adws

Guida per gli sviluppatori

AWS Flow Framework per Java

Versione APl 2021-04-28

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework per Java: Guida per gli sviluppatori

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

| marchi e il trade dress di Amazon non possono essere utilizzati in relazione ad alcun prodotto o
servizio che non sia di Amazon, in alcun modo che possa causare confusione tra i clienti, né in alcun
modo che possa denigrare o screditare Amazon. Tutti gli altri marchi non di proprieta di Amazon sono
di proprieta delle rispettive aziende, che possono 0 meno essere associate, collegate o sponsorizzate
da Amazon.

AWS Flow Framework per Java Guida per gli sviluppatori

Table of Contents

Che cos'é AWS FIow Framework PEr JAVA?coooviiiiiiiiiiieeee e 1
Cosa C'€ IN QUESTA QUIAT ...ttt eeeeeaaarraa——_ 1
I\ T ¥4 (o] o T e [o 7=] SRR 3
Configurazione del fraMEWOTKcccooiiiiiiiiii e e e e e e e e e e e e e e e e e s 3
Aggiungi il framework FIOW CON MaVENoooviiiiiiccece e 4
(=1 ToX A o] [0 BN o] o] [T07= 4 (o] o = PSPPI 4
HelloWorld Attivita: implementazione ..., 5
HelloWorld WOrKFIOW WOTKET ...ttt e e e e e e e e e e eeeas 6
HelloWorld WOrKFIOW SEartereeeeiiieiieee e e e e e e e e e e e e e e 7
HelloWorldWorkflow APPIICAZIONEooeeiiriiieieee e e e e e e 7
HelloWorldWorkflow Addetto alle attivitacoooeiiiiiiiiiii e 10
HelloWorldWorkflow WOrkflow WOTKEFuuiiiiiiiiiiiieee et 12
HelloWorldWorkflow Implementazione del workflow e delle attivitacccccn, 17
HelloWorldWorkflow ANtIPastOooooiiiiiiiie e 21
HelloWorldWorkflowASYNCAPPICAZIONEcoooiiiiiiieeee e s 26
HelloWorldWorkflowAsync Attivita Implementazioneeiiiiiiiiiiiieiiiiieeeeeee, 28
HelloWorldWorkflowAsync implementazione del flusso di [avoroeeeviciiiiiiieeninneennn. 28
HelloWorldWorkflowAsyncWorkflow e Activities Host and Startercccconinn, 30
HelloWorldWorkflowDistributed AppliCazIiONeooeimmiiiiiiiccceeeee e 31
HelloWorldWorkflowParallelAppliCAZIONEcccoooiiiiiiiiiieeeeeeee e 34
HelloWorldWorkflowParallelAttivita: Lavoratoreoooooooiiiiiiiiiiieieee e 35
HelloWorldWorkflowParallelWorkflow WOIKETcooiiiiiiiiiiiiieeeeeeee e 36
HelloWorldWorkflowParallel Workflow e attivita Host and Startercccccccciiiiiiiiinnnnee. 37
Comprensione AWS FIOW FrameEWOTKccccooeiiiiiiiiiiiiiieeeeeeeee e s eeeeeenannaanaas 38
Struttura di UN'APPlICAZIONE ..ot a e e e e 38
Ruolo del lavoratore di attivita ..o 40
Ruolo del lavoratore di flusSO di 1aVOr0uuviiiiiiiiiiiie et 40
Ruolo dello starter di fluSSO di 1aVOrO ..o 41

In che modo Amazon SWF interagisce con la tua applicazionecccccciieiiieiieeeeeeeeeeee, 41
(011 (=Y T T a1 o] o 4 F= 4 o o TR 41
Esecuzione affildabilecooo i e e e e e 42
Assicurare una comunicazione affidabile ... 42
Impedire la perdita dei FSUlatiooounii i 43
Gestire componenti distribuiti CON ErTOFiccccoiiiiiiiiiecr e 44

Versione API 2021-04-28 iii

AWS Flow Framework per Java Guida per gli sviluppatori

Esecuzione diStriDUITAee e 44
Riproduzione dei fluSSi di [aVOr0ovieiiiiiiiicieee e 44
Riproduzione e metodi di flusso di lavoro asinCroniuuvuueiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeaias 46
Riproduzione e implementazione del flusso di [avoroeceiiiiiiiiiiiiiiii, 46

Elenchi di task ed esecuzione di task ... 46

PaY o] o[Tez= V. To] o TIETor=1 =1 o | PSP 49

Scambio di dati tra le attivita € i flussi di 1aVOroueviiiiiiiiiiie e 49
0= o o] 4111 T= IS [I o TSP 50
Convertitore € marshalling dei dati ... 51

Scambio di dati tra le applicazioni e le esecuzioni del flusso di lavoroccoooieeeiiiiiiiinnnee, 52

I oL L1 (10 (=T T | RSP 52
| timeout nel flusso di lavoro e i task di deCiSIONEeeeiiiiiiiiiiiiiiieee e 53
Timeout nei task di attiVitaeeeeii e 54

Comprensione delle attiVItaooeiiiiiie e ————— 56

111 | - P SEUERRRR 56

OrdiNe di ESECUZIONEooeiiiieee ettt e e e e e e e e e ettt et e e e aeeeeeeeeea s e nnsssbseaneeeeaaaaaaeeeesaaans 57

Esecuzione del fluSSO di 1aVOrOcoooiiiiiiiieeeee et e e e as 58

o] g I 121 (=1 4 1T T o T TP PPPUPPPIN 61

Guida di ProgramMAZIONEoeeiiuiiiiiieei e e e e et e e e e e e e e e e e e e e e e et e eee et aeeaeaeaeeaaaaaaaaeeeeeeeeesessnssannnns 62

Implementazione di applicazioni di flusso di [aVOroouvvviiiiiiiiiiiiieeee e, 62

Contratti di flusso di 1avoro € attivitaeeieiiiiie e 64

Registrazione dei tipi di flusso di lavoro e di attivita ... 67
Nome e versione del tipo di flusSO di 1aVOr0uuueeiiiiieiiiieiie e 68
NOME eI SEGNAIE ... e e e et e e e e e e e e e e e eraa e aaaane 68
Nome e versione del tipo di attivita ... 68
Elenco di task predefinito 69
Altre opzioni di regiSIrazZIONEeeuiiiiii e 69

Client di attivita € fluSSO di 1aVOrOccooie e e e e as 70
(071157 o o [{ (U TS0 T [F= 1Y/ o] o SRR 70
Client di @tHIVITAoooiiiiie e e e e e e e e e e e e aaannne 79
Opzioni di ProgrammMAzZIONEcooveiiiiiiiiii e eee ee s s s e e e e eeeaaaaaaaeaeees 83
L@ 1= e [T =T o1 o7 P PEEERRRRR 84

Implementazione del fluSSO di [aVOTO0ovvueeiiiiiiii e 85
Contesto di ECISIONEottt et e e e e e e e e e e st e e e e e e eaeeaeeaeaeaaanns 87
Esposizione dello stato dell'@SECUZIONEccoooiiiiiiii e 87
Locali del fluSSO di [aVOIOcooiiee et e e e e e e e e e e e aaeeeens 89

Versione APl 2021-04-28 iv

AWS Flow Framework per Java Guida per gli sviluppatori

Implementazione di attiVitaiiiiiiii e ———— 90
Completamento manuale della attivita ..., 91
Implementazione delle attivita Lambda ... 93
Informazioni SU AWS Lambdaoooiiiiiiiiiiieee e e e e e e e e e e 93
Vantaggi e limiti dell'utilizzo delle attivita Lambda ..., 94
Utilizzo delle attivita Lambda nei flussi di lavoro AWS Flow Framework per Java 94
Visualizza I'esempio HelloLambdacooooriiiiiiiii e 99
Esecuzione di programmi scritti con AWS Flow Framework for Javaccccceeeieiiiiiiiennnnnnnn. 99
WOTKFIOWWVOIKET ...ttt e e e e e e e e e e e e e e e e e e aeeaaeeeeeaaanns 100
ACHVIEYWOIKET ...ttt e ettt e e e e e et et e e e e e eeeasa e e e eeeeesanaaeeaaenes 101
Modello di threading di 1aVOratoreooouuiiiii i 101
Estensibilita dei 1aVOratoriooiiiiiii i 104
(070] 0] (=153 (o0 L= ot U o] 1= O PUEEERURR 105
Contesto di ECISIONE ..ot e e e e e e e e e e e e e e e e aaaaaeeeeeaaann 105
Contesto di esecuzione di attiVitaoooieeiiiiiiiiii e 107
Esecuzioni del flusso di 1avoro figlioueeeeiiiiiiiie e 108
FIUSSI di [aVOr0 CONTINUI ..ottt e e e e e e e e e e e 110
Impostazione della priorita delle attivitaccccoeiiiiiiiii 112
Impostazione della priorita di task per flussi di 1avoro ..., 112
Impostazione della priorita di task per attivita ... 113
D= = 0] g V7= o (T USSP 114
Passaggio di dati @ metodi @SINCrONIiiiiiiiiiiee e e 115
Passaggio di raccolte e mappe a metodi @aSiNCroNiccoceviiiiiiiieiieeeeiee e 115
] 01015 €= 011 LTS [P 116
(@21 N\ [X A= T RSP 118
PromisSe SVOIA> ...ttt e e e e e e e e e e e e e e e eeeeeeeernnane 118
ANAPromisSe € OFPIOMISEcoiiiiiiiiiie ettt e e e e e e e e e e e e e e s eeeeeeeeeaeens 118
Testabilita e inserimento delle dipeNdENZE ..o, 118
INtEgrazione di SPIING ...euueeeiiieee e e e e e e e e e e e e e e e e e —————— 119
L o1 o [T (=T = 4 o 1SR 126
LCT=TS] (o] =T =T 4 o]y S EUERRPRRR 132
TryCatchFinally SEmMaNtiCauuuuuiiiiii e e e 134
N 0 1011 =T g =T o o PSSR 135
Annidato TryCatChFiNallyoooiiiii e e e e e 139
Ripetere le attivita non andate a buon fiNe ... 141
Retry-Until-SUcCess Strategialuuuuiiiiii it 141

Versione API 2021-04-28 v

AWS Flow Framework per Java Guida per gli sviluppatori

Strategia di ripetizione €SPONENZIAIEuueeeeiiiiii e 144
Strategia di ripetizione personalizzatacccoooeiiiiiiiiiiii e 151
1= TG I 7= = o o) o PR 154
Comportamento di FPrOAUZIONEuuueiiiiiiiie e e e e e e e e e e e e e e aeaes 156
Esempio 1: riproduzionN@ SINCIONAciiiiiiiiiiiee e e e e e e et e e e e e e eensaaas 156
Esempio 2: riproduzion@ @SINCIONAccciiiiiiiiiie e et e e e e et e e e e e e e s e e e e e eeeraannas 158
Y=o L= T o = PRSPPI 159
LTSy o] = o (o= O 160
Apportare modifiche al codice del dECISOrecciiiiiiiiiiiii e 160
Il processo di riproduzione e le modifiche del codiCe ..o 160
SCENANO i ESEIMPIO ...uiiiiii i e as 161

0 T0] 11 4 T o | PR 168
[NES0] {8 P4 o] L= e (=TI o] o] o] 1= o o ORI 173
Errori di COMPIIAZIONE ... et e e e ettt e e e e e e e e e e e e e e eeraneeas 173
Errore di riSOrsa SCONOSCIULOuuuuuuiiiiie et e e e e e e e e e e e e e e eeeeeeeeeeennes 173
Eccezioni quando si chiama get () SU UNa PromessSacccoeeeeiieiiiieeiieieeeeeeeeeeee 174
Flussi di lavoro non determiniStiCiccoooo e 174
Problemi dovuti al controllo delle VErsioNicoouuiiiiiiiiiiii e 175
Risoluzione dei problemi e debug dell'esecuzione di un flusso di lavorocccceeeeeeieenien. 175
F N 1)Y= 01T T YOO PP 177
Errore di convalida dovuto a vincoli di lunghezza dei parametri APl ..., 177
Documentazione di FiferiMeNntOoooiiiiiiiii e e e as 178
Y o] T} = T o | PP PUPURPR 178
@ACHIVITIES ...ttt e et e e e e e e e e e ettt e e e e e e e aaaaaaaaaeaaaes 178

(@ X3 (1Y 1 /PR 179
@ACLivityRegistratioNOPLIONSoooiiiiiee e 180

(@ AN Lo (o] F- TSP SO PP 181
@EXECULE ...ttt e e e e e e e e e e e e e e e e e e ———————————————— 181
@EXPONENHAIREINY ... e e e e e e aaaaaaas 182

@ GEESTALE ... e ————————————————————— 183
@ManualActivityCompletionoooeiii e 183

@ SIGNAIo eeeeeaeaaaaaaaaeaeeaterr————————————— 183
@SKIPREGISIrAtiON ... e e e e e e e e e e e e e e e e 183
@Wait € @ NOWaAIL ... e e e e e e e e e e e aaaaeeees 183

(@ LR LU= To I e T F= 1Y o] o PO U RSP PR 184
@WorkflowRegistratioNOPLIONSovviiiiiiiiceee e 185

Versione APl 2021-04-28 vi

AWS Flow Framework per Java Guida per gli sviluppatori

oo =Y [0 | PSP 186
ACtiVItYFaIlUrEEXCEPLION ... e 187
ACHVItY TASKEXCEPHON ..o e e et e e e e e et e e e aeeeees 187
Activity TaskFailedEXCEPHIONoiieeee e e 187
ActivityTask TImedOULEXCEPLIONcoooiiieeee e 187
ChildWOorkflOWEXCEPHION ... e e e e e e e e e e e e e eeees 188
ChildWorkflowFailedEXCEPLIONcccoeiieeeeeee e 188
ChildWorkflowTerminatedEXCEPLoONuueeiiiiiiiie e 188
ChildWorkflowTimedOULEXCEPLIONcoooiiiieeeeee e s 188
DataConverterEXCEPLIONooooiieeeeee e e e e e e e e 188
(D TSY oI] To] b et =T o)1) o U URPPRRR 189
ScheduleActivityTaskFailedEXCEPLIONcoooiiiiiiec e 189
SignalExternalWorkflOWEXCEPLONccoiiiiiiiiiii e e e e e e e 189
StartChildWorkflowFailedEXCEPLIONcoooiiiie e 189
StartTimerFailedEXCEPION ... e e e e e e e 189
B I T=T 0 T (eT=T o] (o o PSRRI 189
WOIKFIOWEXCEPHON ...ttt e e e e e e e e e e e e e e e e aeees 190

= oo o = PP 190

Cronologia dei AOCUMENTuuiiiiecicc eeeeeeeeeessessannnes 192
.. CXCiv

Versione API 2021-04-28 vii

AWS Flow Framework per Java Guida per gli sviluppatori

Che cos'e AWS Flow Framework per Java?

Con AWS Flow Framework, puoi concentrarti sull'implementazione della logica del flusso di lavoro.
Dietro le quinte, il framework utilizza le funzionalita di pianificazione, routing e gestione dello stato

di Amazon SWF per gestire I'esecuzione del flusso di lavoro e renderlo scalabile, affidabile e
verificabile. AWS Flow Framework i flussi di lavoro basati su di essi sono altamente simultanei. | flussi
di lavoro possono essere distribuiti su piu componenti, che possono essere eseguiti come processi
separati su computer separati ed essere scalati indipendentemente. L'applicazione pud continuare a
progredire se uno dei suoi componenti € in esecuzione, il che la rende altamente tollerante ai guasti.

Cosa c'é in questa guida?

Questa guida contiene informazioni su come installare, configurare e utilizzare AWS Flow Framework
per creare applicazioni Amazon SWF.

Guida introduttiva a AWS Flow Framework for Java

Se hai appena iniziato a usare la versione AWS Flow Framework per Java, leggi la Guida
introduttiva a AWS Flow Framework for Java sezione. Ti guidera attraverso il download e
l'installazione di AWS Flow Framework per Java, come configurare il tuo ambiente di sviluppo e ti
guidera attraverso un semplice esempio di creazione di un flusso di lavoro.

Comprensione AWS Flow Framework di Java

Introduce Amazon SWF AWS Flow Framework e i concetti di base, descrivendo la struttura di
base di AWS Flow Framework un'applicazione e come i dati vengono scambiati tra le parti di un
flusso di lavoro distribuito.

AWS Flow Framework per la guida alla programmazione Java

Questo capitolo fornisce linee guida di programmazione di base per lo sviluppo di applicazioni di
flusso di lavoro con Java, tra cui come registrare attivita e tipi di flusso di lavoro, implementare
client di flusso di lavoro, creare flussi di lavoro secondari, gestire errori e altro ancora. AWS Flow
Framework

Comprensione di un task in AWS Flow Framework for Java

Questo capitolo fornisce un'analisi piu approfondita del funzionamento di For Java, fornendo
informazioni aggiuntive sull'ordine di esecuzione dei flussi di lavoro asincroni e una procedura
logica di esecuzione di un flusso di lavoro standard. AWS Flow Framework

Cosa c'e in questa guida? Versione API 2021-04-28 1

AWS Flow Framework per Java Guida per gli sviluppatori

Suggerimenti per la risoluzione dei problemi e il debug per Java AWS Flow Framework

Questo capitolo presenta informazioni sugli errori comuni che puoi usare per risolvere i problemi
dei flussi di lavoro o per imparare ad evitare gli errori comuni.

AWS Flow Framework per Java Reference

Questo capitolo € un riferimento alle annotazioni, alle eccezioni e ai pacchetti che AWS Flow
Framework for Java aggiunge all'SDK per Java.

Cosa c'e in questa guida? Versione APl 2021-04-28 2

AWS Flow Framework per Java Guida per gli sviluppatori

Guida introduttiva a AWS Flow Framework for Java

Questa sezione presenta una serie AWS Flow Framework di semplici applicazioni di esempio che
introducono il modello di programmazione e I'API di base. Le applicazioni di esempio sono basate
sull'applicazione standard Hello World, utilizzata per presentare C e i linguaggi di programmazione
correlati. Ecco una tipica implementazione Java di Hello World:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");
}

Quella che segue & una breve descrizione delle applicazioni di esempio. Includono il codice sorgente
completo per implementare ed eseguire autonomamente le applicazioni. Prima di iniziare, dovresti
configurare il tuo ambiente di sviluppo e creare un progetto AWS Flow Framework per Java, come
inConfigurazione di AWS Flow Framework per Java.

+ HelloWorld Applicazione introduce le applicazioni di flusso di lavoro implementando Hello World
come applicazione Java standard, ma strutturandola come applicazione di flusso di lavoro.

+ HelloWorldWorkflow Applicazioneutilizza AWS Flow Framework for Java per la conversione
HelloWorld in un flusso di lavoro Amazon SWF.

» HelloWorldWorkflowAsyncApplicazione modifica Hel1loWorldWorkflow per utilizzare un metodo
di flusso di lavoro asincrono.

« HelloWorldWorkflowDistributed Applicazione modifica HelloWorldWorkflowAsync in modo che

il flusso di lavoro e i lavoratori di attivita possano operare su sistemi separati.

+ HelloWorldWorkflowParallelApplicazione modifica Hel1loWorldWorkflow per eseguire due
attivita in parallelo.

Configurazione di AWS Flow Framework per Java

I AWS Flow Framework for Java € incluso in. AWS SDK per Java Se non I'hai ancora configurato

AWS SDK per Java, consulta la sezione Guida introduttiva alla AWS SDK per Java Developer Guide
per informazioni sull'installazione e la configurazione dell'SDK stesso.

Configurazione del framework Versione APl 2021-04-28 3

https://aws.amazon.com/sdkforjava/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/getting-started.html

AWS Flow Framework per Java Guida per gli sviluppatori

Aggiungi il framework Flow con Maven

Gli strumenti di compilazione di Amazon SWF sono open source: per visualizzare o scaricare il
codice o per creare gli strumenti da soli, visita il repository all'indirizzo. https://github.com/aws/aws-
swf-build-tools

Amazon fornisce strumenti di compilazione Amazon SWF nel Maven Central Repository.

Per configurare il framework per Maven, aggiungi la seguente dipendenza al file pom. xml del tuo
progetto:

<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-swf-build-tools</artifactId>
<version>2.0.0</version>

</dependency>

HelloWorld Applicazione

Per presentare il modo in cui sono strutturate le applicazioni Amazon SWF, creeremo un'applicazione
Java che si comporta come un flusso di lavoro, ma che viene eseguita localmente in un unico
processo. Non é richiesta alcuna connessione ad Amazon Web Services.

(® Note

L'HelloWorldWorkflowesempio si basa su questo, la connessione ad Amazon SWF per
gestire la gestione del flusso di lavoro.

Un'applicazione del flusso di lavoro € composta da tre componenti base:

« Un lavoratore di attivita supporta un set di attivita, ciascuna delle quali € un metodo che viene
eseguito in modo indipendente per eseguire un determinato task.

* Un lavoratore di flusso di lavoro orchestra I'esecuzione delle attivita e gestisce il flusso di dati. Si
tratta della realizzazione programmatica di una topologia del flusso di lavoro che & sostanzialmente
un digramma di flusso che definisce il momento in cui vengono eseguite le diverse attivita, sia che
vengano eseguite in modo sequenziale o contemporaneamente.

» Uno starter di flusso di lavoro avvia un'istanza di flusso di lavoro, chiamata esecuzione, e pud
interagire con essa durante |'esecuzione.

Aggiungi il framework Flow con Maven Versione APl 2021-04-28 4

https://github.com/aws/aws-swf-build-tools
https://github.com/aws/aws-swf-build-tools
https://mvnrepository.com/artifact/com.amazonaws/aws-swf-build-tools

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorld & implementato come tre classi e due interfacce correlate, descritte nelle sezioni seguenti.
Prima di iniziare, &€ necessario configurare I'ambiente di sviluppo e creare un nuovo progetto AWS
Java come descritto inConfigurazione di AWS Flow Framework per Java. | pacchetti utilizzati per le
seguenti procedure guidate sono stati tutti nominati helloWorld. XYZ. Per utilizzare questi nomi,
imposta l'attributo within in aop.xml secondo quanto indicato di seguito:

<weaver options="-verbose">
<include within="helloWorld..*"/>
</weaver>

Per implementarlo HelloWorld, create un nuovo pacchetto Java nel vostro progetto AWS SDK

denominato helloWorld.HelloWorld e aggiungete i seguenti file:

* Un file di interfaccia denominato GreeterActivities. java

* Un file di classe denominato GreeterActivitiesImpl. java, che implementa il lavoratore di
attivita.

* Un file di interfaccia denominato GreeterWorkflow. java.

+ Un file di classe denominato GreeterWorkflowImpl. java, che implementa il lavoratore di
flusso di lavoro.

* Un file di classe denominato GreeterMain. java, che implementa lo starter di flusso di lavoro.

| dettagli sono illustrati nelle sezioni seguenti e includono il codice completo per ogni componente,
che puoi aggiungere al file appropriato.

HelloWorld Attivita: implementazione

HelloWorld suddivide I'operazione complessiva di stampa di un "Hello World!" messaggio di
saluto sulla console in tre attivita, ognuna delle quali viene eseguita con un metodo di attivita. | metodi
di attivita sono definiti nell'interfaccia GreeterActivities, secondo quanto segue.

public interface GreeterActivities {
public String getName();
public String getGreeting(String name);
public void say(String what);

HelloWorld Attivita: implementazione Versione APl 2021-04-28 5

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorld ha un'implementazione di attivitaGreeterActivitiesImpl, che fornisce i
GreeterActivities metodi illustrati:

public class GreeterActivitiesImpl implements GreeterActivities {
@Override
public String getName() {
return "World";

}

@Override

public String getGreeting(String name) {
return "Hello " + name + "!";

}

@Override

public void say(String what) {
System.out.println(what);

Le attivita sono indipendenti una dall'altra e spesso possono essere utilizzate da diversi flussi di
lavoro. Ad esempio, i flussi di lavoro che utilizzano I'attivita say per visualizzare una stringa sulla
console. | flussi di lavoro possono inoltre avere diverse implementazioni di attivita e ognuna di essere
esegue un set diverso di task.

HelloWorld Workflow Worker

Per stampare «Hello World!» sulla console, le attivita devono essere eseguite in sequenza nell'ordine
corretto con i dati corretti. L'addetto al HelloWorld workflow orchestra I'esecuzione delle attivita sulla
base di una semplice topologia lineare del flusso di lavoro, illustrata nella figura seguente.

Call greeting name : greeting Print greeting
- _ F—» getMame getGreeting ay | '
(Start) {Finish])

Le tre attivita vengono eseguite in sequenza e i dati fluiscono da un'attivita a quella successiva.

L'operatore del HelloWorld workflow utilizza un unico metodo, il punto di ingresso del flusso di lavoro,
definito nell'GreeterWorkflowinterfaccia come segue:

public interface GreeterWorkflow {
public void greet();

HelloWorld Workflow Worker Versione API 2021-04-28 6

AWS Flow Framework per Java Guida per gli sviluppatori

}

La classe GreeterWorkflowImpl implementa l'interfaccia come mostrato di seguito:

public class GreeterWorkflowImpl implements GreeterWorkflow{
private GreeterActivities operations = new GreeterActivitiesImpl();

public void greet() {
String name = operations.getName();
String greeting = operations.getGreeting(name);
operations.say(greeting);

Il greet metodo implementa la HelloWorld topologia creando un'istanza
diGreeterActivitiesImpl, chiamando ogni metodo di attivita nell'ordine corretto e passando i
dati appropriati a ciascun metodo.

HelloWorld Workflow Starter

Uno starter di flusso di lavoro € un'applicazione che avvia I'esecuzione del flusso di lavoro e che
pud comunicare con il flusso di lavoro durante I'esecuzione. La GreeterMain classe implementa il
HelloWorld workflow starter, come segue:

public class GreeterMain {
public static void main(String[] args) {
GreeterWorkflow greeter = new GreeterWorkflowImpl();
greeter.greet();

GreeterMain crea un'istanza di GreeterWorkflowImpl e chiama greet per eseguire il
lavoratore di flusso di lavoro. Esegui GreeterMain come applicazione Java e dovresti vedere «Hello
World!» nell'output della console.

HelloWorldWorkflow Applicazione

Sebbene I'HelloWorldesempio di base sia strutturato come un flusso di lavoro, si differenzia da un
flusso di lavoro Amazon SWF per diversi aspetti chiave:

HelloWorld Workflow Starter Versione API 2021-04-28 7

AWS Flow Framework per Java

Guida per gli sviluppatori

Applicazioni di workflow convenzionali e Amazon SWF

HelloWorld

Viene eseguita localmente come
singolo processo.

Le attivita sono metodi sincroni che
vengono bloccati fino a che non
risultano completati.

Il lavoratore di flusso di lavoro
interagisce con un lavoratore di attivita
chiamando il metodo appropriato.

Lo starter di flusso di lavoro interagis
ce con un lavoratore di attivita
chiamando il metodo appropriato.

Flusso di lavoro Amazon SWF

Viene eseguito come piu processi che possono essere
distribuiti su piu sistemi, tra cui EC2 istanze Amazon,
data center privati, computer client e cosi via. Non &
necessario eseguirli sullo stesso sistema operativo.

Le attivita sono rappresentate da metodi asincroni, i quali
restituiscono immediatamente un risultato e consenton

o al flusso di lavoro di eseguire altri task in attesa del
completamento dell'attivita.

| lavoratori del flusso di lavoro interagiscono con gli
addetti alle attivita utilizzando richieste HTTP, con
Amazon SWF che funge da intermediario.

Gli avviatori di flussi di lavoro interagiscono con gli
operatori del flusso di lavoro utilizzando richieste HTTP,
con Amazon SWF che funge da intermediario.

Implementare un'applicazione di flusso di lavoro asincrona distribuita da zero, ad esempio, facendo

in modo che il lavoratore di flusso di lavoro interagisca direttamente con un lavoratore di attivita

mediante chiamate di servizi Web, & possibile. Tuttavia, cid comporterebbe I'implementazione di tutto

il codice complesso necessario a gestire I'esecuzione asincrona di molteplici attivita, controllare il
flusso di dati, ecc. The AWS Flow Framework for Java e Amazon SWF si occupano di tutti questi
dettagli, il che ti consente di concentrarti sull'implementazione della logica aziendale.

HelloWorldWorkflow & una versione modificata HelloWorld che funziona come flusso di lavoro

Amazon SWEF. L'illustrazione seguente riepiloga il funzionamento delle due applicazioni.

HelloWorldWorkflow Applicazione

Versione API 2021-04-28 8

AWS Flow Framework per Java Guida per gli sviluppatori

Workflow |- GreeterMain
Starter

GreeterWorkflowClientExternal

Activities
Worker Workflow Activities
Task Task

List List

Y Amazon SWF

)

GreeterActivitieslmpl

HTTP

GreeterWorkflowlmpl
Fi

Workflow |
Starter | Areeterhﬂain

Workflow /

GreeterActivitiesClientimpl GreeterActivitiesimpl

ActivityWorker

GreeterWorkflowlmpl

|
|
|
|
|
|
|
|
|
Y |
|
|
|
|
|
|
|
|
|

IJ' WorkflowWaorker GreeterWorker
Waoarker]
HelloWorld Warkflow HelloWorldWorkflow Activities
Waorker Worker

HelloWorld viene eseguito come un unico processo e starter, workflow worker e Activities Worker
interagiscono utilizzando chiamate di metodo convenzionali. ConHelloWorldWorkflow, starter,
workflow worker e activities worker sono componenti distribuiti che interagiscono tramite Amazon
SWEF utilizzando richieste HTTP. Amazon SWF gestisce l'interazione mantenendo elenchi di attivita
e flussi di lavoro, che invia ai rispettivi componenti. Questa sezione descrive come funziona il
framework. HelloWorldWorkflow

HelloWorldWorkflow viene implementato utilizzando I'API AWS Flow Framework for Java, che
gestisce i dettagli a volte complicati dell'interazione con Amazon SWF in background e semplifica
notevolmente il processo di sviluppo. Puoi utilizzare lo stesso progetto per cui lo hai creato
HelloWorld, che & gia configurato per AWS Flow Framework le applicazioni Java. Tuttavia, per
eseguire 'applicazione, € necessario configurare un account Amazon SWF, come segue:

* Crea un AWS account, se non ne hai gia uno, su Amazon Web Services.

» Assegna I'ID di accesso e I'ID segreto del tuo account rispettivamente alle variabili
AWS_ACCESS_KEY_ID e di AWS_SECRET_KEY ambiente. E vivamente sconsigliato esporre i
valori di chiave letterali nel codice. L'assegnazione di tali chiavi a variabili di ambiente &€ un modo
pratico di gestire il problema.

HelloWorldWorkflow Applicazione Versione APl 2021-04-28 9

https://aws.amazon.com/

AWS Flow Framework per Java Guida per gli sviluppatori

» Registrati per creare un account Amazon SWF su Amazon Simple Workflow Service.

» Accedi Console di gestione AWS e seleziona il servizio Amazon SWF.

» Scegli Gestisci domini nell'angolo in alto a destra e registra un nuovo dominio Amazon SWF. Un
dominio € un contenitore logico per le risorse dell'applicazione, come i tipi di flusso di lavoro e
attivita e le esecuzioni di flusso di lavoro. Puoi utilizzare qualsiasi nome di dominio conveniente, ma
nelle procedure dettagliate viene utilizzato "». helloWorldWalkthrough

Per implementare HelloWorldWorkflow, crea una copia di HelloWorld. HelloWorld pacchetto nella
directory del progetto e chiamalo HelloWorld. HelloWorldWorkflow. Le seguenti sezioni descrivono
come modificare il HelloWorld codice originale per utilizzarlo AWS Flow Framework per Java ed
eseguirlo come applicazione di workflow Amazon SWF.

HelloWorldWorkflow Addetto alle attivita

HelloWorld ha implementato le sue attivita come un'unica classe. An AWS Flow Framework for Java
Activities Worker ha tre componenti di base:

» | metodi di attivita, che eseguono le attivita effettive, sono definiti in un'interfaccia e implementati in
una classe correlata.

» Una ActivityWorkerclasse gestisce l'interazione tra i metodi di attivita € Amazon SWF.

» Un'applicazione host di attivita registra e avvia il lavoratore di attivita e gestisce la pulizia.

Questa sezione descrive i metodi di attivita. Le altre due classi sono presentate in una sezione
successiva.

HelloWorldWorkflow definisce l'interfaccia delle attivita inGreeterActivities, come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 10)
@Activities(version="1.0")

public interface GreeterActivities {
public String getName();
public String getGreeting(String name);

HelloWorldWorkflow Addetto alle attivita Versione APl 2021-04-28 10

https://aws.amazon.com/swf/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html

AWS Flow Framework per Java Guida per gli sviluppatori

public void say(String what);

Questa interfaccia non era strettamente necessaria per HelloWorld, ma lo € AWS Flow

Framework per un'applicazione Java. Nota che la definizione dell'interfaccia non € cambiata.
Tuttavia, € necessario applicarne due AWS Flow Framework per le annotazioni Java
@ActivityRegistrationOptions e@Activities, alla definizione dell'interfaccia. Le annotazioni forniscono

informazioni di configurazione e indicano al AWS Flow Framework processore di annotazioni Java di
utilizzare la definizione dell'interfaccia per generare una classe client di attivita, argomento discusso
piu avanti.

@ActivityRegistrationOptionsha diversi valori denominati che vengono utilizzati per
configurare il comportamento delle attivita. HelloWorldWorkflow specifica due timeout:

* defaultTaskScheduleToStartTimeoutSeconds indica per quanto tempo i task possono
rimanere in coda nell'elenco di task di attivita; il valore impostato & 300 secondi (5 minuti).

« defaultTaskStartToCloseTimeoutSeconds indica il tempo massimo di cui l'attivita dispone
per eseguire il task; il valore impostato € 10 secondi.

Questi timeout assicurano il completamento del task entro un tempo ragionevole. Se uno dei due
timeout viene superato, il framework genera un errore e il lavoratore di flusso di lavoro deve decidere
come gestire il problema. Per informazioni su come gestire tale errori, consulta Gestione errori.

@Activities comporta vari valori, ma in genere definisce soltanto il numero di versione delle
attivita, mediante il quale puoi tenere traccia di differenti generazioni di implementazioni di attivita.
Se modifichi un'interfaccia di attivita dopo averla registrata in Amazon SWF, inclusa la modifica
@ActivityRegistrationOptions dei valori, devi utilizzare un nuovo numero di versione.

HelloWorldWorkflow implementa i metodi di attivita inGreeterActivitiesImpl, come segue:

public class GreeterActivitiesImpl implements GreeterActivities {
@Override
public String getName() {
return "World";
}
@Override
public String getGreeting(String name) {
return "Hello " + name;

}

@Override

HelloWorldWorkflow Addetto alle attivita Versione APl 2021-04-28 11

AWS Flow Framework per Java Guida per gli sviluppatori

public void say(String what) {
System.out.println(what);

Notate che il codice € identico all' HelloWorld implementazione. Fondamentalmente, un' AWS

Flow Framework attivita & solo un metodo che esegue del codice e forse restituisce un risultato. La
differenza tra un'applicazione standard e un'applicazione di workflow Amazon SWF risiede nel modo
in cui il flusso di lavoro esegue le attivita, dove vengono eseguite le attivita e in che modo i risultati
vengono restituiti al workflow worker.

HelloWorldWorkflow Workflow Worker

Un workflow worker di Amazon SWF ha tre componenti di base.

+ Un'implementazione di flusso di lavoro, ovvero una classe che esegue task correlati al flusso di
lavoro.

» Una classe client di attivita, che € in pratica un proxy per la classe di attivita e viene utilizzata da
un'implementazione di flusso di lavoro per eseguire metodi di attivita in modo asincrono.

« Una Workflow\Workerclasse che gestisce l'interazione tra il flusso di lavoro e Amazon SWF.

Questa sezione descrive l'implementazione di flusso di lavoro e il client di attivita; la classe
WorkflowWorker € descritta in una sezione successiva.

HelloWorldWorkflow definisce l'interfaccia del flusso di lavoro inGreeterWorkflow, come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Execute(version = "1.0")

public void greet();

Inoltre, questa interfaccia non & strettamente necessaria HelloWorld , ma € essenziale AWS
Flow Framework per un'applicazione Java. E necessario applicarne due AWS Flow Framework

HelloWorldWorkflow Workflow Worker Versione APl 2021-04-28 12

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework per Java Guida per gli sviluppatori

per le annotazioni Java @Flusso di lavoro e@WorkflowRegistrationOptions, per la definizione
dell'interfaccia del flusso di lavoro. Le annotazioni forniscono informazioni di configurazione e

indirizzano inoltre il processore di annotazioni AWS Flow Framework per Java a generare una classe
client di workflow basata sull'interfaccia, come discusso piu avanti.

@Workflowha un parametro opzionale, DataConverter, che viene spesso utilizzato con il suo valore
NullDataConverter predefinito, che indica che deve essere utilizzato. JsonDataConverter

@WorkflowRegistrationOptions comporta ha vari parametri facoltativi che

possono essere utilizzati per configurare il lavoratore di flusso di lavoro. Qui, impostiamo,
defaultExecutionStartToCloseTimeoutSeconds che specifica per quanto tempo pud essere
eseguito il flusso di lavoro, a 3600 secondi (1 ora).

La definizione dell'GreeterWorkflowinterfaccia differisce da un aspetto importante, I' HelloWorld
annotazione. @Execute Le interfacce di flusso di lavoro definiscono i metodi che possono essere
chiamati dalle applicazioni come lo starter di flusso di lavoro e sono limitate a pochi metodi, ognuno
con un ruolo particolare. Il framework non specifica un nome o un elenco di parametri per i metodi di
interfaccia del flusso di lavoro; si utilizza un elenco di nomi e parametri adatto al flusso di lavoro e si
applica un‘annotazione AWS Flow Framework per Java per identificare il ruolo del metodo.

@Execute ha due scopi:

+ Identifica greet come punto di ingresso del flusso di lavoro, ovvero il metodo che lo starter di
flusso di lavoro chiama per avviare il flusso di lavoro. In genere, un punto di ingresso pud accettare
uno o piu parametri, che consentono allo starter di inizializzare il flusso di lavoro, ma questo
esempio non richiede l'inizializzazione.

 Definisce il numero di versione del flusso di lavoro, mediante il quale puoi tenere traccia di differenti
generazioni di implementazioni di flusso di lavoro. Per modificare I'interfaccia di un flusso di lavoro
dopo averla registrata in Amazon SWF, inclusa la modifica dei valori di timeout, devi utilizzare un
nuovo numero di versione.

Per informazioni sugli altri metodi che possono essere inclusi in un'interfaccia di flusso di lavoro,
consulta Contratti di flusso di lavoro e attivita.

HelloWorldWorkflow implementa il flusso di lavoro inGreeterWorkflowImpl, come segue:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

HelloWorldWorkflow Workflow Worker Versione APl 2021-04-28 13

AWS Flow Framework per Java Guida per gli sviluppatori

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

public void greet() {
Promise<String> name = operations.getName();
Promise<String> greeting = operations.getGreeting(name);
operations.say(greeting);

}

Il codice € simile a HelloWorld, ma presenta due importanti differenze.

* GreeterWorkflowImpl crea un'istanza di GreeterActivitiesClientImpl, il client
di attivita, anziché di GreeterActivitiesImpl, ed esegue le attivita chiamando i metodi
sull'oggetto client.

* Le attivita relative a nome e formula di apertura restituiscono oggetti Promise<String> anziché
oggetti String.

HelloWorld & un'applicazione Java standard che viene eseguita localmente come un singolo
processo, quindi GreeterWorkflowImpl pud implementare la topologia del flusso di lavoro
semplicemente creando un'istanza diGreeterActivitiesImpl, chiamando i metodiin ordine

e passando i valori restituiti da un'attivita all'altra. Con un flusso di lavoro Amazon SWF, 'attivita

di un'attivita viene comunque eseguita con un metodo di attivita di. GreeterActivitiesImpl
Tuttavia, il metodo non viene necessariamente eseguito nello stesso processo del flusso di lavoro
(pud addirittura non essere eseguito sullo stesso sistema) e il flusso di lavoro deve eseguire I'attivita
in modo asincrono. Queste condizioni comportano le seguenti problematiche:

» Come eseguire un metodo di attivita che pud essere eseguito in un processo differente ed
eventualmente su un sistema differente.

« Come eseguire un metodo di attivita in modo asincrono.

» Come gestire i valori di input e restituiti delle attivita. Ad esempio, se il valore restituito dell'Attivita A
e un input all'Attivita B, devi assicurarti che I'Attivita B non venga eseguita fino a che I'Attivita A non
risulta completata.

Il flusso di controllo dell'applicazione ti consente di implementare varie topologie di flusso di
lavoro mediante I'utilizzo del controllo di flusso Java standard combinato con il client di attivita e
Promise<T>.

HelloWorldWorkflow Workflow Worker Versione APl 2021-04-28 14

AWS Flow Framework per Java Guida per gli sviluppatori

Client di attivita

GreeterActivitiesClientImpl & fondamentalmente un proxy per GreeterActivitiesImpl
che consente a un'implementazione di flusso di lavoro di eseguire i metodi
GreeterActivitiesImpl in modo asincrono.

Le classi GreeterActivitiesClient e GreeterActivitiesClientImpl sono generate
automaticamente utilizzando le informazioni fornite nelle annotazioni applicate alla classe
GreeterActivities. Non devi quindi implementarle personalmente.

(® Note

Eclipse genera queste classi quando salvi il progetto. Puoi visualizzare il codice generato
nella sottodirectory . apt_generated della directory del progetto.

Per evitare errori di compilazione nella classe GreeterWorkflowImpl, € consigliabile
spostare la directory .apt_generated nella parte superiore della scheda Order and Export
(Ordina ed esporta) della finestra di dialogo Java Build Path (Percorso di compilazione Java).

Un lavoratore di flusso di lavoro esegue un'attivita chiamando il metodo di client corrispondente. |l
metodo € asincrono e restituisce immediatamente un oggetto Promise<T>, dove T ¢ il tipo restituito
dell'attivita. L'oggetto Promise<T> restituito € in pratica un segnaposto per il valore che il metodo di
attivita restituira.

* Quando il metodo di client di attivita restituisce un risultato, lo stato dell'oggetto Promise<T> &
inizialmente non pronto, a indicare che I'oggetto non rappresenta ancora un valore restituito valido.

» Quando il metodo di attivita corrispondente completa il relativo task e restituisce un risultato, il
framework assegna il valore restituito all'oggetto Promise<T>, il cui stato diventa pronto.

Tipo di Promise <T>

Lo scopo primario degli oggetti Promise<T> & gestire il flusso di dati tra i componenti asincroni

e controllare quando vengono eseguiti. Grazie a questi oggetti, la tua applicazione non deve

gestire in modo esplicito la sincronizzazione o dipendere da meccanismi come i timer per impedire
I'esecuzione prematura dei componenti asincroni. Quando chiami un metodo di client di attivita,
questo restituisce immediatamente un risultato ma il framework ritarda I'esecuzione del metodo di
attivita corrispondente fino a che un oggetto Promise<T> di input € pronto e rappresenta dati validi.

HelloWorldWorkflow Workflow Worker Versione APl 2021-04-28 15

AWS Flow Framework per Java Guida per gli sviluppatori

Dalla prospettiva GreeterWorkflowImpl, i tre metodi di client di attivita restituiscono un risultato
immediatamente. Dalla prospettiva GreeterActivitiesImpl, il framework chiama getGreeting
solo quando name risulta completato e chiama say solo quando getGreeting risulta completato.

L'utilizzo di Promise<T> per passare dati da un'attivita a quella successiva consente a
HelloWorldWorkflow di impedire ai metodi di attivita di tentare di utilizzare dati non validi,

ma anche di determinare quando le attivita vengono eseguite e di definire implicitamente la
topologia di flusso di lavoro. Il passaggio del valore restituito Promise<T> di ogni attivita all'attivita
successiva richiede I'esecuzione in sequenza delle attivita, definendo la topologia lineare descritta
precedentemente. Con AWS Flow Framework for Java, non € necessario utilizzare alcun codice di
modellazione speciale per definire topologie anche complesse, ma solo il controllo di flusso Java
standard e. Promise<T> Per un esempio di implementazione di una topologia parallela semplice,
consulta HelloWorldWorkflowParallelAttivita: Lavoratore.

@ Note

Quando un metodo di attivita come say non restituisce un valore, il metodo di client
corrispondente restituisce un oggetto Promise<Void>. L'oggetto non rappresenta dati,
ma é inizialmente non pronto e diventa pronto quando l'attivita &€ completata. Puoi quindi
passare un oggetto Promise<Void> a altri metodi di client di attivita per assicurarti che
questi differiscano I'esecuzione fino al completamento dell'attivita originale.

Promise<T> consente a un'implementazione di flusso di lavoro di utilizzare metodi di client di
attivita e i relativi valori restituiti come con i metodi sincroni. Devi tuttavia prestare attenzione riguardo
all'accesso al valore di un oggetto Promise<T>. A differenza del tipo Java Future<T>, il framework
gestisce la sincronizzazione per Promise<T>, non l'applicazione. Se chiami Promise<T>.get e
l'oggetto non & pronto, get genera un'eccezione. Nota che HelloWorldWorkflow non accede mai
direttamente a un oggetto Promise<T>, ma passa semplicemente gli oggetti da un'attivita a quella
successiva. Quando un oggetto diventa pronto, il framework estrae il valore e lo passa al metodo di
attivita come tipo standard.

L'accesso agli oggetti Promise<T> deve avvenire solo tramite codice asincrono, dove il framework
garantisce che l'oggetto € pronto e rappresenta un valore valido. HelloWorldWorkflow gestisce
questa condizione passando gli oggetti Promise<T> solo a metodi di client di attivita. Puoi accedere
al valore di un oggetto Promise<T> nell'implementazione di flusso di lavoro passando l'oggetto a un
metodo di flusso di lavoro asincrono, il cui comportamento € simile a quello di un'attivita. Per vedere
un esempio, consulta HelloWorldWorkflowAsyncApplicazione.

HelloWorldWorkflow Workflow Worker Versione APl 2021-04-28 16

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Future.html

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorldWorkflow Implementazione del workflow e delle attivita

Le implementazioni del flusso di lavoro e delle attivita hanno classi di lavoro associate
ActivityWorkere Workflow\Worker. Gestiscono la comunicazione tra Amazon SWF e le attivita e le
implementazioni del flusso di lavoro analizzando I'elenco di attivita di Amazon SWF appropriato,
eseguendo il metodo appropriato per ogni attivita e gestendo il flusso di dati. Per maggiori dettagli,
consulta AWS Flow Framework Concetti di base: struttura dell'applicazione.

Per associare le implementazioni di flusso di lavoro e attivita agli oggetti lavoratore corrispondenti,
devi implementare una o piu applicazioni lavoratore che:

» Registra flussi di lavoro o attivita con Amazon SWF.

» Creano oggetti lavoratore e li associano alle implementazioni di lavoratore di attivita o di flusso di
lavoro.

« Indirizza gli oggetti di lavoro affinché inizino a comunicare con Amazon SWF.

Se intendi eseguire il flusso di lavoro e le attivita come processi distinti, devi implementare

host lavoratore di flusso di lavoro e attivita distinti. Per vedere un esempio, consulta
HelloWorldWorkflowDistributed Applicazione. Per semplicita, HelloWorldWorkflow implementa un
singolo host di lavoro che gestisce le attivita e i lavoratori del flusso di lavoro nello stesso processo,
come segue:

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

HelloWorldWorkflow Implementazione del workflow e delle attivita Versione AP| 2021-04-28 17

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework per Java Guida per gli sviluppatori

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldwalkthrough";
String taskListToPoll = "HelloWorldList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
wfw.start();

GreeterWorkernon ha una HelloWorld controparte, quindi & necessario aggiungere una classe
Java denominata GreeterWorker al progetto e copiare il codice di esempio in quel file.

Il primo passaggio consiste nel creare e configurare un AmazonSimpleWorkflowClientoggetto, che
richiama i metodi di servizio Amazon SWF sottostanti. A questo proposito, GreeterWorker:

1. Crea un ClientConfigurationoggetto e specifica un timeout del socket di 70 secondi. Questo valore
definisce il tempo di attesa per il trasferimento dei dati via una connessione aperta stabilita prima
della chiusura del socket.

2. Crea un AWSCredentials oggetto Basic per identificare I' AWS account e passa le chiavi
dell'account al costruttore. Per comodita e per evitare di esporle come testo normale nel codice, le
chiavi sono memorizzate come variabili di ambiente.

3. Crea un AmazonSimpleWorkflowClientoggetto per rappresentare il flusso di lavoro e passa gli
ClientConfiguration oggetti BasicAWSCredentials and al costruttore.

4. Imposta I'URL dell'endpoint del servizio dell'oggetto client. Amazon SWF & attualmente disponibile
in tutte le AWS regioni.

Per comodita, GreeterWorker definisce due costanti di stringa.

* domainé il nome di dominio Amazon SWF del flusso di lavoro, che hai creato quando hai
configurato il tuo account Amazon SWF. HelloWorldWorkflowpresuppone che stiate eseguendo
il flusso di lavoro nel dominio "»helloWorldWalkthrough.

HelloWorldWorkflow Implementazione del workflow e delle attivita Versione AP| 2021-04-28 18

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/BasicAWSCredentials.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework per Java Guida per gli sviluppatori

« taskListToPollée il nome degli elenchi di attivita utilizzati da Amazon SWF per gestire la
comunicazione tra gli addetti al flusso di lavoro e alle attivita. Puoi impostare il nome su qualsiasi
stringa conveniente. HelloWorldWorkflow utilizza "HelloWorldList" sia per il flusso di lavoro che per
gli elenchi delle attivita. | nomi terminano con spazi dei nomi differenti, di conseguenza gli elenchi di
task sono distinti.

GreeterWorkerutilizza le costanti di stringa e I'AmazonSimpleWorkflowClientoggetto per creare
oggetti di lavoro, che gestiscono l'interazione tra le attivita e le implementazioni dei worker e Amazon
SWEF. In particolare, gli oggetti lavoratore gestiscono il task di polling dei task nell'elenco di task
appropriato.

GreeterWorker crea un oggetto ActivityWorker e lo configura per gestire
GreeterActivitiesImpl aggiungendo una nuova istanza della classe. GreeterWorker chiama
quindi il metodo start dell'oggetto ActivityWorker, che indica all'oggetto di avviare il polling
nell'elenco di task di attivita specificato.

GreeterWorker crea un oggetto WorkflowWorker e lo configura per gestire
GreeterWorkflowImpl aggiungendo un nome difile di classe, GreeterWorkflowImpl.class.
Chiama quindi il metodo start dell'oggetto WorkflowWorker, che indica all'oggetto di avviare il
polling dell'elenco di task di flusso di lavoro specificato.

A questo punto, puoi eseguire GreeterWorker senza problemi. Registra il flusso di lavoro

e le attivita con Amazon SWF e avvia gli oggetti di lavoro analizzando i rispettivi elenchi di

attivita. Per verificarlo, esegui GreeterWorker e accedi alla console Amazon SWF e seleziona
helloWorldwWalkthrough dall'elenco dei domini. Se scegli Workflow Types (Tipi di flusso di lavoro)
nel riquadro Navigation (Navigazione), GreeterWorkflow.greet dovrebbe essere visualizzato
nella finestra:

HelloWorldWorkflow Implementazione del workflow e delle attivita Versione AP| 2021-04-28 19

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/AmazonSimpleWorkflowClient.html

AWS Flow Framework per Java Guida per gli sviluppatori

Navigation My Workflow Types
» Dashboard Domain: heloWorldWalkthrough = - |
* Workflow Executions
» Workflow Types ¥ Workflow Type List Parameters
¥ Activity Types

4k

Filter by: | No Filter

Workflow Type Status: (=)Registered () Deprecated

List Types |
Weorkflow Actions:

A& Name Version

[GreeterWorkflow.greet 1.0

Se scegli Activity Types (Tipi di attivita), vengono visualizzati i metodi GreeterActivities:

HelloWorldWorkflow Implementazione del workflow e delle attivita Versione API 2021-04-28 20

AWS Flow Framework per Java

Guida per gli sviluppatori

A A T

Domain: heloWorldWalkthrough |

¥ Activity Type List Parameters

Filter by:

Mo Filter -

Activity Type Status: @ Registered O Deprecated

List Types

Activity Actions

Register New

4 Name Version
[GreeterActivities.getGreeting 1.0
[GreeterActivities getName 1.0
[GreeterActivities say 1.0

Tuttavia, se scegli Workflow Executions (Esecuzioni di flusso di lavoro), non verra visualizzata alcuna

esecuzione attiva. Sebbene i lavoratori di flusso di lavoro e di attivita eseguano il polling di task, non
abbiamo ancora avviato un'esecuzione di flusso di lavoro.

HelloWorldWorkflow Antipasto

L'ultimo pezzo del puzzle consiste nell'implementare uno starter di flusso di lavoro, ovvero
un'applicazione che avvia lI'esecuzione di flusso di lavoro. Lo stato di esecuzione viene memorizzato

da Amazon SWF, in modo da poterne visualizzare la cronologia e lo stato di esecuzione.
HelloWorldWorkflow implementa un sistema di avvio del flusso di lavoro modificando la
GreeterMain classe nel modo seguente:

import com.
import com.
import com.
import com.

amazonaws.
amazonaws.
amazonaws.

amazonaws

ClientConfiguration;
auth.AWSCredentials;
auth.BasicAWSCredentials;

.services.simpleworkflow.AmazonSimpleWorkflow;

HelloWorldWorkflow Antipasto

Versione AP| 2021-04-28 21

AWS Flow Framework per Java Guida per gli sviluppatori

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
public class GreeterMain {

public static void main(String[] args) throws Exception {
ClientConfiguration config = new ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldwalkthrough";

GreeterWorkflowClientExternalFactory factory = new

GreeterWorkflowClientExternalFactoryImpl(service, domain);
GreeterWorkflowClientExternal greeter = factory.getClient("someID");
greeter.greet();

}

GreeterMain crea un oggetto AmazonSimpleWorkflowClient utilizzando lo stesso codice
di GreeterWorker. Crea quindi un oggetto GreeterWorkflowClientExternal che
agisce come proxy per il flusso di lavoro nello stesso modo in cui il client di attivita creato in
GreeterWorkflowClientImpl agisce come proxy per i metodi di attivita. Anziché creare un
oggetto client di flusso di lavoro utilizzando new devi:

1. Crea un oggetto client factory esterno e passa I'AmazonSimpleWorkflowClientoggetto e il
nome di dominio Amazon SWF al costruttore. L'oggetto client factory viene creato dal processore
di annotazioni del framework, che crea il nome dell'oggetto semplicemente aggiungendo
"ClientExternalFactorylmpl” al nome dell'interfaccia del flusso di lavoro.

2. Crea un oggetto client esterno chiamando il getClient metodo dell'oggetto factory, che
crea il nome dell'oggetto aggiungendo "ClientExternal" al nome dell'interfaccia del flusso di
lavoro. Facoltativamente, puoi passare getClient una stringa che Amazon SWF utilizzera per
identificare questa istanza del flusso di lavoro. Altrimenti, Amazon SWF rappresenta un'istanza di
flusso di lavoro utilizzando un GUID generato.

HelloWorldWorkflow Antipasto Versione AP| 2021-04-28 22

AWS Flow Framework per Java Guida per gli sviluppatori

Il client restituito dalla fabbrica creera solo flussi di lavoro denominati con la stringa passata al
metodo getClient (il client restituito dalla fabbrica ha gia lo stato in Amazon SWF). Per eseguire
un flusso di lavoro con un ID differente, nella factory devi creare un nuovo client con I'ID differente
specificato.

Il client di flusso di lavoro espone un metodo greet che GreeterMain chiama per iniziare il flusso
di lavoro, in quanto greet () era il metodo specificato con I'annotazione @Execute.

® Note

Il processore di annotazione crea anche un oggetto client factory interno utilizzato per creare
flussi di lavoro figlio. Per informazioni dettagliate, consultare Esecuzioni del flusso di lavoro

figho.

Chiudi GreeterWorker se € ancora in esecuzione ed esegui GreeterMain. Ora dovresti vedere
SomelD nell'elenco delle esecuzioni di flussi di lavoro attive della console Amazon SWF..

D oW EXecLtions

Domain:| helloWorldWalkthrough | «
¥ Workflow Execution List Parameters

Filter by: Mo Filter -

Execution Status: @ Active O Closed

Started between ~ 2012Aug2315:43:.06 and 2012 Aug 24 23:59:59

List Executions

Execution Actions

[Workflow Execution ID Run 1D Name (Version)

[[1| somelD Mi2ktcdclHvFsKFhmVs20T1wi4SIyBreEYSYBId1z GreeterWorkflow greet (1.0}

Se scegli someID e quindi la scheda Events (Eventi), gli eventi vengono visualizzati:

HelloWorldWorkflow Antipasto Versione AP| 2021-04-28 23

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowClientFactoryExternal.html#getClient(java.lang.String)

AWS Flow Framework per Java Guida per gli sviluppatori

Domain: helloWorldWalkthrough

Summary Events | Activities

¥ Event Date ID Event Type
Fri Aug 24 15:50:30 GMT-700 2012 2 DecisionTaskScheduled
Fri Aug 24 15:50:30 GMT-700 2012 1 WorkflowExecutionStarted
(® Note

Se in precedenza hai avviato GreeterWorker ed € ancora in esecuzione, I'elenco di eventi
sara piu lungo per i motivi che indicheremo piu avanti. Chiudi GreeterWorker ed esegui di
nuovo GreaterMain.

Nella scheda Events (Eventi) sono elencati solo due eventi:

» WorkflowExecutionStarted indica che I'esecuzione del flusso di lavoro & stata avviata.

* DecisionTaskScheduledindica che Amazon SWF ha messo in coda la prima operazione
decisionale.

Il motivo per cui il flusso di lavoro € bloccato a livello del primo task di decisione € che il flusso di
lavoro € distribuito su due applicazioni, GreeterMain e GreeterWorker. GreeterMain ha
avviato l'esecuzione di flusso di lavoro, ma GreeterWorker non € in esecuzione. Di conseguenza,
i lavoratori non effettuano il polling negli elenchi e non eseguono i task. Puoi eseguire I'una o l'altra
delle applicazioni indipendentemente, ma hai bisogno di entrambe affinché I'esecuzione di flusso di
lavoro continui oltre il primo task di decisione. Se quindi a questo punto esegui GreeterWorker, i
lavoratori di flusso di lavoro e attivita avvieranno il polling, i task saranno completati rapidamente e
nella scheda Events verra visualizzato il primo batch di eventi.

HelloWorldWorkflow Antipasto Versione AP| 2021-04-28 24

AWS Flow Framework per Java

Guida per gli sviluppatori

Domain: helloWorldWalkthrough

Summary Events

Activities

4 Event Date
Fri Aug 24 15:50:30 GMT-T00 2012
Fri Aug 24 15:50:30 GMT-700 2012
Fri Aug 24 15:52:19 GMT-700 2012
Fri Aug 24 15:52:19 GMT-700 2012
Fri Aug 24 15:52:19 GMT-T00 2012
Fri Aug 24 15:52:20 GMT-T00 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-T00 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-700 2012
Fri Aug 24 15:52:20 GMT-700 2012

10
i

Event Type
WorkflowExecutionStarted
DecisionTaskScheduled
DecisionTaskStarted
DecisionTaskCompleted
ActivityTaskScheduled
ActivityTaskStarted
ActivityTaskCompleted
DecisionTaskScheduled
DecisionTaskStarted
DecisionTaskCompleted

ActivityTaskScheduled

Puoi scegliere singoli eventi per visualizzare ulteriori informazioni sugli stessi. Quando avrai finito di

cercare, il flusso di lavoro dovrebbe avere stampato «Hello World!» sulla tua console.

Una volta completato, il flusso di lavoro non € piu visibile nell'elenco di esecuzioni attive. Tuttavia,

se vuoi esaminarlo, scegli Closed (Chiuse) in Execution Status (Stato esecuzione), quindi scegli List

Executions (Elenca esecuzioni). In questo modo, vengono visualizzate tutte le istanze di flusso di
lavoro completate nel dominio specificato (helloWorldwWalkthrough) che non hanno superato il
relativo periodo di retention impostato alla creazione del dominio.

HelloWorldWorkflow Antipasto

Versione AP| 2021-04-28 25

AWS Flow Framework per Java Guida per gli sviluppatori

Domain: helloWorldWalkthrough | -
¥ Workflow Execution List Parameters

Filter by: Mo Filter -

Execution Status:) Active @ Closed

Started between » 2012Aug2316:2852 and 2012 Aug 24 23:59:59

List Executions
Execution Actions
[l Workflow Execution 1D Run ID Name (Version)
[| somelD Mi2ktedelHvE sKFhmVs20T1wk4SlyBr6EYS Greeter\Workflow.greet (1.0)
[l | somelD 11THLRDRMNwKT+anWpORnyo3jFIVoVIVGEa GreeterWorkflow greet (1.0)

Nota che ogni istanza di flusso di lavoro ha un valore Run ID (ID di esecuzione) univoco. E possibile
utilizzare lo stesso ID di workflow per diverse istanze di workflow, ma solo per un'esecuzione attiva
alla volta.

HelloWorldWorkflowAsyncApplicazione

A volte, é preferibile avere un flusso di lavoro che esegue determinati task localmente anziché
utilizzare un'attivita. Tuttavia, i task di flusso di lavoro spesso comportano I'elaborazione dei valori
rappresentati dagli oggetti Promise<T>. Se passi un oggetto Promise<T> a un metodo di flusso
di lavoro sincrono, il metodo viene eseguito immediatamente ma non puo accedere al valore
dell'oggetto Promise<T> fino a che l'oggetto non € pronto. In realta, sarebbe possibile eseguire

il polling di Promise<T>.isReady fino a che non restituisce true, ma questa soluzione non &
efficace e potrebbe comportare il blocco del metodo per un lungo periodo di tempo. Un miglior
approccio consiste nell'utilizzare un metodo asincrono.

Un metodo asincrono viene implementato in modo molto simile a un metodo standard, spesso
come membro della classe di implementazione del flusso di lavoro, e viene eseguito nel contesto

HelloWorldWorkflowAsyncApplicazione Versione AP| 2021-04-28 26

AWS Flow Framework per Java Guida per gli sviluppatori

dell'implementazione del flusso di lavoro. Per designarlo come metodo asincrono, &€ necessario
applicare un'annotazione @Asynchronous, la quale indica al framework di considerarlo come
un'attivita.

* Quando un'implementazione di flusso di lavoro chiama un metodo asincrono, restituisce
immediatamente un risultato. | metodi asincroni in genere restituiscono un oggetto Promise<T>
che diventa pronto al completamento del metodo.

« Se a un metodo asincrono passi uno o piu oggetti Promise<T>, ritarda l'esecuzione fino a che
tutti gli oggetti di input sono pronti. Un metodo asincrono pud quindi accedere ai relativi valori
Promise<T> di input senza rischiare un'eccezione.

(@ Note

A causa del modo in cui AWS Flow Framework for Java esegue il flusso di lavoro, i metodi
asincroni in genere vengono eseguiti piu volte, quindi &€ consigliabile utilizzarli solo per
attivita rapide con costi generali ridotti. Per eseguire task di lunga durata, come calcoli
voluminosi, & consigliabile utilizzare le attivita. Per informazioni dettagliate, consultare AWS
Flow Framework Concetti di base: esecuzione distribuita.

Questo argomento € una guida dettagliata di HelloWorldWorkflowAsync, una versione modificata
sostituisce una delle attivita con un metodo HelloWorldWorkflow asincrono. Per implementare
I'applicazione, crea una copia di HelloWorld. HelloWorldWorkflow pacchetto nella directory del
progetto e chiamalo HelloWorld. HelloWorldWorkflowAsync.

(@ Note

Questo argomento si basa sui concetti e sui file presentati negli argomenti HelloWorld
Applicazione e HelloWorldWorkflow Applicazione. Approfondisci il file e concetti presentati in
tali argomenti prima di continuare.

Le sezioni seguenti descrivono come modificare il HelloWorldWorkflow codice originale per utilizzare
un metodo asincrono.

HelloWorldWorkflowAsyncApplicazione Versione AP| 2021-04-28 27

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorldWorkflowAsync Attivita Implementazione

HelloWorldWorkflowAsync implementa la sua interfaccia di lavoro per le attivita
inGreeterActivities, come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="2.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
public String getName();
public void say(String what);

Questa interfaccia € simile a quella utilizzata da HelloWorldWorkflow, con le seguenti eccezioni:

* Omette l'attivita getGreeting; quel task € ora gestito da un metodo asincrono.

Il numero di versione & impostato su 2.0. Dopo aver registrato un'interfaccia di attivita con Amazon
SWEF, non puoi modificarla a meno che non cambi il numero di versione.

Le restanti implementazioni del metodo di attivita sono identiche a. HelloWorldWorkflow Elimina
semplicemente getGreeting da GreeterActivitiesImpl.

HelloWorldWorkflowAsync implementazione del flusso di lavoro

HelloWorldWorkflowAsync definisce l'interfaccia del flusso di lavoro come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Execute(version = "2.0")
public void greet();

HelloWorldWorkflowAsync Attivita Implementazione Versione API 2021-04-28 28

AWS Flow Framework per Java Guida per gli sviluppatori

}

L'interfaccia € identica a HelloWorldWorkflow parte un nuovo numero di versione. Come per le
attivita, se intendi modificare un flusso di lavoro registrato, devi modificarne la versione.

HelloWorldWorkflowAsync implementa il flusso di lavoro come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Asynchronous;
import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

@Override

public void greet() {
Promise<String> name = operations.getName();
Promise<String> greeting = getGreeting(name);
operations.say(greeting);

}

@Asynchronous

private Promise<String> getGreeting(Promise<String> name) {
String returnString = "Hello " + name.get() + "!";
return Promise.asPromise(returnString);

}

HelloWorldWorkflowAsync sostituisce I'getGreetingattivita con un metodo getGreeting
asincrono, ma il greet metodo funziona piu 0 meno allo stesso modo:

1. Esegue l'attivita getName, la quale restituisce immediatamente un oggetto Promise<String>
nameche rappresenta il nome.

2. Chiama il metodo asincrono getGreeting e gli passa l'oggetto name. getGreeting restituisce
immediatamente un oggetto Promise<String>, ovvero greeting, che rappresenta la formula di
apertura.

3. Esegue l'attivita say e le passa l'oggetto greeting.

4. Al completamento di getName, name diventa pronto e getGreeting utilizza il relativo valore per
costruire la formula di apertura.

5. Al completamento di getGreeting, greeting diventa pronto e say stampa la stringa sulla
console.

HelloWorldWorkflowAsync implementazione del flusso di lavoro Versione API 2021-04-28 29

AWS Flow Framework per Java Guida per gli sviluppatori

La differenza & che, anziché chiamare il client di attivita per eseguire un'attivita getGreeting, greet
chiama il metodo asincrono getGreeting. Il risultato & lo stesso, ma il funzionamento del metodo
getGreeting é un po' differente dall'attivita getGreeting.

« |l lavoratore di flusso di lavoro utilizza la semantica delle chiamate di funzione standard per
eseguire getGreeting. Tuttavia, I'esecuzione asincrona dell'attivita € mediata da Amazon SWF.

* getGreeting viene eseguito nel processo dell'implementazione di flusso di lavoro.

* getGreeting restituisce un oggetto Promise<String> anziché un oggetto String. Per
ottenere il valore String incluso in Promise, devi chiamare il relativo metodo get (). Tuttavia,
poiché I'attivita viene eseguita in modo asincrono, il suo valore restituito potrebbe non essere
pronto immediatamente; generera un'eccezione finché non get () sara disponibile il valore
restituito dal metodo asincrono.

Per ulteriori informazioni sul funzionamento di Promise, consulta AWS Flow Framework Concetti
di base: Data Exchange tra attivita e flussi di lavoro.

getGreeting crea un valore restituito passando la stringa della formula di apertura al metodo
Promise.asPromise statico. Questo metodo crea un oggetto Promise<T> del tipo appropriato,
imposta il valore e ne attiva lo stato pronto.

HelloWorldWorkflowAsyncWorkflow e Activities Host and Starter

HelloWorldWorkflowAsync implementa GreeterWorker come classe host per le implementazioni
del flusso di lavoro e delle attivita. E identico all' HelloWorldWorkflowimplementazione tranne per il
taskListToPoll nome, che & impostato su "wHelloWorldAsyncList.

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
ClientConfiguration().withSocketTimeout(70*1000);

HelloWorldWorkflowAsyncWorkflow e Activities Host and Starter Versione API 2021-04-28 30

AWS Flow Framework per Java Guida per gli sviluppatori

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldWalkthrough";
String taskListToPoll = "HelloWorldAsyncList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
wfw.start();

HelloWorldWorkflowAsync implementa il workflow starter inGreeterMain; € identico all’
HelloWorldWorkflow implementazione.

Per eseguire il flusso di lavoro, esegui GreeterWorker eGreeterMain, proprio come con.
HelloWorldWorkflow

HelloWorldWorkflowDistributed Applicazione

Con HelloWorldWorkflow e HelloWorldWorkflowAsync, Amazon SWF media l'interazione tra il
flusso di lavoro e le implementazioni delle attivita, ma vengono eseguite localmente come un unico
processo. GreeterMaine in un processo separato, ma viene comunque eseguito sullo stesso
sistema.

Una caratteristica fondamentale di Amazon SWF ¢ il supporto di applicazioni distribuite. Ad esempio,
puoi eseguire il workflow worker su un' EC2 istanza Amazon, il workflow starter su un computer del
data center e le attivita su un computer desktop client. Puoi anche eseguire attivita diverse su sistemi
diversi.

L' HelloWorldWorkflowDistributed applicazione si estende HelloWorldWorkflowAsync per distribuire
I'applicazione su due sistemi e tre processi.

HelloWorldWorkflowDistributed Applicazione Versione APl 2021-04-28 31

AWS Flow Framework per Java Guida per gli sviluppatori

« |l flusso di lavoro e lo starter operano come processi separati su un solo sistema.

* Le attivita operano su un sistema separato.

Per implementare I'applicazione, crea una copia di HelloWorld. HelloWorldWorkflowAsync pacchetto
nella directory del progetto e chiamalo HelloWorld. HelloWorldWorkflowDistributed. Le sezioni
seguenti descrivono come modificare il HelloWorldWorkflowAsync codice originale per distribuire
I'applicazione su due sistemi e tre processi.

Non devi modificare il flusso di lavoro o le implementazioni di attivita per eseguirli su sistemi separati,
e neanche i numeri di versione. Non devi neanche modificare GreeterMain. Tutto quello che devi
cambiare & I'hnost delle attivita e del flusso di lavoro.

Con HelloWorldWorkflowAsync, una singola applicazione funge da host del flusso di lavoro e delle
attivita. Per eseguire su sistemi separati il flusso di lavoro e le implementazioni delle attivita, devi
implementare applicazioni separate. Elimina GreeterWorker dal progetto e aggiungi due nuovi file di
classe GreeterWorkflowWorker e GreeterActivitiesWorker.

HelloWorldWorkflowDistributed implementa le sue attivita ospitate in GreeterActivitiesWorker, come
segue:

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.ActivityWorker;

public class GreeterActivitiesWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

HelloWorldWorkflowDistributed Applicazione Versione API 2021-04-28 32

AWS Flow Framework per Java Guida per gli sviluppatori

String domain = "helloWorldExamples";
String taskListToPoll = "HelloWorldAsynclList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

HelloWorldWorkflowDistributed implementa il proprio host di workflow inGreeterWorkflowWorker,
come segue:

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.BasicAWSCredentials;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;
import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;

public class GreeterWorkflowWorker {
public static void main(String[] args) throws Exception {
ClientConfiguration config = new
ClientConfiguration().withSocketTimeout(70*1000);

String swfAccessId = System.getenv("AWS_ACCESS_KEY_ID");

String swfSecretKey = System.getenv("AWS_SECRET_KEY");

AWSCredentials awsCredentials = new BasicAWSCredentials(swfAccessId,
swfSecretKey);

AmazonSimpleWorkflow service = new AmazonSimpleWorkflowClient(awsCredentials,
config);
service.setEndpoint("https://swf.us-east-1.amazonaws.com");

String domain = "helloWorldExamples";
String taskListToPoll = "HelloWorldAsynclList";

WorkflowWorker wfw = new WorkflowWorker(service, domain, taskListToPoll);
wfw.addWorkflowImplementationType(GreeterWorkflowImpl.class);
wfw.start();

HelloWorldWorkflowDistributed Applicazione Versione API 2021-04-28 33

AWS Flow Framework per Java Guida per gli sviluppatori

Ricorda che GreeterActivitiesWorker & solo GreeterWorker senza il codice
WorkflowWorker e che GreeterWorkflowWorker € solo GreeterWorker senza il codice
ActivityWorker.

Per eseguire il flusso di lavoro:

1. Crea un file JAR eseguibile con GreeterActivitiesWorker come punto di ingresso.

2. Copia il file JAR della Fase 1 su un altro sistema, che abbia qualsiasi sistema operativo che
supporta Java.

3. Assicurati che AWS le credenziali con accesso allo stesso dominio Amazon SWF siano
disponibili sull'altro sistema.

4. Esegquiil file JAR.

5. Nel sistema di sviluppo, utilizza Eclipse per eseguire GreeterWorkflowWorker e
GreeterMain.

Oltre al fatto che le attivita vengono eseguite su un sistema diverso da quello di Workflow Worker
e Workflow Starter, il flusso di lavoro funziona esattamente nello stesso modo di. HelloWorldAsync
Tuttavia, poiché la println chiamata stampa «Hello World!» se la console € say attiva, I'output
verra visualizzato sul sistema su cui € in esecuzione |'Activities Worker.

HelloWorldWorkflowParallelApplicazione

Le versioni precedenti di Hello World! tutti utilizzare un flusso di lavoro lineare topologia. Tuttavia,
Amazon SWF non si limita alle topologie lineari. L' HelloWorldWorkflowParallel applicazione € una
versione modificata HelloWorldWorkflow che utilizza una topologia parallela, come illustrato nella
figura seguente.

name
getName

Call greeting — Print greeting
. . | say . |
(Start) {Finish])

getGreeting

greeting

Con HelloWorldWorkflowParallel, getName e getGreeting corri in parallelo e ognuno restituisce
una parte del saluto. sayquindi unisce le due stringhe in un messaggio di saluto e lo stampa sulla
console.

HelloWorldWorkflowParallelApplicazione Versione API 2021-04-28 34

AWS Flow Framework per Java Guida per gli sviluppatori

Per implementare I'applicazione, crea una copia di HelloWorld. HelloWorldWorkflow pacchetto nella
directory del progetto e chiamalo HelloWorld. HelloWorldWorkflowParallel. Le sezioni seguenti
descrivono come modificare il HelloWorldWorkflow codice originale per I'esecuzione getName e
getGreeting in parallelo.

HelloWorldWorkflowParallelAttivita: Lavoratore

L'interfaccia HelloWorldWorkflowParallel delle attivita € implementata inGreeterActivities, come
illustrato nell'esempio seguente.

import com.amazonaws.services.simpleworkflow.flow.annotations.Activities;
import
com.amazonaws.services.simpleworkflow.flow.annotations.ActivityRegistrationOptions;

@Activities(version="5.0")
@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 10)
public interface GreeterActivities {
public String getName();
public String getGreeting();
public void say(String greeting, String name);

L'interfaccia € simile a HelloWorldWorkflow, con le seguenti eccezioni:

+ getGreeting non accetta alcun input, ma restituisce semplicemente una stringa di formula di
apertura.

* say accetta due stringhe di input, la formula di apertura e il nome.

 L'interfaccia ha un nuovo numero di versione, necessario ogni volta che modifichi un'interfaccia
registrata.

HelloWorldWorkflowParallel implementa le attivita inGreeterActivitiesImpl, come segue:

public class GreeterActivitiesImpl implements GreeterActivities {

@Override
public String getName() {
return "World!";

HelloWorldWorkflowParallelAttivita: Lavoratore Versione APl 2021-04-28 35

AWS Flow Framework per Java Guida per gli sviluppatori

@Override
public String getGreeting() {
return "Hello ";

@Override
public void say(String greeting, String name) {
System.out.println(greeting + name);

Ora getName e getGreeting restituiscono semplicemente meta della stringa di formula di apertura.
say concatena le due parti per generare la frase completa e la stampa sulla console.

HelloWorldWorkflowParallelWorkflow Worker

L'interfaccia del HelloWorldWorkflowParallel flusso di lavoro &€ implementata inGreeterWorkflow,
come segue:

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)

public interface GreeterWorkflow {

@Execute(version = "5.0")
public void greet();

La classe € identica alla HelloWorldWorkflow versione, tranne per il fatto che il numero di versione &
stato modificato per corrispondere all'operatore delle attivita.

Il flusso di lavoro & implementato in GreeterWorkflowImpl, come mostrato di seguito:

import com.amazonaws.services.simpleworkflow.flow.core.Promise;

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operations = new GreeterActivitiesClientImpl();

HelloWorldWorkflowParallelWorkflow Worker Versione APl 2021-04-28 36

AWS Flow Framework per Java Guida per gli sviluppatori

public void greet() {
Promise<String> name = operations.getName();
Promise<String> greeting = operations.getGreeting();
operations.say(greeting, name);

A prima vista, questa implementazione sembra molto simile alle HelloWorldWorkflow tre attivita
eseguite in sequenza dai metodi client. Tuttavia, cid non avviene per le attivita.

* HelloWorldWorkflow passato name a. getGreeting Poiché name era un oggetto Promise<T>,
getGreeting ha posticipato I'esecuzione dell'attivita fino al completamento di getName e le due
attivita sono state eseguite in sequenza.

+ HelloWorldWorkflowParallel non trasmette alcun input getName ogetGreeting. Nessuno dei
due metodi posticipa I'esecuzione e i metodi di attivita associati sono eseguiti immediatamente e in
parallelo.

L'attivita say accetta greeting e name come parametri di input. Poiché sono oggetti Promise<T>,
say posticipa I'esecuzione fino al completamento di entrambe le attivita e quindi costruisce e stampa
la formula di apertura.

Si noti che HelloWorldWorkflowParallel non utilizza alcun codice di modellazione speciale per definire
la topologia del flusso di lavoro. Lo fa implicitamente utilizzando il controllo di flusso Java standard e
sfruttando le proprieta degli oggetti. Promise<T> AWS Flow Framework per le applicazioni Java &
possibile implementare anche topologie complesse semplicemente utilizzando Promise<T> oggetti
insieme ai costrutti di flusso di controllo Java convenzionali.

HelloWorldWorkflowParallel Workflow e attivita Host and Starter

HelloWorldWorkflowParallel implementa GreeterWorker come classe host per le implementazioni
del flusso di lavoro e delle attivita. E identico all' HelloWorldWorkflow implementazione tranne per il
taskListToPoll nome, che & impostato su "»HelloWorldParallelList.

HelloWorldWorkflowParallelimplementa il workflow starter in GreeterMain ed € identico all'
HelloWorldWorkflow implementazione.

Per eseguire il flusso di lavoro, esegui GreeterWorker e GreeterMain esattamente come con
HelloWorldWorkflow.

HelloWorldWorkflowParallel Workflow e attivita Host and Starter Versione APl 2021-04-28 37

AWS Flow Framework per Java Guida per gli sviluppatori

Comprensione AWS Flow Framework di Java

The AWS Flow Framework for Java funziona con Amazon SWF per semplificare la creazione

di applicazioni scalabili e con tolleranza ai guasti per eseguire attivita asincrone che possono
essere di lunga durata, remote o entrambe. Il programma «Hello World!» alcuni esempi Che cos'e
AWS Flow Framework per Java? hanno introdotto le nozioni di base su come utilizzarlo per AWS
Flow Framework implementare applicazioni di flusso di lavoro di base. Questa sezione fornisce
informazioni concettuali sul funzionamento AWS Flow Framework delle applicazioni. La prima
sezione riassume la struttura di base di un' AWS Flow Framework applicazione, mentre le sezioni
rimanenti forniscono ulteriori dettagli sul funzionamento AWS Flow Framework delle applicazioni.

Argomenti

+ AWS Flow Framework Concetti di base: struttura dell'applicazione

+ AWS Flow Framework Concetti di base: esecuzione affidabile

* AWS Flow Framework Concetti di base: esecuzione distribuita

« AWS Flow Framework Concetti di base: elenchi di attivita ed esecuzione delle attivita

* AWS Flow Framework Concetti di base: applicazioni scalabili

+ AWS Flow Framework Concetti di base: Data Exchange tra attivita e flussi di lavoro

+ AWS Flow Framework Concetti di base: Data Exchange tra applicazioni ed esecuzioni di flussi di
lavoro

 Tipi di timeout di Amazon SWF

AWS Flow Framework Concetti di base: struttura dell'applicazione

Concettualmente, un' AWS Flow Framework applicazione &€ composta da tre componenti di base: chi
avvia il flusso di lavoro, gli addetti al flusso di lavoro e gli addetti alle attivita. Una o piu applicazioni
host sono responsabili della registrazione dei lavoratori (flusso di lavoro e attivita) con Amazon
SWEF, dell'avvio dei lavoratori e della gestione della pulizia. | lavoratori gestiscono i meccanismi di
esecuzione del flusso di lavoro e possono essere implementati su vari host.

Questo diagramma rappresenta un'applicazione di base: AWS Flow Framework

Struttura di un'applicazione Versione AP| 2021-04-28 38

AWS Flow Framework per Java

Guida per gli sviluppatori

Amazon SWF

Decision
Task List

Activities
Task List

Workflow Starter

Workflow Host

Activities Host

Application Application Application
WorlkflowWoaorker ActivityWorker
Worlflow
Implementation
Workflow P Activities
Activities Methods
Client
Worlkflow Starter Worlkflow Worker Activities Worker

(® Note

L'implementazione di questi componenti in tre applicazioni distinte &€ vantaggiosa da un
punto di vista concettuale, ma puoi comunque creare applicazioni per implementare questa
funzionalita in vari modi. Ad esempio, puoi utilizzare una singola applicazione host per i
lavoratori di flusso di lavoro e di attivita oppure host di flusso di lavoro e di attivita distinti.
Puoi inoltre avere molteplici lavoratori di attivita, ognuno dei quali gestisce un set di attivita
differente su host distinti, ecc.

| tre AWS Flow Framework componenti interagiscono indirettamente inviando richieste HTTP ad
Amazon SWF, che gestisce le richieste. Amazon SWF esegue le seguenti operazioni:

» Gestione di uno o piu elenchi di task di decisione, i quali determinano I'operazione successiva che
deve essere eseguita da un lavoratore di flusso di lavoro.

Struttura di un'applicazione

Versione APl 2021-04-28 39

AWS Flow Framework per Java Guida per gli sviluppatori

» Gestione di uno o piu elenchi di task di attivita, i quali determinano quali task saranno eseguiti da
un lavoratore di attivita.

» Mantiene una step-by-step cronologia dettagliata dell'esecuzione del flusso di lavoro.

Con AWS Flow Framework, il codice dell'applicazione non deve gestire direttamente molti dei dettagli
mostrati nella figura, come l'invio di richieste HTTP ad Amazon SWF. Basta chiamare AWS Flow
Framework i metodi e il framework gestisce i dettagli dietro le quinte.

Ruolo del lavoratore di attivita

Il lavoratore di attivita esegue i vari task che il flusso di lavoro deve realizzare e comprende quanto
segue:

» L'implementazione di attivita, che include un set di metodi di attivita che eseguono task particolari
per il flusso di lavoro.

* Un ActivityWorkeroggetto, che utilizza richieste HTTP long poll per eseguire il polling di Amazon
SWEF per le attivita da eseguire. Quando € necessaria un'attivita, Amazon SWF risponde alla
richiesta inviando le informazioni necessarie per eseguire l'attivita. L'Activity\Workeroggetto chiama
quindi il metodo di attivita appropriato e restituisce i risultati ad Amazon SWF.

Ruolo del lavoratore di flusso di lavoro

Il lavoratore di flusso di lavoro orchestra I'esecuzione di varie attivita e gestisce il flusso di dati e le
attivita non riuscite. e comprende quanto segue:

» L'implementazione di flusso di lavoro, che include la logica di orchestrazione delle attivita, gestisce
le attivita non riuscite, ecc.

« Un client di attivita, che funge da proxy per il lavoratore di attivita e consente al lavoratore di flusso
di lavoro di pianificare le attivita da eseguire in modo asincrono.

« Un WorkflowWorkeroggetto che utilizza richieste HTTP long poll per eseguire il polling di Amazon
SWEF per attivita decisionali. Se nell'elenco delle attivita del flusso di lavoro sono presenti attivita,
Amazon SWF risponde alla richiesta restituendo le informazioni necessarie per eseguire l'attivita.
Il framework esegue quindi il flusso di lavoro per eseguire I'operazione e restituisce i risultati ad
Amazon SWF.

Ruolo del lavoratore di attivita Versione APl 2021-04-28 40

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html

AWS Flow Framework per Java Guida per gli sviluppatori

Ruolo dello starter di flusso di lavoro

Lo starter di flusso di lavoro avvia un'istanza di flusso di lavoro, denominata anche esecuzione di
flusso di lavoro, e puo interagire con un'istanza durante I'esecuzione per passare ulteriori dati al
lavoratore di flusso di lavoro o ottenere lo stato corrente del flusso di lavoro.

Lo starter di flusso di lavoro utilizza un client di flusso di lavoro per avviare I'esecuzione di flusso di
lavoro, interagisce con il flusso di lavoro come necessario durante I'esecuzione e gestisce la pulizia.
Lo starter del flusso di lavoro potrebbe essere un'applicazione eseguita localmente, un'applicazione
Web, o anche il. AWS CLI Console di gestione AWS

In che modo Amazon SWF interagisce con la tua applicazione

Amazon SWF media l'interazione tra i componenti del flusso di lavoro e mantiene una cronologia
dettagliata del flusso di lavoro. Amazon SWF non avvia la comunicazione con i componenti; attende
le richieste HTTP dai componenti e gestisce le richieste come richiesto. Per esempio:

» Se larichiesta proviene da un lavoratore, che analizza le attivita disponibili, Amazon SWF risponde
direttamente al lavoratore se un'attivita & disponibile. Per ulteriori informazioni sul polling, consulta
Polling delle attivita nella Guida per sviluppatori di Amazon Simple Workflow Service.

» Se la richiesta € una notifica da parte di un operatore di attivita che indica il completamento
di un'attivita, Amazon SWF registra le informazioni nella cronologia di esecuzione e aggiunge
un'attivita all'elenco delle attivita decisionali per informare I'operatore del flusso di lavoro che
I'attivita & completa, consentendogli di procedere alla fase successiva.

» Se larichiesta di esecuzione di un'attivita proviene dall'operatore del flusso di lavoro, Amazon SWF
registra le informazioni nella cronologia di esecuzione e aggiunge un'attivita all'elenco delle attivita
per indirizzare un lavoratore di attivita a eseguire il metodo di attivita appropriato.

Questo approccio consente agli operatori di lavorare su qualsiasi sistema dotato di una connessione
Internet, tra cui EC2 istanze Amazon, data center aziendali, computer client e cosi via. Non &
nemmeno necessario che siano eseguiti sullo stesso sistema operativo. Poiché le richieste HTTP
provengono dai lavoratori, non sono richieste porte visibili esternamente; i lavoratori possono essere
esequiti protetti da un firewall.

Ulteriori informazioni

Per una discussione piu approfondita sul funzionamento di Amazon SWF, consulta la Amazon Simple
Workflow Service Developer Guide.

Ruolo dello starter di flusso di lavoro Versione APl 2021-04-28 41

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-comm-proto
https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework Concetti di base: esecuzione affidabile

Le applicazioni distribuite asincrone devono risolvere problemi di affidabilita a cui non sono soggette
le applicazioni convenzionali, tra cui:

» Come assicurare una comunicazione affidabile tra componenti distribuiti asincroni, come i
componenti a esecuzione prolungata su sistemi remoti.

« Come impedire la perdita dei risultati in caso di errore o di disconnessione di un componente, in
particolare nelle applicazioni a esecuzione prolungata.

+ Come gestire i componenti distribuiti con errori.

Le applicazioni possono fare affidamento su Amazon SWF per gestire questi problemi. AWS Flow
Framework Esploreremo in che modo Amazon SWF fornisce meccanismi per garantire che i flussi di
lavoro funzionino in modo affidabile e prevedibile, anche quando sono di lunga durata e dipendono
da attivita asincrone eseguite computazionalmente e con l'interazione umana.

Assicurare una comunicazione affidabile

AWS Flow Framework fornisce una comunicazione affidabile tra un operatore del flusso di lavoro
e i relativi addetti alle attivita utilizzando Amazon SWF per inviare attivita a lavoratori con attivita
distribuite e restituire i risultati al lavoratore del flusso di lavoro. Amazon SWF utilizza i seguenti
metodi per garantire una comunicazione affidabile tra un lavoratore e le sue attivita:

» Amazon SWF archivia in modo duraturo le attivita pianificate e le attivita del flusso di lavoro e
garantisce che vengano eseguite al massimo una volta.

« Amazon SWF garantisce che un'attivita venga completata correttamente e restituisca un risultato
valido oppure notifichera all'operatore del flusso di lavoro che I'attivita non é riuscita.

« Amazon SWF archivia in modo duraturo il risultato di ogni attivita completata o, per le attivita non
riuscite, memorizza le informazioni di errore pertinenti.

AWS Flow Framework Quindi utilizza i risultati dell'attivita di Amazon SWF per determinare come
procedere con l'esecuzione del flusso di lavoro.

Esecuzione affidabile Versione AP| 2021-04-28 42

AWS Flow Framework per Java Guida per gli sviluppatori

Impedire la perdita dei risultati

Gestione della cronologia del flusso di lavoro

Un'attivita che esegue un'operazione di data mining su un petabyte di dati pud durare varie ore e
un'attivita che richiede a un lavoratore umano di eseguire un task complesso pud durare vari giorni o
addirittura settimane.

Per adattarsi a scenari come questi, il completamento AWS Flow Framework dei flussi di lavoro e
delle attivita puo richiedere tempi arbitrari: fino al limite di un anno per I'esecuzione di un flusso di
lavoro. L'esecuzione affidabile di processi a esecuzione prolungata necessita di un meccanismo per
archiviare in modo permanente e continuo la cronologia di esecuzione del flusso di lavoro.

AWS Flow Framework Gestisce questo problema dipendendo da Amazon SWF, che mantiene
una cronologia di esecuzione di ogni istanza del flusso di lavoro. La cronologia del flusso di lavoro
fornisce un record completo e attendibile dell'avanzamento del flusso di lavoro, inclusi tutti i task di
flusso di lavoro e di attivita che sono stati pianificati e completati, nonché le informazioni restituite
dalle attivita completate o non riuscite.

AWS Flow Framework le applicazioni di solito non hanno bisogno di interagire direttamente con la
cronologia del flusso di lavoro, sebbene possano accedervi se necessario. Nella maggior parte dei
casi, le applicazioni possono semplicemente lasciare che il framework interagisca con la cronologia
del flusso di lavoro in background. Per una discussione completa sulla cronologia del flusso di lavoro,
consulta Workflow History nella Amazon Simple Workflow Service Developer Guide.

Esecuzione stateless

La cronologia delle esecuzioni consente ai lavoratori di flusso di lavoro di essere stateless. Se
disponi di piu istanze di un lavoratore di attivita o di flusso di lavoro, qualsiasi lavoratore pud eseguire
qualsiasi task. Il lavoratore riceve tutte le informazioni sullo stato necessarie per eseguire l'attivita da
Amazon SWF.

Questo approccio rende i flussi di lavoro piu affidabili. Ad esempio, se un lavoratore di attivita non
riesce, non & necessario riavviare il flusso di lavoro. E sufficiente riavviare il lavoratore, il quale
esegquira il polling nell'elenco dei task ed elaborera tutti i task nell'elenco, indipendentemente dal
momento in cui si & verificato I'errore. Puoi rendere l'intero flusso di lavoro a tolleranza di errore
utilizzando due o piu lavoratori di flusso di lavoro e di attivita, eventualmente su sistemi distinti. In
questo modo, in caso di errore in uno dei lavoratori, I'altro continuera a gestire i task pianificati senza
alcuna interruzione nell'avanzamento del flusso di lavoro.

Impedire la perdita dei risultati Versione API 2021-04-28 43

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-basic.html#swf-dev-about-workflow-history

AWS Flow Framework per Java Guida per gli sviluppatori

Gestire componenti distribuiti con errori

Le attivita spesso non hanno esito positivo per motivi effimeri, come una breve disconnessione, di
conseguenza una strategia comune per la gestione delle attivita non riuscite consiste nel ripetere
I'attivita. Anziché gestire un nuovo tentativo implementando complesse strategie di passaggio di
messaggi, le applicazioni possono utilizzare AWS Flow Framework. Fornisce diversi meccanismi per
riprovare le attivita non riuscite e fornisce un meccanismo integrato di gestione delle eccezioni che
funziona con I'esecuzione asincrona e distribuita delle attivita in un flusso di lavoro.

AWS Flow Framework Concetti di base: esecuzione distribuita

Un'istanza di workflow € essenzialmente un thread di esecuzione virtuale che pud comprendere le
attivita e la logica di orchestrazione in esecuzione su piu computer remoti. Amazon SWF e la AWS
Flow Framework funzione come sistema operativo che gestisce le istanze del flusso di lavoro su una
CPU virtuale tramite:

* Mantenendo lo stato di esecuzione di ciascuna istanza.

» Passando da un'istanza all'altra.

* Riprendendo I'esecuzione di un'istanza dal punto in cui € stata interrotta.

Riproduzione dei flussi di lavoro

Dato che le attivita possono essere di lunga durata, il blocco del flusso di lavoro fino al
completamento non é consigliabile. AWS Flow Framework Gestisce invece I'esecuzione del flusso
di lavoro utilizzando un meccanismo di riproduzione, che si basa sulla cronologia del flusso di lavoro
gestita da Amazon SWF per eseguire il flusso di lavoro in episodi.

Ciascun episodio riproduce la logica del flusso di lavoro in modo da eseguire ogni attivita solo una
volta e ritarda I'esecuzione delle attivita e dei metodi asincroni fino a quando i loro oggetti Promise
non sono pronti.

Lo starter del flusso di lavoro avvia il primo episodio di riproduzione quando inizia I'esecuzione del
flusso di lavoro. |l framework chiama il metodo del punto di ingresso del flusso di lavoro e:

1. Esegue tutti i task del flusso di lavoro che non dipendono dal completamento dell'attivita, inclusa la
chiamata di tutti i metodi client di attivita.

Gestire componenti distribuiti con errori Versione AP| 2021-04-28 44

AWS Flow Framework per Java Guida per gli sviluppatori

2. Fornisce ad Amazon SWF un elenco di attivita e attivita da pianificare per I'esecuzione. Per il primo
episodio, l'elenco consiste solo delle attivita che non dipendono da Promise e possono essere
eseguite immediatamente.

3. Notifica ad Amazon SWF che I'episodio € completo.

Amazon SWF memorizza le attivita nella cronologia del flusso di lavoro e ne pianifica I'esecuzione
inserendole nell'elenco delle attivita. | lavoratori di attivita eseguono il polling dell'elenco ed eseguono
i task.

Quando un activity worker completa un'attivita, restituisce il risultato ad Amazon SWF, che lo
registra nella cronologia di esecuzione del flusso di lavoro e pianifica una nuova attivita del flusso
di lavoro per I'operatore del flusso di lavoro inserendola nell'elenco delle attivita del flusso di lavoro.
Il lavoratore esegue il polling dell'elenco e quando riceve il task esegue l'episodio di riproduzione
successivo, nel modo seguente:

1. Il framework esegue nuovamente il metodo del punto di ingresso del flusso di lavoro e:

» Esegue tutti i task del flusso di lavoro che non dipendono dal completamento dell'attivita, inclusa
la chiamata di tutti i metodi client di attivita. Tuttavia, il framework verifica la cronologia delle
esecuzioni e non pianifica doppioni dello stesso task di attivita.

« Verifica la cronologia per vedere quali task di attivita sono stati completati ed esegue i metodi
asincroni del flusso di lavoro che dipendono da quelle attivita.

2. Quando tutte le attivita del flusso di lavoro che possono essere eseguite sono state completate, il
framework riporta ad Amazon SWF:

* Fornisce ad Amazon SWF un elenco di tutte le attivita i cui Promise<T> oggetti di input sono
pronti dall'ultimo episodio e possono essere pianificati per I'esecuzione.

» Se I'episodio non ha generato attivita aggiuntive ma ci sono ancora attivita non completate, il
framework notifica ad Amazon SWF che l'episodio € completo. Attende quindi il completamento
di un'altra attivita, avviando il successivo episodio di riproduzione.

» Se I'episodio non ha generato attivita aggiuntive e tutte le attivita sono state completate, il
framework notifica ad Amazon SWF che l'esecuzione del flusso di lavoro & completa.

Per esempi di comportamento di riproduzione, consulta AWS Flow Framework per Java Replay

Behavior.

Riproduzione dei flussi di lavoro Versione API 2021-04-28 45

AWS Flow Framework per Java Guida per gli sviluppatori

Riproduzione e metodi di flusso di lavoro asincroni

| metodi di flusso di lavoro asincroni sono spesso utilizzati come attivita, perché il metodo ritarda
I'esecuzione fino a che tutti gli oggetti Promise<T> di input sono pronti. Tuttavia, il meccanismo di
riproduzione gestisce i metodi asincroni in modo diverso rispetto alle attivita.

 La riproduzione non garantisce che un metodo asincrono venga eseguito solo una volta. Ritarda
I'esecuzione di un metodo asincrono fino a quando i suoi oggetti Promise di input sono pronti, ma
poi esegue quel metodo per tutti gli episodi successivi.

* Quando un metodo asincrono viene completato, non avvia un nuovo episodio.

Un esempio di riproduzione di un flusso di lavoro asincrono si trova in AWS Flow Framework per
Java Replay Behavior.

Riproduzione e implementazione del flusso di lavoro

Per la maggior parte, non occorre preoccuparsi dei dettagli del meccanismo di riproduzione. In
sostanza é qualcosa che accade dietro le quinte. Tuttavia, la riproduzione ha due importanti effetti per
I'implementazione di un flusso di lavoro.

* Non utilizzare metodi di flusso di lavoro per eseguire task di lunga durata, perché la riproduzione
ripete i task piu volte. Anche i metodi asincroni in genere si ripetono piu di una volta. Utilizza invece
le attivita per i task di lunga durata; la riproduzione esegue le attivita solo una volta.

+ La logica del flusso di lavoro deve essere totalmente deterministica; ogni episodio deve accettare
lo stesso percorso del flusso di controllo. Ad esempio, il percorso del flusso di controllo non deve
dipendere dall'ora corrente. Per una descrizione dettagliata della riproduzione e dei requisiti
deterministici, consulta Non determinismo.

AWS Flow Framework Concetti di base: elenchi di attivita ed
esecuzione delle attivita
Amazon SWF gestisce i flussi di lavoro e le attivita pubblicandoli in elenchi denominati. Amazon SWF

mantiene almeno due elenchi di attivita, uno per i lavoratori del flusso di lavoro e uno per gli addetti
alle attivita.

Riproduzione e metodi di flusso di lavoro asincroni Versione API 2021-04-28 46

AWS Flow Framework per Java Guida per gli sviluppatori

® Note

Puoi specificare il numero di elenchi di task che preferisci, con lavoratori diversi assegnati a
ogni elenco. Non vi € alcun limite al numero di elenchi di task. Solitamente, puoi specificare
un elenco di task del lavoratore nell'applicazione host del lavoratore quando crei l'oggetto del
lavoratore.

Il seguente estratto dall'applicazione host HelloWorldWorkflow crea un nuovo lavoratore di attivita
e lo assegna all'elenco di task di attivita HelloWorldList.

public class GreeterWorker {
public static void main(String[] args) throws Exception {

String domain = " helloWorldExamples";
String taskListToPoll = "HelloWorldList";

ActivityWorker aw = new ActivityWorker(service, domain, taskListToPoll);
aw.addActivitiesImplementation(new GreeterActivitiesImpl());
aw.start();

Per impostazione predefinita, Amazon SWF pianifica le attivita del lavoratore
nellHelloWorldListelenco. In seguito il lavoratore analizza I'elenco alla ricerca di task. Puoi
assegnare all'elenco di task il nome che preferisci. Puoi anche utilizzare lo stesso nome per gli
elenchi di flusso di lavoro e attivita. Internamente, Amazon SWF inserisce i nomi degli elenchi di
attivita e flussi di lavoro in namespace diversi, quindi i due elenchi saranno distinti.

Se non specifichi un elenco di attivita, AWS Flow Framework specifica un elenco predefinito quando
il lavoratore registra il tipo con Amazon SWF. Per ulteriori informazioni, consulta Registrazione dei tipi

di flusso di lavoro e di attivita.

A volte é utile che un lavoratore o un gruppo di lavoratori specifici eseguano determinati task.

Ad esempio, un flusso di lavoro di elaborazione delle immagini potrebbe utilizzare un'attivita per
scaricare un'immagine e un'altra per elaborarla. E piu efficiente eseguire entrambi i task sullo stesso
sistema ed evitare costi legati al trasferimento di file di grandi dimensioni all'interno della rete.

Elenchi di task ed esecuzione di task Versione APl 2021-04-28 47

AWS Flow Framework per Java Guida per gli sviluppatori

Per supportare tali scenari, puoi specificare in modo esplicito un elenco di task quando chiami un
metodo client di attivita utilizzando un overload che include un parametro schedulingOptions.
E possibile specificare I'elenco delle attivitd passando al metodo un oggetto configurato in modo
appropriato. ActivitySchedulingOptions

Ad esempio, supponiamo che l'attivita say dell'applicazione HelloWorldWorkflow sia ospitata
da un lavoratore di attivita diverso da getName e getGreeting. Il seguente esempio mostra
come garantire che say utilizzi lo stesso elenco di task di getName e getGreeting, anche se
originariamente sono stati assegnati a elenchi diversi.

public class GreeterWorkflowImpl implements GreeterWorkflow {
private GreeterActivitiesClient operationsl = new GreeterActivitiesClientImpll(); //
getGreeting and getName
private GreeterActivitiesClient operations2 = new GreeterActivitiesClientImpl2(); //
say
@Override
public void greet() {
Promise<String> name = operationsl.getName();
Promise<String> greeting = operationsl.getGreeting(name);
runSay(greeting);
}
@Asynchronous
private void runSay(Promise<String> greeting){
String taskList = operationsl.getSchedulingOptions().getTaskList();
ActivitySchedulingOptions schedulingOptions = new ActivitySchedulingOptions();
schedulingOptions.setTaskList(taskList);
operations2.say(greeting, schedulingOptions);

Il metodo asincrono runSay ottiene I'elenco di task getGreeting dall'oggetto client. Poi crea e
configura un oggetto ActivitySchedulingOptions che garantisca che say analizzi lo stesso
elenco di task di getGreeting.

(® Note

Quando passi un parametro schedulingOptions a un metodo client di attivita, questo
sovrascrive I'elenco di task originale soltanto per I'esecuzione di quell'attivita. Se richiami
nuovamente il metodo activities client senza specificare un elenco di attivita, Amazon SWF
assegna l'attivita all'elenco originale e I'activity worker analizzera tale elenco.

Elenchi di task ed esecuzione di task Versione APl 2021-04-28 48

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework Concetti di base: applicazioni scalabili

Amazon SWF ha due caratteristiche chiave che semplificano la scalabilita di un'applicazione di
workflow per gestire il carico corrente:

» Una cronologia completa delle esecuzioni dei flussi di lavoro, che permette di implementare
un'applicazione stateless.

» Una pianificazione dei task con legami deboli alla loro esecuzione, che semplifica la scalabilita
dell'applicazione per soddisfare le esigenze attuali.

Amazon SWF pianifica le attivita pubblicandole in elenchi di attivita allocati dinamicamente, non
comunicando direttamente con gli addetti al flusso di lavoro e alle attivita. | lavoratori utilizzano
invece richieste HTTP per eseguire il polling dei rispettivi elenchi di task. Questo approccio associa
vagamente la pianificazione delle attivita all'esecuzione delle attivita e consente ai lavoratori di
funzionare su qualsiasi sistema adatto, tra cui EC2 istanze Amazon, data center aziendali, computer
client e cosi via. Poiché le richieste HTTP provengono dai worker, non sono necessarie porte visibili
esternamente, il che consente agli operatori di funzionare anche dietro un firewall.

Il meccanismo long polling utilizzato dai lavoratori per eseguire il polling dei task assicura che

i lavoratori non vengano sovraccaricati. Anche se c'é un picco nei task pianificati, i lavoratori
estraggono i task secondo le loro esigenze. Tuttavia, poiché il lavoratori sono stateless, puoi scalare
dinamicamente un'applicazione per soddisfare un maggiore carico avviando istanze lavoratore
aggiuntive. Anche se operano su sistemi diversi, ciascuna istanza esegue il polling dello stesso
elenco di task e la prima istanza lavoratore disponibile esegue ciascun task, indipendentemente
dalla posizione o dal momento di inizio del lavoratore. Quando il carico diminuisce, si pu0 ridurre di
conseguenza il numero di lavoratori.

AWS Flow Framework Concetti di base: Data Exchange tra attivita
e flussi di lavoro

Quando chiami un metodo client di attivita asincrono, restituisce immediatamente un oggetto
Promessa (noto anche come Futuro) che rappresenta il valore restituito del metodo di attivita.
Inizialmente, la Promessa € in uno stato non pronto e il valore restituito € indefinito. Dopo che il
metodo di attivita ha completato il task e viene restituito, il framework esegue il marshalling del valore
restituito nella rete al lavoratore di flusso di lavoro, che assegna un valore alla Promessa e fa entrare
l'oggetto in uno stato pronto.

Applicazioni scalabili Versione API 2021-04-28 49

AWS Flow Framework per Java Guida per gli sviluppatori

Anche se il metodo di attivita non ha un valore restituito, puoi ancora utilizzare la Promessa per
gestire I'esecuzione del flusso di lavoro. Se passi una Promessa restituita a un metodo client di
attivita o a un metodo flusso di lavoro, questa ritarda I'esecuzione fino a quando l'oggetto € pronto.

Se passi una o piu promesse a un metodo client di attivita, il framework mette in coda il task ma
ritarda la pianificazione fino a quando tutti gli oggetti di input sono pronti. Poi estrae i dati da ogni
Promessa ed ne esegue il marshalling su internet al lavoratore di attivita, che li passa al metodo di
attivita come tipo standard.

(® Note

Se devi trasferire grandi quantita di dati tra i lavoratori di flusso di lavoro e attivita, I'approccio
consigliato & archiviare i dati in una posizione comoda e passare le informazioni di recupero.
Ad esempio, puoi archiviare i dati in un bucket Amazon S3 e passare I'URL associato.

La promessa <T> Tipo

Il tipo Promise<T> & simile per alcuni aspetti al tipo Java Future<T>. Entrambi i tipi rappresentano
valori restituiti da metodi asincroni e sono inizialmente non definiti. Puoi accedere al valore di un
oggetto chiamando il suo metodo get. Al di la di cid, i due tipi si comportano in modo diverso.

* Future<T> € un costrutto di sincronizzazione che permette a un'applicazione di attendere il
completamento di un metodo asincrono. Se chiami get e lI'oggetto non € pronto, si blocca fino a
quando l'oggetto € pronto.

« Con Promise<T>, la sincronizzazione é gestita dal framework. Se chiami get e l'oggetto non &
pronto, get genera un'eccezione.

Lo scopo primario di Promise<T> e gestire il flusso di dati da un'attivita a un'altra. Garantisce
che un'attivita non venga eseguita fino a quando i dati di input sono validi. In molti casi, i lavoratori
di flusso di lavoro non devono accedere agli oggetti Promise<T> direttamente; passano
semplicemente gli oggetti da un'attivita a un'altra e lasciano che i lavoratori di framework e attivita
gestiscano i dettagli. Per accedere al valore dell'oggetto Promise<T> in un lavoratore di flusso di
lavoro, devi essere certo che I'oggetto sia pronto prima di chiamare il suo metodo get.

 L'approccio consigliato & passare l'oggetto Promise<T> a un metodo flusso di lavoro asincrono
ed elaborare i valori al suo interno. Un metodo asincrono ritarda I'esecuzione fino a quando tutti gli
oggetti di input Promise<T> sono pronti, il che ti garantisce I'accesso sicuro ai valori.

La promessa <T> Tipo Versione API 2021-04-28 50

AWS Flow Framework per Java Guida per gli sviluppatori

* Promise<T> espone un metodo isReady che restituisce true se I'oggetto & pronto. Non &
consigliato utilizzare 1sReady per analizzare un oggetto Promise<T>, ma isReady é utile in
alcune circostanze.

Il AWS Flow Framework for Java include anche un Settable<T> tipo, che & derivato da
Promise<T> e ha un comportamento simile. La differenza é che il framework di solito imposta il
valore di un Promise<T> oggetto e l'operatore del flusso di lavoro € responsabile dell'impostazione
del valore di aSettable<T>.

Ci sono alcune circostanze in cui un lavoratore di flusso di lavoro deve creare un oggetto
Promise<T> e definire il suo valore. Ad esempio, un metodo asincrono che restituisce un oggetto
Promise<T> deve creare un valore restituito.

» Per creare un oggetto che rappresenta un valore tipizzato, chiama il metodo statico
Promise.asPromise che crea un oggetto Promise<T> del tipo appropriato, definisce il suo
valore e lo fa entrare in uno stato pronto.

* Per creare un oggetto Promise<Void>, chiama il metodo statico Promise.Void.

® Note

Promise<T> puod rappresentare qualunque tipo valido. Tuttavia, se bisogna eseguire il
marshalling dei dati su Internet, il tipo deve essere compatibile con il convertitore di dati. Per
ulteriori informazioni, consulta la prossima sezione.

Convertitore e marshalling dei dati

AWS Flow Framework Gestisce i dati su Internet utilizzando un convertitore di dati. Per impostazione
predefinita, il framework utilizza un convertitore di dati che & basato sul processore Jackson JSON.

Tuttavia, il convertitore ha dei limiti. Ad esempio, non pud effettuare il marshalling delle mappe

che non utilizzano le stringhe come chiavi. Se il convertitore predefinito non & sufficiente per la tua
applicazione, puoi implementare un convertitore di dati personalizzato. Per informazioni dettagliate,
consulta DataConverters.

Convertitore e marshalling dei dati Versione APl 2021-04-28 51

https://github.com/codehaus/jackson

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework Concetti di base: Data Exchange tra
applicazioni ed esecuzioni di flussi di lavoro

Un metodo del punto di ingresso del flusso di lavoro pud avere uno o piu parametri, che permettono
allo starter di trasferire i dati iniziali al flusso di lavoro. Puo essere utile anche per fornire al flusso

di lavoro dati aggiuntivi durante I'esecuzione. Ad esempio, se un cliente modifica I'indirizzo di
spedizione, puoi avvisare il flusso di lavoro di elaborazione dell'ordine affinché apporti le opportune
modifiche.

Amazon SWF consente ai flussi di lavoro di implementare un metodo di segnale, che consente
ad applicazioni come Workflow Starter di trasferire dati al flusso di lavoro in qualsiasi momento.
Un metodo segnale puo® avere tutti i nomi e parametri opportuni. Lo designi come metodo segnale
includendolo nella definizione dell'interfaccia del flusso di lavoro e applicando un'annotazione
@Signal alla dichiarazione del metodo.

L'esempio seguente mostra l'interfaccia del flusso di lavoro per I'elaborazione di un ordine che
dichiara un metodo segnale, changeOxrder, che permette allo starter di modificare I'ordine originale
dopo l'avvio del flusso di lavoro.

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 300)
public interface WaitForSignalWorkflow {

@Execute(version = "1.0")
public void placeOrder(int amount);
@Signal

public void changeOrder(int amount);

Il processore di annotazione del framework crea un metodo client del flusso di lavoro con lo stesso
nome del metodo segnale e lo starter chiama il metodo client per trasferire i dati al flusso di lavoro.
Per un esempio, consulta Recipes AWS Flow Framework

Tipi di timeout di Amazon SWF

Per garantire che le esecuzioni dei flussi di lavoro vengano eseguite correttamente, puoi impostare
diversi tipi di timeout con Amazon SWF. Alcuni timeout specificano la durata totale del flusso

di lavoro. Altri timeout specificano quanto impiegano le attivita prima di essere assegnate a un
lavoratore e quanto ci vuole a completarle dal momento in cui sono state pianificate. Tutti i timeout

Scambio di dati tra le applicazioni e le esecuzioni del flusso di lavoro Versione AP| 2021-04-28 52

https://aws.amazon.com/code/2535278400103493

AWS Flow Framework per Java Guida per gli sviluppatori

nell'API Amazon SWF sono specificati in secondi. Amazon SWF supporta anche la stringa NONE
come valore di timeout, che indica I'assenza di timeout.

Per i timeout relativi alle attivita decisionali e alle attivita, Amazon SWF aggiunge un evento alla
cronologia di esecuzione del flusso di lavoro. Gli attributi dell'evento forniscono informazioni sul
tipo di timeout verificatosi e su quale attivita decisionale o attivita é stata influenzata. Amazon SWF
pianifica anche un'attivita decisionale. Quando il decisore riceve il nuovo compito decisionale,
vedra l'evento di timeout nella cronologia e intraprendera I'azione appropriata richiamando l'azione.
RespondDecisionTaskCompleted

Un task si considera aperto dal momento in cui € pianificato fino alla sua chiusura. Percid un task

€ segnalato come aperto quando un lavoratore lo sta elaborando. Un task & chiuso quando un
lavoratore lo segnala come completato, annullato o non riuscito. Un'attivita pud anche essere chiusa
da Amazon SWF a seguito di un timeout.

| timeout nel flusso di lavoro e i task di decisione

Il diagramma seguente mostra la correlazione tra i timeout del flusso di lavoro e di decisione e il ciclo
di vita di un flusso di lavoro:

Execution Start to Close timeout

Task Start to Close Task Start to Close
_timeuut timeout
Workflow Execution | Decision Task Decision Task Decision Task Decision Task
Started started completed started completed
Decision Task Decision Task Workflow Execution Closed
scheduled scheduled (completed, failed, terminated,

canceled or timed out)

Esistono due tipi di timeout che interessano i task del flusso di lavoro e di decisione:

» Workflow Start to Close (timeoutType: START_TO_CLOSE): questo timeout specifica il tempo
massimo necessario per completare I'esecuzione di un flusso di lavoro. E impostato come
predefinito durante la registrazione del flusso di lavoro, ma puo essere sovrascritto con un valore
diverso quando il flusso di lavoro inizia. Se questo timeout viene superato, Amazon SWF chiude
I'esecuzione del flusso di lavoro e aggiunge un evento di WorkflowExecutionTimedOuttipo alla

| timeout nel flusso di lavoro e i task di decisione Versione APl 2021-04-28 53

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondDecisionTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_WorkflowExecutionTimedOutEventAttributes.html

AWS Flow Framework per Java Guida per gli sviluppatori

cronologia di esecuzione del flusso di lavoro. Oltre al timeoutType, gli attributi dell'evento
specificano la childPolicy valida per I'esecuzione del flusso di lavoro. La policy figlio specifica in
che modo vengono gestite le esecuzioni del flusso di lavoro figlio se quella padre scade o termina
in altro modo. Ad esempio, se la childPolicy € impostata su TERMINATA, allora le esecuzioni
del flusso di lavoro figlio verranno terminate. Una volta scaduta un'esecuzione del flusso di lavoro,
non potrai piu intervenire se non con chiamate di visibilita.

* Inizio e chiusura dell'attivita decisionale (timeoutType: START_TO_CLOSE): questo timeout
specifica il tempo massimo che il decisore corrispondente pud impiegare per completare un'attivita
decisionale. Viene impostato durante la registrazione del tipo di flusso di lavoro. Se questo timeout
viene superato, l'attivita viene contrassegnata come scaduta nella cronologia di esecuzione
del flusso di lavoro e Amazon SWF aggiunge un evento di tipo DecisionTaskTimedOutalla

cronologia del flusso di lavoro. Gli attributi dell'evento includeranno gli eventi che corrispondono

a quando questo task decisionale & stato pianificato (scheduledEventId) e quando é stato
avviato (). IDs startedEventId Oltre ad aggiungere I'evento, Amazon SWF pianifica anche una
nuova attivita decisionale per avvisare il decisore che tale attivita decisionale € scaduta. Dopo
che si verifica questo timeout, il tentativo di completare il task di decisione scaduto utilizzando
RespondDecisionTaskCompleted non andra a buon fine.

Timeout nei task di attivita

Il diagramma seguente mostra la correlazione tra i timeout e il ciclo di vita di un task di attivita:

Schedule to Close timeout

: Schedule to Start timeout

. Start to Close timeaut

Heartbeat timeout

Task Task started Heartbeat Heartbeat Heartheat
scheduled (dispatched recorded recorded recaorded
ScheduleActivityTask to worker) Task closed
decision received {completed, failed,

or timed out)

Esistono quattro tipi di timeout che interessano i task di attivita:

Timeout nei task di attivita Versione APl 2021-04-28 54

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_DecisionTaskTimedOutEventAttributes.html

AWS Flow Framework per Java Guida per gli sviluppatori

* Inizio attivita da inizio a chiusura (timeoutType: START_TO_CLOSE): questo timeout
specifica il tempo massimo che un addetto all'attivita pud impiegare per elaborare un'attivita
dopo che il lavoratore ha ricevuto l'attivita. Tenta di chiudere un'attivita scaduta utilizzando
RespondActivityTaskCanceledRespondActivityTaskCompleted, e RespondActivityTaskFailedavra
esito negativo.

 Activity Task Heartbeat (timeoutType: HEARTBEAT): questo timeout specifica il tempo massimo
di esecuzione di un'attivita prima che il relativo avanzamento nel corso dell'azione possa avvenire.
RecordActivityTaskHeartbeat

* Activity Task Schedule to Start (timeoutType: SCHEDULE_TO_START): questo timeout specifica
per quanto tempo Amazon SWF attende prima di scadere il timeout dell'attivita se non sono
disponibili lavoratori per eseguire I'attivita. Una volta scaduto, il task non verra assegnato ad altri
lavoratori.

* Activity Task Schedule to Close (timeoutType: SCHEDULE_TO_CLOSE): questo timeout
specifica quanto tempo puo impiegare I'attivita dal momento in cui € pianificata al momento in cui
viene completata. Come procedura ottimale, questo valore non deve essere maggiore della somma
del timeout dell'attivita e del schedule-to-start timeout dell'attivita. start-to-close

® Note

Ciascun tipo di timeout ha un valore predefinito, generalmente impostato su NONE (infinito). In
ogni caso, il tempo massimo per I'esecuzione delle attivita &€ un anno.

In fase di registrazione del tipo di attivita si impostano valori predefiniti, ma puoi sovrascriverli con
nuovi valori quando pianifichi il task di attivita. Quando si verifica uno di questi timeout, Amazon SWF
aggiungera un evento di ActivityTaskTimedOuttipo alla cronologia del flusso di lavoro. L'attributo del
valore timeoutType di questo evento specifica quale di questi timeout si & verificato. Per ciascuno
dei timeout, il valore del timeoutType € indicato tra parentesi. Gli attributi dell'evento includeranno
anche gli eventi che corrispondono a quando l'attivita € stata pianificata (scheduledEventId)

e quando é stata avviata (). IDs startedEventId Oltre ad aggiungere I'evento, Amazon SWF
pianifica anche una nuova attivita decisionale per avvisare chi decide che si € verificato il timeout.

Timeout nei task di attivita Versione APl 2021-04-28 55

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCompleted.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskCanceled.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ScheduleActivityTaskDecisionAttributes.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_HistoryEvent.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_ActivityTaskTimedOutEventAttributes.html

AWS Flow Framework per Java Guida per gli sviluppatori

Comprensione di un task in AWS Flow Framework for Java

Argomenti

« Attivita

* Ordine di esecuzione

» Esecuzione del flusso di lavoro

* Non determinismo

Attivita

La primitiva sottostante utilizzata da AWS Flow Framework for Java per gestire I'esecuzione del
codice asincrono ¢ la classe. Task Un oggetto di tipo Task rappresenta il lavoro che deve essere
eseguito in modo asincrono. Quando chiami un metodo asincrono, il framework crea un Task per
eseguire il codice in quel metodo e lo inserisce in un elenco per essere eseguito successivamente.
Analogamente, quando richiami Activity, viene creato un Task apposito. Dopo questa operazione
la chiamata del metodo ritorna, solitamente restituendo un Promise<T> come risultato futuro della
chiamata.

La classe Task & pubblica e puo essere utilizzata direttamente. Ad esempio, possiamo riscrivere
I'esempio di Hello World per utilizzare un Task anziché un metodo asincrono.

@Override
public void startHelloWorld(){
final Promise<String> greeting = client.getName();
new Task(greeting) {
@Override
protected void doExecute() throws Throwable {
client.printGreeting("Hello " + greeting.get() +"!");
}
i

Il framework chiama il metodo doExecute() quando tuttii Promise passati al costruttore di Task
sono pronti. Per maggiori dettagli sulla Task classe, consultate la documentazione. AWS SDK per
Java

Attivita Versione API 2021-04-28 56

AWS Flow Framework per Java Guida per gli sviluppatori

Il framework include anche una classe chiamata Functor che rappresenta un Task che € anche un
Promise<T>. L'oggetto Functor € pronto quando Task & completato. Nel seguente esempio, un
Functor viene creato per ottenere il messaggio di saluto:

Promise<String> greeting = new Functor<String>() {
@Override
protected Promise<String> doExecute() throws Throwable {
return client.getGreeting();

iy

client.printGreeting(greeting);

Ordine di esecuzione

| task possono essere eseguiti soltanto quando tutti i parametri Promise<T> digitati, passati al
metodo o all'attivita asincroni corrispondenti, sono pronti. Un Task pronto per I'esecuzione viene
logicamente spostato su una coda pronta. In altre parole, & pianificato per I'esecuzione. La classe
di lavoro esegue l'attivita richiamando il codice che hai scritto nel corpo del metodo asincrono o
pianificando un'attivita in Amazon Simple Workflow Service (AWS) nel caso di un metodo di attivita.

Man mano che i task vengono eseguiti e producono risultati, altri task sono pronti e I'esecuzione
del programma continua il suo ciclo. Il modo in cui il framework esegue i task € importante per
comprendere in che ordine viene eseguito il codice asincrono. Il codice che appare in sequenza
all'interno del tuo programma potrebbe non essere eseguito in quell'ordine.

Promise<String> name = getUserName();
printHelloName(name);
printHelloWorld();
System.out.println("Hello, Amazon!");

@Asynchronous

private Promise<String> getUserName(){
return Promise.asPromise("Bob");

}

@Asynchronous

private void printHelloName(Promise<String> name){
System.out.println("Hello, " + name.get() + "!");
}

@Asynchronous

private void printHelloWorld(){

Ordine di esecuzione Versione APl 2021-04-28 57

AWS Flow Framework per Java Guida per gli sviluppatori

System.out.println("Hello, World!");
}

Il codice nell'elenco sopra visualizzera i seguenti dati:

Hello, Amazon!
Hello, World!
Hello, Bob

Questo non ¢ il risultato che ti aspetti, ma puo essere facilmente spiegato pensando al modo in cui
vengono eseguiti i task per i metodi asincroni:

1. La chiamata a getUserName crea Task. Chiamiamolo Taskl1. Perché getUserName non accetta
alcun parametro, Task1 viene immediatamente messo nella coda pronta.

2. Successivamente, la chiamata a printHelloName crea Task che deve aspettare il risultato di
getUserName. Chiamiamolo Task2. Poiché il valore richiesto non & ancora pronto, Task2 viene
inserito nella lista di attesa.

3. In seguito viene creato un task per printHelloWorld e aggiunto alla coda pronta. Chiamiamolo
Task3.

4. La println dichiarazione stampa quindi «Hello, Amazon!» alla console.
5. A questo punto, Taskl e Task3 sono inseriti nella coda pronta e Task2 nell'elenco di attesa.

6. Il lavoratore esegue Task1l e il risultato rende Task?2 pronto. Task2 viene aggiunto alla coda
pronta dietro Task3.

7. Task3 e Task2 vengono poi eseguiti in quell'ordine.

L'esecuzione delle attivita segue lo stesso schema. Quando chiami un metodo sul client di attivita, ne
crea uno Task che, al momento dell'esecuzione, pianifica un'attivita in Amazon SWF.

Il framework si basa su caratteristiche come la generazione del codice e i proxy dinamici per
immettere la logica che converte le chiamate di metodo in richiami di attivita e in task asincroni nel tuo
programma.

Esecuzione del flusso di lavoro

L'esecuzione dell'implementazione del flusso di lavoro viene gestita dalla classe di lavoratore.
Quando chiami un metodo sul client di workflow, questo chiama Amazon SWF per creare un'istanza
di workflow. Le attivita in Amazon SWF non devono essere confuse con le attivita del framework.

Esecuzione del flusso di lavoro Versione APl 2021-04-28 58

AWS Flow Framework per Java Guida per gli sviluppatori

Un'attivita in Amazon SWF puo essere un'attivita o un'attivita decisionale. L'esecuzione dei task di
attivita € semplice. La classe activity worker riceve attivita da Amazon SWF, richiama il metodo di
attivita appropriato nell'implementazione e restituisce il risultato ad Amazon SWF.

L'esecuzione dei task di decisione € piu complesso. L'addetto al flusso di lavoro riceve attivita
decisionali da Amazon SWF. Un task di decisione ¢é effettivamente una richiesta per sapere dalla
logica di flusso di lavoro quali sono i passaggi successivi. |l primo task di decisione viene generato
per un'istanza di flusso di lavoro quando viene iniziata sul client di flusso di lavoro. Dopo aver
ricevuto questo task di decisione, il framework inizia a eseguire il codice nel metodo di flusso di
lavoro annotato con @Execute. Questo metodo esegue la logica di coordinamento che pianifica

le attivita. Quando lo stato dell'istanza del flusso di lavoro cambia, ad esempio quando un'attivita
viene completata, vengono pianificate ulteriori attivita decisionali. A questo punto, la logica di flusso
di lavoro puo decidere di eseguire un'azione in base ai risultati dell'attivita; ad esempio, potrebbe
decidere di pianificare un'altra attivita.

Il framework nasconde tutti questi dettagli allo sviluppatore traducendo in modo perfetto i task di
decisione nella logica di flusso di lavoro. Dal punto di vista dello sviluppatore, il codice assomiglia a
un normale programma. Sotto le copertine, il framework lo associa alle chiamate ad Amazon SWF
e alle attivita decisionali utilizzando la cronologia gestita da Amazon SWF. Quando giunge un task
di decisione, il framework riproduce I'esecuzione del programma inserendo i risultati delle attivita
completate fino a quel momento. | metodi e le attivita asincroni che stavano aspettando i risultati
vengono sbloccati e I'esecuzione del programma prosegue.

L'esecuzione del flusso di lavoro di elaborazione di immagini e la relativa cronologia vengono
mostrate nella seguente tabella.

Esecuzione del flusso di lavoro di anteprima
Esecuzione del programma di flusso di lavoro Cronologia gestita da Amazon SWF
Esecuzione iniziale

Invia loop 1. Awvio dell'istanza di flusso di lavoro, id="1"
getlmageUrls 2. downloadlmage pianificato
downloadlmage

createThumbnail (task nella coda di attesa)

uploadimage (task nella coda di attesa)

o G A~ W h =

<prossima iterazione del loop>

Esecuzione del flusso di lavoro Versione APl 2021-04-28 59

AWS Flow Framework per Java

Guida per gli sviluppatori

Esecuzione del programma di flusso di lavoro Cronologia gestita da Amazon SWF

Riproduci di nuovo

1. Invia loop 1.
2. getlmageUrls 2.
3. percorso downloadlmage image ="foo" 3.
4. createThumbnail 4.
5. uploadimage (task nella coda di attesa)

6. <prossima iterazione del loop>

Avvio dell'istanza di flusso di lavoro, id="1"
downloadlmage pianificato
downloadlmage completato, restituisce="foo"

createThumbnail pianificato

Riproduci di nuovo

1. Invia loop 1
2. getlmageUrls 2
3. percorso downloadlmage image ="foo" 3
4. percorso miniatura createThumbnail="bar" 4
5. uploadimage 5
6. <prossima iterazione del loop>

6.

. Avvio dell'istanza di flusso di lavoro, id="1"

. downloadlmage pianificato

. downloadlmage completato, restituisce="foo"
. createThumbnail pianificato

. createThumbnail completato, restituis

ce="bar"

uploadimage pianificato

Riproduci di nuovo

1. Invia loop 1
2. getlmageUrls 2
3. percorso downloadlmage image ="foo" 3
4. percorso miniatura createThumbnail="bar" 4
5. uploadimage 5
6. <prossima iterazione del loop>

6

7

. Avvio dell'istanza di flusso di lavoro, id="1"

. downloadlmage pianificato

. downloadlmage completato, restituisce="foo"
. createThumbnail pianificato

. createThumbnail completato, restituis

ce="bar"

. uploadimage pianificato

. uploadimage completato

Esecuzione del flusso di lavoro

Versione APl 2021-04-28 60

AWS Flow Framework per Java Guida per gli sviluppatori

Quando processImage viene effettuata una chiamata a, il framework crea una nuova istanza

del flusso di lavoro in Amazon SWF. Rappresenta un record duraturo del momento in cui

viene iniziata un'istanza di flusso di lavoro. |l programma viene eseguito fino alla chiamata
al'downloadImageattivita, che richiede ad Amazon SWF di pianificare un'attivita. Il flusso di
lavoro viene eseguito ulteriormente e crea attivita per le attivita successive, che perd non possono
essere eseguite fino al completamento dell'downloadImageattivita; pertanto, questo episodio

di replay termina. Amazon SWF invia I'downloadImageattivita per I'esecuzione e, una volta
completata, viene registrato nella cronologia insieme al risultato. Il flusso di lavoro & ora pronto

per andare avanti e Amazon SWF genera un'attivita decisionale. |l framework riceve il task di
decisione e riproduce il flusso di lavoro inserendo il risultato dellimmagine scaricata registrato nella
cronologia. Questo sblocca l'attivita e createThumbnail I'esecuzione del programma prosegue
ulteriormente pianificando I'createThumbnailattivita in Amazon SWF. Lo stesso processo si ripete
per uploadImage. L'esecuzione del programma prosegue in questo modo fino a quando il flusso
di lavoro ha elaborato tutte le immagini € non ci sono piu task in sospeso. Poiché nessuno stato

di esecuzione viene memorizzato localmente, ogni attivita decisionale pud essere potenzialmente
eseguita su una macchina diversa. Questa operazione ti permette di scrivere programmi che siano
tolleranti ai guasti e facilmente scalabili.

Non determinismo

Poiché il framework si basa sulla replay, € importante che il codice di orchestrazione (tutto il codice
del flusso di lavoro ad eccezione delle implementazioni delle attivita) sia deterministico. Ad esempio,
il flusso di controllo del programma non deve dipendere da un numero casuale o dall'ora corrente.
Poiché queste cose cambieranno tra le chiamate, il replay potrebbe non seguire lo stesso percorso
attraverso la logica di orchestrazione. Cio potrebbe portare a risultati o errori imprevisti. Il framework
offre un WorkflowClock che puoi utilizzare per individuare I'ora corrente in modo deterministico.
Per ulteriori informazioni, consulta la sezione su Contesto di esecuzione.

@ Note

Il cablaggio Spring non corretto degli oggetti di implementazione del flusso di lavoro puo
condurre al non determinismo. | bean di implementazione del flusso di lavoro e i bean da
cui dipendono devono essere inclusi nell'ambito del flusso di lavoro (WorkflowScope). Ad
esempio, cablare un bean di implementazione del flusso di lavoro a un bean che mantiene
il proprio stato e si trova nel contesto globale portera a un comportamento imprevisto. Per
ulteriori informazioni, consulta la sezione Integrazione di Spring.

Non determinismo Versione APl 2021-04-28 61

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework per la guida alla programmazione
Java

Questa sezione fornisce dettagli su come utilizzare le funzionalita di AWS Flow Framework for Java
per implementare applicazioni di flusso di lavoro.

Argomenti

» Implementazione di applicazioni di workflow con AWS Flow Framework

» Contratti di flusso di lavoro e attivita

* Registrazione dei tipi di flusso di lavoro e di attivita

* Client di attivita e flusso di lavoro

* Implementazione del flusso di lavoro

* Implementazione di attivita

+ AWS Lambda Attivita di implementazione

» Esecuzione di programmi scritti con AWS Flow Framework for Java

* Contesto di esecuzione

» Esecuzioni del flusso di lavoro figlio

* Flussi di lavoro continui

» Impostazione della priorita delle attivita in Amazon SWF

+ DataConverters

» Passaggio di dati a metodi asincroni

» Testabilita e inserimento delle dipendenze

* Gestione errori

* Ripetere le attivita non andate a buon fine

 Task Daemon

* AWS Flow Framework per Java Replay Behavior

Implementazione di applicazioni di workflow con AWS Flow
Framework

| passaggi tipici necessari per lo sviluppo di un flusso di lavoro con AWS Flow Framework sono:

Implementazione di applicazioni di flusso di lavoro Versione AP| 2021-04-28 62

AWS Flow Framework per Java Guida per gli sviluppatori

1.

Definizione dei contratti di attivita e flusso di lavoro. Analizza i requisiti della tua applicazione,
quindi determina le attivita e la topologia di flusso di lavoro necessarie. Le attivita gestiscono i
task di elaborazione richiesti mentre la topologia di flusso di lavoro definisce la logica di business
e la struttura di base del flusso di lavoro.

Ad esempio, € possibile che per un'applicazione di elaborazione di contenuti multimediali sia
necessario scaricare ed elaborare un file e quindi caricarlo in un bucket Amazon Simple Storage
Service (S3). Questa procedura potrebbe essere suddivisa in quattro task di attivita:

1. Download del file da un server

2. Elaborazione del file (ad esempio, transcodificandolo in un formato multimediale differente)

3. Caricamento del file nel bucket S3

4. Pulizia con eliminazione dei file locali

Questo flusso di lavoro avrebbe un metodo del punto di ingresso e implementerebbe una
topologia lineare semplice che esegue le attivita in sequenza, come I'HelloWorldWorkflow
Applicazione.

Implementazione delle interfacce di attivita e flusso di lavoro. | contratti di flusso di lavoro e
attivita sono definiti dalle interfacce Java, rendendo le relative convenzioni di chiamata previsibili
con SWF e fornendo flessibilita nell'implementazione della logica di flusso di lavoro e dei task di
attivita. Le differenti parti del programma possono agire da consumer dei dati delle altre parti, ma
non devono essere necessariamente a conoscenza dei dettagli di implementazione delle altre
parti.

Ad esempio, puoi definire un'interfaccia FileProcessingWorkflow e fornire differenti
implementazioni di flusso di lavoro per codifica di video, compressione, anteprime e cosi via.
Ognuno di questi flussi di lavoro pud avere differenti flussi di controllo nonché chiamare differenti
metodi di attivita e non &€ necessario che lo starter di flusso di lavoro ne sia a conoscenza. Grazie
alle interfacce, risulta semplice anche testare i flussi di lavoro utilizzando implementazioni fittizie
che possono essere sostituite in seguito con codice funzionale.

Generazione di client di attivita e flusso di lavoro. AWS Flow Framework Elimina la necessita di
implementare i dettagli relativi alla gestione dell'esecuzione asincrona, all'invio di richieste HTTP,
allo smistamento dei dati e cosi via. In effetti, lo starter di flusso di lavoro esegue un'istanza di
flusso di lavoro chiamando un metodo sul client di flusso di lavoro e I'implementazione di flusso
di lavoro esegue le attivita chiamando metodi sul client di attivita. Il framework gestisce i dettagli
di queste interazioni in background.

Implementazione di applicazioni di flusso di lavoro Versione API 2021-04-28 63

AWS Flow Framework per Java Guida per gli sviluppatori

Se utilizzi Eclipse e hai configurato il tuo progetto, ad esempio, il processore di AWS Flow
Framework annotazioni utilizza le definizioni dell'interfaccia per generare automaticamente client
di flusso di lavoro e attivita che espongono lo stesso set di metodi dell'interfaccia corrispondente.
Configurazione di AWS Flow Framework per Java

4. Implementazione delle applicazioni host di attivita e flusso di lavoro. Le implementazioni
del flusso di lavoro e delle attivita devono essere incorporate in applicazioni host che
eseguono il polling di Amazon SWF per le attivita, gestiscono tutti i dati e utilizzano i metodi di
implementazione appropriati. AWS Flow Framework for Java include ActivityWorkerclassi che

semplificano WorkflowWorkere semplificano l'implementazione delle applicazioni host.

5. Metti alla prova il tuo flusso di lavoro. AWS Flow Framework per Java offre un' JUnit integrazione
che puoi utilizzare per testare i flussi di lavoro in linea e localmente.

6. Distribuzione dei lavoratori. Puoi distribuire i tuoi lavoratori in modo appropriato, ad esempio su
istanze EC2 Amazon o sui computer del tuo data center. Una volta implementate e avviate, i
lavoratori iniziano a interrogare Amazon SWF per le attivita e le gestiscono secondo necessita.

7. Awvio delle esecuzioni. Un'applicazione avvia un'istanza di flusso di lavoro utilizzando il client di
flusso di lavoro per chiamare il punto di ingresso del flusso di lavoro. Puoi anche avviare flussi
di lavoro utilizzando la console Amazon SWF. Indipendentemente da come avvii un'istanza di
flusso di lavoro, puoi utilizzare la console Amazon SWF per monitorare l'istanza del flusso di
lavoro in esecuzione ed esaminare la cronologia del flusso di lavoro per le istanze in esecuzione,
completate e non riuscite.

AWS SDK per Javalnclude un set AWS Flow Framework di esempi Java che puoi sfogliare ed
eseguire seguendo le istruzioni nel file readme.html nella directory principale. E inoltre disponibile

una serie di ricette, semplici applicazioni, che mostrano come gestire una serie di problemi di
programmazione specifici, disponibili su AWS Flow Framework Recipes.

Contratti di flusso di lavoro e attivita

Le interfacce Java sono utilizzate per dichiarare le firme dei flussi di lavoro e delle attivita.
L'interfaccia forma il contratto tra I'implementazione di flusso di lavoro (o attivita) e il client del
flusso di lavoro (o attivita). Ad esempio, un tipo di flusso di lavoro MyWorkflow € definito usando
un'interfaccia che & annotata con I'annotazione @Workflow:

@Workflow
@WorkflowRegistrationOptions(

Contratti di flusso di lavoro e attivita Versione AP| 2021-04-28 64

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/ActivityWorker.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/WorkflowWorker.html
https://aws.amazon.com/sdkforjava/
https://aws.amazon.com/code/2535278400103493

AWS Flow Framework per Java Guida per gli sviluppatori

defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)
public interface MyWorkflow

{
@Execute(version = "1.0")
void startMyWF(int a, String b);
@Signal
void signall(int a, int b, String c);
@GetState
MyWorkflowState getState();

}

Il contratto non dispone di impostazioni specifiche per I'implementazione. Questo utilizzo dei contratti
neutrali rispetto alle implementazioni permette ai client di essere dissociati dall'implementazione

e quindi offre la flessibilita per modificare i dettagli dell'implementazione senza spezzare il client.
Viceversa, potresti cambiare il client senza dover modificare il flusso di lavoro o l'attivita. Ad
esempio, il client pud essere modificato per chiamare un'attivita in modo asincrono utilizzando le
promesse (Promise<T>) senza richiedere una modifica all'implementazione di attivita. Allo stesso
modo, l'implementazione dell'attivita pud essere modificata in modo da essere completata in modo
asincrono, ad esempio da una persona che invia un'e-mail, senza richiedere la modifica dei client
dell'attivita.

Nell'esempio riportato sopra, I'interfaccia di flusso di lavoro MyWorkflow contiene un metodo,
startMyWF, per avviare una nuova esecuzione. Questo metodo € annotato con I'annotazione
@Execute e deve avere un tipo restituito void o Promise<>. In un'interfaccia di flusso di lavoro
data, puo al massimo essere annotato un metodo con questa annotazione. Questo metodo ¢ il punto
di ingresso della logica di flusso di lavoro e il framework chiama questo metodo per eseguire la logica
di flusso di lavoro quando viene ricevuto un task di decisione.

L'interfaccia di flusso di lavoro definisce inoltre i segnali che possono essere inviati al flusso di lavoro.
Il metodo di segnale viene invocato quando un segnale con un nome corrispondente viene ricevuto
dall'esecuzione del flusso di lavoro. Ad esempio, l'interfaccia MyWorkflow dichiara un metodo di
segnale signall, annotato con l'annotazione @Signal.

L'annotazione @Signal é richiesta sui metodi di segnale. Il tipo restituito del metodo di segnale deve
essere void. Un'interfaccia di flusso di lavoro potrebbe avere zero o piu metodi di segnali definiti
al proprio interno. Potresti dichiarare un'interfaccia di flusso di lavoro senza un metodo @Execute

Contratti di flusso di lavoro e attivita Versione AP| 2021-04-28 65

AWS Flow Framework per Java Guida per gli sviluppatori

e alcuni metodi @Signal per generare client che non possono avviare la propria esecuzione ma
inviare segnali per effettuare le esecuzioni.

Metodi annotati con le annotazioni @Execute e @5ignal possono avere numeri di parametri di
ogni tipo eccetto Promise<T> o le sue derivate. Questa funzionalita ti permette di passare input
fortemente tipizzati a un'esecuzione di flusso di lavoro dall'avvio e durante la sua esecuzione. Il tipo
restituito del metodo @Execute deve essere void o Promise<>.

Inoltre, puoi anche dichiarare un metodo nell'interfaccia di flusso di lavoro per segnalare I'ultimo
stato dell'esecuzione del flusso di lavoro, ad esempio il metodo getState nel precedente esempio.
Questo stato non ¢ l'intero stato di applicazione del flusso di lavoro. Lo scopo di questa funzionalita &
permetterti di archiviare fino a 32 KB di data per indicare I'ultimo stato dell'esecuzione. Ad esempio,
in un flusso di lavoro di elaborazione dell'ordine, potresti archiviare una stringa che indica che l'ordine
é stato ricevuto, elaborato o annullato. Questo metodo viene chiamato dal framework ogni volta che
un task di decisione viene completato per ottenere l'ultimo stato. Lo stato € memorizzato in Amazon
Simple Workflow Service (Amazon SWF) e puo essere recuperato utilizzando il client esterno
generato. Questo ti permette di verificare I'ultimo stato di esecuzione del flusso di lavoro. | metodi
annotati con @GetState non devono acquisire argomenti e non devono avere un tipo restituito
void. Da questo metodo puoi restituire qualunque tipo che si adatti alle tue esigenze. Nell'esempio
citato prima, un oggetto di MyWorkflowState (vedi definizione riportata sotto) viene restituito dal
metodo utilizzato per archiviare uno stato della stringa e una percentuale numerica completati. Il
metodo dovrebbe eseguire l'accesso di sola lettura dell'oggetto dell'implementazione del flusso di
lavoro e viene richiamato in modo sincronico, il che non permette I'utilizzo di operazioni asincrone
come i metodi di chiamata con @Asynchronous. Puo essere annotato al massimo un metodo in
un'interfaccia di flusso di lavoro con l'annotazione @GetState.

public class MyWorkflowState {
public String status;
public int percentComplete;

Analogamente, un set di iniziative viene definito usando un'interfaccia che € annotata con
I'annotazione @Activities. Ogni metodo nell'interfaccia corrisponde a un'attivita, ad esempio:

@Activities(version = "1.0")
@ActivityRegistrationOptions(
defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface MyActivities {

Contratti di flusso di lavoro e attivita Versione AP| 2021-04-28 66

AWS Flow Framework per Java Guida per gli sviluppatori

// Overrides values from annotation found on the interface

@ActivityRegistrationOptions(description = "This is a sample activity",
defaultTaskScheduleToStartTimeoutSeconds = 100,
defaultTaskStartToCloseTimeoutSeconds = 60)

int activityl();

void activity2(int a);

L'interfaccia ti permette di raggruppare un set di iniziative relazionate. Puoi definire qualunque
numero di attivita all'interno dell'interfaccia delle attivita e puoi definire il numero di interfacce delle
attivita che desideri. Analogamente ai metodi @Execute e @Signal, i metodi di attivita possono
acquisire qualunque numero di argomenti di qualunque tipo tranne Promise<T> o le sue derivate. Il
tipo restituito di un'attivita non deve essere Promise<T> o le sue derivate.

Registrazione dei tipi di flusso di lavoro e di attivita

Amazon SWEF richiede la registrazione dei tipi di attivita e flussi di lavoro prima di poterli utilizzare.

Il framework registra automaticamente i flussi di lavoro e le attivita nelle implementazioni che
aggiungi al lavoratore. |l framework cerca i tipi che implementano flussi di lavoro e attivita e li
registra con Amazon SWF. Per impostazione predefinita, il framework utilizza le definizioni di
interfaccia per dedurre le opzioni di registrazione per i tipi di flusso di lavoro e attivita. Tutte le
interfacce di flusso di lavoro devono avere I'annotazione @WorkflowRegistrationOptions o
@SkipRegistration. Il lavoratore di flusso di lavoro registra tutti i tipi di flusso di lavoro con cui

& configurato che hanno I'annotazione @WorkflowRegistrationOptions. Inoltre, ogni metodo
di attivita deve avere I'annotazione @ActivityRegistrationOptions o @SkipRegistration
oppure una di queste annotazioni deve essere presente nell'interfaccia @Activities. Il lavoratore
di attivita registra tutti i tipi di attivita con cui & configurato e a cui si applica un‘annotazione
@ActivityRegistrationOptions. La registrazione & eseguita automaticamente all'avvio di uno
dei lavoratori. | tipi di flusso di lavoro e attivita che hanno I'annotazione @SkipRegistration non
sono registrati. Le annotazioni @ActivityRegistrationOptions e @SkipRegistration hanno
la semantica di override e la piu specifica viene applicata a un tipo di attivita.

Tieni presente che Amazon SWF non consente di registrare nuovamente o modificare il tipo una volta
registrato. |l framework tentera di registrare tutti i tipi, ma se il tipo € gia registrato, la registrazione
non verra ripetuta e non verra segnalato alcun errore.

Registrazione dei tipi di flusso di lavoro e di attivita Versione API 2021-04-28 67

AWS Flow Framework per Java Guida per gli sviluppatori

Se hai la necessita di modificare le impostazioni registrate, devi registrate una nuova versione del
tipo. Puoi anche eseguire l'override delle impostazioni registrate all'avvio di una nuova esecuzione o
quando chiami un'attivita che utilizza i client generati.

La registrazione richiede un nome di tipo e altre opzioni di registrazione. L'implementazione di default
le determina come descritto di seguito.

Nome e versione del tipo di flusso di lavoro

Il framework determina il nome del tipo di flusso di lavoro a partire dall'interfaccia di flusso di

lavoro. La forma del nome del tipo di flusso di lavoro predefinito € {prefix} {name}. ll {prefix}é
impostato sul nome dell'@Workflowinterfaccia seguito da un'." e il {name} € impostato sul nome

del @Execute metodo. Il nome di default del tipo di flusso di lavoro nell'esempio precedente &
MyWorkflow.startMyWF. Puoi eseguire I'override del nome di default utilizzando il parametro
name del metodo @Execute. Il nome di default del tipo di flusso di lavoro nell'esempio &
startMyWF. Il nome non deve essere una stringa vuota. Nota che quando esegui l'override del nome
utilizzando @Execute, il framework non aggiunge automaticamente un prefisso davanti al nome. Sei
libero di usare il tuo schema di denominazione.

La versione del flusso di lavoro viene specificata utilizzando il parametro version dell'annotazione
@Execute. Non esiste un valore di default per version e quindi deve essere specificato in modo
esplicito; version € una stringa in formato libero e sei libero di utilizzare uno schema di controllo
delle versioni personalizzato.

Nome del segnale

Il nome del segnale pud essere specificato utilizzando il parametro name dell'annotazione @Signal.
Se non € specificato, per impostazione predefinita viene utilizzato il nome del metodo del segnale.

Nome e versione del tipo di attivita

Il framework determina il nome del tipo di attivita a partire dall'interfaccia di attivita. La forma

del nome del tipo di attivita predefinito &€ {prefix}{name}. Il {prefix} & impostato sul nome
delleActivitiesinterfaccia seguito da un'.' e il {name} & impostato sul nome del metodo. Il valore
predefinito {prefix} pud essere sovrascritto nell@Activitiesannotazione sull'interfaccia delle
attivita. Puoi anche specificare il nome del tipo di attivita utilizzando I'annotazione @Activity nel
metodo di attivita. Nota che quando esegui I'ovveride del nome utilizzando @Activity, il framework
non aggiungera automaticamente un prefisso davanti al nome. Sei libero di utilizzare il tuo schema di
denominazione.

Nome e versione del tipo di flusso di lavoro Versione API 2021-04-28 68

AWS Flow Framework per Java Guida per gli sviluppatori

La versione dell'attivita viene specificata utilizzando il parametro version dell'annotazione
@Activities. Questa versione € utilizzata come valore di default per tutte le attivita definite
nell'interfaccia ed €& possibile eseguire I'override per una singola attivita utilizzando I'annotazione
@Activity.

Elenco di task predefinito

L'elenco di task di default pud essere configurato utilizzando le annotazioni
@WorkflowRegistrationOptions e @ActivityRegistrationOptionse

impostando il parametro defaultTaskList. Per impostazione predefinita, & impostato su
USE_WORKER_TASK_LIST. Questo € un valore speciale che indica al framework di utilizzare
I'elenco di task configurato sull'oggetto lavoratore utilizzato per registrare il tipo di attivita o di
flusso di lavoro. Puoi anche scegliere di non registrare un elenco di task di default impostando
NO_DEFAULT_TASK_LIST, nel caso tu voglia che l'elenco di task sia specificato al runtime.

Se non € stato registrato alcun elenco di task di default, devi specificarlo all'avvio del flusso di
lavoro o quando chiami il metodo di attivita utilizzando i parametri StartWorkflowOptions e
ActivitySchedulingOptions sull'overload del client generato per i rispettivi metodi.

Altre opzioni di registrazione

Tutte le opzioni di registrazione del flusso di lavoro e del tipo di attivita consentite dall'’API Amazon
SWF possono essere specificate tramite il framework.

Per un elenco completo delle opzioni di registrazione di flusso di lavoro, consulta quanto segue:

* @PFlusso di lavoro

+ @Execute
* @WorkflowRegistrationOptions

« @Signal

Per un elenco completo delle opzioni di registrazione di attivita, consulta quanto segue:

* @Activity
* @Activities
* @ActivityRegistrationOptions

Elenco di task predefinito Versione API 2021-04-28 69

AWS Flow Framework per Java Guida per gli sviluppatori

Se desideri avere un controllo completo sulla registrazione dei tipi, consulta Estensibilita dei
lavoratori.

Client di attivita e flusso di lavoro

Client di flusso di lavoro e attivita generati dal framework in base alle interfacce @Workflow

e @Activities. Vengono generate interfacce del client separate che contengono metodi e
impostazioni che si riferiscono solo al client. Se stai sviluppando utilizzando Eclipse, questa
operazione viene eseguita dal plug-in Amazon SWF Eclipse ogni volta che salvi il file contenente
l'interfaccia appropriata. |l codice generato viene posizionato nella directory di origine generata nel
progetto all'interno dello stesso pacchetto dell'interfaccia.

(@ Note

Il nome predefinito della directory utilizzato da Eclipse € .apt_generated. Eclipse non mostra
le directory nome che inizia con un '." in Package Explorer. Utilizza un nome diverso della
directory se desideri visualizzare i file generati all'interno di Project Explorer. In Eclipse, fai
clic sul tasto destro su Package Explorer e poi scegli Properties (Proprieta), Java Compiler
(Compilatore Java), Annotation processing (Elaborazione delle annotazioni) e modifica le
impostazioni Generate source directory (Genera directory di origine).

Client di flusso di lavoro

Gli artefatti generati per il flusso di lavoro contengono tre interfacce lato client e le classi che le
implementano. | client generati includono:

» Un client asincrono che deve essere utilizzato dall'interno dell'implementazione del flusso di lavoro
che offre metodi asincroni per avviare le esecuzioni del flusso di lavoro e inviare segnali

* Un client esterno che pu0 essere utilizzato per avviare le esecuzioni, inviare segnali e recuperare lo
stato del flusso di lavoro dall'esterno dell'ambito dell'implementazione del flusso di lavoro

* Un client autogenerato che puo essere utilizzato per creare flussi di lavoro continui

Ad esempio, le interfacce del client generato per l'interfaccia di esempio MyWorkflow sono:

//Client for use from within a workflow
public interface MyWorkflowClient extends WorkflowClient

{

Client di attivita e flusso di lavoro Versione AP| 2021-04-28 70

AWS Flow Framework per Java Guida per gli sviluppatori

Promise<Void> startMyWF(
int a, String b);

Promise<Void> startMyWF(
int a, String b,
Promise<?>... waitFor);

Promise<Void> startMyWF(
int a, String b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b);

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
Promise<?>... waitFor);

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

void signall(
int a, int b, String c);

//External client for use outside workflows
public interface MyWorkflowClientExternal extends WorkflowClientExternal
{
void startMyWF(
int a, String b);

void startMyWF(
int a, String b,
StartWorkflowOptions optionsOverride);

void signall(
int a, int b, String c);

Client di flusso di lavoro Versione AP| 2021-04-28 71

AWS Flow Framework per Java

Guida per gli sviluppatori

//self client for creating continuous workflows
public interface MyWorkflowSelfClient extends WorkflowSelfClient

{

MyWorkflowState getState();

void startMyWF(
int a, String b);

void startMyWF(
int a, String b,
Promise<?>... waitFor);

void startMyWF(
int a, String b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

void startMyWF(
Promise<Integer> a,
Promise<String> b);

void startMyWF(
Promise<Integer> a,
Promise<String> b,
Promise<?>... waitFor);

void startMyWF(
Promise<Integer> a,
Promise<String> b,
StartWorkflowOptions optionsOverride,
Promise<?>... waitFor);

Le interfacce hanno effettuato I'overloading dei metodi che corrispondono a ciascun metodo
nell'interfaccia @Workflow che hai dichiarato.

Il client esterno riflette i metodi sull'interfaccia @Workflow con un overload aggiuntivo del metodo
@Execute che accetta StartWorkflowOptions. Puoi usare l'overload per passare opzioni
aggiuntive quando avvii una nuova esecuzione del flusso di lavoro. Queste opzioni ti permettono di
sovrascrivere I'elenco di task predefinito, le impostazioni di timeout e i tag associati all'esecuzione del

flusso di lavoro.

Client di flusso di lavoro

Versione APl 2021-04-28 72

AWS Flow Framework per Java Guida per gli sviluppatori

Invece, il client asincrono dispone di metodi che ti consentono l'invocazione asincrona del metodo
@Execute. | seguenti overload del metodo vengono generati nell'interfaccia del client per il metodo
@Execute nell'interfaccia del flusso di lavoro:

1. Un overload che accetta gli argomenti originali "cosi come sono". |l tipo restituito dell'overload
sara Promise<Void> se il metodo originale ha restituito void; altrimenti sara Promise<> come
dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMywWF(int a, String b);

Metodo generato:

Promise<Void> startMyWF(int a, String b);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili e
non devono essere attesi.

2. Un overload che accetta gli argomenti originali "cosi come sono" e argomenti variabili aggiuntivi
del tipo Promise<?>. Il tipo restituito dell'overload sara Promise<Void> se il metodo originale ha
restituito void; altrimenti sara Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMywWF(int a, String b);

Metodo generato:

Promise<void> startMyWF(int a, String b, Promise<?>...waitFor);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili
e non devono essere attesi, ma desideri attendere che altre promesse siano pronte. L'argomento
variabile puo essere usato per passare gli oggetti Promise<?> che non sono stati dichiarati come
argomenti, ma desideri attendere prima di eseguire la chiamata.

3. Un overload che accetta gli argomenti originali "cosi come sono", un argomento aggiuntivo del tipo
StartWorkflowOptions e argomenti variabili aggiuntivi del tipo Promise<?>. |l tipo restituito

Client di flusso di lavoro Versione AP| 2021-04-28 73

AWS Flow Framework per Java Guida per gli sviluppatori

dell'overload sara Promise<Void> se il metodo originale ha restituito void; altrimenti sara
Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMyWF(int a, String b);

Metodo generato:

Promise<void> startMyWF(
int a,
String b,
StartWorkflowOptions optionOverrides,
Promise<?>...waitFor);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili
e non devono essere attesi, quando desideri sovrascrivere le impostazioni predefinite usate per
avviare l'esecuzione del flusso di lavoro o quando desideri attendere che altre promesse siano
pronte. L'argomento variabile pud essere usato per passare gli oggetti Promise<?> che non sono
stati dichiarati come argomenti, ma desideri attendere prima di eseguire la chiamata.

4. Un overload in cui ogni argomento nel metodo originale viene sostituito con un wrapper
Promise<>. |l tipo restituito dell'overload sara Promise<Void> se il metodo originale ha restituito
void; altrimenti sara Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMywWF(int a, String b);

Metodo generato:

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b);

Questo overload deve essere usato quando gli argomenti da passare all'esecuzione del flusso di
lavoro devono essere valutati in modo asincrono. Non verra eseguita una chiamata all'overload del
metodo fino a quando tutti gli argomenti passati non diventano pronti.

Client di flusso di lavoro Versione AP| 2021-04-28 74

AWS Flow Framework per Java Guida per gli sviluppatori

Se alcuni degli argomenti sono gia pronti, allora puoi convertirli in un oggetto Promise che € gia
pronto attraverso il metodo Promise.asPromise(value). Per esempio:

Promise<Integer> a = getA();
String b = getB();
startMyWF(a, Promise.asPromise(b));

5. Un overload in cui ogni argomento nel metodo originale viene sostituito con un wrapper
Promise<>. L'overload dispone anche di argomenti variabili aggiuntivi del tipo Promise<?>.
Il tipo restituito dell'overload sara Promise<Void> se il metodo originale ha restituito void;
altrimenti sara Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMyWF(int a, String b);

Metodo generato:

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
Promise<?>...waitFor);

Questo overload deve essere usato quando gli argomenti da passare all'esecuzione del flusso di
lavoro devono essere valutati in modo asincrono e desideri attendere che altre promesse siano
pronte. Non verra eseguita una chiamata all'overload del metodo fino a quando tutti gli argomenti
passati non diventano pronti.

6. Un overload in cui ogni argomento nel metodo originale viene sostituito con un
wrapper Promise<?>. L'overload dispone anche di un argomento aggiuntivo del tipo
StartWorkflowOptions e di argomenti variabili del tipo Promise<?>. Il tipo restituito
dell'overload sara Promise<Void> se il metodo originale ha restituito void; altrimenti sara
Promise<> come dichiarato nel metodo originale. Per esempio:

Metodo originale:

void startMyWF(int a, String b);

Metodo generato:

Client di flusso di lavoro Versione AP| 2021-04-28 75

AWS Flow Framework per Java Guida per gli sviluppatori

Promise<Void> startMyWF(
Promise<Integer> a,
Promise<String> b,
StartWorkflowOptions optionOverrides,
Promise<?>...waitFor);

Utilizza questo overload quando gli argomenti da passare all'esecuzione del flusso di lavoro
verranno valutati in modo asincrono e desideri sovrascrivere le impostazioni predefinite utilizzate
per avviare lI'esecuzione del flusso di lavoro. Non verra eseguita una chiamata all'overload del
metodo fino a quando tutti gli argomenti passati non diventano pronti.

Viene inoltre generato un metodo corrispondente a ciascun segnale nell'interfaccia del flusso di
lavoro, ad esempio:

Metodo originale:

void signall(int a, int b, String c);

Metodo generato:

void signall(int a, int b, String c);

Il client asincrono non contiene un metodo che corrisponde al metodo annotato con @GetState
nell'interfaccia originale. Poiché il recupero dello stato richiede una chiamata al servizio Web, non &
adatto all'uso all'interno di un flusso di lavoro. Quindi, viene fornito soltanto attraverso il client esterno.

Il client autogenerato deve essere utilizzato dall'interno di un flusso di lavoro per avviare una nuova
esecuzione dopo il completamento di quella attuale. | metodi su questo client sono simili a quelli sul
client asincrono, ma restituiscono void. Questo client non dispone di metodi che corrispondono ai

metodi annotati con @Signal e @GetState. Per ulteriori dettagli, consulta Flussi di lavoro continui.

| client generati derivano da interfacce di base: WorkflowClient e WorkflowClientExternal,
rispettivamente, che forniscono metodi che puoi utilizzare per annullare o terminare I'esecuzione del
flusso di lavoro. Per ulteriori dettagli su queste interfacce, consulta la documentazione AWS SDK per
Java .

Client di flusso di lavoro Versione AP| 2021-04-28 76

AWS Flow Framework per Java Guida per gli sviluppatori

| client generati ti permettono di interagire con le esecuzioni del flusso di lavoro in modo fortemente
tipizzato. Una volta creata, un'istanza di un client generato € legata a un'esecuzione del flusso di
lavoro specifica e pud essere utilizzata soltanto per quell'esecuzione. Inoltre, il framework fornisce
client dinamici che non sono specifici per un tipo o un'esecuzione del flusso di lavoro. | client generati
si basano su questo client. Puoi anche usare direttamente questi client. Consulta la sezione su Client
dinamici.

Il framework genera inoltre factory per creare client fortemente tipizzati. Le factoy del client generato
per l'interfaccia di esempio MyWorkflow sono:

//Factory for clients to be used from within a workflow
public interface MyWorkflowClientFactory
extends WorkflowClientFactory<MyWorkflowClient>

//Factory for clients to be used outside the scope of a workflow
public interface MyWorkflowClientExternalFactory
{
GenericWorkflowClientExternal getGenericClient();
void setGenericClient(GenericWorkflowClientExternal genericClient);
DataConverter getDataConverter();
void setDataConverter(DataConverter dataConverter);
StartWorkflowOptions getStartWorkflowOptions();
void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
MyWorkflowClientExternal getClient();
MyWorkflowClientExternal getClient(String workflowId);
MyWorkflowClientExternal getClient(WorkflowExecution workflowExecution);
MyWorkflowClientExternal getClient(
WorkflowExecution workflowExecution,
GenericWorkflowClientExternal genericClient,
DataConverter dataConverter,
StartWorkflowOptions options);

L'interfaccia di base WorkflowClientFactory é:

public interface WorkflowClientFactory<T> {
GenericWorkflowClient getGenericClient();
void setGenericClient(GenericWorkflowClient genericClient);
DataConverter getDataConverter();
void setDataConverter(DataConverter dataConverter);

Client di flusso di lavoro Versione AP| 2021-04-28 77

AWS Flow Framework per Java Guida per gli sviluppatori

StartWorkflowOptions getStartWorkflowOptions();
void setStartWorkflowOptions(StartWorkflowOptions startWorkflowOptions);
T getClient();
T getClient(String workflowId);
T getClient(WorkflowExecution execution);
T getClient(WorkflowExecution execution,
StartWorkflowOptions options);
T getClient(WorkflowExecution execution,
StartWorkflowOptions options,
DataConverter dataConverter);

Devi utilizzare queste factory per creare istanze del client. La factory ti permette di configurare il client
generico (il client generico deve essere utilizzato per eseguire l'implementazione personalizzata

del client) e il DataConverter utilizzato dal client per effettuare il marshalling dei dati, oltre alle
opzioni utilizzate per avviare I'esecuzione del flusso di lavoro. Per ulteriori dettagli, consulta le

sezioni DataConverters e Esecuzioni del flusso di lavoro figlio. StartWorkflowOptionsContiene

impostazioni che & possibile utilizzare per ignorare le impostazioni predefinite, ad esempio i
timeout, specificate al momento della registrazione. Per maggiori dettagli sulla classe, consultate la
documentazione. StartWorkflowOptions AWS SDK per Java

Il client esterno pud essere utilizzato per avviare le esecuzioni del flusso di lavoro dall'esterno
dell'ambito di un flusso di lavoro mentre il client asincrono pud essere utilizzato per avviare
un'esecuzione del flusso di lavoro dal codice all'interno di un flusso di lavoro. Per avviare
un'esecuzione, devi semplicemente usare il client generato per chiamare il metodo che corrisponde al
metodo annotato con @Execute nell'interfaccia del flusso di lavoro.

Il framework genera inoltre classi di implementazioni per le interfacce del client. Questi client creano e
inviano richieste ad Amazon SWF per eseguire I'azione appropriata. La versione client del @Execute
metodo avvia un'esecuzione di un nuovo flusso di lavoro o crea un'esecuzione del flusso di lavoro
secondario utilizzando Amazon SWF APls. Analogamente, la versione client del @Signal metodo
utilizza Amazon SWF APIs per inviare un segnale.

(® Note

Il client di workflow esterno deve essere configurato con il client e il dominio Amazon
SWEF. Puoi utilizzare il costruttore client factory che li accetta come parametri o passare
un'implementazione client generica gia configurata con il client e il dominio Amazon SWF.

Client di flusso di lavoro Versione AP| 2021-04-28 78

AWS Flow Framework per Java

Guida per gli sviluppatori

Il framework percorre la gerarchia del tipo dell'interfaccia del flusso di lavoro e inoltre genera

interfacce del client per le interfacce del flusso di lavoro padre e deriva da esse.

Client di attivita

Analogamente al client del flusso di lavoro, viene generato un client per ogni interfaccia annotata
con @Activities. Gli artefatti generati includono un'interfaccia lato client e una classe client.
L'interfaccia generata per l'interfaccia di esempio @Activities sopraindicata (MyActivities) e

la seguente:

public interface MyActivitiesClient extends ActivitiesClient

{

Promise<Integer> activityl();
Promise<Integer> activityl(Promise<?>... waitFor);
Promise<Integer> activityl(ActivitySchedulingOptions optionsOverride,

Promise<Void>
Promise<Void>

Promise<Void>

Promise<Void>

Promise<Void>

Promise<Void>

Promise<?>... waitFor);
activity2(int a);
activity2(int a,
Promise<?>... waitFor);
activity2(int a,
ActivitySchedulingOptions optionsOverride,
Promise<?>... waitFor);
activity2(Promise<Integer> a);
activity2(Promise<Integer> a,
Promise<?>... waitFor);
activity2(Promise<Integer> a,
ActivitySchedulingOptions optionsOverride,
Promise<?>... waitFor);

L'interfaccia contiene un set di metodi su cui e stato effettuato I'overloading che corrispondono a
ciascun metodo di attivita nell'interfaccia @Activities. Tali overload sono forniti per comodita
e permettono di chiamare le attivita in modo asincrono. | seguenti overload del metodo vengono
generati nell'interfaccia del client per ogni metodo di attivita nell'interfaccia @Activities:

1. Un overload che accetta gli argomenti originali "cosi come sono". Il tipo restituito per questo
overload &€ Promise<T>, dove T ¢ il tipo restituito del metodo originale. Per esempio:

Metodo originale:

Client di attivita

Versione APl 2021-04-28 79

AWS Flow Framework per Java Guida per gli sviluppatori

void activity2(int foo);

Metodo generato:

Promise<Void> activity2(int foo);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili e
non devono essere attesi.

2. Un overload che accetta gli argomenti originali "cosi come sono", un argomento del tipo
ActivitySchedulingOptions e argomenti variabili aggiuntivi del tipo Promise<?>. Il tipo
restituito per questo overload € Promise<T>, dove T ¢ il tipo restituito del metodo originale. Per
esempio:

Metodo originale:

void activity2(int foo);

Metodo generato:

Promise<Void> activity2(

int foo,
ActivitySchedulingOptions optionsOverride,
Promise<?>... waitFor);

Questo overload deve essere usato quando tutti gli argomenti del flusso di lavoro sono disponibili
e non devono essere attesi, quando desideri sovrascrivere le impostazioni predefinite o0 quando
desideri attendere che un'altra Promise sia pronta. Gli argomenti variabili possono essere usati
per passare gli oggetti Promise<?> aggiuntivi che non sono stati dichiarati come argomenti, ma
desideri attendere prima di eseguire la chiamata.

3. Un overload in cui ogni argomento nel metodo originale viene sostituito con un wrapper
Promise<>. |l tipo restituito per questo overload € Promise<T>, dove T € il tipo restituito del
metodo originale. Per esempio:

Metodo originale:

void activity2(int foo);

Client di attivita Versione API 2021-04-28 80

AWS Flow Framework per Java Guida per gli sviluppatori

Metodo generato:

Promise<Void> activity2(Promise<Integer> foo0);

Questo overload deve essere usato quando gli argomenti da passare all'attivita verranno valutati
in modo asincrono. Non verra eseguita una chiamata all'overload del metodo fino a quando tutti gl
argomenti passati non diventano pronti.

4. Un overload in cui ogni argomento nel metodo originale viene sostituito con un
wrapper Promise<>. L'overload dispone anche di un argomento aggiuntivo del tipo
ActivitySchedulingOptions e di argomenti variabili del tipo Promise<?>. Il tipo restituito per
questo overload € Promise<T>, dove T € il tipo restituito del metodo originale. Per esempio:

Metodo originale:

void activity2(int foo);

Metodo generato:

Promise<Void> activity2(
Promise<Integer> foo,
ActivitySchedulingOptions optionsOverride,
Promise<?>...waitFor);

Questo overload deve essere usato quando tutti gli argomenti da passare all'attivita verranno
valutati in modo asincrono, quando desideri sovrascrivere le impostazioni predefinite registrate con
il tipo 0 quando desideri attendere che un altro oggetto Promise sia pronto. Non verra eseguita
una chiamata all'overload del metodo fino a quando tutti gli argomenti passati non diventano pronti.
La classe del client generata implementa questa interfaccia. L'implementazione di ogni metodo di
interfaccia crea e invia una richiesta ad Amazon SWF per pianificare un'attivita del tipo appropriato
utilizzando Amazon SWF. APls

5. Un overload che accetta gli argomenti originali "cosi come sono" e argomenti variabili aggiuntivi
del tipo Promise<?>. Il tipo restituito per questo overload € Promise<T>, dove T ¢ il tipo
restituito del metodo originale. Per esempio:

Metodo originale:

Client di attivita Versione AP| 2021-04-28 81

AWS Flow Framework per Java Guida per gli sviluppatori

void activity2(int foo);

Metodo generato:

Promise< Void > activity2(int foo,
Promise<?>...waitFor);

Questo overload deve essere usato quando tutti gli argomenti dell'attivita sono disponibili € non
devono essere attesi, ma desideri attendere che altri oggetti Promise siano pronti.

6. Un overload in cui ogni argomento del metodo originale viene sostituito con un wrapper Promise
e argomenti variabili aggiuntivi del tipo Promise<?>. |l tipo restituito per questo overload &
Promise<T>, dove T ¢ il tipo restituito del metodo originale. Per esempio:

Metodo originale:

void activity2(int foo);

Metodo generato:

Promise<Void> activity2(
Promise<Integer> foo,
Promise<?>... waitFor);

Questo overload deve essere usato quando tutti gli argomenti dell'attivita verranno attesi in modo
asincrono e desideri attendere che altre Promise siano pronte. Verra eseguita una chiamata
asincrona all'overload del metodo fino a quando tutti gli oggetti Promise passati non diventano
pronti.

Il client di attivita generato dispone inoltre di un metodo protetto che corrisponde a ogni metodo di
attivita, nominato {activity method name}Impl(), a cui tutti gli overload dell'attivita eseguono
una chiamata. Puoi sovrascrivere questo metodo per creare implementazioni del client fittizie. Questo
metodo accetta come argomenti tutti gli argomenti per il metodo originale nei wrapper Promise<>,
ActivitySchedulingOptions e argomenti variabili del tipo Promise<?>. Per esempio:

Metodo originale:

Client di attivita Versione API 2021-04-28 82

AWS Flow Framework per Java Guida per gli sviluppatori

void activity2(int foo);

Metodo generato:

Promise<Void> activity2Impl(
Promise<Integer> foo,
ActivitySchedulingOptions optionsOverride,
Promise<?>...waitFor);

Opzioni di programmazione

Il client di attivita generato ti permette di passare in ActivitySchedulingOptions come
argomento. La ActivitySchedulingOptions struttura contiene impostazioni che determinano

la configurazione dell'attivita che il framework pianifica in Amazon SWF. Queste impostazioni
sovrascrivono quelle predefinite specificate come opzioni di registrazione. Per specificare le opzioni
di pianificazione in modo dinamico, crea un oggetto ActivitySchedulingOptions, configuralo
come preferisci e passalo al metodo di attivita. Nell'esempio seguente abbiamo specificato I'elenco
di task che deve essere utilizzato per il task di attivita. Questa operazione sovrascrive l'elenco di task
registrato predefinito per l'invocazione dell'attivita.

public class OrderProcessingWorkflowImpl implements OrderProcessingWorkflow {

OrderProcessingActivitiesClient activitiesClient
= new OrderProcessingActivitiesClientImpl();

// Workflow entry point
@Override
public void processOrder(Order order) {
Promise<Void> paymentProcessed = activitiesClient.processPayment(order);
ActivitySchedulingOptions schedulingOptions
= new ActivitySchedulingOptions();

if (order.getlLocation() == "Japan") {
schedulingOptions.setTaskList("TasklistAsia");
} else {

schedulingOptions.setTaskList("TasklistNorthAmerica");

activitiesClient.shipOrder(order,
schedulingOptions,
paymentProcessed);

Opzioni di programmazione Versione API 2021-04-28 83

AWS Flow Framework per Java Guida per gli sviluppatori

}

Client dinamici

Oltre ai client generati, il framework fornisce anche client generici DynamicActivityClient che
puoi utilizzare per avviare dinamicamente esecuzioni di flussi di lavoro, inviare segnali, pianificare
attivita, ecc. DynamicWorkflowClient Ad esempio, potresti voler pianificare un'attivita il cui tipo
non € noto in fase di progettazione. Puoi utilizzare DynamicActivityClient per pianificare questo
tipo di task di attivita. Analogamente, puoi pianificare in modo dinamico un'esecuzione del flusso di
lavoro figlio utilizzando DynamicWorkflowClient. Nel seguente esempio, il flusso di lavoro cerca
I'attivita da un database e utilizza il client dell'attivita dinamico per pianificarla:

//Workflow entrypoint
@Override
public void start() {
MyActivitiesClient client = new MyActivitiesClientImpl();
Promise<ActivityType> activityType
= client.lookUpActivityFromDB();
Promise<String> input = client.getInput(activityType);
scheduleDynamicActivity(activityType,
input);
}
@Asynchronous
void scheduleDynamicActivity(Promise<ActivityType> type,
Promise<String> input){
Promise<?>[] args = new Promise<?>[1];
args[@] = input;
DynamicActivitiesClient activityClient
= new DynamicActivitiesClientImpl();
activityClient.scheduleActivity(type.get(),
args,
null,
Void.class);

Per ulteriori dettagli, consulta la documentazione. AWS SDK per Java
Segnalare e annullare le esecuzioni del flusso di lavoro

Il client del flusso di lavoro generato dispone di metodi corrispondenti a ogni segnale che possono
essere inviati al flusso di lavoro. Puoi usarli dall'interno di un flusso di lavoro per inviare segnali ad

Client dinamici Versione APl 2021-04-28 84

AWS Flow Framework per Java

Guida per gli sviluppatori

altre esecuzioni del flusso di lavoro. Questa operazione fornisce un meccanismo tipizzato per l'invio
dei segnali. Tuttavia, a volte pud essere necessario determinare dinamicamente il nome del segnale,
ad esempio quando il nome del segnale viene ricevuto in un messaggio. Puoi usare il client del flusso
di lavoro dinamico per inviare segnali in modo dinamico a qualunque esecuzione del flusso di lavoro.
Analogamente, puoi usare il client per richiedere I'annullamento di un'altra esecuzione del flusso di
lavoro.

Nel seguente esempio, il flusso di lavoro cerca I'esecuzione per inviare un segnale da un database e
invia il segnale in modo dinamico tramite il client del flusso di lavoro dinamico.

//Workflow entrypoint
public void start()

{

MyActivitiesClient client = new MyActivitiesClientImpl();
Promise<WorkflowExecution> execution = client.lookUpExecutionInDB();
Promise<String> signalName = client.getSignalToSend();
Promise<String> input = client.getInput(signalName);
sendDynamicSignal(execution, signalName, input);

@Asynchronous

void sendDynamicSignal(

Promise<WorkflowExecution> execution,
Promise<String> signalName,
Promise<String> input)

DynamicWorkflowClient workflowClient
= new DynamicWorkflowClientImpl(execution.get());
Object[] args = new Promise<?>[1];
args[@] = input.get();
workflowClient.signalWorkflowExecution(signalName.get(), args);

Implementazione del flusso di lavoro

Per implementare un flusso di lavoro, scrivi una classe che implementa l'interfaccia @Workflow
desiderata. Ad esempio, l'interfaccia del flusso di lavoro di esempio (MyWorkflow) puod essere
implementata come segue:

public class MyWFImpl implements MyWorkflow

{

Implementazione del flusso di lavoro

Versione APl 2021-04-28 85

AWS Flow Framework per Java Guida per gli sviluppatori

MyActivitiesClient client = new MyActivitiesClientImpl();
@Override
public void startMyWF(int a, String b){
Promise<Integer> result client.activityl();
client.activity2(result);
}
@Override
public void signall(int a, int b, String c){
//Process signal
client.activity2(a + b);

I metodo @Execute in questa classe ¢ il punto di ingresso della logica del flusso di lavoro. Poiché
il framework utilizza il replay per ricostruire lo stato dell'oggetto quando deve essere elaborata
un'attivita decisionale, viene creato un nuovo oggetto per ogni attivita decisionale.

L'utilizzo di Promise<T> come parametro non & consentito nel metodo @Execute in un'interfaccia
@Workflow. Questo perché una chiamata asincrona € una decisione esclusiva dell'intermediario.
L'implementazione del flusso di lavoro in sé non dipende dalla modalita di invocazione (sincrona

o asincrona). Di conseguenza, l'interfaccia client generata ha overload che accettano i parametri
Promise<T> in modo che questi metodi possano essere chiamati in modo asincrono.

Il tipo di restituzione di un metodo @Execute pud essere solo void o Promise<T>. Ricorda

che un tipo di restituzione del client esterno corrispondente € void e non Promise<>. Poiché

il client esterno non € progettato per essere utilizzato dal codice asincrono, il client esterno non
restituisce oggetti. Promise Per ottenere i risultati delle esecuzioni dei flussi di lavoro dichiarati
esternamente, € possibile progettare il flusso di lavoro in modo che aggiorni lo stato in un archivio
dati esterno tramite un'attivita. La visibilita di Amazon SWF APIs puo essere utilizzata anche

per recuperare il risultato di un flusso di lavoro a fini diagnostici. Non & consigliabile utilizzare la
visibilita APIs per recuperare i risultati delle esecuzioni dei flussi di lavoro come pratica generale,
poiché queste chiamate API potrebbero essere limitate da Amazon SWF. La visibilita APIs richiede
I'identificazione dell'esecuzione del flusso di lavoro utilizzando una struttura. WorkflowExecution
Puoi ottenere questa struttura dal client di flusso di lavoro generato chiamando il metodo
getWorkflowExecution. Questo metodo restituisce la struttura WorkflowExecution
corrispondente all'esecuzione del flusso di lavoro a cui il client € legato. Consulta il riferimento all'API

di Amazon Simple Workflow Service per maggiori dettagli sulla visibilita APls.

Quando chiami le attivita dall'implementazione del flusso di lavoro, devi utilizzare il client di attivita
generato. Analogamente, per inviare segnali, devi utilizzare i client di flusso di lavoro generati.

Implementazione del flusso di lavoro Versione API 2021-04-28 86

https://docs.aws.amazon.com/amazonswf/latest/apireference/
https://docs.aws.amazon.com/amazonswf/latest/apireference/

AWS Flow Framework per Java Guida per gli sviluppatori

Contesto di decisione

Il framework fornisce un contesto di ambiente ogni volta che il codice del flusso di lavoro viene
eseguito dal framework. Questo contesto offre funzionalita specifiche a cui puoi accedere
nell'implementazione del flusso di lavoro, ad esempio la creazione di un timer. Consulta la sezione
relativa a Contesto di esecuzione per ulteriori informazioni.

Esposizione dello stato dell'esecuzione

Amazon SWF ti consente di aggiungere uno stato personalizzato nella cronologia del flusso di
lavoro. L'ultimo stato riportato dall'esecuzione del flusso di lavoro ti viene restituito tramite chiamate
di visibilita al servizio Amazon SWF e nella console Amazon SWF. Ad esempio, in un flusso di
lavoro di elaborazione dell'ordine, puoi segnalare lo stato dell'ordine in fasi diverse come "ordine
ricevuto", ordine spedito” e cosi via. In Java, cid avviene tramite un metodo sull'interfaccia del
flusso di lavoro che viene annotato con I'annotazione. AWS Flow Framework @GetState Quando
il decisore ha terminato I'elaborazione di un task di decisione, chiama il metodo per ricevere I'ultimo
stato dall'implementazione del flusso di lavoro. A parte le chiamate di visibilita, lo stato pud essere
recuperato anche utilizzando il client esterno generato (che utilizza internamente le chiamate API di
visibilita).

L'esempio seguente mostra come configurare il contesto di esecuzione.

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

public interface PeriodicWorkflow {

@Execute(version = "1.0")
void periodicWorkflow();

@GetState
String getState();
}
@Activities(version = "1.0")

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
void activityl();

Contesto di decisione Versione APl 2021-04-28 87

AWS Flow Framework per Java Guida per gli sviluppatori

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

private DecisionContextProvider contextProvider
= new DecisionContextProviderImpl();

private WorkflowClock clock
= contextProvider.getDecisionContext().getWorkflowClock();

private PeriodicActivityClient activityClient
= new PeriodicActivityClientImpl();

private String state;

@Override

public void periodicWorkflow() {
state = "Just Started";
callPeriodicActivity(Q);

}
@Asynchronous
private void callPeriodicActivity(int count,
Promise<?>... waitFor)
{
if(count == 100) {
state = "Finished Processing";
retuzrn;
}
// call activity
activityClient.activityl();
// Repeat the activity after 1 hour.
Promise<Void> timer = clock.createTimer(3600);
state = "Waiting for timer to fire. Count = "+count;
callPeriodicActivity(count+1l, timer);
}
@Override

public String getState() {
return state;

Esposizione dello stato dell'esecuzione Versione API 2021-04-28 88

AWS Flow Framework per Java Guida per gli sviluppatori

public class PeriodicActivityImpl implements PeriodicActivity

{
@Override
public static void activityl()
{
}
}

Si puo utilizzare il client esterno generato per recuperare in qualsiasi momento l'ultimo stato
dell'esecuzione del flusso di lavoro.

PeriodicWorkflowClientExternal client
= new PeriodicWorkflowClientExternalFactoryImpl().getClient();
System.out.println(client.getState());

Nell'esempio precedente, lo stato di esecuzione € segnalato in varie fasi. Quando inizia l'istanza del
flusso di lavoro, periodicWorkflow segnala lo stato iniziale come "Appena iniziata". Ogni chiamata
a callPeriodicActivity aggiorna lo stato del flusso di lavoro. Una volta che activityl é stata
chiamata 100 volte, il metodo esegue la restituzione e l'istanza del flusso di lavoro € completata.

Locali del flusso di lavoro

A volte, puoi avere la necessita di utilizzare le variabili statiche nell'implementazione del flusso di
lavoro. Ad esempio, puoi voler archiviare un contatore a cui € stato effettuato I'accesso da vari posti
(forse classi diverse) nell'implementazione del flusso di lavoro. Tuttavia, non puoi affidarti a variabili
statiche nei flussi di lavoro, perché le variabili statiche sono condivise tra i thread, il che rappresenta
un problema, perché un lavoratore elabora task di decisione diversi su thread diversi nello stesso
momento. In alternativa, puoi archiviare questo stato in un campo dell'implementazione del flusso di
lavoro, ma poi devi trasferire 'oggetto dell'implementazione. A questo scopo, il framework fornisce
una classe WorkflowExecutionLocal<?>. Ogni stato che deve avere una variabile statica come
semantica deve essere mantenuto come istanza locale utilizzando WorkflowExecutionLocal<?>.
Puoi dichiarare e utilizzare una variabile statica di questo tipo. Ad esempio, nel seguente frammento
di codice, un WorkflowExecutionLocal<String> viene utilizzato per archiviare un nome utente.

public class MyWFImpl implements MyWF {
public static WorkflowExecutionLocal<String> username
= new WorkflowExecutionLocal<String>();

Locali del flusso di lavoro Versione APl 2021-04-28 89

AWS Flow Framework per Java Guida per gli sviluppatori

@Override

public void start(String username){
this.username.set(username);
Processor p = new Processor();
p.updatelLastlLogin();
p.greetUser();
}

public static WorkflowExecutionLocal<String> getUsername() {
return username;

public static void setUsername(WorkflowExecutionLocal<String> username) {
MyWFImpl.username = username;

public class Processor {
void updatelLastLogin(){
UserActivitiesClient c¢ = new UserActivitiesClientImpl();
c.refreshlLastLogin(MyWFImpl.getUsername().get());

}

void greetUser(){
GreetingActivitiesClient c¢ = new GreetingActivitiesClientImpl();
c.greetUser(MyWFImpl.getUsername().get());

Implementazione di attivita

Le attivita vengono implementate fornendo un'implementazione dell'interfaccia @Activities.
The AWS Flow Framework for Java utilizza le istanze di implementazione delle attivita configurate
sul worker per elaborare le attivita in fase di esecuzione. Il lavoratore trova automaticamente
I'implementazione di attivita del tipo corretto.

Puoi utilizzare proprieta e campi per trasferire le risorse alle istanze di attivita, ad esempio le
connessioni del database. Poiché & possibile accedere all'oggetto di implementazione dell'attivita da
piu thread, le risorse condivise devono essere thread-safe.

Ricorda che l'implementazione di attivita non accetta parametri di tipo Promise<> e non restituisce
oggetti di quel tipo. Questo perché l'implementazione di attivita non deve dipendere dal modo in cui &
stata invocata (sincrono o asincrono).

Implementazione di attivita Versione API 2021-04-28 90

AWS Flow Framework per Java Guida per gli sviluppatori

L'interfaccia delle attivita mostrata in precedenza puo essere implementata in questo modo:

public class MyActivitiesImpl implements MyActivities {

@Override

@ManualActivityCompletion

public int activityl(){
//implementation

}

@Override
public void activity2(int foo){
//implementation

}

L'attivita di implementazione ha a disposizione un contesto locale di thread per recuperare I'oggetto
del task, lI'oggetto del convertitore di dati in uso ecc. Si puo accedere al contesto attuale tramite
ActivityExecutionContextProvider.getActivityExecutionContext(). Per maggiori
dettagli, consulta la AWS SDK per Java documentazione ActivityExecutionContext e la
sezione dedicataContesto di esecuzione.

Completamento manuale della attivita

L'annotazione @ManualActivityCompletion nell'esempio precedente & opzionale. E consentita
solo sui metodi che implementano un'attivita e viene utilizzata per configurare l'attivita perché non sia
completata automaticamente in fase di restituzione del metodo di attivita. Cid puo essere utile quando
si desidera completare l'attivita in modo asincrono, ad esempio manualmente dopo il completamento
di un'azione umana.

Per impostazione predefinita, il framework considera l'attivita completata alla fase di restituzione

del metodo di attivita. Cio significa che I'addetto all'attivita segnala il completamento dell'attivita

ad Amazon SWF e gli fornisce i risultati (se presenti). Tuttavia, ci sono casi d'uso in cui non

e consigliabile che il task di attivita sia indicato come completato in questa fase. Questo é
particolarmente utile quando stai modellando task umani. Ad esempio, il metodo di attivita pud inviare
una e-mail alla persona che deve completare una parte del lavoro prima del completamento del task
di attivita. In questi casi, puoi annotare il metodo di attivita con @ManualActivityCompletion per
comunicare al lavoratore di attivita che non la deve completare automaticamente. Per completare
I'attivita manualmente, puoi utilizzare il metodo ManualActivityCompletionClient fornito nel

Completamento manuale della attivita Versione AP| 2021-04-28 91

AWS Flow Framework per Java Guida per gli sviluppatori

framework o utilizzare il RespondActivityTaskCompleted metodo sul client Java Amazon SWF
fornito nell'SDK Amazon SWEF. Per ulteriori dettagli, consulta la documentazione. AWS SDK per Java

Per completare il task di attivita, devi fornire un token del task. Il task token

viene utilizzato da Amazon SWF per identificare in modo univoco le attivita. Puoi

accedere al token dal ActivityExecutionContext nell'implementazione di

attivita. Devi trasferire il token alla parte responsabile del completamento del task.

Il token pud essere recuperato dal ActivityExecutionContext chiamando
ActivityExecutionContextProvider.getActivityExecutionContext().getTaskToken().

L'attivita getName dell'esempio di Hello World puo essere implementata per inviare un'e-mail in cui si
chiede a qualcuno di esprimere un messaggio di saluto:

@ManualActivityCompletion
@Override
public String getName() throws InterruptedException {
ActivityExecutionContext executionContext
= contextProvider.getActivityExecutionContext();
String taskToken = executionContext.getTaskToken();
sendEmail("abcexyz.com",
"Please provide a name for the greeting message and close task with token: " +
taskToken);
return "This will not be returned to the caller";

Si puo utilizzare il seguente frammento di codice per il saluto e chiudere il task utilizzando |l
ManualActivityCompletionClient. In alternativa, il task pud anche non andare a buon fine:

public class CompleteActivityTask {
public void completeGetNameActivity(String taskToken) {

AmazonSimpleWorkflow swfClient
= new AmazonSimpleWorkflowClient(...); // use AWS access keys
ManualActivityCompletionClientFactory manualCompletionClientFactory
= new ManualActivityCompletionClientFactoryImpl(swfClient);
ManualActivityCompletionClient manualCompletionClient
= manualCompletionClientFactory.getClient(taskToken);
String result = "Hello World!";
manualCompletionClient.complete(result);

Completamento manuale della attivita Versione API 2021-04-28 92

AWS Flow Framework per Java Guida per gli sviluppatori

public void failGetNameActivity(String taskToken, Throwable failure) {

AmazonSimpleWorkflow swfClient

= new AmazonSimpleWorkflowClient(...); // use AWS access keys
ManualActivityCompletionClientFactory manualCompletionClientFactory

= new ManualActivityCompletionClientFactoryImpl(swfClient);
ManualActivityCompletionClient manualCompletionClient

= manualCompletionClientFactory.getClient(taskToken);
manualCompletionClient.fail(failure);

AWS Lambda Attivita di implementazione

Argomenti

* |Informazioni su AWS Lambda

» Vantaggi e limiti dell'utilizzo delle attivita Lambda

» Utilizzo delle attivita Lambda nei flussi di lavoro AWS Flow Framework per Java

* Visualizza I'esempio HelloLambda

Informazioni su AWS Lambda

AWS Lambda & un servizio di elaborazione completamente gestito che esegue il codice in risposta
a eventi generati da codice personalizzato o da vari AWS servizi come Amazon S3, DynamoDB,
Amazon Kinesis, Amazon SNS e Amazon Cognito. Per ulteriori informazioni su Lambda, consulta la
Guida per gli sviluppatori di AWS Lambda.

Amazon Simple Workflow Service fornisce un task Lambda che consente di eseguire funzioni
Lambda al posto o insieme alle attivita tradizionali di Amazon SWF.

/A Important

Sul tuo AWS account verranno addebitate le esecuzioni (richieste) Lambda eseguite da
Amazon SWF per tuo conto. Per informazioni dettagliate sui prezzi di Lambda, consulta

https://aws.amazon.com/lambda/ pricing/.

Implementazione delle attivita Lambda Versione AP| 2021-04-28 93

https://docs.aws.amazon.com/lambda/latest/dg/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/

AWS Flow Framework per Java Guida per gli sviluppatori

Vantaggi e limiti dell'utilizzo delle attivita Lambda

L'utilizzo delle attivita Lambda al posto di un'attivita tradizionale di Amazon SWF offre numerosi
vantaggi:

 Le attivita Lambda non devono essere registrate o sottoposte a versioni come i tipi di attivita di
Amazon SWF.
» Puoi utilizzare qualsiasi funzione Lambda esistente che hai gia definito nei tuoi flussi di lavoro.

» Le funzioni Lambda vengono richiamate direttamente da Amazon SWF; non € necessario
implementare un programma di lavoro per eseguirle come € necessario fare con le attivita
tradizionali.

» Lambda fornisce metriche e log per tracciare e analizzare le esecuzioni delle funzioni.

L'utilizzo di task Lambda comporta anche alcuni limiti che € necessario conoscere:

 Le attivita Lambda possono essere eseguite solo nelle AWS regioni che forniscono supporto
per Lambda. Consulta le regioni e gli endpoint Lambda nel riferimento generale di Amazon Web
Services per dettagli sulle regioni attualmente supportate per Lambda.

 Le attivita Lambda sono attualmente supportate solo dall'API HTTP SWF di base e in Java. AWS
Flow Framework Al momento non € disponibile alcun supporto per le attivita Lambda in AWS Flow
Framework for Ruby.

Utilizzo delle attivita Lambda nei flussi di lavoro AWS Flow Framework per
Java

Esistono tre requisiti per utilizzare le attivita Lambda nei flussi di lavoro AWS Flow Framework per
Java:

» Una funzione Lambda da eseguire. Puoi usare qualsiasi funzione Lambda che hai definito. Per
ulteriori informazioni su come creare funzioni Lambda, consulta la Guida per gli AWS Lambda
sviluppatori.

» Un ruolo IAM che fornisce I'accesso per eseguire funzioni Lambda dai flussi di lavoro Amazon
SWEF.

» Codice per pianificare I'attivita Lambda dall'interno del flusso di lavoro.

Vantaggi e limiti dell'utilizzo delle attivita Lambda Versione API 2021-04-28 94

https://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/

AWS Flow Framework per Java Guida per gli sviluppatori

Configurazione di un ruolo IAM

Prima di poter richiamare le funzioni Lambda da Amazon SWF, devi fornire un ruolo IAM che fornisca
I'accesso a Lambda da Amazon SWF. Puoi eseguire una delle seguenti operazioni:

« scegli un ruolo predefinito, Ruolo, AWSLambda per autorizzare i flussi di lavoro a richiamare
qualsiasi funzione Lambda associata al tuo account.

« definisci la tua politica e il ruolo associato per autorizzare i flussi di lavoro a richiamare particolari
funzioni Lambda, specificate dai rispettivi Amazon Resource Names (). ARNs

Limita le autorizzazioni su un ruolo IAM

Puoi limitare le autorizzazioni su un ruolo IAM che fornisci ad Amazon SWF utilizzando SourceArn
le chiavi SourceAccount e context nella tua policy di attendibilita delle risorse. Queste chiavi
limitano I'utilizzo di una policy IAM in modo che venga utilizzata solo dalle esecuzioni di Amazon
Simple Workflow Service che appartengono all’ARN del dominio specificato. Se utilizzi entrambe

le chiavi di contesto della condizione globale, il aws : SourceAccount valore e l'account a cui si

fa riferimento nel aws : SourceAxrn valore devono utilizzare lo stesso ID account quando vengono
utilizzati nella stessa dichiarazione politica.

Nel seguente esempio, la chiave di SourceArn contesto limita I'utilizzo del ruolo del servizio
IAM solo nelle esecuzioni di Amazon Simple Workflow Service che appartengono someDomain
all'account,. 123456789012
 Dichiarazione 1

Preside: "Service": "swf.amazonaws.com"

Operazione: sts:AssumeRole

"Condition": {

"ArnLike": {
"aws:SourceArn": "arn:aws:swf:*:123456789012:/domain/someDomain"

Nell'esempio seguente, la chiave di SourceAccount contesto limita I'utilizzo del ruolo del servizio
IAM solo nelle esecuzioni di Amazon Simple Workflow Service nell'account,. 123456789012

Utilizzo delle attivita Lambda nei flussi di lavoro AWS Flow Framework per Java Versione API 2021-04-28 95

AWS Flow Framework per Java Guida per gli sviluppatori

"Condition": {
"StringlLike": {
"aws:SourceAccount": "123456789012"
}

Fornire ad Amazon SWF l'accesso per richiamare qualsiasi ruolo Lambda

Puoi utilizzare il ruolo predefinito, Role, per dare ai flussi di lavoro Amazon SWF la possibilita di
richiamare qualsiasi AWSLambdafunzione Lambda associata al tuo account.

Utilizzare AWSLambda Role per consentire ad Amazon SWF l'accesso per richiamare le funzioni
Lambda

1. Aprila console Amazon IAM.

Scegli Roles (Ruoli), quindi Create New Role (Crea nuovo ruolo).
Assegna un nome al ruolo, come swf-1lambda, quindi scegli Next Step (Fase successiva).
In AWS Service Roles, scegli Amazon SWF e scegli Next Step.

Nella schermata Allach Policy, scegli AWSLambdaRuolo dall'elenco.

2

Scegli Next Step (Fase successiva), quindi Create Role (Crea ruolo) dopo aver esaminato il
ruolo.

Definizione di un ruolo IAM per fornire I'accesso per richiamare una funzione Lambda specifica

Se desideri fornire I'accesso per richiamare una funzione Lambda specifica dal tuo flusso di lavoro,
dovrai definire la tua policy IAM.

Creare una policy IAM per fornire l'accesso a una particolare funzione Lambda

1. Aprila console Amazon |IAM.

2. Scegli Policies (Policy), quindi Create Policy (Crea policy).

3. Scegli Copia una policy AWS gestita e seleziona AWSLambdaRuolo dall'elenco. Viene generata
una policy. Se necessario, modificane il nome e la descrizione.

4. Nel campo Resource del Policy Document, aggiungi I'ARN delle tue funzioni Lambda. Per
esempio:

Utilizzo delle attivita Lambda nei flussi di lavoro AWS Flow Framework per Java Versione API 2021-04-28 96

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Flow Framework per Java Guida per gli sviluppatori

5.

* Risorsa: arn:aws:lambda:us-
east-1:111122223333:function:hello_lambda_function

® Note

Per una descrizione completa di come specificare le risorse in un ruolo 1AM, consulta
Panoramica delle politiche IAM nell'uso di IAM.

Scegli Create Policy (Crea policy) per completare la creazione della policy.

Puoi quindi selezionare questa policy quando crei un nuovo ruolo IAM e utilizzarlo per concedere a
invoke Il'accesso ai tuoi flussi di lavoro Amazon SWF. Questa procedura € molto simile alla creazione
di un ruolo con la politica AWSLambdaRole. Scegli invece la tua policy quando crei il ruolo.

Per creare un ruolo Amazon SWF utilizzando la tua policy Lambda

1.
2.

Apri la console Amazon IAM.

Scegli Roles (Ruoli), quindi Create New Role (Crea nuovo ruolo).

Assegna un nome al ruolo, come swf-lambda-function, quindi scegli Next Step (Fase
successiva).

In AWS Service Roles, scegli Amazon SWF e scegli Next Step.
Nella schermata Allega policy, scegli la policy specifica per la funzione Lambda dall'elenco.

Scegli Next Step (Fase successiva), quindi Create Role (Crea ruolo) dopo aver esaminato il
ruolo.

Pianifica I'esecuzione di un'attivita Lambda

Dopo aver definito un ruolo IAM che ti consente di richiamare le funzioni Lambda, puoi pianificarne
I'esecuzione come parte del tuo flusso di lavoro.

(® Note

Questo processo € ampiamente dimostrato dall'HelloLambda esempio contenuto in. AWS
SDK per Java

Utilizzo delle attivita Lambda nei flussi di lavoro AWS Flow Framework per Java Versione API 2021-04-28 97

https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
https://console.aws.amazon.com/iam/

AWS Flow Framework per Java Guida per gli sviluppatori

Per pianificare I'esecuzione di un'attivita Lambda

1. Nell'implementazione di flusso di lavoro, ottieni un'istanza di LambdaFunctionClient
chiamando getLambdaFunctionClient () su un'istanza DecisionContext.

// Get a LambdaFunctionClient instance

DecisionContextProvider decisionProvider = new DecisionContextProviderImpl();
DecisionContext decisionContext = decisionProvider.getDecisionContext();
LambdaFunctionClient lambdaClient = decisionContext.getLambdaFunctionClient();

2. Pianifica I'attivita utilizzando il scheduleLambdaFunction() metodo

suLambdaFunctionClient, passandole il nome della funzione Lambda che hai creato e tutti i
dati di input per I'attivita Lambda.

// Schedule the Lambda function for execution, using your IAM role for access.
String lambda_function_name = "The name of your Lambda function.";
String lambda_function_input = "Input data for your Lambda task.";

lambdaClient.scheduleLambdaFunction(lambda_function_name, lambda_function_input);

3. Nel programma di avvio dell'esecuzione del workflow, aggiungi il ruolo IAM lambda alle opzioni di
workflow predefinite utilizzandoStartWorkflowOptions.withLambdaRole(), quindi passa
le opzioni all'avvio del flusso di lavoro.

// Workflow client classes are generated for you when you use the @Workflow
// annotation on your workflow interface declaration.
MyWorkflowClientExternalFactory clientFactory =

new MyWorkflowClientExternalFactoryImpl(sdk_swf_client, swf_domain);

MyWorkflowClientExternal workflow_client = clientFactory.getClient();
// Give the ARN of an IAM role that allows SWF to invoke Lambda functions on
// your behalf.

String lambda_iam_role = "arn:aws:iam::111111000000:role/swf_lambda_role";

StartWorkflowOptions workflow_options =
new StartWorkflowOptions().withLambdaRole(lambda_iam_role);

// Start the workflow execution

Utilizzo delle attivita Lambda nei flussi di lavoro AWS Flow Framework per Java Versione API 2021-04-28 98

AWS Flow Framework per Java Guida per gli sviluppatori

workflow_client.helloWorld("User", workflow_options);

Visualizza I'esempio HelloLambda

Un esempio che fornisce un'implementazione di un flusso di lavoro che utilizza un'attivita Lambda &
fornito in. AWS SDK per Java Per visualizzarlo, and/or eseguilo, scarica il codice sorgente.

Una descrizione completa di come creare ed eseguire I'HelloLambdaesempio € fornita nel file
README fornito con AWS Flow Framework gli esempi Java.

Esecuzione di programmi scritti con AWS Flow Framework for Java

Argomenti
» WorkflowWorker
« ActivityWorker

» Modello di threading di lavoratore

» Estensibilita dei lavoratori

Il framework fornisce classi di lavoro per inizializzare il runtime AWS Flow Framework for Java e
comunicare con Amazon SWF. Per implementare un lavoratore di attivita o di flusso di lavoro, devi
creare e avviare un'istanza di una classe di lavoratore. Queste classi di lavoratori sono responsabili
della gestione delle operazioni asincrone in corso, dell'utilizzo di metodi asincroni che vengono
sbloccati e della comunicazione con Amazon SWF. Possono essere configurate con implementazioni
di flusso di lavoro e attivita, il numero di thread, I'elenco di task da sottoporre a polling e cosi via.

Il framework include due classi di lavoratore, una per le attivita e I'altra per i flussi di lavoro. Per
eseguire la logica di flusso di lavoro, devi utilizzare la classe WorkflowWorker. Per le attivita, viene
invece utilizzata la classe ActivityWorker. Queste classi eseguono automaticamente il polling di
Amazon SWF per le attivita e richiamano i metodi appropriati nella tua implementazione.

L'esempio seguente mostra come creare un'istanza di WorkflowWorker e avviare il polling dei task:

AmazonSimpleWorkflow swfClient = new AmazonSimpleWorkflowClient(awsCredentials);
WorkflowWorker worker = new WorkflowWorker(swfClient, "domainl", "tasklistl");
// Add workflow implementation types

Visualizza I'esempio HelloLambda Versione API 2021-04-28 99

https://aws.amazon.com/code/3015904745387737

AWS Flow Framework per Java Guida per gli sviluppatori

worker.addWorkflowImplementationType(MyWorkflowImpl.class);

// Start worker
worker.start();

La procedura di base per creare un'istanza di ActivityWorker e avviare il polling dei task € la
seguente:

AmazonSimpleWorkflow swfClient
= new AmazonSimpleWorkflowClient(awsCredentials);
ActivityWorker worker = new ActivityWorker(swfClient,
"domainl",
"tasklistl");
worker.addActivitiesImplementation(new MyActivitiesImpl());

// Start worker
worker.start();

Quando desideri chiudere un'attivita o un dispositivo decisionale, I'applicazione deve chiudere le
istanze delle classi di lavoro utilizzate e l'istanza del client Java Amazon SWF. In questo modo, tutte
le risorse utilizzate dalle classi di lavoratore vengono rilasciate correttamente.

worker.shutdown();
worker.awaitTermination(1, TimeUnit.MINUTES);

Per avviare un'esecuzione, crea semplicemente un'istanza del client esterno generato e chiamai il
metodo @Execute.

MyWorkflowClientExternalFactory factory = new MyWorkflowClientExternalFactoryImpl();
MyWorkflowClientExternal client = factory.getClient();
client.start();

WorkflowWorker

Come suggerisce il nome, questa classe di lavoratore € utilizzata dall'implementazione di flusso di
lavoro. E configurata con un elenco di task e con il tipo di implementazione di flusso di lavoro. La
classe di lavoratore esegue un ciclo per il polling dei task di decisione nell'elenco di task specificato.

WorkflowWorker Versione API 2021-04-28 100

AWS Flow Framework per Java Guida per gli sviluppatori

Quando un task di decisione viene ricevuto, crea un'istanza dell'implementazione di flusso di lavoro e
chiama il metodo @Execute per elaborare il task.

ActivityWorker

Per implementare dei lavoratori di attivita, puoi utilizzare la classe ActivityWorker per eseguire
efficacemente il polling dei task di attivita in un elenco di task. Configura quindi il lavoratore di
attivita con oggetti di implementazione di attivita. Questa classe di lavoratore esegue un ciclo per

il polling dei task di attivita nell'elenco di task specificato. Quando si riceve un task di attivita, cerca
l'implementazione appropriata che hai fornito e chiama il metodo di attivita per elaborare il task. A
differenza di WorkflowWorker, che chiama la factory per creare una nuova istanza per ogni task di
decisione, ActivityWorker utilizza semplicemente I'oggetto che hai fornito.

La ActivityWorker classe utilizza le annotazioni AWS Flow Framework for Java per determinare
le opzioni di registrazione ed esecuzione.

Modello di threading di lavoratore

In Java, AWS Flow Framework l'incarnazione di un'attivita o di un decisore € un'istanza della classe
operaia. La tua applicazione € responsabile della configurazione e della creazione di un'istanza
dell'oggetto lavoratore su ogni macchina nonché del processo che agisce come lavoratore. L'oggetto
worker riceve quindi automaticamente le attivita da Amazon SWF, le invia all'implementazione
dell'attivita o del flusso di lavoro e riporta i risultati ad Amazon SWF. Una singola istanza di flusso

di lavoro puo0 interessare molti lavoratori. Quando Amazon SWF ha una o piu attivita in sospeso,
assegna un'attivita al primo lavoratore disponibile, quindi a quello successivo e cosi via. In questo
modo, i task che appartengono alla stessa istanza di flusso di lavoro possono essere elaborati su
differenti lavoratori contemporaneamente.

ActivityWorker Versione API 2021-04-28 101

AWS Flow Framework per Java Guida per gli sviluppatori

Implementation Implementation

Activity worker Decider

r\LLIM‘ILr’ Vel Al vewidci

ALLIVILY Wi sl LiLide

Inoltre, ogni lavoratore pud essere configurato per elaborare task su piu thread. Cio significa che i
task di attivita di un'istanza di flusso di lavoro possono essere eseguiti simultaneamente anche se vi &
un solo lavoratore.

Le attivita decisionali si comportano in modo simile, con I'eccezione che Amazon SWF garantisce

che per un determinato flusso di lavoro possa essere eseguita solo una decisione alla volta. Una
singola esecuzione di flusso di lavoro richiede in genere piu task di decisione ed € quindi possibile
che venga eseguita su piu processi e thread. Il decisore € configurato con il tipo di implementazione
di flusso di lavoro. Quando riceve un task di decisione, crea un'istanza (oggetto) dell'implementazione
di flusso di lavoro. |l framework fornisce un modello factory estensibile per la creazione di queste
istanze. La factory di flusso di lavoro di default crea un nuovo oggetto ogni volta. Puoi fornire factory
personalizzate per annullare questo comportamento.

Contrariamente ai decisori, che sono configurati con tipi di implementazione di flusso di lavoro, i
lavoratori di attivita sono configurati con istanze (oggetti) delle implementazioni di attivita. Quando un
lavoratore di attivita riceve un task di attivita, questo € inviato all'oggetto di implementazione di attivita
appropriato.

Modello di threading di lavoratore Versione API 2021-04-28 102

AWS Flow Framework per Java Guida per gli sviluppatori

Warkflow
Implementation
instances

Threid 1 Thre%d 2 Thr%ad 3 Thr!!ad 1 Th|!gad 2 Thr!!ad 3

Activity worker Decider

L'operatore del flusso di lavoro gestisce un unico pool di thread ed esegue il flusso di lavoro sullo
stesso thread utilizzato per eseguire il polling di Amazon SWF per l'attivita. Poiché le attivita durano
a lungo (almeno rispetto alla logica del flusso di lavoro), la classe Activity Worker gestisce due pool
di thread separati: uno per il polling di Amazon SWF per le attivita e I'altro per I'elaborazione delle
attivita eseguendo l'implementazione dell'attivita. Cio ti consente di configurare il numero di thread
per il polling dei task indipendentemente dal numero di thread per eseguirli. Ad esempio, puoi avere
un numero ridotto di thread per il polling e un numero elevato di thread per I'esecuzione dei task.
L'activity worker class interroga Amazon SWF per un'attivita solo quando dispone di un thread di
sondaggio gratuito e di un thread libero per I'elaborazione dell'attivita.

Questo comportamento di threading e creazione di istanze implica quanto segue:

1. Le implementazioni di attivita devono essere stateless. Non devi utilizzare variabili di istanza per
archiviare lo stato dell'applicazione in oggetti attivita. Puoi comunque utilizzare dei campi per
archiviare risorse come le connessioni di database.

2. Le implementazioni di attivita devono essere thread-safe. Poiché la stessa istanza pud essere
utilizzata per elaborare attivita da thread diversi contemporaneamente, I'accesso alle risorse
condivise dal codice di attivita deve essere sincronizzato.

3. L'implementazione di flusso di lavoro puo essere stateful e le variabili di istanza possono essere
utilizzate per archiviare lo stato. Anche se viene creata una nuova istanza dell'implementazione di
flusso di lavoro per elaborare ogni task di decisione, il framework assicurera la corretta ricreazione
dello stato. Tuttavia, lI'implementazione di flusso di lavoro deve essere deterministica. Per ulteriori
informazioni, consulta la sezione Comprensione di un task in AWS Flow Framework for Java.

4. Le implementazioni di flusso di lavoro non devono essere thread-safe quando si utilizza la factory
di default. L'implementazione di default garantisce che un'istanza dell'implementazione di flusso di
lavoro € utilizzata da un solo thread alla volta.

Modello di threading di lavoratore Versione API 2021-04-28 103

AWS Flow Framework per Java Guida per gli sviluppatori

Estensibilita dei lavoratori

The AWS Flow Framework for Java contiene anche un paio di classi di lavoro di basso livello che
offrono controllo ed estensibilita dettagliati. Mediante tali classi, puoi personalizzare completamente
la registrazione dei tipi di flusso di lavoro e di attivita e impostare factory per la creazione di oggetti di
implementazione. Questi lavoratori sono GenericWorkflowWorker e GenericActivityWorker.

Il lavoratore GenericWorkflowWorker pud essere configurato con una factory per creare
factory di definizione di flusso di lavoro. Il ruolo di una factory di definizione di flusso di

lavoro € di creare istanze dell'implementazione di flusso di lavoro e di fornire impostazioni di
configurazione come le opzioni di registrazione. In circostanze normali, devi utilizzare la classe
WorkflowWorker direttamente. Questa creera e configurera automaticamente I'implementazione
delle factory fornite nel framework, ovvero POJOWorkflowDefinitionFactoryFactory e
POJOWorkflowDefinitionFactory. La factory richiede che la classe di implementazione di
flusso di lavoro abbia un costruttore senza argomenti. Questo costruttore € utilizzato per creare
istanze dell'oggetto di flusso di lavoro al runtime. La factory analizza le annotazioni utilizzate
nell'interfaccia e nell'implementazione di flusso di lavoro per creare opzioni di registrazione ed
esecuzione appropriate.

Puoi fornire una tua implementazione delle factory mediante WorkflowDefinitionFactory,
WorkflowDefinitionFactoryFactory e WorkflowDefinition. La classe
WorkflowDefinition é utilizzata dalla classe di lavoratore per inviare task di decisione e
segnali. Implementando queste classi di base, puoi personalizzare completamente la factory e
I'invio di richieste all'implementazione di flusso di lavoro. Ad esempio, puoi utilizzare questi punti

di estensibilita per fornire un modello di programmazione personalizzato per la scrittura di flussi di
lavoro, ad esempio, basato sulle tue annotazioni o generato a partire da WSDL anziché mediante
I'approccio Code First utilizzato dal framework. Per utilizzare le tue factory personalizzate, dovrai
servirti della classe GenericWorkflowWorker. Per maggiori dettagli su queste classi, consulta la
documentazione. AWS SDK per Java

Allo stesso modo, GenericActivityWorker ti consente di fornire una factory di implementazione
di attivita personalizzata. Implementando le classi ActivityImplementationFactory e
ActivityImplementation, puoi controllare completamente la creazione di istanze di attivita
nonché personalizzare opzioni di registrazione ed esecuzione. Per maggiori dettagli su queste classi,
consulta la AWS SDK per Java documentazione.

Estensibilita dei lavoratori Versione API 2021-04-28 104

AWS Flow Framework per Java Guida per gli sviluppatori

Contesto di esecuzione

Argomenti

» Contesto di decisione

» Contesto di esecuzione di attivita

Il framework fornisce un contesto di ambiente alle implementazioni di flusso di lavoro e attivita.
Questo contesto & specifico del task in corso di elaborazione e fornisce alcune utilita che puoi
utilizzare nella tua implementazione. Un oggetto di contesto & creato ogni volta che il lavoratore
elabora un nuovo task.

Contesto di decisione

Quando un'attivita viene eseguita, la decisione quadro fornisce il contesto per l'implementazione di
flussi di lavoro attraverso la DecisionContext classe DecisionContext fornisce informazioni
sensibili al contesto quali I'esecuzione del flusso di lavoro eseguire Id e orologio timer e funzionalita.

Accesso nell'implementazione del flusso DecisionContext di lavoro

Puoi accedere a DecisionContext nell'implementazione di flusso di lavoro utilizzando la classe
DecisionContextProviderImpl. In alternativa, puoi inserire il contesto in un campo o in una
proprieta di tale implementazione utilizzando Spring come mostrato nella sezione relativa alla
testabilita e all'inserimento delle dipendenze.

DecisionContextProvider contextProvider
= new DecisionContextProviderImpl();
DecisionContext context = contextProvider.getDecisionContext();

Creazione di un orologio e di un timer

La classe DecisionContext contiene una proprieta di tipo WorkflowClock che fornisce la
funzionalita di orologio e timer. Poiché la logica del flusso di lavoro deve essere deterministica,
non € necessario utilizzare direttamente I'orologio di sistema nell'implementazione del flusso di
lavoro. Il metodo currentTimeMills su WorkflowClock restituisce I'ora dell'evento di avvio
della decisione in corso di elaborazione. In questo modo, ottieni lo stesso valore di ora durante la
riproduzione, rendendo di conseguenza deterministica la logica di flusso di lavoro.

Contesto di esecuzione Versione API 2021-04-28 105

AWS Flow Framework per Java Guida per gli sviluppatori

WorkflowClock include inoltre un metodo createTimer che restituisce un oggetto Promise
che diventa pronto dopo l'intervallo specificato. Puoi utilizzare questo valore come parametro per
altri metodi asincroni allo scopo di ritardarne I'esecuzione in base al periodo di tempo specificato.

In questo modo, puoi pianificare efficacemente un'attivita o un metodo asincrono per un'esecuzione
successiva.

L'esempio nel listato seguente mostra come chiamare periodicamente un'attivita.

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

public interface PeriodicWorkflow {

@Execute(version = "1.0")
void periodicWorkflow();
}
@Activities(version = "1.0")

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 300,
defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PeriodicActivity {
void activityl();

public class PeriodicWorkflowImpl implements PeriodicWorkflow {

private DecisionContextProvider contextProvider
= new DecisionContextProviderImpl();

private WorkflowClock clock
= contextProvider.getDecisionContext().getWorkflowClock();

@Override
public void periodicWorkflow() {
callPeriodicActivity(0);

@Asynchronous
private void callPeriodicActivity(int count,
Promise<?>... waitFor) {
if (count == 100) {
return;

Contesto di decisione Versione API 2021-04-28 106

AWS Flow Framework per Java Guida per gli sviluppatori

PeriodicActivityClient client = new PeriodicActivityClientImpl();
// call activity
Promise<Void> activityCompletion = client.activityl();

Promise<Void> timer = clock.createTimer(3600);
// Repeat the activity either after 1 hour or after previous activity run

// if it takes longer than 1 hour
callPeriodicActivity(count + 1, timer, activityCompletion);

public class PeriodicActivityImpl implements PeriodicActivity

{
@Override
public void activityl() {
}
}

Nel listato precedente, il metodo asincrono callPeriodicActivity chiama activityl e quindi
crea un timer utilizzando la classe AsyncDecisionContext corrente. Passa I'oggetto Promise
restituito come argomento a una chiamata ricorsiva a se stesso. Questa chiamata attende fino
all'attivazione del timer (1 ora i questo esempio) prima dell'esecuzione.

Contesto di esecuzione di attivita

Esattamente come DecisionContext fornisce informazioni di contesto quando un task di decisione
€ in corso di elaborazione, ActivityExecutionContext fornisce informazioni di contesto simili
durante I'elaborazione di un task di attivita. Questo contesto & disponibile per il tuo codice delle
attivita mediante la classe ActivityExecutionContextProviderImpl.

ActivityExecutionContextProvider provider
= new ActivityExecutionContextProviderImpl();
ActivityExecutionContext aec = provider.getActivityExecutionContext();

Utilizzando ActivityExecutionContext, puoi eseguire le seguenti operazioni:

Contesto di esecuzione di attivita Versione API 2021-04-28 107

AWS Flow Framework per Java Guida per gli sviluppatori

Heartbeat di un'attivita a esecuzione prolungata

Se l'attivita € di lunga durata, deve segnalarne periodicamente I'avanzamento ad Amazon SWF per
informarlo che I'attivita sta ancora facendo progressi. In assenza di tale heartbeat, &€ possibile che
si verifichi il timeout del task se un timeout di heartbeat € stato impostato alla registrazione del tipo
di attivita o durante la pianificazione dell'attivita. Per inviare un heartbeat, puoi utilizzare il metodo
recordActivityHeartbeat su ActivityExecutionContext. L'heartbeat fornisce inoltre un
meccanismo per annullare le attivita in corso. Per informazioni dettagliate e un esempio, consulta la
sezione Gestione errori.

Ottenimento dei dettagli del task di attivita

Se lo desideri, puoi ottenere tutti i dettagli dell'attivita che sono stati trasmessi da Amazon SWF
quando l'esecutore ha ricevuto I'attivita. Sono incluse le informazioni relative agli input al task,

il tipo di task, il token del task, ecc. Se desideri implementare un'attivita che viene completata
manualmente, ad esempio da un'azione umana, devi utilizzare il per recuperare il token dell'attivita e
passarlo ActivityExecutionContext al processo che alla fine completera I'attivita. Per ulteriori
informazioni, consulta la sezione su Completamento manuale della attivita.

Ottieni l'oggetto client Amazon SWF utilizzato dall'esecutore

L'oggetto client Amazon SWF utilizzato dall'esecutore pud essere recuperato chiamando method on.
getService ActivityExecutionContext Cid € utile se desideri effettuare una chiamata diretta
al servizio Amazon SWF.

Esecuzioni del flusso di lavoro figlio

Negli esempi riportati finora, abbiamo iniziato I'esecuzione del flusso di lavoro direttamente da
un'applicazione. Tuttavia, un'esecuzione del flusso di lavoro pu® essere avviata dall'interno di un
flusso di lavoro chiamando il metodo del punto di ingresso del flusso di lavoro sul client generato.
Quando un'esecuzione del flusso di lavoro viene avviata dal contesto di un'altra esecuzione del flusso
di lavoro viene chiamata esecuzione del flusso di lavoro figlio. Questa operazione ti permette di
esegquire il refactoring dei flussi di lavoro complessi in unita piu piccole e condividerle potenzialmente
su diversi flussi di lavoro. Ad esempio, puoi creare un flusso di elaborazione dei pagamenti e
chiamarlo da un flusso di lavoro di elaborazione di un ordine.

Da un punto di vista semantico, I'esecuzione del flusso di lavoro figlio si comporta analogamente al
flusso di lavoro standalone tranne che per le seguenti caratteristiche:

Esecuzioni del flusso di lavoro figlio Versione API 2021-04-28 108

AWS Flow Framework per Java Guida per gli sviluppatori

1.

Quando il flusso di lavoro principale termina a causa di un'azione esplicita da parte dell'utente, ad
esempio chiamando I'API Amazon SWFTerminateWorkflowExecution, o viene interrotto a
causa di un timeout, il destino dell'esecuzione del flusso di lavoro secondario sara determinato
da una policy secondaria. Puoi impostare la policy figlio in modo che termini, annulli o abbandoni
(mantenere in esecuzione) le esecuzioni del flusso di lavoro figlio.

. L'output del flusso di lavoro figlio (valore restituito del metodo del punto di ingresso) pud essere
utilizzato dall'esecuzione del flusso di lavoro padre come l'oggetto Promise<T> restituito da un
metodo asincrono. Cid € diverso dalle esecuzioni autonome in cui I'applicazione deve ottenere
I'output utilizzando Amazon SWF. APIs

Nell'esempio seguente, il flusso di lavoro OrderProcessor crea un flusso di lavoro figlio

PaymentProcessor:

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

public interface OrderProcessor {

@Execute(version = "1.0")
void processOrder(Order order);

public class OrderProcessorImpl implements OrderProcessor {
PaymentProcessorClientFactory factory
= new PaymentProcessorClientFactoryImpl();

@Override

public void processOrder(Order order) {
float amount = order.getAmount();
CardInfo cardInfo = order.getCardInfo();

PaymentProcessorClient childWorkflowClient = factory.getClient();
childWorkflowClient.processPayment(amount, cardInfo);

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 10)

public interface PaymentProcessor {

Esecuzioni del flusso di lavoro figlio Versione API 2021-04-28 109

AWS Flow Framework per Java Guida per gli sviluppatori

@Execute(version = "1.0")
void processPayment(float amount, CardInfo cardInfo);

public class PaymentProcessorImpl implements PaymentProcessor {
PaymentActivitiesClient activitiesClient = new PaymentActivitiesClientImpl();

@Override
public void processPayment(float amount, CardInfo cardInfo) {
Promise<PaymentType> payType = activitiesClient.getPaymentType(cardInfo);
switch(payType.get()) {
case Visa:
activitiesClient.processVisa(amount, cardInfo);

break;
case Amex:
activitiesClient.processAmex(amount, cardInfo);
break;
default:
throw new UnSupportedPaymentTypeException();
}
}
}
@Activities(version = "1.0")

@ActivityRegistrationOptions(defaultTaskScheduleToStartTimeoutSeconds = 3600,
defaultTaskStartToCloseTimeoutSeconds = 3600)
public interface PaymentActivities {
PaymentType getPaymentType(CardInfo cardInfo);

void processVisa(float amount, CardInfo cardInfo);

void processAmex(float amount, CardInfo cardInfo);

Flussi di lavoro continui

In alcuni casi d'uso, pu0 servire un flusso di lavoro di durata lunga o eterna, ad esempio uno che
monitori l'integrita di una flotta di server.

Flussi di lavoro continui Versione API 2021-04-28 110

AWS Flow Framework per Java Guida per gli sviluppatori

® Note

Poiché Amazon SWF conserva l'intera cronologia dell'esecuzione di un flusso di lavoro, la
cronologia continuera a crescere nel tempo. |l framework recupera la cronologia da Amazon
SWF quando esegue una riproduzione; questo puod diventare costoso se le dimensioni della
cronologia sono troppo grandi. Nei flussi di lavoro di lunga durata o continui, devi chiudere
periodicamente I'esecuzione in corso e avviarne una nuova per poter proseguire.

Questo € un proseguimento logico dell'esecuzione del flusso di lavoro. A questo scopo si pud
usare un self client generato. Nell'implementazione del flusso di lavoro, basta chiamare il metodo
@Execute sul self client. Una volta completata I'esecuzione corrente, il framework avvia una nuova
esecuzione utilizzando lo stesso ID del flusso di lavoro.

Puoi anche proseguire I'esecuzione chiamando il metodo continueAsNewOnCompletion nel
GenericWorkflowClient che puoi recuperare dal DecisionContext corrente. Ad esempio,
la seguente implementazione del flusso di lavoro imposta un timer perché si attivi dopo un giorno e
chiama il suo punto di ingresso per avviare una nuova esecuzione.

public class ContinueAsNewWorkflowImpl implements ContinueAsNewWorkflow {

private DecisionContextProvider contextProvider
= new DecisionContextProviderImpl();

private ContinueAsNewWorkflowSelfClient selfClient
= new ContinueAsNewWorkflowSelfClientImpl();

private WorkflowClock clock
= contextProvider.getDecisionContext().getWorkflowClock();

@Override

public void startWorkflow() {
Promise<Void> timer = clock.createTimer(86400);
continueAsNew(timer);

@Asynchronous
void continueAsNew(Promise<Void> timer) {
selfClient.startWorkflow();

Flussi di lavoro continui Versione API 2021-04-28 111

AWS Flow Framework per Java Guida per gli sviluppatori

}

Quando un flusso di lavoro si chiama ricorsivamente, il framework chiude il flusso di lavoro in corso

al completamento dei task in sospeso e avvia una nuova esecuzione. Ricorda che fino a quando ci
sono task in sospeso, I'esecuzione corrente non puod essere chiusa. La nuova esecuzione non eredita
automaticamente la cronologia o i dati da quella originale; se vuoi esportare qualche stato sulla nuova
esecuzione, dovrai trasferirlo esplicitamente come input.

Impostazione della priorita delle attivita in Amazon SWF

Per impostazione predefinita, i task in un elenco di task sono consegnati in base alla relativa ora di
arrivo. Per quanto possibile, i task pianificati per primi vengono eseguiti per primi. Impostando una
priorita opzionale, puoi dare priorita a determinate attivita: Amazon SWF cerchera di fornire attivita
con priorita piu alta in un elenco di attivita prima di quelle con priorita inferiore.

Puoi impostare priorita di task per flussi di lavoro e attivita. La priorita di task di un flusso di lavoro
non ha alcuna incidenza sulla priorita di task di attivita che pianifica e nemmeno sui flussi di lavoro
figlio che avvia. La priorita predefinita per un'attivita o un flusso di lavoro viene impostata (da te o
da Amazon SWF) durante la registrazione e la priorita dell'attivita registrata viene sempre utilizzata
a meno che non venga sostituita durante la pianificazione dell'attivita o I'avvio di un'‘esecuzione del
flusso di lavoro.

| valori della priorita di task possono andare da "-2147483648" a "2147483647", con i numeri piu alti
indicanti la priorita piu elevata. Se non imposti la priorita di task per un'attivita o un flusso di lavoro,
verra assegnata la priorita zero ("0").

Argomenti

» Impostazione della priorita di task per flussi di lavoro

» Impostazione della priorita di task per attivita

Impostazione della priorita di task per flussi di lavoro

Puoi impostare la priorita di task per un flusso di lavoro durante la registrazione o I'avvio dello stesso.
La priorita di task impostata alla registrazione del flusso di lavoro € utilizzata come impostazione di
default per qualsiasi esecuzione di flusso di lavoro di quel tipo, a meno che non venga sovrascritta
all'avvio dell'esecuzione di flusso di lavoro.

Impostazione della priorita delle attivita Versione APl 2021-04-28 112

AWS Flow Framework per Java Guida per gli sviluppatori

Per registrare un tipo di flusso di lavoro con una priorita di attivita predefinita, imposta
I'defaultTaskPriorityopzione in WorkflowRegistrationOptionsquando lo dichiari:

@Workflow

@WorkflowRegistrationOptions(
defaultTaskPriority = 10,
defaultTaskStartToCloseTimeoutSeconds = 240)

public interface PriorityWorkflow

{

@Execute(version = "1.0")
void startWorkflow(int a);

Puoi anche impostare taskPriority per un flusso di lavoro quando avvii quest'ultimo, sovrascrivendo la
priorita di task (di default) registrata.

StartWorkflowOptions priorityWorkflowOptions
= new StartWorkflowOptions().withTaskPriority(10);

PriorityWorkflowClientExternalFactory cf
= new PriorityWorkflowClientExternalFactoryImpl(swfService, domain);

priority_workflow_client = cf.getClient();

priority_workflow_client.startWorkflow(
"Smith, John", priorityWorkflowOptions);

Puoi inoltre impostare la priorita di task all'avvio di un flusso di lavoro figlio o quando
si continua un flusso di lavoro come nuovo. Ad esempio, € possibile impostare
I'opzione ContinueAsNewWorkflowExecutionParametersTaskPriority in o in.
StartChildWorkflowExecutionParameters

Impostazione della priorita di task per attivita

Puoi impostare la priorita di task per un attivita durante la registrazione o la pianificazione della
stessa. La priorita di task impostata quando si registra un tipo di attivita € utilizzata come priorita di
default all'esecuzione dell'attivita, a meno che non venga sovrascritta quando si pianifica l'attivita.

Per registrare un tipo di attivita con una priorita di attivita predefinita, imposta
I'defaultTaskPriorityopzione in ActivityRegistrationOptionsquando la dichiari:

Impostazione della priorita di task per attivita Versione API 2021-04-28 113

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/WorkflowRegistrationOptions.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/ContinueAsNewWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/StartChildWorkflowExecutionParameters.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/ActivityRegistrationOptions.html

AWS Flow Framework per Java Guida per gli sviluppatori

@Activities(version = "1.0")
@ActivityRegistrationOptions(
defaultTaskPriority = 10,
defaultTaskStartToCloseTimeoutSeconds = 120)
public interface ImportantActivities {
int doSomethingImportant();

Puoi anche impostare taskPriority per un'attivita durante la pianificazione, sovrascrivendo la priorita di
task (di default) registrata.

ActivitySchedulingOptions activityOptions = new
ActivitySchedulingOptions.withTaskPriority(10);

ImportantActivitiesClient activityClient = new ImportantActivitiesClientImpl();

activityClient.doSomethingImportant(activityOptions);

DataConverters

Quando l'implementazione di flusso di lavoro chiama un'attivita remota, I'input passato e il risultato
dell'esecuzione dell'attivita devono essere serializzati per essere trasmessi. || framework utilizza

la DataConverter classe per questo scopo. Si tratta di una classe astratta che puoi implementare
per fornire un serializzatore personalizzato. Nel framework viene fornita un'implementazione
predefinita basata sul serializzatore Jackson. JsonDataConverter Per ulteriori dettagli, consulta
la documentazione di AWS SDK per Java. Fai riferimento alla documentazione del processore

Jackson JSON per informazioni dettagliate sul modo in cui Jackson esegue la serializzazione e sulle
annotazioni che possono essere utilizzate per modificarla. |l formato di trasmissione & considerato
come parte del contratto. Di conseguenza, puoi specificare una classe DataConverter sulle
interfacce di attivita e di flusso di lavoro impostando la proprieta DataConverter delle annotazioni
@Activities e @Workflow.

Il framework creera oggetti del tipo DataConverter specificato sull'annotazione @Activities
per serializzare gli input all'attivita e per deserializzarne il risultato. Analogamente, gli oggetti del
tipo DataConverter specificato sull'annotazione @Workflow saranno utilizzati per serializzare i
parametri che passi al flusso di lavoro e, nel caso di un flusso di lavoro figlio, per deserializzare |l
risultato. Oltre agli input, il framework trasmette anche dati aggiuntiviad Amazon SWF, ad esempio

DataConverters Versione API 2021-04-28 114

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/JsonDataConverter.html

AWS Flow Framework per Java Guida per gli sviluppatori

i dettagli delle eccezioni, il serializzatore del flusso di lavoro verra utilizzato anche per serializzare
questi dati.

Puoi anche fornire un'istanza di DataConverter se non vuoi che venga creata automaticamente
dal framework. | client generati hanno overload di costruttore che accettano un oggetto
DataConverter.

Se non specifichi un tipo di DataConverter e non passi un oggetto DataConverter,
JsonDataConverter sara utilizzato per impostazione predefinita.

Passaggio di dati a metodi asincroni

Argomenti

« Passaggio di raccolte e mappe a metodi asincroni

 impostabile <T>

. NoWait

* Promise <Void>

 AndPromise e OrPromise

L'utilizzo di Promise<T> & stato descritto nelle sezioni precedenti. In questa, vengono presentati
alcuni casi d'uso avanzati di Promise<T>.

Passaggio di raccolte e mappe a metodi asincroni

Il framework supporta il passaggio di matrici, raccolte e mappe come tipi Promise a metodi
asincroni. Ad esempio, un metodo asincrono puo accettare Promise<ArraylList<String>> come
argomento come mostrato nel listato seguente.

@Asynchronous
public void printList(Promise<List<String>> list) {
for (String s: list.get()) {
activityClient.printActivity(s);
}

Sul piano semantico, il comportamento € quello di qualsiasi altro parametro di tipo Promise e il
metodo asincrono attendera fino a che la raccolta diventa disponibile prima di avviare I'esecuzione.

Passaggio di dati a metodi asincroni Versione APl 2021-04-28 115

AWS Flow Framework per Java Guida per gli sviluppatori

Se i membri di una raccolta sono oggetti Promise, il framework puo attendere che tutti i membri
diventino pronti come mostrato nel frammento seguente. In questo modo, il metodo asincrono attende
che ogni membro della raccolta diventi disponibile.

@Asynchronous
public void printList(@Wait List<Promise<String>> list) {
for (Promise<String> s: list) {
activityClient.printActivity(s);

Nota che I'annotazione @Wait deve essere utilizzata nel parametro per indicare che contiene oggetti
Promise.

Considera inoltre che l'attivita printActivity accetta un argomento String ma il metodo
corrispondente nel client generato accetta Promise<String>. Stiamo chiamando il metodo sul client e
non richiamando il metodo dell'attivita direttamente.

impostabile <T>

Settable<T> & un tipo derivato di Promise<T> che fornisce un metodo set con cui impostare
manualmente il valore di un oggetto Promise. Ad esempio, il seguente flusso di lavoro attende la
ricezione di un segnale attendendo Settable<?>, impostato nel metodo del segnale:

public class MyWorkflowImpl implements MyWorkflow{
final Settable<String> result = new Settable<String>();

//@Execute method

@Override

public Promise<String> start() {
return done(result);

//Signal

@Override

public void manualProcessCompletedSignal(String data) {
result.set(data);

@Asynchronous
public Promise<String> done(Settable<String> result){
return result;

impostabile <T> Versione API 2021-04-28 116

AWS Flow Framework per Java Guida per gli sviluppatori

}

Settable<?> pud inoltre essere concatenato a un'altra promessa alla volta. Puoi utilizzare
AndPromise e OrPromise per raggruppare le promesse. Puoi annullare la concatenazione

di Settable chiamando il metodo unchain(). Quando concatenato, Settable<?> diventa
automaticamente pronto quando la promessa a cui € concatenato diventa pronta. La concatenazione
€ particolarmente utile quando desideri utilizzare una promessa restituita dall'ambito di un metodo
doTry() in altre parti del programma. Poiché TryCatchFinally viene utilizzata come classe
annidata, non & possibile dichiarare una Promise<> nell'ambito del genitore e impostarla. doTry ()
Questo perché Java richiede variabili che devono essere dichiarate nell'ambito padre e utilizzate in
classi nidificate per essere contrassegnate come final. Per esempio:

@Asynchronous
public Promise<String> chain(final Promise<String> input) {
final Settable<String> result = new Settable<String>();

new TryFinally() {

@Override

protected void doTry() throws Throwable {
Promise<String> resultToChain = activityl(input);
activity2(resultToChain);

// Chain the promise to Settable
result.chain(resultToChain);

@Override
protected void doFinally() throws Throwable {
if (result.isReady()) { // Was a result returned before the exception?
// Do cleanup here

i

return result;

Settable pud essere concatenato a una promessa alla volta. Puoi annullare la concatenazione di
Settable chiamando il metodo unchain().

impostabile <T> Versione API 2021-04-28 117

AWS Flow Framework per Java Guida per gli sviluppatori

@NoWait

Quando passi un oggetto Promise a un metodo asincrono, per impostazione predefinita il framework
attende che gli oggetti Promise diventino pronti prima di eseguire il metodo (ad eccezione dei tipi di
raccolta). Puoi eseguire I'override di questo comportamento utilizzando I'annotazione @NoWait sui
parametri nella dichiarazione del metodo asincrono. Cio & utile se passi Settable<T>, che verra
impostato dal metodo asincrono stesso.

Promise <Void>

Le dipendenze nei metodi asincroni sono implementate passando 'oggetto Promise restituito da un
metodo come argomento a un altro metodo. Possono tuttavia esserci casi in cui vuoi che un metodo
restituisca void e che altri metodi asincroni siano eseguiti dopo il completamento di quel metodo.
Per quei casi, puoi utilizzare Promise<Void> come tipo restituito del metodo. La classe Promise
fornisce un metodo Void statico che puoi utilizzare per creare un oggetto Promise<Void>. Questo
oggetto Promise diventera pronto al termine dell'esecuzione del metodo asincrono. Puoi passare
questo oggetto Promise a un altro metodo asincrono come qualsiasi altro oggetto Promise. Se
utilizzi Settable<Void>, chiama il metodo set con null per renderlo pronto.

AndPromise e OrPromise

AndPromise e OrPromise ti consentono di raggruppare molteplici oggetti Promise<> in un'unica
promessa logica. Un oggetto AndPromise diventa pronto quanto tutte le promesse utilizzate per
costruirlo diventano pronte. Un oggetto OrPromise diventa pronto quando qualsiasi promessa
nella raccolta di promesse utilizzata per costruirla diventa pronta. Puoi chiamare getValues() su
AndPromise e OrPromise per recuperare l'elenco di valori delle promesse costituenti.

Testabilita e inserimento delle dipendenze

Argomenti

* Integrazione di Spring

« JUnit Integrazione

Il framework & progettato per essere compatibile con I'lnversione del controllo (Inversion of Control,
loC). Le implementazioni di flussi di lavoro e di attivita, nonché i lavoratori e gli oggetti di contesto
forniti dal framework, si possono configurare e creare come istanze tramite contenitori come Spring.

@NoWait Versione API 2021-04-28 118

AWS Flow Framework per Java Guida per gli sviluppatori

Il framework offre un'integrazione immediata con Spring Framework. Inoltre, JUnit & stata fornita
l'integrazione con per le implementazioni del flusso di lavoro e delle attivita di unit testing.

Integrazione di Spring

Il pacchetto com.amazonaws.services.simpleworkflow.flow.spring contiene classi che semplificano
I'utilizzo di Spring framework nelle applicazioni. Comprendono lavoratori di flusso di lavoro

e di attivita compatibili con Scope e Spring: WorkflowScope, SpringWorkflowWorker e
SpringActivityWorker. Queste classiti permettono di configurare le implementazioni di attivita e
flusso di lavoro, nonché i lavoratori interamente tramite Spring.

WorkflowScope

WorkflowScope & una implementazione in ambito Spring personalizzata fornita dal framework. Lo

scope ti permette di creare oggetti nel contenitore Spring la cui durata € limitata a quella di un task di
decisione. | bean nello scope sono creati come istanze ogni volta che un lavoratore riceve un task di
decisione. Devi utilizzare questo scope per i bean di implementazione del flusso di lavoro e per ogni

altro bean da cui dipende. Per i bean di implementazione del flusso di lavoro non si devono usare gli
scopes singleton e prototype forniti da Spring, perché il framework richiede la creazione di un nuovo
bean per ciascun task di decisione. In caso contrario si verifica un comportamento inatteso.

Il seguente esempio mostra un frammento di codice della configurazione Spring che registra il
WorkflowScope e poi lo utilizza per configurare un bean di implementazione del flusso di lavoro e
un bean di client dell'attivita.

<!-- register AWS Flow Framework for Java WorkflowScope -->
<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes'>
<map>
<entry key="workflow">
<bean
class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />

</entry>
</map>
</property>
</bean>
<!-- activities client -->

<bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
scope="workflow">
</bean>

Integrazione di Spring Versione API 2021-04-28 119

AWS Flow Framework per Java Guida per gli sviluppatori

<!-- workflow implementation -->

<bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
<property name="client" ref="activitiesClient"/>
<aop:scoped-proxy proxy-target-class="false" />

</bean>

La riga di configurazione: <aop:scoped-proxy proxy-target-class="false" />, utilizzata
nella configurazione del bean workflowImpl, € obbligatoria perché WorkflowScope non supporta
il proxy tramite CGLIB. Devi utilizzare questa configurazione per tutti i bean in WorkflowScope
collegati a un altro bean in uno scope diverso. In questo caso, il bean workflowImpl deve essere
collegato a un bean del lavoratore di flusso di lavoro in scope singleton (vedi I'esempio completo in
basso).

Puoi approfondire I'utilizzo degli scope personalizzati nella documentazione di Spring Framework.
Lavoratori compatibili con Spring

Quando usi Spring, devi utilizzare le classi di lavoratori compatibili con Spring fornite dal framework:
SpringWorkflowWorker e SpringActivityWorker. Questi lavoratori possono essere inseriti
in un'applicazione tramite Spring, come illustrato nel prossimo esempio. | lavoratori compatibili

con Spring implementano l'interfaccia SmartLifecycle di Spring e per impostazione predefinita
iniziano automaticamente a eseguire il polling dei task quando viene avviato il contesto Spring. Puoi
disattivare questa funzionalita impostando la proprieta disableAutoStartup del lavoratore su
true.

L'esempio seguente mostra come configurare un decisore. Questo esempio utilizza
le interfacce MyActivities e MyWorkflow (non mostrate qui) e le relative
implementazioni, MyActivitiesImpl e MyWorkflowImpl. Le interfacce client e le
implementazioni generate sono MyWorkflowClient/MyWorkflowClientImpl e
MyActivitiesClient/MyActivitiesClientImpl (anch'esse non mostrate qui).

Il client delle attivita viene introdotto nell'implementazione del flusso di lavoro utilizzando la
funzionalita di collegamento automatico di Spring:

public class MyWorkflowImpl implements MyWorkflow {
@Autowired
public MyActivitiesClient client;

@Override

Integrazione di Spring Versione API 2021-04-28 120

AWS Flow Framework per Java Guida per gli sviluppatori

public void start() {
client.activityl();

La configurazione Spring per il decisore € la seguente:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/

spring-aop-2.5.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<!-- register custom workflow scope -->
<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes'>
<map>
<entry key="workflow">
<bean
class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
</entry>
</map>
</property>
</bean>
<context:annotation-config/>

<bean id="accesskeys" class="com.amazonaws.auth.BasicAWSCredentials">
<constructor-arg value="{AWS.Access.ID}"/>
<constructor-arg value="{AWS.Secret.Key}"/>

</bean>

<bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
<property name="socketTimeout" value="70000" />
</bean>

<!-- Amazon SWF client -->
<bean id="swfClient"

Integrazione di Spring Versione API 2021-04-28 121

AWS Flow Framework per Java Guida per gli sviluppatori

class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
<constructor-arg ref="accesskeys" />
<constructor-arg ref="clientConfiguration" />
<property name="endpoint" value="{service.url}" />
</bean>

<l-- activities client -->

<bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
scope="workflow">

</bean>

<!-- workflow implementation -->

<bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl" scope="workflow">
<property name="client" ref="activitiesClient"/>
<aop:scoped-proxy proxy-target-class="false" />

</bean>

<!-- workflow worker -->
<bean id="workflowWorker"
class="com.amazonaws.services.simpleworkflow.flow.spring.SpringWorkflowWorker">
<constructor-arg ref="swfClient" />
<constructor-arg value="domainl" />
<constructor-arg value="tasklistl" />
<property name="registerDomain" value="true" />
<property name="domainRetentionPeriodInDays" value="1" />
<property name="workflowImplementations">
<list>
<ref bean="workflowImpl" />
</list>
</property>
</bean>
</beans>

Poiché SpringWorkflowWorker & completamente configurato in Spring e avvia automaticamente il
polling quando il contesto Spring viene inizializzato, il processo host per il decisore & semplice:

public class WorkflowHost {
public static void main(String[] args){
ApplicationContext context
= new FileSystemXmlApplicationContext("resources/spring/
WorkflowHostBean.xml");
System.out.println("Workflow worker started");

Integrazione di Spring Versione API 2021-04-28 122

AWS Flow Framework per Java Guida per gli sviluppatori

}

Analogamente, il lavoratore di attivita pud essere configurato nel modo seguente:

<?xml version="1.0" encoding="UTF-8"7?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/

spring-aop-2.5.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<l-- register custom scope -->
<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">
<map>
<entry key="workflow">
<bean

class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
</entry>
</map>
</property>
</bean>

<bean id="accesskeys" class='"com.amazonaws.auth.BasicAWSCredentials">
<constructor-arg value="{AWS.Access.ID}"/>
<constructor-arg value="{AWS.Secret.Key}"/>

</bean>

<bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
<property name="socketTimeout" value="70000" />
</bean>

<!-- Amazon SWF client -->

<bean id="swfClient"
class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
<constructor-arg ref="accesskeys" />
<constructor-arg ref="clientConfiguration" />

Integrazione di Spring Versione API 2021-04-28 123

AWS Flow Framework per Java Guida per gli sviluppatori

<property name="endpoint" value="{service.url}" />

</bean>

<!-- activities impl -->

<bean name="activitiesImpl" class="asadj.spring.test.MyActivitiesImpl">
</bean>

<!-- activity worker -->

<bean id="activityWorker"
class="com.amazonaws.services.simpleworkflow.flow.spring.SpringActivityWorker">
<constructor-arg ref="swfClient" />
<constructor-arg value="domainl" />
<constructor-arg value="tasklistl" />
<property name="registerDomain" value="true" />
<property name="domainRetentionPeriodInDays" value="1" />
<property name="activitiesImplementations">
<list>
<ref bean="activitiesImpl" />
</list>
</property>
</bean>
</beans>

Il processo di hosting del lavoratore di attivita & simile a quello del decisore:

public class ActivityHost {
public static void main(String[] args) {
ApplicationContext context = new FileSystemXmlApplicationContext(
"resources/spring/ActivityHostBean.xml");
System.out.println("Activity worker started");

Contesto di decisione dell'introduzione

Se l'implementazione del flusso di lavoro dipende dagli oggetti del contesto, puoi introdurli facilmente
utilizzando Spring come nel caso precedente. Il framework registra automaticamente i bean relativi
al contesto nel contenitore Spring. Ad esempio, nel frammento di codice seguente, i diversi oggetti
del contesto sono stati collegati automaticamente. Non & richiesta nessun'altra configurazione Spring
degli oggetti del contesto.

public class MyWorkflowImpl implements MyWorkflow {

Integrazione di Spring Versione API 2021-04-28 124

AWS Flow Framework per Java Guida per gli sviluppatori

@Autowired
public MyActivitiesClient client;
@Autowired
public WorkflowClock clock;
@Autowired
public DecisionContext dcContext;
@Autowired
public GenericActivityClient activityClient;
@Autowired
public GenericWorkflowClient workflowClient;
@Autowired
public WorkflowContext wfContext;
@Override
public void start() {
client.activityl();

Se vuoi configurare gli oggetti del contesto nell'implementazione del flusso di lavoro

tramite la configurazione Spring XML, utilizza i nomi di bean dichiarati nella classe
WorkflowScopeBeanNames del pacchetto com.amazonaws.services.simpleworkflow.flow.spring.
Per esempio:

<!-- workflow implementation -->
<bean id="workflowImpl" class="asadj.spring.test.MyWorkflowImpl" scope="workflow">
<property name="client" ref="activitiesClient"/>
<property name="clock" ref="workflowClock"/>
<property name="activityClient" ref="genericActivityClient"/>
<property name="dcContext" ref="decisionContext"/>
<property name="workflowClient" ref="genericWorkflowClient"/>
<property name="wfContext" ref="workflowContext"/>
<aop:scoped-proxy proxy-target-class="false" />
</bean>

In alternativa, puoi introdurre un DecisionContextProvider nel bean di implementazione del
flusso di lavoro e utilizzarlo per creare il contesto. Pud essere utile se vuoi fornire implementazioni
personalizzate del provider e del contesto.

Introdurre le risorse nelle attivita

Puoi creare come istanze e configurare implementazioni di attivita utilizzando un contenitore di
inversione di controllo (Inversion of Control, I0C) e introdurre facilmente risorse, come le connessioni

Integrazione di Spring Versione API 2021-04-28 125

AWS Flow Framework per Java Guida per gli sviluppatori

di database, dichiarandole come proprieta della classe di implementazione delle attivita. Queste
risorse verranno in genere assegnate come singleton. Ricorda che le implementazioni di attivita sono
chiamate dal lavoratore su piu thread. Di conseguenza, l'accesso alle risorse condivise deve essere
sincronizzato.

JUnit Integrazione

Il framework fornisce JUnit estensioni e implementazioni di test degli oggetti di contesto, come un
orologio di test, che € possibile utilizzare per scrivere ed eseguire test unitari. JUnit Con queste
estensioni, puoi testare localmente e inline lI'implementazione del flusso di lavoro.

Scrivere un semplice unit test

Per scrivere test per il flusso di lavoro, utilizza la classe WorkflowTest nel pacchetto
com.amazonaws.services.simpleworkflow.flow.junit. Questa classe € un' JUnit
MethodRuleimplementazione specifica del framework ed esegue il codice del flusso di lavoro
localmente, chiamando le attivita in linea anziché tramite Amazon SWF. Questo ti da la flessibilita per
eseguire i test con la frequenza che preferisci senza alcun addebito.

Per utilizzare questa classe, dichiara semplicemente un campo di tipo WorkflowTest e arricchiscilo
con l'annotazione @Rule. Prima di eseguire i test, crea un nuovo oggetto WorkflowTest e aggiungi
ad esso le implementazioni di attivita e del flusso di lavoro. Puoi utilizzare la client factory del flusso
di lavoro generata per creare un client e avviare un'esecuzione del flusso di lavoro. Il framework
fornisce anche un JUnit runner personalizzato, FlowBlockJUnit4ClassRunner da utilizzare per i
test del flusso di lavoro. Per esempio:

@RunWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

@Rule
public WorkflowTest workflowTest = new WorkflowTest();

List<String> trace;

private BookingWorkflowClientFactory workflowFactory
= new BookingWorkflowClientFactoryImpl();

@Before
public void setUp() throws Exception {
trace = new ArraylList<String>();
// Register activity implementation to be used during test run

JUnit Integrazione Versione API 2021-04-28 126

AWS Flow Framework per Java Guida per gli sviluppatori

BookingActivities activities = new BookingActivitiesImpl(trace);
workflowTest.addActivitiesImplementation(activities);
workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);

@After
public void tearDown() throws Exception {
trace = null;

@Test

public void testReserveBoth() {
BookingWorkflowClient workflow = workflowFactory.getClient();
Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
List<String> expected = new ArraylList<String>();
expected.add("reserveCar-123");
expected.add("reserveAirline-123");
expected.add("sendConfirmation-345");
AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);

Puoi anche specificare un elenco separato di task per ciascuna implementazione di attivita aggiunta
aWorkflowTest. Ad esempio, se hai un'implementazione del flusso di lavoro che pianifica attivita in
elenchi di task specifici dell'host, puoi registrare I'attivita nell'elenco di task di ciascun host:

for (int i = 0; i < 10; i++) {
String hostname = "host" + i;
workflowTest.addActivitiesImplementation(hostname,
new ImageProcessingActivities(hostname));

Tieni presente che il codice in @Test é asincrono. Devi quindi utilizzare il client di flusso di lavoro
asincrono per avviare un'esecuzione. Per verificare i risultati dei test, viene anche fornita una classe
di aiuto AsyncAssert. Questa classe ti permette di attendere che le promesse siano pronte prima di
verificare i risultati. In questo esempio, attendiamo che sia pronto il risultato dell'esecuzione del flusso
di lavoro prima di verificare I'output del test.

Se utilizzi Spring, si pud usare la classe SpringWorkflowTest invece di quella WorkflowTest.
SpringWorkflowTest fornisce proprieta che puoi utilizzare per configurare facilmente le
implementazioni di attivita e di flusso di lavoro tramite la configurazione di Spring. Esattamente

JUnit Integrazione Versione API 2021-04-28 127

AWS Flow Framework per Java Guida per gli sviluppatori

come per i lavoratori compatibili con Spring, devi utilizzare WorkflowScope per configurare i bean
di implementazione del flusso di lavoro. In questo modo siamo sicuri che venga creato un nuovo
bean di implementazione del flusso di lavoro per ogni task di decisione. Assicurati di configurare
questi bean con l'impostazione scoped-proxy proxy-target-class impostata su. false Consulta la
sezione Integrazione di Spring per maggiori dettagli. La configurazione Spring di esempio mostrata
nella sezione Integrazione di Spring pud essere modificata per testare il flusso di lavoro utilizzando
SpringWorkflowTest:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:aop="http://
www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalLocation="http://www.springframework.org/schema/beans ht
tp://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop http://www.springframe
work.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<!-- register custom workflow scope -->
<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">
<map>
<entry key="workflow">
<bean
class="com.amazonaws.services.simpleworkflow.flow.spring.WorkflowScope" />
</entry>
</map>
</property>
</bean>
<context:annotation-config />
<bean id="accesskeys" class='"com.amazonaws.auth.BasicAWSCredentials">
<constructor-arg value="{AWS.Access.ID}" />
<constructor-arg value="{AWS.Secret.Key}" />
</bean>
<bean id="clientConfiguration" class="com.amazonaws.ClientConfiguration">
<property name="socketTimeout" value="70000" />
</bean>

<!-- Amazon SWF client -->
<bean id="swfClient"

JUnit Integrazione Versione API 2021-04-28 128

AWS Flow Framework per Java Guida per gli sviluppatori

class="com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClient">
<constructor-arg ref="accesskeys" />
<constructor-arg ref="clientConfiguration" />
<property name="endpoint" value="{service.url}" />
</bean>

<l-- activities client -->

<bean id="activitiesClient" class="aws.flow.sample.MyActivitiesClientImpl"
scope="workflow">

</bean>

<!-- workflow implementation -->

<bean id="workflowImpl" class="aws.flow.sample.MyWorkflowImpl"
scope="workflow">
<property name="client" ref="activitiesClient" />
<aop:scoped-proxy proxy-target-class="false" />

</bean>

<!-- WorkflowTest -->
<bean id="workflowTest"
class="com.amazonaws.services.simpleworkflow.flow.junit.spring.SpringWorkflowTest">
<property name="workflowImplementations">
<list>
<ref bean="workflowImpl" />
</list>
</property>
<property name="taskListActivitiesImplementationMap">
<map>
<entry>
<key>
<value>listl</value>
</key>
<ref bean="activitiesImplHostl" />
</entry>
</map>
</property>
</bean>
</beans>

JUnit Integrazione Versione API 2021-04-28 129

AWS Flow Framework per Java Guida per gli sviluppatori

Implementazioni di attivita fittizie

Durante i test puoi usare implementazioni di attivita reali, ma se vuoi eseguire unit test solo della
logica del flusso di lavoro, puoi simulare le attivita. Questo avviene fornendo un'implementazione
fittizia dell'interfaccia delle attivita alla classe WorkflowTest. Per esempio:

@RunwWith(FlowBlockJUnit4ClassRunner.class)
public class BookingWorkflowTest {

@Rule
public WorkflowTest workflowTest = new WorkflowTest();

List<String> trace;

private BookingWorkflowClientFactory workflowFactory
= new BookingWorkflowClientFactoryImpl();

@Before

public void setUp() throws Exception {
trace = new ArraylList<String>();
// Create and register mock activity implementation to be used during test zrun
BookingActivities activities = new BookingActivities() {

@Override
public void sendConfirmationActivity(int customerId) {
trace.add("sendConfirmation-" + customerlId);

@Override
public void reserveCar(int requestId) {
trace.add("reserveCar-" + requestld);

@Override
public void reserveAirline(int requestId) {
trace.add("reserveAirline-" + requestId);

I
workflowTest.addActivitiesImplementation(activities);
workflowTest.addWorkflowImplementationType(BookingWorkflowImpl.class);

@After

JUnit Integrazione Versione API 2021-04-28 130

AWS Flow Framework per Java Guida per gli sviluppatori

public void tearDown() throws Exception {
trace = null;

@Test

public void testReserveBoth() {
BookingWorkflowClient workflow = workflowFactory.getClient();
Promise<Void> booked = workflow.makeBooking(123, 345, true, true);
List<String> expected = new ArraylList<String>();
expected.add("reserveCar-123");
expected.add("reserveAirline-123");
expected.add("sendConfirmation-345");
AsyncAssert.assertEqualsWaitFor("invalid booking", expected, trace, booked);

In alternativa, puoi fornire un'implementazione fittizia del client delle attivita e introdurla
nell'implementazione del flusso di lavoro.

Testare gli oggetti contesto

Se l'implementazione del flusso di lavoro dipende dagli oggetti del contesto del framework, ad
esempio, non DecisionContext & necessario fare nulla di speciale per testare tali flussi di lavoro.
Quando viene eseguito un test tramite WorkflowTest, questo introduce automaticamente oggetti
contesto di test. Quando l'implementazione del flusso di lavoro accede agli oggetti di contesto,

ad esempio utilizzandoDecisionContextProviderImpl, otterra I'implementazione di test.

Puoi manipolare questi oggetti contesto di test nel codice di test (metodo @Test) per creare casi
interessanti di test. Ad esempio, se il flusso di lavoro crea un timer, puoi attivarlo chiamando il
metodo clockAdvanceSeconds nella classe WorkflowTest per muovere I'orologio in avanti. Puoi
anche accelerare l'orologio per attivare i timer in anticipo rispetto al normale utilizzando la proprieta
ClockAccelerationCoefficient suWorkflowTest. Ad esempio, se il flusso di lavoro crea un
timer per un ora, puoi impostare ClockAccelerationCoefficient su 60 per attivare il timer in un
minuto. Per impostazione predefinita, ClockAccelerationCoefficient & impostato su 1.

Per ulteriori dettagli sui pacchetti com.amazonaws.services.simpleworkflow.flow.test e
com.amazonaws.services.simpleworkflow.flow.junit, consulta la documentazione AWS SDK per
Java.

JUnit Integrazione Versione API 2021-04-28 131

AWS Flow Framework per Java Guida per gli sviluppatori

Gestione errori

Argomenti

« TryCatchFinally Semantica

* Annullamento

» Annidato TryCatchFinally

Il costrutto try/catch/finally in Java semplifica la gestione degli errori ed € quindi utilizzato
diffusamente. Consente di associare gestori di errori a un blocco di codice. Internamente, cid avviene
aggiungendo ulteriori metadati sui gestori di errori allo stack di chiamate. Quando viene generata
un'eccezione, il runtime cerca un gestore di errori associato nello stack di chiamate e lo richiama; se
non lo trova, propaga I'eccezione fino alla catena di chiamate.

Questo processo € appropriato per il codice sincrono, ma la gestione degli errori in programmi
distribuiti e asincroni & piu complesso. Poiché una chiamata asincrona ritorna immediatamente,

il chiamante non € presente nello stack di chiamate quando viene eseguito il codice asincrono.

Cio significa che le eccezioni non gestite nel codice asincrono non possono essere gestite dal
chiamante nel modo usuale. In genere, le eccezioni generate nel codice asincrono sono gestite
passando lo stato di errore a un callback che viene passato a un metodo asincrono. Se in alternativa
si utilizza Future<?>, viene restituito un errore quando tenti di accedervi. Questo processo non

e ideale in quanto il codice che riceve I'eccezione (il callback o il codice che utilizza Future<?>)
non dispone del contesto della chiamata originale e pud non essere in grado di gestire l'eccezione
in modo adeguato. Inoltre, in un sistema asincrono distribuito in cui i componenti sono eseguiti
simultaneamente, possono verificarsi piu errori contemporaneamente. Questi errori possono essere
di tipo e gravita differenti e devono essere gestiti in modo appropriato.

Anche la pulizia delle risorse dopo una chiamata asincrona risulta alquanto complessa. A differenza
del codice sincrono, non & possibile utilizzarlo try/catch/finally nel codice chiamante per ripulire le
risorse perché il lavoro iniziato nel blocco try potrebbe essere ancora in corso quando viene eseguito
il blocco finally.

Il framework fornisce un meccanismo che rende la gestione degli errori nel codice asincrono
distribuito simile e quasi altrettanto semplice di quella di Java. try/catch/finally

ImageProcessingActivitiesClient activitiesClient
= new ImageProcessingActivitiesClientImpl();

Gestione errori Versione API 2021-04-28 132

AWS Flow Framework per Java Guida per gli sviluppatori

public void createThumbnail(final String webPageUrl) {
new TryCatchFinally() {

@Override
protected void doTry() throws Throwable {
List<String> images = getImageUrls(webPageUrl);
for (String image: images) {
Promise<String> locallImage
= activitiesClient.downloadImage(image);
Promise<String> thumbnailFile
= activitiesClient.createThumbnail(locallImage);
activitiesClient.uploadImage(thumbnailFile);

}

@Override
protected void doCatch(Throwable e) throws Throwable {

// Handle exception and rethrow failures

LoggingActivitiesClient logClient = new LoggingActivitiesClientImpl();
logClient.reportError(e);

throw new RuntimeException("Failed to process images", e);

@Override
protected void doFinally() throws Throwable {
activitiesClient.cleanUp();

};

Il funzionamento della classe TryCatchFinally e delle relative varianti, ovvero TryFinally

e TryCatch, & simile a quello dei blocchi Java try/catch/finally. Tale classe consente di
associare i gestori di eccezioni a blocchi di codice di flusso di lavoro che possono essere eseguiti
come task asincroni e remoti. Il metodo doTry () & equivalente, a livello di logica, al blocco try.

Il framework esegue automaticamente il codice in doTry (). Un elenco di oggetti Promise pud
essere passato al costruttore di TryCatchFinally. Il metodo doTry sara eseguito quanto tutti

gli oggetti Promise passati al costruttore diventano pronti. Se un'eccezione viene generata dal
codice richiamato in modo asincrono da doTzry(), tutto il lavoro in sospeso in doTry() viene
annullato e doCatch() viene chiamato per gestire I'eccezione. Ad esempio, nell'elenco qui sopra,
se downloadImage genera un'eccezione, createThumbnail e uploadImage verranno annullati.

Gestione errori Versione API 2021-04-28 133

AWS Flow Framework per Java Guida per gli sviluppatori

Infine, doFinally () viene chiamato quando tutto il lavoro asincrono risulta terminato (completato,
non riuscito o annullato). Questo metodo puo essere utilizzato per la pulizia delle risorse. Puoi inoltre
nidificare queste classi in base alle esigenze aziendali.

Quando un'eccezione e restituita in doCatch(), il framework fornisce uno stack di chiamate logiche
che include chiamate asincrone e remote. Cio puo rivelarsi utile per il debug, soprattutto se hai dei
metodi asincroni che chiamano altri metodi asincroni. Ad esempio, un'eccezione da downloadlmage
generera un'eccezione come quella riportata di seguito:

RuntimeException: error downloading image
at downloadImage(Main.java:35)

at ---continuation---.(repeated:1)
at errorHandlingAsync$l.doTry(Main.java:24)
at ---continuation---.(repeated:1)

TryCatchFinally Semantica

L'esecuzione di un programma AWS Flow Framework per Java pud essere visualizzata come

un albero di rami in esecuzione simultanea. Una chiamata a un metodo asincrono, a un'attivita
e a TryCatchFinally crea un nuovo ramo in tale struttura. Ad esempio, il flusso di lavoro di
elaborazione di immagini pud essere rappresentato dalla struttura ad albero illustrata di seguito.

l

Un errore in un ramo dell'esecuzione comportera la rimozione di quel ramo, proprio come
un'eccezione provoca la rimozione dello stack di chiamate in un programma Java. La rimozione risale
lungo il ramo di esecuzione fino a che I'errore viene gestito o viene raggiunta la radice della struttura
ad albero, nel qual caso I'esecuzione di flusso di lavoro viene terminata.

Il framework segnala gli errori che si verificano durante I'elaborazione di task come eccezioni.
Associa i gestori di eccezioni (metodi doCatch()) definitiin TryCatchFinally a tutti i task creati
dal codice nel metodo doTry () corrispondente. Se un'attivita fallisce, ad esempio a causa di un

TryCatchFinally Semantica Versione API 2021-04-28 134

AWS Flow Framework per Java Guida per gli sviluppatori

timeout o di un'eccezione non gestita, verra sollevata I'eccezione appropriata e verra invocata la
corrispondente per gestirla. doCatch() A tal fine, il framework collabora con Amazon SWF per
propagare gli errori remoti e li resuscita come eccezioni nel contesto del chiamante.

Annullamento

Quando si verifica un'eccezione nel codice sincrono, il controllo passa direttamente al blocco catch,
ignorando il codice rimanente nel blocco try. Per esempio:

try {
a();
b();
c();
}

catch (Exception e) {
e.printStackTrace();

In questo codice, se b() genera un'eccezione, c() non viene mai richiamato. Facciamo un raffronto
con un flusso di lavoro:

new TryCatch() {

@Override

protected void doTry() throws Throwable {
activityA();
activityB();
activityC();

@Override
protected void doCatch(Throwable e) throws Throwable {
e.printStackTrace();

%

In questo caso, le chiamate a activityA, activityB e activityC hanno esito positivo e
comportano la creazione di tre task che vengono eseguiti in modo asincrono. Supponiamo che
successivamente il task per activityB restituisca un errore. Questo errore viene registrato nella
cronologia da Amazon SWF. Per gestirlo, il framework dapprima tentera di annullare tutti gli altri task

Annullamento Versione API 2021-04-28 135

AWS Flow Framework per Java Guida per gli sviluppatori

originati nell'ambito dello stesso doTry(); in questo caso, activityA e activityC. Quanto tuttii
task risultano terminati (annullati, non riusciti o completati), il metodo doCatch() appropriato verra
richiamato per gestire l'errore.

A differenza dell'esempio sincrono, dove c() non € mai stato eseguito, activityC é stato
richiamato e un task € stato pianificato per I'esecuzione. Di conseguenza, il framework effettuera un
tentativo per annullarlo, ma non & garantito che tale operazione riesca. L'annullamento non € certo in
quanto l'attivita pud essere gia stata completata, puo ignorare la richiesta di annullamento o pud non
riuscire a causa di un errore. Il framework garantisce tuttavia che la chiamata del metodo doCatch()
verra effettuata solo dopo il completamento di tutti i task avviati dal metodo doTry () corrispondente.
Garantisce inoltre la chiamata di doFinally () solo dopo il completamento di tutti i task avviati

da doTry() e doCatch(). Se, ad esempio, le attivita dell'esempio precedente dipendono

I'una dall'altra, ad esempio activityB dipende da activityA e activityCdaactivityB,
I'annullamento activityC sara immediato perché non & programmato in Amazon SWF fino al
activityB completamento:

new TryCatch() {

@Override

protected void doTry() throws Throwable {
Promise<Void> a = activityA();
Promise<Void> b = activityB(a);
activityC(b);

@Override
protected void doCatch(Throwable e) throws Throwable {
e.printStackTrace();

I

Heartbeat dell'attivita

Il meccanismo di cancellazione cooperativa di AWS Flow Framework for Java consente di annullare
senza problemi le attivita in corso. Quando si avvia I'annullamento, i task bloccati o in attesa di
essere assegnati a un lavoratore vengono annullati automaticamente. Se, tuttavia, un task e gia
assegnato a un lavoratore, il framework richiedera all'attivita di annullarlo. L'implementazione di
attivita deve gestire in modo esplicito queste richieste di annullamento. Cio viene eseguito mediante
la segnalazione dell'heartbeat dell'attivita.

Annullamento Versione API 2021-04-28 136

AWS Flow Framework per Java Guida per gli sviluppatori

La segnalazione dell'heartbeat consente all'implementazione di attivita di comunicare I'avanzamento
di un task di attivita in corso, il che ¢ utile per il monitoraggio, e all'attivita di verificare I'esistenza

di richieste di annullamento. Il metodo recordActivityHeartbeat genera un'eccezione
CancellationException se un annullamento € stato richiesto. L'implementazione di attivita pud
rilevare questa eccezione e agire sulla richiesta di annullamento oppure pud ignorare la richiesta non
tenendo conto dell'eccezione. Per soddisfare la richiesta di cancellazione, I'attivita deve eseguire
I'eventuale pulizia desiderata e quindi generare di nuovo CancellationException. Quando
questa eccezione viene generata a partire da un'implementazione di attivita, il framework registra che
il task di attivita & stato completato con lo stato annullato.

L'esempio seguente mostra un'attivita che scarica ed elabora immagini. L'attivita genera I'heartbeat
dopo l'elaborazione di ogni immagine e se viene richiesto I'annullamento, esegue la pulizia e genera
di nuovo l'eccezione per confermare I'annullamento.

@Override
public void processImages(List<String> urls) {
int imageCounter = 0;
for (String url: urls) {
imageCounter++;
Image image = download(url);
process(image);
try {
ActivityExecutionContext context
= contextProvider.getActivityExecutionContext();
context.recordActivityHeartbeat(Integer.toString(imageCounter));
} catch(CancellationException ex) {
cleanDownloadFoldex();
throw ex;

La segnalazione dell'heartbeat dell'attivita non & necessaria, ma € consigliata se I'attivita € a
esecuzione prolungata o se esegue operazioni dispendiose che intendi annullare in condizioni di
errore. Devi chiamare heartbeatActivityTask periodicamente a partire dall'implementazione di
attivita.

In caso di timeout dell'attivita, verra generata l'eccezione ActivityTaskTimedOutException
e getDetails sull'oggetto eccezione restituira i dati passati all'ultima chiamata a
heartbeatActivityTask riuscita per il task di attivita corrispondente. L'implementazione di flusso

Annullamento Versione API 2021-04-28 137

AWS Flow Framework per Java Guida per gli sviluppatori

di lavoro pu0 utilizzare queste informazioni per determinare I'avanzamento prima del timeout del task
di attivita.

(® Note

Non é consigliabile eseguire il battito cardiaco troppo frequentemente perché Amazon SWF
puo limitare le richieste di heartbeat. Consulta la Amazon Simple Workflow Service Developer
Guide per conoscere i limiti imposti da Amazon SWF.

Annullamento esplicito di un task

Oltre alle condizioni di errore, vi sono altri casi in cui puoi annullare esplicitamente un task.

Ad esempio, € possibile che un'attivita per I'elaborazione di pagamenti mediante una carta di
credito debba essere annullata se 'utente annulla I'ordine. Il framework ti consente di annullare
esplicitamente i task creati nell'ambito di una classe TryCatchFinally. Nell'esempio seguente, il
task di pagamento viene annullato se si riceve un segnale durante I'elaborazione del pagamento.

public class OrderProcessorImpl implements OrderProcessor {
private PaymentProcessorClientFactory factory
= new PaymentProcessorClientFactoryImpl();
boolean processingPayment = false;
private TryCatchFinally paymentTask = null;

@Override
public void processOrder(int orderId, final float amount) {
paymentTask = new TryCatchFinally() {

@Override
protected void doTry() throws Throwable {
processingPayment = true;

PaymentProcessorClient paymentClient = factory.getClient();
paymentClient.processPayment(amount);

@Override
protected void doCatch(Throwable e) throws Throwable {
if (e instanceof CancellationException) {
paymentClient.log("Payment canceled.");
} else {

Annullamento Versione API 2021-04-28 138

https://docs.aws.amazon.com/amazonswf/latest/developerguide/
https://docs.aws.amazon.com/amazonswf/latest/developerguide/

AWS Flow Framework per Java Guida per gli sviluppatori

throw e;

@Override
protected void doFinally() throws Throwable {
processingPayment = false;

i

@Override
public void cancelPayment() {
if (processingPayment) {
paymentTask.cancel(null);

Ricezione di notifiche relative a task annullati

Se un task viene completato quando lo stato &€ annullato, il framework informa la logica di flusso

di lavoro generando un'eccezione CancellationException. Se un'attivita viene completata
quando lo stato € annullata, un record viene creato nella cronologia e il framework chiama il metodo
doCatch() appropriato con un'eccezione CancellationException. Come mostrato nell'esempio
precedente, quando il task di elaborazione del pagamento viene annullato, il workflow riceve
un'eccezione CancellationException.

Un'eccezione CancellationException non gestita viene propagata nel ramo di esecuzione
come avviene con qualsiasi altra eccezione. Tuttavia, il metodo doCatch() ricevera I'eccezione
CancellationException solo se non vi sono altre eccezioni nell'ambito, in quanto la priorita delle
altre eccezioni € superiore a quella dell'annullamento.

Annidato TryCatchFinally

Puoi nidificare la classe TryCatchFinally in funzione delle tue esigenze. Poiché ognuno
TryCatchFinally crea un nuovo ramo nell'albero di esecuzione, € possibile creare ambiti
annidati. Le eccezioni nell'ambito padre comporteranno tentativi di annullamento di tutti i task
avviati dalle classi TryCatchFinally nidificate nell'ambito. Tuttavia, le eccezioni in una classe
TryCatchFinally nidificata non vengono propagate automaticamente al padre. Se desideri

Annidato TryCatchFinally Versione API 2021-04-28 139

AWS Flow Framework per Java Guida per gli sviluppatori

propagare un'eccezione da una classe TryCatchFinally nidificata alla classe TryCatchFinally
che la contiene, devi generare di nuovo l'eccezione in doCatch(). In altre parole, solo le eccezioni
non gestite sono propagate, esattamente come i blocchi Java try/catch. Se annulli una classe
TryCatchFinally nidificata chiamando il metodo Cancel, la classe TryCatchFinally nidificata
verra annullata ma non la classe TryCatchFinally che la contiene.

new TryCatch() {
@Override
protected void doTry() throws Throwable {
activityA();

new TryCatch() {

@Override
protected void doTry() throws Throwable {
activityB();
}
@Override
protected void doCatch(Throwable e) throws Throwable {
reportError(e);
}
};
activityC();
}
@Override
protected void doCatch(Throwable e) throws Throwable {
reportError(e);
}

};

Annidato TryCatchFinally Versione API 2021-04-28 140

AWS Flow Framework per Java Guida per gli sviluppatori

Ripetere le attivita non andate a buon fine

A volte le attivita non vanno a buon fine per ragioni effimere, ad esempio una perdita temporanea
della connessione. In altri casi I'attivita va a buon fine, quindi il modo corretto di gestire I'errore
spesso quello di ripetere I'attivita, anche piu volte.

Esiste una serie di strategie per ripetere le attivita; la migliore dipende dai dettagli del flusso di lavoro.
Tali strategie rientrano in tre categorie di base:

 La retry-until-success strategia continua semplicemente a riprovare I'attivita fino al suo
completamento.

» La strategia di ripetizione esponenziale aumenta esponenzialmente l'intervallo di tempo tra i
tentativi fino al completamento dell'attivita o fino a quando il processo raggiunge un punto di arresto
specifico, come un numero massimo di tentativi.

 La strategia di ripetizione personalizzata decide se o come ripetere l'attivita dopo ciascun tentativo
non andato a buon fine.

Le sezioni seguenti descrivono come implementare queste strategie. | lavoratori del flusso di lavoro
di esempio utilizzano tutti una singola attivita, unreliableActivity, che esegue casualmente una
delle seguenti operazioni:

» Viene completata immediatamente
* Non va a buon fine intenzionalmente superando il valore di timeout

* Non va a buon fine intenzionalmente generando I1legalStateException

Retry-Until-Success Strategia

La strategia piu semplice € quella di ripetere I'attivita ogni volta che ha esito negativo fino al buon
esito. Il modello di base é:

1. Implementare una classe nidificata TryCatch o TryCatchFinally nel metodo del punto di
ingresso del flusso di lavoro.

2. Eseguire I'attivita in doTry.

3. Se l'attivita non va a buon fine, il framework chiama doCatch, che esegue nuovamente il metodo
del punto di ingresso.

4. Ripetere le fasi 2 e 3 fino al completamento con esito positivo dell'attivita.

Ripetere le attivita non andate a buon fine Versione API 2021-04-28 141

AWS Flow Framework per Java Guida per gli sviluppatori

Il seguente flusso di lavoro implementa la retry-until-success strategia. L'interfaccia del

flusso di lavoro &€ implementata in RetryActivityRecipeWorkflow e ha un metodo,
runUnreliableActivityTillSuccess, che € il punto di ingresso del flusso di lavoro. Il
lavoratore del flusso di lavoro viene implementato in RetryActivityRecipeWorkflowImpl, nel
seguente modo:

public class RetryActivityRecipeWorkflowImpl
implements RetryActivityRecipeWorkflow {

@Override
public void runUnreliableActivityTillSuccess() {
final Settable<Boolean> retryActivity = new Settable<Boolean>();

new TryCatch() {
@Override
protected void doTry() throws Throwable {
Promise<Void> activityRanSuccessfully
= client.unreliableActivity();
setRetryActivityToFalse(activityRanSuccessfully, retryActivity);

@Override
protected void doCatch(Throwable e) throws Throwable {
retryActivity.set(true);

}
13
restartRunUnreliableActivityTillSuccess(retryActivity);
}
@Asynchronous

private void setRetryActivityToFalse(
Promise<Void> activityRanSuccessfully,
@NoWait Settable<Boolean> retryActivity) {
retryActivity.set(false);

@Asynchronous
private void restartRunUnreliableActivityTillSuccess(
Settable<Boolean> retryActivity) {
if (retryActivity.get()) {
runUnreliableActivityTillSuccess();

Retry-Until-Success Strategia Versione APl 2021-04-28 142

AWS Flow Framework per Java Guida per gli sviluppatori

Il flusso di lavoro funziona come segue:

1.

runUnreliableActivityTillSuccess crea un oggetto Settable<Boolean> denominato
retryActivity che viene usato per indicare se I'attivita non € riuscita e deve essere ritentata.
Settable<T> & derivato da Promise<T> e funziona allo stesso modo ma il valore dell'oggetto
Settable<T> viene impostato manualmente.

. runUnreliableActivityTillSuccess implementa una classe annidata anonima TryCatch

per gestire le eccezioni generate dall'attivita unreliableActivity. Per ulteriori discussioni su
come gestire le eccezioni generate da un codice asincrono, consulta Gestione errori.

. doTry esegue l'attivita unreliableActivity, che restituisce un oggetto Promise<Void> di

nome activityRanSuccessfully.

. doTry chiama il metodo asincrono setRetryActivityToFalse, che ha due parametri:

* activityRanSuccessfully accetta I'oggetto Promise<Void> restituito dall'attivita
unreliableActivity.

« retryActivity accetta I'oggetto retryActivity.

Se unreliableActivity viene completato, activityRanSuccessfully diventa pronto

e setRetryActivityToFalse imposta retryActivity su false. In caso contrario,
activityRanSuccessfully non diventa mai pronto e setRetryActivityToFalse non viene
eseguito.

. SeunreliableActivity genera un'eccezione, il framework chiama doCatch e lo trasferisce

all'oggetto dell'eccezione. doCatch imposta retryActivity su true.

. runUnreliableActivityTillSuccess chiama il metodo asincrono

restartRunUnreliableActivityTillSuccess e lo trasferisce

all'oggetto retryActivity. Poiché retryActivity € un tipo Promise<T>,
restartRunUnreliableActivityTillSuccess ritarda I'esecuzione fin quando
retryActivity é pronto, il che si verifica dopo il completamento di TryCatch.

. Quando retryActivity é pronto, restartRunUnreliableActivityTillSuccess estrae il

valore.

» Seil valore € false, il nuovo tentativo € andato a buon fine.
restartRunUnreliableActivityTillSuccess non & operativo e la sequenza di
ripetizione termina.

Retry-Until-Success Strategia Versione APl 2021-04-28 143

AWS Flow Framework per Java Guida per gli sviluppatori

« Se il valore ¢ true, il nuovo tentativo non & andato a buon fine.
restartRunUnreliableActivityTillSuccess chiama
runUnreliableActivityTillSuccess per eseguire nuovamente l'attivita.

8. Si ripetono le fasi 1-7 fino al completamento di unreliableActivity.

(® Note

doCatch non gestisce I'eccezione; imposta semplicemente I'oggetto retryActivity
su true per indicare l'esito negativo dell'attivita. La ripetizione € gestita dal metodo
asincrono restartRunUnreliableActivityTillSuccess, che ritarda
I'esecuzione fino al completamento di TryCatch. Il motivo di questo approccio

e che se riprovi un'attivita in doCatch non puoi annullarla. Ripetere I'attivita in
restartRunUnreliableActivityTillSuccess ti permette di eseguire attivita
annullabili.

Strategia di ripetizione esponenziale

Con la strategia di ripetizione esponenziale, il framework esegue nuovamente un'attivita non andata
a buon fine dopo un periodo di tempo specifico, N secondi. Se il tentativo ha esito negativo, il
framework esegue nuovamente l'attivita dopo 2N secondi, 4N secondi e cosi via. Poiché il tempo

di attesa pu0 essere lungo, in genere i tentativi si arrestano a un certo punto invece che proseguire
all'infinito.

Il framework prevede tre modi per implementare una strategia di ripetizione esponenziale:

+ L'annotazione @ExponentialRetry & I'approccio piu semplice, ma devi impostare le opzioni di
configurazione della ripetizione al momento della compilazione.

» Laclasse RetryDecorator ti permette di impostare la configurazione della ripetizione in fase di
runtime e di modificarla in base alle necessita.

+ La classe AsyncRetryingExecutor ti permette di impostare la configurazione della ripetizione
in fase di runtime e di modificarla in base alle necessita. Inoltre, il framework chiama un metodo
AsyncRunnable.run implementato dall'utente per eseguire ogni tentativo di ripetizione.

Tutti gli approcci supportano le seguenti opzioni di configurazione, in cui i valori di tempo sono
espressi in secondi:

Strategia di ripetizione esponenziale Versione API 2021-04-28 144

AWS Flow Framework per Java Guida per gli sviluppatori

« |l tempo di attesa per la ripetizione iniziale.

« |l coefficiente di backoff, che viene utilizzato per calcolare gli intervalli di ripetizione, nel modo
seguente:

retryInterval = initialRetryIntervalSeconds * Math.pow(backoffCoefficient,
numberOfTries - 2)

Il valore predefinito & 2.0.
* Il numero massimo di tentativi di ripetizione. |l valore predefinito € illimitato.
* L'intervallo massimo di ripetizione. Il valore predefinito € illimitato.

« |l tempo di scadenza. | tentativi si arrestano quando la durata totale del processo supera questo
valore. Il valore predefinito € illimitato.

» Le eccezioni che attivano il processo di ripetizione. Per impostazione predefinita, tutte le eccezioni
attivano il processo di ripetizione.

» Le eccezioni che non attivano tentativi di ripetizione. Per impostazione predefinita, non € esclusa
alcuna eccezione.

Le sezioni seguenti descrivono i vari modi in cui € possibile implementare una strategia di ripetizione
esponenziale.

Riprova esponenziale con @ ExponentialRetry

Il modo piu semplice per implementare una strategia di ripetizione esponenziale per un'attivita &
applicare un'annotazione @ExponentialRetry all'attivita nella definizione dell'interfaccia. Se
I'attivita non va a buon fine, il framework gestisce automaticamente il processo di ripetizione in base
ai valori opzionali specificati. Il modello di base é:

1. Applica @ExponentialRetry alle attivita in questione e specifica la configurazione di ripetizione.

2. Se l'attivita annotata non va a buon fine, il framework la recupera automaticamente secondo la
configurazione specificata dagli argomenti dell'annotazione.

Il lavoratore del flusso di lavoro ExponentialRetryAnnotationWorkflow implementa

la strategia di ripetizione esponenziale utilizzando un'annotazione @ExponentialRetry.
Utilizza un'attivita unreliableActivity la cui definizione dell'interfaccia € implementata in
ExponentialRetryAnnotationActivities, nel modo seguente:

Strategia di ripetizione esponenziale Versione API 2021-04-28 145

AWS Flow Framework per Java Guida per gli sviluppatori

@Activities(version = "1.0")
@ActivityRegistrationOptions(
defaultTaskScheduleToStartTimeoutSeconds = 30,
defaultTaskStartToCloseTimeoutSeconds = 30)
public interface ExponentialRetryAnnotationActivities {
@ExponentialRetry(
initialRetryIntervalSeconds = 5,
maximumAttempts = 5,
exceptionsToRetry = IllegalStateException.class)
public void unreliableActivity();

Le opzioni di @ExponentialRetry specificano la seguente strategia:

* Ripeti sono se l'attivita genera I11legalStateException.
» Utilizza un tempo di attesa iniziale di 5 secondi.

* Non piu di 5 tentativi di ripetizione.

L'interfaccia del flusso di lavoro &€ implementata in RetryWorkflow e ha un metodo, process,
che ¢ il punto di ingresso del flusso di lavoro. Il lavoratore del flusso di lavoro viene implementato in
ExponentialRetryAnnotationWorkflowImpl, nel seguente modo:

public class ExponentialRetryAnnotationWorkflowImpl implements RetryWorkflow {
public void process() {
handleUnreliableActivity();

public void handleUnreliableActivity() {
client.unreliableActivity();

Il flusso di lavoro funziona come segue:

1. process esegue il metodo asincrono handleUnreliableActivity.

2. handleUnreliableActivity esegue l'attivita unreliableActivity.

Strategia di ripetizione esponenziale Versione API 2021-04-28 146

AWS Flow Framework per Java Guida per gli sviluppatori

Se l'attivita non va a buon fine generando I1legalStateException, il
framework esegue automaticamente la strategia di ripetizione specificata in
ExponentialRetryAnnotationActivities.

Riprova esponenziale con la classe RetryDecorator

@ExponentialRetry € semplice da usare. Tuttavia, la configurazione & statica e impostata al
momento della compilazione, in modo che il framework utilizzi la stessa strategia di ripetizione ogni
volta che I'attivita non va a buon fine. Puoi implementare una strategia di ripetizione esponenziale piu
flessibile utilizzando la classe RetryDecorator, che ti permette di specificare la configurazione in
fase di runtime e di modificarla in base alle necessita. Il modello di base é:

1. Crea e configura un oggetto ExponentialRetryPolicy che specifichi la configurazione della
ripetizione.

2. Crea un oggetto RetryDecorator e trasferisci 'oggetto ExponentialRetryPolicy della Fase
1 al costruttore.

3. Applica I'oggetto decorator all'attivita trasferendo il nome della classe del client di attivita al metodo
decorato dell'oggetto RetryDecorator.

4. Esegui l'attivita.

Se l'attivita non va a buon fine, il framework la ripete secondo la configurazione dell'oggetto
ExponentialRetryPolicy. Puoi modificare la configurazione della ripetizione in base alla
necessita cambiando I'oggetto.

(@ Note

L'annotazione @ExponentialRetry e la classe RetryDecorator sono reciprocamente
esclusive. Non puoi utilizzare RetryDecorator per sovrascrivere dinamicamente una policy
di ripetizione specificata da un'annotazione @ExponentialRetry.

La seguente implementazione del flusso di lavoro mostra come utilizzare la classe
RetryDecorator per implementare una strategia di ripetizione esponenziale. Utilizza
un'attivita unreliableActivity priva dell'annotazione @ExponentialRetry. L'interfaccia
del flusso di lavoro & implementata in RetryWorkflow e ha un metodo, process, che ¢ il
punto di ingresso del flusso di lavoro. Il lavoratore del flusso di lavoro viene implementato in
DecoratorRetryWorkflowImpl, nel seguente modo:

Strategia di ripetizione esponenziale Versione API 2021-04-28 147

AWS Flow Framework per Java Guida per gli sviluppatori

public class DecoratorRetryWorkflowImpl implements RetryWorkflow {

public void process() {
long initialRetryIntervalSeconds = 5;
int maximumAttempts = 5;
ExponentialRetryPolicy retryPolicy = new ExponentialRetryPolicy(
initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);

Decorator retryDecorator = new RetryDecorator(retryPolicy);
client = retryDecorator.decorate(RetryActivitiesClient.class, client);
handleUnreliableActivity();

public void handleUnreliableActivity() {
client.unreliableActivity();

Il flusso di lavoro funziona come segue:

1. process crea e configura un oggetto ExponentialRetryPolicy nel seguente modo:
» Trasferendo al costruttore l'intervallo di ripetizione iniziale.

* Chiamando il metodo withMaximumAttempts dell'oggetto per impostare il numero massimo di
tentativia 5. ExponentialRetryPolicy espone altri oggetti with che & possibile usare per
specificare altre opzioni di configurazione.

2. process crea un oggetto RetryDecorator con nome retryDecorator e trasferisce I'oggetto
ExponentialRetryPolicy della Fase 1 al costruttore.

3. process applica I'elemento decorator all'attivita chiamando il metodo
retryDecorator.decorate e trasferendolo al nome della classe del client di attivita.

4. handleUnreliableActivity esegue l'attivita.

Se l'attivita non va a buon fine, il framework la ripete secondo la configurazione specificata nella Fase
1.

@ Note

Molti dei metodi with della classe ExponentialRetryPolicy hanno un
metodo corrispondente set che puoi chiamare per modificare I'opzione di

Strategia di ripetizione esponenziale Versione API 2021-04-28 148

AWS Flow Framework per Java Guida per gli sviluppatori

configurazione corrispondente in qualsiasi momento: setBackoffCoefficient,
setMaximumAttempts, setMaximumRetryIntervalSeconds e
setMaximumRetryExpirationIntervalSeconds.

Riprova esponenziale con la classe AsyncRetryingExecutor

La classe RetryDecorator offre piu flessibilita nella configurazione del processo di ripetizione
rispetto a @ExponentialRetry, ma il framework esegue comunque automaticamente i tentativi

di ripetizione, in base alla attuale configurazione dell'oggetto ExponentialRetryPolicy.

Un approccio piu flessibile prevede l'utilizzo della classe AsyncRetryingExecutor. Oltre a
permetterti di configurare il processo di ripetizione in fase di runtime, il framework chiama un metodo
AsyncRunnable. run implementato dall'utente per eseguire ogni tentativo di ripetizione invece che
eseguire semplicemente I'attivita.

Il modello di base é:

1. Crea e configura un oggetto ExponentialRetryPolicy per specificare la configurazione della
ripetizione.

2. Crea un oggetto AsyncRetryingExecutor e trasferiscigli I'oggetto
ExponentialRetryPolicy e un'istanza dell'orologio del flusso di lavoro.

3. Implementa una classe annidata anonima TryCatch o TryCatchFinally.

4. Implementa una classe anonima AsyncRunnable e sovrascrivi il metodo run per implementare il
codice personalizzato per eseguire |'attivita.

5. Sovrascrivi doTry per chiamare il metodo execute dell'oggetto AsyncRetryingExecutor e
trasferirlo alla classe AsyncRunnable dalla fase 4. L'oggetto AsyncRetryingExecutor chiama
AsyncRunnable. run per eseguire I'attivita.

6. Se l'attivita non va a buon fine, l'oggetto AsyncRetryingExecutor chiama nuovamente il
metodo AsyncRunnable.run secondo la policy di ripetizione specificata nella Fase 1.

Il flusso di lavoro seguente mostra come utilizzare la classe AsyncRetryingExecutor

per implementare una strategia di ripetizione esponenziale. Utilizza la stessa attivita
unreliableActivity del flusso di lavoro DecoratorRetryWorkflow discusso in precedenza.
L'interfaccia del flusso di lavoro € implementata in RetryWorkflow e ha un metodo, process,
che ¢ il punto di ingresso del flusso di lavoro. Il lavoratore del flusso di lavoro viene implementato in
AsyncExecutorRetryWorkflowImpl, nel seguente modo:

Strategia di ripetizione esponenziale Versione API 2021-04-28 149

AWS Flow Framework per Java Guida per gli sviluppatori

public class AsyncExecutorRetryWorkflowImpl implements RetryWorkflow {
private final RetryActivitiesClient client = new RetryActivitiesClientImpl();
private final DecisionContextProvider contextProvider = new
DecisionContextProviderImpl();
private final WorkflowClock clock =
contextProvider.getDecisionContext().getWorkflowClock();

public void process() {
long initialRetryIntervalSeconds = 5;
int maximumAttempts = 5;
handleUnreliableActivity(initialRetryIntervalSeconds, maximumAttempts);
}
public void handleUnreliableActivity(long initialRetryIntervalSeconds, int
maximumAttempts) {

ExponentialRetryPolicy retryPolicy = new
ExponentialRetryPolicy(initialRetryIntervalSeconds).withMaximumAttempts(maximumAttempts);
final AsyncExecutor executor = new AsyncRetryingExecutor(retryPolicy, clock);

new TryCatch() {
@Override
protected void doTry() throws Throwable {
executor.execute(new AsyncRunnable() {
@Override
public void run() throws Throwable {
client.unreliableActivity();

1)
}

@Override
protected void doCatch(Throwable e) throws Throwable {

}
};

Il flusso di lavoro funziona come segue:
1. process chiama il metodo handleUnreliableActivity e lo trasferisce alle impostazioni della
configurazione.

2. handleUnreliableActivity utilizza le impostazioni di configurazione della Fase 1 per creare
un oggetto ExponentialRetryPolicy, l'oggetto retryPolicy.

Strategia di ripetizione esponenziale Versione API 2021-04-28 150

AWS Flow Framework per Java Guida per gli sviluppatori

3. handleUnreliableActivity crea un oggetto AsyncRetryExecutor, executor e trasferisce
l'oggetto ExponentialRetryPolicy della Fase 2 e un'istanza dell'orologio del flusso di lavoro al
costruttore

4. handleUnreliableActivity implementa una classe annidata anonima TryCatch e
sovrascrive i metodi doTry e doCatch per eseguire i tentativi di ripetizione e gestire le eventuali
eccezioni.

5. doTry crea una classe anonima AsyncRunnable e sovrascrive il metodo run per implementare
il codice personalizzato per eseguire unreliableActivity. Per semplicita, run esegue
semplicemente l'attivita, ma puoi implementare approcci piu sofisticati in base alle necessita.

6. doTry chiama executor.execute e lo trasferisce all'oggetto AsyncRunnable. execute
chiama il metodo AsyncRunnable dell'oggetto run per eseguire l'attivita.

7. Se l'attivita non va a buon fine, I'esecutore chiama di nuovo run in base alla configurazione
dell'oggetto retryPolicy.

Per ulteriori discussioni su come utilizzare la classe TryCatch per gestire gli errori, consulta AWS
Flow Framework per le eccezioni Java.

Strategia di ripetizione personalizzata

L'approccio piu flessibile per riprovare le attivita non riuscite € una strategia personalizzata, che
richiama ricorsivamente un metodo asincrono che esegue il tentativo di nuovo tentativo, proprio come
la strategia. retry-until-success Tuttavia, invece che rieseguire semplicemente I'attivita, implementi
una logica personalizzata che decide se e come eseguire i successivi tentativi di ripetizione. Il
modello di base é:

1. Crea un oggetto di stato Settable<T>, che viene utilizzato per indicare se I'attivita non & andata
a buon fine.

2. Implementa una classe annidata TryCatch o TryCatchFinally.

3. doTry esegue l'attivita.

4. Se l'attivita non va a buon fine, doCatch imposta I'oggetto di stato per indicare che I'attivita ha
avuto esito negativo.

5. Chiama un metodo asincrono di gestione dell'errore e trasferiscilo all'oggetto di stato. || metodo
ritarda I'esecuzione fino al completamento di TryCatch o TryCatchFinally.

6. Il metodo di gestione dell'errore decide se e quando ripetere I'attivita.

Strategia di ripetizione personalizzata Versione API 2021-04-28 151

AWS Flow Framework per Java Guida per gli sviluppatori

Il flusso di lavoro seguente mostra come implementare una strategia di ripetizione personalizzata.
Utilizza la stessa attivita unreliableActivity dei flussi di lavoro DecoratorRetryWorkflow
e AsyncExecutorRetryWorkflow. L'interfaccia del flusso di lavoro € implementata in
RetryWorkflow e ha un metodo, process, che € il punto di ingresso del flusso di lavoro. Il
lavoratore del flusso di lavoro viene implementato in CustomLogicRetryWorkflowImpl, nel
seguente modo:

public class CustomLogicRetryWorkflowImpl implements RetryWorkflow {

public void process() {
callActivityWithRetry();
}
@Asynchronous
public void callActivityWithRetry() {
final Settable<Throwable> failure = new Settable<Throwable>();
new TryCatchFinally() {
protected void doTry() throws Throwable {
client.unreliableActivity();
}
protected void doCatch(Throwable e) {
failure.set(e);
}
protected void doFinally() throws Throwable {
if (!failure.isReady()) {
failure.set(null);

}
}
};
retryOnFailure(failure);
}
@Asynchronous

private void retryOnFailure(Promise<Throwable> failureP) {
Throwable failure = failureP.get();
if (failure != null && shouldRetry(failure)) {
callActivityWithRetry();

}

protected Boolean shouldRetry(Throwable e) {
//custom logic to decide to retry the activity or not
return true;

Strategia di ripetizione personalizzata Versione API 2021-04-28 152

AWS Flow Framework per Java Guida per gli sviluppatori

Il flusso di lavoro funziona come segue:

1. process chiama il metodo asincrono callActivityWithRetry.

2. callActivityWithRetry crea un errore di oggetto Settable<Throwable> denominato
che viene utilizzato per indicare se l'attivita non &€ andata a buon fine. Settable<T> deriva
da Promise<T> e funziona quasi allo stesso modo, ma il valore dell'oggetto Settable<T> e
impostato manualmente.

3. callActivityWithRetry implementa una classe annidata anonima TryCatchFinally per
gestire le eccezioni generate da unreliableActivity. Per ulteriori discussioni su come gestire
le eccezioni generate da un codice asincrono, consulta AWS Flow Framework per le eccezioni
Java.

4. doTry esegue unreliableActivity.

5. SeunreliableActivity genera un'eccezione, il framework chiama doCatch e lo trasferisce
all'oggetto dell'eccezione. doCatch imposta failure sull'oggetto dell'eccezione, il che indica che
I'attivita non & andata a buon fine e mette I'oggetto in stato di pronto.

6. doFinally verifica se failure € pronto, che sara vero solo se failure & stato impostato da
doCatch.

» Se é pronto, non fa nulla. failure doFinally
» Se failure non € pronto, l'attivita viene completata e doFinally imposta I'errore su null.

7. callActivityWithRetry chiama il metodo asincrono retryOnFailure e vi trasferisce
I'errore. Poiché I'errore € un tipo Settable<T>, callActivityWithRetry ritarda I'esecuzione
fin quando I'errore € pronto, il che si verifica dopo il completamento di TryCatchFinally.

8. retryOnFailure riceve il valore dall'errore.
y

» Se l'errore € impostato su null, il tentativo di ripetizione & andato a buon fine. retryOnFailure
non fa alcunché, il che termina il processo di ripetizione.

+ Se l'errore &€ impostato su un oggetto di eccezione e shouldRetry restituisce il valore true,
retryOnFailure chiama callActivityWithRetzry per riprovare l'attivita.

shouldRetry implementa una logica personalizzata per decidere se ripetere un'attivita
dall'esito negativo. Per semplicita, shouldRetry restituisce sempre il valore true e
retryOnFailure esegue immediatamente l'attivita, ma puoi implementare una logica piu
sofisticata in base alle necessita.

9. | passaggi da 2 a 8 si ripetono fino al unreliableActivity completamento o alla
shouldRetry decisione di interrompere il processo.

Strategia di ripetizione personalizzata Versione API 2021-04-28 153

AWS Flow Framework per Java Guida per gli sviluppatori

® Note

doCatch non gestisce il processo di ripetizione; imposta semplicemente I'errore per

indicare I'esito negativo dell'attivita. || processo di ripetizione € gestito dal metodo asincrono
retryOnFailure, che ritarda I'esecuzione fino al completamento di TryCatch. Il motivo di
questo approccio € che se riprovi un'attivita in doCatch non puoi annullarla. Ripetere I'attivita
in retryOnFailure ti permette di eseguire attivita annullabili.

Task Daemon

Il AWS Flow Framework for Java consente di contrassegnare determinate attivita comedaemon.
Questa funzionalita ti permette di creare task che effettuano un lavoro di background che deve essere
annullato quando tutti gli altri lavori sono stati eseguiti. Ad esempio, un task di monitoraggio dello
stato deve essere annullato quando il resto del flusso di lavoro &€ completato. Puoi farlo impostando

il contrassegno daemon su un metodo asincrono o un'istanza di TryCatchFinally. Nell'esempio
seguente, il metodo asincrono monitorHealth() € contrassegnato come daemon.

public class MyWorkflowImpl implements MyWorkflow {
MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

@Override

public void startMyWF(int a, String b) {
activitiesClient.doUsefulWorkActivity();
monitorHealth();

}

@Asynchronous(daemon=true)

void monitorHealth(Promise<?>... waitFor) {
activitiesClient.monitoringActivity();

}

Nell'esempio riportato sopra, quando doUsefulWorkActivity viene completato,
monitoringHealth viene automaticamente annullato. Questa operazione annulla I'intero ramo

di esecuzione radicato nel metodo asincrono. La semantica dell'annullamento € identica a quella di
TryCatchFinally. Analogamente, puoi contrassegnare un daemon TryCatchFinally passando
un contrassegno Boolean al costruttore.

Task Daemon Versione API 2021-04-28 154

AWS Flow Framework per Java Guida per gli sviluppatori

public class MyWorkflowImpl implements MyWorkflow {
MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

@Override
public void startMyWF(int a, String b) {
activitiesClient.doUsefulWorkActivity();
new TryFinally(true) {
@Override
protected void doTry() throws Throwable {
activitiesClient.monitoringActivity();

@Override
protected void doFinally() throws Throwable {
// clean up

I

Un'operazione daemon avviata all'interno dia TryCatchFinally é limitata al contesto in cui € stata
creata, ovvero sara limitata ai metodi, 0. doTry() doCatch() doFinally() Nel seguente esempio
il metodo asincrono startMonitoring viene contrassegnato come daemon e chiamato da doTry().

Il task creato verra annullato non appena gli altri task (doUsefulWorkActivity in questo caso)
avviati entro doTry() saranno completati.

public class MyWorkflowImpl implements MyWorkflow {
MyActivitiesClient activitiesClient = new MyActivitiesClientImpl();

@Override
public void startMyWF(int a, String b) {
new TryFinally() {
@Override
protected void doTry() throws Throwable {
activitiesClient.doUsefulWorkActivity();
startMonitoring();

@Override
protected void doFinally() throws Throwable {
// Clean up

Task Daemon Versione API 2021-04-28 155

AWS Flow Framework per Java Guida per gli sviluppatori

}

};

@Asynchronous(daemon = true)
void startMonitoring(){
activitiesClient.monitoringActivity();

AWS Flow Framework per Java Replay Behavior

Questo argomento presenta alcuni esempi relativi al comportamento di riproduzione, in base
a quanto descritto nella sezione Che cos'é AWS Flow Framework per Java?. Gli esempi forniti
riguardano la riproduzione sincrona e a quella asincrona.

Esempio 1: riproduzione sincrona

Per un esempio di come funziona la replay in un flusso di lavoro sincrono, modificate le
implementazioni del flusso di HelloWorldWorkflowlavoro e delle attivita aggiungendo println

chiamate all'interno delle rispettive implementazioni, come segue:

public class GreeterWorkflowImpl implements GreeterWorkflow {

public void greet() {
System.out.println('"greet executes");
Promise<String> name = operations.getName();
System.out.println("client.getName returns");
Promise<String> greeting = operations.getGreeting(name);
System.out.println("client.greeting returns");
operations.say(greeting);
System.out.println("client.say returns");

}

kkhkkhkkhkhkhkhkhkhkhkhkhkkx

public class GreeterActivitiesImpl implements GreeterActivities {
public String getName() {
System.out.println("activity.getName completes");
return "World";

public String getGreeting(String name) {
System.out.println("activity.getGreeting completes");

Comportamento di riproduzione Versione API 2021-04-28 156

AWS Flow Framework per Java

Guida per gli sviluppatori

return "Hello " + name + "!";

public void say(String what) {
System.out.println(what);

Per dettagli sul codice, consulta HelloWorldWorkflow Applicazione. Quanto segue € una versione

modificata dell'output, con commenti che indicano I'avvio di ogni episodio di riproduzione.

//Episode 1

greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getName completes
//Episode 2

greet executes
client.getName returns
client.greeting returns
client.say returns

activity.getGreeting completes
//Episode 3

greet executes

client.getName returns
client.greeting returns
client.say returns

Hello World! //say completes
//Episode 4

greet executes
client.getName returns
client.greeting returns
client.say returns

Il processo di riproduzione in questo esempio € il seguente:

* Il primo episodio pianifica il task di attivita getName, che non ha dipendenze.

+ Il secondo episodio pianifica il task di attivita getGreeting, che dipende da getName.

Esempio 1: riproduzione sincrona

Versione API 2021-04-28 157

AWS Flow Framework per Java Guida per gli sviluppatori

* |l terzo episodio pianifica il task di attivita say, che dipende da getGreeting.

» L'episodio finale non pianifica altri task e non trova alcuna attivita non completata, di conseguenza
I'esecuzione di flusso di lavoro risulta completata.

(® Note

| tre metodi di client di attivita vengono chiamati una volta per ogni episodio. Tuttavia, solo
una di queste chiamate genera un task di attivita, quindi ogni task viene eseguito una sola
volta.

Esempio 2: riproduzione asincrona

Come per I'esempio di riproduzione sincrona, puoi modificare HelloWorldWorkflowAsyncApplicazione
per osservare il funzionamento della riproduzione asincrona. Viene generato il seguente output:

//Episode 1

greet executes

client.name returns
workflow.getGreeting returns
client.say returns

activity.getName completes
//Episode 2

greet executes

client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

Hello World! //say completes
//Episode 3

greet executes

client.name returns
workflow.getGreeting returns
client.say returns
workflow.getGreeting completes

Esempio 2: riproduzione asincrona Versione API 2021-04-28 158

AWS Flow Framework per Java Guida per gli sviluppatori

HelloWorldAsync utilizza tre episodi di replay perché ci sono solo due attivita. L'attivita getGreeting
e stata sostituita dal metodo di flusso di lavoro asincrono getGreeting, che, quando completato, non
avvia un episodio di riproduzione.

Il primo episodio non chiama getGreeting poiché dipende dal completamento dell'attivita name.
Tuttavia, dopo il completamento di getName, la riproduzione chiama getGreeting una volta per ogni
episodio successivo.

Vedi anche

 AWS Flow Framework Concetti di base: esecuzione distribuita

Vedi anche Versione API 2021-04-28 159

AWS Flow Framework per Java Guida per gli sviluppatori

Best practice

Utilizza queste best practice per sfruttare al meglio le funzionalita AWS Flow Framework di Java.

Argomenti

» Apportare modifiche al codice del decisore: la funzione Versioni multiple e gli Indicatori di

caratteristiche

Apportare modifiche al codice del decisore: la funzione Versioni
multiple e gli Indicatori di caratteristiche

Questa sezione mostra come evitare modifiche non retrocompatibili a un decisore tramite due metodi:

« |a funzione Versioni multiple fornisce una soluzione di base.

« la funzione Versioni multiple con gli Indicatori di caratteristiche & uno sviluppo della funzione

Versioni multiple: non vengono introdotte nuove versioni del flusso di lavoro e non c'e bisogno di un
nuovo codice per aggiornare la versione.

Prima di provare queste soluzioni, prendi familiarita con la sezione Scenario di esempio, che spiega

le cause e gli effetti delle modifiche non retrocompatibili al codice del decisore.

Il processo di riproduzione e le modifiche del codice

Quando un decisore AWS Flow Framework per Java esegue un'attivita decisionale, deve prima
ricostruire lo stato corrente dell'esecuzione prima di potervi aggiungere passaggi. Il decisore compie
guesta operazione con un processo chiamato riproduzione.

Il processo di riproduzione riesegue dall'inizio il codice del decisore, esaminando al contempo la
cronologia degli eventi che si sono gia verificati. Questo esame permette al framework di reagire ai
segnali o al completamento di task e di sbloccare gli oggetti Promise nel codice.

Quando il framework esegue il codice decisore, assegna un ID a ogni attivita pianificata (un'attivita,
una funzione Lambda, un timer, un flusso di lavoro secondario o un segnale in uscita) incrementando
un contatore. Il framework comunica questo ID ad Amazon SWF e lo aggiunge agli eventi della
cronologia, ad esempio. ActivityTaskCompleted

Apportare modifiche al codice del decisore Versione API 2021-04-28 160

AWS Flow Framework per Java Guida per gli sviluppatori

Affinché il processo di riproduzione vada a buon fine, &€ importante che il codice del decisore sia
deterministico e pianifichi gli stessi task nello stesso ordine per ogni decisione in ogni esecuzione del
flusso di lavoro. Se non rispetti questo requisito, il framework potrebbe, ad esempio, non riuscire a far
corrispondere I'ID di un evento ActivityTaskCompleted con un oggetto Promise esistente.

Scenario di esempio

Esiste una classe di modifiche del codice che € considerata non retrocompatibile. Queste modifiche
includono gli aggiornamenti che modificano il numero, il tipo o l'ordine dei task pianificati. Considera il
seguente esempio:

Scrivi un codice del decisore per pianificare due task di timer. Avvii un'esecuzione ed esegui una
decisione. Di conseguenza, vengono pianificate due attivita con timer, con IDs 1 e. 2

Se aggiorni il codice del decisore per pianificare un solo timer prima che venga eseguita la decisione
successiva, nel prossimo task di decisione il framework non riuscira a riprodurre il secondo evento
TimerFired, perché I'ID 2 non corrisponde a nessun task di timer prodotto dal codice.

Struttura dello scenario

La struttura seguente mostra le fasi di questo scenario. L'obiettivo finale dello scenario € quello
di effettuare la migrazione a un sistema che pianifichi solo un timer ma che non comprometta le
esecuzioni avviate prima della migrazione.

1. La versione iniziale del decisore

. Scrivi il decisore.

a
b. Avvia il decisore.

o

. |l decisore pianifica due timer.
d. Il decisore avvia cinque esecuzioni.
e. Arresta il decisore.
2. Una modifica del decisore non retrocompatibile
a. Modifica il decisore.
b. Avvia il decisore.
c. Il decisore pianifica un timer.

d. Il decisore avvia cinque esecuzioni.

Scenario di esempio Versione API 2021-04-28 161

AWS Flow Framework per Java Guida per gli sviluppatori

La seguente sezione include esempi di un codice Java che mostrano come implementare questo
scenario. Gli esempi di codice nella sezione Soluzioni mostrano vari modi per correggere le modifiche
non retrocompatibili.

@ Note

Puoi utilizzare la versione piu recente di AWS SDK per Java per eseguire questo codice.

Codice comune
Il seguente codice Java non cambia tra gli esempi di questo scenario.

SampleBase. java

package sample;

import java.util.Arraylist;
import java.util.list;
import java.util.UUID;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflow;

import com.amazonaws.services.simpleworkflow.AmazonSimpleWorkflowClientBuilder;
import com.amazonaws.services.simpleworkflow.flow.JsonDataConverter;

import com.amazonaws.services.simpleworkflow.model.DescribeWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.DomainAlreadyExistsException;
import com.amazonaws.services.simpleworkflow.model.RegisterDomainRequest;

import com.amazonaws.services.simpleworkflow.model.Run;

import com.amazonaws.services.simpleworkflow.model.StartWorkflowExecutionRequest;
import com.amazonaws.services.simpleworkflow.model.TaskList;

import com.amazonaws.services.simpleworkflow.model.WorkflowExecution;

import com.amazonaws.services.simpleworkflow.model.WorkflowExecutionDetail;
import com.amazonaws.services.simpleworkflow.model.WorkflowType;

public class SampleBase {

protected String domain = "DeciderChangeSample";
protected String taskList = "DeciderChangeSample-" + UUID.randomUUID().toString();
protected AmazonSimpleWorkflow service =
AmazonSimpleWorkflowClientBuilder.defaultClient();
{
try {

Scenario di esempio Versione API 2021-04-28 162

https://aws.amazon.com/sdk-for-java/

AWS Flow Framework per Java Guida per gli sviluppatori

AmazonSimpleWorkflowClientBuilder.defaultClient().registerDomain(new
RegisterDomainRequest().withName(domain).withDescription("desc").withWorkflowExecutionRetentic
} catch (DomainAlreadyExistsException e) {

}

protected List<WorkflowExecution> workflowExecutions = new ArraylList<>();

protected void startFiveExecutions(String workflow, String version, Object input) {
for (int i = 0; i < 5; i++) {
String id = UUID.randomUUID().toString();
Run startWorkflowExecution = service.startWorkflowExecution(
new
StartWorkflowExecutionRequest().withDomain(domain).withTaskList(new
TaskList().withName(taskList)).withInput(new JsonDataConverter().toData(new
Object[] { input })).withWorkflowId(id).withWorkflowType(new
WorkflowType().withName(workflow).withVersion(version)));
workflowExecutions.add(new
WorkflowExecution().withWorkflowId(id).withRunId(startWorkflowExecution.getRunId()));
sleep(1000);

protected void printExecutionResults() {
waitForExecutionsToClose();
System.out.println("\nResults:");
for (WorkflowExecution wid : workflowExecutions) {
WorkflowExecutionDetail details = service.describeWorkflowExecution(new
DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));
System.out.println(wid.getWorkflowId() + " " +
details.getExecutionInfo().getCloseStatus());

}

protected void waitForExecutionsToClose() {
loop: while (true) {
for (WorkflowExecution wid : workflowExecutions) {
WorkflowExecutionDetail details = service.describeWorkflowExecution(new
DescribeWorkflowExecutionRequest().withDomain(domain).withExecution(wid));

if ("OPEN".equals(details.getExecutionInfo().getExecutionStatus())) {
sleep(1000);
continue loop;

Scenario di esempio Versione API 2021-04-28 163

AWS Flow Framework per Java Guida per gli sviluppatori

retuzrn;

protected void sleep(int millis) {

try {
Thread.sleep(millis);

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

Input.java

package sample;
public class Input {
private Boolean skipSecondTimer;

public Input() {
}

public Input(Boolean skipSecondTimer) {
this.skipSecondTimer = skipSecondTimer;

public Boolean getSkipSecondTimer() {
return skipSecondTimer != null && skipSecondTimer;

public Input setSkipSecondTimer(Boolean skipSecondTimer) {
this.skipSecondTimer = skipSecondTimer;
return this;

Scenario di esempio Versione APl 2021-04-28 164

AWS Flow Framework per Java Guida per gli sviluppatori

Scrivere il codice iniziale del decisore

Di seguito & riportato il codice Java iniziale del decisore. Viene registrato come versione 1 e pianifica
due task di timer da cinque secondi.

InitialDecider. java

package sample.vl;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "1")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V1) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);
clock.createTimer(5);

Scenario di esempio Versione API 2021-04-28 165

AWS Flow Framework per Java Guida per gli sviluppatori

Simulazione di una modifica non retrocompatibile

Il seguente codice Java modificato del decisore € un buon esempio di modifica non retrocompatibile.
Il codice € ancora registrato come versione 1, ma pianifica solo un timer.

ModifiedDecider. java

package sample.vl.modified;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "1")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V1 modified) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);

Scenario di esempio Versione API 2021-04-28 166

AWS Flow Framework per Java Guida per gli sviluppatori

Il seguente codice Java ti permette di simulare il problema di apportare modifiche non retrocompatibili
eseguendo il decisore modificato.

RunModifiedDecider. java

package sample;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;
public class BadChange extends SampleBase {

public static void main(String[] args) throws Exception {
new BadChange().run();

public void run() throws Exception {
// Start the first version of the decider
WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
before.addWorkflowImplementationType(sample.vl.Foo.Impl.class);
before.start();

// Start a few executions
startFiveExecutions("Foo.sample", "1", new Input());

// Stop the first decider worker and wait a few seconds
// for its pending pollers to match and return
before.suspendPolling();

sleep(2000);

// At this point, three executions are still open, with more decisions to make
// Start the modified version of the decider

WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
after.addwWorkflowImplementationType(sample.vl.modified.Foo.Impl.class);

after.start();

// Start a few more executions
startFiveExecutions("Foo.sample", "1", new Input());

printExecutionResults();

Scenario di esempio Versione API 2021-04-28 167

AWS Flow Framework per Java Guida per gli sviluppatori

Quando esegui il programma, le tre esecuzioni che non vanno a buon fine sono quelle avviate
secondo la versione iniziale del decisore e proseguite dopo la migrazione.

Soluzioni

Puoi utilizzare le seguenti soluzioni per evitare le modifiche non retrocompatibili. Per ulteriori
informazioni, consulta Apportare modifiche al codice del decisore e Scenario di esempio.

Uso della funzione Versioni multiple

In questa soluzione, copi il decisore su una nuova classe, lo modifichi e lo registri in una nuova
versione del flusso di lavoro.

VersionedDecider. java

package sample.v2;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "2")
public void sample(Input input);

public static class Impl implements Foo {
private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();

private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {

Soluzioni Versione API 2021-04-28 168

AWS Flow Framework per Java Guida per gli sviluppatori

System.out.println("Decision (V2) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);

Nel codice Java aggiornato, il secondo lavoratore del decisore esegue entrambe le versioni del flusso
di lavoro, permettendo alle esecuzioni in transito di operare indipendentemente dalle modifiche alla
versione 2.

RunVersionedDecider. java

package sample;
import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;
public class VersionedChange extends SampleBase {

public static void main(String[] args) throws Exception {
new VersionedChange().run();

public void run() throws Exception {
// Start the first version of the decider, with workflow version 1
WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
before.addWorkflowImplementationType(sample.vl.Foo.Impl.class);
before.start();

// Start a few executions with version 1
startFiveExecutions("Foo.sample", "1", new Input());

// Stop the first decider worker and wait a few seconds
// for its pending pollers to match and return
before.suspendPolling();

sleep(2000);

// At this point, three executions are still open, with more decisions to make

// Start a worker with both the previous version of the decider (workflow
version 1)

Soluzioni Versione API 2021-04-28 169

AWS Flow Framework per Java Guida per gli sviluppatori

// and the modified code (workflow version 2)

WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
after.addwWorkflowImplementationType(sample.vl.Foo.Impl.class);
after.addWorkflowImplementationType(sample.v2.Foo.Impl.class);
after.start();

// Start a few more executions with version 2
startFiveExecutions("Foo.sample", "2", new Input());

printExecutionResults();

Quando esegui il programma, tutte le esecuzioni hanno esito positivo.
Utilizzo degli Indicatori di caratteristiche

Un'altra soluzione per i problemi di mancata retrocompatibilita &€ ramificare il codice per supportare
due implementazioni nella stessa classe basata sui dati dell'input invece che sulle versioni del flusso
di lavoro.

Seguendo questo approccio, ogni volta che introduci modifiche sensibili aggiungi campi agli oggetti
dell'input o ne modifichi i campi esistenti. Per le esecuzioni avviate prima della migrazione, I'oggetto
dell'input sara privo di campo (o avra un valore diverso). In questo modo non sei obbligato ad
aumentare il numero della versione.

® Note

Se aggiungi nuovi campi, verifica che il processo di deserializzazione JSON sia
retrocompatibile. Gli oggetti serializzati prima dell'introduzione del campo devono comunque
essere deserializzati dopo la migrazione. Poiché JSON imposta un valore null ogni volta
che manca un campo, utilizza sempre tipi "boxed" (Boolean invece di boolean) e gestisci i
casi in cui valore € null.

FeatureFlagDecider. java

package sample.vl.featureflag;

import com.amazonaws.services.simpleworkflow.flow.DecisionContext;

Soluzioni Versione API 2021-04-28 170

AWS Flow Framework per Java Guida per gli sviluppatori

import com.amazonaws.services.simpleworkflow.flow.DecisionContextProviderImpl;

import com.amazonaws.services.simpleworkflow.flow.WorkflowClock;

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

import sample.Input;

@Workflow

@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 60,
defaultTaskStartToCloseTimeoutSeconds = 5)

public interface Foo {

@Execute(version = "1")
public void sample(Input input);

public static class Impl implements Foo {

private DecisionContext decisionContext = new
DecisionContextProviderImpl().getDecisionContext();
private WorkflowClock clock = decisionContext.getWorkflowClock();

@Override
public void sample(Input input) {
System.out.println("Decision (V1 feature flag) WorkflowId: " +
decisionContext.getWorkflowContext().getWorkflowExecution().getWorkflowId());
clock.createTimer(5);
if (!input.getSkipSecondTimer()) {
clock.createTimer(5);

Nel codice Java aggiornato, il codice per entrambe le versioni del flusso di lavoro € comunque
registrato per la versione 1. Tuttavia, dopo la migrazione, le nuove esecuzioni vengono avviate con il
campo skipSecondTimer dei dati dell'input impostato su true.

RunFeatureFlagDecider. java

package sample;

Soluzioni Versione API 2021-04-28 171

AWS Flow Framework per Java Guida per gli sviluppatori

import com.amazonaws.services.simpleworkflow.flow.WorkflowWorker;
public class FeatureFlagChange extends SampleBase {

public static void main(String[] args) throws Exception {
new FeatureFlagChange().run();

public void run() throws Exception {
// Start the first version of the decider
WorkflowWorker before = new WorkflowWorker(service, domain, taskList);
before.addWorkflowImplementationType(sample.vl.Foo.Impl.class);
before.start();

// Start a few executions
startFiveExecutions("Foo.sample", "1", new Input());

// Stop the first decider worker and wait a few seconds
// for its pending pollers to match and return
before.suspendPolling();

sleep(2000);

// At this point, three executions are still open, with more decisions to make

// Start a new version of the decider that introduces a change

// while preserving backwards compatibility based on input fields
WorkflowWorker after = new WorkflowWorker(service, domain, taskList);
after.addWorkflowImplementationType(sample.vl.featureflag.Foo.Impl.class);
after.start();

// Start a few more executions and enable the new feature through the input
data

startFiveExecutions("Foo.sample", "1", new Input().setSkipSecondTimer(true));

printExecutionResults();

Quando esegui il programma, tutte le esecuzioni hanno esito positivo.

Soluzioni Versione API 2021-04-28 172

AWS Flow Framework per Java Guida per gli sviluppatori

Suggerimenti per la risoluzione dei problemi e il debug per
Java AWS Flow Framework

Argomenti

 Errori di compilazione

* Errore di risorsa sconosciuto

» Eccezioni quando si chiama get () su una promessa

* Flussi di lavoro non deterministici

* Problemi dovuti al controllo delle versioni

» Risoluzione dei problemi e debug dell'esecuzione di un flusso di lavoro

« Attivita perse

» Errore di convalida dovuto a vincoli di lunghezza dei parametri API

Questa sezione descrive alcune insidie comuni che potresti incontrare durante lo sviluppo di flussi
di lavoro utilizzando for Java. AWS Flow Framework Fornisce inoltre alcuni suggerimenti su come
diagnosticare i problemi ed eseguirne il debug.

Errori di compilazione

Se utilizzi I'opzione di tessitura in fase di compilazione di Aspectd, € possibile che si verifichino errori
di compilazione in cui il compilatore non riesce a trovare le classi client generate per il flusso di lavoro
e le attivita. La causa probabile di tali errori di compilazione € che il generatore AspectJ ha ignorato

i client generati durante la compilazione. Puoi risolvere questo problema rimuovendo AspectJ dal
progetto e riattivandolo. Nota che dovrai procedere in tal modo ogni volta che le interfacce di flusso

di lavoro o di attivita cambiano. A causa di questo problema, ti consigliamo di utilizzare I'opzione di
tessitura in fase di caricamento. Per ulteriori informazioni, consulta la sezione Configurazione di AWS
Flow Framework per Java.

Errore di risorsa sconosciuto

Amazon SWEF restituisce un errore di risorsa sconosciuto quando tenti di eseguire un'operazione su
una risorsa che non € disponibile. Le cause piu comuni di questo errore sono:

Errori di compilazione Versione API 2021-04-28 173

AWS Flow Framework per Java Guida per gli sviluppatori

» Configuri un lavoratore con un dominio inesistente. Per risolvere questo problema, registra
innanzitutto il dominio utilizzando la console Amazon SWF o I'API del servizio Amazon SWF.

» Tenti di creare task di esecuzione di flusso di lavoro o di attivita che non sono stati registrati. Cio
puo accadere se cerchi di creare I'esecuzione di flusso di lavoro prima che i lavoratori vengano
eseguiti. Poiché i worker registrano i propri tipi quando vengono eseguiti per la prima volta, €
necessario eseguirli almeno una volta prima di tentare di avviare le esecuzioni (o registrare
manualmente i tipi utilizzando la console o I'API del servizio). Nota che dopo la registrazione dei
tipi, puoi creare le esecuzioni anche se non vi sono lavoratori in esecuzione.

» Un lavoratore tenta di completare un task di cui si € gia verificato il timeout. Ad esempio, se
un lavoratore impiega troppo tempo per elaborare un'attivita e supera un timeout, ricevera un
UnknownResource errore quando tenta di completare o fallire I'attivita. | AWS Flow Framework
lavoratori continueranno a sondare Amazon SWF ed elaborare attivita aggiuntive. ma € comunque
consigliabile modificare il timeout. A questo proposito, devi registrate una nuova versione del tipo di
attivita.

Eccezioni quando si chiama get () su una promessa

A differenza di Java Future, Promise & un costrutto non bloccante e la chiamata di get () su un
argomento Promise non ancora pronto generera un'eccezione anziché un blocco. Il modo corretto
di usare a Promise & passarlo a un metodo asincrono (o a un'attivita) e accedere al suo valore
nel metodo asincrono. AWS Flow Framework for Java garantisce che un metodo asincrono venga
chiamato solo quando tutti gli argomenti passati ad esso sono pronti. Promise Se ritieni che |l

tuo codice sia corretto o se ti imbatti in questo mentre esegui uno degli AWS Flow Framework
esempi, probabilmente € dovuto al fatto che AspectJ non €& configurato correttamente. Per ulteriori
informazioni, consulta la sezione Configurazione di AWS Flow Framework per Java.

Flussi di lavoro non deterministici

Come descritto nella sezione Non determinismo, l'implementazione del tuo flusso di lavoro deve

essere deterministica. Alcuni errori comuni che possono portare al non determinismo sono l'uso
dell'orologio di sistema, I'uso di numeri casuali e la generazione di. GUIDs Poiché questi costrutti
possono restituire valori diversi in momenti diversi, il flusso di controllo del flusso di lavoro puo
seguire percorsi diversi ogni volta che viene eseguito (consulta le sezioni AWS Flow Framework

Concetti di base: esecuzione distribuita e Comprensione di un task in AWS Flow Framework for Java

per i dettagli). Se il framework rileva una condizione di non determinismo durante I'esecuzione del
flusso di lavoro, verra generata un'eccezione.

Eccezioni quando si chiama get () su una promessa Versione API 2021-04-28 174

https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-register-domain-console.html
https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RegisterDomain.html

AWS Flow Framework per Java Guida per gli sviluppatori

Problemi dovuti al controllo delle versioni

Quando si implementa una nuova versione del flusso di lavoro o dell'attivita, ad esempio quando

si aggiunge una nuova funzionalita, & necessario aumentare la versione del tipo utilizzando
I'annotazione appropriata:, 0. @Workflow @Activites @Activity In genere, quando vengono
distribuite nuove versioni di un flusso di lavoro, alcune esecuzioni della versione esistente sono gia
in corso. Di conseguenza, devi assicurarti che i task siano trasmessi ai lavoratori con la versione
appropriata del flusso di lavoro e delle attivita. A questo proposito, devi utilizzare un set di elenchi

di task differente per ogni versione. Ad esempio, puoi aggiungere il numero di versione al nome
dell'elenco di task. In questo modo, i task appartenenti a differenti versioni del flusso di lavoro e delle
attivita sono assegnati ai lavoratori appropriati.

Risoluzione dei problemi e debug dell'esecuzione di un flusso di
lavoro

Il primo passaggio per la risoluzione dei problemi di esecuzione di un flusso di lavoro consiste
nell'utilizzare la console Amazon SWF per esaminare la cronologia del flusso di lavoro. La cronologia
del flusso di lavoro € un record completo e attendibile di tutti gli eventi che hanno modificato lo stato
dell'esecuzione di flusso di lavoro. Questa cronologia € gestita da Amazon SWF ed € preziosa per la
diagnosi dei problemi. La console Amazon SWF ti consente di cercare esecuzioni di flussi di lavoro e
approfondire i singoli eventi della cronologia.

AWS Flow Framework fornisce una WorkflowReplayer classe che puoi usare per riprodurre
localmente l'esecuzione di un flusso di lavoro ed eseguirne il debug. Utilizzando questa classe, &
possibile eseguire il debug di esecuzioni di workflow chiuse e in esecuzione. WorkflowReplayexrsi
affida alla cronologia memorizzata in Amazon SWF per eseguire la riproduzione. Puoi indirizzarlo
all'esecuzione di un flusso di lavoro nel tuo account Amazon SWF o fornirgli gli eventi della
cronologia (ad esempio, puoi recuperare la cronologia da Amazon SWF e serializzarla localmente per
un uso successivo). La riproduzione di un'esecuzione di flusso di lavoro con WorkflowReplayer
non ha alcun impatto sull'esecuzione in corso nel tuo account. L'intera riproduzione viene eseguita sul
client. Puoi eseguire il debug del flusso di lavoro, creare punti di interruzione ed eseguire istruzioni
utilizzando gli strumenti di debug abituali. Se utilizzi Eclipse, prendi in considerazione I'aggiunta di
filtri Step ai pacchetti di filtri. AWS Flow Framework

Ad esempio, il seguente frammento di codice puo essere utilizzato per riprodurre un'esecuzione di
flusso di lavoro:

Problemi dovuti al controllo delle versioni Versione API 2021-04-28 175

AWS Flow Framework per Java Guida per gli sviluppatori

String workflowId = "testWorkflow";

String runIld = "<run id>";

Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
swfService, domain, workflowExecution, workflowImplementationType);

System.out.println("Beginning workflow replay for " + workflowExecution);
Object workflow = replayer.loadWorkflow();

System.out.println("Workflow implementation object:");
System.out.println(workflow);

System.out.println("Done workflow replay for " + workflowExecution);

AWS Flow Framework consente inoltre di ottenere un dump asincrono dei thread dell'esecuzione
del flusso di lavoro. Questo dump fornisce gli stack di chiamate di tutti i task asincroni aperti. Queste
informazioni possono essere utili per determinare quali task nell'esecuzione sono in sospeso e
possibilmente bloccati. Per esempio:

String workflowId = "testWorkflow";

String runId = "<run id>";

Class<HelloWorldImpl> workflowImplementationType = HelloWorldImpl.class;
WorkflowExecution workflowExecution = new WorkflowExecution();
workflowExecution.setWorkflowId(workflowId);
workflowExecution.setRunId(runId);

WorkflowReplayer<HelloWorldImpl> replayer = new WorkflowReplayer<HelloWorldImpl>(
swfService, domain, workflowExecution, workflowImplementationType);

try {
String flowThreadDump = replayer.getAsynchronousThreadDumpAsString();
System.out.println("Workflow asynchronous thread dump:");
System.out.println(flowThreadDump);
}
catch (WorkflowException e) {
System.out.println("No asynchronous thread dump available as workflow has failed:
+e);

}

Risoluzione dei problemi e debug dell'esecuzione di un flusso di lavoro Versione API 2021-04-28 176

AWS Flow Framework per Java Guida per gli sviluppatori

Attivita perse

A volte, € possibile che tu chiuda dei lavoratori e che ne avvii di nuovi in rapida successione per
infine scoprire che i task sono recapitati ai vecchi lavoratori. Cid pud avvenire a seguito di condizioni
di competizione nel sistema, il quale é ripartito su vari processi. Il problema puo verificarsi anche
quando esegui unit test in un ciclo ridotto oppure a seguito dell'arresto di un test in Eclipse nel caso in
cui i gestori di chiusura non siano chiamati.

Per avere la certezza che il problema ¢ in effetti dovuto al fatto che sono i vecchi lavoratori

a ricevere i task, dovresti esaminare la cronologia del flusso di lavoro per determinare quale
processo ha ricevuto il task che doveva essere recapitato al nuovo lavoratore. Ad esempio, I'evento
DecisionTaskStarted nella cronologia contiene l'identita del lavoratore di flusso di lavoro che
ha ricevuto il task. L'id utilizzato da Flow Framework ha il formato: {processId} @ {host name}.
Ad esempio, di seguito sono riportati i dettagli dell'DecisionTaskStartedevento nella console
Amazon SWF per un'esecuzione di esempio:

Timestamp di evento Mon Feb 20 11:52:40 GMT-800 2012
|dentita 2276 @ip -0A6C1 DF5
ID evento pianificato 33

Per evitare questa situazione, utilizza elenchi di task differenti per ogni test. Valuta inoltre la
possibilita di aggiungere un ritardo tra la chiusura dei vecchi lavoratori e I'avvio dei nuovi.

Errore di convalida dovuto a vincoli di lunghezza dei parametri API

Amazon SWF impone vincoli di lunghezza sui parametri delle API. Riceverai un HTTP 400 errore se
l'implementazione del flusso di lavoro o dell'attivita supera i vincoli. Ad esempio, quando si chiama
recordActivityHeartbeat on ActivityExecutionContext per inviare un battito cardiaco per
un'attivita in corso, la stringa non deve superare i 2048 caratteri.

Un altro scenario comune € quando un'attivita fallisce a causa di un'eccezione. Il framework
segnala un errore di attivita ad Amazon SWF chiamando RespondActivityTaskFailedcon I'eccezione

serializzata come dettagli. La chiamata API segnalera un errore 400 se I'eccezione serializzata
ha una lunghezza superiore a 32.768 byte. Per mitigare questa situazione, & possibile troncare il
messaggio di eccezione o le cause per renderle conformi al vincolo di lunghezza.

Attivita perse Versione API 2021-04-28 177

https://docs.aws.amazon.com/amazonswf/latest/apireference/API_RespondActivityTaskFailed.html

AWS Flow Framework per Java Guida per gli sviluppatori

AWS Flow Framework per Java Reference

Argomenti

* AWS Flow Framework per Java Annotations

* AWS Flow Framework per le eccezioni Java

* AWS Flow Framework per pacchetti Java

AWS Flow Framework per Java Annotations

Argomenti

* @Activities

* @Activity
@ActivityRegistrationOptions
@Asincrona

@Execute
@ExponentialRetry

@GetState
@ManualActivityCompletion

@Signal
@SkipRegistration
@Wait e @ NoWait

@Flusso di lavoro

@WorkflowRegistrationOptions

@Activities

Questa annotazione pud essere usata su un'interfaccia per dichiarare un set di tipi di attivita. Ciascun
metodo in un'interfaccia che abbia questa annotazione rappresenta un tipo di attivita. Un'interfaccia
non puo avere contemporaneamente I'annotazione @Workflow e quella @Activities-

Su questa annotazione possono essere specificati i seguenti parametri:

Annotazioni Versione API 2021-04-28 178

AWS Flow Framework per Java Guida per gli sviluppatori

activityNamePrefix

Specifica il prefisso del nome dei tipi di attivita dichiarati nell'interfaccia. Se impostato su una
stringa vuota (valore predefinito), il nome dell'interfaccia seguito da '." viene utilizzato come
prefisso.

version

Specifica la versione predefinita dei tipi di attivita dichiarati nell'interfaccia. Il valore predefinito &
1.0.

dataConverter

Speciifica il tipo di serializing/deserializing dati DataConverter da utilizzare per la
creazione di attivita di questo tipo di attivita e i relativi risultati. Impostato come predefinito su
NullDataConverter, che indica che deve essere utilizzato JsonDataConverter.

@Activity

Questa annotazione puo essere usata sui metodi in un'interfaccia che abbia I'annotazione
@Activities.

Su questa annotazione possono essere specificati i seguenti parametri:

name

Specifica il nome del tipo di attivita. Il valore predefinito € una stringa vuota, che indica che

per stabilire il nome del tipo di attivita, (che € in formato {prefisso}{nome}) occorre utilizzare il
prefisso predefinito e il nome del metodo dell'attivita. Ricorda che quando specifichi un nome
in un'annotazione @Activity, il framework non vi aggiunge automaticamente un prefisso. Sei
libero di usare il tuo schema di denominazione.

version

Specifica la versione del tipo di attivita. Sovrascrive la versione predefinita specificata
nell'annotazione @Activities nellinterfaccia che la contiene. L'impostazione predefinita € una
stringa vuota.

@Activity Versione API 2021-04-28 179

AWS Flow Framework per Java Guida per gli sviluppatori

@ActivityRegistrationOptions

Specifica le opzioni di registrazione di un tipo di attivita. Questa annotazione pud essere usata su
un'interfaccia annotata con @Activities o sui metodi all'interno. Se specificata in entrambe le
posizioni, prevale I'annotazione usata sul metodo.

Su questa annotazione possono essere specificati i seguenti parametri:
defaultTasklist

Speciifica I'elenco di attivita predefinito da registrare con Amazon SWF per questo tipo di attivita.
Il valore predefinito pud essere sovrascritto quando si chiama il metodo dell'attivita sul client
generato utilizzando il parametro ActivitySchedulingOptions. Impostato come predefinito
su USE_WORKER_TASK_LIST. Questo € un valore speciale che indica che va utilizzato I'elenco di
task usato dal lavoratore che esegue la registrazione.

defaultTaskScheduleToStartTimeoutSeconds

Speciifica le informazioni defaultTaskSchedule ToStartTimeout registrate con Amazon SWF per
questo tipo di attivita. Questo € il tempo massimo di attesa di un task di questo tipo di attivita
prima che venga assegnato a un lavoratore. Per ulteriori dettagli, consulta il riferimento all'API di
Amazon Simple Workflow Service.

defaultTaskHeartbeatTimeoutSeconds

Speciifica le informazioni defaultTaskHeartbeatTimeout registrate con Amazon SWF

per questo tipo di attivita. In questo periodo i lavoratori di attivita devono fornire messaggi di
heartbeat; in caso contrario, il task scade. Impostato come predefinito a -1, un valore speciale che
indica che il timeout deve essere disattivato. Per ulteriori dettagli, consulta il riferimento all'API di
Amazon Simple Workflow Service.

defaultTaskStartToCloseTimeoutSeconds

Speciifica le informazioni defaultTaskStart ToCloseTimeout registrate con Amazon SWF per
questo tipo di attivita. Il timeout determina il tempo massimo che un lavoratore pud impiegare per
elaborare un task di attivita di questo tipo. Per ulteriori dettagli, consulta il riferimento all'API di
Amazon Simple Workflow Service.

defaultTaskScheduleToCloseTimeoutSeconds

Speciifica le informazioni defaultScheduleToCloseTimeout registrate con Amazon SWF per
questo tipo di attivita. Questo timeout determina il tempo totale in cui il task pud rimanere nello

@ActivityRegistrationOptions Versione API 2021-04-28 180

AWS Flow Framework per Java Guida per gli sviluppatori

stato aperto. Impostato come predefinito a -1, un valore speciale che indica che il timeout deve
essere disattivato. Per ulteriori dettagli, consulta il riferimento all'API di Amazon Simple Workflow
Service.

@Asincrona

Se usata su un metodo nella logica di coordinamento del flusso di lavoro, indica che il metodo deve
essere eseguito in modo asincrono. La chiamata al metodo viene restituita immediatamente, ma
I'esecuzione in corso accade in modo asincrono quando sono pronti tutti i parametri Promise<>
trasferiti ai metodi. | metodi annotati con @Asynchronous devono avere un tipo di restituzione
Promise<> o void.

daemon

Indica se il task creato per il metodo asincrono deve essere di tipo daemon. False per
impostazione predefinita.

@Execute

Se usata su un metodo in'un interfaccia annotata con @Workflow, identifica il punto di ingresso del
flusso di lavoro.

/A Important

L'annotazione @Execute puo essere applicata a un solo metodo nell'interfaccia.

Su questa annotazione possono essere specificati i seguenti parametri:

name

Specifica il nome del tipo di flusso di lavoro. Se non € impostato, il nome predefinito & {prefisso}
{nome}, dove {prefisso} & il nome dell'interfaccia di flussi di lavoro seguito da un "' e {nome} ¢ il
nome del metodo con annotazione @Execute nel flusso di lavoro.

version

Specifica la versione del tipo di flusso di lavoro.

@Asincrona Versione API 2021-04-28 181

AWS Flow Framework per Java Guida per gli sviluppatori

@ExponentialRetry

se usata su un'attivita o su un metodo asincrono, imposta una policy di ripetizione esponenziale nel
caso in cui il metodo genera un'eccezione non gestita. Un tentativo di ripetizione viene effettuato
dopo un periodo di backoff, calcolato in base all'efficacia del numero dei tentativi.

Su questa annotazione possono essere specificati i seguenti parametri:
intialRetryIntervalSeconds

Specifica il tempo di attesa prima del primo tentativo di ripetizione. Il valore non deve essere
maggiore di maximumRetryIntervalSeconds e di retryExpirationSeconds.

maximumRetryIntervalSeconds

Specifica il tempo massimo tra i tentativi di ripetizione. Una volta raggiunto, l'intervallo tra i
tentativi di ripetizione sara limitato a questo valore. Impostato come predefinito a -1, il che significa
una durata illimitata.

retryExpirationSeconds

Specifica il tempo dopo il quale la ripetizione esponenziale si arresta. Impostato come predefinito
a -1, il che significa che non c'e scadenza.

backoffCoefficient

Specifica il coefficiente utilizzato per calcolare l'intervallo di ripetizione. Consultare Strategia di
ripetizione esponenziale.

maximumAttempts

Specifica il numero di tentativi dopo il quale la ripetizione esponenziale si arresta. Impostato come
predefinito a -1, il che significa che non c'é limite al numero di tentativi di ripetizioni.

exceptionsToRetry

Specifica I'elenco dei tipi di eccezione che attivano una ripetizione. L'eccezione non gestita
di questi tipi non verra propagata ulteriormente e il metodo sara ripetuto dopo l'intervallo di
ripetizione calcolato. Per impostazione predefinita, I'elenco contiene Throwable.

excludeExceptions

Specifica I'elenco dei tipi di eccezione che non attivano una ripetizione. Le eccezioni non gestite di
questo tipo possono propagarsi. Per impostazione predefinita, I'elenco & vuoto.

@ExponentialRetry Versione API 2021-04-28 182

AWS Flow Framework per Java Guida per gli sviluppatori

@GetState

Se usata su un metodo in'un interfaccia annotata con @Workflow, identifica che il metodo & utilizzato
per recuperare lo stato dell'ultima esecuzione del flusso di lavoro. Ci puo essere al massimo un
metodo con questa annotazione in un'interfaccia con I'annotazione @Workflow. | metodi cosi
annotati non devono acquisire parametri e devono avere un tipo di restituzione diverso da void.

@ManualActivityCompletion

Questa annotazione pud essere utilizzata su un metodo di attivita per indicare che il task di
attivita non deve essere completato alla restituzione del metodo. L'attivita non verra completata
automaticamente e dovra essere completata manualmente direttamente utilizzando I'API Amazon
SWEF. Questo ¢ utile per casi d'uso in cui il task di attivita & delegato a un sistema esterno non
automatizzato o che richiede l'intervento umano per il completamento.

@sSignal

Se usata su un metodo in'un interfaccia annotata con @Workflow, identifica un segnale che pud
essere ricevuto dalle esecuzioni del tipo di flusso di lavoro dichiarato dall'interfaccia. L'uso di questa
annotazione € obbligatorio per definire un metodo di segnale.

Su questa annotazione possono essere specificati i seguenti parametri:
name

Specifica la porzione nominale del nome del segnale. Se non & impostato, si usa il nome del
metodo.

@SkipRegistration

Se utilizzato su un'interfaccia annotata con I'eWorkflowannotazione, indica che il tipo

di flusso di lavoro non deve essere registrato con Amazon SWF. Una delle annotazioni
@WorkflowRegistrationOptions e @SkipRegistrationOptions devono essere usate su
un'interfaccia con annotazione @Workflow, ma non entrambe.

@Wait e @ NoWait

Queste annotazioni possono essere utilizzate su un parametro di tipo Promise<> per indicare
se AWS Flow Framework for Java deve attendere che sia pronto prima di eseguire il metodo. Per

@GetState Versione API 2021-04-28 183

AWS Flow Framework per Java Guida per gli sviluppatori

impostazione predefinita, i parametri Promise<> trasferiti sui metodi @Asynchronous devono
diventare pronti prima che si verifichi I'esecuzione del metodo. In alcuni casi, € necessario ignorare
questo comportamento predefinito. | parametri Promise<> trasferiti sui metodi @Asynchronous con
I'annotazione @NoWait non sono attesi.

| parametri (o le sottoclassi) di raccolta che contengono promesse, come List<Promise<Int>>,
devono essere arricchiti con I'annotazione @Wait. Per impostazione predefinita, il framework non
attende i membri di una raccolta.

@Flusso di lavoro

Questa annotazione viene usata su un'interfaccia per dichiarare un tipo di flusso di lavoro.
Un'interfaccia decorata con questa annotazione deve contenere esattamente un metodo decorato
con I'annotazione @Execute per dichiarare un punto di ingresso del flusso di lavoro.

(® Note

Un'interfaccia non puo avere le annotazioni @Workflow e @Activities dichiarate
simultaneamente; sono reciprocamente esclusive.

Su questa annotazione possono essere specificati i seguenti parametri:

dataConverter

Specifica quali DataConverter utilizzare nell'invio di richieste alle esecuzioni (e nella ricezione
di risultati dalle esecuzioni) di questo tipo di flusso di lavoro.

L'impostazione predefinita € NullDataConverter che, a sua volta, ritorna
JsonDataConverter a elaborare tutti i dati di richiesta e risposta come JavaScript Object
Notation (JSON).

Esempio

import com.amazonaws.services.simpleworkflow.flow.annotations.Execute;

import com.amazonaws.services.simpleworkflow.flow.annotations.Workflow;

import
com.amazonaws.services.simpleworkflow.flow.annotations.WorkflowRegistrationOptions;

@Flusso di lavoro Versione API 2021-04-28 184

AWS Flow Framework per Java Guida per gli sviluppatori

@Workflow
@WorkflowRegistrationOptions(defaultExecutionStartToCloseTimeoutSeconds = 3600)
public interface GreeterWorkflow {

@Execute(version = "1.0")

public void greet();

@WorkflowRegistrationOptions

Se utilizzato su un'interfaccia annotata coneWorkflow, fornisce le impostazioni predefinite utilizzate
da Amazon SWF per la registrazione del tipo di flusso di lavoro.

(® Note

O @WorkflowRegistrationOptions o @SkipRegistrationOptions devono essere
usate su un'interfaccia con annotazione @Workflow, ma non puoi specificarle entrambe.

Su questa annotazione possono essere specificati i seguenti parametri:
Descrizione

Una descrizione di testo facoltativa del tipo di flusso di lavoro.

defaultExecutionStartToCloseTimeoutSeconds

Speciifica il tipo di flusso di lavoro defaultExecutionStartToCloseTimeout registrato con
Amazon SWEF. Il tempo totale che I'esecuzione di un flusso di lavoro di questo tipo pud impiegare
per il completamento.

Per ulteriori informazioni sui timeout del flusso di lavoro, consulta Tipi di timeout di Amazon SWF .

defaultTaskStartToCloseTimeoutSeconds

Speciifica il tipo di flusso di lavoro defaultTaskStartToCloseTimeout registrato con Amazon
SWEF. Specifica il tempo che un solo task di decisione di un‘esecuzione di un flusso di lavoro di
questo tipo pud impiegare per il completamento.

Se non specifichi defaultTaskStartToCloseTimeout, per impostazione predefinita sara di
30 secondi.

Per ulteriori informazioni sui timeout del flusso di lavoro, consulta Tipi di timeout di Amazon SWF .

@WorkflowRegistrationOptions Versione API 2021-04-28 185

AWS Flow Framework per Java

Guida per gli sviluppatori

defaultTaskList

L'elenco predefinito di task utilizzato per i task di decisione per le esecuzioni di questo
tipo di flusso di lavoro. L'impostazione predefinita qui puo essere sovrascritta utilizzando
StartWorkflowOptions in fase di avvio di un'esecuzione del flusso di lavoro.

Se non specifichi defaultTaskList, verra impostato su USE_WORKER_TASK_LIST come
impostazione predefinita. Indica che va utilizzato I'elenco di task usato dal lavoratore che esegue

la registrazione del flusso di lavoro.

defaultChildPolicy

AWS Flow Framework per le eccezioni Java

Specifica la policy da utilizzare per i flussi di lavoro figli se un'esecuzione di questo tipo €

terminata. Il valore predefinito &€ ABANDON. | valori possibili sono:

+ ABANDON— Consenti alle esecuzioni secondarie del flusso di lavoro di continuare a funzionare

 TERMINATE— Interrompere le esecuzioni dei flussi di lavoro secondari

 REQUEST_CANCEL— Richiedere I'annullamento delle esecuzioni dei flussi di lavoro secondari

Le seguenti eccezioni vengono utilizzate da AWS Flow Framework for Java. In questa sezione
viene fornita una panoramica di ogni eccezione. Per ulteriori dettagli, consulta la AWS SDK per Java

documentazione delle singole eccezioni.

Argomenti

ActivityFailureException

ActivityTaskException

ActivityTaskFailedException

ActivityTaskTimedOutException
ChildWorkflowException
ChildWorkflowFailedException

ChildWorkflowTerminatedException

ChildWorkflowTimedOutException

DataConverterException

DecisionException

Eccezioni

Versione API 2021-04-28 186

AWS Flow Framework per Java Guida per gli sviluppatori

» ScheduleActivityTaskFailedException

 SignalExternalWorkflowException
« StartChildWorkflowFailedException

 StartTimerFailedException

» TimerException

» WorkflowException

ActivityFailureException

Questa eccezione € utilizzata internamente dal framework per comunicare l'esito negativo

di un'attivita. Quando un'attivita fallisce a causa di un'eccezione non gestita, viene inclusa
ActivityFailureException e segnalata ad Amazon SWF. Devi gestire questa eccezione solo
se utilizzi i punti di estensibilita del lavoratore di attivita. Il codice dell'applicazione non dovra mai
gestire questa eccezione.

ActivityTaskException

Questa ¢ la classe di base per le eccezioni di errore dei task di attivita:
ScheduleActivityTaskFailedException, ActivityTaskFailedException,
ActivityTaskTimedoutException. Contiene I'ID ditask e il tipo di attivita del task non riuscito.
Puoi rilevare questa eccezione nella tua implementazione di flusso di lavoro per gestire gli errori nelle
attivita in modo generico.

ActivityTaskFailedException

Le eccezioni non gestite nelle attivita sono restituite all'implementazione di flusso di lavoro generando
ActivityTaskFailedException. L'eccezione originale pud essere recuperata dalla proprieta
cause di questa eccezione. L'eccezione fornisce inoltre altre informazioni utili per il debug, come
l'identificatore di attivita univoco nella cronologia.

Il framework puo fornire I'eccezione remota serializzando I'eccezione originale dal lavoratore di
attivita.

ActivityTaskTimedOutException

Questa eccezione viene generata se un'attivita & stata interrotta da Amazon SWF. Cio puo
verificarsi se il task di attivita non viene assegnato al lavoratore o completato dal lavoratore entro

ActivityFailureException Versione API 2021-04-28 187

AWS Flow Framework per Java Guida per gli sviluppatori

il periodo di tempo stabilito. Puoi impostare questi timeout per I'attivita utilizzando I'annotazione
@ActivityRegistrationOptions o il parametro ActivitySchedulingOptions durante la
chiamata del metodo di attivita.

ChildWorkflowException

La classe di base per le eccezioni utilizzate per segnalare errori nell'esecuzione di flusso di lavoro
figlio. L'eccezione contiene gli ID dell'esecuzione di flusso di lavoro figlio nonché il tipo di flusso di
lavoro. Puoi rilevare questa eccezione per gestire gli errori nelle esecuzioni di flusso di lavoro figlio in
modo generico.

ChildWorkflowFailedException

Le eccezioni non gestite nei flussi di lavoro figlio sono restituite all'implementazione di flusso di lavoro
padre generando ChildWorkflowFailedException. L'eccezione originale pud essere recuperata
dalla proprieta cause di questa eccezione. L'eccezione fornisce inoltre altre informazioni utili per il
debug, come gli identificatori univoci dell'esecuzione figlio.

ChildWorkflowTerminatedException

Questa eccezione viene generata nell'esecuzione di flusso di lavoro padre per segnalare la
terminazione di un'esecuzione di flusso di lavoro figlio. Devi rilevare questa eccezione se
intendi gestire la terminazione del flusso di lavoro figlio, ad esempio, per eseguire la pulizia o la
compensazione.

ChildWorkflowTimedOutException

Questa eccezione viene generata nell'esecuzione del flusso di lavoro principale per segnalare che
I'esecuzione di un flusso di lavoro secondario € stata interrotta e chiusa da Amazon SWF. Devi
rilevare questa eccezione se intendi gestire la chiusura forzata del flusso di lavoro figlio, ad esempio
per eseguire la pulizia o la compensazione.

DataConverterException

Il framework utilizza il componente DataConverter per eseguire il marshalling e 'unmarshalling
dei dati trasmessi. Questa eccezione viene generata se DataConverter non riesce a eseguire

il marshalling o I'unmarshalling dei dati. L'errore potrebbe verificarsi per vari motivi, ad esempio, a
seguito di una mancata corrispondenza tra i componenti DataConverter utilizzati per eseguire il
marshalling e I'unmarshalling dei dati.

ChildWorkflowException Versione API 2021-04-28 188

AWS Flow Framework per Java Guida per gli sviluppatori

DecisionException

Questa ¢ la classe base per le eccezioni che rappresentano la mancata attuazione di una decisione
di Amazon SWF. Puoi rilevare questa eccezione per gestire tali eccezioni in modo generico.

ScheduleActivityTaskFailedException

Questa eccezione viene generata se Amazon SWF non riesce a pianificare un'attivita. Cio potrebbe
accadere per vari motivi, ad esempio se l'attivita & stata dichiarata obsoleta o € stato raggiunto un
limite Amazon SWF sul tuo account. La proprieta failureCause nell'eccezione specifica la causa
esatta dell'errore di pianificazione dell'attivita.

SignalExternalWorkflowException

Questa eccezione viene generata se Amazon SWF non riesce a elaborare una richiesta
dell'esecuzione del flusso di lavoro per segnalare I'esecuzione di un altro flusso di lavoro. Cio si
verifica se non & stato possibile trovare I'esecuzione del flusso di lavoro di destinazione, ovvero se
I'esecuzione del flusso di lavoro specificata non esiste o si trova in uno stato chiuso.

StartChildWorkflowFailedException

Questa eccezione viene generata se Amazon SWF non riesce ad avviare I'esecuzione di un workflow
secondario. Cio pud accadere per vari motivi, ad esempio, il tipo di flusso di lavoro secondario
specificato &€ obsoleto o & stato raggiunto un limite Amazon SWF sul tuo account. La proprieta
failureCause nell'eccezione specifica la causa esatta dell'errore di avvio dell'esecuzione di flusso
di lavoro figlio.

StartTimerFailedException

Questa eccezione viene generata se Amazon SWF non riesce ad avviare un timer richiesto
dall'esecuzione del flusso di lavoro. Cio potrebbe accadere se I'ID timer specificato € gia in uso o se
e stato raggiunto un limite Amazon SWF sul tuo account. La proprieta failureCause nell'eccezione
specifica la causa esatta dell'errore.

TimerException

Questa ¢ la classe di base per le eccezioni relative ai timer.

DecisionException Versione API 2021-04-28 189

AWS Flow Framework per Java Guida per gli sviluppatori

WorkflowException

Questa eccezione viene utilizzata internamente dal framework per segnalare errori nell'esecuzione di
flusso di lavoro. Devi gestire tale eccezione solo se utilizzi un punto di estensibilita del lavoratore di
flusso di lavoro.

AWS Flow Framework per pacchetti Java

Questa sezione fornisce una panoramica dei pacchetti inclusi in Java. AWS Flow Framework Per
ulteriori informazioni su ciascun pacchetto, consulta com.amazonaws.services.simpleworkflow.flow
nella Guida di riferimento all'API.AWS SDK per Java

com.amazonaws.services.simpleworkflow.flow

Contiene componenti che si integrano con Amazon SWF.

com.amazonaws.services.simpleworkflow.flow.annotations

Contiene le annotazioni utilizzate dal modello di programmazione for Java. AWS Flow Framework

com.amazonaws.services.simpleworkflow.flow.aspectj

Contiene i componenti Java necessari per funzionalita come e. AWS Flow Framework
@Asincrona @ExponentialRetry

com.amazonaws.services.simpleworkflow.flow.common

Contiene utilita comuni come costanti definite dal framework.

com.amazonaws.services.simpleworkflow.core

Contiene funzionalita di base come Task e Promise.

com.amazonaws.services.simpleworkflow.flow.generic

Contiene componenti principali, come client generici, su cui si basano altre funzionalita.

com.amazonaws.services.simpleworkflow.flow.interceptors

Contiene implementazioni degli elementi Decorator forniti dal framework tra cui
RetryDecorator.

com.amazonaws.services.simpleworkflow.junit

Contiene componenti che forniscono l'integrazione JUnit.

WorkflowException Versione API 2021-04-28 190

https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com/sdk-for-java/latest/reference/
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/annotations/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/aspectj/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/common/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/core/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/generic/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/interceptors/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/junit/package-summary.html

AWS Flow Framework per Java Guida per gli sviluppatori

com.amazonaws.services.simpleworkflow.pojo

Contiene classi che implementano definizioni di attivita e di flusso di lavoro per il modello di
programmazione basato su annotazioni.

com.amazonaws.services.simpleworkflow.flow.spring

Contiene componenti che forniscono l'integrazione Spring.

com.amazonaws.services.simpleworkflow.flow.test

Contiene classi helper, come TestWorkflowClock, per gli unit test di implementazioni di flusso
di lavoro.

com.amazonaws.services.simpleworkflow.flow.worker

Contiene implementazioni di lavoratori di attivita e flusso di lavoro.

Pacchetti Versione API 2021-04-28 191

https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/pojo/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/spring/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/test/package-summary.html
https://docs.aws.amazon.com//AWSJavaSDK/latest/javadoc/com/amazonaws/services/simpleworkflow/flow/worker/package-summary.html

AWS Flow Framework per Java

Guida per gli sviluppatori

Cronologia dei documenti

La tabella seguente descrive le modifiche importanti alla documentazione dall'ultima versione della

AWS Flow Framework for Java Developer Guide.

* Versione API: 25-01-2012

+ Ultimo aggiornamento della documentazione: 25 giugno 2018

Modifica Descrizione
Aggiornamento Corretto errore nella descrizione backoffCoefficient
per @ExponentialRetry . Consultare @Exponent
ialRetry.
Aggiornamento Pulizia degli esempi di codice all'interno di questa guida.
Aggiornamento Semplificazione e miglioramento dell'organizzazione e dei

contenuti della guida.

Aggiornamento Semplificazione e miglioramento della sezione Apportare
modifiche al codice del decisore: la funzione Versioni

multiple e gli Indicatori di caratteristiche.

Aggiornamento Aggiunta della nuova sezione Best practice con una nuova
guida alle modifiche del codice del decisore.

Nuova caratteristica Puoi specificare attivita Lambda oltre alle tradizionali attivita
nei tuoi flussi di lavoro. Per ulteriori informazioni, consulta
AWS Lambda Attivita di implementazione.

Nuova caratteristica = Amazon SWF include il supporto per I'impostazione della
priorita delle attivita in un elenco di attivita, tentando di
fornire le attivita con una priorita piu alta prima delle attivita
con priorita inferiore. Per ulteriori informazioni, consulta
Impostazione della priorita delle attivita in Amazon SWF.

Data della
modifica

25 giugno
2018

5 giugno
2017

19 maggio
2017

10 aprile
2017

3 marzo
2017

21 luglio
2015

17 dicembre
2014

Versione API 2021-04-28 192

AWS Flow Framework per Java Guida per gli sviluppatori

Modifica Descrizione Data della
modifica

Aggiornamento Apporto di aggiornamenti e correzioni. 1 agosto
2013

Aggiornamento » Apporto di aggiornamenti e correzioni, compresi 28 giugno

aggiornamenti delle istruzioni per configurare per Eclipse 2013
4.3 e AWS SDK per Java 1.4.7.

» Aggiunta di un nuovo set di tutorial per creare scenari di
avvio

Nuova caratteristica La versione iniziale di AWS Flow Framework per Java. 27 febbraio
2012

Versione API 2021-04-28 193

AWS Flow Framework per Java Guida per gli sviluppatori

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una
traduzione e la versione originale in Inglese, quest'ultima prevarra.

Versione APl 2021-04-28 cxciv

	AWS Flow Framework per Java
	Table of Contents
	Che cos'è AWS Flow Framework per Java?
	Cosa c'è in questa guida?

	Guida introduttiva a AWS Flow Framework for Java
	Configurazione di AWS Flow Framework per Java
	Aggiungi il framework Flow con Maven

	HelloWorld Applicazione
	HelloWorld Attività: implementazione
	HelloWorld Workflow Worker
	HelloWorld Workflow Starter

	HelloWorldWorkflow Applicazione
	HelloWorldWorkflow Addetto alle attività
	HelloWorldWorkflow Workflow Worker
	Client di attività
	Tipo di Promise <T>

	HelloWorldWorkflow Implementazione del workflow e delle attività
	HelloWorldWorkflow Antipasto

	HelloWorldWorkflowAsyncApplicazione
	HelloWorldWorkflowAsync Attività Implementazione
	HelloWorldWorkflowAsync implementazione del flusso di lavoro
	HelloWorldWorkflowAsyncWorkflow e Activities Host and Starter

	HelloWorldWorkflowDistributed Applicazione
	HelloWorldWorkflowParallelApplicazione
	HelloWorldWorkflowParallelAttività: Lavoratore
	HelloWorldWorkflowParallelWorkflow Worker
	HelloWorldWorkflowParallel Workflow e attività Host and Starter

	Comprensione AWS Flow Framework di Java
	AWS Flow Framework Concetti di base: struttura dell'applicazione
	Ruolo del lavoratore di attività
	Ruolo del lavoratore di flusso di lavoro
	Ruolo dello starter di flusso di lavoro
	In che modo Amazon SWF interagisce con la tua applicazione
	Ulteriori informazioni

	AWS Flow Framework Concetti di base: esecuzione affidabile
	Assicurare una comunicazione affidabile
	Impedire la perdita dei risultati
	Gestione della cronologia del flusso di lavoro
	Esecuzione stateless

	Gestire componenti distribuiti con errori

	AWS Flow Framework Concetti di base: esecuzione distribuita
	Riproduzione dei flussi di lavoro
	Riproduzione e metodi di flusso di lavoro asincroni
	Riproduzione e implementazione del flusso di lavoro

	AWS Flow Framework Concetti di base: elenchi di attività ed esecuzione delle attività
	AWS Flow Framework Concetti di base: applicazioni scalabili
	AWS Flow Framework Concetti di base: Data Exchange tra attività e flussi di lavoro
	La promessa <T> Tipo
	Convertitore e marshalling dei dati

	AWS Flow Framework Concetti di base: Data Exchange tra applicazioni ed esecuzioni di flussi di lavoro
	Tipi di timeout di Amazon SWF
	I timeout nel flusso di lavoro e i task di decisione
	Timeout nei task di attività

	Comprensione di un task in AWS Flow Framework for Java
	Attività
	Ordine di esecuzione
	Esecuzione del flusso di lavoro
	Non determinismo

	AWS Flow Framework per la guida alla programmazione Java
	Implementazione di applicazioni di workflow con AWS Flow Framework
	Contratti di flusso di lavoro e attività
	Registrazione dei tipi di flusso di lavoro e di attività
	Nome e versione del tipo di flusso di lavoro
	Nome del segnale
	Nome e versione del tipo di attività
	Elenco di task predefinito
	Altre opzioni di registrazione

	Client di attività e flusso di lavoro
	Client di flusso di lavoro
	Client di attività
	Opzioni di programmazione
	Client dinamici
	Segnalare e annullare le esecuzioni del flusso di lavoro

	Implementazione del flusso di lavoro
	Contesto di decisione
	Esposizione dello stato dell'esecuzione
	Locali del flusso di lavoro

	Implementazione di attività
	Completamento manuale della attività

	AWS Lambda Attività di implementazione
	Informazioni su AWS Lambda
	Vantaggi e limiti dell'utilizzo delle attività Lambda
	Utilizzo delle attività Lambda nei flussi di lavoro AWS Flow Framework per Java
	Configurazione di un ruolo IAM
	Limita le autorizzazioni su un ruolo IAM
	Fornire ad Amazon SWF l'accesso per richiamare qualsiasi ruolo Lambda
	Definizione di un ruolo IAM per fornire l'accesso per richiamare una funzione Lambda specifica

	Pianifica l'esecuzione di un'attività Lambda

	Visualizza l'esempio HelloLambda

	Esecuzione di programmi scritti con AWS Flow Framework for Java
	WorkflowWorker
	ActivityWorker
	Modello di threading di lavoratore
	Estensibilità dei lavoratori

	Contesto di esecuzione
	Contesto di decisione
	Accesso nell'implementazione del flusso DecisionContext di lavoro
	Creazione di un orologio e di un timer

	Contesto di esecuzione di attività
	Heartbeat di un'attività a esecuzione prolungata
	Ottenimento dei dettagli del task di attività
	Ottieni l'oggetto client Amazon SWF utilizzato dall'esecutore

	Esecuzioni del flusso di lavoro figlio
	Flussi di lavoro continui
	Impostazione della priorità delle attività in Amazon SWF
	Impostazione della priorità di task per flussi di lavoro
	Impostazione della priorità di task per attività

	DataConverters
	Passaggio di dati a metodi asincroni
	Passaggio di raccolte e mappe a metodi asincroni
	impostabile <T>
	@NoWait
	Promise <Void>
	AndPromise e OrPromise

	Testabilità e inserimento delle dipendenze
	Integrazione di Spring
	WorkflowScope
	Lavoratori compatibili con Spring
	Contesto di decisione dell'introduzione
	Introdurre le risorse nelle attività

	JUnit Integrazione
	Scrivere un semplice unit test
	Implementazioni di attività fittizie

	Testare gli oggetti contesto

	Gestione errori
	TryCatchFinally Semantica
	Annullamento
	Heartbeat dell'attività
	Annullamento esplicito di un task
	Ricezione di notifiche relative a task annullati

	Annidato TryCatchFinally

	Ripetere le attività non andate a buon fine
	Retry-Until-Success Strategia
	Strategia di ripetizione esponenziale
	Riprova esponenziale con @ ExponentialRetry
	Riprova esponenziale con la classe RetryDecorator
	Riprova esponenziale con la classe AsyncRetryingExecutor

	Strategia di ripetizione personalizzata

	Task Daemon
	AWS Flow Framework per Java Replay Behavior
	Esempio 1: riproduzione sincrona
	Esempio 2: riproduzione asincrona
	Vedi anche

	Best practice
	Apportare modifiche al codice del decisore: la funzione Versioni multiple e gli Indicatori di caratteristiche
	Il processo di riproduzione e le modifiche del codice
	Scenario di esempio
	Struttura dello scenario
	Codice comune
	Scrivere il codice iniziale del decisore
	Simulazione di una modifica non retrocompatibile

	Soluzioni
	Uso della funzione Versioni multiple
	Utilizzo degli Indicatori di caratteristiche

	Suggerimenti per la risoluzione dei problemi e il debug per Java AWS Flow Framework
	Errori di compilazione
	Errore di risorsa sconosciuto
	Eccezioni quando si chiama get () su una promessa
	Flussi di lavoro non deterministici
	Problemi dovuti al controllo delle versioni
	Risoluzione dei problemi e debug dell'esecuzione di un flusso di lavoro
	Attività perse
	Errore di convalida dovuto a vincoli di lunghezza dei parametri API

	AWS Flow Framework per Java Reference
	AWS Flow Framework per Java Annotations
	@Activities
	@Activity
	@ActivityRegistrationOptions
	@Asincrona
	@Execute
	@ExponentialRetry
	@GetState
	@ManualActivityCompletion
	@Signal
	@SkipRegistration
	@Wait e @ NoWait
	@Flusso di lavoro
	Esempio

	@WorkflowRegistrationOptions

	AWS Flow Framework per le eccezioni Java
	ActivityFailureException
	ActivityTaskException
	ActivityTaskFailedException
	ActivityTaskTimedOutException
	ChildWorkflowException
	ChildWorkflowFailedException
	ChildWorkflowTerminatedException
	ChildWorkflowTimedOutException
	DataConverterException
	DecisionException
	ScheduleActivityTaskFailedException
	SignalExternalWorkflowException
	StartChildWorkflowFailedException
	StartTimerFailedException
	TimerException
	WorkflowException

	AWS Flow Framework per pacchetti Java

	Cronologia dei documenti
	

