
Guide du développeur pour la version 1.x

AWS SDK pour Java 1. x

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

AWS SDK pour Java 1. x: Guide du développeur pour la version 1.x

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Table of Contents
.. viii
AWS SDK pour Java 1. x ... 1

Sortie de la version 2 du SDK .. 1
Documentation et ressources supplémentaires .. 1
Prise en charge de l'IDE Eclipse .. 2
Développement d'applications pour Android ... 2
Affichage de l'historique des révisions du kit SDK ... 2
Génération de la documentation de référence Java pour les versions précédentes du kit SDK 2

Démarrage .. 4
Configuration de base ... 4

Présentation .. 4
Possibilité de connexion au portail d' AWS accès ... 5
Configuration de fichiers de configuration partagés ... 5
Installation d'un environnement de développement Java .. 7

Moyens d'obtenir le AWS SDK pour Java .. 7
Prérequis ... 7
Utiliser un outil de construction .. 8
Télécharger le fichier jar prédéfini .. 8
Construire à partir des sources .. 9

Utiliser des outils de construction ... 10
Utilisation du kit SDK avec Apache Maven .. 10
Utilisation du kit SDK avec Gradle ... 13

Informations d'identification temporaires et région .. 17
Configurer les informations d'identification temporaires ... 17
Actualisation des informations d'identification de l'IMDS ... 18
Réglez le Région AWS ... 19

En utilisant le AWS SDK pour Java .. 21
Meilleures pratiques de AWS développement avec le AWS SDK pour Java 21

S3 .. 21
Création de clients de service ... 22

Obtention d'un générateur client .. 23
Création de clients asynchrones .. 24
En utilisant DefaultClient .. 25
Cycle de vie des clients ... 25

iii

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Fournir des informations d'identification temporaires .. 25
Utilisation de la chaîne de fournisseur d'informations d'identification par défaut 26
Spécifiez un fournisseur d'informations d'identification ou une chaîne de fournisseurs 30
Spécifiez explicitement les informations d'identification temporaires 30
Plus d'informations .. 31

Région AWS Sélection .. 31
Vérification de la disponibilité du service dans une région .. 31
Choix d'une région .. 32
Choix d'un point de terminaison spécifique .. 32
Déterminer automatiquement la région à partir de l'environnement .. 33

Gestion des exceptions ... 34
Pourquoi des exceptions non contrôlées ? .. 35
AmazonServiceException (et sous-classes) ... 35
AmazonClientException .. 36

Programmation asynchrone ... 36
Objets Future Java ... 36
Rappels asynchrones ... 38
Bonnes pratiques .. 40

Enregistrement AWS SDK pour Java des appels .. 40
Téléchargement du fichier JAR Log4J ... 41
Définition du chemin de classe .. 41
Erreurs et avertissements propres au service ... 42
Journalisation récapitulative des demandes et des réponses .. 42
Journalisation du réseau filaire détaillée .. 43
Journalisation des métriques de latence .. 44

Configuration de client ... 45
Configuration de proxy ... 45
Configuration du transport HTTP ... 45
Conseils sur la taille de la mémoire tampon du socket TCP ... 47

Stratégies de contrôle d'accès .. 48
Amazon S3 Exemple .. 48
Amazon SQS Exemple ... 49
Exemple Amazon SNS ... 49

Définissez le TTL de la JVM pour les recherches de noms DNS ... 50
Comment configurer le JVM TTL ... 50

Activation des métriques pour le AWS SDK pour Java .. 51

iv

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Comment activer la génération de métriques du SDK Java .. 51
Types de métrique disponibles ... 53
En savoir plus ... 55

Exemples de code .. 57
AWS SDK pour Java 2. x ... 57
Amazon CloudWatch Exemples ... 57

Obtenir des métriques à partir de CloudWatch .. 58
Publication de données de métriques personnalisées ... 60
Utilisation des CloudWatch alarmes ... 61
Utilisation des actions d'alarme dans CloudWatch .. 64
Envoi d'événements à CloudWatch .. 66

Amazon DynamoDB Exemples .. 69
Utiliser des points de AWS terminaison basés sur des comptes ... 69
Utilisation de tables dans DynamoDB .. 70
Utilisation d'éléments dans DynamoDB ... 77

Amazon EC2 Exemples ... 84
Tutoriel : Démarrage d'une EC2 instance .. 85
Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2 90
Tutoriel : Instances Amazon EC2 ponctuelles .. 97
Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 108
Gestion des Amazon EC2 instances .. 126
Utilisation d'adresses IP élastiques dans Amazon EC2 ... 131
Utiliser les régions et les zones de disponibilité .. 134
Utilisation de paires Amazon EC2 de clés ... 137
Utilisation de groupes de sécurité dans Amazon EC2 ... 139

Gestion des identités et des accès AWS Exemples (IAM) .. 143
Gestion des clés d’accès IAM .. 143
Gestion des utilisateurs IAM ... 148
Utilisation des alias de compte IAM ... 151
Utilisation des stratégies IAM ... 154
Utilisation des certificats de serveur IAM ... 159

Lambda Exemples Amazon ... 162
Opérations de service ... 163

Amazon Pinpoint Exemples ... 167
Création et suppression d'applications dans Amazon Pinpoint .. 167
Création de points de terminaison dans Amazon Pinpoint .. 169

v

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Création de segments dans Amazon Pinpoint ... 171
Création de campagnes dans Amazon Pinpoint .. 173
Mise à jour des chaînes dans Amazon Pinpoint .. 174

Amazon S3 Exemples .. 176
Création, listage et suppression de Amazon S3 buckets ... 176
Exécution d'opérations sur Amazon S3 des objets .. 181
Gestion des autorisations Amazon S3 d'accès pour les compartiments et les objets 187
Gestion de l'accès aux Amazon S3 compartiments à l'aide de politiques relatives aux
compartiments ... 191
Utilisation TransferManager pour les Amazon S3 opérations .. 194
Configuration d'un Amazon S3 bucket en tant que site Web .. 207
Utiliser le Amazon S3 chiffrement côté client .. 211

Amazon SQS Exemples ... 217
Utilisation des files d'attente de Amazon SQS messages ... 218
Envoyer, recevoir et supprimer Amazon SQS des messages ... 221
Activation des longues interrogations pour les files d'attente de Amazon SQS messages 223
Configuration du délai de visibilité dans Amazon SQS .. 226
Utilisation des files d'attente de lettres mortes dans Amazon SQS 228

Amazon SWF Exemples .. 231
Notions de base sur SWF .. 231
Création d'une Amazon SWF application simple ... 233
Lambda Tâches .. 253
Arrêt normal des travaux d'activité et de flux de travail ... 258
Enregistrement de domaines .. 261
Affichage des domaines ... 262

Exemples de code inclus dans le SDK ... 263
Comment obtenir les exemples .. 263
Génération et exécution d'exemples à l'aide de la ligne de commande 263
Génération et exécution des exemples à l'aide de l'IDE Eclipse ... 264

Sécurité ... 266
Protection des données ... 266
Application d'une version minimale de TLS .. 268

Comment vérifier la version de TLS .. 268
Application d'une version minimale de TLS ... 268

Gestion de l’identité et des accès ... 269
Public ciblé .. 269

vi

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Authentification par des identités ... 270
Gestion des accès à l’aide de politiques .. 271
Comment Services AWS travailler avec IAM ... 273
Résolution des problèmes AWS d'identité et d'accès .. 273

Validation de la conformité .. 276
Résilience ... 276
Sécurité de l’infrastructure ... 277
Migration du client de chiffrement S3 ... 277

Prérequis ... 277
Présentation de la migration ... 278
Mettre à jour les clients existants pour lire les nouveaux formats ... 278
Migrer les clients de chiffrement et de déchiffrement vers la version V2 279
Exemples supplémentaires ... 282

Clé OpenPGP ... 284
Clé actuelle .. 284
Clés précédentes ... 290

Historique du document ... 297

vii

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

La AWS SDK pour Java version 1.x est entrée en mode maintenance le 31 juillet 2024 et atteindra
end-of-supportle 31 décembre 2025. Nous vous recommandons de migrer vers le pour continuer
AWS SDK for Java 2.xà bénéficier des nouvelles fonctionnalités, des améliorations de disponibilité et
des mises à jour de sécurité.

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le
contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

viii

https://aws.amazon.com/blogs/developer/announcing-end-of-support-for-aws-sdk-for-java-v1-x-on-december-31-2025/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Guide du développeur - AWS SDK pour Java 1.x

AWS SDK pour Javafournit une API Java pour les AWS services. À l'aide du SDK, vous pouvez
facilement créer des applications Java qui fonctionnent avec Amazon S3, Amazon EC2 DynamoDB,
et plus encore. Nous ajoutons régulièrement la prise en charge de nouveaux services au kit AWS
SDK pour Java. Pour obtenir la liste des services pris en charge et de leurs versions d'API incluses
avec chaque version du kit SDK, consultez les notes de mise à jour de la version que vous utilisez.

Sortie de la version 2 du SDK

Jetez un œil à la nouvelle version AWS SDK pour Java 2.x à https://github.com/aws/aws-sdk-java-
v2/. Il inclut des fonctionnalités très attendues, comme un moyen de brancher une implémentation
HTTP. Pour commencer, consultez le guide du développeur AWS SDK pour Java 2.x.

Documentation et ressources supplémentaires

Outre ce guide, les ressources en ligne suivantes sont utiles aux AWS SDK pour Java développeurs :

• AWS SDK pour Java API Reference

• Blog des développeurs Java

• Forums dédiés aux développeurs Java

• GitHub:

• Source de documentation

• Problèmes de documentation

• Source SDK

• Problèmes du kit SDK

• Exemples du kit SDK

• Chaîne Gitter

• La Catalogue d'exemples de code AWS

• @awsforjava (Twitter)

• Notes de mise à jour

Sortie de la version 2 du SDK 1

https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java#release-notes
https://github.com/aws/aws-sdk-java-v2/
https://github.com/aws/aws-sdk-java-v2/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://aws.amazon.com/blogs/developer/category/java
https://forums.aws.amazon.com/forum.jspa?forumID=70
https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide/issues
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/issues
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://gitter.im/aws/aws-sdk-java
https://docs.aws.amazon.com/code-samples/latest/catalog/
https://twitter.com/awsforjava
https://github.com/aws/aws-sdk-java#release-notes

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Prise en charge de l'IDE Eclipse

Si vous développez du code à l'aide de l'IDE Eclipse, vous pouvez utiliser le AWS Toolkit for
Eclipsepour l'ajouter AWS SDK pour Java à un projet Eclipse existant ou pour créer un nouveau
AWS SDK pour Java projet. La boîte à outils prend également en charge la création et le
téléchargement de Lambda fonctions, le lancement et la surveillance d' Amazon EC2 instances, la
gestion des IAM utilisateurs et des groupes de sécurité, un éditeur de AWS CloudFormation modèles,
etc.

Consultez le guide de AWS Toolkit for Eclipse l'utilisateur pour une documentation complète.

Développement d'applications pour Android

Si vous êtes un développeur Android, vous Amazon Web Services publiez un SDK spécialement
conçu pour le développement Android : Amplify Android AWS (Mobile SDK for Android).

Affichage de l'historique des révisions du kit SDK

Pour consulter l'historique des versions du SDK AWS SDK pour Java, y compris les modifications et
les services pris en charge par version du SDK, consultez les notes de publication du SDK.

Génération de la documentation de référence Java pour les
versions précédentes du kit SDK

La référence AWS SDK pour Java d'API représente la version la plus récente de la version 1.x du
SDK. Si vous utilisez une version antérieure de la version 1.x, vous souhaiterez peut-être accéder à
la documentation de référence du SDK correspondant à la version que vous utilisez.

Le moyen le plus simple de créer la documentation consiste à utiliser l'outil de génération Maven
d'Apache. Commencez par télécharger et installer Maven si vous ne l'avez pas déjà sur votre
système, puis utilisez les instructions suivantes pour générer la documentation de référence.

1. Recherchez et sélectionnez la version du SDK que vous utilisez sur la page des versions du
référentiel SDK sur. GitHub

2. Choisissez le lien zip (la plupart des plateformes, y compris Windows) ou tar.gz (Linux, macOS
ou Unix) pour télécharger le SDK sur votre ordinateur.

Prise en charge de l'IDE Eclipse 2

https://aws.amazon.com/eclipse/
https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://docs.aws.amazon.com/sdk-for-android/index.html
https://github.com/aws/aws-sdk-java#release-notes
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://maven.apache.org/
https://github.com/aws/aws-sdk-java/releases

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

3. Décompressez l'archive dans un répertoire local.

4. Sur la ligne de commande, accédez au répertoire où vous avez décompressé l'archive et saisissez
ce qui suit.

mvn javadoc:javadoc

5. Une fois la génération terminée, vous trouverez la documentation HTML générée dans le
répertoire aws-java-sdk/target/site/apidocs/.

Génération de la documentation de référence Java pour les versions précédentes du kit SDK 3

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Démarrage
Cette section fournit des informations sur 'installation, la configuration et l'utilisation du kit AWS SDK
pour Java.

Rubriques

• Configuration de base avec laquelle travailler Services AWS

• Moyens d'obtenir le AWS SDK pour Java

• Utiliser des outils de construction

• Configurer des informations d'identification AWS temporaires et Région AWS pour le
développement

Configuration de base avec laquelle travailler Services AWS

Présentation

Pour développer avec succès des applications qui accèdent à l' Services AWS aide de AWS SDK
pour Java, les conditions suivantes sont requises :

• Vous devez être en mesure de vous connecter au portail AWS d'accès disponible dans le AWS
IAM Identity Center.

• Les autorisations du rôle IAM configuré pour le SDK doivent autoriser l'accès à Services AWS ce
dont votre application a besoin. Les autorisations associées à la politique PowerUserAccess AWS
gérée sont suffisantes pour la plupart des besoins de développement.

• Un environnement de développement comprenant les éléments suivants :

• Des fichiers de configuration partagés qui sont configurés de la manière suivante :

• Le config fichier contient un profil par défaut qui spécifie un Région AWS.

• Le credentials fichier contient des informations d'identification temporaires faisant partie
d'un profil par défaut.

• Une installation appropriée de Java.

• Un outil d'automatisation de build tel que Maven ou Gradle.

• Un éditeur de texte pour travailler avec du code.

• (Facultatif, mais recommandé) Un IDE (environnement de développement intégré) tel que IntelliJ
IDEA, Eclipse ou. NetBeans

Configuration de base 4

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://maven.apache.org/download.cgi
https://gradle.org/install/
https://www.jetbrains.com/idea/download/#section=windows
https://www.jetbrains.com/idea/download/#section=windows
https://www.eclipse.org/ide/
https://netbeans.org/downloads/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Lorsque vous utilisez un IDE, vous pouvez également intégrer AWS Toolkit s pour travailler plus
facilement avec Services AWS. Les AWS Toolkit for IntelliJet AWS Toolkit for Eclipsesont deux
boîtes à outils que vous pouvez utiliser pour le développement Java.

Important

Les instructions de cette section de configuration supposent que vous ou votre organisation
utilisez IAM Identity Center. Si votre entreprise utilise un fournisseur d'identité externe
qui fonctionne indépendamment d'IAM Identity Center, découvrez comment obtenir des
informations d'identification temporaires à utiliser par le SDK for Java. Suivez ces instructions
pour ajouter des informations d'identification temporaires au ~/.aws/credentials fichier.
Si votre fournisseur d'identité ajoute automatiquement des informations d'identification
temporaires au ~/.aws/credentials fichier, assurez-vous que le nom du profil est
[default] tel que vous n'avez pas besoin de fournir un nom de profil au SDK ou AWS CLI.

Possibilité de connexion au portail d' AWS accès

Le portail AWS d'accès est l'emplacement Web où vous vous connectez manuellement
à l'IAM Identity Center. Le format de l'URL est d-xxxxxxxxxx.awsapps.com/start
ouyour_subdomain.awsapps.com/start.

Si vous ne connaissez pas le portail d' AWS accès, suivez les instructions relatives à l'accès au
compte indiquées à l'étape 1 de la rubrique sur l'authentification IAM Identity Center du guide de
référence sur les outils AWS SDKs et. Ne suivez pas l'étape 2 car la version AWS SDK pour Java
1.x ne prend pas en charge l'actualisation automatique des jetons ni la récupération automatique des
informations d'identification temporaires pour le SDK décrit à l'étape 2.

Configuration de fichiers de configuration partagés

Les fichiers de configuration partagés résident sur votre poste de développement et contiennent
les paramètres de base utilisés par tous AWS SDKs et par le AWS Command Line Interface (CLI).
Les fichiers de configuration partagés peuvent contenir un certain nombre de paramètres, mais ces
instructions définissent les éléments de base nécessaires à l'utilisation du SDK.

Configuration du config fichier partagé

L'exemple suivant montre le contenu d'un config fichier partagé.

Possibilité de connexion au portail d' AWS accès 5

https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/welcome.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html#idcGettingStarted
https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

[default]
region=us-east-1
output=json

À des fins de développement, utilisez le code le Région AWS plus proche de l'endroit où vous
prévoyez d'exécuter votre code. Pour une liste des codes régionaux à utiliser dans le config fichier,
consultez le Référence générale d'Amazon Web Services guide. Le json paramètre du format de
sortie est l'une des nombreuses valeurs possibles.

Suivez les instructions de cette section pour créer le config fichier.

Configurer des informations d'identification temporaires pour le SDK

Une fois que vous avez accès à un rôle Compte AWS et IAM via le portail AWS d'accès, configurez
votre environnement de développement avec des informations d'identification temporaires auxquelles
le SDK peut accéder.

Étapes pour configurer un credentials fichier local avec des informations d'identification
temporaires

1. Créez un credentials fichier partagé.

2. Dans le credentials fichier, collez le texte d'espace réservé suivant jusqu'à ce que vous y
colliez des informations d'identification temporaires fonctionnelles.

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

3. Enregistrez le fichier. Le fichier ~/.aws/credentials devrait maintenant exister sur votre
système de développement local. Ce fichier contient le profil [par défaut] utilisé par le SDK for
Java si aucun profil nommé spécifique n'est spécifié.

4. Connectez-vous au portail d' AWS accès.

5. Suivez ces instructions sous l'en-tête Actualisation manuelle des informations d'identification
pour copier les informations d'identification du rôle IAM depuis le portail d' AWS accès.

a. Pour l'étape 4 des instructions liées, choisissez le nom du rôle IAM qui accorde l'accès
pour vos besoins de développement. Ce rôle porte généralement un nom tel que
PowerUserAccess« Développeur ».

Configuration de fichiers de configuration partagés 6

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-output-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#file-format-profile
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosignin.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

b. Pour l'étape 7, sélectionnez l'option Ajouter manuellement un profil à votre fichier AWS
d'informations d'identification et copiez le contenu.

6. Collez les informations d'identification copiées dans votre credentials fichier local et
supprimez tout nom de profil collé. Votre fichier doit ressembler à ce qui suit :

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

7. Enregistrez le credentials fichier

Le SDK for Java accède à ces informations d'identification temporaires lorsqu'il crée un client
de service et les utilise pour chaque demande. Les paramètres du rôle IAM choisi à l'étape 5a
déterminent la durée de validité des informations d'identification temporaires. La durée maximale est
de douze heures.

Une fois les informations d'identification temporaires expirées, répétez les étapes 4 à 7.

Installation d'un environnement de développement Java

La AWS SDK pour Java V1 nécessite un JDK Java 7 ou une version plus récente et toutes les
versions du JDK Java LTS (support à long terme) sont prises en charge. Si vous utilisez la version
1.12.767 ou une version antérieure du SDK, vous pouvez utiliser Java 7, mais si vous utilisez la
version 1.12.768 ou ultérieure du SDK, Java 8 est requis. Le référentiel central Maven répertorie la
dernière version du SDK for Java.

Il AWS SDK pour Java fonctionne avec le kit de développement Oracle Java SE et avec les
distributions du kit de développement Open Java (OpenJDK) telles qu'Amazon Corretto, Red Hat
OpenJDK et Adoptium.

Moyens d'obtenir le AWS SDK pour Java

Prérequis

Pour utiliser le AWS SDK pour Java, vous devez avoir :

• Vous devez être en mesure de vous connecter au portail AWS d'accès disponible dans le AWS
IAM Identity Center.

Installation d'un environnement de développement Java 7

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtosessionduration.html
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom
https://www.oracle.com/java/technologies/downloads/
https://adoptium.net/
https://developers.redhat.com/products/openjdk/overview
https://www.oracle.com/java/technologies/downloads/
https://aws.amazon.com/corretto
https://adoptium.net/
https://developers.redhat.com/products/openjdk/overview
https://adoptium.net/
https://developers.redhat.com/products/openjdk/overview

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Une installation appropriée de Java.

• Informations d'identification temporaires configurées dans votre credentials fichier partagé
local.

Consultez the section called “Configuration de base” cette rubrique pour savoir comment configurer
l'utilisation du SDK for Java.

Utiliser un outil de génération pour gérer les dépendances du SDK for Java
(recommandé)

Nous vous recommandons d'utiliser Apache Maven ou Gradle avec votre projet pour accéder aux
dépendances requises du SDK for Java. Cette section décrit comment utiliser ces outils.

Téléchargez et extrayez le SDK (non recommandé)

Nous vous recommandons d'utiliser un outil de génération pour accéder au SDK de votre projet.
Vous pouvez toutefois télécharger un fichier jar prédéfini contenant la dernière version du SDK.

Note

Pour plus d'informations sur le téléchargement et la génération des versions précédentes du
kit SDK, consultez Installation des versions précédentes du kit SDK.

1. Téléchargez le SDK depuis le https://sdk-for-java.amazonwebservices.com/latest/aws-java-
sdkfichier .zip.

2. Après avoir téléchargé le kit SDK, décompressez le contenu dans un répertoire local.

Le kit SDK contient les répertoires suivants :

• documentation- contient la documentation de l'API (également disponible sur le Web : AWS
SDK pour Java API Reference).

• lib- contient les .jar fichiers du SDK.

• samples- contient un exemple de code fonctionnel qui montre comment utiliser le SDK.

• third-party/lib- contient des bibliothèques tierces utilisées par le SDK, telles que Apache
Commons Logging, AspectJ et le framework Spring.

Utiliser un outil de construction 8

https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip
https://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Pour utiliser le kit SDK, ajoutez le chemin d'accès complet des répertoires lib et third-party aux
dépendances de votre fichier de génération, puis ajoutez-les à votre CLASSPATH Java pour exécuter
votre code.

Construire les versions précédentes du SDK à partir des sources (non
recommandé)

Seule la dernière version du SDK complet est fournie sous forme prédéfinie sous forme de fichier
jar téléchargeable. Cependant, vous pouvez générer une version précédente du kit SDK avec
Apache Maven (open source). Maven télécharge toutes les dépendances nécessaires, puis génère
et installe le kit SDK, le tout en une seule étape. Pour plus d'informations et obtenir les instructions
d'installation, consultez http://maven.apache.org/.

1. Accédez à la GitHub page du SDK à l'adresse : AWS SDK pour Java (GitHub).

2. Choisissez la balise correspondant au numéro de version du kit SDK de votre choix. Par exemple,
1.6.10.

3. Cliquez sur le bouton Download ZIP (Télécharger le zip) pour télécharger la version du kit SDK
que vous avez sélectionnée.

4. Décompressez le fichier dans un répertoire de votre système de développement. Sur de nombreux
systèmes, vous pouvez utiliser votre gestionnaire de fichiers graphiques à cette fin, ou utilisez
l'utilitaire unzip dans une fenêtre de terminal.

5. Dans une fenêtre de terminal, accédez au répertoire où vous avez décompressé le source du kit
SDK.

6. Développez et installez le kit SDK avec la commande suivante (Maven requis) :

mvn clean install -Dgpg.skip=true

Le fichier .jar généré est intégré au répertoire target.

7. (Facultatif) Générez la documentation de référence de l'API à l'aide de la commande suivante :

mvn javadoc:javadoc

La documentation est intégrée au répertoire target/site/apidocs/.

Construire à partir des sources 9

http://maven.apache.org/
https://github.com/aws/aws-sdk-java
https://maven.apache.org/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Utiliser des outils de construction

L'utilisation d'outils de compilation permet de gérer le développement de projets Java. Plusieurs
outils de construction sont disponibles, mais nous montrons comment démarrer avec deux outils de
construction populaires : Maven et Gradle. Cette rubrique explique comment utiliser ces outils de
génération pour gérer les dépendances du SDK for Java dont vous avez besoin pour vos projets.

Rubriques

• Utilisation du kit SDK avec Apache Maven

• Utilisation du kit SDK avec Gradle

Utilisation du kit SDK avec Apache Maven

Vous pouvez utiliser Apache Maven pour configurer et créer AWS SDK pour Java des projets, ou
pour créer le SDK lui-même.

Note

Maven doit être installé sur votre ordinateur pour que vous puissiez utiliser les instructions
de cette rubrique. Si tel n'est pas le cas, rendez-vous sur http://maven.apache.org/ pour le
télécharger et l'installer.

Création d'un package Maven

Pour créer un package Maven de base, ouvrez une fenêtre de terminal (ligne de commande) et
exécutez :

mvn -B archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DgroupId=org.example.basicapp \
 -DartifactId=myapp

Remplacez org.example.basicapp par l'espace de noms complet du package de votre application et
myapp par le nom de votre projet (celui-ci devient le nom du répertoire de votre projet).

Par défaut, crée un modèle de projet pour vous en utilisant l'archétype de démarrage rapide, qui
constitue un bon point de départ pour de nombreux projets. D'autres archétypes sont disponibles ;

Utiliser des outils de construction 10

https://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/archetypes/maven-archetype-quickstart/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

visitez la page des archétypes Maven pour obtenir la liste des archétypes fournis avec. Vous pouvez
choisir un archétype particulier à utiliser en ajoutant l'argument -DarchetypeArtifactId à la
commande archetype:generate. Par exemple :

mvn archetype:generate \
 -DarchetypeGroupId=org.apache.maven.archetypes \
 -DarchetypeArtifactId=maven-archetype-webapp \
 -DgroupId=org.example.webapp \
 -DartifactId=mywebapp

Note

De plus amples informations sur la création et la configuration de projets sont fournies dans le
guide de démarrage de Maven.

Configuration du kit SDK en tant que dépendance Maven

Pour utiliser le AWS SDK pour Java dans votre projet, vous devez le déclarer en tant que
dépendance dans le pom.xml fichier de votre projet. Depuis la version 1.9.0, vous pouvez importer
des composants individuels ou l'intégralité du kit SDK.

Spécification individuelle des modules SDK

Pour sélectionner des modules du SDK individuels, utilisez la AWS SDK pour Java nomenclature
(BOM) de Maven, qui garantit que les modules que vous spécifiez utilisent la même version du SDK
et qu'ils sont compatibles les uns avec les autres.

Pour utiliser la nomenclature, ajoutez une section <dependencyManagement> au fichier pom.xml
de votre application, en ajoutant aws-java-sdk-bom en tant que dépendance et en spécifiant la
version du kit SDK que vous voulez utiliser :

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.1000</version>
 <type>pom</type>

Utilisation du kit SDK avec Apache Maven 11

https://maven.apache.org/archetypes/index.html
https://maven.apache.org/guides/getting-started/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Pour consulter la dernière version de la AWS SDK pour Java nomenclature disponible sur Maven
Central, rendez-vous sur : https://mvnrepository.com/artifact/ com.amazonaws/. aws-java-sdk-
bom Vous pouvez également utiliser cette page pour savoir quels sont les modules (dépendances)
gérés par la nomenclature et que vous pouvez inclure dans la section <dependencies> du fichier
pom.xml de votre projet.

Vous pouvez maintenant sélectionner individuellement les modules du kit SDK que vous utilisez
dans votre application. Dans la mesure où vous avez déjà déclaré la version du kit SDK dans la
nomenclature, il n'est pas nécessaire de spécifier le numéro de version de chaque composant.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-dynamodb</artifactId>
 </dependency>
</dependencies>

Vous pouvez également vous référer au Catalogue d'exemples de code AWS pour savoir quelles
dépendances utiliser pour une donnée Service AWS. Reportez-vous au fichier POM sous un exemple
de service spécifique. Par exemple, si vous êtes intéressé par les dépendances du service AWS S3,
consultez l'exemple complet sur GitHub. (Regardez le pompon under /java/example_code/s 3).

Importation de tous les modules SDK

Si vous souhaitez enregistrer l'intégralité du kit SDK comme dépendance, n'utilisez pas la méthode
de nomenclature, mais déclarez simplement le kit SDK dans votre fichier pom.xml, comme suit :

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk</artifactId>

Utilisation du kit SDK avec Apache Maven 12

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 <version>1.11.1000</version>
 </dependency>
</dependencies>

Génération de votre projet

Une fois que vous avez configuré votre projet, vous pouvez le générer à l'aide de la commande
Maven package :

mvn package

Cette opération crée votre fichier 0jar dans le répertoire target.

Génération du kit SDK avec Maven

Vous pouvez utiliser Apache Maven pour générer le kit SDK à partir du code source. Pour ce
faire, téléchargez le code du SDK depuis GitHub, décompressez-le localement, puis exécutez la
commande Maven suivante :

mvn clean install

Utilisation du kit SDK avec Gradle

Pour gérer les dépendances du SDK pour votre projet Gradle, importez la nomenclature Maven
correspondante AWS SDK pour Java dans le fichier de l'application. build.gradle

Note

Dans les exemples suivants, remplacez 1.12.529 le fichier de compilation par une version
valide du AWS SDK pour Java. Trouvez la dernière version dans le référentiel central de
Maven.

Configuration du projet pour Gradle version 4.6 ou ultérieure

Depuis Gradle 4.6, vous pouvez utiliser la fonctionnalité de support POM améliorée de Gradle pour
importer des fichiers de nomenclature (BOM) en déclarant une dépendance à une nomenclature.

Utilisation du kit SDK avec Gradle 13

https://github.com/aws/aws-sdk-java
https://gradle.com/
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://docs.gradle.org/4.6/release-notes.html#bom-import

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

1. Si vous utilisez Gradle version 5.0 ou ultérieure, passez à l'étape 2. Sinon, activez la fonction
IMPROVED_POM_SUPPORT dans le fichier settings.gradle.

enableFeaturePreview('IMPROVED_POM_SUPPORT')

2. Ajoutez la nomenclature à la section des dépendances du build.gradle fichier de l'application.

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')

 // Declare individual SDK dependencies without version
 ...
}

3. Spécifiez les modules SDK que vous souhaitez utiliser dans la section des dépendances. Par
exemple, ce qui suit inclut une dépendance pour Amazon Simple Storage Service (Amazon S3).

...
dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
 ...
}

Gradle résout automatiquement la version correcte des dépendances de votre kit SDK à l'aide des
informations de la nomenclature.

Voici un exemple de build.gradle fichier complet qui inclut une dépendance pour Amazon S3.

group 'aws.test'
version '1.0-SNAPSHOT'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

Utilisation du kit SDK avec Gradle 14

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.12.529')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Note

Dans l'exemple précédent, remplacez la dépendance pour Amazon S3 par les dépendances
des AWS services que vous utiliserez dans votre projet. Les modules (dépendances) gérés
par le AWS SDK pour Java BOM sont répertoriés dans le référentiel central Maven.

Configuration de projet pour les versions de Gradle antérieures à la version 4.6

Les versions de Gradle antérieures à la version 4.6 ne prennent pas en charge la nomenclature
native. Pour gérer les AWS SDK pour Java dépendances de votre projet, utilisez le plugin de gestion
des dépendances de Spring pour Gradle afin d'importer la nomenclature Maven pour le SDK.

1. Ajoutez le plugin de gestion des dépendances au build.gradle fichier de votre application.

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

2. Ajoutez la nomenclature dans la section dependencyManagement du fichier.

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

3. Spécifiez les modules SDK que vous utiliserez dans la section des dépendances. L'exemple
suivant inclut une dépendance pour Amazon S3.

Utilisation du kit SDK avec Gradle 15

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
}

Gradle résout automatiquement la version correcte des dépendances de votre kit SDK à l'aide des
informations de la nomenclature.

Voici un exemple de build.gradle fichier complet qui inclut une dépendance pour Amazon S3.

group 'aws.test'
version '1.0'

apply plugin: 'java'

sourceCompatibility = 1.8

repositories {
 mavenCentral()
}

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "io.spring.gradle:dependency-management-plugin:1.0.9.RELEASE"
 }
}

apply plugin: "io.spring.dependency-management"

dependencyManagement {
 imports {
 mavenBom 'com.amazonaws:aws-java-sdk-bom:1.12.529'
 }
}

dependencies {
 compile 'com.amazonaws:aws-java-sdk-s3'
 testCompile group: 'junit', name: 'junit', version: '4.11'
}

Utilisation du kit SDK avec Gradle 16

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Note

Dans l'exemple précédent, remplacez la dépendance pour Amazon S3 par les dépendances
du AWS service que vous utiliserez dans votre projet. Les modules (dépendances) gérés par
le AWS SDK pour Java BOM sont répertoriés dans le référentiel central Maven.

Pour plus de détails sur la spécification des dépendances du kit SDK à l'aide de la nomenclature,
consultez Utilisation du kit SDK avec Apache Maven.

Configurer des informations d'identification AWS temporaires et
Région AWS pour le développement

Pour vous connecter à l'un des services pris en charge avec le AWS SDK pour Java, vous devez
fournir des informations d'identification AWS temporaires. Les chaînes de fournisseurs AWS SDKs
et CLIs d'utilisation permettent de rechercher des informations d'identification AWS temporaires à
différents endroits, notamment dans les variables d'environnement système/utilisateur et dans les
fichiers de AWS configuration locaux.

Cette rubrique fournit des informations de base sur la configuration de vos informations
d'identification AWS temporaires pour le développement d'applications locales à l'aide du AWS SDK
pour Java. Si vous devez configurer des informations d'identification à utiliser dans une EC2 instance
ou si vous utilisez l'IDE Eclipse pour le développement, consultez plutôt les rubriques suivantes :

• Lorsque vous utilisez une EC2 instance, créez un rôle IAM, puis accordez à votre EC2 instance
l'accès à ce rôle, comme indiqué dans Utilisation de rôles IAM pour accorder l'accès aux AWS
ressources sur. Amazon EC2

• Configurez les AWS informations d'identification dans Eclipse à l'aide du AWS Toolkit for Eclipse.
Voir Configurer les AWS informations d'identification dans le guide de AWS Toolkit for Eclipse
l'utilisateur pour plus d'informations.

Configurer les informations d'identification temporaires

Vous pouvez configurer des informations d'identification temporaires pour le AWS SDK pour Java de
différentes manières, mais voici les approches recommandées :

Informations d'identification temporaires et région 17

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-bom/latest
https://aws.amazon.com/eclipse/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-credentials.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Définissez des informations d'identification temporaires dans le fichier de profil des AWS
informations d'identification de votre système local, situé à l'adresse suivante :

• ~/.aws/credentials sous Linux, macOS ou Unix

• C:\Users\USERNAME\.aws\credentials sous Windows

Consultez ce guide pour savoir comment obtenir vos informations d'identification temporaires. the
section called “Configurer des informations d'identification temporaires pour le SDK”

• Définissez les variables AWS_ACCESS_KEY_IDAWS_SECRET_ACCESS_KEY, et
d'AWS_SESSION_TOKENenvironnement.

Pour définir ces variables sous Linux, macOS ou Unix, utilisez :

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key
export AWS_SESSION_TOKEN=your_session_token

Pour définir ces variables sous Windows, utilisez :

set AWS_ACCESS_KEY_ID=your_access_key_id
set AWS_SECRET_ACCESS_KEY=your_secret_access_key
set AWS_SESSION_TOKEN=your_session_token

• Pour une EC2 instance, spécifiez un rôle IAM, puis accordez à votre EC2 instance l'accès à ce
rôle. Consultez la section Rôles IAM Amazon EC2 dans le guide de Amazon EC2 l'utilisateur pour
les instances Linux pour une discussion détaillée sur le fonctionnement de ce système.

Une fois que vous avez défini vos informations d'identification AWS temporaires à l'aide de l'une
de ces méthodes, elles seront chargées automatiquement AWS SDK pour Java par le en utilisant
la chaîne de fournisseurs d'informations d'identification par défaut. Pour plus d'informations sur
l'utilisation des AWS informations d'identification dans vos applications Java, consultez la section
Utilisation des AWS informations d'identification.

Actualisation des informations d'identification de l'IMDS

Le AWS SDK pour Java support prend en charge l'actualisation des informations d'identification
IMDS en arrière-plan toutes les 1 minute, quel que soit le délai d'expiration des informations
d'identification. Cela vous permet d'actualiser les informations d'identification plus fréquemment et

Actualisation des informations d'identification de l'IMDS 18

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

de réduire le risque que le fait de ne pas accéder à l'IMDS ait une incidence sur la AWS disponibilité
perçue.

 1. // Refresh credentials using a background thread, automatically every minute. This
 will log an error if IMDS is down during
 2. // a refresh, but your service calls will continue using the cached credentials
 until the credentials are refreshed
 3. // again one minute later.
 4.
 5. InstanceProfileCredentialsProvider credentials =
 6. InstanceProfileCredentialsProvider.createAsyncRefreshingProvider(true);
 7.
 8. AmazonS3Client.builder()
 9. .withCredentials(credentials)
 10. .build();
 11.
 12. // This is new: When you are done with the credentials provider, you must close it
 to release the background thread.
 13. credentials.close();

Réglez le Région AWS

Vous devez définir une valeur par défaut Région AWS qui sera utilisée pour accéder aux AWS
services avec le AWS SDK pour Java. Pour des performances réseau optimales, choisissez une
région qui est géographiquement proche de chez vous (ou de vos clients). Pour obtenir la liste des
régions pour chaque service, voir Régions et points de terminaison dans le manuel de référence
Amazon Web Services général.

Note

Si vous ne sélectionnez aucune région, us-east-1 sera utilisé par défaut.

Vous pouvez utiliser des techniques similaires pour définir les informations d'identification afin de
définir votre AWS région par défaut :

• Définissez le Région AWS dans le fichier de AWS configuration de votre système local, situé à
l'adresse suivante :

• ~/.aws/config sous Linux, macOS ou Unix

• C:\Users\USERNAME \ .aws \ config sous Windows

Réglez le Région AWS 19

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Ce fichier doit contenir des lignes au format suivant :

+

[default]
region = your_aws_region

+

Remplacez la région de votre choix Région AWS (par exemple, « us-east-1 ») par
your_aws_region.

• Définissez la variable d’environnement AWS_REGION.

Sous Linux, macOS ou Unix, utilisez :

export AWS_REGION=your_aws_region

Sous Windows, utilisez :

set AWS_REGION=your_aws_region

Où your_aws_region est le nom souhaité. Région AWS

Réglez le Région AWS 20

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

En utilisant le AWS SDK pour Java
Cette section fournit des informations générales importantes sur la programmation avec le AWS SDK
pour Java qui s'appliquent à tous les services que vous pouvez utiliser avec le SDK.

Pour obtenir des informations et des exemples de programmation spécifiques au service (pour
Amazon EC2, Amazon S3, Amazon SWF, etc.), voir Exemples de AWS SDK pour Java code.

Rubriques

• Meilleures pratiques de AWS développement avec le AWS SDK pour Java

• Création de clients de service

• Fournissez des informations d'identification temporaires au AWS SDK pour Java

• Région AWS Sélection

• Gestion des exceptions

• Programmation asynchrone

• Enregistrement AWS SDK pour Java des appels

• Configuration de client

• Stratégies de contrôle d'accès

• Définissez le TTL de la JVM pour les recherches de noms DNS

• Activation des métriques pour le AWS SDK pour Java

Meilleures pratiques de AWS développement avec le AWS SDK
pour Java

Les meilleures pratiques suivantes peuvent vous aider à éviter les problèmes lorsque vous
développez des AWS applications avec le AWS SDK pour Java. Nous avons organisé les bonnes
pratiques par service.

S3

Éviter ResetExceptions

Lorsque vous chargez des objets à Amazon S3 l'aide de flux (via un AmazonS3 client
ouTransferManager), vous pouvez rencontrer des problèmes de connectivité réseau ou de délai

Meilleures pratiques de AWS développement avec le AWS SDK pour Java 21

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

d'expiration. Par défaut, les AWS SDK pour Java tentatives de nouvelle tentative de transfert ont
échoué en marquant le flux d'entrée avant le début d'un transfert, puis en le réinitialisant avant de
réessayer.

Si le flux ne prend pas en charge le marquage et la réinitialisation, le SDK lance un message en
ResetExceptioncas d'échec transitoire et les nouvelles tentatives sont activées.

Bonne pratique

Nous vous recommandons d'utiliser des flux qui prennent en charge les opérations de marquage et
de réinitialisation.

Le moyen le plus fiable d'éviter un ResetExceptionest de fournir des données à l'aide d'un fichier
ou FileInputStream, qu'ils AWS SDK pour Java peuvent gérer sans être limités par des limites de
marquage et de réinitialisation.

Si le stream n'est pas un FileInputStreammais qu'il prend en charge le marquage et la
réinitialisation, vous pouvez définir la limite de points en utilisant la setReadLimit méthode de
RequestClientOptions. Sa valeur par défaut est 128 Ko. La définition de la valeur limite de lecture à
un octet de plus que la taille du flux évitera de manière fiable un ResetException.

Par exemple, si la taille maximale attendue d'un flux est 100 000 octets, définissez la limite de lecture
sur 100 001 (100 000 + 1) octets. Le marquage et la réinitialisation fonctionneront toujours pour
100 000 octets ou moins. Ayez à l'esprit que cela peut entraîner le fait que certains flux mettent en
mémoire tampon le nombre d'octets en mémoire.

Création de clients de service

Pour envoyer des demandes à Amazon Web Services, vous devez d'abord créer un objet client de
service. La méthode recommandée consiste à utiliser le générateur client de service.

Chacun Service AWS possède une interface de service avec des méthodes pour chaque
action dans l'API de service. Par exemple, l'interface de service de DynamoDB est nommée.
AmazonDynamoDBClient Chaque interface de service possède un générateur client correspondant
que vous pouvez utiliser pour construire une implémentation de l'interface de service. La classe de
création de clients pour DynamoDB s'appelle AmazonDynamoDBClientBuilder.

Création de clients de service 22

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/FileInputStream.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/RequestClientOptions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ResetException.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDBClientBuilder.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Obtention d'un générateur client

Pour obtenir une instance du générateur client, utilisez la méthode de fabrique.statique standard,
comme illustré dans l'exemple suivant.

AmazonDynamoDBClientBuilder builder = AmazonDynamoDBClientBuilder.standard();

Une fois que vous disposez d'un générateur, vous pouvez personnaliser les propriétés du client à
l'aide de nombreuses méthodes setter Fluent dans l'API du générateur. Par exemple, vous pouvez
définir une région personnalisée et un fournisseur d'informations d'identification personnalisé, comme
suit.

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

Note

Les méthodes withXXX Fluent renvoient l'objet builder pour vous permettre de chaîner les
appels de méthode pour plus de commodité et un code plus lisible. Une fois que vous avez
configuré les propriétés souhaitées, vous pouvez appeler la méthode build pour créer le
client. Une fois qu'un client a été créé, il est immuable et tous les appels à setRegion ou
setEndpoint échoueront.

Un générateur peut créer plusieurs clients avec la même configuration. Lorsque vous écrivez votre
application, gardez à l'esprit que le générateur est mutable et n'est pas thread-safe.

Le code suivant utilise le générateur en tant que fabrique pour les instances client.

public class DynamoDBClientFactory {
 private final AmazonDynamoDBClientBuilder builder =
 AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"));

 public AmazonDynamoDB createClient() {
 return builder.build();

Obtention d'un générateur client 23

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 }
}

Le générateur expose également des setters fluides pour ClientConfigurationet
RequestMetricCollector, ainsi qu'une liste personnalisée de RequestHandler 2.

Voici un exemple complet qui remplace toutes les propriétés configurables.

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .withClientConfiguration(new ClientConfiguration().withRequestTimeout(5000))
 .withMetricsCollector(new MyCustomMetricsCollector())
 .withRequestHandlers(new MyCustomRequestHandler(), new
 MyOtherCustomRequestHandler)
 .build();

Création de clients asynchrones

AWS SDK pour Java Il possède des clients asynchrones (ou asynchrones) pour chaque service (sauf
pour Amazon S3) et un générateur de clients asynchrones correspondant pour chaque service.

Pour créer un client DynamoDB asynchrone avec la valeur par défaut ExecutorService

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCredentials(new ProfileCredentialsProvider("myProfile"))
 .build();

Outre les options de configuration prises en charge par le générateur de clients synchrones
(ou de synchronisation), le client asynchrone vous permet de définir une personnalisation
ExecutorFactorypour modifier ExecutorService celle utilisée par le client asynchrone.
ExecutorFactoryest une interface fonctionnelle, elle interagit donc avec les expressions lambda
de Java 8 et les références de méthodes.

Pour créer un client asynchrone avec un exécuteur personnalisé

AmazonDynamoDBAsync ddbAsync = AmazonDynamoDBAsyncClientBuilder.standard()
 .withExecutorFactory(() -> Executors.newFixedThreadPool(10))
 .build();

Création de clients asynchrones 24

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/RequestMetricCollector.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/RequestHandler2.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/client/builder/ExecutorFactory.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

En utilisant DefaultClient

Les générateurs client synchrones et asynchrones ont une autre méthode nommée
defaultClient. Cette méthode crée un client de service avec la configuration par défaut, en
utilisant la chaîne de fournisseurs par défaut pour charger les informations d'identification et le
Région AWS. Si les informations d'identification ou la région ne peuvent pas être déterminées à
partir de l'environnement dans lequel l'application s'exécute, l'appel à defaultClient échoue.
Consultez la section Utilisation des AWS informations d'identification et Région AWS sélection pour
plus d'informations sur la manière dont les informations d'identification et la région sont déterminées.

Pour créer un service client par défaut

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

Cycle de vie des clients

Les clients de service du kit SDK sont thread-safe, et pour des performances optimales, vous devrez
les traiter comme des objets à longue durée de vie. Chaque client possède sa propre ressource de
groupe de connexion. Arrêtez explicitement les clients lorsque vous n'en avez plus besoin pour éviter
les fuites de ressources.

Pour arrêter explicitement un client, appelez la méthode shutdown. Une fois la méthode shutdown
appelée, toutes les ressources client sont libérées et le client devient inutilisable.

Pour arrêter un client

AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.shutdown();
// Client is now unusable

Fournissez des informations d'identification temporaires au AWS
SDK pour Java

Pour faire des demandes à Amazon Web Services, vous devez fournir des informations
d'identification AWS temporaires AWS SDK pour Java à utiliser lorsqu'il appelle les services. Vous
pouvez effectuer cette opération de différentes manières :

• Utilisez la chaîne de fournisseur d'informations d'identification par défaut (recommandé).

En utilisant DefaultClient 25

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Utilisez un fournisseur ou une chaîne de fournisseur d'informations d'identification spécifique (ou
créez le vôtre).

• Fournissez vous-même les informations d'identification temporaires sous forme de code.

Utilisation de la chaîne de fournisseur d'informations d'identification par
défaut

Lorsque vous initialisez un nouveau client de service sans fournir d'arguments, il AWS
SDK pour Java tente de trouver des informations d'identification temporaires en utilisant la
chaîne de fournisseurs d'informations d'identification par défaut implémentée par la classe
AWSCredentialsProviderChainDefault. La chaîne de fournisseur d'informations d'identification par
défaut recherche les informations d'identification dans l'ordre suivant :

1. Variables d'environnement -AWS_ACCESS_KEY_ID, AWS_SECRET_KEY
ouAWS_SECRET_ACCESS_KEY, etAWS_SESSION_TOKEN. AWS SDK pour Java Utilise la
EnvironmentVariableCredentialsProviderclasse pour charger ces informations d'identification.

2. Propriétés du système Java -aws.accessKeyId, aws.secretKey (mais
pasaws.secretAccessKey), etaws.sessionToken. AWS SDK pour Java Utilise le
SystemPropertiesCredentialsProviderpour charger ces informations d'identification.

3. Informations d'identification du jeton d'identité web à partir de l'environnement ou du conteneur.

4. Le fichier de profils d'identification par défaut, généralement situé dans ~/.aws/credentials
(l'emplacement peut varier selon la plate-forme), et partagé par de nombreux AWS SDKs et par le
AWS CLI. AWS SDK pour Java utilise le ProfileCredentialsProviderpour charger ces informations
d'identification.

Vous pouvez créer un fichier d'informations d'identification à l'aide de la aws configure
commande fournie par le AWS CLI, ou vous pouvez le créer en modifiant le fichier à l'aide d'un
éditeur de texte. Pour plus d'informations sur le format de fichier d'informations d'identification, voir
Format de fichier AWS d'informations d'identification.

5. Informations d'identification du conteneur Amazon ECS : chargées depuis Amazon ECS si
la variable d'environnement AWS_CONTAINER_CREDENTIALS_RELATIVE_URI est définie.
AWS SDK pour Java utilise le ContainerCredentialsProviderpour charger ces informations
d'identification. Vous pouvez spécifier l'adresse IP de cette valeur.

6. Informations d'identification du profil d'instance : utilisées sur les EC2 instances et
fournies via le service de Amazon EC2 métadonnées. AWS SDK pour Java Utilise le

Utilisation de la chaîne de fournisseur d'informations d'identification par défaut 26

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EnvironmentVariableCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/SystemPropertiesCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/profile/ProfileCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/ContainerCredentialsProvider.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

InstanceProfileCredentialsProviderpour charger ces informations d'identification. Vous pouvez
spécifier l'adresse IP de cette valeur.

Note

Les informations d'identification de profil d'instance sont utilisées uniquement si la variable
d'environnement AWS_CONTAINER_CREDENTIALS_RELATIVE_URI n'est pas définie.
Pour plus d’informations, consultez EC2ContainerCredentialsProviderWrapper.

Définissez des informations d'identification temporaires

Pour pouvoir utiliser des informations d'identification AWS temporaires, elles doivent être définies
dans au moins l'un des emplacements précédents. Pour plus d'informations sur la définition des
informations d'identification, consultez les rubriques suivantes :

• Pour spécifier les informations d'identification dans l'environnement ou dans le fichier de profils
d'identification par défaut, consultezthe section called “Configurer les informations d'identification
temporaires”.

• Pour définir les propriétés système Java, consultez le didacticiel System Properties sur le site web
Java Tutorials officiel.

• Pour configurer et utiliser les informations d'identification du profil d'instance avec vos EC2
instances, consultez la section Utilisation des rôles IAM pour accorder l'accès aux AWS ressources
sur Amazon EC2.

Définir un autre profil d'identification

AWS SDK pour Java Utilise le profil par défaut, mais il existe des moyens de personnaliser le profil
qui provient du fichier d'informations d'identification.

Vous pouvez utiliser la variable d'environnement AWS Profile pour modifier le profil chargé par le
SDK.

Par exemple, sous Linux, macOS ou Unix, vous devez exécuter la commande suivante pour
remplacer le profil par MyProfile.

export AWS_PROFILE="myProfile"

Utilisation de la chaîne de fournisseur d'informations d'identification par défaut 27

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/EC2ContainerCredentialsProviderWrapper.html
http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Sous Windows, utilisez la commande suivante.

set AWS_PROFILE="myProfile"

La définition de la variable d'AWS_PROFILEenvironnement affecte le chargement des informations
d'identification pour tous les outils officiellement pris en charge AWS SDKs (y compris le AWS CLI et
le AWS Tools for Windows PowerShell). Pour modifier uniquement le profil d'une application Java,
vous pouvez utiliser la propriété système à la aws.profile place.

Note

La variable d'environnement est prioritaire sur la propriété système.

Définir un autre emplacement pour le fichier d'informations d'identification

AWS SDK pour Java Charge automatiquement les informations d'identification AWS temporaires
à partir de l'emplacement du fichier d'informations d'identification par défaut. Cependant,
vous pouvez également spécifier l'emplacement en définissant la variable d'environnement
AWS_CREDENTIAL_PROFILES_FILE avec le chemin d'accès complet au fichier d'informations
d'identification.

Vous pouvez utiliser cette fonctionnalité pour modifier temporairement l'emplacement où AWS SDK
pour Java recherche votre fichier d'informations d'identification (par exemple, en définissant cette
variable avec la ligne de commande). Vous pouvez également définir la variable d'environnement
dans votre environnement utilisateur ou système pour modifier l'emplacement pour l'utilisateur ou
l'ensemble du système.

Pour remplacer l'emplacement du fichier d'informations d'identification par défaut

• Définissez la variable d'AWS_CREDENTIAL_PROFILES_FILEenvironnement sur l'emplacement de
votre fichier AWS d'informations d'identification.

• Sous Linux, macOS ou Unix, utilisez :

export AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

• Sous Windows, utilisez :

set AWS_CREDENTIAL_PROFILES_FILE=path/to/credentials_file

Utilisation de la chaîne de fournisseur d'informations d'identification par défaut 28

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Credentialsformat de fichier

En suivant les instructions de la section Configuration de base de ce guide, votre fichier
d'informations d'identification doit avoir le format de base suivant.

[default]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

[profile2]
aws_access_key_id=<value from AWS access portal>
aws_secret_access_key=<value from AWS access portal>
aws_session_token=<value from AWS access portal>

Le nom de profil est spécifié entre crochets (par exemple, [default]), suivi par les champs
configurables de ce profil sous la forme de paires clé-valeur. Vous pouvez avoir plusieurs profils dans
votre credentials fichier, qui peuvent être ajoutés ou modifiés en aws configure --profile
PROFILE_NAME sélectionnant le profil à configurer.

Vous pouvez spécifier des champs supplémentaires, tels quemetadata_service_timeout,
etmetadata_service_num_attempts. Ils ne sont pas configurables avec la CLI : vous devez
modifier le fichier manuellement si vous souhaitez les utiliser. Pour plus d'informations sur le fichier
de configuration et les champs disponibles, consultez la section Configuration du AWS Command
Line Interface dans le guide de AWS Command Line Interface l'utilisateur.

Charger les identifiants

Une fois que vous avez défini des informations d'identification temporaires, le SDK les charge en
utilisant la chaîne de fournisseurs d'informations d'identification par défaut.

Pour ce faire, vous instanciez un Service AWS client sans fournir explicitement d'informations
d'identification au générateur, comme suit.

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

Utilisation de la chaîne de fournisseur d'informations d'identification par défaut 29

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Spécifiez un fournisseur d'informations d'identification ou une chaîne de
fournisseurs

Vous pouvez spécifier un fournisseur d'informations d'identification autre que la chaîne de fournisseur
d'informations d'identification par défaut à l'aide du générateur client.

Vous fournissez une instance d'un fournisseur d'informations d'identification ou d'une chaîne de
fournisseurs à un générateur de clients qui prend une interface AWSCredentialsProvider en entrée.
L'exemple suivant montre comment utiliser des informations d'identification d'environnement.

AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new EnvironmentVariableCredentialsProvider())
 .build();

Pour la liste complète des fournisseurs d'informations d'identification et des chaînes de
fournisseurs AWS SDK pour Java fournis, voir Toutes les classes d'implémentation connues dans
AWSCredentials Provider.

Note

Vous pouvez utiliser cette technique pour fournir des fournisseurs d'informations
d'identification ou des chaînes de fournisseurs que vous créez en utilisant
votre propre fournisseur d'informations d'identification qui implémente
l'AWSCredentialsProviderinterface, ou en sous-classant la classe.
AWSCredentialsProviderChain

Spécifiez explicitement les informations d'identification temporaires

Si la chaîne d'informations d'identification par défaut, ou un fournisseur ou une chaîne de
fournisseur spécifique ou personnalisé ne fonctionne pas pour votre code, vous pouvez définir
des informations d'identification que vous spécifiez explicitement. Si vous avez récupéré des
informations d'identification temporaires à l'aide de AWS STS, utilisez cette méthode pour spécifier
les informations d'identification pour AWS l'accès.

1. Instanciez la BasicSessionCredentialsclasse et fournissez-lui la clé d' AWS accès, la clé AWS
secrète et le jeton de AWS session que le SDK utilisera pour la connexion.

2. Créez un AWSStaticCredentialsProvideravec l'AWSCredentialsobjet.

Spécifiez un fournisseur d'informations d'identification ou une chaîne de fournisseurs 30

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSCredentialsProviderChain.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/BasicSessionCredentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/AWSStaticCredentialsProvider.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

3. Configurez le générateur client avec l'interface AWSStaticCredentialsProvider et générez le
client.

Voici un exemple.

BasicSessionCredentials awsCreds = new BasicSessionCredentials("access_key_id",
 "secret_key_id", "session_token");
AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new AWSStaticCredentialsProvider(awsCreds))
 .build();

Plus d'informations

• Inscrivez-vous AWS et créez un utilisateur IAM

• Configurer les AWS informations d'identification et la région pour le développement

• Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2

Région AWS Sélection

Les régions vous permettent d'accéder à AWS des services qui résident physiquement dans une
zone géographique spécifique. Cela peut être utile pour la redondance et pour maintenir vos données
et vos applications en cours d'exécution à proximité de l'endroit où vous-même et vos utilisateurs y
accédez.

Vérification de la disponibilité du service dans une région

Pour savoir si un produit spécifique Service AWS est disponible dans une région, utilisez la
isServiceSupported méthode de la région que vous souhaitez utiliser.

Region.getRegion(Regions.US_WEST_2)
 .isServiceSupported(AmazonDynamoDB.ENDPOINT_PREFIX);

Consultez la documentation sur la classe Regions pour les régions que vous pouvez spécifier,
et utilisez le préfixe de point de terminaison du service à interroger. Chaque préfixe de point de
terminaison du service est défini dans l'interface du service. Par exemple, le préfixe du DynamoDB
point de terminaison est défini dans la AmazonDynamobase de données.

Plus d'informations 31

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Choix d'une région

À partir de la version 1.4 du AWS SDK pour Java, vous pouvez spécifier un nom de région et le
SDK choisira automatiquement un point de terminaison approprié pour vous. Pour choisir le point de
terminaison vous-même, consultez Choix d'un point de terminaison spécifique.

Pour définir explicitement une région, nous vous recommandons d'utiliser l'énumération Regions. Il
s'agit d'une énumération de toutes les régions disponibles publiquement. Pour créer un client avec
une région à partir de l'énumération, utilisez le code suivant.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion(Regions.US_WEST_2)
 .build();

Si la région que vous essayez d'utiliser n'est pas dans l'énumération Regions, vous pouvez définir la
région à l'aide d'une chaîne représentant le nom de la région.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withRegion("{region_api_default}")
 .build();

Note

Une fois que vous avez créé un client avec le générateur, il est immuable et la région ne
peut pas être modifiée. Si vous travaillez avec plusieurs clients Régions AWS pour le même
service, vous devez créer plusieurs clients, un par région.

Choix d'un point de terminaison spécifique

Chaque AWS client peut être configuré pour utiliser un point de terminaison spécifique dans une
région en appelant la withEndpointConfiguration méthode lors de la création du client.

Par exemple, pour configurer le Amazon S3 client afin qu'il utilise la région Europe (Irlande), utilisez
le code suivant.

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withEndpointConfiguration(new EndpointConfiguration(
 "https://s3.eu-west-1.amazonaws.com",

Choix d'une région 32

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/regions/Regions.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 "eu-west-1"))
 .withCredentials(CREDENTIALS_PROVIDER)
 .build();

Voir Régions et points de terminaison pour la liste actuelle des régions et leurs points de terminaison
correspondants pour tous les AWS services.

Déterminer automatiquement la région à partir de l'environnement

Important

Cette section s'applique uniquement lorsque vous utilisez un générateur de clients pour
accéder aux AWS services. AWS les clients créés à l'aide du constructeur client ne
détermineront pas automatiquement la région à partir de l'environnement et utiliseront à la
place la région du SDK par défaut ()USEast1.

Lorsque vous exécutez Lambda Amazon EC2 ou Lambda, vous souhaiterez peut-être configurer les
clients pour qu'ils utilisent la même région que celle sur laquelle votre code s'exécute. Votre code
est ainsi dissocié de l'environnement d'exécution et le déploiement de votre application sur plusieurs
régions dans le but de réduire la latence ou la redondance s'en trouve simplifié.

Vous devez utiliser les générateurs clients pour que le kit SDK détecte automatiquement la région
dans laquelle votre code s'exécute.

Pour utiliser la chaîne de credential/region fournisseurs par défaut afin de déterminer la région à partir
de l'environnement, utilisez la defaultClient méthode du générateur de clients.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

Cette solution est identique à l'utilisation de standard suivi par build.

AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .build();

Si vous ne définissez pas explicitement une région à l'aide des méthodes withRegion, le kit SDK
consulte la chaîne du fournisseur de région par défaut afin d'essayer de déterminer la région à
utiliser.

Déterminer automatiquement la région à partir de l'environnement 33

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Chaîne du fournisseur de région par défaut

Le processus de recherche d'une région est le suivant :

1. Toute région explicite définie en utilisant withRegion ou setRegion sur le générateur lui-même
prévaut sur toute autre région.

2. La variable d'environnement AWS_REGION est contrôlée. Si elle est définie, cette région est utilisée
pour configurer le client.

Note

Cette variable d'environnement est définie par le Lambda conteneur.

3. Le SDK vérifie le fichier de configuration AWS partagé (généralement situé à l'adresse~/.aws/
config). Si la propriété region est présente, le kit SDK l'utilise.

• La variable d'environnement AWS_CONFIG_FILE peut être utilisée pour personnaliser
l'emplacement du fichier de configuration partagé.

• La variable d'AWS_PROFILEenvironnement ou la propriété aws.profile système peuvent être
utilisées pour personnaliser le profil chargé par le SDK.

4. Le SDK tente d'utiliser le service de métadonnées d' Amazon EC2 instance pour déterminer la
région de l' Amazon EC2 instance en cours d'exécution.

5. Si le kit SDK n'a toujours pas trouvé de région par ce biais, la création du client échoue et une
exception est levée.

Lors du développement d' AWS applications, une approche courante consiste à utiliser le fichier
de configuration partagé (décrit dans Utilisation de la chaîne de fournisseurs d'informations
d'identification par défaut) pour définir la région pour le développement local, et à s'appuyer sur la
chaîne de fournisseurs de régions par défaut pour déterminer la région lors de l'exécution sur une
AWS infrastructure. La création du client s'en trouve ainsi grandement simplifiée et votre application
demeure portable.

Gestion des exceptions

Il est important de comprendre comment et quand AWS SDK pour Java les exceptions sont générées
pour créer des applications de haute qualité à l'aide du SDK. Les sections suivantes décrivent les
différents cas d'exceptions levées par le kit SDK et la manière de les gérer de manière appropriée.

Gestion des exceptions 34

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Pourquoi des exceptions non contrôlées ?

AWS SDK pour Java Utilise des exceptions d'exécution (ou non vérifiées) au lieu d'exceptions
vérifiées pour les raisons suivantes :

• Permettre aux développeurs un contrôle extrêmement précis des erreurs qu'ils veulent gérer sans
les forcer à gérer les cas exceptionnels par lesquels ils ne sont pas concernés (rendant alors leur
code excessivement détaillé)

• Pour éviter les problèmes d'évolutivité inhérents aux exceptions contrôlées dans les grandes
applications

En général, les exceptions contrôlées fonctionnent bien à petite échelle, mais peuvent devenir
problématiques au fur et à mesure que les applications se développent et deviennent plus
complexes.

Pour plus d'informations sur l'utilisation des exceptions contrôlées et des exceptions non contrôlées,
consultez :

• Les exceptions incontrôlées : la controverse

• Problème des exceptions contrôlées

• Les exceptions contrôlées de Java étaient une erreur (et voici ce que je voudrais faire à ce sujet)

AmazonServiceException (et sous-classes)

AmazonServiceExceptionest l'exception la plus courante que vous rencontrerez lors de l'utilisation
du AWS SDK pour Java. Cette exception représente une réponse d'erreur provenant d'un Service
AWS. Par exemple, si vous essayez de mettre fin à une Amazon EC2 instance qui n'existe pas,
vous EC2 renverrez une réponse d'erreur et tous les détails de cette réponse d'erreur seront
inclus dans le AmazonServiceException message envoyé. Dans certains cas, une sous-classe
d'AmazonServiceException est levée afin de permettre aux développeurs un contrôle très précis
de la gestion des cas d'erreur par le biais de blocs d'interception (catch).

Lorsque vous rencontrez unAmazonServiceException, vous savez que votre demande a été
envoyée avec succès au Service AWS mais n'a pas pu être traitée avec succès. Cela peut être dû à
une erreur des paramètres de la demande ou à un problème côté service.

AmazonServiceException vous fournit des informations telles que :

Pourquoi des exceptions non contrôlées ? 35

http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
http://www.artima.com/intv/handcuffs2.html
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Code d'état HTTP retourné

• Code AWS d'erreur renvoyé

• Message d'erreur détaillé du service

• AWS ID de demande pour la demande qui a échoué

AmazonServiceExceptioninclut également des informations indiquant si l'échec de la demande
est la faute de l'appelant (demande avec des valeurs illégales) ou la faute Service AWS de l'appelant
(erreur de service interne).

AmazonClientException

AmazonClientExceptionindique qu'un problème s'est produit dans le code du client Java, soit lors de
la tentative d'envoi d'une demande, AWS soit lors de la tentative d'analyse d'une réponse de AWS.
Un AmazonClientException est généralement plus grave qu'un AmazonServiceException et
indique un problème majeur qui empêche le client de faire des appels de service aux AWS services.
Par exemple, il AWS SDK pour Java lance une alerte AmazonClientException si aucune
connexion réseau n'est disponible lorsque vous essayez d'appeler une opération sur l'un des clients.

Programmation asynchrone

Vous pouvez utiliser des méthodes synchrones ou asynchrones pour appeler des opérations sur
des services. AWS Les méthodes synchrones bloquent l'exécution du thread jusqu'à ce que le client
reçoive une réponse du service. Les méthodes asynchrones renvoient immédiatement, en rendant le
contrôle au thread appelant sans attendre de réponse.

Dans la mesure où une méthode asynchrone renvoie avant qu'une réponse ne soit disponible, vous
avez besoin d'une solution pour obtenir la réponse quand elle est prête. AWS SDK pour Java Il
propose deux méthodes : les objets futurs et les méthodes de rappel.

Objets Future Java

Les méthodes asynchrones AWS SDK pour Java renvoient un objet Future contenant les résultats de
l'opération asynchrone à venir.

Appelez la méthode Future isDone() pour voir si le service a déjà fourni un objet de réponse.
Lorsque la réponse est prête, vous pouvez obtenir l'objet de la réponse en appelant la méthode

AmazonClientException 36

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Futureget(). Vous pouvez utiliser ce mécanisme pour interroger régulièrement les résultats de
l'opération asynchrone, tandis que votre application continue à travailler sur d'autres éléments.

Voici un exemple d'opération asynchrone qui appelle une Lambda fonction et reçoit un objet Future
pouvant contenir un InvokeResultobjet. L'objet InvokeResult est récupéré uniquement après
qu'isDone() a la valeur true.

import com.amazonaws.services.lambda.AWSLambdaAsyncClient;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class InvokeLambdaFunctionAsync
{
 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req);

 System.out.print("Waiting for future");
 while (future_res.isDone() == false) {
 System.out.print(".");
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("\nThread.sleep() was interrupted!");
 System.exit(1);
 }
 }

 try {
 InvokeResult res = future_res.get();
 if (res.getStatusCode() == 200) {

Objets Future Java 37

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeResult.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 }
 else {
 System.out.format("Received a non-OK response from {AWS}: %d\n",
 res.getStatusCode());
 }
 }
 catch (InterruptedException | ExecutionException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 System.exit(0);
 }
}

Rappels asynchrones

Outre l'utilisation de l'Futureobjet Java pour surveiller l'état des demandes asynchrones, le
SDK vous permet également d'implémenter une classe qui utilise l'interface. AsyncHandler
AsyncHandlerfournit deux méthodes qui sont appelées en fonction de la manière dont la demande
est terminée : onSuccess etonError.

Le principal avantage de l'approche de l'interface de rappel est qu'il vous évite d'avoir à interroger
l'objet Future pour savoir à quel moment la demande est terminée. Au lieu de cela, votre code
peut immédiatement commencer son activité suivante et s'appuyer sur le kit SDK pour appeler votre
gestionnaire au bon moment.

import com.amazonaws.services.lambda.AWSLambdaAsync;
import com.amazonaws.services.lambda.AWSLambdaAsyncClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.handlers.AsyncHandler;
import java.nio.ByteBuffer;
import java.util.concurrent.Future;

public class InvokeLambdaFunctionCallback
{
 private class AsyncLambdaHandler implements AsyncHandler<InvokeRequest,
 InvokeResult>

Rappels asynchrones 38

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/handlers/AsyncHandler.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 {
 public void onSuccess(InvokeRequest req, InvokeResult res) {
 System.out.println("\nLambda function returned:");
 ByteBuffer response_payload = res.getPayload();
 System.out.println(new String(response_payload.array()));
 System.exit(0);
 }

 public void onError(Exception e) {
 System.out.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void main(String[] args)
 {
 String function_name = "HelloFunction";
 String function_input = "{\"who\":\"SDK for Java\"}";

 AWSLambdaAsync lambda = AWSLambdaAsyncClientBuilder.defaultClient();
 InvokeRequest req = new InvokeRequest()
 .withFunctionName(function_name)
 .withPayload(ByteBuffer.wrap(function_input.getBytes()));

 Future<InvokeResult> future_res = lambda.invokeAsync(req, new
 AsyncLambdaHandler());

 System.out.print("Waiting for async callback");
 while (!future_res.isDone() && !future_res.isCancelled()) {
 // perform some other tasks...
 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 System.err.println("Thread.sleep() was interrupted!");
 System.exit(0);
 }
 System.out.print(".");
 }
 }
}

Rappels asynchrones 39

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Bonnes pratiques

Exécution des rappels

Votre implémentation de AsyncHandler est exécutée à l'intérieur du groupe de threads dont le
client asynchrone est propriétaire. Un code bref, rapidement exécuté est le plus approprié à l'intérieur
de votre implémentation d' AsyncHandler. Un code de longue durée ou un code de blocage à
l'intérieur des méthodes de votre gestionnaire peuvent entraîner un conflit au sein du groupe de
threads utilisé par le client asynchrone et empêcher le client d'exécuter les demandes. Si vous avez
une tâche de longue durée qui doit commencer à partir d'un rappel, faites en sorte que le rappel
exécute sa tâche dans un nouveau thread ou dans un groupe de threads géré par votre application.

Configuration du groupe de threads

Les clients asynchrones du AWS SDK pour Java fournissent un pool de threads par défaut qui
devrait fonctionner pour la plupart des applications. Vous pouvez implémenter une personnalisation
ExecutorServiceet la transmettre à des clients AWS SDK pour Java asynchrones pour mieux
contrôler la façon dont les pools de threads sont gérés.

Par exemple, vous pouvez fournir une ExecutorService implémentation qui utilise un paramètre
personnalisé ThreadFactorypour contrôler le nom des threads du pool ou pour enregistrer des
informations supplémentaires sur l'utilisation des threads.

Accès asynchrone

La TransferManagerclasse du SDK offre un support asynchrone pour travailler avec. Amazon
S3TransferManagergère les chargements et téléchargements asynchrones, fournit des
rapports d'avancement détaillés sur les transferts et prend en charge les rappels lors de différents
événements.

Enregistrement AWS SDK pour Java des appels

AWS SDK pour Java Il est instrumenté avec Apache Commons Logging, une couche d'abstraction
qui permet d'utiliser l'un des nombreux systèmes de journalisation au moment de l'exécution.

Les systèmes de journalisation pris en charge incluent Java Logging Framework et Apache Log4j,
entre autres. Cette section vous explique comment utiliser Log4j. Vous pouvez utiliser la fonction de
journalisation du kit SDK sans apporter de modifications au code de votre application.

Bonnes pratiques 40

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/ThreadFactory.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/TransferManager.html
http://commons.apache.org/proper/commons-logging/guide.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Pour en savoir plus sur Log4j, consultez le site web Apache.

Note

Cette rubrique se concentre sur Log4j 1.x. Log4j2 ne prend pas directement en charge
Apache Commons Logging, mais fournit un adaptateur qui dirige automatiquement la
journalisation des appels vers Log4j2 à l'aide de l'interface Apache Commons Logging. Pour
plus d'informations, consultez Commons Logging Bridge dans la documentation Log4j2.

Téléchargement du fichier JAR Log4J

Pour utiliser Log4j avec le kit SDK, vous devez télécharger le fichier JAR Log4j à partir du site web
Apache. Le kit SDK n'inclut pas le fichier JAR. Copiez le fichier JAR sur un emplacement de votre
chemin de classe.

Log4j utilise un fichier de configuration, log4j.properties. Vous trouverez ci-dessous des exemples
de fichiers de configuration. Copiez ce fichier de configuration dans un répertoire de votre chemin de
classe. Le fichier JAR Log4j et le fichier log4j.properties ne doivent pas nécessairement se trouver
dans le même répertoire.

Le fichier de configuration log4j.properties spécifie les propriétés telles que le niveau de
journalisation, l'emplacement vers lequel la sortie de la journalisation est envoyée (par exemple,
vers un fichier ou vers la console) et le format de la sortie. Le niveau de journalisation correspond
à la granularité de la sortie que l'enregistreur d'événements génère. Log4j prend en charge le
concept de hiérarchies de journalisation multiples. Le niveau de journalisation est défini de manière
indépendante pour chaque hiérarchie. Les deux hiérarchies de journalisation suivantes sont
disponibles dans le kit AWS SDK pour Java :

• log4j.logger.com.amazonaws

• log4j.logger.org.apache.http.wire

Définition du chemin de classe

Le fichier JAR Log4j et le fichier log4j.properties doivent se trouver sur votre chemin de classe. Si
vous utilisez Apache Ant, définissez le chemin de classe dans l'élément path de votre fichier Ant.
L'exemple suivant montre un élément de chemin du fichier Ant pour l' Amazon S3 exemple inclus
dans le SDK.

Téléchargement du fichier JAR Log4J 41

http://logging.apache.org/log4j/2.x/
http://www.apache.org/
https://logging.apache.org/log4j/2.x/log4j-jcl.html
http://logging.apache.org/log4j/2.x/manual/configuration.html#Loggers
http://logging.apache.org/log4j/2.x/manual/configuration.html#Loggers
http://logging.apache.org/log4j/2.x/manual/appenders.html
http://logging.apache.org/log4j/2.x/manual/layouts.html
http://ant.apache.org/manual/
https://github.com/aws/aws-sdk-java/blob/master/src/samples/AmazonS3/build.xml

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

<path id="aws.java.sdk.classpath">
 <fileset dir="../../third-party" includes="**/*.jar"/>
 <fileset dir="../../lib" includes="**/*.jar"/>
 <pathelement location="."/>
</path>

Si vous utilisez l'IDE Eclipse, vous pouvez définir le chemin de classe en ouvrant le menu et en
accédant à Project (Projet) | Properties (Propriétés) | Java Build Path (Chemin de génération Java).

Erreurs et avertissements propres au service

Nous vous recommandons de toujours laisser la hiérarchie de l'enregistreur d'événements définie
avec la valeur « WARN » pour intercepter les messages importants des bibliothèques clientes.
Par exemple, si le Amazon S3 client détecte que votre application n'a pas correctement fermé une
application InputStream et qu'elle est susceptible de provoquer une fuite de ressources, le client
S3 le signale par le biais d'un message d'avertissement envoyé aux journaux. Il est ainsi possible
de s'assurer que les messages sont enregistrés au cas où le client rencontrerait des problèmes de
gestion des demandes ou des réponses.

Le fichier log4j.properties suivant définit rootLogger avec la valeur WARN, ce qui entraîne
l'inclusion des messages d'avertissement et d'erreur de tous les enregistreurs d'événements de la
hiérarchie « com.amazonaws ». Vous pouvez aussi définir explicitement l'enregistreur d'événements
com.amazonaws avec la valeur WARN.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Or you can explicitly enable WARN and ERROR messages for the {AWS} Java clients
log4j.logger.com.amazonaws=WARN

Journalisation récapitulative des demandes et des réponses

Chaque demande envoyée à un Service AWS génère un identifiant de AWS demande unique qui
est utile si vous rencontrez un problème avec le traitement d'une demande par an Service AWS .
AWS IDs les demandes sont accessibles par programmation via les objets Exception du SDK en cas
d'échec d'un appel de service, et peuvent également être signalées via le niveau de journal DEBUG
dans l'enregistreur « com.amazonaws.request ».

Erreurs et avertissements propres au service 42

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Le fichier log4j.properties suivant permet de résumer les demandes et les réponses, y compris les
demandes. AWS IDs

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Turn on DEBUG logging in com.amazonaws.request to log
a summary of requests/responses with {AWS} request IDs
log4j.logger.com.amazonaws.request=DEBUG

Voici un exemple de la sortie du journal.

2009-12-17 09:53:04,269 [main] DEBUG com.amazonaws.request - Sending
Request: POST https://rds.amazonaws.com / Parameters: (MaxRecords: 20,
Action: DescribeEngineDefaultParameters, SignatureMethod: HmacSHA256,
AWSAccessKeyId: ACCESSKEYID, Version: 2009-10-16, SignatureVersion: 2,
Engine: mysql5.1, Timestamp: 2009-12-17T17:53:04.267Z, Signature:
q963XH63Lcovl5Rr71APlzlye99rmWwT9DfuQaNznkD,) 2009-12-17 09:53:04,464
[main] DEBUG com.amazonaws.request - Received successful response: 200, {AWS}
Request ID: 694d1242-cee0-c85e-f31f-5dab1ea18bc6 2009-12-17 09:53:04,469
[main] DEBUG com.amazonaws.request - Sending Request: POST
https://rds.amazonaws.com / Parameters: (ResetAllParameters: true, Action:
ResetDBParameterGroup, SignatureMethod: HmacSHA256, DBParameterGroupName:
java-integ-test-param-group-0000000000000, AWSAccessKeyId: ACCESSKEYID,
Version: 2009-10-16, SignatureVersion: 2, Timestamp:
2009-12-17T17:53:04.467Z, Signature:
9WcgfPwTobvLVcpyhbrdN7P7l3uH0oviYQ4yZ+TQjsQ=,)

2009-12-17 09:53:04,646 [main] DEBUG com.amazonaws.request - Received
successful response: 200, {AWS} Request ID:
694d1242-cee0-c85e-f31f-5dab1ea18bc6

Journalisation du réseau filaire détaillée

Dans certains cas, il peut être utile de voir les demandes et réponses exactes qu'ils AWS SDK
pour Java envoient et reçoivent. Vous ne devez pas activer cette journalisation dans les systèmes
de production, car l'écriture de demandes volumineuses (par exemple, le téléchargement d'un
fichier Amazon S3) ou de réponses peut ralentir considérablement une application. Si vous
avez vraiment besoin d'accéder à ces informations, vous pouvez les activer temporairement via
l'enregistreur Apache HttpClient 4. L'activation du niveau DEBUG sur l'enregistreur d'événements

Journalisation du réseau filaire détaillée 43

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

org.apache.http.wire permet la journalisation de toutes les données de demande et de
réponse.

Le fichier log4j.properties suivant active la journalisation complète dans Apache HttpClient 4 et ne
doit être activé que temporairement car cela peut avoir un impact significatif sur les performances de
votre application.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
Log all HTTP content (headers, parameters, content, etc) for
all requests and responses. Use caution with this since it can
be very expensive to log such verbose data!
log4j.logger.org.apache.http.wire=DEBUG

Journalisation des métriques de latence

L'enregistreur d'événements de latence peut s'avérer utile si vous voulez résoudre des problèmes et
que vous souhaitez voir des métriques permettant entre autres de déterminer quel processus prend
le plus de temps, ou si le côté serveur ou client a la plus grande latence. Définissez l'enregistreur
d'événements com.amazonaws.latency sur DEBUG pour activer cet enregistreur d'événements.

Note

Cet enregistreur d'événements est disponible uniquement si les métriques SDK sont activées.
Pour en savoir plus sur le package de métriques du SDK, consultez Enabling Metrics for the
AWS SDK pour Java.

log4j.rootLogger=WARN, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
log4j.logger.com.amazonaws.latency=DEBUG

Voici un exemple de la sortie du journal.

com.amazonaws.latency - ServiceName=[{S3}], StatusCode=[200],

Journalisation des métriques de latence 44

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

ServiceEndpoint=[https://list-objects-integ-test-test.s3.amazonaws.com],
RequestType=[ListObjectsV2Request], AWSRequestID=[REQUESTID],
 HttpClientPoolPendingCount=0,
RetryCapacityConsumed=0, HttpClientPoolAvailableCount=0, RequestCount=1,
HttpClientPoolLeasedCount=0, ResponseProcessingTime=[52.154],
 ClientExecuteTime=[487.041],
HttpClientSendRequestTime=[192.931], HttpRequestTime=[431.652],
 RequestSigningTime=[0.357],
CredentialsRequestTime=[0.011, 0.001], HttpClientReceiveResponseTime=[146.272]

Configuration de client

AWS SDK pour Java Cela vous permet de modifier la configuration par défaut du client, ce qui est
utile lorsque vous souhaitez :

• Se connecter à Internet via un proxy

• Modifier les paramètres de transport HTTP, tels que le délai de connexion et les nouvelles
tentatives de demande

• Spécifier des conseils sur la taille de la mémoire tampon du socket TCP

Configuration de proxy

Lorsque vous créez un objet client, vous pouvez transmettre un ClientConfigurationobjet facultatif
pour personnaliser la configuration du client.

Si vous vous connectez à Internet via un serveur proxy, vous devez configurer les
paramètres du serveur proxy (hôte proxy, port et nom d'utilisateur/mot de passe) via l'objet
ClientConfiguration.

Configuration du transport HTTP

Vous pouvez configurer plusieurs options de transport HTTP à l'aide de l'ClientConfigurationobjet.
De nouvelles options sont parfois ajoutées ; pour voir la liste complète des options que vous pouvez
récupérer ou définir, consultez la référence de l' AWS SDK pour Java API.

Configuration de client 45

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Note

Chacune des valeurs configurables possède une valeur par défaut définie par une constante.
Pour obtenir la liste des valeurs constantes pourClientConfiguration, consultez la
section Valeurs de champ constantes dans la référence de l' AWS SDK pour Java API.

Connexions maximales

Vous pouvez définir le nombre maximum autorisé de connexions HTTP ouvertes à l'aide du
ClientConfiguration. setMaxConnectionsméthode.

Important

Définissez le nombre maximal de connexions de telle sorte qu'il corresponde au nombre
de transactions simultanées. Vous éviterez ainsi des contentions de connexions et une
dégradation des performances. Pour connaître la valeur maximale de connexions par défaut,
consultez la section Valeurs de champ constantes dans la référence de l' AWS SDK pour
Java API.

Délais et gestion des erreurs

Vous pouvez définir des options liées aux délais et à la gestion des erreurs avec les connexions
HTTP.

• Délai de connexion

Le délai de connexion correspond à la durée (en millisecondes) pendant laquelle la connexion
HTTP attend pour établir une connexion avant d'abandonner. La valeur par défaut est 10 000 ms.

Pour définir vous-même cette valeur, utilisez le ClientConfiguration.
setConnectionTimeoutméthode.

• Durée de vie (TTL) de la connexion

Par défaut, le kit SDK tente de réutiliser les connexions HTTP aussi longtemps que possible. Dans
les situations d'échec où une connexion est établie vers un serveur qui a été mis hors service,
le fait d'avoir une durée de vie finie peut aider à la récupération de l'application. Par exemple, la
définition d'une durée de vie de 15 minutes garantit que, même si vous avez une connexion établie

Configuration du transport HTTP 46

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxConnections-int-
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/constant-values.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTimeout-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTimeout-int-

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

avec un serveur qui rencontre des problèmes, vous rétablirez une connexion à un nouveau serveur
dans un délai de 15 minutes.

Pour définir le TTL de connexion HTTP, utilisez la méthode ClientConfiguration.setConnectionTTL.

• Nombre maximal de tentatives en cas d'erreur

Par défaut, le nombre maximal de tentatives en cas d'erreur est de 3. Vous pouvez définir une
valeur différente en utilisant le ClientConfiguration. setMaxErrorRéessayer la méthode.

Adresse locale

Pour définir l'adresse locale à laquelle le client HTTP doit se lier, utilisez ClientConfiguration.
setLocalAddress.

Conseils sur la taille de la mémoire tampon du socket TCP

Les utilisateurs expérimentés qui souhaitent ajuster les paramètres TCP de bas niveau
peuvent également définir des indications sur la taille de la mémoire tampon TCP via l'objet.
ClientConfiguration La majorité des utilisateurs n'aura jamais besoin de modifier ces valeurs, mais
elles sont fournies pour les utilisateurs avancés.

Les tailles optimales de mémoire tampon TCP d'une application dépendent fortement de la
configuration et des capacités du réseau et du système d'exploitation. Par exemple, la plupart des
systèmes d'exploitation modernes fournissent une logique de réglage automatique pour les tailles de
mémoire tampon de socket TCP. Il peut en résulter un impact important sur les performances des
connexions TCP qui sont maintenues ouvertes assez longtemps pour que le réglage automatique
optimise les tailles de mémoire tampon.

Les tailles de mémoire tampon élevées (par exemple, 2 Mo) permettent au système d'exploitation
de placer en mémoire tampon plus de données sans avoir besoin que le serveur distant accuse
réception des informations et peuvent ainsi se révéler particulièrement utiles quand le réseau
présente une latence élevée.

Il s'agit uniquement d'un conseil ; il se peut que le système d'exploitation ne le suive pas. Lors de
l'utilisation de cette option, les utilisateurs doivent toujours vérifier les valeurs par défaut et les limites
configurées du système d'exploitation. La plupart des systèmes d'exploitation ont une taille maximale
de mémoire tampon TCP et ne vous permettent pas de dépasser ce seuil, sauf si vous augmentez
explicitement la taille maximale de la mémoire tampon TCP.

Conseils sur la taille de la mémoire tampon du socket TCP 47

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setConnectionTTL-long-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setMaxErrorRetry-int-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html#setLocalAddress-java.net.InetAddress-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/ClientConfiguration.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

De nombreuses ressources sont disponibles pour vous aider à configurer les tailles de mémoire
tampon TCP et les paramètres TCP spécifiques au système d'exploitation, y compris les éléments
suivants :

• Réglage de l'hôte

Stratégies de contrôle d'accès

AWS les politiques de contrôle d'accès vous permettent de définir des contrôles d'accès précis sur
vos AWS ressources. Une stratégie de contrôle d'accès se compose d'un ensemble de déclarations
qui se présentent sous la forme suivante :

Le compte A est autorisé à exécuter l'action B sur la ressource C lorsque la condition D s'applique.

Où :

• A est le principal : celui Compte AWS qui fait une demande pour accéder à l'une de vos AWS
ressources ou pour la modifier.

• B est l'action : mode d'accès ou de modification de votre AWS ressource, par exemple en envoyant
un message à une Amazon SQS file d'attente ou en stockant un objet dans un Amazon S3
compartiment.

• C est la ressource : AWS entité à laquelle le principal souhaite accéder, telle qu'une Amazon SQS
file d'attente ou un objet stocké dans celui-ci Amazon S3.

• D est un ensemble de conditions : les contraintes facultatives qui spécifient quand autoriser ou
refuser l'accès au principal pour accéder à votre ressource. De nombreuses conditions expressives
sont disponibles, certaines spécifiques à chaque service. Par exemple, vous pouvez utiliser des
conditions de date pour autoriser l'accès à vos ressources uniquement après ou avant un moment
spécifique.

Amazon S3 Exemple

L'exemple suivant illustre une politique qui permet à quiconque d'accéder à tous les objets d'un
compartiment, mais restreint l'accès au téléchargement d'objets vers ce compartiment à deux options
spécifiques Compte AWS(en plus du compte du propriétaire du compartiment).

Statement allowPublicReadStatement = new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)

Stratégies de contrôle d'accès 48

http://fasterdata.es.net/host-tuning/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withActions(S3Actions.GetObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));
Statement allowRestrictedWriteStatement = new Statement(Effect.Allow)
 .withPrincipals(new Principal("123456789"), new Principal("876543210"))
 .withActions(S3Actions.PutObject)
 .withResources(new S3ObjectResource(myBucketName, "*"));

Policy policy = new Policy()
 .withStatements(allowPublicReadStatement, allowRestrictedWriteStatement);

AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
s3.setBucketPolicy(myBucketName, policy.toJson());

Amazon SQS Exemple

Les politiques sont couramment utilisées pour autoriser une Amazon SQS file d'attente à recevoir des
messages provenant d'une rubrique Amazon SNS.

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(SQSActions.SendMessage)
 .withConditions(ConditionFactory.newSourceArnCondition(myTopicArn)));

Map queueAttributes = new HashMap();
queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson());

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.setQueueAttributes(new SetQueueAttributesRequest(myQueueUrl, queueAttributes));

Exemple Amazon SNS

Certains services proposent des conditions supplémentaires qui peuvent être utilisées dans les
politiques. Amazon SNS fournit les conditions permettant d'autoriser ou de refuser les abonnements
aux rubriques SNS en fonction du protocole (e-mail, HTTP, HTTPS, etc. Amazon SQS) et du point de
terminaison (adresse e-mail, URL, Amazon SQS ARN) de la demande d'abonnement à une rubrique.

Condition endpointCondition =
 SNSConditionFactory.newEndpointCondition("*@mycompany.com");

Policy policy = new Policy().withStatements(
 new Statement(Effect.Allow)

Amazon SQS Exemple 49

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withPrincipals(Principal.AllUsers)
 .withActions(SNSActions.Subscribe)
 .withConditions(endpointCondition));

AmazonSNS sns = AmazonSNSClientBuilder.defaultClient();
sns.setTopicAttributes(
 new SetTopicAttributesRequest(myTopicArn, "Policy", policy.toJson()));

Définissez le TTL de la JVM pour les recherches de noms DNS
La machine virtuelle Java (JVM) met en cache les recherches de nom DNS. Lorsque la JVM convertit
un nom d'hôte en adresse IP, elle met l'adresse IP en cache pendant une période spécifiée, connue
sous le nom de time-to-live(TTL).

Étant donné que les AWS ressources utilisent des entrées de nom DNS qui changent
occasionnellement, nous vous recommandons de configurer votre JVM avec une valeur TTL de
5 secondes. Ainsi, lorsque l'adresse IP d'une ressource change, votre application peut recevoir et
utiliser la nouvelle adresse IP de la ressource en interrogeant le DNS.

Dans certaines configurations Java, la durée de vie par défaut de la JVM est définie de façon à ce
que la JVM n'actualise jamais les entrées DNS tant qu'elle n'est pas redémarrée. Ainsi, si l'adresse
IP d'une AWS ressource change alors que votre application est toujours en cours d'exécution, elle ne
pourra pas utiliser cette ressource tant que vous n'aurez pas redémarré manuellement la JVM et que
les informations IP mises en cache ne seront pas actualisées. Dans ce cas, il est essentiel de définir
la durée de vie de la JVM de façon à ce que ses informations IP mises en cache soient régulièrement
actualisées.

Comment configurer le JVM TTL

Pour modifier le TTL de la JVM, définissez la valeur de la propriété de sécurité
networkaddress.cache.ttl, définissez la propriété dans le networkaddress.cache.ttl
$JAVA_HOME/jre/lib/security/java.security fichier pour Java 8 ou dans le fichier pour
Java 11 ou supérieur. $JAVA_HOME/conf/security/java.security

Ce qui suit est un extrait d'un java.security fichier qui montre que le cache TTL est réglé sur 5
secondes.

#
This is the "master security properties file".
#

Définissez le TTL de la JVM pour les recherches de noms DNS 50

https://docs.oracle.com/en/java/javase/17/core/java-networking.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

An alternate java.security properties file may be specified
...
The Java-level namelookup cache policy for successful lookups:
#
any negative value: caching forever
any positive value: the number of seconds to cache an address for
zero: do not cache
...
networkaddress.cache.ttl=5
...

Toutes les applications qui s'exécutent sur la JVM représentée par la variable
d'$JAVA_HOMEenvironnement utilisent ce paramètre.

Activation des métriques pour le AWS SDK pour Java

Ils AWS SDK pour Java peuvent générer des métriques à des fins de visualisation et de surveillance
avec Amazon CloudWatch qui mesurent :

• les performances de votre application lors de l'accès AWS

• les performances de votre appareil JVMs lorsqu'il est utilisé avec AWS

• des détails sur l'environnement d'exécution comme la mémoire de segment, le nombre de threads
et les descripteurs de fichier ouverts

Comment activer la génération de métriques du SDK Java

Vous devez ajouter la dépendance Maven suivante pour permettre au SDK d'envoyer des métriques
à. CloudWatch

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.12.490*</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Activation des métriques pour le AWS SDK pour Java 51

https://aws.amazon.com/cloudwatch/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-cloudwatchmetrics</artifactId>
 <scope>provided</scope>
 </dependency>
 <!-- Other SDK dependencies. -->
</dependencies>

* Remplacez le numéro de version par la dernière version du SDK disponible sur Maven Central.

AWS SDK pour Java les métriques sont désactivées par défaut. Pour l'activer dans votre
environnement de développement local, incluez une propriété système pointant vers votre fichier
d'informations AWS de sécurité lors du démarrage de la JVM. Exemples :

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/aws.properties

Vous devez spécifier le chemin d'accès à votre fichier d'identification afin que le SDK puisse
télécharger les points de données collectés pour CloudWatch une analyse ultérieure.

Note

Si vous accédez AWS depuis une Amazon EC2 instance à l'aide du service de métadonnées
d' Amazon EC2 instance, vous n'avez pas besoin de spécifier de fichier d'informations
d'identification. Dans ce cas, vous devez seulement spécifier :

-Dcom.amazonaws.sdk.enableDefaultMetrics

Toutes les métriques capturées par le AWS SDK pour Java se trouvent sous l'espace de noms
AWSSDK/Java et sont téléchargées dans la région CloudWatch par défaut (us-east-1). Pour changer
de région, spécifiez votre région en utilisant l'attribut cloudwatchRegion dans la propriété système.
Par exemple, pour définir la CloudWatch région sur us-east-1, utilisez :

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,cloudwatchRegion={region_api_default}

Une fois la fonctionnalité activée, chaque fois qu'une demande de service est envoyée, des points
AWS de données métriques sont générés AWS SDK pour Java, mis en file d'attente pour un résumé

Comment activer la génération de métriques du SDK Java 52

https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

statistique et téléchargés de manière asynchrone CloudWatch environ une fois par minute. Une fois
les métriques téléchargées, vous pouvez les visualiser à l'aide de AWS Management Consoleet
définir des alarmes en cas de problèmes potentiels tels que les fuites de mémoire, les fuites de
descripteurs de fichiers, etc.

Types de métrique disponibles

L'ensemble de métriques par défaut est divisé en trois catégories principales :

AWS Métriques des demandes

• Couvrent des domaines tels que la latence de la demande/réponse HTTP, le nombre de
demandes, les exceptions et les nouvelles tentatives.

Service AWS Métriques

• Incluez Service AWS des données spécifiques, telles que le débit et le nombre d'octets pour les
chargements et téléchargements S3.

Types de métrique disponibles 53

https://console.aws.amazon.com/console/home

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Métriques machine

• Couvrent l'environnement d'exécution, y compris la mémoire de segment, le nombre de threads
et les descripteurs de fichier ouverts.

Types de métrique disponibles 54

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Si vous souhaitez exclure les métriques machine, ajoutez excludeMachineMetrics à la
propriété système :

-Dcom.amazonaws.sdk.enableDefaultMetrics=credentialFile=/path/
aws.properties,excludeMachineMetrics

En savoir plus

• Consultez le récapitulatif du package amazonaws/metrics pour voir la liste complète des types de
métriques de base prédéfinies.

• Découvrez comment CloudWatch utiliser le AWS SDK pour Java dans CloudWatch Exemples
d'utilisation du AWS SDK pour Java.

En savoir plus 55

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/metrics/package-summary.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Pour en savoir plus sur le réglage des performances, consultez le billet de blog Tuning the AWS
SDK pour Java to Improve Resiliency.

En savoir plus 56

https://aws.amazon.com/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency
https://aws.amazon.com/blogs/developer/tuning-the-aws-sdk-for-java-to-improve-resiliency

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

AWS SDK pour Java Exemples de code
Cette section fournit des didacticiels et des exemples d'utilisation de la AWS SDK pour Java version
1 pour programmer AWS des services.

Trouvez le code source de ces exemples et d'autres dans le référentiel d'exemples de code de AWS
documentation sur GitHub.

Pour proposer un nouvel exemple de code que l'équipe de AWS documentation pourrait envisager
de produire, créez une nouvelle demande. L'équipe cherche à produire des exemples de code qui
couvrent des scénarios et des cas d'utilisation plus larges, plutôt que de simples extraits de code
qui couvrent uniquement les appels d'API individuels. Pour obtenir des instructions, consultez les
directives relatives aux contributions dans le référentiel d'exemples de code sur... GitHub

AWS SDK pour Java 2. x

En 2018, AWS a publié le AWS SDK for Java 2.x. Ce guide contient des instructions sur l'utilisation
du dernier SDK Java ainsi qu'un exemple de code.

Note

Consultez la documentation et les ressources supplémentaires pour plus d'exemples et de
ressources supplémentaires disponibles pour AWS SDK pour Java les développeurs !

CloudWatch Exemples d'utilisation du AWS SDK pour Java

Cette section fournit des exemples de programmation d'CloudWatch à l'aide du kit AWS SDK pour
Java.

Amazon CloudWatch surveille vos Amazon Web Services (AWS) ressources et les applications que
vous utilisez AWS en temps réel. Vous pouvez les utiliser CloudWatch pour collecter et suivre les
métriques, qui sont des variables que vous pouvez mesurer pour vos ressources et vos applications.
CloudWatch les alarmes envoient des notifications ou modifient automatiquement les ressources que
vous surveillez en fonction des règles que vous définissez.

Pour plus d'informations CloudWatch, consultez le guide de Amazon CloudWatch l'utilisateur.

AWS SDK pour Java 2. x 57

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/home.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Note

Les exemples incluent uniquement le code nécessaire pour démontrer chaque technique.
L'exemple de code complet est disponible sur GitHub. À partir de là, vous pouvez télécharger
un fichier source unique ou cloner le référentiel en local pour obtenir tous les exemples à
générer et exécuter.

Rubriques

• Obtenir des métriques à partir de CloudWatch

• Publication de données de métriques personnalisées

• Utilisation des CloudWatch alarmes

• Utilisation des actions d'alarme dans CloudWatch

• Envoi d'événements à CloudWatch

Obtenir des métriques à partir de CloudWatch

Affichage de la liste des métriques

Pour répertorier CloudWatch les métriques, créez une méthode ListMetricsRequestet appelez
AmazonCloudWatchClient la listMetrics méthode. Vous pouvez utiliser ListMetricsRequest
pour filtrer les métriques renvoyées par espace de noms, nom de métrique ou dimension.

Note

Une liste des mesures et des dimensions publiées par les AWS services se trouve dans le
{https---docs-aws-amazon-com- AmazonCloudWatch -latest-monitoring-cw-support-for-AWS-
html} [Amazon CloudWatch Metrics and Dimensions Reference] du guide de l'utilisateur.
Amazon CloudWatch

Importations

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ListMetricsRequest;

Obtenir des métriques à partir de CloudWatch 58

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.cloudwatch.model.ListMetricsResult;
import com.amazonaws.services.cloudwatch.model.Metric;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

ListMetricsRequest request = new ListMetricsRequest()
 .withMetricName(name)
 .withNamespace(namespace);

boolean done = false;

while(!done) {
 ListMetricsResult response = cw.listMetrics(request);

 for(Metric metric : response.getMetrics()) {
 System.out.printf(
 "Retrieved metric %s", metric.getMetricName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

Les métriques sont renvoyées dans un ListMetricsResulten appelant sa getMetrics méthode. Les
résultats peuvent être paginés. Pour récupérer le lot suivant de résultats, appelez setNextToken
sur l'objet de demande d'origine avec la valeur de retour de la méthode getNextToken de l'objet
ListMetricsResult, et retransmettez l'objet de demande modifié vers un autre appel de
listMetrics.

En savoir plus

• ListMetricsdans la référence de Amazon CloudWatch l'API.

Obtenir des métriques à partir de CloudWatch 59

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/ListMetricsResult.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Publication de données de métriques personnalisées

Un certain nombre de AWS services publient leurs propres métriques dans des espaces de noms
commençant par « AWS ». Vous pouvez également publier des données métriques personnalisées en
utilisant votre propre espace de noms (à condition qu'il ne commence pas par AWS « »).

Publication de données de métriques personnalisées

Pour publier vos propres données métriques, appelez la putMetricData méthode
AmazonCloudWatchClient's avec un PutMetricDataRequest. Ils PutMetricDataRequest doivent
inclure l'espace de noms personnalisé à utiliser pour les données, ainsi que des informations sur le
point de données lui-même dans un MetricDatumobjet.

Note

Vous ne pouvez pas spécifier un espace de noms commençant par « AWS ». Les espaces de
noms commençant par « AWS » sont réservés à l'usage des Amazon Web Services produits.

Importations

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.MetricDatum;
import com.amazonaws.services.cloudwatch.model.PutMetricDataRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricDataResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("UNIQUE_PAGES")
 .withValue("URLS");

MetricDatum datum = new MetricDatum()
 .withMetricName("PAGES_VISITED")
 .withUnit(StandardUnit.None)

Publication de données de métriques personnalisées 60

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricDataRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/MetricDatum.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withValue(data_point)
 .withDimensions(dimension);

PutMetricDataRequest request = new PutMetricDataRequest()
 .withNamespace("SITE/TRAFFIC")
 .withMetricData(datum);

PutMetricDataResult response = cw.putMetricData(request);

En savoir plus

• Utilisation Amazon CloudWatch des métriques dans le guide de Amazon CloudWatch l'utilisateur.

• AWS Espaces de noms dans le guide de Amazon CloudWatch l'utilisateur.

• PutMetricDatadans la référence de Amazon CloudWatch l'API.

Utilisation des CloudWatch alarmes

Créer une alarme

Pour créer une alarme basée sur une CloudWatch métrique, appelez la putMetricAlarm méthode
AmazonCloudWatchClient's avec un PutMetricAlarmRequestrempli des conditions d'alarme.

Importations

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.ComparisonOperator;
import com.amazonaws.services.cloudwatch.model.Dimension;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmRequest;
import com.amazonaws.services.cloudwatch.model.PutMetricAlarmResult;
import com.amazonaws.services.cloudwatch.model.StandardUnit;
import com.amazonaws.services.cloudwatch.model.Statistic;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

Dimension dimension = new Dimension()
 .withName("InstanceId")
 .withValue(instanceId);

Utilisation des CloudWatch alarmes 61

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-namespaces.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

PutMetricAlarmRequest request = new PutMetricAlarmRequest()
 .withAlarmName(alarmName)
 .withComparisonOperator(
 ComparisonOperator.GreaterThanThreshold)
 .withEvaluationPeriods(1)
 .withMetricName("CPUUtilization")
 .withNamespace("{AWS}/EC2")
 .withPeriod(60)
 .withStatistic(Statistic.Average)
 .withThreshold(70.0)
 .withActionsEnabled(false)
 .withAlarmDescription(
 "Alarm when server CPU utilization exceeds 70%")
 .withUnit(StandardUnit.Seconds)
 .withDimensions(dimension);

PutMetricAlarmResult response = cw.putMetricAlarm(request);

Affichage des alarmes

Pour répertorier les CloudWatch alarmes que vous avez créées, appelez la describeAlarms
méthode AmazonCloudWatchClient's avec un DescribeAlarmsRequestque vous pouvez utiliser pour
définir les options du résultat.

Importations

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DescribeAlarmsResult;
import com.amazonaws.services.cloudwatch.model.MetricAlarm;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

boolean done = false;
DescribeAlarmsRequest request = new DescribeAlarmsRequest();

while(!done) {

Utilisation des CloudWatch alarmes 62

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 DescribeAlarmsResult response = cw.describeAlarms(request);

 for(MetricAlarm alarm : response.getMetricAlarms()) {
 System.out.printf("Retrieved alarm %s", alarm.getAlarmName());
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

La liste des alarmes peut être obtenue getMetricAlarms en appelant DescribeAlarmsResultle
code renvoyé pardescribeAlarms.

Les résultats peuvent être paginés. Pour récupérer le lot suivant de résultats, appelez
setNextToken sur l'objet de demande d'origine avec la valeur de retour de la méthode
getNextToken de l'objet DescribeAlarmsResult, et retransmettez l'objet de demande modifié
vers un autre appel de describeAlarms.

Note

Vous pouvez également récupérer les alarmes pour une métrique spécifique à l'aide
AmazonCloudWatchClient de la describeAlarmsForMetric méthode's. Son utilisation est
similaire à describeAlarms.

Suppression d'alarmes

Pour supprimer des CloudWatch alarmes, appelez la deleteAlarms méthode
AmazonCloudWatchClient's DeleteAlarmsRequesten indiquant un ou plusieurs noms d'alarmes que
vous souhaitez supprimer.

Importations

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsRequest;
import com.amazonaws.services.cloudwatch.model.DeleteAlarmsResult;

Utilisation des CloudWatch alarmes 63

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DescribeAlarmsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DeleteAlarmsRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DeleteAlarmsRequest request = new DeleteAlarmsRequest()
 .withAlarmNames(alarm_name);

DeleteAlarmsResult response = cw.deleteAlarms(request);

En savoir plus

• Création d' Amazon CloudWatch alarmes dans le guide de Amazon CloudWatch l'utilisateur

• PutMetricAlarmdans la référence de Amazon CloudWatch l'API

• DescribeAlarmsdans la référence de Amazon CloudWatch l'API

• DeleteAlarmsdans la référence de Amazon CloudWatch l'API

Utilisation des actions d'alarme dans CloudWatch

À l'aide des actions CloudWatch d'alarme, vous pouvez créer des alarmes qui exécutent des actions
telles que l'arrêt automatique, la résiliation, le redémarrage ou la restauration d'instances. Amazon
EC2

Note

Des actions d'alarme peuvent être ajoutées à une alarme en utilisant la setAlarmActions
méthode PutMetricAlarmRequest's lors de la création d'une alarme.

Activation d'actions d'alarme

Pour activer les actions d' CloudWatch alarme pour une alarme, appelez les
AmazonCloudWatchClient s enableAlarmActions avec EnableAlarmActionsRequestun ou
plusieurs noms d'alarmes dont vous souhaitez activer les actions.

Importations

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;

Utilisation des actions d'alarme dans CloudWatch 64

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DescribeAlarms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DeleteAlarms.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/PutMetricAlarmRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/EnableAlarmActionsRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.EnableAlarmActionsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

EnableAlarmActionsRequest request = new EnableAlarmActionsRequest()
 .withAlarmNames(alarm);

EnableAlarmActionsResult response = cw.enableAlarmActions(request);

Désactivation d'actions d'alarme

Pour désactiver les actions d' CloudWatch alarme associées à une alarme, appelez le
AmazonCloudWatchClient s DisableAlarmActionsRequestcontenant un ou plusieurs noms d'alarmes
dont vous souhaitez désactiver les actions. disableAlarmActions

Importations

import com.amazonaws.services.cloudwatch.AmazonCloudWatch;
import com.amazonaws.services.cloudwatch.AmazonCloudWatchClientBuilder;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsRequest;
import com.amazonaws.services.cloudwatch.model.DisableAlarmActionsResult;

Code

final AmazonCloudWatch cw =
 AmazonCloudWatchClientBuilder.defaultClient();

DisableAlarmActionsRequest request = new DisableAlarmActionsRequest()
 .withAlarmNames(alarmName);

DisableAlarmActionsResult response = cw.disableAlarmActions(request);

En savoir plus

• Créez des alarmes pour arrêter, mettre fin, redémarrer ou récupérer une instance dans le guide de
Amazon CloudWatch l'utilisateur

Utilisation des actions d'alarme dans CloudWatch 65

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatch/model/DisableAlarmActionsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• PutMetricAlarmdans la référence de Amazon CloudWatch l'API

• EnableAlarmActionsdans la référence de Amazon CloudWatch l'API

• DisableAlarmActionsdans la référence de Amazon CloudWatch l'API

Envoi d'événements à CloudWatch

CloudWatch Events fournit un flux d'événements système en temps quasi réel décrivant les
modifications apportées aux AWS ressources des Amazon EC2 instances, des Lambda fonctions,
des Kinesis flux, Amazon ECS des tâches, des machines d' Step Functions état, des Amazon SNS
sujets, des Amazon SQS files d'attente ou des cibles intégrées. À l'aide de règles simples, vous
pouvez faire correspondre les événements et les acheminer vers un ou plusieurs flux ou fonctions
cibles.

Ajout d'événements

Pour ajouter CloudWatch des événements personnalisés, appelez la putEvents méthode
AmazonCloudWatchEventsClient's avec un PutEventsRequestobjet contenant un ou plusieurs
PutEventsRequestEntryobjets fournissant des détails sur chaque événement. Vous pouvez spécifier
plusieurs paramètres pour l'entrée, tels que la source et le type de l'événement, les ressources
associées à l'événement, et ainsi de suite.

Note

Vous pouvez spécifier un maximum de 10 événements par appel de putEvents.

Importations

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutEventsRequestEntry;
import com.amazonaws.services.cloudwatchevents.model.PutEventsResult;

Code

final AmazonCloudWatchEvents cwe =

Envoi d'événements à CloudWatch 66

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricAlarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_EnableAlarmActions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_DisableAlarmActions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutEventsRequestEntry.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 AmazonCloudWatchEventsClientBuilder.defaultClient();

final String EVENT_DETAILS =
 "{ \"key1\": \"value1\", \"key2\": \"value2\" }";

PutEventsRequestEntry request_entry = new PutEventsRequestEntry()
 .withDetail(EVENT_DETAILS)
 .withDetailType("sampleSubmitted")
 .withResources(resource_arn)
 .withSource("aws-sdk-java-cloudwatch-example");

PutEventsRequest request = new PutEventsRequest()
 .withEntries(request_entry);

PutEventsResult response = cwe.putEvents(request);

Ajout de règles

Pour créer ou mettre à jour une règle, appelez la putRule méthode
AmazonCloudWatchEventsClient's PutRuleRequestavec le nom de la règle et des paramètres
facultatifs tels que le modèle d'événement, le IAM rôle à associer à la règle et une expression de
planification décrivant la fréquence d'exécution de la règle.

Importations

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutRuleRequest;
import com.amazonaws.services.cloudwatchevents.model.PutRuleResult;
import com.amazonaws.services.cloudwatchevents.model.RuleState;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

PutRuleRequest request = new PutRuleRequest()
 .withName(rule_name)
 .withRoleArn(role_arn)
 .withScheduleExpression("rate(5 minutes)")
 .withState(RuleState.ENABLED);

Envoi d'événements à CloudWatch 67

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutRuleRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

PutRuleResult response = cwe.putRule(request);

Ajout de cibles

Les cibles sont les ressources appelées lorsqu'une règle est déclenchée. Les exemples de cibles
incluent Amazon EC2 les instances, Lambda les fonctions, Kinesis les flux, Amazon ECS les tâches,
les machines d' Step Functions état et les cibles intégrées.

Pour ajouter une cible à une règle, appelez la putTargets méthode
AmazonCloudWatchEventsClient's avec un PutTargetsRequestcontenant la règle à mettre à jour et
une liste de cibles à ajouter à la règle.

Importations

import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEvents;
import com.amazonaws.services.cloudwatchevents.AmazonCloudWatchEventsClientBuilder;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsRequest;
import com.amazonaws.services.cloudwatchevents.model.PutTargetsResult;
import com.amazonaws.services.cloudwatchevents.model.Target;

Code

final AmazonCloudWatchEvents cwe =
 AmazonCloudWatchEventsClientBuilder.defaultClient();

Target target = new Target()
 .withArn(function_arn)
 .withId(target_id);

PutTargetsRequest request = new PutTargetsRequest()
 .withTargets(target)
 .withRule(rule_name);

PutTargetsResult response = cwe.putTargets(request);

En savoir plus

• Ajouter des événements PutEvents dans le guide de Amazon CloudWatch Events l'utilisateur

• Expressions de planification pour les règles dans le guide de Amazon CloudWatch Events
l'utilisateur

Envoi d'événements à CloudWatch 68

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/cloudwatchevents/model/PutTargetsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Types d'événements pour les CloudWatch événements figurant dans le guide de Amazon
CloudWatch Events l'utilisateur

• Événements et modèles d'événements dans le guide de Amazon CloudWatch Events l'utilisateur

• PutEventsdans la référence de Amazon CloudWatch Events l'API

• PutTargetsdans la référence de Amazon CloudWatch Events l'API

• PutRuledans la référence de Amazon CloudWatch Events l'API

DynamoDB Exemples d'utilisation du AWS SDK pour Java

Cette section fournit des exemples de programmation d'DynamoDB à l'aide du kit AWS SDK pour
Java.

Note

Les exemples incluent uniquement le code nécessaire pour démontrer chaque technique.
L'exemple de code complet est disponible sur GitHub. À partir de là, vous pouvez télécharger
un fichier source unique ou cloner le référentiel en local pour obtenir tous les exemples à
générer et exécuter.

Rubriques

• Utiliser des points de AWS terminaison basés sur des comptes

• Utilisation de tables dans DynamoDB

• Utilisation d'éléments dans DynamoDB

Utiliser des points de AWS terminaison basés sur des comptes

DynamoDB AWS propose des points de terminaison basés sur des comptes qui peuvent améliorer
les performances en utilisant AWS votre identifiant de compte pour rationaliser le routage des
demandes.

Pour bénéficier de cette fonctionnalité, vous devez utiliser la version 1.12.771 ou supérieure
de la version 1 de. AWS SDK pour Java La dernière version du SDK est répertoriée dans le
référentiel central de Maven. Une fois qu'une version prise en charge du SDK est active, elle utilise
automatiquement les nouveaux points de terminaison.

Amazon DynamoDB Exemples 69

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/EventTypes.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutTargets.html
https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutRule.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.SDKOverview.html#Programming.SDKs.endpoints
https://central.sonatype.com/artifact/com.amazonaws/aws-java-sdk-bom

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Si vous souhaitez désactiver le routage basé sur le compte, quatre options s'offrent à vous :

• Configurez un client de service DynamoDB avec AccountIdEndpointMode le paramètre défini
sur. DISABLED

• Définissez une variable d'environnement.

• Définissez une propriété du système JVM.

• Mettez à jour le paramètre du fichier de AWS configuration partagé.

L'extrait suivant illustre comment désactiver le routage basé sur un compte en configurant un client
de service DynamoDB :

ClientConfiguration config = new ClientConfiguration()
 .withAccountIdEndpointMode(AccountIdEndpointMode.DISABLED);
AWSCredentialsProvider credentialsProvider = new
 EnvironmentVariableCredentialsProvider();

AmazonDynamoDB dynamodb = AmazonDynamoDBClientBuilder.standard()
 .withClientConfiguration(config)
 .withCredentials(credentialsProvider)
 .withRegion(Regions.US_WEST_2)
 .build();

Le guide de référence AWS SDKs and Tools fournit plus d'informations sur les trois dernières options
de configuration.

Utilisation de tables dans DynamoDB

Les tables sont les conteneurs de tous les éléments d'une DynamoDB base de données. Avant de
pouvoir ajouter ou supprimer des données DynamoDB, vous devez créer une table.

Pour chaque table, vous devez définir :

• Un nom de table unique pour le compte et la région.

• Une clé primaire pour laquelle chaque valeur doit être unique : deux éléments de votre table ne
peuvent pas avoir la même valeur de clé primaire.

Une clé primaire peut être simple, constituée d'une seule clé de partition (HASH) ou composite,
constituée d'une partition et d'une clé de tri (RANGE).

Utilisation de tables dans DynamoDB 70

https://docs.aws.amazon.com/sdkref/latest/guide/feature-account-endpoints.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-account-endpoints.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Chaque valeur clé est associée à un type de données, énuméré par la ScalarAttributeTypeclasse.
La valeur de la clé peut être binaire (B), numérique (N) ou de type chaîne (S). Pour plus
d'informations, consultez la section Règles de dénomination et types de données dans le Guide du
Amazon DynamoDB développeur.

• Des valeurs de débit alloué qui définissent le nombre d'unités de capacité en lecture/écriture
réservées pour la table.

Note

Amazon DynamoDB la tarification est basée sur les valeurs de débit provisionnées que
vous définissez sur vos tables. Ne réservez donc que la capacité dont vous pensez avoir
besoin pour votre table.

Le débit alloué pour une table peut être modifié à tout moment pour que vous puissiez ajuster la
capacité si vos besoins évoluent.

Création d’une table

Utilisez la createTable méthode du DynamoDB client pour créer une nouvelle DynamoDB table.
Vous devez créer des attributs de table et un schéma de table qui sont utilisés pour identifier la clé
primaire de votre table. Vous devez également fournir des valeurs initiales de débit alloué et un nom
de table. Définissez les attributs clés du tableau uniquement lors de la création de votre DynamoDB
tableau.

Note

Si une table portant le nom que vous avez choisi existe déjà, une table
AmazonServiceExceptionest émise.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;

Utilisation de tables dans DynamoDB 71

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ScalarAttributeType.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html
https://aws.amazon.com/dynamodb/pricing/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonServiceException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.dynamodbv2.model.CreateTableResult;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.ScalarAttributeType;

Création d'une table avec une clé primaire simple

Ce code crée une table avec une clé primaire simple ("Name").

Code

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(new AttributeDefinition(
 "Name", ScalarAttributeType.S))
 .withKeySchema(new KeySchemaElement("Name", KeyType.HASH))
 .withProvisionedThroughput(new ProvisionedThroughput(
 new Long(10), new Long(10)))
 .withTableName(table_name);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 CreateTableResult result = ddb.createTable(request);
 System.out.println(result.getTableDescription().getTableName());
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Voir l'exemple complet sur GitHub.

Création d'une table avec une clé primaire composite

Ajoutez-en un autre AttributeDefinitionet KeySchemaElementà CreateTableRequest.

Code

CreateTableRequest request = new CreateTableRequest()
 .withAttributeDefinitions(
 new AttributeDefinition("Language", ScalarAttributeType.S),
 new AttributeDefinition("Greeting", ScalarAttributeType.S))

Utilisation de tables dans DynamoDB 72

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeDefinition.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/KeySchemaElement.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/CreateTableRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withKeySchema(
 new KeySchemaElement("Language", KeyType.HASH),
 new KeySchemaElement("Greeting", KeyType.RANGE))
 .withProvisionedThroughput(
 new ProvisionedThroughput(new Long(10), new Long(10)))
 .withTableName(table_name);

Voir l'exemple complet sur GitHub.

Affichage d'une liste de tables

Vous pouvez répertorier les tables d'une région donnée en appelant la listTables méthode du
DynamoDB client.

Note

Si la table nommée n'existe pas pour votre compte et votre région, un
ResourceNotFoundExceptionest généré.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ListTablesRequest;
import com.amazonaws.services.dynamodbv2.model.ListTablesResult;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

ListTablesRequest request;

boolean more_tables = true;
String last_name = null;

while(more_tables) {
 try {
 if (last_name == null) {

Utilisation de tables dans DynamoDB 73

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/CreateTableCompositeKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 request = new ListTablesRequest().withLimit(10);
 }
 else {
 request = new ListTablesRequest()
 .withLimit(10)
 .withExclusiveStartTableName(last_name);
 }

 ListTablesResult table_list = ddb.listTables(request);
 List<String> table_names = table_list.getTableNames();

 if (table_names.size() > 0) {
 for (String cur_name : table_names) {
 System.out.format("* %s\n", cur_name);
 }
 } else {
 System.out.println("No tables found!");
 System.exit(0);
 }

 last_name = table_list.getLastEvaluatedTableName();
 if (last_name == null) {
 more_tables = false;
 }

Par défaut, jusqu'à 100 tables sont renvoyées par appel. À utiliser getLastEvaluatedTableName
sur l'ListTablesResultobjet renvoyé pour obtenir la dernière table évaluée. Vous pouvez utiliser cette
valeur pour démarrer la liste après la dernière valeur renvoyée de la liste précédente.

Voir l'exemple complet sur GitHub.

Description d'une table (obtention d'informations sur celle-ci)

Appelez la describeTable méthode du DynamoDB client.

Note

Si la table nommée n'existe pas pour votre compte et votre région, un
ResourceNotFoundExceptionest généré.

Importations

Utilisation de tables dans DynamoDB 74

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/model/ListTablesResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/ListTables.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughputDescription;
import com.amazonaws.services.dynamodbv2.model.TableDescription;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 TableDescription table_info =
 ddb.describeTable(table_name).getTable();

 if (table_info != null) {
 System.out.format("Table name : %s\n",
 table_info.getTableName());
 System.out.format("Table ARN : %s\n",
 table_info.getTableArn());
 System.out.format("Status : %s\n",
 table_info.getTableStatus());
 System.out.format("Item count : %d\n",
 table_info.getItemCount().longValue());
 System.out.format("Size (bytes): %d\n",
 table_info.getTableSizeBytes().longValue());

 ProvisionedThroughputDescription throughput_info =
 table_info.getProvisionedThroughput();
 System.out.println("Throughput");
 System.out.format(" Read Capacity : %d\n",
 throughput_info.getReadCapacityUnits().longValue());
 System.out.format(" Write Capacity: %d\n",
 throughput_info.getWriteCapacityUnits().longValue());

 List<AttributeDefinition> attributes =
 table_info.getAttributeDefinitions();
 System.out.println("Attributes");
 for (AttributeDefinition a : attributes) {
 System.out.format(" %s (%s)\n",
 a.getAttributeName(), a.getAttributeType());
 }
 }

Utilisation de tables dans DynamoDB 75

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Voir l'exemple complet sur GitHub.

Modification (mise à jour) d'une table

Vous pouvez modifier les valeurs de débit provisionnées de votre table à tout moment en appelant la
méthode du DynamoDBupdateTableclient.

Note

Si la table nommée n'existe pas pour votre compte et votre région, un
ResourceNotFoundExceptionest généré.

Importations

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.AmazonServiceException;

Code

ProvisionedThroughput table_throughput = new ProvisionedThroughput(
 read_capacity, write_capacity);

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateTable(table_name, table_throughput);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Voir l'exemple complet sur GitHub.

Utilisation de tables dans DynamoDB 76

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DescribeTable.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateTable.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Suppression d'une table

Appelez la deleteTable méthode du DynamoDB client et transmettez-lui le nom de la table.

Note

Si la table nommée n'existe pas pour votre compte et votre région, un
ResourceNotFoundExceptionest généré.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

Code

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.deleteTable(table_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Voir l'exemple complet sur GitHub.

Plus d'informations

• Instructions relatives à l'utilisation des tables dans le guide du Amazon DynamoDB développeur

• Utilisation des tableaux DynamoDB dans le guide du Amazon DynamoDB développeur

Utilisation d'éléments dans DynamoDB

Dans DynamoDB, un élément est un ensemble d'attributs, chacun ayant un nom et une valeur.
Une valeur d'attribut peut être de type scalar, set ou document. Pour plus d'informations, consultez
la section Règles de dénomination et types de données dans le Guide du Amazon DynamoDB
développeur.

Utilisation d'éléments dans DynamoDB 77

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/AmazonDynamoDB.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/DeleteTable.java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Extraction (Get) d'un élément d'une table

Appelez la getItem méthode AmazonDynamo de la base de données et transmettez-lui un
GetItemRequestobjet avec le nom de la table et la valeur de la clé primaire de l'élément souhaité. Elle
renvoie un GetItemResultobjet.

Vous pouvez utiliser la getItem() méthode de l'GetItemResultobjet renvoyé pour récupérer une
carte des paires clé (chaîne AttributeValue) et valeur () associées à l'élément.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import java.util.HashMap;
import java.util.Map;

Code

HashMap<String,AttributeValue> key_to_get =
 new HashMap<String,AttributeValue>();

key_to_get.put("DATABASE_NAME", new AttributeValue(name));

GetItemRequest request = null;
if (projection_expression != null) {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name)
 .withProjectionExpression(projection_expression);
} else {
 request = new GetItemRequest()
 .withKey(key_to_get)
 .withTableName(table_name);
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 Map<String,AttributeValue> returned_item =

Utilisation d'éléments dans DynamoDB 78

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/GetItemResult.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/AttributeValue.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 ddb.getItem(request).getItem();
 if (returned_item != null) {
 Set<String> keys = returned_item.keySet();
 for (String key : keys) {
 System.out.format("%s: %s\n",
 key, returned_item.get(key).toString());
 }
 } else {
 System.out.format("No item found with the key %s!\n", name);
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

Consultez l'exemple complet sur GitHub.

Ajout d'un nouvel élément à une table

Créez un mappage des paires clé-valeur qui représentent les attributs de l'élément. Elles doivent
inclure les valeurs des champs de clé primaire de la table. Si l'élément identifié par la clé primaire
existe déjà, ses champs sont mis à jour par la demande.

Note

Si la table nommée n'existe pas pour votre compte et votre région, un
ResourceNotFoundExceptionest généré.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Code

HashMap<String,AttributeValue> item_values =
 new HashMap<String,AttributeValue>();

Utilisation d'éléments dans DynamoDB 79

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/GetItem.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Map.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

item_values.put("Name", new AttributeValue(name));

for (String[] field : extra_fields) {
 item_values.put(field[0], new AttributeValue(field[1]));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.putItem(table_name, item_values);
} catch (ResourceNotFoundException e) {
 System.err.format("Error: The table \"%s\" can't be found.\n", table_name);
 System.err.println("Be sure that it exists and that you've typed its name
 correctly!");
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

Consultez l'exemple complet sur GitHub.

Mise à jour d'un élément existant dans une table

Vous pouvez mettre à jour un attribut pour un élément qui existe déjà dans une table en utilisant la
updateItem méthode de la AmazonDynamo base de données, en fournissant un nom de table, une
valeur de clé primaire et une carte des champs à mettre à jour.

Note

Si la table nommée n'existe pas pour votre compte et votre région, ou si l'élément identifié
par la clé primaire que vous avez transmise n'existe pas, un ResourceNotFoundExceptionest
généré.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeAction;

Utilisation d'éléments dans DynamoDB 80

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/PutItem.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/model/ResourceNotFoundException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.AttributeValueUpdate;
import com.amazonaws.services.dynamodbv2.model.ResourceNotFoundException;
import java.util.ArrayList;

Code

HashMap<String,AttributeValue> item_key =
 new HashMap<String,AttributeValue>();

item_key.put("Name", new AttributeValue(name));

HashMap<String,AttributeValueUpdate> updated_values =
 new HashMap<String,AttributeValueUpdate>();

for (String[] field : extra_fields) {
 updated_values.put(field[0], new AttributeValueUpdate(
 new AttributeValue(field[1]), AttributeAction.PUT));
}

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();

try {
 ddb.updateItem(table_name, item_key, updated_values);
} catch (ResourceNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (AmazonServiceException e) {
 System.err.println(e.getMessage());
 System.exit(1);

Consultez l'exemple complet sur GitHub.

Utiliser la classe Dynamo DBMapper

AWS SDK pour Javafournit une DBMapper classe Dynamo, qui vous permet de mapper vos
classes côté client à des tables. Amazon DynamoDB Pour utiliser la DBMapper classe Dynamo,
vous définissez la relation entre les éléments d'une DynamoDB table et leurs instances d'objet
correspondantes dans votre code à l'aide d'annotations (comme indiqué dans l'exemple de code
suivant). La DBMapper classe Dynamo vous permet d'accéder à vos tables, d'effectuer diverses
opérations de création, de lecture, de mise à jour et de suppression (CRUD) et d'exécuter des
requêtes.

Utilisation d'éléments dans DynamoDB 81

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UpdateItem.java
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Note

La DBMapper classe Dynamo ne vous permet pas de créer, de mettre à jour ou de supprimer
des tables.

Importations

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBAttribute;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBHashKey;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBTable;
import com.amazonaws.services.dynamodbv2.datamodeling.DynamoDBRangeKey;
import com.amazonaws.services.dynamodbv2.model.AmazonDynamoDBException;

Code

L'exemple de code Java suivant montre comment ajouter du contenu à la table Music à l'aide de la
DBMapper classe Dynamo. Une fois le contenu ajouté à la table, notez qu'un élément est chargé à
l'aide des clés de partition et de tri. Ensuite, l'élément Awards est mis à jour. Pour plus d'informations
sur la création de la table musicale, voir Création d'une table dans le guide du Amazon DynamoDB
développeur.

 AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 MusicItems items = new MusicItems();

 try{
 // Add new content to the Music table
 items.setArtist(artist);
 items.setSongTitle(songTitle);
 items.setAlbumTitle(albumTitle);
 items.setAwards(Integer.parseInt(awards)); //convert to an int

 // Save the item
 DynamoDBMapper mapper = new DynamoDBMapper(client);
 mapper.save(items);

 // Load an item based on the Partition Key and Sort Key
 // Both values need to be passed to the mapper.load method

Utilisation d'éléments dans DynamoDB 82

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 String artistName = artist;
 String songQueryTitle = songTitle;

 // Retrieve the item
 MusicItems itemRetrieved = mapper.load(MusicItems.class, artistName,
 songQueryTitle);
 System.out.println("Item retrieved:");
 System.out.println(itemRetrieved);

 // Modify the Award value
 itemRetrieved.setAwards(2);
 mapper.save(itemRetrieved);
 System.out.println("Item updated:");
 System.out.println(itemRetrieved);

 System.out.print("Done");
 } catch (AmazonDynamoDBException e) {
 e.getStackTrace();
 }
 }

 @DynamoDBTable(tableName="Music")
 public static class MusicItems {

 //Set up Data Members that correspond to columns in the Music table
 private String artist;
 private String songTitle;
 private String albumTitle;
 private int awards;

 @DynamoDBHashKey(attributeName="Artist")
 public String getArtist() {
 return this.artist;
 }

 public void setArtist(String artist) {
 this.artist = artist;
 }

 @DynamoDBRangeKey(attributeName="SongTitle")
 public String getSongTitle() {
 return this.songTitle;
 }

Utilisation d'éléments dans DynamoDB 83

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 public void setSongTitle(String title) {
 this.songTitle = title;
 }

 @DynamoDBAttribute(attributeName="AlbumTitle")
 public String getAlbumTitle() {
 return this.albumTitle;
 }

 public void setAlbumTitle(String title) {
 this.albumTitle = title;
 }

 @DynamoDBAttribute(attributeName="Awards")
 public int getAwards() {
 return this.awards;
 }

 public void setAwards(int awards) {
 this.awards = awards;
 }
 }

Consultez l'exemple complet sur GitHub.

Plus d'informations

• Directives relatives à l'utilisation des éléments du guide du Amazon DynamoDB développeur

• Utilisation des éléments contenus DynamoDB dans le guide du Amazon DynamoDB développeur

Amazon EC2 Exemples d'utilisation du AWS SDK pour Java

Cette section fournit des exemples de programmation Amazon EC2avec AWS SDK pour Java.

Rubriques

• Tutoriel : Démarrage d'une EC2 instance

• Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2

• Tutoriel : Instances Amazon EC2 ponctuelles

• Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles

Amazon EC2 Exemples 84

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/dynamodb/src/main/java/aws/example/dynamodb/UseDynamoMapping.java
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForItems.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html
https://aws.amazon.com/ec2/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Gestion des Amazon EC2 instances

• Utilisation d'adresses IP élastiques dans Amazon EC2

• Utiliser les régions et les zones de disponibilité

• Utilisation de paires Amazon EC2 de clés

• Utilisation de groupes de sécurité dans Amazon EC2

Tutoriel : Démarrage d'une EC2 instance

Ce didacticiel explique comment utiliser le AWS SDK pour Java pour démarrer une EC2 instance.

Rubriques

• Prérequis

• Création d'un groupe Amazon EC2 de sécurité

• Créer une paire de clés

• Exécuter une Amazon EC2 instance

Prérequis

Avant de commencer, assurez-vous d'avoir créé un Compte AWS et d'avoir configuré vos AWS
informations d'identification. Pour plus d'informations, consultez Mise en route avec .

Création d'un groupe Amazon EC2 de sécurité

EC2-Classic prend sa retraite

Warning

Nous retirons EC2 -Classic le 15 août 2022. Nous vous recommandons de migrer de EC2 -
Classic vers un VPC. Pour plus d'informations, consultez le billet de blog EC2-Classic-Classic
Networking is Retiring — Here's How to Prepare.

Créez un groupe de sécurité qui agit comme un pare-feu virtuel contrôlant le trafic réseau pour une
ou plusieurs EC2 instances. Amazon EC2 Associe par défaut vos instances à un groupe de sécurité
qui n'autorise aucun trafic entrant. Vous pouvez créer un groupe de sécurité qui permet à vos EC2

Tutoriel : Démarrage d'une EC2 instance 85

https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

instances d'accepter un certain trafic. Par exemple, si vous devez vous connecter à une instance
Linux, vous devez configurer le groupe de sécurité afin d'autoriser le trafic SSH. Vous pouvez créer
un groupe de sécurité à l'aide de la Amazon EC2 console ou du AWS SDK pour Java.

Vous créez un groupe de sécurité à utiliser dans EC2 -Classic ou EC2 -VPC. Pour plus d'informations
sur EC2 -Classic et EC2 -VPC, consultez la section Plateformes prises en charge dans le Guide de l'
Amazon EC2 utilisateur pour les instances Linux.

Pour plus d'informations sur la création d'un groupe de sécurité à l'aide de la Amazon EC2 console,
consultez Amazon EC2 la section Groupes de sécurité dans le Guide de Amazon EC2 l'utilisateur
pour les instances Linux.

1. Créez et initialisez une CreateSecurityGroupRequestinstance. Utilisez la withGroupNameméthode
pour définir le nom du groupe de sécurité et la méthode withDescription pour définir la description
du groupe de sécurité, comme suit :

CreateSecurityGroupRequest csgr = new CreateSecurityGroupRequest();
csgr.withGroupName("JavaSecurityGroup").withDescription("My security group");

Le nom du groupe de sécurité doit être unique dans la AWS région dans laquelle vous initialisez
votre Amazon EC2 client. Vous devez utiliser les caractères US-ASCII pour le nom et la
description du groupe de sécurité.

2. Transmettez l'objet de demande en tant que paramètre à la createSecurityGroupméthode. La
méthode renvoie un CreateSecurityGroupResultobjet, comme suit :

CreateSecurityGroupResult createSecurityGroupResult =
 amazonEC2Client.createSecurityGroup(csgr);

Si vous essayez de créer un groupe de sécurité portant le même nom qu'un groupe de sécurité
existant, createSecurityGroup lève une exception.

Par défaut, un nouveau groupe de sécurité n'autorise aucun trafic entrant vers votre Amazon EC2
instance. Pour autoriser le trafic entrant, vous devez permettre explicitement l'entrée de groupe
de sécurité. Vous pouvez autoriser l'entrée pour des adresses IP individuelles, pour une plage
d'adresses IP, pour un protocole spécifique et pour les ports TCP/UDP.

1. Créez et initialisez une IpPermissioninstance. Utilisez la méthode WithIPv4Ranges pour définir la
plage d'adresses IP pour laquelle l'entrée doit être autorisée, et utilisez la withIpProtocolméthode

Tutoriel : Démarrage d'une EC2 instance 86

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withGroupName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html#withDescription-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createSecurityGroup-com.amazonaws.services.ec2.model.CreateSecurityGroupRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpv4Ranges-java.util.Collection-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withIpProtocol-java.lang.String-

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

pour définir le protocole IP. Utilisez les withToPortméthodes withFromPortet pour spécifier la plage
de ports pour lesquels vous souhaitez autoriser l'entrée, comme suit :

IpPermission ipPermission =
 new IpPermission();

IpRange ipRange1 = new IpRange().withCidrIp("111.111.111.111/32");
IpRange ipRange2 = new IpRange().withCidrIp("150.150.150.150/32");

ipPermission.withIpv4Ranges(Arrays.asList(new IpRange[] {ipRange1, ipRange2}))
 .withIpProtocol("tcp")
 .withFromPort(22)
 .withToPort(22);

Toutes les conditions spécifiées dans l'objet IpPermission doivent être satisfaites pour que
l'entrée soit autorisée.

Spécifiez l'adresse IP à l'aide de la notation CIDR. Si vous spécifiez le protocole comme TCP/
UDP, vous devez fournir un port source et un port de destination. Vous ne pouvez autoriser les
ports que si vous spécifiez TCP ou UDP.

2. Créez et initialisez une AuthorizeSecurityGroupIngressRequestinstance. Utilisez la
withGroupName méthode pour spécifier le nom du groupe de sécurité et transmettez
l'IpPermissionobjet que vous avez initialisé précédemment à la withIpPermissionsméthode,
comme suit :

AuthorizeSecurityGroupIngressRequest authorizeSecurityGroupIngressRequest =
 new AuthorizeSecurityGroupIngressRequest();

authorizeSecurityGroupIngressRequest.withGroupName("JavaSecurityGroup")
 .withIpPermissions(ipPermission);

3. Passez l'objet de requête dans la méthode authorizeSecurityGroupIngress, comme suit :

amazonEC2Client.authorizeSecurityGroupIngress(authorizeSecurityGroupIngressRequest);

Si vous appelez authorizeSecurityGroupIngress avec des adresses IP pour lesquelles
l'entrée est déjà autorisée, la méthode lève une exception. Créez et initialisez un nouvel
IpPermission objet pour autoriser l'entrée pour différents IPs ports et protocoles avant
d'appeler. AuthorizeSecurityGroupIngress

Tutoriel : Démarrage d'une EC2 instance 87

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withToPort-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html#withFromPort-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html#withIpPermissions-com.amazonaws.services.ec2.model.IpPermission%E2%80%A6%E2%80%8B-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Chaque fois que vous appelez les méthodes d'authorizeSecurityGroupentrée ou de
authorizeSecurityGroupsortie, une règle est ajoutée à votre groupe de sécurité.

Créer une paire de clés

Vous devez spécifier une paire de clés lorsque vous lancez une EC2 instance, puis spécifier la clé
privée de la paire de clés lorsque vous vous connectez à l'instance. Vous pouvez créer une paire
de clés ou utiliser une paire de clés existante que vous avez utilisée lors du lancement d'autres
instances. Pour plus d'informations, consultez la section Paires de Amazon EC2 clés dans le guide
de Amazon EC2 l'utilisateur pour les instances Linux.

1. Créez et initialisez une CreateKeyPairRequestinstance. Utilisez la withKeyNameméthode pour
définir le nom de la paire de clés, comme suit :

CreateKeyPairRequest createKeyPairRequest = new CreateKeyPairRequest();

createKeyPairRequest.withKeyName(keyName);

Important

Les noms de paire de clés doivent être uniques. Si vous essayez de créer une paire de
clés portant le même nom qu'une paire de clés existante, vous obtenez une exception.

2. Transmettez l'objet de la requête à la createKeyPairméthode. La méthode renvoie une
CreateKeyPairResultinstance, comme suit :

CreateKeyPairResult createKeyPairResult =
 amazonEC2Client.createKeyPair(createKeyPairRequest);

3. Appelez la getKeyPairméthode de l'objet résultat pour obtenir un KeyPairobjet. Appelez la
getKeyMaterialméthode de l'KeyPairobjet pour obtenir la clé privée codée PEM non chiffrée,
comme suit :

KeyPair keyPair = new KeyPair();

keyPair = createKeyPairResult.getKeyPair();

String privateKey = keyPair.getKeyMaterial();

Tutoriel : Démarrage d'une EC2 instance 88

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupIngress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupIngressRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#authorizeSecurityGroupEgress-com.amazonaws.services.ec2.model.AuthorizeSecurityGroupEgressRequest-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html#withKeyName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2.html#createKeyPair-com.amazonaws.services.ec2.model.CreateKeyPairRequest--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairResult.html#getKeyPair--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPair.html#getKeyMaterial--

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Exécuter une Amazon EC2 instance

Utilisez la procédure suivante pour lancer une ou plusieurs EC2 instances configurées de manière
identique à partir de la même Amazon Machine Image (AMI). Après avoir créé vos EC2 instances,
vous pouvez vérifier leur statut. Une fois que vos EC2 instances sont en cours d'exécution, vous
pouvez vous y connecter.

1. Créez et initialisez une RunInstancesRequestinstance. Assurez-vous que l'AMI, la paire de clés et
le groupe de sécurité que vous spécifiez existent dans la région que vous avez spécifiée lors de la
création de l'objet client.

RunInstancesRequest runInstancesRequest =
 new RunInstancesRequest();

runInstancesRequest.withImageId("ami-a9d09ed1")
 .withInstanceType(InstanceType.T1Micro)
 .withMinCount(1)
 .withMaxCount(1)
 .withKeyName("my-key-pair")
 .withSecurityGroups("my-security-group");

withImageId

• ID de l'AMI. Pour savoir comment rechercher le public AMIs fourni par Amazon ou créer le
vôtre, consultez Amazon Machine Image (AMI).

withInstanceType

• Type d'instance compatible avec l'AMI spécifiée. Pour plus d'informations, consultez la
section Types d'instances dans le guide de Amazon EC2 l'utilisateur pour les instances
Linux.

withMinCount

• Le nombre minimum d' EC2 instances à lancer. S'il s'agit d'un nombre d'instances supérieur
au nombre d'instances Amazon EC2 pouvant être lancées dans la zone de disponibilité cible,
aucune instance ne Amazon EC2 sera lancée.

withMaxCount

• Le nombre maximum d' EC2 instances à lancer. S'il s'agit d'un nombre d'instances supérieur
au nombre d'instances Amazon EC2 pouvant être lancées dans la zone de disponibilité cible,
Amazon EC2 lance le plus grand nombre possible d'instances ci-dessusMinCount. Vous
pouvez lancer entre 1 instance et le nombre maximal d'instances auquel vous êtes autorisé

Tutoriel : Démarrage d'une EC2 instance 89

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withImageId-java.lang.String-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withInstanceType-java.lang.String-
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMinCount-java.lang.Integer-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withMaxCount-java.lang.Integer-

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

pour le type d'instance. Pour plus d'informations, consultez la section Combien d'instances
puis-je exécuter Amazon EC2 dans la FAQ Amazon EC2 générale.

withKeyName

• Le nom de la paire de EC2 clés. Si vous lancez une instance sans spécifier de paire de clés,
vous ne pouvez pas vous y connecter. Pour plus d'informations, consultez Créer une paire
de clés.

withSecurityGroups

• Un ou plusieurs groupes de sécurité. Pour plus d'informations, consultez la section Création
d'un groupe Amazon EC2 de sécurité.

2. Lancez les instances en transmettant l'objet de demande à la méthode runInstances. La méthode
renvoie un RunInstancesResultobjet, comme suit :

RunInstancesResult result = amazonEC2Client.runInstances(
 runInstancesRequest);

Une fois que votre instance est en cours d'exécution, vous pouvez vous y connecter à l'aide de votre
paire de clés. Pour plus d'informations, consultez Connect to your Linux instance. dans le guide de l'
Amazon EC2 utilisateur pour les instances Linux.

Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur
Amazon EC2

Toutes les demandes adressées à Amazon Web Services (AWS) doivent être signées de manière
cryptographique à l'aide des informations d'identification émises par AWS. Vous pouvez utiliser les
rôles IAM pour accorder facilement un accès sécurisé aux AWS ressources depuis vos Amazon EC2
instances.

Cette rubrique fournit des informations sur l'utilisation des rôles IAM avec des applications du SDK
Java exécutées sur. Amazon EC2 Pour plus d'informations sur les instances IAM, consultez la
section Rôles IAM du Guide Amazon EC2 de l' Amazon EC2 utilisateur pour les instances Linux.

La chaîne de fournisseurs et les profils d' EC2 instance par défaut

Si votre application crée un AWS client à l'aide du constructeur par défaut, le client recherchera les
informations d'identification à l'aide de la chaîne de fournisseurs d'informations d'identification par
défaut, dans l'ordre suivant :

Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2 90

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withKeyName-java.lang.String-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html#withSecurityGroups-java.util.Collection-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#runInstances-com.amazonaws.services.ec2.model.RunInstancesRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesResult.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

1. Dans les propriétés système Java : aws.accessKeyId et aws.secretKey.

2. Dans les variables d'environnement du système : AWS_ACCESS_KEY_ID et
AWS_SECRET_ACCESS_KEY.

3. Dans le fichier d'informations d'identification par défaut (l'emplacement de ce fichier varie en
fonction de la plateforme).

4. Informations d'identification fournies via le service de Amazon EC2 conteneur si la variable
d'AWS_CONTAINER_CREDENTIALS_RELATIVE_URIenvironnement est définie et que le
responsable de la sécurité est autorisé à accéder à la variable.

5. Dans les informations d'identification du profil d'instance, qui existent dans les métadonnées de
l'instance associées au rôle IAM de l' EC2 instance.

6. Informations d'identification du jeton d'identité web à partir de l'environnement ou du conteneur.

L'étape des informations d'identification du profil d'instance de la chaîne de fournisseurs par
défaut n'est disponible que lorsque vous exécutez votre application sur une Amazon EC2
instance, mais elle offre la plus grande facilité d'utilisation et la meilleure sécurité lorsque
vous travaillez avec des Amazon EC2 instances. Vous pouvez également transmettre une
InstanceProfileCredentialsProviderinstance directement au constructeur du client pour obtenir
les informations d'identification du profil d'instance sans passer par l'ensemble de la chaîne de
fournisseurs par défaut.

Par exemple :

AmazonS3 s3 = AmazonS3ClientBuilder.standard()
 .withCredentials(new InstanceProfileCredentialsProvider(false))
 .build();

Lorsque vous utilisez cette approche, le SDK récupère les AWS informations d'identification
temporaires dotées des mêmes autorisations que celles associées au rôle IAM associé à l' Amazon
EC2 instance dans son profil d'instance. Bien que ces informations d'identification soient temporaires
et finiront par expirer, elles sont InstanceProfileCredentialsProvider régulièrement
actualisées pour vous afin que les informations d'identification obtenues continuent à autoriser l'accès
à AWS.

Important

L'actualisation des informations d'identification a lieu uniquement lorsque
vous utilisez le constructeur client par défaut, qui crée son propre

Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2 91

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/InstanceProfileCredentialsProvider.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

InstanceProfileCredentialsProvider dans le cadre de la chaîne
de fournisseur par défaut, ou lorsque vous transmettez une instance
InstanceProfileCredentialsProvider directement au constructeur client. Si vous
utilisez une autre méthode pour obtenir ou transmettre des informations d'identification de
profil d'instance, il vous incombe de les vérifier et d'actualiser des informations d'identification
expirées.

Si le constructeur du client ne trouve pas les informations d'identification à l'aide de la chaîne de
fournisseurs d'informations d'identification, il lancera un AmazonClientException.

Procédure pas à pas : utilisation des rôles IAM pour les instances EC2

La procédure pas à pas suivante explique comment récupérer un objet à l' Amazon S3 aide d'un rôle
IAM pour gérer l'accès.

Créer un rôle IAM

Créez un rôle IAM qui accorde un accès en lecture seule à. Amazon S3

1. Ouvrez la console IAM.

2. Dans le panneau de navigation, sélectionnez Rôles, puis Créer un rôle.

3. Saisissez un nom pour le rôle, puis sélectionnez Étape suivante. N'oubliez pas ce nom, car vous
en aurez besoin lorsque vous lancerez votre Amazon EC2 instance.

4. Sur la page Sélectionner le type de rôle, sous Service AWS Rôles, sélectionnez Amazon EC2 .

5. Sur la page Définir les autorisations, sous Sélectionner un modèle de politique, sélectionnez Accès
en Amazon S3 lecture seule, puis Étape suivante.

6. Sur la page Vérification, sélectionnez Créer un rôle.

Lancez une EC2 instance et spécifiez votre rôle IAM

Vous pouvez lancer une Amazon EC2 instance dotée d'un rôle IAM à l'aide de la Amazon EC2
console ou du AWS SDK pour Java.

• Pour lancer une Amazon EC2 instance à l'aide de la console, suivez les instructions de la section
Getting Started with Amazon EC2 Linux Instances du Guide de Amazon EC2 l'utilisateur pour les
instances Linux.

Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2 92

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/AmazonClientException.html
https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Lorsque vous atteignez la page Examiner le lancement de l'instance, sélectionnez Modifier les
détails de l'instance. Dans Rôle IAM, choisissez le rôle IAM que vous avez créé précédemment.
Exécutez la procédure comme indiqué.

Note

Vous devrez créer ou utiliser un groupe de sécurité existant et une paire de clés pour vous
connecter à l'instance.

• Pour lancer une Amazon EC2 instance avec un rôle IAM à l'aide de AWS SDK pour Java, voir
Exécuter une Amazon EC2 instance.

Création de votre application

Créons l'exemple d'application à exécuter sur l' EC2 instance. Tout d'abord, créez un répertoire que
vous pouvez utiliser pour stocker les fichiers du didacticiel (par exemple, GetS3ObjectApp).

Copiez ensuite les AWS SDK pour Java bibliothèques dans le répertoire que vous venez de créer. Si
vous les AWS SDK pour Java avez téléchargés ~/Downloads dans votre répertoire, vous pouvez
les copier à l'aide des commandes suivantes :

cp -r ~/Downloads/aws-java-sdk-{1.7.5}/lib .
cp -r ~/Downloads/aws-java-sdk-{1.7.5}/third-party .

Ouvrez un nouveau fichier, appelez-le GetS3Object.java et ajoutez le code suivant :

import java.io.*;

import com.amazonaws.auth.*;
import com.amazonaws.services.s3.*;
import com.amazonaws.services.s3.model.*;
import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;

public class GetS3Object {
 private static final String bucketName = "text-content";
 private static final String key = "text-object.txt";

 public static void main(String[] args) throws IOException

Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2 93

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 {
 AmazonS3 s3Client = AmazonS3ClientBuilder.defaultClient();

 try {
 System.out.println("Downloading an object");
 S3Object s3object = s3Client.getObject(
 new GetObjectRequest(bucketName, key));
 displayTextInputStream(s3object.getObjectContent());
 }
 catch(AmazonServiceException ase) {
 System.err.println("Exception was thrown by the service");
 }
 catch(AmazonClientException ace) {
 System.err.println("Exception was thrown by the client");
 }
 }

 private static void displayTextInputStream(InputStream input) throws IOException
 {
 // Read one text line at a time and display.
 BufferedReader reader = new BufferedReader(new InputStreamReader(input));
 while(true)
 {
 String line = reader.readLine();
 if(line == null) break;
 System.out.println(" " + line);
 }
 System.out.println();
 }
}

Ouvrez un nouveau fichier, appelez-le build.xml et ajoutez les lignes suivantes :

<project name="Get {S3} Object" default="run" basedir=".">
 <path id="aws.java.sdk.classpath">
 <fileset dir="./lib" includes="**/*.jar"/>
 <fileset dir="./third-party" includes="**/*.jar"/>
 <pathelement location="lib"/>
 <pathelement location="."/>
 </path>

 <target name="build">
 <javac debug="true"

Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2 94

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 includeantruntime="false"
 srcdir="."
 destdir="."
 classpathref="aws.java.sdk.classpath"/>
 </target>

 <target name="run" depends="build">
 <java classname="GetS3Object" classpathref="aws.java.sdk.classpath" fork="true"/>
 </target>
</project>

Créez et exécutez le programme modifié. Notez qu'aucune information d'identification n'est stockée
dans le programme. Par conséquent, à moins que vous n'ayez déjà spécifié vos AWS informations
d'identification, le code sera lancéAmazonServiceException. Par exemple :

$ ant
Buildfile: /path/to/my/GetS3ObjectApp/build.xml

build:
 [javac] Compiling 1 source file to /path/to/my/GetS3ObjectApp

run:
 [java] Downloading an object
 [java] AmazonServiceException

BUILD SUCCESSFUL

Transférez le programme compilé vers votre EC2 instance

Transférez le programme vers votre Amazon EC2 instance à l'aide de secure copy (), ainsi que les
AWS SDK pour Java bibliothèques. La séquence de commandes ressemble à ce qui suit.

scp -p -i {my-key-pair}.pem GetS3Object.class ec2-user@{public_dns}:GetS3Object.class
scp -p -i {my-key-pair}.pem build.xml ec2-user@{public_dns}:build.xml
scp -r -p -i {my-key-pair}.pem lib ec2-user@{public_dns}:lib
scp -r -p -i {my-key-pair}.pem third-party ec2-user@{public_dns}:third-party

Note

En fonction de la distribution Linux que vous avez utilisée, le nom d'utilisateur peut être
« ec2-user », « root » ou « ubuntu ». Pour obtenir le nom DNS public de votre instance,

Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2 95

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

ouvrez la EC2 console et recherchez la valeur DNS public dans l'onglet Description (par
exemple,ec2-198-51-100-1.compute-1.amazonaws.com).

Dans les commandes précédentes :

• GetS3Object.class est votre programme compilé

• build.xml est le fichier ant utilisé pour créer et exécuter votre programme

• les répertoires lib et third-party sont les dossiers de bibliothèque correspondants du kit AWS
SDK pour Java.

• Le -r commutateur indique qu'scpil doit effectuer une copie récursive de tout le contenu des
third-party répertoires library et de la AWS SDK pour Java distribution.

• Le commutateur -p indique que scp doit conserver les autorisations des fichiers sources lorsque
ceux-ci sont copiés vers la destination.

Note

Le -p commutateur fonctionne uniquement sous Linux, macOS ou Unix. Si vous copiez
des fichiers à partir de Windows, vous devrez peut-être corriger les autorisations de fichiers
sur votre instance à l'aide de la commande suivante :

chmod -R u+rwx GetS3Object.class build.xml lib third-party

Exécutez l'exemple de programme sur l' EC2 instance

Pour exécuter le programme, connectez-vous à votre Amazon EC2 instance. Pour plus
d'informations, consultez Connect to your Linux instance dans le guide de Amazon EC2 l'utilisateur
pour les instances Linux.

Si ant n'est pas disponible sur votre instance, installez-le à l'aide de la commande suivante :

sudo yum install ant

Exécutez ensuite le programme en utilisant ant comme suit :

ant run

Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2 96

https://console.aws.amazon.com/ec2/home
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Le programme va écrire le contenu de votre Amazon S3 objet dans votre fenêtre de commande.

Tutoriel : Instances Amazon EC2 ponctuelles

Présentation

Les instances ponctuelles vous permettent d'enchérir sur une capacité inutilisée Amazon Elastic
Compute Cloud (Amazon EC2) jusqu'à 90 % par rapport au prix des instances à la demande et
de gérer les instances acquises tant que votre offre dépasse le prix spot actuel. Amazon EC2
modifie périodiquement le prix spot en fonction de l'offre et de la demande, et les clients dont les
offres l'atteignent ou le dépassent ont accès aux instances ponctuelles disponibles. Tout comme
les instances à la demande et les instances réservées, les instances Spot vous offrent une autre
possibilité d'obtenir des capacités de calcul supplémentaires.

Les instances Spot peuvent réduire considérablement vos Amazon EC2 coûts de traitement par lots,
de recherche scientifique, de traitement d'image, d'encodage vidéo, d'exploration des données et du
Web, d'analyse financière et de tests. De plus, les instances Spot vous donnent accès à de grandes
quantités de capacité supplémentaire lorsque le besoin de capacité n'est pas urgent.

Pour utiliser des instances Spot, créez une demande d'instance Spot indiquant le prix maximum
que vous êtes prêt à payer par heure d'instance. Cette valeur constitue votre offre. Si votre offre est
supérieure au prix Spot actuel, votre demande est satisfaite et vos instances s'exécutent jusqu'à ce
que vous décidiez de les résilier ou jusqu'à ce que le prix Spot devienne supérieur à votre offre, selon
la première échéance.

Veuillez noter les points importants suivants :

• Vous paierez souvent moins par heure que votre offre. Amazon EC2 ajuste périodiquement le prix
au comptant en fonction des demandes reçues et de l'évolution de l'offre disponible. Chacun paie
le même prix Spot pour cette période, même si l'offre soumise était supérieure. Par conséquent,
vous pouvez payer moins que votre offre, mais vous ne paierez jamais plus que votre offre.

• Si vous exécutez des instances Spot et que votre offre n'est plus égale au prix Spot actuel ou
ne le dépasse plus, vos instances sont résiliées. Cela signifie que vous devez vous assurer que
vos charges de travail et applications sont suffisamment flexibles pour tirer parti de cette capacité
opportuniste.

Les instances Spot fonctionnent exactement comme les autres Amazon EC2 instances lorsqu'elles
sont en cours d'exécution, et comme Amazon EC2 les autres instances, les instances Spot peuvent

Tutoriel : Instances Amazon EC2 ponctuelles 97

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

être résiliées lorsque vous n'en avez plus besoin. Si vous résiliez votre instance, vous êtes facturé
pour toute heure d'utilisation partielle (comme c'est le cas pour les instances à la demande et les
instances réservées). Toutefois, si le prix spot dépasse votre enchère et que votre instance est
résiliée Amazon EC2, aucune heure d'utilisation partielle ne vous sera facturée.

Ce didacticiel montre comment AWS SDK pour Java effectuer les opérations suivantes.

• Soumettre une demande Spot

• Déterminer à quel moment la demande Spot est satisfaite

• Annuler la demande Spot

• Résilier les instances associées

Prérequis

Pour utiliser ce didacticiel, vous devez l'avoir AWS SDK pour Java installé et avoir satisfait à ses
prérequis d'installation de base. Voir Configurer le AWS SDK pour Java pour plus d'informations.

Étape 1 : Configurer vos informations d'identification

Pour commencer à utiliser cet exemple de code, vous devez configurer les AWS informations
d'identification. Voir Configurer les AWS informations d'identification et la région pour le
développement pour obtenir des instructions sur la manière de procéder.

Note

Nous vous recommandons d'utiliser les informations d'identification d'un utilisateur IAM pour
fournir ces valeurs. Pour plus d'informations, voir Inscription AWS et création d'un utilisateur
IAM.

Maintenant que vous avez configuré vos paramètres, vous pouvez commencer à utiliser le code de
l'exemple.

Étape 2 : Configurer un groupe de sécurité

Un groupe de sécurité fonctionne comme un pare-feu qui contrôle le trafic autorisé en entrée et en
sortie d'un groupe d'instances. Par défaut, une instance est lancée sans aucun groupe de sécurité,

Tutoriel : Instances Amazon EC2 ponctuelles 98

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

ce qui signifie que l'ensemble du trafic IP entrant, sur n'importe quel port TCP, est refusé. Par
conséquent, avant de soumettre notre demande Spot, nous allons configurer un groupe de sécurité
qui permet le trafic réseau nécessaire. Dans le cadre de ce didacticiel, nous allons créer un nouveau
groupe de sécurité appelé « GettingStarted » qui autorise le trafic Secure Shell (SSH) à partir de
l'adresse IP à partir de laquelle vous exécutez votre application. Pour configurer un nouveau groupe
de sécurité, vous devez inclure ou exécuter l'exemple de code suivant qui configure le groupe de
sécurité par programmation.

Après avoir créé un objet AmazonEC2 client, nous créons un CreateSecurityGroupRequest
objet portant le nom « GettingStarted » et une description du groupe de sécurité. Ensuite, nous
appelons l'API ec2.createSecurityGroup pour créer le groupe.

Pour permettre l'accès au groupe, nous créons un objet ipPermission avec la plage d'adresses
IP définie sur la représentation CIDR du sous-réseau de l'ordinateur local ; le suffixe « /10 » de
l'adresse IP indique le sous-réseau de l'adresse IP spécifiée. Nous configurons également l'objet
ipPermission avec le protocole TCP et le port 22 (SSH). La dernière étape consiste à appeler
ec2.authorizeSecurityGroupIngress avec le nom de notre groupe de sécurité et l'objet
ipPermission.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest = new
 CreateSecurityGroupRequest("GettingStartedGroup", "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security
// Group by default to the ip range associated with your subnet.
try {
 InetAddress addr = InetAddress.getLocalHost();

 // Get IP Address
 ipAddr = addr.getHostAddress()+"/10";

Tutoriel : Instances Amazon EC2 ponctuelles 99

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

} catch (UnknownHostException e) {
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP
// from above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();
IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest("GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
} catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has
 // already been authorized.
 System.out.println(ase.getMessage());
}

Notez que vous avez uniquement besoin d'exécuter cette application une seule fois pour créer un
nouveau groupe de sécurité.

Vous pouvez aussi créer le groupe de sécurité avec AWS Toolkit for Eclipse. Consultez la section
Gestion des groupes de sécurité à partir de AWS Cost Explorer pour plus d'informations.

Étape 3 : Envoyer la demande Spot

Pour soumettre une demande Spot, vous devez d'abord déterminer le type d'instance, l'AMI (Amazon
Machine Image) et le prix maximum de l'offre à utiliser. Vous devez également inclure le groupe de
sécurité configuré précédemment, afin de pouvoir vous connecter à l'instance, le cas échéant.

Vous avez le choix entre plusieurs types d'instances ; consultez la section Types d' Amazon EC2
instances pour une liste complète. Dans le cadre de ce didacticiel, nous allons utiliser t1.micro, le

Tutoriel : Instances Amazon EC2 ponctuelles 100

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

type d'instance le moins cher disponible. Ensuite, nous allons déterminer le type d'AMI à utiliser.
Nous utiliserons ami-a9d09ed1, l'AMI up-to-date Amazon Linux la plus disponible lorsque nous avons
écrit ce didacticiel. L'AMI la plus récente peut changer au fil du temps, mais vous pouvez déterminer
la dernière version de l'AMI en procédant comme suit :

1. Ouvrez la Amazon EC2 console.

2. Choisissez le bouton Lancer une instance.

3. La première fenêtre affiche les informations AMIs disponibles. L'ID de l'AMI est répertorié
en regard de chaque titre d'AMI. Vous pouvez aussi utiliser l'API DescribeImages, mais
l'exploitation de cette commande n'entre pas dans le cadre de ce didacticiel.

Il existe de nombreuses façons d'aborder les offres relatives aux instances Spot. Pour obtenir une
vue d'ensemble des diverses approches possibles, regardez la vidéo présentant les offres relatives
aux instances Spot. Toutefois, pour commencer, nous allons décrire trois stratégies courantes :
offre garantissant un coût inférieur à la tarification à la demande, offre basée sur la valeur du calcul
résultant et offre visant à acquérir une capacité de calcul aussi vite que possible.

• Réduction du coût sous la tarification à la demande Vous avez une tâche de traitement par lot dont
l'exécution prendra un certain nombre d'heures ou de jours. Toutefois, vous êtes flexible quant
aux dates et heures de début et de fin de la tâche. Vous voulez savoir si vous pouvez exécuter
cette tâche à un coût inférieur à celui obtenu avec les instances à la demande. Vous examinez
l'historique des prix au comptant pour les types d'instances à l'aide de l'API AWS Management
Console ou de l' Amazon EC2 API. Pour plus d'informations, consultez Historique de tarification
des instance Spots. Une fois que vous avez analysé l'historique des prix pour le type d'instance
souhaité dans une zone de disponibilité donnée, deux approches sont possibles :

• Vous pouvez faire une offre à la limite supérieure de la plage de prix Spot (qui sont toujours
inférieurs au prix à la demande), en anticipant que votre demande d'instance Spot sera très
probablement satisfaite et que vous aurez suffisamment de temps de calcul consécutifs pour
terminer la tâche.

• Vous pouvez également spécifier le montant que vous êtes disposé à payer pour les instances
Spot sous forme de % du prix des instances à la demande et prévoir de combiner de
nombreuses instances lancées au fil du temps via une demande persistante. Si le prix spécifié
est dépassé, l'instance Spot est résiliée. (Nous vous expliquerons comment automatiser cette
tâche plus tard dans ce didacticiel.)

• Paiement égal ou inférieur à la valeur du résultat Vous avez une tâche de traitement de données à
exécuter. Vous connaissez la valeur des résultats de la tâche suffisamment bien pour savoir qu'ils

Tutoriel : Instances Amazon EC2 ponctuelles 101

https://console.aws.amazon.com/ec2/home
https://www.youtube.com/watch?v=WD9N73F3Fao&feature=player_embedded
https://www.youtube.com/watch?v=WD9N73F3Fao&feature=player_embedded
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

représentent un réel intérêt en termes de coûts informatiques. Une fois que vous avez analysé
l'historique des prix Spot pour votre type d'instance, vous choisissez un prix d'offre pour lequel le
coût du temps de calcul n'est pas supérieur à la valeur des résultats de la tâche. Vous créez une
offre persistante et faites en sorte qu'elle s'exécute de façon intermittente selon que le prix Spot est
égal ou inférieur à votre offre.

• Acquisition rapide de capacité de calcul Vous avez un besoin de capacité supplémentaire imprévu,
à court terme, que les instances à la demande ne peuvent pas satisfaire. Une fois que vous avez
analysé l'historique des prix Spot pour votre type d'instance, vous effectuez une offre supérieure au
prix historique le plus élevé afin d'être quasiment sûr que votre demande sera satisfaite rapidement
et que vous pourrez poursuivre les calculs jusqu'à ce qu'elle soit terminée.

Une fois que vous avez choisi votre prix d'offre, vous êtes prêt à demander une instance Spot.
Dans le cadre de ce didacticiel, nous allons faire une offre au prix à la demande (0,03 USD) afin de
maximiser les chances que votre offre soit satisfaite. Vous pouvez déterminer les types d'instances
disponibles et les prix à la demande pour les instances en vous rendant sur la page de Amazon
EC2 tarification. Vous payez le prix Spot en vigueur pendant la durée d'exécution de vos instances
Spot. Les prix des instances Spot sont fixés Amazon EC2 et ajustés progressivement en fonction des
tendances à long terme de l'offre et de la demande de capacité des instances Spot. Vous pouvez
également spécifier le montant que vous êtes disposé à payer pour une instance Spot sous forme
de % du prix d'une instance à la demande. Pour demander une instance Spot, il vous suffit de créer
votre demande avec les paramètres que vous avez choisis précédemment. Nous allons commencer
par créer un objet RequestSpotInstanceRequest. L'objet de la demande nécessite le nombre
d'instances que vous voulez démarrer et le prix de l'offre. De plus, vous devez définir l'élément
LaunchSpecification pour la demande, qui comprend le type d'instance, l'ID d'AMI et le groupe
de sécurité que vous souhaitez utiliser. Une fois la demande remplie, vous appelez la méthode
requestSpotInstances sur l'objet AmazonEC2Client. L'exemple suivant indique comment
demander une instance Spot.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

Tutoriel : Instances Amazon EC2 ponctuelles 102

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

// Setup the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specifications to the request.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

L'exécution de ce code lance une nouvelle demande d'instance Spot. Il existe d'autres options que
vous pouvez utiliser pour configurer vos demandes Spot. Pour en savoir plus, consultez Tutorial :
Advanced Amazon EC2 Spot Request Management ou la RequestSpotInstancesclasse de la
référence des AWS SDK pour Java API.

Note

Vous serez facturé pour toute instance Spot réellement lancée. Veillez donc à annuler toute
demande inutile et à résilier toutes les instances que vous lancez afin de réduire les frais
associés.

Étape 4 : Déterminer l'état de votre demande Spot

Nous voulons créer le code en attendant que la demande Spot atteigne le statut « actif » avant de
passer à la dernière étape. Pour déterminer l'état de notre demande Spot, nous interrogeons la
méthode describeSpotInstanceRequests pour connaître l'état de l'ID de demande Spot que nous
voulons surveiller.

L'ID de demande créé à l'étape 2 est intégré dans la réponse à notre demande
requestSpotInstances. L'exemple de code suivant montre comment recueillir des demandes à
IDs partir de la requestSpotInstances réponse et les utiliser pour remplir unArrayList.

Tutoriel : Instances Amazon EC2 ponctuelles 103

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/AmazonEC2Client.html#describeSpotInstanceRequests

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);
List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// Setup an arraylist to collect all of the request ids we want to
// watch hit the running state.
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add all of the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

Pour surveiller votre ID de demande, appelez la méthode describeSpotInstanceRequests
pour déterminer l'état de la demande. Ensuite, poursuivez la boucle jusqu'à ce que la demande ne
soit plus à l'état « ouvert ». Notez que nous recherchons un état autre qu'« ouvert », par exemple
« actif », car la demande peut passer directement à l'état « fermé » s'il y a un problème au niveau des
arguments de la demande. L'exemple de code suivant décrit comment accomplir cette tâche.

// Create a variable that will track whether there are any
// requests still in the open state.
boolean anyOpen;

do {
 // Create the describeRequest object with all of the request ids
 // to monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false - which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen=false;

 try {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

Tutoriel : Instances Amazon EC2 ponctuelles 104

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all in
 // the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we attempted
 // to request it. There is the potential for it to transition
 // almost immediately to closed or cancelled so we compare
 // against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 }
} catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out of
 // the loop. This prevents the scenario where there was
 // blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

Une fois ce code exécuté, votre demande d'instance Spot est terminée ou a échoué avec une erreur
qui s'affiche à l'écran. Dans les deux cas, nous pouvons passer à l'étape suivante pour nettoyer les
demandes actives et résilier toutes les instances en cours d'exécution.

Étape 5 : Nettoyer vos demandes et instances Spot

Nous devons nettoyer nos demandes et instances. Il est important à la fois d'annuler toutes les
demandes en cours et de résilier toutes les instances. Si vous annulez simplement vos demandes,
cela ne résiliera pas vos instances, ce qui signifie que vous continuerez à payer pour elles. Lorsque
vous résiliez vos instances, les demandes Spot peuvent être annulées, mais dans certains cas, par
exemple si vous utilisez les offres persistantes, la résiliation de vos instances ne sera pas suffisante

Tutoriel : Instances Amazon EC2 ponctuelles 105

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

pour empêcher votre demande d'être à nouveau satisfaite. Par conséquent, annuler les offres actives
et résilier en même temps toutes les instances en cours d'exécution constitue une bonne pratique.

Le code suivant montre comment annuler vos demandes.

try {
 // Cancel requests.
 CancelSpotInstanceRequestsRequest cancelRequest =
 new CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);
 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Pour résilier les instances en attente, vous avez besoin de l'ID d'instance associé à la demande qui
les a démarrées. L'exemple de code suivant utilise notre code d'origine pour surveiller les instances
et ajoute un élément ArrayList dans lequel nous stockons l'ID d'instance associé à la réponse
describeInstance.

// Create a variable that will track whether there are any requests
// still in the open state.
boolean anyOpen;
// Initialize variables.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 // Create the describeRequest with all of the request ids to
 // monitor (e.g. that we started).
 DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 // Initialize the anyOpen variable to false, which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen = false;

 try {

Tutoriel : Instances Amazon EC2 ponctuelles 106

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // Look through each request and determine if they are all
 // in the active state.
 for (SpotInstanceRequest describeResponse : describeResponses) {
 // If the state is open, it hasn't changed since we
 // attempted to request it. There is the potential for
 // it to transition almost immediately to closed or
 // cancelled so we compare against open instead of active.
 if (describeResponse.getState().equals("open")) {
 anyOpen = true; break;
 }
 // Add the instance id to the list we will
 // eventually terminate.
 instanceIds.add(describeResponse.getInstanceId());
 }
 } catch (AmazonServiceException e) {
 // If we have an exception, ensure we don't break out
 // of the loop. This prevents the scenario where there
 // was blip on the wire.
 anyOpen = true;
 }

 try {
 // Sleep for 60 seconds.
 Thread.sleep(60*1000);
 } catch (Exception e) {
 // Do nothing because it woke up early.
 }
} while (anyOpen);

À l'aide de l'instance IDs, stockée dans leArrayList, mettez fin à toutes les instances en cours
d'exécution à l'aide de l'extrait de code suivant.

try {
 // Terminate instances.
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);

Tutoriel : Instances Amazon EC2 ponctuelles 107

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Synthèse

Pour réunir tout cela, nous proposons une approche davantage orientée objet qui combine les
étapes précédentes que nous avons montrées : initialiser le EC2 client, soumettre la demande
ponctuelle, déterminer à quel moment les demandes ponctuelles ne sont plus ouvertes et nettoyer
toute demande ponctuelle persistante et les instances associées. Nous créons une classe appelée
Requests qui effectue toutes ces actions.

Nous créons aussi une classe GettingStartedApp qui comporte une méthode principale au
niveau de laquelle nous effectuons les appels de fonction de haut niveau. Nous initialisons en
particulier l'objet Requests décrit précédemment. Nous soumettons la demande d'instance Spot.
Nous attendons ensuite que l'état de la demande Spot soit « Actif ». Enfin, nous nettoyons les
demandes et les instances.

Le code source complet de cet exemple peut être consulté ou téléchargé à l'adresse GitHub.

Félicitations ! Vous venez de terminer le didacticiel de mise en route permettant de développer le
logiciel d'instances Spot avec le kit AWS SDK pour Java.

Étapes suivantes

Passez au didacticiel : Gestion avancée des demandes Amazon EC2 ponctuelles.

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles

Amazon EC2 Les instances ponctuelles vous permettent d'enchérir sur la Amazon EC2 capacité
inutilisée et d'exécuter ces instances tant que votre enchère dépasse le prix au comptant actuel.
Amazon EC2 modifie périodiquement le prix au comptant en fonction de l'offre et de la demande.
Pour plus d'informations sur les instances Spot, consultez la section Instances Spot dans le Guide de
Amazon EC2 l'utilisateur pour les instances Linux.

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 108

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-GettingStarted
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Prérequis

Pour utiliser ce didacticiel, vous devez l'avoir AWS SDK pour Java installé et avoir satisfait à ses
prérequis d'installation de base. Voir Configurer le AWS SDK pour Java pour plus d'informations.

Définition de vos informations d'identification

Pour commencer à utiliser cet exemple de code, vous devez configurer les AWS informations
d'identification. Voir Configurer les AWS informations d'identification et la région pour le
développement pour obtenir des instructions sur la manière de procéder.

Note

Nous vous recommandons d'utiliser les informations d'identification d'un IAM utilisateur
pour fournir ces valeurs. Pour plus d'informations, voir Inscription AWS et création d'un IAM
utilisateur.

Maintenant que vous avez configuré vos paramètres, vous pouvez commencer à utiliser le code de
l'exemple.

Configuration d'un groupe de sécurité

Un groupe de sécurité fonctionne comme un pare-feu qui contrôle le trafic autorisé en entrée et en
sortie d'un groupe d'instances. Par défaut, une instance est lancée sans aucun groupe de sécurité,
ce qui signifie que l'ensemble du trafic IP entrant, sur n'importe quel port TCP, est refusé. Par
conséquent, avant de soumettre notre demande Spot, nous allons configurer un groupe de sécurité
qui permet le trafic réseau nécessaire. Dans le cadre de ce didacticiel, nous allons créer un nouveau
groupe de sécurité appelé « GettingStarted » qui autorise le trafic Secure Shell (SSH) à partir de
l'adresse IP à partir de laquelle vous exécutez votre application. Pour configurer un nouveau groupe
de sécurité, vous devez inclure ou exécuter l'exemple de code suivant qui configure le groupe de
sécurité par programmation.

Après avoir créé un objet AmazonEC2 client, nous créons un CreateSecurityGroupRequest
objet portant le nom « GettingStarted » et une description du groupe de sécurité. Ensuite, nous
appelons l'API ec2.createSecurityGroup pour créer le groupe.

Pour permettre l'accès au groupe, nous créons un objet ipPermission avec la plage d'adresses
IP définie sur la représentation CIDR du sous-réseau de l'ordinateur local ; le suffixe « /10 » de

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 109

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

l'adresse IP indique le sous-réseau de l'adresse IP spécifiée. Nous configurons également l'objet
ipPermission avec le protocole TCP et le port 22 (SSH). La dernière étape consiste à appeler
ec2 .authorizeSecurityGroupIngress avec le nom de notre groupe de sécurité et l'objet
ipPermission.

(Le code suivant est identique à celui que nous avons utilisé dans le premier didacticiel.)

// Create the AmazonEC2Client object so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.standard()
 .withCredentials(credentials)
 .build();

// Create a new security group.
try {
 CreateSecurityGroupRequest securityGroupRequest =
 new CreateSecurityGroupRequest("GettingStartedGroup",
 "Getting Started Security Group");
 ec2.createSecurityGroup(securityGroupRequest);
} catch (AmazonServiceException ase) {
 // Likely this means that the group is already created, so ignore.
 System.out.println(ase.getMessage());
}

String ipAddr = "0.0.0.0/0";

// Get the IP of the current host, so that we can limit the Security Group
// by default to the ip range associated with your subnet.
try {
 // Get IP Address
 InetAddress addr = InetAddress.getLocalHost();
 ipAddr = addr.getHostAddress()+"/10";
}
catch (UnknownHostException e) {
 // Fail here...
}

// Create a range that you would like to populate.
ArrayList<String> ipRanges = new ArrayList<String>();
ipRanges.add(ipAddr);

// Open up port 22 for TCP traffic to the associated IP from
// above (e.g. ssh traffic).
ArrayList<IpPermission> ipPermissions = new ArrayList<IpPermission> ();

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 110

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

IpPermission ipPermission = new IpPermission();
ipPermission.setIpProtocol("tcp");
ipPermission.setFromPort(new Integer(22));
ipPermission.setToPort(new Integer(22));
ipPermission.setIpRanges(ipRanges);
ipPermissions.add(ipPermission);

try {
 // Authorize the ports to the used.
 AuthorizeSecurityGroupIngressRequest ingressRequest =
 new AuthorizeSecurityGroupIngressRequest(
 "GettingStartedGroup",ipPermissions);
 ec2.authorizeSecurityGroupIngress(ingressRequest);
}
catch (AmazonServiceException ase) {
 // Ignore because this likely means the zone has already
 // been authorized.
 System.out.println(ase.getMessage());
}

Vous pouvez consulter la totalité de l'exemple de code dans l'exemple de code
advanced.CreateSecurityGroupApp.java. Notez que vous avez uniquement besoin
d'exécuter cette application une seule fois pour créer un nouveau groupe de sécurité.

Note

Vous pouvez aussi créer le groupe de sécurité avec AWS Toolkit for Eclipse. Pour plus
d'informations, reportez-vous à la section Gestion des groupes de sécurité AWS Cost
Explorer dans le guide de l' AWS Toolkit for Eclipse utilisateur.

Options détaillées de création de demande d'instance Spot

Comme nous l'avons expliqué dans Tutorial : Amazon EC2 Spot Instances, vous devez créer votre
demande à l'aide d'un type d'instance, d'une Amazon Machine Image (AMI) et d'un prix d'offre
maximal.

Commençons par créer un objet RequestSpotInstanceRequest. L'objet de la demande
nécessite le nombre d'instances que vous voulez et le prix de l'offre. De plus, nous devons définir
l'élément LaunchSpecification pour la demande, laquelle inclut le type d'instance, l'ID de l'AMI
et le groupe de sécurité que vous souhaitez utiliser. Une fois la demande remplie, nous appelons la

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 111

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/tke-sg.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

méthode requestSpotInstances sur l'objet AmazonEC2Client. Voici un exemple de demande
d'une instance Spot.

(Le code suivant est identique à celui que nous avons utilisé dans le premier didacticiel.)

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Demandes persistantes et demandes Spot

Lors de la création d'une demande Spot, vous pouvez spécifier plusieurs paramètres facultatifs.
Le premier indique si votre demande est persistante ou uniquement ponctuelle. Par défaut, il s'agit
d'une demande unique. Une demande unique ne peut être traitée qu'une seule fois, et après que
les instances demandées sont résiliées, la demande est fermée. Une demande persistante est
considérée comme devant être traitée chaque fois qu'il n'y a pas d'instance Spot en cours d'exécution

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 112

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

pour la même demande. Pour spécifier le type de demande, vous devez simplement définir le type de
la demande Spot. Vous pouvez le faire à l'aide du code suivant.

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(
 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest =
 new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the type of the bid to persistent.
requestRequest.setType("persistent");

// Set up the specifications of the launch. This includes the
// instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 113

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Limitation de la durée d'une demande

Vous pouvez aussi, le cas échéant, spécifier la durée pendant laquelle votre demande demeure
valide. Vous pouvez spécifier une heure de début et une heure de fin pour cette période. Par défaut,
une demande Spot est considérée comme devant être exécutée à partir du moment où elle est créée
jusqu'à ce qu'elle soit achevée ou annulée par vous. Cependant, vous pouvez limiter la période de
validité si nécessaire. Un exemple de la façon de spécifier cette période est illustré dans le code
suivant.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set the valid start time to be two minutes from now.
Calendar cal = Calendar.getInstance();
cal.add(Calendar.MINUTE, 2);
requestRequest.setValidFrom(cal.getTime());

// Set the valid end time to be two minutes and two hours from now.
cal.add(Calendar.HOUR, 2);
requestRequest.setValidUntil(cal.getTime());

// Set up the specifications of the launch. This includes
// the instance type (e.g. t1.micro)

// and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon
// Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 114

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType("t1.micro");

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Regroupement de vos demandes d'instance Amazon EC2 Spot

Vous avez la possibilité de regrouper vos demandes d'instances Spot de différentes façons. Nous
allons examiner les avantages de l'utilisation de groupes de lancement, de groupes de zones de
disponibilité et de groupes de placement.

Si vous voulez vous assurer que vos instances Spot sont toutes lancées et résiliées ensemble, vous
avez la possibilité d'exploiter un groupe de lancement. Un groupe de lancement est une étiquette
qui regroupe un ensemble d'offres. Toutes les instances d’un groupe de lancement sont démarrées
et mises hors service ensemble. Notez que, si les instances d'un groupe de lancement ont déjà été
satisfaites, il n'y a aucune garantie que les nouvelles instances lancées avec le même groupe de
lancement le soient également. Un exemple de la façon de définir un groupe de lancement est illustré
dans l'exemple de code suivant.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the launch group.
requestRequest.setLaunchGroup("ADVANCED-DEMO-LAUNCH-GROUP");

// Set up the specifications of the launch. This includes

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 115

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

// the instance type (e.g. t1.micro) and the latest Amazon Linux
// AMI id available. Note, you should always use the latest
// Amazon Linux AMI id or another of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Si vous voulez vous assurer que toutes les instances au sein d'une demande sont lancées dans la
même zone de disponibilité, et que vous ne vous préoccupez pas de savoir laquelle, vous pouvez
exploiter les groupes de zones de disponibilité. Un groupe de zones de disponibilité est une étiquette
qui regroupe un ensemble d'instances dans la même zone de disponibilité. Toutes les instances qui
partagent un groupe de zones de disponibilité et qui sont satisfaites en même temps démarrent dans
la même zone de disponibilité. Voici un exemple de définition d'un groupe de zones de disponibilité.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 5 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(5));

// Set the availability zone group.
requestRequest.setAvailabilityZoneGroup("ADVANCED-DEMO-AZ-GROUP");

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 116

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Vous pouvez spécifier une zone de disponibilité que vous souhaitez pour vos instances Spot.
L'exemple de code suivant vous montre comment définir une zone de disponibilité.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 117

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

// Set up the availability zone to use. Note we could retrieve the
// availability zones using the ec2.describeAvailabilityZones() API. For
// this demo we will just use us-east-1a.
SpotPlacement placement = new SpotPlacement("us-east-1b");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Enfin, vous pouvez spécifier un groupe de placement si vous utilisez des instances Spot de Calcul
Haute Performance (HPC), telles que les instances de calcul de cluster ou les instances de cluster
GPU. Les groupes de placement vous offrent une latence inférieure et une connexion de bande
passante élevée entre les instances. Voici un exemple de définition d'un groupe de placement.

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.

LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Set up the placement group to use with whatever name you desire.

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 118

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

// For this demo we will just use "ADVANCED-DEMO-PLACEMENT-GROUP".
SpotPlacement placement = new SpotPlacement();
placement.setGroupName("ADVANCED-DEMO-PLACEMENT-GROUP");
launchSpecification.setPlacement(placement);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

Tous les paramètres affichés dans cette section sont facultatifs. Il est également important
de savoir que la plupart de ces paramètres, à l'exception du fait que votre enchère soit
ponctuelle ou persistante, peuvent réduire les chances d'exécution de l'offre. Par conséquent,
il est important de n'exploiter ces options que si vous en avez besoin. Tous les exemples
de code précédents sont regroupés en un seul exemple de code, disponible dans la classe
com.amazonaws.codesamples.advanced.InlineGettingStartedCodeSampleApp.java.

Comment rendre une partition racine permanente après une interruption ou une mise
hors service

L'un des moyens les plus simples de gérer les interruptions de vos instances Spot est de veiller à ce
que vos données soient transmises à un volume Amazon Elastic Block Store (Amazon Amazon EBS)
à une cadence régulière. Grâce à un contrôle régulier, en cas d'interruption, vous perdez uniquement
les données créées depuis le dernier point de contrôle (en présumant qu'il n'y ait pas eu d'autres
actions non idempotentes exécutées entretemps). Pour faciliter le processus, vous pouvez configurer
votre demande Spot afin de vous assurer que votre partition racine ne sera pas supprimée lors de
l'interruption ou de la résiliation. Nous avons ajouté un nouveau code dans l'exemple suivant, qui
montre comment activer ce scénario.

Dans le code ajouté, nous créons un BlockDeviceMapping objet et lui associons Amazon
Elastic Block Store (Amazon EBS) un Amazon EBS objet que nous avons configuré pour not être
supprimé en cas de résiliation de l'instance Spot. Nous l'ajoutons ensuite BlockDeviceMapping
aux ArrayList mappages que nous incluons dans la spécification de lancement.

// Retrieves the credentials from an AWSCredentials.properties file.
AWSCredentials credentials = null;
try {
 credentials = new PropertiesCredentials(

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 119

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 GettingStartedApp.class.getResourceAsStream("AwsCredentials.properties"));
}
catch (IOException e1) {
 System.out.println(
 "Credentials were not properly entered into AwsCredentials.properties.");
 System.out.println(e1.getMessage());
 System.exit(-1);
}

// Create the AmazonEC2 client so we can call various APIs.
AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

// Initializes a Spot Instance Request
RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

// Request 1 x t1.micro instance with a bid price of $0.03.
requestRequest.setSpotPrice("0.03");
requestRequest.setInstanceCount(Integer.valueOf(1));

// Set up the specifications of the launch. This includes the instance
// type (e.g. t1.micro) and the latest Amazon Linux AMI id available.
// Note, you should always use the latest Amazon Linux AMI id or another
// of your choosing.
LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.setImageId("ami-a9d09ed1");
launchSpecification.setInstanceType(InstanceType.T1Micro);

// Add the security group to the request.
ArrayList<String> securityGroups = new ArrayList<String>();
securityGroups.add("GettingStartedGroup");
launchSpecification.setSecurityGroups(securityGroups);

// Create the block device mapping to describe the root partition.
BlockDeviceMapping blockDeviceMapping = new BlockDeviceMapping();
blockDeviceMapping.setDeviceName("/dev/sda1");

// Set the delete on termination flag to false.
EbsBlockDevice ebs = new EbsBlockDevice();
ebs.setDeleteOnTermination(Boolean.FALSE);
blockDeviceMapping.setEbs(ebs);

// Add the block device mapping to the block list.
ArrayList<BlockDeviceMapping> blockList = new ArrayList<BlockDeviceMapping>();
blockList.add(blockDeviceMapping);

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 120

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

// Set the block device mapping configuration in the launch specifications.
launchSpecification.setBlockDeviceMappings(blockList);

// Add the launch specification.
requestRequest.setLaunchSpecification(launchSpecification);

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult =
 ec2.requestSpotInstances(requestRequest);

En supposant que vous vouliez rattacher ce volume à votre instance au démarrage, vous pouvez
également utiliser les paramètres de mappage de périphérique de stockage en mode bloc. Sinon, si
vous avez joint une partition non root, vous pouvez spécifier les Amazon EBS volumes Amazon que
vous souhaitez associer à votre instance Spot après sa reprise. Pour ce faire, vous devez simplement
spécifier un ID d'instantané (snapshot) dans votre EbsBlockDevice et un autre nom d'appareil dans
vos objets BlockDeviceMapping. En tirant parti des mappages de périphérique de stockage en
mode bloc, il peut être plus facile d'amorcer votre instance.

L'utilisation de la partition racine pour contrôler vos données critiques est une excellente façon de
gérer le risque d'une interruption de vos instances. Pour plus d'informations sur la gestion des risques
d'interruption, consultez la vidéo Gestion des interruptions.

Balisage de vos demandes et instances Spot

L'ajout de balises aux Amazon EC2 ressources peut simplifier l'administration de votre infrastructure
cloud. Les balises, sorte de métadonnées, peuvent être utilisées pour créer des noms conviviaux,
faciliter les recherches et améliorer la coordination entre plusieurs utilisateurs. Vous pouvez
également utiliser des balises pour automatiser les scripts et des parties de vos processus. Pour en
savoir plus sur le balisage Amazon EC2 des ressources, consultez la section Utilisation des balises
dans le Guide de Amazon EC2 l'utilisateur pour les instances Linux.

Balisage des demandes d'

Pour ajouter des balises à vos demandes Spot, vous devez les baliser après qu'elles ont
été demandées. La valeur renvoyée par vous requestSpotInstances() fournit un
RequestSpotInstancesResultobjet que vous pouvez utiliser pour obtenir la demande ponctuelle IDs
pour le balisage :

// Call the RequestSpotInstance API.
RequestSpotInstancesResult requestResult = ec2.requestSpotInstances(requestRequest);

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 121

https://www.youtube.com/watch?feature=player_embedded&v=wcPNnUo60pc
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RequestSpotInstancesResult.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

List<SpotInstanceRequest> requestResponses = requestResult.getSpotInstanceRequests();

// A list of request IDs to tag
ArrayList<String> spotInstanceRequestIds = new ArrayList<String>();

// Add the request ids to the hashset, so we can determine when they hit the
// active state.
for (SpotInstanceRequest requestResponse : requestResponses) {
 System.out.println("Created Spot Request:
 "+requestResponse.getSpotInstanceRequestId());
 spotInstanceRequestIds.add(requestResponse.getSpotInstanceRequestId());
}

Une fois que vous avez le IDs, vous pouvez étiqueter les demandes en les ajoutant IDs à un
CreateTagsRequestet en appelant la createTags() méthode du Amazon EC2 client :

// The list of tags to create
ArrayList<Tag> requestTags = new ArrayList<Tag>();
requestTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_requests = new CreateTagsRequest();
createTagsRequest_requests.setResources(spotInstanceRequestIds);
createTagsRequest_requests.setTags(requestTags);

// Tag the spot request
try {
 ec2.createTags(createTagsRequest_requests);
}
catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Balisage d'instances

Comme pour les demandes Spot elles-mêmes, vous ne pouvez baliser une instance qu'une fois
qu'elle a été créée, ce qui se produit quand la demande Spot a été satisfaite (elle n'est plus à l'état
ouvert).

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 122

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateTagsRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Vous pouvez vérifier le statut de vos demandes en appelant la
describeSpotInstanceRequests() méthode du Amazon EC2 client avec un
DescribeSpotInstanceRequestsRequestobjet. L'DescribeSpotInstanceRequestsResultobjet renvoyé
contient une liste d'SpotInstanceRequestobjets que vous pouvez utiliser pour vérifier le statut de vos
demandes ponctuelles et obtenir leur instance IDs une fois qu'elles ne sont plus à l'état ouvert.

Une fois que la demande Spot n'est plus ouverte, vous pouvez récupérer son ID d'instance à partir de
l'objet SpotInstanceRequest en appelant sa méthode getInstanceId().

boolean anyOpen; // tracks whether any requests are still open

// a list of instances to tag.
ArrayList<String> instanceIds = new ArrayList<String>();

do {
 DescribeSpotInstanceRequestsRequest describeRequest =
 new DescribeSpotInstanceRequestsRequest();
 describeRequest.setSpotInstanceRequestIds(spotInstanceRequestIds);

 anyOpen=false; // assume no requests are still open

 try {
 // Get the requests to monitor
 DescribeSpotInstanceRequestsResult describeResult =
 ec2.describeSpotInstanceRequests(describeRequest);

 List<SpotInstanceRequest> describeResponses =
 describeResult.getSpotInstanceRequests();

 // are any requests open?
 for (SpotInstanceRequest describeResponse : describeResponses) {
 if (describeResponse.getState().equals("open")) {
 anyOpen = true;
 break;
 }
 // get the corresponding instance ID of the spot request
 instanceIds.add(describeResponse.getInstanceId());
 }
 }
 catch (AmazonServiceException e) {
 // Don't break the loop due to an exception (it may be a temporary issue)
 anyOpen = true;
 }

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 123

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSpotInstanceRequestsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/SpotInstanceRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 try {
 Thread.sleep(60*1000); // sleep 60s.
 }
 catch (Exception e) {
 // Do nothing if the thread woke up early.
 }
} while (anyOpen);

Maintenant, vous pouvez baliser les instances qui sont renvoyées :

// Create a list of tags to create
ArrayList<Tag> instanceTags = new ArrayList<Tag>();
instanceTags.add(new Tag("keyname1","value1"));

// Create the tag request
CreateTagsRequest createTagsRequest_instances = new CreateTagsRequest();
createTagsRequest_instances.setResources(instanceIds);
createTagsRequest_instances.setTags(instanceTags);

// Tag the instance
try {
 ec2.createTags(createTagsRequest_instances);
}
catch (AmazonServiceException e) {
 // Write out any exceptions that may have occurred.
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Annulation des demandes Spot et mise hors service des instances

Annulation d'une demande Spot

Pour annuler une demande d'instance Spot, appelez cancelSpotInstanceRequests le Amazon
EC2 client avec un CancelSpotInstanceRequestsRequestobjet.

try {
 CancelSpotInstanceRequestsRequest cancelRequest = new
 CancelSpotInstanceRequestsRequest(spotInstanceRequestIds);

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 124

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CancelSpotInstanceRequestsRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 ec2.cancelSpotInstanceRequests(cancelRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error cancelling instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Mise hors service d'instances Spot

Vous pouvez mettre fin à toutes les instances Spot en cours d'exécution en les transmettant IDs à la
terminateInstances() méthode du Amazon EC2 client.

try {
 TerminateInstancesRequest terminateRequest = new
 TerminateInstancesRequest(instanceIds);
 ec2.terminateInstances(terminateRequest);
} catch (AmazonServiceException e) {
 System.out.println("Error terminating instances");
 System.out.println("Caught Exception: " + e.getMessage());
 System.out.println("Reponse Status Code: " + e.getStatusCode());
 System.out.println("Error Code: " + e.getErrorCode());
 System.out.println("Request ID: " + e.getRequestId());
}

Synthèse

Pour résumer, nous fournissons une approche plus orientée objet qui associe les étapes illustrées
dans ce didacticiel en une classe facile à utiliser. Nous instancions une classe appelée Requests
qui exécute ces actions. Nous créons aussi une classe GettingStartedApp qui comporte une
méthode principale au niveau de laquelle nous effectuons les appels de fonction de haut niveau.

Le code source complet de cet exemple peut être consulté ou téléchargé à l'adresse GitHub.

Félicitations ! Vous venez de terminer le didacticiel sur les fonctionnalités de demande avancées
permettant de développer un logiciel d'instances Spot avec le kit AWS SDK pour Java.

Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles 125

https://github.com/aws/aws-sdk-java/tree/master/src/samples/AmazonEC2SpotInstances-Advanced

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Gestion des Amazon EC2 instances

Création d'une instance

Créez une nouvelle Amazon EC2 instance en appelant la runInstances méthode du EC2 client
Amazon, en lui fournissant un RunInstancesRequestcontenant l'Amazon Machine Image (AMI) à
utiliser et un type d'instance.

Importations

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.InstanceType;
import com.amazonaws.services.ec2.model.RunInstancesRequest;
import com.amazonaws.services.ec2.model.RunInstancesResult;
import com.amazonaws.services.ec2.model.Tag;

Code

RunInstancesRequest run_request = new RunInstancesRequest()
 .withImageId(ami_id)
 .withInstanceType(InstanceType.T1Micro)
 .withMaxCount(1)
 .withMinCount(1);

RunInstancesResult run_response = ec2.runInstances(run_request);

String reservation_id =
 run_response.getReservation().getInstances().get(0).getInstanceId();

Consultez l'exemple complet.

Démarrage d'une instance

Pour démarrer une Amazon EC2 instance, appelez la startInstances méthode du EC2 client
Amazon, en lui fournissant un StartInstancesRequestcontenant l'ID de l'instance à démarrer.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StartInstancesRequest;

Gestion des Amazon EC2 instances 126

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RunInstancesRequest.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StartInstancesRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StartInstancesRequest request = new StartInstancesRequest()
 .withInstanceIds(instance_id);

ec2.startInstances(request);

Consultez l'exemple complet.

Arrêt d'une instance

Pour arrêter une Amazon EC2 instance, appelez la stopInstances méthode du EC2 client
Amazon, en lui fournissant un StopInstancesRequestcontenant l'ID de l'instance à arrêter.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.StopInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

StopInstancesRequest request = new StopInstancesRequest()
 .withInstanceIds(instance_id);

ec2.stopInstances(request);

Consultez l'exemple complet.

Redémarrage d'une instance

Pour redémarrer une Amazon EC2 instance, appelez la rebootInstances méthode du EC2 client
Amazon en lui fournissant un identifiant RebootInstancesRequestcontenant l'ID de l'instance à
redémarrer.

Importations

import com.amazonaws.services.ec2.AmazonEC2;

Gestion des Amazon EC2 instances 127

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/StopInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/StartStopInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/RebootInstancesRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.RebootInstancesRequest;
import com.amazonaws.services.ec2.model.RebootInstancesResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

RebootInstancesRequest request = new RebootInstancesRequest()
 .withInstanceIds(instance_id);

RebootInstancesResult response = ec2.rebootInstances(request);

Consultez l'exemple complet.

Description des instances

Pour répertorier vos instances, créez une DescribeInstancesRequestet appelez la
describeInstances méthode du EC2 client Amazon. Il renverra un DescribeInstancesResultobjet
que vous pourrez utiliser pour répertorier les Amazon EC2 instances de votre compte et de votre
région.

Les instances sont regroupées par réservation. Chaque réservation correspond à l'appel de
startInstances qui a lancé l'instance. Pour afficher vos instances, vous devez d'abord appeler
la méthode getReservations de la classe DescribeInstancesResult, puis appeler la méthode
getReservations' method, and then call `getInstancesgetInstances sur chaque objet
Reservation renvoyé.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeInstancesRequest;
import com.amazonaws.services.ec2.model.DescribeInstancesResult;
import com.amazonaws.services.ec2.model.Instance;
import com.amazonaws.services.ec2.model.Reservation;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

Gestion des Amazon EC2 instances 128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/RebootInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeInstancesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Reservation.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

boolean done = false;

DescribeInstancesRequest request = new DescribeInstancesRequest();
while(!done) {
 DescribeInstancesResult response = ec2.describeInstances(request);

 for(Reservation reservation : response.getReservations()) {
 for(Instance instance : reservation.getInstances()) {
 System.out.printf(
 "Found instance with id %s, " +
 "AMI %s, " +
 "type %s, " +
 "state %s " +
 "and monitoring state %s",
 instance.getInstanceId(),
 instance.getImageId(),
 instance.getInstanceType(),
 instance.getState().getName(),
 instance.getMonitoring().getState());
 }
 }

 request.setNextToken(response.getNextToken());

 if(response.getNextToken() == null) {
 done = true;
 }
}

Les résultats sont paginés ; vous pouvez obtenir plus de résultats en transmettant la valeur renvoyée
par la méthode getNextToken de l'objet de résultat à la méthode setNextToken de l'objet de la
demande d'origine, puis en utilisant le même objet de la demande lors de votre prochain appel de
describeInstances.

Consultez l'exemple complet.

Surveillance d'une instance

Vous pouvez surveiller différents aspects de vos Amazon EC2 instances, tels que l'utilisation du
processeur et du réseau, la mémoire disponible et l'espace disque restant. Pour en savoir plus sur la
surveillance des instances, consultez la section Surveillance Amazon EC2 dans le guide de Amazon
EC2 l'utilisateur pour les instances Linux.

Gestion des Amazon EC2 instances 129

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeInstances.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring_ec2.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Pour commencer à surveiller une instance, vous devez en créer une MonitorInstancesRequestavec
l'ID de l'instance à surveiller et le transmettre à la monitorInstances méthode du EC2 client
Amazon.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.MonitorInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

MonitorInstancesRequest request = new MonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.monitorInstances(request);

Consultez l'exemple complet.

Arrêt de la surveillance des instances

Pour arrêter la surveillance d'une instance, créez-en une UnmonitorInstancesRequestavec l'ID de
l'instance pour arrêter la surveillance, et transmettez-la à la unmonitorInstances méthode du EC2
client Amazon.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.UnmonitorInstancesRequest;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

UnmonitorInstancesRequest request = new UnmonitorInstancesRequest()
 .withInstanceIds(instance_id);

ec2.unmonitorInstances(request);

Gestion des Amazon EC2 instances 130

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/MonitorInstancesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/UnmonitorInstancesRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Consultez l'exemple complet.

En savoir plus

• RunInstancesdans la référence de Amazon EC2 l'API

• DescribeInstancesdans la référence de Amazon EC2 l'API

• StartInstancesdans la référence de Amazon EC2 l'API

• StopInstancesdans la référence de Amazon EC2 l'API

• RebootInstancesdans la référence de Amazon EC2 l'API

• MonitorInstancesdans la référence de Amazon EC2 l'API

• UnmonitorInstancesdans la référence de Amazon EC2 l'API

Utilisation d'adresses IP élastiques dans Amazon EC2

EC2-Classic prend sa retraite

Warning

Nous retirons EC2 -Classic le 15 août 2022. Nous vous recommandons de migrer de EC2 -
Classic vers un VPC. Pour plus d'informations, consultez le billet de blog EC2-Classic-Classic
Networking is Retiring — Here's How to Prepare.

Allocation d'une adresse IP Elastic

Pour utiliser une adresse IP Elastic, commencez par en attribuer une à votre compte, puis associez-la
à votre instance ou à une interface réseau.

Pour allouer une adresse IP élastique, appelez la allocateAddress méthode du EC2 client
Amazon avec un AllocateAddressRequestobjet contenant le type de réseau (classique EC2 ou VPC).

Le document renvoyé AllocateAddressResultcontient un ID d'allocation que vous pouvez utiliser
pour associer l'adresse à une instance, en transmettant l'ID d'allocation et l'ID d'instance dans a
AssociateAddressRequestà la associateAddress méthode du EC2 client Amazon.

Importations

import com.amazonaws.services.ec2.AmazonEC2;

Utilisation d'adresses IP élastiques dans Amazon EC2 131

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/MonitorInstance.java
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RunInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StartInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_StopInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RebootInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_MonitorInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_UnmonitorInstances.html
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AllocateAddressResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AssociateAddressRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AllocateAddressRequest;
import com.amazonaws.services.ec2.model.AllocateAddressResult;
import com.amazonaws.services.ec2.model.AssociateAddressRequest;
import com.amazonaws.services.ec2.model.AssociateAddressResult;
import com.amazonaws.services.ec2.model.DomainType;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

AllocateAddressRequest allocate_request = new AllocateAddressRequest()
 .withDomain(DomainType.Vpc);

AllocateAddressResult allocate_response =
 ec2.allocateAddress(allocate_request);

String allocation_id = allocate_response.getAllocationId();

AssociateAddressRequest associate_request =
 new AssociateAddressRequest()
 .withInstanceId(instance_id)
 .withAllocationId(allocation_id);

AssociateAddressResult associate_response =
 ec2.associateAddress(associate_request);

Consultez l'exemple complet.

Description des adresses IP Elastic

Pour répertorier les adresses IP élastiques attribuées à votre compte, appelez la
describeAddresses méthode du EC2 client Amazon. Il renvoie un DescribeAddressesResultque
vous pouvez utiliser pour obtenir une liste d'objets Address qui représentent les adresses IP
élastiques de votre compte.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.Address;
import com.amazonaws.services.ec2.model.DescribeAddressesResult;

Utilisation d'adresses IP élastiques dans Amazon EC2 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/AllocateAddress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAddressesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Address.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeAddressesResult response = ec2.describeAddresses();

for(Address address : response.getAddresses()) {
 System.out.printf(
 "Found address with public IP %s, " +
 "domain %s, " +
 "allocation id %s " +
 "and NIC id %s",
 address.getPublicIp(),
 address.getDomain(),
 address.getAllocationId(),
 address.getNetworkInterfaceId());
}

Consultez l'exemple complet.

Libération d'une adresse IP Elastic

Pour libérer une adresse IP élastique, appelez la releaseAddress méthode du EC2 client Amazon
en lui transmettant un code ReleaseAddressRequestcontenant l'ID d'allocation de l'adresse IP
élastique que vous souhaitez libérer.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.ReleaseAddressRequest;
import com.amazonaws.services.ec2.model.ReleaseAddressResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

ReleaseAddressRequest request = new ReleaseAddressRequest()
 .withAllocationId(alloc_id);

ReleaseAddressResult response = ec2.releaseAddress(request);

Utilisation d'adresses IP élastiques dans Amazon EC2 133

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAddresses.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/ReleaseAddressRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Une fois que vous avez publié une adresse IP élastique, elle est publiée dans le pool d'adresses
AWS IP et il se peut que vous ne soyez plus disponible par la suite. Veillez à mettre à jour vos
enregistrements DNS, ainsi que les serveurs ou les appareils qui communiquent avec l'adresse. Si
vous tentez de libérer une adresse IP élastique que vous avez déjà publiée, un AuthFailuremessage
d'erreur s'affichera si l'adresse est déjà attribuée à une autre adresse Compte AWS.

Si vous utilisez EC2-Classic ou un VPC par défaut, la libération d'une adresse IP élastique la dissocie
automatiquement de toute instance à laquelle elle est associée. Pour dissocier une adresse IP
élastique sans la divulguer, utilisez la disassociateAddress méthode du EC2 client Amazon.

Si vous utilisez un VPC autre que par défaut, vous devez utiliser disassociateAddress pour
dissocier l'adresse IP Elastic avant d'essayer de la libérer. Dans le cas contraire, Amazon EC2
renvoie une erreur (non valide)IPAddress. InUse).

Consultez l'exemple complet.

En savoir plus

• Adresses IP élastiques dans le guide de Amazon EC2 l'utilisateur pour les instances Linux

• AllocateAddressdans la référence de Amazon EC2 l'API

• DescribeAddressesdans la référence de Amazon EC2 l'API

• ReleaseAddressdans la référence de Amazon EC2 l'API

Utiliser les régions et les zones de disponibilité

Décrire les régions

Pour répertorier les régions disponibles pour votre compte, appelez la describeRegions méthode
du EC2 client Amazon. Elle renvoie un DescribeRegionsResult. Appelez la méthode getRegions de
l'objet renvoyé pour obtenir une liste d'objets Region qui représentent chaque région.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

Utiliser les régions et les zones de disponibilité 134

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/ReleaseAddress.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AllocateAddress.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAddresses.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ReleaseAddress.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeRegionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/Region.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Code

DescribeRegionsResult regions_response = ec2.describeRegions();

for(Region region : regions_response.getRegions()) {
 System.out.printf(
 "Found region %s " +
 "with endpoint %s",
 region.getRegionName(),
 region.getEndpoint());
}

Consultez l'exemple complet.

Décrire les zones de disponibilité

Pour répertorier chaque zone de disponibilité disponible pour votre compte, appelez
la describeAvailabilityZones méthode du EC2 client Amazon. Elle renvoie un
DescribeAvailabilityZonesResult. Appelez sa getAvailabilityZones méthode pour obtenir une
liste d'AvailabilityZoneobjets représentant chaque zone de disponibilité.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeRegionsResult;
import com.amazonaws.services.ec2.model.Region;
import com.amazonaws.services.ec2.model.AvailabilityZone;
import com.amazonaws.services.ec2.model.DescribeAvailabilityZonesResult;

Code

DescribeAvailabilityZonesResult zones_response =
 ec2.describeAvailabilityZones();

for(AvailabilityZone zone : zones_response.getAvailabilityZones()) {
 System.out.printf(
 "Found availability zone %s " +
 "with status %s " +
 "in region %s",
 zone.getZoneName(),
 zone.getState(),

Utiliser les régions et les zones de disponibilité 135

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAvailabilityZonesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AvailabilityZone.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 zone.getRegionName());
}

Consultez l'exemple complet.

Décrire les comptes

Pour décrire votre compte, appelez la describeAccountAttributes méthode du EC2 client
Amazon. Cette méthode renvoie un DescribeAccountAttributesResultobjet. Invoquez cette
getAccountAttributes méthode d'objets pour obtenir une liste d'AccountAttributeobjets. Vous
pouvez parcourir la liste pour récupérer un AccountAttributeobjet.

Vous pouvez obtenir les valeurs d'attribut de votre compte en invoquant la getAttributeValues
méthode de AccountAttributel'objet. Cette méthode renvoie une liste d'AccountAttributeValueobjets.
Vous pouvez parcourir cette deuxième liste pour afficher la valeur des attributs (voir l'exemple de
code ci-dessous).

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.AccountAttributeValue;
import com.amazonaws.services.ec2.model.DescribeAccountAttributesResult;
import com.amazonaws.services.ec2.model.AccountAttribute;
import java.util.List;
import java.util.ListIterator;

Code

AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

try{
 DescribeAccountAttributesResult accountResults = ec2.describeAccountAttributes();
 List<AccountAttribute> accountList = accountResults.getAccountAttributes();

 for (ListIterator iter = accountList.listIterator(); iter.hasNext();) {

 AccountAttribute attribute = (AccountAttribute) iter.next();
 System.out.print("\n The name of the attribute is
 "+attribute.getAttributeName());
 List<AccountAttributeValue> values = attribute.getAttributeValues();

Utiliser les régions et les zones de disponibilité 136

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeRegionsAndZones.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeAccountAttributesResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttribute.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AccountAttributeValue.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 //iterate through the attribute values
 for (ListIterator iterVals = values.listIterator(); iterVals.hasNext();) {
 AccountAttributeValue myValue = (AccountAttributeValue) iterVals.next();
 System.out.print("\n The value of the attribute is
 "+myValue.getAttributeValue());
 }
 }
 System.out.print("Done");
}
catch (Exception e)
{
 e.getStackTrace();
}

Consultez l'exemple complet sur GitHub.

En savoir plus

• Régions et zones de disponibilité dans le guide de Amazon EC2 l'utilisateur pour les instances
Linux

• DescribeRegionsdans la référence de Amazon EC2 l'API

• DescribeAvailabilityZonesdans la référence de Amazon EC2 l'API

Utilisation de paires Amazon EC2 de clés

Création d'une paire de clés

Pour créer une paire de clés, appelez la createKeyPair méthode du EC2 client Amazon avec un
CreateKeyPairRequestqui contient le nom de la clé.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateKeyPairRequest;
import com.amazonaws.services.ec2.model.CreateKeyPairResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

Utilisation de paires Amazon EC2 de clés 137

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeAccount.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeRegions.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeAvailabilityZones.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateKeyPairRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

CreateKeyPairRequest request = new CreateKeyPairRequest()
 .withKeyName(key_name);

CreateKeyPairResult response = ec2.createKeyPair(request);

Consultez l'exemple complet.

Description de paire de clés

Pour répertorier vos paires de clés ou pour obtenir des informations à leur sujet, appelez la
describeKeyPairs méthode du EC2 client Amazon. Elle renvoie un DescribeKeyPairsResultque
vous pouvez utiliser pour accéder à la liste des paires de clés en appelant sa getKeyPairs
méthode, qui renvoie une liste d'KeyPairInfoobjets.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeKeyPairsResult;
import com.amazonaws.services.ec2.model.KeyPairInfo;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DescribeKeyPairsResult response = ec2.describeKeyPairs();

for(KeyPairInfo key_pair : response.getKeyPairs()) {
 System.out.printf(
 "Found key pair with name %s " +
 "and fingerprint %s",
 key_pair.getKeyName(),
 key_pair.getKeyFingerprint());
}

Consultez l'exemple complet.

Suppression d'une paire de clés

Pour supprimer une paire de clés, appelez la deleteKeyPair méthode du EC2 client Amazon en lui
transmettant un DeleteKeyPairRequestcontenant le nom de la paire de clés à supprimer.

Utilisation de paires Amazon EC2 de clés 138

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateKeyPair.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeKeyPairsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/KeyPairInfo.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeKeyPairs.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteKeyPairRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteKeyPairRequest;
import com.amazonaws.services.ec2.model.DeleteKeyPairResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteKeyPairRequest request = new DeleteKeyPairRequest()
 .withKeyName(key_name);

DeleteKeyPairResult response = ec2.deleteKeyPair(request);

Consultez l'exemple complet.

En savoir plus

• Amazon EC2 Paires de clés dans le guide de Amazon EC2 l'utilisateur pour les instances Linux

• CreateKeyPairdans la référence de Amazon EC2 l'API

• DescribeKeyPairsdans la référence de Amazon EC2 l'API

• DeleteKeyPairdans la référence de Amazon EC2 l'API

Utilisation de groupes de sécurité dans Amazon EC2

Création d'un groupe de sécurité

Pour créer un groupe de sécurité, appelez la createSecurityGroup méthode du EC2 client
Amazon avec un CreateSecurityGroupRequestqui contient le nom de la clé.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Utilisation de groupes de sécurité dans Amazon EC2 139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteKeyPair.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateKeyPair.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeKeyPairs.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteKeyPair.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/CreateSecurityGroupRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

CreateSecurityGroupRequest create_request = new
 CreateSecurityGroupRequest()
 .withGroupName(group_name)
 .withDescription(group_desc)
 .withVpcId(vpc_id);

CreateSecurityGroupResult create_response =
 ec2.createSecurityGroup(create_request);

Consultez l'exemple complet.

Configuration d'un groupe de sécurité

Un groupe de sécurité peut contrôler à la fois le trafic entrant (entrée) et sortant (sortie) vers vos
instances. Amazon EC2

Pour ajouter des règles d'entrée à votre groupe de sécurité, utilisez la
authorizeSecurityGroupIngress méthode du EC2 client Amazon, en fournissant le nom
du groupe de sécurité et les règles d'accès (IpPermission) que vous souhaitez lui attribuer dans
un AuthorizeSecurityGroupIngressRequestobjet. L'exemple suivant montre comment ajouter des
autorisations IP à un groupe de sécurité.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.CreateSecurityGroupRequest;
import com.amazonaws.services.ec2.model.CreateSecurityGroupResult;

Code

IpRange ip_range = new IpRange()
 .withCidrIp("0.0.0.0/0");

IpPermission ip_perm = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(80)

Utilisation de groupes de sécurité dans Amazon EC2 140

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/IpPermission.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupIngressRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withFromPort(80)
 .withIpv4Ranges(ip_range);

IpPermission ip_perm2 = new IpPermission()
 .withIpProtocol("tcp")
 .withToPort(22)
 .withFromPort(22)
 .withIpv4Ranges(ip_range);

AuthorizeSecurityGroupIngressRequest auth_request = new
 AuthorizeSecurityGroupIngressRequest()
 .withGroupName(group_name)
 .withIpPermissions(ip_perm, ip_perm2);

AuthorizeSecurityGroupIngressResult auth_response =
 ec2.authorizeSecurityGroupIngress(auth_request);

Pour ajouter une règle de sortie au groupe de sécurité, fournissez des données similaires dans une
AuthorizeSecurityGroupEgressRequestauthorizeSecurityGroupEgressméthode du EC2 client
Amazon.

Consultez l'exemple complet.

Description des groupes de sécurité

Pour décrire vos groupes de sécurité ou obtenir des informations à leur sujet, appelez
la describeSecurityGroups méthode du EC2 client Amazon. Elle renvoie un
DescribeSecurityGroupsResultque vous pouvez utiliser pour accéder à la liste des groupes de
sécurité en appelant sa getSecurityGroups méthode, qui renvoie une liste d'SecurityGroupobjets.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsRequest;
import com.amazonaws.services.ec2.model.DescribeSecurityGroupsResult;

Code

final String USAGE =
 "To run this example, supply a group id\n" +
 "Ex: DescribeSecurityGroups <group-id>\n";

Utilisation de groupes de sécurité dans Amazon EC2 141

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/AuthorizeSecurityGroupEgressRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/CreateSecurityGroup.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DescribeSecurityGroupsResult.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/ec2/model/SecurityGroup.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

if (args.length != 1) {
 System.out.println(USAGE);
 System.exit(1);
}

String group_id = args[0];

Consultez l'exemple complet.

Suppression d'un groupe de sécurité

Pour supprimer un groupe de sécurité, appelez la deleteSecurityGroup méthode du EC2 client
Amazon en lui transmettant un identifiant DeleteSecurityGroupRequestcontenant l'ID du groupe de
sécurité à supprimer.

Importations

import com.amazonaws.services.ec2.AmazonEC2;
import com.amazonaws.services.ec2.AmazonEC2ClientBuilder;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupRequest;
import com.amazonaws.services.ec2.model.DeleteSecurityGroupResult;

Code

final AmazonEC2 ec2 = AmazonEC2ClientBuilder.defaultClient();

DeleteSecurityGroupRequest request = new DeleteSecurityGroupRequest()
 .withGroupId(group_id);

DeleteSecurityGroupResult response = ec2.deleteSecurityGroup(request);

Consultez l'exemple complet.

En savoir plus

• Amazon EC2 Groupes de sécurité dans le guide de Amazon EC2 l'utilisateur pour les instances
Linux

• Autorisation du trafic entrant pour vos instances Linux dans le guide de l' Amazon EC2 utilisateur
pour les instances Linux

Utilisation de groupes de sécurité dans Amazon EC2 142

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DescribeSecurityGroups.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/ec2/model/DeleteSecurityGroupRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/ec2/src/main/java/aws/example/ec2/DeleteSecurityGroup.java
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• CreateSecurityGroupdans la référence de Amazon EC2 l'API

• DescribeSecurityGroupsdans la référence de Amazon EC2 l'API

• DeleteSecurityGroupdans la référence de Amazon EC2 l'API

• AuthorizeSecurityGroupIngressdans la référence de Amazon EC2 l'API

Exemples d'IAM utilisant le AWS SDK pour Java

Cette section fournit des exemples de programmation d'IAM à l'aide du kit AWS SDK pour Java.

Gestion des identités et des accès AWS (IAM) vous permet de contrôler en toute sécurité l'accès aux
AWS services et aux ressources pour vos utilisateurs. À l'aide d'IAM, vous pouvez créer et gérer des
AWS utilisateurs et des groupes, et utiliser des autorisations pour autoriser ou refuser leur accès aux
AWS ressources. Pour un guide complet de l'IAM, consultez le guide de l'IAM utilisateur.

Note

Les exemples incluent uniquement le code nécessaire pour démontrer chaque technique.
L'exemple de code complet est disponible sur GitHub. À partir de là, vous pouvez télécharger
un fichier source unique ou cloner le référentiel en local pour obtenir tous les exemples à
générer et exécuter.

Rubriques

• Gestion des clés d’accès IAM

• Gestion des utilisateurs IAM

• Utilisation des alias de compte IAM

• Utilisation des stratégies IAM

• Utilisation des certificats de serveur IAM

Gestion des clés d’accès IAM

Création d'une clé d'accès

Pour créer une clé d'accès IAM, appelez la AmazonIdentityManagementClient createAccessKey
méthode avec un CreateAccessKeyRequestobjet.

Gestion des identités et des accès AWS Exemples (IAM) 143

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteSecurityGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AuthorizeSecurityGroupIngress.html
https://aws.amazon.com/iam/
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccessKeyRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

CreateAccessKeyRequestpossède deux constructeurs : un qui prend un nom d'utilisateur et un
autre sans paramètres. Si vous utilisez la version qui ne prend aucun paramètre, vous devez définir
le nom d'utilisateur à l'aide de la méthode setter withUserName avant de transmettre celui-ci à la
méthode createAccessKey.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccessKeyRequest request = new CreateAccessKeyRequest()
 .withUserName(user);

CreateAccessKeyResult response = iam.createAccessKey(request);

Consultez l'exemple complet sur GitHub.

Affichage de la liste des clés d'accès

Pour répertorier les clés d'accès d'un utilisateur donné, créez un ListAccessKeysRequestobjet
contenant le nom d'utilisateur pour lequel vous souhaitez répertorier les clés, et transmettez-le à la
listAccessKeys méthode AmazonIdentityManagementClient's.

Note

Si vous ne fournissez pas de nom d'utilisateur àlistAccessKeys, il tentera de répertorier
les clés d'accès associées à celui Compte AWS qui a signé la demande.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;

Gestion des clés d’accès IAM 144

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccessKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.identitymanagement.model.AccessKeyMetadata;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysRequest;
import com.amazonaws.services.identitymanagement.model.ListAccessKeysResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListAccessKeysRequest request = new ListAccessKeysRequest()
 .withUserName(username);

while (!done) {

 ListAccessKeysResult response = iam.listAccessKeys(request);

 for (AccessKeyMetadata metadata :
 response.getAccessKeyMetadata()) {
 System.out.format("Retrieved access key %s",
 metadata.getAccessKeyId());
 }

 request.setMarker(response.getMarker());

 if (!response.getIsTruncated()) {
 done = true;
 }
}

Les résultats de listAccessKeys sont paginés par défaut (avec un maximum
de 100 enregistrements par appel). Vous pouvez faire appel getIsTruncated à
l'ListAccessKeysResultobjet renvoyé pour voir si la requête a renvoyé moins de résultats que
ceux disponibles. Si tel est le cas, appelez setMarker sur l'objet ListAccessKeysRequest et
retransmettez-le dans le prochain appel de listAccessKeys.

Consultez l'exemple complet sur GitHub.

Récupération de l'heure de la dernière utilisation d'une clé d'accès

Pour connaître l'heure à laquelle une clé d'accès a été utilisée pour la dernière fois, appelez la
getAccessKeyLastUsed méthode AmazonIdentityManagementClient's avec l'ID de la clé d'accès

Gestion des clés d’accès IAM 145

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAccessKeysResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccessKeys.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

(qui peut être transmis à l'aide d'un GetAccessKeyLastUsedRequestobjet) ou directement à la
surcharge qui prend directement l'ID de la clé d'accès.

Vous pouvez ensuite utiliser l'GetAccessKeyLastUsedResultobjet renvoyé pour récupérer la date de
dernière utilisation de la clé.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedRequest;
import com.amazonaws.services.identitymanagement.model.GetAccessKeyLastUsedResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetAccessKeyLastUsedRequest request = new GetAccessKeyLastUsedRequest()
 .withAccessKeyId(access_id);

GetAccessKeyLastUsedResult response = iam.getAccessKeyLastUsed(request);

System.out.println("Access key was last used at: " +
 response.getAccessKeyLastUsed().getLastUsedDate());

Consultez l'exemple complet sur GitHub.

Activation ou désactivation des clés d'accès

Vous pouvez activer ou désactiver une clé d'accès en créant un UpdateAccessKeyRequestobjet,
en fournissant l'ID de la clé d'accès, éventuellement le nom d'utilisateur et le statut
souhaité, puis en transmettant l'objet de la demande à la updateAccessKey méthode
AmazonIdentityManagementClient's.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.UpdateAccessKeyResult;

Gestion des clés d’accès IAM 146

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetAccessKeyLastUsedResult.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AccessKeyLastUsed.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateAccessKeyRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/StatusType.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateAccessKeyRequest request = new UpdateAccessKeyRequest()
 .withAccessKeyId(access_id)
 .withUserName(username)
 .withStatus(status);

UpdateAccessKeyResult response = iam.updateAccessKey(request);

Consultez l'exemple complet sur GitHub.

Suppression d'une clé d'accès

Pour supprimer définitivement une clé d'accès, appelez la deleteKey méthode
AmazonIdentityManagementClient's en lui fournissant un DeleteAccessKeyRequestcontenant
l'identifiant et le nom d'utilisateur de la clé d'accès.

Note

Une fois supprimée, une clé ne peut plus être récupérée ou utilisée. Pour désactiver
temporairement une clé afin qu'elle puisse être réactivée ultérieurement, utilisez plutôt la
updateAccessKeyméthode.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccessKeyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccessKeyRequest request = new DeleteAccessKeyRequest()

Gestion des clés d’accès IAM 147

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateAccessKey.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccessKeyRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withAccessKeyId(access_key)
 .withUserName(username);

DeleteAccessKeyResult response = iam.deleteAccessKey(request);

Consultez l'exemple complet sur GitHub.

En savoir plus

• CreateAccessKeydans la référence de l'API IAM

• ListAccessKeysdans la référence de l'API IAM

• GetAccessKeyLastUseddans la référence de l'API IAM

• UpdateAccessKeydans la référence de l'API IAM

• DeleteAccessKeydans la référence de l'API IAM

Gestion des utilisateurs IAM

Création d'un utilisateur

Créez un nouvel utilisateur IAM en fournissant le nom d'utilisateur à la createUser méthode
AmazonIdentityManagementClient's, soit directement, soit en utilisant un CreateUserRequestobjet
contenant le nom d'utilisateur.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateUserRequest;
import com.amazonaws.services.identitymanagement.model.CreateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateUserRequest request = new CreateUserRequest()
 .withUserName(username);

Gestion des utilisateurs IAM 148

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccessKey.java
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateUserRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

CreateUserResult response = iam.createUser(request);

Consultez l'exemple complet sur GitHub.

Affichage d'une liste d'utilisateurs

Pour répertorier les utilisateurs IAM associés à votre compte, créez-en un nouveau
ListUsersRequestet passez-le à la listUsers méthode AmazonIdentityManagementClient's. Vous
pouvez récupérer la liste des utilisateurs en appelant getUsers l'ListUsersResultobjet renvoyé.

La liste d'utilisateurs renvoyée par listUsers est paginée. Vous pouvez vérifier s'il existe plus
de résultats à récupérer en appelant la méthode getIsTruncated de l'objet de réponse. Si celle-
ci renvoie true, appelez la méthode setMarker() de l'objet de demande, en lui transmettant la
valeur de retour de la méthode getMarker() de l'objet de réponse.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListUsersRequest;
import com.amazonaws.services.identitymanagement.model.ListUsersResult;
import com.amazonaws.services.identitymanagement.model.User;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListUsersRequest request = new ListUsersRequest();

while(!done) {
 ListUsersResult response = iam.listUsers(request);

 for(User user : response.getUsers()) {
 System.out.format("Retrieved user %s", user.getUserName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;

Gestion des utilisateurs IAM 149

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListUsersRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListUsersResult.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 }
}

Consultez l'exemple complet sur GitHub.

Mise à jour d'un utilisateur

Pour mettre à jour un utilisateur, appelez la updateUser méthode de l'
AmazonIdentityManagementClient objet, qui prend un UpdateUserRequestobjet que vous pouvez
utiliser pour modifier le nom ou le chemin de l'utilisateur.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateUserRequest;
import com.amazonaws.services.identitymanagement.model.UpdateUserResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateUserRequest request = new UpdateUserRequest()
 .withUserName(cur_name)
 .withNewUserName(new_name);

UpdateUserResult response = iam.updateUser(request);

Consultez l'exemple complet sur GitHub.

Suppression d'un utilisateur

Pour supprimer un utilisateur, appelez AmazonIdentityManagementClient la deleteUser demande
avec un UpdateUserRequestobjet défini avec le nom d'utilisateur à supprimer.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteConflictException;

Gestion des utilisateurs IAM 150

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListUsers.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateUser.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateUserRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.identitymanagement.model.DeleteUserRequest;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteUserRequest request = new DeleteUserRequest()
 .withUserName(username);

try {
 iam.deleteUser(request);
} catch (DeleteConflictException e) {
 System.out.println("Unable to delete user. Verify user is not" +
 " associated with any resources");
 throw e;
}

Consultez l'exemple complet sur GitHub.

En savoir plus

• Les utilisateurs d'IAM dans le guide de l' IAM utilisateur

• Gestion des utilisateurs IAM dans le guide de l' IAM utilisateur

• CreateUserdans la référence de l'API IAM

• ListUsersdans la référence de l'API IAM

• UpdateUserdans la référence de l'API IAM

• DeleteUserdans la référence de l'API IAM

Utilisation des alias de compte IAM

Si vous souhaitez que l'URL de votre page de connexion contienne le nom de votre entreprise ou un
autre identifiant convivial au lieu de votre Compte AWS identifiant, vous pouvez créer un alias pour
votre Compte AWS.

Note

AWS prend en charge exactement un alias de compte par compte.

Utilisation des alias de compte IAM 151

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteUser.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUser.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Création d'un alias de compte

Pour créer un alias de compte, appelez la createAccountAlias méthode
AmazonIdentityManagementClient's avec un CreateAccountAliasRequestobjet contenant le nom de
l'alias.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.CreateAccountAliasResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreateAccountAliasRequest request = new CreateAccountAliasRequest()
 .withAccountAlias(alias);

CreateAccountAliasResult response = iam.createAccountAlias(request);

Voir l'exemple complet sur GitHub.

Liste des alias de compte

Pour répertorier l'alias de votre compte, le cas échéant, appelez la listAccountAliases méthode
AmazonIdentityManagementClient's.

Note

Les méthodes ListAccountAliasesResultrenvoyées sont compatibles avec les mêmes
getMarker méthodes getIsTruncated et que les autres méthodes de AWS SDK pour
Java liste, mais l'an ne Compte AWS peut avoir qu'un seul alias de compte.

importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;

Utilisation des alias de compte IAM 152

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreateAccountAliasRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreateAccountAlias.java
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/identitymanagement/model/ListAccountAliasesResult.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAccountAliasesResult;

code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAccountAliasesResult response = iam.listAccountAliases();

for (String alias : response.getAccountAliases()) {
 System.out.printf("Retrieved account alias %s", alias);
}

voir l'exemple complet sur GitHub.

Suppression d'un alias de compte

Pour supprimer l'alias de votre compte, appelez la deleteAccountAlias méthode
AmazonIdentityManagementClient's. Lorsque vous supprimez un alias de compte, vous devez fournir
son nom à l'aide d'un DeleteAccountAliasRequestobjet.

importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasRequest;
import com.amazonaws.services.identitymanagement.model.DeleteAccountAliasResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteAccountAliasRequest request = new DeleteAccountAliasRequest()
 .withAccountAlias(alias);

DeleteAccountAliasResult response = iam.deleteAccountAlias(request);

Voir l'exemple complet sur GitHub.

Utilisation des alias de compte IAM 153

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListAccountAliases.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteAccountAliasRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteAccountAlias.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

En savoir plus

• Votre identifiant de AWS compte et son alias dans le guide de IAM l'utilisateur

• CreateAccountAliasdans la référence de l'API IAM

• ListAccountAliasesdans la référence de l'API IAM

• DeleteAccountAliasdans la référence de l'API IAM

Utilisation des stratégies IAM

Création d'une politique

Pour créer une nouvelle politique, indiquez le nom de la stratégie et un document de politique au
format JSON dans la méthode a CreatePolicyRequestto the AmazonIdentityManagementClient.
createPolicy

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreatePolicyRequest;
import com.amazonaws.services.identitymanagement.model.CreatePolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

CreatePolicyRequest request = new CreatePolicyRequest()
 .withPolicyName(policy_name)
 .withPolicyDocument(POLICY_DOCUMENT);

CreatePolicyResult response = iam.createPolicy(request);

Les documents de politique IAM sont des chaînes JSON dont la syntaxe est bien documentée. Voici
un exemple qui fournit l'accès permettant d'adresser des demandes particulières à DynamoDB.

public static final String POLICY_DOCUMENT =
 "{" +
 " \"Version\": \"2012-10-17\", " +

Utilisation des stratégies IAM 154

https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccountAlias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccountAliases.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountAlias.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/CreatePolicyRequest.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": \"logs:CreateLogGroup\"," +
 " \"Resource\": \"%s\"" +
 " }," +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Action\": [" +
 " \"dynamodb:DeleteItem\"," +
 " \"dynamodb:GetItem\"," +
 " \"dynamodb:PutItem\"," +
 " \"dynamodb:Scan\"," +
 " \"dynamodb:UpdateItem\"" +
 "]," +
 " \"Resource\": \"RESOURCE_ARN\"" +
 " }" +
 "]" +
 "}";

Consultez l'exemple complet sur GitHub.

Obtention d'une stratégie

Pour récupérer une politique existante, appelez la getPolicy méthode
AmazonIdentityManagementClient's, en fournissant l'ARN de la politique dans un
GetPolicyRequestobjet.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetPolicyRequest;
import com.amazonaws.services.identitymanagement.model.GetPolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetPolicyRequest request = new GetPolicyRequest()
 .withPolicyArn(policy_arn);

Utilisation des stratégies IAM 155

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/CreatePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetPolicyRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

GetPolicyResult response = iam.getPolicy(request);

Consultez l'exemple complet sur GitHub.

Attachement d'une stratégie de rôle

Vous pouvez joindre une politique à un fichier IAMhttp : //docs.aws.amazon. com/IAM/
latest/UserGuide/id_roles.html [role] en appelant la attachRolePolicy méthode
AmazonIdentityManagementClient's, en lui fournissant le nom du rôle et l'ARN de la politique dans un
AttachRolePolicyRequest.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.AttachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.AttachedPolicy;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

AttachRolePolicyRequest attach_request =
 new AttachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(POLICY_ARN);

iam.attachRolePolicy(attach_request);

Consultez l'exemple complet sur GitHub.

Affichage d'une liste de stratégies de rôle attachées

Répertoriez les politiques associées à un rôle en appelant la listAttachedRolePolicies
méthode AmazonIdentityManagementClient's. Il faut un ListAttachedRolePoliciesRequestobjet
contenant le nom du rôle pour répertorier les politiques.

Appelez getAttachedPolicies l'ListAttachedRolePoliciesResultobjet renvoyé pour obtenir la
liste des politiques jointes. Les résultats peuvent être tronqués. Si la méthode getIsTruncated

Utilisation des stratégies IAM 156

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetPolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/AttachRolePolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListAttachedRolePoliciesResult.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

de l'objet ListAttachedRolePoliciesResult renvoie true, appelez la méthode setMarker
de l'objet ListAttachedRolePoliciesRequest et utilisez-la pour appeler à nouveau
listAttachedRolePolicies afin d'obtenir le lot suivant de résultats.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesRequest;
import com.amazonaws.services.identitymanagement.model.ListAttachedRolePoliciesResult;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

ListAttachedRolePoliciesRequest request =
 new ListAttachedRolePoliciesRequest()
 .withRoleName(role_name);

List<AttachedPolicy> matching_policies = new ArrayList<>();

boolean done = false;

while(!done) {
 ListAttachedRolePoliciesResult response =
 iam.listAttachedRolePolicies(request);

 matching_policies.addAll(
 response.getAttachedPolicies()
 .stream()
 .filter(p -> p.getPolicyName().equals(role_name))
 .collect(Collectors.toList()));

 if(!response.getIsTruncated()) {
 done = true;
 }
 request.setMarker(response.getMarker());
}

Utilisation des stratégies IAM 157

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Consultez l'exemple complet sur GitHub.

Détachement d'une stratégie de rôle

Pour détacher une politique d'un rôle, appelez la detachRolePolicy méthode
AmazonIdentityManagementClient's en lui fournissant le nom du rôle et l'ARN de la politique dans un
DetachRolePolicyRequest.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyRequest;
import com.amazonaws.services.identitymanagement.model.DetachRolePolicyResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DetachRolePolicyRequest request = new DetachRolePolicyRequest()
 .withRoleName(role_name)
 .withPolicyArn(policy_arn);

DetachRolePolicyResult response = iam.detachRolePolicy(request);

Consultez l'exemple complet sur GitHub.

En savoir plus

• Présentation des politiques IAM dans le guide de l' IAM utilisateur.

• AWS Référence à la politique IAM dans le guide de l' IAM utilisateur.

• CreatePolicydans la référence de l'API IAM

• GetPolicydans la référence de l'API IAM

• AttachRolePolicydans la référence de l'API IAM

• ListAttachedRolePoliciesdans la référence de l'API IAM

• DetachRolePolicydans la référence de l'API IAM

Utilisation des stratégies IAM 158

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/AttachRolePolicy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DetachRolePolicyRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DetachRolePolicy.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Utilisation des certificats de serveur IAM

Pour activer les connexions HTTPS à votre site Web ou à votre application AWS, vous avez besoin
d'un certificat de serveur SSL/TLS. Vous pouvez utiliser un certificat de serveur fourni par AWS
Certificate Manager ou un certificat que vous avez obtenu auprès d'un fournisseur externe.

Nous vous recommandons d'utiliser ACM pour provisionner, gérer et déployer vos certificats de
serveur. Avec ACM, vous pouvez demander un certificat, le déployer sur vos AWS ressources et
laisser ACM gérer les renouvellements de certificats pour vous. Les certificats fournis par ACM sont
gratuits. Pour plus d'informations sur ACM, consultez le guide de l'utilisateur d'ACM.

Obtention d'un certificat de serveur

Vous pouvez récupérer un certificat de serveur en appelant la getServerCertificate méthode
AmazonIdentityManagementClient's et en GetServerCertificateRequestlui transmettant le nom du
certificat.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.GetServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

GetServerCertificateRequest request = new GetServerCertificateRequest()
 .withServerCertificateName(cert_name);

GetServerCertificateResult response = iam.getServerCertificate(request);

Consultez l'exemple complet sur GitHub.

Liste des certificats de serveur

Pour répertorier les certificats de votre serveur, appelez la listServerCertificates méthode
AmazonIdentityManagementClient's avec un ListServerCertificatesRequest. Elle renvoie un
ListServerCertificatesResult.

Utilisation des certificats de serveur IAM 159

https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/GetServerCertificateRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/GetServerCertificate.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ListServerCertificatesResult.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Appelez la getServerCertificateMetadataList méthode de
ListServerCertificateResult l'objet renvoyé pour obtenir une liste
d'ServerCertificateMetadataobjets que vous pouvez utiliser pour obtenir des informations sur chaque
certificat.

Les résultats peuvent être tronqués. Si la méthode getIsTruncated de l'objet
ListServerCertificateResult renvoie true, appelez la méthode setMarker
de l'objet ListServerCertificatesRequest et utilisez-la pour appeler à nouveau
listServerCertificates afin d'obtenir le lot suivant de résultats.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesRequest;
import com.amazonaws.services.identitymanagement.model.ListServerCertificatesResult;
import com.amazonaws.services.identitymanagement.model.ServerCertificateMetadata;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

boolean done = false;
ListServerCertificatesRequest request =
 new ListServerCertificatesRequest();

while(!done) {

 ListServerCertificatesResult response =
 iam.listServerCertificates(request);

 for(ServerCertificateMetadata metadata :
 response.getServerCertificateMetadataList()) {
 System.out.printf("Retrieved server certificate %s",
 metadata.getServerCertificateName());
 }

 request.setMarker(response.getMarker());

 if(!response.getIsTruncated()) {
 done = true;

Utilisation des certificats de serveur IAM 160

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/ServerCertificateMetadata.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 }
}

Consultez l'exemple complet sur GitHub.

Mise à jour d'un certificat de serveur

Vous pouvez mettre à jour le nom ou le chemin d'un certificat de serveur en appelant la
updateServerCertificate méthode AmazonIdentityManagementClient's. Il faut utiliser un
ensemble d'UpdateServerCertificateRequestobjets portant le nom actuel du certificat de serveur et un
nouveau nom ou un nouveau chemin.

Importations

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.UpdateServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

UpdateServerCertificateRequest request =
 new UpdateServerCertificateRequest()
 .withServerCertificateName(cur_name)
 .withNewServerCertificateName(new_name);

UpdateServerCertificateResult response =
 iam.updateServerCertificate(request);

Consultez l'exemple complet sur GitHub.

Suppression d'un certificat de serveur

Pour supprimer un certificat de serveur, appelez la deleteServerCertificate méthode
AmazonIdentityManagementClient's avec un DeleteServerCertificateRequestcontenant le nom du
certificat.

Importations

Utilisation des certificats de serveur IAM 161

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/ListServerCertificates.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/UpdateServerCertificateRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/UpdateServerCertificate.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/identitymanagement/model/DeleteServerCertificateRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateRequest;
import com.amazonaws.services.identitymanagement.model.DeleteServerCertificateResult;

Code

final AmazonIdentityManagement iam =
 AmazonIdentityManagementClientBuilder.defaultClient();

DeleteServerCertificateRequest request =
 new DeleteServerCertificateRequest()
 .withServerCertificateName(cert_name);

DeleteServerCertificateResult response =
 iam.deleteServerCertificate(request);

Consultez l'exemple complet sur GitHub.

En savoir plus

• Utilisation des certificats de serveur dans le guide de IAM l'utilisateur

• GetServerCertificatedans la référence de l'API IAM

• ListServerCertificatesdans la référence de l'API IAM

• UpdateServerCertificatedans la référence de l'API IAM

• DeleteServerCertificatedans la référence de l'API IAM

• Guide de l'utilisateur ACM

Lambda Exemples d'utilisation du AWS SDK pour Java

Cette section fournit des exemples de programmation Lambda utilisant le AWS SDK pour Java.

Note

Les exemples incluent uniquement le code nécessaire pour démontrer chaque technique.
L'exemple de code complet est disponible sur GitHub. À partir de là, vous pouvez télécharger

Lambda Exemples Amazon 162

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/iam/src/main/java/aws/example/iam/DeleteServerCertificate.java
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificates.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServerCertificate.html
https://docs.aws.amazon.com/acm/latest/userguide/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

un fichier source unique ou cloner le référentiel en local pour obtenir tous les exemples à
générer et exécuter.

Rubriques

• Invocation, listage et suppression de fonctions Lambda

Invocation, listage et suppression de fonctions Lambda

Cette section fournit des exemples de programmation avec le client Lambda de service à l'aide du
AWS SDK pour Java. Pour savoir comment créer une Lambda fonction, voir Comment créer des
AWS Lambda fonctions.

Rubriques

• Invoquer une fonction

• Répertorier des fonctions

• Supprimer une fonction

Invoquer une fonction

Vous pouvez invoquer une Lambda fonction en créant un AWSLambdaobjet et en invoquant sa
invoke méthode. Créez un InvokeRequestobjet pour spécifier des informations supplémentaires
telles que le nom de la fonction et la charge utile à transmettre à la Lambda fonction. Les noms
des fonctions apparaissent sous la forme arn:aws:lambda:us-east- 1:555556330391:function :.
HelloFunction Vous pouvez récupérer la valeur en consultant la fonction dans le AWS Management
Console.

Pour transmettre des données de charge utile à une fonction, appelez la withPayload méthode
de l'InvokeRequestobjet et spécifiez une chaîne au format JSON, comme indiqué dans l'exemple de
code suivant.

Importations

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;

Opérations de service 163

https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/lambda-tutorial.html
https://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/lambda-tutorial.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/InvokeRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.InvokeRequest;
import com.amazonaws.services.lambda.model.InvokeResult;
import com.amazonaws.services.lambda.model.ServiceException;

import java.nio.charset.StandardCharsets;

Code

L'exemple de code suivant montre comment invoquer une Lambda fonction.

 String functionName = args[0];

 InvokeRequest invokeRequest = new InvokeRequest()
 .withFunctionName(functionName)
 .withPayload("{\n" +
 " \"Hello \": \"Paris\",\n" +
 " \"countryCode\": \"FR\"\n" +
 "}");
 InvokeResult invokeResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 invokeResult = awsLambda.invoke(invokeRequest);

 String ans = new String(invokeResult.getPayload().array(),
 StandardCharsets.UTF_8);

 //write out the return value
 System.out.println(ans);

 } catch (ServiceException e) {
 System.out.println(e);
 }

 System.out.println(invokeResult.getStatusCode());

Consultez l'exemple complet sur GitHub.

Opérations de service 164

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/LambdaInvokeFunction.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Répertorier des fonctions

Créez un AWSLambdaobjet et invoquez sa listFunctions méthode. Cette méthode renvoie
un ListFunctionsResultobjet. Vous pouvez invoquer la getFunctions méthode de cet objet pour
renvoyer une liste d'FunctionConfigurationobjets. Parcourez la liste pour récupérer des informations
sur les fonctions. Par exemple, l'exemple de code Java ci-dessous illustre comment obtenir le nom de
chaque fonction.

Importations

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.FunctionConfiguration;
import com.amazonaws.services.lambda.model.ListFunctionsResult;
import com.amazonaws.services.lambda.model.ServiceException;
import java.util.Iterator;
import java.util.List;

Code

L'exemple de code Java suivant montre comment récupérer une liste de noms de Lambda fonctions.

 ListFunctionsResult functionResult = null;

 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 functionResult = awsLambda.listFunctions();

 List<FunctionConfiguration> list = functionResult.getFunctions();

 for (Iterator iter = list.iterator(); iter.hasNext();) {
 FunctionConfiguration config = (FunctionConfiguration)iter.next();

 System.out.println("The function name is "+config.getFunctionName());
 }

 } catch (ServiceException e) {

Opérations de service 165

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/ListFunctionsResult.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/FunctionConfiguration.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 System.out.println(e);
 }

Consultez l'exemple complet sur GitHub.

Supprimer une fonction

Créez un AWSLambdaobjet et invoquez sa deleteFunction méthode. Créez un
DeleteFunctionRequestobjet et transmettez-le à la deleteFunction méthode. Cet objet contient
des informations telles que le nom de la fonction à supprimer. Les noms des fonctions apparaissent
sous la forme arn:aws:lambda:us-east- 1:555556330391:function :. HelloFunction Vous pouvez
récupérer la valeur en consultant la fonction dans le AWS Management Console.

Importations

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.lambda.AWSLambda;
import com.amazonaws.services.lambda.AWSLambdaClientBuilder;
import com.amazonaws.services.lambda.model.ServiceException;
import com.amazonaws.services.lambda.model.DeleteFunctionRequest;

Code

Le code Java suivant montre comment supprimer une Lambda fonction.

 String functionName = args[0];
 try {
 AWSLambda awsLambda = AWSLambdaClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(Regions.US_WEST_2).build();

 DeleteFunctionRequest delFunc = new DeleteFunctionRequest();
 delFunc.withFunctionName(functionName);

 //Delete the function
 awsLambda.deleteFunction(delFunc);
 System.out.println("The function is deleted");

 } catch (ServiceException e) {
 System.out.println(e);
 }

Opérations de service 166

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/ListFunctions.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambda.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/model/DeleteFunctionRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Consultez l'exemple complet sur GitHub.

Amazon Pinpoint Exemples utilisant le AWS SDK pour Java

Cette section fournit des exemples de programmation d'Amazon Pinpoint à l'aide du kit AWS SDK
pour Java.

Note

Les exemples incluent uniquement le code nécessaire pour démontrer chaque technique.
L'exemple de code complet est disponible sur GitHub. À partir de là, vous pouvez télécharger
un fichier source unique ou cloner le référentiel en local pour obtenir tous les exemples à
générer et exécuter.

Rubriques

• Création et suppression d'applications dans Amazon Pinpoint

• Création de points de terminaison dans Amazon Pinpoint

• Création de segments dans Amazon Pinpoint

• Création de campagnes dans Amazon Pinpoint

• Mise à jour des chaînes dans Amazon Pinpoint

Création et suppression d'applications dans Amazon Pinpoint

Une application est un Amazon Pinpoint projet dans lequel vous définissez l'audience d'une
application distincte, et vous interagissez avec cette audience avec des messages personnalisés.
Les exemples de cette page montrent comment créer une application ou comment supprimer une
application existante.

Création d'une application

Créez une nouvelle application en Amazon Pinpoint fournissant un nom d'application
à l'CreateAppRequestobjet, puis en transmettant cet objet à la createApp méthode
AmazonPinpointClient's.

Importations

Amazon Pinpoint Exemples 167

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/lambda/src/main/java/com/example/lambda/DeleteFunction.java
https://aws.amazon.com/pinpoint/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateAppRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateAppRequest;
import com.amazonaws.services.pinpoint.model.CreateAppResult;
import com.amazonaws.services.pinpoint.model.CreateApplicationRequest;

Code

CreateApplicationRequest appRequest = new CreateApplicationRequest()
 .withName(appName);

CreateAppRequest request = new CreateAppRequest();
request.withCreateApplicationRequest(appRequest);
CreateAppResult result = pinpoint.createApp(request);

Consultez l'exemple complet sur GitHub.

Suppression d'une application

Pour supprimer une application, appelez AmazonPinpointClient la deleteApp demande avec un
DeleteAppRequestobjet défini avec le nom de l'application à supprimer.

Importations

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;

Code

DeleteAppRequest deleteRequest = new DeleteAppRequest()
 .withApplicationId(appID);

pinpoint.deleteApp(deleteRequest);

Consultez l'exemple complet sur GitHub.

En savoir plus

• Apps dans la référence des Amazon Pinpoint API

• Application dans la référence de Amazon Pinpoint l'API

Création et suppression d'applications dans Amazon Pinpoint 168

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/DeleteAppRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/DeleteApp.java
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apps.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-app.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Création de points de terminaison dans Amazon Pinpoint

Un point de terminaison identifie de façon unique l'appareil d'un utilisateur auquel vous pouvez
envoyer des notifications push avec Amazon Pinpoint. Si votre application est activée avec Amazon
Pinpoint support, elle enregistre automatiquement un point de terminaison Amazon Pinpoint lorsqu'un
nouvel utilisateur ouvre votre application. L'exemple suivant montre comment ajouter un nouveau
point de terminaison par programmation.

Création d'un point de terminaison

Créez un nouveau point de terminaison en Amazon Pinpoint fournissant les données du point de
terminaison dans un EndpointRequestobjet.

Importations

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.UpdateEndpointRequest;
import com.amazonaws.services.pinpoint.model.UpdateEndpointResult;
import com.amazonaws.services.pinpoint.model.EndpointDemographic;
import com.amazonaws.services.pinpoint.model.EndpointLocation;
import com.amazonaws.services.pinpoint.model.EndpointRequest;
import com.amazonaws.services.pinpoint.model.EndpointResponse;
import com.amazonaws.services.pinpoint.model.EndpointUser;
import com.amazonaws.services.pinpoint.model.GetEndpointRequest;
import com.amazonaws.services.pinpoint.model.GetEndpointResult;

Code

HashMap<String, List<String>> customAttributes = new HashMap<>();
List<String> favoriteTeams = new ArrayList<>();
favoriteTeams.add("Lakers");
favoriteTeams.add("Warriors");
customAttributes.put("team", favoriteTeams);

EndpointDemographic demographic = new EndpointDemographic()
 .withAppVersion("1.0")
 .withMake("apple")
 .withModel("iPhone")
 .withModelVersion("7")
 .withPlatform("ios")

Création de points de terminaison dans Amazon Pinpoint 169

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/EndpointRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withPlatformVersion("10.1.1")
 .withTimezone("America/Los_Angeles");

EndpointLocation location = new EndpointLocation()
 .withCity("Los Angeles")
 .withCountry("US")
 .withLatitude(34.0)
 .withLongitude(-118.2)
 .withPostalCode("90068")
 .withRegion("CA");

Map<String,Double> metrics = new HashMap<>();
metrics.put("health", 100.00);
metrics.put("luck", 75.00);

EndpointUser user = new EndpointUser()
 .withUserId(UUID.randomUUID().toString());

DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm'Z'"); // Quoted "Z" to
 indicate UTC, no timezone offset
String nowAsISO = df.format(new Date());

EndpointRequest endpointRequest = new EndpointRequest()
 .withAddress(UUID.randomUUID().toString())
 .withAttributes(customAttributes)
 .withChannelType("APNS")
 .withDemographic(demographic)
 .withEffectiveDate(nowAsISO)
 .withLocation(location)
 .withMetrics(metrics)
 .withOptOut("NONE")
 .withRequestId(UUID.randomUUID().toString())
 .withUser(user);

Créez ensuite un UpdateEndpointRequestobjet avec cet EndpointRequest objet. Enfin, transmettez l'
UpdateEndpointRequest objet à la updateEndpoint méthode AmazonPinpointClient's.

Code

UpdateEndpointRequest updateEndpointRequest = new UpdateEndpointRequest()
 .withApplicationId(appId)
 .withEndpointId(endpointId)
 .withEndpointRequest(endpointRequest);

Création de points de terminaison dans Amazon Pinpoint 170

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateEndpointRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

UpdateEndpointResult updateEndpointResponse =
 client.updateEndpoint(updateEndpointRequest);
System.out.println("Update Endpoint Response: " +
 updateEndpointResponse.getMessageBody());

Consultez l'exemple complet sur GitHub.

En savoir plus

• Ajouter un point de terminaison dans le guide du Amazon Pinpoint développeur

• Point de terminaison dans la référence Amazon Pinpoint d'API

Création de segments dans Amazon Pinpoint

Un segment d'utilisateurs est un sous-ensemble d'utilisateurs qui présentent des caractéristiques
communes. Il peut s'agir de la date à laquelle les utilisateurs ont ouvert votre application pour la
dernière fois ou du type d'appareil qu'ils utilisent. L'exemple suivant montre comment définir un
segment d'utilisateurs.

Créer un segment

Créez un nouveau segment en Amazon Pinpoint définissant les dimensions du segment dans un
SegmentDimensionsobjet.

Importations

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateSegmentRequest;
import com.amazonaws.services.pinpoint.model.CreateSegmentResult;
import com.amazonaws.services.pinpoint.model.AttributeDimension;
import com.amazonaws.services.pinpoint.model.AttributeType;
import com.amazonaws.services.pinpoint.model.RecencyDimension;
import com.amazonaws.services.pinpoint.model.SegmentBehaviors;
import com.amazonaws.services.pinpoint.model.SegmentDemographics;
import com.amazonaws.services.pinpoint.model.SegmentDimensions;
import com.amazonaws.services.pinpoint.model.SegmentLocation;
import com.amazonaws.services.pinpoint.model.SegmentResponse;
import com.amazonaws.services.pinpoint.model.WriteSegmentRequest;

Création de segments dans Amazon Pinpoint 171

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateEndpoint.java
https://docs.aws.amazon.com/pinpoint/latest/developerguide/endpoints.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-endpoint.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Code

Pinpoint pinpoint =
 AmazonPinpointClientBuilder.standard().withRegion(Regions.US_EAST_1).build();
Map<String, AttributeDimension> segmentAttributes = new HashMap<>();
segmentAttributes.put("Team", new
 AttributeDimension().withAttributeType(AttributeType.INCLUSIVE).withValues("Lakers"));

SegmentBehaviors segmentBehaviors = new SegmentBehaviors();
SegmentDemographics segmentDemographics = new SegmentDemographics();
SegmentLocation segmentLocation = new SegmentLocation();

RecencyDimension recencyDimension = new RecencyDimension();
recencyDimension.withDuration("DAY_30").withRecencyType("ACTIVE");
segmentBehaviors.setRecency(recencyDimension);

SegmentDimensions dimensions = new SegmentDimensions()
 .withAttributes(segmentAttributes)
 .withBehavior(segmentBehaviors)
 .withDemographic(segmentDemographics)
 .withLocation(segmentLocation);

Définissez ensuite l'SegmentDimensionsobjet dans un WriteSegmentRequest, qui est à son tour
utilisé pour créer un CreateSegmentRequestobjet. Passez ensuite l' CreateSegmentRequest objet à
la createSegment méthode AmazonPinpointClient's.

Code

WriteSegmentRequest writeSegmentRequest = new WriteSegmentRequest()
 .withName("MySegment").withDimensions(dimensions);

CreateSegmentRequest createSegmentRequest = new CreateSegmentRequest()
 .withApplicationId(appId).withWriteSegmentRequest(writeSegmentRequest);

CreateSegmentResult createSegmentResult = client.createSegment(createSegmentRequest);

Consultez l'exemple complet sur GitHub.

En savoir plus

• Amazon Pinpoint Segments du guide de Amazon Pinpoint l'utilisateur

• Création de segments dans le guide du Amazon Pinpoint développeur

Création de segments dans Amazon Pinpoint 172

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/SegmentDimensions.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteSegmentRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/CreateSegmentRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateSegment.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/segments.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/segments.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Segments de la référence Amazon Pinpoint d'API

• Segment dans la référence de Amazon Pinpoint l'API

Création de campagnes dans Amazon Pinpoint

Les campagnes vous permettent de renforcer l'implication des utilisateurs vis-à-vis de votre
application. Vous pouvez créer une campagne pour toucher un segment particulier d'utilisateurs à
l'aide de messages sur mesure ou de promotions spéciales. Cet exemple montre comment créer une
campagne standard qui envoie une notification push personnalisée à un segment déterminé.

Création d'une campagne

Avant de créer une nouvelle campagne, vous devez définir un calendrier et un message et définir ces
valeurs dans un WriteCampaignRequestobjet.

Importations

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.CreateCampaignRequest;
import com.amazonaws.services.pinpoint.model.CreateCampaignResult;
import com.amazonaws.services.pinpoint.model.Action;
import com.amazonaws.services.pinpoint.model.CampaignResponse;
import com.amazonaws.services.pinpoint.model.Message;
import com.amazonaws.services.pinpoint.model.MessageConfiguration;
import com.amazonaws.services.pinpoint.model.Schedule;
import com.amazonaws.services.pinpoint.model.WriteCampaignRequest;

Code

Schedule schedule = new Schedule()
 .withStartTime("IMMEDIATE");

Message defaultMessage = new Message()
 .withAction(Action.OPEN_APP)
 .withBody("My message body.")
 .withTitle("My message title.");

MessageConfiguration messageConfiguration = new MessageConfiguration()
 .withDefaultMessage(defaultMessage);

Création de campagnes dans Amazon Pinpoint 173

https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segments.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-segment.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Schedule.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/Message.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

WriteCampaignRequest request = new WriteCampaignRequest()
 .withDescription("My description.")
 .withSchedule(schedule)
 .withSegmentId(segmentId)
 .withName("MyCampaign")
 .withMessageConfiguration(messageConfiguration);

Créez ensuite une nouvelle campagne en Amazon Pinpoint WriteCampaignRequestfournissant
la configuration de campagne à un CreateCampaignRequestobjet. Enfin, transmettez l'
CreateCampaignRequest objet à la createCampaign méthode AmazonPinpointClient's.

Code

CreateCampaignRequest createCampaignRequest = new CreateCampaignRequest()
 .withApplicationId(appId).withWriteCampaignRequest(request);

CreateCampaignResult result = client.createCampaign(createCampaignRequest);

Consultez l'exemple complet sur GitHub.

En savoir plus

• Amazon Pinpoint Campagnes dans le guide de Amazon Pinpoint l'utilisateur

• Création de campagnes dans le guide du Amazon Pinpoint développeur

• Campagnes dans l' Amazon Pinpoint API Reference

• Campagne dans la référence de Amazon Pinpoint l'API

• Activités de campagne dans la référence de Amazon Pinpoint l'API

• Versions de campagne dans la référence de Amazon Pinpoint l'API

• Version de la campagne dans la référence de Amazon Pinpoint l'API

Mise à jour des chaînes dans Amazon Pinpoint

Un canal définit les types de plateformes auxquelles vous pouvez envoyer des messages. Cet
exemple montre comment utiliser le APNs canal pour envoyer un message.

Mise à jour d'un canal

Activez une chaîne en Amazon Pinpoint fournissant un identifiant d'application et un objet
de demande correspondant au type de chaîne que vous souhaitez mettre à jour. Cet

Mise à jour des chaînes dans Amazon Pinpoint 174

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/WriteCampaignRequest.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/pinpoint/model/CreateCampaignRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/CreateApp.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaigns.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-activities.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-versions.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-campaign-version.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

exemple met à jour le APNs canal, qui nécessite l'objet APNSChannelRequest. Définissez-
les dans le UpdateApnsChannelRequestet transmettez cet objet à AmazonPinpointClient la
updateApnsChannel méthode.

Importations

import com.amazonaws.services.pinpoint.AmazonPinpoint;
import com.amazonaws.services.pinpoint.AmazonPinpointClientBuilder;
import com.amazonaws.services.pinpoint.model.APNSChannelRequest;
import com.amazonaws.services.pinpoint.model.APNSChannelResponse;
import com.amazonaws.services.pinpoint.model.GetApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.GetApnsChannelResult;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelRequest;
import com.amazonaws.services.pinpoint.model.UpdateApnsChannelResult;

Code

APNSChannelRequest request = new APNSChannelRequest()
 .withEnabled(enabled);

UpdateApnsChannelRequest updateRequest = new UpdateApnsChannelRequest()
 .withAPNSChannelRequest(request)
 .withApplicationId(appId);
UpdateApnsChannelResult result = client.updateApnsChannel(updateRequest);

Consultez l'exemple complet sur GitHub.

En savoir plus

• Amazon Pinpoint Chaînes figurant dans le guide de Amazon Pinpoint l'utilisateur

• Canal ADM dans la référence de l' Amazon Pinpoint API

• APNs Canal dans la référence de Amazon Pinpoint l'API

• APNs Sandbox Channel dans la référence de l' Amazon Pinpoint API

• APNs Canal VoIP dans la référence de l'API Amazon Pinpoint

• APNs Canal VoIP Sandbox dans la référence de l'API Amazon Pinpoint

• Le canal Baidu dans le guide de référence de l' Amazon Pinpoint API

• Canal de courrier électronique dans la référence de Amazon Pinpoint l'API

• Canal GCM dans la référence de l' Amazon Pinpoint API

Mise à jour des chaînes dans Amazon Pinpoint 175

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/APNSChannelRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/pinpoint/model/UpdateApnsChannelRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/pinpoint/src/main/java/com/example/pinpoint/UpdateChannel.java
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-adm-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-sandbox-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-apns-voip-sandbox-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-baidu-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-email-channel.html
https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-gcm-channel.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Canal SMS dans la référence de Amazon Pinpoint l'API

Amazon S3 Exemples utilisant le AWS SDK pour Java

Cette section fournit des exemples de programmation d'Amazon S3 à l'aide du kit AWS SDK pour
Java.

Note

Les exemples incluent uniquement le code nécessaire pour démontrer chaque technique.
L'exemple de code complet est disponible sur GitHub. À partir de là, vous pouvez télécharger
un fichier source unique ou cloner le référentiel en local pour obtenir tous les exemples à
générer et exécuter.

Rubriques

• Création, listage et suppression de Amazon S3 buckets

• Exécution d'opérations sur Amazon S3 des objets

• Gestion des autorisations Amazon S3 d'accès pour les compartiments et les objets

• Gestion de l'accès aux Amazon S3 compartiments à l'aide de politiques relatives aux
compartiments

• Utilisation TransferManager pour les Amazon S3 opérations

• Configuration d'un Amazon S3 bucket en tant que site Web

• Utiliser le Amazon S3 chiffrement côté client

Création, listage et suppression de Amazon S3 buckets

Chaque objet (fichier) Amazon S3 doit résider dans un compartiment, qui représente une collection
(conteneur) d'objets. Chaque compartiment est identifié par une clé (nom) qui doit être unique.
Pour obtenir des informations détaillées sur les buckets et leur configuration, consultez la section
Utilisation des Amazon S3 buckets dans le Guide de l' Amazon Simple Storage Service utilisateur.

Note

Bonne pratique

Amazon S3 Exemples 176

https://docs.aws.amazon.com/pinpoint/latest/apireference/rest-api-sms-channel.html
https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Nous vous recommandons d'activer la règle du AbortIncompleteMultipartUploadcycle de vie
sur vos Amazon S3 buckets.
Cette règle indique Amazon S3 d'abandonner les téléchargements partitionnés qui ne
sont pas terminés dans un certain nombre de jours après leur lancement. Lorsque le délai
défini est dépassé, le téléchargement est Amazon S3 interrompu, puis les données de
téléchargement incomplètes sont supprimées.
Pour plus d'informations, consultez la section Configuration du cycle de vie d'un bucket avec
gestion des versions dans le guide de l' Amazon S3 utilisateur.

Note

Ces exemples de code supposent que vous comprenez le contenu de la section Utilisation
du AWS SDK pour Java et que vous avez configuré les AWS informations d'identification par
défaut à l'aide des informations de configuration des informations AWS d'identification et de la
région pour le développement.

Création d'un compartiment

Utilisez la méthode du client AmazonS3. createBucket Le nouveau compartiment est renvoyé. La
méthode createBucket déclenche une exception si le compartiment existe déjà.

Note

Pour vérifier si un compartiment existe déjà avant de tenter d'en créer un avec le même nom,
appelez la méthode doesBucketExist. Cette méthode renvoie true si le compartiment
existe et false sinon.

Importations

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.Bucket;

Création, listage et suppression de Amazon S3 buckets 177

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import java.util.List;

Code

if (s3.doesBucketExistV2(bucket_name)) {
 System.out.format("Bucket %s already exists.\n", bucket_name);
 b = getBucket(bucket_name);
} else {
 try {
 b = s3.createBucket(bucket_name);
 } catch (AmazonS3Exception e) {
 System.err.println(e.getErrorMessage());
 }
}
return b;

Consultez l'exemple complet sur GitHub.

Etablir une liste des compartiments

Utilisez la méthode du client AmazonS3. listBucket En cas de réussite, une liste de
compartiments est renvoyée.

Importations

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.Bucket;

import java.util.List;

Code

List<Bucket> buckets = s3.listBuckets();
System.out.println("Your {S3} buckets are:");
for (Bucket b : buckets) {
 System.out.println("* " + b.getName());
}

Consultez l'exemple complet sur GitHub.

Création, listage et suppression de Amazon S3 buckets 178

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CreateBucket.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Bucket.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListBuckets.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Supprimer un compartiment

Avant de pouvoir supprimer un Amazon S3 compartiment, vous devez vous assurer qu'il est vide,
faute de quoi une erreur pourrait se produire. S'il s'agit d'un compartiment avec gestion des versions,
vous devez également supprimer tous les objets versionnés associés à celui-ci.

Note

L'exemple complet inclut chacune de ces étapes dans l'ordre, fournissant une solution
complète pour supprimer un Amazon S3 bucket et son contenu.

Rubriques

• Suppression des objets d'un compartiment sans gestion des versions avant sa suppression

• Suppression des objets d'un compartiment avec gestion des versions avant sa suppression

• Suppression d'un compartiment vide

Suppression des objets d'un compartiment sans gestion des versions avant sa suppression

Utilisez la listObjects méthode du client AmazonS3 pour récupérer la liste des objets et
deleteObject pour supprimer chacun d'entre eux.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" - removing objects from bucket");
ObjectListing object_listing = s3.listObjects(bucket_name);
while (true) {
 for (Iterator<?> iterator =
 object_listing.getObjectSummaries().iterator();

Création, listage et suppression de Amazon S3 buckets 179

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 iterator.hasNext();) {
 S3ObjectSummary summary = (S3ObjectSummary) iterator.next();
 s3.deleteObject(bucket_name, summary.getKey());
 }

 // more object_listing to retrieve?
 if (object_listing.isTruncated()) {
 object_listing = s3.listNextBatchOfObjects(object_listing);
 } else {
 break;
 }
}

Consultez l'exemple complet sur GitHub.

Suppression des objets d'un compartiment avec gestion des versions avant sa suppression

Si vous utilisez un compartiment avec gestion des versions, vous devez également supprimer toutes
les versions stockées des objets du compartiment pour que le compartiment puisse être supprimé.

En utilisant un modèle similaire à celui utilisé lors de la suppression d'objets dans un compartiment,
supprimez les objets versionnés en utilisant la listVersions méthode du client AmazonS3 pour
répertorier tous les objets versionnés, puis deleteVersion pour supprimer chacun d'entre eux.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" - removing versions from bucket");
VersionListing version_listing = s3.listVersions(
 new ListVersionsRequest().withBucketName(bucket_name));
while (true) {
 for (Iterator<?> iterator =
 version_listing.getVersionSummaries().iterator();
 iterator.hasNext();) {

Création, listage et suppression de Amazon S3 buckets 180

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 S3VersionSummary vs = (S3VersionSummary) iterator.next();
 s3.deleteVersion(
 bucket_name, vs.getKey(), vs.getVersionId());
 }

 if (version_listing.isTruncated()) {
 version_listing = s3.listNextBatchOfVersions(
 version_listing);
 } else {
 break;
 }
}

Consultez l'exemple complet sur GitHub.

Suppression d'un compartiment vide

Une fois que vous avez supprimé les objets d'un compartiment (y compris les objets versionnés),
vous pouvez supprimer le compartiment lui-même en utilisant la méthode du client AmazonS3.
deleteBucket

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

Code

System.out.println(" OK, bucket ready to delete!");
s3.deleteBucket(bucket_name);

Consultez l'exemple complet sur GitHub.

Exécution d'opérations sur Amazon S3 des objets

Un Amazon S3 objet représente un fichier ou un ensemble de données. Chaque objet doit résider
dans un compartiment.

Exécution d'opérations sur Amazon S3 des objets 181

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucket.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Note

Ces exemples de code supposent que vous comprenez le contenu de la section Utilisation
du AWS SDK pour Java et que vous avez configuré les AWS informations d'identification par
défaut à l'aide des informations de configuration des informations AWS d'identification et de la
région pour le développement.

Rubriques

• Chargement d'un objet

• Affichage de la liste des objets

• Téléchargement d'un objet

• Copie et déplacement d'objets, ou attribution d'un nouveau nom aux objets

• Supprimer un objet

• Suppression simultanée de plusieurs objets

Chargement d'un objet

Utilisez la putObject méthode du client AmazonS3, en fournissant le nom du bucket, le nom de la
clé et le fichier à télécharger. Le compartiment doit exister, sans quoi une erreur est générée.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Code

System.out.format("Uploading %s to S3 bucket %s...\n", file_path, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.putObject(bucket_name, key_name, new File(file_path));
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

Exécution d'opérations sur Amazon S3 des objets 182

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

}

Consultez l'exemple complet sur GitHub.

Affichage de la liste des objets

Pour obtenir la liste des objets d'un compartiment, utilisez la listObjects méthode du client
AmazonS3, en fournissant le nom d'un compartiment.

La listObjects méthode renvoie un ObjectListingobjet qui fournit des informations sur les objets
du compartiment. Pour répertorier les noms d'objets (clés), utilisez la getObjectSummaries
méthode pour obtenir une liste d'ObjectSummaryobjets S3, chacun représentant un seul objet dans le
compartiment. Ensuite, appelez sa méthode getKey pour récupérer le nom de l'objet.

Importations

import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListObjectsV2Result;
import com.amazonaws.services.s3.model.S3ObjectSummary;

Code

System.out.format("Objects in S3 bucket %s:\n", bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
ListObjectsV2Result result = s3.listObjectsV2(bucket_name);
List<S3ObjectSummary> objects = result.getObjectSummaries();
for (S3ObjectSummary os : objects) {
 System.out.println("* " + os.getKey());
}

Consultez l'exemple complet sur GitHub.

Téléchargement d'un objet

Utilisez la getObject méthode du client AmazonS3, en lui transmettant le nom du bucket et de
l'objet à télécharger. En cas de réussite, la méthode renvoie un objet S3Object. Le compartiment et la
clé d'objet spécifiés doivent exister, sans quoi une erreur est générée.

Exécution d'opérations sur Amazon S3 des objets 183

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/PutObject.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/ObjectListing.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectSummary.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/ListObjects.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3Object.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Vous pouvez obtenir le contenu de l'objet en appelant getObjectContent sur l'objet S3Object.
Cela renvoie un S3 ObjectInputStream qui se comporte comme un InputStream objet Java
standard.

L'exemple suivant télécharge un objet à partir de S3 et enregistre son contenu dans un fichier (en
utilisant le même nom que la clé de l'objet).

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectInputStream;

import java.io.File;

Code

System.out.format("Downloading %s from S3 bucket %s...\n", key_name, bucket_name);
final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 S3Object o = s3.getObject(bucket_name, key_name);
 S3ObjectInputStream s3is = o.getObjectContent();
 FileOutputStream fos = new FileOutputStream(new File(key_name));
 byte[] read_buf = new byte[1024];
 int read_len = 0;
 while ((read_len = s3is.read(read_buf)) > 0) {
 fos.write(read_buf, 0, read_len);
 }
 s3is.close();
 fos.close();
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
} catch (FileNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
} catch (IOException e) {
 System.err.println(e.getMessage());
 System.exit(1);

Exécution d'opérations sur Amazon S3 des objets 184

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/S3ObjectInputStream.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

}

Consultez l'exemple complet sur GitHub.

Copie et déplacement d'objets, ou attribution d'un nouveau nom aux objets

Vous pouvez copier un objet d'un compartiment vers un autre en utilisant la méthode du
copyObject client AmazonS3. Elle récupère le nom du compartiment d'où l'objet est copié, l'objet à
copier et le nom du compartiment de destination.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

Code

try {
 s3.copyObject(from_bucket, object_key, to_bucket, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
System.out.println("Done!");

Consultez l'exemple complet sur GitHub.

Note

Vous pouvez utiliser copyObject avec deleteObject pour déplacer ou renommer un
objet, en copiant d'abord l'objet avec un nouveau nom (vous pouvez utiliser le même
compartiment comme source et comme destination), puis en supprimant l'objet de son ancien
emplacement.

Supprimer un objet

Utilisez la deleteObject méthode du client AmazonS3, en lui transmettant le nom du bucket et de
l'objet à supprimer. Le compartiment et la clé d'objet spécifiés doivent exister, sans quoi une erreur
est générée.

Exécution d'opérations sur Amazon S3 des objets 185

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetObject.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/CopyObject.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteObject(bucket_name, object_key);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consultez l'exemple complet sur GitHub.

Suppression simultanée de plusieurs objets

À l'aide de la deleteObjects méthode du client AmazonS3, vous pouvez supprimer plusieurs
objets du même compartiment en transmettant leurs noms à la méthode link :sdk-for-java/v1/
reference/com/amazonaws/services/s3/model/DeleteObjectsRequest.html.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 DeleteObjectsRequest dor = new DeleteObjectsRequest(bucket_name)
 .withKeys(object_keys);
 s3.deleteObjects(dor);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

Exécution d'opérations sur Amazon S3 des objets 186

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObject.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

}

Consultez l'exemple complet sur GitHub.

Gestion des autorisations Amazon S3 d'accès pour les compartiments et les
objets

Vous pouvez utiliser des listes de contrôle d'accès (ACLs) pour les Amazon S3 compartiments et les
objets afin de contrôler avec précision vos ressources. Amazon S3

Note

Ces exemples de code supposent que vous comprenez le contenu de la section Utilisation
du AWS SDK pour Java et que vous avez configuré les AWS informations d'identification par
défaut à l'aide des informations de configuration des informations AWS d'identification et de la
région pour le développement.

Obtention de la liste de contrôle d'accès pour un compartiment

Pour obtenir l'ACL actuelle d'un bucket, appelez la getBucketAcl méthode AmazonS3 en lui
transmettant le nom du bucket à interroger. Cette méthode renvoie un AccessControlListobjet. Pour
obtenir chaque autorisation d'accès de la liste, appelez sa méthode getGrantsAsList, qui renvoie
une liste Java standard d'objets Grant.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {

Gestion des autorisations Amazon S3 d'accès pour les compartiments et les objets 187

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteObjects.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 AccessControlList acl = s3.getBucketAcl(bucket_name);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Consultez l'exemple complet sur GitHub.

Définition de la liste de contrôle d'accès pour un compartiment

Pour ajouter ou modifier des autorisations à une ACL pour un bucket, appelez la méthode
d'AmazonS3. setBucketAcl Il faut un AccessControlListobjet contenant une liste de bénéficiaires et
de niveaux d'accès pour le définir.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 // get the current ACL
 AccessControlList acl = s3.getBucketAcl(bucket_name);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setBucketAcl(bucket_name, acl);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());

Gestion des autorisations Amazon S3 d'accès pour les compartiments et les objets 188

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 System.exit(1);
}

Note

Vous pouvez fournir l'identifiant unique du bénéficiaire directement à l'aide de la classe
Grantee, ou utiliser la EmailAddressGranteeclasse pour définir le bénéficiaire par e-mail,
comme nous l'avons fait ici.

Consultez l'exemple complet sur GitHub.

Obtention de la liste de contrôle d'accès pour un objet

Pour obtenir l'ACL actuelle d'un objet, appelez la getObjectAcl méthode d'AmazonS3 en lui
transmettant le nom du bucket et le nom de l'objet à interroger. Par exemplegetBucketAcl,
cette méthode renvoie un AccessControlListobjet que vous pouvez utiliser pour examiner chaque
subvention.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.Grant;

Code

try {
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 List<Grant> grants = acl.getGrantsAsList();
 for (Grant grant : grants) {
 System.out.format(" %s: %s\n", grant.getGrantee().getIdentifier(),
 grant.getPermission().toString());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);

Gestion des autorisations Amazon S3 d'accès pour les compartiments et les objets 189

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grant.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

}

Consultez l'exemple complet sur GitHub.

Définition de la liste de contrôle d'accès pour un objet

Pour ajouter ou modifier des autorisations à une ACL pour un objet, appelez la méthode
d'AmazonS3. setObjectAcl Il faut un AccessControlListobjet contenant une liste de bénéficiaires et
de niveaux d'accès pour le définir.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.EmailAddressGrantee;

Code

 try {
 // get the current ACL
 AccessControlList acl = s3.getObjectAcl(bucket_name, object_key);
 // set access for the grantee
 EmailAddressGrantee grantee = new EmailAddressGrantee(email);
 Permission permission = Permission.valueOf(access);
 acl.grantPermission(grantee, permission);
 s3.setObjectAcl(bucket_name, object_key, acl);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }
}

Note

Vous pouvez fournir l'identifiant unique du bénéficiaire directement à l'aide de la classe
Grantee, ou utiliser la EmailAddressGranteeclasse pour définir le bénéficiaire par e-mail,
comme nous l'avons fait ici.

Gestion des autorisations Amazon S3 d'accès pour les compartiments et les objets 190

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetAcl.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/AccessControlList.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/Grantee.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/EmailAddressGrantee.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Consultez l'exemple complet sur GitHub.

En savoir plus

• GET Bucket acl dans la référence de Amazon S3 l'API

• PUT Bucket acl dans la référence de Amazon S3 l'API

• GET Object acl dans la référence de Amazon S3 l'API

• PUT Object acl dans la référence de Amazon S3 l'API

Gestion de l'accès aux Amazon S3 compartiments à l'aide de politiques
relatives aux compartiments

Vous pouvez définir, obtenir ou supprimer une politique de compartiment pour gérer l'accès à vos
Amazon S3 compartiments.

Définition d'une stratégie de compartiment

Vous pouvez définir la stratégie de compartiment pour un compartiment S3 :

• Appeler le client AmazonS3 setBucketPolicy et lui fournir un SetBucketPolicyRequest

• En définissant la stratégie directement à l'aide de la surcharge setBucketPolicy qui prend un
nom de compartiment et un texte de stratégie (au format JSON)

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.policy.Policy;
import com.amazonaws.auth.policy.Principal;

Code

 s3.setBucketPolicy(bucket_name, policy_text);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Gestion de l'accès aux Amazon S3 compartiments à l'aide de politiques relatives aux compartiments 191

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetAcl.java
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/SetBucketPolicyRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Utilisation de la classe Policy pour générer ou valider une stratégie

Lorsque vous fournissez une stratégie de compartiment à setBucketPolicy, vous pouvez
effectuer les actions suivantes :

• Spécifier la stratégie directement sous la forme d'une chaîne de texte au format JSON

• Créer la stratégie à l'aide de la classe Policy

En utilisant la classe Policy, vous n'avez pas à vous soucier de formater correctement votre chaîne
de texte. Pour obtenir le texte de stratégie JSON à partir de la classe Policy, utilisez sa méthode
toJson.

Importations

import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.actions.S3Actions;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

 new Statement(Statement.Effect.Allow)
 .withPrincipals(Principal.AllUsers)
 .withActions(S3Actions.GetObject)
 .withResources(new Resource(
 "{region-arn}s3:::" + bucket_name + "/*")));
return bucket_policy.toJson();

La classe Policy fournit également une méthode fromJson qui peut tenter de créer une stratégie
à l'aide d'une chaîne JSON transmise. La méthode valide cette dernière pour s'assurer que le
texte peut être transformé en une structure de stratégie valide et échoue avec une exception
IllegalArgumentException si le texte de la stratégie n'est pas valide.

Policy bucket_policy = null;
try {
 bucket_policy = Policy.fromJson(file_text.toString());
} catch (IllegalArgumentException e) {
 System.out.format("Invalid policy text in file: \"%s\"",

Gestion de l'accès aux Amazon S3 compartiments à l'aide de politiques relatives aux compartiments 192

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/auth/policy/Policy.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 policy_file);
 System.out.println(e.getMessage());
}

Vous pouvez utiliser cette technique pour prévalider une stratégie que vous lisez à partir d'un fichier
ou avec tout autre moyen.

Consultez l'exemple complet sur GitHub.

Obtention d'une stratégie de compartiment

Pour récupérer la politique d'un Amazon S3 compartiment, appelez la getBucketPolicy méthode
du client AmazonS3 en lui transmettant le nom du compartiment dont vous souhaitez obtenir la
politique.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

 try {
 BucketPolicy bucket_policy = s3.getBucketPolicy(bucket_name);
 policy_text = bucket_policy.getPolicyText();
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

Si le compartiment nommé n'existe pas, si vous n'y avez pas accès ou s'il n'a pas de stratégie de
compartiment, une exception AmazonServiceException est levée.

Consultez l'exemple complet sur GitHub.

Suppression d'une stratégie de compartiment

Pour supprimer une politique de compartiment, appelez le client AmazonS3 en lui fournissant le nom
du compartiment. deleteBucketPolicy

Gestion de l'accès aux Amazon S3 compartiments à l'aide de politiques relatives aux compartiments 193

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetBucketPolicy.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetBucketPolicy.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

Code

 try {
 s3.deleteBucketPolicy(bucket_name);
 } catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
 }

Cette méthode aboutit même si le compartiment ne comporte pas encore de stratégie. Si vous
spécifiez un nom de compartiment qui n'existe pas ou si vous n'avez pas accès au compartiment, une
exception AmazonServiceException est levée.

Consultez l'exemple complet sur GitHub.

Plus d'informations

• Présentation du langage de la politique d'accès dans le guide de Amazon Simple Storage Service
l'utilisateur

• Exemples de politiques relatives aux compartiments dans le guide de Amazon Simple Storage
Service l'utilisateur

Utilisation TransferManager pour les Amazon S3 opérations

Vous pouvez utiliser cette AWS SDK pour Java TransferManager classe pour transférer de
manière fiable des fichiers de l'environnement local vers Amazon S3 et pour copier des objets
d'un emplacement S3 à un autre. TransferManagerpeut suivre la progression d'un transfert et
suspendre ou reprendre les chargements et les téléchargements.

Note

Bonne pratique

Utilisation TransferManager pour les Amazon S3 opérations 194

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteBucketPolicy.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Nous vous recommandons d'activer la règle du AbortIncompleteMultipartUploadcycle de vie
sur vos Amazon S3 buckets.
Cette règle indique Amazon S3 d'abandonner les téléchargements partitionnés qui ne
sont pas terminés dans un certain nombre de jours après leur lancement. Lorsque le délai
défini est dépassé, le téléchargement est Amazon S3 interrompu, puis les données de
téléchargement incomplètes sont supprimées.
Pour plus d'informations, consultez la section Configuration du cycle de vie d'un bucket avec
gestion des versions dans le guide de l' Amazon S3 utilisateur.

Note

Ces exemples de code supposent que vous comprenez le contenu de la section Utilisation
du AWS SDK pour Java et que vous avez configuré les AWS informations d'identification par
défaut à l'aide des informations de configuration des informations AWS d'identification et de la
région pour le développement.

Chargement des fichiers et des répertoires

TransferManager peut télécharger des fichiers, des listes de fichiers et des répertoires dans tous les
Amazon S3 compartiments que vous avez créés précédemment.

Rubriques

• Chargement d'un seul fichier

• Chargement d'une liste de fichiers

• Charger un répertoire

Chargement d'un seul fichier

uploadMéthode TransferManager de l'appel, fournissant un nom de Amazon S3 compartiment, un
nom de clé (objet) et un objet Java File standard qui représente le fichier à télécharger.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;

Utilisation TransferManager pour les Amazon S3 opérations 195

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-configuration-bucket-with-versioning.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload xfer = xfer_mgr.upload(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

La méthode upload renvoie immédiatement un résultat, en fournissant un objet Upload à utiliser
pour vérifier l'état du transfert ou attendre qu'il se termine.

Voir Attendre la fin d'un transfert pour plus d'informations sur l'utilisation waitForCompletion de
la shutdownNow méthode permettant de terminer un transfert avec succès avant TransferManager
d'appeler. En attendant que le transfert se termine, vous pouvez interroger ou écouter les mises à
jour relatives à son état et à sa progression. Pour plus d'informations, consultez Obtention de l'état et
de la progression du transfert.

Consultez l'exemple complet sur GitHub.

Chargement d'une liste de fichiers

Pour charger plusieurs fichiers en une seule opération, appelez la méthode uploadFileList de
TransferManager, en fournissant les éléments suivants :

• Un nom de Amazon S3 compartiment

Utilisation TransferManager pour les Amazon S3 opérations 196

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Un préfixe de clé à ajouter devant les noms des objets créés (le chemin au sein du compartiment
dans lequel placer les objets)

• Un objet File qui représente le répertoire relatif à partir duquel créer les chemins de fichier

• Un objet List contenant un ensemble d'objets File à charger

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Code

ArrayList<File> files = new ArrayList<File>();
for (String path : file_paths) {
 files.add(new File(path));
}

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadFileList(bucket_name,
 key_prefix, new File("."), files);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Voir Attendre la fin d'un transfert pour plus d'informations sur l'utilisation waitForCompletion de
la shutdownNow méthode permettant de terminer un transfert avec succès avant TransferManager

Utilisation TransferManager pour les Amazon S3 opérations 197

https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/List.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

d'appeler. En attendant que le transfert se termine, vous pouvez interroger ou écouter les mises à
jour relatives à son état et à sa progression. Pour plus d'informations, consultez Obtention de l'état et
de la progression du transfert.

L'MultipleFileUploadobjet renvoyé par uploadFileList peut être utilisé pour demander l'état ou la
progression du transfert. Pour plus d'informations, consultez les rubriques Sondage de la progression
actuelle d'un transfert et Obtenir la progression du transfert avec un ProgressListener.

Vous pouvez aussi utiliser la méthode MultipleFileUpload de getSubTransfers pour obtenir
les objets Upload individuels de chaque fichier transféré. Pour plus d'informations, consultez
Obtention de la progression des sous-transferts.

Consultez l'exemple complet sur GitHub.

Charger un répertoire

Vous pouvez utiliser TransferManager la uploadDirectory méthode s pour télécharger un
répertoire complet de fichiers, avec la possibilité de copier des fichiers dans des sous-répertoires de
manière récursive. Vous fournissez un nom de Amazon S3 compartiment, un préfixe de clé S3, un
objet File représentant le répertoire local à copier et une boolean valeur indiquant si vous souhaitez
copier les sous-répertoires de manière récursive (vrai ou faux).

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.MultipleFileUpload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;

Code

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 MultipleFileUpload xfer = xfer_mgr.uploadDirectory(bucket_name,
 key_prefix, new File(dir_path), recursive);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);

Utilisation TransferManager pour les Amazon S3 opérations 198

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Voir Attendre la fin d'un transfert pour plus d'informations sur l'utilisation waitForCompletion de
la shutdownNow méthode permettant de terminer un transfert avec succès avant TransferManager
d'appeler. En attendant que le transfert se termine, vous pouvez interroger ou écouter les mises à
jour relatives à son état et à sa progression. Pour plus d'informations, consultez Obtention de l'état et
de la progression du transfert.

L'MultipleFileUploadobjet renvoyé par uploadFileList peut être utilisé pour demander l'état ou la
progression du transfert. Pour plus d'informations, consultez les rubriques Sondage de la progression
actuelle d'un transfert et Obtenir la progression du transfert avec un ProgressListener.

Vous pouvez aussi utiliser la méthode MultipleFileUpload de getSubTransfers pour obtenir
les objets Upload individuels de chaque fichier transféré. Pour plus d'informations, consultez
Obtention de la progression des sous-transferts.

Consultez l'exemple complet sur GitHub.

Téléchargement de fichiers ou de répertoires

Utilisez la TransferManager classe pour télécharger un seul fichier (Amazon S3 objet) ou un
répertoire (un nom de Amazon S3 compartiment suivi d'un préfixe d'objet) depuis Amazon S3.

Rubriques

• Téléchargement d'un seul fichier

• Téléchargement d'un répertoire

Téléchargement d'un seul fichier

Utilisez la download méthode TransferManager's, en fournissant le nom du Amazon S3
compartiment contenant l'objet que vous souhaitez télécharger, le nom de la clé (objet) et un objet
File qui représente le fichier à créer sur votre système local.

Importations

Utilisation TransferManager pour les Amazon S3 opérations 199

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrUpload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Download xfer = xfer_mgr.download(bucket_name, key_name, f);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Voir Attendre la fin d'un transfert pour plus d'informations sur l'utilisation waitForCompletion de
la shutdownNow méthode permettant de terminer un transfert avec succès avant TransferManager
d'appeler. En attendant que le transfert se termine, vous pouvez interroger ou écouter les mises à
jour relatives à son état et à sa progression. Pour plus d'informations, consultez Obtention de l'état et
de la progression du transfert.

Consultez l'exemple complet sur GitHub.

Téléchargement d'un répertoire

Pour télécharger un ensemble de fichiers partageant un préfixe de clé commun (analogue à un
répertoire d'un système de fichiers) à partir de Amazon S3, utilisez cette méthode. TransferManager
downloadDirectory La méthode utilise le nom du Amazon S3 compartiment contenant les objets
que vous souhaitez télécharger, le préfixe d'objet partagé par tous les objets et un objet File qui
représente le répertoire dans lequel télécharger les fichiers sur votre système local. Si le répertoire
nommé n'existe pas encore, il est créé.

Utilisation TransferManager pour les Amazon S3 opérations 200

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java
https://docs.oracle.com/javase/8/docs/api/index.html?java/io/File.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Download;
import com.amazonaws.services.s3.transfer.MultipleFileDownload;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.io.File;

Code

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();

try {
 MultipleFileDownload xfer = xfer_mgr.downloadDirectory(
 bucket_name, key_prefix, new File(dir_path));
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Voir Attendre la fin d'un transfert pour plus d'informations sur l'utilisation waitForCompletion de
la shutdownNow méthode permettant de terminer un transfert avec succès avant TransferManager
d'appeler. En attendant que le transfert se termine, vous pouvez interroger ou écouter les mises à
jour relatives à son état et à sa progression. Pour plus d'informations, consultez Obtention de l'état et
de la progression du transfert.

Consultez l'exemple complet sur GitHub.

Copie d'objets

Pour copier un objet d'un compartiment S3 vers un autre, utilisez la méthode copy de
TransferManager.

Importations

Utilisation TransferManager pour les Amazon S3 opérations 201

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrDownload.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.AmazonServiceException;
import com.amazonaws.services.s3.transfer.Copy;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

Code

System.out.println("Copying s3 object: " + from_key);
System.out.println(" from bucket: " + from_bucket);
System.out.println(" to s3 object: " + to_key);
System.out.println(" in bucket: " + to_bucket);

TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Copy xfer = xfer_mgr.copy(from_bucket, from_key, to_bucket, to_key);
 // loop with Transfer.isDone()
 XferMgrProgress.showTransferProgress(xfer);
 // or block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(xfer);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Consultez l'exemple complet sur GitHub.

Attente de la fin d'un transfert

Si votre application (ou thread) peut bloquer jusqu'à ce que le transfert soit terminé, vous pouvez
utiliser la waitForCompletion méthode de l'interface de transfert pour bloquer jusqu'à ce que le
transfert soit terminé ou qu'une exception se produise.

try {
 xfer.waitForCompletion();
} catch (AmazonServiceException e) {
 System.err.println("Amazon service error: " + e.getMessage());
 System.exit(1);
} catch (AmazonClientException e) {
 System.err.println("Amazon client error: " + e.getMessage());
 System.exit(1);

Utilisation TransferManager pour les Amazon S3 opérations 202

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrCopy.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

} catch (InterruptedException e) {
 System.err.println("Transfer interrupted: " + e.getMessage());
 System.exit(1);
}

Vous pouvez obtenir la progression des transferts si vous interrogez les événements avant
d'appelerwaitForCompletion, si vous implémentez un mécanisme de sondage sur un thread
distinct ou si vous recevez des mises à jour de progression de manière asynchrone à l'aide d'un.
ProgressListener

Consultez l'exemple complet sur GitHub.

Obtention de l'état et de la progression du transfert

Chacune des classes renvoyées par les copy méthodes TransferManagerupload*,download*, et
renvoie une instance de l'une des classes suivantes, selon qu'il s'agit d'une opération à fichier unique
ou à fichiers multiples.

Classe Renvoyée par

Copy copy

Download download

MultipleFileDownload downloadDirectory

Charger upload

MultipleFileUpload uploadFileList , uploadDirectory

Toutes ces classes implémentent l'interface Transfer. Transfer fournit des méthodes utiles pour
obtenir la progression d'un transfert, suspendre ou reprendre le transfert, et obtenir l'état actuel ou
final du transfert.

Rubriques

• Interrogation de la progression en cours d'un transfert

• Suivez la progression du transfert grâce à ProgressListener

• Obtention de la progression des sous-transferts

Utilisation TransferManager pour les Amazon S3 opérations 203

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Copy.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Download.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileDownload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Interrogation de la progression en cours d'un transfert

Cette boucle imprime la progression d'un transfert, examine sa progression en cours lors de
l'exécution et, une fois le transfert terminé, imprime son état final.

Importations

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

// print the transfer's human-readable description
System.out.println(xfer.getDescription());
// print an empty progress bar...
printProgressBar(0.0);
// update the progress bar while the xfer is ongoing.
do {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 return;
 }
 // Note: so_far and total aren't used, they're just for
 // documentation purposes.
 TransferProgress progress = xfer.getProgress();
 long so_far = progress.getBytesTransferred();
 long total = progress.getTotalBytesToTransfer();
 double pct = progress.getPercentTransferred();
 eraseProgressBar();
 printProgressBar(pct);
} while (xfer.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = xfer.getState();
System.out.println(": " + xfer_state);

Utilisation TransferManager pour les Amazon S3 opérations 204

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Consultez l'exemple complet sur GitHub.

Suivez la progression du transfert grâce à ProgressListener

Vous pouvez joindre un ProgressListenerà n'importe quel transfert en utilisant la
addProgressListener méthode de l'interface de transfert.

A ne ProgressListenernécessite qu'une seule méthodeprogressChanged, qui prend un
ProgressEventobjet. Vous pouvez utiliser l'objet pour obtenir le nombre total d'octets de l'opération en
appelant sa méthode getBytes, ainsi que le nombre d'octets transférés jusqu'à présent en appelant
getBytesTransferred.

Importations

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

File f = new File(file_path);
TransferManager xfer_mgr = TransferManagerBuilder.standard().build();
try {
 Upload u = xfer_mgr.upload(bucket_name, key_name, f);
 // print an empty progress bar...
 printProgressBar(0.0);
 u.addProgressListener(new ProgressListener() {
 public void progressChanged(ProgressEvent e) {
 double pct = e.getBytesTransferred() * 100.0 / e.getBytes();
 eraseProgressBar();
 printProgressBar(pct);
 }
 });
 // block with Transfer.waitForCompletion()
 XferMgrProgress.waitForCompletion(u);
 // print the final state of the transfer.

Utilisation TransferManager pour les Amazon S3 opérations 205

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Transfer.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressListener.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/event/ProgressEvent.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 TransferState xfer_state = u.getState();
 System.out.println(": " + xfer_state);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.exit(1);
}
xfer_mgr.shutdownNow();

Consultez l'exemple complet sur GitHub.

Obtention de la progression des sous-transferts

La MultipleFileUploadclasse peut renvoyer des informations sur ses sous-transferts en appelant sa
getSubTransfers méthode. Il renvoie une collection non modifiable d'objets Upload qui fournissent
le statut individuel du transfert et la progression de chaque sous-transfert.

Importations

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.services.s3.transfer.*;
import com.amazonaws.services.s3.transfer.Transfer.TransferState;

import java.io.File;
import java.util.ArrayList;
import java.util.Collection;

Code

Collection<? extends Upload> sub_xfers = new ArrayList<Upload>();
sub_xfers = multi_upload.getSubTransfers();

do {
 System.out.println("\nSubtransfer progress:\n");
 for (Upload u : sub_xfers) {
 System.out.println(" " + u.getDescription());
 if (u.isDone()) {
 TransferState xfer_state = u.getState();
 System.out.println(" " + xfer_state);
 } else {
 TransferProgress progress = u.getProgress();

Utilisation TransferManager pour les Amazon S3 opérations 206

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/MultipleFileUpload.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Collection.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/transfer/Upload.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 double pct = progress.getPercentTransferred();
 printProgressBar(pct);
 System.out.println();
 }
 }

 // wait a bit before the next update.
 try {
 Thread.sleep(200);
 } catch (InterruptedException e) {
 return;
 }
} while (multi_upload.isDone() == false);
// print the final state of the transfer.
TransferState xfer_state = multi_upload.getState();
System.out.println("\nMultipleFileUpload " + xfer_state);

Consultez l'exemple complet sur GitHub.

Plus d'informations

• Clés d'objet dans le guide de Amazon Simple Storage Service l'utilisateur

Configuration d'un Amazon S3 bucket en tant que site Web

Vous pouvez configurer un Amazon S3 bucket pour qu'il se comporte comme un site Web. Pour ce
faire, vous devez définir sa configuration de site web.

Note

Ces exemples de code supposent que vous comprenez le contenu de la section Utilisation
du AWS SDK pour Java et que vous avez configuré les AWS informations d'identification par
défaut à l'aide des informations de configuration des informations AWS d'identification et de la
région pour le développement.

Définition de la configuration de site web d'un compartiment

Pour définir la configuration du site Web d'un Amazon S3 bucket, appelez la
setWebsiteConfiguration méthode AmazonS3 avec le nom du bucket pour lequel définir la

Configuration d'un Amazon S3 bucket en tant que site Web 207

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/XferMgrProgress.java
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

configuration et un BucketWebsiteConfigurationobjet contenant la configuration du site Web du
bucket.

La définition d'un document d'index est obligatoire ; tous les autres paramètres sont facultatifs.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

Code

 String bucket_name, String index_doc, String error_doc) {
BucketWebsiteConfiguration website_config = null;

if (index_doc == null) {
 website_config = new BucketWebsiteConfiguration();
} else if (error_doc == null) {
 website_config = new BucketWebsiteConfiguration(index_doc);
} else {
 website_config = new BucketWebsiteConfiguration(index_doc, error_doc);
}

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.setBucketWebsiteConfiguration(bucket_name, website_config);
} catch (AmazonServiceException e) {
 System.out.format(
 "Failed to set website configuration for bucket '%s'!\n",
 bucket_name);
 System.err.println(e.getErrorMessage());
 System.exit(1);
}

Note

La définition d'une configuration de site web ne modifie pas les autorisations d'accès de
votre compartiment. Pour que vos fichiers soient visibles sur le web, vous devez également

Configuration d'un Amazon S3 bucket en tant que site Web 208

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

définir une stratégie de compartiment qui autorise l'accès en lecture public aux fichiers du
compartiment. Pour plus d'informations, consultez la section Gestion de l'accès aux Amazon
S3 compartiments à l'aide de politiques relatives aux compartiments.

Consultez l'exemple complet sur GitHub.

Obtention de la configuration de site web d'un compartiment

Pour obtenir la configuration du site Web d'un Amazon S3 bucket, appelez la
getWebsiteConfiguration méthode AmazonS3 avec le nom du bucket pour lequel vous
souhaitez récupérer la configuration.

La configuration sera renvoyée sous forme d'BucketWebsiteConfigurationobjet. S'il n'y a pas de
configuration de site web pour le compartiment, la valeur null est renvoyée.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 BucketWebsiteConfiguration config =
 s3.getBucketWebsiteConfiguration(bucket_name);
 if (config == null) {
 System.out.println("No website configuration found!");
 } else {
 System.out.format("Index document: %s\n",
 config.getIndexDocumentSuffix());
 System.out.format("Error document: %s\n",
 config.getErrorDocument());
 }
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());

Configuration d'un Amazon S3 bucket en tant que site Web 209

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/SetWebsiteConfiguration.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/BucketWebsiteConfiguration.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 System.out.println("Failed to get website configuration!");
 System.exit(1);
}

Consultez l'exemple complet sur GitHub.

Suppression de la configuration de site web d'un compartiment

Pour supprimer la configuration du site Web d'un Amazon S3 compartiment, appelez la
deleteWebsiteConfiguration méthode d'AmazonS3 avec le nom du compartiment dont vous
souhaitez supprimer la configuration.

Importations

import com.amazonaws.AmazonServiceException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

Code

final AmazonS3 s3 =
 AmazonS3ClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
try {
 s3.deleteBucketWebsiteConfiguration(bucket_name);
} catch (AmazonServiceException e) {
 System.err.println(e.getErrorMessage());
 System.out.println("Failed to delete website configuration!");
 System.exit(1);
}

Consultez l'exemple complet sur GitHub.

En savoir plus

• Placer le site Web du bucket dans le guide de référence de Amazon S3 l'API

• Site Web GET Bucket dans le guide de référence de Amazon S3 l'API

• Le site Web DELETE Bucket dans la référence de Amazon S3 l'API

Configuration d'un Amazon S3 bucket en tant que site Web 210

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/GetWebsiteConfiguration.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/DeleteWebsiteConfiguration.java
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Utiliser le Amazon S3 chiffrement côté client

Le chiffrement des données à l'aide du client de Amazon S3 chiffrement est un moyen de fournir un
niveau de protection supplémentaire aux informations sensibles que vous stockez. Amazon S3 Les
exemples de cette section montrent comment créer et configurer le client de Amazon S3 chiffrement
pour votre application.

Si vous débutez dans le domaine de la cryptographie, consultez les principes de base de la
cryptographie du guide du développeur AWS KMS pour un aperçu de base des termes et algorithmes
de cryptographie. Pour plus d'informations sur la prise en charge globale de la cryptographie AWS
SDKs, consultez la section AWS Support du SDK pour le chiffrement Amazon S3 côté client dans le
manuel de référence général. Amazon Web Services

Note

Ces exemples de code supposent que vous comprenez le contenu de la section Utilisation
du AWS SDK pour Java et que vous avez configuré les AWS informations d'identification par
défaut à l'aide des informations de configuration des informations AWS d'identification et de la
région pour le développement.

Si vous utilisez la version 1.11.836 ou une version antérieure du AWS SDK pour Java, consultez la
section Migration du client de Amazon S3 chiffrement pour plus d'informations sur la migration de vos
applications vers des versions ultérieures. Si vous ne parvenez pas à effectuer la migration, consultez
cet exemple complet sur GitHub.

Sinon, si vous utilisez la version 1.11.837 ou une version ultérieure du AWS SDK pour Java, explorez
les exemples de rubriques ci-dessous pour utiliser Amazon S3 le chiffrement côté client.

Rubriques

• Amazon S3 chiffrement côté client à l'aide des clés principales du client

• Amazon S3 chiffrement côté client avec clés gérées par AWS KMS

Amazon S3 chiffrement côté client à l'aide des clés principales du client

Les exemples suivants utilisent la classe AmazonS3 EncryptionClient V2Builder pour créer un
Amazon S3 client avec le chiffrement côté client activé. Une fois activé, tous les objets que vous

Utiliser le Amazon S3 chiffrement côté client 211

https://docs.aws.amazon.com/kms/latest/developerguide/crypto-intro.html
https://docs.aws.amazon.com/kms/latest/developerguide/crypto-intro.html
https://docs.aws.amazon.com/general/latest/gr/aws_sdk_cryptography.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/s3/src/main/java/aws/example/s3/S3Encrypt.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

téléchargez à Amazon S3 l'aide de ce client seront chiffrés. Tous les objets que vous obtenez
Amazon S3 en utilisant ce client seront automatiquement déchiffrés.

Note

Les exemples suivants illustrent l'utilisation du chiffrement Amazon S3 côté client avec des
clés principales client gérées par le client. Pour savoir comment utiliser le chiffrement avec
des clés gérées par AWS KMS, consultez la section Chiffrement Amazon S3 côté client avec
des clés gérées par AWS KMS.

Lorsque vous activez le chiffrement côté client, vous pouvez choisir entre deux modes de Amazon
S3 chiffrement : authentifié strict ou authentifié. Les sections suivantes montrent comment
activer chaque type. Pour connaître les algorithmes utilisés par chaque mode, consultez la
CryptoModedéfinition.

Importations requises

Pour ces exemples, vous devez importer les classes suivantes.

Importations

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.StaticEncryptionMaterialsProvider;

Chiffrement authentifié strict

Le chiffrement authentifié strict est le mode par défaut si aucun n'CryptoModeest spécifié.

Pour activer explicitement ce mode, spécifiez la StrictAuthenticatedEncryption valeur dans
la withCryptoConfiguration méthode.

Utiliser le Amazon S3 chiffrement côté client 212

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Note

Pour utiliser le chiffrement authentifié côté client, vous devez inclure le dernier fichier jar
Bouncy Castle dans le chemin de classe de votre application.

Code

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY2, "This is the 2nd content to
 encrypt");

Mode de chiffrement authentifié

Lorsque vous utilisez le mode AuthenticatedEncryption, un algorithme d'encapsulage de clé
amélioré est appliqué pendant le chiffrement. Lorsque vous déchiffrez dans ce mode, l'algorithme
peut vérifier l'intégrité de l'objet déchiffré et générer une exception si la vérification échoue. Pour plus
de détails sur le fonctionnement du chiffrement authentifié, consultez le billet de blog Amazon S3 sur
le chiffrement authentifié côté client.

Note

Pour utiliser le chiffrement authentifié côté client, vous devez inclure le dernier fichier jar
Bouncy Castle dans le chemin de classe de votre application.

Pour activer ce mode, spécifiez la valeur AuthenticatedEncryption dans la méthode
withCryptoConfiguration.

Code

AmazonS3EncryptionV2 s3EncryptionClientV2 =
 AmazonS3EncryptionClientV2Builder.standard()

Utiliser le Amazon S3 chiffrement côté client 213

https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/download/bouncy-castle-java/
https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withRegion(Regions.DEFAULT_REGION)
 .withClientConfiguration(new ClientConfiguration())
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode(CryptoMode.AuthenticatedEncryption))
 .withEncryptionMaterialsProvider(new StaticEncryptionMaterialsProvider(new
 EncryptionMaterials(secretKey)))
 .build();

s3EncryptionClientV2.putObject(bucket_name, ENCRYPTED_KEY1, "This is the 1st content to
 encrypt");

Amazon S3 chiffrement côté client avec clés gérées par AWS KMS

Les exemples suivants utilisent la classe AmazonS3 EncryptionClient V2Builder pour créer un
Amazon S3 client avec le chiffrement côté client activé. Une fois configuré, tous les objets que vous
téléchargez à Amazon S3 l'aide de ce client seront chiffrés. Tous les objets que vous obtenez en
Amazon S3 utilisant ce client sont automatiquement déchiffrés.

Note

Les exemples suivants montrent comment utiliser le chiffrement Amazon S3 côté client avec
des clés gérées par AWS KMS. Pour savoir comment utiliser le chiffrement avec vos propres
clés, consultez la section Chiffrement Amazon S3 côté client à l'aide des clés principales du
client.

Lorsque vous activez le chiffrement côté client, vous pouvez choisir entre deux modes de Amazon
S3 chiffrement : authentifié strict ou authentifié. Les sections suivantes montrent comment
activer chaque type. Pour connaître les algorithmes utilisés par chaque mode, reportez-vous à la
CryptoModedéfinition.

Importations requises

Pour ces exemples, vous devez importer les classes suivantes.

Importations

import com.amazonaws.ClientConfiguration;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.kms.AWSKMS;
import com.amazonaws.services.kms.AWSKMSClientBuilder;

Utiliser le Amazon S3 chiffrement côté client 214

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/AmazonS3EncryptionClientV2Builder.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoMode.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.kms.model.GenerateDataKeyRequest;
import com.amazonaws.services.kms.model.GenerateDataKeyResult;
import com.amazonaws.services.s3.AmazonS3EncryptionClientV2Builder;
import com.amazonaws.services.s3.AmazonS3EncryptionV2;
import com.amazonaws.services.s3.model.CryptoConfigurationV2;
import com.amazonaws.services.s3.model.CryptoMode;
import com.amazonaws.services.s3.model.EncryptionMaterials;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;

Chiffrement authentifié strict

Le chiffrement authentifié strict est le mode par défaut si aucun n'CryptoModeest spécifié.

Pour activer explicitement ce mode, spécifiez la StrictAuthenticatedEncryption valeur dans
la withCryptoConfiguration méthode.

Note

Pour utiliser le chiffrement authentifié côté client, vous devez inclure le dernier fichier jar
Bouncy Castle dans le chemin de classe de votre application.

Code

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.StrictAuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");
System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

Appelez la putObject méthode sur le client Amazon S3 de chiffrement pour télécharger des objets.

Code

s3Encryption.putObject(bucket_name, ENCRYPTED_KEY3, "This is the 3rd content to encrypt
 with a key created in the {console}");

Utiliser le Amazon S3 chiffrement côté client 215

https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Vous pouvez récupérer l'objet en utilisant le même client. Cet exemple appelle la méthode
getObjectAsString pour récupérer la chaîne qui a été stockée.

Code

System.out.println(s3Encryption.getObjectAsString(bucket_name, ENCRYPTED_KEY3));

Mode de chiffrement authentifié

Lorsque vous utilisez le mode AuthenticatedEncryption, un algorithme d'encapsulage de clé
amélioré est appliqué pendant le chiffrement. Lorsque vous déchiffrez dans ce mode, l'algorithme
peut vérifier l'intégrité de l'objet déchiffré et générer une exception si la vérification échoue. Pour plus
de détails sur le fonctionnement du chiffrement authentifié, consultez le billet de blog Amazon S3 sur
le chiffrement authentifié côté client.

Note

Pour utiliser le chiffrement authentifié côté client, vous devez inclure le dernier fichier jar
Bouncy Castle dans le chemin de classe de votre application.

Pour activer ce mode, spécifiez la valeur AuthenticatedEncryption dans la méthode
withCryptoConfiguration.

Code

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Configuration du AWS KMS client

Le client de Amazon S3 chiffrement crée un AWS KMS client par défaut, sauf si un client est
explicitement spécifié.

Pour définir la région de ce AWS KMS client créé automatiquement, définissez le. awsKmsRegion

Code

Utiliser le Amazon S3 chiffrement côté client 216

https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://aws.amazon.com/blogs/developer/amazon-s3-client-side-authenticated-encryption
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/download/bouncy-castle-java/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Region kmsRegion = Region.getRegion(Regions.AP_NORTHEAST_1);

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withAwsKmsRegion(kmsRegion))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Vous pouvez également utiliser votre propre AWS KMS client pour initialiser le client de chiffrement.

Code

AWSKMS kmsClient = AWSKMSClientBuilder.standard()
 .withRegion(Regions.US_WEST_2);
 .build();

AmazonS3EncryptionV2 s3Encryption = AmazonS3EncryptionClientV2Builder.standard()
 .withRegion(Regions.US_WEST_2)
 .withKmsClient(kmsClient)
 .withCryptoConfiguration(new
 CryptoConfigurationV2().withCryptoMode((CryptoMode.AuthenticatedEncryption)))
 .withEncryptionMaterialsProvider(new KMSEncryptionMaterialsProvider(keyId))
 .build();

Amazon SQS Exemples utilisant le AWS SDK pour Java

Cette section fournit des exemples de programmation d'Amazon SQS à l'aide du kit AWS SDK pour
Java.

Note

Les exemples incluent uniquement le code nécessaire pour démontrer chaque technique.
L'exemple de code complet est disponible sur GitHub. À partir de là, vous pouvez télécharger
un fichier source unique ou cloner le référentiel en local pour obtenir tous les exemples à
générer et exécuter.

Rubriques

Amazon SQS Exemples 217

https://aws.amazon.com/sqs/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-java/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Utilisation des files d'attente de Amazon SQS messages

• Envoyer, recevoir et supprimer Amazon SQS des messages

• Activation des longues interrogations pour les files d'attente de Amazon SQS messages

• Configuration du délai de visibilité dans Amazon SQS

• Utilisation des files d'attente de lettres mortes dans Amazon SQS

Utilisation des files d'attente de Amazon SQS messages

Une file de messages est le conteneur logique utilisé pour envoyer des messages de manière fiable
Amazon SQS. Il existe deux types de files d'attente : standard et FIFO (premier entré, premier sorti).
Pour en savoir plus sur les files d'attente et les différences entre ces types, consultez le guide du
Amazon SQS développeur.

Cette rubrique décrit comment créer, répertorier, supprimer et obtenir l'URL d'une Amazon SQS file
d'attente à l'aide du AWS SDK pour Java.

Création d'une file d'attente

Utilisez la createQueue méthode du client AmazonSQS, en fournissant un
CreateQueueRequestobjet qui décrit les paramètres de la file d'attente.

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
CreateQueueRequest create_request = new CreateQueueRequest(QUEUE_NAME)
 .addAttributesEntry("DelaySeconds", "60")
 .addAttributesEntry("MessageRetentionPeriod", "86400");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {

Utilisation des files d'attente de Amazon SQS messages 218

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

Vous pouvez utiliser la forme simplifiée de createQueue, qui nécessite uniquement un nom de file
d'attente, pour créer une file d'attente standard.

sqs.createQueue("MyQueue" + new Date().getTime());

Consultez l'exemple complet sur GitHub.

Affichage de la liste des files d'attente

Pour répertorier les Amazon SQS files d'attente pour votre compte, appelez la méthode du client
AmazonSQS. listQueues

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ListQueuesResult;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
ListQueuesResult lq_result = sqs.listQueues();
System.out.println("Your SQS Queue URLs:");
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

L'utilisation de la surcharge listQueues sans aucun paramètre renvoie toutes les files d'attente.
Vous pouvez filtrer les résultats renvoyés en transmettant un objet ListQueuesRequest.

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Utilisation des files d'attente de Amazon SQS messages 219

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.sqs.model.ListQueuesRequest;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String name_prefix = "Queue";
lq_result = sqs.listQueues(new ListQueuesRequest(name_prefix));
System.out.println("Queue URLs with prefix: " + name_prefix);
for (String url : lq_result.getQueueUrls()) {
 System.out.println(url);
}

Consultez l'exemple complet sur GitHub.

Obtention de l'URL d'une file d'attente

Appelez la méthode du client AmazonSQS. getQueueUrl

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
String queue_url = sqs.getQueueUrl(QUEUE_NAME).getQueueUrl();

Consultez l'exemple complet sur GitHub.

Suppression d'une file d'attente

Fournissez l'URL de la file d'attente à la méthode du client AmazonSQS. deleteQueue

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Code

Utilisation des files d'attente de Amazon SQS messages 220

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();
sqs.deleteQueue(queue_url);

Consultez l'exemple complet sur GitHub.

Plus d'informations

• Comment fonctionnent les Amazon SQS files d'attente dans le guide du Amazon SQS développeur

• CreateQueuedans la référence de Amazon SQS l'API

• GetQueueUrldans la référence de Amazon SQS l'API

• ListQueuesdans la référence de Amazon SQS l'API

• DeleteQueuesdans la référence de Amazon SQS l'API

Envoyer, recevoir et supprimer Amazon SQS des messages

Cette rubrique décrit comment envoyer, recevoir et supprimer Amazon SQS des messages. Les
messages sont toujours livrés à l'aide d'une file d'attente SQS.

Envoi d'un message

Ajoutez un seul message à une Amazon SQS file d'attente en appelant la méthode du client
AmazonSQS. sendMessage Fournissez un SendMessageRequestobjet contenant l'URL de la file
d'attente, le corps du message et la valeur de délai facultative (en secondes).

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.SendMessageRequest;

Code

SendMessageRequest send_msg_request = new SendMessageRequest()
 .withQueueUrl(queueUrl)
 .withMessageBody("hello world")
 .withDelaySeconds(5);
sqs.sendMessage(send_msg_request);

Envoyer, recevoir et supprimer Amazon SQS des messages 221

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/UsingQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueues.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Voir l'exemple complet sur GitHub.

Envoi simultané de plusieurs messages

Vous pouvez envoyer plusieurs message dans une même demande. Pour envoyer plusieurs
messages, utilisez la sendMessageBatch méthode du client AmazonSQS, qui prend une URL
SendMessageBatchRequestcontenant l'URL de la file d'attente et une liste de messages (chacun a
SendMessageBatchRequestEntry) à envoyer. Vous pouvez également définir une valeur de délai
facultative par message.

Importations

import com.amazonaws.services.sqs.model.SendMessageBatchRequest;
import com.amazonaws.services.sqs.model.SendMessageBatchRequestEntry;

Code

SendMessageBatchRequest send_batch_request = new SendMessageBatchRequest()
 .withQueueUrl(queueUrl)
 .withEntries(
 new SendMessageBatchRequestEntry(
 "msg_1", "Hello from message 1"),
 new SendMessageBatchRequestEntry(
 "msg_2", "Hello from message 2")
 .withDelaySeconds(10));
sqs.sendMessageBatch(send_batch_request);

Voir l'exemple complet sur GitHub.

Réception de messages

Récupérez tous les messages actuellement dans la file d'attente en appelant la receiveMessage
méthode du client AmazonSQS et en lui transmettant l'URL de la file d'attente. Les messages sont
renvoyés sous la forme d'une liste d'objets Message.

Importations

import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.SendMessageBatchRequest;

Envoyer, recevoir et supprimer Amazon SQS des messages 222

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SendMessageBatchRequestEntry.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/Message.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Code

List<Message> messages = sqs.receiveMessage(queueUrl).getMessages();

Suppression des messages après réception

Après avoir reçu un message et traité son contenu, supprimez-le de la file d'attente en envoyant
l'identifiant de réception du message et l'URL de la file d'attente à la méthode du deleteMessage
client AmazonSQS.

Code

for (Message m : messages) {
 sqs.deleteMessage(queueUrl, m.getReceiptHandle());
}

Voir l'exemple complet sur GitHub.

Plus d'informations

• Comment fonctionnent les Amazon SQS files d'attente dans le guide du Amazon SQS développeur

• SendMessagedans la référence de Amazon SQS l'API

• SendMessageBatchdans la référence de Amazon SQS l'API

• ReceiveMessagedans la référence de Amazon SQS l'API

• DeleteMessagedans la référence de Amazon SQS l'API

Activation des longues interrogations pour les files d'attente de Amazon
SQS messages

Amazon SQS utilise un court sondage par défaut, interrogeant uniquement un sous-ensemble des
serveurs, sur la base d'une distribution aléatoire pondérée, afin de déterminer si des messages
peuvent être inclus dans la réponse.

Les longs sondages permettent de réduire les coûts d'utilisation en Amazon SQS réduisant le nombre
de réponses vides lorsqu'aucun message n'est disponible pour répondre à une ReceiveMessage
demande envoyée dans une Amazon SQS file d'attente et en éliminant les fausses réponses vides.

Activation des longues interrogations pour les files d'attente de Amazon SQS messages 223

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/SendReceiveMessages.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Note

Vous pouvez définir une fréquence d'interrogation longue comprise entre 1 et 20 secondes.

Activation de l'attente active de longue durée lors de la création d'une file d'attente

Pour permettre un long sondage lors de la création Amazon SQS d'une file d'attente, définissez
l'ReceiveMessageWaitTimeSecondsattribut sur l'CreateQueueRequestobjet avant d'appeler la
méthode de la classe createQueue AmazonSQS.

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;
import com.amazonaws.services.sqs.model.CreateQueueRequest;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Enable long polling when creating a queue
CreateQueueRequest create_request = new CreateQueueRequest()
 .withQueueName(queue_name)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");

try {
 sqs.createQueue(create_request);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

Voir l'exemple complet sur GitHub.

Activation des longues interrogations pour les files d'attente de Amazon SQS messages 224

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/CreateQueueRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Activation de l'attente active de longue durée pour une file d'attente existante

En plus de permettre un long sondage lors de la création d'une file d'attente, vous pouvez également
l'activer sur une file d'attente existante en activant la ReceiveMessageWaitTimeSeconds méthode
« SetQueueAttributesRequestavant d'appeler la classe setQueueAttributes AmazonSQS ».

Importations

import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Code

SetQueueAttributesRequest set_attrs_request = new SetQueueAttributesRequest()
 .withQueueUrl(queue_url)
 .addAttributesEntry("ReceiveMessageWaitTimeSeconds", "20");
sqs.setQueueAttributes(set_attrs_request);

Voir l'exemple complet sur GitHub.

Activation de l'attente active de longue durée pour la réception des messages

Vous pouvez activer les longs sondages lorsque vous recevez un message en définissant le temps
d'attente en secondes sur la méthode ReceiveMessageRequestque vous indiquez à la classe
receiveMessage AmazonSQS.

Note

Vous devez vous assurer que le délai d'expiration des demandes du AWS client est supérieur
à la durée maximale du sondage (20 secondes) afin que vos receiveMessage demandes
ne soient pas expirées en attendant le prochain événement du sondage !

Importations

import com.amazonaws.services.sqs.model.ReceiveMessageRequest;

Code

ReceiveMessageRequest receive_request = new ReceiveMessageRequest()

Activation des longues interrogations pour les files d'attente de Amazon SQS messages 225

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withQueueUrl(queue_url)
 .withWaitTimeSeconds(20);
sqs.receiveMessage(receive_request);

Voir l'exemple complet sur GitHub.

Plus d'informations

• Amazon SQS Longue interrogation dans le guide du Amazon SQS développeur

• CreateQueuedans la référence de Amazon SQS l'API

• ReceiveMessagedans la référence de Amazon SQS l'API

• SetQueueAttributesdans la référence de Amazon SQS l'API

Configuration du délai de visibilité dans Amazon SQS

Lorsqu'un message est reçu Amazon SQS, il reste dans la file d'attente jusqu'à ce qu'il soit supprimé
afin de garantir sa réception. Un message qui a été reçu, mais pas supprimé, est disponible dans les
demandes suivantes après un délai de visibilité donné afin d'empêcher que le message ne soit reçu
plusieurs fois avant d'être traité et supprimé.

Note

Lorsque vous utilisez les files d'attente standard, le délai de visibilité n'est pas une garantie
que vous ne recevrez pas deux fois un même message. Si vous utilisez une file d'attente
standard, assurez-vous que votre code gère le cas où le même message est remis plusieurs
fois.

Définition du délai de visibilité de message pour un seul message

Lorsque vous avez reçu un message, vous pouvez modifier son délai de visibilité en transmettant
son identifiant de réception à la ChangeMessageVisibilityRequestméthode de la classe AmazonSQS.
changeMessageVisibility

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;

Configuration du délai de visibilité dans Amazon SQS 226

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/LongPolling.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Get the receipt handle for the first message in the queue.
String receipt = sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle();

sqs.changeMessageVisibility(queue_url, receipt, timeout);

Consultez l'exemple complet sur GitHub.

Définition simultanée du délai de visibilité de message pour plusieurs messages

Pour définir le délai de visibilité des messages pour plusieurs messages à la fois, créez
une liste d'ChangeMessageVisibilityBatchRequestEntryobjets contenant chacun une
chaîne d'identification unique et un identifiant de réception. Transmettez ensuite la liste à la
changeMessageVisibilityBatch méthode de la classe Amazon SQS client.

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.ChangeMessageVisibilityBatchRequestEntry;
import java.util.ArrayList;
import java.util.List;

Code

AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

List<ChangeMessageVisibilityBatchRequestEntry> entries =
 new ArrayList<ChangeMessageVisibilityBatchRequestEntry>();

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg1",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)

Configuration du délai de visibilité dans Amazon SQS 227

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/ChangeMessageVisibilityBatchRequestEntry.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .getReceiptHandle())
 .withVisibilityTimeout(timeout));

entries.add(new ChangeMessageVisibilityBatchRequestEntry(
 "unique_id_msg2",
 sqs.receiveMessage(queue_url)
 .getMessages()
 .get(0)
 .getReceiptHandle())
 .withVisibilityTimeout(timeout + 200));

sqs.changeMessageVisibilityBatch(queue_url, entries);

Consultez l'exemple complet sur GitHub.

Plus d'informations

• Délai de visibilité indiqué dans le guide du Amazon SQS développeur

• SetQueueAttributesdans la référence de Amazon SQS l'API

• GetQueueAttributesdans la référence de Amazon SQS l'API

• ReceiveMessagedans la référence de Amazon SQS l'API

• ChangeMessageVisibilitydans la référence de Amazon SQS l'API

• ChangeMessageVisibilityBatchdans la référence de Amazon SQS l'API

Utilisation des files d'attente de lettres mortes dans Amazon SQS

Amazon SQS fournit un support pour les files d'attente de lettres mortes. Il s'agit d'une file d'attente
que peuvent cibler d'autres files d'attente (source) pour les messages qui ne sont pas traités avec
succès. Vous pouvez mettre de côté et isoler ces messages dans la file d'attente de lettres mortes
pour déterminer pourquoi leur traitement a échoué.

Création d'une file d'attente de lettres mortes

Une file d'attente de lettres mortes est créée de la même manière qu'une file d'attente normale, mais
elle comporte les restrictions suivantes :

• Une file d'attente de lettres mortes doit avoir le même type de file d'attente (FIFO ou standard) que
la file d'attente source.

Utilisation des files d'attente de lettres mortes dans Amazon SQS 228

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/VisibilityTimeout.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Une file d'attente de lettres mortes doit être créée en utilisant la même région Compte AWS et la
même région que la file d'attente source.

Nous créons ici deux Amazon SQS files d'attente identiques, dont l'une servira de file d'attente des
lettres mortes :

Importations

import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.AmazonSQSException;

Code

final AmazonSQS sqs = AmazonSQSClientBuilder.defaultClient();

// Create source queue
try {
 sqs.createQueue(src_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

// Create dead-letter queue
try {
 sqs.createQueue(dl_queue_name);
} catch (AmazonSQSException e) {
 if (!e.getErrorCode().equals("QueueAlreadyExists")) {
 throw e;
 }
}

Consultez l'exemple complet sur GitHub.

Désignation d'une file d'attente de lettres mortes pour une file d'attente source

Pour désigner une file d'attente de lettres mortes, vous devez commencer par créer une stratégie de
redirection, puis définir la stratégie dans les attributs de la file d'attente. Une stratégie de redirection
est spécifiée au format JSON. Elle indique l'ARN de la file d'attente de lettres mortes et le nombre

Utilisation des files d'attente de lettres mortes dans Amazon SQS 229

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

maximum de fois où le message peut être reçu et non traité avant d'être envoyé dans la file d'attente
de lettres mortes.

Pour définir la politique de redrive pour votre file d'attente source, appelez la setQueueAttributes
méthode de la classe AmazonSQS avec un SetQueueAttributesRequestobjet dont vous avez défini
l'RedrivePolicyattribut avec votre politique de redrive JSON.

Importations

import com.amazonaws.services.sqs.model.GetQueueAttributesRequest;
import com.amazonaws.services.sqs.model.GetQueueAttributesResult;
import com.amazonaws.services.sqs.model.SetQueueAttributesRequest;

Code

String dl_queue_url = sqs.getQueueUrl(dl_queue_name)
 .getQueueUrl();

GetQueueAttributesResult queue_attrs = sqs.getQueueAttributes(
 new GetQueueAttributesRequest(dl_queue_url)
 .withAttributeNames("QueueArn"));

String dl_queue_arn = queue_attrs.getAttributes().get("QueueArn");

// Set dead letter queue with redrive policy on source queue.
String src_queue_url = sqs.getQueueUrl(src_queue_name)
 .getQueueUrl();

SetQueueAttributesRequest request = new SetQueueAttributesRequest()
 .withQueueUrl(src_queue_url)
 .addAttributesEntry("RedrivePolicy",
 "{\"maxReceiveCount\":\"5\", \"deadLetterTargetArn\":\""
 + dl_queue_arn + "\"}");

sqs.setQueueAttributes(request);

Consultez l'exemple complet sur GitHub.

Plus d'informations

• Utilisation des files d'attente Amazon SQS Dead Letter dans le guide du Amazon SQS développeur

Utilisation des files d'attente de lettres mortes dans Amazon SQS 230

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/model/SetQueueAttributesRequest.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/java/example_code/sqs/src/main/java/aws/example/sqs/DeadLetterQueues.java
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• SetQueueAttributesdans la référence de Amazon SQS l'API

Amazon SWF Exemples d'utilisation du AWS SDK pour Java
Amazon SWFest un service de gestion des flux de travail qui aide les développeurs à créer et à faire
évoluer des flux de travail distribués qui peuvent comporter des étapes parallèles ou séquentielles
comprenant des activités, des flux de travail secondaires ou même des tâches Lambda.

Il existe deux manières de travailler avec Amazon SWF le : AWS SDK pour Java en utilisant l'objet
client SWF ou en utilisant l'objet AWS Flow Framework pour Java. Le AWS Flow Framework for
Java est plus difficile à configurer au départ, car il utilise beaucoup d'annotations et repose sur des
bibliothèques supplémentaires telles que AspectJ et le Spring Framework. Toutefois, pour les projets
complexes ou de grande envergure, vous économiserez du temps de codage en utilisant le AWS
Flow Framework pour Java. Pour plus d'informations, consultez le guide du développeur AWS Flow
Framework pour Java.

Cette section fournit des exemples de programmation Amazon SWF utilisant directement le AWS
SDK pour Java client.

Rubriques

• Notions de base sur SWF

• Création d'une Amazon SWF application simple

• Lambda Tâches

• Arrêt normal des travaux d'activité et de flux de travail

• Enregistrement de domaines

• Affichage des domaines

Notions de base sur SWF

Il s'agit de modèles généraux d' Amazon SWF utilisation du AWS SDK pour Java. Ils sont
principalement destinés à servir de référence. Pour un didacticiel d'introduction plus complet, voir
Création d'une Amazon SWF application simple.

Dépendances

Amazon SWF Les applications de base nécessiteront les dépendances suivantes, qui sont incluses
dans AWS SDK pour Java :

Amazon SWF Exemples 231

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://aws.amazon.com/swf/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• aws-java-sdk-1.12.*.jar

• commons-logging-1.2.*.jar

• httpclient-4.3.*.jar

• httpcore-4.3.*.jar

• jackson-annotations-2.12.*.jar

• jackson-core-2.12.*.jar

• jackson-databind-2.12.*.jar

• joda-time-2.8.*.jar

Note

Les numéros de version de ces packages varient en fonction de la version du SDK dont
vous disposez, mais les versions fournies avec le SDK ont été testées pour en vérifier la
compatibilité et sont celles que vous devez utiliser.

AWS Flow Framework pour les applications Java, une configuration supplémentaire et des
dépendances supplémentaires sont nécessaires. Consultez le guide du développeur AWS Flow
Framework pour Java pour plus d'informations sur l'utilisation du framework.

Importations

En général, vous pouvez utiliser les importations suivantes pour le développement du code :

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

Une bonne pratique consiste néanmoins à importer uniquement les classes dont vous avez besoin.
Vous vous retrouverez probablement à spécifier des classes particulières dans l'espace de travail
com.amazonaws.services.simpleworkflow.model :

import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

Notions de base sur SWF 232

https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Si vous utilisez le AWS Flow Framework pour Java, vous allez importer des classes depuis
l'com.amazonaws.services.simpleworkflow.flowespace de travail. Par exemple :

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

Note

Le AWS Flow Framework for Java a des exigences supplémentaires au-delà de celles de la
base AWS SDK pour Java. Pour plus d'informations, consultez le guide du développeur AWS
Flow Framework pour Java.

Utilisation de la classe client SWF

Votre interface de base Amazon SWF se fait via les AmazonSimpleWorkflowAsyncClientclasses
AmazonSimpleWorkflowClientor. La principale différence entre les deux classes est que la classe
*AsyncClient renvoie des objets Future pour la programmation simultanée (asynchrone).

AmazonSimpleWorkflowClient swf = AmazonSimpleWorkflowClientBuilder.defaultClient();

Création d'une Amazon SWF application simple

Cette rubrique vous présentera la programmation d'Amazon SWFapplications avec le AWS SDK pour
Java, tout en présentant quelques concepts importants en cours de route.

À propos de l'exemple

L'exemple de projet créera un flux de travail avec une seule activité qui accepte les données de flux
de travail transmises via le AWS cloud (dans la tradition HelloWorld, ce sera le nom de la personne à
saluer), puis imprime un message d'accueil en réponse.

Bien que cela semble très simple à première vue, Amazon SWF les applications se composent d'un
certain nombre de parties qui fonctionnent ensemble :

• Un domaine, utilisé comme conteneur logique pour vos données d'exécution de flux de travail.

• Un ou plusieurs flux de travail représentant des composants de code qui définissent l'ordre logique
de l'exécution des activités du flux de travail et des flux de travail enfants.

Création d'une Amazon SWF application simple 233

https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/Future.html
https://aws.amazon.com/swf/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Un travail de flux de travail, également appelé décideur, qui recherche les tâches de décision et
planifie des activités ou des flux de travail enfants en réponse.

• Une ou plusieurs activités, chacune représentant une unité de travail dans le flux de travail.

• Un travail d'activité qui recherche les tâches d'activité et exécute des méthodes d'activité en
réponse.

• Une ou plusieurs listes de tâches, qui sont des files d'attente maintenues et Amazon SWF utilisées
pour envoyer des demandes aux travailleurs du flux de travail et des activités. Les tâches d'une
liste de tâches destinées aux travaux de flux de travail sont appelées tâches de décision. Celles
destinées aux travaux d'activité sont appelées tâches d'activité.

• Un démarreur de flux de travail qui démarre l'exécution de votre flux de travail.

Dans les coulisses, Amazon SWF orchestre le fonctionnement de ces composants, coordonne
leur flux depuis le AWS cloud, transmet les données entre eux, gère les délais d'expiration et les
notifications de pulsation, et enregistre l'historique d'exécution du flux de travail.

Prérequis

Environnement de développement

L'environnement de développement utilisé dans ce didacticiel comprend les éléments suivants :

• La valeur AWS SDK pour Java.

• Apache Maven (3.3.1).

• JDK 1.7 ou version ultérieure. Ce didacticiel a été développé et testé à l'aide de JDK 1.8.0.

• Un éditeur de texte Java efficace (de votre choix).

Note

Si vous utilisez un système de compilation différent de Maven, vous pouvez toujours créer un
projet en suivant les étapes appropriées à votre environnement et en utilisant les concepts
fournis ici pour suivre. Vous trouverez de plus amples informations sur la configuration et
l'utilisation du AWS SDK pour Java avec différents systèmes de compilation dans Getting
Started.
De même, mais avec plus d'efforts, les étapes indiquées ici peuvent être mises en œuvre à
l'aide de n'importe laquelle AWS SDKs des étapes prises en charge par Amazon SWF.

Création d'une Amazon SWF application simple 234

https://aws.amazon.com/sdk-for-java/
http://maven.apache.org/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Toutes les dépendances externes nécessaires sont incluses dans le AWS SDK pour Java, il n'y a
donc rien d'autre à télécharger.

AWS Accès

Pour suivre correctement ce didacticiel, vous devez avoir accès au portail d' AWS accès, comme
décrit dans la section de configuration de base de ce guide.

Les instructions décrivent comment accéder aux informations d'identification temporaires que vous
copiez et collez dans votre credentials fichier partagé local. Les informations d'identification
temporaires que vous collez doivent être associées à un rôle IAM autorisé à accéder à Amazon
SWF. AWS IAM Identity Center Après avoir collé les informations d'identification temporaires, votre
credentials fichier ressemblera à ce qui suit.

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token=IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZ2luX2IQoJb3JpZVERYLONGSTRINGEXAMPLE

Ces informations d'identification temporaires sont associées au default profil.

Création d'un projet SWF

1. Démarrez un nouveau projet avec Maven :

mvn archetype:generate -DartifactId=helloswf \
-DgroupId=aws.example.helloswf -DinteractiveMode=false

Cela permet de créer un nouveau projet avec une structure de projet Maven standard :

helloswf
pom.xml
src
 ### main
 # ### java
 # ### aws
 # ### example
 # ### helloswf
 # ### App.java
 ### test
 ### ...

Création d'une Amazon SWF application simple 235

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Vous pouvez ignorer ou supprimer le répertoire test et tout ce qu'il contient, car nous ne
l'utiliserons pas pour ce didacticiel. Vous pouvez également supprimer App.java, car nous le
remplacerons par de nouvelles classes.

2. Modifiez le pom.xml fichier du projet et ajoutez le aws-java-sdk-simpleworkflowmodule en ajoutant
une dépendance pour celui-ci dans le <dependencies> bloc.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-simpleworkflow</artifactId>
 <version>1.11.1000</version>
 </dependency>
</dependencies>

3. Assurez-vous que Maven génère votre projet avec JDK 1.7 ou version ultérieure. Ajoutez les
éléments suivants à votre projet (avant ou après le bloc <dependencies>) dans pom.xml :

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.6.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
</build>

Codage du projet

L'exemple de projet est composé de quatre applications distinctes que nous allons examiner une par
une :

• HelloTypes.java --contient les données de domaine, d'activité et de type de flux de travail du projet,
partagées avec les autres composants. Gère également l'enregistrement de ces types auprès de
SWF.

Création d'une Amazon SWF application simple 236

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• ActivityWorker.java --contient le gestionnaire d'activité, qui interroge les tâches d'activité et exécute
les activités en réponse.

• WorkflowWorker.java --contient le gestionnaire de flux de travail (décideur), qui interroge les tâches
de décision et planifie de nouvelles activités.

• WorkflowStarter.java --contient le démarreur du flux de travail, qui lance une nouvelle exécution de
flux de travail, ce qui permettra à SWF de commencer à générer des tâches de décision et de flux
de travail destinées à vos employés.

Étapes communes pour tous les fichiers source

Tous les fichiers que vous créez pour héberger vos classes Java présentent quelques points
communs. Par souci de concision, ces étapes sont implicites chaque fois que vous ajoutez un
nouveau fichier au projet :

1. Créez le fichier dans le répertoire src/main/java/aws/example/helloswf/ du projet.

2. Ajoutez une déclaration package au début de chaque fichier pour déclarer son espace de noms.
L'exemple de projet utilise :

package aws.example.helloswf;

3. Ajoutez import des déclarations pour la AmazonSimpleWorkflowClientclasse et pour plusieurs
classes dans l'espace de com.amazonaws.services.simpleworkflow.model noms. Pour
simplifier, nous utilisons :

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

Enregistrement d'un domaine, et de types de flux de travail et d'activité

Nous allons commencer par créer une nouvelle classe exécutable, HelloTypes.java. Ce fichier
contient des données partagées que les différentes parties de votre flux de travail doivent connaître,
comme le nom et la version des types d'activité et de flux de travail, le nom du domaine et le nom de
la liste de tâches.

Création d'une Amazon SWF application simple 237

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

1. Ouvrez votre éditeur de texte et créez le fichier HelloTypes.java, en ajoutant une déclaration
de package et des déclarations d'importation conformément aux étapes courantes.

2. Déclarez la classe HelloTypes et fournissez-lui des valeurs à utiliser pour vos types d'activité et
de flux de travail enregistrés :

 public static final String DOMAIN = "HelloDomain";
 public static final String TASKLIST = "HelloTasklist";
 public static final String WORKFLOW = "HelloWorkflow";
 public static final String WORKFLOW_VERSION = "1.0";
 public static final String ACTIVITY = "HelloActivity";
 public static final String ACTIVITY_VERSION = "1.0";

Ces valeurs seront utilisées dans l'ensemble du code.

3. Après les déclarations String, créez une instance de la AmazonSimpleWorkflowClientclasse. Il
s'agit de l'interface de base des Amazon SWF méthodes fournies par le AWS SDK pour Java.

private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

L'extrait précédent suppose que des informations d'identification temporaires sont associées
au default profil. Si vous utilisez un autre profil, modifiez le code ci-dessus comme suit et
profile_name remplacez-le par le nom du profil actuel.

private static final AmazonSimpleWorkflow swf =
 AmazonSimpleWorkflowClientBuilder
 .standard()
 .withCredentials(new ProfileCredentialsProvider("profile_name"))
 .withRegion(Regions.DEFAULT_REGION)
 .build();

4. Ajoutez une nouvelle fonction pour enregistrer un domaine SWF. Un domaine est un conteneur
logique pour différents types d'activité et de flux de travail SWF associés. Les composants SWF ne
peuvent communiquer entre eux que s'ils sont situés dans le même domaine.

 try {
 System.out.println("** Registering the domain '" + DOMAIN + "'.");
 swf.registerDomain(new RegisterDomainRequest()
 .withName(DOMAIN)

Création d'une Amazon SWF application simple 238

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .withWorkflowExecutionRetentionPeriodInDays("1"));
 } catch (DomainAlreadyExistsException e) {
 System.out.println("** Domain already exists!");
 }

Lorsque vous enregistrez un domaine, vous lui attribuez un nom (un ensemble de 1 à 256
caractères : /|, à l'exception des caractères de contrôle ou de la chaîne littérale « arn ») et
une période de conservation, qui correspond au nombre de jours pendant lesquels les données
d'historique d'exécution de votre flux de travail Amazon SWF seront conservées une fois
l'exécution terminée. La période de conservation maximale pour les exécutions de flux de travail
est de 90 jours. Pour plus d’informations, consultez RegisterDomainRequest.

Si un domaine portant ce nom existe déjà, un DomainAlreadyExistsExceptionest généré. Comme
cela ne pose aucun problème si le domaine a déjà été créé, nous pouvons ignorer cette exception.

Note

Ce code illustre un schéma courant lorsque vous travaillez avec des AWS SDK
pour Java méthodes. Les données de la méthode sont fournies par une classe de
l'simpleworkflow.modelespace de noms, que vous instanciez et renseignez à l'aide
des méthodes chaînables. 0with*

5. Ajoutez une fonction pour enregistrer un nouveau type d'activité. Une activité représente une unité
de travail de votre flux de travail.

 try {
 System.out.println("** Registering the activity type '" + ACTIVITY +
 "-" + ACTIVITY_VERSION + "'.");
 swf.registerActivityType(new RegisterActivityTypeRequest()
 .withDomain(DOMAIN)
 .withName(ACTIVITY)
 .withVersion(ACTIVITY_VERSION)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskScheduleToStartTimeout("30")
 .withDefaultTaskStartToCloseTimeout("600")
 .withDefaultTaskScheduleToCloseTimeout("630")
 .withDefaultTaskHeartbeatTimeout("10"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Activity type already exists!");
 }

Création d'une Amazon SWF application simple 239

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Un type d'activité est identifié par un nom et une version, qui sont utilisés pour identifier l'activité
de façon unique parmi toutes les autres activités du domaine dans lequel cette activité est
enregistrée. Les activités contiennent également différents paramètres facultatifs, comme
la liste de tâches par défaut utilisée pour recevoir des tâches et des données provenant de
SWF, ainsi que différents délais d'expiration permettant d'appliquer des contraintes quant à
la durée de l'exécution de différentes parties de l'activité. Pour plus d’informations, consultez
RegisterActivityTypeRequest.

Note

Toues les valeurs de délai sont spécifiées en secondes. Consultez la section Types
Amazon SWF de délais pour une description complète de l'impact des délais d'expiration
sur l'exécution de vos flux de travail.

Si le type d'activité que vous essayez d'enregistrer existe déjà, un TypeAlreadyExistsExceptionest
généré. Ajoutez une fonction pour enregistrer un nouveau type de flux de travail. Un flux de travail,
également appelé décideur, représente la logique de l'exécution de votre flux de travail.

+

 try {
 System.out.println("** Registering the workflow type '" + WORKFLOW +
 "-" + WORKFLOW_VERSION + "'.");
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
 } catch (TypeAlreadyExistsException e) {
 System.out.println("** Workflow type already exists!");
 }

+

Création d'une Amazon SWF application simple 240

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterActivityTypeRequest.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

À l'instar de types d'activité, les types de flux de travail sont identifiés par un nom et une version, et
sont également associés à des délais d'expiration configurables. Pour plus d’informations, consultez
RegisterWorkflowTypeRequest.

+

Si le type de flux de travail que vous essayez d'enregistrer existe déjà, un
TypeAlreadyExistsExceptionest généré. Enfin, rendez la classe exécutable en lui fournissant une
méthode main qui enregistre à son tour le domaine, le type d'activité et le type de flux de travail :

+

 registerDomain();
 registerWorkflowType();
 registerActivityType();

Vous pouvez créer et exécuter l'application maintenant pour exécuter le script d'enregistrement, ou
continuer à coder les travaux d'activité et de flux de travail. Une fois le domaine, le flux de travail et
l'activité enregistrés, vous n'avez pas besoin de les exécuter à nouveau. Ces types sont conservés
jusqu'à ce que vous les désapprouviez vous-même.

Implémentation du travail d'activité

Une activité est l'unité de travail de base d'un flux de travail. Un flux de travail fournit la logique
en planifiant les activités à exécuter (ou les autres actions à effectuer) en réponse à des tâches
de décision. Un flux de travail classique comporte généralement différentes activités qui peuvent
s'exécuter de façon synchrone ou asynchrone, ou avec une combinaison de ces deux modes.

Le travailleur d'activité est le bit de code qui interroge les tâches d'activité générées par Amazon
SWF en réponse aux décisions du flux de travail. Lorsque ce travail reçoit une tâche d'activité, il
exécute l'activité correspondante et renvoie une réponse de réussite/échec au flux de travail.

Nous allons implémenter un travail d'activité simple qui traite une activité unique.

1. Ouvrez votre éditeur de texte et créez le fichier ActivityWorker.java, en ajoutant une
déclaration de package et des déclarations d'importation conformément aux étapes courantes.

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;

Création d'une Amazon SWF application simple 241

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/TypeAlreadyExistsException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.services.simpleworkflow.model.*;

2. Ajoutez la ActivityWorker classe au fichier et donnez-lui un membre de données pour contenir
un client SWF avec Amazon SWF lequel nous allons interagir :

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

3. Ajoutez la méthode que nous utiliserons comme activité :

private static String sayHello(String input) throws Throwable {
 return "Hello, " + input + "!";
}

L'activité prend simplement une chaîne, la combine en une salutation et renvoie le résultat. Même
si les risques que cette activité lève une exception sont minimes, il est judicieux de concevoir des
activités qui peuvent générer une erreur en cas de problème.

4. Ajoutez une méthode main que nous utiliserons comme méthode d'interrogation des tâches
d'activité. Nous démarrons cette méthode en ajoutant du code pour rechercher des tâches
d'activité dans la liste des tâches :

 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(
 new PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(
 new TaskList().withName(HelloTypes.TASKLIST)));

 String task_token = task.getTaskToken();

L'activité reçoit les tâches Amazon SWF en appelant la pollForActivityTask méthode
du client SWF, en spécifiant le domaine et la liste de tâches à utiliser dans le fichier transmis
PollForActivityTaskRequest.

Une fois qu'une tâche est reçue, nous récupérons un identificateur unique pour celle-ci en
appelant la méthode getTaskToken de la tâche.

Création d'une Amazon SWF application simple 242

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForActivityTaskRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

5. Ensuite, écrivez du code pour traiter les tâches qui arrivent. Ajoutez ce qui suit à votre méthode
main juste après le code qui recherche la tâche et récupère son jeton.

 if (task_token != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '" +
 task.getInput() + "'.");
 result = sayHello(task.getInput());
 } catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"
 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(task_token)
 .withResult(result));
 } else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(task_token)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }

Si le jeton de la tâche n'est pas null, nous pouvons commencer à exécuter la méthode d'activité
(sayHello) en lui fournissant les données d'entrée qui ont été envoyées avec la tâche.

Si la tâche a abouti (aucune erreur n'a été générée), le travailleur répond au SWF en
appelant la respondActivityTaskCompleted méthode du client SWF avec un
RespondActivityTaskCompletedRequestobjet contenant le jeton de tâche et les données de
résultat de l'activité.

Création d'une Amazon SWF application simple 243

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskCompletedRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

En revanche, si la tâche échoue, nous répondons en appelant la respondActivityTaskFailed
méthode avec un RespondActivityTaskFailedRequestobjet, en lui transmettant le jeton de tâche et
les informations relatives à l'erreur.

Note

Cette activité ne s'arrêtera pas correctement si elle est supprimée. Même si cela dépasse le
cadre de ce didacticiel, une autre implémentation de ce travail d'activité est fournie dans la
rubrique connexe Arrêt normal des travaux d'activité et de flux de travail.

Implémentation du travail de flux de travail

La logique de flux de travail est située dans un élément de code appelé travail de flux de travail.
Le responsable du flux de travail interroge les tâches décisionnelles envoyées par le domaine,
et Amazon SWF dans la liste de tâches par défaut, auprès duquel le type de flux de travail a été
enregistré.

Lorsque le travail de flux de travail reçoit une tâche, il prend une décision (il s'agit généralement de
décider s'il faut ou non planifier une nouvelle activité) et exécute une action appropriée (par exemple,
planifier l'activité).

1. Ouvrez votre éditeur de texte et créez le fichier WorkflowWorker.java, en ajoutant une
déclaration de package et des déclarations d'importation conformément aux étapes courantes.

2. Ajoutez quelques déclarations d'importation supplémentaires au fichier :

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

3. Déclarez la WorkflowWorker classe et créez une instance de la
AmazonSimpleWorkflowClientclasse utilisée pour accéder aux méthodes SWF.

 private static final AmazonSimpleWorkflow swf =

Création d'une Amazon SWF application simple 244

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RespondActivityTaskFailedRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();

4. Ajoutez la méthode main. Cette méthode exécute une boucle continue en recherchant
les tâches de décision à l'aide de la méthode pollForDecisionTask du client SWF. Le
PollForDecisionTaskRequestfournit les détails.

 PollForDecisionTaskRequest task_request =
 new PollForDecisionTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST));

 while (true) {
 System.out.println(
 "Polling for a decision task from the tasklist '" +
 HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 DecisionTask task = swf.pollForDecisionTask(task_request);

 String taskToken = task.getTaskToken();
 if (taskToken != null) {
 try {
 executeDecisionTask(taskToken, task.getEvents());
 } catch (Throwable th) {
 th.printStackTrace();
 }
 }
 }

Une fois qu'une tâche est reçue, nous appelons sa méthode getTaskToken qui renvoie une
chaîne permettant d'identifier la tâche. Si le jeton renvoyé ne l'est pasnull, nous le traitons
ensuite dans la executeDecisionTask méthode, en lui transmettant le jeton de tâche et la liste
des HistoryEventobjets envoyés avec la tâche.

5. Ajoutez la méthode executeDecisionTask, en prenant le jeton de la tâche (un élément
String) et la liste HistoryEvent.

 List<Decision> decisions = new ArrayList<Decision>();
 String workflow_input = null;
 int scheduled_activities = 0;
 int open_activities = 0;

Création d'une Amazon SWF application simple 245

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/PollForDecisionTaskRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 boolean activity_completed = false;
 String result = null;

Nous configurons également des membres de données pour suivre des éléments comme :

• Une liste d'objets Decision utilisés pour signaler les résultats du traitement de la tâche.

• Une chaîne pour contenir les entrées du flux de travail fournies par l'événement
WorkflowExecutionStarted « »

• Un comptage des activités planifiées et ouvertes (en cours d'exécution) pour éviter de planifier la
même activité lorsque celle-ci a déjà été planifiée ou est en cours d'exécution.

• Une valeur booléenne pour indiquer que l'activité est terminée.

• Une chaîne pour stocker les résultats de l'activité, qui sera renvoyée en tant que résultat de
notre flux de travail.

6. Ajoutez ensuite du code à executeDecisionTask pour traiter les objets HistoryEvent
qui ont été envoyés avec la tâche, en fonction du type d'événement signalé par la méthode
getEventType.

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 switch(event.getEventType()) {
 case "WorkflowExecutionStarted":
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case "ActivityTaskScheduled":
 scheduled_activities++;
 break;
 case "ScheduleActivityTaskFailed":
 scheduled_activities--;
 break;
 case "ActivityTaskStarted":
 scheduled_activities--;
 open_activities++;
 break;
 case "ActivityTaskCompleted":
 open_activities--;
 activity_completed = true;
 result = event.getActivityTaskCompletedEventAttributes()

Création d'une Amazon SWF application simple 246

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 .getResult();
 break;
 case "ActivityTaskFailed":
 open_activities--;
 break;
 case "ActivityTaskTimedOut":
 open_activities--;
 break;
 }
}
System.out.println("]");

Dans le cadre de notre flux de travail, voici les éléments qui présentent le plus d'intérêt pour nous :

• l'événement « WorkflowExecutionStarted », qui indique que l'exécution du flux de travail a
commencé (ce qui signifie généralement que vous devez exécuter la première activité du flux
de travail) et qui fournit l'entrée initiale fournie au flux de travail. Dans ce cas, il s'agit de la partie
nom de notre salutation. Cet événement est donc enregistré dans une chaîne à utiliser lors de la
planification de l'activité à exécuter.

• l'événement ActivityTaskCompleted « », qui est envoyé une fois l'activité planifiée terminée. Les
données d'événement comprennent également la valeur de retour de l'activité terminée. Comme
nous n'avons qu'une seule activité, nous utiliserons cette valeur comme résultat de la totalité du
flux de travail.

Les autres types d'événement peuvent être utilisés s'ils sont nécessaires pour votre flux de
travail. Consultez la description HistoryEventde la classe pour plus d'informations sur chaque type
d'événement.

+ REMARQUE : Les chaînes de caractères dans switch les instructions ont été introduites dans
Java 7. Si vous utilisez une version antérieure de Java, vous pouvez utiliser la EventTypeclasse
pour convertir le résultat String renvoyé par en history_event.getType() une valeur enum,
puis de nouveau en a String si nécessaire :

EventType et = EventType.fromValue(event.getEventType());

1. Après l'instruction switch, ajoutez du code pour répondre avec une décision appropriée en
fonction de la tâche qui a été reçue.

if (activity_completed) {

Création d'une Amazon SWF application simple 247

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.CompleteWorkflowExecution)
 .withCompleteWorkflowExecutionDecisionAttributes(
 new CompleteWorkflowExecutionDecisionAttributes()
 .withResult(result)));
} else {
 if (open_activities == 0 && scheduled_activities == 0) {

 ScheduleActivityTaskDecisionAttributes attrs =
 new ScheduleActivityTaskDecisionAttributes()
 .withActivityType(new ActivityType()
 .withName(HelloTypes.ACTIVITY)
 .withVersion(HelloTypes.ACTIVITY_VERSION))
 .withActivityId(UUID.randomUUID().toString())
 .withInput(workflow_input);

 decisions.add(
 new Decision()
 .withDecisionType(DecisionType.ScheduleActivityTask)
 .withScheduleActivityTaskDecisionAttributes(attrs));
 } else {
 // an instance of HelloActivity is already scheduled or running. Do nothing,
 another
 // task will be scheduled once the activity completes, fails or times out
 }
}

System.out.println("Exiting the decision task with the decisions " + decisions);

• Si l'activité n'a pas encore été planifiée, nous répondons par une ScheduleActivityTask
décision qui fournit des informations sous ScheduleActivityTaskDecisionAttributesforme de
structure sur l'activité à planifier ensuite, y compris les Amazon SWF données à envoyer à
l'activité. Amazon SWF

• Si l'activité est terminée, nous considérons que l'ensemble du flux de travail est terminé
et répondons par une CompletedWorkflowExecution décision, en remplissant une
CompleteWorkflowExecutionDecisionAttributesstructure fournissant des détails sur le flux de
travail terminé. Dans ce cas, nous renvoyons le résultat de l'activité.

Dans les deux cas, les informations de décision sont ajoutées à la liste Decision qui a été
déclarée en haut de la méthode.

Création d'une Amazon SWF application simple 248

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/CompleteWorkflowExecutionDecisionAttributes.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

2. Terminez la tâche de décision en renvoyant la liste des objets Decision collectés pendant le
traitement de la tâche. Ajoutez ce code à la fin de la méthode executeDecisionTask que nous
avons écrite :

swf.respondDecisionTaskCompleted(
 new RespondDecisionTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withDecisions(decisions));

La méthode respondDecisionTaskCompleted du client SWF prend le jeton de tâche qui
identifie la tâche, ainsi que la liste d'objets Decision.

Implémentation du démarreur de flux de travail

Pour finir, nous allons écrire du code pour démarrer l'exécution du flux de travail.

1. Ouvrez votre éditeur de texte et créez le fichier WorkflowStarter.java, en ajoutant une
déclaration de package et des déclarations d'importation conformément aux étapes courantes.

2. Ajoutez la classe WorkflowStarter :

package aws.example.helloswf;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.*;

public class WorkflowStarter {
 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 public static final String WORKFLOW_EXECUTION = "HelloWorldWorkflowExecution";

 public static void main(String[] args) {
 String workflow_input = "{SWF}";
 if (args.length > 0) {
 workflow_input = args[0];
 }

 System.out.println("Starting the workflow execution '" + WORKFLOW_EXECUTION +

Création d'une Amazon SWF application simple 249

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 "' with input '" + workflow_input + "'.");

 WorkflowType wf_type = new WorkflowType()
 .withName(HelloTypes.WORKFLOW)
 .withVersion(HelloTypes.WORKFLOW_VERSION);

 Run run = swf.startWorkflowExecution(new StartWorkflowExecutionRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withWorkflowType(wf_type)
 .withWorkflowId(WORKFLOW_EXECUTION)
 .withInput(workflow_input)
 .withExecutionStartToCloseTimeout("90"));

 System.out.println("Workflow execution started with the run id '" +
 run.getRunId() + "'.");
 }
}

La classe WorkflowStarter est constituée d'une seule méthode, main, qui prend un argument
facultatif transmis dans la ligne de commande en tant que données d'entrée pour le flux de travail.

La méthode client SWF prend un StartWorkflowExecutionRequestobjet en entrée.
startWorkflowExecution Ici, en plus de spécifier le domaine et le type de flux de travail à
exécuter, nous lui fournissons :

• un nom d'exécution de flux de travail lisible par l'utilisateur ;

• des données d'entrée de flux de travail (fournies dans la ligne de commande dans notre
exemple) ;

• une valeur de délai d'expiration qui représente la durée, en secondes, que l'exécution de la
totalité du flux de travail doit respecter.

L'objet Run qui startWorkflowExecution renvoie fournit un ID d'exécution, une valeur qui peut
être utilisée pour identifier cette exécution de flux de travail particulière dans l'historique Amazon
SWF de vos exécutions de flux de travail.

+ REMARQUE : L'ID d'exécution est généré par Amazon SWF et n'est pas le même que le nom
d'exécution du flux de travail que vous transmettez au démarrage de l'exécution du flux de travail.

Génération de l'exemple

Pour générer l'exemple de projet avec Maven, accédez au répertoire helloswf et tapez :

Création d'une Amazon SWF application simple 250

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/StartWorkflowExecutionRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Run.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

mvn package

Le fichier helloswf-1.0.jar résultant est généré dans le répertoire target.

Exécution de l'exemple

L'exemple est constitué de quatre classes exécutables distinctes qui sont exécutées
indépendamment les unes des autres.

Note

Si vous utilisez un système Linux, macOS ou Unix, vous pouvez tous les exécuter, l'un après
l'autre, dans une seule fenêtre de terminal. Si vous exécutez Windows, vous devez ouvrir
deux instances de ligne de commande supplémentaires et accéder au répertoire helloswf
dans chacune d'entre elles.

Définition du chemin de classe Java

Bien que Maven ait géré les dépendances pour vous, pour exécuter cet exemple, vous devez fournir
la bibliothèque du AWS SDK et ses dépendances sur votre chemin de classe Java. Vous pouvez
définir la variable d'CLASSPATHenvironnement sur l'emplacement des bibliothèques de votre AWS
SDK et sur le third-party/lib répertoire du SDK, qui inclut les dépendances nécessaires :

export CLASSPATH='target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/
lib/*'
java example.swf.hello.HelloTypes

ou utilisez l'-cpoption de la java commande pour définir le chemin de classe lors de l'exécution de
chaque application.

java -cp target/helloswf-1.0.jar:/path/to/sdk/lib/*:/path/to/sdk/third-party/lib/* \
 example.swf.hello.HelloTypes

C'est à vous de décider ce que vous souhaitez utiliser. Si vous n'avez eu aucun problème à créer
le code, essayez d'exécuter les exemples et obtenez une série d'erreurs « NoClassDefFound »,
probablement parce que le chemin de classe n'est pas correctement défini.

Création d'une Amazon SWF application simple 251

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Enregistrement du domaine, et des types de flux de travail et d'activité

Avant d'exécuter vos travaux et le démarreur de flux de travail, vous devez enregistrer le domaine,
ainsi que vos types de flux de travail et d'activité. Le code pour ce faire a été implémenté dans le flux
de travail et les types d'activité d'enregistrement d'un domaine.

Après la génération, et si vous avez défini CLASSPATH, vous pouvez exécuter le code
d'enregistrement en lançant la commande :

 echo 'Supply the name of one of the example classes as an argument.'

Démarrage des travaux d'activité et de flux de travail

Maintenant que les types ont été enregistrés, vous pouvez démarrer les travaux d'activité et de
flux de travail. Ils continueront à s'exécuter et à rechercher des tâches jusqu'à ce qu'elles soient
supprimées. Vous devez donc soit les exécuter dans des fenêtres de terminal distinctes, soit, si vous
utilisez Linux, macOS ou Unix, vous pouvez utiliser l'&opérateur pour que chacun d'eux génère un
processus distinct lors de son exécution.

 echo 'If there are arguments to the class, put them in quotes after the class
 name.'
 exit 1

Si vous exécutez ces commandes dans des fenêtres distinctes, omettez l'opérateur & final dans
chaque ligne.

Démarrage de l'exécution de flux de travail

Maintenant que vos travaux d'activité et de flux de travail exécutent l'interrogation, vous pouvez
démarrer l'exécution du flux de travail. Ce processus s'exécute jusqu'à ce que le flux de travail
renvoie un état terminé. Vous devez l'exécuter dans une nouvelle fenêtre de terminal (sauf si vous
avez exécuté vos travaux en tant que nouveaux processus générés à l'aide de l'opérateur &).

fi

Note

Si vous souhaitez fournir vos propres données d'entrée, qui seront transmises d'abord au flux
de travail, puis à l'activité, ajoutez-les à la ligne de commande. Par exemple :

Création d'une Amazon SWF application simple 252

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

echo "## Running $className..."

Une fois que vous avez démarré l'exécution du flux de travail, vous devez commencer à voir la sortie
fournie par les deux travaux et par l'exécution de flux de travail proprement dite. Lorsque le flux de
travail est terminé, sa sortie est affichée à l'écran.

Exécution de la source pour cet exemple

Vous pouvez parcourir la source complète de cet exemple sur Github dans le aws-java-developer-
guideréférentiel.

Pour plus d'informations

• Les travaux présentés ici peuvent entraîner la perte des tâches s'ils sont fermés alors que
l'interrogation du flux de travail est encore en cours. Pour découvrir comment fermer correctement
les travaux, consultez Arrêt normal des travaux d'activité et de flux de travail.

• Pour en savoir plus Amazon SWF, rendez-vous sur la page d'Amazon SWFaccueil ou consultez le
guide du Amazon SWF développeur.

• Vous pouvez utiliser AWS Flow Framework for Java pour écrire des flux de travail plus complexes
dans un style Java élégant à l'aide d'annotations. Pour en savoir plus, consultez le guide du
développeur AWS Flow Framework pour Java.

Lambda Tâches

En alternative aux Amazon SWF activités ou en conjonction avec celles-ci, vous pouvez utiliser les
fonctions Lambda pour représenter les unités de travail dans vos flux de travail et les planifier de la
même manière que les activités.

Cette rubrique explique comment implémenter des Amazon SWF Lambda tâches à l'aide du AWS
SDK pour Java. Pour plus d'informations sur Lambda les tâches en général, consultez la section
AWS Lambda Tâches du guide du Amazon SWF développeur.

Lambda Tâches 253

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/java/example_code/swf
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://docs.aws.amazon.com/amazonswf/latest/awsflowguide/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Configuration d'un rôle IAM inter-services pour exécuter votre fonction Lambda

Avant de Amazon SWF pouvoir exécuter votre Lambda fonction, vous devez configurer un rôle
IAM pour Amazon SWF autoriser l'exécution de Lambda fonctions en votre nom. Pour obtenir des
informations complètes sur la procédure à suivre, consultez la section AWS Lambda Tâches.

Vous aurez besoin du nom de ressource Amazon (ARN) de ce rôle IAM lorsque vous enregistrez un
flux de travail qui utilisera Lambda des tâches.

Création d'une Lambda fonction

Vous pouvez écrire Lambda des fonctions dans différents langages, y compris Java. Pour obtenir des
informations complètes sur la création, le déploiement et l'utilisation Lambda des fonctions, consultez
le guide du AWS Lambda développeur.

Note

Quelle que soit la langue que vous utilisez pour écrire votre Lambda fonction, celle-ci peut
être planifiée et exécutée par n'importe quel Amazon SWF flux de travail, quelle que soit la
langue dans laquelle le code de votre flux de travail est écrit. Amazon SWF gère les détails
de l'exécution de la fonction et de la transmission des données depuis et vers celle-ci.

Voici une Lambda fonction simple qui pourrait être utilisée à la place de l'activité de création d'une
Amazon SWF application simple.

• Cette version est écrite et peut être saisie directement à l'aide du AWS Management Console:
JavaScript

exports.handler = function(event, context) {
 context.succeed("Hello, " + event.who + "!");
};

• Voici la même fonction écrite en Java, que vous pouvez également déployer et exécuter sur
Lambda :

package example.swf.hellolambda;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.util.json.JSONException;

Lambda Tâches 254

https://docs.aws.amazon.com/amazonswf/latest/developerguide/lambda-task.html
https://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/console/home

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

import com.amazonaws.util.json.JSONObject;

public class SwfHelloLambdaFunction implements RequestHandler<Object, Object> {
 @Override
 public Object handleRequest(Object input, Context context) {
 String who = "{SWF}";
 if (input != null) {
 JSONObject jso = null;
 try {
 jso = new JSONObject(input.toString());
 who = jso.getString("who");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
 return ("Hello, " + who + "!");
 }
}

Note

Pour en savoir plus sur le déploiement de fonctions Java sur Lambda, consultez la section
Création d'un package de déploiement (Java) dans le guide du AWS Lambda développeur.
Vous voudrez également consulter la section intitulée Modèle de programmation pour la
création de Lambda fonctions en Java.

Lambda les fonctions prennent un événement ou un objet d'entrée comme premier paramètre, et
un objet de contexte comme second, qui fournit des informations sur la demande d'exécution de la
Lambda fonction. Cette fonction particulière attend une entrée au format JSON, avec un champ who
défini sur le nom utilisé pour créer la salutation.

Enregistrer un flux de travail à utiliser avec Lambda

Pour qu'un flux de travail Lambda planifie une fonction, vous devez fournir le nom du rôle IAM qui
autorise Amazon SWF l'appel de Lambda fonctions. Vous pouvez le définir lors de l'enregistrement
du flux de travail en utilisant les setDefaultLambdaRole méthodes withDefaultLambdaRole
ou de RegisterWorkflowTypeRequest.

System.out.println("** Registering the workflow type '" + WORKFLOW + "-" +
 WORKFLOW_VERSION

Lambda Tâches 255

https://docs.aws.amazon.com/lambda/latest/dg/lambda-java-how-to-create-deployment-package.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterWorkflowTypeRequest.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 + "'.");
try {
 swf.registerWorkflowType(new RegisterWorkflowTypeRequest()
 .withDomain(DOMAIN)
 .withName(WORKFLOW)
 .withDefaultLambdaRole(lambda_role_arn)
 .withVersion(WORKFLOW_VERSION)
 .withDefaultChildPolicy(ChildPolicy.TERMINATE)
 .withDefaultTaskList(new TaskList().withName(TASKLIST))
 .withDefaultTaskStartToCloseTimeout("30"));
}
catch (TypeAlreadyExistsException e) {

Planifier une Lambda tâche

Planifier une Lambda tâche est similaire à la planification d'une activité. Vous
fournissez une décision avec un « ScheduleLambdaFunction » DecisionTypeet avec
ScheduleLambdaFunctionDecisionAttributes.

running_functions == 0 && scheduled_functions == 0) {
AWSLambda lam = AWSLambdaClientBuilder.defaultClient();
GetFunctionConfigurationResult function_config =
 lam.getFunctionConfiguration(
 new GetFunctionConfigurationRequest()
 .withFunctionName("HelloFunction"));
String function_arn = function_config.getFunctionArn();

ScheduleLambdaFunctionDecisionAttributes attrs =
 new ScheduleLambdaFunctionDecisionAttributes()
 .withId("HelloFunction (Lambda task example)")
 .withName(function_arn)
 .withInput(workflow_input);

decisions.add(

Dans leScheduleLambdaFuntionDecisionAttributes, vous devez fournir un nom, qui est
l'ARN de la Lambda fonction à appeler, et un identifiant, qui est le nom qui Amazon SWF sera utilisé
pour identifier la Lambda fonction dans les journaux d'historique.

Vous pouvez également fournir une entrée facultative pour la Lambda fonction et définir sa valeur
de délai de début à fin, qui est le nombre de secondes pendant lesquelles la Lambda fonction est
autorisée à s'exécuter avant de générer un LambdaFunctionTimedOut événement.

Lambda Tâches 256

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/Decision.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DecisionType.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ScheduleLambdaFunctionDecisionAttributes.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Note

Ce code utilise le AWSLambdaclient pour récupérer l'ARN de la Lambda fonction, en fonction
du nom de la fonction. Vous pouvez utiliser cette technique pour éviter de coder en dur l'ARN
complet (qui inclut votre Compte AWS identifiant) dans votre code.

Gérez les événements de la fonction Lambda dans votre décideur

Lambda les tâches génèrent un certain nombre d'événements sur lesquels vous pouvez
agir lorsque vous recherchez des tâches décisionnelles dans votre flux de travail,
correspondant au cycle de vie de votre Lambda tâche, avec des EventTypevaleurs telles que
LambdaFunctionScheduledLambdaFunctionStarted, etLambdaFunctionCompleted. Si
la Lambda fonction échoue ou prend plus de temps à s'exécuter que le délai d'expiration défini,
vous recevrez un type d'LambdaFunctionTimedOutévénement LambdaFunctionFailed ou,
respectivement.

boolean function_completed = false;
String result = null;

System.out.println("Executing the decision task for the history events: [");
for (HistoryEvent event : events) {
 System.out.println(" " + event);
 EventType event_type = EventType.fromValue(event.getEventType());
 switch(event_type) {
 case WorkflowExecutionStarted:
 workflow_input =
 event.getWorkflowExecutionStartedEventAttributes()
 .getInput();
 break;
 case LambdaFunctionScheduled:
 scheduled_functions++;
 break;
 case ScheduleLambdaFunctionFailed:
 scheduled_functions--;
 break;
 case LambdaFunctionStarted:
 scheduled_functions--;
 running_functions++;
 break;
 case LambdaFunctionCompleted:

Lambda Tâches 257

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/lambda/AWSLambdaClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 running_functions--;
 function_completed = true;
 result = event.getLambdaFunctionCompletedEventAttributes()
 .getResult();
 break;
 case LambdaFunctionFailed:
 running_functions--;
 break;
 case LambdaFunctionTimedOut:
 running_functions--;
 break;

Recevez le résultat de votre Lambda fonction

Lorsque vous recevez un LambdaFunctionCompleted`EventType, you
can retrieve your 0 function’s return value by first calling
`getLambdaFunctionCompletedEventAttributes on HistoryEventpour obtenir un
LambdaFunctionCompletedEventAttributesobjet, puis que vous appelez sa getResult méthode
pour récupérer le résultat de la Lambda fonction :

 LambdaFunctionCompleted:
running_functions--;

Exécution de la source pour cet exemple

Vous pouvez parcourir la source complète : github : `< awsdocs/aws-java-developer-guide/tree/
master/doc_source/snippets/helloswf _lambda/> pour cet exemple sur Github dans le dépôt. aws-
java-developer-guide

Arrêt normal des travaux d'activité et de flux de travail

La rubrique Création d'une Amazon SWF application simple a fourni une implémentation complète
d'une application de flux de travail simple composée d'une application d'enregistrement, d'un
gestionnaire d'activité et de flux de travail et d'un démarreur de flux de travail.

Les classes de travailleurs sont conçues pour fonctionner en continu, en interrogeant les tâches
envoyées Amazon SWF afin de gérer des activités ou de prendre des décisions. Une fois qu'une
demande de sondage est faite, Amazon SWF enregistre le sondeur et tente de lui attribuer une tâche.

Arrêt normal des travaux d'activité et de flux de travail 258

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/EventType.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/HistoryEvent.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/LambdaFunctionCompletedEventAttributes.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Si le travailleur du flux de travail est licencié au cours d'un long sondage, il Amazon SWF peut
toujours essayer d'envoyer une tâche au travailleur licencié, ce qui entraîne une perte de tâche
(jusqu'à ce que la tâche expire).

Un moyen de gérer cette situation consiste à attendre que toutes les demandes d'interrogation
longue envoient un retour avant que le travail ne se termine.

Dans cette rubrique, nous allons réécrire le travail d'activité depuis helloswf, à l'aide des hooks
d'arrêt de Java afin de tenter un arrêt approprié du travail d'activité.

Voici le code complet :

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;

import com.amazonaws.regions.Regions;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.model.ActivityTask;
import com.amazonaws.services.simpleworkflow.model.PollForActivityTaskRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskCompletedRequest;
import com.amazonaws.services.simpleworkflow.model.RespondActivityTaskFailedRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

public class ActivityWorkerWithGracefulShutdown {

 private static final AmazonSimpleWorkflow swf =

 AmazonSimpleWorkflowClientBuilder.standard().withRegion(Regions.DEFAULT_REGION).build();
 private static final CountDownLatch waitForTermination = new CountDownLatch(1);
 private static volatile boolean terminate = false;

 private static String executeActivityTask(String input) throws Throwable {
 return "Hello, " + input + "!";
 }

 public static void main(String[] args) {
 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 try {
 terminate = true;
 System.out.println("Waiting for the current poll request" +

Arrêt normal des travaux d'activité et de flux de travail 259

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 " to return before shutting down.");
 waitForTermination.await(60, TimeUnit.SECONDS);
 }
 catch (InterruptedException e) {
 // ignore
 }
 }
 });
 try {
 pollAndExecute();
 }
 finally {
 waitForTermination.countDown();
 }
 }

 public static void pollAndExecute() {
 while (!terminate) {
 System.out.println("Polling for an activity task from the tasklist '"
 + HelloTypes.TASKLIST + "' in the domain '" +
 HelloTypes.DOMAIN + "'.");

 ActivityTask task = swf.pollForActivityTask(new
 PollForActivityTaskRequest()
 .withDomain(HelloTypes.DOMAIN)
 .withTaskList(new TaskList().withName(HelloTypes.TASKLIST)));

 String taskToken = task.getTaskToken();

 if (taskToken != null) {
 String result = null;
 Throwable error = null;

 try {
 System.out.println("Executing the activity task with input '"
 + task.getInput() + "'.");
 result = executeActivityTask(task.getInput());
 }
 catch (Throwable th) {
 error = th;
 }

 if (error == null) {
 System.out.println("The activity task succeeded with result '"

Arrêt normal des travaux d'activité et de flux de travail 260

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

 + result + "'.");
 swf.respondActivityTaskCompleted(
 new RespondActivityTaskCompletedRequest()
 .withTaskToken(taskToken)
 .withResult(result));
 }
 else {
 System.out.println("The activity task failed with the error '"
 + error.getClass().getSimpleName() + "'.");
 swf.respondActivityTaskFailed(
 new RespondActivityTaskFailedRequest()
 .withTaskToken(taskToken)
 .withReason(error.getClass().getSimpleName())
 .withDetails(error.getMessage()));
 }
 }
 }
 }
}

Dans cette version, le code d'interrogation qui était dans la fonction main de la version d'origine a été
déplacé dans sa propre méthode pollAndExecute.

La main fonction utilise désormais un hook CountDownLatchen conjonction avec un hook d'arrêt
pour faire attendre jusqu'à 60 secondes après la demande de fin du thread avant de le laisser
s'arrêter.

Enregistrement de domaines

Chaque flux de travail et chaque activité Amazon SWFdoivent être exécutés dans un domaine.

1. Créez un nouvel RegisterDomainRequestobjet en lui fournissant au moins le nom de domaine et la
période de conservation de l'exécution du flux de travail (ces deux paramètres sont obligatoires).

2. Appelez la méthode AmazonSimpleWorkflowClient.registerDomain avec l'objet.
RegisterDomainRequest

3. Vérifiez DomainAlreadyExistsExceptionsi le domaine que vous demandez existe déjà (auquel cas,
aucune action n'est généralement requise).

Le code suivant illustre la procédure :

public void register_swf_domain(AmazonSimpleWorkflowClient swf, String name)

Enregistrement de domaines 261

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/CountDownLatch.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/Runtime.html
https://aws.amazon.com/swf/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/RegisterDomainRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#registerDomain-com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainAlreadyExistsException.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

{
 RegisterDomainRequest request = new RegisterDomainRequest().withName(name);
 request.setWorkflowExecutionRetentionPeriodInDays("10");
 try
 {
 swf.registerDomain(request);
 }
 catch (DomainAlreadyExistsException e)
 {
 System.out.println("Domain already exists!");
 }
}

Affichage des domaines

Vous pouvez répertorier les Amazon SWFdomaines associés à votre compte et à votre AWS région
par type d'enregistrement.

1. Créez un ListDomainsRequestobjet et spécifiez le statut d'enregistrement des domaines qui vous
intéressent. Cela est obligatoire.

2. Appelez AmazonSimpleWorkflowClient.ListDomains avec l'objet. ListDomainRequest Les résultats
sont fournis dans un DomainInfosobjet.

3. Appelez getDomainInfosl'objet renvoyé pour obtenir une liste d'DomainInfoobjets.

4. Appelez GetName sur chaque DomainInfoobjet pour obtenir son nom.

Le code suivant illustre la procédure :

public void list_swf_domains(AmazonSimpleWorkflowClient swf)
{
 ListDomainsRequest request = new ListDomainsRequest();
 request.setRegistrationStatus("REGISTERED");
 DomainInfos domains = swf.listDomains(request);
 System.out.println("Current Domains:");
 for (DomainInfo di : domains.getDomainInfos())
 {
 System.out.println(" * " + di.getName());
 }
}

Affichage des domaines 262

https://aws.amazon.com/swf/
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/ListDomainsRequest.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html#listDomains-com.amazonaws.services.simpleworkflow.model.ListDomainsRequest-
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfos.html#getDomainInfos--
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/simpleworkflow/model/DomainInfo.html#getName--

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Exemples de code inclus dans le SDK

Il AWS SDK pour Java est fourni avec des exemples de code illustrant de nombreuses fonctionnalités
du SDK dans des programmes exécutables et constructibles. Vous pouvez les étudier ou les modifier
pour implémenter vos propres AWS solutions à l'aide du AWS SDK pour Java.

Comment obtenir les exemples

Les exemples de AWS SDK pour Java code sont fournis dans le répertoire des exemples du SDK.
Si vous avez téléchargé et installé le SDK à l'aide des informations de la section Configurer le AWS
SDK pour Java, les exemples se trouvent déjà sur votre système.

Vous pouvez également consulter les derniers exemples du AWS SDK pour Java GitHub référentiel,
dans le répertoire src/samples.

Génération et exécution d'exemples à l'aide de la ligne de commande

Les exemples incluent les scripts de génération Ant afin que vous puissiez facilement les générer et
les exécuter à partir de la ligne de commande. Chaque exemple contient aussi un fichier README au
format HTML, qui comporte des informations propres à chaque exemple.

Note

Si vous parcourez l'exemple de code GitHub, cliquez sur le bouton Raw dans l'écran du code
source lorsque vous consultez le fichier README.html de l'exemple. En mode brut, le code
HTML s'affiche comme prévu dans votre navigateur.

Prérequis

Avant d'exécuter l'un des AWS SDK pour Java exemples, vous devez définir vos AWS informations
d'identification dans l'environnement ou avec le AWS CLI, comme indiqué dans Configurer les AWS
informations d'identification et la région pour le développement. Les exemples utilisent le fournisseur
d'informations d'identification par défaut chaque fois que possible. En définissant vos informations
d'identification de cette manière, vous pouvez éviter la pratique risquée qui consiste à les insérer
dans des fichiers du répertoire du code source (où elles peuvent être enregistrées par inadvertance
et partagées publiquement). AWS

Exemples de code inclus dans le SDK 263

https://github.com/aws/aws-sdk-java/tree/master/src/samples
http://ant.apache.org/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Exécution des exemples

1. Accédez au répertoire contenant l'exemple de code. Par exemple, si vous vous trouvez
dans le répertoire racine du téléchargement du AWS SDK et que vous souhaitez exécuter
l'AwsConsoleAppexemple, vous devez taper :

cd samples/AwsConsoleApp

2. Générez et exécutez l'exemple avec Ant. Comme, par défaut, la cible de génération exécute les
deux actions, il vous suffit d'entrer l'instruction suivante :

ant

L'échantillon imprime les informations sur une sortie standard, par exemple :

===

Welcome to the {AWS} Java SDK!

===
You have access to 4 Availability Zones.

You have 0 {EC2} instance(s) running.

You have 13 Amazon SimpleDB domain(s) containing a total of 62 items.

You have 23 {S3} bucket(s), containing 44 objects with a total size of 154767691 bytes.

Génération et exécution des exemples à l'aide de l'IDE Eclipse

Si vous utilisez le AWS Toolkit for Eclipse, vous pouvez également démarrer un nouveau projet dans
Eclipse sur la base du SDK AWS SDK pour Java ou ajouter le SDK à un projet Java existant.

Prérequis

Après l'avoir installé AWS Toolkit for Eclipse, nous vous recommandons de configurer le Toolkit
avec vos informations d'identification de sécurité. Vous pouvez le faire à tout moment en choisissant
Préférences dans le menu Fenêtre d'Eclipse, puis en choisissant la section AWS Boîte à outils.

Génération et exécution des exemples à l'aide de l'IDE Eclipse 264

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Exécution des exemples

1. Ouvrez Eclipse.

2. Créez un nouveau projet AWS Java. Dans Eclipse, dans le menu File (Fichier), choisissez New
(Nouveau), puis cliquez sur Project (Projet). L'Assistant New Project (Nouveau projet) s'ouvre.

3. Développez la AWS catégorie, puis choisissez AWS Java Project.

4. Choisissez Suivant. La page des paramètres du projet s'affiche.

5. Entrez un nom dans la zone Project Name (Nom du projet). Le groupe AWS SDK pour Java
Samples affiche les exemples disponibles dans le SDK, comme décrit précédemment.

6. Sélectionnez les exemples que vous voulez inclure dans votre projet en cochant chaque case
correspondante.

7. Entrez vos AWS informations d'identification. Si vous l'avez déjà configuré AWS Toolkit for Eclipse
avec vos informations d'identification, celles-ci sont automatiquement renseignées.

8. Choisissez Finish (Terminer). Le projet est créé et ajouté au Project Explorer (Explorateur de
projet).

9. Sélectionnez l'exemple de fichier .java que vous voulez exécuter. Par exemple, pour l' Amazon
S3 échantillon, choisissezS3Sample.java.

10.Choisissez Run (Exécuter) dans le menu Run (Exécuter).

11.Cliquez avec le bouton droit sur le projet dans Project Explorer (Explorateur de projet), pointez
vers Build Path (Chemin de génération), puis choisissez Add Libraries (Ajouter les bibliothèques).

12.Choisissez AWS Java SDK, choisissez Next, puis suivez les instructions restantes à l'écran.

Génération et exécution des exemples à l'aide de l'IDE Eclipse 265

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Sécurité pour AWS SDK pour Java
Chez Amazon Web Services (AWS), la sécurité dans le cloud est la priorité principale. En tant que
client AWS , vous bénéficiez d'un centre de données et d'une architecture réseau conçus pour
répondre aux exigences des organisations les plus pointilleuses sur la sécurité. La sécurité est une
responsabilité partagée entre vous AWS et vous. Le modèle de responsabilité partagée décrit cela
comme la sécurité du cloud et la sécurité dans le cloud.

Sécurité du cloud : AWS est chargée de protéger l'infrastructure qui exécute tous les services
proposés dans le AWS cloud et de vous fournir des services que vous pouvez utiliser en toute
sécurité. Notre responsabilité en matière de sécurité est notre priorité absolue AWS, et l'efficacité
de notre sécurité est régulièrement testée et vérifiée par des auditeurs tiers dans le cadre des
programmes de AWS conformité.

Sécurité dans le cloud — Votre responsabilité est déterminée par le AWS service que vous utilisez et
par d'autres facteurs, notamment la sensibilité de vos données, les exigences de votre organisation
et les lois et réglementations applicables.

Ce AWS produit ou service suit le modèle de responsabilité partagée par le biais des services
Amazon Web Services (AWS) spécifiques qu'il prend en charge. Pour obtenir des informations sur
la sécurité des AWS services, consultez la AWS page de documentation sur la sécuritéAWS des
services et les services concernés par les efforts de AWS conformité par programme de conformité.

Rubriques

• Protection des données dans la version AWS SDK pour Java 1.x

• AWS SDK pour Java support pour TLS

• Gestion de l’identité et des accès

• Validation de conformité pour ce AWS produit ou service

• Résilience pour ce AWS produit ou service

• Sécurité de l'infrastructure pour ce AWS produit ou service

• Amazon S3 Migration du client de chiffrement

Protection des données dans la version AWS SDK pour Java 1.x
Le modèle de responsabilité partagée s'applique à la protection des données dans ce AWS produit
ou service. Comme décrit dans ce modèle, AWS est responsable de la protection de l'infrastructure

Protection des données 266

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

mondiale qui gère l'ensemble du AWS cloud. La gestion du contrôle de votre contenu hébergé sur
cette infrastructure est de votre responsabilité. Ce contenu comprend les tâches de configuration
et de gestion de la sécurité des services AWS que vous utilisez. Pour plus d’informations sur
la confidentialité des données, consultez les FAQ sur la confidentialité des données. Pour plus
d'informations sur la protection des données en Europe, consultez le modèle de responsabilitéAWS
partagée et le billet de blog sur le RGPD sur le blog sur la AWS sécurité.

Pour des raisons de protection des données, nous vous recommandons de protéger les
Compte AWS informations d'identification et de configurer des comptes utilisateur individuels avec
Gestion des identités et des accès AWS (IAM). Ainsi, chaque utilisateur se voit attribuer uniquement
les autorisations nécessaires pour exécuter ses tâches. Nous vous recommandons également de
sécuriser vos données comme indiqué ci-dessous :

• Utilisez l’authentification multifactorielle (MFA) avec chaque compte.

• SSL/TLS À utiliser pour communiquer avec AWS les ressources.

• Configurez l'API et la journalisation de l'activité des utilisateurs avec AWS CloudTrail.

• Utilisez des solutions de AWS chiffrement, avec tous les contrôles de sécurité par défaut au sein
AWS des services.

• Utilisez des services de sécurité gérés avancés tels qu'Amazon Macie, qui vous aident à découvrir
et à sécuriser les données personnelles qui y sont stockées. Amazon S3

• Si vous avez besoin de modules cryptographiques validés par la norme FIPS 140-2 pour accéder
AWS via une interface de ligne de commande ou une API, utilisez un point de terminaison FIPS.
Pour plus d’informations sur les points de terminaison FIPS (Federal Information Processing
Standard) disponibles, consultez Federal Information Processing Standard (FIPS) 140-2 (Normes
de traitement de l’information fédérale).

Nous vous recommandons vivement de ne jamais placer d'informations identifiables sensibles, telles
que les numéros de compte de vos clients, dans des champs de formulaire comme Name (Nom).
Cela inclut lorsque vous travaillez avec ce AWS produit ou service ou d'autres AWS services à
l'aide de la console, de l'API ou AWS SDKs. AWS CLI Toutes les données que vous entrez dans ce
AWS produit ou service ou dans d'autres services peuvent être récupérées pour être incluses dans
les journaux de diagnostic. Lorsque vous fournissez une URL à un serveur externe, n'incluez pas
les informations d'identification non chiffrées dans l'URL pour valider votre demande adressée au
serveur.

Protection des données 267

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr
https://aws.amazon.com/compliance/fips

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

AWS SDK pour Java support pour TLS

Les informations suivantes s'appliquent uniquement à l'implémentation Java SSL (l'implémentation
SSL par défaut dans le AWS SDK pour Java). Si vous utilisez une implémentation de SSL différente,
consultez votre implémentation de SSL spécifique pour savoir comment appliquer les versions de
TLS.

Comment vérifier la version de TLS

Consultez la documentation de votre fournisseur de machine virtuelle Java (JVM) pour déterminer
quelles versions de TLS sont prises en charge sur votre plate-forme. Pour certains JVMs, le code
suivant indiquera les versions SSL prises en charge.

System.out.println(Arrays.toString(SSLContext.getDefault().getSupportedSSLParameters().getProtocols()));

Pour voir la liaison SSL en action et quelle version de TLS est utilisée, vous pouvez utiliser la
propriété système javax.net.debug.

java app.jar -Djavax.net.debug=ssl

Note

TLS 1.3 est incompatible avec les versions 1.9.5 à 1.10.31 du SDK for Java. Pour plus
d'informations, consultez le billet de blog suivant.
https://aws.amazon.com/blogs/développeur/tls-1-3- - -1-9-5-to-1-10-31/ incompatibility-with-
aws-sdk for-java-versions

Application d'une version minimale de TLS

Le SDK préfère toujours la dernière version TLS prise en charge par la plateforme et le service. Si
vous souhaitez appliquer une version minimale de TLS spécifique, consultez la documentation de
votre machine virtuelle Java. Pour les applications basées sur OpenJDK JVMs, vous pouvez utiliser
la propriété système. jdk.tls.client.protocols

java app.jar -Djdk.tls.client.protocols=PROTOCOLS

Application d'une version minimale de TLS 268

https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/
https://aws.amazon.com/blogs/developer/tls-1-3-incompatibility-with-aws-sdk-for-java-versions-1-9-5-to-1-10-31/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Consultez la documentation de votre machine virtuelle Java pour connaître les valeurs prises en
charge par PROTOCOLS.

Gestion de l’identité et des accès
Gestion des identités et des accès AWS (IAM) est un outil Service AWS qui permet à un
administrateur de contrôler en toute sécurité l'accès aux AWS ressources. Les administrateurs IAM
contrôlent qui peut être authentifié (connecté) et autorisé (autorisé) à utiliser AWS les ressources.
IAM est un Service AWS outil que vous pouvez utiliser sans frais supplémentaires.

Rubriques

• Public ciblé

• Authentification par des identités

• Gestion des accès à l’aide de politiques

• Comment Services AWS travailler avec IAM

• Résolution des problèmes AWS d'identité et d'accès

Public ciblé

La façon dont vous utilisez Gestion des identités et des accès AWS (IAM) varie en fonction du travail
que vous effectuez. AWS

Utilisateur du service : si vous avez l' Services AWS habitude de faire votre travail, votre
administrateur vous fournit les informations d'identification et les autorisations dont vous avez besoin.
Au fur et à mesure que vous utilisez de nouvelles AWS fonctionnalités pour effectuer votre travail,
vous aurez peut-être besoin d'autorisations supplémentaires. Si vous comprenez bien la gestion
des accès, vous saurez demander les autorisations appropriées à votre administrateur. Si vous
ne pouvez pas accéder à une fonctionnalité dans AWS, consultez Résolution des problèmes AWS
d'identité et d'accès le guide de l'utilisateur du Service AWS que vous utilisez.

Administrateur du service — Si vous êtes responsable des AWS ressources de votre entreprise, vous
avez probablement un accès complet à AWS. C'est à vous de déterminer les AWS fonctionnalités
et les ressources auxquelles les utilisateurs de votre service doivent accéder. Vous devez ensuite
soumettre les demandes à votre administrateur IAM pour modifier les autorisations des utilisateurs
de votre service. Consultez les informations sur cette page pour comprendre les concepts de base
d’IAM. Pour en savoir plus sur la façon dont votre entreprise peut utiliser IAM avec AWS, consultez le
guide de l'utilisateur Service AWS que vous utilisez.

Gestion de l’identité et des accès 269

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Administrateur IAM – Si vous êtes un administrateur IAM, vous souhaiterez peut-être en savoir
plus sur la façon d’écrire des politiques pour gérer l’accès à AWS. Pour consulter des exemples
de politiques AWS basées sur l'identité que vous pouvez utiliser dans IAM, consultez le guide de
l'utilisateur Service AWS que vous utilisez.

Authentification par des identités

L'authentification est la façon dont vous vous connectez à AWS l'aide de vos informations
d'identification. Vous devez être authentifié en tant qu'utilisateur IAM ou en assumant un rôle IAM.
Utilisateur racine d'un compte AWS

Vous pouvez vous connecter en tant qu'identité fédérée à l'aide d'informations d'identification
provenant d'une source d'identité telle que AWS IAM Identity Center (IAM Identity Center), d'une
authentification unique ou d'informations d'identification. Google/Facebook Pour plus d'informations
sur la connexion, consultez la section Comment vous connecter à votre compte Compte AWS dans le
guide de Connexion à AWS l'utilisateur.

Pour l'accès par programmation, AWS fournit un SDK et une CLI pour signer les demandes de
manière cryptographique. Pour plus d'informations, consultez AWS la version 4 de Signature pour les
demandes d'API dans le guide de l'utilisateur IAM.

Compte AWS utilisateur root

Lorsque vous créez un Compte AWS, vous commencez par une seule identité de connexion appelée
utilisateur Compte AWS root qui dispose d'un accès complet à toutes Services AWS les ressources.
Nous vous recommandons vivement de ne pas utiliser l'utilisateur root pour les tâches quotidiennes.
Pour les tâches nécessitant des informations d'identification de l'utilisateur root, consultez la section
Tâches nécessitant des informations d'identification de l'utilisateur root dans le guide de l'utilisateur
IAM.

Identité fédérée

Il est recommandé d'obliger les utilisateurs humains à utiliser la fédération avec un fournisseur
d'identité pour accéder à Services AWS l'aide d'informations d'identification temporaires.

Une identité fédérée est un utilisateur provenant de l'annuaire de votre entreprise, de votre
fournisseur d'identité Web ou Directory Service qui y accède à Services AWS l'aide d'informations
d'identification provenant d'une source d'identité. Les identités fédérées assument des rôles
fournissant des informations d'identification temporaires.

Authentification par des identités 270

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Pour une gestion centralisée des accès, nous vous recommandons AWS IAM Identity Center. Pour
plus d'informations, consultez Qu'est-ce que IAM Identity Center ? dans le Guide de l'utilisateur AWS
IAM Identity Center .

Utilisateurs et groupes IAM

Un utilisateur IAM est une identité dotée d'autorisations spécifiques pour une seule personne ou
application. Nous recommandons d'utiliser des informations d'identification temporaires plutôt que
des utilisateurs IAM dotés d'informations d'identification à long terme. Pour plus d'informations,
voir Exiger des utilisateurs humains qu'ils utilisent la fédération avec un fournisseur d'identité pour
accéder à AWS l'aide d'informations d'identification temporaires dans le guide de l'utilisateur IAM.

Un groupe IAM définit un ensemble d'utilisateurs IAM et facilite la gestion des autorisations pour de
grands groupes d'utilisateurs. Pour plus d'informations, consultez la section Cas d'utilisation pour les
utilisateurs IAM dans le guide de l'utilisateur IAM.

Rôles IAM

Un rôle IAM est une identité dotée d'autorisations spécifiques qui fournit des informations
d'identification temporaires. Vous pouvez assumer un rôle en passant d'un rôle d'utilisateur à un rôle
IAM (console) ou en appelant une opération d' AWS API AWS CLI ou d'API. Pour plus d'informations,
consultez la section Méthodes pour assumer un rôle dans le Guide de l'utilisateur IAM.

Les rôles IAM sont utiles pour l'accès des utilisateurs fédérés, les autorisations temporaires des
utilisateurs IAM, les accès entre comptes, les accès entre services et pour les applications exécutées
sur Amazon. EC2 Pour plus d’informations, consultez Accès intercompte aux ressources dans IAM
dans le Guide de l’utilisateur IAM.

Gestion des accès à l’aide de politiques

Vous contrôlez l'accès en AWS créant des politiques et en les associant à AWS des identités ou à
des ressources. Une politique définit les autorisations lorsqu'elles sont associées à une identité ou
à une ressource. AWS évalue ces politiques lorsqu'un directeur fait une demande. La plupart des
politiques sont stockées AWS sous forme de documents JSON. Pour plus d'informations sur les
documents de politique JSON, consultez la section Présentation des politiques JSON dans le guide
de l'utilisateur IAM.

À l'aide de politiques, les administrateurs précisent qui a accès à quoi en définissant quel principal
peut effectuer des actions sur quelles ressources et dans quelles conditions.

Gestion des accès à l’aide de politiques 271

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Par défaut, les utilisateurs et les rôles ne disposent d’aucune autorisation. Un administrateur IAM
crée des politiques IAM et les ajoute aux rôles, que les utilisateurs peuvent ensuite assumer.
Les politiques IAM définissent les autorisations quelle que soit la méthode utilisée pour effectuer
l'opération.

Politiques basées sur l’identité

Les politiques basées sur l'identité sont des documents de politique d'autorisation JSON que
vous attachez à une identité (utilisateur, groupe ou rôle). Ces politiques contrôlent les actions
que les identités peuvent effectuer, sur quelles ressources et dans quelles conditions. Pour
découvrir comment créer une politique basée sur l’identité, consultez Définition d’autorisations IAM
personnalisées avec des politiques gérées par le client dans le Guide de l’utilisateur IAM.

Les politiques basées sur l'identité peuvent être des politiques intégrées (intégrées directement dans
une seule identité) ou des politiques gérées (politiques autonomes associées à plusieurs identités).
Pour savoir comment choisir entre des politiques gérées et des politiques intégrées, voir Choisir entre
des politiques gérées et des politiques intégrées dans le Guide de l'utilisateur IAM.

Politiques basées sur les ressources

Les politiques basées sur les ressources sont des documents de politique JSON que vous attachez
à une ressource. Les exemples incluent les politiques de confiance des rôles IAM et les politiques
relatives aux compartiments Amazon S3. Dans les services qui sont compatibles avec les politiques
basées sur les ressources, les administrateurs de service peuvent les utiliser pour contrôler l’accès
à une ressource spécifique. Vous devez spécifier un principal dans une politique basée sur les
ressources.

Les politiques basées sur les ressources sont des politiques en ligne situées dans ce service.
Vous ne pouvez pas utiliser les politiques AWS gérées par IAM dans une stratégie basée sur les
ressources.

Listes de contrôle d'accès (ACLs)

Les listes de contrôle d'accès (ACLs) contrôlent les principaux (membres du compte, utilisateurs
ou rôles) autorisés à accéder à une ressource. ACLs sont similaires aux politiques basées sur les
ressources, bien qu'elles n'utilisent pas le format de document de politique JSON.

Amazon S3 et AWS WAF Amazon VPC sont des exemples de services compatibles. ACLs Pour en
savoir plus ACLs, consultez la présentation de la liste de contrôle d'accès (ACL) dans le guide du
développeur Amazon Simple Storage Service.

Gestion des accès à l’aide de politiques 272

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Autres types de politique

AWS prend en charge des types de politiques supplémentaires qui peuvent définir les autorisations
maximales accordées par les types de politiques les plus courants :

• Limites d'autorisations : définissez le nombre maximum d'autorisations qu'une politique basée sur
l'identité peut accorder à une entité IAM. Pour plus d’informations, consultez Limites d’autorisations
pour les entités IAM dans le Guide de l’utilisateur IAM.

• Politiques de contrôle des services (SCPs) — Spécifiez les autorisations maximales pour une
organisation ou une unité organisationnelle dans AWS Organizations. Pour plus d'informations,
veuillez consulter Politiques de contrôle de service du Guide de l'utilisateur AWS Organizations .

• Politiques de contrôle des ressources (RCPs) : définissez le maximum d'autorisations disponibles
pour les ressources de vos comptes. Pour plus d'informations, voir Politiques de contrôle des
ressources (RCPs) dans le guide de AWS Organizations l'utilisateur.

• Politiques de session : politiques avancées transmises en tant que paramètre lors de la création
d'une session temporaire pour un rôle ou un utilisateur fédéré. Pour plus d’informations, consultez
Politiques de session dans le Guide de l’utilisateur IAM.

Plusieurs types de politique

Lorsque plusieurs types de politiques s’appliquent à la requête, les autorisations en résultant
sont plus compliquées à comprendre. Pour savoir comment AWS déterminer s'il faut autoriser
une demande lorsque plusieurs types de politiques sont impliqués, consultez la section Logique
d'évaluation des politiques dans le guide de l'utilisateur IAM.

Comment Services AWS travailler avec IAM

Pour obtenir une vue d'ensemble du Services AWS fonctionnement de la plupart des fonctionnalités
IAM, consultez les AWS services compatibles avec IAM dans le guide de l'utilisateur IAM.

Pour savoir comment utiliser un service spécifique Service AWS avec IAM, consultez la section
relative à la sécurité du guide de l'utilisateur du service concerné.

Résolution des problèmes AWS d'identité et d'accès

Utilisez les informations suivantes pour vous aider à diagnostiquer et à résoudre les problèmes
courants que vous pouvez rencontrer lorsque vous travaillez avec AWS IAM.

Comment Services AWS travailler avec IAM 273

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Rubriques

• Je ne suis pas autorisé à effectuer une action dans AWS

• Je ne suis pas autorisé à effectuer iam : PassRole

• Je souhaite permettre à des personnes extérieures Compte AWS à moi d'accéder à mes AWS
ressources

Je ne suis pas autorisé à effectuer une action dans AWS

Si vous recevez une erreur qui indique que vous n’êtes pas autorisé à effectuer une action, vos
politiques doivent être mises à jour afin de vous permettre d’effectuer l’action.

L’exemple d’erreur suivant se produit quand l’utilisateur IAM mateojackson tente d’utiliser la
console pour afficher des informations détaillées sur une ressource my-example-widget fictive,
mais ne dispose pas des autorisations awes:GetWidget fictives.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

Dans ce cas, la politique qui s’applique à l’utilisateur mateojackson doit être mise à jour pour
autoriser l’accès à la ressource my-example-widget à l’aide de l’action awes:GetWidget.

Si vous avez besoin d'aide, contactez votre AWS administrateur. Votre administrateur vous a fourni
vos informations d’identification de connexion.

Je ne suis pas autorisé à effectuer iam : PassRole

Si vous recevez une erreur selon laquelle vous n’êtes pas autorisé à exécuter iam:PassRole
l’action, vos stratégies doivent être mises à jour afin de vous permettre de transmettre un rôle à AWS.

Certains vous Services AWS permettent de transmettre un rôle existant à ce service au lieu de créer
un nouveau rôle de service ou un rôle lié à un service. Pour ce faire, un utilisateur doit disposer des
autorisations nécessaires pour transmettre le rôle au service.

L’exemple d’erreur suivant se produit lorsqu’un utilisateur IAM nommé marymajor essaie d’utiliser
la console pour exécuter une action dans AWS. Toutefois, l'action nécessite que le service ait
des autorisations accordées par une fonction de service. Mary ne dispose pas des autorisations
nécessaires pour transférer le rôle au service.

Résolution des problèmes AWS d'identité et d'accès 274

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

Dans ce cas, les politiques de Mary doivent être mises à jour pour lui permettre d’exécuter l’action
iam:PassRole.

Si vous avez besoin d'aide, contactez votre AWS administrateur. Votre administrateur vous a fourni
vos informations d’identification de connexion.

Je souhaite permettre à des personnes extérieures Compte AWS à moi d'accéder à
mes AWS ressources

Vous pouvez créer un rôle que les utilisateurs provenant d’autres comptes ou les personnes
extérieures à votre organisation pourront utiliser pour accéder à vos ressources. Vous pouvez
spécifier qui est autorisé à assumer le rôle. Pour les services qui prennent en charge les politiques
basées sur les ressources ou les listes de contrôle d'accès (ACLs), vous pouvez utiliser ces
politiques pour autoriser les utilisateurs à accéder à vos ressources.

Pour plus d’informations, consultez les éléments suivants :

• Pour savoir si ces fonctionnalités sont prises AWS en charge, consultezComment Services AWS
travailler avec IAM.

• Pour savoir comment fournir l'accès à vos ressources sur celles Comptes AWS que vous
possédez, consultez la section Fournir l'accès à un utilisateur IAM dans un autre utilisateur
Compte AWS que vous possédez dans le Guide de l'utilisateur IAM.

• Pour savoir comment fournir l'accès à vos ressources à des tiers Comptes AWS, consultez la
section Fournir un accès à des ressources Comptes AWS détenues par des tiers dans le guide de
l'utilisateur IAM.

• Pour savoir comment fournir un accès par le biais de la fédération d’identité, consultez Fournir un
accès à des utilisateurs authentifiés en externe (fédération d’identité) dans le Guide de l’utilisateur
IAM.

• Pour en savoir plus sur la différence entre l’utilisation des rôles et des politiques basées sur les
ressources pour l’accès intercompte, consultez Accès intercompte aux ressources dans IAM dans
le Guide de l’utilisateur IAM.

Résolution des problèmes AWS d'identité et d'accès 275

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Validation de conformité pour ce AWS produit ou service

Pour savoir si un programme Services AWS de conformité Service AWS s'inscrit dans le champ
d'application de programmes de conformité spécifiques, consultez Services AWS la section de
conformité et sélectionnez le programme de conformité qui vous intéresse. Pour des informations
générales, voir Programmes de AWS conformité Programmes AWS de .

Vous pouvez télécharger des rapports d'audit tiers à l'aide de AWS Artifact. Pour plus d'informations,
voir Téléchargement de rapports dans AWS Artifact .

Votre responsabilité en matière de conformité lors de l'utilisation Services AWS est déterminée
par la sensibilité de vos données, les objectifs de conformité de votre entreprise et les lois et
réglementations applicables. Pour plus d'informations sur votre responsabilité en matière de
conformité lors de l'utilisation Services AWS, consultez AWS la documentation de sécurité.

Ce AWS produit ou service suit le modèle de responsabilité partagée par le biais des services
Amazon Web Services (AWS) spécifiques qu'il prend en charge. Pour obtenir des informations sur
la sécurité des AWS services, consultez la AWS page de documentation sur la sécuritéAWS des
services et les services concernés par les efforts de AWS conformité par programme de conformité.

Résilience pour ce AWS produit ou service

L'infrastructure AWS mondiale est construite autour Régions AWS de zones de disponibilité.

Régions AWS fournissent plusieurs zones de disponibilité physiquement séparées et isolées,
connectées par un réseau à faible latence, à haut débit et hautement redondant.

Avec les zones de disponibilité, vous pouvez concevoir et exploiter des applications et des bases
de données qui basculent automatiquement d’une zone à l’autre sans interruption. Les zones de
disponibilité sont davantage disponibles, tolérantes aux pannes et ont une plus grande capacité de
mise à l’échelle que les infrastructures traditionnelles à un ou plusieurs centres de données.

Pour plus d'informations sur AWS les régions et les zones de disponibilité, consultez la section
Infrastructure AWS mondiale.

Ce AWS produit ou service suit le modèle de responsabilité partagée par le biais des services
Amazon Web Services (AWS) spécifiques qu'il prend en charge. Pour obtenir des informations sur
la sécurité des AWS services, consultez la AWS page de documentation sur la sécuritéAWS des
services et les services concernés par les efforts de AWS conformité par programme de conformité.

Validation de la conformité 276

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/security/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Sécurité de l'infrastructure pour ce AWS produit ou service

Ce AWS produit ou service utilise des services gérés et est donc protégé par la sécurité du réseau
AWS mondial. Pour plus d'informations sur les services AWS de sécurité et sur la manière dont
AWS l'infrastructure est protégée, consultez la section Sécurité du AWS cloud. Pour concevoir votre
AWS environnement en utilisant les meilleures pratiques en matière de sécurité de l'infrastructure,
consultez la section Protection de l'infrastructure dans le cadre AWS bien architecturé du pilier de
sécurité.

Vous utilisez des appels d'API AWS publiés pour accéder à ce AWS produit ou service via le réseau.
Les clients doivent prendre en charge les éléments suivants :

• Protocole TLS (Transport Layer Security). Nous exigeons TLS 1.2 et recommandons TLS 1.3.

• Ses suites de chiffrement PFS (Perfect Forward Secrecy) comme DHE (Ephemeral Diffie-Hellman)
ou ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). La plupart des systèmes modernes tels que
Java 7 et les versions ultérieures prennent en charge ces modes.

En outre, les demandes doivent être signées à l’aide d’un ID de clé d’accès et d’une clé d’accès
secrète associée à un principal IAM. Vous pouvez également utiliser AWS Security Token Service
(AWS STS) pour générer des informations d’identification de sécurité temporaires et signer les
demandes.

Ce AWS produit ou service suit le modèle de responsabilité partagée par le biais des services
Amazon Web Services (AWS) spécifiques qu'il prend en charge. Pour obtenir des informations sur
la sécurité des AWS services, consultez la AWS page de documentation sur la sécuritéAWS des
services et les services concernés par les efforts de AWS conformité par programme de conformité.

Amazon S3 Migration du client de chiffrement

Cette rubrique explique comment migrer vos applications de la version 1 (V1) du client de chiffrement
Amazon Simple Storage Service (Amazon S3) vers la version 2 (V2) et garantir la disponibilité des
applications tout au long du processus de migration.

Prérequis

Amazon S3 le chiffrement côté client nécessite les éléments suivants :

Sécurité de l’infrastructure 277

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• Java 8 ou version ultérieure installé dans votre environnement d'application. Il AWS SDK pour
Java fonctionne avec le kit de développement Oracle Java SE et avec les distributions du kit de
développement Open Java (OpenJDK) Amazon Correttotelles que Red Hat OpenJDK et JDK.
AdoptOpen

• Le package Bouncy Castle Crypto. Vous pouvez placer le fichier .jar de Bouncy Castle sur le
chemin de classe de votre environnement d'application ou ajouter une dépendance à l'ArtifactiD
bcprov-ext-jdk15on (avec le groupId de) à votre fichier Maven. org.bouncycastle
pom.xml

Présentation de la migration

Cette migration s'effectue en deux phases :

1. Mettez à jour les clients existants pour lire les nouveaux formats. Mettez à jour votre application
pour utiliser la version 1.11.837 ou ultérieure AWS SDK pour Java et redéployez l'application.
Cela permet aux Amazon S3 clients du service de chiffrement côté client de votre application de
déchiffrer les objets créés par les clients du service V2. Si votre application en utilise plusieurs
AWS SDKs, vous devez mettre à jour chaque SDK séparément.

2. Migrez les clients de chiffrement et de déchiffrement vers la version V2. Une fois que tous vos
clients de chiffrement V1 peuvent lire les formats de chiffrement V2, mettez à jour les Amazon S3
clients de chiffrement et de déchiffrement côté client dans le code de votre application pour utiliser
leurs équivalents V2.

Mettre à jour les clients existants pour lire les nouveaux formats

Le client de chiffrement V2 utilise des algorithmes de chiffrement que les anciennes versions AWS
SDK pour Java ne prennent pas en charge.

La première étape de la migration consiste à mettre à jour vos clients de chiffrement V1 afin qu'ils
utilisent la version 1.11.837 ou ultérieure du. AWS SDK pour Java(Nous vous recommandons de
passer à la dernière version, que vous trouverez dans la version 1.x de référence de l'API Java.) Pour
ce faire, mettez à jour la dépendance dans la configuration de votre projet. Une fois la configuration
de votre projet mise à jour, reconstruisez votre projet et redéployez-le.

Une fois ces étapes terminées, les clients de chiffrement V1 de votre application pourront lire les
objets écrits par les clients de chiffrement V2.

Présentation de la migration 278

https://adoptopenjdk.net/
https://www.oracle.com/java/technologies/javase-downloads.html
https://adoptopenjdk.net/
https://aws.amazon.com/corretto/
https://developers.redhat.com/products/openjdk
https://adoptopenjdk.net/
https://adoptopenjdk.net/
https://www.bouncycastle.org/download/bouncy-castle-java/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Mettre à jour la dépendance dans la configuration de votre projet

Modifiez le fichier de configuration de votre projet (par exemple, pom.xml ou build.gradle) pour utiliser
la version 1.11.837 ou ultérieure du. AWS SDK pour Java Reconstruisez ensuite votre projet et
redéployez-le.

L'exécution de cette étape avant le déploiement du nouveau code d'application permet de garantir
la cohérence des opérations de chiffrement et de déchiffrement au sein de votre flotte pendant le
processus de migration.

Exemple d'utilisation de Maven

Extrait d'un fichier pom.xml :

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.837</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Exemple d'utilisation de Gradle

Extrait d'un fichier build.gradle :

dependencies {
 implementation platform('com.amazonaws:aws-java-sdk-bom:1.11.837')
 implementation 'com.amazonaws:aws-java-sdk-s3'
}

Migrer les clients de chiffrement et de déchiffrement vers la version V2

Une fois que votre projet a été mis à jour avec la dernière version du SDK, vous pouvez modifier le
code de votre application pour utiliser le client V2. Pour ce faire, commencez par mettre à jour votre
code afin d'utiliser le nouveau générateur de clients de services. Fournissez ensuite du matériel de

Migrer les clients de chiffrement et de déchiffrement vers la version V2 279

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

chiffrement à l'aide d'une méthode du générateur qui a été renommée, et configurez davantage votre
client de service selon les besoins.

Ces extraits de code montrent comment utiliser le chiffrement côté client avec le et fournissent des
comparaisons entre AWS SDK pour Java les clients de chiffrement V1 et V2.

V1

// minimal configuration in V1; default CryptoMode.EncryptionOnly.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3Encryption encryptionClient = AmazonS3EncryptionClient.encryptionBuilder()
 .withEncryptionMaterials(encryptionMaterialsProvider)
 .build();

V2

// minimal configuration in V2; default CryptoMode.StrictAuthenticatedEncryption.
EncryptionMaterialsProvider encryptionMaterialsProvider = ...
AmazonS3EncryptionV2 encryptionClient = AmazonS3EncryptionClientV2.encryptionBuilder()
 .withEncryptionMaterialsProvider(encryptionMaterialsProvider)
 .withCryptoConfiguration(new CryptoConfigurationV2()
 // The following setting allows the client to read V1
 encrypted objects
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
)
 .build();

L'exemple ci-dessus définit la valeur cryptoMode àAuthenticatedEncryption. Il s'agit
d'un paramètre qui permet à un client de chiffrement V2 de lire des objets écrits par un client de
chiffrement V1. Si votre client n'a pas besoin de pouvoir lire des objets écrits par un client V1, nous
vous recommandons d'utiliser StrictAuthenticatedEncryption plutôt le paramètre par défaut
de.

Création d'un client de chiffrement V2

Le client de chiffrement V2 peut être créé en appelant AmazonS3 EncryptionClient
v2.encryptionBuilder ().

Vous pouvez remplacer tous vos clients de chiffrement V1 existants par des clients de chiffrement
V2. Un client de chiffrement V2 sera toujours en mesure de lire tout objet écrit par un client de

Migrer les clients de chiffrement et de déchiffrement vers la version V2 280

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

chiffrement V1 tant que vous l'autorisez à le faire en configurant le client de chiffrement V2 pour qu'il
utilise le `AuthenticatedEncryption`cryptoMode.

La création d'un nouveau client de chiffrement V2 est très similaire à la création d'un client de
chiffrement V1. Toutefois, il existe quelques différences :

• Vous utiliserez un CryptoConfigurationV2 objet pour configurer le client au lieu d'un
CryptoConfiguration objet. Ce paramètre est obligatoire.

• Le cryptoMode paramètre par défaut pour le client de chiffrement V2
estStrictAuthenticatedEncryption. Pour le client de chiffrement V1, c'est le
casEncryptionOnly.

• La méthode withEncryptionMaterials() du générateur de clients de chiffrement a été renommée
withEncryptionMaterialsProvider (). Il s'agit simplement d'un changement cosmétique qui reflète
plus précisément le type d'argument. Vous devez utiliser la nouvelle méthode lorsque vous
configurez votre client de service.

Note

Lorsque vous déchiffrez avec AES-GCM, lisez l'objet dans son intégralité avant de
commencer à utiliser les données déchiffrées. Cela permet de vérifier que l'objet n'a pas été
modifié depuis qu'il a été chiffré.

Utiliser des fournisseurs de matériel de chiffrement

Vous pouvez continuer à utiliser les mêmes fournisseurs de matériel de chiffrement et les mêmes
objets de matériel de chiffrement que ceux que vous utilisez déjà avec le client de chiffrement V1.
Ces classes sont chargées de fournir les clés que le client de chiffrement utilise pour sécuriser vos
données. Ils peuvent être utilisés de manière interchangeable avec le client de chiffrement V2 et V1.

Configuration du client de chiffrement V2

Le client de chiffrement V2 est configuré avec un CryptoConfigurationV2 objet. Cet objet peut
être construit en appelant son constructeur par défaut, puis en modifiant ses propriétés selon les
besoins à partir des valeurs par défaut.

Les valeurs par défaut pour CryptoConfigurationV2 sont les suivantes :

Migrer les clients de chiffrement et de déchiffrement vers la version V2 281

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

• cryptoMode = CryptoMode.StrictAuthenticatedEncryption

• storageMode = CryptoStorageMode.ObjectMetadata

• secureRandom= instance de SecureRandom

• rangeGetMode = CryptoRangeGetMode.DISABLED

• unsafeUndecryptableObjectPassthrough = false

Notez que cela n'EncryptionOnlyest pas pris en charge cryptoMode dans le client de chiffrement
V2. Le client de chiffrement V2 chiffre toujours le contenu à l'aide d'un chiffrement authentifié et
protège les clés de chiffrement du contenu (CEKs) à l'aide d'objets V2. KeyWrap

L'exemple suivant montre comment spécifier la configuration cryptographique dans la version 1
et comment instancier un objet CryptoConfigurationV2 à transmettre au générateur de clients de
chiffrement V2.

V1

CryptoConfiguration cryptoConfiguration = new CryptoConfiguration()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

V2

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.StrictAuthenticatedEncryption);

Exemples supplémentaires

Les exemples suivants montrent comment traiter des cas d'utilisation spécifiques liés à une migration
de la V1 à la V2.

Configurer un client de service pour lire les objets créés par le client de chiffrement V1

Pour lire des objets précédemment écrits à l'aide d'un client de chiffrement V1, définissez la valeur
cryptoMode surAuthenticatedEncryption. L'extrait de code suivant montre comment créer un
objet de configuration avec ce paramètre.

CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption);

Exemples supplémentaires 282

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Configurer un client de service pour obtenir des plages d'octets d'objets

Pour pouvoir accéder à get une plage d'octets à partir d'un objet S3 chiffré, activez le nouveau
paramètre de configurationrangeGetMode. Ce paramètre est désactivé par défaut sur le client de
chiffrement V2. Notez que même lorsqu'elle est activée, une plage get ne fonctionne que sur les
objets chiffrés à l'aide d'algorithmes pris en charge par le cryptoMode paramètre du client. Pour
plus d'informations, consultez CryptoRangeGetModela référence de AWS SDK pour Java l'API.

Si vous envisagez d'utiliser le Amazon S3 TransferManager pour effectuer des téléchargements
partitionnés d' Amazon S3 objets chiffrés à l'aide du client de chiffrement V2, vous devez d'abord
activer le rangeGetMode paramètre sur le client de chiffrement V2.

L'extrait de code suivant montre comment configurer le client V2 pour effectuer une opération à
distance. get

// Allows range gets using AES/CTR, for V2 encrypted objects only
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withRangeGetMode(CryptoRangeGetMode.ALL);

// Allows range gets using AES/CTR and AES/CBC, for V1 and V2 objects
CryptoConfigurationV2 cryptoConfiguration = new CryptoConfigurationV2()
 .withCryptoMode(CryptoMode.AuthenticatedEncryption)
 .withRangeGetMode(CryptoRangeGetMode.ALL);

Exemples supplémentaires 283

https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/s3/model/CryptoRangeGetMode.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Clé OpenPGP pour AWS SDK pour Java
Tous les artefacts Maven accessibles au public pour le AWS SDK pour Java sont signés selon le
standard OpenPGP. La clé publique dont vous avez besoin pour vérifier la signature d'un artefact est
disponible dans la section suivante.

Clé actuelle
Le tableau suivant présente les informations clés d'OpenPGP pour les versions actuelles du SDK
pour Java 1x et du SDK pour Java 2.x.

ID de clé 0x 07B386692DADD AC1

Type RSA

Size 4096/4096

Créé 2016-06-30

Expires 27/09/2026/

ID de l'utilisateur AWS SDKs et outils < aws-dr-tools
@amazon .com>

Empreinte digitale FEB9 209F 2F2F 3F46 6484 1E55 0 7B38
6692 AJOUTER AC1

Pour copier la clé publique OpenPGP suivante pour le SDK pour Java dans le presse-papiers,
sélectionnez l'icône « Copier » dans le coin supérieur droit.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV

Clé actuelle 284

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJo12ZrBQkTQxnmAAoJEKwQezhmktrdi18P/A3De83MBx8bdcWJ
Fot71Vk1TyBQFErgrtcytSU0czEHx3tGbzgQLbMlyzjirOT03usxEkOeqTVK+RU+
5uFXNZYQLwMJlHJ6S8tnfLe/ExM5WQ2KPwIUPfZs1GDDRQB2dIKSc+qYrP1O1vf4
O4iPgfLHMW2bFh3zjjxcaHCJyqc7Cau33eZFBAsRni1jOUo7MeyX0hlXfW8pd48Q
wZllQVZ/6KmDiFWA0CZ+2svJ5cL0tgPoh1OQjoz0nHpNfuDILMrZ+e7tx2VTlkGH
UGeNSydnrK8v9ztFn34KtU/k7NEWoVSyEi+5ICZL18FBwPqTwdVWXwXrqZCKiIpr
8ZdJWDz2sJfgDFNCC6rKgCQ6FrmaD9G76dYWkQ4AbZqABlUzU3q36W1K0r3iOAb5
G4tdOt4yqXHTe1x+ZUNaeW7gaCmtXAxLw0OfeJrcq/44b/SQP+qJ8sSOv76Yg2oF
BsF5DWOVUFghbTyokHAoVROyhBR4dUUisY39AqLSL8+Lp9Pr3wNuGl9GLrMD5701
piUb88B3Gwe1EiKV1gaKrvZ3mECDUiSMVO0Z5iG8E4QDpNmVbJbV1uT821ubvtOv
2Ko10Fa0uwCYGssdRGqEXNy6jz/Er8LAC3+nmGINDJQzrF+loYoSSkI2Nu7lhMuL
7iWwUPF7OhDXoVSAn4X3x6q2rGK0wsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZTsFCRNDGLYACgkQ
rBB7OGaS2t0/Ow//YIv51vHtD+kwMmIvk3zpizDHY0zW2dOezAo+C/DsSyC7wDll
Dixw34EQ1yLXH5xLR8CH1zupl3JmmEp1ucdQggoefbidxDl8Fld7tJOD1y3GGnTD
0jAl2ZC+W65Oh+wS1mD1FlaKjMGGkvJf0dA7RtU2T8dv3vt8dsxg76FMFS3+fqlC
FNOAsNTn9zWR1SqBIfkMJK83aq6s/rcEV9VrAYgDgqex58fygB5EuTf842/IF7WZ
Q9gd6fupB0mMZP5YWd2uj/vsBTYakG+mgQwDxZuKPeEzAqnqqS7biSQOUO6Wozlq
Yy4fSczE9GkBAvg0pGmbko+zHvpnjvX/h1CUpC6odvFyOAhZp6zyhs0QWz9thfqV
lU8WlbgJ2atFDn5GUSxF/fe0Yzovlbbs6sbYXuvMG9RiEOuJ1mBbZR3aIdZ1U6Do
BHc/vjc5mWcV7JQSP7i4W/8W7X3UAuN9LdxB+IvF3Cwrgtlw2BWvA5Alco5Tnz8t
P/CIVmBjk+sLme8W4kfLK3IWEbwClOdNnErI/MHRm65A2Y5EMIhwjrOi07SU1Pxa
nPpg3OYJCdvjzdB8QE3/DBiMfOl4dISfKDVEWnfK8mZaYd/BeRm2gUAa9UrqSFCG
BlA7Lg+eLI3US0FvwWJ4j5bBJqgLu+y7crIkiUOPAQuLk3lO+5uYU/I3DuLCwZQE
EwEKAD4CGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AWIQT+uSCfLy8/RmSEHlWs
EHs4ZpLa3QUCZwAXCAUJEWvKgwAKCRCsEHs4ZpLa3ZdTEACMBLg2q9zk8ZH02nDz
Sg5zc8Wlqq8WdxU0Pj8qx4UOrrMca7wyiUvrgoxPW5lh1RVNUeMkDRfu9pSXcOVI
V9LvmYE/WnwKROubgGbsC4T7M/LqV0/AulXil4d7IXcO6l4toa8LTNWtD5bODgrN
gvay1AzCU8kq1Qw1cKZ2gAfvA3Ba7PWyLeUN4HTlGrXcw73G+0CofY1L8wqWxHCJ
29XqQzeTEc6MDEeIlNlVdUcy8Qr5uwkEsl34H9AxS5F1opJ4TqvXiDZsrSRRv57R
XYmRZDWeYT+9PZaMsHXza5qgej7BfATxhYfICsNaY6MK3x6b+nDSKkoZgO+i09zh
1YjpahhQe6G336v/3mRj0dKGCRQ6znQ9ghUaB5z9zfvgH5AOEkTe3l8MqM+j5A6P
VjSBBJAHKejxr7+wKJKIA6P+DqpsYAunzftwUzrLVqb+BZQ+DcTmVrE7OPcMYJD5
QglX/Le+WmWZHI154NXgpWWUOUgZUbUge4DKrT+zCJ9iecPLKTW7OcULyXO+rjb8
8BGrD5GPlHB3dOUXXTlMKCqg3qy1Bu2KnZTQiaEEdZgSIGQbrW0JTMmmXJkKjokd
JMA4vYeg5en51G9nRQjScPngx77IxvByNyFWTJdG1ENpJpsK9TtmENcpyUJtJZTJ

Clé actuelle 285

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

ZSOIRVPP5RzR5vInuXWq6VV0BMLBlAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMB
AAIeAQIXgBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEoiBQkPj/2dAAoJEKwQ
ezhmktrdx1YP/0vvym3jgX/pwnR7K1rafZMb1iKQBr0ISG8cdbaf4pqX5vuUZnyj
w9Cl/oONn7jJjnQxOIIzuBoxne2WN28ftM2w0nVXm85mAmz2fwQz/fdKDyonXcOh
pfD2iMqn7gESjhEgRE7wMDYMDuLdqHI7OKWGVfgrh7xEmKapLh45h7cnumo2VjL9
uDYY1aOBHz993T7oE41y43rhk+6kKbGFd2uuo7h5j1ZF8Lj6sYfcEzXOU1OhRlD0
nyBjDy9MYWu0YNouc70WgMceGx6hjvCAM/5fxP7SZFecZ7ePeB0GpvVA24hSNENE
0r3tUekuOf1I0FunMnMnbh7ZO9rPYqWvWDNIpU3S4CjFhY82L+IeKnmLy8N6ASRk
HsPiNCOHSK8C/0ynrd9xLhX8Jsk/TGiQYaleoHhWkNLlZsL86QHL8SKEqkqZCQf5
AEqghDP6NEGS7lnOenA7JjIrA9KLlT7fnNWZOwFi5X+o/CymE2ytEMS0Yf3nmY4U
n9x56Wgn6J2zqB5nqOXf6NxGdAIgOBm098YEnKCIFzk+yhoDlprVpHcnd2b5f6Oq
uh8KYOEbKgpMJ3zZuWSL5kwGF1nNoYiAkonMaz9H3pOQnOMVYCUeUTDRsiO/prrd
UhNlry4TAsBMpeXnFhdLVM3vFQZVpByadGOJNmnaN/Wavw2a00UGBFa4wsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJhMqGaBQkLnlUVAAoJEKwQ
ezhmktrd2sQP/3YHM+U+BbOy1nSEAfykZ71+uCM2hkHMLdxQYWB/rBWkmg/pbu+d
r4t45RsTASrNjRcZOntlPMQRIq973ymHfpmeS+noFwvTGH7zDv1BRBR9wPrd1XUz
iSuEUHGi/fqxUVXQ5mbonzfThX8tuXeuiQmeToqoB00FYlZm6xsNnEHcjVl66mC4
IPoJLWnZJs4rOCeoRf5XvDTgX6xt5/kLYRZf79qaWGFvaZpsc1CH+rQJUdVa/D4T
7pI7hX6zy0S91z4iuC5HZUiOTF+y5auEZHGTdTWNS1kvOvfcCTi0XK/GkGL82SZu
7X2VGnpCeUnFyViRGlk+KaDG1sVyDY+lcBPg6ilr45M6MQV0iHS5OF04QNXSKt5+
UnzJH7lldgNsR6ibRMyNV3k5v3fyUcSBvIYyLORTTBiVEjQDSbk1QNqbrQlX9CWz
+EJWn16BFTmMFvxBSWPm640GncHP5J3/0MbMw3Cm90x7k8UfNANIemcrJrSxIDwm
g9cVAg3a+D+wxjrVe8jGg0ejvECpm+0yswigj5x6Lqj09A4UgdjEauN+/pn0nhBo
Gv7DzMXtM/LoDtgp6wn93qZVN2TsuHnkEk4UyntB6eWJbBdXHWUr47exiWh0dvQN
tpwCWPT6I7ZTPtA5K/zx+q9m6797BLgAkTYc6gloQL3vs1Z1S3m/hZNawsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJgmrz2BQkLBnBxAAoJEKwQ
ezhmktrd36oP/2rB2EkwSOCKC4m0heWSfDWi6OBKoEbbDtFtc6/HwqBW8SPsiKlq
zV0e3qBY/LVju04+ktJEK+EGXLnC3iC36MegrQ8zt391kEx/Zv9LIuVOCX90QIAX
dL8MVUkkjRLCFFH8pTgRy1cJYWk1X4dYdXWYc29fCwNVartNdNBhsb2ht3VJeKDE
kUivBHmkjuISDPEnI1coY7Lj0ZtY5cHdRF2eZpB0RkTBpsIt18rCYyHkERZrhmvb
j3rOyPyvOa+1/dQS8/hv5pEmbKx8cy8RdJkmbUHYatPBsjHkJSWr7O7G9VFW4GoN
9CRAI4KkbDSEDjCL5dv2pq0Sew1MkLuWJGULAMgiIUlWcOs5SZZGFSksNQrtSFV9
Z/wGocecMGkGQNXQ06JV/Fry/TvyphBlmylEqL+NLqEcEjnlz90IVu+ZA+M09J96
UlHO7V5GvBgM+QK/q/dJeMHPWrNlo1gA6Nwl/HBdM0DqzdZ2jEPvsQSABvZrPMty
+BAqEar4wqY1AH4X5ccEjO7nJQoBQSDRSki1fkBsc1nx44N/m0kHdIa0Z/Y+Mw4v
WiZhREkOospG1I4lBa3CNTVAhSs9msGsYfkqvFJGHL7sZY8XSv82GBBvA0nUNrsJ
bLBwo2FaQG9eoatRAGkqp4b/OtNtBuGeiQoNwFGbfUZTAaStj5/zZj0swsF9BBMB
CgAnAhsDBQsJCAcDBRUKCQgLBRYCAwEAAh4BAheABQJe+9bwBQkJZ4plAAoJEKwQ
ezhmktrd+ScP/RoaUKriVVAgLHOGs+/mnfKtnfTlClzi5dsdI9/6H0vLpmSWK/Cl
2cT6gary45VMgAeVK+H1lQXafYj+FY++I5kYoe2GrSvIXhpjaFAJyNf/dKleTsqR
Tm371i8b3FDYs5kvy2CnTbmHB8MsOGxck8/YHd1x+g8WpO2IgF89yYCSF3CAdxC3
6bHbs6Z3C3lcM/3SoWF+Yie2P8XeBMPCGp/BcjQzUcHF6G06TwDDYhixucUi6vEY
EH5JtOwVVQ7bubT8OFeOoJwVxlzYz4UoqxjKDWymarTzu03AUIT0PXPece94bJAK
mSh68ItQe3H8tSPMubERWz2tEV3lVkChDGXcC7BYQmxHseolxz/qzCtJ0iX9BvZR

Clé actuelle 286

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

dniZNeNJ/Cu8M2pDp47zdNFXzf/Q/sQ9pQlws22G2g119rWDneBku9n1vTP80/er
SB+VLTBjDiArlCY5y9+BG8wbscExJySoQxkB9j/nlMzPY5rgk0SyxsNj9GbqH+hr
EjS3/uacNwSLxGcOT2E9Teot5pfTEO6fQVq+35QhfAlP8c8jze01W/+u+wXu1Ui9
azRSzYtCHanGyyet6U1mlBpAkqkZzH6t3CA5czc9i6FbzjvFVZnbRUZIRzfISYew
lF5WqgTn2iYVdxagPRvLF5kjd696brGW9d5HwirCVGaK04VsXWlAblB9wsF9BBMB
CgAnBQJXdYAFAhsDBQkHhh+ABQsJCAcDBRUKCQgLBRYCAwEAAh4BAheAAAoJEKwQ
ezhmktrdWigP/3QWl7aO81BUWyby4HEhN4SdAoWGY/FLqO4mCtuplcnMgRUCSiL9
l2BSCTMCtUcdSWtYwOgSChN2mMsdi1U2FNR5HvNunYR/pFdqjfQurf1ZmKVeG5/4
uuKaOxMw9e8pK5uYAfs+O7gr8gu/f6/Drp7NZk3/yVKpf4WCY9oX9TA1q9O/11nN
cwS45U/d7YP+N1YM9cBXa1DnDcdfm0BlykzouAF0qd1Lwi/tmLENvybD3+2c2WsE
rlFZGSa5ZafO0tTIWXh5k6wh5FdRRycrnSyRK3B9N9+yaXfMQ0XpOypa8dqQEnCi
IsngDCJPxtTrhMWKhBFRUMzK/WZTDboTQSQDK+YVRrE4K8MtoZSKwZLV2r9O3TpX
kpbKsPVYmexerfdMeZfjZMF1bC7BmEs7jciH6JjbqAoAPnHzN0481aeNarINSViX
PQWr2mp9qShei2/RavLtx2ZNrvmGW72ZKpF8E3WWUDpBJqFVeGNRvOm3aZj8o/Hl
ewtNjcT4ouJfqlfKiULv+g7ANEMDLQTFDTg5twRdvmZlB7oTBsavf+LwxPIXhH32
IR7TX7VeicMMxmZnmZK2ANT/QBi3laf+ojVHvB+f6D74eLNq0Zqjfi/3UFNYsYjg
E+YgCqEUBpHbl61nOHwGOSsQwfap2uKKlzukD/KxH5SPBC3DYGBI+KCbzsFNBFd1
gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+hV6XulGA
HAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go7xHIxgFj
C046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FKVYR/j9ue
nEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQlQ1Kou+3
dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjypUwgp0MT
o25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGwsMDyHNqyJ
eYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6QxaZje9YSZU
ijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KDOSn5CbmX
pAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVgroUVtprs
mHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs/Hd981Fd
VghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQABwsF8BBgB
CgAmAhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmjXZm4FCRNDGegACgkQrBB7
OGaS2t3y5g/7BFXp/fdanzuQPToJTPen7AVwhLloKaiYhG3GjdXfMPLvu6UtaaGm
qynLolUNNooobptFqc1G9BKoAghQrta7CsDHtsQF2xyc3Mfu0gmpL/7X5a7sFIeJ
j08UjfweHx4DSG4LEZgNaAoWFjZltp4+8cqijkAHXt+r+1ayQG4VVHOWyXXqmSH4
9HqtbPcPyRzxdoVLeshZC9jmhHhhKqw/LwGyipWSOUKQDjWarBwdyhNmWCaLvxH1
ndMp4tq8DPGC3G4T9tYAbANrn7nKfZgHebMSzMw9kSp0L6QvwwTDjJyIWz85WyeH
WHeBysDaBOit3XDlehUew27y7N6a9hQSYjnXuwvre5mjDIOqJon/31R6ui2Z1y9P
a+bC11hbLXXh9tLCXRuoOt6thh9Cq5X1a76PPpEv30o3bpsb6l2hbrut1OKezwvK
l7txito/jfMiWfsZHA9O4SoM+8GnmVingHtZ805n1T4RddJvT/vaqplfI6zf7jmf
a69lALP420riFOQcwntNUM5tVmFUZsnFp2YRd4Ls7MiXVjtABahlSbb94l5WSVc0
jrOLDf94edvzk4R8i2Ob8CfVZNqEsTR6bHz8dT7Q+xQzEdjUujyyZY1UUl157Qeb
OsHjhCtuZYCI04X9hZ37nKnZXSxRlRDCnt5BEiyFu2WD1RscUe6PcVDCwXwEGAEK
ACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCaNdlPQUJE0MYuAAKCRCsEHs4
ZpLa3XCpD/42DrcveE+q2ulrAIYPDlUlHiwIMejqBDRm6zmr1KSAeb4E6/MFcP4s
rXSSscMlrqG6NVynjNCXjD2YzWii68EwoXLJkgoD3r2ifzkV62EX2MIEeNZAVwuy
KNxorzmy6bhuWltRYNK/hITs2AG5orOk9ADEJ8PixKymrWlhesPaWX6Yhp9/tWaC

Clé actuelle 287

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

RHOSRiLbRVaJ+7sqT88urLmkV9Hqx949Zxv4+cgBVUGL6WXKsfWhHjbDMNJnozWB
SZaIJznLApOM8z+1DNrqUYyfR8SkF4IOVmg6HDzoyuseJJ8JvMAlkvT6F9VBq/iE
yeDYdEEQxwHwozKrEx5Ybxl5mntbqwCXy6kHSx2+/3RZWpZQ8K29YP9QEk0KeGF8
9Vap3jjNrX4u3cuRNQpeblQc4uFn3Nzaj+cVV4YzcRw94NifecXpujSvk8XU2ytJ
/JgMBxPIBKglN4eEMet9b4FRB5XeBdPAm19/LXyb4IlIipGNXlgNz/HCuBzidzHT
QQdqfA9rZVx1hwFr7AJCVqWaXVsx1oEAhKqpTtsLMyj594DvnRuwKw5Vse+1eydW
MIHYdbxmJccsTGIt/hsOpc8zfm+QYk5752jshhOKEBy+Ey3QZI1WbO547NOb2Hwr
Pgt7fw2NCKMPElSu98zmneFPhqNHf7L5urBe5gADj81E8lm6t/oVxcLBfAQYAQoA
JgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJnABcLBQkRa8qFAAoJEKwQezhm
ktrde3MP/13CLWp99XvRROrzD/bWOfWjAenT2PE/tYdOY9YcTQFbnIUhaVUDWAo3
pibR3D4u9LlY4olpGfJ7BTIHFa9myfpaVvmrNjueYI4omli24JQ/CKqNdY8Qzxz+
/QyiNK7Aw5cEBWIu84WGB1SsefWWT3rZe9YBb77gNcWHZ15pXTXrcgUxGY4808MC
I9YFWq8EA0iHawtFnmB3UFfClWt37Hy3PKvr1is3uG60+ULI8RQz3/+ZwSG8U+xt
b+I7H9+gITc1eFCb+tIwp5xWflyxcFXYk6UzOL7y3Fg2tIEuSNtIHUC9NDVobf6c
I0KAzZcMvKiPQiuBnVOjgDLmCZM5H6axj9x+gi4oVh6ea3HLqMzyjm5JkeCGgKWv
H0gD3yGEZDvcbavkQOle5T+4JefndKzCPrluX0iyx+oQiiOL8WieSSkSB6BsZcUN
SeuGJwM79Y7Oqld/YVrQNBZj5Vz+m3nZ+0EWDDMI0hRgMpSEIc+dnTC0u103Z+Rc
c2IJq8INmU653sUcfCZE12ParW4rF7ib6kViYrABT8f4e2TP0aOyP5kp51ied9qL
azaBA6tt/C9X1V2EJZK4srXtmcZO2Im45RAiVXyfpBAmmiF3eZWCbKe7qBC4rDRh
LZG4RQW/S86Da0BID7gQz9IFSkaG504MsDhvnA7iAqaHUHUepCsiwsF8BBgBCgAm
AhsMFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiQFCQ+P/Z8ACgkQrBB7OGaS
2t3AwA/9GkXKUgvjKGCxwE4SdDt7c2jw6to2TTP9iFJ3Xbk3+5BURT3gkZCuu9D7
gt+97aVo/B4EM7Xz8DQKyY7Ic9VAwDRra/Hwi1V0hw1zyIWQ/gAnX3baU6qLRWHR
vVR5meV8r35C+rg9DaWFYmvS7PIv9LfxESwBPUjbmx8k4/5EJpHUwf12bzkTnot5
7q5lHxKQa6IvqQak+Hp9ZM2KPdsgKO2HWJJIIvYcI5byW9zBKV0O7YR8gtRAJKp9
IbtsXx0WT6cqHOFVc5SSzdcaMt0gLFl7BTnJyvKK2l9GABGBmzYDjeCyF2J+Ippf
oqxqfTe6EoOsuEMc2PbLTs9SsWjyCC2VGlX8+uUH9SoKwL0VQ6LFsP6fhkVKqi/a
rB6UuPR/iZnrKIuxMNQ4U+t2Q6UdMlmXsAXTNdkwzoK9oJRokIrH0ZV1KtH4sjjA
tCic+tOddq+GQLiKe2WpJfxlA0uESCB0TxjAwQmfn1H+dUhPeLlbNimHlH0/hXPd
ifuNGozzADIRseQDyzjl8xGL1qRZLD3cfmda6RyZ+S3dQRuaRrcFCDccpY/pO+F8
jbx64zyqqNs+KV+SkQGOcKFhWTZGCfQ/zMDtDmQKjb3eTAkv1zdEOMw9zEjjmS0q
8FNl+2wO3VnvXwvBbtDdVCIaIq+jVcsy5XtnnV+bJ19Q9yue/XvCwWUEGAEKAA8C
GwwFAmEyoZoFCQueVRUACgkQrBB7OGaS2t1uHBAAhOYVvrtchRmzCvdNER1DtkIs
bgQPJ9OxbyfvmvoD06qxH7PrycLZKbt7yYpAUU/CMc86GwaEe0I5Nm1CTs6NvDIv
g3e7EPIS859tyQflbM56NlwbsopCuoCJYknuroIf/M6dW6vJKNXLMmnL/AtalUBw
X+5pblmGUUJep49oTOxQEnvnuqyvaGjXgFXix5PVFJD2ed5NnQeFpvfCpc/ioNOj
z7ORO82j1ht5nWqPraXX5AYhQFM/kwR1cK4LV7gVDd/q+dfGYHzpxQ/HtyX/Lasi
N6I52QqA95SM1ZZLPFLaNh6EvnB7uC9pLCYS8nvilX7/cez5PFff1e1gXCOT0jv3
mJ2exLmXV0BbfKgjccFCxhrdRLtukfiDfJkySy1zdscnpfng8wJ3xKRv43cUTz7M
Z24OYNMqK26aJZVXEQUYjCwsBylY/F5wjYAwgwZ8yF5RFix28P/K8JsIHb3QrAJK
sNWQAb03ZWis3N3spR5M9Mw3VuDZ3WUXq7mxB5M3kpVoZ3vETU5cwTbADYNPf4Sw
BDK2uIVtxabezxSBtz0FcyYoF+OW8q7r4WvoyC9/+3GfnozZLJcEIVDk4W2pMW4A
UhG/6drKTm3HkSDWIDu7d1sHWMffLEYfUHtN5DKkDkGoPfHvZvu9teR5yLfUrPTf
ktihPn/JMrmwa9pwi8LCwWUEGAEKAA8CGwwFAmCavPcFCQsGcHIACgkQrBB7OGaS

Clé actuelle 288

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

2t0uaA//UWRaRiHEAKeRqBG/T2ak+XZJNu7QHfNgoUEAub9Zru8oPPXx2AJLcHEN
KWmeFlLxADdWOZs4Bm9oOew3VQnR/dBqjnXfob9Rc+eYUjA3rXazM/QrqcU8Syi3
MjNGUmjdL5aQF+IppAMgOBLG1TEnM7C5/PvrGJuYpGEnkKEwMK/GYhqg2V60pHEV
Pvs66mefJpCzbZSy56qtknSt6yBNWc14XgDX6VTn2kW4CV/3vVJUuvjvYs9SPyY8
mKEXa6QvUd3PcXv6RiWk4lGYuT1+jh2VkcFQ+JnUwv9TbKFB9b5jq1bvW9+LMDEl
YXux7pBP5RPk+OLpyiExIRFWhi3x7aMWOzQ+I9yuNTeYkTHiEAQRUhs/1Fh4oLgI
v9QZgC0mRSN3zm8plQdivs1ZlAosAqqkA9BQwqsgosQe7P92irYIJqay0si9wGCD
wSMsmeXdIF6wW3/UMJZl66aarPeiZApGX0QdTZwjMh/QK/8gTKyeZulKmNkNfwWq
O17OirWqLKssVHtg3VUM8EIdh+oNqDDXSeWtYUmpPpWp+yWZ0x1MFFZhUQHQZTGu
TIj4A92LQzbrfj/jXRvWm2SrJMivUoiDUn+qxKIpVwFlI5gVb+uyTFhw89PCkphr
JwRi052RLoU9yd6Ek46UH4XfZZWrZuzY+zzB7oqGONphLgi/h3DCwWUEGAEKAA8C
GwwFAl771b8FCQlniTUACgkQrBB7OGaS2t2/MxAAjoEGPdzavhsOlXdPCRd1D5QJ
r8T/NSEV2z1cp8ZvdrkjNF09TBP4qsBnKJiuvY1Iw7OGX9W2okvXxgJizE45v9MH
WEMz4hmIjmAfRwcqENgpOc1IY/T0/+kkCW8dB6d30J1kT0n2PCRzN9L5vPqZXGTG
mLvd9MOjH1256w4uxLb+e1HMDTCqEN1ppq9G+EAR/29q8JZWs1marbZZWxSWcg/E
1YYbNafzklgjq4CLh/j8AEWSvLr39zRy9uvQ/yqAKZ4K4aZfh/SPupGDvsD6ZK54
EPHxErQ7aiXTbUHtvwhxWLOP6WmxFA3Shr6L6YUb6jq+0PVliFC517g3mxFHJtwt
yXGNIKhmzmr0l9OlsHafulJ/9QPfK3Ce32SkPhW/11MYA8HzduMv5Arp7cBczXSP
EUTmNIVKv3gTjSQrzRhwhHmMuqyDZ/rXQQ1jl2sxIDjO4MUMvVjYKF+OCNm42gVs
8ca3/wN9ZNU6hyFWeKQDuCAqPPbT5GO/DKseFEwB+07wwyH1RXbyl0v4fneg605X
S7lqhNtw2p1hDL0HYHDiV+aPZ+LoOmX6+dmnqE6bQJaIlVb922KWmliO7F3DkqP7
0jFlhoE1gfiXWkxP4Gy8wOobNfEMgvz02djkGQy+oQqeNdIcZFZgzPTGKB/nVgpt
9CcRDWjPltFCd2e1FBbCwWUEGAEKAA8FAld1gAUCGwwFCQeGH4AACgkQrBB7OGaS
2t1PIQ//Qc5VYfBCxpaMysaPQ44wXPEZSjxIGZhhMGzb1UzzAEYOw+RgKN5nNTXq
L2KoOkOrGnKqZOKByMdXwIPH/rGwwEsbbIpopnibf5ic5B/+xCTIK+qLIwX2ZLuk
NhbL6Y+E+7DxMMh+KqBWHONKkgwVY+rFWOfoops839ABKvc9/Ry4/qqkcb40AzpD
l1iQJ5vK/DMuaDWxWeKXqJLIl3WMGPcPfheuBZL1u7LEEHYKMgzvpbF81WIn3MBo
8jvxf2/o+kMafSSDqgvOu6yu8GOhmScpCbRJn7jV/HrG+tM+zy48TN6/MkGWSR7q
TD34pqBjyatVfVl6dGD6xj/i/Emt5hZB6qXruCDH7AWMoNx+FkDubs4sc4PKysZU
Itya6KdQFo2UeYsNwZhdn6QwKhd85um4JUHJCY0mARvjsQgWXH/5MR40cow77bbE
vVq0XNd+QRVlyT42CEtnIUOFLeDVuZrum5Tuvvna6ImMDoi/z6QcNeL79XsY2m6I
QVRiHr1BDb/8JLkfnWiwL8GRv169Kf8unx0y5u1YBpcMYkyDD2+pnnk3TY0rR+8X
8goecaS8fbyu/Q48K85ZMD8wKW/bzLQ+tK9y8xed24u2QERftMhIw9b6f45Nrrf/
PhgV8RnuwUusSbdDe8kw3eYTmLdzD4kZc9K7SdO2CqT+hm//9JI=
=uGHC
-----END PGP PUBLIC KEY BLOCK-----

Clé actuelle 289

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Clés précédentes

Important

Les nouvelles clés sont créées avant que les précédentes n'expirent. Par conséquent, à tout
moment, plusieurs clés peuvent être valides. Les clés sont utilisées pour signer les artefacts
dès leur création. Utilisez donc la clé émise le plus récemment lorsque les validités des clés
se chevauchent.

Date d'expiration : 2025-10-04

ID de clé 0x 07B386692DADD AC1

Type RSA

Size 4096/4096

Créé 2016-06-30

Date d’expiration 04/10/2025

ID de l'utilisateur AWS SDKs et outils < aws-dr-tools
@amazon .com>

Empreinte digitale FEB9 209F 2F2F 3F46 6484 1E55 0 7B38
6692 AJOUTER AC1

Pour copier la clé publique OpenPGP suivante pour le SDK pour Java dans le presse-papiers,
sélectionnez l'icône « Copier » dans le coin supérieur droit.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Comment: Hostname:
Version: Hockeypuck 2.2

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej

Clés précédentes 290

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zSxBV1MgU0RLcyBhbmQgVG9vbHMgPGF3cy1kci10b29sc0BhbWF6b24uY29tPsLB
lAQTAQoAPgIbAwULCQgHAwUVCgkICwUWAgMBAAIeAQIXgBYhBP65IJ8vLz9GZIQe
VawQezhmktrdBQJnABcIBQkRa8qDAAoJEKwQezhmktrdl1MQAIwEuDar3OTxkfTa
cPNKDnNzxaWqrxZ3FTQ+PyrHhQ6usxxrvDKJS+uCjE9bmWHVFU1R4yQNF+72lJdw
5UhX0u+ZgT9afApE65uAZuwLhPsz8upXT8C6VeKXh3shdw7qXi2hrwtM1a0Pls4O
Cs2C9rLUDMJTySrVDDVwpnaAB+8DcFrs9bIt5Q3gdOUatdzDvcb7QKh9jUvzCpbE
cInb1epDN5MRzowMR4iU2VV1RzLxCvm7CQSyXfgf0DFLkXWiknhOq9eINmytJFG/
ntFdiZFkNZ5hP709loywdfNrmqB6PsF8BPGFh8gKw1pjowrfHpv6cNIqShmA76LT
3OHViOlqGFB7obffq//eZGPR0oYJFDrOdD2CFRoHnP3N++AfkA4SRN7eXwyoz6Pk
Do9WNIEEkAcp6PGvv7AokogDo/4OqmxgC6fN+3BTOstWpv4FlD4NxOZWsTs49wxg
kPlCCVf8t75aZZkcjXng1eClZZQ5SBlRtSB7gMqtP7MIn2J5w8spNbs5xQvJc76u
NvzwEasPkY+UcHd05RddOUwoKqDerLUG7YqdlNCJoQR1mBIgZButbQlMyaZcmQqO
iR0kwDi9h6Dl6fnUb2dFCNJw+eDHvsjG8HI3IVZMl0bUQ2kmmwr1O2YQ1ynJQm0l
lMllI4hFU8/lHNHm8ie5darpVXQEwsGUBBMBCgA+AhsDBQsJCAcDBRUKCQgLBRYC
AwEAAh4BAheAFiEE/rkgny8vP0ZkhB5VrBB7OGaS2t0FAmUkSiIFCQ+P/Z0ACgkQ
rBB7OGaS2t3HVg//S+/KbeOBf+nCdHsrWtp9kxvWIpAGvQhIbxx1tp/impfm+5Rm
fKPD0KX+g42fuMmOdDE4gjO4GjGd7ZY3bx+0zbDSdVebzmYCbPZ/BDP990oPKidd
w6Gl8PaIyqfuARKOESBETvAwNgwO4t2ocjs4pYZV+CuHvESYpqkuHjmHtye6ajZW
Mv24NhjVo4EfP33dPugTjXLjeuGT7qQpsYV3a66juHmPVkXwuPqxh9wTNc5TU6FG
UPSfIGMPL0xha7Rg2i5zvRaAxx4bHqGO8IAz/l/E/tJkV5xnt494HQam9UDbiFI0
Q0TSve1R6S45/UjQW6cycyduHtk72s9ipa9YM0ilTdLgKMWFjzYv4h4qeYvLw3oB
JGQew+I0I4dIrwL/TKet33EuFfwmyT9MaJBhqV6geFaQ0uVmwvzpAcvxIoSqSpkJ
B/kASqCEM/o0QZLuWc56cDsmMisD0ouVPt+c1Zk7AWLlf6j8LKYTbK0QxLRh/eeZ
jhSf3HnpaCfonbOoHmeo5d/o3EZ0AiA4GbT3xgScoIgXOT7KGgOWmtWkdyd3Zvl/
o6q6Hwpg4RsqCkwnfNm5ZIvmTAYXWc2hiICSicxrP0fek5Cc4xVgJR5RMNGyI7+m
ut1SE2WvLhMCwEyl5ecWF0tUze8VBlWkHJp0Y4k2ado39Zq/DZrTRQYEVrjCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmEyoZoFCQueVRUACgkQ
rBB7OGaS2t3axA//dgcz5T4Fs7LWdIQB/KRnvX64IzaGQcwt3FBhYH+sFaSaD+lu
752vi3jlGxMBKs2NFxk6e2U8xBEir3vfKYd+mZ5L6egXC9MYfvMO/UFEFH3A+t3V
dTOJK4RQcaL9+rFRVdDmZuifN9OFfy25d66JCZ5OiqgHTQViVmbrGw2cQdyNWXrq
YLgg+gktadkmzis4J6hF/le8NOBfrG3n+QthFl/v2ppYYW9pmmxzUIf6tAlR1Vr8
PhPukjuFfrPLRL3XPiK4LkdlSI5MX7Llq4RkcZN1NY1LWS8699wJOLRcr8aQYvzZ
Jm7tfZUaekJ5ScXJWJEaWT4poMbWxXINj6VwE+DqKWvjkzoxBXSIdLk4XThA1dIq
3n5SfMkfuWV2A2xHqJtEzI1XeTm/d/JRxIG8hjIs5FNMGJUSNANJuTVA2putCVf0
JbP4QlafXoEVOYwW/EFJY+brjQadwc/knf/QxszDcKb3THuTxR80A0h6ZysmtLEg
PCaD1xUCDdr4P7DGOtV7yMaDR6O8QKmb7TKzCKCPnHouqPT0DhSB2MRq437+mfSe
EGga/sPMxe0z8ugO2CnrCf3eplU3ZOy4eeQSThTKe0Hp5YlsF1cdZSvjt7GJaHR2

Clés précédentes 291

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

9A22nAJY9PojtlM+0Dkr/PH6r2brv3sEuACRNhzqCWhAve+zVnVLeb+Fk1rCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAmCavPYFCQsGcHEACgkQ
rBB7OGaS2t3fqg//asHYSTBI4IoLibSF5ZJ8NaLo4EqgRtsO0W1zr8fCoFbxI+yI
qWrNXR7eoFj8tWO7Tj6S0kQr4QZcucLeILfox6CtDzO3f3WQTH9m/0si5U4Jf3RA
gBd0vwxVSSSNEsIUUfylOBHLVwlhaTVfh1h1dZhzb18LA1Vqu0100GGxvaG3dUl4
oMSRSK8EeaSO4hIM8ScjVyhjsuPRm1jlwd1EXZ5mkHRGRMGmwi3XysJjIeQRFmuG
a9uPes7I/K85r7X91BLz+G/mkSZsrHxzLxF0mSZtQdhq08GyMeQlJavs7sb1UVbg
ag30JEAjgqRsNIQOMIvl2/amrRJ7DUyQu5YkZQsAyCIhSVZw6zlJlkYVKSw1Cu1I
VX1n/Aahx5wwaQZA1dDTolX8WvL9O/KmEGWbKUSov40uoRwSOeXP3QhW75kD4zT0
n3pSUc7tXka8GAz5Ar+r90l4wc9as2WjWADo3CX8cF0zQOrN1naMQ++xBIAG9ms8
y3L4ECoRqvjCpjUAfhflxwSM7uclCgFBINFKSLV+QGxzWfHjg3+bSQd0hrRn9j4z
Di9aJmFESQ6iykbUjiUFrcI1NUCFKz2awaxh+Sq8UkYcvuxljxdK/zYYEG8DSdQ2
uwlssHCjYVpAb16hq1EAaSqnhv86020G4Z6JCg3AUZt9RlMBpK2Pn/NmPSzCwX0E
EwEKACcCGwMFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AFAl771vAFCQlnimUACgkQ
rBB7OGaS2t35Jw/9GhpQquJVUCAsc4az7+ad8q2d9OUKXOLl2x0j3/ofS8umZJYr
8KXZxPqBqvLjlUyAB5Ur4fWVBdp9iP4Vj74jmRih7YatK8heGmNoUAnI1/90qV5O
ypFObfvWLxvcUNizmS/LYKdNuYcHwyw4bFyTz9gd3XH6Dxak7YiAXz3JgJIXcIB3
ELfpsduzpncLeVwz/dKhYX5iJ7Y/xd4Ew8Ian8FyNDNRwcXobTpPAMNiGLG5xSLq
8RgQfkm07BVVDtu5tPw4V46gnBXGXNjPhSirGMoNbKZqtPO7TcBQhPQ9c95x73hs
kAqZKHrwi1B7cfy1I8y5sRFbPa0RXeVWQKEMZdwLsFhCbEex6iXHP+rMK0nSJf0G
9lF2eJk140n8K7wzakOnjvN00VfN/9D+xD2lCXCzbYbaDXX2tYOd4GS72fW9M/zT
96tIH5UtMGMOICuUJjnL34EbzBuxwTEnJKhDGQH2P+eUzM9jmuCTRLLGw2P0Zuof
6GsSNLf+5pw3BIvEZw5PYT1N6i3ml9MQ7p9BWr7flCF8CU/xzyPN7TVb/677Be7V
SL1rNFLNi0IdqcbLJ63pTWaUGkCSqRnMfq3cIDlzNz2LoVvOO8VVmdtFRkhHN8hJ
h7CUXlaqBOfaJhV3FqA9G8sXmSN3r3pusZb13kfCKsJUZorThWxdaUBuUH3CwX0E
EwEKACcFAld1gAUCGwMFCQeGH4AFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AACgkQ
rBB7OGaS2t1aKA//dBaXto7zUFRbJvLgcSE3hJ0ChYZj8Uuo7iYK26mVycyBFQJK
Iv2XYFIJMwK1Rx1Ja1jA6BIKE3aYyx2LVTYU1Hke826dhH+kV2qN9C6t/VmYpV4b
n/i64po7EzD17ykrm5gB+z47uCvyC79/r8Ouns1mTf/JUql/hYJj2hf1MDWr07/X
Wc1zBLjlT93tg/43Vgz1wFdrUOcNx1+bQGXKTOi4AXSp3UvCL+2YsQ2/JsPf7ZzZ
awSuUVkZJrllp87S1MhZeHmTrCHkV1FHJyudLJErcH0337Jpd8xDRek7Klrx2pAS
cKIiyeAMIk/G1OuExYqEEVFQzMr9ZlMNuhNBJAMr5hVGsTgrwy2hlIrBktXav07d
OleSlsqw9ViZ7F6t90x5l+NkwXVsLsGYSzuNyIfomNuoCgA+cfM3TjzVp41qsg1J
WJc9Bavaan2pKF6Lb9Fq8u3HZk2u+YZbvZkqkXwTdZZQOkEmoVV4Y1G86bdpmPyj
8eV7C02NxPii4l+qV8qJQu/6DsA0QwMtBMUNODm3BF2+ZmUHuhMGxq9/4vDE8heE
ffYhHtNftV6JwwzGZmeZkrYA1P9AGLeVp/6iNUe8H5/oPvh4s2rRmqN+L/dQU1ix
iOAT5iAKoRQGkduXrWc4fAY5KxDB9qna4oqXO6QP8rEflI8ELcNgYEj4oJvOwU0E
V3WABQEQALzM0Cs9Zvd08xOEvbEBj59LrS9d0HVKQ61gmkNakWC+jR35VD6FXpe6
UYAcBLrEbVYfKw9P0p6MhFKAsb570JoznKGzE1rVYUZQzhD0RKje35rvkajvEcjG
AWMLTjr87pWHeD0389ER64bzORncfa/l+YP56PI+CThb2wUvTTONGJkPQUpVhH+P
256cQL/Y0Fwu4XLerpwN+YKgMQ47raRcydobPeSfMQr9fVKRyOzFEOrvNpCVDUqi
77d0gLDLjHlIlDyOX5554S8XYLb91eYOiFvnu2pTCKiiExRCSYK29mAQePKlTCCn
QxOjbmBbGS8mVIkpQ5vpvXvzpY3JIjMXaDGqWSQSYGXhECyxCR5eOtKYbCwwPIc2
rIl5gW6yXyw9pKmj5XafTP7YHTvRSr7CZ/VLkDkWl6AfQ9nPOg1mjwjpDFpmN71h

Clés précédentes 292

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

JlSKMaZkh0QGV5FW3dK+GLwxiWdqx3htbZErWyvumWQF/xBF7puKJBEXcoM5KfkJ
uZekBwcnVkfNFF2RdkM1ALq8InGzLXc7ROuEm0BXVirfju7JRtWLb3UhJWCuhRW2
muyYegSTkag5MduD1IJK37GL8WIlAL65taYgZegUoxHdSaEOefOhspxuduz8d33z
UV1WCFhi+r/+BMCQmTRbF8ao7fTC1dGd084DRP6qE/dMT4u0ZEn7ABEBAAHCwXwE
GAEKACYCGwwWIQT+uSCfLy8/RmSEHlWsEHs4ZpLa3QUCZwAXCwUJEWvKhQAKCRCs
EHs4ZpLa3XtzD/9dwi1qffV70UTq8w/21jn1owHp09jxP7WHTmPWHE0BW5yFIWlV
A1gKN6Ym0dw+LvS5WOKJaRnyewUyBxWvZsn6Wlb5qzY7nmCOKJpYtuCUPwiqjXWP
EM8c/v0MojSuwMOXBAViLvOFhgdUrHn1lk962XvWAW++4DXFh2deaV0163IFMRmO
PNPDAiPWBVqvBANIh2sLRZ5gd1BXwpVrd+x8tzyr69YrN7hutPlCyPEUM9//mcEh
vFPsbW/iOx/foCE3NXhQm/rSMKecVn5csXBV2JOlMzi+8txYNrSBLkjbSB1AvTQ1
aG3+nCNCgM2XDLyoj0IrgZ1To4Ay5gmTOR+msY/cfoIuKFYenmtxy6jM8o5uSZHg
hoClrx9IA98hhGQ73G2r5EDpXuU/uCXn53Sswj65bl9IssfqEIoji/FonkkpEgeg
bGXFDUnrhicDO/WOzqpXf2Fa0DQWY+Vc/pt52ftBFgwzCNIUYDKUhCHPnZ0wtLtd
N2fkXHNiCavCDZlOud7FHHwmRNdj2q1uKxe4m+pFYmKwAU/H+Htkz9Gjsj+ZKedY
nnfai2s2gQOrbfwvV9VdhCWSuLK17ZnGTtiJuOUQIlV8n6QQJpohd3mVgmynu6gQ
uKw0YS2RuEUFv0vOg2tASA+4EM/SBUpGhudODLA4b5wO4gKmh1B1HqQrIsLBfAQY
AQoAJgIbDBYhBP65IJ8vLz9GZIQeVawQezhmktrdBQJlJEokBQkPj/2fAAoJEKwQ
ezhmktrdwMAP/RpFylIL4yhgscBOEnQ7e3No8OraNk0z/YhSd125N/uQVEU94JGQ
rrvQ+4Lfve2laPweBDO18/A0CsmOyHPVQMA0a2vx8ItVdIcNc8iFkP4AJ1922lOq
i0Vh0b1UeZnlfK9+Qvq4PQ2lhWJr0uzyL/S38REsAT1I25sfJOP+RCaR1MH9dm85
E56Lee6uZR8SkGuiL6kGpPh6fWTNij3bICjth1iSSCL2HCOW8lvcwSldDu2EfILU
QCSqfSG7bF8dFk+nKhzhVXOUks3XGjLdICxZewU5ycryitpfRgARgZs2A43gshdi
fiKaX6Ksan03uhKDrLhDHNj2y07PUrFo8ggtlRpV/PrlB/UqCsC9FUOixbD+n4ZF
Sqov2qwelLj0f4mZ6yiLsTDUOFPrdkOlHTJZl7AF0zXZMM6CvaCUaJCKx9GVdSrR
+LI4wLQonPrTnXavhkC4intlqSX8ZQNLhEggdE8YwMEJn59R/nVIT3i5WzYph5R9
P4Vz3Yn7jRqM8wAyEbHkA8s45fMRi9akWSw93H5nWukcmfkt3UEbmka3BQg3HKWP
6TvhfI28euM8qqjbPilfkpEBjnChYVk2Rgn0P8zA7Q5kCo293kwJL9c3RDjMPcxI
45ktKvBTZftsDt1Z718LwW7Q3VQiGiKvo1XLMuV7Z51fmydfUPcrnv17wsFlBBgB
CgAPAhsMBQJhMqGaBQkLnlUVAAoJEKwQezhmktrdbhwQAITmFb67XIUZswr3TREd
Q7ZCLG4EDyfTsW8n75r6A9OqsR+z68nC2Sm7e8mKQFFPwjHPOhsGhHtCOTZtQk7O
jbwyL4N3uxDyEvOfbckH5WzOejZcG7KKQrqAiWJJ7q6CH/zOnVurySjVyzJpy/wL
WpVAcF/uaW5ZhlFCXqePaEzsUBJ757qsr2ho14BV4seT1RSQ9nneTZ0Hhab3wqXP
4qDTo8+zkTvNo9YbeZ1qj62l1+QGIUBTP5MEdXCuC1e4FQ3f6vnXxmB86cUPx7cl
/y2rIjeiOdkKgPeUjNWWSzxS2jYehL5we7gvaSwmEvJ74pV+/3Hs+TxX39XtYFwj
k9I795idnsS5l1dAW3yoI3HBQsYa3US7bpH4g3yZMkstc3bHJ6X54PMCd8Skb+N3
FE8+zGduDmDTKitumiWVVxEFGIwsLAcpWPxecI2AMIMGfMheURYsdvD/yvCbCB29
0KwCSrDVkAG9N2VorNzd7KUeTPTMN1bg2d1lF6u5sQeTN5KVaGd7xE1OXME2wA2D
T3+EsAQytriFbcWm3s8Ugbc9BXMmKBfjlvKu6+Fr6Mgvf/txn56M2SyXBCFQ5OFt
qTFuAFIRv+nayk5tx5Eg1iA7u3dbB1jH3yxGH1B7TeQypA5BqD3x72b7vbXkeci3
1Kz035LYoT5/yTK5sGvacIvCwsFlBBgBCgAPAhsMBQJgmrz3BQkLBnByAAoJEKwQ
ezhmktrdLmgP/1FkWkYhxACnkagRv09mpPl2STbu0B3zYKFBALm/Wa7vKDz18dgC
S3BxDSlpnhZS8QA3VjmbOAZvaDnsN1UJ0f3Qao5136G/UXPnmFIwN612szP0K6nF
PEsotzIzRlJo3S+WkBfiKaQDIDgSxtUxJzOwufz76xibmKRhJ5ChMDCvxmIaoNle
tKRxFT77OupnnyaQs22UsueqrZJ0resgTVnNeF4A1+lU59pFuAlf971SVLr472LP

Clés précédentes 293

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Uj8mPJihF2ukL1Hdz3F7+kYlpOJRmLk9fo4dlZHBUPiZ1ML/U2yhQfW+Y6tW71vf
izAxJWF7se6QT+UT5Pji6cohMSERVoYt8e2jFjs0PiPcrjU3mJEx4hAEEVIbP9RY
eKC4CL/UGYAtJkUjd85vKZUHYr7NWZQKLAKqpAPQUMKrIKLEHuz/doq2CCamstLI
vcBgg8EjLJnl3SBesFt/1DCWZeummqz3omQKRl9EHU2cIzIf0Cv/IEysnmbpSpjZ
DX8Fqjtezoq1qiyrLFR7YN1VDPBCHYfqDagw10nlrWFJqT6VqfslmdMdTBRWYVEB
0GUxrkyI+APdi0M2634/410b1ptkqyTIr1KIg1J/qsSiKVcBZSOYFW/rskxYcPPT
wpKYaycEYtOdkS6FPcnehJOOlB+F32WVq2bs2Ps8we6KhjjaYS4Iv4dwwsFlBBgB
CgAPAhsMBQJe+9W/BQkJZ4k1AAoJEKwQezhmktrdvzMQAI6BBj3c2r4bDpV3TwkX
dQ+UCa/E/zUhFds9XKfGb3a5IzRdPUwT+KrAZyiYrr2NSMOzhl/VtqJL18YCYsxO
Ob/TB1hDM+IZiI5gH0cHKhDYKTnNSGP09P/pJAlvHQend9CdZE9J9jwkczfS+bz6
mVxkxpi73fTDox9duesOLsS2/ntRzA0wqhDdaaavRvhAEf9vavCWVrNZmq22WVsU
lnIPxNWGGzWn85JYI6uAi4f4/ABFkry69/c0cvbr0P8qgCmeCuGmX4f0j7qRg77A
+mSueBDx8RK0O2ol021B7b8IcVizj+lpsRQN0oa+i+mFG+o6vtD1ZYhQude4N5sR
RybcLclxjSCoZs5q9JfTpbB2n7pSf/UD3ytwnt9kpD4Vv9dTGAPB83bjL+QK6e3A
XM10jxFE5jSFSr94E40kK80YcIR5jLqsg2f610ENY5drMSA4zuDFDL1Y2ChfjgjZ
uNoFbPHGt/8DfWTVOochVnikA7ggKjz20+RjvwyrHhRMAftO8MMh9UV28pdL+H53
oOtOV0u5aoTbcNqdYQy9B2Bw4lfmj2fi6Dpl+vnZp6hOm0CWiJVW/dtilppYjuxd
w5Kj+9IxZYaBNYH4l1pMT+BsvMDqGzXxDIL89NnY5BkMvqEKnjXSHGRWYMz0xigf
51YKbfQnEQ1oz5bRQndntRQWwsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQ
ezhmktrdTyEP/0HOVWHwQsaWjMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCje
ZzU16i9iqDpDqxpyqmTigcjHV8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF
9mS7pDYWy+mPhPuw8TDIfiqgVhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+
NAM6Q5dYkCebyvwzLmg1sVnil6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNVi
J9zAaPI78X9v6PpDGn0kg6oLzrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJB
lkke6kw9+KagY8mrVX1ZenRg+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHOD
ysrGVCLcmuinUBaNlHmLDcGYXZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKM
O+22xL1atFzXfkEVZck+NghLZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7
GNpuiEFUYh69QQ2//CS5H51osC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02N
K0fvF/IKHnGkvH28rv0OPCvOWTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+O
Ta63/z4YFfEZ7sFLrEm3Q3vJMN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=bboB
-----END PGP PUBLIC KEY BLOCK-----

Date d'expiration : 2024-10-08

ID de clé 0x 07B386692DADD AC1

Type RSA

Size 4096/4096

Créé 2016-06-30

Clés précédentes 294

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Date d’expiration 2024-10-08

ID de l'utilisateur AWS SDKs et outils < aws-dr-tools
@amazon .com>

Empreinte digitale FEB9 209F 2F2F 3F46 6484 1E55 0 7B38
6692 AJOUTER AC1

Pour copier la clé publique OpenPGP suivante pour le SDK pour Java dans le presse-papiers,
sélectionnez l'icône « Copier » dans le coin supérieur droit.

-----BEGIN PGP PUBLIC KEY BLOCK-----

xsFNBFd1gAUBEACqbmmFbxdJgz1lD7wrlskQA1LLuSAC4p8ny9u/D2zLR8Ynk3Yz
mzJuQ+Kfjne2t+xTDex6MPJlMYpOviSWsX2psgvdmeyUpW9ap0lrThNYkc+W5fRc
buFehfbi9LSATZGJi8RG0sCCr5FsYVz0gEk85M2+PeM24cXhQIOZtQUjswX/pdk/
KduGtZASqNAYLKROmRODzUuaokLPo24pfm9bnr1RnRtwt5ktPAA5bM9ZZaGKriej
kT2lPffbBjp8F5AZvmGLtNm2Cmg4FKBvI04SQjy2jjrQ3wBzi5Lc9HTxDuHK/rtV
u6PewUe2WPlnxlXenhMZU1UK4YoSB9E9StQ2VxQiySLHSdxR7Ma4WgYdVLn9bOie
nj3QxLuQ1ZUKF79ES6JaM4tOz1gGcQeU1+UklgjFLuKwmzWRdEIFfxMyvH6qgKnd
U+DioH5mcUwhwffAAsuIJyAdMIEUYh7IfzJJXQf+fF+XfOCl6byOJFWrIGQkAzMu
CEvaCfwtHC2Lpzo33/WRFeMAuzzd0QJ4uz4xFFvaSOSZHMLHWI9YV/+Pea3X99Ms
0Nlek/LolAJh67MynHeVBOHKrq+fluorWepQivctzN6Y1NOkx5naTPGGaKWK7G2q
TbcY5SMnkIWfLFSougj0Fvmjczq8iZRwYxWA+i+LQvsR9WEXEiQffIWRoQARAQAB
zsFNBFd1gAUBEAC8zNArPWb3dPMThL2xAY+fS60vXdB1SkOtYJpDWpFgvo0d+VQ+
hV6XulGAHAS6xG1WHysPT9KejIRSgLG+e9CaM5yhsxNa1WFGUM4Q9ESo3t+a75Go
7xHIxgFjC046/O6Vh3g9N/PREeuG8zkZ3H2v5fmD+ejyPgk4W9sFL00zjRiZD0FK
VYR/j9uenEC/2NBcLuFy3q6cDfmCoDEOO62kXMnaGz3knzEK/X1SkcjsxRDq7zaQ
lQ1Kou+3dICwy4x5SJQ8jl+eeeEvF2C2/dXmDohb57tqUwioohMUQkmCtvZgEHjy
pUwgp0MTo25gWxkvJlSJKUOb6b1786WNySIzF2gxqlkkEmBl4RAssQkeXjrSmGws
MDyHNqyJeYFusl8sPaSpo+V2n0z+2B070Uq+wmf1S5A5FpegH0PZzzoNZo8I6Qxa
Zje9YSZUijGmZIdEBleRVt3Svhi8MYlnasd4bW2RK1sr7plkBf8QRe6biiQRF3KD
OSn5CbmXpAcHJ1ZHzRRdkXZDNQC6vCJxsy13O0TrhJtAV1Yq347uyUbVi291ISVg
roUVtprsmHoEk5GoOTHbg9SCSt+xi/FiJQC+ubWmIGXoFKMR3UmhDnnzobKcbnbs
/Hd981FdVghYYvq//gTAkJk0WxfGqO30wtXRndPOA0T+qhP3TE+LtGRJ+wARAQAB
wsFlBBgBCgAPBQJXdYAFAhsMBQkHhh+AAAoJEKwQezhmktrdTyEP/0HOVWHwQsaW
jMrGj0OOMFzxGUo8SBmYYTBs29VM8wBGDsPkYCjeZzU16i9iqDpDqxpyqmTigcjH
V8CDx/6xsMBLG2yKaKZ4m3+YnOQf/sQkyCvqiyMF9mS7pDYWy+mPhPuw8TDIfiqg
VhzjSpIMFWPqxVjn6KKbPN/QASr3Pf0cuP6qpHG+NAM6Q5dYkCebyvwzLmg1sVni
l6iSyJd1jBj3D34XrgWS9buyxBB2CjIM76WxfNViJ9zAaPI78X9v6PpDGn0kg6oL
zrusrvBjoZknKQm0SZ+41fx6xvrTPs8uPEzevzJBlkke6kw9+KagY8mrVX1ZenRg

Clés précédentes 295

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

+sY/4vxJreYWQeql67ggx+wFjKDcfhZA7m7OLHODysrGVCLcmuinUBaNlHmLDcGY
XZ+kMCoXfObpuCVByQmNJgEb47EIFlx/+TEeNHKMO+22xL1atFzXfkEVZck+NghL
ZyFDhS3g1bma7puU7r752uiJjA6Iv8+kHDXi+/V7GNpuiEFUYh69QQ2//CS5H51o
sC/Bkb9evSn/Lp8dMubtWAaXDGJMgw9vqZ55N02NK0fvF/IKHnGkvH28rv0OPCvO
WTA/MClv28y0PrSvcvMXnduLtkBEX7TISMPW+n+OTa63/z4YFfEZ7sFLrEm3Q3vJ
MN3mE5i3cw+JGXPSu0nTtgqk/oZv//SS
=Z9u3
-----END PGP PUBLIC KEY BLOCK-----

Clés précédentes 296

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

Historique du document
Cette page répertorie les modifications importantes apportées au guide du AWS SDK pour Java
développeur au cours de son histoire.

Ce guide a été publié le 1er octobre 2025.

1er octobre 2025

Ajoutez une nouvelle clé PGP qui expire le 2026-09-27.

5 octobre 2024

Mettez à jour les informations clés OpenPGP actuelles.

4 septembre 2024

Ajoutez des informations sur les points de terminaison AWS basés sur des comptes pour
DynamoDB. Consultez the section called “Utiliser des points de AWS terminaison basés sur des
comptes”.

21 mai 2024, 2024

Supprimez les instructions pour définir networkaddress.cache.ttl la propriété de sécurité
à l'aide d'une propriété système de ligne de commande Java. Consultez Comment configurer le
JVM TTL.

12 janvier 2024

Ajoutez une bannière annonçant la fin du support pour la AWS SDK pour Java v1.x.

6 décembre 2023

• Fournissez la clé OpenPGP actuelle.

14 mars 2023

• Mise à jour du guide s’aligner sur les bonnes pratiques IAM. Pour plus d’informations, consultez
Bonnes pratiques de sécurité dans IAM.

28 juillet 2022

• Ajout d'une alerte indiquant que EC2 -Classic prendra sa retraite le 15 août 2022.

22 mars 2018

• Suppression de la gestion des sessions Tomcat, DynamoDB par exemple, car cet outil n'est
plus pris en charge.

297

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

2 nov 2017

• Ajout d'exemples de Amazon S3 chiffrement pour le client de chiffrement, y compris de
nouvelles rubriques : utilisation du chiffrement côté Amazon S3 client et du chiffrement
côtéAmazon S3 client avec des clés gérées par AWS KMS et du chiffrement côté client avec
des clés principales Amazon S3 du client.

14 avril 2017

• Plusieurs mises à jour ont été apportées à la section Amazon S3 Exemples d'utilisation de AWS
SDK pour Java cette section, notamment de nouvelles rubriques : gestion des autorisations
Amazon S3 d'accès pour les compartiments et les objets et configuration d'un Amazon S3
compartiment en tant que site Web.

04 avril 2017

• Une nouvelle rubrique, Enabling Metrics for the, AWS SDK pour Java décrit comment générer
des mesures de performance des applications et des SDK pour le AWS SDK pour Java.

03 avril 2017

• De nouveaux CloudWatch exemples ont été ajoutés aux CloudWatch exemples d'utilisation
de la AWS SDK pour Java section : obtention de métriques à partir de métriques CloudWatch,
publication de données métriques personnalisées, utilisation d' CloudWatch alarmes, utilisation
d'actions d'alarme et envoi d'événements à CloudWatch CloudWatch

27 mars 2017

• D'autres Amazon EC2 exemples ont été ajoutés aux Amazon EC2 exemples d'utilisation de
la AWS SDK pour Java section : gestion des Amazon EC2 instances, utilisation d'adresses IP
élastiques dans Amazon EC2, utilisation de régions et de zones de disponibilité, utilisation de
paires de Amazon EC2 clés et utilisation de groupes de sécurité dans Amazon EC2.

21 mars 2017

• Ajout d'un nouvel ensemble d'exemples IAM aux exemples IAM à l'aide de la AWS SDK pour
Java section : Gestion des clés d'accès IAM, Gestion des utilisateurs IAM, Utilisation des alias
de compte IAM, Utilisation des politiques IAM et Utilisation des certificats de serveur IAM

13 mars 2017

• Trois nouveaux sujets ont été ajoutés à la Amazon SQS section : activation des longs sondages
pour les files d'attente de Amazon SQS messages, définition du délai de visibilité dans Amazon
SQS et utilisation de files d'attente de lettres mortes dans. Amazon SQS

298

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

26 janvier 2017

• Ajout d'une nouvelle Amazon S3 rubrique, Utilisation TransferManager pour les Amazon S3
opérations, et d'une nouvelle rubrique Meilleures pratiques pour le AWS développement, dont la
AWS SDK pour Java rubrique se trouve dans la AWS SDK pour Java section Utilisation.

16 janvier 2017

• Ajout d'une nouvelle Amazon S3 rubrique, Gestion de l'accès aux Amazon S3 compartiments à
l'aide de politiques relatives aux compartiments, et de deux nouvelles Amazon SQS rubriques,
Utilisation des files d'attente de Amazon SQS messages et envoi, réception et suppression
Amazon SQS de messages.

16 décembre 2016

• De nouveaux exemples de sujets ont été ajoutés pour DynamoDB : Travailler avec des tables
dans DynamoDB et Travailler avec des éléments dans DynamoDB.

26 septembre 2016

• Les rubriques de la section Avancé ont été déplacées vers Utilisation du AWS SDK pour Java,
car elles sont vraiment essentielles à l'utilisation du SDK.

25 août 2016

• Une nouvelle rubrique, Création de clients de service, a été ajoutée à Using the AWS SDK pour
Java, qui montre comment utiliser les créateurs de clients pour simplifier la création de Service
AWS clients.

La section Exemples de AWS SDK pour Java code a été mise à jour avec de nouveaux
exemples pour S3 qui sont soutenus par un référentiel contenant l'exemple de code complet.
GitHub

02 mai 2016

• Une nouvelle rubrique, Programmation asynchrone, a été ajoutée à la section Utilisation de
la AWS SDK pour Java section. Elle décrit comment travailler avec des méthodes clientes
asynchrones qui renvoient des Future objets ou qui prennent un. AsyncHandler

26 avril 2016

• La rubrique Exigences des certificats SSL a été supprimée, car elle n'est plus pertinente. La
prise en charge des certificats signés SHA-1 est obsolète depuis 2015 et le site qui héberge les
scripts de test a été supprimé.

299

https://github.com/awsdocs/aws-doc-sdk-examples

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

14 mars 2016

• Ajout d'une nouvelle rubrique à la Amazon SWF section : Tâches Lambda, qui décrit comment
implémenter un Amazon SWF flux de travail qui appelle des Lambda fonctions en tant que
tâches au lieu d'utiliser des activités traditionnelles Amazon SWF .

04 mars 2016

• La section Amazon SWF Exemples d'utilisation de AWS SDK pour Java cette section a été
mise à jour avec un nouveau contenu :

• Amazon SWF Notions de base : fournit des informations de base sur la manière d'inclure le
SWF dans vos projets.

• Création d'une Amazon SWF application simple - Un nouveau didacticiel qui fournit step-by-
step des conseils aux développeurs Java novices Amazon SWF.

• Arrêter les travailleurs d'activité et de flux de travail avec élégance - Décrit comment vous
pouvez fermer gracieusement les classes de Amazon SWF travailleurs à l'aide des classes
de simultanéité de Java.

23 février 2016

• La source du guide du AWS SDK pour Java développeur a été déplacée vers aws-java-
developer-guide.

28 décembre 2015

• the section called “Définissez le TTL de la JVM pour les recherches de noms DNS”a été
transféré de la version avancée à l'utilisation du AWS SDK pour Java, et a été réécrit pour des
raisons de clarté.

La section Utilisation du kit SDK avec Apache Maven a été mise à jour avec des informations
sur la manière d'inclure la nomenclature (BOM) du kit SDK dans votre projet.

04 août 2015

• Les exigences relatives aux certificats SSL constituent une nouvelle rubrique de la section
Getting Started qui décrit AWS« le passage aux certificats SHA256 signés pour les connexions
SSL » et explique comment corriger les environnements Java des versions 1.6 et antérieures
afin qu'ils utilisent ces certificats, qui sont requis pour y AWS accéder après le 30 septembre
2015.

Note

Java 1.7+ est déjà capable de fonctionner avec des certificats signés SHA256.

300

https://github.com/awsdocs/aws-java-developer-guide
https://github.com/awsdocs/aws-java-developer-guide

AWS SDK pour Java 1. x Guide du développeur pour la version 1.x

14 mai 2014

• Le matériel d'introduction et de démarrage a été largement révisé pour soutenir la nouvelle
structure du guide et comprend désormais des conseils sur la manière de configurer les AWS
accréditations et la région pour le développement.

La discussion sur les exemples de code a été déplacée dans sa propre rubrique au sein de la
section Documentation et ressources supplémentaires.

Les informations sur la façon d'afficher l'historique des révisions du kit SDK ont été déplacées
dans l'introduction.

9 mai 2014

• La structure générale de la AWS SDK pour Java documentation a été simplifiée et les rubriques
Mise en route et Documentation et ressources supplémentaires ont été mises à jour.

De nouvelles rubriques ont été ajoutées :

• Travailler avec les AWS informations d'identification : décrit les différentes manières de
spécifier les informations d'identification à utiliser avec AWS SDK pour Java.

• Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2 :
fournit des informations sur la manière de spécifier en toute sécurité les informations
d'identification pour les applications exécutées sur des EC2 instances.

9 septembre 2013

• Cette rubrique, Historique des documents, suit les modifications apportées au Guide du AWS
SDK pour Java développeur. Elle résume l'historique des notes de mise à jour.

301

	AWS SDK pour Java 1. x
	Table of Contents
	
	Guide du développeur - AWS SDK pour Java 1.x
	Sortie de la version 2 du SDK
	Documentation et ressources supplémentaires
	Prise en charge de l'IDE Eclipse
	Développement d'applications pour Android
	Affichage de l'historique des révisions du kit SDK
	Génération de la documentation de référence Java pour les versions précédentes du kit SDK

	Démarrage
	Configuration de base avec laquelle travailler Services AWS
	Présentation
	Possibilité de connexion au portail d' AWS accès
	Configuration de fichiers de configuration partagés
	Configuration du config fichier partagé
	Configurer des informations d'identification temporaires pour le SDK

	Installation d'un environnement de développement Java

	Moyens d'obtenir le AWS SDK pour Java
	Prérequis
	Utiliser un outil de génération pour gérer les dépendances du SDK for Java (recommandé)
	Téléchargez et extrayez le SDK (non recommandé)
	Construire les versions précédentes du SDK à partir des sources (non recommandé)

	Utiliser des outils de construction
	Utilisation du kit SDK avec Apache Maven
	Création d'un package Maven
	Configuration du kit SDK en tant que dépendance Maven
	Spécification individuelle des modules SDK
	Importation de tous les modules SDK

	Génération de votre projet
	Génération du kit SDK avec Maven

	Utilisation du kit SDK avec Gradle
	Configuration du projet pour Gradle version 4.6 ou ultérieure
	Configuration de projet pour les versions de Gradle antérieures à la version 4.6

	Configurer des informations d'identification AWS temporaires et Région AWS pour le développement
	Configurer les informations d'identification temporaires
	Actualisation des informations d'identification de l'IMDS
	Réglez le Région AWS

	En utilisant le AWS SDK pour Java
	Meilleures pratiques de AWS développement avec le AWS SDK pour Java
	S3
	Éviter ResetExceptions

	Création de clients de service
	Obtention d'un générateur client
	Création de clients asynchrones
	Pour créer un client DynamoDB asynchrone avec la valeur par défaut ExecutorService
	Pour créer un client asynchrone avec un exécuteur personnalisé

	En utilisant DefaultClient
	Pour créer un service client par défaut

	Cycle de vie des clients
	Pour arrêter un client

	Fournissez des informations d'identification temporaires au AWS SDK pour Java
	Utilisation de la chaîne de fournisseur d'informations d'identification par défaut
	Définissez des informations d'identification temporaires
	Définir un autre profil d'identification
	Définir un autre emplacement pour le fichier d'informations d'identification
	Pour remplacer l'emplacement du fichier d'informations d'identification par défaut

	Credentialsformat de fichier
	Charger les identifiants

	Spécifiez un fournisseur d'informations d'identification ou une chaîne de fournisseurs
	Spécifiez explicitement les informations d'identification temporaires
	Plus d'informations

	Région AWS Sélection
	Vérification de la disponibilité du service dans une région
	Choix d'une région
	Choix d'un point de terminaison spécifique
	Déterminer automatiquement la région à partir de l'environnement
	Chaîne du fournisseur de région par défaut

	Gestion des exceptions
	Pourquoi des exceptions non contrôlées ?
	AmazonServiceException (et sous-classes)
	AmazonClientException

	Programmation asynchrone
	Objets Future Java
	Rappels asynchrones
	Bonnes pratiques
	Exécution des rappels
	Configuration du groupe de threads
	Accès asynchrone

	Enregistrement AWS SDK pour Java des appels
	Téléchargement du fichier JAR Log4J
	Définition du chemin de classe
	Erreurs et avertissements propres au service
	Journalisation récapitulative des demandes et des réponses
	Journalisation du réseau filaire détaillée
	Journalisation des métriques de latence

	Configuration de client
	Configuration de proxy
	Configuration du transport HTTP
	Connexions maximales
	Délais et gestion des erreurs
	Adresse locale

	Conseils sur la taille de la mémoire tampon du socket TCP

	Stratégies de contrôle d'accès
	Amazon S3 Exemple
	Amazon SQS Exemple
	Exemple Amazon SNS

	Définissez le TTL de la JVM pour les recherches de noms DNS
	Comment configurer le JVM TTL

	Activation des métriques pour le AWS SDK pour Java
	Comment activer la génération de métriques du SDK Java
	Types de métrique disponibles
	En savoir plus

	AWS SDK pour Java Exemples de code
	AWS SDK pour Java 2. x
	CloudWatch Exemples d'utilisation du AWS SDK pour Java
	Obtenir des métriques à partir de CloudWatch
	Affichage de la liste des métriques
	En savoir plus

	Publication de données de métriques personnalisées
	Publication de données de métriques personnalisées
	En savoir plus

	Utilisation des CloudWatch alarmes
	Créer une alarme
	Affichage des alarmes
	Suppression d'alarmes
	En savoir plus

	Utilisation des actions d'alarme dans CloudWatch
	Activation d'actions d'alarme
	Désactivation d'actions d'alarme
	En savoir plus

	Envoi d'événements à CloudWatch
	Ajout d'événements
	Ajout de règles
	Ajout de cibles
	En savoir plus

	DynamoDB Exemples d'utilisation du AWS SDK pour Java
	Utiliser des points de AWS terminaison basés sur des comptes
	Utilisation de tables dans DynamoDB
	Création d’une table
	Création d'une table avec une clé primaire simple
	Création d'une table avec une clé primaire composite

	Affichage d'une liste de tables
	Description d'une table (obtention d'informations sur celle-ci)
	Modification (mise à jour) d'une table
	Suppression d'une table
	Plus d'informations

	Utilisation d'éléments dans DynamoDB
	Extraction (Get) d'un élément d'une table
	Ajout d'un nouvel élément à une table
	Mise à jour d'un élément existant dans une table
	Utiliser la classe Dynamo DBMapper
	Plus d'informations

	Amazon EC2 Exemples d'utilisation du AWS SDK pour Java
	Tutoriel : Démarrage d'une EC2 instance
	Prérequis
	Création d'un groupe Amazon EC2 de sécurité
	EC2-Classic prend sa retraite

	Créer une paire de clés
	Exécuter une Amazon EC2 instance

	Utilisation des rôles IAM pour accorder l'accès aux AWS ressources sur Amazon EC2
	La chaîne de fournisseurs et les profils d' EC2 instance par défaut
	Procédure pas à pas : utilisation des rôles IAM pour les instances EC2
	Créer un rôle IAM
	Lancez une EC2 instance et spécifiez votre rôle IAM
	Création de votre application
	Transférez le programme compilé vers votre EC2 instance
	Exécutez l'exemple de programme sur l' EC2 instance

	Tutoriel : Instances Amazon EC2 ponctuelles
	Présentation
	Prérequis
	Étape 1 : Configurer vos informations d'identification
	Étape 2 : Configurer un groupe de sécurité
	Étape 3 : Envoyer la demande Spot
	Étape 4 : Déterminer l'état de votre demande Spot
	Étape 5 : Nettoyer vos demandes et instances Spot
	Synthèse
	Étapes suivantes

	Tutoriel : Gestion avancée des demandes Amazon EC2 ponctuelles
	Prérequis
	Définition de vos informations d'identification
	Configuration d'un groupe de sécurité
	Options détaillées de création de demande d'instance Spot
	Demandes persistantes et demandes Spot
	Limitation de la durée d'une demande
	Regroupement de vos demandes d'instance Amazon EC2 Spot
	Comment rendre une partition racine permanente après une interruption ou une mise hors service
	Balisage de vos demandes et instances Spot
	Balisage des demandes d'
	Balisage d'instances

	Annulation des demandes Spot et mise hors service des instances
	Annulation d'une demande Spot
	Mise hors service d'instances Spot

	Synthèse

	Gestion des Amazon EC2 instances
	Création d'une instance
	Démarrage d'une instance
	Arrêt d'une instance
	Redémarrage d'une instance
	Description des instances
	Surveillance d'une instance
	Arrêt de la surveillance des instances
	En savoir plus

	Utilisation d'adresses IP élastiques dans Amazon EC2
	EC2-Classic prend sa retraite
	Allocation d'une adresse IP Elastic
	Description des adresses IP Elastic
	Libération d'une adresse IP Elastic
	En savoir plus

	Utiliser les régions et les zones de disponibilité
	Décrire les régions
	Décrire les zones de disponibilité
	Décrire les comptes
	En savoir plus

	Utilisation de paires Amazon EC2 de clés
	Création d'une paire de clés
	Description de paire de clés
	Suppression d'une paire de clés
	En savoir plus

	Utilisation de groupes de sécurité dans Amazon EC2
	Création d'un groupe de sécurité
	Configuration d'un groupe de sécurité
	Description des groupes de sécurité
	Suppression d'un groupe de sécurité
	En savoir plus

	Exemples d'IAM utilisant le AWS SDK pour Java
	Gestion des clés d’accès IAM
	Création d'une clé d'accès
	Affichage de la liste des clés d'accès
	Récupération de l'heure de la dernière utilisation d'une clé d'accès
	Activation ou désactivation des clés d'accès
	Suppression d'une clé d'accès
	En savoir plus

	Gestion des utilisateurs IAM
	Création d'un utilisateur
	Affichage d'une liste d'utilisateurs
	Mise à jour d'un utilisateur
	Suppression d'un utilisateur
	En savoir plus

	Utilisation des alias de compte IAM
	Création d'un alias de compte
	Liste des alias de compte
	Suppression d'un alias de compte
	En savoir plus

	Utilisation des stratégies IAM
	Création d'une politique
	Obtention d'une stratégie
	Attachement d'une stratégie de rôle
	Affichage d'une liste de stratégies de rôle attachées
	Détachement d'une stratégie de rôle
	En savoir plus

	Utilisation des certificats de serveur IAM
	Obtention d'un certificat de serveur
	Liste des certificats de serveur
	Mise à jour d'un certificat de serveur
	Suppression d'un certificat de serveur
	En savoir plus

	Lambda Exemples d'utilisation du AWS SDK pour Java
	Invocation, listage et suppression de fonctions Lambda
	Invoquer une fonction
	Répertorier des fonctions
	Supprimer une fonction

	Amazon Pinpoint Exemples utilisant le AWS SDK pour Java
	Création et suppression d'applications dans Amazon Pinpoint
	Création d'une application
	Suppression d'une application
	En savoir plus

	Création de points de terminaison dans Amazon Pinpoint
	Création d'un point de terminaison
	En savoir plus

	Création de segments dans Amazon Pinpoint
	Créer un segment
	En savoir plus

	Création de campagnes dans Amazon Pinpoint
	Création d'une campagne
	En savoir plus

	Mise à jour des chaînes dans Amazon Pinpoint
	Mise à jour d'un canal
	En savoir plus

	Amazon S3 Exemples utilisant le AWS SDK pour Java
	Création, listage et suppression de Amazon S3 buckets
	Création d'un compartiment
	Etablir une liste des compartiments
	Supprimer un compartiment
	Suppression des objets d'un compartiment sans gestion des versions avant sa suppression
	Suppression des objets d'un compartiment avec gestion des versions avant sa suppression
	Suppression d'un compartiment vide

	Exécution d'opérations sur Amazon S3 des objets
	Chargement d'un objet
	Affichage de la liste des objets
	Téléchargement d'un objet
	Copie et déplacement d'objets, ou attribution d'un nouveau nom aux objets
	Supprimer un objet
	Suppression simultanée de plusieurs objets

	Gestion des autorisations Amazon S3 d'accès pour les compartiments et les objets
	Obtention de la liste de contrôle d'accès pour un compartiment
	Définition de la liste de contrôle d'accès pour un compartiment
	Obtention de la liste de contrôle d'accès pour un objet
	Définition de la liste de contrôle d'accès pour un objet
	En savoir plus

	Gestion de l'accès aux Amazon S3 compartiments à l'aide de politiques relatives aux compartiments
	Définition d'une stratégie de compartiment
	Utilisation de la classe Policy pour générer ou valider une stratégie

	Obtention d'une stratégie de compartiment
	Suppression d'une stratégie de compartiment
	Plus d'informations

	Utilisation TransferManager pour les Amazon S3 opérations
	Chargement des fichiers et des répertoires
	Chargement d'un seul fichier
	Chargement d'une liste de fichiers
	Charger un répertoire

	Téléchargement de fichiers ou de répertoires
	Téléchargement d'un seul fichier
	Téléchargement d'un répertoire

	Copie d'objets
	Attente de la fin d'un transfert
	Obtention de l'état et de la progression du transfert
	Interrogation de la progression en cours d'un transfert
	Suivez la progression du transfert grâce à ProgressListener
	Obtention de la progression des sous-transferts

	Plus d'informations

	Configuration d'un Amazon S3 bucket en tant que site Web
	Définition de la configuration de site web d'un compartiment
	Obtention de la configuration de site web d'un compartiment
	Suppression de la configuration de site web d'un compartiment
	En savoir plus

	Utiliser le Amazon S3 chiffrement côté client
	Amazon S3 chiffrement côté client à l'aide des clés principales du client
	Importations requises
	Chiffrement authentifié strict
	Mode de chiffrement authentifié

	Amazon S3 chiffrement côté client avec clés gérées par AWS KMS
	Importations requises
	Chiffrement authentifié strict
	Mode de chiffrement authentifié
	Configuration du AWS KMS client

	Amazon SQS Exemples utilisant le AWS SDK pour Java
	Utilisation des files d'attente de Amazon SQS messages
	Création d'une file d'attente
	Affichage de la liste des files d'attente
	Obtention de l'URL d'une file d'attente
	Suppression d'une file d'attente
	Plus d'informations

	Envoyer, recevoir et supprimer Amazon SQS des messages
	Envoi d'un message
	Envoi simultané de plusieurs messages

	Réception de messages
	Suppression des messages après réception
	Plus d'informations

	Activation des longues interrogations pour les files d'attente de Amazon SQS messages
	Activation de l'attente active de longue durée lors de la création d'une file d'attente
	Activation de l'attente active de longue durée pour une file d'attente existante
	Activation de l'attente active de longue durée pour la réception des messages
	Plus d'informations

	Configuration du délai de visibilité dans Amazon SQS
	Définition du délai de visibilité de message pour un seul message
	Définition simultanée du délai de visibilité de message pour plusieurs messages
	Plus d'informations

	Utilisation des files d'attente de lettres mortes dans Amazon SQS
	Création d'une file d'attente de lettres mortes
	Désignation d'une file d'attente de lettres mortes pour une file d'attente source
	Plus d'informations

	Amazon SWF Exemples d'utilisation du AWS SDK pour Java
	Notions de base sur SWF
	Dépendances
	Importations
	Utilisation de la classe client SWF

	Création d'une Amazon SWF application simple
	À propos de l'exemple
	Prérequis
	Environnement de développement
	AWS Accès

	Création d'un projet SWF
	Codage du projet
	Étapes communes pour tous les fichiers source
	Enregistrement d'un domaine, et de types de flux de travail et d'activité
	Implémentation du travail d'activité
	Implémentation du travail de flux de travail
	Implémentation du démarreur de flux de travail

	Génération de l'exemple
	Exécution de l'exemple
	Définition du chemin de classe Java
	Enregistrement du domaine, et des types de flux de travail et d'activité
	Démarrage des travaux d'activité et de flux de travail
	Démarrage de l'exécution de flux de travail

	Exécution de la source pour cet exemple
	Pour plus d'informations

	Lambda Tâches
	Configuration d'un rôle IAM inter-services pour exécuter votre fonction Lambda
	Création d'une Lambda fonction
	Enregistrer un flux de travail à utiliser avec Lambda
	Planifier une Lambda tâche
	Gérez les événements de la fonction Lambda dans votre décideur
	Recevez le résultat de votre Lambda fonction
	Exécution de la source pour cet exemple

	Arrêt normal des travaux d'activité et de flux de travail
	Enregistrement de domaines
	Affichage des domaines

	Exemples de code inclus dans le SDK
	Comment obtenir les exemples
	Génération et exécution d'exemples à l'aide de la ligne de commande
	Prérequis
	Exécution des exemples

	Génération et exécution des exemples à l'aide de l'IDE Eclipse
	Prérequis
	Exécution des exemples

	Sécurité pour AWS SDK pour Java
	Protection des données dans la version AWS SDK pour Java 1.x
	AWS SDK pour Java support pour TLS
	Comment vérifier la version de TLS
	Application d'une version minimale de TLS

	Gestion de l’identité et des accès
	Public ciblé
	Authentification par des identités
	Compte AWS utilisateur root
	Identité fédérée
	Utilisateurs et groupes IAM
	Rôles IAM

	Gestion des accès à l’aide de politiques
	Politiques basées sur l’identité
	Politiques basées sur les ressources
	Listes de contrôle d'accès (ACLs)
	Autres types de politique
	Plusieurs types de politique

	Comment Services AWS travailler avec IAM
	Résolution des problèmes AWS d'identité et d'accès
	Je ne suis pas autorisé à effectuer une action dans AWS
	Je ne suis pas autorisé à effectuer iam : PassRole
	Je souhaite permettre à des personnes extérieures Compte AWS à moi d'accéder à mes AWS ressources

	Validation de conformité pour ce AWS produit ou service
	Résilience pour ce AWS produit ou service
	Sécurité de l'infrastructure pour ce AWS produit ou service
	Amazon S3 Migration du client de chiffrement
	Prérequis
	Présentation de la migration
	Mettre à jour les clients existants pour lire les nouveaux formats
	Mettre à jour la dépendance dans la configuration de votre projet
	Exemple d'utilisation de Maven
	Exemple d'utilisation de Gradle

	Migrer les clients de chiffrement et de déchiffrement vers la version V2
	Création d'un client de chiffrement V2
	Utiliser des fournisseurs de matériel de chiffrement
	Configuration du client de chiffrement V2

	Exemples supplémentaires
	Configurer un client de service pour lire les objets créés par le client de chiffrement V1
	Configurer un client de service pour obtenir des plages d'octets d'objets

	Clé OpenPGP pour AWS SDK pour Java
	Clé actuelle
	Clés précédentes
	Date d'expiration : 2025-10-04
	Date d'expiration : 2024-10-08

	Historique du document

