JSON indiquant si le Hook a réussi ou échoué.

Rubriques

• Demande d'entrée

• Entrée de réponse

• Exemples

Demande d'entrée

L'entrée transmise à votre fonction Lambda dépend de l'opération cible Hook (exemples : stack,
resource ou change set).

Entrée de réponse

Afin de communiquer à Hooks si votre demande a réussi ou échoué, votre fonction Lambda doit
renvoyer une réponse JSON.

Voici un exemple de forme de la réponse attendue par Hooks :

{
 "État du crochet": "SUCCESS" or "FAILED" or "IN_PROGRESS",
 "errorCode": "NonCompliant" or "InternalFailure"
 "message": String,
 "clientRequestToken": String,
 "Contexte de rappel": None,
 "callbackDelaySeconds": Integer,
 "annotations": [
 {
 "annotationName": String,
 "status": "PASSED" or "FAILED" or "SKIPPED",
 "statusMessage": String,
 "remediationMessage": String,
 "remediationLink": String,
 "severityLevel": "INFORMATIONAL" or "LOW" or "MEDIUM" or "HIGH" or "CRITICAL"
 }
]
}

Création de fonctions Lambda pour les Hooks 41

CloudFormation Guide de l'utilisateur de Hooks

État du crochet

L'état du Hook. Ce champ est obligatoire.

Valeurs valides : (SUCCESS| FAILED |IN_PROGRESS)

Note

Un Hook peut revenir IN_PROGRESS 3 fois. Si aucun résultat n'est renvoyé, le Hook
échouera. Pour un Lambda Hook, cela signifie que votre fonction Lambda peut être
invoquée jusqu'à 3 fois.

errorCode

Indique si l'opération a été évaluée et jugée non valide, ou si des erreurs se sont produites dans le
Hook, empêchant l'évaluation. Ce champ est obligatoire en cas d'échec du Hook.

Valeurs valides : (NonCompliant|InternalFailure)

message

Le message envoyé à l'appelant expliquant pourquoi le Hook a réussi ou échoué.

Note

Lors de l'évaluation CloudFormation des opérations, ce champ est tronqué à 4 096
caractères.
Lors de l'évaluation des opérations de l'API Cloud Control, ce champ est tronqué à 1024
caractères.

clientRequestToken

Le jeton de demande qui a été fourni en entrée de la demande Hook. Ce champ est obligatoire.

Contexte de rappel

Si vous indiquez que hookStatus c'est le cas, IN_PROGRESS vous transmettez un contexte
supplémentaire fourni en entrée lorsque la fonction Lambda est réinvoquée.

Création de fonctions Lambda pour les Hooks 42

CloudFormation Guide de l'utilisateur de Hooks

callbackDelaySeconds

Combien de temps les Hooks doivent-ils attendre pour invoquer à nouveau ce Hook ?

annotations

Un ensemble d'objets d'annotation qui fournissent des informations supplémentaires et des
conseils de correction.

Nom de l'annotation

Identifiant de l'annotation.

status

Le statut d'invocation de Hook. Cela est utile lorsque les annotations représentent une logique
avec une évaluation de réussite ou d'échec similaire à une règle Guard.

Valeurs valides : (PASSED| FAILED |SKIPPED)

statusMessage

Explication du statut spécifique.

Message de correction

Suggestion pour fixer un FAILED statut. Par exemple, si le chiffrement d'une ressource n'est
pas chiffré, vous pouvez indiquer comment ajouter le chiffrement à la configuration de la
ressource.

Lien vers l'assainissement

Une URL HTTP pour des conseils de correction supplémentaires.

severityLevel

Définit le risque relatif associé à toute violation de ce type. Lorsque vous attribuez des niveaux
de gravité aux résultats de votre appel Hook, vous pouvez vous référer au cadre de AWS
Security Hub CSPM gravité comme exemple de la manière de structurer des catégories de
gravité significatives.

Valeurs valides : (INFORMATIONAL| LOW | MEDIUM | HIGH |CRITICAL)

Exemples

Voici un exemple de réponse réussie :

Création de fonctions Lambda pour les Hooks 43

https://docs.aws.amazon.com/securityhub/latest/userguide/asff-required-attributes.html#Severity
https://docs.aws.amazon.com/securityhub/latest/userguide/asff-required-attributes.html#Severity

CloudFormation Guide de l'utilisateur de Hooks

{
 "hookStatus": "SUCCESS",
 "message": "compliant",
 "clientRequestToken": "123avjdjk31"
}

Voici un exemple d'échec de réponse :

{
 "hookStatus": "FAILED",
 "errorCode": "NonCompliant",
 "message": "S3 Bucket Versioning must be enabled.",
 "clientRequestToken": "123avjdjk31"
 }

Évaluation des opérations sur les ressources avec les Lambda Hooks

Chaque fois que vous créez, mettez à jour ou supprimez une ressource, cela est considéré comme
une opération de ressource. Par exemple, si vous exécutez la mise à jour d'une CloudFormation pile
qui crée une nouvelle ressource, vous avez terminé une opération sur la ressource. Lorsque vous
créez, mettez à jour ou supprimez une ressource à l'aide de l'API Cloud Control, cela est également
considéré comme une opération de ressource. Vous pouvez configurer votre CloudFormation
Lambda Hook en fonction du ciblage RESOURCE et CLOUD_CONTROL des opérations dans la
configuration du HookTargetOperations.

Note

Le gestionnaire delete Hook n'est invoqué que lorsqu'une ressource est supprimée à l'aide
d'un déclencheur d'opération de l'API Cloud Control delete-resource ou CloudFormation
delete-stack.

Rubriques

• Syntaxe d'entrée des ressources Lambda Hook

• Exemple d'entrée de modification de ressource Lambda Hook

• Exemple de fonction Lambda pour les opérations sur les ressources

Création de fonctions Lambda pour les Hooks 44

CloudFormation Guide de l'utilisateur de Hooks

Syntaxe d'entrée des ressources Lambda Hook

Lorsque votre Lambda est invoqué pour une opération sur une ressource, vous recevez une
entrée JSON contenant les propriétés de la ressource, les propriétés proposées et le contexte de
l'invocation de Hook.

Voici un exemple de forme de l'entrée JSON :

{
 "awsAccountId": String,
 "stackId": String,
 "changeSetId": String,
 "hookTypeName": String,
 "hookTypeVersion": String,
 "hookModel": {
 "LambdaFunction": String
 },
 "actionInvocationPoint": "CREATE_PRE_PROVISION" or "UPDATE_PRE_PROVISION" or
 "DELETE_PRE_PROVISION"
 "requestData": {
 "targetName": String,
 "targetType": String,
 "targetLogicalId": String,
 "targetModel": {
 "resourceProperties": {...},
 "previousResourceProperties": {...}
 }
 },
 "requestContext": {
 "invocation": 1,
 "Contexte de rappel": null
 }
}

awsAccountId

ID du Compte AWS contenant la ressource en cours d'évaluation.

stackId

L'ID de pile de la CloudFormation pile dont cette opération fait partie. Ce champ est vide si
l'appelant est Cloud Control API.

Création de fonctions Lambda pour les Hooks 45

CloudFormation Guide de l'utilisateur de Hooks

changeSetId

L'ID de l'ensemble de modifications qui a initié l'invocation de Hook. Cette valeur est vide si
le changement de ressource a été initié par l'API Cloud Control ou par les delete-stack
opérations create-stackupdate-stack, ou.

hookTypeName

Le nom du Hook en cours d'exécution.

hookTypeVersion

Version du Hook en cours d'exécution.

hookModel

LambdaFunction

L'ARN Lambda actuel invoqué par le Hook.

actionInvocationPoint

Point exact de la logique de provisionnement où le Hook s'exécute.

Valeurs valides : (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

requestData

targetName

Le type de cible évalué, par exemple,AWS::S3::Bucket.

targetType

Le type de cible évalué, par exempleAWS::S3::Bucket. Pour les ressources fournies avec
l'API Cloud Control, cette valeur seraRESOURCE.

targetLogicalId

ID logique de la ressource en cours d'évaluation. Si l'origine de l'invocation de Hook est
CloudFormation, il s'agira de l'ID de ressource logique défini dans votre CloudFormation
modèle. Si l'origine de cette invocation de Hook est l'API Cloud Control, il s'agira d'une valeur
construite.

Création de fonctions Lambda pour les Hooks 46

CloudFormation Guide de l'utilisateur de Hooks

targetModel

resourceProperties

Les propriétés proposées pour la ressource en cours de modification. Si la ressource est
supprimée, cette valeur sera vide.

previousResourceProperties

Les propriétés actuellement associées à la ressource en cours de modification. Si la
ressource est créée, cette valeur sera vide.

requestContext

invocation

La tentative actuelle d'exécution du Hook.

Contexte de rappel

Si le Hook a été réglé sur IN_PROGRESS et callbackContext a été renvoyé, il sera là après
sa révocation.

Exemple d'entrée de modification de ressource Lambda Hook

L'exemple d'entrée suivant montre un Lambda Hook qui recevra la définition de la
AWS::DynamoDB::Table ressource à mettre à jour, le nombre ReadCapacityUnits de
ProvisionedThroughput passant de 3 à 10. Il s'agit des données dont Lambda dispose pour
évaluation.

{
 "awsAccountId": "123456789012",
 "stackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000",
 "hookTypeName": "my::lambda::resourcehookfunction",
 "hookTypeVersion": "00000008",
 "hookModel": {
 "LambdaFunction": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 },
 "actionInvocationPoint": "UPDATE_PRE_PROVISION",
 "requestData": {
 "targetName": "AWS::DynamoDB::Table",
 "targetType": "AWS::DynamoDB::Table",
 "targetLogicalId": "DDBTable",
 "targetModel": {

Création de fonctions Lambda pour les Hooks 47

CloudFormation Guide de l'utilisateur de Hooks

 "resourceProperties": {
 "AttributeDefinitions": [
 {
 "AttributeType": "S",
 "AttributeName": "Album"
 },
 {
 "AttributeType": "S",
 "AttributeName": "Artist"
 }
],
 "ProvisionedThroughput": {
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 10
 },
 "KeySchema": [
 {
 "KeyType": "HASH",
 "AttributeName": "Album"
 },
 {
 "KeyType": "RANGE",
 "AttributeName": "Artist"
 }
]
 },
 "previousResourceProperties": {
 "AttributeDefinitions": [
 {
 "AttributeType": "S",
 "AttributeName": "Album"
 },
 {
 "AttributeType": "S",
 "AttributeName": "Artist"
 }
],
 "ProvisionedThroughput": {
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 5
 },
 "KeySchema": [
 {
 "KeyType": "HASH",

Création de fonctions Lambda pour les Hooks 48

CloudFormation Guide de l'utilisateur de Hooks

 "AttributeName": "Album"
 },
 {
 "KeyType": "RANGE",
 "AttributeName": "Artist"
 }
]
 }
 }
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

Pour voir toutes les propriétés disponibles pour le type de ressource, consultez
AWS::DynamoDB::Table.

Exemple de fonction Lambda pour les opérations sur les ressources

Voici une fonction simple qui échoue à toute mise à jour des ressources vers DynamoDB, qui essaie
de définir une valeur supérieure à 10 à ReadCapacity la valeur ProvisionedThroughput de. Si
le Hook réussit, le message « ReadCapacity est correctement configuré » s'affichera à l'attention de
l'appelant. Si la demande échoue à la validation, le Hook échouera avec le statut « ReadCapacity ne
peut pas être supérieur à 10 ».

Node.js

export const handler = async (event, context) => {
 var targetModel = event?.requestData?.targetModel;
 var targetName = event?.requestData?.targetName;
 var response = {
 "hookStatus": "SUCCESS",
 "message": "ReadCapacity is correctly configured.",
 "clientRequestToken": event.clientRequestToken
 };

 if (targetName == "AWS::DynamoDB::Table") {
 var readCapacity =
 targetModel?.resourceProperties?.ProvisionedThroughput?.ReadCapacityUnits;
 if (readCapacity > 10) {
 response.hookStatus = "FAILED";

Création de fonctions Lambda pour les Hooks 49

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-dynamodb-table.html

CloudFormation Guide de l'utilisateur de Hooks

 response.errorCode = "NonCompliant";
 response.message = "ReadCapacity must be cannot be more than 10.";
 }
 }
 return response;
};

Python

import json

def lambda_handler(event, context):
 # Using dict.get() for safe access to nested dictionary values
 request_data = event.get('requestData', {})
 target_model = request_data.get('targetModel', {})
 target_name = request_data.get('targetName', '')

 response = {
 "hookStatus": "SUCCESS",
 "message": "ReadCapacity is correctly configured.",
 "clientRequestToken": event.get('clientRequestToken')
 }

 if target_name == "AWS::DynamoDB::Table":
 # Safely navigate nested dictionary
 resource_properties = target_model.get('resourceProperties', {})
 provisioned_throughput = resource_properties.get('ProvisionedThroughput',
 {})
 read_capacity = provisioned_throughput.get('ReadCapacityUnits')

 if read_capacity and read_capacity > 10:
 response['hookStatus'] = "FAILED"
 response['errorCode'] = "NonCompliant"
 response['message'] = "ReadCapacity must be cannot be more than 10."

 return response

Évaluation des opérations de stack avec les Lambda Hooks

Chaque fois que vous créez, mettez à jour ou supprimez une pile avec un nouveau modèle, vous
pouvez configurer votre CloudFormation Lambda Hook pour commencer par évaluer le nouveau
modèle et éventuellement bloquer le déroulement de l'opération de pile. Vous pouvez configurer

Création de fonctions Lambda pour les Hooks 50

CloudFormation Guide de l'utilisateur de Hooks

votre CloudFormation Lambda Hook pour cibler les STACK opérations dans la configuration
HookTargetOperations.

Rubriques

• Syntaxe d'entrée Lambda Hook Stack

• Exemple d'entrée de modification de la pile Lambda Hook

• Exemple de fonction Lambda pour les opérations de stack

Syntaxe d'entrée Lambda Hook Stack

Lorsque votre Lambda est invoqué pour une opération de stack, vous recevez une requête JSON
contenant le contexte d'invocation Hook et le contexte de la demande. actionInvocationPoint
En raison de la taille des CloudFormation modèles et de la taille d'entrée limitée acceptée par
les fonctions Lambda, les modèles réels sont stockés dans un objet Amazon S3. La saisie
requestData inclut une URL abandonnée d'Amazon S3 vers un autre objet, qui contient la version
actuelle et précédente du modèle.

Voici un exemple de forme de l'entrée JSON :

{
 "clientRequesttoken": String,
 "awsAccountId": String,
 "stackID": String,
 "changeSetId": String,
 "hookTypeName": String,
 "hookTypeVersion": String,
 "hookModel": {
 "LambdaFunction":String
 },
 "actionInvocationPoint": "CREATE_PRE_PROVISION" or "UPDATE_PRE_PROVISION" or
 "DELETE_PRE_PROVISION"
 "requestData": {
 "targetName": "STACK",
 "targetType": "STACK",
 "targetLogicalId": String,
 "payload": String (S3 Presigned URL)
 },
 "requestContext": {
 "invocation": Integer,
 "callbackContext": String
 }

Création de fonctions Lambda pour les Hooks 51

CloudFormation Guide de l'utilisateur de Hooks

}

clientRequesttoken

Le jeton de demande qui a été fourni en entrée de la demande Hook. Ce champ est obligatoire.

awsAccountId

L'ID du Compte AWS contenant la pile en cours d'évaluation.

stackID

ID de pile de la CloudFormation pile.

changeSetId

L'ID de l'ensemble de modifications qui a initié l'invocation de Hook. Cette valeur est vide si le
changement de pile a été initié par l'API Cloud Control ou par les delete-stack opérations
create-stackupdate-stack, ou.

hookTypeName

Le nom du Hook en cours d'exécution.

hookTypeVersion

Version du Hook en cours d'exécution.

hookModel

LambdaFunction

L'ARN Lambda actuel invoqué par le Hook.

actionInvocationPoint

Point exact de la logique de provisionnement où le Hook s'exécute.

Valeurs valides : (CREATE_PRE_PROVISION| UPDATE_PRE_PROVISION
|DELETE_PRE_PROVISION)

requestData

targetName

Cette valeur seraSTACK.

targetType

Cette valeur seraSTACK.

Création de fonctions Lambda pour les Hooks 52

CloudFormation Guide de l'utilisateur de Hooks

targetLogicalId

Nom de la pile.

payload

URL présignée Amazon S3 contenant un objet JSON avec les définitions de modèles actuelles
et précédentes.

requestContext

Si le Hook est réinvoqué, cet objet sera défini.

invocation

La tentative actuelle d'exécution du Hook.

callbackContext

Si le Hook a été réglé sur IN_PROGRESS et callbackContext a été renvoyé, il sera présent
lors de sa révocation.

La payload propriété contenue dans les données de demande est une URL que votre code doit
récupérer. Une fois qu'il a reçu l'URL, vous obtenez un objet avec le schéma suivant :

{
 "template": String,
 "previousTemplate": String
}

template

Le CloudFormation modèle complet qui a été fourni à create-stack ouupdate-stack. Il peut
s'agir d'une chaîne JSON ou YAML en fonction de ce qui a été fourni. CloudFormation

Dans delete-stack les opérations, cette valeur sera vide.

previousTemplate

Le CloudFormation modèle précédent. Il peut s'agir d'une chaîne JSON ou YAML en fonction de
ce qui a été fourni. CloudFormation

Dans delete-stack les opérations, cette valeur sera vide.

Création de fonctions Lambda pour les Hooks 53

CloudFormation Guide de l'utilisateur de Hooks

Exemple d'entrée de modification de la pile Lambda Hook

Voici un exemple d'entrée de changement de pile. The Hook évalue une modification qui met le à jour
ObjectLockEnabled à true et ajoute une file d'attente Amazon SQS :

{
 "clientRequestToken": "f8da6d11-b23f-48f4-814c-0fb6a667f50e",
 "awsAccountId": "123456789012",
 "stackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000",
 "changeSetId": null,
 "hookTypeName": "my::lambda::stackhook",
 "hookTypeVersion": "00000008",
 "hookModel": {
 "LambdaFunction": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 },
 "actionInvocationPoint": "UPDATE_PRE_PROVISION",
 "requestData": {
 "targetName": "STACK",
 "targetType": "STACK",
 "targetLogicalId": "my-cloudformation-stack",
 "payload": "https://s3......"
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

Voici un exemple payload de requestData :

{
 "template": "{\"Resources\":{\"S3Bucket\":{\"Type\":\"AWS::S3::Bucket\",
\"Properties\":{\"ObjectLockEnabled\":true}},\"SQSQueue\":{\"Type\":\"AWS::SQS::Queue
\",\"Properties\":{\"QueueName\":\"NewQueue\"}}}}",
 "previousTemplate": "{\"Resources\":{\"S3Bucket\":{\"Type\":\"AWS::S3::Bucket\",
\"Properties\":{\"ObjectLockEnabled\":false}}}}"
}

Exemple de fonction Lambda pour les opérations de stack

L'exemple suivant est une fonction simple qui télécharge la charge utile de l'opération de pile, analyse
le modèle JSON et le renvoie. SUCCESS

Création de fonctions Lambda pour les Hooks 54

CloudFormation Guide de l'utilisateur de Hooks

Node.js

export const handler = async (event, context) => {
 var targetType = event?.requestData?.targetType;
 var payloadUrl = event?.requestData?.payload;

 var response = {
 "hookStatus": "SUCCESS",
 "message": "Stack update is compliant",
 "clientRequestToken": event.clientRequestToken
 };
 try {
 const templateHookPayloadRequest = await fetch(payloadUrl);
 const templateHookPayload = await templateHookPayloadRequest.json()
 if (templateHookPayload.template) {
 // Do something with the template templateHookPayload.template
 // JSON or YAML
 }
 if (templateHookPayload.previousTemplate) {
 // Do something with the template templateHookPayload.previousTemplate
 // JSON or YAML
 }
 } catch (error) {
 console.log(error);
 response.hookStatus = "FAILED";
 response.message = "Failed to evaluate stack operation.";
 response.errorCode = "InternalFailure";
 }
 return response;
};

Python

Pour utiliser Python, vous devez importer la requests bibliothèque. Pour ce faire, vous devez
inclure la bibliothèque dans votre package de déploiement lors de la création de votre fonction
Lambda. Pour plus d'informations, consultez la section Création d'un package de déploiement .zip
avec dépendances dans le Guide du AWS Lambda développeur.

import json
import requests

def lamnbda_handler(event, context):
 # Safely access nested dictionary values

Création de fonctions Lambda pour les Hooks 55

https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-dependencies
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-dependencies

CloudFormation Guide de l'utilisateur de Hooks

 request_data = event.get('requestData', {})
 target_type = request_data.get('targetType')
 payload_url = request_data.get('payload')

 response = {
 "hookStatus": "SUCCESS",
 "message": "Stack update is compliant",
 "clientRequestToken": event.get('clientRequestToken')
 }

 try:
 # Fetch the payload
 template_hook_payload_request = requests.get(payload_url)
 template_hook_payload_request.raise_for_status() # Raise an exception for
 bad responses
 template_hook_payload = template_hook_payload_request.json()

 if 'template' in template_hook_payload:
 # Do something with the template template_hook_payload['template']
 # JSON or YAML
 pass

 if 'previousTemplate' in template_hook_payload:
 # Do something with the template
 template_hook_payload['previousTemplate']
 # JSON or YAML
 pass

 except Exception as error:
 print(error)
 response['hookStatus'] = "FAILED"
 response['message'] = "Failed to evaluate stack operation."
 response['errorCode'] = "InternalFailure"

 return response

Évaluation des opérations relatives aux ensembles de modifications à l'aide de
Lambda Hooks

Chaque fois que vous créez un ensemble de modifications, vous pouvez configurer votre
CloudFormation Lambda Hook pour d'abord évaluer le nouvel ensemble de modifications et

Création de fonctions Lambda pour les Hooks 56

CloudFormation Guide de l'utilisateur de Hooks

éventuellement bloquer son exécution. Vous pouvez configurer votre CloudFormation Lambda Hook
pour cibler les CHANGE_SET opérations dans la configuration HookTargetOperations.

Rubriques

• Lambda Hook modifie la syntaxe d'entrée du set

• Exemple : Lambda Hook change Set, change d'entrée

• Exemple de fonction Lambda pour les opérations d'ensemble de modifications

Lambda Hook modifie la syntaxe d'entrée du set

L'entrée pour les opérations d'ensemble de modifications est similaire à celle des opérations de pile,
mais la charge utile des opérations inclut requestData également une liste des modifications de
ressources introduites par l'ensemble de modifications.

Voici un exemple de forme de l'entrée JSON :

{
 "clientRequesttoken": String,
 "awsAccountId": String,
 "stackID": String,
 "changeSetId": String,
 "hookTypeName": String,
 "hookTypeVersion": String,
 "hookModel": {
 "LambdaFunction":String
 },
 "requestData": {
 "targetName": "CHANGE_SET",
 "targetType": "CHANGE_SET",
 "targetLogicalId": String,
 "payload": String (S3 Presigned URL)
 },
 "requestContext": {
 "invocation": Integer,
 "callbackContext": String
 }
}

clientRequesttoken

Le jeton de demande qui a été fourni en entrée de la demande Hook. Ce champ est obligatoire.

Création de fonctions Lambda pour les Hooks 57

CloudFormation Guide de l'utilisateur de Hooks

awsAccountId

L'ID du Compte AWS contenant la pile en cours d'évaluation.

stackID

ID de pile de la CloudFormation pile.

changeSetId

L'ID de l'ensemble de modifications qui a initié l'invocation de Hook.

hookTypeName

Le nom du Hook en cours d'exécution.

hookTypeVersion

Version du Hook en cours d'exécution.

hookModel

LambdaFunction

L'ARN Lambda actuel invoqué par le Hook.

requestData

targetName

Cette valeur seraCHANGE_SET.

targetType

Cette valeur seraCHANGE_SET.

targetLogicalId

La modification a défini l'ARN.

payload

L'URL présignée Amazon S3 contenant un objet JSON avec le modèle actuel, ainsi qu'une
liste des modifications apportées par cet ensemble de modifications.

requestContext

Si le Hook est réinvoqué, cet objet sera défini.

invocation

La tentative actuelle d'exécution du Hook.

Création de fonctions Lambda pour les Hooks 58

CloudFormation Guide de l'utilisateur de Hooks

callbackContext

Si le Hook a été réglé sur IN_PROGRESS et callbackContext a été renvoyé, il sera présent
lors de sa révocation.

La payload propriété contenue dans les données de demande est une URL que votre code doit
récupérer. Une fois qu'il a reçu l'URL, vous obtenez un objet avec le schéma suivant :

{
 "template": String,
 "changedResources": [
 {
 "action": String,
 "beforeContext": JSON String,
 "afterContext": JSON String,
 "lineNumber": Integer,
 "logicalResourceId": String,
 "resourceType": String
 }
]
}

template

Le CloudFormation modèle complet qui a été fourni à create-stack ouupdate-stack. Il peut
s'agir d'une chaîne JSON ou YAML en fonction de ce qui a été fourni. CloudFormation

changedResources

Liste des ressources modifiées.

action

Type de modification appliqué à la ressource.

Valeurs valides : (CREATE| UPDATE |DELETE)

beforeContext

Chaîne JSON contenant les propriétés de la ressource avant la modification. Cette valeur est
nulle lors de la création de la ressource. Toutes les valeurs booléennes et numériques de cette
chaîne JSON sont des CHAÎNES.

Création de fonctions Lambda pour les Hooks 59

CloudFormation Guide de l'utilisateur de Hooks

afterContext

Une chaîne JSON contenant les propriétés des ressources si cet ensemble de modifications
est exécuté. Cette valeur est nulle lorsque la ressource est supprimée. Toutes les valeurs
booléennes et numériques de cette chaîne JSON sont des CHAÎNES.

lineNumber

Numéro de ligne du modèle à l'origine de cette modification. Si c'est le cas, DELETE cette
valeur sera nulle.

logicalResourceId

ID de ressource logique de la ressource en cours de modification.

resourceType

Type de ressource en cours de modification.

Exemple : Lambda Hook change Set, change d'entrée

Voici un exemple d'entrée de modification d'ensemble de modifications. Dans l'exemple suivant, vous
pouvez voir les modifications introduites par l'ensemble de modifications. La première modification
consiste à supprimer une file d'attente appeléeCoolQueue. La deuxième modification consiste à
ajouter une nouvelle file d'attente appeléeNewCoolQueue. La dernière modification est une mise à
jour duDynamoDBTable.

{
 "clientRequestToken": "f8da6d11-b23f-48f4-814c-0fb6a667f50e",
 "awsAccountId": "123456789012",
 "stackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000",
 "changeSetId": "arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000",
 "hookTypeName": "my::lambda::changesethook",
 "hookTypeVersion": "00000008",
 "hookModel": {
 "LambdaFunction": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 },
 "actionInvocationPoint": "CREATE_PRE_PROVISION",
 "requestData": {
 "targetName": "CHANGE_SET",
 "targetType": "CHANGE_SET",

Création de fonctions Lambda pour les Hooks 60

CloudFormation Guide de l'utilisateur de Hooks

 "targetLogicalId": "arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000",
 "payload": "https://s3......"
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

Voici un exemple payload de requestData.payload :

{
 template: 'Resources:\n' +
 ' DynamoDBTable:\n' +
 ' Type: AWS::DynamoDB::Table\n' +
 ' Properties:\n' +
 ' AttributeDefinitions:\n' +
 ' - AttributeName: "PK"\n' +
 ' AttributeType: "S"\n' +
 ' BillingMode: "PAY_PER_REQUEST"\n' +
 ' KeySchema:\n' +
 ' - AttributeName: "PK"\n' +
 ' KeyType: "HASH"\n' +
 ' PointInTimeRecoverySpecification:\n' +
 ' PointInTimeRecoveryEnabled: false\n' +
 ' NewSQSQueue:\n' +
 ' Type: AWS::SQS::Queue\n' +
 ' Properties:\n' +
 ' QueueName: "NewCoolQueue"',
 changedResources: [
 {
 logicalResourceId: 'SQSQueue',
 resourceType: 'AWS::SQS::Queue',
 action: 'DELETE',
 lineNumber: null,
 beforeContext: '{"Properties":{"QueueName":"CoolQueue"}}',
 afterContext: null
 },
 {
 logicalResourceId: 'NewSQSQueue',
 resourceType: 'AWS::SQS::Queue',
 action: 'CREATE',

Création de fonctions Lambda pour les Hooks 61

CloudFormation Guide de l'utilisateur de Hooks

 lineNumber: 14,
 beforeContext: null,
 afterContext: '{"Properties":{"QueueName":"NewCoolQueue"}}'
 },
 {
 logicalResourceId: 'DynamoDBTable',
 resourceType: 'AWS::DynamoDB::Table',
 action: 'UPDATE',
 lineNumber: 2,
 beforeContext: '{"Properties":
{"BillingMode":"PAY_PER_REQUEST","AttributeDefinitions":
[{"AttributeType":"S","AttributeName":"PK"}],"KeySchema":
[{"KeyType":"HASH","AttributeName":"PK"}]}}',
 afterContext: '{"Properties":
{"BillingMode":"PAY_PER_REQUEST","PointInTimeRecoverySpecification":
{"PointInTimeRecoveryEnabled":"false"},"AttributeDefinitions":
[{"AttributeType":"S","AttributeName":"PK"}],"KeySchema":
[{"KeyType":"HASH","AttributeName":"PK"}]}}'
 }
]
}

Exemple de fonction Lambda pour les opérations d'ensemble de modifications

L'exemple suivant est une fonction simple qui télécharge la charge utile de l'opération d'ensemble de
modifications, passe en revue chaque modification, puis imprime les propriétés avant et après avant
de renvoyer unSUCCESS.

Node.js

export const handler = async (event, context) => {
 var payloadUrl = event?.requestData?.payload;
 var response = {
 "hookStatus": "SUCCESS",
 "message": "Change set changes are compliant",
 "clientRequestToken": event.clientRequestToken
 };
 try {
 const changeSetHookPayloadRequest = await fetch(payloadUrl);
 const changeSetHookPayload = await changeSetHookPayloadRequest.json();
 const changes = changeSetHookPayload.changedResources || [];
 for(const change of changes) {
 var beforeContext = {};

Création de fonctions Lambda pour les Hooks 62

CloudFormation Guide de l'utilisateur de Hooks

 var afterContext = {};
 if(change.beforeContext) {
 beforeContext = JSON.parse(change.beforeContext);
 }
 if(change.afterContext) {
 afterContext = JSON.parse(change.afterContext);
 }
 console.log(beforeContext)
 console.log(afterContext)
 // Evaluate Change here
 }
 } catch (error) {
 console.log(error);
 response.hookStatus = "FAILED";
 response.message = "Failed to evaluate change set operation.";
 response.errorCode = "InternalFailure";
 }
 return response;
};

Python

Pour utiliser Python, vous devez importer la requests bibliothèque. Pour ce faire, vous devez
inclure la bibliothèque dans votre package de déploiement lors de la création de votre fonction
Lambda. Pour plus d'informations, consultez la section Création d'un package de déploiement .zip
avec dépendances dans le Guide du AWS Lambda développeur.

import json
import requests

def lambda_handler(event, context):
 payload_url = event.get('requestData', {}).get('payload')
 response = {
 "hookStatus": "SUCCESS",
 "message": "Change set changes are compliant",
 "clientRequestToken": event.get('clientRequestToken')
 }

 try:
 change_set_hook_payload_request = requests.get(payload_url)
 change_set_hook_payload_request.raise_for_status() # Raises an HTTPError
 for bad responses
 change_set_hook_payload = change_set_hook_payload_request.json()

Création de fonctions Lambda pour les Hooks 63

https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-dependencies
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html#python-package-create-dependencies

CloudFormation Guide de l'utilisateur de Hooks

 changes = change_set_hook_payload.get('changedResources', [])

 for change in changes:
 before_context = {}
 after_context = {}

 if change.get('beforeContext'):
 before_context = json.loads(change['beforeContext'])

 if change.get('afterContext'):
 after_context = json.loads(change['afterContext'])

 print(before_context)
 print(after_context)
 # Evaluate Change here

 except requests.RequestException as error:
 print(error)
 response['hookStatus'] = "FAILED"
 response['message'] = "Failed to evaluate change set operation."
 response['errorCode'] = "InternalFailure"
 except json.JSONDecodeError as error:
 print(error)
 response['hookStatus'] = "FAILED"
 response['message'] = "Failed to parse JSON payload."
 response['errorCode'] = "InternalFailure"

 return response

Préparez-vous à créer un crochet Lambda

Avant de créer un Lambda Hook, vous devez remplir les conditions préalables suivantes :

• Vous devez déjà avoir créé une fonction Lambda. Pour de plus amples informations, veuillez
consulter Création de fonctions Lambda pour les Hooks.

• L'utilisateur ou le rôle qui crée le Hook doit disposer des autorisations suffisantes pour activer les
Hooks. Pour de plus amples informations, veuillez consulter Accorder des autorisations IAM pour
les Hooks CloudFormation.

Préparez-vous à créer un crochet Lambda 64

CloudFormation Guide de l'utilisateur de Hooks

• Pour utiliser le AWS CLI ou un SDK pour créer un Lambda Hook, vous devez créer manuellement
un rôle d'exécution avec des autorisations IAM et une politique de confiance CloudFormation
permettant d'invoquer un Lambda Hook.

Création d'un rôle d'exécution pour un Lambda Hook

Un Hook utilise un rôle d'exécution pour les autorisations dont il a besoin pour invoquer ce Hook dans
votre Compte AWS.

Ce rôle peut être créé automatiquement si vous créez un Lambda Hook à partir du AWS
Management Console ; sinon, vous devez créer ce rôle vous-même.

La section suivante explique comment configurer les autorisations pour créer votre Lambda Hook.

Autorisations requises

Suivez les instructions de la section Créer un rôle à l’aide de stratégies de confiance personnalisées
dans le Guide de l’utilisateur IAM pour créer un rôle avec une stratégie de confiance personnalisée.

Effectuez ensuite les étapes suivantes pour configurer vos autorisations :

1. Associez la politique de privilèges minimaux suivante au rôle IAM que vous souhaitez utiliser
pour créer le Lambda Hook.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 }
]
}

2. Donnez à votre Hook l'autorisation d'assumer le rôle en ajoutant une politique de confiance au
rôle. Voici un exemple de politique de confiance que vous pouvez utiliser.

Préparez-vous à créer un crochet Lambda 65

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

CloudFormation Guide de l'utilisateur de Hooks

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "hooks.cloudformation.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Activez un Lambda Hook dans votre compte

La rubrique suivante explique comment activer un Lambda Hook dans votre compte, afin de le rendre
utilisable dans le compte et la région dans lesquels il a été activé.

Rubriques

• Activer un Lambda Hook (console)

• Activer un crochet Lambda ()AWS CLI

• Ressources connexes

Activer un Lambda Hook (console)

Pour activer un Lambda Hook à utiliser sur votre compte

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS endroit où vous
souhaitez créer le Hook in.

3. Si vous n'avez pas créé de fonction Lambda pour le Hook, procédez comme suit :

Activer un crochet Lambda 66

https://console.aws.amazon.com/cloudformation/

CloudFormation Guide de l'utilisateur de Hooks

• Ouvrez la page Functions (Fonctions) sur la console Lambda.

• Créez la fonction Lambda que vous utiliserez avec ce Hook, puis revenez à cette procédure.
Pour de plus amples informations, veuillez consulter Créez des fonctions Lambda pour évaluer
les ressources pour les Lambda Hooks.

Si vous avez déjà créé votre fonction Lambda, passez à l'étape suivante.

4. Dans le volet de navigation de gauche, choisissez Hooks.

5. Sur la page Hooks, choisissez Create a Hook, puis choisissez With Lambda.

6. Pour le nom du crochet, choisissez l'une des options suivantes :

• Entrez un nom court et descriptif qui sera ajouté par la suitePrivate::Lambda::.
Par exemple, si vous entrezMyTestHook, le nom complet du Hook
devientPrivate::Lambda::MyTestHook.

• Fournissez le nom complet du Hook (également appelé alias) en utilisant le format suivant :
Provider::ServiceName::HookName

7. Pour la fonction Lambda, indiquez la fonction Lambda à utiliser avec ce Hook. Vous pouvez
utiliser :

• Le nom complet de la ressource Amazon (ARN) sans suffixe.

• Un ARN qualifié avec un suffixe de version ou d'alias.

8. Pour les cibles Hook, choisissez les éléments à évaluer :

• Piles : évalue les modèles de pile lorsque les utilisateurs créent, mettent à jour ou suppriment
des piles.

• Ressources — Évalue les modifications individuelles des ressources lorsque les utilisateurs
mettent à jour les piles.

• Ensembles de modifications : évalue les mises à jour planifiées lorsque les utilisateurs créent
des ensembles de modifications.

• API Cloud Control — Évalue les opérations de création, de mise à jour ou de suppression
initiées par l'API Cloud Control.

9. Pour Actions, choisissez les actions (créer, mettre à jour, supprimer) qui appelleront votre Hook.

10. Pour le mode Hook, choisissez la façon dont le Hook répond lorsque la fonction Lambda
invoquée par le Hook renvoie une FAILED réponse :

Activer un crochet Lambda 67

https://console.aws.amazon.com/lambda/home#/functions
https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

CloudFormation Guide de l'utilisateur de Hooks

• Avertir : émet des avertissements à l'intention des utilisateurs, mais autorise la poursuite des
actions. Cela est utile pour les validations non critiques ou les contrôles informatifs.

• Echec : empêche le déroulement de l'action. Cela est utile pour appliquer des politiques de
conformité ou de sécurité strictes.

11. Pour le rôle d'exécution, choisissez le rôle IAM que le Hook suppose pour appeler votre
fonction Lambda. Vous pouvez soit CloudFormation autoriser la création automatique d'un rôle
d'exécution pour vous, soit spécifier un rôle que vous avez créé.

12. Choisissez Suivant.

13. (Facultatif) Pour les filtres Hook, procédez comme suit :

a. Pour le filtre de ressources, spécifiez les types de ressources qui peuvent appeler le Hook.
Cela garantit que le Hook n'est invoqué que pour les ressources pertinentes.

b. Pour les critères de filtrage, choisissez la logique d'application des filtres de nom de pile et
de rôle de pile :

• Tous les noms de pile et tous les rôles de pile — Le Hook ne sera invoqué que lorsque
tous les filtres spécifiés correspondent.

• Tous les noms de pile et rôles de pile — Le Hook sera invoqué si au moins l'un des filtres
spécifiés correspond.

Note

Pour les opérations de l'API Cloud Control, tous les filtres relatifs aux noms de pile
et aux rôles de pile sont ignorés.

c. Pour les noms de pile, incluez ou excluez des piles spécifiques des invocations Hook.

• Pour Inclure, spécifiez les noms des piles à inclure. Utilisez-le lorsque vous souhaitez
cibler un petit ensemble de piles spécifiques. Seules les piles spécifiées dans cette liste
invoqueront le Hook.

• Pour Exclure, spécifiez les noms des piles à exclure. Utilisez-le lorsque vous souhaitez
invoquer le Hook sur la plupart des piles, mais en exclure quelques unes en particulier.
Toutes les piles, à l'exception de celles répertoriées ici, invoqueront le Hook.

d. Pour les rôles Stack, incluez ou excluez des piles spécifiques des invocations Hook en
fonction de leurs rôles IAM associés.

Activer un crochet Lambda 68

CloudFormation Guide de l'utilisateur de Hooks

• Pour Inclure, spécifiez un ou plusieurs rôles IAM ARNs pour cibler les piles associées à
ces rôles. Seules les opérations de stack initiées par ces rôles invoqueront le Hook.

• Pour Exclure, spécifiez un ou plusieurs rôles IAM ARNs pour les piles que vous souhaitez
exclure. Le Hook sera invoqué sur toutes les piles sauf celles initiées par les rôles
spécifiés.

14. Choisissez Suivant.

15. Sur la page Vérifier et activer, passez en revue vos choix. Pour apporter des modifications,
sélectionnez Modifier dans la section correspondante.

16. Lorsque vous êtes prêt à continuer, choisissez Activate Hook.

Activer un crochet Lambda ()AWS CLI

Avant de continuer, vérifiez que vous avez créé la fonction Lambda et le rôle d'exécution que vous
allez utiliser avec ce Hook. Pour plus d’informations, consultez Créez des fonctions Lambda pour
évaluer les ressources pour les Lambda Hooks et Création d'un rôle d'exécution pour un Lambda
Hook.

Pour activer un Lambda Hook à utiliser dans votre compte ()AWS CLI

1. Pour commencer à activer un Hook, utilisez la activate-typecommande suivante en remplaçant
les espaces réservés par vos valeurs spécifiques. Cette commande autorise le Hook à utiliser un
rôle d'exécution spécifié par votre Compte AWS.

aws cloudformation activate-type --type HOOK \
 --type-name AWS::Hooks::LambdaHook \
 --publisher-id aws-hooks \
 --execution-role-arn arn:aws:iam::123456789012:role/my-execution-role \
 --type-name-alias Private::Lambda::MyTestHook \
 --region us-west-2

2. Pour terminer l'activation du Hook, vous devez le configurer à l'aide d'un fichier de configuration
JSON.

Utilisez la cat commande pour créer un fichier JSON avec la structure suivante. Pour de plus
amples informations, veuillez consulter Référence syntaxique du schéma de configuration Hook.

$ cat > config.json
{

Activer un crochet Lambda 69

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/activate-type.html

CloudFormation Guide de l'utilisateur de Hooks

 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "CLOUD_CONTROL"
],
 "FailureMode": "WARN",
 "Properties": {
 "LambdaFunction": "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction"
 },
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE",
 "DELETE"
]
 }
 }
 }
}

• HookInvocationStatus: défini sur ENABLED pour activer le Hook.

• TargetOperations: Spécifiez les opérations que le Hook évaluera.

• FailureMode : Définissez sur FAIL ou WARN.

• LambdaFunction: Spécifiez l'ARN de la fonction Lambda.

• TargetFilters: Spécifiez les types d'actions qui appelleront le Hook.

3. Utilisez la set-type-configurationcommande suivante, ainsi que le fichier JSON que vous
avez créé, pour appliquer la configuration. Remplacez les espaces réservés par vos valeurs
spécifiques.

aws cloudformation set-type-configuration \
 --configuration file://config.json \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Activer un crochet Lambda 70

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html

CloudFormation Guide de l'utilisateur de Hooks

Ressources connexes

Nous fournissons des exemples de modèles que vous pouvez utiliser pour comprendre comment
déclarer un Lambda Hook dans un modèle de CloudFormation pile. Pour plus d’informations,
consultez AWS::CloudFormation::LambdaHook dans le Guide de l’utilisateur AWS CloudFormation .

Afficher les journaux des Lambda Hooks dans votre compte

Lorsque vous utilisez un Lambda Hook, le fichier journal de votre rapport de sortie de validation se
trouve dans la console Lambda.

Afficher les journaux Lambda Hook dans la console Lambda

Pour consulter le fichier journal de sortie du Lambda Hook

1. Connectez-vous à la console Lambda.

2. Dans la barre de navigation, en haut de l’écran, sélectionnez votre Région AWS.

3. Choisissez Functions.

4. Choisissez la fonction Lambda souhaitée.

5. Choisissez l’onglet Test.

6. Choisissez CloudWatch Logs Live Trail

7. Choisissez le menu déroulant et sélectionnez les groupes de journaux que vous souhaitez
consulter.

8. Sélectionnez Démarrer. Le journal s'affichera dans la fenêtre CloudWatch Logs Live Trail.
Choisissez Afficher en colonnes ou Afficher en texte brut selon vos préférences.

• Vous pouvez ajouter d'autres filtres aux résultats en les ajoutant dans le champ Ajouter
un modèle de filtre. Ce champ vous permet de filtrer les résultats pour n'inclure que les
événements correspondant au modèle spécifié.

Pour plus d'informations sur l'affichage des journaux des fonctions Lambda, consultez la section
Affichage CloudWatch des journaux des fonctions Lambda.

Supprimer les Lambda Hooks de votre compte

Lorsque vous n'avez plus besoin d'un Lambda Hook activé, suivez les procédures suivantes pour le
supprimer de votre compte.

Afficher les journaux des Lambda Hooks 71

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-lambdahook.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs-view.html

CloudFormation Guide de l'utilisateur de Hooks

Pour désactiver temporairement un Hook au lieu de le supprimer, consultezDésactiver et activer les
CloudFormation Hooks.

Rubriques

• Supprimer un Lambda Hook dans votre compte (console)

• Supprimer un Lambda Hook dans votre compte ()AWS CLI

Supprimer un Lambda Hook dans votre compte (console)

Pour supprimer un Lambda Hook de votre compte

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS emplacement du
crochet.

3. Dans le volet de navigation, choisissez Hooks.

4. Sur la page Hooks, recherchez le hook Lambda que vous souhaitez supprimer.

5. Cochez la case à côté de votre Hook et choisissez Supprimer.

6. Lorsque vous êtes invité à confirmer, saisissez le nom du crochet pour confirmer la suppression
du crochet spécifié, puis choisissez Supprimer.

Supprimer un Lambda Hook dans votre compte ()AWS CLI

Note

Avant de pouvoir supprimer le Hook, vous devez d'abord le désactiver. Pour de plus amples
informations, veuillez consulter Désactiver et activer un Hook dans votre compte (AWS CLI).

Utilisez la deactivate-typecommande suivante pour désactiver un Hook, ce qui le supprimera de votre
compte. Remplacez les espaces réservés par vos valeurs spécifiques.

aws cloudformation deactivate-type \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Supprimer les crochets Lambda 72

https://console.aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deactivate-type.html

CloudFormation Guide de l'utilisateur de Hooks

Développement de Hooks personnalisés à l'aide de la
CloudFormation CLI

Cette section est destinée aux clients qui souhaitent développer des Hooks personnalisés et les
enregistrer dans le CloudFormation registre. Il fournit une vue d'ensemble de la structure des
CloudFormation Hooks et des guides pour développer, enregistrer, tester, gérer et publier vos
propres Hooks avec Python ou Java.

Le développement d'un Hook personnalisé comporte trois étapes principales :

1. Initier

Pour développer des Hooks personnalisés, vous devez configurer et utiliser la CloudFormation
CLI. Pour lancer le projet d'un Hook et ses fichiers requis, utilisez la initcommande CloudFormation
CLI et spécifiez que vous souhaitez créer un Hook. Pour de plus amples informations, veuillez
consulter Lancer un projet CloudFormation Hooks personnalisé.

2. Modèle

Pour modéliser, créer et valider votre schéma Hook, définissez le Hook, ses propriétés et ses
attributs.

La CloudFormation CLI crée des fonctions de gestion vides qui correspondent à un point
d'invocation Hook spécifique. Ajoutez votre propre logique à ces gestionnaires pour contrôler ce
qui se passe lors de votre invocation de Hook à chaque étape du cycle de vie cible. Pour de plus
amples informations, veuillez consulter Modélisation de CloudFormation crochets personnalisés.

3. S'inscrire

Pour enregistrer un Hook, soumettez votre Hook pour qu'il soit enregistré en tant qu'extension
tierce privée ou publique. Enregistrez votre Hook lors de l'submitopération. Pour de plus amples
informations, veuillez consulter Enregistrer un Hook personnalisé avec CloudFormation.

Les tâches suivantes sont associées à l'enregistrement de votre Hook :

a. Publier — Les hooks sont publiés dans le registre.

b. Configurer — Les hooks sont configurés lorsque la configuration de type est invoquée contre
des piles.

Crochets personnalisés 73

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-init.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-submit.html

CloudFormation Guide de l'utilisateur de Hooks

Note

Les Hooks expireront au bout de 30 secondes et réessayeront jusqu'à 3 fois. Pour de plus
amples informations, veuillez consulter Limites de délai et de nouvelles tentatives.

Rubriques

• Conditions préalables au développement de Hooks personnalisés CloudFormation

• Lancer un projet CloudFormation Hooks personnalisé

• Modélisation de CloudFormation crochets personnalisés

• Enregistrer un Hook personnalisé avec CloudFormation

• Tester un Hook personnalisé dans votre Compte AWS

• Mettre à jour un Hook personnalisé

• Désenregistrer un Hook personnalisé du registre CloudFormation

• Hooks de publication destinés à un usage public

• Référence syntaxique du schéma pour les CloudFormation Hooks

Conditions préalables au développement de Hooks personnalisés
CloudFormation

Vous pouvez développer un Hook personnalisé avec Java ou Python. Les conditions requises pour
développer des Hooks personnalisés sont les suivantes :

Prérequis pour Java

• Apache Maven

• JDK 17

Note

Si vous avez l'intention d'utiliser l'interface de ligne de CloudFormation commande (CLI)
pour lancer un projet Hooks pour Java, vous devez également installer Python 3.8 ou
version ultérieure. Le plugin Java pour la CloudFormation CLI peut être installé via pip (le
gestionnaire de paquets de Python), qui est distribué avec Python.

Prérequis 74

https://maven.apache.org/install.html
https://www.oracle.com/java/technologies/downloads/#java17
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

CloudFormation Guide de l'utilisateur de Hooks

Pour implémenter des gestionnaires Hook pour votre projet Java Hooks, vous pouvez télécharger les
fichiers d'exemple des gestionnaires Java Hook.

Prérequis pour Python

• Python version 3.8 ou ultérieure.

Pour implémenter des gestionnaires Hook pour votre projet Python Hooks, vous pouvez télécharger
les fichiers d'exemple des gestionnaires Python Hook.

Autorisations pour développer des Hooks

Outre les autorisations CloudFormation Create,Update, et Delete stack, vous devez avoir accès
aux AWS CloudFormation opérations suivantes. L'accès à ces opérations est géré par le biais de la
CloudFormation politique de votre rôle IAM.

• register-type

• list-types

• deregister-type

• set-type-configuration

Pour de plus amples informations, veuillez consulter Accorder des autorisations IAM pour les Hooks
CloudFormation.

Configurer un environnement de développement pour les Hooks

Pour développer des Hooks, vous devez être familiarisé avec les CloudFormation modèles, qu'il
s'agisse de Python ou de Java.

Pour installer la CloudFormation CLI et les plugins associés :

1. Installez la CloudFormation CLI avec pip le gestionnaire de packages Python.

pip3 install cloudformation-cli

2. Installez le plugin Python ou Java pour la CloudFormation CLI.

Prérequis 75

samples/java-handlers.zip
https://www.python.org/downloads/
samples/python-handlers.zip
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/register-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deregister-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

CloudFormation Guide de l'utilisateur de Hooks

Python

pip3 install cloudformation-cli-python-plugin

Java

pip3 install cloudformation-cli-java-plugin

Pour mettre à niveau la CloudFormation CLI et le plugin, vous pouvez utiliser l'option de mise à
niveau.

Python

pip3 install --upgrade cloudformation-cli cloudformation-cli-python-plugin

Java

pip3 install --upgrade cloudformation-cli cloudformation-cli-java-plugin

Lancer un projet CloudFormation Hooks personnalisé

La première étape de la création de votre projet Hooks personnalisé consiste à lancer le projet. Vous
pouvez utiliser la CloudFormation CLI init commande pour lancer votre projet Hooks personnalisé.

La init commande lance un assistant qui vous guide tout au long de la configuration du projet,
y compris un fichier de schéma Hooks. Utilisez ce fichier de schéma comme point de départ pour
définir la forme et la sémantique de vos Hooks. Pour de plus amples informations, veuillez consulter
Syntaxe du schéma.

Pour lancer un projet Hook :

1. Créez un répertoire pour le projet.

mkdir ~/mycompany-testing-mytesthook

2. Accédez au nouveau répertoire.

Lancer un projet Hooks 76

CloudFormation Guide de l'utilisateur de Hooks

cd ~/mycompany-testing-mytesthook

3. Utilisez la CloudFormation CLI init commande pour lancer le projet.

cfn init

La commande renvoie le résultat suivant.

Initializing new project

4. La init commande lance un assistant qui vous guide tout au long de la configuration du projet.
Lorsque vous y êtes invité, entrez h pour spécifier un projet Hooks.

Do you want to develop a new resource(r) a module(m) or a hook(h)?

h

5. Entrez un nom pour votre type de Hook.

What's the name of your hook type?
(Organization::Service::Hook)

MyCompany::Testing::MyTestHook

6. Si un seul plugin de langue est installé, il est sélectionné par défaut. Si plusieurs plug-ins
linguistiques sont installés, vous pouvez choisir la langue de votre choix. Entrez une sélection de
numéros pour la langue de votre choix.

Select a language for code generation:
[1] java
[2] python38
[3] python39
(enter an integer):

7. Configurez le packaging en fonction du langage de développement choisi.

Lancer un projet Hooks 77

CloudFormation Guide de l'utilisateur de Hooks

Python

(Facultatif) Choisissez Docker pour un emballage indépendant de la plate-forme. Bien que
Docker ne soit pas obligatoire, il est fortement recommandé pour faciliter l'emballage.

Use docker for platform-independent packaging (Y/n)?
This is highly recommended unless you are experienced with cross-platform Python
 packaging.

Java

Définissez le nom du package Java et choisissez un modèle de codegen. Vous pouvez
utiliser le nom du package par défaut ou en créer un nouveau.

Enter a package name (empty for default 'com.mycompany.testing.mytesthook'):

Choose codegen model - 1 (default) or 2 (guided-aws):

Résultats : Vous avez lancé le projet avec succès et avez généré les fichiers nécessaires au
développement d'un Hook. Voici un exemple des répertoires et des fichiers qui constituent un projet
Hooks pour Python 3.8.

mycompany-testing-mytesthook.json
rpdk.log
README.md
requirements.txt
hook-role.yaml
template.yml
docs
 README.md
src
 __init__.py
 handlers.py
 models.py
 target_models
 aws_s3_bucket.py

Lancer un projet Hooks 78

CloudFormation Guide de l'utilisateur de Hooks

Note

Les fichiers du src répertoire sont créés en fonction de la langue que vous avez
sélectionnée. Les fichiers générés contiennent des commentaires et des exemples utiles.
Certains fichiers, tels quemodels.py, sont automatiquement mis à jour ultérieurement
lorsque vous exécutez la generate commande pour ajouter du code d'exécution pour vos
gestionnaires.

Modélisation de CloudFormation crochets personnalisés

La modélisation de CloudFormation Hooks personnalisés implique la création d'un schéma qui définit
le Hook, ses propriétés et ses attributs. Lorsque vous créez votre projet Hook personnalisé à l'aide de
la cfn init commande, un exemple de schéma Hook est créé sous forme de fichier texte au format
JSON,. hook-name.json

Les points d'invocation cibles et les actions cibles spécifient le point exact où le Hook est invoqué.
Les gestionnaires de crochets hébergent une logique personnalisée exécutable pour ces points. Par
exemple, une action cible de l'CREATEopération utilise un preCreate gestionnaire. Votre code écrit
dans le gestionnaire sera invoqué lorsque les cibles et les services Hook exécuteront une action
correspondante. Les cibles des crochets sont la destination où les crochets sont invoqués. Vous
pouvez spécifier des cibles telles que des ressources CloudFormation publiques, des ressources
privées ou des ressources personnalisées. Les Hooks supportent un nombre illimité de cibles Hook.

Le schéma contient les autorisations requises pour le Hook. Pour créer le Hook, vous devez spécifier
des autorisations pour chaque gestionnaire Hook. CloudFormation encourage les auteurs à rédiger
des politiques qui suivent les conseils de sécurité standard consistant à accorder le moindre privilège
ou à n'accorder que les autorisations requises pour effectuer une tâche. Déterminez ce que les
utilisateurs (et les rôles) doivent faire, puis élaborez des politiques qui leur permettent d'effectuer
uniquement ces tâches pour les opérations Hook. CloudFormation utilise ces autorisations pour
réduire les autorisations fournies par les utilisateurs de Hook. Ces autorisations sont transmises au
Hook. Les gestionnaires de Hook utilisent ces autorisations pour accéder aux AWS ressources.

Vous pouvez utiliser le fichier de schéma suivant comme point de départ pour définir votre Hook.
Utilisez le schéma Hook pour spécifier les gestionnaires que vous souhaitez implémenter. Si vous
choisissez de ne pas implémenter un gestionnaire spécifique, supprimez-le de la section des
gestionnaires du schéma Hook. Pour plus de détails sur le schéma, consultezSyntaxe du schéma.

Crochets de modélisation 79

CloudFormation Guide de l'utilisateur de Hooks

{
 "typeName":"MyCompany::Testing::MyTestHook",
 "description":"Verifies S3 bucket and SQS queues properties before create and
 update",
 "sourceUrl":"https://mycorp.com/my-repo.git",
 "documentationUrl":"https://mycorp.com/documentation",
 "typeConfiguration":{
 "properties":{
 "minBuckets":{
 "description":"Minimum number of compliant buckets",
 "type":"string"
 },
 "minQueues":{
 "description":"Minimum number of compliant queues",
 "type":"string"
 },
 "encryptionAlgorithm":{
 "description":"Encryption algorithm for SSE",
 "default":"AES256",
 "type":"string"
 }
 },
 "required":[

],
 "additionalProperties":false
 },
 "handlers":{
 "preCreate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preUpdate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

Crochets de modélisation 80

CloudFormation Guide de l'utilisateur de Hooks

]
 },
 "preDelete":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[
 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetEncryptionConfiguration",
 "sqs:ListQueues",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl"
]
 }
 },
 "additionalProperties":false
}

Rubriques

• Modélisation de CloudFormation Hooks personnalisés en utilisant Java

• Modélisation de CloudFormation Hooks personnalisés à l'aide de Python

Modélisation de CloudFormation Hooks personnalisés en utilisant Java

La modélisation de CloudFormation Hooks personnalisés implique la création d'un schéma qui définit
le Hook, ses propriétés et ses attributs. Ce didacticiel vous explique comment modéliser des Hooks
personnalisés à l'aide de Java.

Étape 1 : Ajouter les dépendances du projet

Les projets Hooks basés sur Java s'appuient sur le pom.xml fichier de Maven comme dépendance.
Développez la section suivante et copiez le code source dans le pom.xml fichier situé à la racine du
projet.

Dépendances du projet Hook (pom.xml)

<?xml version="1.0" encoding="UTF-8"?>
<project

Crochets de modélisation 81

CloudFormation Guide de l'utilisateur de Hooks

 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.mycompany.testing.mytesthook</groupId>
 <artifactId>mycompany-testing-mytesthook-handler</artifactId>
 <name>mycompany-testing-mytesthook-handler</name>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <aws.java.sdk.version>2.16.1</aws.java.sdk.version>
 <checkstyle.version>8.36.2</checkstyle.version>
 <commons-io.version>2.8.0</commons-io.version>
 <jackson.version>2.11.3</jackson.version>
 <maven-checkstyle-plugin.version>3.1.1</maven-checkstyle-plugin.version>
 <mockito.version>3.6.0</mockito.version>
 <spotbugs.version>4.1.4</spotbugs.version>
 <spotless.version>2.5.0</spotless.version>
 <maven-javadoc-plugin.version>3.2.0</maven-javadoc-plugin.version>
 <maven-source-plugin.version>3.2.1</maven-source-plugin.version>
 <cfn.generate.args/>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>bom</artifactId>
 <version>2.16.1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>

Crochets de modélisation 82

CloudFormation Guide de l'utilisateur de Hooks

 <!-- https://mvnrepository.com/artifact/software.amazon.cloudformation/aws-
cloudformation-rpdk-java-plugin -->
 <dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>aws-cloudformation-rpdk-java-plugin</artifactId>
 <version>[2.0.0,3.0.0)</version>
 </dependency>

 <!-- AWS Java SDK v2 Dependencies -->
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sdk-core</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>cloudformation</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>s3</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>utils</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>apache-client</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sqs</artifactId>
 </dependency>

 <!-- Test dependency for Java Providers -->
 <dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>cloudformation-cli-java-plugin-testing-support</artifactId>
 <version>1.0.0</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-s3 -->
 <dependency>
 <groupId>com.amazonaws</groupId>

Crochets de modélisation 83

CloudFormation Guide de l'utilisateur de Hooks

 <artifactId>aws-java-sdk-s3</artifactId>
 <version>1.12.85</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/commons-io/commons-io -->
 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>${commons-io.version}</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.commons/commons-lang3 -->
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.9</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.commons/commons-collections4
 -->
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-collections4</artifactId>
 <version>4.4</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>29.0-jre</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-
cloudformation -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-cloudformation</artifactId>
 <version>1.11.555</version>
 <scope>test</scope>
 </dependency>

 <!-- https://mvnrepository.com/artifact/commons-codec/commons-codec -->
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.14</version>
 </dependency>

Crochets de modélisation 84

CloudFormation Guide de l'utilisateur de Hooks

 <!-- https://mvnrepository.com/artifact/software.amazon.cloudformation/aws-
cloudformation-resource-schema -->
 <dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>aws-cloudformation-resource-schema</artifactId>
 <version>[2.0.5, 3.0.0)</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/
jackson-databind -->
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>${jackson.version}</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/
jackson-dataformat-cbor -->
 <dependency>
 <groupId>com.fasterxml.jackson.dataformat</groupId>
 <artifactId>jackson-dataformat-cbor</artifactId>
 <version>${jackson.version}</version>
 </dependency>

 <dependency>
 <groupId>com.fasterxml.jackson.datatype</groupId>
 <artifactId>jackson-datatype-jsr310</artifactId>
 <version>${jackson.version}</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.module/jackson-
modules-java8 -->
 <dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-modules-java8</artifactId>
 <version>${jackson.version}</version>
 <type>pom</type>
 <scope>runtime</scope>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.json/json -->
 <dependency>
 <groupId>org.json</groupId>
 <artifactId>json</artifactId>
 <version>20180813</version>
 </dependency>

Crochets de modélisation 85

CloudFormation Guide de l'utilisateur de Hooks

 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-core -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-core</artifactId>
 <version>1.11.1034</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-core -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.0</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-log4j2 --
>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-log4j2</artifactId>
 <version>1.2.0</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/com.google.code.gson/gson -->
 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.8</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.projectlombok/lombok -->
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>1.18.4</version>
 <scope>provided</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-api -->
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.17.1</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core --
>
 <dependency>

Crochets de modélisation 86

CloudFormation Guide de l'utilisateur de Hooks

 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.17.1</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-slf4j-
impl -->
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-slf4j-impl</artifactId>
 <version>2.17.1</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.assertj/assertj-core -->
 <dependency>
 <groupId>org.assertj</groupId>
 <artifactId>assertj-core</artifactId>
 <version>3.12.2</version>
 <scope>test</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.junit.jupiter/junit-jupiter -->
 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter</artifactId>
 <version>5.5.0-M1</version>
 <scope>test</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.mockito/mockito-core -->
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>3.6.0</version>
 <scope>test</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.mockito/mockito-junit-jupiter -->
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-junit-jupiter</artifactId>
 <version>3.6.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>

Crochets de modélisation 87

CloudFormation Guide de l'utilisateur de Hooks

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.1</version>
 <configuration>
 <compilerArgs>
 <arg>-Xlint:all,-options,-processing</arg>
 </compilerArgs>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>**/Log4j2Plugins.dat</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.6.0</version>
 <executions>
 <execution>
 <id>generate</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>exec</goal>

Crochets de modélisation 88

CloudFormation Guide de l'utilisateur de Hooks

 </goals>
 <configuration>
 <executable>cfn</executable>
 <commandlineArgs>generate ${cfn.generate.args}</
commandlineArgs>
 <workingDirectory>${project.basedir}</workingDirectory>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>3.0.0</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>${project.basedir}/target/generated-sources/
rpdk</source>
 </sources>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.4</version>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>3.0.0-M3</version>
 </plugin>
 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.4</version>
 <configuration>

Crochets de modélisation 89

CloudFormation Guide de l'utilisateur de Hooks

 <excludes>
 <exclude>**/BaseHookConfiguration*</exclude>
 <exclude>**/BaseHookHandler*</exclude>
 <exclude>**/HookHandlerWrapper*</exclude>
 <exclude>**/ResourceModel*</exclude>
 <exclude>**/TypeConfigurationModel*</exclude>
 <exclude>**/model/**/*</exclude>
 </excludes>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>report</id>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 <execution>
 <id>jacoco-check</id>
 <goals>
 <goal>check</goal>
 </goals>
 <configuration>
 <rules>
 <rule>
 <element>PACKAGE</element>
 <limits>
 <limit>
 <counter>BRANCH</counter>
 <value>COVEREDRATIO</value>
 <minimum>0.8</minimum>
 </limit>
 <limit>
 <counter>INSTRUCTION</counter>
 <value>COVEREDRATIO</value>
 <minimum>0.8</minimum>
 </limit>
 </limits>
 </rule>

Crochets de modélisation 90

CloudFormation Guide de l'utilisateur de Hooks

 </rules>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 <resources>
 <resource>
 <directory>${project.basedir}</directory>
 <includes>
 <include>mycompany-testing-mytesthook.json</include>
 </includes>
 </resource>
 <resource>
 <directory>${project.basedir}/target/loaded-target-schemas</directory>
 <includes>
 <include>**/*.json</include>
 </includes>
 </resource>
 </resources>
 </build>
</project>

Étape 2 : Générer le package du projet Hook

Générez votre package de projet Hook. CloudFormation CLIcrée des fonctions de gestion vides qui
correspondent à des actions Hook spécifiques dans le cycle de vie cible, telles que définies dans la
spécification Hook.

cfn generate

La commande renvoie le résultat suivant.

Generated files for MyCompany::Testing::MyTestHook

Note

Assurez-vous que vos environnements d'exécution Lambda doivent éviter up-to-date
d'utiliser une version obsolète. Pour plus d'informations, consultez la section Mise à jour des
environnements d'exécution Lambda pour les types de ressources et les Hooks.

Crochets de modélisation 91

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/runtime-update.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/runtime-update.html

CloudFormation Guide de l'utilisateur de Hooks

Étape 3 : Ajouter des gestionnaires Hook

Ajoutez votre propre code d'exécution du gestionnaire Hook aux gestionnaires que vous choisissez
d'implémenter. Par exemple, vous pouvez ajouter le code suivant pour la journalisation.

logger.log("Internal testing Hook triggered for target: " +
 request.getHookContext().getTargetName());

CloudFormation CLIGénère un vieux objet Java ordinaire (JavaPOJO). Voici des exemples de sortie
générés à partir deAWS::S3::Bucket.

Example WASS3 .java BucketTargetModel

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import...

@Data
@NoArgsConstructor
@EqualsAndHashCode(callSuper = true)
@ToString(callSuper = true)
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class AwsS3BucketTargetModel extends ResourceHookTargetModel<AwsS3Bucket> {

 @JsonIgnore
 private static final TypeReference<AwsS3Bucket> TARGET_REFERENCE =
 new TypeReference<AwsS3Bucket>() {};

 @JsonIgnore
 private static final TypeReference<AwsS3BucketTargetModel> MODEL_REFERENCE =
 new TypeReference<AwsS3BucketTargetModel>() {};

 @JsonIgnore
 public static final String TARGET_TYPE_NAME = "AWS::S3::Bucket";

 @JsonIgnore
 public TypeReference<AwsS3Bucket> getHookTargetTypeReference() {
 return TARGET_REFERENCE;
 }

Crochets de modélisation 92

CloudFormation Guide de l'utilisateur de Hooks

 @JsonIgnore
 public TypeReference<AwsS3BucketTargetModel> getTargetModelTypeReference() {
 return MODEL_REFERENCE;
 }
}

Example AwsS3Bucket.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@EqualsAndHashCode(callSuper = true)
@ToString(callSuper = true)
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class AwsS3Bucket extends ResourceHookTarget {
 @JsonIgnore
 public static final String TYPE_NAME = "AWS::S3::Bucket";

 @JsonIgnore
 public static final String IDENTIFIER_KEY_ID = "/properties/Id";

 @JsonProperty("InventoryConfigurations")
 private List<InventoryConfiguration> inventoryConfigurations;

 @JsonProperty("WebsiteConfiguration")
 private WebsiteConfiguration websiteConfiguration;

 @JsonProperty("DualStackDomainName")
 private String dualStackDomainName;

 @JsonProperty("AccessControl")
 private String accessControl;

 @JsonProperty("AnalyticsConfigurations")
 private List<AnalyticsConfiguration> analyticsConfigurations;

Crochets de modélisation 93

CloudFormation Guide de l'utilisateur de Hooks

 @JsonProperty("AccelerateConfiguration")
 private AccelerateConfiguration accelerateConfiguration;

 @JsonProperty("PublicAccessBlockConfiguration")
 private PublicAccessBlockConfiguration publicAccessBlockConfiguration;

 @JsonProperty("BucketName")
 private String bucketName;

 @JsonProperty("RegionalDomainName")
 private String regionalDomainName;

 @JsonProperty("OwnershipControls")
 private OwnershipControls ownershipControls;

 @JsonProperty("ObjectLockConfiguration")
 private ObjectLockConfiguration objectLockConfiguration;

 @JsonProperty("ObjectLockEnabled")
 private Boolean objectLockEnabled;

 @JsonProperty("LoggingConfiguration")
 private LoggingConfiguration loggingConfiguration;

 @JsonProperty("ReplicationConfiguration")
 private ReplicationConfiguration replicationConfiguration;

 @JsonProperty("Tags")
 private List<Tag> tags;

 @JsonProperty("DomainName")
 private String domainName;

 @JsonProperty("BucketEncryption")
 private BucketEncryption bucketEncryption;

 @JsonProperty("WebsiteURL")
 private String websiteURL;

 @JsonProperty("NotificationConfiguration")
 private NotificationConfiguration notificationConfiguration;

 @JsonProperty("LifecycleConfiguration")
 private LifecycleConfiguration lifecycleConfiguration;

Crochets de modélisation 94

CloudFormation Guide de l'utilisateur de Hooks

 @JsonProperty("VersioningConfiguration")
 private VersioningConfiguration versioningConfiguration;

 @JsonProperty("MetricsConfigurations")
 private List<MetricsConfiguration> metricsConfigurations;

 @JsonProperty("IntelligentTieringConfigurations")
 private List<IntelligentTieringConfiguration> intelligentTieringConfigurations;

 @JsonProperty("CorsConfiguration")
 private CorsConfiguration corsConfiguration;

 @JsonProperty("Id")
 private String id;

 @JsonProperty("Arn")
 private String arn;

 @JsonIgnore
 public JSONObject getPrimaryIdentifier() {
 final JSONObject identifier = new JSONObject();
 if (this.getId() != null) {
 identifier.put(IDENTIFIER_KEY_ID, this.getId());
 }

 // only return the identifier if it can be used, i.e. if all components are
 present
 return identifier.length() == 1 ? identifier : null;
 }

 @JsonIgnore
 public List<JSONObject> getAdditionalIdentifiers() {
 final List<JSONObject> identifiers = new ArrayList<JSONObject>();
 // only return the identifiers if any can be used
 return identifiers.isEmpty() ? null : identifiers;
 }
}

Example BucketEncryption.java

package software.amazon.testing.mytesthook.model.aws.s3.bucket;

Crochets de modélisation 95

CloudFormation Guide de l'utilisateur de Hooks

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class BucketEncryption {
 @JsonProperty("ServerSideEncryptionConfiguration")
 private List<ServerSideEncryptionRule> serverSideEncryptionConfiguration;

}

Example ServerSideEncryptionRule.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class ServerSideEncryptionRule {
 @JsonProperty("BucketKeyEnabled")
 private Boolean bucketKeyEnabled;

 @JsonProperty("ServerSideEncryptionByDefault")
 private ServerSideEncryptionByDefault serverSideEncryptionByDefault;

}

Example ServerSideEncryptionByDefault.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import ...

Crochets de modélisation 96

CloudFormation Guide de l'utilisateur de Hooks

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class ServerSideEncryptionByDefault {
 @JsonProperty("SSEAlgorithm")
 private String sSEAlgorithm;

 @JsonProperty("KMSMasterKeyID")
 private String kMSMasterKeyID;

}

Avec le POJOs fichier généré, vous pouvez désormais écrire les gestionnaires qui implémentent
réellement les fonctionnalités du Hook. Pour cet exemple, implémentez le point preUpdate
d'invocation preCreate and pour les gestionnaires.

Étape 4 : Implémenter les gestionnaires Hook

Rubriques

• Codage du générateur de API clients

• Codage de l'auteur API de la demande

• Implémentation du code d'assistance

• Implémentation du gestionnaire de base

• Implémentation du preCreate gestionnaire

• Codage du preCreate gestionnaire

• Mettre à jour le preCreate test

• Implémentation du preUpdate gestionnaire

• Codage du preUpdate gestionnaire

• Mettre à jour le preUpdate test

• Implémentation du preDelete gestionnaire

• Codage du preDelete gestionnaire

• Mettre à jour le preDelete gestionnaire

Crochets de modélisation 97

CloudFormation Guide de l'utilisateur de Hooks

Codage du générateur de API clients

1. Dans votreIDE, ouvrez le ClientBuilder.java fichier situé dans le src/main/java/com/
mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du ClientBuilder.java fichier par le code suivant.

Example ClientBuilder.java

package com.awscommunity.kms.encryptionsettings;

import software.amazon.awssdk.services.ec2.Ec2Client;
import software.amazon.cloudformation.HookLambdaWrapper;

/**
 * Describes static HTTP clients (to consume less memory) for API calls that
 * this hook makes to a number of AWS services.
 */
public final class ClientBuilder {

 private ClientBuilder() {
 }

 /**
 * Create an HTTP client for Amazon EC2.
 *
 * @return Ec2Client An {@link Ec2Client} object.
 */
 public static Ec2Client getEc2Client() {
 return
 Ec2Client.builder().httpClient(HookLambdaWrapper.HTTP_CLIENT).build();
 }
}

Codage de l'auteur API de la demande

1. Dans votreIDE, ouvrez le Translator.java fichier situé dans le src/main/java/com/
mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du Translator.java fichier par le code suivant.

Crochets de modélisation 98

CloudFormation Guide de l'utilisateur de Hooks

Example Translator.java

package com.mycompany.testing.mytesthook;

import software.amazon.awssdk.services.s3.model.GetBucketEncryptionRequest;
import software.amazon.awssdk.services.s3.model.ListBucketsRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

/**
 * This class is a centralized placeholder for
 * - api request construction
 * - object translation to/from aws sdk
 */

public class Translator {

 static ListBucketsRequest translateToListBucketsRequest(final HookTargetModel
 targetModel) {
 return ListBucketsRequest.builder().build();
 }

 static ListQueuesRequest translateToListQueuesRequest(final String nextToken) {
 return ListQueuesRequest.builder().nextToken(nextToken).build();
 }

 static ListBucketsRequest createListBucketsRequest() {
 return ListBucketsRequest.builder().build();
 }

 static ListQueuesRequest createListQueuesRequest() {
 return createListQueuesRequest(null);
 }

 static ListQueuesRequest createListQueuesRequest(final String nextToken) {
 return ListQueuesRequest.builder().nextToken(nextToken).build();
 }

 static GetBucketEncryptionRequest createGetBucketEncryptionRequest(final String
 bucket) {
 return GetBucketEncryptionRequest.builder().bucket(bucket).build();
 }

Crochets de modélisation 99

CloudFormation Guide de l'utilisateur de Hooks

}

Implémentation du code d'assistance

1. Dans votreIDE, ouvrez le AbstractTestBase.java fichier situé dans le src/main/java/
com/mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du AbstractTestBase.java fichier par le code suivant.

Example Translator.java

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableMap;
import org.mockito.Mockito;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.AwsSessionCredentials;
import software.amazon.awssdk.auth.credentials.StaticCredentialsProvider;
import software.amazon.awssdk.awscore.AwsRequest;
import software.amazon.awssdk.awscore.AwsRequestOverrideConfiguration;
import software.amazon.awssdk.awscore.AwsResponse;
import software.amazon.awssdk.core.SdkClient;
import software.amazon.awssdk.core.pagination.sync.SdkIterable;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.Credentials;
import software.amazon.cloudformation.proxy.LoggerProxy;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ProxyClient;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import javax.annotation.Nonnull;
import java.time.Duration;
import java.util.concurrent.CompletableFuture;
import java.util.function.Function;
import java.util.function.Supplier;

import static org.assertj.core.api.Assertions.assertThat;

@lombok.Getter
public class AbstractTestBase {
 protected final AwsSessionCredentials awsSessionCredential;
 protected final AwsCredentialsProvider v2CredentialsProvider;

Crochets de modélisation 100

CloudFormation Guide de l'utilisateur de Hooks

 protected final AwsRequestOverrideConfiguration configuration;
 protected final LoggerProxy loggerProxy;
 protected final Supplier<Long> awsLambdaRuntime = () ->
 Duration.ofMinutes(15).toMillis();
 protected final AmazonWebServicesClientProxy proxy;
 protected final Credentials mockCredentials =
 new Credentials("mockAccessId", "mockSecretKey", "mockSessionToken");

 @lombok.Setter
 private SdkClient serviceClient;

 protected AbstractTestBase() {
 loggerProxy = Mockito.mock(LoggerProxy.class);
 awsSessionCredential =
 AwsSessionCredentials.create(mockCredentials.getAccessKeyId(),
 mockCredentials.getSecretAccessKey(),
 mockCredentials.getSessionToken());
 v2CredentialsProvider =
 StaticCredentialsProvider.create(awsSessionCredential);
 configuration = AwsRequestOverrideConfiguration.builder()
 .credentialsProvider(v2CredentialsProvider)
 .build();
 proxy = new AmazonWebServicesClientProxy(
 loggerProxy,
 mockCredentials,
 awsLambdaRuntime
) {
 @Override
 public <ClientT> ProxyClient<ClientT> newProxy(@Nonnull
 Supplier<ClientT> client) {
 return new ProxyClient<ClientT>() {
 @Override
 public <RequestT extends AwsRequest, ResponseT extends
 AwsResponse>
 ResponseT injectCredentialsAndInvokeV2(RequestT request,
 Function<RequestT,
 ResponseT> requestFunction) {
 return proxy.injectCredentialsAndInvokeV2(request,
 requestFunction);
 }

 @Override
 public <RequestT extends AwsRequest, ResponseT extends
 AwsResponse> CompletableFuture<ResponseT>

Crochets de modélisation 101

CloudFormation Guide de l'utilisateur de Hooks

 injectCredentialsAndInvokeV2Async(RequestT request,
 Function<RequestT, CompletableFuture<ResponseT>> requestFunction) {
 return proxy.injectCredentialsAndInvokeV2Async(request,
 requestFunction);
 }

 @Override
 public <RequestT extends AwsRequest, ResponseT extends
 AwsResponse, IterableT extends SdkIterable<ResponseT>>
 IterableT
 injectCredentialsAndInvokeIterableV2(RequestT request,
 Function<RequestT, IterableT> requestFunction) {
 return proxy.injectCredentialsAndInvokeIterableV2(request,
 requestFunction);
 }

 @SuppressWarnings("unchecked")
 @Override
 public ClientT client() {
 return (ClientT) serviceClient;
 }
 };
 }
 };
 }

 protected void assertResponse(final ProgressEvent<HookTargetModel,
 CallbackContext> response, final OperationStatus expectedStatus, final String
 expectedMsg) {
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(expectedStatus);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getMessage()).isNotNull();
 assertThat(response.getMessage()).isEqualTo(expectedMsg);
 }

 protected HookTargetModel createHookTargetModel(final Object
 resourceProperties) {
 return HookTargetModel.of(ImmutableMap.of("ResourceProperties",
 resourceProperties));
 }

Crochets de modélisation 102

CloudFormation Guide de l'utilisateur de Hooks

 protected HookTargetModel createHookTargetModel(final Object
 resourceProperties, final Object previousResourceProperties) {
 return HookTargetModel.of(
 ImmutableMap.of(
 "ResourceProperties", resourceProperties,
 "PreviousResourceProperties", previousResourceProperties
)
);
 }
}

Implémentation du gestionnaire de base

1. Dans votreIDE, ouvrez le BaseHookHandlerStd.java fichier situé dans le src/main/java/
com/mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du BaseHookHandlerStd.java fichier par le code suivant.

Example Translator.java

package com.mycompany.testing.mytesthook;

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ProxyClient;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

public abstract class BaseHookHandlerStd extends BaseHookHandler<CallbackContext,
 TypeConfigurationModel> {
 public static final String HOOK_TYPE_NAME = "MyCompany::Testing::MyTestHook";

 protected Logger logger;

 @Override
 public ProgressEvent<HookTargetModel, CallbackContext> handleRequest(

Crochets de modélisation 103

CloudFormation Guide de l'utilisateur de Hooks

 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final Logger logger,
 final TypeConfigurationModel typeConfiguration
) {
 this.logger = logger;

 final String targetName = request.getHookContext().getTargetName();

 final ProgressEvent<HookTargetModel, CallbackContext> result;
 if (AwsS3Bucket.TYPE_NAME.equals(targetName)) {
 result = handleS3BucketRequest(
 proxy,
 request,
 callbackContext != null ? callbackContext : new
 CallbackContext(),
 proxy.newProxy(ClientBuilder::createS3Client),
 typeConfiguration
);
 } else if (AwsSqsQueue.TYPE_NAME.equals(targetName)) {
 result = handleSqsQueueRequest(
 proxy,
 request,
 callbackContext != null ? callbackContext : new
 CallbackContext(),
 proxy.newProxy(ClientBuilder::createSqsClient),
 typeConfiguration
);
 } else {
 throw new UnsupportedTargetException(targetName);
 }

 log(
 String.format(
 "Result for [%s] invocation for target [%s] returned status [%s]
 with message [%s]",
 request.getHookContext().getInvocationPoint(),
 targetName,
 result.getStatus(),
 result.getMessage()
)
);

Crochets de modélisation 104

CloudFormation Guide de l'utilisateur de Hooks

 return result;
 }

 protected abstract ProgressEvent<HookTargetModel, CallbackContext>
 handleS3BucketRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<S3Client> proxyClient,
 final TypeConfigurationModel typeConfiguration
);

 protected abstract ProgressEvent<HookTargetModel, CallbackContext>
 handleSqsQueueRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<SqsClient> proxyClient,
 final TypeConfigurationModel typeConfiguration
);

 protected void log(final String message) {
 if (logger != null) {
 logger.log(message);
 } else {
 System.out.println(message);
 }
 }
}

Implémentation du preCreate gestionnaire

Le preCreate gestionnaire vérifie les paramètres de chiffrement côté serveur pour une ressource
ou. AWS::S3::Bucket AWS::SQS::Queue

• Pour une AWS::S3::Bucket ressource, le Hook ne sera accepté que si les conditions suivantes
sont vraies :

• Le chiffrement du compartiment Amazon S3 est défini.

• La clé du compartiment Amazon S3 est activée pour le compartiment.

• L'algorithme de chiffrement défini pour le compartiment Amazon S3 est le bon algorithme requis.

Crochets de modélisation 105

CloudFormation Guide de l'utilisateur de Hooks

• L'identifiant de la AWS Key Management Service clé est défini.

• Pour une AWS::SQS::Queue ressource, le Hook ne sera accepté que si les conditions suivantes
sont vraies :

• L'identifiant de la AWS Key Management Service clé est défini.

Codage du preCreate gestionnaire

1. Dans votreIDE, ouvrez le PreCreateHookHandler.java fichier situé dans le src/main/
java/software/mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du PreCreateHookHandler.java fichier par le code
suivant.

package com.mycompany.testing.mytesthook;

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3BucketTargetModel;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.BucketEncryption;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionByDefault;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueueTargetModel;
import org.apache.commons.collections.CollectionUtils;
import org.apache.commons.lang3.StringUtils;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import
 software.amazon.cloudformation.proxy.hook.targetmodel.ResourceHookTargetModel;

import java.util.List;

public class PreCreateHookHandler extends BaseHookHandler<TypeConfigurationModel,
 CallbackContext> {

Crochets de modélisation 106

CloudFormation Guide de l'utilisateur de Hooks

 @Override
 public HookProgressEvent<CallbackContext> handleRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final Logger logger,
 final TypeConfigurationModel typeConfiguration) {

 final String targetName = request.getHookContext().getTargetName();
 if ("AWS::S3::Bucket".equals(targetName)) {
 final ResourceHookTargetModel<AwsS3Bucket> targetModel =
 request.getHookContext().getTargetModel(AwsS3BucketTargetModel.class);

 final AwsS3Bucket bucket = targetModel.getResourceProperties();
 final String encryptionAlgorithm =
 typeConfiguration.getEncryptionAlgorithm();

 return validateS3BucketEncryption(bucket, encryptionAlgorithm);

 } else if ("AWS::SQS::Queue".equals(targetName)) {
 final ResourceHookTargetModel<AwsSqsQueue> targetModel =
 request.getHookContext().getTargetModel(AwsSqsQueueTargetModel.class);

 final AwsSqsQueue queue = targetModel.getResourceProperties();
 return validateSQSQueueEncryption(queue);
 } else {
 throw new UnsupportedTargetException(targetName);
 }
 }

 private HookProgressEvent<CallbackContext> validateS3BucketEncryption(final
 AwsS3Bucket bucket, final String requiredEncryptionAlgorithm) {
 HookStatus resultStatus = null;
 String resultMessage = null;

 if (bucket != null) {
 final BucketEncryption bucketEncryption = bucket.getBucketEncryption();
 if (bucketEncryption != null) {
 final List<ServerSideEncryptionRule> serverSideEncryptionRules =
 bucketEncryption.getServerSideEncryptionConfiguration();
 if (CollectionUtils.isNotEmpty(serverSideEncryptionRules)) {
 for (final ServerSideEncryptionRule rule :
 serverSideEncryptionRules) {

Crochets de modélisation 107

CloudFormation Guide de l'utilisateur de Hooks

 final Boolean bucketKeyEnabled =
 rule.getBucketKeyEnabled();
 if (bucketKeyEnabled) {
 final ServerSideEncryptionByDefault
 serverSideEncryptionByDefault = rule.getServerSideEncryptionByDefault();

 final String encryptionAlgorithm =
 serverSideEncryptionByDefault.getSSEAlgorithm();
 final String kmsKeyId =
 serverSideEncryptionByDefault.getKMSMasterKeyID(); // "KMSMasterKeyID" is name of
 the property for an AWS::S3::Bucket;

 if (!StringUtils.equals(encryptionAlgorithm,
 requiredEncryptionAlgorithm) && StringUtils.isBlank(kmsKeyId)) {
 resultStatus = HookStatus.FAILED;
 resultMessage = "KMS Key ID not set
 and SSE Encryption Algorithm is incorrect for bucket with name: " +
 bucket.getBucketName();
 } else if (!StringUtils.equals(encryptionAlgorithm,
 requiredEncryptionAlgorithm)) {
 resultStatus = HookStatus.FAILED;
 resultMessage = "SSE Encryption Algorithm is
 incorrect for bucket with name: " + bucket.getBucketName();
 } else if (StringUtils.isBlank(kmsKeyId)) {
 resultStatus = HookStatus.FAILED;
 resultMessage = "KMS Key ID not set for bucket with
 name: " + bucket.getBucketName();
 } else {
 resultStatus = HookStatus.SUCCESS;
 resultMessage = "Successfully invoked
 PreCreateHookHandler for target: AWS::S3::Bucket";
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "Bucket key not enabled for bucket with
 name: " + bucket.getBucketName();
 }

 if (resultStatus == HookStatus.FAILED) {
 break;
 }
 }
 } else {
 resultStatus = HookStatus.FAILED;

Crochets de modélisation 108

CloudFormation Guide de l'utilisateur de Hooks

 resultMessage = "No SSE Encryption configurations for bucket
 with name: " + bucket.getBucketName();
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "Bucket Encryption not enabled for bucket with
 name: " + bucket.getBucketName();
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "Resource properties for S3 Bucket target model are
 empty";
 }

 return HookProgressEvent.<CallbackContext>builder()
 .status(resultStatus)
 .message(resultMessage)
 .errorCode(resultStatus == HookStatus.FAILED ?
 HandlerErrorCode.ResourceConflict : null)
 .build();
 }

 private HookProgressEvent<CallbackContext> validateSQSQueueEncryption(final
 AwsSqsQueue queue) {
 if (queue == null) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .message("Resource properties for SQS Queue target model are
 empty")
 .errorCode(HandlerErrorCode.ResourceConflict)
 .build();
 }

 final String kmsKeyId = queue.getKmsMasterKeyId(); // "KmsMasterKeyId" is
 name of the property for an AWS::SQS::Queue
 if (StringUtils.isBlank(kmsKeyId)) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .message("Server side encryption turned off for queue with
 name: " + queue.getQueueName())
 .errorCode(HandlerErrorCode.ResourceConflict)
 .build();
 }

Crochets de modélisation 109

CloudFormation Guide de l'utilisateur de Hooks

 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.SUCCESS)
 .message("Successfully invoked PreCreateHookHandler for target:
 AWS::SQS::Queue")
 .build();
 }
}

Mettre à jour le preCreate test

1. Dans votreIDE, ouvrez le PreCreateHandlerTest.java fichier situé dans le src/test/
java/software/mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du PreCreateHandlerTest.java fichier par le code
suivant.

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableMap;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.BucketEncryption;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionByDefault;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import java.util.Collections;

Crochets de modélisation 110

CloudFormation Guide de l'utilisateur de Hooks

import java.util.Map;

import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.api.Assertions.assertThatExceptionOfType;
import static org.mockito.Mockito.mock;

@ExtendWith(MockitoExtension.class)
public class PreCreateHookHandlerTest {

 @Mock
 private AmazonWebServicesClientProxy proxy;

 @Mock
 private Logger logger;

 @BeforeEach
 public void setup() {
 proxy = mock(AmazonWebServicesClientProxy.class);
 logger = mock(Logger.class);
 }

 @Test
 public void handleRequest_awsSqsQueueSuccess() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsSqsQueue queue = buildSqsQueue("MyQueue", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(queue);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::SQS::Queue").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.SUCCESS, "Successfully invoked
 PreCreateHookHandler for target: AWS::SQS::Queue");
 }

 @Test
 public void handleRequest_awsS3BucketSuccess() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

Crochets de modélisation 111

CloudFormation Guide de l'utilisateur de Hooks

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", true,
 "AES256", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.SUCCESS, "Successfully invoked
 PreCreateHookHandler for target: AWS::S3::Bucket");
 }

 @Test
 public void handleRequest_awsS3BucketFail_bucketKeyNotEnabled() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", false,
 "AES256", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "Bucket key not enabled for
 bucket with name: amzn-s3-demo-bucket");
 }

 @Test
 public void handleRequest_awsS3BucketFail_incorrectSSEEncryptionAlgorithm() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

Crochets de modélisation 112

CloudFormation Guide de l'utilisateur de Hooks

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", true,
 "SHA512", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "SSE Encryption Algorithm is
 incorrect for bucket with name: amzn-s3-demo-bucket");
 }

 @Test
 public void handleRequest_awsS3BucketFail_kmsKeyIdNotSet() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", true,
 "AES256", null);
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "KMS Key ID not set for bucket
 with name: amzn-s3-demo-bucket");
 }

 @Test
 public void handleRequest_awsSqsQueueFail_serverSideEncryptionOff() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsSqsQueue queue = buildSqsQueue("MyQueue", null);
 final HookTargetModel targetModel = createHookTargetModel(queue);

Crochets de modélisation 113

CloudFormation Guide de l'utilisateur de Hooks

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::SQS::Queue").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "Server side encryption turned
 off for queue with name: MyQueue");
 }

 @Test
 public void handleRequest_unsupportedTarget() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final Map<String, Object> unsupportedTarget =
 ImmutableMap.of("ResourceName", "MyUnsupportedTarget");
 final HookTargetModel targetModel =
 createHookTargetModel(unsupportedTarget);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::Unsupported::Target").targetModel(targetModel).build())
 .build();

 assertThatExceptionOfType(UnsupportedTargetException.class)
 .isThrownBy(() -> handler.handleRequest(proxy, request, null,
 logger, typeConfiguration))
 .withMessageContaining("Unsupported target")
 .withMessageContaining("AWS::Unsupported::Target")
 .satisfies(e ->
 assertThat(e.getErrorCode()).isEqualTo(HandlerErrorCode.InvalidRequest));
 }

 private void assertResponse(final HookProgressEvent<CallbackContext> response,
 final HookStatus expectedStatus, final String expectedErrorMsg) {
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(expectedStatus);
 assertThat(response.getCallbackContext()).isNull();

Crochets de modélisation 114

CloudFormation Guide de l'utilisateur de Hooks

 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getMessage()).isNotNull();
 assertThat(response.getMessage()).isEqualTo(expectedErrorMsg);
 }

 private HookTargetModel createHookTargetModel(final Object resourceProperties)
 {
 return HookTargetModel.of(ImmutableMap.of("ResourceProperties",
 resourceProperties));
 }

 @SuppressWarnings("SameParameterValue")
 private AwsSqsQueue buildSqsQueue(final String queueName, final String
 kmsKeyId) {
 return AwsSqsQueue.builder()
 .queueName(queueName)
 .kmsMasterKeyId(kmsKeyId) // "KmsMasterKeyId" is name of the
 property for an AWS::SQS::Queue
 .build();
 }

 @SuppressWarnings("SameParameterValue")
 private AwsS3Bucket buildAwsS3Bucket(
 final String bucketName,
 final Boolean bucketKeyEnabled,
 final String sseAlgorithm,
 final String kmsKeyId
) {
 return AwsS3Bucket.builder()
 .bucketName(bucketName)
 .bucketEncryption(
 BucketEncryption.builder()
 .serverSideEncryptionConfiguration(
 Collections.singletonList(
 ServerSideEncryptionRule.builder()
 .bucketKeyEnabled(bucketKeyEnabled)
 .serverSideEncryptionByDefault(
 ServerSideEncryptionByDefault.builder()
 .sSEAlgorithm(sseAlgorithm)
 .kMSMasterKeyID(kmsKeyId) //
 "KMSMasterKeyID" is name of the property for an AWS::S3::Bucket
 .build()
).build()
)

Crochets de modélisation 115

CloudFormation Guide de l'utilisateur de Hooks

).build()
).build();
 }
}

Implémentation du preUpdate gestionnaire

Implémentez un preUpdate gestionnaire, qui démarre avant les opérations de mise à jour pour
toutes les cibles spécifiées dans le gestionnaire. Le preUpdate gestionnaire effectue les opérations
suivantes :

• Pour une AWS::S3::Bucket ressource, le Hook ne sera accepté que si les conditions suivantes
sont vraies :

• L'algorithme de chiffrement des compartiments pour un compartiment Amazon S3 n'a pas été
modifié.

Codage du preUpdate gestionnaire

1. Dans votreIDE, ouvrez le PreUpdateHookHandler.java fichier situé dans le src/main/
java/software/mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du PreUpdateHookHandler.java fichier par le code
suivant.

package com.mycompany.testing.mytesthook;

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3BucketTargetModel;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import org.apache.commons.lang3.StringUtils;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import
 software.amazon.cloudformation.proxy.hook.targetmodel.ResourceHookTargetModel;

Crochets de modélisation 116

CloudFormation Guide de l'utilisateur de Hooks

import java.util.List;

public class PreUpdateHookHandler extends BaseHookHandler<TypeConfigurationModel,
 CallbackContext> {

 @Override
 public HookProgressEvent<CallbackContext> handleRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final Logger logger,
 final TypeConfigurationModel typeConfiguration) {

 final String targetName = request.getHookContext().getTargetName();
 if ("AWS::S3::Bucket".equals(targetName)) {
 final ResourceHookTargetModel<AwsS3Bucket> targetModel =
 request.getHookContext().getTargetModel(AwsS3BucketTargetModel.class);

 final AwsS3Bucket bucketProperties =
 targetModel.getResourceProperties();
 final AwsS3Bucket previousBucketProperties =
 targetModel.getPreviousResourceProperties();

 return validateBucketEncryptionRulesNotUpdated(bucketProperties,
 previousBucketProperties);
 } else {
 throw new UnsupportedTargetException(targetName);
 }
 }

 private HookProgressEvent<CallbackContext>
 validateBucketEncryptionRulesNotUpdated(final AwsS3Bucket resourceProperties,
 final AwsS3Bucket previousResourceProperties) {
 final List<ServerSideEncryptionRule> bucketEncryptionConfigs =
 resourceProperties.getBucketEncryption().getServerSideEncryptionConfiguration();
 final List<ServerSideEncryptionRule> previousBucketEncryptionConfigs =
 previousResourceProperties.getBucketEncryption().getServerSideEncryptionConfiguration();

 if (bucketEncryptionConfigs.size() !=
 previousBucketEncryptionConfigs.size()) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .errorCode(HandlerErrorCode.NotUpdatable)

Crochets de modélisation 117

CloudFormation Guide de l'utilisateur de Hooks

 .message(
 String.format(
 "Current number of bucket encryption configs does not
 match previous. Current has %d configs while previously there were %d configs",
 bucketEncryptionConfigs.size(),
 previousBucketEncryptionConfigs.size()
)
).build();
 }

 for (int i = 0; i < bucketEncryptionConfigs.size(); ++i) {
 final String currentEncryptionAlgorithm =
 bucketEncryptionConfigs.get(i).getServerSideEncryptionByDefault().getSSEAlgorithm();
 final String previousEncryptionAlgorithm =
 previousBucketEncryptionConfigs.get(i).getServerSideEncryptionByDefault().getSSEAlgorithm();

 if (!StringUtils.equals(currentEncryptionAlgorithm,
 previousEncryptionAlgorithm)) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .errorCode(HandlerErrorCode.NotUpdatable)
 .message(
 String.format(
 "Bucket Encryption algorithm can not be changed once
 set. The encryption algorithm was changed to '%s' from '%s'.",
 currentEncryptionAlgorithm,
 previousEncryptionAlgorithm
)
)
 .build();
 }
 }

 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.SUCCESS)
 .message("Successfully invoked PreUpdateHookHandler for target:
 AWS::SQS::Queue")
 .build();
 }
}

Crochets de modélisation 118

CloudFormation Guide de l'utilisateur de Hooks

Mettre à jour le preUpdate test

1. Dans votreIDE, ouvrez le PreUpdateHandlerTest.java fichier du src/main/java/com/
mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du PreUpdateHandlerTest.java fichier par le code
suivant.

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableMap;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.BucketEncryption;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionByDefault;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import java.util.Arrays;
import java.util.stream.Stream;

import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.api.Assertions.assertThatExceptionOfType;
import static org.mockito.Mockito.mock;

@ExtendWith(MockitoExtension.class)
public class PreUpdateHookHandlerTest {

 @Mock
 private AmazonWebServicesClientProxy proxy;

Crochets de modélisation 119

CloudFormation Guide de l'utilisateur de Hooks

 @Mock
 private Logger logger;

 @BeforeEach
 public void setup() {
 proxy = mock(AmazonWebServicesClientProxy.class);
 logger = mock(Logger.class);
 }

 @Test
 public void handleRequest_awsS3BucketSuccess() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final ServerSideEncryptionRule serverSideEncryptionRule =
 buildServerSideEncryptionRule("AES256");
 final AwsS3Bucket resourceProperties = buildAwsS3Bucket("amzn-s3-demo-
bucket", serverSideEncryptionRule);
 final AwsS3Bucket previousResourceProperties = buildAwsS3Bucket("amzn-s3-
demo-bucket", serverSideEncryptionRule);
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.SUCCESS, "Successfully invoked
 PreUpdateHookHandler for target: AWS::SQS::Queue");
 }

 @Test
 public void handleRequest_awsS3BucketFail_bucketEncryptionConfigsDontMatch() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final ServerSideEncryptionRule[] serverSideEncryptionRules =
 Stream.of("AES256", "SHA512", "AES32")
 .map(this::buildServerSideEncryptionRule)
 .toArray(ServerSideEncryptionRule[]::new);

Crochets de modélisation 120

CloudFormation Guide de l'utilisateur de Hooks

 final AwsS3Bucket resourceProperties = buildAwsS3Bucket("amzn-s3-demo-
bucket", serverSideEncryptionRules[0]);
 final AwsS3Bucket previousResourceProperties = buildAwsS3Bucket("amzn-s3-
demo-bucket", serverSideEncryptionRules);
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "Current number of bucket
 encryption configs does not match previous. Current has 1 configs while previously
 there were 3 configs");
 }

 @Test
 public void
 handleRequest_awsS3BucketFail_bucketEncryptionAlgorithmDoesNotMatch() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final AwsS3Bucket resourceProperties = buildAwsS3Bucket("amzn-s3-demo-
bucket", buildServerSideEncryptionRule("SHA512"));
 final AwsS3Bucket previousResourceProperties = buildAwsS3Bucket("amzn-s3-
demo-bucket", buildServerSideEncryptionRule("AES256"));
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

Crochets de modélisation 121

CloudFormation Guide de l'utilisateur de Hooks

 assertResponse(response, HookStatus.FAILED, String.format("Bucket
 Encryption algorithm can not be changed once set. The encryption algorithm was
 changed to '%s' from '%s'.", "SHA512", "AES256"));
 }

 @Test
 public void handleRequest_unsupportedTarget() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final Object resourceProperties = ImmutableMap.of("FileSizeLimit", 256);
 final Object previousResourceProperties = ImmutableMap.of("FileSizeLimit",
 512);
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::Unsupported::Target").targetModel(targetModel).build())
 .build();

 assertThatExceptionOfType(UnsupportedTargetException.class)
 .isThrownBy(() -> handler.handleRequest(proxy, request, null,
 logger, typeConfiguration))
 .withMessageContaining("Unsupported target")
 .withMessageContaining("AWS::Unsupported::Target")
 .satisfies(e ->
 assertThat(e.getErrorCode()).isEqualTo(HandlerErrorCode.InvalidRequest));
 }

 private void assertResponse(final HookProgressEvent<CallbackContext> response,
 final HookStatus expectedStatus, final String expectedErrorMsg) {
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(expectedStatus);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getMessage()).isNotNull();
 assertThat(response.getMessage()).isEqualTo(expectedErrorMsg);
 }

 private HookTargetModel createHookTargetModel(final Object resourceProperties,
 final Object previousResourceProperties) {
 return HookTargetModel.of(

Crochets de modélisation 122

CloudFormation Guide de l'utilisateur de Hooks

 ImmutableMap.of(
 "ResourceProperties", resourceProperties,
 "PreviousResourceProperties", previousResourceProperties
)
);
 }

 @SuppressWarnings("SameParameterValue")
 private AwsS3Bucket buildAwsS3Bucket(
 final String bucketName,
 final ServerSideEncryptionRule ...serverSideEncryptionRules
) {
 return AwsS3Bucket.builder()
 .bucketName(bucketName)
 .bucketEncryption(
 BucketEncryption.builder()
 .serverSideEncryptionConfiguration(
 Arrays.asList(serverSideEncryptionRules)
).build()
).build();
 }

 private ServerSideEncryptionRule buildServerSideEncryptionRule(final String
 encryptionAlgorithm) {
 return ServerSideEncryptionRule.builder()
 .bucketKeyEnabled(true)
 .serverSideEncryptionByDefault(
 ServerSideEncryptionByDefault.builder()
 .sSEAlgorithm(encryptionAlgorithm)
 .build()
).build();
 }
}

Implémentation du preDelete gestionnaire

Implémentez un preDelete gestionnaire, qui démarre avant les opérations de suppression pour
toutes les cibles spécifiées dans le gestionnaire. Le preDelete gestionnaire effectue les opérations
suivantes :

• Pour une AWS::S3::Bucket ressource, le Hook ne sera accepté que si les conditions suivantes
sont vraies :

Crochets de modélisation 123

CloudFormation Guide de l'utilisateur de Hooks

• Vérifie que les ressources minimales requises pour les plaintes existeront dans le compte après
la suppression de la ressource.

• Le montant minimum de ressources requises pour les réclamations est défini dans la
configuration de type du Hook.

Codage du preDelete gestionnaire

1. Dans votreIDE, ouvrez le PreDeleteHookHandler.java fichier du src/main/java/com/
mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du PreDeleteHookHandler.java fichier par le code
suivant.

package com.mycompany.testing.mytesthook;

import com.google.common.annotations.VisibleForTesting;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3BucketTargetModel;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueueTargetModel;
import org.apache.commons.lang3.StringUtils;
import org.apache.commons.lang3.math.NumberUtils;
import software.amazon.awssdk.services.cloudformation.CloudFormationClient;
import
 software.amazon.awssdk.services.cloudformation.model.CloudFormationException;
import
 software.amazon.awssdk.services.cloudformation.model.DescribeStackResourceRequest;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.Bucket;
import software.amazon.awssdk.services.s3.model.S3Exception;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesResponse;
import software.amazon.awssdk.services.sqs.model.QueueAttributeName;
import software.amazon.awssdk.services.sqs.model.SqsException;
import software.amazon.cloudformation.exceptions.CfnGeneralServiceException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;

Crochets de modélisation 124

CloudFormation Guide de l'utilisateur de Hooks

import software.amazon.cloudformation.proxy.ProxyClient;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;
import
 software.amazon.cloudformation.proxy.hook.targetmodel.ResourceHookTargetModel;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Objects;
import java.util.stream.Collectors;

public class PreDeleteHookHandler extends BaseHookHandlerStd {

 private ProxyClient<S3Client> s3Client;
 private ProxyClient<SqsClient> sqsClient;

 @Override
 protected ProgressEvent<HookTargetModel, CallbackContext>
 handleS3BucketRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<S3Client> proxyClient,
 final TypeConfigurationModel typeConfiguration
) {
 final HookContext hookContext = request.getHookContext();
 final String targetName = hookContext.getTargetName();
 if (!AwsS3Bucket.TYPE_NAME.equals(targetName)) {
 throw new RuntimeException(String.format("Request target type [%s] is
 not 'AWS::S3::Bucket'", targetName));
 }
 this.s3Client = proxyClient;

 final String encryptionAlgorithm =
 typeConfiguration.getEncryptionAlgorithm();
 final int minBuckets =
 NumberUtils.toInt(typeConfiguration.getMinBuckets());

 final ResourceHookTargetModel<AwsS3Bucket> targetModel =
 hookContext.getTargetModel(AwsS3BucketTargetModel.class);
 final List<String> buckets = listBuckets().stream()

Crochets de modélisation 125

CloudFormation Guide de l'utilisateur de Hooks

 .filter(b -> !StringUtils.equals(b,
 targetModel.getResourceProperties().getBucketName()))
 .collect(Collectors.toList());

 final List<String> compliantBuckets = new ArrayList<>();
 for (final String bucket : buckets) {
 if (getBucketSSEAlgorithm(bucket).contains(encryptionAlgorithm)) {
 compliantBuckets.add(bucket);
 }

 if (compliantBuckets.size() >= minBuckets) {
 return ProgressEvent.<HookTargetModel, CallbackContext>builder()
 .status(OperationStatus.SUCCESS)
 .message("Successfully invoked PreDeleteHookHandler for
 target: AWS::S3::Bucket")
 .build();
 }
 }

 return ProgressEvent.<HookTargetModel, CallbackContext>builder()
 .status(OperationStatus.FAILED)
 .errorCode(HandlerErrorCode.NonCompliant)
 .message(String.format("Failed to meet minimum of [%d] encrypted
 buckets.", minBuckets))
 .build();
 }

 @Override
 protected ProgressEvent<HookTargetModel, CallbackContext>
 handleSqsQueueRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<SqsClient> proxyClient,
 final TypeConfigurationModel typeConfiguration
) {
 final HookContext hookContext = request.getHookContext();
 final String targetName = hookContext.getTargetName();
 if (!AwsSqsQueue.TYPE_NAME.equals(targetName)) {
 throw new RuntimeException(String.format("Request target type [%s] is
 not 'AWS::SQS::Queue'", targetName));
 }
 this.sqsClient = proxyClient;
 final int minQueues = NumberUtils.toInt(typeConfiguration.getMinQueues());

Crochets de modélisation 126

CloudFormation Guide de l'utilisateur de Hooks

 final ResourceHookTargetModel<AwsSqsQueue> targetModel =
 hookContext.getTargetModel(AwsSqsQueueTargetModel.class);

 final String queueName =
 Objects.toString(targetModel.getResourceProperties().get("QueueName"), null);

 String targetQueueUrl = null;
 if (queueName != null) {
 try {
 targetQueueUrl = sqsClient.injectCredentialsAndInvokeV2(
 GetQueueUrlRequest.builder().queueName(
 queueName
).build(),
 sqsClient.client()::getQueueUrl
).queueUrl();
 } catch (SqsException e) {
 log(String.format("Error while calling GetQueueUrl API for queue
 name [%s]: %s", queueName, e.getMessage()));
 }
 } else {
 log("Queue name is empty, attempting to get queue's physical ID");
 try {
 final ProxyClient<CloudFormationClient> cfnClient =
 proxy.newProxy(ClientBuilder::createCloudFormationClient);
 targetQueueUrl = cfnClient.injectCredentialsAndInvokeV2(
 DescribeStackResourceRequest.builder()
 .stackName(hookContext.getTargetLogicalId())

 .logicalResourceId(hookContext.getTargetLogicalId())
 .build(),
 cfnClient.client()::describeStackResource
).stackResourceDetail().physicalResourceId();
 } catch (CloudFormationException e) {
 log(String.format("Error while calling DescribeStackResource API
 for queue name: %s", e.getMessage()));
 }
 }

 // Creating final variable for the filter lambda
 final String finalTargetQueueUrl = targetQueueUrl;

 final List<String> compliantQueues = new ArrayList<>();

Crochets de modélisation 127

CloudFormation Guide de l'utilisateur de Hooks

 String nextToken = null;
 do {
 final ListQueuesRequest req =
 Translator.createListQueuesRequest(nextToken);
 final ListQueuesResponse res =
 sqsClient.injectCredentialsAndInvokeV2(req, sqsClient.client()::listQueues);
 final List<String> queueUrls = res.queueUrls().stream()
 .filter(q -> !StringUtils.equals(q, finalTargetQueueUrl))
 .collect(Collectors.toList());

 for (final String queueUrl : queueUrls) {
 if (isQueueEncrypted(queueUrl)) {
 compliantQueues.add(queueUrl);
 }

 if (compliantQueues.size() >= minQueues) {
 return ProgressEvent.<HookTargetModel,
 CallbackContext>builder()
 .status(OperationStatus.SUCCESS)
 .message("Successfully invoked PreDeleteHookHandler for
 target: AWS::SQS::Queue")
 .build();
 }
 nextToken = res.nextToken();
 }
 } while (nextToken != null);

 return ProgressEvent.<HookTargetModel, CallbackContext>builder()
 .status(OperationStatus.FAILED)
 .errorCode(HandlerErrorCode.NonCompliant)
 .message(String.format("Failed to meet minimum of [%d] encrypted
 queues.", minQueues))
 .build();
 }

 private List<String> listBuckets() {
 try {
 return
 s3Client.injectCredentialsAndInvokeV2(Translator.createListBucketsRequest(),
 s3Client.client()::listBuckets)
 .buckets()
 .stream()
 .map(Bucket::name)
 .collect(Collectors.toList());

Crochets de modélisation 128

CloudFormation Guide de l'utilisateur de Hooks

 } catch (S3Exception e) {
 throw new CfnGeneralServiceException("Error while calling S3
 ListBuckets API", e);
 }
 }

 @VisibleForTesting
 Collection<String> getBucketSSEAlgorithm(final String bucket) {
 try {
 return
 s3Client.injectCredentialsAndInvokeV2(Translator.createGetBucketEncryptionRequest(bucket),
 s3Client.client()::getBucketEncryption)
 .serverSideEncryptionConfiguration()
 .rules()
 .stream()
 .filter(r ->
 Objects.nonNull(r.applyServerSideEncryptionByDefault()))
 .map(r ->
 r.applyServerSideEncryptionByDefault().sseAlgorithmAsString())
 .collect(Collectors.toSet());
 } catch (S3Exception e) {
 return new HashSet<>();
 }
 }

 @VisibleForTesting
 boolean isQueueEncrypted(final String queueUrl) {
 try {
 final GetQueueAttributesRequest request =
 GetQueueAttributesRequest.builder()
 .queueUrl(queueUrl)
 .attributeNames(QueueAttributeName.KMS_MASTER_KEY_ID)
 .build();
 final String kmsKeyId = sqsClient.injectCredentialsAndInvokeV2(request,
 sqsClient.client()::getQueueAttributes)
 .attributes()
 .get(QueueAttributeName.KMS_MASTER_KEY_ID);

 return StringUtils.isNotBlank(kmsKeyId);
 } catch (SqsException e) {
 throw new CfnGeneralServiceException("Error while calling SQS
 GetQueueAttributes API", e);
 }
 }

Crochets de modélisation 129

CloudFormation Guide de l'utilisateur de Hooks

}

Mettre à jour le preDelete gestionnaire

1. Dans votreIDE, ouvrez le PreDeleteHookHandler.java fichier du src/main/java/com/
mycompany/testing/mytesthook dossier.

2. Remplacez l'intégralité du contenu du PreDeleteHookHandler.java fichier par le code
suivant.

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.Mockito;
import org.mockito.junit.jupiter.MockitoExtension;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.Bucket;
import software.amazon.awssdk.services.s3.model.GetBucketEncryptionRequest;
import software.amazon.awssdk.services.s3.model.GetBucketEncryptionResponse;
import software.amazon.awssdk.services.s3.model.ListBucketsRequest;
import software.amazon.awssdk.services.s3.model.ListBucketsResponse;
import software.amazon.awssdk.services.s3.model.S3Exception;
import software.amazon.awssdk.services.s3.model.ServerSideEncryptionByDefault;
import software.amazon.awssdk.services.s3.model.ServerSideEncryptionConfiguration;
import software.amazon.awssdk.services.s3.model.ServerSideEncryptionRule;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesResponse;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlResponse;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesResponse;
import software.amazon.awssdk.services.sqs.model.QueueAttributeName;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;

Crochets de modélisation 130

CloudFormation Guide de l'utilisateur de Hooks

import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.stream.Collectors;

import static org.mockito.ArgumentMatchers.any;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.never;
import static org.mockito.Mockito.times;
import static org.mockito.Mockito.verify;
import static org.mockito.Mockito.when;

@ExtendWith(MockitoExtension.class)
public class PreDeleteHookHandlerTest extends AbstractTestBase {

 @Mock private S3Client s3Client;
 @Mock private SqsClient sqsClient;
 @Mock private Logger logger;

 @BeforeEach
 public void setup() {
 s3Client = mock(S3Client.class);
 sqsClient = mock(SqsClient.class);
 logger = mock(Logger.class);
 }

 @Test
 public void handleRequest_awsS3BucketSuccess() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<Bucket> bucketList = ImmutableList.of(
 Bucket.builder().name("bucket1").build(),
 Bucket.builder().name("bucket2").build(),
 Bucket.builder().name("toBeDeletedBucket").build(),
 Bucket.builder().name("bucket3").build(),
 Bucket.builder().name("bucket4").build(),
 Bucket.builder().name("bucket5").build()
);

Crochets de modélisation 131

CloudFormation Guide de l'utilisateur de Hooks

 final ListBucketsResponse mockResponse =
 ListBucketsResponse.builder().buckets(bucketList).build();

 when(s3Client.listBuckets(any(ListBucketsRequest.class))).thenReturn(mockResponse);
 when(s3Client.getBucketEncryption(any(GetBucketEncryptionRequest.class)))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256", "aws:kms"))
 .thenThrow(S3Exception.builder().message("No Encrypt").build())
 .thenReturn(buildGetBucketEncryptionResponse("aws:kms"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"));
 setServiceClient(s3Client);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .encryptionAlgorithm("AES256")
 .minBuckets("3")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::S3::Bucket")
 .targetModel(
 createHookTargetModel(
 AwsS3Bucket.builder()
 .bucketName("toBeDeletedBucket")
 .build()
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(s3Client,
 times(5)).getBucketEncryption(any(GetBucketEncryptionRequest.class));
 verify(handler, never()).getBucketSSEAlgorithm("toBeDeletedBucket");

 assertResponse(response, OperationStatus.SUCCESS, "Successfully invoked
 PreDeleteHookHandler for target: AWS::S3::Bucket");
 }

Crochets de modélisation 132

CloudFormation Guide de l'utilisateur de Hooks

 @Test
 public void handleRequest_awsSqsQueueSuccess() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<String> queueUrls = ImmutableList.of(
 "https://queue1.queue",
 "https://queue2.queue",
 "https://toBeDeletedQueue.queue",
 "https://queue3.queue",
 "https://queue4.queue",
 "https://queue5.queue"
);

 when(sqsClient.getQueueUrl(any(GetQueueUrlRequest.class)))
 .thenReturn(GetQueueUrlResponse.builder().queueUrl("https://
toBeDeletedQueue.queue").build());
 when(sqsClient.listQueues(any(ListQueuesRequest.class)))

 .thenReturn(ListQueuesResponse.builder().queueUrls(queueUrls).build());
 when(sqsClient.getQueueAttributes(any(GetQueueAttributesRequest.class)))

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build());
 setServiceClient(sqsClient);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .minQueues("3")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()

Crochets de modélisation 133

CloudFormation Guide de l'utilisateur de Hooks

 .targetName("AWS::SQS::Queue")
 .targetModel(
 createHookTargetModel(
 ImmutableMap.of("QueueName", "toBeDeletedQueue")
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(sqsClient,
 times(5)).getQueueAttributes(any(GetQueueAttributesRequest.class));
 verify(handler, never()).isQueueEncrypted("toBeDeletedQueue");

 assertResponse(response, OperationStatus.SUCCESS, "Successfully invoked
 PreDeleteHookHandler for target: AWS::SQS::Queue");
 }

 @Test
 public void handleRequest_awsS3BucketFailed() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<Bucket> bucketList = ImmutableList.of(
 Bucket.builder().name("bucket1").build(),
 Bucket.builder().name("bucket2").build(),
 Bucket.builder().name("toBeDeletedBucket").build(),
 Bucket.builder().name("bucket3").build(),
 Bucket.builder().name("bucket4").build(),
 Bucket.builder().name("bucket5").build()
);
 final ListBucketsResponse mockResponse =
 ListBucketsResponse.builder().buckets(bucketList).build();

 when(s3Client.listBuckets(any(ListBucketsRequest.class))).thenReturn(mockResponse);
 when(s3Client.getBucketEncryption(any(GetBucketEncryptionRequest.class)))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256", "aws:kms"))
 .thenThrow(S3Exception.builder().message("No Encrypt").build())
 .thenReturn(buildGetBucketEncryptionResponse("aws:kms"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"));
 setServiceClient(s3Client);

Crochets de modélisation 134

CloudFormation Guide de l'utilisateur de Hooks

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .encryptionAlgorithm("AES256")
 .minBuckets("10")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::S3::Bucket")
 .targetModel(
 createHookTargetModel(
 AwsS3Bucket.builder()
 .bucketName("toBeDeletedBucket")
 .build()
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(s3Client,
 times(5)).getBucketEncryption(any(GetBucketEncryptionRequest.class));
 verify(handler, never()).getBucketSSEAlgorithm("toBeDeletedBucket");

 assertResponse(response, OperationStatus.FAILED, "Failed to meet minimum of
 [10] encrypted buckets.");
 }

 @Test
 public void handleRequest_awsSqsQueueFailed() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<String> queueUrls = ImmutableList.of(
 "https://queue1.queue",
 "https://queue2.queue",
 "https://toBeDeletedQueue.queue",
 "https://queue3.queue",
 "https://queue4.queue",

Crochets de modélisation 135

CloudFormation Guide de l'utilisateur de Hooks

 "https://queue5.queue"
);

 when(sqsClient.getQueueUrl(any(GetQueueUrlRequest.class)))
 .thenReturn(GetQueueUrlResponse.builder().queueUrl("https://
toBeDeletedQueue.queue").build());
 when(sqsClient.listQueues(any(ListQueuesRequest.class)))

 .thenReturn(ListQueuesResponse.builder().queueUrls(queueUrls).build());
 when(sqsClient.getQueueAttributes(any(GetQueueAttributesRequest.class)))

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build());
 setServiceClient(sqsClient);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .minQueues("10")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::SQS::Queue")
 .targetModel(
 createHookTargetModel(
 ImmutableMap.of("QueueName", "toBeDeletedQueue")
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

Crochets de modélisation 136

CloudFormation Guide de l'utilisateur de Hooks

 verify(sqsClient,
 times(5)).getQueueAttributes(any(GetQueueAttributesRequest.class));
 verify(handler, never()).isQueueEncrypted("toBeDeletedQueue");

 assertResponse(response, OperationStatus.FAILED, "Failed to meet minimum of
 [10] encrypted queues.");
 }

 private GetBucketEncryptionResponse buildGetBucketEncryptionResponse(final
 String ...sseAlgorithm) {
 return buildGetBucketEncryptionResponse(
 Arrays.stream(sseAlgorithm)
 .map(a ->
 ServerSideEncryptionRule.builder().applyServerSideEncryptionByDefault(
 ServerSideEncryptionByDefault.builder()
 .sseAlgorithm(a)
 .build()
).build()
)
 .collect(Collectors.toList())
);
 }

 private GetBucketEncryptionResponse buildGetBucketEncryptionResponse(final
 Collection<ServerSideEncryptionRule> rules) {
 return GetBucketEncryptionResponse.builder()
 .serverSideEncryptionConfiguration(
 ServerSideEncryptionConfiguration.builder().rules(
 rules
).build()
).build();
 }
}

Modélisation de CloudFormation Hooks personnalisés à l'aide de Python

La modélisation de CloudFormation Hooks personnalisés implique la création d'un schéma qui définit
le Hook, ses propriétés et ses attributs. Ce didacticiel vous explique comment modéliser des Hooks
personnalisés à l'aide de Python.

Crochets de modélisation 137

CloudFormation Guide de l'utilisateur de Hooks

Étape 1 : Générer le package du projet Hook

Générez votre package de projet Hook. CloudFormation CLIcrée des fonctions de gestion vides qui
correspondent à des actions Hook spécifiques dans le cycle de vie cible, telles que définies dans la
spécification Hook.

cfn generate

La commande renvoie le résultat suivant.

Generated files for MyCompany::Testing::MyTestHook

Note

Assurez-vous que vos environnements d'exécution Lambda doivent éviter up-to-date
d'utiliser une version obsolète. Pour plus d'informations, consultez la section Mise à jour des
environnements d'exécution Lambda pour les types de ressources et les Hooks.

Étape 2 : Ajouter des gestionnaires Hook

Ajoutez votre propre code d'exécution du gestionnaire Hook aux gestionnaires que vous choisissez
d'implémenter. Par exemple, vous pouvez ajouter le code suivant pour la journalisation.

LOG.setLevel(logging.INFO)
LOG.info("Internal testing Hook triggered for target: " +
 request.hookContext.targetName);

CloudFormation CLIGénère le src/models.py fichier à partir duSchéma de configuration.

Example models.py

import sys
from dataclasses import dataclass
from inspect import getmembers, isclass
from typing import (
 AbstractSet,
 Any,
 Generic,
 Mapping,
 MutableMapping,

Crochets de modélisation 138

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/runtime-update.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/runtime-update.html

CloudFormation Guide de l'utilisateur de Hooks

 Optional,
 Sequence,
 Type,
 TypeVar,
)

from cloudformation_cli_python_lib.interface import (
 BaseModel,
 BaseHookHandlerRequest,
)
from cloudformation_cli_python_lib.recast import recast_object
from cloudformation_cli_python_lib.utils import deserialize_list

T = TypeVar("T")

def set_or_none(value: Optional[Sequence[T]]) -> Optional[AbstractSet[T]]:
 if value:
 return set(value)
 return None

@dataclass
class HookHandlerRequest(BaseHookHandlerRequest):
 pass

@dataclass
class TypeConfigurationModel(BaseModel):
 limitSize: Optional[str]
 cidr: Optional[str]
 encryptionAlgorithm: Optional[str]

 @classmethod
 def _deserialize(
 cls: Type["_TypeConfigurationModel"],
 json_data: Optional[Mapping[str, Any]],
) -> Optional["_TypeConfigurationModel"]:
 if not json_data:
 return None
 return cls(
 limitSize=json_data.get("limitSize"),
 cidr=json_data.get("cidr"),
 encryptionAlgorithm=json_data.get("encryptionAlgorithm"),

Crochets de modélisation 139

CloudFormation Guide de l'utilisateur de Hooks

)

_TypeConfigurationModel = TypeConfigurationModel

Étape 3 : Implémenter les gestionnaires Hook

Avec les classes de données Python générées, vous pouvez écrire les gestionnaires qui
implémentent réellement les fonctionnalités du Hook. Dans cet exemple, vous allez implémenter les
points preCreatepreUpdate, et preDelete d'invocation pour les gestionnaires.

Rubriques

• Implémenter le preCreate gestionnaire

• Implémenter le preUpdate gestionnaire

• Implémenter le preDelete gestionnaire

• Implémenter un gestionnaire Hook

Implémenter le preCreate gestionnaire

Le preCreate gestionnaire vérifie les paramètres de chiffrement côté serveur pour une ressource
ou. AWS::S3::Bucket AWS::SQS::Queue

• Pour une AWS::S3::Bucket ressource, le Hook ne sera accepté que si les conditions suivantes
sont vraies.

• Le chiffrement du compartiment Amazon S3 est défini.

• La clé du compartiment Amazon S3 est activée pour le compartiment.

• L'algorithme de chiffrement défini pour le compartiment Amazon S3 est le bon algorithme requis.

• L'identifiant de la AWS Key Management Service clé est défini.

• Pour une AWS::SQS::Queue ressource, le Hook ne sera accepté que si les conditions suivantes
sont vraies.

• L'identifiant de la AWS Key Management Service clé est défini.

Crochets de modélisation 140

CloudFormation Guide de l'utilisateur de Hooks

Implémenter le preUpdate gestionnaire

Implémentez un preUpdate gestionnaire qui démarre avant les opérations de mise à jour pour
toutes les cibles spécifiées dans le gestionnaire. Le preUpdate gestionnaire effectue les opérations
suivantes :

• Pour une AWS::S3::Bucket ressource, le Hook ne sera accepté que si les conditions suivantes
sont vraies :

• L'algorithme de chiffrement des compartiments pour un compartiment Amazon S3 n'a pas été
modifié.

Implémenter le preDelete gestionnaire

Implémentez un preDelete gestionnaire, qui démarre avant les opérations de suppression pour
toutes les cibles spécifiées dans le gestionnaire. Le preDelete gestionnaire effectue les opérations
suivantes :

• Pour une AWS::S3::Bucket ressource, le Hook ne sera accepté que si les conditions suivantes
sont vraies :

• Vérifie que les ressources conformes minimales requises existeront dans le compte après la
suppression de la ressource.

• Le montant minimum de ressources conformes requis est défini dans la configuration du Hook.

Implémenter un gestionnaire Hook

1. Dans votreIDE, ouvrez le handlers.py fichier situé dans le src dossier.

2. Remplacez l'intégralité du contenu du handlers.py fichier par le code suivant.

Example handlers.py

import logging
from typing import Any, MutableMapping, Optional
import botocore

from cloudformation_cli_python_lib import (
 BaseHookHandlerRequest,
 HandlerErrorCode,
 Hook,
 HookInvocationPoint,

Crochets de modélisation 141

CloudFormation Guide de l'utilisateur de Hooks

 OperationStatus,
 ProgressEvent,
 SessionProxy,
 exceptions,
)

from .models import HookHandlerRequest, TypeConfigurationModel

Use this logger to forward log messages to CloudWatch Logs.
LOG = logging.getLogger(__name__)
TYPE_NAME = "MyCompany::Testing::MyTestHook"

LOG.setLevel(logging.INFO)

hook = Hook(TYPE_NAME, TypeConfigurationModel)
test_entrypoint = hook.test_entrypoint

def _validate_s3_bucket_encryption(
 bucket: MutableMapping[str, Any], required_encryption_algorithm: str
) -> ProgressEvent:
 status = None
 message = ""
 error_code = None

 if bucket:
 bucket_name = bucket.get("BucketName")

 bucket_encryption = bucket.get("BucketEncryption")
 if bucket_encryption:
 server_side_encryption_rules = bucket_encryption.get(
 "ServerSideEncryptionConfiguration"
)
 if server_side_encryption_rules:
 for rule in server_side_encryption_rules:
 bucket_key_enabled = rule.get("BucketKeyEnabled")
 if bucket_key_enabled:
 server_side_encryption_by_default = rule.get(
 "ServerSideEncryptionByDefault"
)

 encryption_algorithm =
 server_side_encryption_by_default.get(
 "SSEAlgorithm"

Crochets de modélisation 142

CloudFormation Guide de l'utilisateur de Hooks

)
 kms_key_id = server_side_encryption_by_default.get(
 "KMSMasterKeyID"
) # "KMSMasterKeyID" is name of the property for an
 AWS::S3::Bucket

 if encryption_algorithm == required_encryption_algorithm:
 if encryption_algorithm == "aws:kms" and not
 kms_key_id:
 status = OperationStatus.FAILED
 message = f"KMS Key ID not set for bucket with
 name: f{bucket_name}"
 else:
 status = OperationStatus.SUCCESS
 message = f"Successfully invoked
 PreCreateHookHandler for AWS::S3::Bucket with name: {bucket_name}"
 else:
 status = OperationStatus.FAILED
 message = f"SSE Encryption Algorithm is incorrect for
 bucket with name: {bucket_name}"
 else:
 status = OperationStatus.FAILED
 message = f"Bucket key not enabled for bucket with name:
 {bucket_name}"

 if status == OperationStatus.FAILED:
 break
 else:
 status = OperationStatus.FAILED
 message = f"No SSE Encryption configurations for bucket with name:
 {bucket_name}"
 else:
 status = OperationStatus.FAILED
 message = (
 f"Bucket Encryption not enabled for bucket with name:
 {bucket_name}"
)
 else:
 status = OperationStatus.FAILED
 message = "Resource properties for S3 Bucket target model are empty"

 if status == OperationStatus.FAILED:
 error_code = HandlerErrorCode.NonCompliant

Crochets de modélisation 143

CloudFormation Guide de l'utilisateur de Hooks

 return ProgressEvent(status=status, message=message, errorCode=error_code)

def _validate_sqs_queue_encryption(queue: MutableMapping[str, Any]) ->
 ProgressEvent:
 if not queue:
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message="Resource properties for SQS Queue target model are empty",
 errorCode=HandlerErrorCode.NonCompliant,
)
 queue_name = queue.get("QueueName")

 kms_key_id = queue.get(
 "KmsMasterKeyId"
) # "KmsMasterKeyId" is name of the property for an AWS::SQS::Queue
 if not kms_key_id:
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message=f"Server side encryption turned off for queue with name:
 {queue_name}",
 errorCode=HandlerErrorCode.NonCompliant,
)

 return ProgressEvent(
 status=OperationStatus.SUCCESS,
 message=f"Successfully invoked PreCreateHookHandler for
 targetAWS::SQS::Queue with name: {queue_name}",
)

@hook.handler(HookInvocationPoint.CREATE_PRE_PROVISION)
def pre_create_handler(
 session: Optional[SessionProxy],
 request: HookHandlerRequest,
 callback_context: MutableMapping[str, Any],
 type_configuration: TypeConfigurationModel,
) -> ProgressEvent:
 target_name = request.hookContext.targetName
 if "AWS::S3::Bucket" == target_name:
 return _validate_s3_bucket_encryption(
 request.hookContext.targetModel.get("resourceProperties"),
 type_configuration.encryptionAlgorithm,
)

Crochets de modélisation 144

CloudFormation Guide de l'utilisateur de Hooks

 elif "AWS::SQS::Queue" == target_name:
 return _validate_sqs_queue_encryption(
 request.hookContext.targetModel.get("resourceProperties")
)
 else:
 raise exceptions.InvalidRequest(f"Unknown target type: {target_name}")

def _validate_bucket_encryption_rules_not_updated(
 resource_properties, previous_resource_properties
) -> ProgressEvent:
 bucket_encryption_configs = resource_properties.get("BucketEncryption",
 {}).get(
 "ServerSideEncryptionConfiguration", []
)
 previous_bucket_encryption_configs = previous_resource_properties.get(
 "BucketEncryption", {}
).get("ServerSideEncryptionConfiguration", [])

 if len(bucket_encryption_configs) != len(previous_bucket_encryption_configs):
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message=f"Current number of bucket encryption configs does not
 match previous. Current has {str(len(bucket_encryption_configs))} configs while
 previously there were {str(len(previous_bucket_encryption_configs))} configs",
 errorCode=HandlerErrorCode.NonCompliant,
)

 for i in range(len(bucket_encryption_configs)):
 current_encryption_algorithm = (
 bucket_encryption_configs[i]
 .get("ServerSideEncryptionByDefault", {})
 .get("SSEAlgorithm")
)
 previous_encryption_algorithm = (
 previous_bucket_encryption_configs[i]
 .get("ServerSideEncryptionByDefault", {})
 .get("SSEAlgorithm")
)

 if current_encryption_algorithm != previous_encryption_algorithm:
 return ProgressEvent(
 status=OperationStatus.FAILED,

Crochets de modélisation 145

CloudFormation Guide de l'utilisateur de Hooks

 message=f"Bucket Encryption algorithm can not be changed once
 set. The encryption algorithm was changed to {current_encryption_algorithm} from
 {previous_encryption_algorithm}.",
 errorCode=HandlerErrorCode.NonCompliant,
)

 return ProgressEvent(
 status=OperationStatus.SUCCESS,
 message="Successfully invoked PreUpdateHookHandler for target:
 AWS::SQS::Queue",
)

def _validate_queue_encryption_not_disabled(
 resource_properties, previous_resource_properties
) -> ProgressEvent:
 if previous_resource_properties.get(
 "KmsMasterKeyId"
) and not resource_properties.get("KmsMasterKeyId"):
 return ProgressEvent(
 status=OperationStatus.FAILED,
 errorCode=HandlerErrorCode.NonCompliant,
 message="Queue encryption can not be disable",
)
 else:
 return ProgressEvent(status=OperationStatus.SUCCESS)

@hook.handler(HookInvocationPoint.UPDATE_PRE_PROVISION)
def pre_update_handler(
 session: Optional[SessionProxy],
 request: BaseHookHandlerRequest,
 callback_context: MutableMapping[str, Any],
 type_configuration: MutableMapping[str, Any],
) -> ProgressEvent:
 target_name = request.hookContext.targetName
 if "AWS::S3::Bucket" == target_name:
 resource_properties =
 request.hookContext.targetModel.get("resourceProperties")
 previous_resource_properties = request.hookContext.targetModel.get(
 "previousResourceProperties"
)

 return _validate_bucket_encryption_rules_not_updated(

Crochets de modélisation 146

CloudFormation Guide de l'utilisateur de Hooks

 resource_properties, previous_resource_properties
)
 elif "AWS::SQS::Queue" == target_name:
 resource_properties =
 request.hookContext.targetModel.get("resourceProperties")
 previous_resource_properties = request.hookContext.targetModel.get(
 "previousResourceProperties"
)

 return _validate_queue_encryption_not_disabled(
 resource_properties, previous_resource_properties
)
 else:
 raise exceptions.InvalidRequest(f"Unknown target type: {target_name}")

Passez à la rubrique suivante Enregistrer un Hook personnalisé avec CloudFormation.

Enregistrer un Hook personnalisé avec CloudFormation

Une fois que vous avez créé un Hook personnalisé, vous devez l' CloudFormation enregistrer pour
pouvoir l'utiliser. Dans cette section, vous allez apprendre à empaqueter et à enregistrer votre Hook
pour l'utiliser dans votre Compte AWS.

Package d'un Hook (Java)

Si vous avez développé votre Hook avec Java, utilisez Maven pour le packager.

Dans le répertoire de votre projet Hook, exécutez la commande suivante pour créer votre Hook,
exécuter des tests unitaires et empaqueter votre projet sous forme de JAR fichier que vous pouvez
utiliser pour soumettre votre Hook au CloudFormation registre.

mvn clean package

Enregistrer un Hook personnalisé

Pour enregistrer un Hook

1. (Facultatif) Configurez votre Région AWS nom par défaut en soumettant le us-west-2
configureopération.

$ aws configure

Enregistrement des Hooks 147

https://docs.aws.amazon.com/cli/latest/reference/configure/

CloudFormation Guide de l'utilisateur de Hooks

AWS Access Key ID [None]: <Your Access Key ID>
AWS Secret Access Key [None]: <Your Secret Key>
Default region name [None]: us-west-2
Default output format [None]: json

2. (Facultatif) La commande suivante crée et empaquette votre projet Hook sans l'enregistrer.

$ cfn submit --dry-run

3. Enregistrez votre Hook en utilisant le CloudFormation CLI submitopération.

$ cfn submit --set-default

Cette commande renvoie la commande suivante.

{‘ProgressStatus’: ‘COMPLETE’}

Résultats : Vous avez enregistré votre Hook avec succès.

Vérifier que les Hooks sont accessibles dans votre compte

Vérifiez que votre Hook est disponible dans votre région Compte AWS et dans les régions auxquelles
vous l'avez envoyé.

1. Pour vérifier votre Hook, utilisez le list-typescommande pour répertorier le Hook que vous venez
d'enregistrer et en renvoyer une description sommaire.

$ aws cloudformation list-types

La commande renvoie le résultat suivant et vous montrera également les Hooks accessibles au
public que vous pouvez activer dans votre région Compte AWS et dans votre région.

{
 "TypeSummaries": [
 {
 "Type": "HOOK",
 "TypeName": "MyCompany::Testing::MyTestHook",
 "DefaultVersionId": "00000001",
 "TypeArn": "arn:aws:cloudformation:us-west-2:ACCOUNT_ID/type/hook/
MyCompany-Testing-MyTestHook",

Enregistrement des Hooks 148

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-submit.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-types.html

CloudFormation Guide de l'utilisateur de Hooks

 "LastUpdated": "2021-08-04T23:00:03.058000+00:00",
 "Description": "Verifies S3 bucket and SQS queues properties before
 creating or updating"
 }
]
}

2. Récupérez le TypeArn depuis la list-type sortie de votre Hook et enregistrez-le.

export HOOK_TYPE_ARN=arn:aws:cloudformation:us-west-2:ACCOUNT_ID/type/hook/
MyCompany-Testing-MyTestHook

Pour savoir comment publier des Hooks destinés à un usage public, consultezHooks de publication
destinés à un usage public.

Configurer les Hooks

Après avoir développé et enregistré votre Hook, vous pouvez le configurer dans votre Hook en le
Compte AWS publiant dans le registre.

• Pour configurer un Hook dans votre compte, utilisez le SetTypeConfigurationopération. Cette
opération active les propriétés du Hook définies dans la properties section du schéma du
Hook. Dans l'exemple suivant, la minBuckets propriété est définie sur 1 dans la configuration.

Note

En activant les Hooks dans votre compte, vous autorisez un Hook à utiliser les
autorisations définies par votre Compte AWS. CloudFormation supprime les autorisations
non requises avant de les transmettre au Hook. CloudFormation recommande aux
clients ou aux utilisateurs de Hook de consulter les autorisations Hook et de connaître
les autorisations auxquelles les Hooks sont autorisés avant d'activer Hooks dans votre
compte.

Spécifiez les données de configuration de votre extension Hook enregistrée dans le même
compte et Région AWS.

$ aws cloudformation set-type-configuration --region us-west-2

Enregistrement des Hooks 149

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_SetTypeConfiguration.html

CloudFormation Guide de l'utilisateur de Hooks

 --configuration '{"CloudFormationConfiguration":{"HookConfiguration":
{"HookInvocationStatus":"ENABLED","FailureMode":"FAIL","Properties":{"minBuckets":
 "1","minQueues": "1", "encryptionAlgorithm": "aws:kms"}}}}'
 --type-arn $HOOK_TYPE_ARN

Important

Pour permettre à votre Hook d'inspecter de manière proactive la configuration de
votre stack, vous devez définir le HookInvocationStatus to ENABLED dans la
HookConfiguration section, une fois le Hook enregistré et activé dans votre compte.

Accès AWS APIs dans les gestionnaires

Si votre Hooks utilise un AWS API dans l'un de ses gestionnaires, le CFN - crée CLI
automatiquement un modèle de rôle IAM d'exécution,hook-role.yaml. Le hook-role.yaml
modèle est basé sur les autorisations spécifiées pour chaque gestionnaire dans la section
du gestionnaire du schéma Hook. Si le --role-arn drapeau n'est pas utilisé pendant le
generateopération, le rôle dans cette pile sera provisionné et utilisé comme rôle d'exécution du Hook.

Pour plus d'informations, consultez la section Accès à AWS APIs partir d'un type de ressource.

modèle hook-role.yaml

Note

Si vous choisissez de créer votre propre rôle d'exécution, nous vous
recommandons vivement de suivre le principe du moindre privilège en
autorisant uniquement le listage hooks.cloudformation.amazonaws.com
etresources.cloudformation.amazonaws.com.

Le modèle suivant utilise IAM les SQS autorisations Amazon S3 et Amazon.

AWSTemplateFormatVersion: 2010-09-09
Description: >
 This CloudFormation template creates a role assumed by CloudFormation during
 Hook operations on behalf of the customer.
Resources:
 ExecutionRole:

Enregistrement des Hooks 150

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-generate.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-develop.html#resource-type-develop-executionrole

CloudFormation Guide de l'utilisateur de Hooks

 Type: 'AWS::IAM::Role'
 Properties:
 MaxSessionDuration: 8400
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - resources.cloudformation.amazonaws.com
 - hooks.cloudformation.amazonaws.com
 Action: 'sts:AssumeRole'
 Condition:
 StringEquals:
 aws:SourceAccount: !Ref AWS::AccountId
 StringLike:
 aws:SourceArn: !Sub arn:${AWS::Partition}:cloudformation:
${AWS::Region}:${AWS::AccountId}:type/hook/MyCompany-Testing-MyTestHook/*
 Path: /
 Policies:
 - PolicyName: HookTypePolicy
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action:
 - 's3:GetEncryptionConfiguration'
 - 's3:ListBucket'
 - 's3:ListAllMyBuckets'
 - 'sqs:GetQueueAttributes'
 - 'sqs:GetQueueUrl'
 - 'sqs:ListQueues'
 Resource: '*'
Outputs:
 ExecutionRoleArn:
 Value: !GetAtt
 - ExecutionRole
 - Arn

Tester un Hook personnalisé dans votre Compte AWS

Maintenant que vous avez codé les fonctions de votre gestionnaire correspondant à un point
d'invocation, il est temps de tester votre Hook personnalisé sur une CloudFormation pile.

Crochets de test 151

CloudFormation Guide de l'utilisateur de Hooks

Le mode d'échec du Hook est défini sur FAIL si le CloudFormation modèle n'a pas approvisionné un
compartiment S3 avec les éléments suivants :

• Le chiffrement du compartiment Amazon S3 est défini.

• La clé du compartiment Amazon S3 est activée pour le compartiment.

• L'algorithme de chiffrement défini pour le compartiment Amazon S3 est le bon algorithme requis.

• L'identifiant de la AWS Key Management Service clé est défini.

Dans l'exemple suivant, créez un modèle appelé my-failed-bucket-stack.yml avec le nom de
pile my-hook-stack qui échoue à la configuration de la pile et s'arrête avant la mise à disposition
des ressources.

Tester les Hooks en provisionnant une pile

Exemple 1 : pour provisionner une pile

Provisionner une pile non conforme

1. Créez un modèle qui spécifie un compartiment S3. Par exemple, my-failed-bucket-
stack.yml.

AWSTemplateFormatVersion: 2010-09-09
Resources:
 S3Bucket:
 Type: AWS::S3::Bucket
 Properties: {}

2. Créez une pile et spécifiez votre modèle dans le AWS Command Line Interface (AWS CLI). Dans
l'exemple suivant, spécifiez le nom de la pile comme my-hook-stack et le nom du modèle
commemy-failed-bucket-stack.yml.

$ aws cloudformation create-stack \
 --stack-name my-hook-stack \
 --template-body file://my-failed-bucket-stack.yml

3. (Facultatif) Consultez la progression de votre pile en spécifiant le nom de votre pile. Dans
l'exemple suivant, spécifiez le nom de la pilemy-hook-stack.

$ aws cloudformation describe-stack-events \

Crochets de test 152

CloudFormation Guide de l'utilisateur de Hooks

 --stack-name my-hook-stack

Utilisez cette describe-stack-events opération pour voir l'échec du Hook lors de la création
du bucket. Voici un exemple de sortie de la commande.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
hook-stack/2c693970-f57e-11eb-a0fb-061a2a83f0b9",
 "EventId": "S3Bucket-CREATE_FAILED-2021-08-04T23:47:03.305Z",
 "StackName": "my-hook-stack",
 "LogicalResourceId": "S3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:47:03.305000+00:00",
 "ResourceStatus": "CREATE_FAILED",
 "ResourceStatusReason": "The following hook(s) failed:
 [MyCompany::Testing::MyTestHook]",
 "ResourceProperties": "{}",
 "ClientRequestToken": "Console-CreateStack-abe71ac2-ade4-
a762-0499-8d34d91d6a92"
 },
 ...
]
}

Résultats : L'invocation de Hook a échoué dans la configuration de la pile et a empêché le
provisionnement de la ressource.

Utiliser un CloudFormation modèle pour réussir la validation Hook

1. Pour créer une pile et passer la validation Hook, mettez à jour le modèle afin que votre ressource
utilise un compartiment S3 chiffré. Cet exemple utilise le modèlemy-encrypted-bucket-
stack.yml.

AWSTemplateFormatVersion: 2010-09-09
Description: |
 This CloudFormation template provisions an encrypted S3 Bucket
Resources:

Crochets de test 153

CloudFormation Guide de l'utilisateur de Hooks

 EncryptedS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub encryptedbucket-${AWS::Region}-${AWS::AccountId}
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: !Ref EncryptionKey
 BucketKeyEnabled: true
 EncryptionKey:
 Type: AWS::KMS::Key
 DeletionPolicy: Retain
 Properties:
 Description: KMS key used to encrypt the resource type artifacts
 EnableKeyRotation: true
 KeyPolicy:
 Version: 2012-10-17
 Statement:
 - Sid: Enable full access for owning account
 Effect: Allow
 Principal:
 AWS: !Ref AWS::AccountId
 Action: 'kms:*'
 Resource: '*'
Outputs:
 EncryptedBucketName:
 Value: !Ref EncryptedS3Bucket

Note

Les hooks ne seront pas invoqués pour les ressources ignorées.

2. Créez une pile et spécifiez votre modèle. Dans cet exemple, le nom de la pile estmy-
encrypted-bucket-stack.

$ aws cloudformation create-stack \
 --stack-name my-encrypted-bucket-stack \
 --template-body file://my-encrypted-bucket-stack.yml \

3. (Facultatif) Consultez la progression de votre pile en spécifiant le nom de la pile.

Crochets de test 154

CloudFormation Guide de l'utilisateur de Hooks

$ aws cloudformation describe-stack-events \
 --stack-name my-encrypted-bucket-stack

Utilisez la describe-stack-events commande pour afficher la réponse. Voici un exemple de
la commande describe-stack-events.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_COMPLETE-2021-08-04T23:23:20.973Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:23:20.973000+00:00",
 "ResourceStatus": "CREATE_COMPLETE",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_IN_PROGRESS-2021-08-04T23:22:59.410Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:59.410000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Resource creation Initiated",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":

Crochets de test 155

CloudFormation Guide de l'utilisateur de Hooks

[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-6516081f-c1f2-4bfe-a0f0-cefa28679994",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:58.349000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Hook invocations complete. Resource creation
 initiated",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 ...
]
}

Résultats : la pile a été créée CloudFormation avec succès. La logique du Hook a vérifié que la
AWS::S3::Bucket ressource contenait un chiffrement côté serveur avant de la provisionner.

Exemple 2 : pour provisionner une pile

Provisionner une pile non conforme

1. Créez un modèle qui spécifie un compartiment S3. Par exemple aes256-bucket.yml.

AWSTemplateFormatVersion: 2010-09-09
Description: |
 This CloudFormation template provisions an encrypted S3 Bucket
Resources:
 EncryptedS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub encryptedbucket-${AWS::Region}-${AWS::AccountId}
 BucketEncryption:

Crochets de test 156

CloudFormation Guide de l'utilisateur de Hooks

 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: AES256
 BucketKeyEnabled: true
Outputs:
 EncryptedBucketName:
 Value: !Ref EncryptedS3Bucket

2. Créez une pile et spécifiez votre modèle dans le AWS CLI. Dans l'exemple suivant, spécifiez le
nom de la pile comme my-hook-stack et le nom du modèle commeaes256-bucket.yml.

$ aws cloudformation create-stack \
 --stack-name my-hook-stack \
 --template-body file://aes256-bucket.yml

3. (Facultatif) Consultez la progression de votre pile en spécifiant le nom de votre pile. Dans
l'exemple suivant, spécifiez le nom de la pilemy-hook-stack.

$ aws cloudformation describe-stack-events \
 --stack-name my-hook-stack

Utilisez cette describe-stack-events opération pour voir l'échec du Hook lors de la création
du bucket. Voici un exemple de sortie de la commande.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
hook-stack/2c693970-f57e-11eb-a0fb-061a2a83f0b9",
 "EventId": "S3Bucket-CREATE_FAILED-2021-08-04T23:47:03.305Z",
 "StackName": "my-hook-stack",
 "LogicalResourceId": "S3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:47:03.305000+00:00",
 "ResourceStatus": "CREATE_FAILED",
 "ResourceStatusReason": "The following hook(s) failed:
 [MyCompany::Testing::MyTestHook]",
 "ResourceProperties": "{}",
 "ClientRequestToken": "Console-CreateStack-abe71ac2-ade4-
a762-0499-8d34d91d6a92"

Crochets de test 157

CloudFormation Guide de l'utilisateur de Hooks

 },
 ...
]
}

Résultats : L'invocation de Hook a échoué dans la configuration de la pile et a empêché le
provisionnement de la ressource. La pile a échoué en raison d'une configuration incorrecte du
chiffrement du compartiment S3. La configuration de type Hook est requise aws:kms lors de
l'utilisation de ce bucketAES256.

Utiliser un CloudFormation modèle pour réussir la validation Hook

1. Pour créer une pile et passer la validation Hook, mettez à jour le modèle afin que votre
ressource utilise un compartiment S3 chiffré. Cet exemple utilise le modèlekms-bucket-and-
queue.yml.

AWSTemplateFormatVersion: 2010-09-09
Description: |
 This CloudFormation template provisions an encrypted S3 Bucket
Resources:
 EncryptedS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub encryptedbucket-${AWS::Region}-${AWS::AccountId}
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: !Ref EncryptionKey
 BucketKeyEnabled: true
 EncryptedQueue:
 Type: AWS::SQS::Queue
 Properties:
 QueueName: !Sub encryptedqueue-${AWS::Region}-${AWS::AccountId}
 KmsMasterKeyId: !Ref EncryptionKey
 EncryptionKey:
 Type: AWS::KMS::Key
 DeletionPolicy: Retain
 Properties:
 Description: KMS key used to encrypt the resource type artifacts
 EnableKeyRotation: true

Crochets de test 158

CloudFormation Guide de l'utilisateur de Hooks

 KeyPolicy:
 Version: 2012-10-17
 Statement:
 - Sid: Enable full access for owning account
 Effect: Allow
 Principal:
 AWS: !Ref AWS::AccountId
 Action: 'kms:*'
 Resource: '*'
Outputs:
 EncryptedBucketName:
 Value: !Ref EncryptedS3Bucket
 EncryptedQueueName:
 Value: !Ref EncryptedQueue

Note

Les hooks ne seront pas invoqués pour les ressources ignorées.

2. Créez une pile et spécifiez votre modèle. Dans cet exemple, le nom de la pile estmy-
encrypted-bucket-stack.

$ aws cloudformation create-stack \
 --stack-name my-encrypted-bucket-stack \
 --template-body file://kms-bucket-and-queue.yml

3. (Facultatif) Consultez la progression de votre pile en spécifiant le nom de la pile.

$ aws cloudformation describe-stack-events \
 --stack-name my-encrypted-bucket-stack

Utilisez la describe-stack-events commande pour afficher la réponse. Voici un exemple de
la commande describe-stack-events.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",

Crochets de test 159

CloudFormation Guide de l'utilisateur de Hooks

 "EventId": "EncryptedS3Bucket-
CREATE_COMPLETE-2021-08-04T23:23:20.973Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:23:20.973000+00:00",
 "ResourceStatus": "CREATE_COMPLETE",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_IN_PROGRESS-2021-08-04T23:22:59.410Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:59.410000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Resource creation Initiated",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-6516081f-c1f2-4bfe-a0f0-cefa28679994",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:58.349000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",

Crochets de test 160

CloudFormation Guide de l'utilisateur de Hooks

 "ResourceStatusReason": "Hook invocations complete. Resource creation
 initiated",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 ...
]
}

Résultats : la pile a été créée CloudFormation avec succès. La logique du Hook a vérifié que la
AWS::S3::Bucket ressource contenait un chiffrement côté serveur avant de la provisionner.

Mettre à jour un Hook personnalisé

La mise à jour d'un Hook personnalisé permet de rendre les révisions du Hook disponibles dans le
CloudFormation registre.

Pour mettre à jour un Hook personnalisé, soumettez vos révisions au CloudFormation registre via le
CloudFormation CLI submitopération.

$ cfn submit

Pour spécifier la version par défaut de votre Hook dans votre compte, utilisez set-type-default-
versioncommande et spécifiez le type, le nom du type et l'ID de version.

$ aws cloudformation set-type-default-version \
 --type HOOK \
 --type-name MyCompany::Testing::MyTestHook \
 --version-id 00000003

Pour récupérer des informations sur les versions d'un Hook, utilisez list-type-versions.

$ aws cloudformation list-type-versions \
 --type HOOK \
 --type-name "MyCompany::Testing::MyTestHook"

Mettre à jour les hooks 161

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-submit.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-default-version.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-default-version.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-type-versions.html

CloudFormation Guide de l'utilisateur de Hooks

Désenregistrer un Hook personnalisé du registre CloudFormation

Le désenregistrement d'un Hook personnalisé marque l'extension ou la version de l'extension comme
étant DEPRECATED dans le CloudFormation registre, ce qui la met hors service. Une fois obsolète, le
Hook personnalisé ne peut pas être utilisé dans une CloudFormation opération.

Note

Avant de désenregistrer le Hook, vous devez désenregistrer individuellement toutes les
versions actives précédentes de cette extension. Pour plus d’informations, consultez
.DeregisterType.

Pour annuler l'enregistrement d'un Hook, utilisez deregister-typeopération et spécifiez votre
HookARN.

$ aws cloudformation deregister-type \
 --arn HOOK_TYPE_ARN

Cette commande ne produit pas de sortie.

Hooks de publication destinés à un usage public

Pour développer un Hook tiers public, développez votre Hook en tant qu'extension privée. Ensuite,
Région AWS dans chaque cas où vous souhaitez rendre l'extension accessible au public :

1. Enregistrez votre Hook en tant qu'extension privée dans le CloudFormation registre.

2. Testez votre Hook pour vous assurer qu'il répond à toutes les exigences nécessaires pour être
publié dans le CloudFormation registre.

3. Publiez votre Hook dans le CloudFormation registre.

Note

Avant de publier une extension dans une région donnée, vous devez d'abord vous
enregistrer en tant qu'éditeur d'extensions dans cette région. Pour ce faire simultanément
dans plusieurs régions, reportez-vous à la section Publication d'extensions dans plusieurs
régions StackSets à l'aide du guide de CloudFormation CLI l'utilisateur.

Annulation de l'enregistrement de Hooks 162

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_DeregisterType.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/deregister-type.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension-stacksets.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension-stacksets.html

CloudFormation Guide de l'utilisateur de Hooks

Une fois que vous avez développé et enregistré votre Hook, vous pouvez le rendre accessible au
public en CloudFormation le publiant CloudFormation dans le registre, sous la forme d'une extension
publique tierce.

Les Hooks tiers publics vous permettent de proposer aux CloudFormation utilisateurs d'inspecter
de manière proactive la configuration des AWS ressources avant le provisionnement. Comme pour
les Hooks privés, les Hooks publics sont traités de la même manière que tout Hook publié par AWS
within CloudFormation.

Les hooks publiés dans le registre sont visibles par tous les CloudFormation utilisateurs dans
le registre Régions AWS dans lequel ils sont publiés. Les utilisateurs peuvent ensuite activer
votre extension dans leur compte, ce qui la rend disponible pour utilisation dans leurs modèles.
Pour plus d'informations, consultez la section Utiliser des extensions publiques tierces depuis le
CloudFormation registre dans le Guide de CloudFormation l'utilisateur.

Tester un Hook personnalisé pour un usage public

Afin de publier votre Hook personnalisé enregistré, il doit satisfaire à toutes les exigences de test
définies pour celui-ci. Voici une liste des exigences requises avant de publier votre Hook personnalisé
en tant qu'extension tierce.

Chaque gestionnaire et chaque cible sont testés deux fois. Une fois pour SUCCESS et une fois
pourFAILED.

• Pour le cas de SUCCESS réponse :

• Le statut doit êtreSUCCESS.

• Ne doit pas renvoyer de code d'erreur.

• Le délai de rappel doit être fixé à 0 quelques secondes, s'il est spécifié.

• Pour le cas de FAILED réponse :

• Le statut doit êtreFAILED.

• Doit renvoyer un code d'erreur.

• Il doit y avoir un message en réponse.

• Le délai de rappel doit être fixé à 0 quelques secondes, s'il est spécifié.

• Pour le cas de IN_PROGRESS réponse :

• Ne doit pas renvoyer de code d'erreur.

• Resultle champ ne doit pas être défini en réponse.
Hooks de publication 163

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry-public.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/registry-public.html

CloudFormation Guide de l'utilisateur de Hooks

Spécification des données d'entrée à utiliser dans les tests de contrats

Par défaut, il CloudFormation effectue des tests de contrat en utilisant les propriétés d'entrée
générées à partir des modèles que vous définissez dans votre schéma Hook. Cependant, la plupart
des Hooks sont suffisamment complexes pour que les propriétés d'entrée permettant de précréer
ou de prémettre à jour les piles de provisionnement nécessitent une compréhension de la ressource
provisionnée. Pour résoudre ce problème, vous pouvez spécifier l'entrée qu'il CloudFormation utilise
lors de ses tests de contrat.

CloudFormation vous propose deux méthodes pour spécifier les données d'entrée à utiliser lors de
tests contractuels :

• Remplace le fichier

L'utilisation d'un overrides fichier permet de spécifier des données d'entrée pour certaines
propriétés spécifiques CloudFormation à utiliser pendant les tests preUpdate et preCreate les
tests preDelete opérationnels.

• Fichiers d'entrée

Vous pouvez également utiliser plusieurs input fichiers pour spécifier les données d'entrée des
tests de contrat si :

• Vous souhaitez ou devez spécifier des données d'entrée différentes pour les opérations de
création, de mise à jour et de suppression, ou des données non valides pour les tests.

• Vous souhaitez spécifier plusieurs ensembles de données d'entrée différents.

Spécification des données d'entrée à l'aide d'un fichier de remplacement

Voici un exemple de données d'entrée de Amazon S3 Hook utilisant le overrides fichier.

{
 "CREATE_PRE_PROVISION": {
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"

Hooks de publication 164

CloudFormation Guide de l'utilisateur de Hooks

 }
 }
]
 }
 },
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "/QueueName": "MyQueueContract",
 "/KmsMasterKeyId": "hellocontract"
 }
 }
 },
 "UPDATE_PRE_PROVISION": {
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "previousResourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 }
 }
 },
 "INVALID_UPDATE_PRE_PROVISION": {
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",

Hooks de publication 165

CloudFormation Guide de l'utilisateur de Hooks

 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "AES256"
 }
 }
]
 },
 "previousResourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 }
 }
 },
 "INVALID": {
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "/QueueName": "MyQueueContract",
 "/KmsMasterKeyId": "KMS-KEY-ARN"
 }
 }
 }
}

Spécification des données d'entrée à l'aide de fichiers d'entrée

Utilisez input des fichiers pour spécifier les différents types de données d'entrée CloudFormation à
utiliser : preCreate entrée, preUpdate entrée et entrée non valide. Chaque type de données est
spécifié dans un fichier distinct. Vous pouvez également spécifier plusieurs ensembles de données
d'entrée pour les tests de contrat.

Pour spécifier input les fichiers CloudFormation à utiliser dans les tests de contrats, ajoutez un
inputs dossier dans le répertoire racine de votre projet Hooks. Ajoutez ensuite vos fichiers d'entrée.

Hooks de publication 166

CloudFormation Guide de l'utilisateur de Hooks

Spécifiez le type de données d'entrée qu'un fichier contient en utilisant les conventions de
dénomination suivantes, où nest un entier :

• inputs_n_pre_create.json: utilisez des fichiers dotés de preCreate gestionnaires pour
spécifier les entrées nécessaires à la création de la ressource.

• inputs_n_pre_update.json: utilisez des fichiers dotés de preUpdate gestionnaires pour
spécifier les entrées nécessaires à la mise à jour de la ressource.

• inputs_n_pre_delete.json: utilisez des fichiers dotés de preDelete gestionnaires pour
spécifier les entrées permettant de supprimer la ressource.

• inputs_n_invalid.json: pour spécifier des entrées non valides à tester.

Pour spécifier plusieurs ensembles de données d'entrée pour les tests de contrat,
incrémentez le nombre entier dans les noms de fichiers afin de classer vos ensembles
de données d'entrée. Par exemple, votre premier ensemble de fichiers d'entrée
doit être nommé inputs_1_pre_create.jsoninputs_1_pre_update.json,
etinputs_1_pre_invalid.json. Votre prochain ensemble serait
nomméinputs_2_pre_create.json, et
inputs_2_pre_update.jsoninputs_2_pre_invalid.json, et ainsi de suite.

Chaque fichier d'entrée est un JSON fichier contenant uniquement les propriétés des ressources à
utiliser lors des tests.

Voici un exemple de répertoire permettant de Amazon S3 spécifier des inputs données d'entrée à
l'aide de fichiers d'entrée.

inputs_1_pre_create.json

Voici un exemple de test inputs_1_pre_create.json contractuel.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "AccessControl": "BucketOwnerFullControl",
 "AnalyticsConfigurations": [],
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {

Hooks de publication 167

CloudFormation Guide de l'utilisateur de Hooks

 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 },
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "QueueName": "MyQueue",
 "KmsMasterKeyId": "KMS-KEY-ARN"
 }
 }
}

inputs_1_pre_update.json

Voici un exemple de test inputs_1_pre_update.json contractuel.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 },
 "previousResourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",

Hooks de publication 168

CloudFormation Guide de l'utilisateur de Hooks

 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 }
}

inputs_1_invalid.json

Voici un exemple de test inputs_1_invalid.json contractuel.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "AccessControl": "BucketOwnerFullControl",
 "AnalyticsConfigurations": [],
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "ServerSideEncryptionByDefault": {
 "SSEAlgorithm": "AES256"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 },
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "NotValid": "The property of this resource is not valid."
 }
 }
}

inputs_1_invalid_pre_update.json

Voici un exemple de test inputs_1_invalid_pre_update.json contractuel.

{

Hooks de publication 169

CloudFormation Guide de l'utilisateur de Hooks

 "AWS::S3::Bucket": {
 "resourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "AES256"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 },
 "previousResourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 }
}

Pour plus d'informations, consultez la section Publication d'extensions pour les rendre accessibles au
public dans le Guide de CloudFormation CLI l'utilisateur.

Référence syntaxique du schéma pour les CloudFormation Hooks

Cette section décrit la syntaxe du schéma que vous utilisez pour développer des CloudFormation
Hooks.

Un Hook inclut une spécification Hook représentée par un schéma JSON et des gestionnaires Hook.
La première étape de la création d'un Hook personnalisé consiste à modéliser un schéma qui définit

Syntaxe du schéma 170

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/publish-extension.html

CloudFormation Guide de l'utilisateur de Hooks

le Hook, ses propriétés et ses attributs. Lorsque vous initialisez un projet Hook personnalisé à l'aide
de la initcommande CloudFormation CLI, un fichier de schéma Hook est créé pour vous. Utilisez
ce fichier de schéma comme point de départ pour définir la forme et la sémantique de votre Hook
personnalisé.

Syntaxe du schéma

Le schéma suivant représente la structure d'un Hook.

{
"typeName": "string",
 "description": "string",
 "sourceUrl": "string",
 "documentationUrl": "string",
 "definitions": {
 "definitionName": {
 . . .
 }
 },
 "typeConfiguration": {
 "properties": {
 "propertyName": {
 "description": "string",
 "type": "string",
 . . .
 },
 },
 "required": [
 "propertyName"
 . . .
],
 "additionalProperties": false
 },
 "handlers": {
 "preCreate": {
 "targetNames": [
],
 "permissions": [
]
 },
 "preUpdate": {
 "targetNames": [
],

Syntaxe du schéma 171

https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/resource-type-cli-init.html

CloudFormation Guide de l'utilisateur de Hooks

 "permissions": [
]
 },
 "preDelete": {
 "targetNames": [
],
 "permissions": [
]
 }
 },
 "additionalProperties": false
}

typeName

Le nom unique de votre Hook. Spécifie un espace de noms en trois parties pour votre Hook, avec
un modèle recommandé de. Organization::Service::Hook

Note

Les espaces de noms d'organisation suivants sont réservés et ne peuvent pas être utilisés
dans les noms de vos types de Hook :

• Alexa

• AMZN

• Amazon

• ASK

• AWS

• Custom

• Dev

Obligatoire : oui

Modèle : ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

Minimum : 10

Maximum : 196
Syntaxe du schéma 172

CloudFormation Guide de l'utilisateur de Hooks

description

Brève description du Hook affiché dans la CloudFormation console.

Obligatoire : oui

sourceUrl

L'URL du code source du Hook, s'il est public.

Obligatoire : non

Maximum : 4096

documentationUrl

URL d'une page fournissant une documentation détaillée pour le Hook.

Obligatoire : oui

Modèle : ^https\:\/\/[0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])(\:[0-9]*)*([\?/#].*)?
$

Maximum : 4096

Note

Bien que le schéma Hook doive inclure des descriptions de propriétés complètes
et précises, vous pouvez utiliser la documentationURL propriété pour fournir aux
utilisateurs plus de détails, notamment des exemples, des cas d'utilisation et d'autres
informations détaillées.

definitions

Utilisez le definitions bloc pour fournir des schémas de propriétés Hook partagés.

Il est considéré comme une bonne pratique d'utiliser cette definitions section pour définir
des éléments de schéma qui peuvent être utilisés à plusieurs points de votre schéma de type
Hook. Vous pouvez ensuite utiliser un pointeur JSON pour référencer cet élément aux endroits
appropriés dans votre schéma de type Hook.

Obligatoire : non

Syntaxe du schéma 173

CloudFormation Guide de l'utilisateur de Hooks

typeConfiguration

Définition des données de configuration d'un Hook.

Obligatoire : oui

properties

Les propriétés du Hook. Toutes les propriétés d'un Hook doivent être exprimées dans le schéma.
Alignez les propriétés du schéma Hook avec les propriétés de configuration du type Hook.

Note

Les propriétés imbriquées ne sont pas autorisées. Définissez plutôt les propriétés
imbriquées de l'definitionsélément et utilisez un $ref pointeur pour les référencer
dans la propriété souhaitée.

Les propriétés suivantes sont actuellement prises en charge :

• default— La valeur par défaut de la propriété.

• description— Une description de la propriété.

• pattern— Un modèle regex utilisé pour valider l'entrée.

• type— Le type de propriété accepté.

additionalProperties

additionalProperties doit être défini sur false. Toutes les propriétés d'un Hook doivent
être exprimées dans le schéma : les entrées arbitraires ne sont pas autorisées.

Obligatoire : oui

Valeurs valides : false

handlers

Les gestionnaires spécifient les opérations qui peuvent initier le Hook défini dans le schéma, telles
que les points d'invocation du Hook. Par exemple, un preUpdate gestionnaire est invoqué avant
les opérations de mise à jour pour toutes les cibles spécifiées dans le gestionnaire.

Valeurs valides : preCreate | preUpdate | preDelete

Syntaxe du schéma 174

CloudFormation Guide de l'utilisateur de Hooks

Note

Au moins une valeur doit être spécifiée pour le gestionnaire.

Important

Les opérations de pile qui se traduisent par le statut de UpdateCleanup n'invoquent pas
de Hook. Par exemple, dans les deux scénarios suivants, le preDelete gestionnaire du
Hook n'est pas invoqué :

• la pile est mise à jour après la suppression d'une ressource du modèle.

• une ressource dont le type de mise à jour est remplacé est supprimée.

targetNames

Un tableau de chaînes de noms de types que Hook cible. Par exemple, si un preCreate
gestionnaire a une AWS::S3::Bucket cible, le Hook s'exécute pour les compartiments Amazon
S3 pendant la phase de préapprovisionnement.

• TargetName

Spécifiez au moins un nom de cible pour chaque gestionnaire implémenté.

Modèle : ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

Minimum : 1

Obligatoire : oui

Warning

Les références dynamiques SSM SecureString et Secrets Manager ne sont pas
résolues avant d'être transmises à Hooks.

permissions

Un tableau de chaînes qui spécifie les AWS autorisations nécessaires pour appeler le
gestionnaire.

Syntaxe du schéma 175

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html#update-replacement

CloudFormation Guide de l'utilisateur de Hooks

Obligatoire : oui

additionalProperties

additionalProperties doit être défini sur false. Toutes les propriétés d'un Hook doivent
être exprimées dans le schéma : les entrées arbitraires ne sont pas autorisées.

Obligatoire : oui

Valeurs valides : false

Exemples de schémas Hooks

Exemple 1

Les procédures pas à pas pour Java et Python utilisent l'exemple de code suivant. Voici un exemple
de structure pour un Hook appelémycompany-testing-mytesthook.json.

{
 "typeName":"MyCompany::Testing::MyTestHook",
 "description":"Verifies S3 bucket and SQS queues properties before create and
 update",
 "sourceUrl":"https://mycorp.com/my-repo.git",
 "documentationUrl":"https://mycorp.com/documentation",
 "typeConfiguration":{
 "properties":{
 "minBuckets":{
 "description":"Minimum number of compliant buckets",
 "type":"string"
 },
 "minQueues":{
 "description":"Minimum number of compliant queues",
 "type":"string"
 },
 "encryptionAlgorithm":{
 "description":"Encryption algorithm for SSE",
 "default":"AES256",
 "type":"string",
 "pattern": "[a-zA-Z]*[1-9]"
 }
 },
 "required":[

Syntaxe du schéma 176

CloudFormation Guide de l'utilisateur de Hooks

],
 "additionalProperties":false
 },
 "handlers":{
 "preCreate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preUpdate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preDelete":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[
 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetEncryptionConfiguration",
 "sqs:ListQueues",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl"
]
 }
 },
 "additionalProperties":false
}

Exemple 2

Syntaxe du schéma 177

CloudFormation Guide de l'utilisateur de Hooks

L'exemple suivant est un schéma qui utilise le STACK et CHANGE_SET pour targetNames pour
cibler un modèle de pile et une opération d'ensemble de modifications.

{
 "typeName":"MyCompany::Testing::MyTestHook",
 "description":"Verifies Stack and Change Set properties before create and update",
 "sourceUrl":"https://mycorp.com/my-repo.git",
 "documentationUrl":"https://mycorp.com/documentation",
 "typeConfiguration":{
 "properties":{
 "minBuckets":{
 "description":"Minimum number of compliant buckets",
 "type":"string"
 },
 "minQueues":{
 "description":"Minimum number of compliant queues",
 "type":"string"
 },
 "encryptionAlgorithm":{
 "description":"Encryption algorithm for SSE",
 "default":"AES256",
 "type":"string",
 "pattern": "[a-zA-Z]*[1-9]"
 }
 },
 "required":[
],
 "additionalProperties":false
 },
 "handlers":{
 "preCreate":{
 "targetNames":[
 "STACK",
 "CHANGE_SET"
],
 "permissions":[
]
 },
 "preUpdate":{
 "targetNames":[
 "STACK"
],
 "permissions":[

Syntaxe du schéma 178

CloudFormation Guide de l'utilisateur de Hooks

]
 },
 "preDelete":{
 "targetNames":[
 "STACK"
],
 "permissions":[

]
 }
 },
 "additionalProperties":false
}

Syntaxe du schéma 179

CloudFormation Guide de l'utilisateur de Hooks

Désactiver et activer les CloudFormation Hooks

Cette rubrique explique comment désactiver puis réactiver un Hook pour l'empêcher temporairement
d'être actif sur votre compte. La désactivation des Hooks peut être utile lorsque vous devez étudier
un problème sans ingérence de la part des Hooks.

Désactiver et activer un Hook dans votre compte (console)

Pour désactiver un Hook dans votre compte

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS emplacement du
crochet.

3. Dans le volet de navigation, choisissez Hooks.

4. Choisissez le nom du Hook que vous souhaitez désactiver.

5. Sur la page de détails du Hook, à droite du nom du Hook, cliquez sur le bouton Désactiver.

6. Lorsque vous êtes invité à confirmer, choisissez Disable Hook.

Pour réactiver un Hook précédemment désactivé

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS emplacement du
crochet.

3. Dans le volet de navigation, choisissez Hooks.

4. Choisissez le nom du Hook que vous souhaitez activer.

5. Sur la page de détails du Hook, à droite du nom du Hook, cliquez sur le bouton Activer.

6. Lorsque vous êtes invité à confirmer, choisissez Enable Hook.

Désactiver et activer un Hook (console) 180

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

CloudFormation Guide de l'utilisateur de Hooks

Désactiver et activer un Hook dans votre compte (AWS CLI)

Important

Les AWS CLI commandes de désactivation et d'activation des Hooks remplacent l'ensemble
de la configuration des Hooks par les valeurs spécifiées dans l'--configurationoption.
Pour éviter toute modification involontaire, vous devez inclure tous les paramètres existants
que vous souhaitez conserver lors de l'exécution de ces commandes. Pour afficher les
données de configuration actuelles, utilisez describe-typecommande.

Pour désactiver un Hook

Utilisez ce qui suit set-type-configurationcommande et spécifiez HookInvocationStatus
DISABLED comment désactiver le Hook. Remplacez les espaces réservés par vos valeurs
spécifiques.

aws cloudformation set-type-configuration \
 --configuration "{"CloudFormationConfiguration":{"HookConfiguration":
{"HookInvocationStatus": "DISABLED", "FailureMode": "FAIL",
 "TargetOperations": ["STACK","RESOURCE","CHANGE_SET"], "Properties":{}}}}" \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Pour réactiver un Hook précédemment désactivé

Utilisez ce qui suit set-type-configurationcommande et spécifiez HookInvocationStatus comment
ENABLED réactiver le Hook. Remplacez les espaces réservés par vos valeurs spécifiques.

aws cloudformation set-type-configuration \
 --configuration "{"CloudFormationConfiguration":{"HookConfiguration":
{"HookInvocationStatus": "ENABLED", "FailureMode": "FAIL",
 "TargetOperations": ["STACK","RESOURCE","CHANGE_SET"], "Properties":{}}}}" \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Pour de plus amples informations, veuillez consulter Référence syntaxique du schéma de
configuration Hook.

Désactiver et activer un Hook (AWS CLI) 181

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/describe-type.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/set-type-configuration.html

CloudFormation Guide de l'utilisateur de Hooks

Afficher les résultats d'invocation pour les Hooks
CloudFormation
Cette rubrique décrit comment afficher les résultats d'invocation pour les CloudFormation Hooks.
L'affichage des résultats d'invocation peut vous aider à comprendre comment les Hooks évaluent vos
ressources et à résoudre les problèmes détectés lorsque les Hooks vérifient une ressource.

Les invocations sont des cas spécifiques où votre logique de validation (qu'il s'agisse d'un contrôle
AWS Control Tower proactif, d'une règle Guard ou d'une fonction Lambda) s'exécute pendant le cycle
de vie d'une ressource.

Afficher les résultats des appels dans la console

Vous pouvez consulter les résultats des invocations dans la console de trois manières : via la page
récapitulative des invocations, via l'historique des invocations pour les Hooks individuels ou via les
événements de pile individuels pour les invocations spécifiques à une pile.

Afficher les résultats pour tous les Hooks

La page récapitulative des invocations fournit une vue complète de toutes les invocations Hook sur
votre compte et votre région au cours des 90 derniers jours.

Pour afficher les résultats de tous les Hooks

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS endroit où vous
souhaitez afficher les invocations Hook.

3. Dans le volet de navigation, sélectionnez Résumé de l'invocation.

4. La page affiche une liste de toutes les invocations Hook des 90 derniers jours, notamment :

• ID d'invocation

• Crochet

• Cible

• Mode (WarnouFail)

Afficher les résultats des appels (console) 182

https://console.aws.amazon.com/cloudformation/

CloudFormation Guide de l'utilisateur de Hooks

• Résultat (WarningPass,Failed,In progress)

• Heure d'invocation

• Message de résultat

5. Vous pouvez filtrer la liste à l'aide de la barre de recherche en haut du tableau pour trouver des
invocations spécifiques.

6. Sélectionnez un appel spécifique pour afficher plus de détails sur le résultat de l'appel, y compris
des conseils de correction en cas d'échec des invocations Hook.

Afficher l'historique des invocations pour des Hooks individuels

Vous pouvez également consulter les résultats des invocations via l'historique des invocations de
chaque Hook.

Pour afficher les invocations de Hook pour un Hook spécifique

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS endroit où vous
souhaitez afficher les invocations Hook.

3. Dans le volet de navigation, choisissez Hooks.

4. Choisissez le Hook pour lequel vous souhaitez afficher les invocations Hook.

5. Sélectionnez un appel spécifique pour afficher plus de détails sur le résultat de l'appel, y compris
des conseils de correction en cas d'échec des invocations Hook.

Afficher les résultats des invocations spécifiques à une pile

Vous pouvez également consulter les résultats d'invocation pour une pile spécifique via la page Stack
Events.

Pour afficher les invocations Hook pour une pile spécifique

1. Connectez-vous à la CloudFormation console AWS Management Console et ouvrez-la à
l'adresse https://console.aws.amazon.com/cloudformation.

2. Dans la barre de navigation en haut de l'écran, choisissez l' Région AWS endroit où l'opération
de pile a eu lieu.

Afficher l'historique des invocations pour des Hooks individuels 183

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

CloudFormation Guide de l'utilisateur de Hooks

3. Choisissez Piles dans le volet de navigation.

4. Sélectionnez la pile pour laquelle vous souhaitez afficher les invocations Hook.

5. Choisissez l'onglet Stack events.

6. Dans la liste des événements, recherchez les événements pour lesquels les invocations Hook
sont terminées dans la colonne Motif du statut.

7. Pour afficher les détails spécifiques des invocations Hook, consultez la colonne des invocations
Hook et choisissez le texte souligné pour ouvrir une fenêtre contextuelle contenant des
informations plus détaillées.

Note

Pour afficher les colonnes masquées, cliquez sur l'icône représentant un engrenage
dans le coin supérieur droit de la section pour ouvrir le mode Préférences, mettez à jour
les paramètres selon vos besoins, puis choisissez Confirmer.

Afficher les résultats des invocations à l'aide du AWS CLI

Utilisez la list-hook-resultscommande pour récupérer des informations sur les invocations Hook. Cette
commande prend en charge les options de filtrage suivantes :

• Obtenez tous les résultats d'invocation de Hook (aucun paramètre requis)

• Filtrer par Hook ARN (utilisation--type-arn)

• Filtrer par ARN du hook et par statut (utilisation --type-arn et--status)

• Rechercher des cibles spécifiques (utiliser --target-type et--target-id)

Filtrer les résultats par Hook ARN

La commande suivante répertorie tous les résultats d'invocation Hook pour un Hook spécifique.

aws cloudformation list-hook-results \
 --type-arn arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook \
 --region us-west-2

Exemple de sortie :

Afficher les résultats de l'invocation ()AWS CLI 184

https://docs.aws.amazon.com/cli/latest/reference/cloudformation/list-hook-results.html

CloudFormation Guide de l'utilisateur de Hooks

{
 "HookResults": [
 {
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook",
 "HookResultId": "59ef501c-0ac4-47c0-a193-e071cabf748d",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "HookExecutionTarget": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
stack/39f29d10-73ed-11f0-abc1-0affdfe4aebb",
 "InvokedAt": "2025-08-08T00:18:39.651Z",
 "FailureMode": "WARN",
 "HookStatusReason": "...",
 "InvocationPoint": "PRE_PROVISION",
 "Status": "HOOK_COMPLETE_FAILED"
 },
 ...
]
}

Pour une description des champs de la réponse, reportez-vous HookResultSummaryà la référence
de l'AWS CloudFormation API.

Filtrer les résultats par Hook ARN et par statut

Pour filtrer les résultats en fonction d'un statut commun, spécifiez l'--statusoption dans la
commande. Les valeurs valides sont :

• HOOK_IN_PROGRESS: The Hook est actuellement en cours d'exécution.

• HOOK_COMPLETE_SUCCEEDED: Le Hook s'est terminé avec succès.

• HOOK_COMPLETE_FAILED: Le Hook s'est terminé mais la validation a échoué.

• HOOK_FAILED: Le Hook a rencontré une erreur lors de l'exécution.

aws cloudformation list-hook-results \
 --type-arn arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook \
 --status HOOK_COMPLETE_FAILED \
 --region us-west-2

Exemple de sortie :

Afficher les résultats de l'invocation ()AWS CLI 185

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_HookResultSummary.html

CloudFormation Guide de l'utilisateur de Hooks

{
 "HookResults": [
 {
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook",
 "HookResultId": "59ef501c-0ac4-47c0-a193-e071cabf748d",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "HookExecutionTarget": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
stack/39f29d10-73ed-11f0-abc1-0affdfe4aebb",
 "InvokedAt": "2025-08-08T00:18:39.651Z",
 "FailureMode": "WARN",
 "HookStatusReason": "...",
 "InvocationPoint": "PRE_PROVISION",
 "Status": "HOOK_COMPLETE_FAILED"
 },
 ...
]
}

Pour une description des champs de la réponse, reportez-vous HookResultSummaryà la référence
de l'AWS CloudFormation API.

Filtrer les résultats par type de cible et par ID de cible

La commande suivante répertorie tous les résultats d'invocation Hook pour une demande d'API Cloud
Control spécifique.

aws cloudformation list-hook-results \
 --target-type CLOUD_CONTROL \
 --target-id d417b05b-9eff-46ef-b164-08c76aec1801 \
 --region us-west-2

Exemple de sortie :

{
 "HookResults": [
 {
 "TargetType": "CLOUD_CONTROL",
 "TargetId": "d417b05b-9eff-46ef-b164-08c76aec1801",
 "HookResults": [
 {

Afficher les résultats de l'invocation ()AWS CLI 186

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_HookResultSummary.html

CloudFormation Guide de l'utilisateur de Hooks

 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook",
 "HookResultId": "4e7f4766-d8fe-44e5-8587-5b327a148abe",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "FailureMode": "WARN",
 "HookStatusReason": "...",
 "InvocationPoint": "PRE_PROVISION",
 "Status": "HOOK_COMPLETE_FAILED"
 },
 ...
]
 }
]
}

Pour une description des champs de la réponse, reportez-vous HookResultSummaryà la référence
de l'AWS CloudFormation API.

Obtenez des résultats détaillés pour un appel spécifique

Utilisez la get-hook-resultcommande pour récupérer des informations détaillées sur un appel Hook
spécifique, y compris des annotations contenant les résultats du contrôle de conformité et des
conseils de correction.

aws cloudformation get-hook-result \
 --hook-result-id 59ef501c-0ac4-47c0-a193-e071cabf748d \
 --region us-west-2

Exemple de sortie :

{
 "HookResultId": "59ef501c-0ac4-47c0-a193-e071cabf748d",
 "InvocationPoint": "PRE_PROVISION",
 "FailureMode": "WARN",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook",
 "Status": "HOOK_COMPLETE_FAILED",
 "HookStatusReason": "Hook completed with failed validations",
 "InvokedAt": "2025-08-08T00:18:39.651Z",

Afficher les résultats de l'invocation ()AWS CLI 187

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_HookResultSummary.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/get-hook-result.html

CloudFormation Guide de l'utilisateur de Hooks

 "Target": {
 "TargetType": "RESOURCE",
 "TargetTypeName": "AWS::S3::Bucket",
 "TargetId": "my-s3-bucket",
 "Action": "CREATE"
 },
 "Annotations": [
 {
 "AnnotationName": "BlockPublicAccessCheck",
 "Status": "FAILED",
 "StatusMessage": "Bucket does not block public access",
 "RemediationMessage": "Enable block public access settings on the S3 bucket",
 "SeverityLevel": "HIGH"
 },
 {
 "AnnotationName": "BucketEncryptionCheck",
 "Status": "PASSED",
 "StatusMessage": "Bucket has encryption configured correctly"
 }
]
}

Pour une description des champs de la réponse, reportez-vous GetHookResultà la référence de
l'AWS CloudFormation API.

Afficher les résultats de l'invocation ()AWS CLI 188

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

CloudFormation Guide de l'utilisateur de Hooks

Référence syntaxique du schéma de configuration Hook
Cette section décrit la syntaxe du schéma utilisée pour configurer les Hooks. CloudFormation
utilise ce schéma de configuration au moment de l'exécution lors de l'appel d'un Hook dans un
Compte AWS.

Pour permettre à votre Hook d'inspecter de manière proactive la configuration de votre stack,
définissez le paramètre sur HookInvocationStatus une ENABLED fois que le Hook a été
enregistré et activé dans votre compte.

Rubriques

• Propriétés du schéma de configuration des crochets

• Exemples de configuration de crochets

• CloudFormation Filtres de niveau Hooks Stack

• CloudFormation Filtres cibles Hooks

• Utilisation de caractères génériques avec les noms de cibles Hook

Note

La quantité maximale de données que la configuration d'un Hook peut stocker est
de 300 Ko. Cela s'ajoute à toutes les contraintes imposées sur le paramètre de
SetTypeConfigurationfonctionnement de la Configuration demande.

Propriétés du schéma de configuration des crochets

Le schéma suivant est la structure d'un schéma de configuration Hook.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": ["STACK"],
 "FailureMode": "FAIL",
 "EncryptionConfiguration": {
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/abc-123"

Propriétés du schéma de configuration des crochets 189

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_SetTypeConfiguration.html

CloudFormation Guide de l'utilisateur de Hooks

 },
 "Properties": {
 ...
 }
 }
 }
}

HookConfiguration

La configuration des crochets prend en charge l'activation ou la désactivation des crochets au
niveau de la pile, des modes de défaillance et des valeurs des propriétés des crochets.

La configuration Hook prend en charge les propriétés suivantes.

HookInvocationStatus

Spécifie si le Hook est ENABLED ouDISABLED.

Valeurs valides : ENABLED | DISABLED

TargetOperations

Spécifie la liste des opérations sur lesquelles le Hook est exécuté. Pour de plus amples
informations, veuillez consulter Crochet et cibles.

Valeurs valides : STACK | RESOURCE | CHANGE_SET | CLOUD_CONTROL

TargetStacks

Disponible à des fins de rétrocompatibilité. Utilisez HookInvocationStatus plutôt.

Si le mode est défini surALL, le Hook s'applique à toutes les piles de votre compte lors d'une
opération CREATEUPDATE, ou d'une opération sur une DELETE ressource.

Si le mode est défini surNONE, le Hook ne s'appliquera pas aux piles de votre compte.

Valeurs valides : ALL | NONE

FailureMode

Ce champ indique au service comment traiter les défaillances de Hook.

• Si le mode est défini sur et que le Hook échoue, la configuration d'échec arrête le
provisionnement des ressources et annule la pile. FAIL

Propriétés du schéma de configuration des crochets 190

CloudFormation Guide de l'utilisateur de Hooks

• Si le mode est défini sur WARN et que le Hook échoue, la configuration d'avertissement
permet de poursuivre le provisionnement avec un message d'avertissement.

Valeurs valides : FAIL | WARN

EncryptionConfiguration

Spécifie les paramètres de chiffrement pour les données d'annotations Hook.

KmsKeyId

L'alias, l'alias ARN, l'ID de clé ou l'ARN de la clé de chiffrement AWS KMS symétrique
utilisée pour chiffrer les données d'annotations Hook. Pour plus d'informations, consultez
KeyIdla AWS KMS documentation.

Avant de pouvoir créer des Hooks avec des AWS KMS clés gérées par le client, votre
utilisateur ou votre rôle doit disposer AWS KMS des autorisations nécessaires pour
DescribeKey etGenerateDataKey. Pour de plus amples informations, veuillez consulter
AWS KMS politique clé et autorisations pour chiffrer les résultats de CloudFormation Hooks
au repos.

Properties

Spécifie les propriétés d'exécution de Hook. Elles doivent correspondre à la forme des
propriétés prises en charge par le schéma Hooks.

Exemples de configuration de crochets

Pour des exemples de configuration de Hooks depuis le AWS CLI, consultez les sections suivantes :

• Activez un Hook basé sur le contrôle proactif ()AWS CLI

• Activer un crochet de protection (AWS CLI)

• Activer un crochet Lambda ()AWS CLI

CloudFormation Filtres de niveau Hooks Stack

Vous pouvez ajouter des filtres de niveau de pile à vos CloudFormation Hooks pour cibler des piles
spécifiques en fonction des noms et des rôles des piles. Cela est utile dans les cas où vous avez
plusieurs piles avec les mêmes types de ressources, mais que le Hook est destiné à des piles
spécifiques.

Exemples de configuration de crochets 191

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html#API_DescribeKey_RequestParameters

CloudFormation Guide de l'utilisateur de Hooks

Cette section explique le fonctionnement de ces filtres et fournit des exemples que vous pouvez
suivre.

La structure de base d'une configuration Hook sans filtrage au niveau de la pile ressemble à ceci :

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE",
 "DELETE"
]
 }
 }
 }
}

Pour plus d'informations sur la HookConfiguration syntaxe, consultezRéférence syntaxique du
schéma de configuration Hook.

Pour utiliser les filtres au niveau de la pile, ajoutez une StackFilters clé
sousHookConfiguration.

La StackFilters clé comporte un membre obligatoire et deux membres facultatifs.

• FilteringCriteria (obligatoire)

• StackNames (facultatif)

• StackRoles (facultatif)

Les StackRoles propriétés StackNames or sont facultatives. Cependant, vous devez spécifier au
moins une de ces propriétés.

Filtres au niveau de la pile 192

CloudFormation Guide de l'utilisateur de Hooks

Si vous créez un Hook qui cible les opérations de l'API Cloud Control, tous les filtres au niveau de la
pile seront ignorés.

FilteringCriteria

FilteringCriteriaest un paramètre obligatoire qui spécifie le comportement de filtrage. Il peut
être réglé sur ALL ouANY.

• ALLinvoque le Hook si tous les filtres correspondent.

• ANYinvoque le Hook si l'un des filtres correspond.

StackNames

Pour spécifier un ou plusieurs noms de pile sous forme de filtres dans votre configuration Hooks,
utilisez la structure JSON suivante :

"StackNames": {
 "Include": [
 "string"
],
 "Exclude": [
 "string"
]
}

Vous devez spécifier l'une des options suivantes :

• Include: liste des noms de pile à inclure. Seules les piles spécifiées dans cette liste invoqueront
le Hook.

• Type : tableau de chaînes

• Nombre maximum d'articles : 50

• Nombre minimum d'articles : 1

• Exclude: liste des noms de pile à exclure. Toutes les piles, à l'exception de celles répertoriées ici,
invoqueront le Hook.

• Type : tableau de chaînes

• Nombre maximum d'articles : 50

• Nombre minimum d'articles : 1

FilteringCriteria 193

https://docs.aws.amazon.com/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

CloudFormation Guide de l'utilisateur de Hooks

Chaque nom de pile dans les Exclude tableaux Include et doit respecter les exigences de modèle
et de longueur suivantes :

• Modèle : ^[a-zA-Z][-a-zA-Z0-9]*$

• Longueur maximale : 128

StackNamessupporte les noms de pile concrets et la correspondance complète des caractères
génériques. Pour consulter des exemples utilisant des caractères génériques, voirUtilisation de
caractères génériques avec les noms de cibles Hook.

StackRoles

Pour spécifier un ou plusieurs rôles IAM en tant que filtres dans votre configuration Hook, utilisez la
structure JSON suivante :

"StackRoles": {
 "Include": [
 "string"
],
 "Exclude": [
 "string"
]
}

Vous devez spécifier l'une des options suivantes :

• Include: liste des rôles IAM ARNs pour cibler les piles associées à ces rôles. Seules les
opérations de stack initiées par ces rôles invoqueront le Hook.

• Type : tableau de chaînes

• Nombre maximum d'articles : 50

• Nombre minimum d'articles : 1

• Exclude: liste des rôles IAM ARNs pour les piles que vous souhaitez exclure. Le Hook sera
invoqué sur toutes les piles sauf celles initiées par les rôles spécifiés.

• Type : tableau de chaînes

• Nombre maximum d'articles : 50

• Nombre minimum d'articles : 1

StackRoles 194

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-servicerole.html

CloudFormation Guide de l'utilisateur de Hooks

Chaque rôle de pile dans les Exclude tableaux Include et doit respecter les exigences de modèle
et de longueur suivantes :

• Modèle : arn:.+:iam::[0-9]{12}:role/.+

• Longueur maximale : 256

StackRolesautorisez les caractères génériques dans les sections de syntaxe de l'ARN suivantes :

• partition

• account-id

• resource-id

Pour voir des exemples d'utilisation de caractères génériques dans les sections sur la syntaxe de
l'ARN, consultezUtilisation de caractères génériques avec les noms de cibles Hook.

Include et Exclude

Chaque filtre (StackNamesetStackRoles) possède une Include liste et une Exclude liste. À
StackNames titre d'exemple, le Hook n'est invoqué que sur les piles spécifiées dans la Include
liste. Si les noms des piles ne sont spécifiés que dans la Exclude liste, le hook n'est invoqué que sur
les piles qui ne figurent pas dans la Exclude liste. Si Include les deux Exclude sont spécifiés, le
Hook cible le contenu de la Include liste et non le contenu de la Exclude liste.

Supposons, par exemple, que vous ayez quatre piles : A, B, C et D.

• "Include": ["A","B"]Le Hook est invoqué sur A et B.

• "Exclude": ["B"]Le Hook est invoqué sur A, C et D.

• "Include": ["A","B","C"], "Exclude": ["A","D"]Le Hook est invoqué sur B et C.

• "Include": ["A","B","C"], "Exclude": ["A”,"B","C"]Le Hook n'est invoqué sur
aucune pile.

Exemples de filtres au niveau de la pile

Cette section fournit des exemples que vous pouvez suivre pour créer des filtres au niveau de la pile
pour les CloudFormation Hooks.

Include et Exclude 195

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html#arns-syntax

CloudFormation Guide de l'utilisateur de Hooks

Exemple 1 : inclure des piles spécifiques

L'exemple suivant indique une Include liste. Le Hook n'est invoqué que sur les piles
nomméesstack-test-1, stack-test-2 etstack-test-3.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 }
 }
 }
 }
}

Exemple 2 : Exclure des piles spécifiques

Si les noms des piles sont plutôt ajoutés à la Exclude liste, le Hook est invoqué sur toute pile non
nomméestack-test-1, stack-test-2 oustack-test-3.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],

Exemples de filtres au niveau de la pile 196

CloudFormation Guide de l'utilisateur de Hooks

 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Exclude": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 }
 }
 }
 }
}

Exemple 3 : combinaison d'inclusion et d'exclusion

Si Include aucune Exclude liste n'est spécifiée, le Hook n'est invoqué que sur les piles Include
qui ne figurent pas dans la Exclude liste. Dans l'exemple suivant, le Hook n'est invoqué que
surstack-test-3.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
],
 "Exclude": [
 "stack-test-1",
 "stack-test-2"

Exemples de filtres au niveau de la pile 197

CloudFormation Guide de l'utilisateur de Hooks

]
 }
 }
 }
 }
}

Exemple 4 : combinaison de noms de pile et de rôles avec des ALL critères

Le Hook suivant inclut trois noms de pile et un rôle de pile. Comme le Hook FilteringCriteria
est spécifié commeALL, le Hook n'est invoqué que pour les piles qui ont à la fois un nom de pile
correspondant et le rôle de pile correspondant.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 },
 "StackRoles": {
 "Include": ["arn:aws:iam::123456789012:role/hook-role"]
 }
 }
 }
 }
}

Exemples de filtres au niveau de la pile 198

CloudFormation Guide de l'utilisateur de Hooks

Exemple 5 : combinaison de noms de pile et de rôles avec des ANY critères

Le Hook suivant inclut trois noms de pile et un rôle de pile. Comme le Hook FilteringCriteria
est spécifié commeANY, le Hook est invoqué pour les piles qui ont soit un nom de pile correspondant,
soit le rôle de pile correspondant.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ANY",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 },
 "StackRoles": {
 "Include": ["arn:aws:iam::123456789012:role/hook-role"]
 }
 }
 }
 }
}

CloudFormation Filtres cibles Hooks

Cette rubrique fournit des conseils sur la configuration des filtres cibles pour les CloudFormation
Hooks. Vous pouvez utiliser des filtres cibles pour contrôler de manière plus précise quand et sur
quelles ressources votre Hook est invoqué. Vous pouvez configurer des filtres allant du simple
ciblage des types de ressources à des combinaisons plus complexes de types de ressources,
d'actions et de points d'invocation.

Filtres cibles 199

CloudFormation Guide de l'utilisateur de Hooks

Pour spécifier un ou plusieurs noms de pile sous forme de filtres dans votre configuration Hooks,
ajoutez une TargetFilters clé sousHookConfiguration.

TargetFiltersprend en charge les propriétés suivantes.

Actions

Un tableau de chaînes qui indique les actions à cibler. Pour obtenir un exemple, consultez
Exemple 1 : filtre cible de base.

Valeurs valides : CREATE | UPDATE | DELETE

Note

Pour RESOURCESTACK, et les CLOUD_CONTROL cibles, toutes les actions cibles sont
applicables. Pour CHANGE_SET les cibles, seule l'CREATEaction est applicable. Pour de
plus amples informations, veuillez consulter Crochet et cibles.

InvocationPoints

Un tableau de chaînes qui indique les points d'invocation vers la cible.

Valeurs valides : PRE_PROVISION

TargetNames

Un tableau de chaînes qui indique les noms des types de ressources à cibler, par
exempleAWS::S3::Bucket.

Les noms de cibles prennent en charge les noms de cibles concrets et la correspondance
complète des caractères génériques. Pour de plus amples informations, veuillez consulter
Utilisation de caractères génériques avec les noms de cibles Hook.

Modèle : ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

Maximum : 50

Targets

Tableau d'objets qui indique la liste des cibles à utiliser pour le filtrage des cibles.

Filtres cibles 200

CloudFormation Guide de l'utilisateur de Hooks

Chaque cible du tableau de cibles possède les propriétés suivantes.

Actions

Action pour la cible spécifiée.

Valeurs valides : CREATE | UPDATE | DELETE

InvocationPoints

Point d'invocation pour la cible spécifiée.

Valeurs valides : PRE_PROVISION

TargetNames

Nom du type de ressource à cibler.

Note

Vous ne pouvez pas inclure à la fois le tableau TargetNames d'Targetsobjets et
InvocationPoints les tableauxActions, ou. Si vous souhaitez utiliser ces trois
élémentsTargets, vous devez les inclure dans le tableau Targets d'objets. Pour obtenir un
exemple, consultez Exemple 2 : Utilisation du tableau Targets d'objets.

Exemples de filtres cibles

Cette section fournit des exemples que vous pouvez suivre pour créer des filtres cibles pour les
CloudFormation Hooks.

Exemple 1 : filtre cible de base

Pour créer un filtre cible de base qui se concentre sur des types de ressources spécifiques, utilisez
l'TargetFiltersobjet avec le Actions tableau. La configuration de filtre cible suivante invoquera
le Hook on all CreateUpdate, et Delete des actions pour les opérations cibles spécifiées (dans ce
cas, les deux RESOURCE et les STACK opérations).

{
 "CloudFormationConfiguration": {

Exemples de filtres cibles 201

CloudFormation Guide de l'utilisateur de Hooks

 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "TargetFilters": {
 "Actions": [
 "Create",
 "Update",
 "Delete"
]
 }
 }
 }
}

Exemple 2 : Utilisation du tableau Targets d'objets

Pour des filtres plus avancés, vous pouvez utiliser le tableau d'Targetsobjets pour répertorier des
combinaisons spécifiques de cibles, d'actions et de points d'invocation. La configuration de filtre cible
suivante invoquera le Hook before CREATE et les UPDATE actions sur les buckets S3 et les tables
DynamoDB. Cela s'applique à la fois aux RESOURCE opérations STACK et aux opérations.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "TargetFilters": {
 "Targets": [
 {
 "TargetName": "AWS::S3::Bucket",
 "Action": "CREATE",
 "InvocationPoint": "PRE_PROVISION"
 },

Exemples de filtres cibles 202

CloudFormation Guide de l'utilisateur de Hooks

 {
 "TargetName": "AWS::S3::Bucket",
 "Action": "UPDATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::DynamoDB::Table",
 "Action": "CREATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::DynamoDB::Table",
 "Action": "UPDATE",
 "InvocationPoint": "PRE_PROVISION"
 }
]
 }
 }
 }
}

Utilisation de caractères génériques avec les noms de cibles Hook

Vous pouvez utiliser des caractères génériques dans le nom de la cible. Vous pouvez utiliser
des caractères génériques (*et?) dans les noms de vos cibles Hook. L'astérisque (*) représente
n'importe quelle combinaison de caractères. Le point d'interrogation (?) représente n'importe quel
caractère. Vous pouvez utiliser plusieurs ? caractères * et dans le nom d'une cible.

Example : exemples de caractères génériques pour le nom de la cible dans les schémas Hook

L'exemple suivant cible tous les types de ressources pris en charge par Amazon S3.

{
...
 "handlers": {
 "preCreate": {
 "targetNames": [
 "AWS::S3::*"
],
 "permissions": []
 }
 }

Utilisation de caractères génériques 203

CloudFormation Guide de l'utilisateur de Hooks

...
}

L'exemple suivant correspond à tous les types de ressources qui ont »Bucket« dans le nom.

{
...
 "handlers": {
 "preCreate": {
 "targetNames": [
 "AWS::*::Bucket*"
],
 "permissions": []
 }
 }
...
}

AWS::*::Bucket*Cela peut concerner l'un des types de ressources concrets suivants :

• AWS::Lightsail::Bucket

• AWS::S3::Bucket

• AWS::S3::BucketPolicy

• AWS::S3Outpost::Bucket

• AWS::S3Outpost::BucketPolicy

Example : exemples de caractères génériques pour le nom de la cible dans les schémas de
configuration Hook

L'exemple de configuration suivant invoque le Hook pour les CREATE opérations sur tous les types
de ressources Amazon S3 et pour les UPDATE opérations sur tous les types de ressources de table
nommés, tels que AWS::DynamobDB::Table ouAWS::Glue::Table.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "TargetStacks": "ALL",
 "FailureMode": "FAIL",
 "Properties": {},

Utilisation de caractères génériques 204

CloudFormation Guide de l'utilisateur de Hooks

 "TargetFilters":{
 "Targets": [
 {
 "TargetName": "AWS::S3::*",
 "Action": "CREATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::*::Table",
 "Action": "UPDATE",
 "InvocationPoint": "PRE_PROVISION"
 }
]
 }
 }
 }
}

L'exemple de configuration suivant invoque le Hook CREATE et les UPDATE opérations sur tous les
types de ressources Amazon S3, ainsi que CREATE des UPDATE opérations sur tous les types de
ressources de table nommés, tels que AWS::DynamobDB::Table ouAWS::Glue::Table.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "TargetStacks": "ALL",
 "FailureMode": "FAIL",
 "Properties": {},
 "TargetFilters":{
 "TargetNames": [
 "AWS::S3::*",
 "AWS::*::Table"
],
 "Actions": [
 "CREATE",
 "UPDATE"
],
 "InvocationPoints": [
 "PRE_PROVISION"
]
 }
 }
 }

Utilisation de caractères génériques 205

CloudFormation Guide de l'utilisateur de Hooks

}

Example : Include piles spécifiques

Les exemples suivants indiquent une Include liste. Le Hook n'est invoqué que si les noms des piles
commencent parstack-test-.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-*"
]
 }
 }
 }
 }
}

Example : Exclude piles spécifiques

Les exemples suivants indiquent une Exclude liste. Le Hook est invoqué sur toute pile qui ne
commence pas parstack-test-.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],

Utilisation de caractères génériques 206

CloudFormation Guide de l'utilisateur de Hooks

 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Exclude": [
 "stack-test-*"
]
 }
 }
 }
 }
}

Example : Combinaison Include et Exclude pour des piles spécifiques

Si Include des Exclude listes sont spécifiées, le Hook n'est invoqué que sur les piles
correspondant à celles Include qui ne correspondent pas à la Exclude liste. Dans l'exemple
suivant, le Hook est invoqué sur toutes les piles commençant par, à stack-test- l'exception des
piles nommées stack-test-1stack-test-2, et. stack-test-3

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-*"
],
 "Exclude": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 }

Utilisation de caractères génériques 207

CloudFormation Guide de l'utilisateur de Hooks

 }
 }
 }
}

Example : rôles Include spécifiques

L'exemple suivant spécifie une Include liste avec deux modèles de caractères génériques. La
première entrée exécutera le Hook pour n'importe quel rôle commençant hook-role par un
partition etaccount-id. La deuxième entrée exécutera « any » pour n'importe quel partition
rôle appartenant à account-id123456789012.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackRoles": {
 "Include": [
 "arn:*:iam::*:role/hook-role*",
 "arn:*:iam::123456789012:role/*
]
 }
 }
 }
 }
}

Example : rôles Exclude spécifiques

Les exemples suivants indiquent une Exclude liste avec deux modèles de caractères génériques.
La première entrée ignorera l'exécution du Hook lorsqu'un rôle a exempt dans son nom un nom
quelconqueaccount-id. partition La deuxième entrée ignorera l'exécution de Hook lorsqu'un
rôle appartenant à account-id 123456789012 est utilisé avec l'opération de pile.

Utilisation de caractères génériques 208

CloudFormation Guide de l'utilisateur de Hooks

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackRoles": {
 "Exclude": [
 "arn:*:iam::*:role/*exempt*",
 "arn:*:iam::123456789012:role/*
]
 }
 }
 }
 }
}

Example : combinaison Include et Exclude pour des rôles spécifiques de modèles d'ARN

Si Include des Exclude listes sont spécifiées, le Hook n'est invoqué que sur les piles utilisées
avec des rôles correspondant à ceux Include qui ne correspondent pas à ceux de la Exclude liste.
Dans l'exemple suivant, le Hook est invoqué lors d'opérations de pile avec n'importe quel partition
role nom, sauf si le rôle appartient à account-id123456789012. account-id

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",

Utilisation de caractères génériques 209

CloudFormation Guide de l'utilisateur de Hooks

 "StackRoles": {
 "Include": [
 "arn:*:iam::*:role/*"
],
 "Exclude": [
 "arn:*:iam::123456789012:role/*"
]
 }
 }
 }
 }
}

Example : combinaison des noms de pile et des rôles avec tous les critères

Le Hook suivant inclut un caractère générique de nom de pile et un caractère générique de rôle de
pile. Comme le Hook FilteringCriteria est spécifié commeALL, le Hook n'est invoqué que pour
les piles qui ont à la fois la correspondance StackName et la correspondanceStackRoles.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-*"
]
 },
 "StackRoles": {
 "Include": ["arn:*:iam::*:role/hook-role*"]
 }
 }
 }
 }
}

Utilisation de caractères génériques 210

CloudFormation Guide de l'utilisateur de Hooks

Example : Combinaison StackNames et StackRoles avec n'importe quel critère

Le Hook suivant inclut un caractère générique de nom de pile et un caractère générique de rôle de
pile. Parce que le FilteringCriteria est spécifié commeANY, le Hook est invoqué pour la pile qui
a une correspondance StackNames ou une correspondanceStackRoles.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ANY",
 "StackNames": {
 "Include": [
 "stack-test-*"
]
 },
 "StackRoles": {
 "Include": ["arn:*:iam::*:role/hook-role*"]
 }
 }
 }
 }
}

Utilisation de caractères génériques 211

CloudFormation Guide de l'utilisateur de Hooks

Créez des Hooks à l'aide CloudFormation de modèles
Cette page fournit des liens vers des exemples de CloudFormation modèles et des rubriques de
référence techniques pour les Hooks.

En utilisant CloudFormation des modèles pour créer des Hooks, vous pouvez réutiliser votre modèle
pour configurer vos Hooks de manière cohérente et répétée. Cette approche vous permet de définir
vos Hooks une seule fois, puis de configurer les mêmes Hooks encore et encore dans plusieurs
Comptes AWS régions.

CloudFormation propose les types de ressources spécialisées suivants pour la création de crochets
Guard et Lambda.

Tâche Solution Liens

Créez un crochet
de protection

Utilisez le type de AWS::Clou
dFormation::GuardHook
ressource pour créer et activer un
Guard Hook.

Exemple de modèle

Référence technique

Création d'un
crochet Lambda

Utilisez le type de AWS::Clou
dFormation::LambdaHook
ressource pour créer et activer un
Lambda Hook.

Exemple de modèle

Référence technique

CloudFormation propose également les types de ressources suivants que vous pouvez utiliser dans
vos modèles de pile pour créer des Hooks personnalisés.

Tâche Solution Liens

Enregistrer un
Hook

Utilisez le type de AWS::Clou
dFormation::HookVersion
ressource pour publier une nouvelle
version ou une première version d'un
Hook personnalisé CloudFormation
dans le registre.

Exemples de modèle

Référence technique

212

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-guardhook.html#aws-resource-cloudformation-guardhook--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-guardhook.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-lambdahook.html#aws-resource-cloudformation-lambdahook--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-lambdahook.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookversion.html#aws-resource-cloudformation-hookversion--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookversion.html

CloudFormation Guide de l'utilisateur de Hooks

Tâche Solution Liens

Définissez la
configuration du
Hook

Utilisez le type de AWS::Clou
dFormation::HookTy
peConfig ressource pour spécifier
la configuration d'un Hook personnal
isé.

Exemples de modèle

Référence technique

Définissez la
version par
défaut du Hook

Utilisez le type de AWS::Clou
dFormation::HookDe
faultVersion ressource pour
spécifier la version par défaut d'un
Hook personnalisé.

Exemples de modèle

Référence technique

Enregistrez votre
compte en tant
qu'éditeur

Utilisez le type de AWS::Clou
dFormation::Publisher
ressource pour enregistrer votre
compte en tant qu'éditeur d'extensi
ons publiques (Hooks, modules
et types de ressources) dans le
CloudFormation registre.

Référence technique

Publier un Hook
publiquement

Utilisez le type de AWS::Clou
dFormation::Public
TypeVersion ressource pour
tester et publier un Hook personnal
isé enregistré en tant que Hook tiers
public.

Référence technique

Activer des
Hooks publics et
tiers

Le type de AWS::CloudFormatio
n::TypeActivation
ressource fonctionne avec le type
de AWS::CloudFormatio
n::HookTypeConfig ressource
pour activer un Hook personnalisé
public tiers dans votre compte.

Référence technique

213

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hooktypeconfig.html#aws-resource-cloudformation-hooktypeconfig--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hooktypeconfig.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookdefaultversion.html#aws-resource-cloudformation-hookdefaultversion--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookdefaultversion.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-publisher.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-publictypeversion.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-typeactivation.html

CloudFormation Guide de l'utilisateur de Hooks

Accorder des autorisations IAM pour les Hooks
CloudFormation
Par défaut, un nouvel utilisateur Compte AWS n'est pas autorisé à gérer les Hooks à l'aide de l'API
AWS Management Console, AWS Command Line Interface (AWS CLI) ou de AWS l'API. Pour
accorder des autorisations aux utilisateurs, un administrateur IAM peut créer des politiques IAM.
L’administrateur peut ensuite ajouter les politiques IAM aux rôles et les utilisateurs peuvent assumer
les rôles.

Utilisez les exemples de politiques présentés dans cette rubrique pour créer vos propres politiques
IAM personnalisées afin d'autoriser les utilisateurs à utiliser les Hooks.

Pour savoir comment créer une politique basée sur l'identité IAM à l'aide de ces exemples de
documents de politique JSON, voir Définir des autorisations IAM personnalisées avec des politiques
gérées par le client dans le guide de l'utilisateur IAM.

Cette rubrique décrit les autorisations nécessaires pour effectuer les opérations suivantes :

• Gérer les Hooks — Créez, modifiez et désactivez les Hooks dans votre compte.

• Publier les Hooks publiquement — Enregistrez, testez et publiez vos Hooks personnalisés pour les
rendre accessibles au public dans le CloudFormation registre.

• Afficher les résultats des invocations — Accédez aux résultats des invocations Hook sur votre
compte et interrogez-les.

• Afficher les détails d'un résultat d'invocation — Accédez à des informations détaillées et à des
conseils de correction pour un résultat d'invocation Hook spécifique sur votre compte.

Lorsque vous créez vos politiques IAM, vous pouvez trouver la documentation de toutes les
actions, ressources et clés de condition associées au préfixe de cloudformation service dans la
CloudFormation section Actions, ressources et clés de condition de la référence d'autorisation de
service.

Rubriques

• Autoriser un utilisateur à gérer les Hooks

• Autoriser un utilisateur à publier des Hooks personnalisés publiquement

• Autoriser un utilisateur à consulter les résultats d'invocation de Hook

214

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudformation.html

CloudFormation Guide de l'utilisateur de Hooks

• Autoriser un utilisateur à afficher les résultats détaillés de l'invocation de Hook

• AWS KMS politique clé et autorisations pour chiffrer les résultats de CloudFormation Hooks au
repos

Autoriser un utilisateur à gérer les Hooks

Si vous devez autoriser les utilisateurs à gérer les extensions, y compris les Hooks, sans pouvoir les
rendre publiques dans le CloudFormation registre, vous pouvez utiliser l'exemple de politique IAM
suivant.

Important

Les appels ActivateType et SetTypeConfiguration API fonctionnent ensemble
pour créer des Hooks dans votre compte. Lorsque vous autorisez un utilisateur à appeler
l'SetTypeConfigurationAPI, vous lui accordez automatiquement la possibilité de modifier
et de désactiver les Hooks existants. Vous ne pouvez pas utiliser les autorisations au niveau
des ressources pour restreindre l'accès à cet appel d'API. Veillez donc à n'accorder cette
autorisation qu'aux utilisateurs autorisés de votre compte.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ActivateType",
 "cloudformation:DescribeType",
 "cloudformation:ListTypes",
 "cloudformation:SetTypeConfiguration"
],
 "Resource": "*"
 }
]
}

Autoriser un utilisateur à gérer les Hooks 215

CloudFormation Guide de l'utilisateur de Hooks

Les utilisateurs qui gèrent les Hooks peuvent avoir besoin de certaines autorisations connexes, par
exemple :

• Pour afficher les contrôles proactifs à partir du catalogue de contrôles dans la CloudFormation
console, l'utilisateur doit avoir l'controlcatalog:ListControlsautorisation requise dans une
politique IAM.

• Pour enregistrer des Hooks personnalisés en tant qu'extensions privées dans le CloudFormation
registre, l'utilisateur doit avoir l'cloudformation:RegisterTypeautorisation requise dans une
politique IAM.

Autoriser un utilisateur à publier des Hooks personnalisés
publiquement

L'exemple de politique IAM suivant se concentre spécifiquement sur les capacités de publication.
Utilisez cette politique si vous devez autoriser les utilisateurs à rendre les extensions, y compris les
Hooks, disponibles publiquement dans le CloudFormation registre.

Important

La publication des Hooks les met publiquement à la disposition des autres Comptes AWS.
Assurez-vous que seuls les utilisateurs autorisés disposent de ces autorisations et que les
extensions publiées répondent aux normes de qualité et de sécurité de votre organisation.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribePublisher",
 "cloudformation:DescribeTypeRegistration",
 "cloudformation:ListTypes",
 "cloudformation:ListTypeVersions",
 "cloudformation:PublishType",
 "cloudformation:RegisterPublisher",

Autoriser un utilisateur à publier des Hooks personnalisés publiquement 216

CloudFormation Guide de l'utilisateur de Hooks

 "cloudformation:RegisterType",
 "cloudformation:TestType"
],
 "Resource": "*"
 }
]
}

Autoriser un utilisateur à consulter les résultats d'invocation de
Hook

Les autorisations IAM nécessaires pour afficher les résultats d'invocation de Hook changent en
fonction du type d'informations demandées.

Résultats d'invocation de List Hook

Pour répertorier les résultats d'invocation de Hook, les utilisateurs ont besoin d'autorisations
différentes en fonction de la demande d'API effectuée.

• Pour accorder l'autorisation de demander tous les résultats du Hook, les résultats d'un Hook
spécifique ou les résultats d'un Hook et d'un statut d'invocation spécifiques, vous devez autoriser
l'accès à l'cloudformation:ListAllHookResultsaction.

• Pour accorder l'autorisation de demander des résultats en spécifiant une cible Hook, vous
devez autoriser l'accès à l'cloudformation:ListHookResultsaction. Cette autorisation
permet à l'appelant de l'API de spécifier les TargetId paramètres TargetType et lors de
l'appelListHookResults.

Voici un exemple de politique d'autorisation de base pour répertorier les résultats d'invocation de
Hook. Les identités IAM (utilisateurs ou rôles) associées à cette politique sont autorisées à demander
tous les résultats d'invocation en utilisant toutes les combinaisons de paramètres disponibles.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {

Autoriser un utilisateur à consulter les résultats d'invocation de Hook 217

CloudFormation Guide de l'utilisateur de Hooks

 "Effect": "Allow",
 "Action": [
 "cloudformation:ListAllHookResults",
 "cloudformation:ListHookResults"
],
 "Resource": "*"
 }
]
}

Contrôlez quels ensembles de modifications peuvent être spécifiés

L'exemple de politique IAM suivant autorise l'cloudformation:ListHookResultsaction à
demander des résultats en spécifiant la cible du Hook. Cependant, il refuse également l'action si la
cible est un ensemble de modifications nomméexample-changeset.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ListHookResults"
],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "cloudformation:ListHookResults"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudformation:ChangeSetName": "example-changeset"
 }
 }
 }
]

Résultats d'invocation de List Hook 218

CloudFormation Guide de l'utilisateur de Hooks

}

Contrôlez quels Hooks peuvent être spécifiés

L'exemple de politique IAM suivant accorde l'autorisation à
l'cloudformation:ListAllHookResultsaction de demander des résultats d'invocation
uniquement lorsque l'ARN du Hook est fourni dans la demande. Il refuse l'action pour un Hook ARN
spécifié.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ListAllHookResults"
],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "cloudformation:ListAllHookResults"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "cloudformation:TypeArn": "true"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "cloudformation:ListAllHookResults"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {

Résultats d'invocation de List Hook 219

CloudFormation Guide de l'utilisateur de Hooks

 "cloudformation:TypeArn": "arn:aws:cloudformation:us-
east-1:123456789012:type/hook/MyCompany-MyHook"
 }
 }
 }
]
}

Autoriser un utilisateur à afficher les résultats détaillés de
l'invocation de Hook

Pour autoriser l'affichage des résultats détaillés d'un appel Hook spécifique, vous devez autoriser
l'accès à l'cloudformation:GetHookResultaction. Cette autorisation permet aux utilisateurs
de récupérer des informations détaillées et des conseils de correction pour un résultat d'invocation
Hook spécifique. Pour plus d’informations, consultez GetHookResult dans la Référence d’API AWS
CloudFormation .

L'exemple de politique IAM suivant accorde des autorisations à
l'cloudformation:GetHookResultaction.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:GetHookResult"
],
 "Resource": "*"
 }
]
}

Autoriser un utilisateur à afficher les résultats détaillés de l'invocation de Hook 220

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

CloudFormation Guide de l'utilisateur de Hooks

Note

Vous pouvez configurer Hooks pour chiffrer les résultats d'invocation détaillés stockés dans le
cloud avec vos propres clés. AWS KMS Pour plus d'informations sur la façon de configurer la
politique des clés et les autorisations IAM dont vous avez besoin lorsque vous utilisez une clé
gérée par le client pour le chiffrement, consultezAWS KMS politique clé et autorisations pour
chiffrer les résultats de CloudFormation Hooks au repos.

AWS KMS politique clé et autorisations pour chiffrer les résultats de
CloudFormation Hooks au repos
Cette rubrique explique comment configurer la politique de AWS KMS clés et les autorisations
dont vous avez besoin lorsque vous spécifiez une clé gérée par le client pour chiffrer les données
d'annotations Hooks disponibles depuis l'GetHookResultAPI.

Note

CloudFormation Hooks n'a pas besoin d'autorisation supplémentaire pour utiliser la valeur par
défaut Clé détenue par AWS pour chiffrer les données d'annotations de votre compte.

Rubriques

• Présentation de

• Contrôle de l’accès à votre clé gérée par le client à l’aide du contexte de chiffrement

• Stratégie de clé KMS gérée par le client

• Autorisations KMS pour SetTypeConfiguration l'API

• Autorisations KMS pour GetHookResult l'API

Présentation de

Les éléments suivants AWS KMS keys peuvent être utilisés pour chiffrer les données d'annotations
Hook :

• Clé détenue par AWS— Par défaut, CloudFormation utilise un Clé détenue par AWS pour chiffrer
les données. Vous ne pouvez ni afficher, ni gérer, ni utiliser Clés détenues par AWS, ni auditer leur

AWS KMS politique et autorisations clés 221

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

CloudFormation Guide de l'utilisateur de Hooks

utilisation. Cependant, il n'est pas nécessaire d'effectuer une configuration explicite pour protéger
la clé utilisée pour chiffrer vos données. Clés détenues par AWS sont fournis gratuitement (sans
frais mensuels ni frais d'utilisation). À moins que vous ne soyez obligé d'auditer ou de contrôler la
clé de chiffrement qui protège les données de vos annotations, un Clé détenue par AWS est un
bon choix.

• Clé gérée par le client : CloudFormation prend en charge l'utilisation d'une clé symétrique gérée
par le client que vous créez, détenez et gérez pour ajouter une deuxième couche de chiffrement à
la clé existante Clé détenue par AWS. AWS KMS des frais s'appliquent. Pour plus d'informations,
consultez Création des clés dans le Guide du développeur AWS Key Management Service . Pour
gérer votre clé, utilisez le AWS Key Management Service (AWS KMS) dans la AWS KMS console
AWS CLI, le ou l' AWS KMS API. Pour plus d’informations, consultez le Guide du développeur
AWS Key Management Service.

Vous pouvez configurer les clés gérées par le client lors de la création et de la mise à jour des
Hooks. Lorsque vous fournissez la clé gérée par le client, CloudFormation utilisez cette clé pour
chiffrer les données d'annotations avant de les stocker. Lorsque les données d'annotations sont
consultées ultérieurement pendant l'opération de l'GetHookResultAPI, les CloudFormation
déchiffre automatiquement. Pour plus d'informations sur la configuration de votre clé de chiffrement
pour les Hooks, consultezRéférence syntaxique du schéma de configuration Hook.

Important

Notez que l'KmsKeyIdoption permettant de spécifier une clé gérée par le client n'est
actuellement disponible que lorsque vous utilisez le AWS CLI pour configurer votre Hook.

Contrôle de l’accès à votre clé gérée par le client à l’aide du contexte de
chiffrement

CloudFormation Hooks inclut automatiquement le contexte de chiffrement à chaque opération de
stockage et de récupération d'annotations. Cela vous permet de définir des conditions de contexte de
chiffrement dans votre politique de clé afin de garantir que la clé ne peut être utilisée que pour des
Hooks spécifiques :

• kms:EncryptionContext:aws:cloudformation:hooks:service— Garantit que la clé
n'est utilisée que par le service CloudFormation Hooks.

Contexte de chiffrement 222

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

CloudFormation Guide de l'utilisateur de Hooks

• kms:EncryptionContext:aws:cloudformation:account-id— Empêche l'utilisation de
clés entre comptes en faisant correspondre votre Compte AWS identifiant.

• kms:EncryptionContext:aws:cloudformation:arn— Limitez l'utilisation à des Hooks
spécifiques à l'aide de modèles d'ARN.

Ces conditions fournissent une protection supplémentaire contre les attaques secondaires confuses
en liant cryptographiquement les données cryptées au contexte Hook spécifique.

Stratégie de clé KMS gérée par le client

Lorsque vous créez votre clé gérée par le client, vous devez définir sa politique clé pour permettre au
service CloudFormation Hooks d'effectuer AWS KMS des opérations. Pour appliquer la politique clé
suivante, remplacez-la placeholder values par vos propres informations.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "EnableIAMUserDescribeKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/ExampleRole"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "cloudformation.us-east-1.amazonaws.com"
 }
 }
 },
 {
 "Sid": "EnableIAMUserGenerateDataKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/ExampleRole"
 },
 "Action": "kms:GenerateDataKey",

Stratégie de clé KMS gérée par le client 223

CloudFormation Guide de l'utilisateur de Hooks

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "cloudformation.us-east-1.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:hooks:service":
 "hooks.cloudformation.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:account-id": "123456789012"
 },
 "ArnLike": {
 "kms:EncryptionContext:aws:cloudformation:arn":
 "arn:aws:cloudformation:*:123456789012:hook/*"
 }
 }
 },
 {
 "Sid": "EnableIAMUserDecrypt",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/ExampleRole"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "cloudformation.us-east-1.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AllowHooksServiceDescribeKey",
 "Effect": "Allow",
 "Principal": {
 "Service": "hooks.cloudformation.amazonaws.com"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:cloudformation:*:123456789012:hook/*"
 }
 }

Stratégie de clé KMS gérée par le client 224

CloudFormation Guide de l'utilisateur de Hooks

 },
 {
 "Sid": "AllowHooksService",
 "Effect": "Allow",
 "Principal": {
 "Service": "hooks.cloudformation.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012",
 "kms:EncryptionContext:aws:cloudformation:hooks:service":
 "hooks.cloudformation.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:account-id": "123456789012"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:cloudformation:*:123456789012:hook/*",
 "kms:EncryptionContext:aws:cloudformation:arn":
 "arn:aws:cloudformation:*:123456789012:hook/*"
 }
 }
 }
]
}

Cette politique accorde des autorisations à la fois aux rôles IAM (trois premières instructions) et au
service CloudFormation Hooks (deux dernières instructions). La clé de kms:ViaService condition
garantit que la clé KMS ne peut être utilisée que par le biais CloudFormation, empêchant ainsi les
appels directs à l'API KMS. Les principales opérations sont les suivantes :

• kms:DescribeKey— Valide les propriétés et les métadonnées clés. Cette opération figure dans
des instructions distinctes car elle ne peut pas être utilisée avec des conditions de contexte de
chiffrement.

• kms:GenerateDataKey— Génère des clés de chiffrement des données pour chiffrer les
annotations avant leur stockage. Cette opération inclut les conditions de contexte de chiffrement
pour le contrôle d'accès délimité.

Stratégie de clé KMS gérée par le client 225

CloudFormation Guide de l'utilisateur de Hooks

• kms:Decrypt— Déchiffre les données d'annotations précédemment chiffrées. Pour les rôles IAM,
cela inclut la kms:ViaService condition. Pour le principal de service, cela inclut les conditions de
contexte de chiffrement.

Les touches de aws:SourceArn condition aws:SourceAccount et fournissent la protection
principale contre les attaques secondaires confuses. Les conditions de contexte de chiffrement
fournissent des couches de validation supplémentaires. Pour plus d'informations, consultez la section
Utilisation aws:SourceArn ou aws:SourceAccount condition des clés dans le Guide du AWS Key
Management Service développeur.

Important

Les rôles d'exécution de Hook n'ont pas besoin d' AWS KMS autorisations. Le directeur du
service CloudFormation Hooks effectue toutes les AWS KMS opérations.

Autorisations KMS pour SetTypeConfiguration l'API

Au cours de l'appel d'SetTypeConfigurationAPI, CloudFormation valide les autorisations de
l'utilisateur pour chiffrer les données d'annotations avec la clé spécifiée. AWS KMS Ajoutez
la politique IAM suivante à l'utilisateur ou au rôle qui configurera le chiffrement à l'aide de
l'SetTypeConfigurationAPI. Remplacez les placeholder values par vos propres
informations.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "cloudformation:SetTypeConfiguration",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "kms:DescribeKey",
 "Resource": "arn:aws:kms:us-east-1:123456789012:key/abc-123"
 },

Autorisations KMS pour SetTypeConfiguration l'API 226

https://docs.aws.amazon.com/kms/latest/developerguide/least-privilege.html#least-privilege-source-arn
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_SetTypeConfiguration.html

CloudFormation Guide de l'utilisateur de Hooks

 {
 "Effect": "Allow",
 "Action": "kms:GenerateDataKey",
 "Resource": "arn:aws:kms:us-east-1:123456789012:key/abc-123",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:cloudformation:hooks:service":
 "hooks.cloudformation.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:account-id": "123456789012"
 },
 "ArnLike": {
 "kms:EncryptionContext:aws:cloudformation:arn":
 "arn:aws:cloudformation:*:123456789012:hook/*"
 }
 }
 }
]
}

Autorisations KMS pour GetHookResult l'API

GetHookResultPour appeler des Hooks qui utilisent votre clé gérée par le client, les
utilisateurs doivent être kms:Decrypt autorisés à utiliser cette clé. Ajoutez la politique
IAM suivante à l'utilisateur ou au rôle qui GetHookResult appellera. arn:aws:kms:us-
east-1:123456789012:key/abc-123Remplacez-le par l'ARN de votre clé gérée par le client.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "cloudformation:GetHookResult",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws:kms:us-east-1:123456789012:key/abc-123"
 }

Autorisations KMS pour GetHookResult l'API 227

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

CloudFormation Guide de l'utilisateur de Hooks

]
}

Autorisations KMS pour GetHookResult l'API 228

CloudFormation Guide de l'utilisateur de Hooks

Historique du document pour le guide de l'utilisateur de
CloudFormation Hooks

Le tableau suivant décrit les modifications importantes apportées à la documentation depuis la
dernière version de CloudFormation Hooks. Pour recevoir les notifications de mise à jour de cette
documentation, abonnez-vous à un flux RSS.

• Dernière mise à jour de la documentation : 4 septembre 2025.

Modification Description Date

Résultats détaillés des
contrôles de conformité

Les Hooks prennent
désormais en charge les
annotations qui fournissent
des résultats de vérification
de conformité détaillés et des
conseils de correction pour
chaque ressource évaluée.
Consultez ces résultats de
validation détaillés via la
CloudFormation console ou
la commande get-hook-
result CLI.

13 novembre 2025

Contrôles proactifs sous forme
de Hooks

Vous pouvez désormais
activer les Hooks basés
sur le contrôle proactif via
la CloudFormation console
ou la CLI à l'aide des set-
type-configuration
commandes activate-
type et. Vous pouvez
configurer ces Hooks pour
appliquer des contrôles
proactifs spécifiques du AWS

4 septembre 2025

229

CloudFormation Guide de l'utilisateur de Hooks

Control Tower Control Catalog
afin d'évaluer les ressources
pendant CREATE et UPDATE
les opérations.

Résumé de l'invocation de
Hooks

Vous pouvez désormais
récupérer des informations
sur les invocations Hook via
la CloudFormation console ou
utiliser la commande list-
hook-results CLI pour
récupérer les détails des
invocations par programma
tion. Vous pouvez également
désormais filtrer les list-
hook-results résultats par
Hook ou par statut d'invocation
pour vous concentrer sur les
invocations pertinentes.

4 septembre 2025

Crochets empilables Les Hooks sont désormais
pris en charge au niveau de
la pile, ce qui permet aux
clients d'utiliser les CloudForm
ation Hooks pour évaluer
de nouveaux modèles et
éventuellement empêcher
les opérations de pile de se
poursuivre.

13 novembre 2024

230

CloudFormation Guide de l'utilisateur de Hooks

API de commande du Cloud
AWS Intégration de Hooks

Les Hooks sont désormais
intégrés à l'API Cloud Control,
ce qui permet aux clients
d'utiliser CloudFormation
des Hooks pour inspecter de
manière proactive la configura
tion des ressources avant
le provisionnement. Si des
ressources non conformes
sont détectées, le Hook
échoue à l'opération et
empêche le provisionnement
des ressources, ou émet un
avertissement et autorise la
poursuite de l'opération de
provisionnement.

13 novembre 2024

AWS CloudFormation Guard
Crochets

AWS CloudFormation Guard
est un langage spécifique
à un domaine (DSL) open
source et à usage général
que vous pouvez utiliser
pour créer. policy-as-code
Guard Hooks peut évaluer
l'API et les CloudFormation
opérations Cloud Control afin
d'inspecter la configuration des
ressources avant le provision
nement. Si des ressources
non conformes sont détectées,
le Hook échoue à l'opération et
empêche le provisionnement
des ressources, ou émet un
avertissement et autorise la
poursuite de l'opération de
provisionnement.

13 novembre 2024

231

CloudFormation Guide de l'utilisateur de Hooks

AWS Lambda Crochets AWS CloudFormation
Les Lambda Hooks vous
permettent d'évaluer
CloudFormation et de
contrôler les opérations de
l'API Cloud Control par rapport
à votre propre code personnal
isé. Votre Hook peut bloquer le
déroulement d'une opération
ou envoyer un avertissement
à l'appelant et autoriser le
déroulement de l'opération.

13 novembre 2024

Guide de l'utilisateur de Hooks Version initiale du guide de
l'utilisateur de CloudForm
ation Hooks. Les mises à jour
incluent une nouvelle introduct
ion, une procédure pas à pas,
des concepts et une terminolo
gie, un filtrage au niveau de
la pile et des rubriques mises
à jour sur les prérequis, la
configuration et le développe
ment des CloudFormation
Hooks.

8 décembre 2023

232

CloudFormation Guide de l'utilisateur de Hooks

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le
contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

ccxxxiii

	CloudFormation
	Table of Contents
	Que sont les CloudFormation Hooks ?
	Options d'implémentation de Hook
	AWS Control Tower contrôles proactifs
	Règles de garde
	Fonctions Lambda
	Crochets personnalisés

	Création et gestion de CloudFormation Hooks
	CloudFormation Concepts de crochets
	Crochet
	Mode de défaillance
	Crochet et cibles
	Actions ciblées
	Annotations
	Manipulateur de crochets
	Limites de délai et de nouvelles tentatives

	AWS Control Tower contrôles proactifs sous forme de Hooks
	AWS CLI commandes pour travailler avec les Hooks
	Activez un hook basé sur le contrôle proactif dans votre compte
	Activer un Hook basé sur le contrôle proactif (console)
	Activez un Hook basé sur le contrôle proactif ()AWS CLI

	Supprimez les Hooks basés sur le contrôle proactif de votre compte
	Supprimer un Hook basé sur le contrôle proactif dans votre compte (console)
	Supprimer un Hook basé sur le contrôle proactif dans votre compte ()AWS CLI

	Hooks Guard
	AWS CLI commandes pour travailler avec Guard Hooks
	Rédiger des règles de garde pour évaluer les ressources pour Guard Hooks
	Règles relatives à l'exploitation des ressources
	Syntaxe d'entrée des ressources Guard
	Exemple d'entrée d'opération de ressource Guard
	Règles de protection en cas de modification des ressources

	Règles de Stack Operation Guard
	Syntaxe d'entrée Guard Stack
	Exemple d'entrée d'opération Guard Stack
	Règles de protection en cas de changement de pile

	Modifier les règles du jeu Operation Guard
	Syntaxe d'entrée Guard Change Set
	Exemple d'entrée d'opération du kit Guard Change
	Règle de protection pour les opérations relatives aux ensembles de modifications

	Préparez-vous à créer un crochet de protection
	Création d'un rôle d'exécution pour un Guard Hook
	Autorisations requises

	Activez un Guard Hook dans votre compte
	Activer un crochet de protection (console)
	Activer un crochet de protection (AWS CLI)
	Ressources connexes

	Afficher les journaux des Guard Hooks sur votre compte
	Afficher les journaux Guard Hook dans la console Amazon S3

	Supprimer Guard Hooks de votre compte
	Supprimer un Guard Hook dans votre compte (console)
	Supprimer un Guard Hook dans votre compte (AWS CLI)

	Hooks Lambda
	AWS CLI commandes pour travailler avec les Hooks Lambda
	Créez des fonctions Lambda pour évaluer les ressources pour les Lambda Hooks
	Développement d'un hook Lambda
	Demande d'entrée
	Entrée de réponse
	Exemples

	Évaluation des opérations sur les ressources avec les Lambda Hooks
	Syntaxe d'entrée des ressources Lambda Hook
	Exemple d'entrée de modification de ressource Lambda Hook
	Exemple de fonction Lambda pour les opérations sur les ressources

	Évaluation des opérations de stack avec les Lambda Hooks
	Syntaxe d'entrée Lambda Hook Stack
	Exemple d'entrée de modification de la pile Lambda Hook
	Exemple de fonction Lambda pour les opérations de stack

	Évaluation des opérations relatives aux ensembles de modifications à l'aide de Lambda Hooks
	Lambda Hook modifie la syntaxe d'entrée du set
	Exemple : Lambda Hook change Set, change d'entrée
	Exemple de fonction Lambda pour les opérations d'ensemble de modifications

	Préparez-vous à créer un crochet Lambda
	Création d'un rôle d'exécution pour un Lambda Hook
	Autorisations requises

	Activez un Lambda Hook dans votre compte
	Activer un Lambda Hook (console)
	Activer un crochet Lambda ()AWS CLI
	Ressources connexes

	Afficher les journaux des Lambda Hooks dans votre compte
	Afficher les journaux Lambda Hook dans la console Lambda

	Supprimer les Lambda Hooks de votre compte
	Supprimer un Lambda Hook dans votre compte (console)
	Supprimer un Lambda Hook dans votre compte ()AWS CLI

	Développement de Hooks personnalisés à l'aide de la CloudFormation CLI
	Conditions préalables au développement de Hooks personnalisés CloudFormation
	Autorisations pour développer des Hooks
	Configurer un environnement de développement pour les Hooks

	Lancer un projet CloudFormation Hooks personnalisé
	Modélisation de CloudFormation crochets personnalisés
	Modélisation de CloudFormation Hooks personnalisés en utilisant Java
	Étape 1 : Ajouter les dépendances du projet
	Dépendances du projet Hook (pom.xml)

	Étape 2 : Générer le package du projet Hook
	Étape 3 : Ajouter des gestionnaires Hook
	Étape 4 : Implémenter les gestionnaires Hook
	Codage du générateur de API clients
	Codage de l'auteur API de la demande
	Implémentation du code d'assistance
	Implémentation du gestionnaire de base
	Implémentation du preCreate gestionnaire
	Codage du preCreate gestionnaire
	Mettre à jour le preCreate test
	Implémentation du preUpdate gestionnaire
	Codage du preUpdate gestionnaire
	Mettre à jour le preUpdate test
	Implémentation du preDelete gestionnaire
	Codage du preDelete gestionnaire
	Mettre à jour le preDelete gestionnaire

	Modélisation de CloudFormation Hooks personnalisés à l'aide de Python
	Étape 1 : Générer le package du projet Hook
	Étape 2 : Ajouter des gestionnaires Hook
	Étape 3 : Implémenter les gestionnaires Hook
	Implémenter le preCreate gestionnaire
	Implémenter le preUpdate gestionnaire
	Implémenter le preDelete gestionnaire
	Implémenter un gestionnaire Hook

	Enregistrer un Hook personnalisé avec CloudFormation
	Package d'un Hook (Java)
	Enregistrer un Hook personnalisé
	Vérifier que les Hooks sont accessibles dans votre compte
	Configurer les Hooks

	Accès AWS APIs dans les gestionnaires
	modèle hook-role.yaml

	Tester un Hook personnalisé dans votre Compte AWS
	Tester les Hooks en provisionnant une pile
	Exemple 1 : pour provisionner une pile
	Exemple 2 : pour provisionner une pile

	Mettre à jour un Hook personnalisé
	Désenregistrer un Hook personnalisé du registre CloudFormation
	Hooks de publication destinés à un usage public
	Tester un Hook personnalisé pour un usage public
	Spécification des données d'entrée à utiliser dans les tests de contrats
	Spécification des données d'entrée à l'aide d'un fichier de remplacement
	Spécification des données d'entrée à l'aide de fichiers d'entrée

	Référence syntaxique du schéma pour les CloudFormation Hooks
	Syntaxe du schéma
	Exemples de schémas Hooks

	Désactiver et activer les CloudFormation Hooks
	Désactiver et activer un Hook dans votre compte (console)
	Désactiver et activer un Hook dans votre compte (AWS CLI)

	Afficher les résultats d'invocation pour les Hooks CloudFormation
	Afficher les résultats des appels dans la console
	Afficher les résultats pour tous les Hooks
	Afficher l'historique des invocations pour des Hooks individuels
	Afficher les résultats des invocations spécifiques à une pile

	Afficher les résultats des invocations à l'aide du AWS CLI

	Référence syntaxique du schéma de configuration Hook
	Propriétés du schéma de configuration des crochets
	Exemples de configuration de crochets
	CloudFormation Filtres de niveau Hooks Stack
	FilteringCriteria
	StackNames
	StackRoles
	Include et Exclude
	Exemples de filtres au niveau de la pile
	Exemple 1 : inclure des piles spécifiques
	Exemple 2 : Exclure des piles spécifiques
	Exemple 3 : combinaison d'inclusion et d'exclusion
	Exemple 4 : combinaison de noms de pile et de rôles avec des ALL critères
	Exemple 5 : combinaison de noms de pile et de rôles avec des ANY critères

	CloudFormation Filtres cibles Hooks
	Exemples de filtres cibles
	Exemple 1 : filtre cible de base
	Exemple 2 : Utilisation du tableau Targets d'objets

	Utilisation de caractères génériques avec les noms de cibles Hook

	Créez des Hooks à l'aide CloudFormation de modèles
	Accorder des autorisations IAM pour les Hooks CloudFormation
	Autoriser un utilisateur à gérer les Hooks
	Autoriser un utilisateur à publier des Hooks personnalisés publiquement
	Autoriser un utilisateur à consulter les résultats d'invocation de Hook
	Résultats d'invocation de List Hook
	Contrôlez quels ensembles de modifications peuvent être spécifiés
	Contrôlez quels Hooks peuvent être spécifiés

	Autoriser un utilisateur à afficher les résultats détaillés de l'invocation de Hook
	AWS KMS politique clé et autorisations pour chiffrer les résultats de CloudFormation Hooks au repos
	Présentation de
	Contrôle de l’accès à votre clé gérée par le client à l’aide du contexte de chiffrement
	Stratégie de clé KMS gérée par le client
	Autorisations KMS pour SetTypeConfiguration l'API
	Autorisations KMS pour GetHookResult l'API

	Historique du document pour le guide de l'utilisateur de CloudFormation Hooks
	

