
Guida per gli sviluppatori

AWS Flow Framework per Java

Versione API 2021-04-28

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework per Java: Guida per gli sviluppatori

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

I marchi e il trade dress di Amazon non possono essere utilizzati in relazione ad alcun prodotto o
servizio che non sia di Amazon, in alcun modo che possa causare confusione tra i clienti, né in alcun
modo che possa denigrare o screditare Amazon. Tutti gli altri marchi non di proprietà di Amazon sono
di proprietà delle rispettive aziende, che possono o meno essere associate, collegate o sponsorizzate
da Amazon.

AWS Flow Framework per Java Guida per gli sviluppatori

Table of Contents
Che cos'è AWS Flow Framework per Java? ... 1

Cosa c'è in questa guida? .. 1
Nozioni di base ... 3

Configurazione del framework ... 3
Aggiungi il framework Flow con Maven ... 4

HelloWorld Applicazione .. 4
HelloWorld Attività: implementazione ... 5
HelloWorld Workflow Worker .. 6
HelloWorld Workflow Starter ... 7

HelloWorldWorkflow Applicazione ... 7
HelloWorldWorkflow Addetto alle attività .. 10
HelloWorldWorkflow Workflow Worker ... 12
HelloWorldWorkflow Implementazione del workflow e delle attività ... 17
HelloWorldWorkflow Antipasto .. 21

HelloWorldWorkflowAsyncApplicazione ... 26
HelloWorldWorkflowAsync Attività Implementazione ... 28
HelloWorldWorkflowAsync implementazione del flusso di lavoro .. 28
HelloWorldWorkflowAsyncWorkflow e Activities Host and Starter ... 30

HelloWorldWorkflowDistributed Applicazione .. 31
HelloWorldWorkflowParallelApplicazione .. 34

HelloWorldWorkflowParallelAttività: Lavoratore .. 35
HelloWorldWorkflowParallelWorkflow Worker .. 36
HelloWorldWorkflowParallel Workflow e attività Host and Starter .. 37

Comprensione AWS Flow Framework ... 38
Struttura di un'applicazione ... 38

Ruolo del lavoratore di attività .. 40
Ruolo del lavoratore di flusso di lavoro .. 40
Ruolo dello starter di flusso di lavoro ... 41
In che modo Amazon SWF interagisce con la tua applicazione .. 41
Ulteriori informazioni ... 41

Esecuzione affidabile ... 42
Assicurare una comunicazione affidabile ... 42
Impedire la perdita dei risultati ... 43
Gestire componenti distribuiti con errori ... 44

Versione API 2021-04-28 iii

AWS Flow Framework per Java Guida per gli sviluppatori

Esecuzione distribuita .. 44
Riproduzione dei flussi di lavoro .. 44
Riproduzione e metodi di flusso di lavoro asincroni ... 46
Riproduzione e implementazione del flusso di lavoro .. 46

Elenchi di task ed esecuzione di task ... 46
Applicazioni scalabili .. 49
Scambio di dati tra le attività e i flussi di lavoro ... 49

La promessa <T> Tipo ... 50
Convertitore e marshalling dei dati ... 51

Scambio di dati tra le applicazioni e le esecuzioni del flusso di lavoro .. 52
Tipi di timeout .. 52

I timeout nel flusso di lavoro e i task di decisione ... 53
Timeout nei task di attività ... 54

Comprensione delle attività .. 56
Attività ... 56
Ordine di esecuzione ... 57
Esecuzione del flusso di lavoro .. 58
Non determinismo .. 61

Guida di programmazione .. 62
Implementazione di applicazioni di flusso di lavoro .. 62
Contratti di flusso di lavoro e attività ... 64
Registrazione dei tipi di flusso di lavoro e di attività ... 67

Nome e versione del tipo di flusso di lavoro .. 68
Nome del segnale ... 68
Nome e versione del tipo di attività .. 68
Elenco di task predefinito ... 69
Altre opzioni di registrazione .. 69

Client di attività e flusso di lavoro ... 70
Client di flusso di lavoro ... 70
Client di attività ... 79
Opzioni di programmazione .. 83
Client dinamici ... 84

Implementazione del flusso di lavoro .. 85
Contesto di decisione ... 87
Esposizione dello stato dell'esecuzione ... 87
Locali del flusso di lavoro ... 89

Versione API 2021-04-28 iv

AWS Flow Framework per Java Guida per gli sviluppatori

Implementazione di attività .. 90
Completamento manuale della attività ... 91

Implementazione delle attività Lambda ... 93
Informazioni su AWS Lambda .. 93
Vantaggi e limiti dell'utilizzo delle attività Lambda ... 94
Utilizzo delle attività Lambda nei flussi di lavoro AWS Flow Framework per Java 94
Visualizza l'esempio HelloLambda ... 99

Esecuzione di programmi scritti con AWS Flow Framework for Java .. 99
WorkflowWorker .. 100
ActivityWorker ... 101
Modello di threading di lavoratore .. 101
Estensibilità dei lavoratori ... 104

Contesto di esecuzione ... 105
Contesto di decisione ... 105
Contesto di esecuzione di attività ... 107

Esecuzioni del flusso di lavoro figlio ... 108
Flussi di lavoro continui ... 110
Impostazione della priorità delle attività .. 112

Impostazione della priorità di task per flussi di lavoro ... 112
Impostazione della priorità di task per attività .. 113

DataConverters .. 114
Passaggio di dati a metodi asincroni .. 115

Passaggio di raccolte e mappe a metodi asincroni ... 115
impostabile <T> .. 116
@NoWait ... 118
Promise <Void> .. 118
AndPromise e OrPromise ... 118

Testabilità e inserimento delle dipendenze ... 118
Integrazione di Spring ... 119
JUnit Integrazione ... 126

Gestione errori ... 132
TryCatchFinally Semantica ... 134
Annullamento .. 135
Annidato TryCatchFinally .. 139

Ripetere le attività non andate a buon fine ... 141
Retry-Until-Success Strategia ... 141

Versione API 2021-04-28 v

AWS Flow Framework per Java Guida per gli sviluppatori

Strategia di ripetizione esponenziale .. 144
Strategia di ripetizione personalizzata .. 151

Task Daemon .. 154
Comportamento di riproduzione .. 156

Esempio 1: riproduzione sincrona .. 156
Esempio 2: riproduzione asincrona .. 158
Vedi anche .. 159

Best practice ... 160
Apportare modifiche al codice del decisore .. 160

Il processo di riproduzione e le modifiche del codice .. 160
Scenario di esempio ... 161
Soluzioni .. 168

Risoluzione dei problemi .. 173
Errori di compilazione .. 173
Errore di risorsa sconosciuto ... 173
Eccezioni quando si chiama get () su una promessa ... 174
Flussi di lavoro non deterministici ... 174
Problemi dovuti al controllo delle versioni ... 175
Risoluzione dei problemi e debug dell'esecuzione di un flusso di lavoro 175
Attività perse .. 177
Errore di convalida dovuto a vincoli di lunghezza dei parametri API .. 177

Documentazione di riferimento ... 178
Annotazioni .. 178

@Activities ... 178
@Activity ... 179
@ActivityRegistrationOptions .. 180
@Asincrona ... 181
@Execute .. 181
@ExponentialRetry ... 182
@GetState ... 183
@ManualActivityCompletion ... 183
@Signal ... 183
@SkipRegistration ... 183
@Wait e @ NoWait .. 183
@Flusso di lavoro ... 184
@WorkflowRegistrationOptions .. 185

Versione API 2021-04-28 vi

AWS Flow Framework per Java Guida per gli sviluppatori

Eccezioni .. 186
ActivityFailureException .. 187
ActivityTaskException ... 187
ActivityTaskFailedException .. 187
ActivityTaskTimedOutException .. 187
ChildWorkflowException .. 188
ChildWorkflowFailedException .. 188
ChildWorkflowTerminatedException ... 188
ChildWorkflowTimedOutException .. 188
DataConverterException ... 188
DecisionException ... 189
ScheduleActivityTaskFailedException ... 189
SignalExternalWorkflowException ... 189
StartChildWorkflowFailedException .. 189
StartTimerFailedException .. 189
TimerException ... 189
WorkflowException .. 190

Pacchetti .. 190
Cronologia dei documenti .. 192
.. cxciv

Versione API 2021-04-28 vii

AWS Flow Framework per Java Guida per gli sviluppatori

Che cos'è AWS Flow Framework per Java?
Con AWS Flow Framework, puoi concentrarti sull'implementazione della logica del flusso di lavoro.
Dietro le quinte, il framework utilizza le funzionalità di pianificazione, routing e gestione dello stato
di Amazon SWF per gestire l'esecuzione del flusso di lavoro e renderlo scalabile, affidabile e
verificabile. AWS Flow Framework i flussi di lavoro basati su di essi sono altamente simultanei. I flussi
di lavoro possono essere distribuiti su più componenti, che possono essere eseguiti come processi
separati su computer separati ed essere scalati indipendentemente. L'applicazione può continuare a
progredire se uno dei suoi componenti è in esecuzione, il che la rende altamente tollerante ai guasti.

Cosa c'è in questa guida?

Questa guida contiene informazioni su come installare, configurare e utilizzare AWS Flow Framework
per creare applicazioni Amazon SWF.

Guida introduttiva a AWS Flow Framework for Java

Se hai appena iniziato a usare la versione AWS Flow Framework per Java, leggi la Guida
introduttiva a AWS Flow Framework for Java sezione. Ti guiderà attraverso il download e
l'installazione di AWS Flow Framework per Java, come configurare il tuo ambiente di sviluppo e ti
guiderà attraverso un semplice esempio di creazione di un flusso di lavoro.

Comprensione AWS Flow Framework di Java

Introduce Amazon SWF AWS Flow Framework e i concetti di base, descrivendo la struttura di
base di AWS Flow Framework un'applicazione e come i dati vengono scambiati tra le parti di un
flusso di lavoro distribuito.

AWS Flow Framework per la guida alla programmazione Java

Questo capitolo fornisce linee guida di programmazione di base per lo sviluppo di applicazioni di
flusso di lavoro con Java, tra cui come registrare attività e tipi di flusso di lavoro, implementare
client di flusso di lavoro, creare flussi di lavoro secondari, gestire errori e altro ancora. AWS Flow
Framework

Comprensione di un task in AWS Flow Framework for Java

Questo capitolo fornisce un'analisi più approfondita del funzionamento di For Java, fornendo
informazioni aggiuntive sull'ordine di esecuzione dei flussi di lavoro asincroni e una procedura
logica di esecuzione di un flusso di lavoro standard. AWS Flow Framework

Cosa c'è in questa guida? Versione API 2021-04-28 1

AWS Flow Framework per Java Guida per gli sviluppatori

Suggerimenti per la risoluzione dei problemi e il debug per Java AWS Flow Framework

Questo capitolo presenta informazioni sugli errori comuni che puoi usare per risolvere i problemi
dei flussi di lavoro o per imparare ad evitare gli errori comuni.

AWS Flow Framework per Java Reference

Questo capitolo è un riferimento alle annotazioni, alle eccezioni e ai pacchetti che AWS Flow
Framework for Java aggiunge all'SDK per Java.

Cosa c'è in questa guida? Versione API 2021-04-28 2

AWS Flow Framework per Java Guida per gli sviluppatori

Guida introduttiva a AWS Flow Framework for Java

Questa sezione presenta una serie AWS Flow Framework di semplici applicazioni di esempio che
introducono il modello di programmazione e l'API di base. Le applicazioni di esempio sono basate
sull'applicazione standard Hello World, utilizzata per presentare C e i linguaggi di programmazione
correlati. Ecco una tipica implementazione Java di Hello World:

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Quella che segue è una breve descrizione delle applicazioni di esempio. Includono il codice sorgente
completo per implementare ed eseguire autonomamente le applicazioni. Prima di iniziare, dovresti
configurare il tuo ambiente di sviluppo e creare un progetto AWS Flow Framework per Java, come
inConfigurazione di AWS Flow Framework per Java.

• HelloWorld Applicazione introduce le applicazioni di flusso di lavoro implementando Hello World
come applicazione Java standard, ma strutturandola come applicazione di flusso di lavoro.

• HelloWorldWorkflow Applicazioneutilizza AWS Flow Framework for Java per la conversione
HelloWorld in un flusso di lavoro Amazon SWF.

• HelloWorldWorkflowAsyncApplicazione modifica HelloWorldWorkflow per utilizzare un metodo
di flusso di lavoro asincrono.

• HelloWorldWorkflowDistributed Applicazione modifica HelloWorldWorkflowAsync in modo che
il flusso di lavoro e i lavoratori di attività possano operare su sistemi separati.

• HelloWorldWorkflowParallelApplicazione modifica HelloWorldWorkflow per eseguire due
attività in parallelo.

Configurazione di AWS Flow Framework per Java

Il AWS Flow Framework for Java è incluso in. AWS SDK per Java Se non l'hai ancora configurato
AWS SDK per Java, consulta la sezione Guida introduttiva alla AWS SDK per Java Developer Guide
per informazioni sull'installazione e la configurazione dell'SDK stesso.

Configurazione del framework Versione API 2021-04-28 3

https://aws.amazon.com/sdkforjava/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/getting-started.html

AWS Flow Framework per Java Guida per gli sviluppatori

Aggiungi il framework Flow con Maven

Gli strumenti di compilazione di Amazon SWF sono open source: per visualizzare o scaricare il
codice o per creare gli strumenti da soli, visita il repository all'indirizzo. https://github.com/aws/aws-
swf-build-tools

Amazon fornisce strumenti di compilazione Amazon SWF nel Maven Central Repository.

Per configurare il framework per Maven, aggiungi la seguente dipendenza al file pom.xml del tuo
progetto:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-swf-build-tools</artifactId>
 <version>2.0.0</version>
</dependency>

HelloWorld Applicazione
Per presentare il modo in cui sono strutturate le applicazioni Amazon SWF, creeremo un'applicazione
Java che si comporta come un flusso di lavoro, ma che viene eseguita localmente in un unico
processo. Non è richiesta alcuna connessione ad Amazon Web Services.

Note

L'HelloWorldWorkflowesempio si basa su questo, la connessione ad Amazon SWF per
gestire la gestione del flusso di lavoro.

Un'applicazione del flusso di lavoro è composta da tre componenti base:

• Un lavoratore di attività supporta un set di attività, ciascuna delle quali è un metodo che viene
eseguito in modo indipendente per eseguire un determinato task.

• Un lavoratore di flusso di lavoro orchestra l'esecuzione delle attività e gestisce il flusso di dati. Si
tratta della realizzazione programmatica di una topologia del flusso di lavoro che è sostanzialmente
un digramma di flusso che definisce il momento in cui vengono eseguite le diverse attività, sia che
vengano eseguite in modo sequenziale o contemporaneamente.

• Uno starter di flusso di lavoro avvia un'istanza di flusso di lavoro, chiamata esecuzione, e può
interagire con essa durante l'esecuzione.

Aggiungi il framework Flow con Maven Versione API 2021-04-28 4

https://github.com/aws/aws-swf-build-tools
https://github.com/aws/aws-swf-build-tools
https://mvnrepository.com/artifact/com.amazonaws/aws-swf-build-tools

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorld è implementato come tre classi e due interfacce correlate, descritte nelle sezioni seguenti.
Prima di iniziare, è necessario configurare l'ambiente di sviluppo e creare un nuovo progetto AWS
Java come descritto inConfigurazione di AWS Flow Framework per Java. I pacchetti utilizzati per le
seguenti procedure guidate sono stati tutti nominati helloWorld.XYZ. Per utilizzare questi nomi,
imposta l'attributo within in aop.xml secondo quanto indicato di seguito:

...
<weaver options="-verbose">
 <include within="helloWorld..*"/>
</weaver>

Per implementarlo HelloWorld, create un nuovo pacchetto Java nel vostro progetto AWS SDK
denominato helloWorld.HelloWorld e aggiungete i seguenti file:

• Un file di interfaccia denominato GreeterActivities.java

• Un file di classe denominato GreeterActivitiesImpl.java, che implementa il lavoratore di
attività.

• Un file di interfaccia denominato GreeterWorkflow.java.

• Un file di classe denominato GreeterWorkflowImpl.java, che implementa il lavoratore di
flusso di lavoro.

• Un file di classe denominato GreeterMain.java, che implementa lo starter di flusso di lavoro.

I dettagli sono illustrati nelle sezioni seguenti e includono il codice completo per ogni componente,
che puoi aggiungere al file appropriato.

HelloWorld Attività: implementazione

HelloWorld suddivide l'operazione complessiva di stampa di un "Hello World!" messaggio di
saluto sulla console in tre attività, ognuna delle quali viene eseguita con un metodo di attività. I metodi
di attività sono definiti nell'interfaccia GreeterActivities, secondo quanto segue.

public interface GreeterActivities {
 public String getName();
 public String getGreeting(String name);
 public void say(String what);
}

HelloWorld Attività: implementazione Versione API 2021-04-28 5

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorld ha un'implementazione di attivitàGreeterActivitiesImpl, che fornisce i
GreeterActivities metodi illustrati:

public class GreeterActivitiesImpl implements GreeterActivities {
 @Override
 public String getName() {
 return "World";
 }

 @Override
 public String getGreeting(String name) {
 return "Hello " + name + "!";
 }

 @Override
 public void say(String what) {
 System.out.println(what);
 }
}

Le attività sono indipendenti una dall'altra e spesso possono essere utilizzate da diversi flussi di
lavoro. Ad esempio, i flussi di lavoro che utilizzano l'attività say per visualizzare una stringa sulla
console. I flussi di lavoro possono inoltre avere diverse implementazioni di attività e ognuna di essere
esegue un set diverso di task.

HelloWorld Workflow Worker

Per stampare «Hello World!» sulla console, le attività devono essere eseguite in sequenza nell'ordine
corretto con i dati corretti. L'addetto al HelloWorld workflow orchestra l'esecuzione delle attività sulla
base di una semplice topologia lineare del flusso di lavoro, illustrata nella figura seguente.

Le tre attività vengono eseguite in sequenza e i dati fluiscono da un'attività a quella successiva.

L'operatore del HelloWorld workflow utilizza un unico metodo, il punto di ingresso del flusso di lavoro,
definito nell'GreeterWorkflowinterfaccia come segue:

public interface GreeterWorkflow {
 public void greet();

HelloWorld Workflow Worker Versione API 2021-04-28 6

AWS Flow Framework per Java Guida per gli sviluppatori

}

La classe GreeterWorkflowImpl implementa l'interfaccia come mostrato di seguito:

public class GreeterWorkflowImpl implements GreeterWorkflow{
 private GreeterActivities operations = new GreeterActivitiesImpl();

 public void greet() {
 String name = operations.getName();
 String greeting = operations.getGreeting(name);
 operations.say(greeting);
 }
}

Il greet metodo implementa la HelloWorld topologia creando un'istanza
diGreeterActivitiesImpl, chiamando ogni metodo di attività nell'ordine corretto e passando i
dati appropriati a ciascun metodo.

HelloWorld Workflow Starter

Uno starter di flusso di lavoro è un'applicazione che avvia l'esecuzione del flusso di lavoro e che
può comunicare con il flusso di lavoro durante l'esecuzione. La GreeterMain classe implementa il
HelloWorld workflow starter, come segue:

public class GreeterMain {
 public static void main(String[] args) {
 GreeterWorkflow greeter = new GreeterWorkflowImpl();
 greeter.greet();
 }
}

GreeterMain crea un'istanza di GreeterWorkflowImpl e chiama greet per eseguire il
lavoratore di flusso di lavoro. Esegui GreeterMain come applicazione Java e dovresti vedere «Hello
World!» nell'output della console.

HelloWorldWorkflow Applicazione

Sebbene l'HelloWorldesempio di base sia strutturato come un flusso di lavoro, si differenzia da un
flusso di lavoro Amazon SWF per diversi aspetti chiave:

HelloWorld Workflow Starter Versione API 2021-04-28 7

AWS Flow Framework per Java Guida per gli sviluppatori

Applicazioni di workflow convenzionali e Amazon SWF

HelloWorld Flusso di lavoro Amazon SWF

Viene eseguita localmente come
singolo processo.

Viene eseguito come più processi che possono essere
distribuiti su più sistemi, tra cui EC2 istanze Amazon,
data center privati, computer client e così via. Non è
necessario eseguirli sullo stesso sistema operativo.

Le attività sono metodi sincroni che
vengono bloccati fino a che non
risultano completati.

Le attività sono rappresentate da metodi asincroni, i quali
restituiscono immediatamente un risultato e consenton
o al flusso di lavoro di eseguire altri task in attesa del
completamento dell'attività.

Il lavoratore di flusso di lavoro
interagisce con un lavoratore di attività
chiamando il metodo appropriato.

I lavoratori del flusso di lavoro interagiscono con gli
addetti alle attività utilizzando richieste HTTP, con
Amazon SWF che funge da intermediario.

Lo starter di flusso di lavoro interagis
ce con un lavoratore di attività
chiamando il metodo appropriato.

Gli avviatori di flussi di lavoro interagiscono con gli
operatori del flusso di lavoro utilizzando richieste HTTP,
con Amazon SWF che funge da intermediario.

Implementare un'applicazione di flusso di lavoro asincrona distribuita da zero, ad esempio, facendo
in modo che il lavoratore di flusso di lavoro interagisca direttamente con un lavoratore di attività
mediante chiamate di servizi Web, è possibile. Tuttavia, ciò comporterebbe l'implementazione di tutto
il codice complesso necessario a gestire l'esecuzione asincrona di molteplici attività, controllare il
flusso di dati, ecc. The AWS Flow Framework for Java e Amazon SWF si occupano di tutti questi
dettagli, il che ti consente di concentrarti sull'implementazione della logica aziendale.

HelloWorldWorkflow è una versione modificata HelloWorld che funziona come flusso di lavoro
Amazon SWF. L'illustrazione seguente riepiloga il funzionamento delle due applicazioni.

HelloWorldWorkflow Applicazione Versione API 2021-04-28 8

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorld viene eseguito come un unico processo e starter, workflow worker e Activities Worker
interagiscono utilizzando chiamate di metodo convenzionali. ConHelloWorldWorkflow, starter,
workflow worker e activities worker sono componenti distribuiti che interagiscono tramite Amazon
SWF utilizzando richieste HTTP. Amazon SWF gestisce l'interazione mantenendo elenchi di attività
e flussi di lavoro, che invia ai rispettivi componenti. Questa sezione descrive come funziona il
framework. HelloWorldWorkflow

HelloWorldWorkflow viene implementato utilizzando l'API AWS Flow Framework for Java, che
gestisce i dettagli a volte complicati dell'interazione con Amazon SWF in background e semplifica
notevolmente il processo di sviluppo. Puoi utilizzare lo stesso progetto per cui lo hai creato
HelloWorld, che è già configurato per AWS Flow Framework le applicazioni Java. Tuttavia, per
eseguire l'applicazione, è necessario configurare un account Amazon SWF, come segue:

• Crea un AWS account, se non ne hai già uno, su Amazon Web Services.

• Assegna l'ID di accesso e l'ID segreto del tuo account rispettivamente alle variabili
AWS_ACCESS_KEY_ID e di AWS_SECRET_KEY ambiente. È vivamente sconsigliato esporre i
valori di chiave letterali nel codice. L'assegnazione di tali chiavi a variabili di ambiente è un modo
pratico di gestire il problema.

HelloWorldWorkflow Applicazione Versione API 2021-04-28 9

https://aws.amazon.com/

AWS Flow Framework per Java Guida per gli sviluppatori

• Registrati per creare un account Amazon SWF su Amazon Simple Workflow Service.

• Accedi Console di gestione AWS e seleziona il servizio Amazon SWF.

• Scegli Gestisci domini nell'angolo in alto a destra e registra un nuovo dominio Amazon SWF. Un
dominio è un contenitore logico per le risorse dell'applicazione, come i tipi di flusso di lavoro e
attività e le esecuzioni di flusso di lavoro. Puoi utilizzare qualsiasi nome di dominio conveniente, ma
nelle procedure dettagliate viene utilizzato "». helloWorldWalkthrough

Per implementare HelloWorldWorkflow, crea una copia di HelloWorld. HelloWorld pacchetto nella
directory del progetto e chiamalo HelloWorld. HelloWorldWorkflow. Le seguenti sezioni descrivono
come modificare il HelloWorld codice originale per utilizzarlo AWS Flow Framework per Java ed
eseguirlo come applicazione di workflow Amazon SWF.

HelloWorldWorkflow Addetto alle attività

HelloWorld ha implementato le sue attività come un'unica classe. An AWS Flow Framework for Java
Activities Worker ha tre componenti di base:

• I metodi di attività, che eseguono le attività effettive, sono definiti in un'interfaccia e implementati in
una classe correlata.

• Una ActivityWorkerclasse gestisce l'interazione tra i metodi di attività e Amazon SWF.

• Un'applicazione host di attività registra e avvia il lavoratore di attività e gestisce la pulizia.

Questa sezione descrive i metodi di attività. Le altre due classi sono presentate in una sezione
successiva.

HelloWorldWorkflow definisce l'interfaccia delle attività inGreeterActivities, come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
@Activities(version="1.0")

public interface GreeterActivities {
 public String getName();
 public String getGreeting(String name);

HelloWorldWorkflow Addetto alle attività Versione API 2021-04-28 10

https://aws.amazon.com/swf/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html

AWS Flow Framework per Java Guida per gli sviluppatori

 public void say(String what);
}

Questa interfaccia non era strettamente necessaria per HelloWorld, ma lo è AWS Flow
Framework per un'applicazione Java. Nota che la definizione dell'interfaccia non è cambiata.
Tuttavia, è necessario applicarne due AWS Flow Framework per le annotazioni Java
@ActivityRegistrationOptions e@Activities, alla definizione dell'interfaccia. Le annotazioni forniscono
informazioni di configurazione e indicano al AWS Flow Framework processore di annotazioni Java di
utilizzare la definizione dell'interfaccia per generare una classe client di attività, argomento discusso
più avanti.

@ActivityRegistrationOptionsha diversi valori denominati che vengono utilizzati per
configurare il comportamento delle attività. HelloWorldWorkflow specifica due timeout:

• defaultTaskScheduleToStartTimeoutSeconds indica per quanto tempo i task possono
rimanere in coda nell'elenco di task di attività; il valore impostato è 300 secondi (5 minuti).

• defaultTaskStartToCloseTimeoutSeconds indica il tempo massimo di cui l'attività dispone
per eseguire il task; il valore impostato è 10 secondi.

Questi timeout assicurano il completamento del task entro un tempo ragionevole. Se uno dei due
timeout viene superato, il framework genera un errore e il lavoratore di flusso di lavoro deve decidere
come gestire il problema. Per informazioni su come gestire tale errori, consulta Gestione errori.

@Activities comporta vari valori, ma in genere definisce soltanto il numero di versione delle
attività, mediante il quale puoi tenere traccia di differenti generazioni di implementazioni di attività.
Se modifichi un'interfaccia di attività dopo averla registrata in Amazon SWF, inclusa la modifica
@ActivityRegistrationOptions dei valori, devi utilizzare un nuovo numero di versione.

HelloWorldWorkflow implementa i metodi di attività inGreeterActivitiesImpl, come segue:

public class GreeterActivitiesImpl implements GreeterActivities {
 @Override
 public String getName() {
 return "World";
 }
 @Override
 public String getGreeting(String name) {
 return "Hello " + name;
 }
 @Override

HelloWorldWorkflow Addetto alle attività Versione API 2021-04-28 11

AWS Flow Framework per Java Guida per gli sviluppatori

 public void say(String what) {
 System.out.println(what);
 }
}

Notate che il codice è identico all' HelloWorld implementazione. Fondamentalmente, un' AWS
Flow Framework attività è solo un metodo che esegue del codice e forse restituisce un risultato. La
differenza tra un'applicazione standard e un'applicazione di workflow Amazon SWF risiede nel modo
in cui il flusso di lavoro esegue le attività, dove vengono eseguite le attività e in che modo i risultati
vengono restituiti al workflow worker.

HelloWorldWorkflow Workflow Worker

Un workflow worker di Amazon SWF ha tre componenti di base.

• Un'implementazione di flusso di lavoro, ovvero una classe che esegue task correlati al flusso di
lavoro.

• Una classe client di attività, che è in pratica un proxy per la classe di attività e viene utilizzata da
un'implementazione di flusso di lavoro per eseguire metodi di attività in modo asincrono.

• Una WorkflowWorkerclasse che gestisce l'interazione tra il flusso di lavoro e Amazon SWF.

Questa sezione descrive l'implementazione di flusso di lavoro e il client di attività; la classe
WorkflowWorker è descritta in una sezione successiva.

HelloWorldWorkflow definisce l'interfaccia del flusso di lavoro inGreeterWorkflow, come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {
 @Execute(version = "1.0")
 public void greet();
}

Inoltre, questa interfaccia non è strettamente necessaria HelloWorld , ma è essenziale AWS
Flow Framework per un'applicazione Java. È necessario applicarne due AWS Flow Framework

HelloWorldWorkflow Workflow Worker Versione API 2021-04-28 12

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework per Java Guida per gli sviluppatori

per le annotazioni Java @Flusso di lavoro e@WorkflowRegistrationOptions, per la definizione
dell'interfaccia del flusso di lavoro. Le annotazioni forniscono informazioni di configurazione e
indirizzano inoltre il processore di annotazioni AWS Flow Framework per Java a generare una classe
client di workflow basata sull'interfaccia, come discusso più avanti.

@Workflowha un parametro opzionale, DataConverter, che viene spesso utilizzato con il suo valore
NullDataConverter predefinito, che indica che deve essere utilizzato. JsonDataConverter

@WorkflowRegistrationOptions comporta ha vari parametri facoltativi che
possono essere utilizzati per configurare il lavoratore di flusso di lavoro. Qui, impostiamo,
defaultExecutionStartToCloseTimeoutSeconds che specifica per quanto tempo può essere
eseguito il flusso di lavoro, a 3600 secondi (1 ora).

La definizione dell'GreeterWorkflowinterfaccia differisce da un aspetto importante, l' HelloWorld
annotazione. @Execute Le interfacce di flusso di lavoro definiscono i metodi che possono essere
chiamati dalle applicazioni come lo starter di flusso di lavoro e sono limitate a pochi metodi, ognuno
con un ruolo particolare. Il framework non specifica un nome o un elenco di parametri per i metodi di
interfaccia del flusso di lavoro; si utilizza un elenco di nomi e parametri adatto al flusso di lavoro e si
applica un'annotazione AWS Flow Framework per Java per identificare il ruolo del metodo.

@Execute ha due scopi:

• Identifica greet come punto di ingresso del flusso di lavoro, ovvero il metodo che lo starter di
flusso di lavoro chiama per avviare il flusso di lavoro. In genere, un punto di ingresso può accettare
uno o più parametri, che consentono allo starter di inizializzare il flusso di lavoro, ma questo
esempio non richiede l'inizializzazione.

• Definisce il numero di versione del flusso di lavoro, mediante il quale puoi tenere traccia di differenti
generazioni di implementazioni di flusso di lavoro. Per modificare l'interfaccia di un flusso di lavoro
dopo averla registrata in Amazon SWF, inclusa la modifica dei valori di timeout, devi utilizzare un
nuovo numero di versione.

Per informazioni sugli altri metodi che possono essere inclusi in un'interfaccia di flusso di lavoro,
consulta Contratti di flusso di lavoro e attività.

HelloWorldWorkflow implementa il flusso di lavoro inGreeterWorkflowImpl, come segue:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

HelloWorldWorkflow Workflow Worker Versione API 2021-04-28 13

AWS Flow Framework per Java Guida per gli sviluppatori

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = operations.getGreeting(name);
 operations.say(greeting);
 }
}

Il codice è simile a HelloWorld, ma presenta due importanti differenze.

• GreeterWorkflowImpl crea un'istanza di GreeterActivitiesClientImpl, il client
di attività, anziché di GreeterActivitiesImpl, ed esegue le attività chiamando i metodi
sull'oggetto client.

• Le attività relative a nome e formula di apertura restituiscono oggetti Promise<String> anziché
oggetti String.

HelloWorld è un'applicazione Java standard che viene eseguita localmente come un singolo
processo, quindi GreeterWorkflowImpl può implementare la topologia del flusso di lavoro
semplicemente creando un'istanza diGreeterActivitiesImpl, chiamando i metodi in ordine
e passando i valori restituiti da un'attività all'altra. Con un flusso di lavoro Amazon SWF, l'attività
di un'attività viene comunque eseguita con un metodo di attività di. GreeterActivitiesImpl
Tuttavia, il metodo non viene necessariamente eseguito nello stesso processo del flusso di lavoro
(può addirittura non essere eseguito sullo stesso sistema) e il flusso di lavoro deve eseguire l'attività
in modo asincrono. Queste condizioni comportano le seguenti problematiche:

• Come eseguire un metodo di attività che può essere eseguito in un processo differente ed
eventualmente su un sistema differente.

• Come eseguire un metodo di attività in modo asincrono.

• Come gestire i valori di input e restituiti delle attività. Ad esempio, se il valore restituito dell'Attività A
è un input all'Attività B, devi assicurarti che l'Attività B non venga eseguita fino a che l'Attività A non
risulta completata.

Il flusso di controllo dell'applicazione ti consente di implementare varie topologie di flusso di
lavoro mediante l'utilizzo del controllo di flusso Java standard combinato con il client di attività e
Promise<T>.

HelloWorldWorkflow Workflow Worker Versione API 2021-04-28 14

AWS Flow Framework per Java Guida per gli sviluppatori

Client di attività

GreeterActivitiesClientImpl è fondamentalmente un proxy per GreeterActivitiesImpl
che consente a un'implementazione di flusso di lavoro di eseguire i metodi
GreeterActivitiesImpl in modo asincrono.

Le classi GreeterActivitiesClient e GreeterActivitiesClientImpl sono generate
automaticamente utilizzando le informazioni fornite nelle annotazioni applicate alla classe
GreeterActivities. Non devi quindi implementarle personalmente.

Note

Eclipse genera queste classi quando salvi il progetto. Puoi visualizzare il codice generato
nella sottodirectory .apt_generated della directory del progetto.
Per evitare errori di compilazione nella classe GreeterWorkflowImpl, è consigliabile
spostare la directory .apt_generated nella parte superiore della scheda Order and Export
(Ordina ed esporta) della finestra di dialogo Java Build Path (Percorso di compilazione Java).

Un lavoratore di flusso di lavoro esegue un'attività chiamando il metodo di client corrispondente. Il
metodo è asincrono e restituisce immediatamente un oggetto Promise<T>, dove T è il tipo restituito
dell'attività. L'oggetto Promise<T> restituito è in pratica un segnaposto per il valore che il metodo di
attività restituirà.

• Quando il metodo di client di attività restituisce un risultato, lo stato dell'oggetto Promise<T> è
inizialmente non pronto, a indicare che l'oggetto non rappresenta ancora un valore restituito valido.

• Quando il metodo di attività corrispondente completa il relativo task e restituisce un risultato, il
framework assegna il valore restituito all'oggetto Promise<T>, il cui stato diventa pronto.

Tipo di Promise <T>

Lo scopo primario degli oggetti Promise<T> è gestire il flusso di dati tra i componenti asincroni
e controllare quando vengono eseguiti. Grazie a questi oggetti, la tua applicazione non deve
gestire in modo esplicito la sincronizzazione o dipendere da meccanismi come i timer per impedire
l'esecuzione prematura dei componenti asincroni. Quando chiami un metodo di client di attività,
questo restituisce immediatamente un risultato ma il framework ritarda l'esecuzione del metodo di
attività corrispondente fino a che un oggetto Promise<T> di input è pronto e rappresenta dati validi.

HelloWorldWorkflow Workflow Worker Versione API 2021-04-28 15

AWS Flow Framework per Java Guida per gli sviluppatori

Dalla prospettiva GreeterWorkflowImpl, i tre metodi di client di attività restituiscono un risultato
immediatamente. Dalla prospettiva GreeterActivitiesImpl, il framework chiama getGreeting
solo quando name risulta completato e chiama say solo quando getGreeting risulta completato.

L'utilizzo di Promise<T> per passare dati da un'attività a quella successiva consente a
HelloWorldWorkflow di impedire ai metodi di attività di tentare di utilizzare dati non validi,
ma anche di determinare quando le attività vengono eseguite e di definire implicitamente la
topologia di flusso di lavoro. Il passaggio del valore restituito Promise<T> di ogni attività all'attività
successiva richiede l'esecuzione in sequenza delle attività, definendo la topologia lineare descritta
precedentemente. Con AWS Flow Framework for Java, non è necessario utilizzare alcun codice di
modellazione speciale per definire topologie anche complesse, ma solo il controllo di flusso Java
standard e. Promise<T> Per un esempio di implementazione di una topologia parallela semplice,
consulta HelloWorldWorkflowParallelAttività: Lavoratore.

Note

Quando un metodo di attività come say non restituisce un valore, il metodo di client
corrispondente restituisce un oggetto Promise<Void>. L'oggetto non rappresenta dati,
ma è inizialmente non pronto e diventa pronto quando l'attività è completata. Puoi quindi
passare un oggetto Promise<Void> a altri metodi di client di attività per assicurarti che
questi differiscano l'esecuzione fino al completamento dell'attività originale.

Promise<T> consente a un'implementazione di flusso di lavoro di utilizzare metodi di client di
attività e i relativi valori restituiti come con i metodi sincroni. Devi tuttavia prestare attenzione riguardo
all'accesso al valore di un oggetto Promise<T>. A differenza del tipo Java Future<T>, il framework
gestisce la sincronizzazione per Promise<T>, non l'applicazione. Se chiami Promise<T>.get e
l'oggetto non è pronto, get genera un'eccezione. Nota che HelloWorldWorkflow non accede mai
direttamente a un oggetto Promise<T>, ma passa semplicemente gli oggetti da un'attività a quella
successiva. Quando un oggetto diventa pronto, il framework estrae il valore e lo passa al metodo di
attività come tipo standard.

L'accesso agli oggetti Promise<T> deve avvenire solo tramite codice asincrono, dove il framework
garantisce che l'oggetto è pronto e rappresenta un valore valido. HelloWorldWorkflow gestisce
questa condizione passando gli oggetti Promise<T> solo a metodi di client di attività. Puoi accedere
al valore di un oggetto Promise<T> nell'implementazione di flusso di lavoro passando l'oggetto a un
metodo di flusso di lavoro asincrono, il cui comportamento è simile a quello di un'attività. Per vedere
un esempio, consulta HelloWorldWorkflowAsyncApplicazione.

HelloWorldWorkflow Workflow Worker Versione API 2021-04-28 16

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorldWorkflow Implementazione del workflow e delle attività

Le implementazioni del flusso di lavoro e delle attività hanno classi di lavoro associate
ActivityWorkere WorkflowWorker. Gestiscono la comunicazione tra Amazon SWF e le attività e le
implementazioni del flusso di lavoro analizzando l'elenco di attività di Amazon SWF appropriato,
eseguendo il metodo appropriato per ogni attività e gestendo il flusso di dati. Per maggiori dettagli,
consulta AWS Flow Framework Concetti di base: struttura dell'applicazione.

Per associare le implementazioni di flusso di lavoro e attività agli oggetti lavoratore corrispondenti,
devi implementare una o più applicazioni lavoratore che:

• Registra flussi di lavoro o attività con Amazon SWF.

• Creano oggetti lavoratore e li associano alle implementazioni di lavoratore di attività o di flusso di
lavoro.

• Indirizza gli oggetti di lavoro affinché inizino a comunicare con Amazon SWF.

Se intendi eseguire il flusso di lavoro e le attività come processi distinti, devi implementare
host lavoratore di flusso di lavoro e attività distinti. Per vedere un esempio, consulta
HelloWorldWorkflowDistributed Applicazione. Per semplicità, HelloWorldWorkflow implementa un
singolo host di lavoro che gestisce le attività e i lavoratori del flusso di lavoro nello stesso processo,
come segue:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

HelloWorldWorkflow Implementazione del workflow e delle attività Versione API 2021-04-28 17

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework per Java Guida per gli sviluppatori

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

GreeterWorkernon ha una HelloWorld controparte, quindi è necessario aggiungere una classe
Java denominata GreeterWorker al progetto e copiare il codice di esempio in quel file.

Il primo passaggio consiste nel creare e configurare un AmazonSimpleWorkflowClientoggetto, che
richiama i metodi di servizio Amazon SWF sottostanti. A questo proposito, GreeterWorker:

1. Crea un ClientConfigurationoggetto e specifica un timeout del socket di 70 secondi. Questo valore
definisce il tempo di attesa per il trasferimento dei dati via una connessione aperta stabilita prima
della chiusura del socket.

2. Crea un AWSCredentials oggetto Basic per identificare l' AWS account e passa le chiavi
dell'account al costruttore. Per comodità e per evitare di esporle come testo normale nel codice, le
chiavi sono memorizzate come variabili di ambiente.

3. Crea un AmazonSimpleWorkflowClientoggetto per rappresentare il flusso di lavoro e passa gli
ClientConfiguration oggetti BasicAWSCredentials and al costruttore.

4. Imposta l'URL dell'endpoint del servizio dell'oggetto client. Amazon SWF è attualmente disponibile
in tutte le AWS regioni.

Per comodità, GreeterWorker definisce due costanti di stringa.

• domainè il nome di dominio Amazon SWF del flusso di lavoro, che hai creato quando hai
configurato il tuo account Amazon SWF. HelloWorldWorkflowpresuppone che stiate eseguendo
il flusso di lavoro nel dominio "»helloWorldWalkthrough.

HelloWorldWorkflow Implementazione del workflow e delle attività Versione API 2021-04-28 18

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/BasicAWSCredentials.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework per Java Guida per gli sviluppatori

• taskListToPollè il nome degli elenchi di attività utilizzati da Amazon SWF per gestire la
comunicazione tra gli addetti al flusso di lavoro e alle attività. Puoi impostare il nome su qualsiasi
stringa conveniente. HelloWorldWorkflow utilizza "HelloWorldList" sia per il flusso di lavoro che per
gli elenchi delle attività. I nomi terminano con spazi dei nomi differenti, di conseguenza gli elenchi di
task sono distinti.

GreeterWorkerutilizza le costanti di stringa e l'AmazonSimpleWorkflowClientoggetto per creare
oggetti di lavoro, che gestiscono l'interazione tra le attività e le implementazioni dei worker e Amazon
SWF. In particolare, gli oggetti lavoratore gestiscono il task di polling dei task nell'elenco di task
appropriato.

GreeterWorker crea un oggetto ActivityWorker e lo configura per gestire
GreeterActivitiesImpl aggiungendo una nuova istanza della classe. GreeterWorker chiama
quindi il metodo start dell'oggetto ActivityWorker, che indica all'oggetto di avviare il polling
nell'elenco di task di attività specificato.

GreeterWorker crea un oggetto WorkflowWorker e lo configura per gestire
GreeterWorkflowImpl aggiungendo un nome di file di classe, GreeterWorkflowImpl.class.
Chiama quindi il metodo start dell'oggetto WorkflowWorker, che indica all'oggetto di avviare il
polling dell'elenco di task di flusso di lavoro specificato.

A questo punto, puoi eseguire GreeterWorker senza problemi. Registra il flusso di lavoro
e le attività con Amazon SWF e avvia gli oggetti di lavoro analizzando i rispettivi elenchi di
attività. Per verificarlo, esegui GreeterWorker e accedi alla console Amazon SWF e seleziona
helloWorldWalkthrough dall'elenco dei domini. Se scegli Workflow Types (Tipi di flusso di lavoro)
nel riquadro Navigation (Navigazione), GreeterWorkflow.greet dovrebbe essere visualizzato
nella finestra:

HelloWorldWorkflow Implementazione del workflow e delle attività Versione API 2021-04-28 19

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework per Java Guida per gli sviluppatori

Se scegli Activity Types (Tipi di attività), vengono visualizzati i metodi GreeterActivities:

HelloWorldWorkflow Implementazione del workflow e delle attività Versione API 2021-04-28 20

AWS Flow Framework per Java Guida per gli sviluppatori

Tuttavia, se scegli Workflow Executions (Esecuzioni di flusso di lavoro), non verrà visualizzata alcuna
esecuzione attiva. Sebbene i lavoratori di flusso di lavoro e di attività eseguano il polling di task, non
abbiamo ancora avviato un'esecuzione di flusso di lavoro.

HelloWorldWorkflow Antipasto

L'ultimo pezzo del puzzle consiste nell'implementare uno starter di flusso di lavoro, ovvero
un'applicazione che avvia l'esecuzione di flusso di lavoro. Lo stato di esecuzione viene memorizzato
da Amazon SWF, in modo da poterne visualizzare la cronologia e lo stato di esecuzione.
HelloWorldWorkflow implementa un sistema di avvio del flusso di lavoro modificando la
GreeterMain classe nel modo seguente:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;

HelloWorldWorkflow Antipasto Versione API 2021-04-28 21

AWS Flow Framework per Java Guida per gli sviluppatori

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;

public class GreeterMain {

 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";

 GreeterWorkflowClientExternalFactory factory = new
 GreeterWorkflowClientExternalFactoryImpl(service, domain);
 GreeterWorkflowClientExternal greeter = factory.getClient("someID");
 greeter.greet();
 }
}

GreeterMain crea un oggetto AmazonSimpleWorkflowClient utilizzando lo stesso codice
di GreeterWorker. Crea quindi un oggetto GreeterWorkflowClientExternal che
agisce come proxy per il flusso di lavoro nello stesso modo in cui il client di attività creato in
GreeterWorkflowClientImpl agisce come proxy per i metodi di attività. Anziché creare un
oggetto client di flusso di lavoro utilizzando new devi:

1. Crea un oggetto client factory esterno e passa l'AmazonSimpleWorkflowClientoggetto e il
nome di dominio Amazon SWF al costruttore. L'oggetto client factory viene creato dal processore
di annotazioni del framework, che crea il nome dell'oggetto semplicemente aggiungendo
"ClientExternalFactoryImpl" al nome dell'interfaccia del flusso di lavoro.

2. Crea un oggetto client esterno chiamando il getClient metodo dell'oggetto factory, che
crea il nome dell'oggetto aggiungendo "ClientExternal" al nome dell'interfaccia del flusso di
lavoro. Facoltativamente, puoi passare getClient una stringa che Amazon SWF utilizzerà per
identificare questa istanza del flusso di lavoro. Altrimenti, Amazon SWF rappresenta un'istanza di
flusso di lavoro utilizzando un GUID generato.

HelloWorldWorkflow Antipasto Versione API 2021-04-28 22

AWS Flow Framework per Java Guida per gli sviluppatori

Il client restituito dalla fabbrica creerà solo flussi di lavoro denominati con la stringa passata al
metodo getClient (il client restituito dalla fabbrica ha già lo stato in Amazon SWF). Per eseguire
un flusso di lavoro con un ID differente, nella factory devi creare un nuovo client con l'ID differente
specificato.

Il client di flusso di lavoro espone un metodo greet che GreeterMain chiama per iniziare il flusso
di lavoro, in quanto greet() era il metodo specificato con l'annotazione @Execute.

Note

Il processore di annotazione crea anche un oggetto client factory interno utilizzato per creare
flussi di lavoro figlio. Per informazioni dettagliate, consultare Esecuzioni del flusso di lavoro
figlio.

Chiudi GreeterWorker se è ancora in esecuzione ed esegui GreeterMain. Ora dovresti vedere
SomeID nell'elenco delle esecuzioni di flussi di lavoro attive della console Amazon SWF:.

Se scegli someID e quindi la scheda Events (Eventi), gli eventi vengono visualizzati:

HelloWorldWorkflow Antipasto Versione API 2021-04-28 23

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowClientFactoryExternal.html#getClient(java.lang.String)

AWS Flow Framework per Java Guida per gli sviluppatori

Note

Se in precedenza hai avviato GreeterWorker ed è ancora in esecuzione, l'elenco di eventi
sarà più lungo per i motivi che indicheremo più avanti. Chiudi GreeterWorker ed esegui di
nuovo GreaterMain.

Nella scheda Events (Eventi) sono elencati solo due eventi:

• WorkflowExecutionStarted indica che l'esecuzione del flusso di lavoro è stata avviata.

• DecisionTaskScheduledindica che Amazon SWF ha messo in coda la prima operazione
decisionale.

Il motivo per cui il flusso di lavoro è bloccato a livello del primo task di decisione è che il flusso di
lavoro è distribuito su due applicazioni, GreeterMain e GreeterWorker. GreeterMain ha
avviato l'esecuzione di flusso di lavoro, ma GreeterWorker non è in esecuzione. Di conseguenza,
i lavoratori non effettuano il polling negli elenchi e non eseguono i task. Puoi eseguire l'una o l'altra
delle applicazioni indipendentemente, ma hai bisogno di entrambe affinché l'esecuzione di flusso di
lavoro continui oltre il primo task di decisione. Se quindi a questo punto esegui GreeterWorker, i
lavoratori di flusso di lavoro e attività avvieranno il polling, i task saranno completati rapidamente e
nella scheda Events verrà visualizzato il primo batch di eventi.

HelloWorldWorkflow Antipasto Versione API 2021-04-28 24

AWS Flow Framework per Java Guida per gli sviluppatori

Puoi scegliere singoli eventi per visualizzare ulteriori informazioni sugli stessi. Quando avrai finito di
cercare, il flusso di lavoro dovrebbe avere stampato «Hello World!» sulla tua console.

Una volta completato, il flusso di lavoro non è più visibile nell'elenco di esecuzioni attive. Tuttavia,
se vuoi esaminarlo, scegli Closed (Chiuse) in Execution Status (Stato esecuzione), quindi scegli List
Executions (Elenca esecuzioni). In questo modo, vengono visualizzate tutte le istanze di flusso di
lavoro completate nel dominio specificato (helloWorldWalkthrough) che non hanno superato il
relativo periodo di retention impostato alla creazione del dominio.

HelloWorldWorkflow Antipasto Versione API 2021-04-28 25

AWS Flow Framework per Java Guida per gli sviluppatori

Nota che ogni istanza di flusso di lavoro ha un valore Run ID (ID di esecuzione) univoco. È possibile
utilizzare lo stesso ID di workflow per diverse istanze di workflow, ma solo per un'esecuzione attiva
alla volta.

HelloWorldWorkflowAsyncApplicazione

A volte, è preferibile avere un flusso di lavoro che esegue determinati task localmente anziché
utilizzare un'attività. Tuttavia, i task di flusso di lavoro spesso comportano l'elaborazione dei valori
rappresentati dagli oggetti Promise<T>. Se passi un oggetto Promise<T> a un metodo di flusso
di lavoro sincrono, il metodo viene eseguito immediatamente ma non può accedere al valore
dell'oggetto Promise<T> fino a che l'oggetto non è pronto. In realtà, sarebbe possibile eseguire
il polling di Promise<T>.isReady fino a che non restituisce true, ma questa soluzione non è
efficace e potrebbe comportare il blocco del metodo per un lungo periodo di tempo. Un miglior
approccio consiste nell'utilizzare un metodo asincrono.

Un metodo asincrono viene implementato in modo molto simile a un metodo standard, spesso
come membro della classe di implementazione del flusso di lavoro, e viene eseguito nel contesto

HelloWorldWorkflowAsyncApplicazione Versione API 2021-04-28 26

AWS Flow Framework per Java Guida per gli sviluppatori

dell'implementazione del flusso di lavoro. Per designarlo come metodo asincrono, è necessario
applicare un'annotazione @Asynchronous, la quale indica al framework di considerarlo come
un'attività.

• Quando un'implementazione di flusso di lavoro chiama un metodo asincrono, restituisce
immediatamente un risultato. I metodi asincroni in genere restituiscono un oggetto Promise<T>
che diventa pronto al completamento del metodo.

• Se a un metodo asincrono passi uno o più oggetti Promise<T>, ritarda l'esecuzione fino a che
tutti gli oggetti di input sono pronti. Un metodo asincrono può quindi accedere ai relativi valori
Promise<T> di input senza rischiare un'eccezione.

Note

A causa del modo in cui AWS Flow Framework for Java esegue il flusso di lavoro, i metodi
asincroni in genere vengono eseguiti più volte, quindi è consigliabile utilizzarli solo per
attività rapide con costi generali ridotti. Per eseguire task di lunga durata, come calcoli
voluminosi, è consigliabile utilizzare le attività. Per informazioni dettagliate, consultare AWS
Flow Framework Concetti di base: esecuzione distribuita.

Questo argomento è una guida dettagliata di HelloWorldWorkflowAsync, una versione modificata
sostituisce una delle attività con un metodo HelloWorldWorkflow asincrono. Per implementare
l'applicazione, crea una copia di HelloWorld. HelloWorldWorkflow pacchetto nella directory del
progetto e chiamalo HelloWorld. HelloWorldWorkflowAsync.

Note

Questo argomento si basa sui concetti e sui file presentati negli argomenti HelloWorld
Applicazione e HelloWorldWorkflow Applicazione. Approfondisci il file e concetti presentati in
tali argomenti prima di continuare.

Le sezioni seguenti descrivono come modificare il HelloWorldWorkflow codice originale per utilizzare
un metodo asincrono.

HelloWorldWorkflowAsyncApplicazione Versione API 2021-04-28 27

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorldWorkflowAsync Attività Implementazione

HelloWorldWorkflowAsync implementa la sua interfaccia di lavoro per le attività
inGreeterActivities, come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="2.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public void say(String what);
}

Questa interfaccia è simile a quella utilizzata da HelloWorldWorkflow, con le seguenti eccezioni:

• Omette l'attività getGreeting; quel task è ora gestito da un metodo asincrono.

• Il numero di versione è impostato su 2.0. Dopo aver registrato un'interfaccia di attività con Amazon
SWF, non puoi modificarla a meno che non cambi il numero di versione.

Le restanti implementazioni del metodo di attività sono identiche a. HelloWorldWorkflow Elimina
semplicemente getGreeting da GreeterActivitiesImpl.

HelloWorldWorkflowAsync implementazione del flusso di lavoro

HelloWorldWorkflowAsync definisce l'interfaccia del flusso di lavoro come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

 @Execute(version = "2.0")
 public void greet();

HelloWorldWorkflowAsync Attività Implementazione Versione API 2021-04-28 28

AWS Flow Framework per Java Guida per gli sviluppatori

}

L'interfaccia è identica a HelloWorldWorkflow parte un nuovo numero di versione. Come per le
attività, se intendi modificare un flusso di lavoro registrato, devi modificarne la versione.

HelloWorldWorkflowAsync implementa il flusso di lavoro come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Asynchronous;
import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

 @Override
 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = getGreeting(name);
 operations.say(greeting);
 }

 @Asynchronous
 private Promise<String> getGreeting(Promise<String> name) {
 String returnString = "Hello " + name.get() + "!";
 return Promise.asPromise(returnString);
 }
}

HelloWorldWorkflowAsync sostituisce l'getGreetingattività con un metodo getGreeting
asincrono, ma il greet metodo funziona più o meno allo stesso modo:

1. Esegue l'attività getName, la quale restituisce immediatamente un oggetto Promise<String>
nameche rappresenta il nome.

2. Chiama il metodo asincrono getGreeting e gli passa l'oggetto name. getGreeting restituisce
immediatamente un oggetto Promise<String>, ovvero greeting, che rappresenta la formula di
apertura.

3. Esegue l'attività say e le passa l'oggetto greeting.

4. Al completamento di getName, name diventa pronto e getGreeting utilizza il relativo valore per
costruire la formula di apertura.

5. Al completamento di getGreeting, greeting diventa pronto e say stampa la stringa sulla
console.

HelloWorldWorkflowAsync implementazione del flusso di lavoro Versione API 2021-04-28 29

AWS Flow Framework per Java Guida per gli sviluppatori

La differenza è che, anziché chiamare il client di attività per eseguire un'attività getGreeting, greet
chiama il metodo asincrono getGreeting. Il risultato è lo stesso, ma il funzionamento del metodo
getGreeting è un po' differente dall'attività getGreeting.

• Il lavoratore di flusso di lavoro utilizza la semantica delle chiamate di funzione standard per
eseguire getGreeting. Tuttavia, l'esecuzione asincrona dell'attività è mediata da Amazon SWF.

• getGreeting viene eseguito nel processo dell'implementazione di flusso di lavoro.

• getGreeting restituisce un oggetto Promise<String> anziché un oggetto String. Per
ottenere il valore String incluso in Promise, devi chiamare il relativo metodo get(). Tuttavia,
poiché l'attività viene eseguita in modo asincrono, il suo valore restituito potrebbe non essere
pronto immediatamente; genererà un'eccezione finché non get() sarà disponibile il valore
restituito dal metodo asincrono.

Per ulteriori informazioni sul funzionamento di Promise, consulta AWS Flow Framework Concetti
di base: Data Exchange tra attività e flussi di lavoro.

getGreeting crea un valore restituito passando la stringa della formula di apertura al metodo
Promise.asPromise statico. Questo metodo crea un oggetto Promise<T> del tipo appropriato,
imposta il valore e ne attiva lo stato pronto.

HelloWorldWorkflowAsyncWorkflow e Activities Host and Starter

HelloWorldWorkflowAsync implementa GreeterWorker come classe host per le implementazioni
del flusso di lavoro e delle attività. È identico all' HelloWorldWorkflowimplementazione tranne per il
taskListToPoll nome, che è impostato su "»HelloWorldAsyncList.

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

HelloWorldWorkflowAsyncWorkflow e Activities Host and Starter Versione API 2021-04-28 30

AWS Flow Framework per Java Guida per gli sviluppatori

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldWalkthrough";
 String taskListToPoll = "HelloWorldAsyncList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

HelloWorldWorkflowAsync implementa il workflow starter inGreeterMain; è identico all'
HelloWorldWorkflow implementazione.

Per eseguire il flusso di lavoro, esegui GreeterWorker eGreeterMain, proprio come con.
HelloWorldWorkflow

HelloWorldWorkflowDistributed Applicazione
Con HelloWorldWorkflow e HelloWorldWorkflowAsync, Amazon SWF media l'interazione tra il
flusso di lavoro e le implementazioni delle attività, ma vengono eseguite localmente come un unico
processo. GreeterMainè in un processo separato, ma viene comunque eseguito sullo stesso
sistema.

Una caratteristica fondamentale di Amazon SWF è il supporto di applicazioni distribuite. Ad esempio,
puoi eseguire il workflow worker su un' EC2 istanza Amazon, il workflow starter su un computer del
data center e le attività su un computer desktop client. Puoi anche eseguire attività diverse su sistemi
diversi.

L' HelloWorldWorkflowDistributed applicazione si estende HelloWorldWorkflowAsync per distribuire
l'applicazione su due sistemi e tre processi.

HelloWorldWorkflowDistributed Applicazione Versione API 2021-04-28 31

AWS Flow Framework per Java Guida per gli sviluppatori

• Il flusso di lavoro e lo starter operano come processi separati su un solo sistema.

• Le attività operano su un sistema separato.

Per implementare l'applicazione, crea una copia di HelloWorld. HelloWorldWorkflowAsync pacchetto
nella directory del progetto e chiamalo HelloWorld. HelloWorldWorkflowDistributed. Le sezioni
seguenti descrivono come modificare il HelloWorldWorkflowAsync codice originale per distribuire
l'applicazione su due sistemi e tre processi.

Non devi modificare il flusso di lavoro o le implementazioni di attività per eseguirli su sistemi separati,
e neanche i numeri di versione. Non devi neanche modificare GreeterMain. Tutto quello che devi
cambiare è l'host delle attività e del flusso di lavoro.

Con HelloWorldWorkflowAsync, una singola applicazione funge da host del flusso di lavoro e delle
attività. Per eseguire su sistemi separati il flusso di lavoro e le implementazioni delle attività, devi
implementare applicazioni separate. Elimina GreeterWorker dal progetto e aggiungi due nuovi file di
classe GreeterWorkflowWorker e GreeterActivitiesWorker.

HelloWorldWorkflowDistributed implementa le sue attività ospitate in GreeterActivitiesWorker, come
segue:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

public class GreeterActivitiesWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

HelloWorldWorkflowDistributed Applicazione Versione API 2021-04-28 32

AWS Flow Framework per Java Guida per gli sviluppatori

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();
 }
}

HelloWorldWorkflowDistributed implementa il proprio host di workflow inGreeterWorkflowWorker,
come segue:

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorkflowWorker {
 public static void main(String[] args) throws Exception {
 ClientConfiguration config = new
 ClientConfiguration().withSocketTimeout(70*1000);

 String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");
 String swfSecretKey = System.getenv("AWS_SECRET_KEY");
 AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
 swfSecretKey);

 AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
 config);
 service.setEndpoint("https://swf.us-east-1.amazonaws.com");

 String domain = "helloWorldExamples";
 String taskListToPoll = "HelloWorldAsyncList";

 WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
 wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
 wfw.start();
 }
}

HelloWorldWorkflowDistributed Applicazione Versione API 2021-04-28 33

AWS Flow Framework per Java Guida per gli sviluppatori

Ricorda che GreeterActivitiesWorker è solo GreeterWorker senza il codice
WorkflowWorker e che GreeterWorkflowWorker è solo GreeterWorker senza il codice
ActivityWorker.

Per eseguire il flusso di lavoro:

1. Crea un file JAR eseguibile con GreeterActivitiesWorker come punto di ingresso.

2. Copia il file JAR della Fase 1 su un altro sistema, che abbia qualsiasi sistema operativo che
supporta Java.

3. Assicurati che AWS le credenziali con accesso allo stesso dominio Amazon SWF siano
disponibili sull'altro sistema.

4. Esegui il file JAR.

5. Nel sistema di sviluppo, utilizza Eclipse per eseguire GreeterWorkflowWorker e
GreeterMain.

Oltre al fatto che le attività vengono eseguite su un sistema diverso da quello di Workflow Worker
e Workflow Starter, il flusso di lavoro funziona esattamente nello stesso modo di. HelloWorldAsync
Tuttavia, poiché la println chiamata stampa «Hello World!» se la console è say attiva, l'output
verrà visualizzato sul sistema su cui è in esecuzione l'Activities Worker.

HelloWorldWorkflowParallelApplicazione

Le versioni precedenti di Hello World! tutti utilizzare un flusso di lavoro lineare topologia. Tuttavia,
Amazon SWF non si limita alle topologie lineari. L' HelloWorldWorkflowParallel applicazione è una
versione modificata HelloWorldWorkflow che utilizza una topologia parallela, come illustrato nella
figura seguente.

Con HelloWorldWorkflowParallel, getName e getGreeting corri in parallelo e ognuno restituisce
una parte del saluto. sayquindi unisce le due stringhe in un messaggio di saluto e lo stampa sulla
console.

HelloWorldWorkflowParallelApplicazione Versione API 2021-04-28 34

AWS Flow Framework per Java Guida per gli sviluppatori

Per implementare l'applicazione, crea una copia di HelloWorld. HelloWorldWorkflow pacchetto nella
directory del progetto e chiamalo HelloWorld. HelloWorldWorkflowParallel. Le sezioni seguenti
descrivono come modificare il HelloWorldWorkflow codice originale per l'esecuzione getName e
getGreeting in parallelo.

HelloWorldWorkflowParallelAttività: Lavoratore

L'interfaccia HelloWorldWorkflowParallel delle attività è implementata inGreeterActivities, come
illustrato nell'esempio seguente.

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="5.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
 public String getName();
 public String getGreeting();
 public void say(String greeting, String name);
}

L'interfaccia è simile a HelloWorldWorkflow, con le seguenti eccezioni:

• getGreeting non accetta alcun input, ma restituisce semplicemente una stringa di formula di
apertura.

• say accetta due stringhe di input, la formula di apertura e il nome.

• L'interfaccia ha un nuovo numero di versione, necessario ogni volta che modifichi un'interfaccia
registrata.

HelloWorldWorkflowParallel implementa le attività inGreeterActivitiesImpl, come segue:

public class GreeterActivitiesImpl implements GreeterActivities {

 @Override
 public String getName() {
 return "World!";
 }

HelloWorldWorkflowParallelAttività: Lavoratore Versione API 2021-04-28 35

AWS Flow Framework per Java Guida per gli sviluppatori

 @Override
 public String getGreeting() {
 return "Hello ";
 }

 @Override
 public void say(String greeting, String name) {
 System.out.println(greeting + name);
 }
}

Ora getName e getGreeting restituiscono semplicemente metà della stringa di formula di apertura.
say concatena le due parti per generare la frase completa e la stampa sulla console.

HelloWorldWorkflowParallelWorkflow Worker

L'interfaccia del HelloWorldWorkflowParallel flusso di lavoro è implementata inGreeterWorkflow,
come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

 @Execute(version = "5.0")
 public void greet();
}

La classe è identica alla HelloWorldWorkflow versione, tranne per il fatto che il numero di versione è
stato modificato per corrispondere all'operatore delle attività.

Il flusso di lavoro è implementato in GreeterWorkflowImpl, come mostrato di seguito:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

HelloWorldWorkflowParallelWorkflow Worker Versione API 2021-04-28 36

AWS Flow Framework per Java Guida per gli sviluppatori

 public void greet() {
 Promise<String> name = operations.getName();
 Promise<String> greeting = operations.getGreeting();
 operations.say(greeting, name);
 }
}

A prima vista, questa implementazione sembra molto simile alle HelloWorldWorkflow tre attività
eseguite in sequenza dai metodi client. Tuttavia, ciò non avviene per le attività.

• HelloWorldWorkflow passato name a. getGreeting Poiché name era un oggetto Promise<T>,
getGreeting ha posticipato l'esecuzione dell'attività fino al completamento di getName e le due
attività sono state eseguite in sequenza.

• HelloWorldWorkflowParallel non trasmette alcun input getName ogetGreeting. Nessuno dei
due metodi posticipa l'esecuzione e i metodi di attività associati sono eseguiti immediatamente e in
parallelo.

L'attività say accetta greeting e name come parametri di input. Poiché sono oggetti Promise<T>,
say posticipa l'esecuzione fino al completamento di entrambe le attività e quindi costruisce e stampa
la formula di apertura.

Si noti che HelloWorldWorkflowParallel non utilizza alcun codice di modellazione speciale per definire
la topologia del flusso di lavoro. Lo fa implicitamente utilizzando il controllo di flusso Java standard e
sfruttando le proprietà degli oggetti. Promise<T> AWS Flow Framework per le applicazioni Java è
possibile implementare anche topologie complesse semplicemente utilizzando Promise<T> oggetti
insieme ai costrutti di flusso di controllo Java convenzionali.

HelloWorldWorkflowParallel Workflow e attività Host and Starter

HelloWorldWorkflowParallel implementa GreeterWorker come classe host per le implementazioni
del flusso di lavoro e delle attività. È identico all' HelloWorldWorkflow implementazione tranne per il
taskListToPoll nome, che è impostato su "»HelloWorldParallelList.

HelloWorldWorkflowParallelimplementa il workflow starter in GreeterMain ed è identico all'
HelloWorldWorkflow implementazione.

Per eseguire il flusso di lavoro, esegui GreeterWorker e GreeterMain esattamente come con
HelloWorldWorkflow.

HelloWorldWorkflowParallel Workflow e attività Host and Starter Versione API 2021-04-28 37

AWS Flow Framework per Java Guida per gli sviluppatori

Comprensione AWS Flow Framework di Java

The AWS Flow Framework for Java funziona con Amazon SWF per semplificare la creazione
di applicazioni scalabili e con tolleranza ai guasti per eseguire attività asincrone che possono
essere di lunga durata, remote o entrambe. Il programma «Hello World!» alcuni esempi Che cos'è
AWS Flow Framework per Java? hanno introdotto le nozioni di base su come utilizzarlo per AWS
Flow Framework implementare applicazioni di flusso di lavoro di base. Questa sezione fornisce
informazioni concettuali sul funzionamento AWS Flow Framework delle applicazioni. La prima
sezione riassume la struttura di base di un' AWS Flow Framework applicazione, mentre le sezioni
rimanenti forniscono ulteriori dettagli sul funzionamento AWS Flow Framework delle applicazioni.

Argomenti

• AWS Flow Framework Concetti di base: struttura dell'applicazione

• AWS Flow Framework Concetti di base: esecuzione affidabile

• AWS Flow Framework Concetti di base: esecuzione distribuita

• AWS Flow Framework Concetti di base: elenchi di attività ed esecuzione delle attività

• AWS Flow Framework Concetti di base: applicazioni scalabili

• AWS Flow Framework Concetti di base: Data Exchange tra attività e flussi di lavoro

• AWS Flow Framework Concetti di base: Data Exchange tra applicazioni ed esecuzioni di flussi di
lavoro

• Tipi di timeout di Amazon SWF

AWS Flow Framework Concetti di base: struttura dell'applicazione

Concettualmente, un' AWS Flow Framework applicazione è composta da tre componenti di base: chi
avvia il flusso di lavoro, gli addetti al flusso di lavoro e gli addetti alle attività. Una o più applicazioni
host sono responsabili della registrazione dei lavoratori (flusso di lavoro e attività) con Amazon
SWF, dell'avvio dei lavoratori e della gestione della pulizia. I lavoratori gestiscono i meccanismi di
esecuzione del flusso di lavoro e possono essere implementati su vari host.

Questo diagramma rappresenta un'applicazione di base: AWS Flow Framework

Struttura di un'applicazione Versione API 2021-04-28 38

AWS Flow Framework per Java Guida per gli sviluppatori

Note

L'implementazione di questi componenti in tre applicazioni distinte è vantaggiosa da un
punto di vista concettuale, ma puoi comunque creare applicazioni per implementare questa
funzionalità in vari modi. Ad esempio, puoi utilizzare una singola applicazione host per i
lavoratori di flusso di lavoro e di attività oppure host di flusso di lavoro e di attività distinti.
Puoi inoltre avere molteplici lavoratori di attività, ognuno dei quali gestisce un set di attività
differente su host distinti, ecc.

I tre AWS Flow Framework componenti interagiscono indirettamente inviando richieste HTTP ad
Amazon SWF, che gestisce le richieste. Amazon SWF esegue le seguenti operazioni:

• Gestione di uno o più elenchi di task di decisione, i quali determinano l'operazione successiva che
deve essere eseguita da un lavoratore di flusso di lavoro.

Struttura di un'applicazione Versione API 2021-04-28 39

AWS Flow Framework per Java Guida per gli sviluppatori

• Gestione di uno o più elenchi di task di attività, i quali determinano quali task saranno eseguiti da
un lavoratore di attività.

• Mantiene una step-by-step cronologia dettagliata dell'esecuzione del flusso di lavoro.

Con AWS Flow Framework, il codice dell'applicazione non deve gestire direttamente molti dei dettagli
mostrati nella figura, come l'invio di richieste HTTP ad Amazon SWF. Basta chiamare AWS Flow
Framework i metodi e il framework gestisce i dettagli dietro le quinte.

Ruolo del lavoratore di attività

Il lavoratore di attività esegue i vari task che il flusso di lavoro deve realizzare e comprende quanto
segue:

• L'implementazione di attività, che include un set di metodi di attività che eseguono task particolari
per il flusso di lavoro.

• Un ActivityWorkeroggetto, che utilizza richieste HTTP long poll per eseguire il polling di Amazon
SWF per le attività da eseguire. Quando è necessaria un'attività, Amazon SWF risponde alla
richiesta inviando le informazioni necessarie per eseguire l'attività. L'ActivityWorkeroggetto chiama
quindi il metodo di attività appropriato e restituisce i risultati ad Amazon SWF.

Ruolo del lavoratore di flusso di lavoro

Il lavoratore di flusso di lavoro orchestra l'esecuzione di varie attività e gestisce il flusso di dati e le
attività non riuscite. e comprende quanto segue:

• L'implementazione di flusso di lavoro, che include la logica di orchestrazione delle attività, gestisce
le attività non riuscite, ecc.

• Un client di attività, che funge da proxy per il lavoratore di attività e consente al lavoratore di flusso
di lavoro di pianificare le attività da eseguire in modo asincrono.

• Un WorkflowWorkeroggetto che utilizza richieste HTTP long poll per eseguire il polling di Amazon
SWF per attività decisionali. Se nell'elenco delle attività del flusso di lavoro sono presenti attività,
Amazon SWF risponde alla richiesta restituendo le informazioni necessarie per eseguire l'attività.
Il framework esegue quindi il flusso di lavoro per eseguire l'operazione e restituisce i risultati ad
Amazon SWF.

Ruolo del lavoratore di attività Versione API 2021-04-28 40

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework per Java Guida per gli sviluppatori

Ruolo dello starter di flusso di lavoro

Lo starter di flusso di lavoro avvia un'istanza di flusso di lavoro, denominata anche esecuzione di
flusso di lavoro, e può interagire con un'istanza durante l'esecuzione per passare ulteriori dati al
lavoratore di flusso di lavoro o ottenere lo stato corrente del flusso di lavoro.

Lo starter di flusso di lavoro utilizza un client di flusso di lavoro per avviare l'esecuzione di flusso di
lavoro, interagisce con il flusso di lavoro come necessario durante l'esecuzione e gestisce la pulizia.
Lo starter del flusso di lavoro potrebbe essere un'applicazione eseguita localmente, un'applicazione
Web, o anche il. AWS CLI Console di gestione AWS

In che modo Amazon SWF interagisce con la tua applicazione

Amazon SWF media l'interazione tra i componenti del flusso di lavoro e mantiene una cronologia
dettagliata del flusso di lavoro. Amazon SWF non avvia la comunicazione con i componenti; attende
le richieste HTTP dai componenti e gestisce le richieste come richiesto. Per esempio:

• Se la richiesta proviene da un lavoratore, che analizza le attività disponibili, Amazon SWF risponde
direttamente al lavoratore se un'attività è disponibile. Per ulteriori informazioni sul polling, consulta
Polling delle attività nella Guida per sviluppatori di Amazon Simple Workflow Service.

• Se la richiesta è una notifica da parte di un operatore di attività che indica il completamento
di un'attività, Amazon SWF registra le informazioni nella cronologia di esecuzione e aggiunge
un'attività all'elenco delle attività decisionali per informare l'operatore del flusso di lavoro che
l'attività è completa, consentendogli di procedere alla fase successiva.

• Se la richiesta di esecuzione di un'attività proviene dall'operatore del flusso di lavoro, Amazon SWF
registra le informazioni nella cronologia di esecuzione e aggiunge un'attività all'elenco delle attività
per indirizzare un lavoratore di attività a eseguire il metodo di attività appropriato.

Questo approccio consente agli operatori di lavorare su qualsiasi sistema dotato di una connessione
Internet, tra cui EC2 istanze Amazon, data center aziendali, computer client e così via. Non è
nemmeno necessario che siano eseguiti sullo stesso sistema operativo. Poiché le richieste HTTP
provengono dai lavoratori, non sono richieste porte visibili esternamente; i lavoratori possono essere
eseguiti protetti da un firewall.

Ulteriori informazioni

Per una discussione più approfondita sul funzionamento di Amazon SWF, consulta la Amazon Simple
Workflow Service Developer Guide.

Ruolo dello starter di flusso di lavoro Versione API 2021-04-28 41

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-comm-proto
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework Concetti di base: esecuzione affidabile

Le applicazioni distribuite asincrone devono risolvere problemi di affidabilità a cui non sono soggette
le applicazioni convenzionali, tra cui:

• Come assicurare una comunicazione affidabile tra componenti distribuiti asincroni, come i
componenti a esecuzione prolungata su sistemi remoti.

• Come impedire la perdita dei risultati in caso di errore o di disconnessione di un componente, in
particolare nelle applicazioni a esecuzione prolungata.

• Come gestire i componenti distribuiti con errori.

Le applicazioni possono fare affidamento su Amazon SWF per gestire questi problemi. AWS Flow
Framework Esploreremo in che modo Amazon SWF fornisce meccanismi per garantire che i flussi di
lavoro funzionino in modo affidabile e prevedibile, anche quando sono di lunga durata e dipendono
da attività asincrone eseguite computazionalmente e con l'interazione umana.

Assicurare una comunicazione affidabile

AWS Flow Framework fornisce una comunicazione affidabile tra un operatore del flusso di lavoro
e i relativi addetti alle attività utilizzando Amazon SWF per inviare attività a lavoratori con attività
distribuite e restituire i risultati al lavoratore del flusso di lavoro. Amazon SWF utilizza i seguenti
metodi per garantire una comunicazione affidabile tra un lavoratore e le sue attività:

• Amazon SWF archivia in modo duraturo le attività pianificate e le attività del flusso di lavoro e
garantisce che vengano eseguite al massimo una volta.

• Amazon SWF garantisce che un'attività venga completata correttamente e restituisca un risultato
valido oppure notificherà all'operatore del flusso di lavoro che l'attività non è riuscita.

• Amazon SWF archivia in modo duraturo il risultato di ogni attività completata o, per le attività non
riuscite, memorizza le informazioni di errore pertinenti.

AWS Flow Framework Quindi utilizza i risultati dell'attività di Amazon SWF per determinare come
procedere con l'esecuzione del flusso di lavoro.

Esecuzione affidabile Versione API 2021-04-28 42

AWS Flow Framework per Java Guida per gli sviluppatori

Impedire la perdita dei risultati

Gestione della cronologia del flusso di lavoro

Un'attività che esegue un'operazione di data mining su un petabyte di dati può durare varie ore e
un'attività che richiede a un lavoratore umano di eseguire un task complesso può durare vari giorni o
addirittura settimane.

Per adattarsi a scenari come questi, il completamento AWS Flow Framework dei flussi di lavoro e
delle attività può richiedere tempi arbitrari: fino al limite di un anno per l'esecuzione di un flusso di
lavoro. L'esecuzione affidabile di processi a esecuzione prolungata necessita di un meccanismo per
archiviare in modo permanente e continuo la cronologia di esecuzione del flusso di lavoro.

AWS Flow Framework Gestisce questo problema dipendendo da Amazon SWF, che mantiene
una cronologia di esecuzione di ogni istanza del flusso di lavoro. La cronologia del flusso di lavoro
fornisce un record completo e attendibile dell'avanzamento del flusso di lavoro, inclusi tutti i task di
flusso di lavoro e di attività che sono stati pianificati e completati, nonché le informazioni restituite
dalle attività completate o non riuscite.

AWS Flow Framework le applicazioni di solito non hanno bisogno di interagire direttamente con la
cronologia del flusso di lavoro, sebbene possano accedervi se necessario. Nella maggior parte dei
casi, le applicazioni possono semplicemente lasciare che il framework interagisca con la cronologia
del flusso di lavoro in background. Per una discussione completa sulla cronologia del flusso di lavoro,
consulta Workflow History nella Amazon Simple Workflow Service Developer Guide.

Esecuzione stateless

La cronologia delle esecuzioni consente ai lavoratori di flusso di lavoro di essere stateless. Se
disponi di più istanze di un lavoratore di attività o di flusso di lavoro, qualsiasi lavoratore può eseguire
qualsiasi task. Il lavoratore riceve tutte le informazioni sullo stato necessarie per eseguire l'attività da
Amazon SWF.

Questo approccio rende i flussi di lavoro più affidabili. Ad esempio, se un lavoratore di attività non
riesce, non è necessario riavviare il flusso di lavoro. È sufficiente riavviare il lavoratore, il quale
eseguirà il polling nell'elenco dei task ed elaborerà tutti i task nell'elenco, indipendentemente dal
momento in cui si è verificato l'errore. Puoi rendere l'intero flusso di lavoro a tolleranza di errore
utilizzando due o più lavoratori di flusso di lavoro e di attività, eventualmente su sistemi distinti. In
questo modo, in caso di errore in uno dei lavoratori, l'altro continuerà a gestire i task pianificati senza
alcuna interruzione nell'avanzamento del flusso di lavoro.

Impedire la perdita dei risultati Versione API 2021-04-28 43

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history

AWS Flow Framework per Java Guida per gli sviluppatori

Gestire componenti distribuiti con errori

Le attività spesso non hanno esito positivo per motivi effimeri, come una breve disconnessione, di
conseguenza una strategia comune per la gestione delle attività non riuscite consiste nel ripetere
l'attività. Anziché gestire un nuovo tentativo implementando complesse strategie di passaggio di
messaggi, le applicazioni possono utilizzare AWS Flow Framework. Fornisce diversi meccanismi per
riprovare le attività non riuscite e fornisce un meccanismo integrato di gestione delle eccezioni che
funziona con l'esecuzione asincrona e distribuita delle attività in un flusso di lavoro.

AWS Flow Framework Concetti di base: esecuzione distribuita

Un'istanza di workflow è essenzialmente un thread di esecuzione virtuale che può comprendere le
attività e la logica di orchestrazione in esecuzione su più computer remoti. Amazon SWF e la AWS
Flow Framework funzione come sistema operativo che gestisce le istanze del flusso di lavoro su una
CPU virtuale tramite:

• Mantenendo lo stato di esecuzione di ciascuna istanza.

• Passando da un'istanza all'altra.

• Riprendendo l'esecuzione di un'istanza dal punto in cui è stata interrotta.

Riproduzione dei flussi di lavoro

Dato che le attività possono essere di lunga durata, il blocco del flusso di lavoro fino al
completamento non è consigliabile. AWS Flow Framework Gestisce invece l'esecuzione del flusso
di lavoro utilizzando un meccanismo di riproduzione, che si basa sulla cronologia del flusso di lavoro
gestita da Amazon SWF per eseguire il flusso di lavoro in episodi.

Ciascun episodio riproduce la logica del flusso di lavoro in modo da eseguire ogni attività solo una
volta e ritarda l'esecuzione delle attività e dei metodi asincroni fino a quando i loro oggetti Promise
non sono pronti.

Lo starter del flusso di lavoro avvia il primo episodio di riproduzione quando inizia l'esecuzione del
flusso di lavoro. Il framework chiama il metodo del punto di ingresso del flusso di lavoro e:

1. Esegue tutti i task del flusso di lavoro che non dipendono dal completamento dell'attività, inclusa la
chiamata di tutti i metodi client di attività.

Gestire componenti distribuiti con errori Versione API 2021-04-28 44

AWS Flow Framework per Java Guida per gli sviluppatori

2. Fornisce ad Amazon SWF un elenco di attività e attività da pianificare per l'esecuzione. Per il primo
episodio, l'elenco consiste solo delle attività che non dipendono da Promise e possono essere
eseguite immediatamente.

3. Notifica ad Amazon SWF che l'episodio è completo.

Amazon SWF memorizza le attività nella cronologia del flusso di lavoro e ne pianifica l'esecuzione
inserendole nell'elenco delle attività. I lavoratori di attività eseguono il polling dell'elenco ed eseguono
i task.

Quando un activity worker completa un'attività, restituisce il risultato ad Amazon SWF, che lo
registra nella cronologia di esecuzione del flusso di lavoro e pianifica una nuova attività del flusso
di lavoro per l'operatore del flusso di lavoro inserendola nell'elenco delle attività del flusso di lavoro.
Il lavoratore esegue il polling dell'elenco e quando riceve il task esegue l'episodio di riproduzione
successivo, nel modo seguente:

1. Il framework esegue nuovamente il metodo del punto di ingresso del flusso di lavoro e:

• Esegue tutti i task del flusso di lavoro che non dipendono dal completamento dell'attività, inclusa
la chiamata di tutti i metodi client di attività. Tuttavia, il framework verifica la cronologia delle
esecuzioni e non pianifica doppioni dello stesso task di attività.

• Verifica la cronologia per vedere quali task di attività sono stati completati ed esegue i metodi
asincroni del flusso di lavoro che dipendono da quelle attività.

2. Quando tutte le attività del flusso di lavoro che possono essere eseguite sono state completate, il
framework riporta ad Amazon SWF:

• Fornisce ad Amazon SWF un elenco di tutte le attività i cui Promise<T> oggetti di input sono
pronti dall'ultimo episodio e possono essere pianificati per l'esecuzione.

• Se l'episodio non ha generato attività aggiuntive ma ci sono ancora attività non completate, il
framework notifica ad Amazon SWF che l'episodio è completo. Attende quindi il completamento
di un'altra attività, avviando il successivo episodio di riproduzione.

• Se l'episodio non ha generato attività aggiuntive e tutte le attività sono state completate, il
framework notifica ad Amazon SWF che l'esecuzione del flusso di lavoro è completa.

Per esempi di comportamento di riproduzione, consulta AWS Flow Framework per Java Replay
Behavior.

Riproduzione dei flussi di lavoro Versione API 2021-04-28 45

AWS Flow Framework per Java Guida per gli sviluppatori

Riproduzione e metodi di flusso di lavoro asincroni

I metodi di flusso di lavoro asincroni sono spesso utilizzati come attività, perché il metodo ritarda
l'esecuzione fino a che tutti gli oggetti Promise<T> di input sono pronti. Tuttavia, il meccanismo di
riproduzione gestisce i metodi asincroni in modo diverso rispetto alle attività.

• La riproduzione non garantisce che un metodo asincrono venga eseguito solo una volta. Ritarda
l'esecuzione di un metodo asincrono fino a quando i suoi oggetti Promise di input sono pronti, ma
poi esegue quel metodo per tutti gli episodi successivi.

• Quando un metodo asincrono viene completato, non avvia un nuovo episodio.

Un esempio di riproduzione di un flusso di lavoro asincrono si trova in AWS Flow Framework per
Java Replay Behavior.

Riproduzione e implementazione del flusso di lavoro

Per la maggior parte, non occorre preoccuparsi dei dettagli del meccanismo di riproduzione. In
sostanza è qualcosa che accade dietro le quinte. Tuttavia, la riproduzione ha due importanti effetti per
l'implementazione di un flusso di lavoro.

• Non utilizzare metodi di flusso di lavoro per eseguire task di lunga durata, perché la riproduzione
ripete i task più volte. Anche i metodi asincroni in genere si ripetono più di una volta. Utilizza invece
le attività per i task di lunga durata; la riproduzione esegue le attività solo una volta.

• La logica del flusso di lavoro deve essere totalmente deterministica; ogni episodio deve accettare
lo stesso percorso del flusso di controllo. Ad esempio, il percorso del flusso di controllo non deve
dipendere dall'ora corrente. Per una descrizione dettagliata della riproduzione e dei requisiti
deterministici, consulta Non determinismo.

AWS Flow Framework Concetti di base: elenchi di attività ed
esecuzione delle attività

Amazon SWF gestisce i flussi di lavoro e le attività pubblicandoli in elenchi denominati. Amazon SWF
mantiene almeno due elenchi di attività, uno per i lavoratori del flusso di lavoro e uno per gli addetti
alle attività.

Riproduzione e metodi di flusso di lavoro asincroni Versione API 2021-04-28 46

AWS Flow Framework per Java Guida per gli sviluppatori

Note

Puoi specificare il numero di elenchi di task che preferisci, con lavoratori diversi assegnati a
ogni elenco. Non vi è alcun limite al numero di elenchi di task. Solitamente, puoi specificare
un elenco di task del lavoratore nell'applicazione host del lavoratore quando crei l'oggetto del
lavoratore.

Il seguente estratto dall'applicazione host HelloWorldWorkflow crea un nuovo lavoratore di attività
e lo assegna all'elenco di task di attività HelloWorldList.

public class GreeterWorker {
 public static void main(String[] args) throws Exception {
 ...
 String domain = " helloWorldExamples";
 String taskListToPoll = "HelloWorldList";

 ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
 aw.addActivitiesImplementation(new GreeterActivitiesImpl());
 aw.start();
 ...
 }
}

Per impostazione predefinita, Amazon SWF pianifica le attività del lavoratore
nell'HelloWorldListelenco. In seguito il lavoratore analizza l'elenco alla ricerca di task. Puoi
assegnare all'elenco di task il nome che preferisci. Puoi anche utilizzare lo stesso nome per gli
elenchi di flusso di lavoro e attività. Internamente, Amazon SWF inserisce i nomi degli elenchi di
attività e flussi di lavoro in namespace diversi, quindi i due elenchi saranno distinti.

Se non specifichi un elenco di attività, AWS Flow Framework specifica un elenco predefinito quando
il lavoratore registra il tipo con Amazon SWF. Per ulteriori informazioni, consulta Registrazione dei tipi
di flusso di lavoro e di attività.

A volte è utile che un lavoratore o un gruppo di lavoratori specifici eseguano determinati task.
Ad esempio, un flusso di lavoro di elaborazione delle immagini potrebbe utilizzare un'attività per
scaricare un'immagine e un'altra per elaborarla. È più efficiente eseguire entrambi i task sullo stesso
sistema ed evitare costi legati al trasferimento di file di grandi dimensioni all'interno della rete.

Elenchi di task ed esecuzione di task Versione API 2021-04-28 47

AWS Flow Framework per Java Guida per gli sviluppatori

Per supportare tali scenari, puoi specificare in modo esplicito un elenco di task quando chiami un
metodo client di attività utilizzando un overload che include un parametro schedulingOptions.
È possibile specificare l'elenco delle attività passando al metodo un oggetto configurato in modo
appropriato. ActivitySchedulingOptions

Ad esempio, supponiamo che l'attività say dell'applicazione HelloWorldWorkflow sia ospitata
da un lavoratore di attività diverso da getName e getGreeting. Il seguente esempio mostra
come garantire che say utilizzi lo stesso elenco di task di getName e getGreeting, anche se
originariamente sono stati assegnati a elenchi diversi.

public class GreeterWorkflowImpl implements GreeterWorkflow {
 private GreeterActivitiesClient operations1 = new GreeterActivitiesClientImpl1(); //
getGreeting and getName
 private GreeterActivitiesClient operations2 = new GreeterActivitiesClientImpl2(); //
say
 @Override
 public void greet() {
 Promise<String> name = operations1.getName();
 Promise<String> greeting = operations1.getGreeting(name);
 runSay(greeting);
 }
 @Asynchronous
 private void runSay(Promise<String> greeting){
 String taskList = operations1.getSchedulingOptions().getTaskList();
 ActivitySchedulingOptions schedulingOptions = new ActivitySchedulingOptions();
 schedulingOptions.setTaskList(taskList);
 operations2.say(greeting, schedulingOptions);
 }
}

Il metodo asincrono runSay ottiene l'elenco di task getGreeting dall'oggetto client. Poi crea e
configura un oggetto ActivitySchedulingOptions che garantisca che say analizzi lo stesso
elenco di task di getGreeting.

Note

Quando passi un parametro schedulingOptions a un metodo client di attività, questo
sovrascrive l'elenco di task originale soltanto per l'esecuzione di quell'attività. Se richiami
nuovamente il metodo activities client senza specificare un elenco di attività, Amazon SWF
assegna l'attività all'elenco originale e l'activity worker analizzerà tale elenco.

Elenchi di task ed esecuzione di task Versione API 2021-04-28 48

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework Concetti di base: applicazioni scalabili

Amazon SWF ha due caratteristiche chiave che semplificano la scalabilità di un'applicazione di
workflow per gestire il carico corrente:

• Una cronologia completa delle esecuzioni dei flussi di lavoro, che permette di implementare
un'applicazione stateless.

• Una pianificazione dei task con legami deboli alla loro esecuzione, che semplifica la scalabilità
dell'applicazione per soddisfare le esigenze attuali.

Amazon SWF pianifica le attività pubblicandole in elenchi di attività allocati dinamicamente, non
comunicando direttamente con gli addetti al flusso di lavoro e alle attività. I lavoratori utilizzano
invece richieste HTTP per eseguire il polling dei rispettivi elenchi di task. Questo approccio associa
vagamente la pianificazione delle attività all'esecuzione delle attività e consente ai lavoratori di
funzionare su qualsiasi sistema adatto, tra cui EC2 istanze Amazon, data center aziendali, computer
client e così via. Poiché le richieste HTTP provengono dai worker, non sono necessarie porte visibili
esternamente, il che consente agli operatori di funzionare anche dietro un firewall.

Il meccanismo long polling utilizzato dai lavoratori per eseguire il polling dei task assicura che
i lavoratori non vengano sovraccaricati. Anche se c'è un picco nei task pianificati, i lavoratori
estraggono i task secondo le loro esigenze. Tuttavia, poiché il lavoratori sono stateless, puoi scalare
dinamicamente un'applicazione per soddisfare un maggiore carico avviando istanze lavoratore
aggiuntive. Anche se operano su sistemi diversi, ciascuna istanza esegue il polling dello stesso
elenco di task e la prima istanza lavoratore disponibile esegue ciascun task, indipendentemente
dalla posizione o dal momento di inizio del lavoratore. Quando il carico diminuisce, si può ridurre di
conseguenza il numero di lavoratori.

AWS Flow Framework Concetti di base: Data Exchange tra attività
e flussi di lavoro

Quando chiami un metodo client di attività asincrono, restituisce immediatamente un oggetto
Promessa (noto anche come Futuro) che rappresenta il valore restituito del metodo di attività.
Inizialmente, la Promessa è in uno stato non pronto e il valore restituito è indefinito. Dopo che il
metodo di attività ha completato il task e viene restituito, il framework esegue il marshalling del valore
restituito nella rete al lavoratore di flusso di lavoro, che assegna un valore alla Promessa e fa entrare
l'oggetto in uno stato pronto.

Applicazioni scalabili Versione API 2021-04-28 49

AWS Flow Framework per Java Guida per gli sviluppatori

Anche se il metodo di attività non ha un valore restituito, puoi ancora utilizzare la Promessa per
gestire l'esecuzione del flusso di lavoro. Se passi una Promessa restituita a un metodo client di
attività o a un metodo flusso di lavoro, questa ritarda l'esecuzione fino a quando l'oggetto è pronto.

Se passi una o più promesse a un metodo client di attività, il framework mette in coda il task ma
ritarda la pianificazione fino a quando tutti gli oggetti di input sono pronti. Poi estrae i dati da ogni
Promessa ed ne esegue il marshalling su internet al lavoratore di attività, che li passa al metodo di
attività come tipo standard.

Note

Se devi trasferire grandi quantità di dati tra i lavoratori di flusso di lavoro e attività, l'approccio
consigliato è archiviare i dati in una posizione comoda e passare le informazioni di recupero.
Ad esempio, puoi archiviare i dati in un bucket Amazon S3 e passare l'URL associato.

La promessa <T> Tipo

Il tipo Promise<T> è simile per alcuni aspetti al tipo Java Future<T>. Entrambi i tipi rappresentano
valori restituiti da metodi asincroni e sono inizialmente non definiti. Puoi accedere al valore di un
oggetto chiamando il suo metodo get. Al di là di ciò, i due tipi si comportano in modo diverso.

• Future<T> è un costrutto di sincronizzazione che permette a un'applicazione di attendere il
completamento di un metodo asincrono. Se chiami get e l'oggetto non è pronto, si blocca fino a
quando l'oggetto è pronto.

• Con Promise<T>, la sincronizzazione è gestita dal framework. Se chiami get e l'oggetto non è
pronto, get genera un'eccezione.

Lo scopo primario di Promise<T> è gestire il flusso di dati da un'attività a un'altra. Garantisce
che un'attività non venga eseguita fino a quando i dati di input sono validi. In molti casi, i lavoratori
di flusso di lavoro non devono accedere agli oggetti Promise<T> direttamente; passano
semplicemente gli oggetti da un'attività a un'altra e lasciano che i lavoratori di framework e attività
gestiscano i dettagli. Per accedere al valore dell'oggetto Promise<T> in un lavoratore di flusso di
lavoro, devi essere certo che l'oggetto sia pronto prima di chiamare il suo metodo get.

• L'approccio consigliato è passare l'oggetto Promise<T> a un metodo flusso di lavoro asincrono
ed elaborare i valori al suo interno. Un metodo asincrono ritarda l'esecuzione fino a quando tutti gli
oggetti di input Promise<T> sono pronti, il che ti garantisce l'accesso sicuro ai valori.

La promessa <T> Tipo Versione API 2021-04-28 50

AWS Flow Framework per Java Guida per gli sviluppatori

• Promise<T> espone un metodo isReady che restituisce true se l'oggetto è pronto. Non è
consigliato utilizzare isReady per analizzare un oggetto Promise<T>, ma isReady è utile in
alcune circostanze.

Il AWS Flow Framework for Java include anche un Settable<T> tipo, che è derivato da
Promise<T> e ha un comportamento simile. La differenza è che il framework di solito imposta il
valore di un Promise<T> oggetto e l'operatore del flusso di lavoro è responsabile dell'impostazione
del valore di aSettable<T>.

Ci sono alcune circostanze in cui un lavoratore di flusso di lavoro deve creare un oggetto
Promise<T> e definire il suo valore. Ad esempio, un metodo asincrono che restituisce un oggetto
Promise<T> deve creare un valore restituito.

• Per creare un oggetto che rappresenta un valore tipizzato, chiama il metodo statico
Promise.asPromise che crea un oggetto Promise<T> del tipo appropriato, definisce il suo
valore e lo fa entrare in uno stato pronto.

• Per creare un oggetto Promise<Void>, chiama il metodo statico Promise.Void.

Note

Promise<T> può rappresentare qualunque tipo valido. Tuttavia, se bisogna eseguire il
marshalling dei dati su Internet, il tipo deve essere compatibile con il convertitore di dati. Per
ulteriori informazioni, consulta la prossima sezione.

Convertitore e marshalling dei dati

AWS Flow Framework Gestisce i dati su Internet utilizzando un convertitore di dati. Per impostazione
predefinita, il framework utilizza un convertitore di dati che è basato sul processore Jackson JSON.
Tuttavia, il convertitore ha dei limiti. Ad esempio, non può effettuare il marshalling delle mappe
che non utilizzano le stringhe come chiavi. Se il convertitore predefinito non è sufficiente per la tua
applicazione, puoi implementare un convertitore di dati personalizzato. Per informazioni dettagliate,
consulta DataConverters.

Convertitore e marshalling dei dati Versione API 2021-04-28 51

https://github.com/codehaus/jackson

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework Concetti di base: Data Exchange tra
applicazioni ed esecuzioni di flussi di lavoro

Un metodo del punto di ingresso del flusso di lavoro può avere uno o più parametri, che permettono
allo starter di trasferire i dati iniziali al flusso di lavoro. Può essere utile anche per fornire al flusso
di lavoro dati aggiuntivi durante l'esecuzione. Ad esempio, se un cliente modifica l'indirizzo di
spedizione, puoi avvisare il flusso di lavoro di elaborazione dell'ordine affinché apporti le opportune
modifiche.

Amazon SWF consente ai flussi di lavoro di implementare un metodo di segnale, che consente
ad applicazioni come Workflow Starter di trasferire dati al flusso di lavoro in qualsiasi momento.
Un metodo segnale può avere tutti i nomi e parametri opportuni. Lo designi come metodo segnale
includendolo nella definizione dell'interfaccia del flusso di lavoro e applicando un'annotazione
@Signal alla dichiarazione del metodo.

L'esempio seguente mostra l'interfaccia del flusso di lavoro per l'elaborazione di un ordine che
dichiara un metodo segnale, changeOrder, che permette allo starter di modificare l'ordine originale
dopo l'avvio del flusso di lavoro.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 300)
public interface WaitForSignalWorkflow {
 @Execute(version = "1.0")
 public void placeOrder(int amount);
 @Signal
 public void changeOrder(int amount);
}

Il processore di annotazione del framework crea un metodo client del flusso di lavoro con lo stesso
nome del metodo segnale e lo starter chiama il metodo client per trasferire i dati al flusso di lavoro.
Per un esempio, consulta Recipes AWS Flow Framework

Tipi di timeout di Amazon SWF

Per garantire che le esecuzioni dei flussi di lavoro vengano eseguite correttamente, puoi impostare
diversi tipi di timeout con Amazon SWF. Alcuni timeout specificano la durata totale del flusso
di lavoro. Altri timeout specificano quanto impiegano le attività prima di essere assegnate a un
lavoratore e quanto ci vuole a completarle dal momento in cui sono state pianificate. Tutti i timeout

Scambio di dati tra le applicazioni e le esecuzioni del flusso di lavoro Versione API 2021-04-28 52

https://aws.amazon.com/code/2535278400103493

AWS Flow Framework per Java Guida per gli sviluppatori

nell'API Amazon SWF sono specificati in secondi. Amazon SWF supporta anche la stringa NONE
come valore di timeout, che indica l'assenza di timeout.

Per i timeout relativi alle attività decisionali e alle attività, Amazon SWF aggiunge un evento alla
cronologia di esecuzione del flusso di lavoro. Gli attributi dell'evento forniscono informazioni sul
tipo di timeout verificatosi e su quale attività decisionale o attività è stata influenzata. Amazon SWF
pianifica anche un'attività decisionale. Quando il decisore riceve il nuovo compito decisionale,
vedrà l'evento di timeout nella cronologia e intraprenderà l'azione appropriata richiamando l'azione.
RespondDecisionTaskCompleted

Un task si considera aperto dal momento in cui è pianificato fino alla sua chiusura. Perciò un task
è segnalato come aperto quando un lavoratore lo sta elaborando. Un task è chiuso quando un
lavoratore lo segnala come completato, annullato o non riuscito. Un'attività può anche essere chiusa
da Amazon SWF a seguito di un timeout.

I timeout nel flusso di lavoro e i task di decisione

Il diagramma seguente mostra la correlazione tra i timeout del flusso di lavoro e di decisione e il ciclo
di vita di un flusso di lavoro:

Esistono due tipi di timeout che interessano i task del flusso di lavoro e di decisione:

• Workflow Start to Close (timeoutType: START_TO_CLOSE): questo timeout specifica il tempo
massimo necessario per completare l'esecuzione di un flusso di lavoro. È impostato come
predefinito durante la registrazione del flusso di lavoro, ma può essere sovrascritto con un valore
diverso quando il flusso di lavoro inizia. Se questo timeout viene superato, Amazon SWF chiude
l'esecuzione del flusso di lavoro e aggiunge un evento di WorkflowExecutionTimedOuttipo alla

I timeout nel flusso di lavoro e i task di decisione Versione API 2021-04-28 53

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html

AWS Flow Framework per Java Guida per gli sviluppatori

cronologia di esecuzione del flusso di lavoro. Oltre al timeoutType, gli attributi dell'evento
specificano la childPolicy valida per l'esecuzione del flusso di lavoro. La policy figlio specifica in
che modo vengono gestite le esecuzioni del flusso di lavoro figlio se quella padre scade o termina
in altro modo. Ad esempio, se la childPolicy è impostata su TERMINATA, allora le esecuzioni
del flusso di lavoro figlio verranno terminate. Una volta scaduta un'esecuzione del flusso di lavoro,
non potrai più intervenire se non con chiamate di visibilità.

• Inizio e chiusura dell'attività decisionale (timeoutType: START_TO_CLOSE): questo timeout
specifica il tempo massimo che il decisore corrispondente può impiegare per completare un'attività
decisionale. Viene impostato durante la registrazione del tipo di flusso di lavoro. Se questo timeout
viene superato, l'attività viene contrassegnata come scaduta nella cronologia di esecuzione
del flusso di lavoro e Amazon SWF aggiunge un evento di tipo DecisionTaskTimedOutalla
cronologia del flusso di lavoro. Gli attributi dell'evento includeranno gli eventi che corrispondono
a quando questo task decisionale è stato pianificato (scheduledEventId) e quando è stato
avviato (). IDs startedEventId Oltre ad aggiungere l'evento, Amazon SWF pianifica anche una
nuova attività decisionale per avvisare il decisore che tale attività decisionale è scaduta. Dopo
che si verifica questo timeout, il tentativo di completare il task di decisione scaduto utilizzando
RespondDecisionTaskCompleted non andrà a buon fine.

Timeout nei task di attività

Il diagramma seguente mostra la correlazione tra i timeout e il ciclo di vita di un task di attività:

Esistono quattro tipi di timeout che interessano i task di attività:

Timeout nei task di attività Versione API 2021-04-28 54

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html

AWS Flow Framework per Java Guida per gli sviluppatori

• Inizio attività da inizio a chiusura (timeoutType: START_TO_CLOSE): questo timeout
specifica il tempo massimo che un addetto all'attività può impiegare per elaborare un'attività
dopo che il lavoratore ha ricevuto l'attività. Tenta di chiudere un'attività scaduta utilizzando
RespondActivityTaskCanceledRespondActivityTaskCompleted, e RespondActivityTaskFailedavrà
esito negativo.

• Activity Task Heartbeat (timeoutType: HEARTBEAT): questo timeout specifica il tempo massimo
di esecuzione di un'attività prima che il relativo avanzamento nel corso dell'azione possa avvenire.
RecordActivityTaskHeartbeat

• Activity Task Schedule to Start (timeoutType: SCHEDULE_TO_START): questo timeout specifica
per quanto tempo Amazon SWF attende prima di scadere il timeout dell'attività se non sono
disponibili lavoratori per eseguire l'attività. Una volta scaduto, il task non verrà assegnato ad altri
lavoratori.

• Activity Task Schedule to Close (timeoutType: SCHEDULE_TO_CLOSE): questo timeout
specifica quanto tempo può impiegare l'attività dal momento in cui è pianificata al momento in cui
viene completata. Come procedura ottimale, questo valore non deve essere maggiore della somma
del timeout dell'attività e del schedule-to-start timeout dell'attività. start-to-close

Note

Ciascun tipo di timeout ha un valore predefinito, generalmente impostato su NONE (infinito). In
ogni caso, il tempo massimo per l'esecuzione delle attività è un anno.

In fase di registrazione del tipo di attività si impostano valori predefiniti, ma puoi sovrascriverli con
nuovi valori quando pianifichi il task di attività. Quando si verifica uno di questi timeout, Amazon SWF
aggiungerà un evento di ActivityTaskTimedOuttipo alla cronologia del flusso di lavoro. L'attributo del
valore timeoutType di questo evento specifica quale di questi timeout si è verificato. Per ciascuno
dei timeout, il valore del timeoutType è indicato tra parentesi. Gli attributi dell'evento includeranno
anche gli eventi che corrispondono a quando l'attività è stata pianificata (scheduledEventId)
e quando è stata avviata (). IDs startedEventId Oltre ad aggiungere l'evento, Amazon SWF
pianifica anche una nuova attività decisionale per avvisare chi decide che si è verificato il timeout.

Timeout nei task di attività Versione API 2021-04-28 55

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

AWS Flow Framework per Java Guida per gli sviluppatori

Comprensione di un task in AWS Flow Framework for Java
Argomenti

• Attività

• Ordine di esecuzione

• Esecuzione del flusso di lavoro

• Non determinismo

Attività

La primitiva sottostante utilizzata da AWS Flow Framework for Java per gestire l'esecuzione del
codice asincrono è la classe. Task Un oggetto di tipo Task rappresenta il lavoro che deve essere
eseguito in modo asincrono. Quando chiami un metodo asincrono, il framework crea un Task per
eseguire il codice in quel metodo e lo inserisce in un elenco per essere eseguito successivamente.
Analogamente, quando richiami Activity, viene creato un Task apposito. Dopo questa operazione
la chiamata del metodo ritorna, solitamente restituendo un Promise<T> come risultato futuro della
chiamata.

La classe Task è pubblica e può essere utilizzata direttamente. Ad esempio, possiamo riscrivere
l'esempio di Hello World per utilizzare un Task anziché un metodo asincrono.

@Override
public void startHelloWorld(){
 final Promise<String> greeting = client.getName();
 new Task(greeting) {
 @Override
 protected void doExecute() throws Throwable {
 client.printGreeting("Hello " + greeting.get() +"!");
 }
 };
}

Il framework chiama il metodo doExecute() quando tutti i Promise passati al costruttore di Task
sono pronti. Per maggiori dettagli sulla Task classe, consultate la documentazione. AWS SDK per
Java

Attività Versione API 2021-04-28 56

AWS Flow Framework per Java Guida per gli sviluppatori

Il framework include anche una classe chiamata Functor che rappresenta un Task che è anche un
Promise<T>. L'oggetto Functor è pronto quando Task è completato. Nel seguente esempio, un
Functor viene creato per ottenere il messaggio di saluto:

Promise<String> greeting = new Functor<String>() {
 @Override
 protected Promise<String> doExecute() throws Throwable {
 return client.getGreeting();
 }
};
client.printGreeting(greeting);

Ordine di esecuzione
I task possono essere eseguiti soltanto quando tutti i parametri Promise<T> digitati, passati al
metodo o all'attività asincroni corrispondenti, sono pronti. Un Task pronto per l'esecuzione viene
logicamente spostato su una coda pronta. In altre parole, è pianificato per l'esecuzione. La classe
di lavoro esegue l'attività richiamando il codice che hai scritto nel corpo del metodo asincrono o
pianificando un'attività in Amazon Simple Workflow Service (AWS) nel caso di un metodo di attività.

Man mano che i task vengono eseguiti e producono risultati, altri task sono pronti e l'esecuzione
del programma continua il suo ciclo. Il modo in cui il framework esegue i task è importante per
comprendere in che ordine viene eseguito il codice asincrono. Il codice che appare in sequenza
all'interno del tuo programma potrebbe non essere eseguito in quell'ordine.

Promise<String> name = getUserName();
printHelloName(name);
printHelloWorld();
System.out.println("Hello, Amazon!");

@Asynchronous
private Promise<String> getUserName(){
 return Promise.asPromise("Bob");
}
@Asynchronous
private void printHelloName(Promise<String> name){
 System.out.println("Hello, " + name.get() + "!");
}
@Asynchronous
private void printHelloWorld(){

Ordine di esecuzione Versione API 2021-04-28 57

AWS Flow Framework per Java Guida per gli sviluppatori

 System.out.println("Hello, World!");
}

Il codice nell'elenco sopra visualizzerà i seguenti dati:

Hello, Amazon!
Hello, World!
Hello, Bob

Questo non è il risultato che ti aspetti, ma può essere facilmente spiegato pensando al modo in cui
vengono eseguiti i task per i metodi asincroni:

1. La chiamata a getUserName crea Task. Chiamiamolo Task1. Perché getUserName non accetta
alcun parametro, Task1 viene immediatamente messo nella coda pronta.

2. Successivamente, la chiamata a printHelloName crea Task che deve aspettare il risultato di
getUserName. Chiamiamolo Task2. Poiché il valore richiesto non è ancora pronto, Task2 viene
inserito nella lista di attesa.

3. In seguito viene creato un task per printHelloWorld e aggiunto alla coda pronta. Chiamiamolo
Task3.

4. La println dichiarazione stampa quindi «Hello, Amazon!» alla console.

5. A questo punto, Task1 e Task3 sono inseriti nella coda pronta e Task2 nell'elenco di attesa.

6. Il lavoratore esegue Task1 e il risultato rende Task2 pronto. Task2 viene aggiunto alla coda
pronta dietro Task3.

7. Task3 e Task2 vengono poi eseguiti in quell'ordine.

L'esecuzione delle attività segue lo stesso schema. Quando chiami un metodo sul client di attività, ne
crea uno Task che, al momento dell'esecuzione, pianifica un'attività in Amazon SWF.

Il framework si basa su caratteristiche come la generazione del codice e i proxy dinamici per
immettere la logica che converte le chiamate di metodo in richiami di attività e in task asincroni nel tuo
programma.

Esecuzione del flusso di lavoro
L'esecuzione dell'implementazione del flusso di lavoro viene gestita dalla classe di lavoratore.
Quando chiami un metodo sul client di workflow, questo chiama Amazon SWF per creare un'istanza
di workflow. Le attività in Amazon SWF non devono essere confuse con le attività del framework.

Esecuzione del flusso di lavoro Versione API 2021-04-28 58

AWS Flow Framework per Java Guida per gli sviluppatori

Un'attività in Amazon SWF può essere un'attività o un'attività decisionale. L'esecuzione dei task di
attività è semplice. La classe activity worker riceve attività da Amazon SWF, richiama il metodo di
attività appropriato nell'implementazione e restituisce il risultato ad Amazon SWF.

L'esecuzione dei task di decisione è più complesso. L'addetto al flusso di lavoro riceve attività
decisionali da Amazon SWF. Un task di decisione è effettivamente una richiesta per sapere dalla
logica di flusso di lavoro quali sono i passaggi successivi. Il primo task di decisione viene generato
per un'istanza di flusso di lavoro quando viene iniziata sul client di flusso di lavoro. Dopo aver
ricevuto questo task di decisione, il framework inizia a eseguire il codice nel metodo di flusso di
lavoro annotato con @Execute. Questo metodo esegue la logica di coordinamento che pianifica
le attività. Quando lo stato dell'istanza del flusso di lavoro cambia, ad esempio quando un'attività
viene completata, vengono pianificate ulteriori attività decisionali. A questo punto, la logica di flusso
di lavoro può decidere di eseguire un'azione in base ai risultati dell'attività; ad esempio, potrebbe
decidere di pianificare un'altra attività.

Il framework nasconde tutti questi dettagli allo sviluppatore traducendo in modo perfetto i task di
decisione nella logica di flusso di lavoro. Dal punto di vista dello sviluppatore, il codice assomiglia a
un normale programma. Sotto le copertine, il framework lo associa alle chiamate ad Amazon SWF
e alle attività decisionali utilizzando la cronologia gestita da Amazon SWF. Quando giunge un task
di decisione, il framework riproduce l'esecuzione del programma inserendo i risultati delle attività
completate fino a quel momento. I metodi e le attività asincroni che stavano aspettando i risultati
vengono sbloccati e l'esecuzione del programma prosegue.

L'esecuzione del flusso di lavoro di elaborazione di immagini e la relativa cronologia vengono
mostrate nella seguente tabella.

Esecuzione del flusso di lavoro di anteprima

Esecuzione del programma di flusso di lavoro Cronologia gestita da Amazon SWF

Esecuzione iniziale

1. Invia loop

2. getImageUrls

3. downloadImage

4. createThumbnail (task nella coda di attesa)

5. uploadImage (task nella coda di attesa)

6. <prossima iterazione del loop>

1. Avvio dell'istanza di flusso di lavoro, id="1"

2. downloadImage pianificato

Esecuzione del flusso di lavoro Versione API 2021-04-28 59

AWS Flow Framework per Java Guida per gli sviluppatori

Esecuzione del programma di flusso di lavoro Cronologia gestita da Amazon SWF

Riproduci di nuovo

1. Invia loop

2. getImageUrls

3. percorso downloadImage image ="foo"

4. createThumbnail

5. uploadImage (task nella coda di attesa)

6. <prossima iterazione del loop>

1. Avvio dell'istanza di flusso di lavoro, id="1"

2. downloadImage pianificato

3. downloadImage completato, restituisce="foo"

4. createThumbnail pianificato

Riproduci di nuovo

1. Invia loop

2. getImageUrls

3. percorso downloadImage image ="foo"

4. percorso miniatura createThumbnail="bar"

5. uploadImage

6. <prossima iterazione del loop>

1. Avvio dell'istanza di flusso di lavoro, id="1"

2. downloadImage pianificato

3. downloadImage completato, restituisce="foo"

4. createThumbnail pianificato

5. createThumbnail completato, restituis
ce="bar"

6. uploadImage pianificato

Riproduci di nuovo

1. Invia loop

2. getImageUrls

3. percorso downloadImage image ="foo"

4. percorso miniatura createThumbnail="bar"

5. uploadImage

6. <prossima iterazione del loop>

1. Avvio dell'istanza di flusso di lavoro, id="1"

2. downloadImage pianificato

3. downloadImage completato, restituisce="foo"

4. createThumbnail pianificato

5. createThumbnail completato, restituis
ce="bar"

6. uploadImage pianificato

7. uploadImage completato

...

Esecuzione del flusso di lavoro Versione API 2021-04-28 60

AWS Flow Framework per Java Guida per gli sviluppatori

Quando processImage viene effettuata una chiamata a, il framework crea una nuova istanza
del flusso di lavoro in Amazon SWF. Rappresenta un record duraturo del momento in cui
viene iniziata un'istanza di flusso di lavoro. Il programma viene eseguito fino alla chiamata
all'downloadImageattività, che richiede ad Amazon SWF di pianificare un'attività. Il flusso di
lavoro viene eseguito ulteriormente e crea attività per le attività successive, che però non possono
essere eseguite fino al completamento dell'downloadImageattività; pertanto, questo episodio
di replay termina. Amazon SWF invia l'downloadImageattività per l'esecuzione e, una volta
completata, viene registrato nella cronologia insieme al risultato. Il flusso di lavoro è ora pronto
per andare avanti e Amazon SWF genera un'attività decisionale. Il framework riceve il task di
decisione e riproduce il flusso di lavoro inserendo il risultato dell'immagine scaricata registrato nella
cronologia. Questo sblocca l'attività e createThumbnail l'esecuzione del programma prosegue
ulteriormente pianificando l'createThumbnailattività in Amazon SWF. Lo stesso processo si ripete
per uploadImage. L'esecuzione del programma prosegue in questo modo fino a quando il flusso
di lavoro ha elaborato tutte le immagini e non ci sono più task in sospeso. Poiché nessuno stato
di esecuzione viene memorizzato localmente, ogni attività decisionale può essere potenzialmente
eseguita su una macchina diversa. Questa operazione ti permette di scrivere programmi che siano
tolleranti ai guasti e facilmente scalabili.

Non determinismo

Poiché il framework si basa sulla replay, è importante che il codice di orchestrazione (tutto il codice
del flusso di lavoro ad eccezione delle implementazioni delle attività) sia deterministico. Ad esempio,
il flusso di controllo del programma non deve dipendere da un numero casuale o dall'ora corrente.
Poiché queste cose cambieranno tra le chiamate, il replay potrebbe non seguire lo stesso percorso
attraverso la logica di orchestrazione. Ciò potrebbe portare a risultati o errori imprevisti. Il framework
offre un WorkflowClock che puoi utilizzare per individuare l'ora corrente in modo deterministico.
Per ulteriori informazioni, consulta la sezione su Contesto di esecuzione.

Note

Il cablaggio Spring non corretto degli oggetti di implementazione del flusso di lavoro può
condurre al non determinismo. I bean di implementazione del flusso di lavoro e i bean da
cui dipendono devono essere inclusi nell'ambito del flusso di lavoro (WorkflowScope). Ad
esempio, cablare un bean di implementazione del flusso di lavoro a un bean che mantiene
il proprio stato e si trova nel contesto globale porterà a un comportamento imprevisto. Per
ulteriori informazioni, consulta la sezione Integrazione di Spring.

Non determinismo Versione API 2021-04-28 61

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework per la guida alla programmazione
Java
Questa sezione fornisce dettagli su come utilizzare le funzionalità di AWS Flow Framework for Java
per implementare applicazioni di flusso di lavoro.

Argomenti

• Implementazione di applicazioni di workflow con AWS Flow Framework

• Contratti di flusso di lavoro e attività

• Registrazione dei tipi di flusso di lavoro e di attività

• Client di attività e flusso di lavoro

• Implementazione del flusso di lavoro

• Implementazione di attività

• AWS Lambda Attività di implementazione

• Esecuzione di programmi scritti con AWS Flow Framework for Java

• Contesto di esecuzione

• Esecuzioni del flusso di lavoro figlio

• Flussi di lavoro continui

• Impostazione della priorità delle attività in Amazon SWF

• DataConverters

• Passaggio di dati a metodi asincroni

• Testabilità e inserimento delle dipendenze

• Gestione errori

• Ripetere le attività non andate a buon fine

• Task Daemon

• AWS Flow Framework per Java Replay Behavior

Implementazione di applicazioni di workflow con AWS Flow
Framework

I passaggi tipici necessari per lo sviluppo di un flusso di lavoro con AWS Flow Framework sono:

Implementazione di applicazioni di flusso di lavoro Versione API 2021-04-28 62

AWS Flow Framework per Java Guida per gli sviluppatori

1. Definizione dei contratti di attività e flusso di lavoro. Analizza i requisiti della tua applicazione,
quindi determina le attività e la topologia di flusso di lavoro necessarie. Le attività gestiscono i
task di elaborazione richiesti mentre la topologia di flusso di lavoro definisce la logica di business
e la struttura di base del flusso di lavoro.

Ad esempio, è possibile che per un'applicazione di elaborazione di contenuti multimediali sia
necessario scaricare ed elaborare un file e quindi caricarlo in un bucket Amazon Simple Storage
Service (S3). Questa procedura potrebbe essere suddivisa in quattro task di attività:

1. Download del file da un server

2. Elaborazione del file (ad esempio, transcodificandolo in un formato multimediale differente)

3. Caricamento del file nel bucket S3

4. Pulizia con eliminazione dei file locali

Questo flusso di lavoro avrebbe un metodo del punto di ingresso e implementerebbe una
topologia lineare semplice che esegue le attività in sequenza, come l'HelloWorldWorkflow
Applicazione.

2. Implementazione delle interfacce di attività e flusso di lavoro. I contratti di flusso di lavoro e
attività sono definiti dalle interfacce Java, rendendo le relative convenzioni di chiamata previsibili
con SWF e fornendo flessibilità nell'implementazione della logica di flusso di lavoro e dei task di
attività. Le differenti parti del programma possono agire da consumer dei dati delle altre parti, ma
non devono essere necessariamente a conoscenza dei dettagli di implementazione delle altre
parti.

Ad esempio, puoi definire un'interfaccia FileProcessingWorkflow e fornire differenti
implementazioni di flusso di lavoro per codifica di video, compressione, anteprime e così via.
Ognuno di questi flussi di lavoro può avere differenti flussi di controllo nonché chiamare differenti
metodi di attività e non è necessario che lo starter di flusso di lavoro ne sia a conoscenza. Grazie
alle interfacce, risulta semplice anche testare i flussi di lavoro utilizzando implementazioni fittizie
che possono essere sostituite in seguito con codice funzionale.

3. Generazione di client di attività e flusso di lavoro. AWS Flow Framework Elimina la necessità di
implementare i dettagli relativi alla gestione dell'esecuzione asincrona, all'invio di richieste HTTP,
allo smistamento dei dati e così via. In effetti, lo starter di flusso di lavoro esegue un'istanza di
flusso di lavoro chiamando un metodo sul client di flusso di lavoro e l'implementazione di flusso
di lavoro esegue le attività chiamando metodi sul client di attività. Il framework gestisce i dettagli
di queste interazioni in background.

Implementazione di applicazioni di flusso di lavoro Versione API 2021-04-28 63

AWS Flow Framework per Java Guida per gli sviluppatori

Se utilizzi Eclipse e hai configurato il tuo progetto, ad esempio, il processore di AWS Flow
Framework annotazioni utilizza le definizioni dell'interfaccia per generare automaticamente client
di flusso di lavoro e attività che espongono lo stesso set di metodi dell'interfaccia corrispondente.
Configurazione di AWS Flow Framework per Java

4. Implementazione delle applicazioni host di attività e flusso di lavoro. Le implementazioni
del flusso di lavoro e delle attività devono essere incorporate in applicazioni host che
eseguono il polling di Amazon SWF per le attività, gestiscono tutti i dati e utilizzano i metodi di
implementazione appropriati. AWS Flow Framework for Java include ActivityWorkerclassi che
semplificano WorkflowWorkere semplificano l'implementazione delle applicazioni host.

5. Metti alla prova il tuo flusso di lavoro. AWS Flow Framework per Java offre un' JUnit integrazione
che puoi utilizzare per testare i flussi di lavoro in linea e localmente.

6. Distribuzione dei lavoratori. Puoi distribuire i tuoi lavoratori in modo appropriato, ad esempio su
istanze EC2 Amazon o sui computer del tuo data center. Una volta implementate e avviate, i
lavoratori iniziano a interrogare Amazon SWF per le attività e le gestiscono secondo necessità.

7. Avvio delle esecuzioni. Un'applicazione avvia un'istanza di flusso di lavoro utilizzando il client di
flusso di lavoro per chiamare il punto di ingresso del flusso di lavoro. Puoi anche avviare flussi
di lavoro utilizzando la console Amazon SWF. Indipendentemente da come avvii un'istanza di
flusso di lavoro, puoi utilizzare la console Amazon SWF per monitorare l'istanza del flusso di
lavoro in esecuzione ed esaminare la cronologia del flusso di lavoro per le istanze in esecuzione,
completate e non riuscite.

AWS SDK per JavaInclude un set AWS Flow Framework di esempi Java che puoi sfogliare ed
eseguire seguendo le istruzioni nel file readme.html nella directory principale. È inoltre disponibile
una serie di ricette, semplici applicazioni, che mostrano come gestire una serie di problemi di
programmazione specifici, disponibili su AWS Flow Framework Recipes.

Contratti di flusso di lavoro e attività

Le interfacce Java sono utilizzate per dichiarare le firme dei flussi di lavoro e delle attività.
L'interfaccia forma il contratto tra l'implementazione di flusso di lavoro (o attività) e il client del
flusso di lavoro (o attività). Ad esempio, un tipo di flusso di lavoro MyWorkflow è definito usando
un'interfaccia che è annotata con l'annotazione @Workflow:

@Workflow
@WorkflowRegistrationOptions(

Contratti di flusso di lavoro e attività Versione API 2021-04-28 64

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
https://aws.amazon.com/sdkforjava/
https://aws.amazon.com/code/2535278400103493

AWS Flow Framework per Java Guida per gli sviluppatori

 defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface MyWorkflow
{
 @Execute(version = "1.0")
 void startMyWF(int a, String b);

 @Signal
 void signal1(int a, int b, String c);

 @GetState
 MyWorkflowState getState();
}

Il contratto non dispone di impostazioni specifiche per l'implementazione. Questo utilizzo dei contratti
neutrali rispetto alle implementazioni permette ai client di essere dissociati dall'implementazione
e quindi offre la flessibilità per modificare i dettagli dell'implementazione senza spezzare il client.
Viceversa, potresti cambiare il client senza dover modificare il flusso di lavoro o l'attività. Ad
esempio, il client può essere modificato per chiamare un'attività in modo asincrono utilizzando le
promesse (Promise<T>) senza richiedere una modifica all'implementazione di attività. Allo stesso
modo, l'implementazione dell'attività può essere modificata in modo da essere completata in modo
asincrono, ad esempio da una persona che invia un'e-mail, senza richiedere la modifica dei client
dell'attività.

Nell'esempio riportato sopra, l'interfaccia di flusso di lavoro MyWorkflow contiene un metodo,
startMyWF, per avviare una nuova esecuzione. Questo metodo è annotato con l'annotazione
@Execute e deve avere un tipo restituito void o Promise<>. In un'interfaccia di flusso di lavoro
data, può al massimo essere annotato un metodo con questa annotazione. Questo metodo è il punto
di ingresso della logica di flusso di lavoro e il framework chiama questo metodo per eseguire la logica
di flusso di lavoro quando viene ricevuto un task di decisione.

L'interfaccia di flusso di lavoro definisce inoltre i segnali che possono essere inviati al flusso di lavoro.
Il metodo di segnale viene invocato quando un segnale con un nome corrispondente viene ricevuto
dall'esecuzione del flusso di lavoro. Ad esempio, l'interfaccia MyWorkflow dichiara un metodo di
segnale signal1, annotato con l'annotazione @Signal.

L'annotazione @Signal è richiesta sui metodi di segnale. Il tipo restituito del metodo di segnale deve
essere void. Un'interfaccia di flusso di lavoro potrebbe avere zero o più metodi di segnali definiti
al proprio interno. Potresti dichiarare un'interfaccia di flusso di lavoro senza un metodo @Execute

Contratti di flusso di lavoro e attività Versione API 2021-04-28 65

AWS Flow Framework per Java Guida per gli sviluppatori

e alcuni metodi @Signal per generare client che non possono avviare la propria esecuzione ma
inviare segnali per effettuare le esecuzioni.

Metodi annotati con le annotazioni @Execute e @Signal possono avere numeri di parametri di
ogni tipo eccetto Promise<T> o le sue derivate. Questa funzionalità ti permette di passare input
fortemente tipizzati a un'esecuzione di flusso di lavoro dall'avvio e durante la sua esecuzione. Il tipo
restituito del metodo @Execute deve essere void o Promise<>.

Inoltre, puoi anche dichiarare un metodo nell'interfaccia di flusso di lavoro per segnalare l'ultimo
stato dell'esecuzione del flusso di lavoro, ad esempio il metodo getState nel precedente esempio.
Questo stato non è l'intero stato di applicazione del flusso di lavoro. Lo scopo di questa funzionalità è
permetterti di archiviare fino a 32 KB di data per indicare l'ultimo stato dell'esecuzione. Ad esempio,
in un flusso di lavoro di elaborazione dell'ordine, potresti archiviare una stringa che indica che l'ordine
è stato ricevuto, elaborato o annullato. Questo metodo viene chiamato dal framework ogni volta che
un task di decisione viene completato per ottenere l'ultimo stato. Lo stato è memorizzato in Amazon
Simple Workflow Service (Amazon SWF) e può essere recuperato utilizzando il client esterno
generato. Questo ti permette di verificare l'ultimo stato di esecuzione del flusso di lavoro. I metodi
annotati con @GetState non devono acquisire argomenti e non devono avere un tipo restituito
void. Da questo metodo puoi restituire qualunque tipo che si adatti alle tue esigenze. Nell'esempio
citato prima, un oggetto di MyWorkflowState (vedi definizione riportata sotto) viene restituito dal
metodo utilizzato per archiviare uno stato della stringa e una percentuale numerica completati. Il
metodo dovrebbe eseguire l'accesso di sola lettura dell'oggetto dell'implementazione del flusso di
lavoro e viene richiamato in modo sincronico, il che non permette l'utilizzo di operazioni asincrone
come i metodi di chiamata con @Asynchronous. Può essere annotato al massimo un metodo in
un'interfaccia di flusso di lavoro con l'annotazione @GetState.

public class MyWorkflowState {
 public String status;
 public int percentComplete;
}

Analogamente, un set di iniziative viene definito usando un'interfaccia che è annotata con
l'annotazione @Activities. Ogni metodo nell'interfaccia corrisponde a un'attività, ad esempio:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface MyActivities {

Contratti di flusso di lavoro e attività Versione API 2021-04-28 66

AWS Flow Framework per Java Guida per gli sviluppatori

 // Overrides values from annotation found on the interface
 @ActivityRegistrationOptions(description = "This is a sample activity",
 defaultTaskScheduleToStartTimeoutSeconds = 100,
 defaultTaskStartToCloseTimeoutSeconds = 60)
 int activity1();

 void activity2(int a);
}

L'interfaccia ti permette di raggruppare un set di iniziative relazionate. Puoi definire qualunque
numero di attività all'interno dell'interfaccia delle attività e puoi definire il numero di interfacce delle
attività che desideri. Analogamente ai metodi @Execute e @Signal, i metodi di attività possono
acquisire qualunque numero di argomenti di qualunque tipo tranne Promise<T> o le sue derivate. Il
tipo restituito di un'attività non deve essere Promise<T> o le sue derivate.

Registrazione dei tipi di flusso di lavoro e di attività

Amazon SWF richiede la registrazione dei tipi di attività e flussi di lavoro prima di poterli utilizzare.
Il framework registra automaticamente i flussi di lavoro e le attività nelle implementazioni che
aggiungi al lavoratore. Il framework cerca i tipi che implementano flussi di lavoro e attività e li
registra con Amazon SWF. Per impostazione predefinita, il framework utilizza le definizioni di
interfaccia per dedurre le opzioni di registrazione per i tipi di flusso di lavoro e attività. Tutte le
interfacce di flusso di lavoro devono avere l'annotazione @WorkflowRegistrationOptions o
@SkipRegistration. Il lavoratore di flusso di lavoro registra tutti i tipi di flusso di lavoro con cui
è configurato che hanno l'annotazione @WorkflowRegistrationOptions. Inoltre, ogni metodo
di attività deve avere l'annotazione @ActivityRegistrationOptions o @SkipRegistration
oppure una di queste annotazioni deve essere presente nell'interfaccia @Activities. Il lavoratore
di attività registra tutti i tipi di attività con cui è configurato e a cui si applica un'annotazione
@ActivityRegistrationOptions. La registrazione è eseguita automaticamente all'avvio di uno
dei lavoratori. I tipi di flusso di lavoro e attività che hanno l'annotazione @SkipRegistration non
sono registrati. Le annotazioni @ActivityRegistrationOptions e @SkipRegistration hanno
la semantica di override e la più specifica viene applicata a un tipo di attività.

Tieni presente che Amazon SWF non consente di registrare nuovamente o modificare il tipo una volta
registrato. Il framework tenterà di registrare tutti i tipi, ma se il tipo è già registrato, la registrazione
non verrà ripetuta e non verrà segnalato alcun errore.

Registrazione dei tipi di flusso di lavoro e di attività Versione API 2021-04-28 67

AWS Flow Framework per Java Guida per gli sviluppatori

Se hai la necessità di modificare le impostazioni registrate, devi registrate una nuova versione del
tipo. Puoi anche eseguire l'override delle impostazioni registrate all'avvio di una nuova esecuzione o
quando chiami un'attività che utilizza i client generati.

La registrazione richiede un nome di tipo e altre opzioni di registrazione. L'implementazione di default
le determina come descritto di seguito.

Nome e versione del tipo di flusso di lavoro

Il framework determina il nome del tipo di flusso di lavoro a partire dall'interfaccia di flusso di
lavoro. La forma del nome del tipo di flusso di lavoro predefinito è {prefix} {name}. Il {prefix} è
impostato sul nome dell'@Workflowinterfaccia seguito da un '.' e il {name} è impostato sul nome
del @Execute metodo. Il nome di default del tipo di flusso di lavoro nell'esempio precedente è
MyWorkflow.startMyWF. Puoi eseguire l'override del nome di default utilizzando il parametro
name del metodo @Execute. Il nome di default del tipo di flusso di lavoro nell'esempio è
startMyWF. Il nome non deve essere una stringa vuota. Nota che quando esegui l'override del nome
utilizzando @Execute, il framework non aggiunge automaticamente un prefisso davanti al nome. Sei
libero di usare il tuo schema di denominazione.

La versione del flusso di lavoro viene specificata utilizzando il parametro version dell'annotazione
@Execute. Non esiste un valore di default per version e quindi deve essere specificato in modo
esplicito; version è una stringa in formato libero e sei libero di utilizzare uno schema di controllo
delle versioni personalizzato.

Nome del segnale

Il nome del segnale può essere specificato utilizzando il parametro name dell'annotazione @Signal.
Se non è specificato, per impostazione predefinita viene utilizzato il nome del metodo del segnale.

Nome e versione del tipo di attività

Il framework determina il nome del tipo di attività a partire dall'interfaccia di attività. La forma
del nome del tipo di attività predefinito è {prefix} {name}. Il {prefix} è impostato sul nome
dell'@Activitiesinterfaccia seguito da un '.' e il {name} è impostato sul nome del metodo. Il valore
predefinito {prefix} può essere sovrascritto nell'@Activitiesannotazione sull'interfaccia delle
attività. Puoi anche specificare il nome del tipo di attività utilizzando l'annotazione @Activity nel
metodo di attività. Nota che quando esegui l'ovveride del nome utilizzando @Activity, il framework
non aggiungerà automaticamente un prefisso davanti al nome. Sei libero di utilizzare il tuo schema di
denominazione.

Nome e versione del tipo di flusso di lavoro Versione API 2021-04-28 68

AWS Flow Framework per Java Guida per gli sviluppatori

La versione dell'attività viene specificata utilizzando il parametro version dell'annotazione
@Activities. Questa versione è utilizzata come valore di default per tutte le attività definite
nell'interfaccia ed è possibile eseguire l'override per una singola attività utilizzando l'annotazione
@Activity.

Elenco di task predefinito

L'elenco di task di default può essere configurato utilizzando le annotazioni
@WorkflowRegistrationOptions e @ActivityRegistrationOptions e
impostando il parametro defaultTaskList. Per impostazione predefinita, è impostato su
USE_WORKER_TASK_LIST. Questo è un valore speciale che indica al framework di utilizzare
l'elenco di task configurato sull'oggetto lavoratore utilizzato per registrare il tipo di attività o di
flusso di lavoro. Puoi anche scegliere di non registrare un elenco di task di default impostando
NO_DEFAULT_TASK_LIST, nel caso tu voglia che l'elenco di task sia specificato al runtime.
Se non è stato registrato alcun elenco di task di default, devi specificarlo all'avvio del flusso di
lavoro o quando chiami il metodo di attività utilizzando i parametri StartWorkflowOptions e
ActivitySchedulingOptions sull'overload del client generato per i rispettivi metodi.

Altre opzioni di registrazione

Tutte le opzioni di registrazione del flusso di lavoro e del tipo di attività consentite dall'API Amazon
SWF possono essere specificate tramite il framework.

Per un elenco completo delle opzioni di registrazione di flusso di lavoro, consulta quanto segue:

• @Flusso di lavoro

• @Execute

• @WorkflowRegistrationOptions

• @Signal

Per un elenco completo delle opzioni di registrazione di attività, consulta quanto segue:

• @Activity

• @Activities

• @ActivityRegistrationOptions

Elenco di task predefinito Versione API 2021-04-28 69

AWS Flow Framework per Java Guida per gli sviluppatori

Se desideri avere un controllo completo sulla registrazione dei tipi, consulta Estensibilità dei
lavoratori.

Client di attività e flusso di lavoro
Client di flusso di lavoro e attività generati dal framework in base alle interfacce @Workflow
e @Activities. Vengono generate interfacce del client separate che contengono metodi e
impostazioni che si riferiscono solo al client. Se stai sviluppando utilizzando Eclipse, questa
operazione viene eseguita dal plug-in Amazon SWF Eclipse ogni volta che salvi il file contenente
l'interfaccia appropriata. Il codice generato viene posizionato nella directory di origine generata nel
progetto all'interno dello stesso pacchetto dell'interfaccia.

Note

Il nome predefinito della directory utilizzato da Eclipse è .apt_generated. Eclipse non mostra
le directory nome che inizia con un '.' in Package Explorer. Utilizza un nome diverso della
directory se desideri visualizzare i file generati all'interno di Project Explorer. In Eclipse, fai
clic sul tasto destro su Package Explorer e poi scegli Properties (Proprietà), Java Compiler
(Compilatore Java), Annotation processing (Elaborazione delle annotazioni) e modifica le
impostazioni Generate source directory (Genera directory di origine).

Client di flusso di lavoro

Gli artefatti generati per il flusso di lavoro contengono tre interfacce lato client e le classi che le
implementano. I client generati includono:

• Un client asincrono che deve essere utilizzato dall'interno dell'implementazione del flusso di lavoro
che offre metodi asincroni per avviare le esecuzioni del flusso di lavoro e inviare segnali

• Un client esterno che può essere utilizzato per avviare le esecuzioni, inviare segnali e recuperare lo
stato del flusso di lavoro dall'esterno dell'ambito dell'implementazione del flusso di lavoro

• Un client autogenerato che può essere utilizzato per creare flussi di lavoro continui

Ad esempio, le interfacce del client generato per l'interfaccia di esempio MyWorkflow sono:

//Client for use from within a workflow
public interface MyWorkflowClient extends WorkflowClient
{

Client di attività e flusso di lavoro Versione API 2021-04-28 70

AWS Flow Framework per Java Guida per gli sviluppatori

 Promise<Void> startMyWF(
 int a, String b);

 Promise<Void> startMyWF(
 int a, String b,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);

 Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 void signal1(
 int a, int b, String c);
}

//External client for use outside workflows
public interface MyWorkflowClientExternal extends WorkflowClientExternal
{
 void startMyWF(
 int a, String b);

 void startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride);

 void signal1(
 int a, int b, String c);

Client di flusso di lavoro Versione API 2021-04-28 71

AWS Flow Framework per Java Guida per gli sviluppatori

 MyWorkflowState getState();
}

//self client for creating continuous workflows
public interface MyWorkflowSelfClient extends WorkflowSelfClient
{
 void startMyWF(
 int a, String b);

 void startMyWF(
 int a, String b,
 Promise<?>... waitFor);

 void startMyWF(
 int a, String b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>... waitFor);

 void startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionsOverride,
 Promise<?>... waitFor);

Le interfacce hanno effettuato l'overloading dei metodi che corrispondono a ciascun metodo
nell'interfaccia @Workflow che hai dichiarato.

Il client esterno riflette i metodi sull'interfaccia @Workflow con un overload aggiuntivo del metodo
@Execute che accetta StartWorkflowOptions. Puoi usare l'overload per passare opzioni
aggiuntive quando avvii una nuova esecuzione del flusso di lavoro. Queste opzioni ti permettono di
sovrascrivere l'elenco di task predefinito, le impostazioni di timeout e i tag associati all'esecuzione del
flusso di lavoro.

Client di flusso di lavoro Versione API 2021-04-28 72

AWS Flow Framework per Java Guida per gli sviluppatori

Invece, il client asincrono dispone di metodi che ti consentono l'invocazione asincrona del metodo
@Execute. I seguenti overload del metodo vengono generati nell'interfaccia del client per il metodo
@Execute nell'interfaccia del flusso di lavoro:

1. Un overload che accetta gli argomenti originali "così come sono". Il tipo restituito dell'overload
sarà Promise<Void> se il metodo originale ha restituito void; altrimenti sarà Promise<> come
dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMyWF(int a, String b);

Metodo generato:

Promise<Void> startMyWF(int a, String b);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili e
non devono essere attesi.

2. Un overload che accetta gli argomenti originali "così come sono" e argomenti variabili aggiuntivi
del tipo Promise<?>. Il tipo restituito dell'overload sarà Promise<Void> se il metodo originale ha
restituito void; altrimenti sarà Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMyWF(int a, String b);

Metodo generato:

Promise<void> startMyWF(int a, String b, Promise<?>...waitFor);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili
e non devono essere attesi, ma desideri attendere che altre promesse siano pronte. L'argomento
variabile può essere usato per passare gli oggetti Promise<?> che non sono stati dichiarati come
argomenti, ma desideri attendere prima di eseguire la chiamata.

3. Un overload che accetta gli argomenti originali "così come sono", un argomento aggiuntivo del tipo
StartWorkflowOptions e argomenti variabili aggiuntivi del tipo Promise<?>. Il tipo restituito

Client di flusso di lavoro Versione API 2021-04-28 73

AWS Flow Framework per Java Guida per gli sviluppatori

dell'overload sarà Promise<Void> se il metodo originale ha restituito void; altrimenti sarà
Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMyWF(int a, String b);

Metodo generato:

Promise<void> startMyWF(
 int a,
 String b,
 StartWorkflowOptions optionOverrides,
 Promise<?>...waitFor);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili
e non devono essere attesi, quando desideri sovrascrivere le impostazioni predefinite usate per
avviare l'esecuzione del flusso di lavoro o quando desideri attendere che altre promesse siano
pronte. L'argomento variabile può essere usato per passare gli oggetti Promise<?> che non sono
stati dichiarati come argomenti, ma desideri attendere prima di eseguire la chiamata.

4. Un overload in cui ogni argomento nel metodo originale viene sostituito con un wrapper
Promise<>. Il tipo restituito dell'overload sarà Promise<Void> se il metodo originale ha restituito
void; altrimenti sarà Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMyWF(int a, String b);

Metodo generato:

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b);

Questo overload deve essere usato quando gli argomenti da passare all'esecuzione del flusso di
lavoro devono essere valutati in modo asincrono. Non verrà eseguita una chiamata all'overload del
metodo fino a quando tutti gli argomenti passati non diventano pronti.

Client di flusso di lavoro Versione API 2021-04-28 74

AWS Flow Framework per Java Guida per gli sviluppatori

Se alcuni degli argomenti sono già pronti, allora puoi convertirli in un oggetto Promise che è già
pronto attraverso il metodo Promise.asPromise(value). Per esempio:

Promise<Integer> a = getA();
String b = getB();
startMyWF(a, Promise.asPromise(b));

5. Un overload in cui ogni argomento nel metodo originale viene sostituito con un wrapper
Promise<>. L'overload dispone anche di argomenti variabili aggiuntivi del tipo Promise<?>.
Il tipo restituito dell'overload sarà Promise<Void> se il metodo originale ha restituito void;
altrimenti sarà Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMyWF(int a, String b);

Metodo generato:

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 Promise<?>...waitFor);

Questo overload deve essere usato quando gli argomenti da passare all'esecuzione del flusso di
lavoro devono essere valutati in modo asincrono e desideri attendere che altre promesse siano
pronte. Non verrà eseguita una chiamata all'overload del metodo fino a quando tutti gli argomenti
passati non diventano pronti.

6. Un overload in cui ogni argomento nel metodo originale viene sostituito con un
wrapper Promise<?>. L'overload dispone anche di un argomento aggiuntivo del tipo
StartWorkflowOptions e di argomenti variabili del tipo Promise<?>. Il tipo restituito
dell'overload sarà Promise<Void> se il metodo originale ha restituito void; altrimenti sarà
Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMyWF(int a, String b);

Metodo generato:

Client di flusso di lavoro Versione API 2021-04-28 75

AWS Flow Framework per Java Guida per gli sviluppatori

Promise<Void> startMyWF(
 Promise<Integer> a,
 Promise<String> b,
 StartWorkflowOptions optionOverrides,
 Promise<?>...waitFor);

Utilizza questo overload quando gli argomenti da passare all'esecuzione del flusso di lavoro
verranno valutati in modo asincrono e desideri sovrascrivere le impostazioni predefinite utilizzate
per avviare l'esecuzione del flusso di lavoro. Non verrà eseguita una chiamata all'overload del
metodo fino a quando tutti gli argomenti passati non diventano pronti.

Viene inoltre generato un metodo corrispondente a ciascun segnale nell'interfaccia del flusso di
lavoro, ad esempio:

Metodo originale:

void signal1(int a, int b, String c);

Metodo generato:

void signal1(int a, int b, String c);

Il client asincrono non contiene un metodo che corrisponde al metodo annotato con @GetState
nell'interfaccia originale. Poiché il recupero dello stato richiede una chiamata al servizio Web, non è
adatto all'uso all'interno di un flusso di lavoro. Quindi, viene fornito soltanto attraverso il client esterno.

Il client autogenerato deve essere utilizzato dall'interno di un flusso di lavoro per avviare una nuova
esecuzione dopo il completamento di quella attuale. I metodi su questo client sono simili a quelli sul
client asincrono, ma restituiscono void. Questo client non dispone di metodi che corrispondono ai
metodi annotati con @Signal e @GetState. Per ulteriori dettagli, consulta Flussi di lavoro continui.

I client generati derivano da interfacce di base: WorkflowClient e WorkflowClientExternal,
rispettivamente, che forniscono metodi che puoi utilizzare per annullare o terminare l'esecuzione del
flusso di lavoro. Per ulteriori dettagli su queste interfacce, consulta la documentazione AWS SDK per
Java .

Client di flusso di lavoro Versione API 2021-04-28 76

AWS Flow Framework per Java Guida per gli sviluppatori

I client generati ti permettono di interagire con le esecuzioni del flusso di lavoro in modo fortemente
tipizzato. Una volta creata, un'istanza di un client generato è legata a un'esecuzione del flusso di
lavoro specifica e può essere utilizzata soltanto per quell'esecuzione. Inoltre, il framework fornisce
client dinamici che non sono specifici per un tipo o un'esecuzione del flusso di lavoro. I client generati
si basano su questo client. Puoi anche usare direttamente questi client. Consulta la sezione su Client
dinamici.

Il framework genera inoltre factory per creare client fortemente tipizzati. Le factoy del client generato
per l'interfaccia di esempio MyWorkflow sono:

//Factory for clients to be used from within a workflow
public interface MyWorkflowClientFactory
 extends WorkflowClientFactory<MyWorkflowClient>
{
}

//Factory for clients to be used outside the scope of a workflow
public interface MyWorkflowClientExternalFactory
{
 GenericWorkflowClientExternal getGenericClient();
 void setGenericClient(GenericWorkflowClientExternal genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);
 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 MyWorkflowClientExternal getClient();
 MyWorkflowClientExternal getClient(String workflowId);
 MyWorkflowClientExternal getClient(WorkflowExecution workflowExecution);
 MyWorkflowClientExternal getClient(
 WorkflowExecution workflowExecution,
 GenericWorkflowClientExternal genericClient,
 DataConverter dataConverter,
 StartWorkflowOptions options);
}

L'interfaccia di base WorkflowClientFactory è:

public interface WorkflowClientFactory<T> {
 GenericWorkflowClient getGenericClient();
 void setGenericClient(GenericWorkflowClient genericClient);
 DataConverter getDataConverter();
 void setDataConverter(DataConverter dataConverter);

Client di flusso di lavoro Versione API 2021-04-28 77

AWS Flow Framework per Java Guida per gli sviluppatori

 StartWorkflowOptions getStartWorkflowOptions();
 void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
 T getClient();
 T getClient(String workflowId);
 T getClient(WorkflowExecution execution);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options);
 T getClient(WorkflowExecution execution,
 StartWorkflowOptions options,
 DataConverter dataConverter);
}

Devi utilizzare queste factory per creare istanze del client. La factory ti permette di configurare il client
generico (il client generico deve essere utilizzato per eseguire l'implementazione personalizzata
del client) e il DataConverter utilizzato dal client per effettuare il marshalling dei dati, oltre alle
opzioni utilizzate per avviare l'esecuzione del flusso di lavoro. Per ulteriori dettagli, consulta le
sezioni DataConverters e Esecuzioni del flusso di lavoro figlio. StartWorkflowOptionsContiene
impostazioni che è possibile utilizzare per ignorare le impostazioni predefinite, ad esempio i
timeout, specificate al momento della registrazione. Per maggiori dettagli sulla classe, consultate la
documentazione. StartWorkflowOptions AWS SDK per Java

Il client esterno può essere utilizzato per avviare le esecuzioni del flusso di lavoro dall'esterno
dell'ambito di un flusso di lavoro mentre il client asincrono può essere utilizzato per avviare
un'esecuzione del flusso di lavoro dal codice all'interno di un flusso di lavoro. Per avviare
un'esecuzione, devi semplicemente usare il client generato per chiamare il metodo che corrisponde al
metodo annotato con @Execute nell'interfaccia del flusso di lavoro.

Il framework genera inoltre classi di implementazioni per le interfacce del client. Questi client creano e
inviano richieste ad Amazon SWF per eseguire l'azione appropriata. La versione client del @Execute
metodo avvia un'esecuzione di un nuovo flusso di lavoro o crea un'esecuzione del flusso di lavoro
secondario utilizzando Amazon SWF APIs. Analogamente, la versione client del @Signal metodo
utilizza Amazon SWF APIs per inviare un segnale.

Note

Il client di workflow esterno deve essere configurato con il client e il dominio Amazon
SWF. Puoi utilizzare il costruttore client factory che li accetta come parametri o passare
un'implementazione client generica già configurata con il client e il dominio Amazon SWF.

Client di flusso di lavoro Versione API 2021-04-28 78

AWS Flow Framework per Java Guida per gli sviluppatori

Il framework percorre la gerarchia del tipo dell'interfaccia del flusso di lavoro e inoltre genera
interfacce del client per le interfacce del flusso di lavoro padre e deriva da esse.

Client di attività

Analogamente al client del flusso di lavoro, viene generato un client per ogni interfaccia annotata
con @Activities. Gli artefatti generati includono un'interfaccia lato client e una classe client.
L'interfaccia generata per l'interfaccia di esempio @Activities sopra indicata (MyActivities) è
la seguente:

public interface MyActivitiesClient extends ActivitiesClient
{
 Promise<Integer> activity1();
 Promise<Integer> activity1(Promise<?>... waitFor);
 Promise<Integer> activity1(ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(int a);
 Promise<Void> activity2(int a,
 Promise<?>... waitFor);
 Promise<Void> activity2(int a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a);
 Promise<Void> activity2(Promise<Integer> a,
 Promise<?>... waitFor);
 Promise<Void> activity2(Promise<Integer> a,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);
}

L'interfaccia contiene un set di metodi su cui è stato effettuato l'overloading che corrispondono a
ciascun metodo di attività nell'interfaccia @Activities. Tali overload sono forniti per comodità
e permettono di chiamare le attività in modo asincrono. I seguenti overload del metodo vengono
generati nell'interfaccia del client per ogni metodo di attività nell'interfaccia @Activities:

1. Un overload che accetta gli argomenti originali "così come sono". Il tipo restituito per questo
overload è Promise<T>, dove T è il tipo restituito del metodo originale. Per esempio:

Metodo originale:

Client di attività Versione API 2021-04-28 79

AWS Flow Framework per Java Guida per gli sviluppatori

void activity2(int foo);

Metodo generato:

Promise<Void> activity2(int foo);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili e
non devono essere attesi.

2. Un overload che accetta gli argomenti originali "così come sono", un argomento del tipo
ActivitySchedulingOptions e argomenti variabili aggiuntivi del tipo Promise<?>. Il tipo
restituito per questo overload è Promise<T>, dove T è il tipo restituito del metodo originale. Per
esempio:

Metodo originale:

void activity2(int foo);

Metodo generato:

Promise<Void> activity2(
 int foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>... waitFor);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili
e non devono essere attesi, quando desideri sovrascrivere le impostazioni predefinite o quando
desideri attendere che un'altra Promise sia pronta. Gli argomenti variabili possono essere usati
per passare gli oggetti Promise<?> aggiuntivi che non sono stati dichiarati come argomenti, ma
desideri attendere prima di eseguire la chiamata.

3. Un overload in cui ogni argomento nel metodo originale viene sostituito con un wrapper
Promise<>. Il tipo restituito per questo overload è Promise<T>, dove T è il tipo restituito del
metodo originale. Per esempio:

Metodo originale:

void activity2(int foo);

Client di attività Versione API 2021-04-28 80

AWS Flow Framework per Java Guida per gli sviluppatori

Metodo generato:

Promise<Void> activity2(Promise<Integer> foo);

Questo overload deve essere usato quando gli argomenti da passare all'attività verranno valutati
in modo asincrono. Non verrà eseguita una chiamata all'overload del metodo fino a quando tutti gli
argomenti passati non diventano pronti.

4. Un overload in cui ogni argomento nel metodo originale viene sostituito con un
wrapper Promise<>. L'overload dispone anche di un argomento aggiuntivo del tipo
ActivitySchedulingOptions e di argomenti variabili del tipo Promise<?>. Il tipo restituito per
questo overload è Promise<T>, dove T è il tipo restituito del metodo originale. Per esempio:

Metodo originale:

void activity2(int foo);

Metodo generato:

Promise<Void> activity2(
 Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

Questo overload deve essere usato quando tutti gli argomenti da passare all'attività verranno
valutati in modo asincrono, quando desideri sovrascrivere le impostazioni predefinite registrate con
il tipo o quando desideri attendere che un altro oggetto Promise sia pronto. Non verrà eseguita
una chiamata all'overload del metodo fino a quando tutti gli argomenti passati non diventano pronti.
La classe del client generata implementa questa interfaccia. L'implementazione di ogni metodo di
interfaccia crea e invia una richiesta ad Amazon SWF per pianificare un'attività del tipo appropriato
utilizzando Amazon SWF. APIs

5. Un overload che accetta gli argomenti originali "così come sono" e argomenti variabili aggiuntivi
del tipo Promise<?>. Il tipo restituito per questo overload è Promise<T>, dove T è il tipo
restituito del metodo originale. Per esempio:

Metodo originale:

Client di attività Versione API 2021-04-28 81

AWS Flow Framework per Java Guida per gli sviluppatori

void activity2(int foo);

Metodo generato:

Promise< Void > activity2(int foo,
 Promise<?>...waitFor);

Questo overload deve essere usato quando tutti gli argomenti dell'attività sono disponibili e non
devono essere attesi, ma desideri attendere che altri oggetti Promise siano pronti.

6. Un overload in cui ogni argomento del metodo originale viene sostituito con un wrapper Promise
e argomenti variabili aggiuntivi del tipo Promise<?>. Il tipo restituito per questo overload è
Promise<T>, dove T è il tipo restituito del metodo originale. Per esempio:

Metodo originale:

void activity2(int foo);

Metodo generato:

Promise<Void> activity2(
 Promise<Integer> foo,
 Promise<?>... waitFor);

Questo overload deve essere usato quando tutti gli argomenti dell'attività verranno attesi in modo
asincrono e desideri attendere che altre Promise siano pronte. Verrà eseguita una chiamata
asincrona all'overload del metodo fino a quando tutti gli oggetti Promise passati non diventano
pronti.

Il client di attività generato dispone inoltre di un metodo protetto che corrisponde a ogni metodo di
attività, nominato {activity method name}Impl(), a cui tutti gli overload dell'attività eseguono
una chiamata. Puoi sovrascrivere questo metodo per creare implementazioni del client fittizie. Questo
metodo accetta come argomenti tutti gli argomenti per il metodo originale nei wrapper Promise<>,
ActivitySchedulingOptions e argomenti variabili del tipo Promise<?>. Per esempio:

Metodo originale:

Client di attività Versione API 2021-04-28 82

AWS Flow Framework per Java Guida per gli sviluppatori

void activity2(int foo);

Metodo generato:

Promise<Void> activity2Impl(
 Promise<Integer> foo,
 ActivitySchedulingOptions optionsOverride,
 Promise<?>...waitFor);

Opzioni di programmazione

Il client di attività generato ti permette di passare in ActivitySchedulingOptions come
argomento. La ActivitySchedulingOptions struttura contiene impostazioni che determinano
la configurazione dell'attività che il framework pianifica in Amazon SWF. Queste impostazioni
sovrascrivono quelle predefinite specificate come opzioni di registrazione. Per specificare le opzioni
di pianificazione in modo dinamico, crea un oggetto ActivitySchedulingOptions, configuralo
come preferisci e passalo al metodo di attività. Nell'esempio seguente abbiamo specificato l'elenco
di task che deve essere utilizzato per il task di attività. Questa operazione sovrascrive l'elenco di task
registrato predefinito per l'invocazione dell'attività.

public class OrderProcessingWorkflowImpl implements OrderProcessingWorkflow {

 OrderProcessingActivitiesClient activitiesClient
 = new OrderProcessingActivitiesClientImpl();

 // Workflow entry point
 @Override
 public void processOrder(Order order) {
 Promise<Void> paymentProcessed = activitiesClient.processPayment(order);
 ActivitySchedulingOptions schedulingOptions
 = new ActivitySchedulingOptions();
 if (order.getLocation() == "Japan") {
 schedulingOptions.setTaskList("TasklistAsia");
 } else {
 schedulingOptions.setTaskList("TasklistNorthAmerica");
 }

 activitiesClient.shipOrder(order,
 schedulingOptions,
 paymentProcessed);
 }

Opzioni di programmazione Versione API 2021-04-28 83

AWS Flow Framework per Java Guida per gli sviluppatori

}

Client dinamici

Oltre ai client generati, il framework fornisce anche client generici DynamicActivityClient che
puoi utilizzare per avviare dinamicamente esecuzioni di flussi di lavoro, inviare segnali, pianificare
attività, ecc. DynamicWorkflowClient Ad esempio, potresti voler pianificare un'attività il cui tipo
non è noto in fase di progettazione. Puoi utilizzare DynamicActivityClient per pianificare questo
tipo di task di attività. Analogamente, puoi pianificare in modo dinamico un'esecuzione del flusso di
lavoro figlio utilizzando DynamicWorkflowClient. Nel seguente esempio, il flusso di lavoro cerca
l'attività da un database e utilizza il client dell'attività dinamico per pianificarla:

//Workflow entrypoint
@Override
public void start() {
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<ActivityType> activityType
 = client.lookUpActivityFromDB();
 Promise<String> input = client.getInput(activityType);
 scheduleDynamicActivity(activityType,
 input);
}
@Asynchronous
void scheduleDynamicActivity(Promise<ActivityType> type,
 Promise<String> input){
 Promise<?>[] args = new Promise<?>[1];
 args[0] = input;
 DynamicActivitiesClient activityClient
 = new DynamicActivitiesClientImpl();
 activityClient.scheduleActivity(type.get(),
 args,
 null,
 Void.class);
}

Per ulteriori dettagli, consulta la documentazione. AWS SDK per Java

Segnalare e annullare le esecuzioni del flusso di lavoro

Il client del flusso di lavoro generato dispone di metodi corrispondenti a ogni segnale che possono
essere inviati al flusso di lavoro. Puoi usarli dall'interno di un flusso di lavoro per inviare segnali ad

Client dinamici Versione API 2021-04-28 84

AWS Flow Framework per Java Guida per gli sviluppatori

altre esecuzioni del flusso di lavoro. Questa operazione fornisce un meccanismo tipizzato per l'invio
dei segnali. Tuttavia, a volte può essere necessario determinare dinamicamente il nome del segnale,
ad esempio quando il nome del segnale viene ricevuto in un messaggio. Puoi usare il client del flusso
di lavoro dinamico per inviare segnali in modo dinamico a qualunque esecuzione del flusso di lavoro.
Analogamente, puoi usare il client per richiedere l'annullamento di un'altra esecuzione del flusso di
lavoro.

Nel seguente esempio, il flusso di lavoro cerca l'esecuzione per inviare un segnale da un database e
invia il segnale in modo dinamico tramite il client del flusso di lavoro dinamico.

//Workflow entrypoint
public void start()
{
 MyActivitiesClient client = new MyActivitiesClientImpl();
 Promise<WorkflowExecution> execution = client.lookUpExecutionInDB();
 Promise<String> signalName = client.getSignalToSend();
 Promise<String> input = client.getInput(signalName);
 sendDynamicSignal(execution, signalName, input);
}

@Asynchronous
void sendDynamicSignal(
 Promise<WorkflowExecution> execution,
 Promise<String> signalName,
 Promise<String> input)
{
 DynamicWorkflowClient workflowClient
 = new DynamicWorkflowClientImpl(execution.get());
 Object[] args = new Promise<?>[1];
 args[0] = input.get();
 workflowClient.signalWorkflowExecution(signalName.get(), args);
}

Implementazione del flusso di lavoro

Per implementare un flusso di lavoro, scrivi una classe che implementa l'interfaccia @Workflow
desiderata. Ad esempio, l'interfaccia del flusso di lavoro di esempio (MyWorkflow) può essere
implementata come segue:

public class MyWFImpl implements MyWorkflow
{

Implementazione del flusso di lavoro Versione API 2021-04-28 85

AWS Flow Framework per Java Guida per gli sviluppatori

 MyActivitiesClient client = new MyActivitiesClientImpl();
 @Override
 public void startMyWF(int a, String b){
 Promise<Integer> result = client.activity1();
 client.activity2(result);
 }
 @Override
 public void signal1(int a, int b, String c){
 //Process signal
 client.activity2(a + b);
 }
}

Il metodo @Execute in questa classe è il punto di ingresso della logica del flusso di lavoro. Poiché
il framework utilizza il replay per ricostruire lo stato dell'oggetto quando deve essere elaborata
un'attività decisionale, viene creato un nuovo oggetto per ogni attività decisionale.

L'utilizzo di Promise<T> come parametro non è consentito nel metodo @Execute in un'interfaccia
@Workflow. Questo perché una chiamata asincrona è una decisione esclusiva dell'intermediario.
L'implementazione del flusso di lavoro in sé non dipende dalla modalità di invocazione (sincrona
o asincrona). Di conseguenza, l'interfaccia client generata ha overload che accettano i parametri
Promise<T> in modo che questi metodi possano essere chiamati in modo asincrono.

Il tipo di restituzione di un metodo @Execute può essere solo void o Promise<T>. Ricorda
che un tipo di restituzione del client esterno corrispondente è void e non Promise<>. Poiché
il client esterno non è progettato per essere utilizzato dal codice asincrono, il client esterno non
restituisce oggetti. Promise Per ottenere i risultati delle esecuzioni dei flussi di lavoro dichiarati
esternamente, è possibile progettare il flusso di lavoro in modo che aggiorni lo stato in un archivio
dati esterno tramite un'attività. La visibilità di Amazon SWF APIs può essere utilizzata anche
per recuperare il risultato di un flusso di lavoro a fini diagnostici. Non è consigliabile utilizzare la
visibilità APIs per recuperare i risultati delle esecuzioni dei flussi di lavoro come pratica generale,
poiché queste chiamate API potrebbero essere limitate da Amazon SWF. La visibilità APIs richiede
l'identificazione dell'esecuzione del flusso di lavoro utilizzando una struttura. WorkflowExecution
Puoi ottenere questa struttura dal client di flusso di lavoro generato chiamando il metodo
getWorkflowExecution. Questo metodo restituisce la struttura WorkflowExecution
corrispondente all'esecuzione del flusso di lavoro a cui il client è legato. Consulta il riferimento all'API
di Amazon Simple Workflow Service per maggiori dettagli sulla visibilità APIs.

Quando chiami le attività dall'implementazione del flusso di lavoro, devi utilizzare il client di attività
generato. Analogamente, per inviare segnali, devi utilizzare i client di flusso di lavoro generati.

Implementazione del flusso di lavoro Versione API 2021-04-28 86

https://docs.aws.amazon.com/amazonswf/latest/apireference/
https://docs.aws.amazon.com/amazonswf/latest/apireference/

AWS Flow Framework per Java Guida per gli sviluppatori

Contesto di decisione

Il framework fornisce un contesto di ambiente ogni volta che il codice del flusso di lavoro viene
eseguito dal framework. Questo contesto offre funzionalità specifiche a cui puoi accedere
nell'implementazione del flusso di lavoro, ad esempio la creazione di un timer. Consulta la sezione
relativa a Contesto di esecuzione per ulteriori informazioni.

Esposizione dello stato dell'esecuzione

Amazon SWF ti consente di aggiungere uno stato personalizzato nella cronologia del flusso di
lavoro. L'ultimo stato riportato dall'esecuzione del flusso di lavoro ti viene restituito tramite chiamate
di visibilità al servizio Amazon SWF e nella console Amazon SWF. Ad esempio, in un flusso di
lavoro di elaborazione dell'ordine, puoi segnalare lo stato dell'ordine in fasi diverse come "ordine
ricevuto", ordine spedito" e così via. In Java, ciò avviene tramite un metodo sull'interfaccia del
flusso di lavoro che viene annotato con l'annotazione. AWS Flow Framework @GetState Quando
il decisore ha terminato l'elaborazione di un task di decisione, chiama il metodo per ricevere l'ultimo
stato dall'implementazione del flusso di lavoro. A parte le chiamate di visibilità, lo stato può essere
recuperato anche utilizzando il client esterno generato (che utilizza internamente le chiamate API di
visibilità).

L'esempio seguente mostra come configurare il contesto di esecuzione.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();

 @GetState
 String getState();
}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();

}

Contesto di decisione Versione API 2021-04-28 87

AWS Flow Framework per Java Guida per gli sviluppatori

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 private PeriodicActivityClient activityClient
 = new PeriodicActivityClientImpl();

 private String state;

 @Override
 public void periodicWorkflow() {
 state = "Just Started";
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor)
 {
 if(count == 100) {
 state = "Finished Processing";
 return;
 }

 // call activity
 activityClient.activity1();

 // Repeat the activity after 1 hour.
 Promise<Void> timer = clock.createTimer(3600);
 state = "Waiting for timer to fire. Count = "+count;
 callPeriodicActivity(count+1, timer);
 }

 @Override
 public String getState() {
 return state;
 }
}

Esposizione dello stato dell'esecuzione Versione API 2021-04-28 88

AWS Flow Framework per Java Guida per gli sviluppatori

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public static void activity1()
 {
 ...
 }
}

Si può utilizzare il client esterno generato per recuperare in qualsiasi momento l'ultimo stato
dell'esecuzione del flusso di lavoro.

PeriodicWorkflowClientExternal client
 = new PeriodicWorkflowClientExternalFactoryImpl().getClient();
System.out.println(client.getState());

Nell'esempio precedente, lo stato di esecuzione è segnalato in varie fasi. Quando inizia l'istanza del
flusso di lavoro, periodicWorkflow segnala lo stato iniziale come "Appena iniziata". Ogni chiamata
a callPeriodicActivity aggiorna lo stato del flusso di lavoro. Una volta che activity1 è stata
chiamata 100 volte, il metodo esegue la restituzione e l'istanza del flusso di lavoro è completata.

Locali del flusso di lavoro

A volte, puoi avere la necessità di utilizzare le variabili statiche nell'implementazione del flusso di
lavoro. Ad esempio, puoi voler archiviare un contatore a cui è stato effettuato l'accesso da vari posti
(forse classi diverse) nell'implementazione del flusso di lavoro. Tuttavia, non puoi affidarti a variabili
statiche nei flussi di lavoro, perché le variabili statiche sono condivise tra i thread, il che rappresenta
un problema, perché un lavoratore elabora task di decisione diversi su thread diversi nello stesso
momento. In alternativa, puoi archiviare questo stato in un campo dell'implementazione del flusso di
lavoro, ma poi devi trasferire l'oggetto dell'implementazione. A questo scopo, il framework fornisce
una classe WorkflowExecutionLocal<?>. Ogni stato che deve avere una variabile statica come
semantica deve essere mantenuto come istanza locale utilizzando WorkflowExecutionLocal<?>.
Puoi dichiarare e utilizzare una variabile statica di questo tipo. Ad esempio, nel seguente frammento
di codice, un WorkflowExecutionLocal<String> viene utilizzato per archiviare un nome utente.

public class MyWFImpl implements MyWF {
 public static WorkflowExecutionLocal<String> username
 = new WorkflowExecutionLocal<String>();

Locali del flusso di lavoro Versione API 2021-04-28 89

AWS Flow Framework per Java Guida per gli sviluppatori

 @Override
 public void start(String username){
 this.username.set(username);
 Processor p = new Processor();
 p.updateLastLogin();
 p.greetUser();
 }

 public static WorkflowExecutionLocal<String> getUsername() {
 return username;
 }

 public static void setUsername(WorkflowExecutionLocal<String> username) {
 MyWFImpl.username = username;
 }
}

public class Processor {
 void updateLastLogin(){
 UserActivitiesClient c = new UserActivitiesClientImpl();
 c.refreshLastLogin(MyWFImpl.getUsername().get());
 }
 void greetUser(){
 GreetingActivitiesClient c = new GreetingActivitiesClientImpl();
 c.greetUser(MyWFImpl.getUsername().get());
 }
}

Implementazione di attività
Le attività vengono implementate fornendo un'implementazione dell'interfaccia @Activities.
The AWS Flow Framework for Java utilizza le istanze di implementazione delle attività configurate
sul worker per elaborare le attività in fase di esecuzione. Il lavoratore trova automaticamente
l'implementazione di attività del tipo corretto.

Puoi utilizzare proprietà e campi per trasferire le risorse alle istanze di attività, ad esempio le
connessioni del database. Poiché è possibile accedere all'oggetto di implementazione dell'attività da
più thread, le risorse condivise devono essere thread-safe.

Ricorda che l'implementazione di attività non accetta parametri di tipo Promise<> e non restituisce
oggetti di quel tipo. Questo perché l'implementazione di attività non deve dipendere dal modo in cui è
stata invocata (sincrono o asincrono).

Implementazione di attività Versione API 2021-04-28 90

AWS Flow Framework per Java Guida per gli sviluppatori

L'interfaccia delle attività mostrata in precedenza può essere implementata in questo modo:

public class MyActivitiesImpl implements MyActivities {

 @Override
 @ManualActivityCompletion
 public int activity1(){
 //implementation
 }

 @Override
 public void activity2(int foo){
 //implementation
 }
}

L'attività di implementazione ha a disposizione un contesto locale di thread per recuperare l'oggetto
del task, l'oggetto del convertitore di dati in uso ecc. Si può accedere al contesto attuale tramite
ActivityExecutionContextProvider.getActivityExecutionContext(). Per maggiori
dettagli, consulta la AWS SDK per Java documentazione ActivityExecutionContext e la
sezione dedicataContesto di esecuzione.

Completamento manuale della attività

L'annotazione @ManualActivityCompletion nell'esempio precedente è opzionale. È consentita
solo sui metodi che implementano un'attività e viene utilizzata per configurare l'attività perché non sia
completata automaticamente in fase di restituzione del metodo di attività. Ciò può essere utile quando
si desidera completare l'attività in modo asincrono, ad esempio manualmente dopo il completamento
di un'azione umana.

Per impostazione predefinita, il framework considera l'attività completata alla fase di restituzione
del metodo di attività. Ciò significa che l'addetto all'attività segnala il completamento dell'attività
ad Amazon SWF e gli fornisce i risultati (se presenti). Tuttavia, ci sono casi d'uso in cui non
è consigliabile che il task di attività sia indicato come completato in questa fase. Questo è
particolarmente utile quando stai modellando task umani. Ad esempio, il metodo di attività può inviare
una e-mail alla persona che deve completare una parte del lavoro prima del completamento del task
di attività. In questi casi, puoi annotare il metodo di attività con @ManualActivityCompletion per
comunicare al lavoratore di attività che non la deve completare automaticamente. Per completare
l'attività manualmente, puoi utilizzare il metodo ManualActivityCompletionClient fornito nel

Completamento manuale della attività Versione API 2021-04-28 91

AWS Flow Framework per Java Guida per gli sviluppatori

framework o utilizzare il RespondActivityTaskCompleted metodo sul client Java Amazon SWF
fornito nell'SDK Amazon SWF. Per ulteriori dettagli, consulta la documentazione. AWS SDK per Java

Per completare il task di attività, devi fornire un token del task. Il task token
viene utilizzato da Amazon SWF per identificare in modo univoco le attività. Puoi
accedere al token dal ActivityExecutionContext nell'implementazione di
attività. Devi trasferire il token alla parte responsabile del completamento del task.
Il token può essere recuperato dal ActivityExecutionContext chiamando
ActivityExecutionContextProvider.getActivityExecutionContext().getTaskToken().

L'attività getName dell'esempio di Hello World può essere implementata per inviare un'e-mail in cui si
chiede a qualcuno di esprimere un messaggio di saluto:

@ManualActivityCompletion
@Override
public String getName() throws InterruptedException {
 ActivityExecutionContext executionContext
 = contextProvider.getActivityExecutionContext();
 String taskToken = executionContext.getTaskToken();
 sendEmail("abc@xyz.com",
 "Please provide a name for the greeting message and close task with token: " +
 taskToken);
 return "This will not be returned to the caller";
}

Si può utilizzare il seguente frammento di codice per il saluto e chiudere il task utilizzando il
ManualActivityCompletionClient. In alternativa, il task può anche non andare a buon fine:

public class CompleteActivityTask {

 public void completeGetNameActivity(String taskToken) {

 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(...); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 String result = "Hello World!";
 manualCompletionClient.complete(result);
 }

Completamento manuale della attività Versione API 2021-04-28 92

AWS Flow Framework per Java Guida per gli sviluppatori

 public void failGetNameActivity(String taskToken, Throwable failure) {
 AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(...); // use AWS access keys
 ManualActivityCompletionClientFactory manualCompletionClientFactory
 = new ManualActivityCompletionClientFactoryImpl(swfClient);
 ManualActivityCompletionClient manualCompletionClient
 = manualCompletionClientFactory.getClient(taskToken);
 manualCompletionClient.fail(failure);
 }
}

AWS Lambda Attività di implementazione

Argomenti

• Informazioni su AWS Lambda

• Vantaggi e limiti dell'utilizzo delle attività Lambda

• Utilizzo delle attività Lambda nei flussi di lavoro AWS Flow Framework per Java

• Visualizza l'esempio HelloLambda

Informazioni su AWS Lambda

AWS Lambda è un servizio di elaborazione completamente gestito che esegue il codice in risposta
a eventi generati da codice personalizzato o da vari AWS servizi come Amazon S3, DynamoDB,
Amazon Kinesis, Amazon SNS e Amazon Cognito. Per ulteriori informazioni su Lambda, consulta la
Guida per gli sviluppatori di AWS Lambda.

Amazon Simple Workflow Service fornisce un task Lambda che consente di eseguire funzioni
Lambda al posto o insieme alle attività tradizionali di Amazon SWF.

Important

Sul tuo AWS account verranno addebitate le esecuzioni (richieste) Lambda eseguite da
Amazon SWF per tuo conto. Per informazioni dettagliate sui prezzi di Lambda, consulta
https://aws.amazon.com/lambda/ pricing/.

Implementazione delle attività Lambda Versione API 2021-04-28 93

https://docs.aws.amazon.com/lambda/latest/dg/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/

AWS Flow Framework per Java Guida per gli sviluppatori

Vantaggi e limiti dell'utilizzo delle attività Lambda

L'utilizzo delle attività Lambda al posto di un'attività tradizionale di Amazon SWF offre numerosi
vantaggi:

• Le attività Lambda non devono essere registrate o sottoposte a versioni come i tipi di attività di
Amazon SWF.

• Puoi utilizzare qualsiasi funzione Lambda esistente che hai già definito nei tuoi flussi di lavoro.

• Le funzioni Lambda vengono richiamate direttamente da Amazon SWF; non è necessario
implementare un programma di lavoro per eseguirle come è necessario fare con le attività
tradizionali.

• Lambda fornisce metriche e log per tracciare e analizzare le esecuzioni delle funzioni.

L'utilizzo di task Lambda comporta anche alcuni limiti che è necessario conoscere:

• Le attività Lambda possono essere eseguite solo nelle AWS regioni che forniscono supporto
per Lambda. Consulta le regioni e gli endpoint Lambda nel riferimento generale di Amazon Web
Services per dettagli sulle regioni attualmente supportate per Lambda.

• Le attività Lambda sono attualmente supportate solo dall'API HTTP SWF di base e in Java. AWS
Flow Framework Al momento non è disponibile alcun supporto per le attività Lambda in AWS Flow
Framework for Ruby.

Utilizzo delle attività Lambda nei flussi di lavoro AWS Flow Framework per
Java

Esistono tre requisiti per utilizzare le attività Lambda nei flussi di lavoro AWS Flow Framework per
Java:

• Una funzione Lambda da eseguire. Puoi usare qualsiasi funzione Lambda che hai definito. Per
ulteriori informazioni su come creare funzioni Lambda, consulta la Guida per gli AWS Lambda
sviluppatori.

• Un ruolo IAM che fornisce l'accesso per eseguire funzioni Lambda dai flussi di lavoro Amazon
SWF.

• Codice per pianificare l'attività Lambda dall'interno del flusso di lavoro.

Vantaggi e limiti dell'utilizzo delle attività Lambda Versione API 2021-04-28 94

https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/

AWS Flow Framework per Java Guida per gli sviluppatori

Configurazione di un ruolo IAM

Prima di poter richiamare le funzioni Lambda da Amazon SWF, devi fornire un ruolo IAM che fornisca
l'accesso a Lambda da Amazon SWF. Puoi eseguire una delle seguenti operazioni:

• scegli un ruolo predefinito, Ruolo, AWSLambda per autorizzare i flussi di lavoro a richiamare
qualsiasi funzione Lambda associata al tuo account.

• definisci la tua politica e il ruolo associato per autorizzare i flussi di lavoro a richiamare particolari
funzioni Lambda, specificate dai rispettivi Amazon Resource Names (). ARNs

Limita le autorizzazioni su un ruolo IAM

Puoi limitare le autorizzazioni su un ruolo IAM che fornisci ad Amazon SWF utilizzando SourceArn
le chiavi SourceAccount e context nella tua policy di attendibilità delle risorse. Queste chiavi
limitano l'utilizzo di una policy IAM in modo che venga utilizzata solo dalle esecuzioni di Amazon
Simple Workflow Service che appartengono all'ARN del dominio specificato. Se utilizzi entrambe
le chiavi di contesto della condizione globale, il aws:SourceAccount valore e l'account a cui si
fa riferimento nel aws:SourceArn valore devono utilizzare lo stesso ID account quando vengono
utilizzati nella stessa dichiarazione politica.

Nel seguente esempio, la chiave di SourceArn contesto limita l'utilizzo del ruolo del servizio
IAM solo nelle esecuzioni di Amazon Simple Workflow Service che appartengono someDomain
all'account,. 123456789012

• Dichiarazione 1

Preside: "Service": "swf.amazonaws.com"

Operazione: sts:AssumeRole

"Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:swf:*:123456789012:/domain/someDomain"
 }
}

Nell'esempio seguente, la chiave di SourceAccount contesto limita l'utilizzo del ruolo del servizio
IAM solo nelle esecuzioni di Amazon Simple Workflow Service nell'account,. 123456789012

Utilizzo delle attività Lambda nei flussi di lavoro AWS Flow Framework per Java Versione API 2021-04-28 95

AWS Flow Framework per Java Guida per gli sviluppatori

"Condition": {
 "StringLike": {
 "aws:SourceAccount": "123456789012"
 }
}

Fornire ad Amazon SWF l'accesso per richiamare qualsiasi ruolo Lambda

Puoi utilizzare il ruolo predefinito, Role, per dare ai flussi di lavoro Amazon SWF la possibilità di
richiamare qualsiasi AWSLambdafunzione Lambda associata al tuo account.

Utilizzare AWSLambda Role per consentire ad Amazon SWF l'accesso per richiamare le funzioni
Lambda

1. Apri la console Amazon IAM.

2. Scegli Roles (Ruoli), quindi Create New Role (Crea nuovo ruolo).

3. Assegna un nome al ruolo, come swf-lambda, quindi scegli Next Step (Fase successiva).

4. In AWS Service Roles, scegli Amazon SWF e scegli Next Step.

5. Nella schermata Allach Policy, scegli AWSLambdaRuolo dall'elenco.

6. Scegli Next Step (Fase successiva), quindi Create Role (Crea ruolo) dopo aver esaminato il
ruolo.

Definizione di un ruolo IAM per fornire l'accesso per richiamare una funzione Lambda specifica

Se desideri fornire l'accesso per richiamare una funzione Lambda specifica dal tuo flusso di lavoro,
dovrai definire la tua policy IAM.

Creare una policy IAM per fornire l'accesso a una particolare funzione Lambda

1. Apri la console Amazon IAM.

2. Scegli Policies (Policy), quindi Create Policy (Crea policy).

3. Scegli Copia una policy AWS gestita e seleziona AWSLambdaRuolo dall'elenco. Viene generata
una policy. Se necessario, modificane il nome e la descrizione.

4. Nel campo Resource del Policy Document, aggiungi l'ARN delle tue funzioni Lambda. Per
esempio:

Utilizzo delle attività Lambda nei flussi di lavoro AWS Flow Framework per Java Versione API 2021-04-28 96

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Flow Framework per Java Guida per gli sviluppatori

• Risorsa: arn:aws:lambda:us-
east-1:111122223333:function:hello_lambda_function

Note

Per una descrizione completa di come specificare le risorse in un ruolo IAM, consulta
Panoramica delle politiche IAM nell'uso di IAM.

5. Scegli Create Policy (Crea policy) per completare la creazione della policy.

Puoi quindi selezionare questa policy quando crei un nuovo ruolo IAM e utilizzarlo per concedere a
invoke l'accesso ai tuoi flussi di lavoro Amazon SWF. Questa procedura è molto simile alla creazione
di un ruolo con la politica AWSLambdaRole. Scegli invece la tua policy quando crei il ruolo.

Per creare un ruolo Amazon SWF utilizzando la tua policy Lambda

1. Apri la console Amazon IAM.

2. Scegli Roles (Ruoli), quindi Create New Role (Crea nuovo ruolo).

3. Assegna un nome al ruolo, come swf-lambda-function, quindi scegli Next Step (Fase
successiva).

4. In AWS Service Roles, scegli Amazon SWF e scegli Next Step.

5. Nella schermata Allega policy, scegli la policy specifica per la funzione Lambda dall'elenco.

6. Scegli Next Step (Fase successiva), quindi Create Role (Crea ruolo) dopo aver esaminato il
ruolo.

Pianifica l'esecuzione di un'attività Lambda

Dopo aver definito un ruolo IAM che ti consente di richiamare le funzioni Lambda, puoi pianificarne
l'esecuzione come parte del tuo flusso di lavoro.

Note

Questo processo è ampiamente dimostrato dall'HelloLambda esempio contenuto in. AWS
SDK per Java

Utilizzo delle attività Lambda nei flussi di lavoro AWS Flow Framework per Java Versione API 2021-04-28 97

https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
https://console.aws.amazon.com/iam/

AWS Flow Framework per Java Guida per gli sviluppatori

Per pianificare l'esecuzione di un'attività Lambda

1. Nell'implementazione di flusso di lavoro, ottieni un'istanza di LambdaFunctionClient
chiamando getLambdaFunctionClient() su un'istanza DecisionContext.

// Get a LambdaFunctionClient instance
DecisionContextProvider decisionProvider = new DecisionContextProviderImpl();
DecisionContext decisionContext = decisionProvider.getDecisionContext();
LambdaFunctionClient lambdaClient = decisionContext.getLambdaFunctionClient();

2. Pianifica l'attività utilizzando il scheduleLambdaFunction() metodo
suLambdaFunctionClient, passandole il nome della funzione Lambda che hai creato e tutti i
dati di input per l'attività Lambda.

// Schedule the Lambda function for execution, using your IAM role for access.
String lambda_function_name = "The name of your Lambda function.";
String lambda_function_input = "Input data for your Lambda task.";

lambdaClient.scheduleLambdaFunction(lambda_function_name, lambda_function_input);

3. Nel programma di avvio dell'esecuzione del workflow, aggiungi il ruolo IAM lambda alle opzioni di
workflow predefinite utilizzandoStartWorkflowOptions.withLambdaRole(), quindi passa
le opzioni all'avvio del flusso di lavoro.

// Workflow client classes are generated for you when you use the @Workflow
// annotation on your workflow interface declaration.
MyWorkflowClientExternalFactory clientFactory =
 new MyWorkflowClientExternalFactoryImpl(sdk_swf_client, swf_domain);

MyWorkflowClientExternal workflow_client = clientFactory.getClient();

// Give the ARN of an IAM role that allows SWF to invoke Lambda functions on
// your behalf.
String lambda_iam_role = "arn:aws:iam::111111000000:role/swf_lambda_role";

StartWorkflowOptions workflow_options =
 new StartWorkflowOptions().withLambdaRole(lambda_iam_role);

// Start the workflow execution

Utilizzo delle attività Lambda nei flussi di lavoro AWS Flow Framework per Java Versione API 2021-04-28 98

AWS Flow Framework per Java Guida per gli sviluppatori

workflow_client.helloWorld("User", workflow_options);

Visualizza l'esempio HelloLambda

Un esempio che fornisce un'implementazione di un flusso di lavoro che utilizza un'attività Lambda è
fornito in. AWS SDK per Java Per visualizzarlo, and/or eseguilo, scarica il codice sorgente.

Una descrizione completa di come creare ed eseguire l'HelloLambdaesempio è fornita nel file
README fornito con AWS Flow Framework gli esempi Java.

Esecuzione di programmi scritti con AWS Flow Framework for Java

Argomenti

• WorkflowWorker

• ActivityWorker

• Modello di threading di lavoratore

• Estensibilità dei lavoratori

Il framework fornisce classi di lavoro per inizializzare il runtime AWS Flow Framework for Java e
comunicare con Amazon SWF. Per implementare un lavoratore di attività o di flusso di lavoro, devi
creare e avviare un'istanza di una classe di lavoratore. Queste classi di lavoratori sono responsabili
della gestione delle operazioni asincrone in corso, dell'utilizzo di metodi asincroni che vengono
sbloccati e della comunicazione con Amazon SWF. Possono essere configurate con implementazioni
di flusso di lavoro e attività, il numero di thread, l'elenco di task da sottoporre a polling e così via.

Il framework include due classi di lavoratore, una per le attività e l'altra per i flussi di lavoro. Per
eseguire la logica di flusso di lavoro, devi utilizzare la classe WorkflowWorker. Per le attività, viene
invece utilizzata la classe ActivityWorker. Queste classi eseguono automaticamente il polling di
Amazon SWF per le attività e richiamano i metodi appropriati nella tua implementazione.

L'esempio seguente mostra come creare un'istanza di WorkflowWorker e avviare il polling dei task:

AmazonSimpleWorkflow swfClient = new AmazonSimpleWorkflowClient(awsCredentials);
WorkflowWorker worker = new WorkflowWorker(swfClient, "domain1", "tasklist1");
// Add workflow implementation types

Visualizza l'esempio HelloLambda Versione API 2021-04-28 99

https://aws.amazon.com/code/3015904745387737

AWS Flow Framework per Java Guida per gli sviluppatori

worker.addWorkflowImplementationType(MyWorkflowImpl.class);

// Start worker
worker.start();

La procedura di base per creare un'istanza di ActivityWorker e avviare il polling dei task è la
seguente:

AmazonSimpleWorkflow swfClient
 = new AmazonSimpleWorkflowClient(awsCredentials);
ActivityWorker worker = new ActivityWorker(swfClient,
 "domain1",
 "tasklist1");
worker.addActivitiesImplementation(new MyActivitiesImpl());

// Start worker
worker.start();

Quando desideri chiudere un'attività o un dispositivo decisionale, l'applicazione deve chiudere le
istanze delle classi di lavoro utilizzate e l'istanza del client Java Amazon SWF. In questo modo, tutte
le risorse utilizzate dalle classi di lavoratore vengono rilasciate correttamente.

worker.shutdown();
worker.awaitTermination(1, TimeUnit.MINUTES);

Per avviare un'esecuzione, crea semplicemente un'istanza del client esterno generato e chiama il
metodo @Execute.

MyWorkflowClientExternalFactory factory = new MyWorkflowClientExternalFactoryImpl();
MyWorkflowClientExternal client = factory.getClient();
client.start();

WorkflowWorker

Come suggerisce il nome, questa classe di lavoratore è utilizzata dall'implementazione di flusso di
lavoro. È configurata con un elenco di task e con il tipo di implementazione di flusso di lavoro. La
classe di lavoratore esegue un ciclo per il polling dei task di decisione nell'elenco di task specificato.

WorkflowWorker Versione API 2021-04-28 100

AWS Flow Framework per Java Guida per gli sviluppatori

Quando un task di decisione viene ricevuto, crea un'istanza dell'implementazione di flusso di lavoro e
chiama il metodo @Execute per elaborare il task.

ActivityWorker

Per implementare dei lavoratori di attività, puoi utilizzare la classe ActivityWorker per eseguire
efficacemente il polling dei task di attività in un elenco di task. Configura quindi il lavoratore di
attività con oggetti di implementazione di attività. Questa classe di lavoratore esegue un ciclo per
il polling dei task di attività nell'elenco di task specificato. Quando si riceve un task di attività, cerca
l'implementazione appropriata che hai fornito e chiama il metodo di attività per elaborare il task. A
differenza di WorkflowWorker, che chiama la factory per creare una nuova istanza per ogni task di
decisione, ActivityWorker utilizza semplicemente l'oggetto che hai fornito.

La ActivityWorker classe utilizza le annotazioni AWS Flow Framework for Java per determinare
le opzioni di registrazione ed esecuzione.

Modello di threading di lavoratore

In Java, AWS Flow Framework l'incarnazione di un'attività o di un decisore è un'istanza della classe
operaia. La tua applicazione è responsabile della configurazione e della creazione di un'istanza
dell'oggetto lavoratore su ogni macchina nonché del processo che agisce come lavoratore. L'oggetto
worker riceve quindi automaticamente le attività da Amazon SWF, le invia all'implementazione
dell'attività o del flusso di lavoro e riporta i risultati ad Amazon SWF. Una singola istanza di flusso
di lavoro può interessare molti lavoratori. Quando Amazon SWF ha una o più attività in sospeso,
assegna un'attività al primo lavoratore disponibile, quindi a quello successivo e così via. In questo
modo, i task che appartengono alla stessa istanza di flusso di lavoro possono essere elaborati su
differenti lavoratori contemporaneamente.

ActivityWorker Versione API 2021-04-28 101

AWS Flow Framework per Java Guida per gli sviluppatori

Inoltre, ogni lavoratore può essere configurato per elaborare task su più thread. Ciò significa che i
task di attività di un'istanza di flusso di lavoro possono essere eseguiti simultaneamente anche se vi è
un solo lavoratore.

Le attività decisionali si comportano in modo simile, con l'eccezione che Amazon SWF garantisce
che per un determinato flusso di lavoro possa essere eseguita solo una decisione alla volta. Una
singola esecuzione di flusso di lavoro richiede in genere più task di decisione ed è quindi possibile
che venga eseguita su più processi e thread. Il decisore è configurato con il tipo di implementazione
di flusso di lavoro. Quando riceve un task di decisione, crea un'istanza (oggetto) dell'implementazione
di flusso di lavoro. Il framework fornisce un modello factory estensibile per la creazione di queste
istanze. La factory di flusso di lavoro di default crea un nuovo oggetto ogni volta. Puoi fornire factory
personalizzate per annullare questo comportamento.

Contrariamente ai decisori, che sono configurati con tipi di implementazione di flusso di lavoro, i
lavoratori di attività sono configurati con istanze (oggetti) delle implementazioni di attività. Quando un
lavoratore di attività riceve un task di attività, questo è inviato all'oggetto di implementazione di attività
appropriato.

Modello di threading di lavoratore Versione API 2021-04-28 102

AWS Flow Framework per Java Guida per gli sviluppatori

L'operatore del flusso di lavoro gestisce un unico pool di thread ed esegue il flusso di lavoro sullo
stesso thread utilizzato per eseguire il polling di Amazon SWF per l'attività. Poiché le attività durano
a lungo (almeno rispetto alla logica del flusso di lavoro), la classe Activity Worker gestisce due pool
di thread separati: uno per il polling di Amazon SWF per le attività e l'altro per l'elaborazione delle
attività eseguendo l'implementazione dell'attività. Ciò ti consente di configurare il numero di thread
per il polling dei task indipendentemente dal numero di thread per eseguirli. Ad esempio, puoi avere
un numero ridotto di thread per il polling e un numero elevato di thread per l'esecuzione dei task.
L'activity worker class interroga Amazon SWF per un'attività solo quando dispone di un thread di
sondaggio gratuito e di un thread libero per l'elaborazione dell'attività.

Questo comportamento di threading e creazione di istanze implica quanto segue:

1. Le implementazioni di attività devono essere stateless. Non devi utilizzare variabili di istanza per
archiviare lo stato dell'applicazione in oggetti attività. Puoi comunque utilizzare dei campi per
archiviare risorse come le connessioni di database.

2. Le implementazioni di attività devono essere thread-safe. Poiché la stessa istanza può essere
utilizzata per elaborare attività da thread diversi contemporaneamente, l'accesso alle risorse
condivise dal codice di attività deve essere sincronizzato.

3. L'implementazione di flusso di lavoro può essere stateful e le variabili di istanza possono essere
utilizzate per archiviare lo stato. Anche se viene creata una nuova istanza dell'implementazione di
flusso di lavoro per elaborare ogni task di decisione, il framework assicurerà la corretta ricreazione
dello stato. Tuttavia, l'implementazione di flusso di lavoro deve essere deterministica. Per ulteriori
informazioni, consulta la sezione Comprensione di un task in AWS Flow Framework for Java.

4. Le implementazioni di flusso di lavoro non devono essere thread-safe quando si utilizza la factory
di default. L'implementazione di default garantisce che un'istanza dell'implementazione di flusso di
lavoro è utilizzata da un solo thread alla volta.

Modello di threading di lavoratore Versione API 2021-04-28 103

AWS Flow Framework per Java Guida per gli sviluppatori

Estensibilità dei lavoratori

The AWS Flow Framework for Java contiene anche un paio di classi di lavoro di basso livello che
offrono controllo ed estensibilità dettagliati. Mediante tali classi, puoi personalizzare completamente
la registrazione dei tipi di flusso di lavoro e di attività e impostare factory per la creazione di oggetti di
implementazione. Questi lavoratori sono GenericWorkflowWorker e GenericActivityWorker.

Il lavoratore GenericWorkflowWorker può essere configurato con una factory per creare
factory di definizione di flusso di lavoro. Il ruolo di una factory di definizione di flusso di
lavoro è di creare istanze dell'implementazione di flusso di lavoro e di fornire impostazioni di
configurazione come le opzioni di registrazione. In circostanze normali, devi utilizzare la classe
WorkflowWorker direttamente. Questa creerà e configurerà automaticamente l'implementazione
delle factory fornite nel framework, ovvero POJOWorkflowDefinitionFactoryFactory e
POJOWorkflowDefinitionFactory. La factory richiede che la classe di implementazione di
flusso di lavoro abbia un costruttore senza argomenti. Questo costruttore è utilizzato per creare
istanze dell'oggetto di flusso di lavoro al runtime. La factory analizza le annotazioni utilizzate
nell'interfaccia e nell'implementazione di flusso di lavoro per creare opzioni di registrazione ed
esecuzione appropriate.

Puoi fornire una tua implementazione delle factory mediante WorkflowDefinitionFactory,
WorkflowDefinitionFactoryFactory e WorkflowDefinition. La classe
WorkflowDefinition è utilizzata dalla classe di lavoratore per inviare task di decisione e
segnali. Implementando queste classi di base, puoi personalizzare completamente la factory e
l'invio di richieste all'implementazione di flusso di lavoro. Ad esempio, puoi utilizzare questi punti
di estensibilità per fornire un modello di programmazione personalizzato per la scrittura di flussi di
lavoro, ad esempio, basato sulle tue annotazioni o generato a partire da WSDL anziché mediante
l'approccio Code First utilizzato dal framework. Per utilizzare le tue factory personalizzate, dovrai
servirti della classe GenericWorkflowWorker. Per maggiori dettagli su queste classi, consulta la
documentazione. AWS SDK per Java

Allo stesso modo, GenericActivityWorker ti consente di fornire una factory di implementazione
di attività personalizzata. Implementando le classi ActivityImplementationFactory e
ActivityImplementation, puoi controllare completamente la creazione di istanze di attività
nonché personalizzare opzioni di registrazione ed esecuzione. Per maggiori dettagli su queste classi,
consulta la AWS SDK per Java documentazione.

Estensibilità dei lavoratori Versione API 2021-04-28 104

AWS Flow Framework per Java Guida per gli sviluppatori

Contesto di esecuzione

Argomenti

• Contesto di decisione

• Contesto di esecuzione di attività

Il framework fornisce un contesto di ambiente alle implementazioni di flusso di lavoro e attività.
Questo contesto è specifico del task in corso di elaborazione e fornisce alcune utilità che puoi
utilizzare nella tua implementazione. Un oggetto di contesto è creato ogni volta che il lavoratore
elabora un nuovo task.

Contesto di decisione

Quando un'attività viene eseguita, la decisione quadro fornisce il contesto per l'implementazione di
flussi di lavoro attraverso la DecisionContext classe DecisionContext fornisce informazioni
sensibili al contesto quali l'esecuzione del flusso di lavoro eseguire Id e orologio timer e funzionalità.

Accesso nell'implementazione del flusso DecisionContext di lavoro

Puoi accedere a DecisionContext nell'implementazione di flusso di lavoro utilizzando la classe
DecisionContextProviderImpl. In alternativa, puoi inserire il contesto in un campo o in una
proprietà di tale implementazione utilizzando Spring come mostrato nella sezione relativa alla
testabilità e all'inserimento delle dipendenze.

DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();
DecisionContext context = contextProvider.getDecisionContext();

Creazione di un orologio e di un timer

La classe DecisionContext contiene una proprietà di tipo WorkflowClock che fornisce la
funzionalità di orologio e timer. Poiché la logica del flusso di lavoro deve essere deterministica,
non è necessario utilizzare direttamente l'orologio di sistema nell'implementazione del flusso di
lavoro. Il metodo currentTimeMills su WorkflowClock restituisce l'ora dell'evento di avvio
della decisione in corso di elaborazione. In questo modo, ottieni lo stesso valore di ora durante la
riproduzione, rendendo di conseguenza deterministica la logica di flusso di lavoro.

Contesto di esecuzione Versione API 2021-04-28 105

AWS Flow Framework per Java Guida per gli sviluppatori

WorkflowClock include inoltre un metodo createTimer che restituisce un oggetto Promise
che diventa pronto dopo l'intervallo specificato. Puoi utilizzare questo valore come parametro per
altri metodi asincroni allo scopo di ritardarne l'esecuzione in base al periodo di tempo specificato.
In questo modo, puoi pianificare efficacemente un'attività o un metodo asincrono per un'esecuzione
successiva.

L'esempio nel listato seguente mostra come chiamare periodicamente un'attività.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PeriodicWorkflow {

 @Execute(version = "1.0")
 void periodicWorkflow();
}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
 void activity1();
}

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void periodicWorkflow() {
 callPeriodicActivity(0);
 }

 @Asynchronous
 private void callPeriodicActivity(int count,
 Promise<?>... waitFor) {
 if (count == 100) {
 return;
 }

Contesto di decisione Versione API 2021-04-28 106

AWS Flow Framework per Java Guida per gli sviluppatori

 PeriodicActivityClient client = new PeriodicActivityClientImpl();
 // call activity
 Promise<Void> activityCompletion = client.activity1();

 Promise<Void> timer = clock.createTimer(3600);

 // Repeat the activity either after 1 hour or after previous activity run
 // if it takes longer than 1 hour
 callPeriodicActivity(count + 1, timer, activityCompletion);
 }
}

public class PeriodicActivityImpl implements PeriodicActivity
{
@Override
 public void activity1() {
 ...
 }
}

Nel listato precedente, il metodo asincrono callPeriodicActivity chiama activity1 e quindi
crea un timer utilizzando la classe AsyncDecisionContext corrente. Passa l'oggetto Promise
restituito come argomento a una chiamata ricorsiva a se stesso. Questa chiamata attende fino
all'attivazione del timer (1 ora i questo esempio) prima dell'esecuzione.

Contesto di esecuzione di attività

Esattamente come DecisionContext fornisce informazioni di contesto quando un task di decisione
è in corso di elaborazione, ActivityExecutionContext fornisce informazioni di contesto simili
durante l'elaborazione di un task di attività. Questo contesto è disponibile per il tuo codice delle
attività mediante la classe ActivityExecutionContextProviderImpl.

ActivityExecutionContextProvider provider
 = new ActivityExecutionContextProviderImpl();
ActivityExecutionContext aec = provider.getActivityExecutionContext();

Utilizzando ActivityExecutionContext, puoi eseguire le seguenti operazioni:

Contesto di esecuzione di attività Versione API 2021-04-28 107

AWS Flow Framework per Java Guida per gli sviluppatori

Heartbeat di un'attività a esecuzione prolungata

Se l'attività è di lunga durata, deve segnalarne periodicamente l'avanzamento ad Amazon SWF per
informarlo che l'attività sta ancora facendo progressi. In assenza di tale heartbeat, è possibile che
si verifichi il timeout del task se un timeout di heartbeat è stato impostato alla registrazione del tipo
di attività o durante la pianificazione dell'attività. Per inviare un heartbeat, puoi utilizzare il metodo
recordActivityHeartbeat su ActivityExecutionContext. L'heartbeat fornisce inoltre un
meccanismo per annullare le attività in corso. Per informazioni dettagliate e un esempio, consulta la
sezione Gestione errori.

Ottenimento dei dettagli del task di attività

Se lo desideri, puoi ottenere tutti i dettagli dell'attività che sono stati trasmessi da Amazon SWF
quando l'esecutore ha ricevuto l'attività. Sono incluse le informazioni relative agli input al task,
il tipo di task, il token del task, ecc. Se desideri implementare un'attività che viene completata
manualmente, ad esempio da un'azione umana, devi utilizzare il per recuperare il token dell'attività e
passarlo ActivityExecutionContext al processo che alla fine completerà l'attività. Per ulteriori
informazioni, consulta la sezione su Completamento manuale della attività.

Ottieni l'oggetto client Amazon SWF utilizzato dall'esecutore

L'oggetto client Amazon SWF utilizzato dall'esecutore può essere recuperato chiamando method on.
getService ActivityExecutionContext Ciò è utile se desideri effettuare una chiamata diretta
al servizio Amazon SWF.

Esecuzioni del flusso di lavoro figlio

Negli esempi riportati finora, abbiamo iniziato l'esecuzione del flusso di lavoro direttamente da
un'applicazione. Tuttavia, un'esecuzione del flusso di lavoro può essere avviata dall'interno di un
flusso di lavoro chiamando il metodo del punto di ingresso del flusso di lavoro sul client generato.
Quando un'esecuzione del flusso di lavoro viene avviata dal contesto di un'altra esecuzione del flusso
di lavoro viene chiamata esecuzione del flusso di lavoro figlio. Questa operazione ti permette di
eseguire il refactoring dei flussi di lavoro complessi in unità più piccole e condividerle potenzialmente
su diversi flussi di lavoro. Ad esempio, puoi creare un flusso di elaborazione dei pagamenti e
chiamarlo da un flusso di lavoro di elaborazione di un ordine.

Da un punto di vista semantico, l'esecuzione del flusso di lavoro figlio si comporta analogamente al
flusso di lavoro standalone tranne che per le seguenti caratteristiche:

Esecuzioni del flusso di lavoro figlio Versione API 2021-04-28 108

AWS Flow Framework per Java Guida per gli sviluppatori

1. Quando il flusso di lavoro principale termina a causa di un'azione esplicita da parte dell'utente, ad
esempio chiamando l'API Amazon SWFTerminateWorkflowExecution, o viene interrotto a
causa di un timeout, il destino dell'esecuzione del flusso di lavoro secondario sarà determinato
da una policy secondaria. Puoi impostare la policy figlio in modo che termini, annulli o abbandoni
(mantenere in esecuzione) le esecuzioni del flusso di lavoro figlio.

2. L'output del flusso di lavoro figlio (valore restituito del metodo del punto di ingresso) può essere
utilizzato dall'esecuzione del flusso di lavoro padre come l'oggetto Promise<T> restituito da un
metodo asincrono. Ciò è diverso dalle esecuzioni autonome in cui l'applicazione deve ottenere
l'output utilizzando Amazon SWF. APIs

Nell'esempio seguente, il flusso di lavoro OrderProcessor crea un flusso di lavoro figlio
PaymentProcessor:

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface OrderProcessor {

 @Execute(version = "1.0")
 void processOrder(Order order);
}

public class OrderProcessorImpl implements OrderProcessor {
 PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();

 @Override
 public void processOrder(Order order) {
 float amount = order.getAmount();
 CardInfo cardInfo = order.getCardInfo();

 PaymentProcessorClient childWorkflowClient = factory.getClient();
 childWorkflowClient.processPayment(amount, cardInfo);
 }

}

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 10)
public interface PaymentProcessor {

Esecuzioni del flusso di lavoro figlio Versione API 2021-04-28 109

AWS Flow Framework per Java Guida per gli sviluppatori

 @Execute(version = "1.0")
 void processPayment(float amount, CardInfo cardInfo);

}

public class PaymentProcessorImpl implements PaymentProcessor {
 PaymentActivitiesClient activitiesClient = new PaymentActivitiesClientImpl();

 @Override
 public void processPayment(float amount, CardInfo cardInfo) {
 Promise<PaymentType> payType = activitiesClient.getPaymentType(cardInfo);
 switch(payType.get()) {
 case Visa:
 activitiesClient.processVisa(amount, cardInfo);
 break;
 case Amex:
 activitiesClient.processAmex(amount, cardInfo);
 break;
 default:
 throw new UnSupportedPaymentTypeException();
 }
 }

}

@Activities(version = "1.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 3600,
 defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PaymentActivities {

 PaymentType getPaymentType(CardInfo cardInfo);

 void processVisa(float amount, CardInfo cardInfo);

 void processAmex(float amount, CardInfo cardInfo);

}

Flussi di lavoro continui
In alcuni casi d'uso, può servire un flusso di lavoro di durata lunga o eterna, ad esempio uno che
monitori l'integrità di una flotta di server.

Flussi di lavoro continui Versione API 2021-04-28 110

AWS Flow Framework per Java Guida per gli sviluppatori

Note

Poiché Amazon SWF conserva l'intera cronologia dell'esecuzione di un flusso di lavoro, la
cronologia continuerà a crescere nel tempo. Il framework recupera la cronologia da Amazon
SWF quando esegue una riproduzione; questo può diventare costoso se le dimensioni della
cronologia sono troppo grandi. Nei flussi di lavoro di lunga durata o continui, devi chiudere
periodicamente l'esecuzione in corso e avviarne una nuova per poter proseguire.

Questo è un proseguimento logico dell'esecuzione del flusso di lavoro. A questo scopo si può
usare un self client generato. Nell'implementazione del flusso di lavoro, basta chiamare il metodo
@Execute sul self client. Una volta completata l'esecuzione corrente, il framework avvia una nuova
esecuzione utilizzando lo stesso ID del flusso di lavoro.

Puoi anche proseguire l'esecuzione chiamando il metodo continueAsNewOnCompletion nel
GenericWorkflowClient che puoi recuperare dal DecisionContext corrente. Ad esempio,
la seguente implementazione del flusso di lavoro imposta un timer perché si attivi dopo un giorno e
chiama il suo punto di ingresso per avviare una nuova esecuzione.

public class ContinueAsNewWorkflowImpl implements ContinueAsNewWorkflow {

 private DecisionContextProvider contextProvider
 = new DecisionContextProviderImpl();

 private ContinueAsNewWorkflowSelfClient selfClient
 = new ContinueAsNewWorkflowSelfClientImpl();

 private WorkflowClock clock
 = contextProvider.getDecisionContext().getWorkflowClock();

 @Override
 public void startWorkflow() {
 Promise<Void> timer = clock.createTimer(86400);
 continueAsNew(timer);
 }

 @Asynchronous
 void continueAsNew(Promise<Void> timer) {
 selfClient.startWorkflow();
 }

Flussi di lavoro continui Versione API 2021-04-28 111

AWS Flow Framework per Java Guida per gli sviluppatori

}

Quando un flusso di lavoro si chiama ricorsivamente, il framework chiude il flusso di lavoro in corso
al completamento dei task in sospeso e avvia una nuova esecuzione. Ricorda che fino a quando ci
sono task in sospeso, l'esecuzione corrente non può essere chiusa. La nuova esecuzione non eredita
automaticamente la cronologia o i dati da quella originale; se vuoi esportare qualche stato sulla nuova
esecuzione, dovrai trasferirlo esplicitamente come input.

Impostazione della priorità delle attività in Amazon SWF

Per impostazione predefinita, i task in un elenco di task sono consegnati in base alla relativa ora di
arrivo. Per quanto possibile, i task pianificati per primi vengono eseguiti per primi. Impostando una
priorità opzionale, puoi dare priorità a determinate attività: Amazon SWF cercherà di fornire attività
con priorità più alta in un elenco di attività prima di quelle con priorità inferiore.

Puoi impostare priorità di task per flussi di lavoro e attività. La priorità di task di un flusso di lavoro
non ha alcuna incidenza sulla priorità di task di attività che pianifica e nemmeno sui flussi di lavoro
figlio che avvia. La priorità predefinita per un'attività o un flusso di lavoro viene impostata (da te o
da Amazon SWF) durante la registrazione e la priorità dell'attività registrata viene sempre utilizzata
a meno che non venga sostituita durante la pianificazione dell'attività o l'avvio di un'esecuzione del
flusso di lavoro.

I valori della priorità di task possono andare da "-2147483648" a "2147483647", con i numeri più alti
indicanti la priorità più elevata. Se non imposti la priorità di task per un'attività o un flusso di lavoro,
verrà assegnata la priorità zero ("0").

Argomenti

• Impostazione della priorità di task per flussi di lavoro

• Impostazione della priorità di task per attività

Impostazione della priorità di task per flussi di lavoro

Puoi impostare la priorità di task per un flusso di lavoro durante la registrazione o l'avvio dello stesso.
La priorità di task impostata alla registrazione del flusso di lavoro è utilizzata come impostazione di
default per qualsiasi esecuzione di flusso di lavoro di quel tipo, a meno che non venga sovrascritta
all'avvio dell'esecuzione di flusso di lavoro.

Impostazione della priorità delle attività Versione API 2021-04-28 112

AWS Flow Framework per Java Guida per gli sviluppatori

Per registrare un tipo di flusso di lavoro con una priorità di attività predefinita, imposta
l'defaultTaskPriorityopzione in WorkflowRegistrationOptionsquando lo dichiari:

@Workflow
@WorkflowRegistrationOptions(
 defaultTaskPriority = 10,
 defaultTaskStartToCloseTimeoutSeconds = 240)
public interface PriorityWorkflow
{
 @Execute(version = "1.0")
 void startWorkflow(int a);
}

Puoi anche impostare taskPriority per un flusso di lavoro quando avvii quest'ultimo, sovrascrivendo la
priorità di task (di default) registrata.

StartWorkflowOptions priorityWorkflowOptions
 = new StartWorkflowOptions().withTaskPriority(10);

PriorityWorkflowClientExternalFactory cf
 = new PriorityWorkflowClientExternalFactoryImpl(swfService, domain);

priority_workflow_client = cf.getClient();

priority_workflow_client.startWorkflow(
 "Smith, John", priorityWorkflowOptions);

Puoi inoltre impostare la priorità di task all'avvio di un flusso di lavoro figlio o quando
si continua un flusso di lavoro come nuovo. Ad esempio, è possibile impostare
l'opzione ContinueAsNewWorkflowExecutionParametersTaskPriority in o in.
StartChildWorkflowExecutionParameters

Impostazione della priorità di task per attività

Puoi impostare la priorità di task per un attività durante la registrazione o la pianificazione della
stessa. La priorità di task impostata quando si registra un tipo di attività è utilizzata come priorità di
default all'esecuzione dell'attività, a meno che non venga sovrascritta quando si pianifica l'attività.

Per registrare un tipo di attività con una priorità di attività predefinita, imposta
l'defaultTaskPriorityopzione in ActivityRegistrationOptionsquando la dichiari:

Impostazione della priorità di task per attività Versione API 2021-04-28 113

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/WorkflowRegistrationOptions.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/ContinueAsNewWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/StartChildWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/ActivityRegistrationOptions.html

AWS Flow Framework per Java Guida per gli sviluppatori

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskPriority = 10,
 defaultTaskStartToCloseTimeoutSeconds = 120)
public interface ImportantActivities {
 int doSomethingImportant();
}

Puoi anche impostare taskPriority per un'attività durante la pianificazione, sovrascrivendo la priorità di
task (di default) registrata.

ActivitySchedulingOptions activityOptions = new
 ActivitySchedulingOptions.withTaskPriority(10);

ImportantActivitiesClient activityClient = new ImportantActivitiesClientImpl();

activityClient.doSomethingImportant(activityOptions);

DataConverters

Quando l'implementazione di flusso di lavoro chiama un'attività remota, l'input passato e il risultato
dell'esecuzione dell'attività devono essere serializzati per essere trasmessi. Il framework utilizza
la DataConverter classe per questo scopo. Si tratta di una classe astratta che puoi implementare
per fornire un serializzatore personalizzato. Nel framework viene fornita un'implementazione
predefinita basata sul serializzatore Jackson. JsonDataConverter Per ulteriori dettagli, consulta
la documentazione di AWS SDK per Java. Fai riferimento alla documentazione del processore
Jackson JSON per informazioni dettagliate sul modo in cui Jackson esegue la serializzazione e sulle
annotazioni che possono essere utilizzate per modificarla. Il formato di trasmissione è considerato
come parte del contratto. Di conseguenza, puoi specificare una classe DataConverter sulle
interfacce di attività e di flusso di lavoro impostando la proprietà DataConverter delle annotazioni
@Activities e @Workflow.

Il framework creerà oggetti del tipo DataConverter specificato sull'annotazione @Activities
per serializzare gli input all'attività e per deserializzarne il risultato. Analogamente, gli oggetti del
tipo DataConverter specificato sull'annotazione @Workflow saranno utilizzati per serializzare i
parametri che passi al flusso di lavoro e, nel caso di un flusso di lavoro figlio, per deserializzare il
risultato. Oltre agli input, il framework trasmette anche dati aggiuntivi ad Amazon SWF, ad esempio

DataConverters Versione API 2021-04-28 114

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html

AWS Flow Framework per Java Guida per gli sviluppatori

i dettagli delle eccezioni, il serializzatore del flusso di lavoro verrà utilizzato anche per serializzare
questi dati.

Puoi anche fornire un'istanza di DataConverter se non vuoi che venga creata automaticamente
dal framework. I client generati hanno overload di costruttore che accettano un oggetto
DataConverter.

Se non specifichi un tipo di DataConverter e non passi un oggetto DataConverter,
JsonDataConverter sarà utilizzato per impostazione predefinita.

Passaggio di dati a metodi asincroni

Argomenti

• Passaggio di raccolte e mappe a metodi asincroni

• impostabile <T>

• @NoWait

• Promise <Void>

• AndPromise e OrPromise

L'utilizzo di Promise<T> è stato descritto nelle sezioni precedenti. In questa, vengono presentati
alcuni casi d'uso avanzati di Promise<T>.

Passaggio di raccolte e mappe a metodi asincroni

Il framework supporta il passaggio di matrici, raccolte e mappe come tipi Promise a metodi
asincroni. Ad esempio, un metodo asincrono può accettare Promise<ArrayList<String>> come
argomento come mostrato nel listato seguente.

@Asynchronous
public void printList(Promise<List<String>> list) {
 for (String s: list.get()) {
 activityClient.printActivity(s);
 }
}

Sul piano semantico, il comportamento è quello di qualsiasi altro parametro di tipo Promise e il
metodo asincrono attenderà fino a che la raccolta diventa disponibile prima di avviare l'esecuzione.

Passaggio di dati a metodi asincroni Versione API 2021-04-28 115

AWS Flow Framework per Java Guida per gli sviluppatori

Se i membri di una raccolta sono oggetti Promise, il framework può attendere che tutti i membri
diventino pronti come mostrato nel frammento seguente. In questo modo, il metodo asincrono attende
che ogni membro della raccolta diventi disponibile.

@Asynchronous
public void printList(@Wait List<Promise<String>> list) {
 for (Promise<String> s: list) {
 activityClient.printActivity(s);
 }
}

Nota che l'annotazione @Wait deve essere utilizzata nel parametro per indicare che contiene oggetti
Promise.

Considera inoltre che l'attività printActivity accetta un argomento String ma il metodo
corrispondente nel client generato accetta Promise<String>. Stiamo chiamando il metodo sul client e
non richiamando il metodo dell'attività direttamente.

impostabile <T>

Settable<T> è un tipo derivato di Promise<T> che fornisce un metodo set con cui impostare
manualmente il valore di un oggetto Promise. Ad esempio, il seguente flusso di lavoro attende la
ricezione di un segnale attendendo Settable<?>, impostato nel metodo del segnale:

public class MyWorkflowImpl implements MyWorkflow{
 final Settable<String> result = new Settable<String>();

 //@Execute method
 @Override
 public Promise<String> start() {
 return done(result);
 }

 //Signal
 @Override
 public void manualProcessCompletedSignal(String data) {
 result.set(data);
 }

 @Asynchronous
 public Promise<String> done(Settable<String> result){
 return result;

impostabile <T> Versione API 2021-04-28 116

AWS Flow Framework per Java Guida per gli sviluppatori

 }
}

Settable<?> può inoltre essere concatenato a un'altra promessa alla volta. Puoi utilizzare
AndPromise e OrPromise per raggruppare le promesse. Puoi annullare la concatenazione
di Settable chiamando il metodo unchain(). Quando concatenato, Settable<?> diventa
automaticamente pronto quando la promessa a cui è concatenato diventa pronta. La concatenazione
è particolarmente utile quando desideri utilizzare una promessa restituita dall'ambito di un metodo
doTry() in altre parti del programma. Poiché TryCatchFinally viene utilizzata come classe
annidata, non è possibile dichiarare una Promise<> nell'ambito del genitore e impostarla. doTry()
Questo perché Java richiede variabili che devono essere dichiarate nell'ambito padre e utilizzate in
classi nidificate per essere contrassegnate come final. Per esempio:

@Asynchronous
public Promise<String> chain(final Promise<String> input) {
 final Settable<String> result = new Settable<String>();

 new TryFinally() {

 @Override
 protected void doTry() throws Throwable {
 Promise<String> resultToChain = activity1(input);
 activity2(resultToChain);

 // Chain the promise to Settable
 result.chain(resultToChain);
 }

 @Override
 protected void doFinally() throws Throwable {
 if (result.isReady()) { // Was a result returned before the exception?
 // Do cleanup here
 }
 }
 };

 return result;
}

Settable può essere concatenato a una promessa alla volta. Puoi annullare la concatenazione di
Settable chiamando il metodo unchain().

impostabile <T> Versione API 2021-04-28 117

AWS Flow Framework per Java Guida per gli sviluppatori

@NoWait

Quando passi un oggetto Promise a un metodo asincrono, per impostazione predefinita il framework
attende che gli oggetti Promise diventino pronti prima di eseguire il metodo (ad eccezione dei tipi di
raccolta). Puoi eseguire l'override di questo comportamento utilizzando l'annotazione @NoWait sui
parametri nella dichiarazione del metodo asincrono. Ciò è utile se passi Settable<T>, che verrà
impostato dal metodo asincrono stesso.

Promise <Void>

Le dipendenze nei metodi asincroni sono implementate passando l'oggetto Promise restituito da un
metodo come argomento a un altro metodo. Possono tuttavia esserci casi in cui vuoi che un metodo
restituisca void e che altri metodi asincroni siano eseguiti dopo il completamento di quel metodo.
Per quei casi, puoi utilizzare Promise<Void> come tipo restituito del metodo. La classe Promise
fornisce un metodo Void statico che puoi utilizzare per creare un oggetto Promise<Void>. Questo
oggetto Promise diventerà pronto al termine dell'esecuzione del metodo asincrono. Puoi passare
questo oggetto Promise a un altro metodo asincrono come qualsiasi altro oggetto Promise. Se
utilizzi Settable<Void>, chiama il metodo set con null per renderlo pronto.

AndPromise e OrPromise

AndPromise e OrPromise ti consentono di raggruppare molteplici oggetti Promise<> in un'unica
promessa logica. Un oggetto AndPromise diventa pronto quanto tutte le promesse utilizzate per
costruirlo diventano pronte. Un oggetto OrPromise diventa pronto quando qualsiasi promessa
nella raccolta di promesse utilizzata per costruirla diventa pronta. Puoi chiamare getValues() su
AndPromise e OrPromise per recuperare l'elenco di valori delle promesse costituenti.

Testabilità e inserimento delle dipendenze

Argomenti

• Integrazione di Spring

• JUnit Integrazione

Il framework è progettato per essere compatibile con l'Inversione del controllo (Inversion of Control,
IoC). Le implementazioni di flussi di lavoro e di attività, nonché i lavoratori e gli oggetti di contesto
forniti dal framework, si possono configurare e creare come istanze tramite contenitori come Spring.

@NoWait Versione API 2021-04-28 118

AWS Flow Framework per Java Guida per gli sviluppatori

Il framework offre un'integrazione immediata con Spring Framework. Inoltre, JUnit è stata fornita
l'integrazione con per le implementazioni del flusso di lavoro e delle attività di unit testing.

Integrazione di Spring

Il pacchetto com.amazonaws.services.simpleworkflow.flow.spring contiene classi che semplificano
l'utilizzo di Spring framework nelle applicazioni. Comprendono lavoratori di flusso di lavoro
e di attività compatibili con Scope e Spring: WorkflowScope, SpringWorkflowWorker e
SpringActivityWorker. Queste classi ti permettono di configurare le implementazioni di attività e
flusso di lavoro, nonché i lavoratori interamente tramite Spring.

WorkflowScope

WorkflowScope è una implementazione in ambito Spring personalizzata fornita dal framework. Lo
scope ti permette di creare oggetti nel contenitore Spring la cui durata è limitata a quella di un task di
decisione. I bean nello scope sono creati come istanze ogni volta che un lavoratore riceve un task di
decisione. Devi utilizzare questo scope per i bean di implementazione del flusso di lavoro e per ogni
altro bean da cui dipende. Per i bean di implementazione del flusso di lavoro non si devono usare gli
scopes singleton e prototype forniti da Spring, perché il framework richiede la creazione di un nuovo
bean per ciascun task di decisione. In caso contrario si verifica un comportamento inatteso.

Il seguente esempio mostra un frammento di codice della configurazione Spring che registra il
WorkflowScope e poi lo utilizza per configurare un bean di implementazione del flusso di lavoro e
un bean di client dell'attività.

<!-- register AWS Flow Framework for Java WorkflowScope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

Integrazione di Spring Versione API 2021-04-28 119

AWS Flow Framework per Java Guida per gli sviluppatori

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

La riga di configurazione: <aop:scoped-proxy proxy-target-class="false" />, utilizzata
nella configurazione del bean workflowImpl, è obbligatoria perché WorkflowScope non supporta
il proxy tramite CGLIB. Devi utilizzare questa configurazione per tutti i bean in WorkflowScope
collegati a un altro bean in uno scope diverso. In questo caso, il bean workflowImpl deve essere
collegato a un bean del lavoratore di flusso di lavoro in scope singleton (vedi l'esempio completo in
basso).

Puoi approfondire l'utilizzo degli scope personalizzati nella documentazione di Spring Framework.

Lavoratori compatibili con Spring

Quando usi Spring, devi utilizzare le classi di lavoratori compatibili con Spring fornite dal framework:
SpringWorkflowWorker e SpringActivityWorker. Questi lavoratori possono essere inseriti
in un'applicazione tramite Spring, come illustrato nel prossimo esempio. I lavoratori compatibili
con Spring implementano l'interfaccia SmartLifecycle di Spring e per impostazione predefinita
iniziano automaticamente a eseguire il polling dei task quando viene avviato il contesto Spring. Puoi
disattivare questa funzionalità impostando la proprietà disableAutoStartup del lavoratore su
true.

L'esempio seguente mostra come configurare un decisore. Questo esempio utilizza
le interfacce MyActivities e MyWorkflow (non mostrate qui) e le relative
implementazioni, MyActivitiesImpl e MyWorkflowImpl. Le interfacce client e le
implementazioni generate sono MyWorkflowClient/MyWorkflowClientImpl e
MyActivitiesClient/MyActivitiesClientImpl (anch'esse non mostrate qui).

Il client delle attività viene introdotto nell'implementazione del flusso di lavoro utilizzando la
funzionalità di collegamento automatico di Spring:

public class MyWorkflowImpl implements MyWorkflow {
 @Autowired
 public MyActivitiesClient client;

 @Override

Integrazione di Spring Versione API 2021-04-28 120

AWS Flow Framework per Java Guida per gli sviluppatori

 public void start() {
 client.activity1();
 }
}

La configurazione Spring per il decisore è la seguente:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/
spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>
 <context:annotation-config/>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- Amazon SWF client -->
 <bean id="swfClient"

Integrazione di Spring Versione API 2021-04-28 121

AWS Flow Framework per Java Guida per gli sviluppatori

 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <!-- workflow worker -->
 <bean id="workflowWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringWorkflowWorker">
 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />
 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 </bean>
</beans>

Poiché SpringWorkflowWorker è completamente configurato in Spring e avvia automaticamente il
polling quando il contesto Spring viene inizializzato, il processo host per il decisore è semplice:

public class WorkflowHost {
 public static void main(String[] args){
 ApplicationContext context
 = new FileSystemXmlApplicationContext("resources/spring/
WorkflowHostBean.xml");
 System.out.println("Workflow worker started");
 }

Integrazione di Spring Versione API 2021-04-28 122

AWS Flow Framework per Java Guida per gli sviluppatori

}

Analogamente, il lavoratore di attività può essere configurato nel modo seguente:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/
spring-aop-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean

 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>

 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}"/>
 <constructor-arg value="{AWS.Secret.Key}"/>
 </bean>

 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- Amazon SWF client -->
 <bean id="swfClient"
 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />

Integrazione di Spring Versione API 2021-04-28 123

AWS Flow Framework per Java Guida per gli sviluppatori

 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities impl -->
 <bean name="activitiesImpl" class="asadj.spring.test.MyActivitiesImpl">
 </bean>

 <!-- activity worker -->
 <bean id="activityWorker"
 class="com.amazonaws.services.simpleworkflow.flow.spring.SpringActivityWorker">
 <constructor-arg ref="swfClient" />
 <constructor-arg value="domain1" />
 <constructor-arg value="tasklist1" />
 <property name="registerDomain" value="true" />
 <property name="domainRetentionPeriodInDays" value="1" />
 <property name="activitiesImplementations">
 <list>
 <ref bean="activitiesImpl" />
 </list>
 </property>
 </bean>
</beans>

Il processo di hosting del lavoratore di attività è simile a quello del decisore:

public class ActivityHost {
 public static void main(String[] args) {
 ApplicationContext context = new FileSystemXmlApplicationContext(
 "resources/spring/ActivityHostBean.xml");
 System.out.println("Activity worker started");
 }
}

Contesto di decisione dell'introduzione

Se l'implementazione del flusso di lavoro dipende dagli oggetti del contesto, puoi introdurli facilmente
utilizzando Spring come nel caso precedente. Il framework registra automaticamente i bean relativi
al contesto nel contenitore Spring. Ad esempio, nel frammento di codice seguente, i diversi oggetti
del contesto sono stati collegati automaticamente. Non è richiesta nessun'altra configurazione Spring
degli oggetti del contesto.

public class MyWorkflowImpl implements MyWorkflow {

Integrazione di Spring Versione API 2021-04-28 124

AWS Flow Framework per Java Guida per gli sviluppatori

 @Autowired
 public MyActivitiesClient client;
 @Autowired
 public WorkflowClock clock;
 @Autowired
 public DecisionContext dcContext;
 @Autowired
 public GenericActivityClient activityClient;
 @Autowired
 public GenericWorkflowClient workflowClient;
 @Autowired
 public WorkflowContext wfContext;
 @Override
 public void start() {
 client.activity1();
 }
}

Se vuoi configurare gli oggetti del contesto nell'implementazione del flusso di lavoro
tramite la configurazione Spring XML, utilizza i nomi di bean dichiarati nella classe
WorkflowScopeBeanNames del pacchetto com.amazonaws.services.simpleworkflow.flow.spring.
Per esempio:

<!-- workflow implementation -->
<bean id="workflowImpl" class="asadj.spring.test.MyWorkflowImpl" scope="workflow">
 <property name="client" ref="activitiesClient"/>
 <property name="clock" ref="workflowClock"/>
 <property name="activityClient" ref="genericActivityClient"/>
 <property name="dcContext" ref="decisionContext"/>
 <property name="workflowClient" ref="genericWorkflowClient"/>
 <property name="wfContext" ref="workflowContext"/>
 <aop:scoped-proxy proxy-target-class="false" />
</bean>

In alternativa, puoi introdurre un DecisionContextProvider nel bean di implementazione del
flusso di lavoro e utilizzarlo per creare il contesto. Può essere utile se vuoi fornire implementazioni
personalizzate del provider e del contesto.

Introdurre le risorse nelle attività

Puoi creare come istanze e configurare implementazioni di attività utilizzando un contenitore di
inversione di controllo (Inversion of Control, IoC) e introdurre facilmente risorse, come le connessioni

Integrazione di Spring Versione API 2021-04-28 125

AWS Flow Framework per Java Guida per gli sviluppatori

di database, dichiarandole come proprietà della classe di implementazione delle attività. Queste
risorse verranno in genere assegnate come singleton. Ricorda che le implementazioni di attività sono
chiamate dal lavoratore su più thread. Di conseguenza, l'accesso alle risorse condivise deve essere
sincronizzato.

JUnit Integrazione

Il framework fornisce JUnit estensioni e implementazioni di test degli oggetti di contesto, come un
orologio di test, che è possibile utilizzare per scrivere ed eseguire test unitari. JUnit Con queste
estensioni, puoi testare localmente e inline l'implementazione del flusso di lavoro.

Scrivere un semplice unit test

Per scrivere test per il flusso di lavoro, utilizza la classe WorkflowTest nel pacchetto
com.amazonaws.services.simpleworkflow.flow.junit. Questa classe è un' JUnit
MethodRuleimplementazione specifica del framework ed esegue il codice del flusso di lavoro
localmente, chiamando le attività in linea anziché tramite Amazon SWF. Questo ti dà la flessibilità per
eseguire i test con la frequenza che preferisci senza alcun addebito.

Per utilizzare questa classe, dichiara semplicemente un campo di tipo WorkflowTest e arricchiscilo
con l'annotazione @Rule. Prima di eseguire i test, crea un nuovo oggetto WorkflowTest e aggiungi
ad esso le implementazioni di attività e del flusso di lavoro. Puoi utilizzare la client factory del flusso
di lavoro generata per creare un client e avviare un'esecuzione del flusso di lavoro. Il framework
fornisce anche un JUnit runner personalizzato, FlowBlockJUnit4ClassRunner da utilizzare per i
test del flusso di lavoro. Per esempio:

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory
 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {
 trace = new ArrayList<String>();
 // Register activity implementation to be used during test run

JUnit Integrazione Versione API 2021-04-28 126

AWS Flow Framework per Java Guida per gli sviluppatori

 BookingActivities activities = new BookingActivitiesImpl(trace);
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);
 }

 @After
 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);
 }
}

Puoi anche specificare un elenco separato di task per ciascuna implementazione di attività aggiunta
a WorkflowTest. Ad esempio, se hai un'implementazione del flusso di lavoro che pianifica attività in
elenchi di task specifici dell'host, puoi registrare l'attività nell'elenco di task di ciascun host:

for (int i = 0; i < 10; i++) {
 String hostname = "host" + i;
 workflowTest.addActivitiesImplementation(hostname,
 new ImageProcessingActivities(hostname));
}

Tieni presente che il codice in @Test è asincrono. Devi quindi utilizzare il client di flusso di lavoro
asincrono per avviare un'esecuzione. Per verificare i risultati dei test, viene anche fornita una classe
di aiuto AsyncAssert. Questa classe ti permette di attendere che le promesse siano pronte prima di
verificare i risultati. In questo esempio, attendiamo che sia pronto il risultato dell'esecuzione del flusso
di lavoro prima di verificare l'output del test.

Se utilizzi Spring, si può usare la classe SpringWorkflowTest invece di quella WorkflowTest.
SpringWorkflowTest fornisce proprietà che puoi utilizzare per configurare facilmente le
implementazioni di attività e di flusso di lavoro tramite la configurazione di Spring. Esattamente

JUnit Integrazione Versione API 2021-04-28 127

AWS Flow Framework per Java Guida per gli sviluppatori

come per i lavoratori compatibili con Spring, devi utilizzare WorkflowScope per configurare i bean
di implementazione del flusso di lavoro. In questo modo siamo sicuri che venga creato un nuovo
bean di implementazione del flusso di lavoro per ogni task di decisione. Assicurati di configurare
questi bean con l'impostazione scoped-proxy proxy-target-class impostata su. false Consulta la
sezione Integrazione di Spring per maggiori dettagli. La configurazione Spring di esempio mostrata
nella sezione Integrazione di Spring può essere modificata per testare il flusso di lavoro utilizzando
SpringWorkflowTest:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://
www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframe
work.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- register custom workflow scope -->
 <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
 <property name="scopes">
 <map>
 <entry key="workflow">
 <bean
 class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
 </entry>
 </map>
 </property>
 </bean>
 <context:annotation-config />
 <bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
 <constructor-arg value="{AWS.Access.ID}" />
 <constructor-arg value="{AWS.Secret.Key}" />
 </bean>
 <bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
 <property name="socketTimeout" value="70000" />
 </bean>

 <!-- Amazon SWF client -->
 <bean id="swfClient"

JUnit Integrazione Versione API 2021-04-28 128

AWS Flow Framework per Java Guida per gli sviluppatori

 class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
 <constructor-arg ref="accesskeys" />
 <constructor-arg ref="clientConfiguration" />
 <property name="endpoint" value="{service.url}" />
 </bean>

 <!-- activities client -->
 <bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
 scope="workflow">
 </bean>

 <!-- workflow implementation -->
 <bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl"
 scope="workflow">
 <property name="client" ref="activitiesClient" />
 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <!-- WorkflowTest -->
 <bean id="workflowTest"
 class="com.amazonaws.services.simpleworkflow.flow.junit.spring.SpringWorkflowTest">
 <property name="workflowImplementations">
 <list>
 <ref bean="workflowImpl" />
 </list>
 </property>
 <property name="taskListActivitiesImplementationMap">
 <map>
 <entry>
 <key>
 <value>list1</value>
 </key>
 <ref bean="activitiesImplHost1" />
 </entry>
 </map>
 </property>
 </bean>
</beans>

JUnit Integrazione Versione API 2021-04-28 129

AWS Flow Framework per Java Guida per gli sviluppatori

Implementazioni di attività fittizie

Durante i test puoi usare implementazioni di attività reali, ma se vuoi eseguire unit test solo della
logica del flusso di lavoro, puoi simulare le attività. Questo avviene fornendo un'implementazione
fittizia dell'interfaccia delle attività alla classe WorkflowTest. Per esempio:

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

 @Rule
 public WorkflowTest workflowTest = new WorkflowTest();

 List<String> trace;

 private BookingWorkflowClientFactory workflowFactory
 = new BookingWorkflowClientFactoryImpl();

 @Before
 public void setUp() throws Exception {
 trace = new ArrayList<String>();
 // Create and register mock activity implementation to be used during test run
 BookingActivities activities = new BookingActivities() {

 @Override
 public void sendConfirmationActivity(int customerId) {
 trace.add("sendConfirmation-" + customerId);
 }

 @Override
 public void reserveCar(int requestId) {
 trace.add("reserveCar-" + requestId);
 }

 @Override
 public void reserveAirline(int requestId) {
 trace.add("reserveAirline-" + requestId);
 }
 };
 workflowTest.addActivitiesImplementation(activities);
 workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);
 }

 @After

JUnit Integrazione Versione API 2021-04-28 130

AWS Flow Framework per Java Guida per gli sviluppatori

 public void tearDown() throws Exception {
 trace = null;
 }

 @Test
 public void testReserveBoth() {
 BookingWorkflowClient workflow = workflowFactory.getClient();
 Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
 List<String> expected = new ArrayList<String>();
 expected.add("reserveCar-123");
 expected.add("reserveAirline-123");
 expected.add("sendConfirmation-345");
 AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);
 }
}

In alternativa, puoi fornire un'implementazione fittizia del client delle attività e introdurla
nell'implementazione del flusso di lavoro.

Testare gli oggetti contesto

Se l'implementazione del flusso di lavoro dipende dagli oggetti del contesto del framework, ad
esempio, non DecisionContext è necessario fare nulla di speciale per testare tali flussi di lavoro.
Quando viene eseguito un test tramite WorkflowTest, questo introduce automaticamente oggetti
contesto di test. Quando l'implementazione del flusso di lavoro accede agli oggetti di contesto,
ad esempio utilizzandoDecisionContextProviderImpl, otterrà l'implementazione di test.
Puoi manipolare questi oggetti contesto di test nel codice di test (metodo @Test) per creare casi
interessanti di test. Ad esempio, se il flusso di lavoro crea un timer, puoi attivarlo chiamando il
metodo clockAdvanceSeconds nella classe WorkflowTest per muovere l'orologio in avanti. Puoi
anche accelerare l'orologio per attivare i timer in anticipo rispetto al normale utilizzando la proprietà
ClockAccelerationCoefficient su WorkflowTest. Ad esempio, se il flusso di lavoro crea un
timer per un ora, puoi impostare ClockAccelerationCoefficient su 60 per attivare il timer in un
minuto. Per impostazione predefinita, ClockAccelerationCoefficient è impostato su 1.

Per ulteriori dettagli sui pacchetti com.amazonaws.services.simpleworkflow.flow.test e
com.amazonaws.services.simpleworkflow.flow.junit, consulta la documentazione AWS SDK per
Java .

JUnit Integrazione Versione API 2021-04-28 131

AWS Flow Framework per Java Guida per gli sviluppatori

Gestione errori

Argomenti

• TryCatchFinally Semantica

• Annullamento

• Annidato TryCatchFinally

Il costrutto try/catch/finally in Java semplifica la gestione degli errori ed è quindi utilizzato
diffusamente. Consente di associare gestori di errori a un blocco di codice. Internamente, ciò avviene
aggiungendo ulteriori metadati sui gestori di errori allo stack di chiamate. Quando viene generata
un'eccezione, il runtime cerca un gestore di errori associato nello stack di chiamate e lo richiama; se
non lo trova, propaga l'eccezione fino alla catena di chiamate.

Questo processo è appropriato per il codice sincrono, ma la gestione degli errori in programmi
distribuiti e asincroni è più complesso. Poiché una chiamata asincrona ritorna immediatamente,
il chiamante non è presente nello stack di chiamate quando viene eseguito il codice asincrono.
Ciò significa che le eccezioni non gestite nel codice asincrono non possono essere gestite dal
chiamante nel modo usuale. In genere, le eccezioni generate nel codice asincrono sono gestite
passando lo stato di errore a un callback che viene passato a un metodo asincrono. Se in alternativa
si utilizza Future<?>, viene restituito un errore quando tenti di accedervi. Questo processo non
è ideale in quanto il codice che riceve l'eccezione (il callback o il codice che utilizza Future<?>)
non dispone del contesto della chiamata originale e può non essere in grado di gestire l'eccezione
in modo adeguato. Inoltre, in un sistema asincrono distribuito in cui i componenti sono eseguiti
simultaneamente, possono verificarsi più errori contemporaneamente. Questi errori possono essere
di tipo e gravità differenti e devono essere gestiti in modo appropriato.

Anche la pulizia delle risorse dopo una chiamata asincrona risulta alquanto complessa. A differenza
del codice sincrono, non è possibile utilizzarlo try/catch/finally nel codice chiamante per ripulire le
risorse perché il lavoro iniziato nel blocco try potrebbe essere ancora in corso quando viene eseguito
il blocco finally.

Il framework fornisce un meccanismo che rende la gestione degli errori nel codice asincrono
distribuito simile e quasi altrettanto semplice di quella di Java. try/catch/finally

ImageProcessingActivitiesClient activitiesClient
 = new ImageProcessingActivitiesClientImpl();

Gestione errori Versione API 2021-04-28 132

AWS Flow Framework per Java Guida per gli sviluppatori

public void createThumbnail(final String webPageUrl) {

 new TryCatchFinally() {

 @Override
 protected void doTry() throws Throwable {
 List<String> images = getImageUrls(webPageUrl);
 for (String image: images) {
 Promise<String> localImage
 = activitiesClient.downloadImage(image);
 Promise<String> thumbnailFile
 = activitiesClient.createThumbnail(localImage);
 activitiesClient.uploadImage(thumbnailFile);
 }
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {

 // Handle exception and rethrow failures
 LoggingActivitiesClient logClient = new LoggingActivitiesClientImpl();
 logClient.reportError(e);
 throw new RuntimeException("Failed to process images", e);
 }

 @Override
 protected void doFinally() throws Throwable {
 activitiesClient.cleanUp();
 }
 };
}

Il funzionamento della classe TryCatchFinally e delle relative varianti, ovvero TryFinally
e TryCatch, è simile a quello dei blocchi Java try/catch/finally. Tale classe consente di
associare i gestori di eccezioni a blocchi di codice di flusso di lavoro che possono essere eseguiti
come task asincroni e remoti. Il metodo doTry() è equivalente, a livello di logica, al blocco try.
Il framework esegue automaticamente il codice in doTry(). Un elenco di oggetti Promise può
essere passato al costruttore di TryCatchFinally. Il metodo doTry sarà eseguito quanto tutti
gli oggetti Promise passati al costruttore diventano pronti. Se un'eccezione viene generata dal
codice richiamato in modo asincrono da doTry(), tutto il lavoro in sospeso in doTry() viene
annullato e doCatch() viene chiamato per gestire l'eccezione. Ad esempio, nell'elenco qui sopra,
se downloadImage genera un'eccezione, createThumbnail e uploadImage verranno annullati.

Gestione errori Versione API 2021-04-28 133

AWS Flow Framework per Java Guida per gli sviluppatori

Infine, doFinally() viene chiamato quando tutto il lavoro asincrono risulta terminato (completato,
non riuscito o annullato). Questo metodo può essere utilizzato per la pulizia delle risorse. Puoi inoltre
nidificare queste classi in base alle esigenze aziendali.

Quando un'eccezione è restituita in doCatch(), il framework fornisce uno stack di chiamate logiche
che include chiamate asincrone e remote. Ciò può rivelarsi utile per il debug, soprattutto se hai dei
metodi asincroni che chiamano altri metodi asincroni. Ad esempio, un'eccezione da downloadImage
genererà un'eccezione come quella riportata di seguito:

RuntimeException: error downloading image
 at downloadImage(Main.java:35)
 at ---continuation---.(repeated:1)
 at errorHandlingAsync$1.doTry(Main.java:24)
 at ---continuation---.(repeated:1)
…

TryCatchFinally Semantica

L'esecuzione di un programma AWS Flow Framework per Java può essere visualizzata come
un albero di rami in esecuzione simultanea. Una chiamata a un metodo asincrono, a un'attività
e a TryCatchFinally crea un nuovo ramo in tale struttura. Ad esempio, il flusso di lavoro di
elaborazione di immagini può essere rappresentato dalla struttura ad albero illustrata di seguito.

Un errore in un ramo dell'esecuzione comporterà la rimozione di quel ramo, proprio come
un'eccezione provoca la rimozione dello stack di chiamate in un programma Java. La rimozione risale
lungo il ramo di esecuzione fino a che l'errore viene gestito o viene raggiunta la radice della struttura
ad albero, nel qual caso l'esecuzione di flusso di lavoro viene terminata.

Il framework segnala gli errori che si verificano durante l'elaborazione di task come eccezioni.
Associa i gestori di eccezioni (metodi doCatch()) definiti in TryCatchFinally a tutti i task creati
dal codice nel metodo doTry() corrispondente. Se un'attività fallisce, ad esempio a causa di un

TryCatchFinally Semantica Versione API 2021-04-28 134

AWS Flow Framework per Java Guida per gli sviluppatori

timeout o di un'eccezione non gestita, verrà sollevata l'eccezione appropriata e verrà invocata la
corrispondente per gestirla. doCatch() A tal fine, il framework collabora con Amazon SWF per
propagare gli errori remoti e li resuscita come eccezioni nel contesto del chiamante.

Annullamento

Quando si verifica un'eccezione nel codice sincrono, il controllo passa direttamente al blocco catch,
ignorando il codice rimanente nel blocco try. Per esempio:

try {
 a();
 b();
 c();
}
catch (Exception e) {
 e.printStackTrace();
}

In questo codice, se b() genera un'eccezione, c() non viene mai richiamato. Facciamo un raffronto
con un flusso di lavoro:

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 activityA();
 activityB();
 activityC();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 e.printStackTrace();
 }
};

In questo caso, le chiamate a activityA, activityB e activityC hanno esito positivo e
comportano la creazione di tre task che vengono eseguiti in modo asincrono. Supponiamo che
successivamente il task per activityB restituisca un errore. Questo errore viene registrato nella
cronologia da Amazon SWF. Per gestirlo, il framework dapprima tenterà di annullare tutti gli altri task

Annullamento Versione API 2021-04-28 135

AWS Flow Framework per Java Guida per gli sviluppatori

originati nell'ambito dello stesso doTry(); in questo caso, activityA e activityC. Quanto tutti i
task risultano terminati (annullati, non riusciti o completati), il metodo doCatch() appropriato verrà
richiamato per gestire l'errore.

A differenza dell'esempio sincrono, dove c() non è mai stato eseguito, activityC è stato
richiamato e un task è stato pianificato per l'esecuzione. Di conseguenza, il framework effettuerà un
tentativo per annullarlo, ma non è garantito che tale operazione riesca. L'annullamento non è certo in
quanto l'attività può essere già stata completata, può ignorare la richiesta di annullamento o può non
riuscire a causa di un errore. Il framework garantisce tuttavia che la chiamata del metodo doCatch()
verrà effettuata solo dopo il completamento di tutti i task avviati dal metodo doTry() corrispondente.
Garantisce inoltre la chiamata di doFinally() solo dopo il completamento di tutti i task avviati
da doTry() e doCatch(). Se, ad esempio, le attività dell'esempio precedente dipendono
l'una dall'altra, ad esempio activityB dipende da activityA e activityC daactivityB,
l'annullamento activityC sarà immediato perché non è programmato in Amazon SWF fino al
activityB completamento:

new TryCatch() {

 @Override
 protected void doTry() throws Throwable {
 Promise<Void> a = activityA();
 Promise<Void> b = activityB(a);
 activityC(b);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 e.printStackTrace();
 }
};

Heartbeat dell'attività

Il meccanismo di cancellazione cooperativa di AWS Flow Framework for Java consente di annullare
senza problemi le attività in corso. Quando si avvia l'annullamento, i task bloccati o in attesa di
essere assegnati a un lavoratore vengono annullati automaticamente. Se, tuttavia, un task è già
assegnato a un lavoratore, il framework richiederà all'attività di annullarlo. L'implementazione di
attività deve gestire in modo esplicito queste richieste di annullamento. Ciò viene eseguito mediante
la segnalazione dell'heartbeat dell'attività.

Annullamento Versione API 2021-04-28 136

AWS Flow Framework per Java Guida per gli sviluppatori

La segnalazione dell'heartbeat consente all'implementazione di attività di comunicare l'avanzamento
di un task di attività in corso, il che è utile per il monitoraggio, e all'attività di verificare l'esistenza
di richieste di annullamento. Il metodo recordActivityHeartbeat genera un'eccezione
CancellationException se un annullamento è stato richiesto. L'implementazione di attività può
rilevare questa eccezione e agire sulla richiesta di annullamento oppure può ignorare la richiesta non
tenendo conto dell'eccezione. Per soddisfare la richiesta di cancellazione, l'attività deve eseguire
l'eventuale pulizia desiderata e quindi generare di nuovo CancellationException. Quando
questa eccezione viene generata a partire da un'implementazione di attività, il framework registra che
il task di attività è stato completato con lo stato annullato.

L'esempio seguente mostra un'attività che scarica ed elabora immagini. L'attività genera l'heartbeat
dopo l'elaborazione di ogni immagine e se viene richiesto l'annullamento, esegue la pulizia e genera
di nuovo l'eccezione per confermare l'annullamento.

@Override
public void processImages(List<String> urls) {
 int imageCounter = 0;
 for (String url: urls) {
 imageCounter++;
 Image image = download(url);
 process(image);
 try {
 ActivityExecutionContext context
 = contextProvider.getActivityExecutionContext();
 context.recordActivityHeartbeat(Integer.toString(imageCounter));
 } catch(CancellationException ex) {
 cleanDownloadFolder();
 throw ex;
 }
 }
}

La segnalazione dell'heartbeat dell'attività non è necessaria, ma è consigliata se l'attività è a
esecuzione prolungata o se esegue operazioni dispendiose che intendi annullare in condizioni di
errore. Devi chiamare heartbeatActivityTask periodicamente a partire dall'implementazione di
attività.

In caso di timeout dell'attività, verrà generata l'eccezione ActivityTaskTimedOutException
e getDetails sull'oggetto eccezione restituirà i dati passati all'ultima chiamata a
heartbeatActivityTask riuscita per il task di attività corrispondente. L'implementazione di flusso

Annullamento Versione API 2021-04-28 137

AWS Flow Framework per Java Guida per gli sviluppatori

di lavoro può utilizzare queste informazioni per determinare l'avanzamento prima del timeout del task
di attività.

Note

Non è consigliabile eseguire il battito cardiaco troppo frequentemente perché Amazon SWF
può limitare le richieste di heartbeat. Consulta la Amazon Simple Workflow Service Developer
Guide per conoscere i limiti imposti da Amazon SWF.

Annullamento esplicito di un task

Oltre alle condizioni di errore, vi sono altri casi in cui puoi annullare esplicitamente un task.
Ad esempio, è possibile che un'attività per l'elaborazione di pagamenti mediante una carta di
credito debba essere annullata se l'utente annulla l'ordine. Il framework ti consente di annullare
esplicitamente i task creati nell'ambito di una classe TryCatchFinally. Nell'esempio seguente, il
task di pagamento viene annullato se si riceve un segnale durante l'elaborazione del pagamento.

public class OrderProcessorImpl implements OrderProcessor {
 private PaymentProcessorClientFactory factory
 = new PaymentProcessorClientFactoryImpl();
 boolean processingPayment = false;
 private TryCatchFinally paymentTask = null;

 @Override
 public void processOrder(int orderId, final float amount) {
 paymentTask = new TryCatchFinally() {

 @Override
 protected void doTry() throws Throwable {
 processingPayment = true;

 PaymentProcessorClient paymentClient = factory.getClient();
 paymentClient.processPayment(amount);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 if (e instanceof CancellationException) {
 paymentClient.log("Payment canceled.");
 } else {

Annullamento Versione API 2021-04-28 138

https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework per Java Guida per gli sviluppatori

 throw e;
 }
 }

 @Override
 protected void doFinally() throws Throwable {
 processingPayment = false;
 }
 };

 }

 @Override
 public void cancelPayment() {
 if (processingPayment) {
 paymentTask.cancel(null);
 }
 }
}

Ricezione di notifiche relative a task annullati

Se un task viene completato quando lo stato è annullato, il framework informa la logica di flusso
di lavoro generando un'eccezione CancellationException. Se un'attività viene completata
quando lo stato è annullata, un record viene creato nella cronologia e il framework chiama il metodo
doCatch() appropriato con un'eccezione CancellationException. Come mostrato nell'esempio
precedente, quando il task di elaborazione del pagamento viene annullato, il workflow riceve
un'eccezione CancellationException.

Un'eccezione CancellationException non gestita viene propagata nel ramo di esecuzione
come avviene con qualsiasi altra eccezione. Tuttavia, il metodo doCatch() riceverà l'eccezione
CancellationException solo se non vi sono altre eccezioni nell'ambito, in quanto la priorità delle
altre eccezioni è superiore a quella dell'annullamento.

Annidato TryCatchFinally

Puoi nidificare la classe TryCatchFinally in funzione delle tue esigenze. Poiché ognuno
TryCatchFinally crea un nuovo ramo nell'albero di esecuzione, è possibile creare ambiti
annidati. Le eccezioni nell'ambito padre comporteranno tentativi di annullamento di tutti i task
avviati dalle classi TryCatchFinally nidificate nell'ambito. Tuttavia, le eccezioni in una classe
TryCatchFinally nidificata non vengono propagate automaticamente al padre. Se desideri

Annidato TryCatchFinally Versione API 2021-04-28 139

AWS Flow Framework per Java Guida per gli sviluppatori

propagare un'eccezione da una classe TryCatchFinally nidificata alla classe TryCatchFinally
che la contiene, devi generare di nuovo l'eccezione in doCatch(). In altre parole, solo le eccezioni
non gestite sono propagate, esattamente come i blocchi Java try/catch. Se annulli una classe
TryCatchFinally nidificata chiamando il metodo Cancel, la classe TryCatchFinally nidificata
verrà annullata ma non la classe TryCatchFinally che la contiene.

new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 activityA();

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 activityB();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
 };

 activityC();
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 reportError(e);
 }
};

Annidato TryCatchFinally Versione API 2021-04-28 140

AWS Flow Framework per Java Guida per gli sviluppatori

Ripetere le attività non andate a buon fine

A volte le attività non vanno a buon fine per ragioni effimere, ad esempio una perdita temporanea
della connessione. In altri casi l'attività va a buon fine, quindi il modo corretto di gestire l'errore è
spesso quello di ripetere l'attività, anche più volte.

Esiste una serie di strategie per ripetere le attività; la migliore dipende dai dettagli del flusso di lavoro.
Tali strategie rientrano in tre categorie di base:

• La retry-until-success strategia continua semplicemente a riprovare l'attività fino al suo
completamento.

• La strategia di ripetizione esponenziale aumenta esponenzialmente l'intervallo di tempo tra i
tentativi fino al completamento dell'attività o fino a quando il processo raggiunge un punto di arresto
specifico, come un numero massimo di tentativi.

• La strategia di ripetizione personalizzata decide se o come ripetere l'attività dopo ciascun tentativo
non andato a buon fine.

Le sezioni seguenti descrivono come implementare queste strategie. I lavoratori del flusso di lavoro
di esempio utilizzano tutti una singola attività, unreliableActivity, che esegue casualmente una
delle seguenti operazioni:

• Viene completata immediatamente

• Non va a buon fine intenzionalmente superando il valore di timeout

• Non va a buon fine intenzionalmente generando IllegalStateException

Retry-Until-Success Strategia

La strategia più semplice è quella di ripetere l'attività ogni volta che ha esito negativo fino al buon
esito. Il modello di base è:

1. Implementare una classe nidificata TryCatch o TryCatchFinally nel metodo del punto di
ingresso del flusso di lavoro.

2. Eseguire l'attività in doTry.

3. Se l'attività non va a buon fine, il framework chiama doCatch, che esegue nuovamente il metodo
del punto di ingresso.

4. Ripetere le fasi 2 e 3 fino al completamento con esito positivo dell'attività.

Ripetere le attività non andate a buon fine Versione API 2021-04-28 141

AWS Flow Framework per Java Guida per gli sviluppatori

Il seguente flusso di lavoro implementa la retry-until-success strategia. L'interfaccia del
flusso di lavoro è implementata in RetryActivityRecipeWorkflow e ha un metodo,
runUnreliableActivityTillSuccess, che è il punto di ingresso del flusso di lavoro. Il
lavoratore del flusso di lavoro viene implementato in RetryActivityRecipeWorkflowImpl, nel
seguente modo:

public class RetryActivityRecipeWorkflowImpl
 implements RetryActivityRecipeWorkflow {

 @Override
 public void runUnreliableActivityTillSuccess() {
 final Settable<Boolean> retryActivity = new Settable<Boolean>();

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 Promise<Void> activityRanSuccessfully
 = client.unreliableActivity();
 setRetryActivityToFalse(activityRanSuccessfully, retryActivity);
 }

 @Override
 protected void doCatch(Throwable e) throws Throwable {
 retryActivity.set(true);
 }
 };
 restartRunUnreliableActivityTillSuccess(retryActivity);
 }

 @Asynchronous
 private void setRetryActivityToFalse(
 Promise<Void> activityRanSuccessfully,
 @NoWait Settable<Boolean> retryActivity) {
 retryActivity.set(false);
 }

 @Asynchronous
 private void restartRunUnreliableActivityTillSuccess(
 Settable<Boolean> retryActivity) {
 if (retryActivity.get()) {
 runUnreliableActivityTillSuccess();
 }
 }

Retry-Until-Success Strategia Versione API 2021-04-28 142

AWS Flow Framework per Java Guida per gli sviluppatori

}

Il flusso di lavoro funziona come segue:

1. runUnreliableActivityTillSuccess crea un oggetto Settable<Boolean> denominato
retryActivity che viene usato per indicare se l'attività non è riuscita e deve essere ritentata.
Settable<T> è derivato da Promise<T> e funziona allo stesso modo ma il valore dell'oggetto
Settable<T> viene impostato manualmente.

2. runUnreliableActivityTillSuccess implementa una classe annidata anonima TryCatch
per gestire le eccezioni generate dall'attività unreliableActivity. Per ulteriori discussioni su
come gestire le eccezioni generate da un codice asincrono, consulta Gestione errori.

3. doTry esegue l'attività unreliableActivity, che restituisce un oggetto Promise<Void> di
nome activityRanSuccessfully.

4. doTry chiama il metodo asincrono setRetryActivityToFalse, che ha due parametri:

• activityRanSuccessfully accetta l'oggetto Promise<Void> restituito dall'attività
unreliableActivity.

• retryActivity accetta l'oggetto retryActivity.

Se unreliableActivity viene completato, activityRanSuccessfully diventa pronto
e setRetryActivityToFalse imposta retryActivity su false. In caso contrario,
activityRanSuccessfully non diventa mai pronto e setRetryActivityToFalse non viene
eseguito.

5. Se unreliableActivity genera un'eccezione, il framework chiama doCatch e lo trasferisce
all'oggetto dell'eccezione. doCatch imposta retryActivity su true.

6. runUnreliableActivityTillSuccess chiama il metodo asincrono
restartRunUnreliableActivityTillSuccess e lo trasferisce
all'oggetto retryActivity. Poiché retryActivity è un tipo Promise<T>,
restartRunUnreliableActivityTillSuccess ritarda l'esecuzione fin quando
retryActivity è pronto, il che si verifica dopo il completamento di TryCatch.

7. Quando retryActivity è pronto, restartRunUnreliableActivityTillSuccess estrae il
valore.

• Se il valore è false, il nuovo tentativo è andato a buon fine.
restartRunUnreliableActivityTillSuccess non è operativo e la sequenza di
ripetizione termina.

Retry-Until-Success Strategia Versione API 2021-04-28 143

AWS Flow Framework per Java Guida per gli sviluppatori

• Se il valore è true, il nuovo tentativo non è andato a buon fine.
restartRunUnreliableActivityTillSuccess chiama
runUnreliableActivityTillSuccess per eseguire nuovamente l'attività.

8. Si ripetono le fasi 1-7 fino al completamento di unreliableActivity.

Note

doCatch non gestisce l'eccezione; imposta semplicemente l'oggetto retryActivity
su true per indicare l'esito negativo dell'attività. La ripetizione è gestita dal metodo
asincrono restartRunUnreliableActivityTillSuccess, che ritarda
l'esecuzione fino al completamento di TryCatch. Il motivo di questo approccio
è che se riprovi un'attività in doCatch non puoi annullarla. Ripetere l'attività in
restartRunUnreliableActivityTillSuccess ti permette di eseguire attività
annullabili.

Strategia di ripetizione esponenziale

Con la strategia di ripetizione esponenziale, il framework esegue nuovamente un'attività non andata
a buon fine dopo un periodo di tempo specifico, N secondi. Se il tentativo ha esito negativo, il
framework esegue nuovamente l'attività dopo 2N secondi, 4N secondi e così via. Poiché il tempo
di attesa può essere lungo, in genere i tentativi si arrestano a un certo punto invece che proseguire
all'infinito.

Il framework prevede tre modi per implementare una strategia di ripetizione esponenziale:

• L'annotazione @ExponentialRetry è l'approccio più semplice, ma devi impostare le opzioni di
configurazione della ripetizione al momento della compilazione.

• La classe RetryDecorator ti permette di impostare la configurazione della ripetizione in fase di
runtime e di modificarla in base alle necessità.

• La classe AsyncRetryingExecutor ti permette di impostare la configurazione della ripetizione
in fase di runtime e di modificarla in base alle necessità. Inoltre, il framework chiama un metodo
AsyncRunnable.run implementato dall'utente per eseguire ogni tentativo di ripetizione.

Tutti gli approcci supportano le seguenti opzioni di configurazione, in cui i valori di tempo sono
espressi in secondi:

Strategia di ripetizione esponenziale Versione API 2021-04-28 144

AWS Flow Framework per Java Guida per gli sviluppatori

• Il tempo di attesa per la ripetizione iniziale.

• Il coefficiente di backoff, che viene utilizzato per calcolare gli intervalli di ripetizione, nel modo
seguente:

retryInterval = initialRetryIntervalSeconds * Math.pow(backoffCoefficient,
 numberOfTries - 2)

Il valore predefinito è 2.0.

• Il numero massimo di tentativi di ripetizione. Il valore predefinito è illimitato.

• L'intervallo massimo di ripetizione. Il valore predefinito è illimitato.

• Il tempo di scadenza. I tentativi si arrestano quando la durata totale del processo supera questo
valore. Il valore predefinito è illimitato.

• Le eccezioni che attivano il processo di ripetizione. Per impostazione predefinita, tutte le eccezioni
attivano il processo di ripetizione.

• Le eccezioni che non attivano tentativi di ripetizione. Per impostazione predefinita, non è esclusa
alcuna eccezione.

Le sezioni seguenti descrivono i vari modi in cui è possibile implementare una strategia di ripetizione
esponenziale.

Riprova esponenziale con @ ExponentialRetry

Il modo più semplice per implementare una strategia di ripetizione esponenziale per un'attività è
applicare un'annotazione @ExponentialRetry all'attività nella definizione dell'interfaccia. Se
l'attività non va a buon fine, il framework gestisce automaticamente il processo di ripetizione in base
ai valori opzionali specificati. Il modello di base è:

1. Applica @ExponentialRetry alle attività in questione e specifica la configurazione di ripetizione.

2. Se l'attività annotata non va a buon fine, il framework la recupera automaticamente secondo la
configurazione specificata dagli argomenti dell'annotazione.

Il lavoratore del flusso di lavoro ExponentialRetryAnnotationWorkflow implementa
la strategia di ripetizione esponenziale utilizzando un'annotazione @ExponentialRetry.
Utilizza un'attività unreliableActivity la cui definizione dell'interfaccia è implementata in
ExponentialRetryAnnotationActivities, nel modo seguente:

Strategia di ripetizione esponenziale Versione API 2021-04-28 145

AWS Flow Framework per Java Guida per gli sviluppatori

@Activities(version = "1.0")
@ActivityRegistrationOptions(
 defaultTaskScheduleToStartTimeoutSeconds = 30,
 defaultTaskStartToCloseTimeoutSeconds = 30)
public interface ExponentialRetryAnnotationActivities {
 @ExponentialRetry(
 initialRetryIntervalSeconds = 5,
 maximumAttempts = 5,
 exceptionsToRetry = IllegalStateException.class)
 public void unreliableActivity();
}

Le opzioni di @ExponentialRetry specificano la seguente strategia:

• Ripeti sono se l'attività genera IllegalStateException.

• Utilizza un tempo di attesa iniziale di 5 secondi.

• Non più di 5 tentativi di ripetizione.

L'interfaccia del flusso di lavoro è implementata in RetryWorkflow e ha un metodo, process,
che è il punto di ingresso del flusso di lavoro. Il lavoratore del flusso di lavoro viene implementato in
ExponentialRetryAnnotationWorkflowImpl, nel seguente modo:

public class ExponentialRetryAnnotationWorkflowImpl implements RetryWorkflow {
 public void process() {
 handleUnreliableActivity();
 }

 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

Il flusso di lavoro funziona come segue:

1. process esegue il metodo asincrono handleUnreliableActivity.

2. handleUnreliableActivity esegue l'attività unreliableActivity.

Strategia di ripetizione esponenziale Versione API 2021-04-28 146

AWS Flow Framework per Java Guida per gli sviluppatori

Se l'attività non va a buon fine generando IllegalStateException, il
framework esegue automaticamente la strategia di ripetizione specificata in
ExponentialRetryAnnotationActivities.

Riprova esponenziale con la classe RetryDecorator

@ExponentialRetry è semplice da usare. Tuttavia, la configurazione è statica e impostata al
momento della compilazione, in modo che il framework utilizzi la stessa strategia di ripetizione ogni
volta che l'attività non va a buon fine. Puoi implementare una strategia di ripetizione esponenziale più
flessibile utilizzando la classe RetryDecorator, che ti permette di specificare la configurazione in
fase di runtime e di modificarla in base alle necessità. Il modello di base è:

1. Crea e configura un oggetto ExponentialRetryPolicy che specifichi la configurazione della
ripetizione.

2. Crea un oggetto RetryDecorator e trasferisci l'oggetto ExponentialRetryPolicy della Fase
1 al costruttore.

3. Applica l'oggetto decorator all'attività trasferendo il nome della classe del client di attività al metodo
decorato dell'oggetto RetryDecorator.

4. Esegui l'attività.

Se l'attività non va a buon fine, il framework la ripete secondo la configurazione dell'oggetto
ExponentialRetryPolicy. Puoi modificare la configurazione della ripetizione in base alla
necessità cambiando l'oggetto.

Note

L'annotazione @ExponentialRetry e la classe RetryDecorator sono reciprocamente
esclusive. Non puoi utilizzare RetryDecorator per sovrascrivere dinamicamente una policy
di ripetizione specificata da un'annotazione @ExponentialRetry.

La seguente implementazione del flusso di lavoro mostra come utilizzare la classe
RetryDecorator per implementare una strategia di ripetizione esponenziale. Utilizza
un'attività unreliableActivity priva dell'annotazione @ExponentialRetry. L'interfaccia
del flusso di lavoro è implementata in RetryWorkflow e ha un metodo, process, che è il
punto di ingresso del flusso di lavoro. Il lavoratore del flusso di lavoro viene implementato in
DecoratorRetryWorkflowImpl, nel seguente modo:

Strategia di ripetizione esponenziale Versione API 2021-04-28 147

AWS Flow Framework per Java Guida per gli sviluppatori

public class DecoratorRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 ExponentialRetryPolicy retryPolicy = new ExponentialRetryPolicy(
 initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);

 Decorator retryDecorator = new RetryDecorator(retryPolicy);
 client = retryDecorator.decorate(RetryActivitiesClient.class, client);
 handleUnreliableActivity();
 }

 public void handleUnreliableActivity() {
 client.unreliableActivity();
 }
}

Il flusso di lavoro funziona come segue:

1. process crea e configura un oggetto ExponentialRetryPolicy nel seguente modo:

• Trasferendo al costruttore l'intervallo di ripetizione iniziale.

• Chiamando il metodo withMaximumAttempts dell'oggetto per impostare il numero massimo di
tentativi a 5. ExponentialRetryPolicy espone altri oggetti with che è possibile usare per
specificare altre opzioni di configurazione.

2. process crea un oggetto RetryDecorator con nome retryDecorator e trasferisce l'oggetto
ExponentialRetryPolicy della Fase 1 al costruttore.

3. process applica l'elemento decorator all'attività chiamando il metodo
retryDecorator.decorate e trasferendolo al nome della classe del client di attività.

4. handleUnreliableActivity esegue l'attività.

Se l'attività non va a buon fine, il framework la ripete secondo la configurazione specificata nella Fase
1.

Note

Molti dei metodi with della classe ExponentialRetryPolicy hanno un
metodo corrispondente set che puoi chiamare per modificare l'opzione di

Strategia di ripetizione esponenziale Versione API 2021-04-28 148

AWS Flow Framework per Java Guida per gli sviluppatori

configurazione corrispondente in qualsiasi momento: setBackoffCoefficient,
setMaximumAttempts, setMaximumRetryIntervalSeconds e
setMaximumRetryExpirationIntervalSeconds.

Riprova esponenziale con la classe AsyncRetryingExecutor

La classe RetryDecorator offre più flessibilità nella configurazione del processo di ripetizione
rispetto a @ExponentialRetry, ma il framework esegue comunque automaticamente i tentativi
di ripetizione, in base alla attuale configurazione dell'oggetto ExponentialRetryPolicy.
Un approccio più flessibile prevede l'utilizzo della classe AsyncRetryingExecutor. Oltre a
permetterti di configurare il processo di ripetizione in fase di runtime, il framework chiama un metodo
AsyncRunnable.run implementato dall'utente per eseguire ogni tentativo di ripetizione invece che
eseguire semplicemente l'attività.

Il modello di base è:

1. Crea e configura un oggetto ExponentialRetryPolicy per specificare la configurazione della
ripetizione.

2. Crea un oggetto AsyncRetryingExecutor e trasferiscigli l'oggetto
ExponentialRetryPolicy e un'istanza dell'orologio del flusso di lavoro.

3. Implementa una classe annidata anonima TryCatch o TryCatchFinally.

4. Implementa una classe anonima AsyncRunnable e sovrascrivi il metodo run per implementare il
codice personalizzato per eseguire l'attività.

5. Sovrascrivi doTry per chiamare il metodo execute dell'oggetto AsyncRetryingExecutor e
trasferirlo alla classe AsyncRunnable dalla fase 4. L'oggetto AsyncRetryingExecutor chiama
AsyncRunnable.run per eseguire l'attività.

6. Se l'attività non va a buon fine, l'oggetto AsyncRetryingExecutor chiama nuovamente il
metodo AsyncRunnable.run secondo la policy di ripetizione specificata nella Fase 1.

Il flusso di lavoro seguente mostra come utilizzare la classe AsyncRetryingExecutor
per implementare una strategia di ripetizione esponenziale. Utilizza la stessa attività
unreliableActivity del flusso di lavoro DecoratorRetryWorkflow discusso in precedenza.
L'interfaccia del flusso di lavoro è implementata in RetryWorkflow e ha un metodo, process,
che è il punto di ingresso del flusso di lavoro. Il lavoratore del flusso di lavoro viene implementato in
AsyncExecutorRetryWorkflowImpl, nel seguente modo:

Strategia di ripetizione esponenziale Versione API 2021-04-28 149

AWS Flow Framework per Java Guida per gli sviluppatori

public class AsyncExecutorRetryWorkflowImpl implements RetryWorkflow {
 private final RetryActivitiesClient client = new RetryActivitiesClientImpl();
 private final DecisionContextProvider contextProvider = new
 DecisionContextProviderImpl();
 private final WorkflowClock clock =
 contextProvider.getDecisionContext().getWorkflowClock();

 public void process() {
 long initialRetryIntervalSeconds = 5;
 int maximumAttempts = 5;
 handleUnreliableActivity(initialRetryIntervalSeconds, maximumAttempts);
 }
 public void handleUnreliableActivity(long initialRetryIntervalSeconds, int
 maximumAttempts) {

 ExponentialRetryPolicy retryPolicy = new
 ExponentialRetryPolicy(initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);
 final AsyncExecutor executor = new AsyncRetryingExecutor(retryPolicy, clock);

 new TryCatch() {
 @Override
 protected void doTry() throws Throwable {
 executor.execute(new AsyncRunnable() {
 @Override
 public void run() throws Throwable {
 client.unreliableActivity();
 }
 });
 }
 @Override
 protected void doCatch(Throwable e) throws Throwable {
 }
 };
 }
}

Il flusso di lavoro funziona come segue:

1. process chiama il metodo handleUnreliableActivity e lo trasferisce alle impostazioni della
configurazione.

2. handleUnreliableActivity utilizza le impostazioni di configurazione della Fase 1 per creare
un oggetto ExponentialRetryPolicy, l'oggetto retryPolicy.

Strategia di ripetizione esponenziale Versione API 2021-04-28 150

AWS Flow Framework per Java Guida per gli sviluppatori

3. handleUnreliableActivity crea un oggetto AsyncRetryExecutor, executor e trasferisce
l'oggetto ExponentialRetryPolicy della Fase 2 e un'istanza dell'orologio del flusso di lavoro al
costruttore

4. handleUnreliableActivity implementa una classe annidata anonima TryCatch e
sovrascrive i metodi doTry e doCatch per eseguire i tentativi di ripetizione e gestire le eventuali
eccezioni.

5. doTry crea una classe anonima AsyncRunnable e sovrascrive il metodo run per implementare
il codice personalizzato per eseguire unreliableActivity. Per semplicità, run esegue
semplicemente l'attività, ma puoi implementare approcci più sofisticati in base alle necessità.

6. doTry chiama executor.execute e lo trasferisce all'oggetto AsyncRunnable. execute
chiama il metodo AsyncRunnable dell'oggetto run per eseguire l'attività.

7. Se l'attività non va a buon fine, l'esecutore chiama di nuovo run in base alla configurazione
dell'oggetto retryPolicy.

Per ulteriori discussioni su come utilizzare la classe TryCatch per gestire gli errori, consulta AWS
Flow Framework per le eccezioni Java.

Strategia di ripetizione personalizzata

L'approccio più flessibile per riprovare le attività non riuscite è una strategia personalizzata, che
richiama ricorsivamente un metodo asincrono che esegue il tentativo di nuovo tentativo, proprio come
la strategia. retry-until-success Tuttavia, invece che rieseguire semplicemente l'attività, implementi
una logica personalizzata che decide se e come eseguire i successivi tentativi di ripetizione. Il
modello di base è:

1. Crea un oggetto di stato Settable<T>, che viene utilizzato per indicare se l'attività non è andata
a buon fine.

2. Implementa una classe annidata TryCatch o TryCatchFinally.

3. doTry esegue l'attività.

4. Se l'attività non va a buon fine, doCatch imposta l'oggetto di stato per indicare che l'attività ha
avuto esito negativo.

5. Chiama un metodo asincrono di gestione dell'errore e trasferiscilo all'oggetto di stato. Il metodo
ritarda l'esecuzione fino al completamento di TryCatch o TryCatchFinally.

6. Il metodo di gestione dell'errore decide se e quando ripetere l'attività.

Strategia di ripetizione personalizzata Versione API 2021-04-28 151

AWS Flow Framework per Java Guida per gli sviluppatori

Il flusso di lavoro seguente mostra come implementare una strategia di ripetizione personalizzata.
Utilizza la stessa attività unreliableActivity dei flussi di lavoro DecoratorRetryWorkflow
e AsyncExecutorRetryWorkflow. L'interfaccia del flusso di lavoro è implementata in
RetryWorkflow e ha un metodo, process, che è il punto di ingresso del flusso di lavoro. Il
lavoratore del flusso di lavoro viene implementato in CustomLogicRetryWorkflowImpl, nel
seguente modo:

public class CustomLogicRetryWorkflowImpl implements RetryWorkflow {
 ...
 public void process() {
 callActivityWithRetry();
 }
 @Asynchronous
 public void callActivityWithRetry() {
 final Settable<Throwable> failure = new Settable<Throwable>();
 new TryCatchFinally() {
 protected void doTry() throws Throwable {
 client.unreliableActivity();
 }
 protected void doCatch(Throwable e) {
 failure.set(e);
 }
 protected void doFinally() throws Throwable {
 if (!failure.isReady()) {
 failure.set(null);
 }
 }
 };
 retryOnFailure(failure);
 }
 @Asynchronous
 private void retryOnFailure(Promise<Throwable> failureP) {
 Throwable failure = failureP.get();
 if (failure != null && shouldRetry(failure)) {
 callActivityWithRetry();
 }
 }
 protected Boolean shouldRetry(Throwable e) {
 //custom logic to decide to retry the activity or not
 return true;
 }
}

Strategia di ripetizione personalizzata Versione API 2021-04-28 152

AWS Flow Framework per Java Guida per gli sviluppatori

Il flusso di lavoro funziona come segue:

1. process chiama il metodo asincrono callActivityWithRetry.

2. callActivityWithRetry crea un errore di oggetto Settable<Throwable> denominato
che viene utilizzato per indicare se l'attività non è andata a buon fine. Settable<T> deriva
da Promise<T> e funziona quasi allo stesso modo, ma il valore dell'oggetto Settable<T> è
impostato manualmente.

3. callActivityWithRetry implementa una classe annidata anonima TryCatchFinally per
gestire le eccezioni generate da unreliableActivity. Per ulteriori discussioni su come gestire
le eccezioni generate da un codice asincrono, consulta AWS Flow Framework per le eccezioni
Java.

4. doTry esegue unreliableActivity.

5. Se unreliableActivity genera un'eccezione, il framework chiama doCatch e lo trasferisce
all'oggetto dell'eccezione. doCatch imposta failure sull'oggetto dell'eccezione, il che indica che
l'attività non è andata a buon fine e mette l'oggetto in stato di pronto.

6. doFinally verifica se failure è pronto, che sarà vero solo se failure è stato impostato da
doCatch.

• Se è pronto, non fa nulla. failure doFinally

• Se failure non è pronto, l'attività viene completata e doFinally imposta l'errore su null.

7. callActivityWithRetry chiama il metodo asincrono retryOnFailure e vi trasferisce
l'errore. Poiché l'errore è un tipo Settable<T>, callActivityWithRetry ritarda l'esecuzione
fin quando l'errore è pronto, il che si verifica dopo il completamento di TryCatchFinally.

8. retryOnFailure riceve il valore dall'errore.

• Se l'errore è impostato su null, il tentativo di ripetizione è andato a buon fine. retryOnFailure
non fa alcunché, il che termina il processo di ripetizione.

• Se l'errore è impostato su un oggetto di eccezione e shouldRetry restituisce il valore true,
retryOnFailure chiama callActivityWithRetry per riprovare l'attività.

shouldRetry implementa una logica personalizzata per decidere se ripetere un'attività
dall'esito negativo. Per semplicità, shouldRetry restituisce sempre il valore true e
retryOnFailure esegue immediatamente l'attività, ma puoi implementare una logica più
sofisticata in base alle necessità.

9. I passaggi da 2 a 8 si ripetono fino al unreliableActivity completamento o alla
shouldRetry decisione di interrompere il processo.

Strategia di ripetizione personalizzata Versione API 2021-04-28 153

AWS Flow Framework per Java Guida per gli sviluppatori

Note

doCatch non gestisce il processo di ripetizione; imposta semplicemente l'errore per
indicare l'esito negativo dell'attività. Il processo di ripetizione è gestito dal metodo asincrono
retryOnFailure, che ritarda l'esecuzione fino al completamento di TryCatch. Il motivo di
questo approccio è che se riprovi un'attività in doCatch non puoi annullarla. Ripetere l'attività
in retryOnFailure ti permette di eseguire attività annullabili.

Task Daemon

Il AWS Flow Framework for Java consente di contrassegnare determinate attività comedaemon.
Questa funzionalità ti permette di creare task che effettuano un lavoro di background che deve essere
annullato quando tutti gli altri lavori sono stati eseguiti. Ad esempio, un task di monitoraggio dello
stato deve essere annullato quando il resto del flusso di lavoro è completato. Puoi farlo impostando
il contrassegno daemon su un metodo asincrono o un'istanza di TryCatchFinally. Nell'esempio
seguente, il metodo asincrono monitorHealth() è contrassegnato come daemon.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 monitorHealth();
 }

 @Asynchronous(daemon=true)
 void monitorHealth(Promise<?>... waitFor) {
 activitiesClient.monitoringActivity();
 }
}

Nell'esempio riportato sopra, quando doUsefulWorkActivity viene completato,
monitoringHealth viene automaticamente annullato. Questa operazione annulla l'intero ramo
di esecuzione radicato nel metodo asincrono. La semantica dell'annullamento è identica a quella di
TryCatchFinally. Analogamente, puoi contrassegnare un daemon TryCatchFinally passando
un contrassegno Boolean al costruttore.

Task Daemon Versione API 2021-04-28 154

AWS Flow Framework per Java Guida per gli sviluppatori

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 activitiesClient.doUsefulWorkActivity();
 new TryFinally(true) {
 @Override
 protected void doTry() throws Throwable {
 activitiesClient.monitoringActivity();
 }

 @Override
 protected void doFinally() throws Throwable {
 // clean up
 }
 };
 }
}

Un'operazione daemon avviata all'interno di a TryCatchFinally è limitata al contesto in cui è stata
creata, ovvero sarà limitata ai metodi, o. doTry() doCatch() doFinally() Nel seguente esempio
il metodo asincrono startMonitoring viene contrassegnato come daemon e chiamato da doTry().
Il task creato verrà annullato non appena gli altri task (doUsefulWorkActivity in questo caso)
avviati entro doTry() saranno completati.

public class MyWorkflowImpl implements MyWorkflow {
 MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

 @Override
 public void startMyWF(int a, String b) {
 new TryFinally() {
 @Override
 protected void doTry() throws Throwable {
 activitiesClient.doUsefulWorkActivity();
 startMonitoring();
 }

 @Override
 protected void doFinally() throws Throwable {
 // Clean up

Task Daemon Versione API 2021-04-28 155

AWS Flow Framework per Java Guida per gli sviluppatori

 }
 };
 }

 @Asynchronous(daemon = true)
 void startMonitoring(){
 activitiesClient.monitoringActivity();
 }

AWS Flow Framework per Java Replay Behavior
Questo argomento presenta alcuni esempi relativi al comportamento di riproduzione, in base
a quanto descritto nella sezione Che cos'è AWS Flow Framework per Java?. Gli esempi forniti
riguardano la riproduzione sincrona e a quella asincrona.

Esempio 1: riproduzione sincrona

Per un esempio di come funziona la replay in un flusso di lavoro sincrono, modificate le
implementazioni del flusso di HelloWorldWorkflowlavoro e delle attività aggiungendo println
chiamate all'interno delle rispettive implementazioni, come segue:

public class GreeterWorkflowImpl implements GreeterWorkflow {
...
 public void greet() {
 System.out.println("greet executes");
 Promise<String> name = operations.getName();
 System.out.println("client.getName returns");
 Promise<String> greeting = operations.getGreeting(name);
 System.out.println("client.greeting returns");
 operations.say(greeting);
 System.out.println("client.say returns");
 }
}

public class GreeterActivitiesImpl implements GreeterActivities {
 public String getName() {
 System.out.println("activity.getName completes");
 return "World";
 }

 public String getGreeting(String name) {
 System.out.println("activity.getGreeting completes");

Comportamento di riproduzione Versione API 2021-04-28 156

AWS Flow Framework per Java Guida per gli sviluppatori

 return "Hello " + name + "!";
 }

 public void say(String what) {
 System.out.println(what);
 }
}

Per dettagli sul codice, consulta HelloWorldWorkflow Applicazione. Quanto segue è una versione
modificata dell'output, con commenti che indicano l'avvio di ogni episodio di riproduzione.

//Episode 1
greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getName completes
//Episode 2
greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getGreeting completes
//Episode 3
greet executes
client.getName returns
client.greeting returns
client.say returns

Hello World! //say completes
//Episode 4
greet executes
client.getName returns
client.greeting returns
client.say returns

Il processo di riproduzione in questo esempio è il seguente:

• Il primo episodio pianifica il task di attività getName, che non ha dipendenze.

• Il secondo episodio pianifica il task di attività getGreeting, che dipende da getName.

Esempio 1: riproduzione sincrona Versione API 2021-04-28 157

AWS Flow Framework per Java Guida per gli sviluppatori

• Il terzo episodio pianifica il task di attività say, che dipende da getGreeting.

• L'episodio finale non pianifica altri task e non trova alcuna attività non completata, di conseguenza
l'esecuzione di flusso di lavoro risulta completata.

Note

I tre metodi di client di attività vengono chiamati una volta per ogni episodio. Tuttavia, solo
una di queste chiamate genera un task di attività, quindi ogni task viene eseguito una sola
volta.

Esempio 2: riproduzione asincrona

Come per l'esempio di riproduzione sincrona, puoi modificare HelloWorldWorkflowAsyncApplicazione
per osservare il funzionamento della riproduzione asincrona. Viene generato il seguente output:

//Episode 1
greet executes
client.name returns
workflow.getGreeting returns
client.say returns

activity.getName completes
//Episode 2
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

Hello World! //say completes
//Episode 3
greet executes
client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

Esempio 2: riproduzione asincrona Versione API 2021-04-28 158

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorldAsync utilizza tre episodi di replay perché ci sono solo due attività. L'attività getGreeting
è stata sostituita dal metodo di flusso di lavoro asincrono getGreeting, che, quando completato, non
avvia un episodio di riproduzione.

Il primo episodio non chiama getGreeting poiché dipende dal completamento dell'attività name.
Tuttavia, dopo il completamento di getName, la riproduzione chiama getGreeting una volta per ogni
episodio successivo.

Vedi anche

• AWS Flow Framework Concetti di base: esecuzione distribuita

Vedi anche Versione API 2021-04-28 159

AWS Flow Framework per Java Guida per gli sviluppatori

Best practice

Utilizza queste best practice per sfruttare al meglio le funzionalità AWS Flow Framework di Java.

Argomenti

• Apportare modifiche al codice del decisore: la funzione Versioni multiple e gli Indicatori di
caratteristiche

Apportare modifiche al codice del decisore: la funzione Versioni
multiple e gli Indicatori di caratteristiche

Questa sezione mostra come evitare modifiche non retrocompatibili a un decisore tramite due metodi:

• la funzione Versioni multiple fornisce una soluzione di base.

• la funzione Versioni multiple con gli Indicatori di caratteristiche è uno sviluppo della funzione
Versioni multiple: non vengono introdotte nuove versioni del flusso di lavoro e non c'è bisogno di un
nuovo codice per aggiornare la versione.

Prima di provare queste soluzioni, prendi familiarità con la sezione Scenario di esempio, che spiega
le cause e gli effetti delle modifiche non retrocompatibili al codice del decisore.

Il processo di riproduzione e le modifiche del codice

Quando un decisore AWS Flow Framework per Java esegue un'attività decisionale, deve prima
ricostruire lo stato corrente dell'esecuzione prima di potervi aggiungere passaggi. Il decisore compie
questa operazione con un processo chiamato riproduzione.

Il processo di riproduzione riesegue dall'inizio il codice del decisore, esaminando al contempo la
cronologia degli eventi che si sono già verificati. Questo esame permette al framework di reagire ai
segnali o al completamento di task e di sbloccare gli oggetti Promise nel codice.

Quando il framework esegue il codice decisore, assegna un ID a ogni attività pianificata (un'attività,
una funzione Lambda, un timer, un flusso di lavoro secondario o un segnale in uscita) incrementando
un contatore. Il framework comunica questo ID ad Amazon SWF e lo aggiunge agli eventi della
cronologia, ad esempio. ActivityTaskCompleted

Apportare modifiche al codice del decisore Versione API 2021-04-28 160

AWS Flow Framework per Java Guida per gli sviluppatori

Affinché il processo di riproduzione vada a buon fine, è importante che il codice del decisore sia
deterministico e pianifichi gli stessi task nello stesso ordine per ogni decisione in ogni esecuzione del
flusso di lavoro. Se non rispetti questo requisito, il framework potrebbe, ad esempio, non riuscire a far
corrispondere l'ID di un evento ActivityTaskCompleted con un oggetto Promise esistente.

Scenario di esempio

Esiste una classe di modifiche del codice che è considerata non retrocompatibile. Queste modifiche
includono gli aggiornamenti che modificano il numero, il tipo o l'ordine dei task pianificati. Considera il
seguente esempio:

Scrivi un codice del decisore per pianificare due task di timer. Avvii un'esecuzione ed esegui una
decisione. Di conseguenza, vengono pianificate due attività con timer, con IDs 1 e. 2

Se aggiorni il codice del decisore per pianificare un solo timer prima che venga eseguita la decisione
successiva, nel prossimo task di decisione il framework non riuscirà a riprodurre il secondo evento
TimerFired, perché l'ID 2 non corrisponde a nessun task di timer prodotto dal codice.

Struttura dello scenario

La struttura seguente mostra le fasi di questo scenario. L'obiettivo finale dello scenario è quello
di effettuare la migrazione a un sistema che pianifichi solo un timer ma che non comprometta le
esecuzioni avviate prima della migrazione.

1. La versione iniziale del decisore

a. Scrivi il decisore.

b. Avvia il decisore.

c. Il decisore pianifica due timer.

d. Il decisore avvia cinque esecuzioni.

e. Arresta il decisore.

2. Una modifica del decisore non retrocompatibile

a. Modifica il decisore.

b. Avvia il decisore.

c. Il decisore pianifica un timer.

d. Il decisore avvia cinque esecuzioni.

Scenario di esempio Versione API 2021-04-28 161

AWS Flow Framework per Java Guida per gli sviluppatori

La seguente sezione include esempi di un codice Java che mostrano come implementare questo
scenario. Gli esempi di codice nella sezione Soluzioni mostrano vari modi per correggere le modifiche
non retrocompatibili.

Note

Puoi utilizzare la versione più recente di AWS SDK per Java per eseguire questo codice.

Codice comune

Il seguente codice Java non cambia tra gli esempi di questo scenario.

SampleBase.java

package sample;

import java.util.ArrayList;
import java.util.List;
import java.util.UUID;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.flow.JsonDataConverter;
import com.amazonaws.services.simpleworkflow.model.DescribeWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.DomainAlreadyExistsException;
import com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest;
import com.amazonaws.services.simpleworkflow.model.Run;
import com.amazonaws.services.simpleworkflow.model.StartWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;
import com.amazonaws.services.simpleworkflow.model.WorkflowExecution;
import com.amazonaws.services.simpleworkflow.model.WorkflowExecutionDetail;
import com.amazonaws.services.simpleworkflow.model.WorkflowType;

public class SampleBase {

 protected String domain = "DeciderChangeSample";
 protected String taskList = "DeciderChangeSample-" + UUID.randomUUID().toString();
 protected AmazonSimpleWorkflow service =
 AmazonSimpleWorkflowClientBuilder.defaultClient();
 {
 try {

Scenario di esempio Versione API 2021-04-28 162

https://aws.amazon.com/sdk-for-java/

AWS Flow Framework per Java Guida per gli sviluppatori

 AmazonSimpleWorkflowClientBuilder.defaultClient().registerDomain(new
 RegisterDomainRequest().withName(domain).withDescription("desc").withWorkflowExecutionRetentionPeriodInDays("7"));
 } catch (DomainAlreadyExistsException e) {
 }
 }

 protected List<WorkflowExecution> workflowExecutions = new ArrayList<>();

 protected void startFiveExecutions(String workflow, String version, Object input) {
 for (int i = 0; i < 5; i++) {
 String id = UUID.randomUUID().toString();
 Run startWorkflowExecution = service.startWorkflowExecution(
 new
 StartWorkflowExecutionRequest().withDomain(domain).withTaskList(new
 TaskList().withName(taskList)).withInput(new JsonDataConverter().toData(new
 Object[] { input })).withWorkflowId(id).withWorkflowType(new
 WorkflowType().withName(workflow).withVersion(version)));
 workflowExecutions.add(new
 WorkflowExecution().withWorkflowId(id).withRunId(startWorkflowExecution.getRunId()));
 sleep(1000);
 }
 }

 protected void printExecutionResults() {
 waitForExecutionsToClose();
 System.out.println("\nResults:");
 for (WorkflowExecution wid : workflowExecutions) {
 WorkflowExecutionDetail details = service.describeWorkflowExecution(new
 DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
 System.out.println(wid.getWorkflowId() + " " +
 details.getExecutionInfo().getCloseStatus());
 }
 }

 protected void waitForExecutionsToClose() {
 loop: while (true) {
 for (WorkflowExecution wid : workflowExecutions) {
 WorkflowExecutionDetail details = service.describeWorkflowExecution(new
 DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
 if ("OPEN".equals(details.getExecutionInfo().getExecutionStatus())) {
 sleep(1000);
 continue loop;
 }
 }

Scenario di esempio Versione API 2021-04-28 163

AWS Flow Framework per Java Guida per gli sviluppatori

 return;
 }
 }

 protected void sleep(int millis) {
 try {
 Thread.sleep(millis);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }

}

Input.java

package sample;

public class Input {

 private Boolean skipSecondTimer;

 public Input() {
 }

 public Input(Boolean skipSecondTimer) {
 this.skipSecondTimer = skipSecondTimer;
 }

 public Boolean getSkipSecondTimer() {
 return skipSecondTimer != null && skipSecondTimer;
 }

 public Input setSkipSecondTimer(Boolean skipSecondTimer) {
 this.skipSecondTimer = skipSecondTimer;
 return this;
 }

}

Scenario di esempio Versione API 2021-04-28 164

AWS Flow Framework per Java Guida per gli sviluppatori

Scrivere il codice iniziale del decisore

Di seguito è riportato il codice Java iniziale del decisore. Viene registrato come versione 1 e pianifica
due task di timer da cinque secondi.

InitialDecider.java

package sample.v1;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 clock.createTimer(5);
 }

 }
}

Scenario di esempio Versione API 2021-04-28 165

AWS Flow Framework per Java Guida per gli sviluppatori

Simulazione di una modifica non retrocompatibile

Il seguente codice Java modificato del decisore è un buon esempio di modifica non retrocompatibile.
Il codice è ancora registrato come versione 1, ma pianifica solo un timer.

ModifiedDecider.java

package sample.v1.modified;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1 modified) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 }

 }
}

Scenario di esempio Versione API 2021-04-28 166

AWS Flow Framework per Java Guida per gli sviluppatori

Il seguente codice Java ti permette di simulare il problema di apportare modifiche non retrocompatibili
eseguendo il decisore modificato.

RunModifiedDecider.java

package sample;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class BadChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new BadChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start the modified version of the decider
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.modified.Foo.Impl.class);
 after.start();

 // Start a few more executions
 startFiveExecutions("Foo.sample", "1", new Input());

 printExecutionResults();
 }

}

Scenario di esempio Versione API 2021-04-28 167

AWS Flow Framework per Java Guida per gli sviluppatori

Quando esegui il programma, le tre esecuzioni che non vanno a buon fine sono quelle avviate
secondo la versione iniziale del decisore e proseguite dopo la migrazione.

Soluzioni

Puoi utilizzare le seguenti soluzioni per evitare le modifiche non retrocompatibili. Per ulteriori
informazioni, consulta Apportare modifiche al codice del decisore e Scenario di esempio.

Uso della funzione Versioni multiple

In questa soluzione, copi il decisore su una nuova classe, lo modifichi e lo registri in una nuova
versione del flusso di lavoro.

VersionedDecider.java

package sample.v2;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;
import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "2")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {

Soluzioni Versione API 2021-04-28 168

AWS Flow Framework per Java Guida per gli sviluppatori

 System.out.println("Decision (V2) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 }

 }

}

Nel codice Java aggiornato, il secondo lavoratore del decisore esegue entrambe le versioni del flusso
di lavoro, permettendo alle esecuzioni in transito di operare indipendentemente dalle modifiche alla
versione 2.

RunVersionedDecider.java

package sample;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class VersionedChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new VersionedChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider, with workflow version 1
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions with version 1
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start a worker with both the previous version of the decider (workflow
 version 1)

Soluzioni Versione API 2021-04-28 169

AWS Flow Framework per Java Guida per gli sviluppatori

 // and the modified code (workflow version 2)
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 after.addWorkflowImplementationType(sample.v2.Foo.Impl.class);
 after.start();

 // Start a few more executions with version 2
 startFiveExecutions("Foo.sample", "2", new Input());

 printExecutionResults();
 }

}

Quando esegui il programma, tutte le esecuzioni hanno esito positivo.

Utilizzo degli Indicatori di caratteristiche

Un'altra soluzione per i problemi di mancata retrocompatibilità è ramificare il codice per supportare
due implementazioni nella stessa classe basata sui dati dell'input invece che sulle versioni del flusso
di lavoro.

Seguendo questo approccio, ogni volta che introduci modifiche sensibili aggiungi campi agli oggetti
dell'input o ne modifichi i campi esistenti. Per le esecuzioni avviate prima della migrazione, l'oggetto
dell'input sarà privo di campo (o avrà un valore diverso). In questo modo non sei obbligato ad
aumentare il numero della versione.

Note

Se aggiungi nuovi campi, verifica che il processo di deserializzazione JSON sia
retrocompatibile. Gli oggetti serializzati prima dell'introduzione del campo devono comunque
essere deserializzati dopo la migrazione. Poiché JSON imposta un valore null ogni volta
che manca un campo, utilizza sempre tipi "boxed" (Boolean invece di boolean) e gestisci i
casi in cui valore è null.

FeatureFlagDecider.java

package sample.v1.featureflag;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

Soluzioni Versione API 2021-04-28 170

AWS Flow Framework per Java Guida per gli sviluppatori

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;
import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;
import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
 defaultTaskStartToCloseTimeoutSeconds = 5)
public interface Foo {

 @Execute(version = "1")
 public void sample(Input input);

 public static class Impl implements Foo {

 private DecisionContext decisionContext = new
 DecisionContextProviderImpl().getDecisionContext();
 private WorkflowClock clock = decisionContext.getWorkflowClock();

 @Override
 public void sample(Input input) {
 System.out.println("Decision (V1 feature flag) WorkflowId: " +
 decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
 clock.createTimer(5);
 if (!input.getSkipSecondTimer()) {
 clock.createTimer(5);
 }
 }

 }
}

Nel codice Java aggiornato, il codice per entrambe le versioni del flusso di lavoro è comunque
registrato per la versione 1. Tuttavia, dopo la migrazione, le nuove esecuzioni vengono avviate con il
campo skipSecondTimer dei dati dell'input impostato su true.

RunFeatureFlagDecider.java

package sample;

Soluzioni Versione API 2021-04-28 171

AWS Flow Framework per Java Guida per gli sviluppatori

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class FeatureFlagChange extends SampleBase {

 public static void main(String[] args) throws Exception {
 new FeatureFlagChange().run();
 }

 public void run() throws Exception {
 // Start the first version of the decider
 WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
 before.addWorkflowImplementationType(sample.v1.Foo.Impl.class);
 before.start();

 // Start a few executions
 startFiveExecutions("Foo.sample", "1", new Input());

 // Stop the first decider worker and wait a few seconds
 // for its pending pollers to match and return
 before.suspendPolling();
 sleep(2000);

 // At this point, three executions are still open, with more decisions to make

 // Start a new version of the decider that introduces a change
 // while preserving backwards compatibility based on input fields
 WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
 after.addWorkflowImplementationType(sample.v1.featureflag.Foo.Impl.class);
 after.start();

 // Start a few more executions and enable the new feature through the input
 data
 startFiveExecutions("Foo.sample", "1", new Input().setSkipSecondTimer(true));

 printExecutionResults();
 }

}

Quando esegui il programma, tutte le esecuzioni hanno esito positivo.

Soluzioni Versione API 2021-04-28 172

AWS Flow Framework per Java Guida per gli sviluppatori

Suggerimenti per la risoluzione dei problemi e il debug per
Java AWS Flow Framework
Argomenti

• Errori di compilazione

• Errore di risorsa sconosciuto

• Eccezioni quando si chiama get () su una promessa

• Flussi di lavoro non deterministici

• Problemi dovuti al controllo delle versioni

• Risoluzione dei problemi e debug dell'esecuzione di un flusso di lavoro

• Attività perse

• Errore di convalida dovuto a vincoli di lunghezza dei parametri API

Questa sezione descrive alcune insidie comuni che potresti incontrare durante lo sviluppo di flussi
di lavoro utilizzando for Java. AWS Flow Framework Fornisce inoltre alcuni suggerimenti su come
diagnosticare i problemi ed eseguirne il debug.

Errori di compilazione

Se utilizzi l'opzione di tessitura in fase di compilazione di AspectJ, è possibile che si verifichino errori
di compilazione in cui il compilatore non riesce a trovare le classi client generate per il flusso di lavoro
e le attività. La causa probabile di tali errori di compilazione è che il generatore AspectJ ha ignorato
i client generati durante la compilazione. Puoi risolvere questo problema rimuovendo AspectJ dal
progetto e riattivandolo. Nota che dovrai procedere in tal modo ogni volta che le interfacce di flusso
di lavoro o di attività cambiano. A causa di questo problema, ti consigliamo di utilizzare l'opzione di
tessitura in fase di caricamento. Per ulteriori informazioni, consulta la sezione Configurazione di AWS
Flow Framework per Java.

Errore di risorsa sconosciuto

Amazon SWF restituisce un errore di risorsa sconosciuto quando tenti di eseguire un'operazione su
una risorsa che non è disponibile. Le cause più comuni di questo errore sono:

Errori di compilazione Versione API 2021-04-28 173

AWS Flow Framework per Java Guida per gli sviluppatori

• Configuri un lavoratore con un dominio inesistente. Per risolvere questo problema, registra
innanzitutto il dominio utilizzando la console Amazon SWF o l'API del servizio Amazon SWF.

• Tenti di creare task di esecuzione di flusso di lavoro o di attività che non sono stati registrati. Ciò
può accadere se cerchi di creare l'esecuzione di flusso di lavoro prima che i lavoratori vengano
eseguiti. Poiché i worker registrano i propri tipi quando vengono eseguiti per la prima volta, è
necessario eseguirli almeno una volta prima di tentare di avviare le esecuzioni (o registrare
manualmente i tipi utilizzando la console o l'API del servizio). Nota che dopo la registrazione dei
tipi, puoi creare le esecuzioni anche se non vi sono lavoratori in esecuzione.

• Un lavoratore tenta di completare un task di cui si è già verificato il timeout. Ad esempio, se
un lavoratore impiega troppo tempo per elaborare un'attività e supera un timeout, riceverà un
UnknownResource errore quando tenta di completare o fallire l'attività. I AWS Flow Framework
lavoratori continueranno a sondare Amazon SWF ed elaborare attività aggiuntive. ma è comunque
consigliabile modificare il timeout. A questo proposito, devi registrate una nuova versione del tipo di
attività.

Eccezioni quando si chiama get () su una promessa

A differenza di Java Future, Promise è un costrutto non bloccante e la chiamata di get() su un
argomento Promise non ancora pronto genererà un'eccezione anziché un blocco. Il modo corretto
di usare a Promise è passarlo a un metodo asincrono (o a un'attività) e accedere al suo valore
nel metodo asincrono. AWS Flow Framework for Java garantisce che un metodo asincrono venga
chiamato solo quando tutti gli argomenti passati ad esso sono pronti. Promise Se ritieni che il
tuo codice sia corretto o se ti imbatti in questo mentre esegui uno degli AWS Flow Framework
esempi, probabilmente è dovuto al fatto che AspectJ non è configurato correttamente. Per ulteriori
informazioni, consulta la sezione Configurazione di AWS Flow Framework per Java.

Flussi di lavoro non deterministici

Come descritto nella sezione Non determinismo, l'implementazione del tuo flusso di lavoro deve
essere deterministica. Alcuni errori comuni che possono portare al non determinismo sono l'uso
dell'orologio di sistema, l'uso di numeri casuali e la generazione di. GUIDs Poiché questi costrutti
possono restituire valori diversi in momenti diversi, il flusso di controllo del flusso di lavoro può
seguire percorsi diversi ogni volta che viene eseguito (consulta le sezioni AWS Flow Framework
Concetti di base: esecuzione distribuita e Comprensione di un task in AWS Flow Framework for Java
per i dettagli). Se il framework rileva una condizione di non determinismo durante l'esecuzione del
flusso di lavoro, verrà generata un'eccezione.

Eccezioni quando si chiama get () su una promessa Versione API 2021-04-28 174

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-register-domain-console.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html

AWS Flow Framework per Java Guida per gli sviluppatori

Problemi dovuti al controllo delle versioni

Quando si implementa una nuova versione del flusso di lavoro o dell'attività, ad esempio quando
si aggiunge una nuova funzionalità, è necessario aumentare la versione del tipo utilizzando
l'annotazione appropriata:, o. @Workflow @Activites @Activity In genere, quando vengono
distribuite nuove versioni di un flusso di lavoro, alcune esecuzioni della versione esistente sono già
in corso. Di conseguenza, devi assicurarti che i task siano trasmessi ai lavoratori con la versione
appropriata del flusso di lavoro e delle attività. A questo proposito, devi utilizzare un set di elenchi
di task differente per ogni versione. Ad esempio, puoi aggiungere il numero di versione al nome
dell'elenco di task. In questo modo, i task appartenenti a differenti versioni del flusso di lavoro e delle
attività sono assegnati ai lavoratori appropriati.

Risoluzione dei problemi e debug dell'esecuzione di un flusso di
lavoro

Il primo passaggio per la risoluzione dei problemi di esecuzione di un flusso di lavoro consiste
nell'utilizzare la console Amazon SWF per esaminare la cronologia del flusso di lavoro. La cronologia
del flusso di lavoro è un record completo e attendibile di tutti gli eventi che hanno modificato lo stato
dell'esecuzione di flusso di lavoro. Questa cronologia è gestita da Amazon SWF ed è preziosa per la
diagnosi dei problemi. La console Amazon SWF ti consente di cercare esecuzioni di flussi di lavoro e
approfondire i singoli eventi della cronologia.

AWS Flow Framework fornisce una WorkflowReplayer classe che puoi usare per riprodurre
localmente l'esecuzione di un flusso di lavoro ed eseguirne il debug. Utilizzando questa classe, è
possibile eseguire il debug di esecuzioni di workflow chiuse e in esecuzione. WorkflowReplayersi
affida alla cronologia memorizzata in Amazon SWF per eseguire la riproduzione. Puoi indirizzarlo
all'esecuzione di un flusso di lavoro nel tuo account Amazon SWF o fornirgli gli eventi della
cronologia (ad esempio, puoi recuperare la cronologia da Amazon SWF e serializzarla localmente per
un uso successivo). La riproduzione di un'esecuzione di flusso di lavoro con WorkflowReplayer
non ha alcun impatto sull'esecuzione in corso nel tuo account. L'intera riproduzione viene eseguita sul
client. Puoi eseguire il debug del flusso di lavoro, creare punti di interruzione ed eseguire istruzioni
utilizzando gli strumenti di debug abituali. Se utilizzi Eclipse, prendi in considerazione l'aggiunta di
filtri Step ai pacchetti di filtri. AWS Flow Framework

Ad esempio, il seguente frammento di codice può essere utilizzato per riprodurre un'esecuzione di
flusso di lavoro:

Problemi dovuti al controllo delle versioni Versione API 2021-04-28 175

AWS Flow Framework per Java Guida per gli sviluppatori

String workflowId = "testWorkflow";
String runId = "<run id>";
Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
 swfService, domain, workflowExecution, workflowImplementationType);

System.out.println("Beginning workflow replay for " + workflowExecution);
Object workflow = replayer.loadWorkflow();
System.out.println("Workflow implementation object:");
System.out.println(workflow);
System.out.println("Done workflow replay for " + workflowExecution);

AWS Flow Framework consente inoltre di ottenere un dump asincrono dei thread dell'esecuzione
del flusso di lavoro. Questo dump fornisce gli stack di chiamate di tutti i task asincroni aperti. Queste
informazioni possono essere utili per determinare quali task nell'esecuzione sono in sospeso e
possibilmente bloccati. Per esempio:

String workflowId = "testWorkflow";
String runId = "<run id>";
Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
 swfService, domain, workflowExecution, workflowImplementationType);

try {
 String flowThreadDump = replayer.getAsynchronousThreadDumpAsString();
 System.out.println("Workflow asynchronous thread dump:");
 System.out.println(flowThreadDump);
}
catch (WorkflowException e) {
 System.out.println("No asynchronous thread dump available as workflow has failed: "
 + e);
}

Risoluzione dei problemi e debug dell'esecuzione di un flusso di lavoro Versione API 2021-04-28 176

AWS Flow Framework per Java Guida per gli sviluppatori

Attività perse

A volte, è possibile che tu chiuda dei lavoratori e che ne avvii di nuovi in rapida successione per
infine scoprire che i task sono recapitati ai vecchi lavoratori. Ciò può avvenire a seguito di condizioni
di competizione nel sistema, il quale è ripartito su vari processi. Il problema può verificarsi anche
quando esegui unit test in un ciclo ridotto oppure a seguito dell'arresto di un test in Eclipse nel caso in
cui i gestori di chiusura non siano chiamati.

Per avere la certezza che il problema è in effetti dovuto al fatto che sono i vecchi lavoratori
a ricevere i task, dovresti esaminare la cronologia del flusso di lavoro per determinare quale
processo ha ricevuto il task che doveva essere recapitato al nuovo lavoratore. Ad esempio, l'evento
DecisionTaskStarted nella cronologia contiene l'identità del lavoratore di flusso di lavoro che
ha ricevuto il task. L'id utilizzato da Flow Framework ha il formato: {processId} @ {host name}.
Ad esempio, di seguito sono riportati i dettagli dell'DecisionTaskStartedevento nella console
Amazon SWF per un'esecuzione di esempio:

Timestamp di evento Mon Feb 20 11:52:40 GMT-800 2012

Identità 2276 @ip -0A6C1 DF5

ID evento pianificato 33

Per evitare questa situazione, utilizza elenchi di task differenti per ogni test. Valuta inoltre la
possibilità di aggiungere un ritardo tra la chiusura dei vecchi lavoratori e l'avvio dei nuovi.

Errore di convalida dovuto a vincoli di lunghezza dei parametri API

Amazon SWF impone vincoli di lunghezza sui parametri delle API. Riceverai un HTTP 400 errore se
l'implementazione del flusso di lavoro o dell'attività supera i vincoli. Ad esempio, quando si chiama
recordActivityHeartbeat on ActivityExecutionContext per inviare un battito cardiaco per
un'attività in corso, la stringa non deve superare i 2048 caratteri.

Un altro scenario comune è quando un'attività fallisce a causa di un'eccezione. Il framework
segnala un errore di attività ad Amazon SWF chiamando RespondActivityTaskFailedcon l'eccezione
serializzata come dettagli. La chiamata API segnalerà un errore 400 se l'eccezione serializzata
ha una lunghezza superiore a 32.768 byte. Per mitigare questa situazione, è possibile troncare il
messaggio di eccezione o le cause per renderle conformi al vincolo di lunghezza.

Attività perse Versione API 2021-04-28 177

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework per Java Reference
Argomenti

• AWS Flow Framework per Java Annotations

• AWS Flow Framework per le eccezioni Java

• AWS Flow Framework per pacchetti Java

AWS Flow Framework per Java Annotations

Argomenti

• @Activities

• @Activity

• @ActivityRegistrationOptions

• @Asincrona

• @Execute

• @ExponentialRetry

• @GetState

• @ManualActivityCompletion

• @Signal

• @SkipRegistration

• @Wait e @ NoWait

• @Flusso di lavoro

• @WorkflowRegistrationOptions

@Activities

Questa annotazione può essere usata su un'interfaccia per dichiarare un set di tipi di attività. Ciascun
metodo in un'interfaccia che abbia questa annotazione rappresenta un tipo di attività. Un'interfaccia
non può avere contemporaneamente l'annotazione @Workflow e quella @Activities-

Su questa annotazione possono essere specificati i seguenti parametri:

Annotazioni Versione API 2021-04-28 178

AWS Flow Framework per Java Guida per gli sviluppatori

activityNamePrefix

Specifica il prefisso del nome dei tipi di attività dichiarati nell'interfaccia. Se impostato su una
stringa vuota (valore predefinito), il nome dell'interfaccia seguito da '.' viene utilizzato come
prefisso.

version

Specifica la versione predefinita dei tipi di attività dichiarati nell'interfaccia. Il valore predefinito è
1.0.

dataConverter

Speciifica il tipo di serializing/deserializing dati DataConverter da utilizzare per la
creazione di attività di questo tipo di attività e i relativi risultati. Impostato come predefinito su
NullDataConverter, che indica che deve essere utilizzato JsonDataConverter.

@Activity

Questa annotazione può essere usata sui metodi in un'interfaccia che abbia l'annotazione
@Activities.

Su questa annotazione possono essere specificati i seguenti parametri:

name

Specifica il nome del tipo di attività. Il valore predefinito è una stringa vuota, che indica che
per stabilire il nome del tipo di attività, (che è in formato {prefisso}{nome}) occorre utilizzare il
prefisso predefinito e il nome del metodo dell'attività. Ricorda che quando specifichi un nome
in un'annotazione @Activity, il framework non vi aggiunge automaticamente un prefisso. Sei
libero di usare il tuo schema di denominazione.

version

Specifica la versione del tipo di attività. Sovrascrive la versione predefinita specificata
nell'annotazione @Activities nell'interfaccia che la contiene. L'impostazione predefinita è una
stringa vuota.

@Activity Versione API 2021-04-28 179

AWS Flow Framework per Java Guida per gli sviluppatori

@ActivityRegistrationOptions

Specifica le opzioni di registrazione di un tipo di attività. Questa annotazione può essere usata su
un'interfaccia annotata con @Activities o sui metodi all'interno. Se specificata in entrambe le
posizioni, prevale l'annotazione usata sul metodo.

Su questa annotazione possono essere specificati i seguenti parametri:

defaultTasklist

Speciifica l'elenco di attività predefinito da registrare con Amazon SWF per questo tipo di attività.
Il valore predefinito può essere sovrascritto quando si chiama il metodo dell'attività sul client
generato utilizzando il parametro ActivitySchedulingOptions. Impostato come predefinito
su USE_WORKER_TASK_LIST. Questo è un valore speciale che indica che va utilizzato l'elenco di
task usato dal lavoratore che esegue la registrazione.

defaultTaskScheduleToStartTimeoutSeconds

Speciifica le informazioni defaultTaskSchedule ToStartTimeout registrate con Amazon SWF per
questo tipo di attività. Questo è il tempo massimo di attesa di un task di questo tipo di attività
prima che venga assegnato a un lavoratore. Per ulteriori dettagli, consulta il riferimento all'API di
Amazon Simple Workflow Service.

defaultTaskHeartbeatTimeoutSeconds

Speciifica le informazioni defaultTaskHeartbeatTimeout registrate con Amazon SWF
per questo tipo di attività. In questo periodo i lavoratori di attività devono fornire messaggi di
heartbeat; in caso contrario, il task scade. Impostato come predefinito a -1, un valore speciale che
indica che il timeout deve essere disattivato. Per ulteriori dettagli, consulta il riferimento all'API di
Amazon Simple Workflow Service.

defaultTaskStartToCloseTimeoutSeconds

Speciifica le informazioni defaultTaskStart ToCloseTimeout registrate con Amazon SWF per
questo tipo di attività. Il timeout determina il tempo massimo che un lavoratore può impiegare per
elaborare un task di attività di questo tipo. Per ulteriori dettagli, consulta il riferimento all'API di
Amazon Simple Workflow Service.

defaultTaskScheduleToCloseTimeoutSeconds

Speciifica le informazioni defaultScheduleToCloseTimeout registrate con Amazon SWF per
questo tipo di attività. Questo timeout determina il tempo totale in cui il task può rimanere nello

@ActivityRegistrationOptions Versione API 2021-04-28 180

AWS Flow Framework per Java Guida per gli sviluppatori

stato aperto. Impostato come predefinito a -1, un valore speciale che indica che il timeout deve
essere disattivato. Per ulteriori dettagli, consulta il riferimento all'API di Amazon Simple Workflow
Service.

@Asincrona

Se usata su un metodo nella logica di coordinamento del flusso di lavoro, indica che il metodo deve
essere eseguito in modo asincrono. La chiamata al metodo viene restituita immediatamente, ma
l'esecuzione in corso accade in modo asincrono quando sono pronti tutti i parametri Promise<>
trasferiti ai metodi. I metodi annotati con @Asynchronous devono avere un tipo di restituzione
Promise<> o void.

daemon

Indica se il task creato per il metodo asincrono deve essere di tipo daemon. False per
impostazione predefinita.

@Execute

Se usata su un metodo in'un interfaccia annotata con @Workflow, identifica il punto di ingresso del
flusso di lavoro.

Important

L'annotazione @Execute può essere applicata a un solo metodo nell'interfaccia.

Su questa annotazione possono essere specificati i seguenti parametri:

name

Specifica il nome del tipo di flusso di lavoro. Se non è impostato, il nome predefinito è {prefisso}
{nome}, dove {prefisso} è il nome dell'interfaccia di flussi di lavoro seguito da un '.' e {nome} è il
nome del metodo con annotazione @Execute nel flusso di lavoro.

version

Specifica la versione del tipo di flusso di lavoro.

@Asincrona Versione API 2021-04-28 181

AWS Flow Framework per Java Guida per gli sviluppatori

@ExponentialRetry

se usata su un'attività o su un metodo asincrono, imposta una policy di ripetizione esponenziale nel
caso in cui il metodo genera un'eccezione non gestita. Un tentativo di ripetizione viene effettuato
dopo un periodo di backoff, calcolato in base all'efficacia del numero dei tentativi.

Su questa annotazione possono essere specificati i seguenti parametri:

intialRetryIntervalSeconds

Specifica il tempo di attesa prima del primo tentativo di ripetizione. Il valore non deve essere
maggiore di maximumRetryIntervalSeconds e di retryExpirationSeconds.

maximumRetryIntervalSeconds

Specifica il tempo massimo tra i tentativi di ripetizione. Una volta raggiunto, l'intervallo tra i
tentativi di ripetizione sarà limitato a questo valore. Impostato come predefinito a -1, il che significa
una durata illimitata.

retryExpirationSeconds

Specifica il tempo dopo il quale la ripetizione esponenziale si arresta. Impostato come predefinito
a -1, il che significa che non c'è scadenza.

backoffCoefficient

Specifica il coefficiente utilizzato per calcolare l'intervallo di ripetizione. Consultare Strategia di
ripetizione esponenziale.

maximumAttempts

Specifica il numero di tentativi dopo il quale la ripetizione esponenziale si arresta. Impostato come
predefinito a -1, il che significa che non c'è limite al numero di tentativi di ripetizioni.

exceptionsToRetry

Specifica l'elenco dei tipi di eccezione che attivano una ripetizione. L'eccezione non gestita
di questi tipi non verrà propagata ulteriormente e il metodo sarà ripetuto dopo l'intervallo di
ripetizione calcolato. Per impostazione predefinita, l'elenco contiene Throwable.

excludeExceptions

Specifica l'elenco dei tipi di eccezione che non attivano una ripetizione. Le eccezioni non gestite di
questo tipo possono propagarsi. Per impostazione predefinita, l'elenco è vuoto.

@ExponentialRetry Versione API 2021-04-28 182

AWS Flow Framework per Java Guida per gli sviluppatori

@GetState

Se usata su un metodo in'un interfaccia annotata con @Workflow, identifica che il metodo è utilizzato
per recuperare lo stato dell'ultima esecuzione del flusso di lavoro. Ci può essere al massimo un
metodo con questa annotazione in un'interfaccia con l'annotazione @Workflow. I metodi così
annotati non devono acquisire parametri e devono avere un tipo di restituzione diverso da void.

@ManualActivityCompletion

Questa annotazione può essere utilizzata su un metodo di attività per indicare che il task di
attività non deve essere completato alla restituzione del metodo. L'attività non verrà completata
automaticamente e dovrà essere completata manualmente direttamente utilizzando l'API Amazon
SWF. Questo è utile per casi d'uso in cui il task di attività è delegato a un sistema esterno non
automatizzato o che richiede l'intervento umano per il completamento.

@Signal

Se usata su un metodo in'un interfaccia annotata con @Workflow, identifica un segnale che può
essere ricevuto dalle esecuzioni del tipo di flusso di lavoro dichiarato dall'interfaccia. L'uso di questa
annotazione è obbligatorio per definire un metodo di segnale.

Su questa annotazione possono essere specificati i seguenti parametri:

name

Specifica la porzione nominale del nome del segnale. Se non è impostato, si usa il nome del
metodo.

@SkipRegistration

Se utilizzato su un'interfaccia annotata con l'@Workflowannotazione, indica che il tipo
di flusso di lavoro non deve essere registrato con Amazon SWF. Una delle annotazioni
@WorkflowRegistrationOptions e @SkipRegistrationOptions devono essere usate su
un'interfaccia con annotazione @Workflow, ma non entrambe.

@Wait e @ NoWait

Queste annotazioni possono essere utilizzate su un parametro di tipo Promise<> per indicare
se AWS Flow Framework for Java deve attendere che sia pronto prima di eseguire il metodo. Per

@GetState Versione API 2021-04-28 183

AWS Flow Framework per Java Guida per gli sviluppatori

impostazione predefinita, i parametri Promise<> trasferiti sui metodi @Asynchronous devono
diventare pronti prima che si verifichi l'esecuzione del metodo. In alcuni casi, è necessario ignorare
questo comportamento predefinito. I parametri Promise<> trasferiti sui metodi @Asynchronous con
l'annotazione @NoWait non sono attesi.

I parametri (o le sottoclassi) di raccolta che contengono promesse, come List<Promise<Int>>,
devono essere arricchiti con l'annotazione @Wait. Per impostazione predefinita, il framework non
attende i membri di una raccolta.

@Flusso di lavoro

Questa annotazione viene usata su un'interfaccia per dichiarare un tipo di flusso di lavoro.
Un'interfaccia decorata con questa annotazione deve contenere esattamente un metodo decorato
con l'annotazione @Execute per dichiarare un punto di ingresso del flusso di lavoro.

Note

Un'interfaccia non può avere le annotazioni @Workflow e @Activities dichiarate
simultaneamente; sono reciprocamente esclusive.

Su questa annotazione possono essere specificati i seguenti parametri:

dataConverter

Specifica quali DataConverter utilizzare nell'invio di richieste alle esecuzioni (e nella ricezione
di risultati dalle esecuzioni) di questo tipo di flusso di lavoro.

L'impostazione predefinita è NullDataConverter che, a sua volta, ritorna
JsonDataConverter a elaborare tutti i dati di richiesta e risposta come JavaScript Object
Notation (JSON).

Esempio

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;
import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;
import
 com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Flusso di lavoro Versione API 2021-04-28 184

AWS Flow Framework per Java Guida per gli sviluppatori

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {
 @Execute(version = "1.0")
 public void greet();
}

@WorkflowRegistrationOptions

Se utilizzato su un'interfaccia annotata con@Workflow, fornisce le impostazioni predefinite utilizzate
da Amazon SWF per la registrazione del tipo di flusso di lavoro.

Note

O @WorkflowRegistrationOptions o @SkipRegistrationOptions devono essere
usate su un'interfaccia con annotazione @Workflow, ma non puoi specificarle entrambe.

Su questa annotazione possono essere specificati i seguenti parametri:

Descrizione

Una descrizione di testo facoltativa del tipo di flusso di lavoro.

defaultExecutionStartToCloseTimeoutSeconds

Speciifica il tipo di flusso di lavoro defaultExecutionStartToCloseTimeout registrato con
Amazon SWF. Il tempo totale che l'esecuzione di un flusso di lavoro di questo tipo può impiegare
per il completamento.

Per ulteriori informazioni sui timeout del flusso di lavoro, consulta Tipi di timeout di Amazon SWF .

defaultTaskStartToCloseTimeoutSeconds

Speciifica il tipo di flusso di lavoro defaultTaskStartToCloseTimeout registrato con Amazon
SWF. Specifica il tempo che un solo task di decisione di un'esecuzione di un flusso di lavoro di
questo tipo può impiegare per il completamento.

Se non specifichi defaultTaskStartToCloseTimeout, per impostazione predefinita sarà di
30 secondi.

Per ulteriori informazioni sui timeout del flusso di lavoro, consulta Tipi di timeout di Amazon SWF .

@WorkflowRegistrationOptions Versione API 2021-04-28 185

AWS Flow Framework per Java Guida per gli sviluppatori

defaultTaskList

L'elenco predefinito di task utilizzato per i task di decisione per le esecuzioni di questo
tipo di flusso di lavoro. L'impostazione predefinita qui può essere sovrascritta utilizzando
StartWorkflowOptions in fase di avvio di un'esecuzione del flusso di lavoro.

Se non specifichi defaultTaskList, verrà impostato su USE_WORKER_TASK_LIST come
impostazione predefinita. Indica che va utilizzato l'elenco di task usato dal lavoratore che esegue
la registrazione del flusso di lavoro.

defaultChildPolicy

Specifica la policy da utilizzare per i flussi di lavoro figli se un'esecuzione di questo tipo è
terminata. Il valore predefinito è ABANDON. I valori possibili sono:

• ABANDON— Consenti alle esecuzioni secondarie del flusso di lavoro di continuare a funzionare

• TERMINATE— Interrompere le esecuzioni dei flussi di lavoro secondari

• REQUEST_CANCEL— Richiedere l'annullamento delle esecuzioni dei flussi di lavoro secondari

AWS Flow Framework per le eccezioni Java

Le seguenti eccezioni vengono utilizzate da AWS Flow Framework for Java. In questa sezione
viene fornita una panoramica di ogni eccezione. Per ulteriori dettagli, consulta la AWS SDK per Java
documentazione delle singole eccezioni.

Argomenti

• ActivityFailureException

• ActivityTaskException

• ActivityTaskFailedException

• ActivityTaskTimedOutException

• ChildWorkflowException

• ChildWorkflowFailedException

• ChildWorkflowTerminatedException

• ChildWorkflowTimedOutException

• DataConverterException

• DecisionException

Eccezioni Versione API 2021-04-28 186

AWS Flow Framework per Java Guida per gli sviluppatori

• ScheduleActivityTaskFailedException

• SignalExternalWorkflowException

• StartChildWorkflowFailedException

• StartTimerFailedException

• TimerException

• WorkflowException

ActivityFailureException

Questa eccezione è utilizzata internamente dal framework per comunicare l'esito negativo
di un'attività. Quando un'attività fallisce a causa di un'eccezione non gestita, viene inclusa
ActivityFailureException e segnalata ad Amazon SWF. Devi gestire questa eccezione solo
se utilizzi i punti di estensibilità del lavoratore di attività. Il codice dell'applicazione non dovrà mai
gestire questa eccezione.

ActivityTaskException

Questa è la classe di base per le eccezioni di errore dei task di attività:
ScheduleActivityTaskFailedException, ActivityTaskFailedException,
ActivityTaskTimedoutException. Contiene l'ID di task e il tipo di attività del task non riuscito.
Puoi rilevare questa eccezione nella tua implementazione di flusso di lavoro per gestire gli errori nelle
attività in modo generico.

ActivityTaskFailedException

Le eccezioni non gestite nelle attività sono restituite all'implementazione di flusso di lavoro generando
ActivityTaskFailedException. L'eccezione originale può essere recuperata dalla proprietà
cause di questa eccezione. L'eccezione fornisce inoltre altre informazioni utili per il debug, come
l'identificatore di attività univoco nella cronologia.

Il framework può fornire l'eccezione remota serializzando l'eccezione originale dal lavoratore di
attività.

ActivityTaskTimedOutException

Questa eccezione viene generata se un'attività è stata interrotta da Amazon SWF. Ciò può
verificarsi se il task di attività non viene assegnato al lavoratore o completato dal lavoratore entro

ActivityFailureException Versione API 2021-04-28 187

AWS Flow Framework per Java Guida per gli sviluppatori

il periodo di tempo stabilito. Puoi impostare questi timeout per l'attività utilizzando l'annotazione
@ActivityRegistrationOptions o il parametro ActivitySchedulingOptions durante la
chiamata del metodo di attività.

ChildWorkflowException

La classe di base per le eccezioni utilizzate per segnalare errori nell'esecuzione di flusso di lavoro
figlio. L'eccezione contiene gli ID dell'esecuzione di flusso di lavoro figlio nonché il tipo di flusso di
lavoro. Puoi rilevare questa eccezione per gestire gli errori nelle esecuzioni di flusso di lavoro figlio in
modo generico.

ChildWorkflowFailedException

Le eccezioni non gestite nei flussi di lavoro figlio sono restituite all'implementazione di flusso di lavoro
padre generando ChildWorkflowFailedException. L'eccezione originale può essere recuperata
dalla proprietà cause di questa eccezione. L'eccezione fornisce inoltre altre informazioni utili per il
debug, come gli identificatori univoci dell'esecuzione figlio.

ChildWorkflowTerminatedException

Questa eccezione viene generata nell'esecuzione di flusso di lavoro padre per segnalare la
terminazione di un'esecuzione di flusso di lavoro figlio. Devi rilevare questa eccezione se
intendi gestire la terminazione del flusso di lavoro figlio, ad esempio, per eseguire la pulizia o la
compensazione.

ChildWorkflowTimedOutException

Questa eccezione viene generata nell'esecuzione del flusso di lavoro principale per segnalare che
l'esecuzione di un flusso di lavoro secondario è stata interrotta e chiusa da Amazon SWF. Devi
rilevare questa eccezione se intendi gestire la chiusura forzata del flusso di lavoro figlio, ad esempio
per eseguire la pulizia o la compensazione.

DataConverterException

Il framework utilizza il componente DataConverter per eseguire il marshalling e l'unmarshalling
dei dati trasmessi. Questa eccezione viene generata se DataConverter non riesce a eseguire
il marshalling o l'unmarshalling dei dati. L'errore potrebbe verificarsi per vari motivi, ad esempio, a
seguito di una mancata corrispondenza tra i componenti DataConverter utilizzati per eseguire il
marshalling e l'unmarshalling dei dati.

ChildWorkflowException Versione API 2021-04-28 188

AWS Flow Framework per Java Guida per gli sviluppatori

DecisionException

Questa è la classe base per le eccezioni che rappresentano la mancata attuazione di una decisione
di Amazon SWF. Puoi rilevare questa eccezione per gestire tali eccezioni in modo generico.

ScheduleActivityTaskFailedException

Questa eccezione viene generata se Amazon SWF non riesce a pianificare un'attività. Ciò potrebbe
accadere per vari motivi, ad esempio se l'attività è stata dichiarata obsoleta o è stato raggiunto un
limite Amazon SWF sul tuo account. La proprietà failureCause nell'eccezione specifica la causa
esatta dell'errore di pianificazione dell'attività.

SignalExternalWorkflowException

Questa eccezione viene generata se Amazon SWF non riesce a elaborare una richiesta
dell'esecuzione del flusso di lavoro per segnalare l'esecuzione di un altro flusso di lavoro. Ciò si
verifica se non è stato possibile trovare l'esecuzione del flusso di lavoro di destinazione, ovvero se
l'esecuzione del flusso di lavoro specificata non esiste o si trova in uno stato chiuso.

StartChildWorkflowFailedException

Questa eccezione viene generata se Amazon SWF non riesce ad avviare l'esecuzione di un workflow
secondario. Ciò può accadere per vari motivi, ad esempio, il tipo di flusso di lavoro secondario
specificato è obsoleto o è stato raggiunto un limite Amazon SWF sul tuo account. La proprietà
failureCause nell'eccezione specifica la causa esatta dell'errore di avvio dell'esecuzione di flusso
di lavoro figlio.

StartTimerFailedException

Questa eccezione viene generata se Amazon SWF non riesce ad avviare un timer richiesto
dall'esecuzione del flusso di lavoro. Ciò potrebbe accadere se l'ID timer specificato è già in uso o se
è stato raggiunto un limite Amazon SWF sul tuo account. La proprietà failureCause nell'eccezione
specifica la causa esatta dell'errore.

TimerException

Questa è la classe di base per le eccezioni relative ai timer.

DecisionException Versione API 2021-04-28 189

AWS Flow Framework per Java Guida per gli sviluppatori

WorkflowException

Questa eccezione viene utilizzata internamente dal framework per segnalare errori nell'esecuzione di
flusso di lavoro. Devi gestire tale eccezione solo se utilizzi un punto di estensibilità del lavoratore di
flusso di lavoro.

AWS Flow Framework per pacchetti Java

Questa sezione fornisce una panoramica dei pacchetti inclusi in Java. AWS Flow Framework Per
ulteriori informazioni su ciascun pacchetto, consulta com.amazonaws.services.simpleworkflow.flow
nella Guida di riferimento all'API.AWS SDK per Java

com.amazonaws.services.simpleworkflow.flow

Contiene componenti che si integrano con Amazon SWF.

com.amazonaws.services.simpleworkflow.flow.annotations

Contiene le annotazioni utilizzate dal modello di programmazione for Java. AWS Flow Framework

com.amazonaws.services.simpleworkflow.flow.aspectj

Contiene i componenti Java necessari per funzionalità come e. AWS Flow Framework
@Asincrona @ExponentialRetry

com.amazonaws.services.simpleworkflow.flow.common

Contiene utilità comuni come costanti definite dal framework.

com.amazonaws.services.simpleworkflow.core

Contiene funzionalità di base come Task e Promise.

com.amazonaws.services.simpleworkflow.flow.generic

Contiene componenti principali, come client generici, su cui si basano altre funzionalità.

com.amazonaws.services.simpleworkflow.flow.interceptors

Contiene implementazioni degli elementi Decorator forniti dal framework tra cui
RetryDecorator.

com.amazonaws.services.simpleworkflow.junit

Contiene componenti che forniscono l'integrazione JUnit.

WorkflowException Versione API 2021-04-28 190

https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/aspectj/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/common/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/core/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/interceptors/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/junit/package-summary.html

AWS Flow Framework per Java Guida per gli sviluppatori

com.amazonaws.services.simpleworkflow.pojo

Contiene classi che implementano definizioni di attività e di flusso di lavoro per il modello di
programmazione basato su annotazioni.

com.amazonaws.services.simpleworkflow.flow.spring

Contiene componenti che forniscono l'integrazione Spring.

com.amazonaws.services.simpleworkflow.flow.test

Contiene classi helper, come TestWorkflowClock, per gli unit test di implementazioni di flusso
di lavoro.

com.amazonaws.services.simpleworkflow.flow.worker

Contiene implementazioni di lavoratori di attività e flusso di lavoro.

Pacchetti Versione API 2021-04-28 191

https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/pojo/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/spring/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/test/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/worker/package-summary.html

AWS Flow Framework per Java Guida per gli sviluppatori

Cronologia dei documenti
La tabella seguente descrive le modifiche importanti alla documentazione dall'ultima versione della
AWS Flow Framework for Java Developer Guide.

• Versione API: 25-01-2012

• Ultimo aggiornamento della documentazione: 25 giugno 2018

Modifica Descrizione Data della
modifica

Aggiornamento Corretto errore nella descrizione backoffCoefficient
 per @ExponentialRetry . Consultare @Exponent

ialRetry.

25 giugno
2018

Aggiornamento Pulizia degli esempi di codice all'interno di questa guida. 5 giugno
2017

Aggiornamento Semplificazione e miglioramento dell'organizzazione e dei
contenuti della guida.

19 maggio
2017

Aggiornamento Semplificazione e miglioramento della sezione Apportare
modifiche al codice del decisore: la funzione Versioni
multiple e gli Indicatori di caratteristiche.

10 aprile
2017

Aggiornamento Aggiunta della nuova sezione Best practice con una nuova
guida alle modifiche del codice del decisore.

3 marzo
2017

Nuova caratteristica Puoi specificare attività Lambda oltre alle tradizionali attività
nei tuoi flussi di lavoro. Per ulteriori informazioni, consulta
AWS Lambda Attività di implementazione.

21 luglio
2015

Nuova caratteristica Amazon SWF include il supporto per l'impostazione della
priorità delle attività in un elenco di attività, tentando di
fornire le attività con una priorità più alta prima delle attività
con priorità inferiore. Per ulteriori informazioni, consulta
Impostazione della priorità delle attività in Amazon SWF.

17 dicembre
2014

Versione API 2021-04-28 192

AWS Flow Framework per Java Guida per gli sviluppatori

Modifica Descrizione Data della
modifica

Aggiornamento Apporto di aggiornamenti e correzioni. 1 agosto
2013

Aggiornamento • Apporto di aggiornamenti e correzioni, compresi
aggiornamenti delle istruzioni per configurare per Eclipse
4.3 e AWS SDK per Java 1.4.7.

• Aggiunta di un nuovo set di tutorial per creare scenari di
avvio

28 giugno
2013

Nuova caratteristica La versione iniziale di AWS Flow Framework per Java. 27 febbraio
2012

Versione API 2021-04-28 193

AWS Flow Framework per Java Guida per gli sviluppatori

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una
traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Versione API 2021-04-28 cxciv

	AWS Flow Framework per Java
	Table of Contents
	Che cos'è AWS Flow Framework per Java?
	Cosa c'è in questa guida?

	Guida introduttiva a AWS Flow Framework for Java
	Configurazione di AWS Flow Framework per Java
	Aggiungi il framework Flow con Maven

	HelloWorld Applicazione
	HelloWorld Attività: implementazione
	HelloWorld Workflow Worker
	HelloWorld Workflow Starter

	HelloWorldWorkflow Applicazione
	HelloWorldWorkflow Addetto alle attività
	HelloWorldWorkflow Workflow Worker
	Client di attività
	Tipo di Promise <T>

	HelloWorldWorkflow Implementazione del workflow e delle attività
	HelloWorldWorkflow Antipasto

	HelloWorldWorkflowAsyncApplicazione
	HelloWorldWorkflowAsync Attività Implementazione
	HelloWorldWorkflowAsync implementazione del flusso di lavoro
	HelloWorldWorkflowAsyncWorkflow e Activities Host and Starter

	HelloWorldWorkflowDistributed Applicazione
	HelloWorldWorkflowParallelApplicazione
	HelloWorldWorkflowParallelAttività: Lavoratore
	HelloWorldWorkflowParallelWorkflow Worker
	HelloWorldWorkflowParallel Workflow e attività Host and Starter

	Comprensione AWS Flow Framework di Java
	AWS Flow Framework Concetti di base: struttura dell'applicazione
	Ruolo del lavoratore di attività
	Ruolo del lavoratore di flusso di lavoro
	Ruolo dello starter di flusso di lavoro
	In che modo Amazon SWF interagisce con la tua applicazione
	Ulteriori informazioni

	AWS Flow Framework Concetti di base: esecuzione affidabile
	Assicurare una comunicazione affidabile
	Impedire la perdita dei risultati
	Gestione della cronologia del flusso di lavoro
	Esecuzione stateless

	Gestire componenti distribuiti con errori

	AWS Flow Framework Concetti di base: esecuzione distribuita
	Riproduzione dei flussi di lavoro
	Riproduzione e metodi di flusso di lavoro asincroni
	Riproduzione e implementazione del flusso di lavoro

	AWS Flow Framework Concetti di base: elenchi di attività ed esecuzione delle attività
	AWS Flow Framework Concetti di base: applicazioni scalabili
	AWS Flow Framework Concetti di base: Data Exchange tra attività e flussi di lavoro
	La promessa <T> Tipo
	Convertitore e marshalling dei dati

	AWS Flow Framework Concetti di base: Data Exchange tra applicazioni ed esecuzioni di flussi di lavoro
	Tipi di timeout di Amazon SWF
	I timeout nel flusso di lavoro e i task di decisione
	Timeout nei task di attività

	Comprensione di un task in AWS Flow Framework for Java
	Attività
	Ordine di esecuzione
	Esecuzione del flusso di lavoro
	Non determinismo

	AWS Flow Framework per la guida alla programmazione Java
	Implementazione di applicazioni di workflow con AWS Flow Framework
	Contratti di flusso di lavoro e attività
	Registrazione dei tipi di flusso di lavoro e di attività
	Nome e versione del tipo di flusso di lavoro
	Nome del segnale
	Nome e versione del tipo di attività
	Elenco di task predefinito
	Altre opzioni di registrazione

	Client di attività e flusso di lavoro
	Client di flusso di lavoro
	Client di attività
	Opzioni di programmazione
	Client dinamici
	Segnalare e annullare le esecuzioni del flusso di lavoro

	Implementazione del flusso di lavoro
	Contesto di decisione
	Esposizione dello stato dell'esecuzione
	Locali del flusso di lavoro

	Implementazione di attività
	Completamento manuale della attività

	AWS Lambda Attività di implementazione
	Informazioni su AWS Lambda
	Vantaggi e limiti dell'utilizzo delle attività Lambda
	Utilizzo delle attività Lambda nei flussi di lavoro AWS Flow Framework per Java
	Configurazione di un ruolo IAM
	Limita le autorizzazioni su un ruolo IAM
	Fornire ad Amazon SWF l'accesso per richiamare qualsiasi ruolo Lambda
	Definizione di un ruolo IAM per fornire l'accesso per richiamare una funzione Lambda specifica

	Pianifica l'esecuzione di un'attività Lambda

	Visualizza l'esempio HelloLambda

	Esecuzione di programmi scritti con AWS Flow Framework for Java
	WorkflowWorker
	ActivityWorker
	Modello di threading di lavoratore
	Estensibilità dei lavoratori

	Contesto di esecuzione
	Contesto di decisione
	Accesso nell'implementazione del flusso DecisionContext di lavoro
	Creazione di un orologio e di un timer

	Contesto di esecuzione di attività
	Heartbeat di un'attività a esecuzione prolungata
	Ottenimento dei dettagli del task di attività
	Ottieni l'oggetto client Amazon SWF utilizzato dall'esecutore

	Esecuzioni del flusso di lavoro figlio
	Flussi di lavoro continui
	Impostazione della priorità delle attività in Amazon SWF
	Impostazione della priorità di task per flussi di lavoro
	Impostazione della priorità di task per attività

	DataConverters
	Passaggio di dati a metodi asincroni
	Passaggio di raccolte e mappe a metodi asincroni
	impostabile <T>
	@NoWait
	Promise <Void>
	AndPromise e OrPromise

	Testabilità e inserimento delle dipendenze
	Integrazione di Spring
	WorkflowScope
	Lavoratori compatibili con Spring
	Contesto di decisione dell'introduzione
	Introdurre le risorse nelle attività

	JUnit Integrazione
	Scrivere un semplice unit test
	Implementazioni di attività fittizie

	Testare gli oggetti contesto

	Gestione errori
	TryCatchFinally Semantica
	Annullamento
	Heartbeat dell'attività
	Annullamento esplicito di un task
	Ricezione di notifiche relative a task annullati

	Annidato TryCatchFinally

	Ripetere le attività non andate a buon fine
	Retry-Until-Success Strategia
	Strategia di ripetizione esponenziale
	Riprova esponenziale con @ ExponentialRetry
	Riprova esponenziale con la classe RetryDecorator
	Riprova esponenziale con la classe AsyncRetryingExecutor

	Strategia di ripetizione personalizzata

	Task Daemon
	AWS Flow Framework per Java Replay Behavior
	Esempio 1: riproduzione sincrona
	Esempio 2: riproduzione asincrona
	Vedi anche

	Best practice
	Apportare modifiche al codice del decisore: la funzione Versioni multiple e gli Indicatori di caratteristiche
	Il processo di riproduzione e le modifiche del codice
	Scenario di esempio
	Struttura dello scenario
	Codice comune
	Scrivere il codice iniziale del decisore
	Simulazione di una modifica non retrocompatibile

	Soluzioni
	Uso della funzione Versioni multiple
	Utilizzo degli Indicatori di caratteristiche

	Suggerimenti per la risoluzione dei problemi e il debug per Java AWS Flow Framework
	Errori di compilazione
	Errore di risorsa sconosciuto
	Eccezioni quando si chiama get () su una promessa
	Flussi di lavoro non deterministici
	Problemi dovuti al controllo delle versioni
	Risoluzione dei problemi e debug dell'esecuzione di un flusso di lavoro
	Attività perse
	Errore di convalida dovuto a vincoli di lunghezza dei parametri API

	AWS Flow Framework per Java Reference
	AWS Flow Framework per Java Annotations
	@Activities
	@Activity
	@ActivityRegistrationOptions
	@Asincrona
	@Execute
	@ExponentialRetry
	@GetState
	@ManualActivityCompletion
	@Signal
	@SkipRegistration
	@Wait e @ NoWait
	@Flusso di lavoro
	Esempio

	@WorkflowRegistrationOptions

	AWS Flow Framework per le eccezioni Java
	ActivityFailureException
	ActivityTaskException
	ActivityTaskFailedException
	ActivityTaskTimedOutException
	ChildWorkflowException
	ChildWorkflowFailedException
	ChildWorkflowTerminatedException
	ChildWorkflowTimedOutException
	DataConverterException
	DecisionException
	ScheduleActivityTaskFailedException
	SignalExternalWorkflowException
	StartChildWorkflowFailedException
	StartTimerFailedException
	TimerException
	WorkflowException

	AWS Flow Framework per pacchetti Java

	Cronologia dei documenti
	

