
Guida per l’utente

Amazon Aurora DSQL

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Aurora DSQL Guida per l’utente

Amazon Aurora DSQL: Guida per l’utente

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

I marchi e l’immagine commerciale di Amazon non possono essere utilizzati in relazione a prodotti o
servizi che non siano di Amazon, in una qualsiasi modalità che possa causare confusione tra i clienti
o in una qualsiasi modalità che denigri o discrediti Amazon. Tutti gli altri marchi non di proprietà di
Amazon sono di proprietà dei rispettivi proprietari, che possono o meno essere affiliati, collegati o
sponsorizzati da Amazon.

Amazon Aurora DSQL Guida per l’utente

Table of Contents
Che cos’è Amazon Aurora DSQL? .. 1

Quando utilizzare ... 1
Funzionalità principali .. 1
Regione AWS disponibilità .. 3

Cluster multi-Regione ... 4
Prezzi ... 5
Fasi successive ... 5

Nozioni di base ... 7
Prerequisiti ... 7
Creazione di un cluster a Regione singola ... 7
Connessione a un cluster .. 8
Esecuzione di comandi SQL ... 9
Creazione di un cluster multi-Regione .. 9
Risoluzione dei problemi ... 12

Autenticazione e autorizzazione ... 13
Gestione del cluster ... 13
Connessione al cluster .. 13
Ruoli PostgreSQL e IAM ... 14
Utilizzo delle azioni delle policy IAM con Aurora DSQL ... 15

Utilizzo delle azioni delle policy IAM per connettersi ai cluster .. 15
Utilizzo delle azioni delle policy IAM per gestire i cluster .. 16

Revoca dell’autorizzazione tramite IAM e PostgreSQL .. 17
Generare un token di autenticazione .. 18

Console ... 18
AWS CloudShell ... 19
AWS CLI ... 20
Aurora DSQL SDKs .. 21

Ruoli del database e autenticazione IAM ... 30
Ruoli IAM .. 30
Utenti IAM ... 30
Connect (Connetti) .. 30
Query ... 31
Visualizza le mappature ... 31
Revoca .. 32

iii

Amazon Aurora DSQL Guida per l’utente

Aurora DSQL e PostgreSQL .. 33
Elementi di compatibilità in evidenza .. 33
Differenze chiave dell’architettura ... 34
Compatibilità SQL .. 35

Tipi di dati supportati .. 35
Funzionalità SQL supportate .. 41
Sottoinsiemi di comandi SQL supportati .. 44
Guida alla migrazione ... 56

Controlli della concorrenza .. 62
Conflitti tra transazioni .. 63
Linee guida per l’ottimizzazione delle prestazioni delle transazioni ... 63

DDL e transazioni distribuite ... 63
Chiavi primarie ... 65

Struttura e archiviazione dei dati .. 65
Linee guida per la scelta di una chiave primaria ... 65

Indici asincroni ... 66
Sintassi .. 67
Parameters .. 67
Note per l’utilizzo .. 68
Creazione di un indice .. 69
Esecuzione di query su un indice .. 70
Errori di creazione dell’indice univoco .. 71
Violazioni dell’unicità ... 71

Tabelle e comandi di sistema ... 73
Tabelle di sistema ... 74
Interrogazioni utili sul sistema .. 82
Il comando ANALYZE. ... 83

PIANI EXPLAIN ... 84
Piani PostgreSQL EXPLAIN ... 84
Elementi chiave ... 85
Filtraggio .. 86
Leggere i piani EXPLA ... 87
DPUs in EXPLAIN ANALIZZA .. 90

Gestione di cluster Aurora DSQL .. 94
Cluster a Regione singola ... 94

Utilizzo degli SDK AWS .. 94

iv

Amazon Aurora DSQL Guida per l’utente

Utilizzo della CLI di AWS ... 133
Cluster multi-Regione .. 136

Utilizzo degli SDK AWS .. 137
Utilizzo della CLI di AWS ... 191

CloudFormation .. 197
Configurazione iniziale .. 197
Individuazione di cluster ... 198
Aggiornamento della configurazione .. 198

Ciclo di vita del cluster Aurora DSQL ... 199
Stati del cluster ... 199
Visualizzazione degli stati del cluster ... 202

Programmazione con Aurora DSQL .. 203
Connettori ... 203

Connettore JDBC .. 204
Connettore Python .. 209
Connettori Node.js .. 220

Accedi a Aurora SQL .. 229
Client SQL ... 230
Accesso con AWS CloudShell ... 230
Accesso con la CLI locale .. 231
Accedi con DBeaver ... 232
Accedi con JetBrains DataGrip .. 233
risoluzione dei problemi .. 234

Strumenti di connettività per il database ... 235
Driver del database .. 235
Librerie ORM ... 236
Adattatori di Aurora DSQL .. 237

IA generativa .. 237
Server MCP DSQL Aurora di AWS Labs ... 238

Editor della query .. 246
Prerequisiti .. 246
Lavorare con il Query Editor .. 247

Editor di query: utilizzo JupyterLab con Aurora DSQL ... 249
Nozioni di base ... 249
Notebook di esempio .. 251
Approfondimenti .. 252

v

Amazon Aurora DSQL Guida per l’utente

Backup e ripristino .. 253
Nozioni di base su AWS Backup .. 253
Ripristino dei backup ... 253

Ripristino dei cluster basati su una Regione singola ... 254
Ripristino di cluster multi-Regione .. 254

Monitoraggio e conformità ... 254
Risorse aggiuntive ... 255

Monitoraggio e registrazione dei log .. 256
Monitoraggio con CloudWatch .. 256

Osservabilità .. 256
Utilizzo ... 258

Registrazione dei log con CloudTrail .. 259
Eventi di gestione ... 260
Eventi di dati ... 261

Sicurezza .. 263
AWSpolitiche gestite .. 264

AmazonAuroraDSQLFullAccesso ... 264
AmazonAuroraDSQLReadOnlyAccess ... 265
AmazonAuroraDSQLConsoleFullAccess .. 266
Aurora DSQLService RolePolicy .. 268
Aggiornamenti delle policy .. 268

Protezione dei dati ... 274
Crittografia dei dati ... 275
Protezione dei dati nelle Regioni testimone ... 276
Certificati SSL/TLS .. 276

Crittografia dei dati .. 275
Tipi di chiave KMS ... 283
Crittografia dei dati a riposo ... 284
Utilizzo di KMS e chiavi di dati .. 285
Autorizzazione all’uso della chiave KMS .. 288
Contesto di crittografia .. 290
Monitoraggio AWS KMS ... 290
Creazione di un cluster crittografato .. 293
Rimozione o aggiornamento di una chiave .. 295
Considerazioni ... 297

Gestione dell’identità e degli accessi .. 298

vi

Amazon Aurora DSQL Guida per l’utente

Destinatari ... 299
Autenticazione con identità ... 299
Gestione dell’accesso tramite policy .. 300
Funzionamento di Amazon DSQL con IAM ... 302
Esempi di policy basate sull’identità ... 308
risoluzione dei problemi .. 311

Policy basate sulle risorse ... 313
Quando usare ... 313
Crea con le politiche ... 315
Aggiungere e modificare le politiche .. 318
Visualizza la politica ... 320
Rimuovi politica ... 322
Esempi di policy .. 323
Blocca l'accesso pubblico ... 327
Operazioni API .. 330

Uso di ruoli collegati al servizio .. 333
Autorizzazioni del ruolo collegato al servizio per Aurora DSQL ... 334
Creare un ruolo collegato al servizio ... 335
Modifica di un ruolo collegato al servizio ... 335
Eliminazione di un ruolo collegato al servizio .. 335
Regioni supportate per i ruoli collegati al servizio di Aurora DSQL 335

Utilizzo di chiavi di condizione IAM ... 335
Creare un cluster in una Regione specifica ... 336
Creazione di un cluster multi-Regione in Regioni specifiche ... 336
Creazione di un cluster multi-Regione con Regione di riferimento specifica 337

Risposta agli incidenti .. 338
Convalida della conformità .. 339
Resilienza ... 339

Backup e ripristino .. 340
Replica .. 340
Elevata disponibilità .. 340
Test di iniezione di guasti ... 341

Sicurezza dell’infrastruttura ... 342
Gestione dei cluster utilizzando AWS PrivateLink ... 342

Analisi della configurazione e delle vulnerabilità ... 354
Prevenzione del confused deputy tra servizi .. 354

vii

Amazon Aurora DSQL Guida per l’utente

Best practice di sicurezza ... 355
Best practice relative alla sicurezza di rilevamento ... 356
Best practice relative alla sicurezza preventiva ... 357

Applicazione di tag alle risorse .. 359
Tag nome ... 359
Requisiti per il tagging ... 359
Note di utilizzo dell’applicazione di tag ... 360

Considerazioni .. 361
Quote e limiti .. 362

Quote del cluster ... 362
Limiti del database .. 363

Guida di riferimento alle API .. 368
Risoluzione dei problemi .. 369

Errori di connessione ... 369
Errori di autenticazione .. 370
Errori di autorizzazione .. 370
Errori SQL .. 371
Errori OCC ... 371
Connessioni SSL/TLS .. 372

Fornire un feedback ... 373
Canali di feedback ... 373
Richieste di funzionalità efficaci .. 373

Cronologia dei documenti .. 374
.. ccclxxxi

viii

Amazon Aurora DSQL Guida per l’utente

Che cos’è Amazon Aurora DSQL?
Amazon Aurora DSQL è un servizio di database relazionale distribuito e serverless ottimizzato per i
carichi di lavoro transazionali. Aurora DSQL offre una scalabilità praticamente illimitata e non richiede
la gestione dell’infrastruttura. L’architettura active-active ad alta disponibilità offre una disponibilità del
99,99% in un’unica Regione e del 99,999% in più Regioni.

Quando utilizzare Aurora DSQL

Aurora DSQL è ottimizzato per carichi di lavoro transazionali che traggono vantaggio dalle transazioni
ACID e da un modello di dati relazionale. Poiché è serverless, Aurora DSQL è ideale per modelli
applicativi di architetture basate su microservizi, serverless e basate su eventi. Aurora DSQL è
compatibile con PostgreSQL, quindi puoi usare driver familiari, mappature relazionali a oggetti (),
framework e funzionalità SQL. ORMs

Aurora DSQL gestisce automaticamente l’infrastruttura di sistema e dimensiona l’elaborazione, l’I/
O e lo storage in base al carico di lavoro. Poiché non sono presenti server di cui fare il provisioning
o da gestire, non è necessario preoccuparsi del tempo di inattività per la manutenzione legati al
provisioning, all’applicazione di patch o agli aggiornamenti dell’infrastruttura.

Aurora DSQL permette di creare e mantenere applicazioni aziendali sempre disponibili su qualsiasi
scala. Il design serverless active-active automatizza il ripristino degli errori, quindi non è necessario
preoccuparsi del tradizionale failover del database. Le applicazioni traggono vantaggio dalla
disponibilità multi-AZ e multi-Regione e non bisogna preoccuparsi dell’eventuale coerenza o della
mancanza di dati relativi ai failover.

Funzionalità principali di Aurora DSQL

Le seguenti funzionalità principali consentono di creare un database distribuito serverless per
supportare le applicazioni ad alta disponibilità:

Architettura distribuita

Aurora è costituito dai seguenti componenti multi-tenant:

• Relay e connettività

• Calcolo e database

Quando utilizzare 1

Amazon Aurora DSQL Guida per l’utente

• Log delle transazioni, controllo della concorrenza e isolamento

• Storage

Un piano di controllo (control-plane) coordina i componenti precedenti. Ogni componente fornisce
ridondanza su tre zone di disponibilità (), con ridimensionamento automatico del cluster e
riparazione automatica in caso di guasti dei componenti. AZs Per maggiori informazioni su come
questa architettura supporta l’alta disponibilità, consulta Resilienza in Amazon Aurora DSQL.

Cluster a Regione singola e multi-Regione

I cluster Aurora DSQL offrono i seguenti vantaggi:

• Replica sincrona dei dati

• Operazioni di lettura consistenti

• Ripristino automatico dei guasti

• Coerenza dei dati tra più o più regioni AZs

In caso di guasto di un componente dell’infrastruttura, Aurora DSQL indirizza automaticamente
le richieste verso un’infrastruttura funzionante senza intervento manuale. Aurora DSQL fornisce
transazioni con caratteristiche ACID (atomicità, coerenza, isolamento e durabilità) con una forte
coerenza, isolamento degli snapshot, atomicità e durabilità inter-AZ e inter-regionale.

I cluster in peering multi-Regione offrono la stessa resilienza e connettività dei cluster a
Regione singola. Tuttavia, migliorano la disponibilità offrendo due endpoint regionali, uno in ogni
Regione di cluster in peering. Entrambi gli endpoint di un cluster in peering presentano un unico
database logico. Sono disponibili per operazioni di lettura e scrittura simultanee e forniscono
una forte coerenza dei dati. È possibile creare applicazioni che vengono eseguite in più Regioni
contemporaneamente per garantire prestazioni e resilienza, con la certezza che i lettori vedano
sempre gli stessi dati.

Compatibilità con i database PostgreSQL

Il livello di database distribuito (calcolo) in Aurora DSQL si basa su una versione principale
corrente di PostgreSQL. È possibile connettersi ad Aurora DSQL con driver e strumenti
PostgreSQL comuni, come psql. Aurora DSQL è attualmente compatibile con PostgreSQL
versione 16 e supporta un sottoinsieme di funzionalità, espressioni e tipi di dati di PostgreSQL.
Per maggiori informazioni sulle funzionalità supportate, consulta Compatibilità delle funzionalità
SQL in Aurora DSQL.

Funzionalità principali 2

Amazon Aurora DSQL Guida per l’utente

Disponibilità regionale per Aurora DSQL

Con Amazon Aurora DSQL, puoi distribuire istanze di database su più istanze Regioni AWS
per supportare applicazioni globali e soddisfare i requisiti di residenza dei dati. La disponibilità
della Regione determina dove è possibile creare e gestire i cluster di database Aurora DSQL. Gli
amministratori di database e gli architetti delle applicazioni che devono progettare sistemi di database
ad alta disponibilità e distribuiti a livello globale spesso devono comprendere il supporto regionale
per i propri carichi di lavoro. I casi d’uso più comuni includono la configurazione del disaster recovery
tra Regioni, l’assistenza agli utenti da istanze di database geograficamente più vicine per ridurre la
latenza e la conservazione delle copie dei dati in posizioni specifiche per motivi di conformità.

La tabella seguente mostra Regioni AWS dove Aurora DSQL è attualmente disponibile e l'endpoint
per ciascuno di essi. Regione AWS

Nome
della
regione

Regione Endpoint Protocoll
o

US East
(Ohio)

us-east-2 dsql.us-east-2.api.aws

dsql-fips.us-east-2.api.aws

HTTPS

HTTPS

US
East (N.
Virginia)

us-east-1 dsql.us-east-1.api.aws

dsql-fips.us-east-1.api.aws

HTTPS

HTTPS

Stati Uniti
occidenta
li
(Oregon)

us-west-2 dsql.us-west-2.api.aws

dsql-fips.us-west-2.api.aws

HTTPS

HTTPS

Asia
Pacifico
(Osaka-
Locale)

ap-northe
ast-3

dsql.ap-northeast-3.api.aws HTTPS

Regione AWS disponibilità 3

Amazon Aurora DSQL Guida per l’utente

Nome
della
regione

Regione Endpoint Protocoll
o

Asia
Pacifico
(Seoul)

ap-northe
ast-2

dsql.ap-northeast-2.api.aws HTTPS

Asia
Pacifico
(Tokyo)

ap-northe
ast-1

dsql.ap-northeast-1.api.aws HTTPS

Europa
(Francofo
rte)

eu-centra
l-1

dsql.eu-central-1.api.aws HTTPS

Europa
(Irlanda)

eu-
west-1

dsql.eu-west-1.api.aws HTTPS

Europa
(Londra)

eu-
west-2

dsql.eu-west-2.api.aws HTTPS

Europa
(Parigi)

eu-
west-3

dsql.eu-west-3.api.aws HTTPS

Disponibilità di cluster multi-Regione per Aurora DSQL

È possibile creare cluster multiregione Aurora DSQL all'interno di set di regioni specifici. AWS Ogni
set di Regioni raggruppa Regioni geograficamente correlate che possono lavorare insieme in un
cluster multi-Regione.

Regioni degli Stati Uniti

• Stati Uniti orientali (Virginia settentrionale)

• Stati Uniti orientali (Ohio)

• Stati Uniti occidentali (Oregon)

Cluster multi-Regione 4

Amazon Aurora DSQL Guida per l’utente

Regioni dell’Asia Pacifico

• Asia Pacifico (Osaka-Locale)

• Asia Pacific (Seul)

• Asia Pacifico (Tokyo)

Regioni europee

• Europa (Francoforte)

• Europa (Irlanda)

• Europe (London)

• Europa (Parigi)

Limitazioni importanti

I cluster multi-Regione devono essere creati all’interno di un singolo set di Regioni. Ad esempio, non
è possibile creare un cluster che includa le Regioni Stati Uniti orientali (Virginia settentrionale) ed
Europa (Irlanda).

Important

Aurora DSQL al momento non supporta i cluster multi-Regione su molteplici continenti.

Prezzi di Aurora DSQL

Per informazioni sui costi, consulta Prezzi di Aurora DSQL.

Fasi successive

Per informazioni sui componenti principali di Aurora DSQL e per iniziare a utilizzare il servizio,
consulta quanto segue:

• Nozioni di base su Aurora DSQL

• Compatibilità delle funzionalità SQL in Aurora DSQL

• Accesso ad Aurora DSQL con client compatibili con PostgreSQL

Prezzi 5

https://aws.amazon.com/rds/aurora/dsql/pricing/

Amazon Aurora DSQL Guida per l’utente

• Aurora DSQL e PostgreSQL

Fasi successive 6

Amazon Aurora DSQL Guida per l’utente

Nozioni di base su Aurora DSQL
Amazon Aurora DSQL è un database relazionale distribuito e serverless ottimizzato per carichi di
lavoro transazionali. Nelle sezioni seguenti, imparerai come creare cluster Aurora DSQL a regione
singola e multiarea, connetterti a essi e creare e caricare uno schema di esempio. Accederai ai
cluster con la AWS Console e opzionalmente interagirai con il tuo database utilizzando altri client
PostgreSQL. Alla fine, avrai un cluster Aurora DSQL funzionante pronto all'uso per carichi di lavoro di
test o produzione.

Argomenti

• Prerequisiti

• Passo 1: Creazione di cluster Aurora DSQL a Regione singola

• Passo 2: Connessione al cluster Aurora DSQL

• Passo 3: Esecuzione di comandi SQL di esempio in Aurora DSQL

• Fase 4 (opzionale): Creare un cluster multiregionale

• Risoluzione dei problemi

Prerequisiti
Prima di cominciare, assicurarsi che i seguenti requisiti preliminari siano soddisfatti:

• La tua identità IAM deve disporre dell'autorizzazione per accedere alla console.

• La tua identità IAM deve soddisfare i seguenti criteri:

• Accesso per eseguire qualsiasi azione su qualsiasi risorsa del tuo Account AWS

• AmazonAuroraDSQLConsoleFullAccess AWS la politica gestita è allegata.

Passo 1: Creazione di cluster Aurora DSQL a Regione singola
L’unità base di Aurora DSQL è il cluster, che è il luogo in cui vengono archiviati i dati. In questa
attività, viene creato un cluster in una singola Regione AWS.

Come creare un cluster a Regione singola in Aurora DSQL

1. Accedi a Console di gestione AWS e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql

Prerequisiti 7

https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLConsoleFullAccess.html
https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

2. Scegli Crea cluster e poi Regione singola.

3. (Facoltativo) modifica il valore del tag Name predefinito.

4. (Facoltativo) Aggiungi tag aggiuntivi per questo cluster.

5. (Facoltativo) Nelle Impostazioni cluster, seleziona una delle seguenti opzioni:

• Seleziona Personalizza le impostazioni di crittografia (avanzate) per scegliere o creare una
AWS KMS key.

• Seleziona Abilita protezione da eliminazione per impedire che un’operazione possa eliminare il
cluster. Per impostazione predefinita, la protezione dall’eliminazione è abilitata.

• Seleziona Politica basata sulle risorse (avanzata) per specificare le politiche di controllo degli
accessi per questo cluster.

6. Scegli Crea cluster.

7. La console riporta alla pagina Cluster. Viene visualizzato un banner di notifica che indica che il
cluster è in fase di creazione. Seleziona l'ID del cluster per aprire la visualizzazione dei dettagli
del cluster.

Passo 2: Connessione al cluster Aurora DSQL

Aurora DSQL supporta diversi modi per connettersi al cluster, tra cui DSQL Query Editor AWS
CloudShell, il client psql locale e altri strumenti compatibili con PostgreSQL. In questo passaggio, ci si
connette utilizzando Aurora DSQL Query Editor, che fornisce un modo rapido per iniziare a interagire
con il nuovo cluster.

Per connettersi utilizzando il Query Editor

1. Nella console Aurora DSQL (https://console.aws.amazon.com/dsql), apri la pagina Cluster e
conferma che la creazione del cluster è stata completata e che il relativo stato è Attivo.

2. Seleziona il cluster dall'elenco o scegli l'ID del cluster per aprire la pagina dei dettagli del cluster.

3. Scegli Connect with Query editor.

4. Scegli Connect as admin per il cluster appena creato.

• Facoltativamente, puoi connetterti con un ruolo personalizzato, vedi Utilizzo dei ruoli del
database e dell'autenticazione IAM.

Connessione a un cluster 8

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started-query-editor.html
https://console.aws.amazon.com/dsql
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html

Amazon Aurora DSQL Guida per l’utente

Passo 3: Esecuzione di comandi SQL di esempio in Aurora DSQL

Effettua test sul cluster Aurora DSQL eseguendo istruzioni SQL. Dopo aver aperto il cluster nel Query
Editor, seleziona ed esegui ogni query di esempio passo dopo passo.

Esegui comandi SQL di esempio in Aurora DSQL

1. Crea uno schema denominato test.

CREATE SCHEMA IF NOT EXISTS test;

2. Crea una tabella hello_world che utilizza un UUID generato automaticamente come chiave
primaria.

CREATE TABLE IF NOT EXISTS test.hello_world (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 message VARCHAR(255) NOT NULL,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

3. Inserisci una riga di esempio.

INSERT INTO test.hello_world (message)
VALUES ('Hello, World!');

4. Leggete i valori inseriti.

SELECT * FROM test.hello_world;

5. Opzionalmente pulisci

DROP TABLE test.hello_world;
DROP SCHEMA test;

Fase 4 (opzionale): Creare un cluster multiregionale

Per creare un cluster multi-Regione, è necessario specificare le seguenti Regioni:

Esecuzione di comandi SQL 9

Amazon Aurora DSQL Guida per l’utente

Regione remota

Questa è la Regione nella quale viene creato un secondo cluster. Si crea un secondo cluster in
questa Regione e si esegue il peering al cluster iniziale. Aurora DSQL replica tutte le scritture
verso il cluster iniziale sul cluster remoto. È possibile leggere e scrivere su qualsiasi cluster.

Regione testimone

Questa Regione riceve tutti i dati scritti nel cluster multi-Regione. Tuttavia, le Regioni testimone
non ospitano gli endpoint per i client e non forniscono l’accesso ai dati degli utenti. Una finestra
limitata del log delle transazioni crittografato viene mantenuta nelle Regioni testimone. Questo log
facilita il ripristino e supporta il quorum transazionale nel caso in cui una Regione non risultasse
più disponibile.

Utilizzare la procedura seguente per creare un cluster iniziale, creare un secondo cluster in una
regione diversa e quindi eseguire il peering dei due cluster per creare un cluster multiregionale.
Dimostra inoltre la replica delle scritture tra Regioni e le letture coerenti da entrambi gli endpoint
regionali.

Creazione di un cluster multi-Regione

1. Accedi alla console Aurora DSQL.

2. Nel pannello di navigazione scegliere Cluster.

3. Scegli Crea cluster e poi multi-Regione.

4. (Facoltativo) modifica il valore del tag Name predefinito.

5. (Facoltativo) Aggiungi tag aggiuntivi per questo cluster.

6. In Impostazioni multi-Regione, scegli le seguenti opzioni per il cluster iniziale:

• In Regione testimone, scegli una Regione. Attualmente, come Regioni testimone dei cluster
multi-Regione sono supportate solo le Regioni localizzate negli Stati Uniti.

• (Facoltativo) In ARN del cluster della Regione remota, inserisci un ARN per un cluster
esistente in un’altra Regione. Se non esiste alcun cluster che funga da secondo cluster nel
cluster multi-Regione, completa la configurazione dopo aver creato il cluster iniziale.

7. (Facoltativo) In Impostazioni cluster, seleziona una delle seguenti opzioni per il cluster iniziale:

• Seleziona Personalizza le impostazioni di crittografia (avanzate) per scegliere o creare una
AWS KMS key.

Creazione di un cluster multi-Regione 10

https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

• Seleziona Abilita protezione da eliminazione per impedire che un’operazione possa eliminare il
cluster. Per impostazione predefinita, la protezione dall’eliminazione è abilitata.

• Seleziona Politica basata sulle risorse (avanzata) per specificare le politiche di controllo degli
accessi per questo cluster.

8. Per creare il cluster iniziale, scegli Crea cluster. Se non è stato inserito un ARN nel passaggio
precedente, la console mostra la notifica Configurazione del cluster in sospeso.

9. Nella notifica Configurazione del cluster in sospeso, scegli Completa configurazione del cluster
multi-Regione. Questa azione avvia la creazione di un secondo cluster in un’altra Regione.

10. Scegli una delle seguenti opzioni per il secondo cluster:

• Aggiungi ARN del cluster della Regione remota: scegli questa opzione se esiste un cluster e
desideri che sia il secondo cluster del cluster multi-Regione.

• Crea cluster in un’altra Regione: scegli questa opzione per creare un secondo cluster. In
Regione remota, scegli la Regione per questo secondo cluster.

11. Scegli Crea cluster in your-second-region, your-second-region dov'è la posizione del
secondo cluster. La console si apre sulla seconda Regione.

12. (Facoltativo) Scegli le impostazioni del cluster per il secondo cluster. Ad esempio, puoi scegliere
una AWS KMS key.

13. Per creare il secondo cluster, scegli Crea cluster.

14. Scegli Peer in initial-cluster-region, initial-cluster-region dov'è la regione che
ospita il primo cluster che hai creato.

15. Quando richiesto, scegli Conferma. Questo passo completa la creazione del cluster multi-
Regione.

Come connettersi al secondo cluster

1. Apri la console di Aurora DSQL e scegli la Regione per il secondo cluster.

2. Scegli Cluster.

3. Seleziona la riga per il secondo cluster del cluster multi-Regione.

4. Scegli Connect with Query editor.

5. Scegli Connettiti come amministratore.

6. Crea uno schema e una tabella di esempio e inserisci i dati seguendo i passaggi indicatiPasso 3:
Esecuzione di comandi SQL di esempio in Aurora DSQL.

Creazione di un cluster multi-Regione 11

Amazon Aurora DSQL Guida per l’utente

Come interrogare i dati nel secondo cluster dalla Regione che ospita il cluster iniziale

1. Nella console Aurora DSQL, scegli la Regione del cluster iniziale.

2. Scegliere Cluster.

3. Seleziona la riga per il secondo cluster del cluster multi-Regione.

4. Scegli Connect with Query editor.

5. Scegli Connettiti come amministratore.

6. Interrogare i dati inseriti nel secondo cluster.

Example

SELECT * FROM test.hello_world;

Risoluzione dei problemi

Consulta la sezione Risoluzione dei problemi della documentazione di Aurora DSQL.

Risoluzione dei problemi 12

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/troubleshooting.html

Amazon Aurora DSQL Guida per l’utente

Autenticazione e autorizzazione per Aurora DSQL

Aurora DSQL utilizza i ruoli e le policy IAM per l’autorizzazione dei cluster. Per l’autorizzazione del
database si associano i ruoli IAM ai ruoli del database PostgreSQL. Questo approccio combina i
vantaggi di IAM con i privilegi di PostgreSQL. Aurora DSQL utilizza queste funzionalità per fornire una
policy di autorizzazione e accesso completa per cluster, database e dati.

Gestione del cluster tramite IAM

Per gestire il cluster, utilizza IAM per l’autenticazione e le autorizzazioni:

Autenticazione IAM

Per autenticare l’identità IAM quando si gestiscono i cluster Aurora DSQL è necessario utilizzare
IAM. È possibile fornire l’autenticazione utilizzando Console di gestione AWS, AWS CLI o l’SDK
AWS.

Autorizzazione IAM

Per gestire i cluster Aurora DSQL, concedi l’autorizzazione utilizzando le azioni IAM per Aurora
DSQL. Ad esempio, per descrivere un cluster, assicurati che la tua identità IAM disponga delle
autorizzazioni per l’azione IAM dsql:GetCluster, come nell’esempio seguente di azione della
policy.

{
 "Effect": "Allow",
 "Action": "dsql:GetCluster",
 "Resource": "arn:aws:dsql:us-east-1:123456789012:cluster/my-cluster"
}

Per maggiori informazioni, consulta Utilizzo delle azioni delle policy IAM per gestire i cluster.

Connessione al cluster tramite IAM

Per connetterti al cluster, utilizza IAM per l’autenticazione e le autorizzazioni:

Gestione del cluster 13

https://www.postgresql.org/docs/current/user-manag.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-iam-features.html
https://www.postgresql.org/docs/current/user-manag.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access.html

Amazon Aurora DSQL Guida per l’utente

Autenticazione IAM

Genera un token di autenticazione temporaneo utilizzando un’identità IAM con autorizzazione
per connetterti al cluster. Per maggiori informazioni, consulta Generazione di un token di
autenticazione in Amazon Aurora DSQL.

Autorizzazione IAM

Concedi le seguenti azioni della policy IAM all’identità IAM che stai utilizzando per stabilire la
connessione all’endpoint del cluster:

• Utilizza dsql:DbConnectAdmin se stai utilizzando il ruolo admin. Aurora DSQL crea e
gestisce questo ruolo per l’utente. Il seguente esempio di azione politica IAM consente admin
di connettersi amy-cluster.

{
 "Effect": "Allow",
 "Action": "dsql:DbConnectAdmin",
 "Resource": "arn:aws:dsql:us-east-1:123456789012:cluster/my-cluster"
}

• Utilizza dsql:DbConnect se stai utilizzando un ruolo del database personalizzato. Puoi creare
e gestire questo ruolo utilizzando i comandi SQL nel database. Il seguente esempio di azione
politica IAM consente la connessione di un ruolo di database personalizzato my-cluster per
un massimo di un'ora.

{
 "Effect": "Allow",
 "Action": "dsql:DbConnect",
 "Resource": "arn:aws:dsql:us-east-1:123456789012:cluster/my-cluster"
}

Dopo aver stabilito una connessione, il ruolo è autorizzato per un massimo di un’ora.

Interazione con il database utilizzando i ruoli del database
PostgreSQL e i ruoli IAM

PostgreSQL gestisce le autorizzazioni di accesso al database utilizzando il concetto di ruoli. Un ruolo
può essere considerato come un utente del database o un gruppo di utenti del database, a seconda
di come è impostato. I ruoli PostgreSQL vengono creati utilizzando i comandi SQL. Per gestire

Ruoli PostgreSQL e IAM 14

Amazon Aurora DSQL Guida per l’utente

l’autorizzazione a livello di database, concedi le autorizzazioni PostgreSQL ai ruoli del database
PostgreSQL.

Aurora DSQL supporta due tipi di ruoli del database: un ruolo admin e i ruoli personalizzati. Aurora
DSQL crea automaticamente un ruolo admin predefinito nel cluster Aurora DSQL. Non è possibile
modificare il ruolo admin. Quando ci si connette al tuo database come admin, è possibile utilizzare
comandi SQL per creare nuovi ruoli a livello di database da associare ai ruoli IAM. Per consentire ai
ruoli IAM di connettersi al database, associare i ruoli del database personalizzati ai ruoli IAM.

Autenticazione

Utilizza il ruolo admin per connetterti al cluster. Dopo aver connesso il database, utilizza il
comando AWS IAM GRANT per associare un ruolo del database personalizzato all’identità IAM
autorizzata a connettersi al cluster, come nell’esempio seguente.

AWS IAM GRANT custom-db-role TO 'arn:aws:iam::account-id:role/iam-role-name';

Per maggiori informazioni, consultare Autorizzazione alla connessione al cluster per i ruoli del
database.

Autorizzazione

Utilizza il ruolo admin per connetterti al cluster. Esegui i comandi SQL per configurare ruoli di
database personalizzati e concedere le autorizzazioni. Per maggiori informazioni, consulta le
pagine dedicate ai ruoli del database PostgreSQL e ai privilegi PostgreSQL nella documentazione
di PostgreSQL.

Utilizzo delle azioni delle policy IAM con Aurora DSQL

L’azione della policy IAM utilizzata dipende dal ruolo utilizzato per la connessione al cluster: un ruolo
admin o un ruolo del database personalizzato. La policy dipende anche dalle azioni IAM richieste per
questo ruolo.

Utilizzo delle azioni delle policy IAM per connettersi ai cluster

Quando ti connetti al cluster con il ruolo del database predefinito di admin, utilizza un’identità IAM
con autorizzazione per eseguire le seguenti azioni delle policy IAM.

"dsql:DbConnectAdmin"

Utilizzo delle azioni delle policy IAM con Aurora DSQL 15

https://www.postgresql.org/docs/current/user-manag.html
https://www.postgresql.org/docs/current/ddl-priv.html

Amazon Aurora DSQL Guida per l’utente

Quando ti connetti al cluster con un ruolo del database personalizzato, associa innanzitutto il ruolo
IAM al ruolo del database. L’identità IAM usata per connettersi al cluster deve essere autorizzata a
eseguire le seguenti azioni delle policy IAM.

"dsql:DbConnect"

Per maggiori informazioni sui ruoli del database personalizzati, consulta Utilizzo dei ruoli del database
e dell’autenticazione IAM.

Utilizzo delle azioni delle policy IAM per gestire i cluster

Quando gestisci i cluster Aurora DSQL, specifica le azioni delle policy solo per le azioni che il tuo
ruolo deve eseguire. Ad esempio, se il ruolo deve solo ottenere informazioni sul cluster, è possibile
limitare le autorizzazioni del ruolo alle sole autorizzazioni GetCluster e ListClusters, come
illustrato nella seguente policy di esempio

JSON

{
"Version":"2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "dsql:GetCluster",
 "dsql:ListClusters"
],
 "Resource": "arn:aws:dsql:us-east-1:123456789012:cluster/my-cluster"
 }
]
}

La seguente policy di esempio mostra tutte le azioni delle policy IAM disponibili per la gestione dei
cluster.

JSON

{

Utilizzo delle azioni delle policy IAM per gestire i cluster 16

Amazon Aurora DSQL Guida per l’utente

"Version":"2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "dsql:CreateCluster",
 "dsql:GetCluster",
 "dsql:UpdateCluster",
 "dsql:DeleteCluster",
 "dsql:ListClusters",
 "dsql:TagResource",
 "dsql:ListTagsForResource",
 "dsql:UntagResource"
],
 "Resource" : "*"
 }
]
}

Revoca dell’autorizzazione tramite IAM e PostgreSQL
È possibile revocare le autorizzazioni di accesso ai ruoli a livello di database dei ruoli IAM:

Revoca dell’autorizzazione dell’amministratore alla connessione ai cluster

Per revocare l’autorizzazione alla connessione al cluster con il ruolo admin, revoca l’accesso
dell’identità IAM a dsql:DbConnectAdmin. Modifica la policy IAM o scollega la policy
dall’identità.

Dopo aver revocato l’autorizzazione di connessione all’identità IAM, Aurora DSQL rifiuta tutti
i nuovi tentativi di connessione da tale identità IAM. Qualsiasi connessione attiva che utilizza
l’identità IAM potrebbe rimanere autorizzata per tutta la durata della connessione. Per maggiori
informazioni sulle durate della connessione, consulta Quote e limiti.

Revoca dell’autorizzazione personalizzata al ruolo per la connessione ai cluster

Per revocare l’accesso a ruoli del database diversi da admin, revoca l’accesso dell’identità IAM a
dsql:DbConnect. Modifica la policy IAM o scollega la policy dall’identità.

È anche possibile rimuovere l’associazione tra il ruolo del database e IAM utilizzando il comando
AWS IAM REVOKE nel database. Per maggiori informazioni sulla revoca dell’accesso ai ruoli del
database, consulta Revoca dell’autorizzazione del database a un ruolo IAM.

Revoca dell’autorizzazione tramite IAM e PostgreSQL 17

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html

Amazon Aurora DSQL Guida per l’utente

Non è possibile gestire le autorizzazioni del ruolo predefinito admin del database. Per informazioni
su come gestire le autorizzazioni per i ruoli del database personalizzati, consulta Privilegi di
PostgreSQL. Le modifiche ai privilegi hanno effetto sulla transazione successiva dopo che Aurora
DSQL ha eseguito correttamente il commit della transazione di modifica.

Generazione di un token di autenticazione in Amazon Aurora DSQL

Per connetterti ad Amazon Aurora DSQL con un client SQL, genera un token di autenticazione da
utilizzare come password. Questo token viene utilizzato solo per autenticare la connessione. Una
volta stabilita la connessione, la connessione rimane valida anche se il token di autenticazione scade.

Se crei un token di autenticazione utilizzando la AWS console, per impostazione predefinita il
token scade automaticamente dopo un'ora. Se si utilizza AWS CLI o SDKs per creare il token,
l'impostazione predefinita è 15 minuti. La durata massima è di 604.800 secondi, ovvero una
settimana. Per connetterti nuovamente ad Aurora DSQL dal client, puoi utilizzare lo stesso token di
autenticazione se non è scaduto oppure è possibile generarne uno nuovo.

Per iniziare a generare un token, crea una policy IAM e un cluster in Aurora DSQL. Quindi usa la
AWS console o AWS CLI il AWS SDKs per generare un token.

È necessario disporre almeno delle autorizzazioni IAM elencate in Connessione al cluster tramite
IAM, a seconda del ruolo del database utilizzato per la connessione.

Argomenti

• Usa la AWS console per generare un token di autenticazione in Aurora DSQL

• AWS CloudShellDa utilizzare per generare un token di autenticazione in Aurora DSQL

• Usa il AWS CLI per generare un token di autenticazione in Aurora DSQL

• Usa il SDKs per generare un token in Aurora DSQL

Usa la AWS console per generare un token di autenticazione in Aurora
DSQL

Aurora DSQL autentica gli utenti con un token anziché una password. Puoi generare il token dalla
console.

Generare un token di autenticazione 18

https://www.postgresql.org/docs/current/ddl-priv.html
https://www.postgresql.org/docs/current/ddl-priv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html#getting-started-quickstart

Amazon Aurora DSQL Guida per l’utente

Per generare un token di autenticazione

1. Accedi a Console di gestione AWS e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql

2. Seleziona l’ID del cluster per cui desideri generare un token di autenticazione. Se non è ancora
stato creato un cluster, segui i passaggi indicati in Passo 1: Creazione di cluster Aurora DSQL a
Regione singola o Fase 4 (opzionale): Creare un cluster multiregionale.

3. Scegli Connetti, quindi seleziona Ottieni token.

4. Scegli se vuoi connetterti come admin o con un ruolo del database personalizzato.

5. Copia il token di autenticazione generato e utilizzalo per Accedi ad Aurora DSQL utilizzando
client SQL.

Per maggiori informazioni sui ruoli del database personalizzati e su IAM in Aurora DSQL, consulta
Autenticazione e autorizzazione.

AWS CloudShellDa utilizzare per generare un token di autenticazione in
Aurora DSQL

Prima di poter generare un token di autenticazione utilizzandoAWS CloudShell, assicurati di creare
un cluster Aurora DSQL.

Per generare un token di autenticazione utilizzando AWS CloudShell

1. Accedi a Console di gestione AWS e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql

2. In basso a sinistra della AWS console, scegli. AWS CloudShell

3. Esegui il comando seguente per generare un token di autenticazione per il ruolo admin.
Sostituisci us-east-1 con la tua regione e your_cluster_endpoint con l'endpoint del tuo
cluster.

Note

Se non ti connetti come admin, utilizza invece generate-db-connect-auth-token.

aws dsql generate-db-connect-admin-auth-token \

AWS CloudShell 19

https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-iam-role-connect
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html#getting-started-quickstart
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html#getting-started-quickstart
https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

 --expires-in 3600 \
 --region us-east-1 \
 --hostname your_cluster_endpoint

In caso di problemi, consulta Risoluzione dei problemi di IAM e Come posso risolvere gli errori di
accesso negato o di operazione non autorizzata con una policy IAM?

4. Utilizza il comando seguente per utilizzare psql per aprire una connessione al cluster.

PGSSLMODE=require \
psql --dbname postgres \
 --username admin \
 --host cluster_endpoint

5. Dovrebbe comparire un prompt di immissione della password. Copia il token che generato e
assicurati di non includere spazi o caratteri aggiuntivi. Incollalo nel seguente prompt da psql.

Password for user admin:

6. Premere Invio. Dovrebbe comparire un prompt di PostgreSQL.

postgres=>

Se ricevi un errore di accesso negato, assicurati che la tua identità IAM disponga
dell’autorizzazione dsql:DbConnectAdmin. Se disponi dell’autorizzazione e continui a ricevere
errori di accesso negato, consulta Risoluzione dei problemi di IAM e Come posso risolvere gli
errori di accesso negato o di operazione non autorizzata con una policy IAM?

Per maggiori informazioni sui ruoli del database personalizzati e su IAM in Aurora DSQL, consulta
Autenticazione e autorizzazione.

Usa il AWS CLI per generare un token di autenticazione in Aurora DSQL

Se il cluster è in stato ACTIVE, è possibile generare un token di autenticazione dalla CLI utilizzando il
comando aws dsql. È possibile utilizzare una delle seguenti tecniche:

• Se ti stai connettendo con il ruolo admin, utilizza l’opzione generate-db-connect-admin-
auth-token.

AWS CLI 20

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot.html
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot.html
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues
https://repost.aws/knowledge-center/troubleshoot-iam-policy-issues

Amazon Aurora DSQL Guida per l’utente

• Se ti stai connettendo con un ruolo del database personalizzato, utilizza l’opzione generate-db-
connect-auth-token.

L’esempio seguente utilizza i seguenti attributi per generare un token di autenticazione per il ruolo
admin.

• your_cluster_endpoint— L'endpoint del cluster. Segue il formato
your_cluster_identifier.dsql.region.on.aws, come nell’esempio
01abc2ldefg3hijklmnopqurstu.dsql.us-east-1.on.aws.

• region— IlRegione AWS, ad esempio us-east-2 ous-east-1.

Gli esempi seguenti impostano il tempo di scadenza del token in 3.600 secondi (1 ora).

Linux and macOS

aws dsql generate-db-connect-admin-auth-token \
 --region region \
 --expires-in 3600 \
 --hostname your_cluster_endpoint

Windows

aws dsql generate-db-connect-admin-auth-token ^
 --region=region ^
 --expires-in=3600 ^
 --hostname=your_cluster_endpoint

Usa il SDKs per generare un token in Aurora DSQL

È possibile generare un token di autenticazione per il cluster quando è in stato ACTIVE. Gli esempi
basati su SDK utilizzano i seguenti attributi per generare un token di autenticazione per il ruolo
admin:

• your_cluster_endpoint(oyourClusterEndpoint) — L'endpoint del cluster Aurora DSQL.
Il formato di denominazione è your_cluster_identifier.dsql.region.on.aws, come
nell’esempio 01abc2ldefg3hijklmnopqurstu.dsql.us-east-1.on.aws.

Aurora DSQL SDKs 21

Amazon Aurora DSQL Guida per l’utente

• region(oRegionEndpoint) — L'area Regione AWS in cui si trova il cluster, ad esempio o. us-
east-2 us-east-1

Python SDK

È possibile generare il token nei modi seguenti:

• Se ti stai connettendo con il ruolo admin, utilizza
generate_db_connect_admin_auth_token.

• Se ti stai connettendo con un ruolo del database personalizzato, utilizza
generate_connect_auth_token.

def generate_token(your_cluster_endpoint, region):
 client = boto3.client("dsql", region_name=region)
 # use `generate_db_connect_auth_token` instead if you are not connecting as
 admin.
 token = client.generate_db_connect_admin_auth_token(your_cluster_endpoint,
 region)
 print(token)
 return token

C++ SDK

È possibile generare il token nei modi seguenti:

• Se ti stai connettendo con il ruolo admin, utilizza GenerateDBConnectAdminAuthToken.

• Se ti stai connettendo con un ruolo del database personalizzato, utilizza
GenerateDBConnectAuthToken.

Aurora DSQL SDKs 22

Amazon Aurora DSQL Guida per l’utente

#include <aws/core/Aws.h>
#include <aws/dsql/DSQLClient.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;

std::string generateToken(String yourClusterEndpoint, String region) {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 DSQLClientConfiguration clientConfig;
 clientConfig.region = region;
 DSQLClient client{clientConfig};
 std::string token = "";

 // If you are not using the admin role to connect, use
 GenerateDBConnectAuthToken instead
 const auto presignedString =
 client.GenerateDBConnectAdminAuthToken(yourClusterEndpoint, region);
 if (presignedString.IsSuccess()) {
 token = presignedString.GetResult();
 } else {
 std::cerr << "Token generation failed." << std::endl;
 }

 std::cout << token << std::endl;

 Aws::ShutdownAPI(options);
 return token;
}

JavaScript SDK

È possibile generare il token nei modi seguenti:

• Se ti stai connettendo con il ruolo admin, utilizza getDbConnectAdminAuthToken.

• Se ti stai connettendo con un ruolo del database personalizzato, utilizza
getDbConnectAuthToken.

Aurora DSQL SDKs 23

Amazon Aurora DSQL Guida per l’utente

import { DsqlSigner } from "@aws-sdk/dsql-signer";

async function generateToken(yourClusterEndpoint, region) {
 const signer = new DsqlSigner({
 hostname: yourClusterEndpoint,
 region,
 });
 try {
 // Use `getDbConnectAuthToken` if you are _not_ logging in as the `admin` user
 const token = await signer.getDbConnectAdminAuthToken();
 console.log(token);
 return token;
 } catch (error) {
 console.error("Failed to generate token: ", error);
 throw error;
 }
}

Java SDK

È possibile generare il token nei modi seguenti:

• Se ti stai connettendo con il ruolo admin, utilizza generateDbConnectAdminAuthToken.

• Se ti stai connettendo con un ruolo del database personalizzato, utilizza
generateDbConnectAuthToken.

Aurora DSQL SDKs 24

Amazon Aurora DSQL Guida per l’utente

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.services.dsql.DsqlUtilities;
import software.amazon.awssdk.regions.Region;

public class GenerateAuthToken {
 public static String generateToken(String yourClusterEndpoint, Region region) {
 DsqlUtilities utilities = DsqlUtilities.builder()
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

 // Use `generateDbConnectAuthToken` if you are _not_ logging in as `admin`
 user
 String token = utilities.generateDbConnectAdminAuthToken(builder -> {
 builder.hostname(yourClusterEndpoint)
 .region(region);
 });

 System.out.println(token);
 return token;
 }
}

Rust SDK

È possibile generare il token nei modi seguenti:

• Se ti stai connettendo con il ruolo admin, utilizza db_connect_admin_auth_token.

• Se ti stai connettendo con un ruolo del database personalizzato, utilizza
db_connect_auth_token.

Aurora DSQL SDKs 25

Amazon Aurora DSQL Guida per l’utente

use aws_config::{BehaviorVersion, Region};
use aws_sdk_dsql::auth_token::{AuthTokenGenerator, Config};

async fn generate_token(your_cluster_endpoint: String, region: String) -> String {
 let sdk_config = aws_config::load_defaults(BehaviorVersion::latest()).await;
 let signer = AuthTokenGenerator::new(
 Config::builder()
 .hostname(&your_cluster_endpoint)
 .region(Region::new(region))
 .build()
 .unwrap(),
);

 // Use `db_connect_auth_token` if you are _not_ logging in as `admin` user
 let token = signer.db_connect_admin_auth_token(&sdk_config).await.unwrap();
 println!("{}", token);
 token.to_string()
}

Ruby SDK

È possibile generare il token nei modi seguenti:

• Se ti stai connettendo con il ruolo admin, utilizza
generate_db_connect_admin_auth_token.

• Se ti stai connettendo con un ruolo del database personalizzato, utilizza
generate_db_connect_auth_token.

require 'aws-sdk-dsql'

def generate_token(your_cluster_endpoint, region)
 credentials = Aws::SharedCredentials.new()

 begin
 token_generator = Aws::DSQL::AuthTokenGenerator.new({
 :credentials => credentials
 })

 # if you're not using admin role, use generate_db_connect_auth_token instead
 token = token_generator.generate_db_connect_admin_auth_token({
 :endpoint => your_cluster_endpoint,

Aurora DSQL SDKs 26

Amazon Aurora DSQL Guida per l’utente

 :region => region
 })
 rescue => error
 puts error.full_message
 end
end

.NET

Note

L’SDK ufficiale per .NET non include una chiamata API integrata per generare
un token di autenticazione per Aurora DSQL. È necessario utilizzare invece
DSQLAuthTokenGenerator, che è una classe di utilità. Nell’esempio di codice riportato
di seguito viene illustrato come generare il token di autenticazione in .NET.

È possibile generare il token nei modi seguenti:

• Se ti stai connettendo con il ruolo admin, utilizza DbConnectAdmin.

• Se ti stai connettendo con un ruolo del database personalizzato, utilizza DbConnect.

L’esempio seguente utilizza la classe di utilità DSQLAuthTokenGenerator per generare
il token di autenticazione per un utente con il ruolo admin. insert-dsql-cluster-
endpointSostituiscilo con l'endpoint del cluster.

using Amazon;
using Amazon.DSQL.Util;
using Amazon.Runtime;

var yourClusterEndpoint = "insert-dsql-cluster-endpoint";

AWSCredentials credentials = FallbackCredentialsFactory.GetCredentials();

var token = DSQLAuthTokenGenerator.GenerateDbConnectAdminAuthToken(credentials,
 RegionEndpoint.USEast1, yourClusterEndpoint);

Console.WriteLine(token);

Aurora DSQL SDKs 27

Amazon Aurora DSQL Guida per l’utente

Golang

Note

L’SDK Golang non fornisce un metodo integrato per generare un token prefirmato. È
necessario creare manualmente la richiesta firmata, come illustrato nel seguente esempio
di codice.

Nel seguente esempio di codice, specifica il valore action sulla base dell’utente PostgreSQL:

• Se ti stai connettendo con il ruolo admin, utilizza l’azione DbConnectAdmin.

• Se ti stai connettendo con un ruolo del database personalizzato, utilizza l’azione DbConnect.

Oltre a yourClusterEndpoint eregion, l'esempio seguente utilizzaaction. Specificare il in
action base all'utente PostgreSQL.

Aurora DSQL SDKs 28

Amazon Aurora DSQL Guida per l’utente

func GenerateDbConnectAdminAuthToken(yourClusterEndpoint string, region
 string, action string) (string, error) {
 // Fetch credentials
 sess, err := session.NewSession()
 if err != nil {
 return "", err
 }

 creds, err := sess.Config.Credentials.Get()
 if err != nil {
 return "", err
 }
 staticCredentials := credentials.NewStaticCredentials(
 creds.AccessKeyID,
 creds.SecretAccessKey,
 creds.SessionToken,
)

 // The scheme is arbitrary and is only needed because validation of the URL
 requires one.
 endpoint := "https://" + yourClusterEndpoint
 req, err := http.NewRequest("GET", endpoint, nil)
 if err != nil {
 return "", err
 }
 values := req.URL.Query()
 values.Set("Action", action)
 req.URL.RawQuery = values.Encode()

 signer := v4.Signer{
 Credentials: staticCredentials,
 }
 _, err = signer.Presign(req, nil, "dsql", region, 15*time.Minute, time.Now())
 if err != nil {
 return "", err
 }

 url := req.URL.String()[len("https://"):]

 return url, nil
}

Aurora DSQL SDKs 29

Amazon Aurora DSQL Guida per l’utente

Utilizzo dei ruoli del database e dell’autenticazione IAM

Aurora DSQL supporta l’autenticazione utilizzando sia i ruoli IAM che gli utenti IAM. È possibile
utilizzare entrambi i metodi per autenticare e accedere ai database Aurora DSQL.

Ruoli IAM

Un ruolo IAM è un'identità interna all'utente Account AWS che dispone di autorizzazioni specifiche
ma non è associata a una persona specifica. Utilizzo di ruoli IAM per fornire credenziali di sicurezza
temporanee. È possibile assumere temporaneamente un ruolo IAM in modi diversi:

• Cambiando ruolo nel Console di gestione AWS

• Richiamando un'operazione AWS CLI o AWS API

• Utilizzando un URL personalizzato

Dopo aver assunto un ruolo, puoi accedere ad Aurora DSQL utilizzando le credenziali temporanee
del ruolo. Per maggiori informazioni sui metodi per l’utilizzo dei ruoli, consulta Identità IAM nella
Guida per l’utente di IAM.

Utenti IAM

Un utente IAM è un'identità interna Account AWS che dispone di autorizzazioni specifiche ed è
associata a una singola persona o applicazione. Gli utenti IAM dispongono di credenziali a lungo
termine come password e chiavi di accesso che possono essere utilizzate per accedere ad Aurora
DSQL.

Note

Per eseguire comandi SQL con l'autenticazione IAM, puoi utilizzare il ruolo IAM ARNs o
l'utente IAM ARNs negli esempi seguenti.

Autorizzazione alla connessione al cluster per i ruoli del database

Creazione di un ruolo IAM e concessione dell’autorizzazione alla connessione con l’azione della
policy IAM: dsql:DbConnect.

Ruoli del database e autenticazione IAM 30

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

Amazon Aurora DSQL Guida per l’utente

La policy IAM deve inoltre concedere l’autorizzazione ad accedere alle risorse del cluster. Utilizza
una wildcard (*) o segui le istruzioni riportate nella pagina che spiega come utilizzare le chiavi di
condizione IAM con Amazon Aurora DSQL.

Autorizzazione dei ruoli del database a utilizzare SQL nel database

È necessario utilizzare un ruolo IAM con autorizzazione a connettersi al cluster.

1. Connettiti al cluster Aurora DSQL utilizzando un’utilità SQL.

Utilizza il ruolo del database admin con un’identità IAM autorizzata all’azione IAM
dsql:DbConnectAdmin per connetterti al cluster.

2. Crea un nuovo ruolo nel database, assicurandoti di specificare l’opzione WITH LOGIN.

CREATE ROLE example WITH LOGIN;

3. Associa il ruolo del database all’ARN del ruolo IAM.

AWS IAM GRANT example TO 'arn:aws:iam::012345678912:role/example';

4. Concedi autorizzazioni a livello di database al ruolo del database

Negli esempi seguenti viene utilizzato il comando GRANT per fornire l’autorizzazione all’interno
del database.

GRANT USAGE ON SCHEMA myschema TO example;
GRANT SELECT, INSERT, UPDATE ON ALL TABLES IN SCHEMA myschema TO example;

Per maggiori informazioni, consulta PostgreSQL GRANT e Privilegi di PostgreSQL nella
documentazione di PostgreSQL.

Visualizzazione delle mappature tra IAM e i ruoli del database

Per visualizzare le mappature tra i ruoli IAM e i ruoli del database, interroga la tabella di sistema
sys.iam_pg_role_mappings.

SELECT * FROM sys.iam_pg_role_mappings;

Output di esempio:

Query 31

https://www.postgresql.org/docs/current/sql-grant.html
https://www.postgresql.org/docs/current/ddl-priv.html

Amazon Aurora DSQL Guida per l’utente

 iam_oid | arn | pg_role_oid | pg_role_name |
 grantor_pg_role_oid | grantor_pg_role_name
---------+--+-------------+--------------
+---------------------+----------------------
 26398 | arn:aws:iam::012345678912:role/example | 26396 | example |
 15579 | admin
(1 row)

Questa tabella mostra tutte le mappature tra i ruoli IAM (identificati dal relativo ARN) e i ruoli del
database PostgreSQL.

Revoca dell’autorizzazione del database a un ruolo IAM

Per revocare l’autorizzazione del database, utilizzare l’operazione AWS IAM REVOKE.

AWS IAM REVOKE example FROM 'arn:aws:iam::012345678912:role/example';

Per maggiori informazioni sulla revoca dell’autorizzazione, consulta Revoca dell’autorizzazione
tramite IAM e PostgreSQL.

Revoca 32

Amazon Aurora DSQL Guida per l’utente

Aurora DSQL e PostgreSQL

Aurora DSQL è un database relazionale distribuito compatibile con PostgreSQL progettato per
carichi di lavoro transazionali. Aurora DSQL utilizza componenti di base di PostgreSQL come parser,
planner, optimizer e type system.

Il design di Aurora DSQL garantisce che tutta la sintassi PostgreSQL supportata fornisca un
comportamento compatibile e produca risultati di query identici. Ad esempio, Aurora DSQL
fornisce conversioni di tipo, operazioni aritmetiche e precisione e scalabilità numeriche identiche a
PostgreSQL. Eventuali deviazioni sono documentate.

Aurora DSQL introduce anche funzionalità avanzate come il controllo ottimistico della concorrenza
e la gestione distribuita dello schema. Con queste funzionalità, è possibile utilizzare gli strumenti
familiari di PostgreSQL beneficiando al contempo delle prestazioni e della scalabilità richieste per
applicazioni distribuite moderne e native del cloud.

Aspetti salienti della compatibilità con PostgreSQL

Aurora DSQL è attualmente basato sulla versione 16 di PostgreSQL. Le compatibilità principali
includono le seguenti:

Protocollo Wire

Aurora DSQL utilizza il protocollo wire standard PostgreSQL v3. Ciò consente l’integrazione con
client, driver e strumenti PostgreSQL standard. Ad esempio, Aurora DSQL è compatibile con
psql, pgjdbc e psycopg.

Compatibilità SQL

Aurora DSQL supporta un’ampia gamma di espressioni e funzioni PostgreSQL standard
comunemente utilizzate nei carichi di lavoro transazionali. Le espressioni SQL supportate
producono risultati identici a PostgreSQL, tra cui:

• Gestione dei valori nulli

• Comportamento dell’ordinamento

• Scala e precisione per le operazioni numeriche

• Equivalenza per le operazioni sulle stringhe

Elementi di compatibilità in evidenza 33

Amazon Aurora DSQL Guida per l’utente

Per maggiori informazioni, consultare Compatibilità delle funzionalità SQL in Aurora DSQL.

Gestione delle transazioni

Aurora DSQL conserva le caratteristiche principali di PostgreSQL, come le transazioni ACID e
un livello di isolamento equivalente a PostgreSQL Repeatable Read. Per maggiori informazioni,
consultare Controllo della concorrenza in Aurora DSQL.

Differenze chiave dell’architettura

Il design distribuito e senza condivisione di Aurora DSQL presenta alcune differenze fondamentali
rispetto a PostgreSQL tradizionale. Queste differenze sono parte integrante dell’architettura Aurora
DSQL e offrono molti vantaggi in termini di prestazioni e scalabilità. Le differenze principali includono
le seguenti:

Controllo ottimistico della concorrenza (OCC)

Aurora DSQL utilizza un modello ottimistico di controllo della concorrenza. Questo approccio
senza blocchi impedisce alle transazioni di bloccarsi a vicenda, elimina i deadlock e consente
l’esecuzione parallela ad alto throughput. Queste funzionalità rendono Aurora DSQL
particolarmente utile per le applicazioni che richiedono prestazioni costanti su larga scala. Per
ulteriori esempi, consulta Controllo della concorrenza in Aurora DSQL.

Operazioni DDL asincrone

Aurora DSQL esegue le operazioni DDL in modo asincrono, il che consente letture e scritture
ininterrotte durante le modifiche allo schema. La sua architettura distribuita consente ad Aurora
DSQL di eseguire le seguenti operazioni:

• Esecuzione di operazioni DDL come attività in background, riducendo al minimo le interruzioni.

• Coordinamento delle modifiche al catalogo come transazioni distribuite fortemente coerenti. Ciò
garantisce la visibilità atomica su tutti i nodi, anche in caso di malfunzionamenti o operazioni
simultanee.

• Funzionamento in modo completamente distribuito e senza leader su più zone di disponibilità
con livelli di elaborazione e storage disaccoppiati.

Per ulteriori informazioni sull'utilizzo del comando EXPLAIN in PostgreSQL, vedere. DDL e
transazioni distribuite in Aurora DSQL

Differenze chiave dell’architettura 34

Amazon Aurora DSQL Guida per l’utente

Compatibilità delle funzionalità SQL in Aurora DSQL

Aurora DSQL e PostgreSQL restituiscono risultati identici per tutte le query SQL. Si noti che Aurora
DSQL si differenzia da PostgreSQL senza una clausola ORDER BY. Nelle sezioni seguenti sono
disponibile ulteriori informazioni sul supporto di Aurora DSQL per i tipi di dati e i comandi SQL di
PostgreSQL.

Argomenti

• Tipi di dati supportati in Aurora DSQL

• SQL supportato per Aurora DSQL

• Sottoinsiemi di comandi SQL supportati in Aurora DSQL

• Migrazione da PostgreSQL ad Aurora SQL

Tipi di dati supportati in Aurora DSQL

Aurora DSQL supporta un sottoinsieme di questi tipi di dati comuni di PostgreSQL.

Argomenti

• Tipi di dati numerici

• Tipi di dati dei caratteri

• Tipi di dati data e ora

• Tipi di dati vari

• Tipi di dati di runtime delle query

Tipi di dati numerici

Aurora DSQL supporta i seguenti tipi di dati numerici di PostgreSQL.

Name Alias Intervallo e precisione Dimension
i dell’arch
iviazione

Supporto
dell’indicizzazion
e

smallint int2 Da -32768 a +32767 2 byte Sì

Compatibilità SQL 35

Amazon Aurora DSQL Guida per l’utente

Name Alias Intervallo e precisione Dimension
i dell’arch
iviazione

Supporto
dell’indicizzazion
e

integer int,
int4

Da -2147483648 a
+2147483647

4 byte Sì

bigint int8 Da -9223372036854775808
a 9223372036854775807

8 byte Sì

real float4 Precisione a 6 cifre decimali 4 byte Sì

double
precision

float8 Precisione a 15 cifre decimali 8 byte Sì

numeric [
(p, s)]

decimal
[(p, s)]

dec[
(p,s)]

Numerico esatto con
precisione selezionabile. La
precisione massima è 38 e
la scala massima è 37.1 Il
valore predefinito è numeric
(18,6).

8 byte + 2 byte
per cifra di
precisione. La
dimensione
massima è di 27
byte.

No

1 - Se non si specifica esplicitamente una dimensione durante l’esecuzione di CREATE TABLE
o ALTER TABLE ADD COLUMN, Aurora DSQL applica le impostazioni predefinite. Aurora DSQL
applica dei limiti durante l’esecuzione delle istruzioni INSERT o UPDATE.

Tipi di dati dei caratteri

Aurora DSQL supporta i seguenti tipi di dati di caratteri PostgreSQL.

Name Alias Description Limite di
Aurora SQL

Dimension
i dell’arch
iviazione

Supporto
dell’indi
cizzazione

character
[(n)]

char [
(n)]

Stringa di caratteri
a lunghezza fissa

4096 byte1 Variabile fino
a 4100 byte

Sì

Tipi di dati supportati 36

Amazon Aurora DSQL Guida per l’utente

Name Alias Description Limite di
Aurora SQL

Dimension
i dell’arch
iviazione

Supporto
dell’indi
cizzazione

character
varying [
(n)]

varchar
[(n)]

Stringa di caratteri
a lunghezza
variabile

65535 byte1 Variabile fino
a 65539 byte

Sì

bpchar [
(n)]

Se a lunghezza
fissa, si tratta di
un alias per char.
Se a lunghezza
variabile, si tratta
di un alias per
varchar, dove gli
spazi finali sono
semanticamente
insignificanti.

4096 byte1 Variabile fino
a 4100 byte

Sì

text Stringa di caratteri
a lunghezza
variabile

1 MiB1 Variabile fino
a 1 MiB

Sì

1 - Se non si specifica esplicitamente una dimensione quando si eseguono le istruzioni CREATE
TABLE o ALTER TABLE ADD COLUMN, Aurora DSQL applica le impostazioni predefinite. Aurora
DSQL applica dei limiti durante l’esecuzione delle istruzioni INSERT o UPDATE.

Tipi di dati data e ora

Aurora DSQL supporta i seguenti tipi di dati di data e ora PostgreSQL.

Tipi di dati supportati 37

Amazon Aurora DSQL Guida per l’utente

Name Alias Description Intervallo Risoluzione Dimension
i
dell’arch
iviazione

Supporto
dell’indi
cizzazion
e

date Data di
calendari
o (anno,
mese,
giorno)

4713 A.C. - 5874897
D.C.

1 giorno 4
byte

Sì

time [(p)
] [without
time zone]

timestampOra del
giorno
senza fuso
orario

0 – 1 1 microseco
ndo

8
byte

Sì

time [(p)]
with time
zone

timetzora del
giorno,
compreso il
fuso orario

00:00:00+1559 –
24:00:00 –1559

1 microseco
ndo

12
byte

No

timestamp
 [(p)] [

without
time zone]

Data e ora,
senza fuso
orario

4713 A.C. - 294276
D.C.

1 microseco
ndo

8
byte

Sì

timestamp
[(p)] with
time zone

timestamp
tz

Data e ora,
incluso il
fuso orario

4713 A.C. - 294276
D.C.

1 microseco
ndo

8
byte

Sì

interval
[fields] [
(p)]

Intervallo di
tempo

-178000000 anni -
178000000 anni

1 microseco
ndo

16
byte

No

Tipi di dati vari

Aurora DSQL supporta i seguenti tipi di dati PostgreSQL vari.

Tipi di dati supportati 38

Amazon Aurora DSQL Guida per l’utente

Name Alias Description Limite di
Aurora SQL

Dimension
i dell’arch
iviazione

Supporto
dell’indi
cizzazione

boolean bool Booleano
logico (true/
false)

1 byte Sì

bytea Dati binari
(“array di
byte”)

1 MiB1 Variabile fino
al limite di 1
MiB

No

UUID Identificatore
univoco
universale

16 byte Sì

1 - Se non si specifica esplicitamente una dimensione quando si eseguono le istruzioni CREATE
TABLE o ALTER TABLE ADD COLUMN, Aurora DSQL applica le impostazioni predefinite. Aurora
DSQL applica dei limiti durante l’esecuzione delle istruzioni INSERT o UPDATE.

Tipi di dati di runtime delle query

I tipi di dati di runtime delle query sono tipi di dati interni utilizzati al momento dell’esecuzione delle
query. Questi tipi sono distinti dai tipi compatibili con PostgreSQL come varchar e integer che
è possibile definire nello schema. Questi tipi sono invece rappresentazioni di runtime utilizzate da
Aurora DSQL per l’elaborazione di una query.

I seguenti tipi di dati sono supportati solo durante il runtime delle query:

Tipo array

Aurora DSQL supporta array dei tipi di dati supportati. Ad esempio, è possibile avere un array di
numeri interi. La funzione string_to_array divide una stringa in un array in stile PostgreSQL
con il delimitatore virgola (,) come mostrato nell’esempio seguente. È possibile utilizzare gli array
nelle espressioni, negli output di funzioni o nei calcoli temporanei durante l’esecuzione delle
query.

SELECT string_to_array('1,2', ',');

Tipi di dati supportati 39

Amazon Aurora DSQL Guida per l’utente

La funzione restituisce un risultato simile al seguente:

 string_to_array

 {1,2}
(1 row)

Tipo inet

Il tipo di dati rappresenta IPv4 gli indirizzi IPv6 host e le relative sottoreti. Questo tipo è utile per
l’analisi dei log, il filtraggio su sottoreti IP o l’esecuzione di calcoli di rete all’interno di una query.
Per maggiori informazioni, consulta inet nella documentazione di PostgreSQL.

Funzioni JSON di runtime

Aurora DSQL supporta JSON e JSONB come tipi di dati di runtime per l’elaborazione delle query,
sebbene questi non possano essere utilizzati come tipi di dati di colonna negli schemi di tabelle. È
possibile archiviare dati JSON come text e trasformarli in JSON durante l’esecuzione delle query
per utilizzare le funzioni e gli operatori JSON di PostgreSQL.

Aurora DSQL supporta la maggior parte delle funzioni JSON di PostgreSQL della sezione 9.1.6
Funzioni e operatori JSON con un comportamento identico. Le funzioni non supportate includono
le funzioni aggregate: json_agg, json_agg_strict, json_arrayagg, json_objectagg,
json_object_agg, json_object_agg_strict, json_object_agg_unique.

Le funzioni che restituiscono tipi JSON o JSONB potrebbero richiedere una trasformazione
aggiuntiva in text per una corretta visualizzazione.

SELECT json_build_array(1, 2, 'foo', 4, 5)::text;

La funzione restituisce un risultato simile al seguente:

 json_build_array

 [1, 2, "foo", 4, 5]
 (1 row)

Tipi di dati supportati 40

https://www.PostgreSQL.org/docs/16/datatype-net-types.html#DATATYPE-INET
https://www.postgresql.org/docs/current/functions-json.html
https://www.postgresql.org/docs/current/functions-json.html

Amazon Aurora DSQL Guida per l’utente

SQL supportato per Aurora DSQL

Aurora DSQL supporta un’ampia serie di funzionalità SQL di base di PostgreSQL. Nelle sezioni
seguenti, è possibile ottenere informazioni sul supporto generale delle espressioni PostgreSQL.
Questo elenco non è completo.

Comando SELECT

Aurora DSQL supporta le seguenti clausole del comando SELECT.

Clausola primaria Clausole supportate

FROM

GROUP BY ALL, DISTINCT

ORDER BY ASC, DESC, NULLS

LIMIT

DISTINCT

HAVING

USING

WITH (espressioni di tabella
comuni)

INNER JOIN ON

OUTER JOIN LEFT, RIGHT, FULL, ON

CROSS JOIN ON

UNION ALL

INTERSECT ALL

EXCEPT ALL

Funzionalità SQL supportate 41

Amazon Aurora DSQL Guida per l’utente

Clausola primaria Clausole supportate

OVER RANK (), PARTITION BY

FOR UPDATE

Data Definition Language (DDL)

Aurora DSQL supporta i seguenti comandi DDL di PostgreSQL.

Comando Clausola primaria Clausole supportate

CREATE TABLE Per informazioni sulla sintassi supportat
a del comando CREATE TABLE, consulta
CREATE TABLE.

ALTER TABLE Per informazioni sulla sintassi supportat
a del comando ALTER TABLE, consulta
ALTER TABLE.

DROP TABLE

CREATE [UNIQUE] INDEX
ASYNC

È possibile eseguire questo comando con
i seguenti parametri: ON, NULLS FIRST,
NULLS LAST.

Per informazioni sulla sintassi supportat
a del comando CREATE INDEX ASYNC,
consulta Indici asincroni in Aurora SQL.

DROP INDEX

CREATE VIEW Per maggiori informazioni sulla sintassi
supportata del comando CREATE VIEW,
consulta CREATE VIEW.

Funzionalità SQL supportate 42

Amazon Aurora DSQL Guida per l’utente

Comando Clausola primaria Clausole supportate

ALTER VIEW Per informazioni sulla sintassi supportat
a del comando ALTER VIEW, consulta
ALTER VIEW.

DROP VIEW Per informazioni sulla sintassi supportata
del comando DROP VIEW, consulta DROP
VIEW.

CREATE ROLE, WITH

CREATE FUNCTION LANGUAGE SQL

CREATE DOMAIN

Data Manipulation Language (DML)

Aurora DSQL supporta i seguenti comandi DML di PostgreSQL.

Comando Clausola primaria Clausole supportate

INSERT INTO VALUES
SELECT

UPDATE SET WHERE (SELECT)

FROM, WITH

DELETE FROM USING, WHERE

Data Control Language (DCL)

Aurora DSQL supporta i seguenti comandi DCL di PostgreSQL.

Comando Clausole supportate

GRANT ON, TO

Funzionalità SQL supportate 43

Amazon Aurora DSQL Guida per l’utente

Comando Clausole supportate

REVOKE ON, FROM, CASCADE, RESTRICT

Transaction Control Language (TCL)

Aurora DSQL supporta i seguenti comandi TCL di PostgreSQL.

Comando Clausole supportate

COMMIT

BEGIN [WORK | TRANSACTION]

[READ ONLY | READ WRITE]

Comandi di utilità

Aurora DSQL supporta i seguenti comandi di utilità di PostgreSQL:

• EXPLAIN

• ANALYZE (solo nome della relazione)

Sottoinsiemi di comandi SQL supportati in Aurora DSQL

Questa sezione di PostgreSQL fornisce informazioni dettagliate sulle espressioni supportate,
concentrandosi sui comandi con set di parametri e sottocomandi estesi. Ad esempio, CREATE
TABLE in PostgreSQL offre molte clausole e parametri. Questa sezione descrive tutti gli elementi
della sintassi PostgreSQL supportati da Aurora DSQL per questi comandi.

Argomenti

• CREATE TABLE

• ALTER TABLE

• CREATE VIEW

• ALTER VIEW

• DROP VIEW

Sottoinsiemi di comandi SQL supportati 44

Amazon Aurora DSQL Guida per l’utente

CREATE TABLE

CREATE TABLE definisce una nuova tabella.

CREATE TABLE [IF NOT EXISTS] table_name ([
 { column_name data_type [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option ...] }
 [, ...]
])

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression)|
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |
 UNIQUE [NULLS [NOT] DISTINCT] index_parameters |
 PRIMARY KEY index_parameters |

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) |
 UNIQUE [NULLS [NOT] DISTINCT] (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |

and like_option is:

{ INCLUDING | EXCLUDING } { COMMENTS | CONSTRAINTS | DEFAULTS | GENERATED | IDENTITY |
 INDEXES | STATISTICS | ALL }

index_parameters in UNIQUE, and PRIMARY KEY constraints are:
[INCLUDE (column_name [, ...])]

ALTER TABLE

ALTER TABLE modifica la definizione di una tabella.

ALTER TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]

Sottoinsiemi di comandi SQL supportati 45

Amazon Aurora DSQL Guida per l’utente

ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema

where action is one of:

 ADD [COLUMN] [IF NOT EXISTS] column_name data_type
 OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER | SESSION_USER }

CREATE VIEW

CREATE VIEW definisce una nuova vista persistente. Aurora DSQL non supporta le viste
temporanee, sono supportate solo le viste permanenti.

Sintassi supportata

CREATE [OR REPLACE] [RECURSIVE] VIEW name [(column_name [, ...])]
 [WITH (view_option_name [= view_option_value] [, ...])]
 AS query
 [WITH [CASCADED | LOCAL] CHECK OPTION]

Description

CREATE VIEW definisce una vista basata su una query. La vista non è materializzata fisicamente. Al
contrario, la query viene eseguita ogni volta che si fa riferimento alla vista in una query.

CREATE or REPLACE VIEW è simile, ma se esiste già una vista con lo stesso nome, questa viene
sostituita. La nuova query deve generare le stesse colonne generate dalla query della vista esistente
(ovvero gli stessi nomi di colonna nello stesso ordine e con gli stessi tipi di dati), ma può aggiungere
ulteriori colonne alla fine dell’elenco. I calcoli che danno origine alle colonne di output possono essere
diversi.

Se viene specificato un nome di schema (come CREATE VIEW myschema.myview ...), la vista
viene creata utilizzando lo schema specificato. In caso contrario la vista viene creata nello schema
corrente.

Sottoinsiemi di comandi SQL supportati 46

Amazon Aurora DSQL Guida per l’utente

Il nome della vista deve essere distinto dal nome di qualsiasi altra relazione (tabella, indice, vista)
nello stesso schema.

Parameters

CREATE VIEW supporta vari parametri per controllare il comportamento delle viste aggiornabili
automaticamente.

RECURSIVE

Crea una vista ricorsiva. La sintassi: CREATE RECURSIVE VIEW [schema .] view_name
(column_names) AS SELECT ...; è equivalente a CREATE VIEW [schema .]
view_name AS WITH RECURSIVE view_name (column_names) AS (SELECT ...)
SELECT column_names FROM view_name;.

Per una vista ricorsiva è necessario specificare un elenco di nomi di colonne della vista.

name

Il nome della vista da creare, che può essere facoltativamente accompagnato dallo schema. Per
una vista ricorsiva è necessario specificare un elenco di nomi di colonne.

column_name

Un elenco facoltativo di nomi da utilizzare per le colonne nella vista. Se non vengono specificati
nomi di colonne, questi ricavati dalla query.

WITH (view_option_name [= view_option_value] [, ...])

Questa clausola specifica i parametri opzionali per una vista. Sono supportati i seguenti parametri.

• check_option (enum) - Questo parametro può assumere i valori local o cascaded ed è
equivalente a specificare WITH [CASCADED | LOCAL] CHECK OPTION.

• security_barrier (boolean) - Deve essere usato se la vista è destinata a fornire una
sicurezza a livello di riga. Aurora DSQL attualmente non supporta la sicurezza a livello di riga,
ma questa opzione forzerà comunque la valutazione prioritaria delle condizioni WHERE della
vista (e di tutte le condizioni che utilizzano operatori contrassegnati come LEAKPROOF).

• security_invoker (boolean) - Questa opzione fa sì che le relazioni di base sottostanti
vengano verificate con i privilegi dell’utente della vista anziché con quelli del proprietario della
vista. Per dettagli completi, consulta le note riportate di seguito.

Tutte le opzioni precedenti possono essere modificate nelle viste esistenti utilizzando ALTER
VIEW.

Sottoinsiemi di comandi SQL supportati 47

Amazon Aurora DSQL Guida per l’utente

query

Un comando SELECT o VALUES che fornisce le colonne e le righe della vista.

• WITH [CASCADED | LOCAL] CHECK OPTION - Questa opzione controlla il
comportamento delle viste aggiornabili automaticamente. Quando viene specificata questa
opzione, i comandi INSERT e UPDATE sulla vista verranno controllati per garantire che le
nuove righe soddisfino la condizione di definizione della vista (ovvero, le nuove righe vengono
controllate per garantire che siano visibili attraverso la vista). In caso contrario, l’aggiornamento
verrà rifiutato. Se CHECK OPTION non è specificato, i comandi INSERT e UPDATE sulla vista
possono creare righe che non sono visibili attraverso la vista stessa. Di seguito sono riportate le
opzioni supportate.

• LOCAL - Le nuove righe vengono verificate solo in base alle condizioni definite direttamente
nella vista stessa. Qualsiasi condizione definita nelle viste di base sottostanti non viene
verificata (a meno che anch’esse non specifichino l’opzione CHECK OPTION).

• CASCADED - Le nuove righe vengono verificate rispetto alle condizioni della vista e di tutte
le viste di base sottostanti. Se viene indicato CHECK OPTION e non viene specifica l’opzioni
LOCAL né l’opzione CASCADED, viene assunto il valore CASCADED.

Note

CHECK OPTION può essere utilizzato con le viste RECURSIVE. CHECK OPTION è
supportato solo nelle viste aggiornabili automaticamente.

Note

Utilizzare l’istruzione DROP VIEW per eliminare le viste.

I nomi e i tipi di dati delle colonne della vista devono essere considerati attentamente. Ad esempio,
CREATE VIEW vista AS SELECT ’Hello World’; non è consigliato perché il nome della colonna
predefinito è ?column?;. Inoltre, il tipo di dati della colonna predefinito è text, il che potrebbe non
essere quello desiderato.

Un approccio migliore consiste nello specificare esplicitamente il nome della colonna e il tipo di dati,
ad esempio: CREATE VIEW vista AS SELECT text 'Hello World' AS hello;.

Per impostazione predefinita, l’accesso alle relazioni di base sottostanti a cui si fa riferimento nella
vista è determinato dalle autorizzazioni del proprietario della vista. In alcuni casi, questo può essere

Sottoinsiemi di comandi SQL supportati 48

Amazon Aurora DSQL Guida per l’utente

utilizzato per fornire un accesso sicuro ma limitato alle tabelle sottostanti. Tuttavia, non tutte le viste
sono protette dalla manomissione.

• Se la proprietà security_invoker della vista è impostata su true, l’accesso alle relazioni di base
sottostanti è determinato dalle autorizzazioni dell’utente che esegue la query, anziché su quelle del
proprietario della vista. Pertanto, l’utente di una vista con l’opzione Security Invoker deve disporre
delle autorizzazioni pertinenti sulla vista e sulle relative relazioni di base sottostanti.

• Se una delle relazioni di base sottostanti è una vista con l’opzione Security Invoker, verrà trattata
come se vi fosse stato effettuato l’accesso direttamente dalla query originale. Pertanto, una
vista con l’opzione Security Invoker verificherà sempre le relazioni di base sottostanti utilizzando
le autorizzazioni dell’utente corrente, anche se vi si accede da una vista senza la proprietà
security_invoker.

• Le funzioni chiamate nella vista vengono trattate come se fossero state chiamate direttamente
dalla query che utilizza la vista. Pertanto, l’utente di una vista deve disporre delle autorizzazioni
per chiamare tutte le funzioni utilizzate dalla vista. Le funzioni nella vista vengono eseguite con i
privilegi dell’utente che esegue la query o del proprietario della funzione, a seconda che le funzioni
siano definite come SECURITY INVOKER o SECURITY DEFINER. Ad esempio, la chiamata
CURRENT_USER diretta in una vista restituirà sempre l’utente che la invoca, non il proprietario della
vista. Ciò non è influenzato dall’impostazione dell’opzione security_invoker della vista, quindi
una vista con l’opzione security_invoker impostata su false non è equivalente a una funzione
SECURITY DEFINER.

• L’utente che crea o sostituisce una vista deve disporre dei privilegi USAGE su tutti gli schemi a cui
si fa riferimento nella query della vista, al fine di poter accedere agli oggetti a cui si fa riferimento in
tali schemi. Si noti, tuttavia, che questa ricerca viene eseguita solo quando la vista viene creata o
sostituita. Pertanto, l’utente della vista richiede il privilegio USAGE solo sullo schema che contiene
la vista, non sugli schemi a cui si fa riferimento nella query della vista, anche per una vista con
l’opzione Security Invoker.

• Quando CREATE OR REPLACE VIEW viene utilizzato su una vista esistente, vengono modificate
solo la regola di SELECT di definizione della vista, più eventuali parametri WITH (...) e
relativa CHECK OPTION. Le altre caratteristiche della vista, tra cui proprietà, autorizzazioni e regole
non selezionate, rimangono invariate. Per sostituire una vista è necessario esserne proprietari (ciò
include essere un membro del ruolo proprietario).

Sottoinsiemi di comandi SQL supportati 49

Amazon Aurora DSQL Guida per l’utente

Viste aggiornabili

Le viste semplici sono aggiornabili automaticamente: il sistema consentirà alle istruzioni INSERT,
UPDATE e DELETE di operare sulla vista allo stesso modo in cui avrebbe fatto su una normale tabella.
Una vista è aggiornabile automaticamente se soddisfa tutte le seguenti condizioni:

• La vista deve avere esattamente una voce nell’elenco della clausola FROM, e tale elemento deve
essere una tabella o un’altra vista aggiornabile.

• La definizione della vista non deve contenere clausole WITH, DISTINCT, GROUP BY, HAVING,
LIMIT o OFFSET al livello principale.

• La definizione della vista non deve contenere operazioni sugli insiemi (UNION, INTERSECT
oEXCEPT) al livello principale.

• L’elenco di selezione della vista non deve contenere aggregati, funzioni finestra o funzioni che
restituiscono insiemi.

Una vista aggiornabile automaticamente può contenere una combinazione di colonne aggiornabili e
non aggiornabili. Una colonna è aggiornabile se è un semplice riferimento a una colonna aggiornabile
della relazione di base sottostante. In caso contrario, la colonna è di sola lettura e si verifica un errore
se un’istruzione INSERT o UPDATE tenta di assegnarle un valore.

Per le viste aggiornabili automaticamente, il sistema converte qualsiasi istruzione INSERT, UPDATE
o DELETE sulla vista nell’istruzione corrispondente sulla relazione di base sottostante. Le istruzioni
INSERT con una clausola ON CONFLICT UPDATE sono pienamente supportate.

Se una vista aggiornabile automaticamente contiene una condizione WHERE, la condizione limita
le righe della relazione di base che possono essere modificate dalle istruzioni UPDATE e DELETE
eseguite sulla vista. Tuttavia, un’istruzione UPDATE può modificare una riga in modo che non soddisfi
più la condizione WHERE, rendendola invisibile dalla vista. Allo stesso modo, un comando INSERT
può potenzialmente inserire righe nella relazione di base che non soddisfano la condizione WHERE,
rendendole invisibili attraverso la vista. ON CONFLICT UPDATE può influire in modo analogo su una
riga esistente non visibile attraverso la vista.

È possibile utilizzare CHECK OPTION per impedire che i comandi INSERT e UPDATE creino righe
che non sono visibili attraverso la vista.

Se una vista aggiornabile automaticamente è contrassegnata con la proprietà security_barrier, tutte
le condizioni WHERE della vista (e tutte le condizioni che utilizzano gli operatori contrassegnati come
LEAKPROOF) vengono sempre valutate prima di qualsiasi condizione aggiunta da un utente della

Sottoinsiemi di comandi SQL supportati 50

Amazon Aurora DSQL Guida per l’utente

vista. Bisogne tenere presente che, per questo motivo, le righe che alla fine non vengono restituite
(perché non soddisfano le condizioni WHERE dell’utente) potrebbero comunque finire per essere
bloccate. È possibile utilizzare EXPLAIN per vedere quali condizioni vengono applicate a livello di
relazione (e quindi non bloccano le righe) e quali no.

Una vista più complessa che non soddisfa tutte queste condizioni è di sola lettura per impostazione
predefinita: il sistema non consente inserimenti, aggiornamento o eliminazioni sulla vista.

Note

L’utente che esegue l’inserimento, l’aggiornamento o l’eliminazione sulla vista deve disporre
del privilegio di inserimento, aggiornamento o eliminazione corrispondente sulla vista. Per
impostazione predefinita, il proprietario della vista deve disporre dei privilegi pertinenti sulle
relazioni di base sottostanti, mentre l’utente che esegue l’aggiornamento non necessita di
alcuna autorizzazione sulle relazioni di base sottostanti. Tuttavia, se la vista ha l’opzione
security_invoker impostata su true, è l’utente che esegue l’aggiornamento, anziché il
proprietario della vista, che deve disporre dei privilegi pertinenti sulle relazioni di base
sottostanti.

Esempi

Per creare una visualizzazione composta da tutti i film comici.

CREATE VIEW comedies AS
 SELECT *
 FROM films
 WHERE kind = 'Comedy';

Questa istruzione creerà una vista contenente le colonne presenti nella tabella film al momento
della creazione della vista. Sebbene sia stato utilizzato il simbolo * per creare la vista, le colonne
aggiunte successivamente alla tabella non faranno parte della vista.

Creazione di una vista con LOCAL CHECK OPTION.

CREATE VIEW pg_comedies AS
 SELECT *
 FROM comedies
 WHERE classification = 'PG'
 WITH CASCADED CHECK OPTION;

Sottoinsiemi di comandi SQL supportati 51

Amazon Aurora DSQL Guida per l’utente

Questa istruzione creerà una vista che controlla kind e classification delle nuove righe.

Creazione di una vista con una combinazione di colonne aggiornabili e non aggiornabili.

CREATE VIEW comedies AS
 SELECT f.*,
 country_code_to_name(f.country_code) AS country,
 (SELECT avg(r.rating)
 FROM user_ratings r
 WHERE r.film_id = f.id) AS avg_rating
 FROM films f
 WHERE f.kind = 'Comedy';

Questa vista supporta INSERT, UPDATE e DELETE. Tutte le colonne della tabella dei film saranno
aggiornabili, mentre le colonne calcolate country e avg_rating saranno di sola lettura.

CREATE RECURSIVE VIEW public.nums_1_100 (n) AS
 VALUES (1)
UNION ALL
 SELECT n+1 FROM nums_1_100 WHERE n < 100;

Note

Sebbene il nome della vista ricorsiva sia qualificato dallo schema in questo comando
CREATE, il suo autoreferenziamento interno non è qualificato dallo schema. Questo perché
il nome Common Table Expression (CTE) creato implicitamente non può essere qualificato
dallo schema.

Compatibilità

CREATE OR REPLACE VIEW è un’estensione del linguaggio PostgreSQL. Anche la WITH (...)
clausola è un’estensione, così come le viste con guardabarriere e le viste con security invoker.
Aurora DSQL supporta queste estensioni del linguaggio.

ALTER VIEW

L’istruzione ALTER VIEW consente di modificare varie proprietà di una vista esistente e Aurora DSQL
supporta tutta la sintassi PostgreSQL per questo comando.

Sottoinsiemi di comandi SQL supportati 52

Amazon Aurora DSQL Guida per l’utente

Sintassi supportata

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name SET DEFAULT expression
ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name DROP DEFAULT
ALTER VIEW [IF EXISTS] name OWNER TO { new_owner | CURRENT_ROLE | CURRENT_USER |
 SESSION_USER }
ALTER VIEW [IF EXISTS] name RENAME [COLUMN] column_name TO new_column_name
ALTER VIEW [IF EXISTS] name RENAME TO new_name
ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema
ALTER VIEW [IF EXISTS] name SET (view_option_name [= view_option_value] [, ...])
ALTER VIEW [IF EXISTS] name RESET (view_option_name [, ...])

Description

ALTER VIEW modifica varie proprietà ausiliarie di una vista. (se si intende modificare la query
di definizione della vista, utilizzare CREATE OR REPLACE VIEW). Per utilizzare ALTER VIEW è
necessario essere proprietari della vista da utilizzare. Per modificare lo schema di una vista, occorre
anche disporre del privilegio CREATE sul nuovo schema. Per modificare il proprietario, bisogna
essere in grado di eseguire l’istruzione SET ROLE sul nuovo ruolo proprietario e tale ruolo deve
disporre del privilegio CREATE sullo schema della vista. Queste restrizioni impongono che la modifica
del proprietario non comporti alcun effetto che non si possa ottenere eliminando e ricreando la
visualizzazione.

Parameters

Parametri di ALTER VIEW

name

Il nome (facoltativamente qualificato dallo schema) di una vista esistente.

column_name

Nuovo nome per una colonna esistente.

IF EXISTS

Non generare un errore se la vista non esiste. In questo caso viene emesso un avviso.

SET/DROP DEFAULT

Questi moduli impostano o rimuovono il valore predefinito per una colonna. Il valore predefinito
per una colonna di visualizzazione viene sostituito in qualsiasi comando INSERT o UPDATE in cui

Sottoinsiemi di comandi SQL supportati 53

Amazon Aurora DSQL Guida per l’utente

la destinazione è la vista. Il valore predefinito per la vista avrà la precedenza su qualsiasi valore
predefinito delle relazioni sottostanti.

new_owner

Il nome utente del nuovo proprietario della vista.

new_name

Il nuovo nome della vista.

new_schema

Il nuovo schema della vista.

SET (view_option_name [= view_option_value] [, ...]), RESET
(view_option_name [, ...])

Imposta o reimposta un’opzione della vista. Di seguito sono riportate le opzioni supportate.

• check_option (enum) - Modifica l’opzione di controllo della vista. Il valore deve essere
local o cascaded.

• security_barrier (boolean) - Modifica la proprietà guardabarriere della vista. Il valore
deve essere un valore booleano, come true o false.

• security_invoker (boolean) - Modifica la proprietà guardabarriere della vista. Il valore
deve essere un valore booleano, come true o false.

Note

Per ragioni storiche di PostgreSQL, ALTER TABLE può essere utilizzato anche sulle viste, ma
le uniche varianti di ALTER TABLE consentite sulle viste sono equivalenti a quelle mostrate in
precedenza.

Esempi

Ridenominazione della vista foo in bar.

ALTER VIEW foo RENAME TO bar;

Associazione di un valore di colonna predefinito a una vista aggiornabile.

CREATE TABLE base_table (id int, ts timestamptz);

Sottoinsiemi di comandi SQL supportati 54

Amazon Aurora DSQL Guida per l’utente

CREATE VIEW a_view AS SELECT * FROM base_table;
ALTER VIEW a_view ALTER COLUMN ts SET DEFAULT now();
INSERT INTO base_table(id) VALUES(1); -- ts will receive a NULL
INSERT INTO a_view(id) VALUES(2); -- ts will receive the current time

Compatibilità

ALTER VIEW è un’estensione PostgreSQL dello standard SQL supportato da Aurora DSQL.

DROP VIEW

L’istruzione DROP VIEW rimuove una vista esistente. Aurora DSQL supporta la sintassi PostgreSQL
completa per questo comando.

Sintassi supportata

DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description

DROP VIEW elimina una vista esistente. Per eseguire questo comando è necessario essere
proprietari della vista.

Parameters

IF EXISTS

Non generare un errore se la vista non esiste. In questo caso viene emesso un avviso.

name

Il nome (facoltativamente qualificato dallo schema) della vista da rimuovere.

CASCADE

Rilascia automaticamente gli oggetti che dipendono dalla vista (come le altre viste) e, a loro volta,
tutti gli oggetti che dipendono da tali oggetti.

RESTRICT

Rifiuta di eliminare la vista se alcuni oggetti dipendono da essa. Questa è l’impostazione
predefinita.

Sottoinsiemi di comandi SQL supportati 55

Amazon Aurora DSQL Guida per l’utente

Esempi

DROP VIEW kinds;

Compatibilità

Questo comando è conforme allo standard SQL, tranne per il fatto che lo standard consente
di eliminare una sola vista per comando e a parte l’opzione IF EXISTS, che è un’estensione
PostgreSQL supportata da Aurora DSQL.

Migrazione da PostgreSQL ad Aurora SQL

Aurora DSQL è progettata per essere compatibile con PostgreSQL e supporta funzionalità relazionali
di base come transazioni ACID, indici secondari, join e operazioni DML standard. La maggior parte
delle applicazioni PostgreSQL esistenti può migrare ad Aurora DSQL con modifiche minime.

Questa sezione fornisce linee guida pratiche per la migrazione dell'applicazione ad Aurora DSQL, tra
cui compatibilità del framework, modelli di migrazione e considerazioni sull'architettura.

Compatibilità con framework e ORM

Aurora DSQL utilizza il protocollo wire PostgreSQL standard, garantendo la compatibilità con i driver
e i framework PostgreSQL. I più diffusi ORMs funzionano con Aurora DSQL con modifiche minime o
nulle. Vedi the section called “Adattatori di Aurora DSQL” per le implementazioni di riferimento e le
integrazioni ORM disponibili.

Modelli di migrazione comuni

Durante la migrazione da PostgreSQL ad Aurora DSQL, alcune funzionalità funzionano in modo
diverso o hanno una sintassi alternativa. Questa sezione fornisce indicazioni sugli scenari di
migrazione più comuni.

Alternative operative DDL

Aurora DSQL offre alternative moderne alle tradizionali operazioni DDL PostgreSQL:

Creazione di indici

Utilizzatelo CREATE INDEX ASYNC al posto di quello CREATE INDEX per la creazione di indici
non bloccanti.

Vantaggio: creazione di indici senza tempi di inattività su tabelle di grandi dimensioni.

Guida alla migrazione 56

Amazon Aurora DSQL Guida per l’utente

Rimozione dei dati

Utilizzare DELETE FROM table_name al posto diTRUNCATE.

Alternativa: per una completa ricreazione a tavola, utilizzare DROP TABLE seguito daCREATE
TABLE.

Configurazione del sistema

Aurora DSQL non supporta ALTER SYSTEM i comandi perché il sistema è completamente gestito.
La configurazione viene gestita automaticamente in base ai modelli di carico di lavoro.

Vantaggio: non è necessario ottimizzare il database o gestire i parametri.

Modelli di progettazione dello schema

Adatta questi modelli PostgreSQL comuni per la compatibilità con Aurora SQL:

Sequenze per chiavi

Usa le UUIDs nostre chiavi composite invece di sequenze ad incremento automatico. Le
sequenze ad incremento automatico portano a un'elevata quantità di conflitti in un sistema
distribuito poiché più autori cercano di aggiornare gli stessi dati. UUIDs forniscono la stessa
funzione ma non richiedono alcun coordinamento.

Esempio: id UUID PRIMARY KEY DEFAULT gen_random_uuid()

modelli di integrità referenziale

Aurora DSQL supporta le relazioni e le JOIN operazioni tra tabelle ma non impone ancora vincoli
di chiave esterna. Questa scelta progettuale si allinea ai moderni modelli di database distribuiti in
cui la convalida a livello di applicazione offre maggiore flessibilità ed evita i colli di bottiglia delle
prestazioni dovuti alle operazioni a cascata.

Modello: implementa i controlli di integrità referenziale a livello di applicazione utilizzando
convenzioni di denominazione, logica di convalida e limiti di transazione coerenti. Molte
applicazioni su larga scala preferiscono questo approccio per un migliore controllo sulla gestione
degli errori e sulle prestazioni.

Gestione temporanea dei dati

Utilizza CTEs sottoquery o tabelle normali con logica di pulizia anziché tabelle temporanee.

Alternativa: crea tabelle con nomi specifici della sessione e puliscile nell'applicazione.

Guida alla migrazione 57

Amazon Aurora DSQL Guida per l’utente

Comprendere le differenze architettoniche

L'architettura distribuita e serverless di Aurora DSQL si differenzia intenzionalmente da PostgreSQL
tradizionale in diverse aree. Queste differenze consentono i principali vantaggi di semplicità e
scalabilità di Aurora DSQL.

Modello di database semplificato

Database singolo per cluster

Aurora DSQL fornisce un database integrato denominato postgres per cluster.

Suggerimento per la migrazione: se l'applicazione utilizza più database, create cluster Aurora
DSQL separati per la separazione logica o utilizzate schemi all'interno di un singolo cluster.

Nessuna tabella temporanea

Le tabelle temporanee non sono ancora supportate in Aurora DSQL. Le espressioni di tabella
comuni (CTEs) e le sottoquery possono essere utilizzate come alternativa alle query complesse.

Alternativa: da utilizzare CTEs con WITH clausole per set di risultati temporanei o tabelle normali
con denominazione univoca per dati specifici della sessione.

Gestione automatica dello storage

Aurora DSQL elimina i tablespace e la gestione manuale dello storage. Lo storage si ridimensiona
e si ottimizza automaticamente in base ai modelli di dati.

Vantaggio: non è necessario monitorare lo spazio su disco, pianificare l'allocazione dello storage
o gestire le configurazioni dei tablespace.

Modelli di applicazione moderni

Aurora DSQL incoraggia modelli di sviluppo di applicazioni moderni che migliorano la manutenibilità e
le prestazioni:

Logica a livello di applicazione anziché trigger di database

Aurora DSQL non supporta i trigger.

Strategia di migrazione: sposta la logica dei trigger nel codice dell'applicazione, usa architetture
basate sugli eventi con AWS servizi come EventBridge o implementa gli audit trail utilizzando la
registrazione delle applicazioni.

Guida alla migrazione 58

Amazon Aurora DSQL Guida per l’utente

Funzioni SQL per l'elaborazione dei dati

Aurora DSQL supporta funzioni basate su SQL ma non linguaggi procedurali come PL/pgSQL.

Alternativa: utilizza le funzioni SQL per le trasformazioni dei dati o sposta la logica complessa sul
livello dell'applicazione o sulle funzioni AWS Lambda.

Controllo ottimistico della concorrenza anziché blocco pessimistico

Aurora DSQL utilizza il controllo ottimistico della concorrenza (OCC), un approccio privo di blocchi
che si differenzia dai tradizionali meccanismi di blocco del database. Invece di acquisire blocchi
che bloccano altre transazioni, Aurora DSQL consente alle transazioni di procedere senza blocchi
e rileva i conflitti al momento del commit. Ciò elimina le situazioni di stallo e impedisce che le
transazioni lente blocchino altre operazioni.

Differenza fondamentale: quando si verificano conflitti, Aurora DSQL restituisce un errore di
serializzazione anziché far attendere le transazioni per i blocchi. Ciò richiede che le applicazioni
implementino una logica di ripetizione, simile alla gestione dei timeout di blocco nei database
tradizionali, ma i conflitti vengono risolti immediatamente anziché causare attese di blocco.

Modello di progettazione: implementa una logica di transazione idempotente con meccanismi
di ripetizione. Progetta schemi per ridurre al minimo i conflitti utilizzando chiavi primarie casuali
e distribuendo gli aggiornamenti su tutta la gamma di chiavi. Per informazioni dettagliate, vedi
Controllo della concorrenza in Aurora DSQL.

Relazioni e integrità referenziale

Aurora DSQL supporta le relazioni con chiavi esterne tra le tabelle, comprese le JOIN
operazioni, ma i vincoli di chiave esterna non sono ancora supportati. Sebbene l'applicazione
dell'integrità referenziale possa essere utile, le operazioni a cascata (come le eliminazioni a
cascata) possono creare problemi di prestazioni imprevisti, ad esempio l'eliminazione di un ordine
con 1.000 voci diventa una transazione di 1.001 righe. Per questo motivo, molti clienti evitano i
vincoli relativi alle chiavi esterne.

Modello di progettazione: implementa i controlli di integrità referenziale a livello applicativo, utilizza
eventuali modelli di coerenza o sfrutta AWS i servizi per la convalida dei dati.

Semplificazioni operative

Aurora DSQL elimina molte attività tradizionali di manutenzione del database, riducendo il
sovraccarico operativo:

Guida alla migrazione 59

Amazon Aurora DSQL Guida per l’utente

Non è richiesta alcuna manutenzione manuale

Aurora SQL non richiede VACUUM comandiTRUNCATE. ALTER SYSTEM Il sistema gestisce
automaticamente l'ottimizzazione dello storage, la raccolta di statistiche e l'ottimizzazione delle
prestazioni.

Vantaggio: elimina la necessità di finestre di manutenzione del database, pianificazione a vuoto e
ottimizzazione dei parametri di sistema.

Partizionamento e scalabilità automatici

Aurora DSQL partiziona e distribuisce automaticamente i dati in base ai modelli di accesso. Il
partizionamento e le sequenze manuali non sono necessari.

Suggerimento per la migrazione: rimuovete la logica di partizionamento manuale e lasciate che
Aurora DSQL gestisca la distribuzione dei dati. Usa UUIDs o generati dall'applicazione anziché
sequenze IDs .

Migrazione assistita dall'intelligenza artificiale

Puoi sfruttare gli strumenti di intelligenza artificiale per aiutarti a migrare la tua codebase su Aurora
DSQL:

Utilizzo di Kiro per l'assistenza alla migrazione

Gli agenti di codifica come Kiro possono aiutarti ad analizzare e migrare il codice PostgreSQL su
Aurora DSQL:

• Analisi dello schema: carica i file di schema esistenti e chiedi a Kiro di identificare potenziali
problemi di compatibilità e suggerire alternative

• Trasformazione del codice: fornisci il codice dell'applicazione e chiedi a Kiro di aiutarti a
rifattorizzare la logica di attivazione, sostituire le sequenze con o modificare i modelli di UUIDs
transazione

• Pianificazione della migrazione: chiedi a Kiro di creare un piano di step-by-step migrazione basato
sulla tua architettura applicativa specifica

Esempi di istruzioni Kiro:

"Analyze this PostgreSQL schema for DSQL compatibility and suggest alternatives for any
 unsupported features"

Guida alla migrazione 60

https://kiro.dev/

Amazon Aurora DSQL Guida per l’utente

"Help me refactor this trigger function into application-level logic for DSQL
 migration"

"Create a migration checklist for moving my Django application from PostgreSQL to DSQL"

Server MCP Aurora DSQL

Il server Aurora DSQL Model Context Protocol (MCP) consente agli assistenti AI come Claude di
connettersi direttamente al cluster Aurora DSQL e di cercare la documentazione di Aurora DSQL. Ciò
consente all'IA di:

• Analizza lo schema esistente e suggerisci modifiche alla migrazione

• Esegui il test delle query e verifica la compatibilità durante la migrazione

• Fornisci up-to-date linee guida accurate basate sulla più recente documentazione di Aurora DSQL

Per utilizzare il server MCP Aurora DSQL con Claude o altri assistenti AI, consulta le istruzioni di
configurazione per il server MCP Aurora DSQL.

Considerazioni su Aurora DSQL rispetto alla compatibilità con PostgreSQL

Aurora DSQL presenta differenze nel supporto delle funzionalità rispetto a PostgreSQL autogestito
che ne consentono l'architettura distribuita, il funzionamento senza server e la scalabilità automatica.
La maggior parte delle applicazioni funziona entro queste differenze senza modifiche.

Per le considerazioni generali, consulta Considerazioni sull’utilizzo di Amazon Aurora DSQL. Per
quote e limiti, consulta Quote di cluster e limiti del database in Amazon Aurora DSQL.

• Aurora DSQL utilizza un unico database integrato denominato postgres. Non è possibile creare
database aggiuntivi o rinominare o eliminare il database postgres.

• Il database postgres utilizza la codifica caratteri UTF-8. Non è possibile modificare la codifica del
server.

• Il database utilizza solo le regole di confronto C.

• Aurora DSQL utilizza UTC come fuso orario del sistema. Postgres memorizza internamente tutte
le date e gli orari in base al fuso orario in UTC. È possibile impostare il parametro di TimeZone
configurazione per convertire il modo in cui viene visualizzato al client e fungere da impostazione
predefinita per l'input del client che il server utilizzerà per la conversione in UTC internamente.

• Il livello di isolamento delle transazioni è fisso su PostgreSQL Repeatable Read.

Guida alla migrazione 61

Amazon Aurora DSQL Guida per l’utente

• Le transazioni sono soggette ai seguenti vincoli:

• Una transazione non può combinare operazioni DDL e DML

• Una transazione può includere solo 1 istruzione DDL

• Una transazione può modificare fino a 3.000 righe, indipendentemente dal numero di indici
secondari

• Il limite di 3.000 righe si applica a tutte le istruzioni DML (INSERT, UPDATE, DELETE)

• Le connessioni al database scadono dopo 1 ora.

• Aurora DSQL attualmente non consente l’esecuzione di GRANT [permission] ON DATABASE.
Se si tenta di eseguire tale istruzione, Aurora DSQL restituisce il messaggio di errore ERROR:
unsupported object type in GRANT.

• Aurora DSQL non consente ai ruoli utente non amministratori di eseguire il comando CREATE
SCHEMA. Non è possibile eseguire il comando GRANT [permission] on DATABASE e
concedere le autorizzazioni CREATE sul database. Se un ruolo utente non amministratore tenta
di creare uno schema, Aurora DSQL restituisce il messaggio di errore ERROR: permission
denied for database postgres.

• Gli utenti non amministratori non possono creare oggetti nello schema pubblico. Solo gli utenti
amministratori possono creare oggetti nello schema pubblico. Il ruolo utente amministratore
dispone delle autorizzazioni per concedere l’accesso in lettura, scrittura e modifica a questi oggetti
a utenti non amministratori, ma non può concedere le autorizzazioni CREATE sullo schema pubblico
stesso. Gli utenti non amministratori devono utilizzare schemi diversi creati dall’utente per la
creazione di oggetti.

Hai bisogno di aiuto con la migrazione?

Se riscontri funzionalità fondamentali per la migrazione ma attualmente non supportate in Aurora
DSQL, consulta Fornire feedback su Amazon Aurora DSQL per informazioni su come condividere il
feedback con AWS.

Controllo della concorrenza in Aurora DSQL

La concorrenza consente a più sessioni di accedere e modificare i dati contemporaneamente senza
compromettere l’integrità e la coerenza dei dati. Aurora DSQL offre la compatibilità con PostgreSQL
implementando al contempo un meccanismo di controllo della concorrenza moderno e senza blocchi.
Mantiene la piena conformità ACID attraverso l’isolamento degli snapshot, garantendo la coerenza e
l’affidabilità dei dati.

Controlli della concorrenza 62

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility.html

Amazon Aurora DSQL Guida per l’utente

Un vantaggio chiave di Aurora DSQL è la sua architettura priva di blocchi, che elimina i comuni
colli di bottiglia nelle prestazioni del database. Aurora DSQL impedisce che le transazioni lente
blocchino altre operazioni ed elimina il rischio di deadlock. Questo approccio rende Aurora DSQL
particolarmente utile per applicazioni ad alto throughput, in cui le prestazioni e la scalabilità sono
fondamentali.

Conflitti tra transazioni

Aurora DSQL utilizza il controllo ottimistico della concorrenza (OCC), che funziona in modo diverso
dai tradizionali sistemi basati su blocchi. Invece di utilizzare i blocchi, OCC valuta i conflitti al
momento del commit. Quando più transazioni entrano in conflitto durante l’aggiornamento della
stessa riga, Aurora SQL gestisce le transazioni come segue:

• La transazione con il tempo di commit più breve viene elaborata da Aurora DSQL.

• Le transazioni in conflitto ricevono un errore di serializzazione PostgreSQL, che indica la necessità
di riprovare.

È opportuno progettare le applicazioni in modo da implementare una logica di ripetizione per gestire
i conflitti. Il modello di progettazione ideale è idempotente e consente di ripetere la transazione come
primo rimedio, quando possibile. La logica consigliata è simile alla logica abort and retry in una
situazione di timeout o deadlock di PostgreSQL standard. Tuttavia, OCC richiede che le applicazioni
applichino questa logica più frequentemente.

Linee guida per l’ottimizzazione delle prestazioni delle transazioni

Per ottimizzare le prestazioni, è opportuno ridurre al minimo contese elevate su chiavi singole o
intervalli di chiavi ridotti. Per raggiungere questo obiettivo, progetta lo schema in modo da distribuire
gli aggiornamenti sull’intervallo di chiavi del cluster utilizzando le seguenti linee guida:

• Scegli una chiave primaria casuale per le tabelle.

• Evita i modelli che fanno aumentare la contesa sulle singole chiavi. Questo approccio garantisce
prestazioni ottimali anche con l’aumento del volume delle transazioni.

DDL e transazioni distribuite in Aurora DSQL

Il DDL (Data Definition Language) si comporta in modo diverso in Aurora DSQL rispetto a
PostgreSQL. Aurora DSQL offre un livello di database Multi-AZ distribuito e senza condivisione

Conflitti tra transazioni 63

Amazon Aurora DSQL Guida per l’utente

basato su parchi di risorse di calcolo e archiviazione multi-tenant. Poiché non esiste un singolo nodo
o leader del database primario, il catalogo del database viene distribuito. Pertanto, Aurora DSQL
gestisce le modifiche DDL allo schema come transazioni distribuite.

In particolare, DDL si comporta in modo diverso in Aurora DSQL come segue:

Errori di controllo della concorrenza

Aurora DSQL restituisce un errore di violazione del controllo della concorrenza se si esegue
una transazione mentre un’altra transazione aggiorna una risorsa. Considera, ad esempio, la
seguente sequenza di azioni:

1. Nella sessione 1, un utente aggiunge una colonna alla tabella mytable.

2. Nella sessione 2, un utente tenta di inserire una riga in mytable.

Aurora DSQL restituisce l’errore SQL Error [40001]: ERROR: schema has been
updated by another transaction, please retry: (OC001).

DDL e DML nella stessa transazione

Le transazioni in Aurora DSQL possono contenere solo un’istruzione DDL e non possono avere
sia istruzioni DDL che DML. Questa restrizione significa che non è possibile creare una tabella e
inserire dati nella stessa tabella all’interno della stessa transazione. Ad esempio, Aurora DSQL
supporta le seguenti transazioni sequenziali.

BEGIN;
 CREATE TABLE mytable (ID_col integer);
COMMIT;

BEGIN;
 INSERT into FOO VALUES (1);
COMMIT;

Aurora DSQL non supporta la seguente transazione, che include contemporaneamente istruzioni
CREATE e INSERT.

BEGIN;
 CREATE TABLE FOO (ID_col integer);
 INSERT into FOO VALUES (1);
COMMIT;

DDL e transazioni distribuite 64

Amazon Aurora DSQL Guida per l’utente

DDL asincrono

In PostgreSQL standard, le operazioni DDL come CREATE INDEX bloccano la tabella interessata,
rendendola non disponibile per le letture e le scritture da altre sessioni. In Aurora DSQL, queste
istruzioni DDL vengono eseguite in modo asincrono utilizzando un gestore in background.
L’accesso alla tabella interessata non è bloccato. Pertanto, istruzioni DDL su tabelle di grandi
dimensioni possono esseri eseguito senza tempo di inattività o impatto sulle prestazioni. Per
maggiori informazioni sull’utilizzo dello strumento di gestione dei processi asincroni in Aurora
DSQL, consulta Indici asincroni in Aurora SQL.

Chiavi primarie in Aurora DSQL

In Aurora DSQL, una chiave primaria è una funzionalità che organizza fisicamente i dati delle tabelle.
È simile all’operazione CLUSTER in PostgreSQL o a un indice cluster in altri database. Quando si
definisce una chiave primaria, Aurora DSQL crea un indice che include tutte le colonne della tabella.
La struttura a chiave primaria di Aurora DSQL garantisce un accesso e una gestione efficienti dei
dati.

Struttura e archiviazione dei dati

Quando si definisce una chiave primaria, Aurora DSQL memorizza i dati della tabella nell’ordine delle
chiavi primarie. Questa struttura organizzata a indice consente una ricerca tramite chiave primaria
per recuperare direttamente tutti i valori delle colonne, invece di seguire un puntatore ai dati come in
un tradizionale indice B-tree. A differenza dell’operazione CLUSTER in PostgreSQL, che riorganizza i
dati una sola volta, Aurora DSQL mantiene questo ordine automaticamente e continuamente. Questo
approccio migliora le prestazioni delle query che si basano sull’accesso alla chiave primaria.

Aurora DSQL utilizza anche la chiave primaria per generare una chiave unica a livello di cluster per
ogni riga di tabelle e indici. Questa chiave unica è anche alla base della gestione distribuita dei dati.
Consente il partizionamento automatico dei dati su più nodi, supportando uno storage scalabile e
un’elevata concorrenza. Di conseguenza, la struttura a chiave primaria permette ad Aurora DSQL di
scalare automaticamente e di gestire i carichi di lavoro simultanei in modo efficiente.

Linee guida per la scelta di una chiave primaria

Quando si sceglie e si utilizza una chiave primaria in Aurora DSQL, bisogna tenere presenti le
seguenti linee guida:

Chiavi primarie 65

Amazon Aurora DSQL Guida per l’utente

• Definire una chiave primaria quando si crea una tabella. Non è possibile modificare questa chiave
né aggiungere una nuova chiave primaria in un secondo momento. La chiave primaria diventa
parte della chiave a livello di cluster utilizzata per il partizionamento dei dati e il dimensionamento
automatico del throughput di scrittura. Se non si specifica una chiave primaria, Aurora DSQL
assegna un ID sintetico nascosto.

• Per le tabelle con volumi di scrittura elevati, evitare di utilizzare numeri interi che aumentano in
modo monotono come chiavi primarie. Ciò può causare problemi di prestazioni se si indirizzano
tutti i nuovi inserimenti su un’unica partizione. Utilizzare invece chiavi primarie con distribuzione
casuale per garantire una distribuzione uniforme delle scritture tra le partizioni di archiviazione.

• Per le tabelle che vengono modificate raramente o sono di sola lettura, è possibile utilizzare una
chiave crescente. Esempi di chiavi crescenti sono i timestamp o i numeri di sequenza. Una chiave
densa contiene molti valori ravvicinati o duplicati. È possibile utilizzare una chiave crescente anche
se è densa, poiché le prestazioni di scrittura sono meno importanti.

• Se una scansione completa della tabella non soddisfa i requisiti di prestazione, scegliere un
metodo di accesso più efficiente. Nella maggior parte dei casi, ciò significa utilizzare una chiave
primaria che corrisponda alla chiave di join e lookup più comune nelle query.

• La dimensione massima combinata delle colonne in una chiave primaria è 1 kibibyte. Per maggiori
informazioni, consulta Limiti del database in Aurora DSQL e Tipi di dati supportati in Aurora DSQL.

• È possibile includere fino a 8 colonne in una chiave primaria o in un indice secondario. Per
maggiori informazioni, consulta Limiti del database in Aurora DSQL e Tipi di dati supportati in
Aurora DSQL.

Indici asincroni in Aurora SQL

Il comando CREATE INDEX ASYNC crea un indice su una o più colonne di una tabella specificata.
Questo comando è un’operazione DDL asincrona che non blocca altre transazioni. Quando si esegue
il comando CREATE INDEX ASYNC, Aurora DSQL restituisce immediatamente un job_id.

È possibile monitorare lo stato di questo processo asincrono utilizzando la vista di sistema
sys.jobs. Mentre il processo di creazione dell’indice è in corso, è possibile utilizzare le procedure e
i comandi seguenti:

sys.wait_for_job(job_id)'your_index_creation_job_id'

Bloccare la sessione corrente fino al completamento o all’esito negativo del processo specificato.
Restituisce un valore booleano che indica la riuscita o l’errore.

Indici asincroni 66

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html#SECTION_database-limits
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-data-types
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_quotas.html#SECTION_database-limits
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-data-types
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-data-types

Amazon Aurora DSQL Guida per l’utente

DROP INDEX

Annullare un processo di creazione dell’indice in esecuzione.

Al termine della creazione dell’indice asincrono, Aurora DSQL aggiorna il catalogo di sistema per
contrassegnare l’indice come attivo.

Note

Tieni presente che le transazioni simultanee che accedono a oggetti nello stesso
namespace durante questo aggiornamento potrebbero riscontrare errori di concorrenza.

Quando Aurora DSQL termina un’attività di indicizzazione asincrona, aggiorna il catalogo di sistema
per mostrare che l’indice è attivo. Se altre transazioni fanno riferimento agli oggetti nello stesso
namespace in tale momento, potrebbero visualizzare un errore di concorrenza.

Sintassi

CREATE INDEX ASYNC utilizza la seguente sintassi.

CREATE [UNIQUE] INDEX ASYNC [IF NOT EXISTS] name ON table_name
 ({ column_name } [NULLS { FIRST | LAST }])
 [INCLUDE (column_name [, ...])]
 [NULLS [NOT] DISTINCT]

Parameters

UNIQUE

Indica ad Aurora DSQL di verificare la presenza di valori duplicati nella tabella quando crea
l’indice e ogni volta che si aggiungono dati. Se si specifica questo parametro, le operazioni di
inserimento e aggiornamento che comporterebbero la duplicazione delle voci generano un errore.

IF NOT EXISTS

Indica che Aurora DSQL non deve generare un’eccezione se esiste già un indice con lo stesso
nome. In questa situazione, Aurora DSQL non crea il nuovo indice. Nota che l’indice che stai
cercando di creare potrebbe avere una struttura molto diversa dall’indice esistente. Se non viene
specificato questo parametro, il nome dell’indice è obbligatorio.

Sintassi 67

Amazon Aurora DSQL Guida per l’utente

name

Il nome dell’indice. Non è possibile includere il nome dello schema in questo parametro.

Aurora DSQL crea l’indice nello stesso schema della tabella principale. Il nome dell’indice deve
essere distinto dal nome di qualsiasi altro oggetto, ad esempio una tabella o un indice, nello
schema.

Se non si specifica un nome, Aurora DSQL genera automaticamente un nome basato sul nome
della tabella principale e della colonna indicizzata. Ad esempio, se si esegue CREATE INDEX
ASYNC on table1 (col1, col2), Aurora DSQL assegna automaticamente un nome
all’indice table1_col1_col2_idx.

NULLS FIRST | LAST

Criterio di ordinamento delle colonne nulle e non nulle. FIRST indica che Aurora DSQL deve
ordinare le colonne nulle prima delle colonne non nulle. LAST indica che Aurora DSQL deve
ordinare le colonne nulle dopo le colonne non nulle.

INCLUDE

Un elenco di colonne da includere nell’indice come colonne non chiave. Non è possibile utilizzare
una colonna non chiave in una qualifica di ricerca basata sulla scansione dell’indice. Aurora DSQL
ignora la colonna in termini di unicità di un indice.

NULLS DISTINCT | NULLS NOT DISTINCT

Specifica se Aurora DSQL deve considerare i valori null come distinti in un indice univoco.
L’impostazione predefinita è DISTINCT, il che significa che un indice univoco può contenere più
valori nulli in una colonna. NOT DISTINCT indica che un indice non può contenere più valori nulli
in una colonna.

Note per l’utilizzo

Considera le linee guida seguenti:

• Il comando CREATE INDEX ASYNC non introduce blocchi. Inoltre, non influisce sulla tabella di
base utilizzata da Aurora DSQL per creare l’indice.

• Durante le operazioni di migrazione dello schema, è utile la procedura
sys.wait_for_job(job_id)'your_index_creation_job_id'. Garantisce che le
operazioni DDL e DML successive abbiano come target l’indice appena creato.

Note per l’utilizzo 68

Amazon Aurora DSQL Guida per l’utente

• Ogni volta che Aurora DSQL esegue una nuova attività asincrona, controlla la vista sys.jobs ed
elimina le attività con uno stato di completed o failed pari o superiore a 30 minuti. Pertanto,
sys.jobs mostra principalmente le attività in corso e non contiene informazioni sulle attività
precedenti.

• Se Aurora DSQL non riesce a creare un indice asincrono, l’indice rimane in stato INVALID. Per gli
indici univoci, le operazioni DML sono soggette a vincoli di unicità finché non si elimina l’indice. Si
consiglia di eliminare gli indici non validi e di ricrearli.

Creazione di un indice: esempio

L’esempio seguente mostra come creare uno schema, una tabella e quindi un indice.

1. Crea una nuova tabella denominata test.departments.

CREATE SCHEMA test;

CREATE TABLE test.departments (name varchar(255) primary key NOT null,
 manager varchar(255),
 size varchar(4));

2. Inserisci una riga di dati nella tabella.

INSERT INTO test.departments VALUES ('Human Resources', 'John Doe', '10')

3. Crea un indice asincrono.

CREATE INDEX ASYNC test_index on test.departments(name, manager, size);

Il comando CREATE INDEX restituisce un ID di processo, come mostrato di seguito.

job_id

jh2gbtx4mzhgfkbimtgwn5j45y

job_id indica che Aurora DSQL ha avviato un nuovo processo per creare l’indice. È possibile
utilizzare la procedura sys.wait_for_job(job_id)'your_index_creation_job_id' per
bloccare altri lavori sulla sessione fino al termine o al timeout del processo.

Creazione di un indice 69

Amazon Aurora DSQL Guida per l’utente

Esecuzione di query sullo stato di creazione dell’indice: esempio

Eseguire la query sulla vista di sistema sys.jobs per verificare lo stato di creazione dell’indice,
come illustrato nell’esempio seguente.

SELECT * FROM sys.jobs

Aurora DSQL restituisce una risposta simile alla seguente.

 job_id | status | details
----------------------------+------------+---------
 vs3kcl3rt5ddpk3a6xcq57cmcy | completed |
 ihbyw2aoirfnrdfoc4ojnlamoq | processing |

La colonna stato può assumere uno dei seguenti valori.

submitted processing failed completed

L’attività è stata
inviata, ma Aurora
DSQL non ha ancora
iniziato a elaborarla.

Aurora DSQL sta
elaborando l’operazi
one.

L’attività non è andata
a buon fine. Per
maggiori informazi
oni, consulta la
colonna dettagli. Se
Aurora DSQL non
è riuscita a creare
l’indice, non rimuove
automaticamente la
sua definizione. È
necessario rimuovere
manualmente l’indice
con il comando DROP
INDEX.

Aurora DSQL

È inoltre possibile eseguire la query sullo stato dell’indice tramite le tabelle pg_index e pg_class
del catalogo. In particolare, gli attributi indisvalid e indisimmediate possono indicare in
che stato si trova l’indice. Mentre Aurora DSQL crea l’indice, lo stato iniziale è INVALID. Il flag

Esecuzione di query su un indice 70

Amazon Aurora DSQL Guida per l’utente

indisvalid dell’indice restituisce FALSE o f, che indica che l’indice non è valido. Se il flag
restituisce TRUE o t, l’indice è pronto.

SELECT relname AS index_name, indisvalid as is_valid, pg_get_indexdef(indexrelid) AS
 index_definition
from pg_index, pg_class
WHERE pg_class.oid = indexrelid AND indrelid = 'test.departments'::regclass;

 index_name | is_valid |
 index_definition
------------------+----------
+---
 department_pkey | t | CREATE UNIQUE INDEX department_pkey ON test.departments
 USING btree_index (title) INCLUDE (name, manager, size)
 test_index1 | t | CREATE INDEX test_index1 ON test.departments USING
 btree_index (name, manager, size)

Errori di creazione dell’indice univoco

Se il processo di creazione dell’indice univoco asincrono mostra uno stato non riuscito con il dettaglio
Found duplicate key while validating index for UCVs, significa che non è stato
possibile creare un indice univoco a causa di violazioni del vincolo di unicità.

Come risolvere gli errori di creazione dell’indice univoco

1. Rimuovi tutte le righe della tabella principale che contengono voci duplicate per le chiavi
specificate nell’indice secondario univoco.

2. Elimina l’indice non creato.

3. Esegui un nuovo comando create index.

Rilevamento delle violazioni di unicità nelle tabelle primarie

La seguente query SQL consente di identificare i valori duplicati in una colonna specificata della
tabella. Ciò è particolarmente utile quando è necessario applicare l’univocità a una colonna che
attualmente non è impostata come chiave primaria o non ha un vincolo univoco, come gli indirizzi e-
mail in una tabella utente.

Gli esempi seguenti mostrano come creare una tabella di utenti di esempio, popolarla con dati di test
contenenti duplicati noti e quindi eseguire la query di rilevamento.

Errori di creazione dell’indice univoco 71

Amazon Aurora DSQL Guida per l’utente

Definire lo schema della tabella

-- Drop the table if it exists
DROP TABLE IF EXISTS users;

-- Create the users table with a simple integer primary key
CREATE TABLE users (
 user_id INTEGER PRIMARY KEY,
 email VARCHAR(255),
 first_name VARCHAR(100),
 last_name VARCHAR(100),
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

Inserire dati di esempio che includono set di indirizzi e-mail duplicati

-- Insert sample data with explicit IDs
INSERT INTO users (user_id, email, first_name, last_name) VALUES
 (1, 'john.doe@example.com', 'John', 'Doe'),
 (2, 'jane.smith@example.com', 'Jane', 'Smith'),
 (3, 'john.doe@example.com', 'Johnny', 'Doe'),
 (4, 'alice.wong@example.com', 'Alice', 'Wong'),
 (5, 'bob.jones@example.com', 'Bob', 'Jones'),
 (6, 'alice.wong@example.com', 'Alicia', 'Wong'),
 (7, 'bob.jones@example.com', 'Robert', 'Jones');

Eseguire una query di rilevamento dei duplicati

-- Query to find duplicates
WITH duplicates AS (
 SELECT email, COUNT(*) as duplicate_count
 FROM users
 GROUP BY email
 HAVING COUNT(*) > 1
)
SELECT u.*, d.duplicate_count
FROM users u
INNER JOIN duplicates d ON u.email = d.email
ORDER BY u.email, u.user_id;

Visualizzare tutti i record con indirizzi e-mail duplicati

Violazioni dell’unicità 72

Amazon Aurora DSQL Guida per l’utente

 user_id | email | first_name | last_name | created_at
 | duplicate_count
---------+------------------------+------------+-----------
+----------------------------+-----------------
 4 | akua.mansa@example.com | Akua | Mansa | 2025-05-21 20:55:53.714432
 | 2
 6 | akua.mansa@example.com | Akua | Mansa | 2025-05-21 20:55:53.714432
 | 2
 1 | john.doe@example.com | John | Doe | 2025-05-21 20:55:53.714432
 | 2
 3 | john.doe@example.com | Johnny | Doe | 2025-05-21 20:55:53.714432
 | 2
(4 rows)

Se provassimo ora l’istruzione di creazione dell’indice, questa fallirebbe:

postgres=> CREATE UNIQUE INDEX ASYNC idx_users_email ON users(email);
 job_id

 ve32upmjz5dgdknpbleeca5tri
(1 row)

postgres=> select * from sys.jobs;
 job_id | status | details
 | job_type | class_id | object_id | object_name | start_time
 | update_time
----------------------------+-----------
+---+-------------+----------
+-----------+------------------------+------------------------+------------------------
 qpn6aqlkijgmzilyidcpwrpova | completed |
 | DROP | 1259 | 26384 | | 2025-05-20
 00:47:10+00 | 2025-05-20 00:47:32+00
 ve32upmjz5dgdknpbleeca5tri | failed | Found duplicate key while validating index
 for UCVs | INDEX_BUILD | 1259 | 26396 | public.idx_users_email | 2025-05-20
 00:49:49+00 | 2025-05-20 00:49:56+00
(2 rows)

Tabelle e comandi di sistema in Aurora DSQL

Consulta le sezioni seguenti per informazioni sulle tabelle e i cataloghi di sistema supportati in Aurora
DSQL.

Tabelle e comandi di sistema 73

Amazon Aurora DSQL Guida per l’utente

Tabelle di sistema

Aurora DSQL è compatibile con PostgreSQL, quindi molte tabelle e viste del catalogo di sistema di
PostgreSQL esistono anche in Aurora DSQL.

Tabelle e viste importanti del catalogo di PostgreSQL

La tabella seguente descrive le tabelle e le viste più comuni che è possibile utilizzare in Aurora
DSQL.

Nome Description

pg_namespace Informazioni su tutti gli schemi

pg_tables Informazioni su tutte le tabelle

pg_attribute Informazioni su tutti gli attributi

pg_views Informazioni sulle viste (pre)definite

pg_class Descrive tutte le tabelle, le colonne, gli indici e gli oggetti
simili

pg_stats Una vista sulle statistiche del planner

pg_user Informazioni sugli utenti

pg_roles Informazioni su utenti e gruppi

pg_indexes Elenca tutti gli indici

pg_constraint Elenca i vincoli sulle tabelle

Tabelle di catalogo supportate e non supportate

La tabella seguente indica quali tabelle sono supportate e non supportate in Aurora DSQL.

Name Applicabile ad Aurora DSQL

pg_aggregate No

Tabelle di sistema 74

https://www.PostgreSQL.org/docs/current/catalogs-overview.html
https://www.PostgreSQL.org/docs/current/views.html

Amazon Aurora DSQL Guida per l’utente

Name Applicabile ad Aurora DSQL

pg_am Sì

pg_amop No

pg_amproc No

pg_attrdef Sì

pg_attribute Sì

pg_authid No (utilizzare pg_roles)

pg_auth_members Sì

pg_cast Sì

pg_class Sì

pg_collation Sì

pg_constraint Sì

pg_conversion No

pg_database No

pg_db_role_setting Sì

pg_default_acl Sì

pg_depend Sì

pg_description Sì

pg_enum No

pg_event_trigger No

pg_extension No

Tabelle di sistema 75

Amazon Aurora DSQL Guida per l’utente

Name Applicabile ad Aurora DSQL

pg_foreign_data_wrapper No

pg_foreign_server No

pg_foreign_table No

pg_index Sì

pg_inherits Sì

pg_init_privs No

pg_language No

pg_largeobject No

pg_largeobject_metadata Sì

pg_namespace Sì

pg_opclass No

pg_operator Sì

pg_opfamily No

pg_parameter_acl Sì

pg_partitioned_table No

pg_policy No

pg_proc No

pg_publication No

pg_publication_namespace No

pg_publication_rel No

Tabelle di sistema 76

Amazon Aurora DSQL Guida per l’utente

Name Applicabile ad Aurora DSQL

pg_range Sì

pg_replication_origin No

pg_rewrite No

pg_seclabel No

pg_sequence No

pg_shdepend Sì

pg_shdescription Sì

pg_shseclabel No

pg_statistic Sì

pg_statistic_ext No

pg_statistic_ext_data No

pg_subscription No

pg_subscription_rel No

pg_tablespace No

pg_transform No

pg_trigger No

pg_ts_config Sì

pg_ts_config_map Sì

pg_ts_dict Sì

pg_ts_parser Sì

Tabelle di sistema 77

Amazon Aurora DSQL Guida per l’utente

Name Applicabile ad Aurora DSQL

pg_ts_template Sì

pg_type Sì

pg_user_mapping No

Viste di sistema supportate e non supportate

La tabella seguente indica quali viste sono supportate e non supportate in Aurora DSQL.

Name Applicabile ad Aurora DSQL

pg_available_extensions No

pg_available_extension_versions No

pg_backend_memory_contexts Sì

pg_config No

pg_cursors No

pg_file_settings No

pg_group Sì

pg_hba_file_rules No

pg_ident_file_mappings No

pg_indexes Sì

pg_locks No

pg_matviews No

pg_policies No

Tabelle di sistema 78

Amazon Aurora DSQL Guida per l’utente

Name Applicabile ad Aurora DSQL

pg_prepared_statements No

pg_prepared_xacts No

pg_publication_tables No

pg_replication_origin_status No

pg_replication_slots No

pg_roles Sì

pg_rules No

pg_seclabels No

pg_sequences No

pg_settings Sì

pg_shadow Sì

pg_shmem_allocations Sì

pg_stats Sì

pg_stats_ext No

pg_stats_ext_exprs No

pg_tables Sì

pg_timezone_abbrevs Sì

pg_timezone_names Sì

pg_user Sì

pg_user_mappings No

Tabelle di sistema 79

Amazon Aurora DSQL Guida per l’utente

Name Applicabile ad Aurora DSQL

pg_views Sì

pg_stat_activity No

pg_stat_replication No

pg_stat_replication_slots No

pg_stat_wal_receiver No

pg_stat_recovery_prefetch No

pg_stat_subscription No

pg_stat_subscription_stats No

pg_stat_ssl Sì

pg_stat_gssapi No

pg_stat_archiver No

pg_stat_io No

pg_stat_bgwriter No

pg_stat_wal No

pg_stat_database No

pg_stat_database_conflicts No

pg_stat_all_tables No

pg_stat_all_indexes No

pg_statio_all_tables No

pg_statio_all_indexes No

Tabelle di sistema 80

Amazon Aurora DSQL Guida per l’utente

Name Applicabile ad Aurora DSQL

pg_statio_all_sequences No

pg_stat_slru No

pg_statio_user_tables No

pg_statio_user_sequences No

pg_stat_user_functions No

pg_stat_user_indexes No

pg_stat_progress_analyze No

pg_stat_progress_basebackup No

pg_stat_progress_cluster No

pg_stat_progress_create_index No

pg_stat_progress_vacuum No

pg_stat_sys_indexes No

pg_stat_sys_tables No

pg_stat_xact_all_tables No

pg_stat_xact_sys_tables No

pg_stat_xact_user_functions No

pg_stat_xact_user_tables No

pg_statio_sys_indexes No

pg_statio_sys_sequences No

pg_statio_sys_tables No

Tabelle di sistema 81

Amazon Aurora DSQL Guida per l’utente

Name Applicabile ad Aurora DSQL

pg_statio_user_indexes No

Le viste sys.jobs e sys.iam_pg_role_mappings

Aurora DSQL supporta le seguenti viste di sistema:

sys.jobs

sys.jobs fornisce informazioni sullo stato dei processi asincroni. Ad esempio, dopo aver creato
un indice asincrono, Aurora DSQL restituisce un job_uuid. È possibile utilizzare tale job_uuid
con sys.jobs per cercare lo stato del processo.

SELECT * FROM sys.jobs WHERE job_id = 'example_job_uuid';

 job_id | status | details
------------------+------------+---------
 example_job_uuid | processing |
(1 row)

sys.iam_pg_role_mappings

La vista sys.iam_pg_role_mappings fornisce informazioni sulle autorizzazioni concesse
agli utenti IAM. Ad esempio, se DQSLDBConnect è un ruolo IAM che fornisce ad Aurora
DSQL l’accesso ai non amministratori e a un utente denominato testuser vengono concessi
il ruolo DQSLDBConnect e le autorizzazioni corrispondenti, è possibile interrogare la vista
sys.iam_pg_role_mappings per vedere a quali utenti sono concesse quali autorizzazioni.

SELECT * FROM sys.iam_pg_role_mappings;

Utili interrogazioni sui metadati di sistema

Utilizza queste query per ottenere statistiche e metadati delle tabelle senza eseguire operazioni
costose come la scansione completa della tabella.

Interrogazioni utili sul sistema 82

Amazon Aurora DSQL Guida per l’utente

Ottieni il numero stimato di righe per una tabella

Per ottenere il conteggio approssimativo delle righe in una tabella senza eseguire una scansione
completa della tabella, utilizzate la seguente query:

SELECT reltuples FROM pg_class WHERE relname = 'table_name';

Il comando restituisce un output simile al seguente:

 reltuples

 9.993836e+08

Questo approccio è più efficiente rispetto alle tabelle SELECT COUNT(*) di grandi dimensioni in
Aurora DSQL.

Il comando ANALYZE.

Il comando ANALYZE raccoglie statistiche sul contenuto delle tabelle nel database e archivia i
risultati nella vista di sistema pg_stats. In un secondo momento, il pianificatore di query utilizza
queste statistiche per determinare i piani di esecuzione più efficienti per le query.

In Aurora DSQL, non è possibile eseguire il comando ANALYZE all’interno di una transazione
esplicita. ANALYZEnon è soggetto al limite di timeout delle transazioni del database.

Per ridurre la necessità di interventi manuali e mantenere le statistiche costantemente aggiornate,
Aurora DSQL esegue automaticamente ANALYZE come processo in background. Questo processo in
background viene attivato automaticamente in base al tasso di variazione osservato nella tabella. È
collegato al numero di righe (tuple) che sono state inserite, aggiornate o eliminate dall’ultima analisi.

Il processo ANALYZE viene eseguito in modo asincrono in background e la relativa attività può essere
monitorata nella vista di sistema sys.jobs con la seguente query:

SELECT * FROM sys.jobs WHERE job_type = 'ANALYZE';

Considerazioni chiave

Il comando ANALYZE. 83

Amazon Aurora DSQL Guida per l’utente

Note

I processi ANALYZE vengono fatturati come gli altri processi asincroni in Aurora DSQL.
Quando modifichi una tabella, ciò può attivare indirettamente un processo automatico di
raccolta di statistiche in background, che può comportare addebiti di costi dovuti all’attività
associata a livello di sistema.

I processi ANALYZE in background, attivati automaticamente, raccolgono gli stessi tipi di statistiche
utilizzate da un processo ANALYZE avviato manualmente e le applicano per impostazione
predefinita alle tabelle utente. Le tabelle di sistema e di catalogo sono escluse da questo processo
automatizzato.

Utilizzo dei piani Aurora DSQL EXPLAIN

Aurora DSQL utilizza una struttura del piano EXPLAIN simile a PostgreSQL, ma con aggiunte chiave
che riflettono l'architettura distribuita e il modello di esecuzione.

In questa documentazione, forniremo una panoramica dei piani di Aurora DSQL EXPLAIN,
evidenziando le somiglianze e le differenze rispetto a PostgreSQL. Tratteremo i vari tipi di operazioni
di scansione disponibili in Aurora DSQL e ti aiuteremo a comprendere i costi di esecuzione delle tue
query.

Piani EXPLAIN di PostgreSQL VS Aurora DSQL

Aurora DSQL si basa sul database PostgreSQL e condivide la maggior parte delle strutture del piano
con PostgreSQL, ma presenta differenze architettoniche chiave che influiscono sull'esecuzione e
l'ottimizzazione delle query:

Funzionalità PostgreSQL Aurora DSQL

Storage dei dati Archiviazione Heap Nessun heap, tutte le righe sono
indicizzate da un identificatore
univoco

Chiave primaria L'indice della chiave primaria è
separato dai dati della tabella

L'indice della chiave primaria è
la tabella con tutte le colonne

PIANI EXPLAIN 84

Amazon Aurora DSQL Guida per l’utente

Funzionalità PostgreSQL Aurora DSQL

aggiuntive come colonne
INCLUDE

Indici secondari Indici secondari standard Funziona come PostgreSQL, con
la possibilità di includere colonne
non chiave

Funzionalità di filtraggi
o

Condizione dell'indice, filtro Heap Condizione dell'indice, filtro di
archiviazione, filtro del processore
di query

Tipi di scansione Scansione sequenziale, scansione
dell'indice, scansione solo dell'indi
ce

Scansione completa, scansione
solo indice, scansione indice

Esecuzione della
query

Locale al database Distribuito (elaborazione e
archiviazione sono separati)

Aurora DSQL archivia i dati della tabella direttamente nell'ordine della chiave primaria anziché in
un heap separato. Ogni riga è identificata da una chiave univoca, in genere la chiave primaria, che
consente al database di ottimizzare le ricerche in modo più efficiente. La differenza architetturale
spiega perché Aurora DSQL utilizza spesso le scansioni Index Only nei casi in cui PostgreSQL
potrebbe scegliere una scansione sequenziale.

Un'altra differenza fondamentale è che Aurora DSQL separa l'elaborazione dallo storage,
consentendo l'applicazione di filtri nelle fasi iniziali del percorso di esecuzione per ridurre lo
spostamento dei dati e migliorare le prestazioni.

Per ulteriori informazioni sull'utilizzo dei piani EXPLAIN con PostgreSQL, consulta la documentazione
di PostgreSQL EXPLAIN.

Elementi chiave dei piani Aurora DSQL EXPLAIN

I piani Aurora DSQL EXPLAIN forniscono informazioni dettagliate su come vengono eseguite
le query, incluso dove avviene il filtraggio e quali colonne vengono recuperate dallo storage. La
comprensione di questo risultato consente di ottimizzare le prestazioni delle query.

Elementi chiave 85

https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/using-explain.html

Amazon Aurora DSQL Guida per l’utente

Index Cond

Condizioni utilizzate per navigare nell'indice. Filtraggio più efficiente che riduce i dati scansionati.
In Aurora DSQL, le condizioni dell'indice possono essere applicate a più livelli del piano di
esecuzione.

Proiezioni

Colonne recuperate dalla memorizzazione. Un numero inferiore di proiezioni significa prestazioni
migliori.

Filtro di archiviazione

Condizioni applicate a livello di archiviazione. Più efficiente dei filtri del processore di query.

Filtro del processore di query

Condizioni applicate a livello di processore di query. Richiede il trasferimento di tutti i dati prima
del filtraggio, il che comporta un maggiore spostamento dei dati e un sovraccarico di elaborazione.

Filtri in Aurora DSQL

Aurora DSQL separa l'elaborazione dallo storage, il che significa che il punto in cui vengono applicati
i filtri durante l'esecuzione delle query ha un impatto significativo sulle prestazioni. I filtri applicati
prima del trasferimento di grandi volumi di dati riducono la latenza e migliorano l'efficienza. Quanto
prima viene applicato un filtro, tanto meno dati devono essere elaborati, spostati e scansionati, con
conseguenti query più rapide.

Aurora DSQL può applicare filtri in più fasi del percorso della query. La comprensione di queste fasi è
fondamentale per interpretare i piani di interrogazione e ottimizzare le prestazioni.

Livello Tipo di filtro Description

1 Condizione dell'indice Applicata durante la scansione dell'indice. Limita
la quantità di dati letti dallo storage e riduce i dati
inviati al livello di elaborazione.

2 Filtro di archiviazione Applicato dopo la lettura dei dati dallo storage ma
prima di essere inviati al calcolo. Un esempio qui è
un filter su una colonna di inclusione di un indice.

Filtraggio 86

Amazon Aurora DSQL Guida per l’utente

Livello Tipo di filtro Description

Riduce il trasferimento di dati ma non la quantità
letta.

3 Filtro Query Processor Applicato dopo che i dati raggiungono il livello di
elaborazione. Tutti i dati devono essere trasferiti per
primi, il che aumenta la latenza e i costi. Attualmen
te, Aurora DSQL non è in grado di eseguire tutte le
operazioni di filtraggio e proiezione sullo storage,
quindi alcune query potrebbero essere costrette a
ricorrere a questo tipo di filtro.

Leggere i piani di Aurora DSQL EXPLAIN

Capire come leggere i piani EXPLAIN è fondamentale per ottimizzare le prestazioni delle query. In
questa sezione, esamineremo esempi reali di piani di query DSQL di Aurora, mostreremo come si
comportano i diversi tipi di scansione, spiegheremo dove vengono applicati i filtri ed evidenzieremo le
opportunità di ottimizzazione.

Esempio di scansione completa

Aurora DSQL dispone sia di scansioni sequenziali, identiche dal punto di vista funzionale a
PostgreSQL, sia di scansioni complete. L'unica differenza tra queste due è che le scansioni complete
possono utilizzare filtri aggiuntivi sullo storage. Per questo motivo, viene quasi sempre selezionato
al di sopra delle scansioni sequenziali. A causa della somiglianza, tratteremo solo esempi delle
scansioni complete più interessanti.

Le scansioni complete verranno utilizzate principalmente su tabelle prive di chiave primaria. Poiché
le chiavi primarie Aurora DSQL sono per impostazione predefinita indici a copertura completa, Aurora
DSQL utilizzerà molto probabilmente Index Only Scans sulla chiave primaria in molte situazioni in
cui PostgreSQL utilizzerebbe una scansione sequenziale. Come con la maggior parte degli altri
database, una tabella senza indici si ridimensionerà male.

EXPLAIN SELECT account_id FROM transaction WHERE transaction_date > '2025-01-01' AND
 description LIKE '%external%';

 QUERY PLAN

Leggere i piani EXPLA 87

Amazon Aurora DSQL Guida per l’utente

--
 Full Scan (btree-table) on transaction (cost=125100.05..177933.38 rows=33333
 width=16)
 Filter: (description ~~ '%external%'::text)
 -> Storage Scan on transaction (cost=12510.05..17793.38 rows=66666 width=16)
 Projections: account_id, description
 Filters: (transaction_date > '2025-01-01 00:00:00'::timestamp without time
 zone)
 -> B-Tree Scan on transaction (cost=12510.05..17793.38 rows=100000 width=30)

Questo piano mostra due filtri applicati in fasi diverse. La transaction_date > '2025-01-01'
condizione viene applicata a livello di archiviazione, riducendo la quantità di dati restituiti. La
description LIKE '%external%' condizione viene applicata successivamente nel processore
di query, dopo il trasferimento dei dati, rendendolo meno efficiente. L'inserimento di filtri più selettivi
nei livelli di archiviazione o di indice generalmente migliora le prestazioni.

Esempio di scansione Index Only

Le scansioni indicizzate sono i tipi di scansione più ottimali in Aurora DSQL in quanto comportano il
minor numero di round trip verso il livello di archiviazione e possono eseguire la maggior parte dei
filtri. Ma solo perché vedi Index Only Scan non significa che tu abbia il piano migliore. A causa di
tutti i diversi livelli di filtraggio che possono verificarsi, è essenziale prestare comunque attenzione ai
diversi luoghi in cui può avvenire il filtraggio.

EXPLAIN SELECT balance FROM account
WHERE customer_id = '4b18a761-5870-4d7c-95ce-0a48eca3fceb'
AND balance > 100
AND status = 'pending';

 QUERY PLAN

 Index Only Scan using idx1 on account (cost=725.05..1025.08 rows=8 width=18)
 Index Cond: (customer_id = '4b18a761-5870-4d7c-95ce-0a48eca3fceb'::uuid)
 Filter: (balance > '100'::numeric)
 -> Storage Scan on idx1 (cost=12510.05..17793.38 rows=9 width=16)
 Projections: balance
 Filters: ((status)::text = 'pending'::text)
 -> B-Tree Scan on idx1 (cost=12510.05..17793.38 rows=10 width=30)
 Index Cond: (customer_id = '4b18a761-5870-4d7c-95ce-0a48eca3fceb'::uuid)

Leggere i piani EXPLA 88

Amazon Aurora DSQL Guida per l’utente

In questo piano, la condizione dell'indice,customer_id =
'4b18a761-5870-4d7c-95ce-0a48eca3fceb'), viene valutata innanzitutto durante la scansione
dell'indice, che è la fase più efficiente perché limita la quantità di dati letti dallo storage. Il filtro di
archiviazione,status = 'pending', viene applicato dopo la lettura dei dati ma prima di essere
inviati al livello di elaborazione, riducendo la quantità di dati trasferiti. Infine, il filtro del processore
di query viene eseguito per ultimo, dopo lo spostamento dei dati, il che lo rende il meno efficiente.
balance > 100 Di queste, la condizione dell'indice offre le prestazioni migliori perché controlla
direttamente la quantità di dati scansionati.

Esempio di Index Scan

Le scansioni degli indici sono simili alle scansioni di solo indice, tranne per il fatto che hanno il
passaggio aggiuntivo di dover richiamare la tabella di base. Poiché Aurora DSQL è in grado di
specificare filtri di archiviazione, è in grado di farlo sia sulla chiamata di indice che sulla chiamata di
ricerca.

Per chiarire questo punto, Aurora DSQL presenta il piano come due nodi. In questo modo, puoi
vedere chiaramente quanto l'aggiunta di una colonna di inclusione possa aiutare in termini di righe
restituite dall'archiviazione.

EXPLAIN SELECT balance FROM account
WHERE customer_id = '4b18a761-5870-4d7c-95ce-0a48eca3fceb'
AND balance > 100
AND status = 'pending'
AND created_at > '2025-01-01';

 QUERY PLAN
--
 Index Scan using idx1 on account (cost=728.18..1132.20 rows=3 width=18)
 Filter: (balance > '100'::numeric)
 Index Cond: (customer_id = '4b18a761-5870-4d7c-95ce-0a48eca3fceb'::uuid)
 -> Storage Scan on idx1 (cost=12510.05..17793.38 rows=8 width=16)
 Projections: balance
 Filters: ((status)::text = 'pending'::text)
 -> B-Tree Scan on account (cost=12510.05..17793.38 rows=10 width=30)
 Index Cond: (customer_id = '4b18a761-5870-4d7c-95ce-0a48eca3fceb'::uuid)
 -> Storage Lookup on account (cost=12510.05..17793.38 rows=4 width=16)
 Filters: (created_at > '2025-01-01 00:00:00'::timestamp without time zone)
 -> B-Tree Lookup on transaction (cost=12510.05..17793.38 rows=8 width=30)

Leggere i piani EXPLA 89

Amazon Aurora DSQL Guida per l’utente

Questo piano mostra come avviene il filtraggio in più fasi:

• La condizione di indicizzazione customer_id filtra i dati in anticipo.

• Il filtro di archiviazione limita status ulteriormente i risultati prima che vengano inviati al calcolo.

• Il filtro del processore di query attivo balance viene applicato successivamente, dopo il
trasferimento.

• Il filtro di ricerca attivato created_at viene valutato quando si recuperano colonne aggiuntive
dalla tabella di base.

L'aggiunta di colonne utilizzate di frequente come INCLUDE campi può spesso eliminare questa
ricerca e migliorare le prestazioni.

Best practice

• Allinea i filtri alle colonne indicizzate per accelerare il filtraggio.

• Utilizza le colonne INCLUDE per consentire le scansioni solo indicizzate ed evitare le ricerche.

• Mantieni aggiornate le statistiche per garantire che le stime dei costi e delle righe siano accurate.

• Evita le query non indicizzate su tabelle di grandi dimensioni per evitare costose scansioni
complete.

Comprensione DPUs in EXPLAIN ANAL

Aurora DSQL fornisce informazioni DPU (Distributed Processing Unit) a livello di dichiarazione
nell'output del EXPLAIN ANALYZE VERBOSE piano, offrendoti una visibilità più approfondita sui
costi delle query durante lo sviluppo. Questa sezione spiega cosa DPUs sono e come interpretarli
nell'output. EXPLAIN ANALYZE VERBOSE

Che cos'è una DPU?

Un'unità di elaborazione distribuita (DPU) è la misura normalizzata del lavoro svolto da Aurora DSQL.
È composta da:

• ComputedPU: tempo impiegato per l'esecuzione di query SQL

• ReadDPU: risorse utilizzate per leggere i dati dallo storage

• WriteDPU: risorse utilizzate per scrivere dati nell'archivio

DPUs in EXPLAIN ANALIZZA 90

Amazon Aurora DSQL Guida per l’utente

• MultiRegionWriteDPU: risorse utilizzate per replicare le scritture su cluster peer in configurazioni
multiregionali.

Utilizzo della DPU in EXPLAIN ANALYZE VERBOSE

Aurora DSQL si estende EXPLAIN ANALYZE VERBOSE per includere una stima dell'utilizzo della
DPU a livello di dichiarazione fino alla fine dell'output. Ciò offre una visibilità immediata sui costi delle
query, aiutandoti a identificare i fattori di costo del carico di lavoro, ottimizzare le prestazioni delle
query e prevedere meglio l'utilizzo delle risorse.

Gli esempi seguenti mostrano come interpretare le stime della DPU a livello di dichiarazione incluse
nell'output EXPLAIN ANALYZE VERBOSE.

Esempio 1: SELECT Query

EXPLAIN ANALYZE VERBOSE SELECT * FROM test_table;

QUERY PLAN
--
Index Only Scan using test_table_pkey on public.test_table (cost=125100.05..171100.05
 rows=1000000 width=36) (actual time=2.973..4.482 rows=120 loops=1)
 Output: id, context
 -> Storage Scan on test_table_pkey (cost=125100.05..171100.05 rows=1000000 width=36)
 (actual rows=120 loops=1)
 Projections: id, context
 -> B-Tree Scan on test_table_pkey (cost=125100.05..171100.05 rows=1000000
 width=36) (actual rows=120 loops=1)
Query Identifier: qymgw1m77maoe
Planning Time: 11.415 ms
Execution Time: 4.528 ms
Statement DPU Estimate:
 Compute: 0.01607 DPU
 Read: 0.04312 DPU
 Write: 0.00000 DPU
 Total: 0.05919 DPU

In questo esempio, l'istruzione SELECT esegue una scansione solo indicizzata, quindi la maggior
parte del costo proviene da Read DPU (0.04312), che rappresenta i dati recuperati dallo storage e
Compute DPU (0,01607), che riflette le risorse di calcolo utilizzate per elaborare e restituire i risultati.

DPUs in EXPLAIN ANALIZZA 91

Amazon Aurora DSQL Guida per l’utente

Non esiste una DPU di scrittura poiché la query non modifica i dati. La DPU totale (0,05919) è la
somma di Compute+Read+Write.

Esempio 2: INSERT Query

EXPLAIN ANALYZE VERBOSE INSERT INTO test_table VALUES (1, 'name1'), (2, 'name2'), (3,
 'name3');

QUERY PLAN
--
Insert on public.test_table (cost=0.00..0.04 rows=0 width=0) (actual time=0.055..0.056
 rows=0 loops=1)
 -> Values Scan on "*VALUES*" (cost=0.00..0.04 rows=3 width=122) (actual
 time=0.003..0.008 rows=3 loops=1)
 Output: "*VALUES*".column1, "*VALUES*".column2
Query Identifier: jtkjkexhjotbo
Planning Time: 0.068 ms
Execution Time: 0.543 ms
Statement DPU Estimate:
 Compute: 0.01550 DPU
 Read: 0.00307 DPU (Transaction minimum: 0.00375)
 Write: 0.01875 DPU (Transaction minimum: 0.05000)
 Total: 0.03732 DPU

Questa istruzione esegue principalmente le scritture, quindi la maggior parte del costo è associato a
Write DPU. La Compute DPU (0,01550) rappresenta il lavoro svolto per elaborare e inserire i valori.
La Read DPU (0.00307) riflette le letture secondarie del sistema (per le ricerche nel catalogo o il
controllo degli indici).

Notate i valori minimi delle transazioni mostrati accanto a Lettura e scrittura. DPUs Questi indicano i
costi di base per transazione che si applicano solo quando l'operazione include operazioni di lettura
o scrittura. Ciò non significa che ogni transazione comporti automaticamente un costo di 0,00375
DPU in lettura o 0,05 DPU in scrittura. Questi minimi vengono invece applicati a livello di transazione
durante l'aggregazione dei costi e solo se all'interno della transazione vengono eseguite operazioni
di lettura o scrittura. A causa di questa differenza di ambito, le stime a livello di rendiconto EXPLAIN
ANALYZE VERBOSE potrebbero non corrispondere esattamente alle metriche a livello di transazione
riportate nei dati di fatturazione o nei dati di fatturazione. CloudWatch

DPUs in EXPLAIN ANALIZZA 92

Amazon Aurora DSQL Guida per l’utente

Utilizzo delle informazioni sulla DPU per l'ottimizzazione

Le stime della DPU per dichiarazione offrono un modo efficace per ottimizzare le query oltre il
semplice tempo di esecuzione. Casi di utilizzo comune comprendono:

• Consapevolezza dei costi: scopri quanto è costosa una query rispetto alle altre.

• Ottimizzazione dello schema: confronta l'impatto degli indici o delle modifiche allo schema sulle
prestazioni e sull'efficienza delle risorse.

• Pianificazione del budget: stima del costo del carico di lavoro in base all'utilizzo della DPU
osservato.

• Confronto tra query: valuta gli approcci di interrogazione alternativi in base al consumo relativo di
DPU.

Interpretazione delle informazioni sulla DPU

Tieni a mente le seguenti best practice quando utilizzi dati DPU da: EXPLAIN ANALYZE VERBOSE

• Usalo in modo direzionale: considera la DPU segnalata come un modo per comprendere il
costo relativo di una query piuttosto che come una corrispondenza esatta con le CloudWatch
metriche o i dati di fatturazione. Le differenze sono previste perché EXPLAIN ANALYZE VERBOSE
riporta i costi a livello di rendiconto, mentre aggrega l'attività a livello di transazione. CloudWatch
CloudWatch include anche operazioni in background (come ANALYZE o compactions) e il
sovraccarico delle transazioni (/) che esclude intenzionalmente. BEGIN COMMIT EXPLAIN
ANALYZE VERBOSE

• La variabilità della DPU tra le esecuzioni è normale nei sistemi distribuiti e non indica errori. Fattori
come la memorizzazione nella cache, le modifiche al piano di esecuzione, la concorrenza o i
cambiamenti nella distribuzione dei dati possono tutti far sì che la stessa query utilizzi risorse
diverse da un'esecuzione all'altra.

• Operazioni in batch di piccole dimensioni: se il carico di lavoro genera molte istruzioni di piccole
dimensioni, valuta la possibilità di raggrupparle in batch in operazioni più grandi (non superare i 10
MB). In questo modo si riducono le spese generali di arrotondamento e si ottengono stime dei costi
più significative.

• Utilizzabile per l'ottimizzazione, non per la fatturazione: i dati in EXPLAIN ANALYZE VERBOSE
ingresso della DPU sono progettati per la consapevolezza dei costi, l'ottimizzazione delle query
e l'ottimizzazione. Non è una metrica adatta alla fatturazione. Affidati sempre alle CloudWatch
metriche o ai rapporti di fatturazione mensili per dati autorevoli su costi e utilizzo.

DPUs in EXPLAIN ANALIZZA 93

Amazon Aurora DSQL Guida per l’utente

Gestione di cluster Aurora DSQL

Aurora DSQL offre diverse opzioni di configurazione da utilizzare per stabilire l’infrastruttura di
database giusta per ogni esigenza. Per configurare l’infrastruttura del cluster Aurora DSQL, consulta
le seguenti sezioni.

Argomenti

• Configurazione di cluster a Regione singola

• Configurazione di cluster multi-Regione

• Configurazione dei cluster Aurora DSQL utilizzando AWS CloudFormation

• Ciclo di vita del cluster Aurora DSQL

Le caratteristiche e le funzionalità illustrate in questa guida assicurano che l’ambiente Aurora DSQL
sia più resiliente, reattivo e in grado di supportare le applicazioni man mano che crescono ed
evolvono.

Configurazione di cluster a Regione singola

Configurazione e gestione dei cluster di una Regione AWS utilizzando la AWS CLI o il linguaggio
di programmazione preferito, tra cui Python, C++, JavaScript, Java, Rust, Ruby, .NET e Golang. La
AWS CLI fornisce un accesso rapido tramite i comandi della shell, mentre i Software Development Kit
(SDK) AWS consentono il controllo programmatico tramite il supporto del linguaggio nativo.

Argomenti

• Utilizzo degli SDK AWS

• Utilizzo della CLI di AWS

Utilizzo degli SDK AWS

Gli SDK AWS forniscono l’accesso programmatico ad Aurora DSQL nel linguaggio di
programmazione preferito. Le sezioni seguenti mostrano come eseguire operazioni comuni sui cluster
utilizzando diversi linguaggi di programmazione.

Cluster a Regione singola 94

Amazon Aurora DSQL Guida per l’utente

Creazione di un cluster

Negli esempi seguenti viene illustrato come creare un cluster a Regione singola utilizzando diversi
linguaggi di programmazione.

Python

Per creare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

import boto3

def create_cluster(region):
 try:
 client = boto3.client("dsql", region_name=region)
 tags = {"Name": "Python single region cluster"}
 cluster = client.create_cluster(tags=tags, deletionProtectionEnabled=True)
 print(f"Initiated creation of cluster: {cluster["identifier"]}")

 print(f"Waiting for {cluster["arn"]} to become ACTIVE")
 client.get_waiter("cluster_active").wait(
 identifier=cluster["identifier"],
 WaiterConfig={
 'Delay': 10,
 'MaxAttempts': 30
 }
)

 return cluster
 except:
 print("Unable to create cluster")
 raise

def main():
 region = "us-east-1"
 response = create_cluster(region)
 print(f"Created cluster: {response["arn"]}")

if __name__ == "__main__":
 main()

Utilizzo degli SDK AWS 95

Amazon Aurora DSQL Guida per l’utente

C++

L’esempio seguente consente di creare un cluster in un’unica Regione AWS.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/CreateClusterRequest.h>
#include <aws/dsql/model/GetClusterRequest.h>
#include <iostream>
#include <thread>
#include <chrono>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

/**
 * Creates a single-region cluster in Amazon Aurora DSQL
 */
CreateClusterResult CreateCluster(const Aws::String& region) {
 // Create client for the specified region
 DSQL::DSQLClientConfiguration clientConfig;
 clientConfig.region = region;
 DSQL::DSQLClient client(clientConfig);

 // Create the cluster
 CreateClusterRequest createClusterRequest;
 createClusterRequest.SetDeletionProtectionEnabled(true);
 createClusterRequest.SetClientToken(Aws::Utils::UUID::RandomUUID());

 // Add tags
 Aws::Map<Aws::String, Aws::String> tags;
 tags["Name"] = "cpp single region cluster";
 createClusterRequest.SetTags(tags);

 auto createOutcome = client.CreateCluster(createClusterRequest);
 if (!createOutcome.IsSuccess()) {
 std::cerr << "Failed to create cluster in " << region << ": "
 << createOutcome.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Unable to create cluster in " + region);
 }

 auto cluster = createOutcome.GetResult();

Utilizzo degli SDK AWS 96

Amazon Aurora DSQL Guida per l’utente

 std::cout << "Created " << cluster.GetArn() << std::endl;

 return cluster;
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 {
 try {
 // Define region for the single-region setup
 Aws::String region = "us-east-1";

 auto cluster = CreateCluster(region);

 std::cout << "Created single region cluster:" << std::endl;
 std::cout << "Cluster ARN: " << cluster.GetArn() << std::endl;
 std::cout << "Cluster Status: " <<
 ClusterStatusMapper::GetNameForClusterStatus(cluster.GetStatus()) << std::endl;
 }
 catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl;
 }
 }
 Aws::ShutdownAPI(options);
 return 0;
}

JavaScript

Per creare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

import { DSQLClient, CreateClusterCommand, waitUntilClusterActive } from "@aws-sdk/
client-dsql";

async function createCluster(region) {

 const client = new DSQLClient({ region });

 try {
 const createClusterCommand = new CreateClusterCommand({
 deletionProtectionEnabled: true,
 tags: {
 Name: "javascript single region cluster"

Utilizzo degli SDK AWS 97

Amazon Aurora DSQL Guida per l’utente

 },
 });
 const response = await client.send(createClusterCommand);

 console.log(`Waiting for cluster ${response.identifier} to become ACTIVE`);
 await waitUntilClusterActive(
 {
 client: client,
 maxWaitTime: 300 // Wait for 5 minutes
 },
 {
 identifier: response.identifier
 }
);
 console.log(`Cluster Id ${response.identifier} is now active`);
 return;
 } catch (error) {
 console.error(`Unable to create cluster in ${region}: `, error.message);
 throw error;
 }
}

async function main() {
 const region = "us-east-1";

 await createCluster(region);
}

main();

Java

Usa l’esempio seguente per creare un cluster in una singola Regione AWS.

package org.example;

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.waiters.WaiterResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.retries.api.BackoffStrategy;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.CreateClusterRequest;
import software.amazon.awssdk.services.dsql.model.CreateClusterResponse;
import software.amazon.awssdk.services.dsql.model.GetClusterResponse;

Utilizzo degli SDK AWS 98

Amazon Aurora DSQL Guida per l’utente

import java.time.Duration;
import java.util.Map;

public class CreateCluster {

 public static void main(String[] args) {
 Region region = Region.US_EAST_1;

 try (
 DsqlClient client = DsqlClient.builder()
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build()
) {
 CreateClusterRequest request = CreateClusterRequest.builder()
 .deletionProtectionEnabled(true)
 .tags(Map.of("Name", "java single region cluster"))
 .build();
 CreateClusterResponse cluster = client.createCluster(request);
 System.out.println("Created " + cluster.arn());

 // The DSQL SDK offers a built-in waiter to poll for a cluster's
 // transition to ACTIVE.
 System.out.println("Waiting for cluster to become ACTIVE");
 WaiterResponse<GetClusterResponse> waiterResponse =
 client.waiter().waitUntilClusterActive(
 getCluster -> getCluster.identifier(cluster.identifier()),
 config -> config.backoffStrategyV2(

 BackoffStrategy.fixedDelayWithoutJitter(Duration.ofSeconds(10))
).waitTimeout(Duration.ofMinutes(5))
);
 waiterResponse.matched().response().ifPresent(System.out::println);
 }
 }
}

Rust

Per creare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

use aws_config::{BehaviorVersion, Region, load_defaults};

Utilizzo degli SDK AWS 99

Amazon Aurora DSQL Guida per l’utente

use aws_sdk_dsql::client::Waiters;
use aws_sdk_dsql::operation::get_cluster::GetClusterOutput;
use aws_sdk_dsql::{Client, Config};
use std::collections::HashMap;

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 let region_provider = Region::new(region);

 let config = load_defaults(BehaviorVersion::latest())
 .region(region_provider)
 .load()
 .await;

 let config = Config::new(&config);

 Client::from_conf(config)
}

/// Create a cluster without delete protection and a name
pub async fn create_cluster(region: &'static str) -> GetClusterOutput {
 let client = dsql_client(region).await;

 let tags = HashMap::from([
 (String::from("Name"), String::from("rust single region cluster")),
]);

 println!("Creating cluster in {region}");
 let cluster = client
 .create_cluster()
 .set_tags(Some(tags))
 .deletion_protection_enabled(true)
 .send()
 .await
 .unwrap();

 println!("Created {}", cluster.arn);

 println!("Waiting for {} to become ACTIVE", cluster.arn);
 let cluster_output = client
 .wait_until_cluster_active()
 .identifier(&cluster.identifier)
 .send()

Utilizzo degli SDK AWS 100

Amazon Aurora DSQL Guida per l’utente

 .await
 .unwrap();

 cluster_output
}

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
 let region = "us-east-1";

 let cluster = create_cluster(region).await;

 println!("Created single region cluster:");
 println!("{:#?}", cluster);

 Ok(())
}

Ruby

Per creare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

require "aws-sdk-dsql"
require "pp"

def create_cluster(region)
 client = Aws::DSQL::Client.new(region: region)

 puts "Creating cluster in #{region}"
 cluster = client.create_cluster(
 deletion_protection_enabled: true,
 tags: {
 Name: "ruby single region cluster"
 }
)
 puts "Created #{cluster.arn}"

 puts "Waiting for #{cluster.arn} to become ACTIVE"
 cluster = client.wait_until(:cluster_active, identifier: cluster.identifier) do |
w|
 # Wait for 5 minutes
 w.max_attempts = 30
 w.delay = 10
 end

Utilizzo degli SDK AWS 101

Amazon Aurora DSQL Guida per l’utente

 cluster
rescue Aws::Errors::ServiceError => e
 abort "Failed to create cluster: #{e.message}"
end

def main
 region = "us-east-1"

 cluster = create_cluster(region)

 puts "Created single region cluster:"
 pp cluster
end

main if $PROGRAM_NAME == __FILE__

.NET

Per creare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime;
using Amazon.Runtime.Credentials;
using Amazon.Runtime.Endpoints;

namespace DSQLExamples.examples
{
 public class CreateCluster
 {
 /// <summary>
 /// Create a client. We will use this later for performing operations on the
 cluster.
 /// </summary>
 private static async Task<AmazonDSQLClient> CreateDSQLClient(RegionEndpoint
 region)
 {
 var awsCredentials = new DefaultAWSCredentialsChain().GetCredentials();
 var clientConfig = new AmazonDSQLConfig

Utilizzo degli SDK AWS 102

Amazon Aurora DSQL Guida per l’utente

 {
 RegionEndpoint = region
 };
 return new AmazonDSQLClient(awsCredentials, clientConfig);
 }

 /// <summary>
 /// Create a cluster with deletion protection enabled and a name tag.
 /// </summary>
 public static async Task<CreateClusterResponse> Create(RegionEndpoint
 region)
 {
 using (var client = await CreateDSQLClient(region))
 {
 var tags = new Dictionary<string, string>
 {
 { "Name", "csharp single region cluster" }
 };

 var createClusterRequest = new CreateClusterRequest
 {
 DeletionProtectionEnabled = true,
 Tags = tags
 };

 var cluster = await client.CreateClusterAsync(createClusterRequest);
 Console.WriteLine($"Created {cluster.Arn}");

 return cluster;
 }
 }

 public static async Task Main()
 {
 var region = RegionEndpoint.USEast1;

 var cluster = await Create(region);

 Console.WriteLine("Created single region cluster:");
 Console.WriteLine($"Cluster ARN: {cluster.Arn}");
 }
 }
}

Utilizzo degli SDK AWS 103

Amazon Aurora DSQL Guida per l’utente

Golang

Per creare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

package main

import (
 "context"
 "fmt"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/dsql"
)

func CreateCluster(ctx context.Context, region string) error {

 cfg, err := config.LoadDefaultConfig(ctx, config.WithRegion(region))
 if err != nil {
 log.Fatalf("Failed to load AWS configuration: %v", err)
 }

 client := dsql.NewFromConfig(cfg)

 deleteProtect := true

 input := &dsql.CreateClusterInput{
 DeletionProtectionEnabled: &deleteProtect,
 Tags: map[string]string{
 "Name": "go single-region cluster",
 },
 }

 clusterProperties, err := client.CreateCluster(context.Background(), input)

 if err != nil {
 return fmt.Errorf("failed to create cluster. %v", err)
 }

 // Create the waiter with our custom options
 waiter := dsql.NewClusterActiveWaiter(client, func(o
 *dsql.ClusterActiveWaiterOptions) {

Utilizzo degli SDK AWS 104

Amazon Aurora DSQL Guida per l’utente

 o.MaxDelay = 30 * time.Second
 o.MinDelay = 10 * time.Second
 o.LogWaitAttempts = true
 })

 // Create the input for the clusterProperties to monitor
 clusterInput := &dsql.GetClusterInput{
 Identifier: clusterProperties.Identifier,
 }

 fmt.Printf("Waiting for cluster %s to become ACTIVE\n", *clusterProperties.Arn)
 err = waiter.Wait(ctx, clusterInput, 5*time.Minute)
 if err != nil {
 return fmt.Errorf("error waiting for cluster to become active: %w", err)
 }

 fmt.Printf("Created single region cluster: %s\n", *clusterProperties.Arn)
 return nil
}

func main() {
 // Set up context with timeout
 ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
 defer cancel()

 err := CreateCluster(ctx, "us-east-1")
 if err != nil {
 fmt.Printf("failed to create cluster: %v", err)
 panic(err)
 }

}

Recupero delle informazioni di un cluster

Negli esempi seguenti viene illustrato come ottenere informazioni su un cluster a Regione singola
utilizzando diversi linguaggi di programmazione.

Python

Per ottenere informazioni su un cluster a Regione singola, utilizzare l’esempio seguente.

Utilizzo degli SDK AWS 105

Amazon Aurora DSQL Guida per l’utente

import boto3
from datetime import datetime
import json

def get_cluster(region, identifier):
 try:
 client = boto3.client("dsql", region_name=region)
 return client.get_cluster(identifier=identifier)
 except:
 print(f"Unable to get cluster {identifier} in region {region}")
 raise

def main():
 region = "us-east-1"
 cluster_id = "<your cluster id>"
 response = get_cluster(region, cluster_id)

 print(json.dumps(response, indent=2, default=lambda obj: obj.isoformat() if
 isinstance(obj, datetime) else None))

if __name__ == "__main__":
 main()

C++

Utilizzare l’esempio seguente per ottenere informazioni su un cluster a Regione singola.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/GetClusterRequest.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

/**
 * Retrieves information about a cluster in Amazon Aurora DSQL

Utilizzo degli SDK AWS 106

Amazon Aurora DSQL Guida per l’utente

 */
GetClusterResult GetCluster(const Aws::String& region, const Aws::String&
 identifier) {
 // Create client for the specified region
 DSQL::DSQLClientConfiguration clientConfig;
 clientConfig.region = region;
 DSQL::DSQLClient client(clientConfig);

 // Get the cluster
 GetClusterRequest getClusterRequest;
 getClusterRequest.SetIdentifier(identifier);

 auto getOutcome = client.GetCluster(getClusterRequest);
 if (!getOutcome.IsSuccess()) {
 std::cerr << "Failed to retrieve cluster " << identifier << " in " << region
 << ": "
 << getOutcome.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Unable to retrieve cluster " + identifier + " in
 region " + region);
 }

 return getOutcome.GetResult();
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 {
 try {
 // Define region and cluster ID
 Aws::String region = "us-east-1";
 Aws::String clusterId = "<your cluster id>";

 auto cluster = GetCluster(region, clusterId);

 // Print cluster details
 std::cout << "Cluster Details:" << std::endl;
 std::cout << "ARN: " << cluster.GetArn() << std::endl;
 std::cout << "Status: " <<
 ClusterStatusMapper::GetNameForClusterStatus(cluster.GetStatus()) << std::endl;
 }
 catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl;
 }

Utilizzo degli SDK AWS 107

Amazon Aurora DSQL Guida per l’utente

 }
 Aws::ShutdownAPI(options);
 return 0;
}

JavaScript

Per ottenere informazioni su un cluster a Regione singola, utilizzare l’esempio seguente.

import { DSQLClient, GetClusterCommand } from "@aws-sdk/client-dsql";

async function getCluster(region, clusterId) {

 const client = new DSQLClient({ region });

 const getClusterCommand = new GetClusterCommand({
 identifier: clusterId,
 });

 try {
 return await client.send(getClusterCommand);
 } catch (error) {
 if (error.name === "ResourceNotFoundException") {
 console.log("Cluster ID not found or deleted");
 }
 throw error;
 }
}

async function main() {
 const region = "us-east-1";
 const clusterId = "<CLUSTER_ID>";

 const response = await getCluster(region, clusterId);
 console.log("Cluster: ", response);
}

main();

Java

L’esempio seguente consente di ottenere informazioni su un cluster a Regione singola.

Utilizzo degli SDK AWS 108

Amazon Aurora DSQL Guida per l’utente

package org.example;

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.GetClusterResponse;
import software.amazon.awssdk.services.dsql.model.ResourceNotFoundException;

public class GetCluster {

 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 String clusterId = "<your cluster id>";

 try (
 DsqlClient client = DsqlClient.builder()
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build()
) {
 GetClusterResponse cluster = client.getCluster(r ->
 r.identifier(clusterId));
 System.out.println(cluster);
 } catch (ResourceNotFoundException e) {
 System.out.printf("Cluster %s not found in %s%n", clusterId, region);
 }
 }
}

Rust

L’esempio seguente consente di ottenere informazioni su un cluster a Regione singola.

use aws_config::load_defaults;
use aws_sdk_dsql::operation::get_cluster::GetClusterOutput;
use aws_sdk_dsql::{
 Client, Config,
 config::{BehaviorVersion, Region},
};

/// Create a client. We will use this later for performing operations on the
 cluster.

Utilizzo degli SDK AWS 109

Amazon Aurora DSQL Guida per l’utente

async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults.credentials_provider().unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

/// Get a ClusterResource from DSQL cluster identifier
pub async fn get_cluster(region: &'static str, identifier: &'static str) ->
 GetClusterOutput {
 let client = dsql_client(region).await;
 client
 .get_cluster()
 .identifier(identifier)
 .send()
 .await
 .unwrap()
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";

 let cluster = get_cluster(region, "<your cluster id>").await;
 println!("{:#?}", cluster);

 Ok(())
}

Ruby

L’esempio seguente consente di ottenere informazioni su un cluster a Regione singola.

Utilizzo degli SDK AWS 110

Amazon Aurora DSQL Guida per l’utente

require "aws-sdk-dsql"
require "pp"

def get_cluster(region, identifier)
 client = Aws::DSQL::Client.new(region: region)
 client.get_cluster(identifier: identifier)
rescue Aws::Errors::ServiceError => e
 abort "Unable to retrieve cluster #{identifier} in region #{region}: #{e.message}"
end

def main
 region = "us-east-1"
 cluster_id = "<your cluster id>"
 cluster = get_cluster(region, cluster_id)
 pp cluster
end

main if $PROGRAM_NAME == __FILE__

.NET

L’esempio seguente consente di ottenere informazioni su un cluster a Regione singola.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime.Credentials;

namespace DSQLExamples.examples
{
 public class GetCluster
 {
 /// <summary>
 /// Create a client. We will use this later for performing operations on the
 cluster.
 /// </summary>
 private static async Task<AmazonDSQLClient> CreateDSQLClient(RegionEndpoint
 region)
 {

Utilizzo degli SDK AWS 111

Amazon Aurora DSQL Guida per l’utente

 var awsCredentials = await
 DefaultAWSCredentialsIdentityResolver.GetCredentialsAsync();
 var clientConfig = new AmazonDSQLConfig
 {
 RegionEndpoint = region
 };
 return new AmazonDSQLClient(awsCredentials, clientConfig);
 }

 /// <summary>
 /// Get information about a DSQL cluster.
 /// </summary>
 public static async Task<GetClusterResponse> Get(RegionEndpoint region,
 string identifier)
 {
 using (var client = await CreateDSQLClient(region))
 {
 var getClusterRequest = new GetClusterRequest
 {
 Identifier = identifier
 };

 return await client.GetClusterAsync(getClusterRequest);
 }
 }

 private static async Task Main()
 {
 var region = RegionEndpoint.USEast1;
 var clusterId = "<your cluster id>";

 var response = await Get(region, clusterId);
 Console.WriteLine($"Cluster ARN: {response.Arn}");
 }
 }
}

Golang

L’esempio seguente consente di ottenere informazioni su un cluster a Regione singola.

package main

Utilizzo degli SDK AWS 112

Amazon Aurora DSQL Guida per l’utente

import (
 "context"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/service/dsql"
)

func GetCluster(ctx context.Context, region, identifier string) (clusterStatus
 *dsql.GetClusterOutput, err error) {

 cfg, err := config.LoadDefaultConfig(ctx, config.WithRegion(region))
 if err != nil {
 log.Fatalf("Failed to load AWS configuration: %v", err)
 }

 // Initialize the DSQL client
 client := dsql.NewFromConfig(cfg)

 input := &dsql.GetClusterInput{
 Identifier: aws.String(identifier),
 }
 clusterStatus, err = client.GetCluster(context.Background(), input)

 if err != nil {
 log.Fatalf("Failed to get cluster: %v", err)
 }

 log.Printf("Cluster ARN: %s", *clusterStatus.Arn)

 return clusterStatus, nil
}

func main() {
 ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
 defer cancel()

 // Example cluster identifier
 identifier := "<CLUSTER_ID>"
 region := "us-east-1"

 _, err := GetCluster(ctx, region, identifier)

Utilizzo degli SDK AWS 113

Amazon Aurora DSQL Guida per l’utente

 if err != nil {
 log.Fatalf("Failed to get cluster: %v", err)
 }
}

Aggiornamento di un cluster

Gli esempi seguenti mostrano come aggiornare un cluster a Regione singola utilizzando diversi
linguaggi di programmazione.

Python

Per aggiornare un cluster a Regione singola, utilizzare l’esempio seguente.

import boto3

def update_cluster(region, cluster_id, deletion_protection_enabled):
 try:
 client = boto3.client("dsql", region_name=region)
 return client.update_cluster(identifier=cluster_id,
 deletionProtectionEnabled=deletion_protection_enabled)
 except:
 print("Unable to update cluster")
 raise

def main():
 region = "us-east-1"
 cluster_id = "<your cluster id>"
 deletion_protection_enabled = False
 response = update_cluster(region, cluster_id, deletion_protection_enabled)
 print(f"Updated {response["arn"]} with deletion_protection_enabled:
 {deletion_protection_enabled}")

if __name__ == "__main__":
 main()

Utilizzo degli SDK AWS 114

Amazon Aurora DSQL Guida per l’utente

C++

Utilizzare l’esempio seguente per aggiornare un cluster a Regione singola.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/UpdateClusterRequest.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

/**
 * Updates a cluster in Amazon Aurora DSQL
 */
UpdateClusterResult UpdateCluster(const Aws::String& region, const
 Aws::Map<Aws::String, Aws::String>& updateParams) {
 // Create client for the specified region
 DSQL::DSQLClientConfiguration clientConfig;
 clientConfig.region = region;
 DSQL::DSQLClient client(clientConfig);

 // Create update request
 UpdateClusterRequest updateRequest;
 updateRequest.SetClientToken(Aws::Utils::UUID::RandomUUID());

 // Set identifier (required)
 if (updateParams.find("identifier") != updateParams.end()) {
 updateRequest.SetIdentifier(updateParams.at("identifier"));
 } else {
 throw std::runtime_error("Cluster identifier is required for update
 operation");
 }

 // Set deletion protection if specified
 if (updateParams.find("deletion_protection_enabled") != updateParams.end()) {
 bool deletionProtection = (updateParams.at("deletion_protection_enabled") ==
 "true");
 updateRequest.SetDeletionProtectionEnabled(deletionProtection);
 }

 // Execute the update

Utilizzo degli SDK AWS 115

Amazon Aurora DSQL Guida per l’utente

 auto updateOutcome = client.UpdateCluster(updateRequest);
 if (!updateOutcome.IsSuccess()) {
 std::cerr << "Failed to update cluster: " <<
 updateOutcome.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Unable to update cluster");
 }

 return updateOutcome.GetResult();
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 {
 try {
 // Define region and update parameters
 Aws::String region = "us-east-1";
 Aws::String clusterId = "<your cluster id>";

 // Create parameter map
 Aws::Map<Aws::String, Aws::String> updateParams;
 updateParams["identifier"] = clusterId;
 updateParams["deletion_protection_enabled"] = "false";

 auto updatedCluster = UpdateCluster(region, updateParams);

 std::cout << "Updated " << updatedCluster.GetArn() << std::endl;
 }
 catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl;
 }
 }
 Aws::ShutdownAPI(options);
 return 0;
}

JavaScript

Per aggiornare un cluster a Regione singola, utilizzare l’esempio seguente.

import { DSQLClient, UpdateClusterCommand } from "@aws-sdk/client-dsql";

export async function updateCluster(region, clusterId, deletionProtectionEnabled) {

Utilizzo degli SDK AWS 116

Amazon Aurora DSQL Guida per l’utente

 const client = new DSQLClient({ region });

 const updateClusterCommand = new UpdateClusterCommand({
 identifier: clusterId,
 deletionProtectionEnabled: deletionProtectionEnabled
 });

 try {
 return await client.send(updateClusterCommand);
 } catch (error) {
 console.error("Unable to update cluster", error.message);
 throw error;
 }
}

async function main() {
 const region = "us-east-1";
 const clusterId = "<CLUSTER_ID>";
 const deletionProtectionEnabled = false;

 const response = await updateCluster(region, clusterId,
 deletionProtectionEnabled);
 console.log(`Updated ${response.arn}`);
}

main();

Java

Utilizzare l’esempio seguente per aggiornare un cluster a Regione singola.

package org.example;

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.UpdateClusterRequest;
import software.amazon.awssdk.services.dsql.model.UpdateClusterResponse;

public class UpdateCluster {

 public static void main(String[] args) {
 Region region = Region.US_EAST_1;

Utilizzo degli SDK AWS 117

Amazon Aurora DSQL Guida per l’utente

 String clusterId = "<your cluster id>";

 try (
 DsqlClient client = DsqlClient.builder()
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build()
) {
 UpdateClusterRequest request = UpdateClusterRequest.builder()
 .identifier(clusterId)
 .deletionProtectionEnabled(false)
 .build();
 UpdateClusterResponse cluster = client.updateCluster(request);
 System.out.println("Updated " + cluster.arn());
 }
 }
}

Rust

Utilizzare l’esempio seguente per aggiornare un cluster a Regione singola.

use aws_config::load_defaults;
use aws_sdk_dsql::operation::update_cluster::UpdateClusterOutput;
use aws_sdk_dsql::{
 Client, Config,
 config::{BehaviorVersion, Region},
};

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults.credentials_provider().unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

Utilizzo degli SDK AWS 118

Amazon Aurora DSQL Guida per l’utente

 Client::from_conf(config)
}

/// Update a DSQL cluster and set delete protection to false. Also add new tags.
pub async fn update_cluster(region: &'static str, identifier: &'static str) ->
 UpdateClusterOutput {
 let client = dsql_client(region).await;
 // Update delete protection
 let update_response = client
 .update_cluster()
 .identifier(identifier)
 .deletion_protection_enabled(false)
 .send()
 .await
 .unwrap();

 update_response
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";

 let cluster = update_cluster(region, "<your cluster id>").await;
 println!("{:#?}", cluster);

 Ok(())
}

Ruby

Utilizzare l’esempio seguente per aggiornare un cluster a Regione singola.

require "aws-sdk-dsql"

def update_cluster(region, update_params)
 client = Aws::DSQL::Client.new(region: region)
 client.update_cluster(update_params)
rescue Aws::Errors::ServiceError => e
 abort "Unable to update cluster: #{e.message}"
end

def main

Utilizzo degli SDK AWS 119

Amazon Aurora DSQL Guida per l’utente

 region = "us-east-1"
 cluster_id = "<your cluster id>"
 updated_cluster = update_cluster(region, {
 identifier: cluster_id,
 deletion_protection_enabled: false
 })
 puts "Updated #{updated_cluster.arn}"
end

main if $PROGRAM_NAME == __FILE__

.NET

Utilizzare l’esempio seguente per aggiornare un cluster a Regione singola.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime.Credentials;

namespace DSQLExamples.examples
{
 public class UpdateCluster
 {
 /// <summary>
 /// Create a client. We will use this later for performing operations on the
 cluster.
 /// </summary>
 private static async Task<AmazonDSQLClient> CreateDSQLClient(RegionEndpoint
 region)
 {
 var awsCredentials = await
 DefaultAWSCredentialsIdentityResolver.GetCredentialsAsync();
 var clientConfig = new AmazonDSQLConfig
 {
 RegionEndpoint = region
 };
 return new AmazonDSQLClient(awsCredentials, clientConfig);
 }

 /// <summary>

Utilizzo degli SDK AWS 120

Amazon Aurora DSQL Guida per l’utente

 /// Update a DSQL cluster and set delete protection to false.
 /// </summary>
 public static async Task<UpdateClusterResponse> Update(RegionEndpoint
 region, string identifier)
 {
 using (var client = await CreateDSQLClient(region))
 {
 var updateClusterRequest = new UpdateClusterRequest
 {
 Identifier = identifier,
 DeletionProtectionEnabled = false
 };

 UpdateClusterResponse response = await
 client.UpdateClusterAsync(updateClusterRequest);
 Console.WriteLine($"Updated {response.Arn}");

 return response;
 }
 }

 private static async Task Main()
 {
 var region = RegionEndpoint.USEast1;
 var clusterId = "<your cluster id>";

 await Update(region, clusterId);
 }
 }
}

Golang

Utilizzare l’esempio seguente per aggiornare un cluster a Regione singola.

package main

import (
 "context"
 "github.com/aws/aws-sdk-go-v2/config"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/service/dsql"

Utilizzo degli SDK AWS 121

Amazon Aurora DSQL Guida per l’utente

)

func UpdateCluster(ctx context.Context, region, id string, deleteProtection bool)
 (clusterStatus *dsql.UpdateClusterOutput, err error) {

 cfg, err := config.LoadDefaultConfig(ctx, config.WithRegion(region))
 if err != nil {
 log.Fatalf("Failed to load AWS configuration: %v", err)
 }

 // Initialize the DSQL client
 client := dsql.NewFromConfig(cfg)

 input := dsql.UpdateClusterInput{
 Identifier: &id,
 DeletionProtectionEnabled: &deleteProtection,
 }

 clusterStatus, err = client.UpdateCluster(context.Background(), &input)

 if err != nil {
 log.Fatalf("Failed to update cluster: %v", err)
 }

 log.Printf("Cluster updated successfully: %v", clusterStatus.Status)
 return clusterStatus, nil
}

func main() {
 ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
 defer cancel()

 // Example cluster identifier
 identifier := "<CLUSTER_ID>"
 region := "us-east-1"
 deleteProtection := false

 _, err := UpdateCluster(ctx, region, identifier, deleteProtection)
 if err != nil {
 log.Fatalf("Failed to update cluster: %v", err)
 }
}

Utilizzo degli SDK AWS 122

Amazon Aurora DSQL Guida per l’utente

Eliminazione di un cluster

Gli esempi seguenti mostrano come cancellare un cluster a Regione singola utilizzando diversi
linguaggi di programmazione.

Python

Per eliminare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

import boto3

def delete_cluster(region, identifier):
 try:
 client = boto3.client("dsql", region_name=region)
 cluster = client.delete_cluster(identifier=identifier)
 print(f"Initiated delete of {cluster["arn"]}")

 print("Waiting for cluster to finish deletion")
 client.get_waiter("cluster_not_exists").wait(
 identifier=cluster["identifier"],
 WaiterConfig={
 'Delay': 10,
 'MaxAttempts': 30
 }
)
 except:
 print("Unable to delete cluster " + identifier)
 raise

def main():
 region = "us-east-1"
 cluster_id = "<cluster id>" # Use a placeholder in docs
 delete_cluster(region, cluster_id)
 print(f"Deleted {cluster_id}")

if __name__ == "__main__":
 main()

Utilizzo degli SDK AWS 123

Amazon Aurora DSQL Guida per l’utente

C++

Per eliminare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/DeleteClusterRequest.h>
#include <aws/dsql/model/GetClusterRequest.h>
#include <iostream>
#include <thread>
#include <chrono>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

/**
 * Deletes a single-region cluster in Amazon Aurora DSQL
 */
void DeleteCluster(const Aws::String& region, const Aws::String& identifier) {
 // Create client for the specified region
 DSQL::DSQLClientConfiguration clientConfig;
 clientConfig.region = region;
 DSQL::DSQLClient client(clientConfig);

 // Delete the cluster
 DeleteClusterRequest deleteRequest;
 deleteRequest.SetIdentifier(identifier);
 deleteRequest.SetClientToken(Aws::Utils::UUID::RandomUUID());

 auto deleteOutcome = client.DeleteCluster(deleteRequest);
 if (!deleteOutcome.IsSuccess()) {
 std::cerr << "Failed to delete cluster " << identifier << " in " << region
 << ": "
 << deleteOutcome.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Unable to delete cluster " + identifier + " in " +
 region);
 }

 auto cluster = deleteOutcome.GetResult();
 std::cout << "Initiated delete of " << cluster.GetArn() << std::endl;
}

Utilizzo degli SDK AWS 124

Amazon Aurora DSQL Guida per l’utente

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 {
 try {
 // Define region and cluster ID
 Aws::String region = "us-east-1";
 Aws::String clusterId = "<your cluster id>";

 DeleteCluster(region, clusterId);

 std::cout << "Deleted " << clusterId << std::endl;
 }
 catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl;
 }
 }
 Aws::ShutdownAPI(options);
 return 0;
}

JavaScript

Per eliminare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

import { DSQLClient, DeleteClusterCommand, waitUntilClusterNotExists } from "@aws-
sdk/client-dsql";

async function deleteCluster(region, clusterId) {

 const client = new DSQLClient({ region });

 try {
 const deleteClusterCommand = new DeleteClusterCommand({
 identifier: clusterId,
 });
 const response = await client.send(deleteClusterCommand);

 console.log(`Waiting for cluster ${response.identifier} to finish deletion`);

 await waitUntilClusterNotExists(
 {
 client: client,
 maxWaitTime: 300 // Wait for 5 minutes

Utilizzo degli SDK AWS 125

Amazon Aurora DSQL Guida per l’utente

 },
 {
 identifier: response.identifier
 }
);
 console.log(`Cluster Id ${response.identifier} is now deleted`);
 return;
 } catch (error) {
 if (error.name === "ResourceNotFoundException") {
 console.log("Cluster ID not found or already deleted");
 } else {
 console.error("Unable to delete cluster: ", error.message);
 }
 throw error;
 }
}

async function main() {
 const region = "us-east-1";
 const clusterId = "<CLUSTER_ID>";

 await deleteCluster(region, clusterId);
}

main();

Java

Per eliminare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

package org.example;

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.retries.api.BackoffStrategy;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.DeleteClusterResponse;
import software.amazon.awssdk.services.dsql.model.ResourceNotFoundException;

import java.time.Duration;

public class DeleteCluster {

 public static void main(String[] args) {

Utilizzo degli SDK AWS 126

Amazon Aurora DSQL Guida per l’utente

 Region region = Region.US_EAST_1;
 String clusterId = "<your cluster id>";

 try (
 DsqlClient client = DsqlClient.builder()
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build()
) {
 DeleteClusterResponse cluster = client.deleteCluster(r ->
 r.identifier(clusterId));
 System.out.println("Initiated delete of " + cluster.arn());

 // The DSQL SDK offers a built-in waiter to poll for deletion.
 System.out.println("Waiting for cluster to finish deletion");
 client.waiter().waitUntilClusterNotExists(
 getCluster -> getCluster.identifier(clusterId),
 config -> config.backoffStrategyV2(

 BackoffStrategy.fixedDelayWithoutJitter(Duration.ofSeconds(10))
).waitTimeout(Duration.ofMinutes(5))
);
 System.out.println("Deleted " + cluster.arn());
 } catch (ResourceNotFoundException e) {
 System.out.printf("Cluster %s not found in %s%n", clusterId, region);
 }
 }
}

Rust

Per eliminare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

use aws_config::load_defaults;
use aws_sdk_dsql::client::Waiters;
use aws_sdk_dsql::{
 Client, Config,
 config::{BehaviorVersion, Region},
};

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {

Utilizzo degli SDK AWS 127

Amazon Aurora DSQL Guida per l’utente

 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults.credentials_provider().unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

/// Delete a DSQL cluster
pub async fn delete_cluster(region: &'static str, identifier: &'static str) {
 let client = dsql_client(region).await;
 let delete_response = client
 .delete_cluster()
 .identifier(identifier)
 .send()
 .await
 .unwrap();
 println!("Initiated delete of {}", delete_response.arn);

 println!("Waiting for cluster to finish deletion");
 client
 .wait_until_cluster_not_exists()
 .identifier(identifier)
 .wait(std::time::Duration::from_secs(300)) // Wait up to 5 minutes
 .await
 .unwrap();
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";
 let cluster_id = "<cluster to be deleted>";

 delete_cluster(region, cluster_id).await;
 println!("Deleted {cluster_id}");

Utilizzo degli SDK AWS 128

Amazon Aurora DSQL Guida per l’utente

 Ok(())
}

Ruby

Per eliminare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

require "aws-sdk-dsql"

def delete_cluster(region, identifier)
 client = Aws::DSQL::Client.new(region: region)
 cluster = client.delete_cluster(identifier: identifier)
 puts "Initiated delete of #{cluster.arn}"

 # The DSQL SDK offers built-in waiters to poll for deletion.
 puts "Waiting for cluster to finish deletion"
 client.wait_until(:cluster_not_exists, identifier: cluster.identifier) do |w|
 # Wait for 5 minutes
 w.max_attempts = 30
 w.delay = 10
 end
rescue Aws::Errors::ServiceError => e
 abort "Unable to delete cluster #{identifier} in #{region}: #{e.message}"
end

def main
 region = "us-east-1"
 cluster_id = "<your cluster id>"
 delete_cluster(region, cluster_id)
 puts "Deleted #{cluster_id}"
end

main if $PROGRAM_NAME == __FILE__

.NET

Per eliminare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;

Utilizzo degli SDK AWS 129

Amazon Aurora DSQL Guida per l’utente

using Amazon.Runtime.Credentials;

namespace DSQLExamples.examples
{
 public class DeleteSingleRegionCluster
 {
 /// <summary>
 /// Create a client. We will use this later for performing operations on the
 cluster.
 /// </summary>
 private static async Task<AmazonDSQLClient> CreateDSQLClient(RegionEndpoint
 region)
 {
 var awsCredentials = await
 DefaultAWSCredentialsIdentityResolver.GetCredentialsAsync();
 var clientConfig = new AmazonDSQLConfig
 {
 RegionEndpoint = region
 };
 return new AmazonDSQLClient(awsCredentials, clientConfig);
 }

 /// <summary>
 /// Delete a DSQL cluster.
 /// </summary>
 public static async Task Delete(RegionEndpoint region, string identifier)
 {
 using (var client = await CreateDSQLClient(region))
 {
 var deleteRequest = new DeleteClusterRequest
 {
 Identifier = identifier
 };

 var deleteResponse = await client.DeleteClusterAsync(deleteRequest);
 Console.WriteLine($"Initiated deletion of {deleteResponse.Arn}");
 }
 }

 private static async Task Main()
 {
 var region = RegionEndpoint.USEast1;
 var clusterId = "<cluster to be deleted>";

Utilizzo degli SDK AWS 130

Amazon Aurora DSQL Guida per l’utente

 await Delete(region, clusterId);
 }
 }
}

Golang

Per eliminare un cluster in una singola Regione AWS, utilizzare l’esempio seguente.

package main

import (
 "context"
 "fmt"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/dsql"
)

func DeleteSingleRegion(ctx context.Context, identifier, region string) error {

 cfg, err := config.LoadDefaultConfig(ctx, config.WithRegion(region))
 if err != nil {
 log.Fatalf("Failed to load AWS configuration: %v", err)
 }

 // Initialize the DSQL client
 client := dsql.NewFromConfig(cfg)

 // Create delete cluster input
 deleteInput := &dsql.DeleteClusterInput{
 Identifier: &identifier,
 }

 // Delete the cluster
 result, err := client.DeleteCluster(ctx, deleteInput)
 if err != nil {
 return fmt.Errorf("failed to delete cluster: %w", err)
 }

 fmt.Printf("Initiated deletion of cluster: %s\n", *result.Arn)

Utilizzo degli SDK AWS 131

Amazon Aurora DSQL Guida per l’utente

 // Create waiter to check cluster deletion
 waiter := dsql.NewClusterNotExistsWaiter(client, func(options
 *dsql.ClusterNotExistsWaiterOptions) {
 options.MinDelay = 10 * time.Second
 options.MaxDelay = 30 * time.Second
 options.LogWaitAttempts = true
 })

 // Create the input for checking cluster status
 getInput := &dsql.GetClusterInput{
 Identifier: &identifier,
 }

 // Wait for the cluster to be deleted
 fmt.Printf("Waiting for cluster %s to be deleted...\n", identifier)
 err = waiter.Wait(ctx, getInput, 5*time.Minute)
 if err != nil {
 return fmt.Errorf("error waiting for cluster to be deleted: %w", err)
 }

 fmt.Printf("Cluster %s has been successfully deleted\n", identifier)
 return nil
}

func DeleteCluster(ctx context.Context) {
}

// Example usage in main function
func main() {
 // Your existing setup code for client configuration...

 ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
 defer cancel()

 // Example cluster identifier
 // Need to make sure that cluster does not have delete protection enabled
 identifier := "<CLUSTER_ID>"
 region := "us-east-1"

 err := DeleteSingleRegion(ctx, identifier, region)
 if err != nil {
 log.Fatalf("Failed to delete cluster: %v", err)
 }

Utilizzo degli SDK AWS 132

Amazon Aurora DSQL Guida per l’utente

}

Per altri esempi di codice, visitare il repository GitHub degli esempi di Aurora DSQL.

Utilizzo della CLI di AWS

La CLI di AWS fornisce un’interfaccia a riga di comando per la gestione dei cluster Aurora DSQL.
L’esempio seguente illustra le operazioni comuni relative alla gestione dei cluster.

Creazione di un cluster

Creazione di un cluster utilizzando il comando create-cluster.

Note

La creazione di cluster è un’operazione asincrona. Invocare l’API GetCluster fino a quando lo
stato non cambia a ACTIVE. Una volta diventato attivo, è possibile connettersi al cluster.

Example Comando

aws dsql create-cluster --region us-east-1

Note

Per disabilitare la protezione dall’eliminazione durante la creazione, includere il --no-
deletion-protection-enabled.

Example Risposta

{
 "identifier": "abc0def1baz2quux3quuux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/abc0def1baz2quux3quuux4",
 "status": "CREATING",
 "creationTime": "2024-05-25T16:56:49.784000-07:00",
 "deletionProtectionEnabled": true,
 "tag": {},

Utilizzo della CLI di AWS 133

https://github.com/aws-samples/aurora-dsql-samples

Amazon Aurora DSQL Guida per l’utente

 "encryptionDetails": {
 "encryptionType": "AWS_OWNED_KMS_KEY",
 "encryptionStatus": "ENABLED"
 }
}

Descrizione di un cluster

Ottenere informazioni su un cluster utilizzando il comando get-cluster.

Example Comando

aws dsql get-cluster \
 --region us-east-1 \
 --identifier your_cluster_id

Example Risposta

{
 "identifier": "abc0def1baz2quux3quuux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/abc0def1baz2quux3quuux4",
 "status": "ACTIVE",
 "creationTime": "2024-11-27T00:32:14.434000-08:00",
 "deletionProtectionEnabled": false,
 "encryptionDetails": {
 "encryptionType": "CUSTOMER_MANAGED_KMS_KEY",
 "kmsKeyArn": "arn:aws:kms:us-east-1:111122223333:key/123a456b-c789-01de-2f34-
g5hi6j7k8lm9",
 "encryptionStatus": "ENABLED"
 }
}

Aggiornamento di un cluster

Aggiornamento di un cluster esistente utilizzando il comando update-cluster.

Note

Gli aggiornamenti sono operazioni asincrone. Per visualizzare le modifiche, invocare l’API
GetCluster fino a quando lo stato non cambia a ACTIVE.

Utilizzo della CLI di AWS 134

Amazon Aurora DSQL Guida per l’utente

Example Comando

aws dsql update-cluster \
 --region us-east-1 \
 --no-deletion-protection-enabled \
 --identifier your_cluster_id

Example Risposta

{
 "identifier": "abc0def1baz2quux3quuux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/abc0def1baz2quux3quuux4",
 "status": "UPDATING",
 "creationTime": "2024-05-24T09:15:32.708000-07:00"
}

Eliminazione di un cluster

Eliminazione di un cluster esistente utilizzando il comando delete-cluster.

Note

È possibile eliminare solo i cluster per i quali è disabilitata la protezione da eliminazione.
Quando si crea un cluster, la protezione dall’eliminazione viene abilitata per impostazione
predefinita.

Example Comando

aws dsql delete-cluster \
 --region us-east-1 \
 --identifier your_cluster_id

Example Risposta

{
 "identifier": "abc0def1baz2quux3quuux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/abc0def1baz2quux3quuux4",
 "status": "DELETING",

Utilizzo della CLI di AWS 135

Amazon Aurora DSQL Guida per l’utente

 "creationTime": "2024-05-24T09:16:43.778000-07:00"
}

Elencazione dei cluster

Elencazione dei cluster usando il comando list-clusters.

Example Comando

aws dsql list-clusters --region us-east-1

Example Risposta

{
 "clusters": [
 {
 "identifier": "abc0def1baz2quux3quux4quuux",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/
abc0def1baz2quux3quux4quuux"
 },
 {
 "identifier": "abc0def1baz2quux3quux5quuuux",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/
abc0def1baz2quux3quux5quuuux"
 }
]
}

Configurazione di cluster multi-Regione

È possibile configurare e gestire cluster distribuiti su più Regioni AWS utilizzando la AWS CLI o il
linguaggio di programmazione preferito, tra cui Python, C++, JavaScript, Java, Rust, Ruby, .NET e
Golang. La AWS CLI fornisce un accesso rapido tramite i comandi della shell, mentre gli SDK di AWS
consentono il controllo programmatico tramite il supporto del linguaggio nativo.

Argomenti

• Utilizzo degli SDK AWS

• Utilizzo della CLI di AWS

Cluster multi-Regione 136

Amazon Aurora DSQL Guida per l’utente

Utilizzo degli SDK AWS

Gli SDK AWS forniscono l’accesso programmatico ad Aurora DSQL nel linguaggio di
programmazione preferito. Le sezioni seguenti mostrano come eseguire operazioni comuni sui cluster
utilizzando diversi linguaggi di programmazione.

Creazione di un cluster

Negli esempi seguenti viene illustrato come creare un cluster multi-Regione utilizzando diversi
linguaggi di programmazione.

Python

Per creare un cluster multi-Regione, attenersi all’esempio descritto di seguito. La creazione di un
cluster multi-Regione potrebbe richiedere alcuni minuti.

import boto3

def create_multi_region_clusters(region_1, region_2, witness_region):
 try:
 client_1 = boto3.client("dsql", region_name=region_1)
 client_2 = boto3.client("dsql", region_name=region_2)

 # We can only set the witness region for the first cluster
 cluster_1 = client_1.create_cluster(
 deletionProtectionEnabled=True,
 multiRegionProperties={"witnessRegion": witness_region},
 tags={"Name": "Python multi region cluster"}
)
 print(f"Created {cluster_1["arn"]}")

 # For the second cluster we can set witness region and designate cluster_1
 as a peer
 cluster_2 = client_2.create_cluster(
 deletionProtectionEnabled=True,
 multiRegionProperties={"witnessRegion": witness_region, "clusters":
 [cluster_1["arn"]]},
 tags={"Name": "Python multi region cluster"}
)

 print(f"Created {cluster_2["arn"]}")
 # Now that we know the cluster_2 arn we can set it as a peer of cluster_1

Utilizzo degli SDK AWS 137

Amazon Aurora DSQL Guida per l’utente

 client_1.update_cluster(
 identifier=cluster_1["identifier"],
 multiRegionProperties={"witnessRegion": witness_region, "clusters":
 [cluster_2["arn"]]}
)
 print(f"Added {cluster_2["arn"]} as a peer of {cluster_1["arn"]}")

 # Now that multiRegionProperties is fully defined for both clusters
 # they'll begin the transition to ACTIVE
 print(f"Waiting for {cluster_1["arn"]} to become ACTIVE")
 client_1.get_waiter("cluster_active").wait(
 identifier=cluster_1["identifier"],
 WaiterConfig={
 'Delay': 10,
 'MaxAttempts': 30
 }
)

 print(f"Waiting for {cluster_2["arn"]} to become ACTIVE")
 client_2.get_waiter("cluster_active").wait(
 identifier=cluster_2["identifier"],
 WaiterConfig={
 'Delay': 10,
 'MaxAttempts': 30
 }
)

 return (cluster_1, cluster_2)

 except:
 print("Unable to create cluster")
 raise

def main():
 region_1 = "us-east-1"
 region_2 = "us-east-2"
 witness_region = "us-west-2"
 (cluster_1, cluster_2) = create_multi_region_clusters(region_1, region_2,
 witness_region)
 print("Created multi region clusters:")
 print("Cluster id: " + cluster_1['arn'])
 print("Cluster id: " + cluster_2['arn'])

Utilizzo degli SDK AWS 138

Amazon Aurora DSQL Guida per l’utente

if __name__ == "__main__":
 main()

C++

Per creare un cluster multi-Regione, attenersi all’esempio descritto di seguito. La creazione di un
cluster multi-Regione potrebbe richiedere alcuni minuti.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/CreateClusterRequest.h>
#include <aws/dsql/model/UpdateClusterRequest.h>
#include <aws/dsql/model/MultiRegionProperties.h>
#include <aws/dsql/model/GetClusterRequest.h>
#include <iostream>
#include <thread>
#include <chrono>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

/**
 * Creates multi-region clusters in Amazon Aurora DSQL
 */
std::pair<CreateClusterResult, CreateClusterResult> CreateMultiRegionClusters(
 const Aws::String& region1,
 const Aws::String& region2,
 const Aws::String& witnessRegion) {

 // Create clients for each region
 DSQL::DSQLClientConfiguration clientConfig1;
 clientConfig1.region = region1;
 DSQL::DSQLClient client1(clientConfig1);

 DSQL::DSQLClientConfiguration clientConfig2;
 clientConfig2.region = region2;
 DSQL::DSQLClient client2(clientConfig2);

 std::cout << "Creating cluster in " << region1 << std::endl;

Utilizzo degli SDK AWS 139

Amazon Aurora DSQL Guida per l’utente

 CreateClusterRequest createClusterRequest1;
 createClusterRequest1.SetDeletionProtectionEnabled(true);

 // Set multi-region properties with witness region
 MultiRegionProperties multiRegionProps1;
 multiRegionProps1.SetWitnessRegion(witnessRegion);
 createClusterRequest1.SetMultiRegionProperties(multiRegionProps1);

 // Add tags
 Aws::Map<Aws::String, Aws::String> tags;
 tags["Name"] = "cpp multi region cluster 1";
 createClusterRequest1.SetTags(tags);
 createClusterRequest1.SetClientToken(Aws::Utils::UUID::RandomUUID());

 auto createOutcome1 = client1.CreateCluster(createClusterRequest1);
 if (!createOutcome1.IsSuccess()) {
 std::cerr << "Failed to create cluster in " << region1 << ": "
 << createOutcome1.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Failed to create multi-region clusters");
 }

 auto cluster1 = createOutcome1.GetResult();
 std::cout << "Created " << cluster1.GetArn() << std::endl;

 // Create second cluster
 std::cout << "Creating cluster in " << region2 << std::endl;

 CreateClusterRequest createClusterRequest2;
 createClusterRequest2.SetDeletionProtectionEnabled(true);

 // Set multi-region properties with witness region and cluster1 as peer
 MultiRegionProperties multiRegionProps2;
 multiRegionProps2.SetWitnessRegion(witnessRegion);

 Aws::Vector<Aws::String> clusters;
 clusters.push_back(cluster1.GetArn());
 multiRegionProps2.SetClusters(clusters);

 tags["Name"] = "cpp multi region cluster 2";
 createClusterRequest2.SetMultiRegionProperties(multiRegionProps2);
 createClusterRequest2.SetTags(tags);
 createClusterRequest2.SetClientToken(Aws::Utils::UUID::RandomUUID());

Utilizzo degli SDK AWS 140

Amazon Aurora DSQL Guida per l’utente

 auto createOutcome2 = client2.CreateCluster(createClusterRequest2);
 if (!createOutcome2.IsSuccess()) {
 std::cerr << "Failed to create cluster in " << region2 << ": "
 << createOutcome2.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Failed to create multi-region clusters");
 }

 auto cluster2 = createOutcome2.GetResult();
 std::cout << "Created " << cluster2.GetArn() << std::endl;

 // Now that we know the cluster2 arn we can set it as a peer of cluster1
 UpdateClusterRequest updateClusterRequest;
 updateClusterRequest.SetIdentifier(cluster1.GetIdentifier());

 MultiRegionProperties updatedProps;
 updatedProps.SetWitnessRegion(witnessRegion);

 Aws::Vector<Aws::String> updatedClusters;
 updatedClusters.push_back(cluster2.GetArn());
 updatedProps.SetClusters(updatedClusters);

 updateClusterRequest.SetMultiRegionProperties(updatedProps);
 updateClusterRequest.SetClientToken(Aws::Utils::UUID::RandomUUID());

 auto updateOutcome = client1.UpdateCluster(updateClusterRequest);
 if (!updateOutcome.IsSuccess()) {
 std::cerr << "Failed to update cluster in " << region1 << ": "
 << updateOutcome.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Failed to update multi-region clusters");
 }

 std::cout << "Added " << cluster2.GetArn() << " as a peer of " <<
 cluster1.GetArn() << std::endl;

 return std::make_pair(cluster1, cluster2);
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 {
 try {
 // Define regions for the multi-region setup
 Aws::String region1 = "us-east-1";

Utilizzo degli SDK AWS 141

Amazon Aurora DSQL Guida per l’utente

 Aws::String region2 = "us-east-2";
 Aws::String witnessRegion = "us-west-2";

 auto [cluster1, cluster2] = CreateMultiRegionClusters(region1, region2,
 witnessRegion);

 std::cout << "Created multi region clusters:" << std::endl;
 std::cout << "Cluster 1 ARN: " << cluster1.GetArn() << std::endl;
 std::cout << "Cluster 2 ARN: " << cluster2.GetArn() << std::endl;
 }
 catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl;
 }
 }
 Aws::ShutdownAPI(options);
 return 0;
}

JavaScript

Per creare un cluster multi-Regione, attenersi all’esempio descritto di seguito. La creazione di un
cluster multi-Regione potrebbe richiedere alcuni minuti.

import { DSQLClient, CreateClusterCommand, UpdateClusterCommand,
 waitUntilClusterActive } from "@aws-sdk/client-dsql";

async function createMultiRegionCluster(region1, region2, witnessRegion) {

 const client1 = new DSQLClient({ region: region1 });
 const client2 = new DSQLClient({ region: region2 });

 try {
 // We can only set the witness region for the first cluster
 console.log(`Creating cluster in ${region1}`);
 const createClusterCommand1 = new CreateClusterCommand({
 deletionProtectionEnabled: true,
 tags: {
 Name: "javascript multi region cluster 1"
 },
 multiRegionProperties: {
 witnessRegion: witnessRegion
 }
 });

Utilizzo degli SDK AWS 142

Amazon Aurora DSQL Guida per l’utente

 const response1 = await client1.send(createClusterCommand1);
 console.log(`Created ${response1.arn}`);

 // For the second cluster we can set witness region and designate the first
 cluster as a peer
 console.log(`Creating cluster in ${region2}`);
 const createClusterCommand2 = new CreateClusterCommand({
 deletionProtectionEnabled: true,
 tags: {
 Name: "javascript multi region cluster 2"
 },
 multiRegionProperties: {
 witnessRegion: witnessRegion,
 clusters: [response1.arn]
 }
 });
 const response2 = await client2.send(createClusterCommand2);
 console.log(`Created ${response2.arn}`);

 // Now that we know the second cluster arn we can set it as a peer of the
 first cluster
 const updateClusterCommand = new UpdateClusterCommand({
 identifier: response1.identifier,
 multiRegionProperties: {
 witnessRegion: witnessRegion,
 clusters: [response2.arn]
 }
 });
 await client1.send(updateClusterCommand);
 console.log(`Added ${response2.arn} as a peer of ${response1.arn}`);

 // Now that multiRegionProperties is fully defined for both clusters they'll
 begin the transition to ACTIVE
 console.log(`Waiting for cluster ${response1.identifier} to become ACTIVE`);
 await waitUntilClusterActive(
 {
 client: client1,
 maxWaitTime: 300 // Wait for 5 minutes
 },
 {
 identifier: response1.identifier
 }
);
 console.log(`Cluster 1 is now active`);

Utilizzo degli SDK AWS 143

Amazon Aurora DSQL Guida per l’utente

 console.log(`Waiting for cluster ${response2.identifier} to become ACTIVE`);
 await waitUntilClusterActive(
 {
 client: client2,
 maxWaitTime: 300 // Wait for 5 minutes
 },
 {
 identifier: response2.identifier
 }
);
 console.log(`Cluster 2 is now active`);
 console.log("The multi region clusters are now active");
 return;
 } catch (error) {
 console.error("Failed to create cluster: ", error.message);
 throw error;
 }
}

async function main() {
 const region1 = "us-east-1";
 const region2 = "us-east-2";
 const witnessRegion = "us-west-2";

 await createMultiRegionCluster(region1, region2, witnessRegion);
}

main();

Java

Per creare un cluster multi-Regione, attenersi all’esempio descritto di seguito. La creazione di un
cluster multi-Regione potrebbe richiedere alcuni minuti.

package org.example;

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.retries.api.BackoffStrategy;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.DsqlClientBuilder;
import software.amazon.awssdk.services.dsql.model.CreateClusterRequest;

Utilizzo degli SDK AWS 144

Amazon Aurora DSQL Guida per l’utente

import software.amazon.awssdk.services.dsql.model.CreateClusterResponse;
import software.amazon.awssdk.services.dsql.model.GetClusterResponse;
import software.amazon.awssdk.services.dsql.model.UpdateClusterRequest;

import java.time.Duration;
import java.util.Map;

public class CreateMultiRegionCluster {

 public static void main(String[] args) {
 Region region1 = Region.US_EAST_1;
 Region region2 = Region.US_EAST_2;
 Region witnessRegion = Region.US_WEST_2;

 DsqlClientBuilder clientBuilder = DsqlClient.builder()
 .credentialsProvider(DefaultCredentialsProvider.create());

 try (
 DsqlClient client1 = clientBuilder.region(region1).build();
 DsqlClient client2 = clientBuilder.region(region2).build()
) {
 // We can only set the witness region for the first cluster
 System.out.println("Creating cluster in " + region1);
 CreateClusterRequest request1 = CreateClusterRequest.builder()
 .deletionProtectionEnabled(true)
 .multiRegionProperties(mrp ->
 mrp.witnessRegion(witnessRegion.toString()))
 .tags(Map.of("Name", "java multi region cluster"))
 .build();
 CreateClusterResponse cluster1 = client1.createCluster(request1);
 System.out.println("Created " + cluster1.arn());

 // For the second cluster we can set the witness region and designate
 // cluster1 as a peer.
 System.out.println("Creating cluster in " + region2);
 CreateClusterRequest request2 = CreateClusterRequest.builder()
 .deletionProtectionEnabled(true)
 .multiRegionProperties(mrp ->

 mrp.witnessRegion(witnessRegion.toString()).clusters(cluster1.arn())
)
 .tags(Map.of("Name", "java multi region cluster"))
 .build();
 CreateClusterResponse cluster2 = client2.createCluster(request2);

Utilizzo degli SDK AWS 145

Amazon Aurora DSQL Guida per l’utente

 System.out.println("Created " + cluster2.arn());

 // Now that we know the cluster2 ARN we can set it as a peer of cluster1
 UpdateClusterRequest updateReq = UpdateClusterRequest.builder()
 .identifier(cluster1.identifier())
 .multiRegionProperties(mrp ->

 mrp.witnessRegion(witnessRegion.toString()).clusters(cluster2.arn())
)
 .build();
 client1.updateCluster(updateReq);
 System.out.printf("Added %s as a peer of %s%n", cluster2.arn(),
 cluster1.arn());

 // Now that MultiRegionProperties is fully defined for both clusters
 they'll begin
 // the transition to ACTIVE.
 System.out.printf("Waiting for cluster %s to become ACTIVE%n",
 cluster1.arn());
 GetClusterResponse activeCluster1 =
 client1.waiter().waitUntilClusterActive(
 getCluster -> getCluster.identifier(cluster1.identifier()),
 config -> config.backoffStrategyV2(

 BackoffStrategy.fixedDelayWithoutJitter(Duration.ofSeconds(10))
).waitTimeout(Duration.ofMinutes(5))
).matched().response().orElseThrow();

 System.out.printf("Waiting for cluster %s to become ACTIVE%n",
 cluster2.arn());
 GetClusterResponse activeCluster2 =
 client2.waiter().waitUntilClusterActive(
 getCluster -> getCluster.identifier(cluster2.identifier()),
 config -> config.backoffStrategyV2(

 BackoffStrategy.fixedDelayWithoutJitter(Duration.ofSeconds(10))
).waitTimeout(Duration.ofMinutes(5))
).matched().response().orElseThrow();

 System.out.println("Created multi region clusters:");
 System.out.println(activeCluster1);
 System.out.println(activeCluster2);
 }
 }

Utilizzo degli SDK AWS 146

Amazon Aurora DSQL Guida per l’utente

}

Rust

Per creare un cluster multi-Regione, attenersi all’esempio descritto di seguito. La creazione di un
cluster multi-Regione potrebbe richiedere alcuni minuti.

use aws_config::{BehaviorVersion, Region, load_defaults};
use aws_sdk_dsql::client::Waiters;
use aws_sdk_dsql::operation::get_cluster::GetClusterOutput;
use aws_sdk_dsql::types::MultiRegionProperties;
use aws_sdk_dsql::{Client, Config};
use std::collections::HashMap;

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults.credentials_provider().unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

/// Create a cluster without delete protection and a name
pub async fn create_multi_region_clusters(
 region_1: &'static str,
 region_2: &'static str,
 witness_region: &'static str,
) -> (GetClusterOutput, GetClusterOutput) {
 let client_1 = dsql_client(region_1).await;
 let client_2 = dsql_client(region_2).await;

Utilizzo degli SDK AWS 147

Amazon Aurora DSQL Guida per l’utente

 let tags = HashMap::from([(
 String::from("Name"),
 String::from("rust multi region cluster"),
)]);

 // We can only set the witness region for the first cluster
 println!("Creating cluster in {region_1}");
 let cluster_1 = client_1
 .create_cluster()
 .set_tags(Some(tags.clone()))
 .deletion_protection_enabled(true)
 .multi_region_properties(
 MultiRegionProperties::builder()
 .witness_region(witness_region)
 .build(),
)
 .send()
 .await
 .unwrap();
 let cluster_1_arn = &cluster_1.arn;
 println!("Created {cluster_1_arn}");

 // For the second cluster we can set witness region and designate cluster_1 as a
 peer
 println!("Creating cluster in {region_2}");
 let cluster_2 = client_2
 .create_cluster()
 .set_tags(Some(tags))
 .deletion_protection_enabled(true)
 .multi_region_properties(
 MultiRegionProperties::builder()
 .witness_region(witness_region)
 .clusters(&cluster_1.arn)
 .build(),
)
 .send()
 .await
 .unwrap();
 let cluster_2_arn = &cluster_2.arn;
 println!("Created {cluster_2_arn}");

 // Now that we know the cluster_2 arn we can set it as a peer of cluster_1
 client_1
 .update_cluster()

Utilizzo degli SDK AWS 148

Amazon Aurora DSQL Guida per l’utente

 .identifier(&cluster_1.identifier)
 .multi_region_properties(
 MultiRegionProperties::builder()
 .witness_region(witness_region)
 .clusters(&cluster_2.arn)
 .build(),
)
 .send()
 .await
 .unwrap();
 println!("Added {cluster_2_arn} as a peer of {cluster_1_arn}");

 // Now that the multi-region properties are fully defined for both clusters
 // they'll begin the transition to ACTIVE
 println!("Waiting for {cluster_1_arn} to become ACTIVE");
 let cluster_1_output = client_1
 .wait_until_cluster_active()
 .identifier(&cluster_1.identifier)
 .wait(std::time::Duration::from_secs(300)) // Wait up to 5 minutes
 .await
 .unwrap()
 .into_result()
 .unwrap();

 println!("Waiting for {cluster_2_arn} to become ACTIVE");
 let cluster_2_output = client_2
 .wait_until_cluster_active()
 .identifier(&cluster_2.identifier)
 .wait(std::time::Duration::from_secs(300)) // Wait up to 5 minutes
 .await
 .unwrap()
 .into_result()
 .unwrap();

 (cluster_1_output, cluster_2_output)
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region_1 = "us-east-1";
 let region_2 = "us-east-2";
 let witness_region = "us-west-2";

 let (cluster_1, cluster_2) =

Utilizzo degli SDK AWS 149

Amazon Aurora DSQL Guida per l’utente

 create_multi_region_clusters(region_1, region_2, witness_region).await;

 println!("Created multi region clusters:");
 println!("{:#?}", cluster_1);
 println!("{:#?}", cluster_2);

 Ok(())
}

Ruby

Per creare un cluster multi-Regione, attenersi all’esempio descritto di seguito. La creazione di un
cluster multi-Regione potrebbe richiedere alcuni minuti.

require "aws-sdk-dsql"
require "pp"

def create_multi_region_clusters(region_1, region_2, witness_region)
 client_1 = Aws::DSQL::Client.new(region: region_1)
 client_2 = Aws::DSQL::Client.new(region: region_2)

 # We can only set the witness region for the first cluster
 puts "Creating cluster in #{region_1}"
 cluster_1 = client_1.create_cluster(
 deletion_protection_enabled: true,
 multi_region_properties: {
 witness_region: witness_region
 },
 tags: {
 Name: "ruby multi region cluster"
 }
)
 puts "Created #{cluster_1.arn}"

 # For the second cluster we can set witness region and designate cluster_1 as a
 peer
 puts "Creating cluster in #{region_2}"
 cluster_2 = client_2.create_cluster(
 deletion_protection_enabled: true,
 multi_region_properties: {
 witness_region: witness_region,
 clusters: [cluster_1.arn]

Utilizzo degli SDK AWS 150

Amazon Aurora DSQL Guida per l’utente

 },
 tags: {
 Name: "ruby multi region cluster"
 }
)
 puts "Created #{cluster_2.arn}"

 # Now that we know the cluster_2 arn we can set it as a peer of cluster_1
 client_1.update_cluster(
 identifier: cluster_1.identifier,
 multi_region_properties: {
 witness_region: witness_region,
 clusters: [cluster_2.arn]
 }
)
 puts "Added #{cluster_2.arn} as a peer of #{cluster_1.arn}"

 # Now that multi_region_properties is fully defined for both clusters
 # they'll begin the transition to ACTIVE
 puts "Waiting for #{cluster_1.arn} to become ACTIVE"
 cluster_1 = client_1.wait_until(:cluster_active, identifier: cluster_1.identifier)
 do |w|
 # Wait for 5 minutes
 w.max_attempts = 30
 w.delay = 10
 end

 puts "Waiting for #{cluster_2.arn} to become ACTIVE"
 cluster_2 = client_2.wait_until(:cluster_active, identifier: cluster_2.identifier)
 do |w|
 w.max_attempts = 30
 w.delay = 10
 end

 [cluster_1, cluster_2]
rescue Aws::Errors::ServiceError => e
 abort "Failed to create multi-region clusters: #{e.message}"
end

def main
 region_1 = "us-east-1"
 region_2 = "us-east-2"
 witness_region = "us-west-2"

Utilizzo degli SDK AWS 151

Amazon Aurora DSQL Guida per l’utente

 cluster_1, cluster_2 = create_multi_region_clusters(region_1, region_2,
 witness_region)

 puts "Created multi region clusters:"
 pp cluster_1
 pp cluster_2
end

main if $PROGRAM_NAME == __FILE__

Golang

Per creare un cluster multi-Regione, attenersi all’esempio descritto di seguito. La creazione di un
cluster multi-Regione potrebbe richiedere alcuni minuti.

package main

import (
 "context"
 "fmt"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/dsql"
 dtypes "github.com/aws/aws-sdk-go-v2/service/dsql/types"
)

func CreateMultiRegionClusters(ctx context.Context, witness, region1, region2
 string) error {

 cfg, err := config.LoadDefaultConfig(ctx, config.WithRegion(region1))
 if err != nil {
 log.Fatalf("Failed to load AWS configuration: %v", err)
 }

 // Create a DSQL region 1 client
 client := dsql.NewFromConfig(cfg)

 cfg2, err := config.LoadDefaultConfig(ctx, config.WithRegion(region2))
 if err != nil {

Utilizzo degli SDK AWS 152

Amazon Aurora DSQL Guida per l’utente

 log.Fatalf("Failed to load AWS configuration: %v", err)
 }

 // Create a DSQL region 2 client
 client2 := dsql.NewFromConfig(cfg2, func(o *dsql.Options) {
 o.Region = region2
 })

 // Create cluster
 deleteProtect := true

 // We can only set the witness region for the first cluster
 input := &dsql.CreateClusterInput{
 DeletionProtectionEnabled: &deleteProtect,
 MultiRegionProperties: &dtypes.MultiRegionProperties{
 WitnessRegion: aws.String(witness),
 },
 Tags: map[string]string{
 "Name": "go multi-region cluster",
 },
 }

 clusterProperties, err := client.CreateCluster(context.Background(), input)

 if err != nil {
 return fmt.Errorf("failed to create first cluster: %v", err)
 }

 // create second cluster
 cluster2Arns := []string{*clusterProperties.Arn}

 // For the second cluster we can set witness region and designate the first cluster
 as a peer
 input2 := &dsql.CreateClusterInput{
 DeletionProtectionEnabled: &deleteProtect,
 MultiRegionProperties: &dtypes.MultiRegionProperties{
 WitnessRegion: aws.String("us-west-2"),
 Clusters: cluster2Arns,
 },
 Tags: map[string]string{
 "Name": "go multi-region cluster",
 },
 }

Utilizzo degli SDK AWS 153

Amazon Aurora DSQL Guida per l’utente

 clusterProperties2, err := client2.CreateCluster(context.Background(), input2)

 if err != nil {
 return fmt.Errorf("failed to create second cluster: %v", err)
 }

 // link initial cluster to second cluster
 cluster1Arns := []string{*clusterProperties2.Arn}

 // Now that we know the second cluster arn we can set it as a peer of the first
 cluster
 input3 := dsql.UpdateClusterInput{
 Identifier: clusterProperties.Identifier,
 MultiRegionProperties: &dtypes.MultiRegionProperties{
 WitnessRegion: aws.String("us-west-2"),
 Clusters: cluster1Arns,
 }}

 _, err = client.UpdateCluster(context.Background(), &input3)

 if err != nil {
 return fmt.Errorf("failed to update cluster to associate with first cluster. %v",
 err)
 }

 // Create the waiter with our custom options for first cluster
 waiter := dsql.NewClusterActiveWaiter(client, func(o
 *dsql.ClusterActiveWaiterOptions) {
 o.MaxDelay = 30 * time.Second // Creating a multi-region cluster can take a few
 minutes
 o.MinDelay = 10 * time.Second
 o.LogWaitAttempts = true
 })

 // Now that multiRegionProperties is fully defined for both clusters
 // they'll begin the transition to ACTIVE

 // Create the input for the clusterProperties to monitor for first cluster
 getInput := &dsql.GetClusterInput{
 Identifier: clusterProperties.Identifier,
 }

 // Wait for the first cluster to become active

Utilizzo degli SDK AWS 154

Amazon Aurora DSQL Guida per l’utente

 fmt.Printf("Waiting for first cluster %s to become active...\n",
 *clusterProperties.Identifier)
 err = waiter.Wait(ctx, getInput, 5*time.Minute)
 if err != nil {
 return fmt.Errorf("error waiting for first cluster to become active: %w", err)
 }

 // Create the waiter with our custom options
 waiter2 := dsql.NewClusterActiveWaiter(client2, func(o
 *dsql.ClusterActiveWaiterOptions) {
 o.MaxDelay = 30 * time.Second // Creating a multi-region cluster can take a few
 minutes
 o.MinDelay = 10 * time.Second
 o.LogWaitAttempts = true
 })

 // Create the input for the clusterProperties to monitor for second
 getInput2 := &dsql.GetClusterInput{
 Identifier: clusterProperties2.Identifier,
 }

 // Wait for the second cluster to become active
 fmt.Printf("Waiting for second cluster %s to become active...\n",
 *clusterProperties2.Identifier)
 err = waiter2.Wait(ctx, getInput2, 5*time.Minute)
 if err != nil {
 return fmt.Errorf("error waiting for second cluster to become active: %w", err)
 }

 fmt.Printf("Cluster %s is now active\n", *clusterProperties.Identifier)
 fmt.Printf("Cluster %s is now active\n", *clusterProperties2.Identifier)
 return nil
}

// Example usage in main function
func main() {
 // Set up context with timeout
 ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
 defer cancel()

 err := CreateMultiRegionClusters(ctx, "us-west-2", "us-east-1", "us-east-2")
 if err != nil {
 fmt.Printf("failed to create multi-region clusters: %v", err)
 panic(err)

Utilizzo degli SDK AWS 155

Amazon Aurora DSQL Guida per l’utente

 }

}

.NET

Per creare un cluster multi-Regione, attenersi all’esempio descritto di seguito. La creazione di un
cluster multi-Regione potrebbe richiedere alcuni minuti.

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime.Credentials;
using Amazon.Runtime.Endpoints;

namespace DSQLExamples.examples
{
 public class CreateMultiRegionClusters
 {
 /// <summary>
 /// Create a client. We will use this later for performing operations on the
 cluster.
 /// </summary>
 private static async Task<AmazonDSQLClient> CreateDSQLClient(RegionEndpoint
 region)
 {
 var awsCredentials = await
 DefaultAWSCredentialsIdentityResolver.GetCredentialsAsync();
 var clientConfig = new AmazonDSQLConfig
 {
 RegionEndpoint = region,
 };
 return new AmazonDSQLClient(awsCredentials, clientConfig);
 }

 /// <summary>
 /// Create multi-region clusters with a witness region.
 /// </summary>

Utilizzo degli SDK AWS 156

Amazon Aurora DSQL Guida per l’utente

 public static async Task<(CreateClusterResponse, CreateClusterResponse)>
 Create(
 RegionEndpoint region1,
 RegionEndpoint region2,
 RegionEndpoint witnessRegion)
 {
 using (var client1 = await CreateDSQLClient(region1))
 using (var client2 = await CreateDSQLClient(region2))
 {
 var tags = new Dictionary<string, string>
 {
 { "Name", "csharp multi region cluster" }
 };

 // We can only set the witness region for the first cluster
 var createClusterRequest1 = new CreateClusterRequest
 {
 DeletionProtectionEnabled = true,
 Tags = tags,
 MultiRegionProperties = new MultiRegionProperties
 {
 WitnessRegion = witnessRegion.SystemName
 }
 };

 var cluster1 = await
 client1.CreateClusterAsync(createClusterRequest1);
 var cluster1Arn = cluster1.Arn;
 Console.WriteLine($"Initiated creation of {cluster1Arn}");

 // For the second cluster we can set witness region and designate
 cluster1 as a peer
 var createClusterRequest2 = new CreateClusterRequest
 {
 DeletionProtectionEnabled = true,
 Tags = tags,
 MultiRegionProperties = new MultiRegionProperties
 {
 WitnessRegion = witnessRegion.SystemName,
 Clusters = new List<string> { cluster1.Arn }
 }
 };

Utilizzo degli SDK AWS 157

Amazon Aurora DSQL Guida per l’utente

 var cluster2 = await
 client2.CreateClusterAsync(createClusterRequest2);
 var cluster2Arn = cluster2.Arn;
 Console.WriteLine($"Initiated creation of {cluster2Arn}");

 // Now that we know the cluster2 arn we can set it as a peer of
 cluster1
 var updateClusterRequest = new UpdateClusterRequest
 {
 Identifier = cluster1.Identifier,
 MultiRegionProperties = new MultiRegionProperties
 {
 WitnessRegion = witnessRegion.SystemName,
 Clusters = new List<string> { cluster2.Arn }
 }
 };

 await client1.UpdateClusterAsync(updateClusterRequest);
 Console.WriteLine($"Added {cluster2Arn} as a peer of
 {cluster1Arn}");

 return (cluster1, cluster2);
 }
 }

 private static async Task Main()
 {
 var region1 = RegionEndpoint.USEast1;
 var region2 = RegionEndpoint.USEast2;
 var witnessRegion = RegionEndpoint.USWest2;

 var (cluster1, cluster2) = await Create(region1, region2,
 witnessRegion);

 Console.WriteLine("Created multi region clusters:");
 Console.WriteLine($"Cluster 1: {cluster1.Arn}");
 Console.WriteLine($"Cluster 2: {cluster2.Arn}");
 }
 }
}

Utilizzo degli SDK AWS 158

Amazon Aurora DSQL Guida per l’utente

Recupero delle informazioni di un cluster

Negli esempi seguenti viene illustrato come recuperare le informazioni su un cluster multi-Regione
utilizzando diversi linguaggi di programmazione.

Python

Per ottenere informazioni su un cluster multi-Regione, attenersi all’esempio descritto di seguito.

import boto3
from datetime import datetime
import json

def get_cluster(region, identifier):
 try:
 client = boto3.client("dsql", region_name=region)
 return client.get_cluster(identifier=identifier)
 except:
 print(f"Unable to get cluster {identifier} in region {region}")
 raise

def main():
 region = "us-east-1"
 cluster_id = "<your cluster id>"
 response = get_cluster(region, cluster_id)

 print(json.dumps(response, indent=2, default=lambda obj: obj.isoformat() if
 isinstance(obj, datetime) else None))

if __name__ == "__main__":
 main()

C++

Utilizzare l’esempio seguente per ottenere informazioni su un cluster multi-Regione.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/dsql/DSQLClient.h>

Utilizzo degli SDK AWS 159

Amazon Aurora DSQL Guida per l’utente

#include <aws/dsql/model/GetClusterRequest.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

/**
 * Retrieves information about a cluster in Amazon Aurora DSQL
 */
GetClusterResult GetCluster(const Aws::String& region, const Aws::String&
 identifier) {
 // Create client for the specified region
 DSQL::DSQLClientConfiguration clientConfig;
 clientConfig.region = region;
 DSQL::DSQLClient client(clientConfig);

 // Get the cluster
 GetClusterRequest getClusterRequest;
 getClusterRequest.SetIdentifier(identifier);

 auto getOutcome = client.GetCluster(getClusterRequest);
 if (!getOutcome.IsSuccess()) {
 std::cerr << "Failed to retrieve cluster " << identifier << " in " << region
 << ": "
 << getOutcome.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Unable to retrieve cluster " + identifier + " in
 region " + region);
 }

 return getOutcome.GetResult();
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 {
 try {
 // Define region and cluster ID
 Aws::String region = "us-east-1";
 Aws::String clusterId = "<your cluster id>";

 auto cluster = GetCluster(region, clusterId);

Utilizzo degli SDK AWS 160

Amazon Aurora DSQL Guida per l’utente

 // Print cluster details
 std::cout << "Cluster Details:" << std::endl;
 std::cout << "ARN: " << cluster.GetArn() << std::endl;
 std::cout << "Status: " <<
 ClusterStatusMapper::GetNameForClusterStatus(cluster.GetStatus()) << std::endl;
 }
 catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl;
 }
 }
 Aws::ShutdownAPI(options);
 return 0;
}

JavaScript

Per ottenere informazioni su un cluster multi-Regione, attenersi all’esempio descritto di seguito.

import { DSQLClient, GetClusterCommand } from "@aws-sdk/client-dsql";

async function getCluster(region, clusterId) {

 const client = new DSQLClient({ region });

 const getClusterCommand = new GetClusterCommand({
 identifier: clusterId,
 });

 try {
 return await client.send(getClusterCommand);
 } catch (error) {
 if (error.name === "ResourceNotFoundException") {
 console.log("Cluster ID not found or deleted");
 }
 throw error;
 }
}

async function main() {
 const region = "us-east-1";
 const clusterId = "<CLUSTER_ID>";

 const response = await getCluster(region, clusterId);

Utilizzo degli SDK AWS 161

Amazon Aurora DSQL Guida per l’utente

 console.log("Cluster: ", response);
}

main();

Java

L’esempio seguente consente di ottenere informazioni su un cluster multi-Regione.

package org.example;

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.GetClusterResponse;
import software.amazon.awssdk.services.dsql.model.ResourceNotFoundException;

public class GetCluster {

 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 String clusterId = "<your cluster id>";

 try (
 DsqlClient client = DsqlClient.builder()
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build()
) {
 GetClusterResponse cluster = client.getCluster(r ->
 r.identifier(clusterId));
 System.out.println(cluster);
 } catch (ResourceNotFoundException e) {
 System.out.printf("Cluster %s not found in %s%n", clusterId, region);
 }
 }
}

Rust

L’esempio seguente consente di ottenere informazioni su un cluster multi-Regione.

Utilizzo degli SDK AWS 162

Amazon Aurora DSQL Guida per l’utente

use aws_config::load_defaults;
use aws_sdk_dsql::operation::get_cluster::GetClusterOutput;
use aws_sdk_dsql::{
 Client, Config,
 config::{BehaviorVersion, Region},
};

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults.credentials_provider().unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

/// Get a ClusterResource from DSQL cluster identifier
pub async fn get_cluster(region: &'static str, identifier: &'static str) ->
 GetClusterOutput {
 let client = dsql_client(region).await;
 client
 .get_cluster()
 .identifier(identifier)
 .send()
 .await
 .unwrap()
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";

 let cluster = get_cluster(region, "<your cluster id>").await;

Utilizzo degli SDK AWS 163

Amazon Aurora DSQL Guida per l’utente

 println!("{:#?}", cluster);

 Ok(())
}

Ruby

L’esempio seguente consente di ottenere informazioni su un cluster multi-Regione.

require "aws-sdk-dsql"
require "pp"

def get_cluster(region, identifier)
 client = Aws::DSQL::Client.new(region: region)
 client.get_cluster(identifier: identifier)
rescue Aws::Errors::ServiceError => e
 abort "Unable to retrieve cluster #{identifier} in region #{region}: #{e.message}"
end

def main
 region = "us-east-1"
 cluster_id = "<your cluster id>"
 cluster = get_cluster(region, cluster_id)
 pp cluster
end

main if $PROGRAM_NAME == __FILE__

.NET

L’esempio seguente consente di ottenere informazioni su un cluster multi-Regione.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime.Credentials;

namespace DSQLExamples.examples
{

Utilizzo degli SDK AWS 164

Amazon Aurora DSQL Guida per l’utente

 public class GetCluster
 {
 /// <summary>
 /// Create a client. We will use this later for performing operations on the
 cluster.
 /// </summary>
 private static async Task<AmazonDSQLClient> CreateDSQLClient(RegionEndpoint
 region)
 {
 var awsCredentials = await
 DefaultAWSCredentialsIdentityResolver.GetCredentialsAsync();
 var clientConfig = new AmazonDSQLConfig
 {
 RegionEndpoint = region
 };
 return new AmazonDSQLClient(awsCredentials, clientConfig);
 }

 /// <summary>
 /// Get information about a DSQL cluster.
 /// </summary>
 public static async Task<GetClusterResponse> Get(RegionEndpoint region,
 string identifier)
 {
 using (var client = await CreateDSQLClient(region))
 {
 var getClusterRequest = new GetClusterRequest
 {
 Identifier = identifier
 };

 return await client.GetClusterAsync(getClusterRequest);
 }
 }

 private static async Task Main()
 {
 var region = RegionEndpoint.USEast1;
 var clusterId = "<your cluster id>";

 var response = await Get(region, clusterId);
 Console.WriteLine($"Cluster ARN: {response.Arn}");
 }
 }

Utilizzo degli SDK AWS 165

Amazon Aurora DSQL Guida per l’utente

}

Golang

L’esempio seguente consente di ottenere informazioni su un cluster multi-Regione.

package main

import (
 "context"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/service/dsql"
)

func GetCluster(ctx context.Context, region, identifier string) (clusterStatus
 *dsql.GetClusterOutput, err error) {

 cfg, err := config.LoadDefaultConfig(ctx, config.WithRegion(region))
 if err != nil {
 log.Fatalf("Failed to load AWS configuration: %v", err)
 }

 // Initialize the DSQL client
 client := dsql.NewFromConfig(cfg)

 input := &dsql.GetClusterInput{
 Identifier: aws.String(identifier),
 }
 clusterStatus, err = client.GetCluster(context.Background(), input)

 if err != nil {
 log.Fatalf("Failed to get cluster: %v", err)
 }

 log.Printf("Cluster ARN: %s", *clusterStatus.Arn)

 return clusterStatus, nil
}

Utilizzo degli SDK AWS 166

Amazon Aurora DSQL Guida per l’utente

func main() {
 ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
 defer cancel()

 // Example cluster identifier
 identifier := "<CLUSTER_ID>"
 region := "us-east-1"

 _, err := GetCluster(ctx, region, identifier)
 if err != nil {
 log.Fatalf("Failed to get cluster: %v", err)
 }
}

Aggiornamento di un cluster

Negli esempi seguenti viene illustrato come aggiornare un cluster multi-Regione utilizzando diversi
linguaggi di programmazione.

Python

Per aggiornare un cluster multi-Regione, attenersi all’esempio descritto di seguito.

import boto3

def update_cluster(region, cluster_id, deletion_protection_enabled):
 try:
 client = boto3.client("dsql", region_name=region)
 return client.update_cluster(identifier=cluster_id,
 deletionProtectionEnabled=deletion_protection_enabled)
 except:
 print("Unable to update cluster")
 raise

def main():
 region = "us-east-1"
 cluster_id = "<your cluster id>"
 deletion_protection_enabled = False
 response = update_cluster(region, cluster_id, deletion_protection_enabled)

Utilizzo degli SDK AWS 167

Amazon Aurora DSQL Guida per l’utente

 print(f"Updated {response["arn"]} with deletion_protection_enabled:
 {deletion_protection_enabled}")

if __name__ == "__main__":
 main()

C++

Utilizzare l’esempio seguente per aggiornare un cluster multi-Regione.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/dsql/DSQLClient.h>
#include <aws/dsql/model/UpdateClusterRequest.h>
#include <iostream>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

/**
 * Updates a cluster in Amazon Aurora DSQL
 */
UpdateClusterResult UpdateCluster(const Aws::String& region, const
 Aws::Map<Aws::String, Aws::String>& updateParams) {
 // Create client for the specified region
 DSQL::DSQLClientConfiguration clientConfig;
 clientConfig.region = region;
 DSQL::DSQLClient client(clientConfig);

 // Create update request
 UpdateClusterRequest updateRequest;
 updateRequest.SetClientToken(Aws::Utils::UUID::RandomUUID());

 // Set identifier (required)
 if (updateParams.find("identifier") != updateParams.end()) {
 updateRequest.SetIdentifier(updateParams.at("identifier"));
 } else {
 throw std::runtime_error("Cluster identifier is required for update
 operation");
 }

Utilizzo degli SDK AWS 168

Amazon Aurora DSQL Guida per l’utente

 // Set deletion protection if specified
 if (updateParams.find("deletion_protection_enabled") != updateParams.end()) {
 bool deletionProtection = (updateParams.at("deletion_protection_enabled") ==
 "true");
 updateRequest.SetDeletionProtectionEnabled(deletionProtection);
 }

 // Execute the update
 auto updateOutcome = client.UpdateCluster(updateRequest);
 if (!updateOutcome.IsSuccess()) {
 std::cerr << "Failed to update cluster: " <<
 updateOutcome.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Unable to update cluster");
 }

 return updateOutcome.GetResult();
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 {
 try {
 // Define region and update parameters
 Aws::String region = "us-east-1";
 Aws::String clusterId = "<your cluster id>";

 // Create parameter map
 Aws::Map<Aws::String, Aws::String> updateParams;
 updateParams["identifier"] = clusterId;
 updateParams["deletion_protection_enabled"] = "false";

 auto updatedCluster = UpdateCluster(region, updateParams);

 std::cout << "Updated " << updatedCluster.GetArn() << std::endl;
 }
 catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl;
 }
 }
 Aws::ShutdownAPI(options);
 return 0;
}

Utilizzo degli SDK AWS 169

Amazon Aurora DSQL Guida per l’utente

JavaScript

Per aggiornare un cluster multi-Regione, attenersi all’esempio descritto di seguito.

import { DSQLClient, UpdateClusterCommand } from "@aws-sdk/client-dsql";

export async function updateCluster(region, clusterId, deletionProtectionEnabled) {

 const client = new DSQLClient({ region });

 const updateClusterCommand = new UpdateClusterCommand({
 identifier: clusterId,
 deletionProtectionEnabled: deletionProtectionEnabled
 });

 try {
 return await client.send(updateClusterCommand);
 } catch (error) {
 console.error("Unable to update cluster", error.message);
 throw error;
 }
}

async function main() {
 const region = "us-east-1";
 const clusterId = "<CLUSTER_ID>";
 const deletionProtectionEnabled = false;

 const response = await updateCluster(region, clusterId,
 deletionProtectionEnabled);
 console.log(`Updated ${response.arn}`);
}

main();

Java

Utilizzare l’esempio seguente per aggiornare un cluster multi-Regione.

package org.example;

Utilizzo degli SDK AWS 170

Amazon Aurora DSQL Guida per l’utente

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.UpdateClusterRequest;
import software.amazon.awssdk.services.dsql.model.UpdateClusterResponse;

public class UpdateCluster {

 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 String clusterId = "<your cluster id>";

 try (
 DsqlClient client = DsqlClient.builder()
 .region(region)
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build()
) {
 UpdateClusterRequest request = UpdateClusterRequest.builder()
 .identifier(clusterId)
 .deletionProtectionEnabled(false)
 .build();
 UpdateClusterResponse cluster = client.updateCluster(request);
 System.out.println("Updated " + cluster.arn());
 }
 }
}

Rust

Utilizzare l’esempio seguente per aggiornare un cluster multi-Regione.

use aws_config::load_defaults;
use aws_sdk_dsql::operation::update_cluster::UpdateClusterOutput;
use aws_sdk_dsql::{
 Client, Config,
 config::{BehaviorVersion, Region},
};

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

Utilizzo degli SDK AWS 171

Amazon Aurora DSQL Guida per l’utente

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults.credentials_provider().unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

/// Update a DSQL cluster and set delete protection to false. Also add new tags.
pub async fn update_cluster(region: &'static str, identifier: &'static str) ->
 UpdateClusterOutput {
 let client = dsql_client(region).await;
 // Update delete protection
 let update_response = client
 .update_cluster()
 .identifier(identifier)
 .deletion_protection_enabled(false)
 .send()
 .await
 .unwrap();

 update_response
}

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region = "us-east-1";

 let cluster = update_cluster(region, "<your cluster id>").await;
 println!("{:#?}", cluster);

 Ok(())
}

Ruby

Utilizzare l’esempio seguente per aggiornare un cluster multi-Regione.

Utilizzo degli SDK AWS 172

Amazon Aurora DSQL Guida per l’utente

require "aws-sdk-dsql"

def update_cluster(region, update_params)
 client = Aws::DSQL::Client.new(region: region)
 client.update_cluster(update_params)
rescue Aws::Errors::ServiceError => e
 abort "Unable to update cluster: #{e.message}"
end

def main
 region = "us-east-1"
 cluster_id = "<your cluster id>"
 updated_cluster = update_cluster(region, {
 identifier: cluster_id,
 deletion_protection_enabled: false
 })
 puts "Updated #{updated_cluster.arn}"
end

main if $PROGRAM_NAME == __FILE__

.NET

Utilizzare l’esempio seguente per aggiornare un cluster multi-Regione.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime.Credentials;

namespace DSQLExamples.examples
{
 public class UpdateCluster
 {
 /// <summary>
 /// Create a client. We will use this later for performing operations on the
 cluster.
 /// </summary>
 private static async Task<AmazonDSQLClient> CreateDSQLClient(RegionEndpoint
 region)

Utilizzo degli SDK AWS 173

Amazon Aurora DSQL Guida per l’utente

 {
 var awsCredentials = await
 DefaultAWSCredentialsIdentityResolver.GetCredentialsAsync();
 var clientConfig = new AmazonDSQLConfig
 {
 RegionEndpoint = region
 };
 return new AmazonDSQLClient(awsCredentials, clientConfig);
 }

 /// <summary>
 /// Update a DSQL cluster and set delete protection to false.
 /// </summary>
 public static async Task<UpdateClusterResponse> Update(RegionEndpoint
 region, string identifier)
 {
 using (var client = await CreateDSQLClient(region))
 {
 var updateClusterRequest = new UpdateClusterRequest
 {
 Identifier = identifier,
 DeletionProtectionEnabled = false
 };

 UpdateClusterResponse response = await
 client.UpdateClusterAsync(updateClusterRequest);
 Console.WriteLine($"Updated {response.Arn}");

 return response;
 }
 }

 private static async Task Main()
 {
 var region = RegionEndpoint.USEast1;
 var clusterId = "<your cluster id>";

 await Update(region, clusterId);
 }
 }
}

Utilizzo degli SDK AWS 174

Amazon Aurora DSQL Guida per l’utente

Golang

Utilizzare l’esempio seguente per aggiornare un cluster multi-Regione.

package main

import (
 "context"
 "github.com/aws/aws-sdk-go-v2/config"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/service/dsql"
)

func UpdateCluster(ctx context.Context, region, id string, deleteProtection bool)
 (clusterStatus *dsql.UpdateClusterOutput, err error) {

 cfg, err := config.LoadDefaultConfig(ctx, config.WithRegion(region))
 if err != nil {
 log.Fatalf("Failed to load AWS configuration: %v", err)
 }

 // Initialize the DSQL client
 client := dsql.NewFromConfig(cfg)

 input := dsql.UpdateClusterInput{
 Identifier: &id,
 DeletionProtectionEnabled: &deleteProtection,
 }

 clusterStatus, err = client.UpdateCluster(context.Background(), &input)

 if err != nil {
 log.Fatalf("Failed to update cluster: %v", err)
 }

 log.Printf("Cluster updated successfully: %v", clusterStatus.Status)
 return clusterStatus, nil
}

func main() {
 ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
 defer cancel()

Utilizzo degli SDK AWS 175

Amazon Aurora DSQL Guida per l’utente

 // Example cluster identifier
 identifier := "<CLUSTER_ID>"
 region := "us-east-1"
 deleteProtection := false

 _, err := UpdateCluster(ctx, region, identifier, deleteProtection)
 if err != nil {
 log.Fatalf("Failed to update cluster: %v", err)
 }
}

Eliminazione di un cluster

Negli esempi seguenti viene illustrato come eliminare un cluster multi-Regione utilizzando diversi
linguaggi di programmazione.

Python

Per eliminare un cluster multi-Regione, attenersi all’esempio descritto di seguito. L’eliminazione di
un cluster multi-Regione potrebbe richiedere alcuni minuti.

import boto3

def delete_multi_region_clusters(region_1, cluster_id_1, region_2, cluster_id_2):
 try:

 client_1 = boto3.client("dsql", region_name=region_1)
 client_2 = boto3.client("dsql", region_name=region_2)

 client_1.delete_cluster(identifier=cluster_id_1)
 print(f"Deleting cluster {cluster_id_1} in {region_1}")

 # cluster_1 will stay in PENDING_DELETE state until cluster_2 is deleted

 client_2.delete_cluster(identifier=cluster_id_2)
 print(f"Deleting cluster {cluster_id_2} in {region_2}")

 # Now that both clusters have been marked for deletion they will transition
 # to DELETING state and finalize deletion
 print(f"Waiting for {cluster_id_1} to finish deletion")

Utilizzo degli SDK AWS 176

Amazon Aurora DSQL Guida per l’utente

 client_1.get_waiter("cluster_not_exists").wait(
 identifier=cluster_id_1,
 WaiterConfig={
 'Delay': 10,
 'MaxAttempts': 30
 }
)

 print(f"Waiting for {cluster_id_2} to finish deletion")
 client_2.get_waiter("cluster_not_exists").wait(
 identifier=cluster_id_2,
 WaiterConfig={
 'Delay': 10,
 'MaxAttempts': 30
 }
)

 except:
 print("Unable to delete cluster")
 raise

def main():
 region_1 = "us-east-1"
 cluster_id_1 = "<cluster 1 id>"
 region_2 = "us-east-2"
 cluster_id_2 = "<cluster 2 id>"

 delete_multi_region_clusters(region_1, cluster_id_1, region_2, cluster_id_2)
 print(f"Deleted {cluster_id_1} in {region_1} and {cluster_id_2} in {region_2}")

if __name__ == "__main__":
 main()

C++

Per eliminare un cluster multi-Regione, attenersi all’esempio descritto di seguito. L’eliminazione di
un cluster multi-Regione potrebbe richiedere alcuni minuti.

#include <aws/core/Aws.h>
#include <aws/core/utils/Outcome.h>
#include <aws/dsql/DSQLClient.h>

Utilizzo degli SDK AWS 177

Amazon Aurora DSQL Guida per l’utente

#include <aws/dsql/model/DeleteClusterRequest.h>
#include <aws/dsql/model/GetClusterRequest.h>
#include <iostream>
#include <thread>
#include <chrono>

using namespace Aws;
using namespace Aws::DSQL;
using namespace Aws::DSQL::Model;

/**
 * Deletes multi-region clusters in Amazon Aurora DSQL
 */
void DeleteMultiRegionClusters(
 const Aws::String& region1,
 const Aws::String& clusterId1,
 const Aws::String& region2,
 const Aws::String& clusterId2) {

 // Create clients for each region
 DSQL::DSQLClientConfiguration clientConfig1;
 clientConfig1.region = region1;
 DSQL::DSQLClient client1(clientConfig1);

 DSQL::DSQLClientConfiguration clientConfig2;
 clientConfig2.region = region2;
 DSQL::DSQLClient client2(clientConfig2);

 // Delete the first cluster
 std::cout << "Deleting cluster " << clusterId1 << " in " << region1 <<
 std::endl;

 DeleteClusterRequest deleteRequest1;
 deleteRequest1.SetIdentifier(clusterId1);
 deleteRequest1.SetClientToken(Aws::Utils::UUID::RandomUUID());

 auto deleteOutcome1 = client1.DeleteCluster(deleteRequest1);
 if (!deleteOutcome1.IsSuccess()) {
 std::cerr << "Failed to delete cluster " << clusterId1 << " in " << region1
 << ": "
 << deleteOutcome1.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Failed to delete multi-region clusters");
 }

Utilizzo degli SDK AWS 178

Amazon Aurora DSQL Guida per l’utente

 // cluster1 will stay in PENDING_DELETE state until cluster2 is deleted
 std::cout << "Deleting cluster " << clusterId2 << " in " << region2 <<
 std::endl;

 DeleteClusterRequest deleteRequest2;
 deleteRequest2.SetIdentifier(clusterId2);
 deleteRequest2.SetClientToken(Aws::Utils::UUID::RandomUUID());

 auto deleteOutcome2 = client2.DeleteCluster(deleteRequest2);
 if (!deleteOutcome2.IsSuccess()) {
 std::cerr << "Failed to delete cluster " << clusterId2 << " in " << region2
 << ": "
 << deleteOutcome2.GetError().GetMessage() << std::endl;
 throw std::runtime_error("Failed to delete multi-region clusters");
 }
}

int main() {
 Aws::SDKOptions options;
 Aws::InitAPI(options);
 {
 try {
 Aws::String region1 = "us-east-1";
 Aws::String clusterId1 = "<your cluster id 1>";
 Aws::String region2 = "us-east-2";
 Aws::String clusterId2 = "<your cluster id 2>";

 DeleteMultiRegionClusters(region1, clusterId1, region2, clusterId2);

 std::cout << "Deleted " << clusterId1 << " in " << region1
 << " and " << clusterId2 << " in " << region2 << std::endl;
 }
 catch (const std::exception& e) {
 std::cerr << "Error: " << e.what() << std::endl;
 }
 }
 Aws::ShutdownAPI(options);
 return 0;
}

JavaScript

Per eliminare un cluster multi-Regione, attenersi all’esempio descritto di seguito. L’eliminazione di
un cluster multi-Regione potrebbe richiedere alcuni minuti.

Utilizzo degli SDK AWS 179

Amazon Aurora DSQL Guida per l’utente

import { DSQLClient, DeleteClusterCommand, waitUntilClusterNotExists } from "@aws-
sdk/client-dsql";

async function deleteMultiRegionClusters(region1, cluster1_id, region2, cluster2_id)
 {

 const client1 = new DSQLClient({ region: region1 });
 const client2 = new DSQLClient({ region: region2 });

 try {
 const deleteClusterCommand1 = new DeleteClusterCommand({
 identifier: cluster1_id,
 });
 const response1 = await client1.send(deleteClusterCommand1);

 const deleteClusterCommand2 = new DeleteClusterCommand({
 identifier: cluster2_id,
 });
 const response2 = await client2.send(deleteClusterCommand2);

 console.log(`Waiting for cluster1 ${response1.identifier} to finish
 deletion`);
 await waitUntilClusterNotExists(
 {
 client: client1,
 maxWaitTime: 300 // Wait for 5 minutes
 },
 {
 identifier: response1.identifier
 }
);
 console.log(`Cluster1 Id ${response1.identifier} is now deleted`);

 console.log(`Waiting for cluster2 ${response2.identifier} to finish
 deletion`);
 await waitUntilClusterNotExists(
 {
 client: client2,
 maxWaitTime: 300 // Wait for 5 minutes
 },
 {
 identifier: response2.identifier
 }

Utilizzo degli SDK AWS 180

Amazon Aurora DSQL Guida per l’utente

);
 console.log(`Cluster2 Id ${response2.identifier} is now deleted`);
 return;
 } catch (error) {
 if (error.name === "ResourceNotFoundException") {
 console.log("Some or all Cluster ARNs not found or already deleted");
 } else {
 console.error("Unable to delete multi-region clusters: ",
 error.message);
 }
 throw error;
 }
}

async function main() {
 const region1 = "us-east-1";
 const cluster1_id = "<CLUSTER_ID_1>";
 const region2 = "us-east-2";
 const cluster2_id = "<CLUSTER_ID_2>";

 const response = await deleteMultiRegionClusters(region1, cluster1_id, region2,
 cluster2_id);
 console.log(`Deleted ${cluster1_id} in ${region1} and ${cluster2_id} in
 ${region2}`);
}

main();

Java

Per eliminare un cluster multi-Regione, attenersi all’esempio descritto di seguito. L’eliminazione di
un cluster multi-Regione potrebbe richiedere alcuni minuti.

package org.example;

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.retries.api.BackoffStrategy;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.DsqlClientBuilder;
import software.amazon.awssdk.services.dsql.model.DeleteClusterRequest;

import java.time.Duration;

Utilizzo degli SDK AWS 181

Amazon Aurora DSQL Guida per l’utente

public class DeleteMultiRegionClusters {

 public static void main(String[] args) {
 Region region1 = Region.US_EAST_1;
 String clusterId1 = "<your cluster id 1>";
 Region region2 = Region.US_EAST_2;
 String clusterId2 = "<your cluster id 2>";

 DsqlClientBuilder clientBuilder = DsqlClient.builder()
 .credentialsProvider(DefaultCredentialsProvider.create());

 try (
 DsqlClient client1 = clientBuilder.region(region1).build();
 DsqlClient client2 = clientBuilder.region(region2).build()
) {
 System.out.printf("Deleting cluster %s in %s%n", clusterId1, region1);
 DeleteClusterRequest request1 = DeleteClusterRequest.builder()
 .identifier(clusterId1)
 .build();
 client1.deleteCluster(request1);

 // cluster1 will stay in PENDING_DELETE until cluster2 is deleted
 System.out.printf("Deleting cluster %s in %s%n", clusterId2, region2);
 DeleteClusterRequest request2 = DeleteClusterRequest.builder()
 .identifier(clusterId2)
 .build();
 client2.deleteCluster(request2);

 // Now that both clusters have been marked for deletion they will
 transition
 // to DELETING state and finalize deletion.
 System.out.printf("Waiting for cluster %s to finish deletion%n",
 clusterId1);
 client1.waiter().waitUntilClusterNotExists(
 getCluster -> getCluster.identifier(clusterId1),
 config -> config.backoffStrategyV2(

 BackoffStrategy.fixedDelayWithoutJitter(Duration.ofSeconds(10))
).waitTimeout(Duration.ofMinutes(5))
);

 System.out.printf("Waiting for cluster %s to finish deletion%n",
 clusterId2);

Utilizzo degli SDK AWS 182

Amazon Aurora DSQL Guida per l’utente

 client2.waiter().waitUntilClusterNotExists(
 getCluster -> getCluster.identifier(clusterId2),
 config -> config.backoffStrategyV2(

 BackoffStrategy.fixedDelayWithoutJitter(Duration.ofSeconds(10))
).waitTimeout(Duration.ofMinutes(5))
);

 System.out.printf("Deleted %s in %s and %s in %s%n", clusterId1,
 region1, clusterId2, region2);
 }
 }
}

Rust

Per eliminare un cluster multi-Regione, attenersi all’esempio descritto di seguito. L’eliminazione di
un cluster multi-Regione potrebbe richiedere alcuni minuti.

use aws_config::{BehaviorVersion, Region, load_defaults};
use aws_sdk_dsql::client::Waiters;
use aws_sdk_dsql::{Client, Config};

/// Create a client. We will use this later for performing operations on the
 cluster.
async fn dsql_client(region: &'static str) -> Client {
 // Load default SDK configuration
 let sdk_defaults = load_defaults(BehaviorVersion::latest()).await;

 // You can set your own credentials by following this guide
 // https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credproviders.html
 let credentials = sdk_defaults.credentials_provider().unwrap();

 let config = Config::builder()
 .behavior_version(BehaviorVersion::latest())
 .credentials_provider(credentials)
 .region(Region::new(region))
 .build();

 Client::from_conf(config)
}

/// Create a cluster without delete protection and a name

Utilizzo degli SDK AWS 183

Amazon Aurora DSQL Guida per l’utente

pub async fn delete_multi_region_clusters(
 region_1: &'static str,
 cluster_id_1: &'static str,
 region_2: &'static str,
 cluster_id_2: &'static str,
) {
 let client_1 = dsql_client(region_1).await;
 let client_2 = dsql_client(region_2).await;

 println!("Deleting cluster {cluster_id_1} in {region_1}");
 client_1
 .delete_cluster()
 .identifier(cluster_id_1)
 .send()
 .await
 .unwrap();

 // cluster_1 will stay in PENDING_DELETE state until cluster_2 is deleted
 println!("Deleting cluster {cluster_id_2} in {region_2}");
 client_2
 .delete_cluster()
 .identifier(cluster_id_2)
 .send()
 .await
 .unwrap();

 // Now that both clusters have been marked for deletion they will transition
 // to DELETING state and finalize deletion
 println!("Waiting for {cluster_id_1} to finish deletion");
 client_1
 .wait_until_cluster_not_exists()
 .identifier(cluster_id_1)
 .wait(std::time::Duration::from_secs(300)) // Wait up to 5 minutes
 .await
 .unwrap();

 println!("Waiting for {cluster_id_2} to finish deletion");
 client_2
 .wait_until_cluster_not_exists()
 .identifier(cluster_id_2)
 .wait(std::time::Duration::from_secs(300)) // Wait up to 5 minutes
 .await
 .unwrap();
}

Utilizzo degli SDK AWS 184

Amazon Aurora DSQL Guida per l’utente

#[tokio::main(flavor = "current_thread")]
pub async fn main() -> anyhow::Result<()> {
 let region_1 = "us-east-1";
 let cluster_id_1 = "<cluster 1 to be deleted>";
 let region_2 = "us-east-2";
 let cluster_id_2 = "<cluster 2 to be deleted>";

 delete_multi_region_clusters(region_1, cluster_id_1, region_2,
 cluster_id_2).await;
 println!("Deleted {cluster_id_1} in {region_1} and {cluster_id_2} in
 {region_2}");

 Ok(())
}

Ruby

Per eliminare un cluster multi-Regione, attenersi all’esempio descritto di seguito. L’eliminazione di
un cluster multi-Regione potrebbe richiedere alcuni minuti.

require "aws-sdk-dsql"

def delete_multi_region_clusters(region_1, cluster_id_1, region_2, cluster_id_2)
 client_1 = Aws::DSQL::Client.new(region: region_1)
 client_2 = Aws::DSQL::Client.new(region: region_2)

 puts "Deleting cluster #{cluster_id_1} in #{region_1}"
 client_1.delete_cluster(identifier: cluster_id_1)

 # cluster_1 will stay in PENDING_DELETE state until cluster_2 is deleted
 puts "Deleting #{cluster_id_2} in #{region_2}"
 client_2.delete_cluster(identifier: cluster_id_2)

 # Now that both clusters have been marked for deletion they will transition
 # to DELETING state and finalize deletion
 puts "Waiting for #{cluster_id_1} to finish deletion"
 client_1.wait_until(:cluster_not_exists, identifier: cluster_id_1) do |w|
 # Wait for 5 minutes
 w.max_attempts = 30
 w.delay = 10
 end

Utilizzo degli SDK AWS 185

Amazon Aurora DSQL Guida per l’utente

 puts "Waiting for #{cluster_id_2} to finish deletion"
 client_2.wait_until(:cluster_not_exists, identifier: cluster_id_2) do |w|
 # Wait for 5 minutes
 w.max_attempts = 30
 w.delay = 10
 end
rescue Aws::Errors::ServiceError => e
 abort "Failed to delete multi-region clusters: #{e.message}"
end

def main
 region_1 = "us-east-1"
 cluster_id_1 = "<your cluster id 1>"
 region_2 = "us-east-2"
 cluster_id_2 = "<your cluster id 2>"

 delete_multi_region_clusters(region_1, cluster_id_1, region_2, cluster_id_2)
 puts "Deleted #{cluster_id_1} in #{region_1} and #{cluster_id_2} in #{region_2}"
end

main if $PROGRAM_NAME == __FILE__

.NET

Per eliminare un cluster multi-Regione, attenersi all’esempio descritto di seguito. L’eliminazione di
un cluster multi-Regione potrebbe richiedere alcuni minuti.

using System;
using System.Threading.Tasks;
using Amazon;
using Amazon.DSQL;
using Amazon.DSQL.Model;
using Amazon.Runtime.Credentials;
using Amazon.Runtime.Endpoints;

namespace DSQLExamples.examples
{
 public class DeleteMultiRegionClusters
 {
 /// <summary>
 /// Create a client. We will use this later for performing operations on the
 cluster.

Utilizzo degli SDK AWS 186

Amazon Aurora DSQL Guida per l’utente

 /// </summary>
 private static async Task<AmazonDSQLClient> CreateDSQLClient(RegionEndpoint
 region)
 {
 var awsCredentials = await
 DefaultAWSCredentialsIdentityResolver.GetCredentialsAsync();
 var clientConfig = new AmazonDSQLConfig
 {
 RegionEndpoint = region,
 };
 return new AmazonDSQLClient(awsCredentials, clientConfig);
 }

 /// <summary>
 /// Delete multi-region clusters.
 /// </summary>
 public static async Task Delete(
 RegionEndpoint region1,
 string clusterId1,
 RegionEndpoint region2,
 string clusterId2)
 {
 using (var client1 = await CreateDSQLClient(region1))
 using (var client2 = await CreateDSQLClient(region2))
 {
 var deleteRequest1 = new DeleteClusterRequest
 {
 Identifier = clusterId1
 };

 var deleteResponse1 = await
 client1.DeleteClusterAsync(deleteRequest1);
 Console.WriteLine($"Initiated deletion of {deleteResponse1.Arn}");

 // cluster 1 will stay in PENDING_DELETE state until cluster 2 is
 deleted
 var deleteRequest2 = new DeleteClusterRequest
 {
 Identifier = clusterId2
 };

 var deleteResponse2 = await
 client2.DeleteClusterAsync(deleteRequest2);
 Console.WriteLine($"Initiated deletion of {deleteResponse2.Arn}");

Utilizzo degli SDK AWS 187

Amazon Aurora DSQL Guida per l’utente

 }
 }

 private static async Task Main()
 {
 var region1 = RegionEndpoint.USEast1;
 var cluster1 = "<cluster 1 to be deleted>";
 var region2 = RegionEndpoint.USEast2;
 var cluster2 = "<cluster 2 to be deleted>";

 await Delete(region1, cluster1, region2, cluster2);
 }
 }
}

Golang

Per eliminare un cluster multi-Regione, attenersi all’esempio descritto di seguito. L’eliminazione di
un cluster multi-Regione potrebbe richiedere alcuni minuti.

package main

import (
 "context"
 "fmt"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/dsql"
)

func DeleteMultiRegionClusters(ctx context.Context, region1, clusterId1, region2,
 clusterId2 string) error {
 // Load the AWS configuration for region 1
 cfg1, err := config.LoadDefaultConfig(ctx, config.WithRegion(region1))
 if err != nil {
 return fmt.Errorf("unable to load SDK config for region %s: %w", region1, err)
 }

 // Load the AWS configuration for region 2
 cfg2, err := config.LoadDefaultConfig(ctx, config.WithRegion(region2))

Utilizzo degli SDK AWS 188

Amazon Aurora DSQL Guida per l’utente

 if err != nil {
 return fmt.Errorf("unable to load SDK config for region %s: %w", region2, err)
 }

 // Create DSQL clients for both regions
 client1 := dsql.NewFromConfig(cfg1)
 client2 := dsql.NewFromConfig(cfg2)

 // Delete cluster in region 1
 fmt.Printf("Deleting cluster %s in %s\n", clusterId1, region1)
 _, err = client1.DeleteCluster(ctx, &dsql.DeleteClusterInput{
 Identifier: aws.String(clusterId1),
 })
 if err != nil {
 return fmt.Errorf("failed to delete cluster in region %s: %w", region1, err)
 }

 // Delete cluster in region 2
 fmt.Printf("Deleting cluster %s in %s\n", clusterId2, region2)
 _, err = client2.DeleteCluster(ctx, &dsql.DeleteClusterInput{
 Identifier: aws.String(clusterId2),
 })
 if err != nil {
 return fmt.Errorf("failed to delete cluster in region %s: %w", region2, err)
 }

 // Create waiters for both regions
 waiter1 := dsql.NewClusterNotExistsWaiter(client1, func(options
 *dsql.ClusterNotExistsWaiterOptions) {
 options.MinDelay = 10 * time.Second
 options.MaxDelay = 30 * time.Second
 options.LogWaitAttempts = true
 })

 waiter2 := dsql.NewClusterNotExistsWaiter(client2, func(options
 *dsql.ClusterNotExistsWaiterOptions) {
 options.MinDelay = 10 * time.Second
 options.MaxDelay = 30 * time.Second
 options.LogWaitAttempts = true
 })

 // Wait for cluster in region 1 to be deleted
 fmt.Printf("Waiting for cluster %s to finish deletion\n", clusterId1)
 err = waiter1.Wait(ctx, &dsql.GetClusterInput{

Utilizzo degli SDK AWS 189

Amazon Aurora DSQL Guida per l’utente

 Identifier: aws.String(clusterId1),
 }, 5*time.Minute)
 if err != nil {
 return fmt.Errorf("error waiting for cluster deletion in region %s: %w", region1,
 err)
 }

 // Wait for cluster in region 2 to be deleted
 fmt.Printf("Waiting for cluster %s to finish deletion\n", clusterId2)
 err = waiter2.Wait(ctx, &dsql.GetClusterInput{
 Identifier: aws.String(clusterId2),
 }, 5*time.Minute)
 if err != nil {
 return fmt.Errorf("error waiting for cluster deletion in region %s: %w", region2,
 err)
 }

 fmt.Printf("Successfully deleted clusters %s in %s and %s in %s\n",
 clusterId1, region1, clusterId2, region2)
 return nil
}

// Example usage in main function
func main() {
 ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
 defer cancel()

 err := DeleteMultiRegionClusters(
 ctx,
 "us-east-1", // region1
 "<CLUSTER_ID_1>", // clusterId1
 "us-east-2", // region2
 "<CLUSTER_ID_2>", // clusterId2
)
 if err != nil {
 log.Fatalf("Failed to delete multi-region clusters: %v", err)
 }
}

Per altri esempi di codice, visitare il repository GitHub degli esempi di Aurora DSQL.

Utilizzo degli SDK AWS 190

https://github.com/aws-samples/aurora-dsql-samples

Amazon Aurora DSQL Guida per l’utente

Utilizzo della CLI di AWS

La CLI di AWS fornisce un’interfaccia a riga di comando per la gestione dei cluster Aurora DSQL
multi-Regione. Negli esempi seguenti viene illustrato come creare, configurare ed eliminare cluster
multi-Regione.

Connessione a un cluster multi-Regione

I cluster in peering multi-Regione forniscono due endpoint regionali, uno per ogni cluster Regione
AWS in peering. Entrambi gli endpoint presentano un unico database logico che supporta operazioni
di lettura e scrittura simultanee con una forte coerenza dei dati. Oltre ai cluster in peering, un cluster
multi-Regione dispone anche di una Regione di riferimento che archivia una finestra limitata di registri
delle transazioni crittografati, utilizzata per migliorare la durabilità e la disponibilità multi-Regione. Le
regioni testimone dei cluster multi-Regione non dispongono di endpoint.

Creazione di cluster multi-Regione

Per creare cluster multi-Regione, è prima necessario creare un cluster con una Regione testimone.
Quindi si esegue il peering di questo cluster a un secondo cluster che condivide la stessa Regione
testimone del primo cluster. Nell’esempio seguente viene illustrato come creare cluster negli Stati
Uniti orientali (Virginia settentrionale) e negli Stati Uniti orientali (Ohio) con Stati Uniti occidentali
(Oregon) come Regione testimone.

Fase 1: creazione di un cluster negli Stati Uniti orientali (Virginia settentrionale)

Per creare un cluster nella Regione AWS Stati Uniti orientali (Virginia settentrionale) con proprietà
multi-Regione, utilizzare il seguente comando.

aws dsql create-cluster \
--region us-east-1 \
--multi-region-properties '{"witnessRegion":"us-west-2"}'

Example Risposta:

{
 "identifier": "abc0def1baz2quux3quuux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/abc0def1baz2quux3quuux4",
 "status": "UPDATING",
 "encryptionDetails": {
 "encryptionType": "AWS_OWNED_KMS_KEY",

Utilizzo della CLI di AWS 191

Amazon Aurora DSQL Guida per l’utente

 "encryptionStatus": "ENABLED"
 }
 "creationTime": "2024-05-24T09:15:32.708000-07:00"
}

Note

Quando l’operazione API ha esito positivo, il cluster entra nello stato PENDING_SETUP. La
creazione del cluster rimane in stato PENDING_SETUP finché non si aggiorna il cluster con
l’ARN del relativo cluster peer.

Fase 2: creazione di un secondo cluster negli Stati Uniti orientali (Ohio)

Per creare un cluster nella Regione AWS Stati Uniti orientali (Ohio) con proprietà multi-Regione,
utilizzare il comando seguente.

aws dsql create-cluster \
--region us-east-2 \
--multi-region-properties '{"witnessRegion":"us-west-2"}'

Example Risposta:

{
 "identifier": "foo0bar1baz2quux3quuxquux5",
 "arn": "arn:aws:dsql:us-east-2:111122223333:cluster/foo0bar1baz2quux3quuxquux5",
 "status": "PENDING_SETUP",
 "creationTime": "2025-05-06T06:51:16.145000-07:00",
 "deletionProtectionEnabled": true,
 "multiRegionProperties": {
 "witnessRegion": "us-west-2",
 "clusters": [
 "arn:aws:dsql:us-east-2:111122223333:cluster/foo0bar1baz2quux3quuxquux5"
]
 }
}

Quando l’operazione API ha esito positivo, il cluster passa allo stato PENDING_SETUP. La creazione
del cluster rimane nello stato PENDING_SETUP fino a quando non viene aggiornata con l’ARN di un
altro cluster in peering.

Utilizzo della CLI di AWS 192

Amazon Aurora DSQL Guida per l’utente

Fase 3: peering dei cluster negli Stati Uniti orientali (Virginia settentrionale) con quello negli Stati Uniti
orientali (Ohio)

Per effettuare il peering del cluster negli Stati Uniti orientali (Virginia settentrionale) con il cluster negli
Stati Uniti orientali (Ohio), utilizzare il comando update-cluster. Specificate il nome del cluster
negli Stati Uniti orientali (Virginia settentrionale) e una stringa JSON con l’ARN del cluster negli Stati
Uniti orientali (Ohio).

aws dsql update-cluster \
--region us-east-1 \
--identifier 'foo0bar1baz2quux3quuxquux4' \
--multi-region-properties '{"witnessRegion": "us-west-2","clusters": ["arn:aws:dsql:us-
east-2:111122223333:cluster/foo0bar1baz2quux3quuxquux5"]}'

Example Risposta

{
 "identifier": "foo0bar1baz2quux3quuxquux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuxquux4",
 "status": "UPDATING",
 "creationTime": "2025-05-06T06:46:10.745000-07:00"
}

Fase 4: peering del cluster negli Stati Uniti orientali (Ohio) con quello negli Stati Uniti orientali
(Virginia settentrionale)

Per effettuare il peering tra il cluster negli Stati Uniti orientali (Ohio) e il cluster negli Stati Uniti
orientali (Virginia settentrionale), utilizza il comando update-cluster. Specificare il nome del
cluster negli Stati Uniti orientali (Ohio) e una stringa JSON con l’ARN del cluster negli Stati Uniti
orientali (Virginia settentrionale).

Example

aws dsql update-cluster \
--region us-east-2 \
--identifier 'foo0bar1baz2quux3quuxquux5' \
--multi-region-properties '{"witnessRegion": "us-west-2", "clusters":
 ["arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuxquux4"]}'

Utilizzo della CLI di AWS 193

Amazon Aurora DSQL Guida per l’utente

Example Risposta

{
 "identifier": "foo0bar1baz2quux3quuxquux5",
 "arn": "arn:aws:dsql:us-east-2:111122223333:cluster/foo0bar1baz2quux3quuxquux5",
 "status": "UPDATING",
 "creationTime": "2025-05-06T06:51:16.145000-07:00"
}

Note

Se il peering si conclude con successo, entrambi i cluster passano dallo stato "IN ATTESA DI
CONFIGURAZIONE" a "CREAZIONE IN CORSO" e infine allo stato "ATTIVO" quando sono
pronti per l’uso.

Visualizzazione delle proprietà del cluster multi-Regione

Quando si descrive un cluster, è possibile visualizzare le proprietà multi-Regione per i cluster in
diverse Regioni AWS.

Example

aws dsql get-cluster \
--region us-east-1 \
--identifier 'foo0bar1baz2quux3quuxquux4'

Example Risposta

{
 "identifier": "foo0bar1baz2quux3quuxquux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuxquux4",
 "status": "PENDING_SETUP",
 "encryptionDetails": {
 "encryptionType": "AWS_OWNED_KMS_KEY",
 "encryptionStatus": "ENABLED"
},
 "creationTime": "2024-11-27T00:32:14.434000-08:00",
 "deletionProtectionEnabled": false,
 "multiRegionProperties": {

Utilizzo della CLI di AWS 194

Amazon Aurora DSQL Guida per l’utente

 "witnessRegion": "us-west-2",
 "clusters": [
 "arn:aws:dsql:us-east-1:111122223333:cluster/foo0bar1baz2quux3quuxquux4",
 "arn:aws:dsql:us-east-2:111122223333:cluster/foo0bar1baz2quux3quuxquux5"
]
 }
}

Peering dei cluster durante la creazione

È possibile ridurre il numero di passaggi includendo le informazioni di peering durante la
creazione del cluster. Dopo aver creato il primo cluster negli Stati Uniti orientali (Virginia
settentrionale) (Fase 1), è possibile creare il secondo cluster negli Stati Uniti orientali (Ohio) avviando
contemporaneamente il processo di peering includendo l’ARN del primo cluster.

Example

aws dsql create-cluster \
--region us-east-2 \
--multi-region-properties '{"witnessRegion":"us-west-2","clusters": ["arn:aws:dsql:us-
east-1:111122223333:cluster/foo0bar1baz2quux3quuxquux4"]}'

Questo approccio combina i passaggi 2 e 4, ma è comunque necessario completare il passaggio 3
(aggiornamento del primo cluster con l’ARN del secondo cluster) per stabilire la relazione di peering.
Una volta completati tutti i passaggi, entrambi i cluster passeranno attraverso gli stessi stati del
processo standard: da IN ATTESA DI CONFIGURAZIONE a CREAZIONE IN CORSO e infine allo
stato ATTIVO quando sono pronti per l’uso.

Eliminazione di cluster multi-Regione

Per eliminare un cluster multi-Regione, è necessario completare due passaggi.

1. Disattivare la protezione dall’eliminazione per ogni cluster.

2. Eliminare ogni cluster peered separatamente nelle rispettive Regione AWS

Aggiornare ed eliminare il cluster negli Stati Uniti orientali (Virginia settentrionale)

1. Disattivare la protezione da eliminazione utilizzando il comando update-cluster.

aws dsql update-cluster \

Utilizzo della CLI di AWS 195

Amazon Aurora DSQL Guida per l’utente

 --region us-east-1 \
 --identifier 'foo0bar1baz2quux3quuxquux4' \
 --no-deletion-protection-enabled

2. Eliminare il cluster utilizzando il comando delete-cluster.

aws dsql delete-cluster \
 --region us-east-1 \
 --identifier 'foo0bar1baz2quux3quuxquux4'

Il comando restituisce la seguente risposta.

{
 "identifier": "foo0bar1baz2quux3quuxquux4",
 "arn": "arn:aws:dsql:us-east-1:111122223333:cluster/
foo0bar1baz2quux3quuxquux4",
 "status": "PENDING_DELETE",
 "creationTime": "2025-05-06T06:46:10.745000-07:00"
}

Note

Il cluster passa allo stato PENDING_DELETE. L’eliminazione non è completa finché non
si elimina il cluster peer negli Stati Uniti orientali (Ohio).

Aggiornare ed eliminare il cluster negli Stati Uniti orientali (Ohio)

1. Disattivare la protezione da eliminazione utilizzando il comando update-cluster.

aws dsql update-cluster \
--region us-east-2 \
--identifier 'foo0bar1baz2quux3quux4quuux' \
--no-deletion-protection-enabled

2. Eliminare il cluster utilizzando il comando delete-cluster.

aws dsql delete-cluster \
--region us-east-2 \
--identifier 'foo0bar1baz2quux3quuxquux5'

Utilizzo della CLI di AWS 196

Amazon Aurora DSQL Guida per l’utente

Il comando restituisce la seguente risposta:

{
 "identifier": "foo0bar1baz2quux3quuxquux5",
 "arn": "arn:aws:dsql:us-east-2:111122223333:cluster/
foo0bar1baz2quux3quuxquux5",
 "status": "PENDING_DELETE",
 "creationTime": "2025-05-06T06:46:10.745000-07:00"
}

Note

Il cluster passa allo stato PENDING_DELETE. Dopo alcuni secondi, il sistema passa
automaticamente allo stato DELETING entrambi i cluster peered dopo la convalida.

Configurazione dei cluster Aurora DSQL utilizzando AWS
CloudFormation
È possibile utilizzare la stessa risorsa CloudFormation AWS::DSQL::Cluster per distribuire e
gestire cluster Aurora DSQL a Regione singola e multi-Regione.

Consultare Guida di riferimento ai tipi di risorse di Amazon Aurora DSQL per maggiori informazioni su
come creare, modificare e gestire i cluster utilizzando la risorsa AWS::DSQL::Cluster.

Creazione della configurazione iniziale del cluster

Innanzitutto, creare un modello AWS CloudFormation per definire il cluster multi-Regione:

Resources:
 MRCluster:
 Type: AWS::DSQL::Cluster
 Properties:
 DeletionProtectionEnabled: true
 MultiRegionProperties:
 WitnessRegion: us-west-2

Creare stack in entrambe le regioni utilizzando i seguenti comandi della CLI di AWS:

CloudFormation 197

https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/AWS_DSQL.html

Amazon Aurora DSQL Guida per l’utente

aws cloudformation create-stack --region us-east-2 \
 --stack-name MRCluster \
 --template-body file://mr-cluster.yaml

aws cloudformation create-stack --region us-east-1 \
 --stack-name MRCluster \
 --template-body file://mr-cluster.yaml

Individuazione di identificatori di cluster

Recuperare gli ID delle risorse fisiche dei cluster:

aws cloudformation describe-stack-resources -region us-east-2 \
 --stack-name MRCluster \
 --query 'StackResources[].PhysicalResourceId'
[
 "auabudrks5jwh4mjt6o5xxhr4y"
]

aws cloudformation describe-stack-resources -region us-east-1 \
 --stack-name MRCluster \
 --query 'StackResources[].PhysicalResourceId'
[
 "imabudrfon4p2z3nv2jo4rlajm"
]

Aggiornamento della configurazione di un cluster

Aggiornare il modello AWS CloudFormation per includere entrambi gli ARN del cluster:

Resources:
 MRCluster:
 Type: AWS::DSQL::Cluster
 Properties:
 DeletionProtectionEnabled: true
 MultiRegionProperties:
 WitnessRegion: us-west-2
 Clusters:
 - arn:aws:dsql:us-east-2:123456789012:cluster/auabudrks5jwh4mjt6o5xxhr4y

Individuazione di cluster 198

Amazon Aurora DSQL Guida per l’utente

 - arn:aws:dsql:us-east-1:123456789012:cluster/imabudrfon4p2z3nv2jo4rlajm

Applicare la configurazione aggiornata a entrambe le regioni:

aws cloudformation update-stack --region us-east-2 \
 --stack-name MRCluster \
 --template-body file://mr-cluster.yaml

aws cloudformation update-stack --region us-east-1 \
 --stack-name MRCluster \
 --template-body file://mr-cluster.yaml

Ciclo di vita del cluster Aurora DSQL

Comprendere il ciclo di vita del cluster Aurora DSQL aiuta a gestire i cluster in modo efficace. Questo
capitolo tratta le definizioni dello stato dei cluster e la funzionalità di scalabilità a zero che ottimizza i
costi.

Definizione dello stato del cluster Aurora DSQL

Lo stato del cluster Aurora DSQL fornisce informazioni critiche sullo stato e la connettività del cluster.
È possibile visualizzare lo stato dei cluster e delle istanze del cluster utilizzando l' Console di gestione
AWS API SQL di Aurora o Aurora. AWS CLI

La tabella seguente descrive ogni stato possibile per un cluster Aurora DSQL e il significato di ogni
stato.

Status Description

Creazione in
corso

Aurora DSQL sta tentando di creare o configurare risorse per il cluster. Qualsiasi
tentativo di connessione fallirà mentre un cluster si trova in questo stato.

Attivo Il cluster è operativo e pronto per l’uso.

Sospeso Un cluster diventa inattivo quando rimane inattivo abbastanza a lungo da
consentire ad Aurora DSQL di ridimensionare le risorse in esecuzione per
ridurre capacità e costi. Quando ci si connette a un cluster in stato sospeso,
Aurora DSQL riporta il cluster allo stato Attivo.

Ciclo di vita del cluster Aurora DSQL 199

Amazon Aurora DSQL Guida per l’utente

Status Description

Inattivo Un cluster inattivo diventa inattivo quando non vi è stata alcuna attività sul
cluster per un periodo prolungato. In questo stato di sospensione, le risorse in
esecuzione vengono ridimensionate a zero mentre i dati vengono preservat
i. Quando si tenta di connettersi a un cluster inattivo, Aurora DSQL riporta
automaticamente il cluster allo stato Attivo. Il tempo di ripristino dipende dalla
dimensione del cluster.

Aggiornam
ento in corso

Un cluster passa allo stato di Aggiornamento in corso quando si apportano
modifiche alla configurazione del cluster.

Eliminazione in
corso

Un cluster passa allo stato Eliminazione in corso quando si invia una richiesta di
eliminazione.

Eliminato Il cluster è stato eliminato correttamente.

Non riuscito Aurora DSQL non è riuscita a creare il cluster perché ha rilevato un errore.

In attesa di
configurazione

Solo per cluster multi-Regione. Un cluster multi-Regione passa allo stato di In
attesa di configurazione quando si crea un cluster multi-Regione nella prima
Regione con una Regione testimone. La creazione del cluster viene sospesa
fino a quando non si crea un altro cluster in una Regione secondaria e si esegue
il peering dei due cluster.

In attesa di
eliminazione

Solo per cluster multi-Regione. Un cluster multi-Regione passa allo stato In
attesa di eliminazione quando si elimina uno dei suoi cluster. Il cluster passa allo
stato di Eliminazione in corso dopo l’eliminazione dell’ultimo cluster in peering.

Utilizzo di cluster inattivi e inattivi

Quando Aurora DSQL non rileva alcuna attività di connessione su un cluster per un certo periodo di
tempo, passa allo stato di inattività, riducendo le risorse in esecuzione per ridurre al minimo capacità
e costi. Se l'attività di connessione rimane assente per un periodo prolungato, il cluster Idle passa
automaticamente allo stato Inattivo, in cui le risorse in esecuzione vengono ridimensionate a zero
mentre i dati vengono preservati.

Stati del cluster 200

Amazon Aurora DSQL Guida per l’utente

Per riprendere le normali operazioni, è sufficiente connettersi al cluster come di consueto. Quando ci
si connette correttamente al cluster, Aurora Aurora DSQL passa automaticamente il cluster allo stato
Attivo.

Note

Il primo tentativo di connessione a un cluster inattivo o inattivo sarà più lento del solito.

Operazioni che richiedono lo stato attivo del cluster

Alcune operazioni richiedono che il cluster sia in uno stato Attivo. Per eseguire queste operazioni su
un cluster inattivo o inattivo, è necessario riportare il cluster ad Active semplicemente connettendosi
al cluster.

Operazioni di backup

L'esecuzione di un backup richiede uno stato attivo del cluster. Se il cluster è inattivo o inattivo, i
backup falliranno con il seguente errore:

"Error": {
 "Code": "FailedPrecondition",
 "Message": "Cluster 'cluster-id' is in state 'IDLE' and cannot be backed up.
 In order to take a backup of your cluster, it must be in Active state. Please
 connect to your cluster to transition it to Active to perform the backup."
}

Per procedere con un backup:

1. Connect al cluster utilizzando il client di database preferito o la console Aurora DSQL per
riattivarlo.

2. Attendi la transizione automatica allo stato Attivo.

3. Avvia il backup una volta che il cluster è completamente operativo.

Note

I backup esistenti eseguiti prima della transizione del cluster a inattivo o inattivo rimangono
validi e inalterati. I nuovi tentativi di backup sul cluster falliranno finché il cluster non sarà
connesso per la riattivazione automatica.

Stati del cluster 201

Amazon Aurora DSQL Guida per l’utente

Visualizzazione dello stato del cluster Aurora DSQL

Per visualizzare lo stato del cluster, usa l'API SQL Console di gestione AWS di Aurora o Aurora.
AWS CLI

Console

Segui questi passaggi per visualizzare lo stato del cluster nella Console di gestione AWS:

Visualizzazione dello stato di un cluster mediante la console

1. Apri la console di Aurora DSQL all’indirizzo https://console.aws.amazon.com/dsql.

2. Nel pannello di navigazione, scegliere Cluster.

3. Visualizza lo stato di ogni cluster nel pannello di controllo.

AWS CLI

Usa il AWS CLI comando seguente per controllare lo stato di un singolo cluster.

aws dsql get-cluster --identifier cluster-id --query status --output text

Per visualizzare lo stato di tutti i cluster, esegui il seguente comando.

for id in $(aws dsql list-clusters --query 'clusters[*].identifier' --output text); do

 cluster_status=$(aws dsql get-cluster --identifier "$id" --query 'status' --output
 text)
 echo "$id $cluster_status"
done

Questo output di esempio mostra due cluster attivi e un cluster che è in fase di eliminazione.

aaabbb2bkx555xa7p42qd5cdef ACTIVE
abcde123efghi77t35abcdefgh ACTIVE
12abc6lqasc5bbbbbbbbbbbbbb DELETING

Visualizzazione degli stati del cluster 202

https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

Programmazione con Aurora DSQL
Aurora DSQL offre i seguenti strumenti per gestire le risorse Aurora DSQL a livello di
programmazione.

AWS Command Line Interface(AWS CLI)

Puoi creare e gestire le tue risorse utilizzando la shell AWS CLI a riga di comando. AWS
CLIFornisce l'accesso diretto al modulo APIs Servizi AWS, come Aurora DSQL. Per la sintassi e
gli esempi dei comandi per Aurora DSQL, consulta dsql nella Guida di riferimento ai comandi di
AWS CLI.

AWSkit di sviluppo software () SDKs

AWSfornisce SDKs molte tecnologie e linguaggi di programmazione popolari. Semplificano le
chiamate Servizi AWS dall'interno delle applicazioni in quel linguaggio o tecnologia. Per ulteriori
informazioni al riguardo SDKs, consulta Strumenti per lo sviluppo e la gestione di applicazioni su
AWS.

API di Aurora DSQL

Questa API è un’altra interfaccia di programmazione per Aurora DSQL. Quando si utilizza questa
API, è necessario formattare correttamente ogni richiesta HTTPS e aggiungere una firma digitale
valida a ogni richiesta. Per ulteriori informazioni, consulta Guida di riferimento alle API.

CloudFormation

AWS::DSQL::ClusterSi tratta di una CloudFormation risorsa che consente di creare e gestire i
cluster Aurora DSQL come parte dell'infrastruttura sotto forma di codice. CloudFormationti aiuta a
definire l'intero AWS ambiente in codice, semplificando il provisioning, l'aggiornamento e la replica
dell'infrastruttura in modo coerente e affidabile.

Quando utilizzi la AWS::DSQL::Cluster risorsa nei tuoi CloudFormation modelli, puoi effettuare il
provisioning dichiarativo dei cluster Aurora DSQL insieme alle altre risorse cloud. Questo aiuta
a garantire che l’infrastruttura dei dati venga distribuita e gestita insieme al resto dello stack di
applicazioni.

Connettori per Aurora DSQL
Aurora DSQL fornisce connettori specializzati che estendono i driver di database esistenti per
consentire l'autenticazione e l'integrazione IAM senza interruzioni con i servizi. AWS Questi

Connettori 203

https://docs.aws.amazon.com/cli/latest/reference/dsql
https://aws.amazon.com/developer/tools/
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dsql-cluster.html

Amazon Aurora DSQL Guida per l’utente

connettori sono progettati per funzionare con i linguaggi e i framework di programmazione più diffusi,
pur mantenendo la compatibilità con i flussi di lavoro PostgreSQL esistenti.

Sono previsti connettori aggiuntivi per le versioni future. Per le informazioni più recenti sulla
disponibilità dei connettori, consulta l’archivio di esempi per Aurora DSQL.

Connessione ai cluster Aurora DSQL con un connettore JDBC

L'Aurora DSQL Connector per JDBC è progettato come un plug-in di autenticazione che estende
la funzionalità del driver JDBC PostgreSQL per consentire alle applicazioni di autenticarsi con
Aurora DSQL utilizzando le credenziali IAM. Il connettore non si connette direttamente al database,
ma fornisce un’autenticazione IAM senza semplificata in aggiunta al driver JDBC PostgreSQL
sottostante.

Il connettore Aurora DSQL per JDBC è progettato per funzionare con il driver JDBC PostgreSQL e
offre una perfetta integrazione con i requisiti di autenticazione IAM di Aurora DSQL.

Oltre al driver JDBC PostgreSQL, il connettore Aurora DSQL per JDBC consente l'autenticazione
basata su IAM per Aurora DSQL. Introduce una profonda integrazione con servizi di autenticazione
come (IAM). AWS AWS Identity and Access Management

Informazioni sul connettore

Aurora DSQL è un servizio di database SQL distribuito che offre disponibilità e scalabilità elevate per
applicazioni compatibili con PostgreSQL. Aurora DSQL richiede l’autenticazione basata su IAM con
token a tempo limitato che i driver JDBC esistenti non supportano nativamente.

L'idea principale alla base di Aurora DSQL Connector per JDBC è aggiungere un livello di
autenticazione al driver JDBC PostgreSQL che gestisce la generazione di token IAM, permettendo
agli utenti di connettersi ad Aurora DSQL senza modificare i flussi di lavoro JDBC esistenti.

Che cos’è l’autenticazione di Aurora DSQL?

In Aurora DSQL, l’autenticazione prevede:

• Autenticazione IAM: tutte le connessioni utilizzano l’autenticazione basata su IAM con token a
tempo limitato

• Generazione di token: AWS i token di autenticazione vengono generati utilizzando credenziali e
hanno una durata configurabile

Connettore JDBC 204

https://github.com/aws-samples/aurora-dsql-samples
https://github.com/pgjdbc/pgjdbc
https://github.com/pgjdbc/pgjdbc
https://aws.amazon.com/iam/

Amazon Aurora DSQL Guida per l’utente

Il connettore Aurora DSQL per JDBC è progettato per comprendere questi requisiti e generare
automaticamente token di autenticazione IAM quando si stabiliscono connessioni.

Vantaggi del connettore Aurora DSQL per JDBC

Sebbene Aurora DSQL fornisca un’interfaccia compatibile con PostgreSQL, i driver PostgreSQL
esistenti attualmente non supportano i requisiti di autenticazione IAM di Aurora DSQL. L'Aurora
DSQL Connector per JDBC consente ai clienti di continuare a utilizzare i flussi di lavoro PostgreSQL
esistenti abilitando al contempo l'autenticazione IAM tramite:

• Generazione automatica di token: i token IAM vengono generati automaticamente utilizzando le
credenziali AWS

• Integrazione perfetta: funziona con i modelli di connessione JDBC esistenti

• AWS Supporto credenziali: supporta vari provider di AWS credenziali (predefiniti, basati sul profilo,
ecc.)

Utilizzo del connettore Aurora DSQL per JDBC con pool di connessioni

Il connettore Aurora DSQL per JDBC funziona con librerie di connection pooling come HikariCP.
Il connettore gestisce la generazione di token IAM durante la creazione della connessione,
consentendo ai pool di connessioni di funzionare normalmente.

Funzionalità principali

Generazione automatica di token

I token IAM vengono generati automaticamente utilizzando le credenziali. AWS

Integrazione perfetta

Funziona con gli schemi di connessione JDBC esistenti senza richiedere modifiche al flusso di
lavoro.

AWS Supporto per le credenziali

Supporta vari provider di AWS credenziali (predefiniti, basati sul profilo, ecc.).

Compatibilità della gestione di pool di connessioni

Funziona perfettamente con le librerie di gestione dei pool di connessioni come HikariCP.

Connettore JDBC 205

Amazon Aurora DSQL Guida per l’utente

Prerequisiti

Prima di cominciare, assicurarsi che i seguenti requisiti preliminari siano soddisfatti:

• Creazione di un cluster in Aurora DSQL.

• Installazione di Java Development Kit (JDK). Verifica della disponibilità della versione 17 o
superiore.

• Configurazione delle autorizzazioni IAM appropriate per consentire all’applicazione di connettersi
ad Aurora DSQL.

• AWS credenziali configurate (tramite AWS CLI variabili di ambiente o ruoli IAM).

Utilizzo del connettore Aurora DSQL per JDBC

Per utilizzare il connettore Aurora DSQL per JDBC nella tua applicazione Java, procedi nel seguente
modo:

1. Aggiungere la seguente dipendenza Maven al progetto:

<dependencies>
 <!-- Aurora DSQL Connector for JDBC -->
 <dependency>
 <groupId>software.amazon.dsql</groupId>
 <artifactId>aurora-dsql-jdbc-connector</artifactId>
 <version>1.0.0</version>
 </dependency>
</dependencies>

Per i progetti Gradle, aggiungere questa dipendenza:

implementation("software.amazon.dsql:aurora-dsql-jdbc-connector:1.0.0")

2. Crea una connessione di base al tuo cluster Aurora DSQL utilizzando il formato del connettore
DSQL AWS PostgreSQL:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

Connettore JDBC 206

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html

Amazon Aurora DSQL Guida per l’utente

public class DsqlJdbcConnectorExample {
 public static void main(String[] args) {
 // Using AWS DSQL PostgreSQL Connector prefix
 String jdbcUrl = "jdbc:aws-dsql:postgresql://your-cluster.dsql.us-
east-1.on.aws/postgres?user=admin";

 try (Connection connection = DriverManager.getConnection(jdbcUrl)) {
 // Use the connection
 try (Statement statement = connection.createStatement()) {
 // Create a table
 statement.execute("CREATE TABLE IF NOT EXISTS test_table (id UUID
 PRIMARY KEY DEFAULT gen_random_uuid(), name VARCHAR(100))");

 // Insert data
 statement.execute("INSERT INTO test_table (name) VALUES ('Test
 Name')");

 // Query data
 try (ResultSet resultSet = statement.executeQuery("SELECT * FROM
 test_table")) {
 while (resultSet.next()) {
 System.out.println("ID: " + resultSet.getInt("id") + ",
 Name: " + resultSet.getString("name"));
 }
 }
 }

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

Proprietà della configurazione

Il connettore Aurora DSQL per JDBC supporta le seguenti proprietà di connessione:

user

Determina l’utente per la connessione e il metodo di generazione del token utilizzato. Ad esempio:
admin

Connettore JDBC 207

Amazon Aurora DSQL Guida per l’utente

token-duration-secs

Durata in secondi della validità del token. Per maggiori informazioni sui limiti dei token, consulta
Generazione di un token di autenticazione in Amazon Aurora DSQL.

profile

Utilizzato per creare un'istanza di una generazione di token ProfileCredentialsProvider for con il
nome di profilo fornito.

region

AWS regione per le connessioni Aurora DSQL. Facoltativo. Se fornita, sostituirà la Regione
estratta dall’URL.

database

Il nome del database a cui connettersi. Il valore predefinito è postgres.

Registrazione dei log

Abilita la registrazione per risolvere eventuali problemi che si potrebbero riscontrare durante l’utilizzo
del connettore JDBC di Aurora DSQL.

Il connettore utilizza il sistema di registrazione dei log integrato (java.util.logging) di Java. È possibile
configurare i livelli di registrazione creando un file logging.properties:

Set root logger level to INFO for clean output
.level = INFO

Show Aurora DSQL Connector for JDBC FINE logs for detailed debugging
software.amazon.dsql.level = FINE

Console handler configuration
handlers = java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level = FINE
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

Detailed formatter pattern with timestamp and logger name
java.util.logging.SimpleFormatter.format = %1$tH:%1$tM:%1$tS.%1$tL [%4$s] %3$s - %5$s%n

Esempi

Per esempi e casi d'uso più completi, consulta l'archivio Aurora DSQL Connector for JDBC

Connettore JDBC 208

https://github.com/awslabs/aurora-dsql-jdbc-connector?tab=readme-ov-file#examples

Amazon Aurora DSQL Guida per l’utente

Connettore Aurora DSQL per Python

Il connettore Aurora DSQL per Python integra l'autenticazione IAM per connettere le applicazioni
Python ai cluster DSQL di Amazon Aurora. Internamente, utilizza le librerie client psycopg, psycopg2
e asyncpg.

L'Aurora DSQL Connector per Python è progettato come un plug-in di autenticazione che estende
la funzionalità delle librerie client psycopg, psycopg2 e asyncpg per consentire alle applicazioni di
autenticarsi con Amazon Aurora DSQL utilizzando credenziali IAM. Il connettore non si connette
direttamente al database ma fornisce un'autenticazione IAM senza interruzioni in aggiunta alle librerie
client sottostanti.

Informazioni sul connettore

Amazon Aurora DSQL è un servizio di database SQL distribuito che offre disponibilità e scalabilità
elevate per applicazioni compatibili con PostgreSQL. Aurora DSQL richiede l'autenticazione basata
su IAM con token a tempo limitato che le librerie Python esistenti non supportano nativamente.

L'idea alla base di Aurora DSQL Connector for Python è quella di aggiungere un livello di
autenticazione alle librerie client psycopg, psycopg2 e asyncpg che gestiscono la generazione di
token IAM, permettendo agli utenti di connettersi ad Aurora DSQL senza modificare i flussi di lavoro
esistenti.

Che cos’è l’autenticazione di Aurora DSQL?

In Aurora DSQL, l’autenticazione prevede:

• Autenticazione IAM: tutte le connessioni utilizzano l’autenticazione basata su IAM con token a
tempo limitato

• Generazione di token: i token di autenticazione vengono generati utilizzando credenziali AWS e
hanno una durata configurabile

Il connettore Aurora DSQL per Python è progettato per comprendere questi requisiti e generare
automaticamente token di autenticazione IAM quando si stabiliscono connessioni.

Funzionalità

• Autenticazione IAM automatica: i token IAM vengono generati automaticamente utilizzando le
credenziali AWS

• Basato su psycopg, psycopg2 e asyncpg, sfrutta le librerie client psycopg, psycopg2 e asyncpg

Connettore Python 209

https://github.com/MagicStack/asyncpg
https://github.com/psycopg/psycopg2
https://github.com/psycopg/psycopg
https://github.com/MagicStack/asyncpg
https://github.com/psycopg/psycopg2
https://github.com/psycopg/psycopg

Amazon Aurora DSQL Guida per l’utente

• Integrazione perfetta: funziona con i pattern di connessione psycopg, psycopg2 e asyncpg esistenti
senza richiedere modifiche al flusso di lavoro

• Region Auto-Discovery: estrae la regione AWS dal nome host del cluster DSQL
• AWS Credentials Support: supporta vari provider di credenziali AWS (predefiniti, basati su profili,

personalizzati)
• Compatibilità con il pool di connessioni: funziona con il pool di connessioni integrato psycopg,

psycopg2 e asyncpg

Guida rapida di avvio

Requisiti

• Python 3.10 o versioni successive
• Accesso a un cluster Aurora DSQL
• Configurazione delle autorizzazioni IAM appropriate per consentire all’applicazione di connettersi

ad Aurora DSQL.
• Credenziali AWS configurate (tramite CLI AWS, variabili di ambiente o ruoli IAM)

Installazione

pip install aurora-dsql-python-connector

Installa psycopg o psycopg2 o asyncpg separatamente

Il programma di installazione di Aurora DSQL Connector for Python non installa le librerie sottostanti.
Devono essere installate separatamente, ad esempio:

Install psycopg and psycopg pool
pip install "psycopg[binary,pool]"

Install psycopg2
pip install psycopg2-binary

Install asyncpg
pip install asyncpg

Nota:

Connettore Python 210

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html

Amazon Aurora DSQL Guida per l’utente

È necessario installare solo la libreria necessaria. Pertanto, se il client intende utilizzare psycopg,
deve essere installato solo psycopg. Se il client intende utilizzare psycopg2, è necessario installare
solo psycopg2. Se il client intende utilizzare asyncpg, deve essere installato solo asyncpg.

Se il client ne ha bisogno di più di una, è necessario installare tutte le librerie necessarie.

Utilizzo di base

psicocopia

 import aurora_dsql_psycopg as dsql

 config = {
 'host': "your-cluster.dsql.us-east-1.on.aws",
 'region': "us-east-1",
 'user': "admin",
 }

 conn = dsql.connect(**config)
 with conn.cursor() as cur:
 cur.execute("SELECT 1")
 result = cur.fetchone()
 print(result)

psycopg2

 import aurora_dsql_psycopg2 as dsql

 config = {
 'host': "your-cluster.dsql.us-east-1.on.aws",
 'region': "us-east-1",
 'user': "admin",
 }

 conn = dsql.connect(**config)
 with conn.cursor() as cur:
 cur.execute("SELECT 1")
 result = cur.fetchone()
 print(result)

asyncpg

 import asyncio

Connettore Python 211

Amazon Aurora DSQL Guida per l’utente

 import aurora_dsql_asyncpg as dsql

 config = {
 'host': "your-cluster.dsql.us-east-1.on.aws",
 'region': "us-east-1",
 'user': "admin",
 }

 conn = await dsql.connect(**config)
 result = await conn.fetchrow("SELECT 1")
 await conn.close()
 print(result)

Usando just host

psicocopia

 import aurora_dsql_psycopg as dsql

 conn = dsql.connect("your-cluster.dsql.us-east-1.on.aws")

psycopg2

 import aurora_dsql_psycopg2 as dsql

 conn = dsql.connect("your-cluster.dsql.us-east-1.on.aws")

asyncpg

 import asyncio
 import aurora_dsql_asyncpg as dsql

 conn = await dsql.connect("your-cluster.dsql.us-east-1.on.aws")

Utilizzando solo l'ID del cluster

psicocopia

 import aurora_dsql_psycopg as dsql

Connettore Python 212

Amazon Aurora DSQL Guida per l’utente

 conn = dsql.connect("your-cluster")

psycopg2

 import aurora_dsql_psycopg2 as dsql

 conn = dsql.connect("your-cluster")

asyncpg

 import asyncio
 import aurora_dsql_asyncpg as dsql

 conn = await dsql.connect("your-cluster")

Nota:

Nello scenario «using just cluster ID», viene utilizzata la regione precedentemente impostata sulla
macchina, ad esempio:

aws configure set region us-east-1

Se la regione non è stata impostata o l'ID del cluster specificato si trova in una regione diversa, la
connessione avrà esito negativo. Per farlo funzionare, fornisci la regione come parametro come
nell'esempio seguente:

psicocopia

 import aurora_dsql_psycopg as dsql

 config = {
 "region": "us-east-1",
 }

 conn = dsql.connect("your-cluster", **config)

psycopg2

 import aurora_dsql_psycopg2 as dsql

Connettore Python 213

Amazon Aurora DSQL Guida per l’utente

 config = {
 "region": "us-east-1",
 }

 conn = dsql.connect("your-cluster", **config)

asyncpg

 import asyncio
 import aurora_dsql_asyncpg as dsql

 config = {
 "region": "us-east-1",
 }

 conn = await dsql.connect("your-cluster", **config)

Stringa di connessione

psicocopia

 import aurora_dsql_psycopg as dsql

 conn = dsql.connect("postgresql://your-cluster.dsql.us-east-1.on.aws/postgres?
user=admin&token_duration_secs=15")

psycopg2

 import aurora_dsql_psycopg2 as dsql

 conn = dsql.connect("postgresql://your-cluster.dsql.us-east-1.on.aws/postgres?
user=admin&token_duration_secs=15")

asyncpg

 import asyncio
 import aurora_dsql_asyncpg as dsql

 conn = await dsql.connect("postgresql://your-cluster.dsql.us-east-1.on.aws/
postgres?user=admin&token_duration_secs=15")

Connettore Python 214

Amazon Aurora DSQL Guida per l’utente

Configurazione avanzata

psicocopia

 import aurora_dsql_psycopg as dsql

 config = {
 'host': "your-cluster.dsql.us-east-1.on.aws",
 'region': "us-east-1",
 'user': "admin",
 "profile": "default",
 "token_duration_secs": "15",
 }

 conn = dsql.connect(**config)
 with conn.cursor() as cur:
 cur.execute("SELECT 1")
 result = cur.fetchone()
 print(result)

psycopg2

 import aurora_dsql_psycopg2 as dsql

 config = {
 'host': "your-cluster.dsql.us-east-1.on.aws",
 'region': "us-east-1",
 'user': "admin",
 "profile": "default",
 "token_duration_secs": "15",
 }

 conn = dsql.connect(**config)
 with conn.cursor() as cur:
 cur.execute("SELECT 1")
 result = cur.fetchone()
 print(result)

asyncpg

 import asyncio
 import aurora_dsql_asyncpg as dsql

Connettore Python 215

Amazon Aurora DSQL Guida per l’utente

 config = {
 'host': "your-cluster.dsql.us-east-1.on.aws",
 'region': "us-east-1",
 'user': "admin",
 "profile": "default",
 "token_duration_secs": "15",
 }

 conn = await dsql.connect(**config)
 result = await conn.fetchrow("SELECT 1")
 await conn.close()
 print(result)

Opzioni di configurazione

Opzione Tipo Campo
obbligato
rio

Descrizione

host string Sì nome host o ID del cluster DSQL

user string No Nome utente DSQL. Predefinito: admin

dbname string No Nome del database. Predefinito: postgres

region string No Regione AWS (rilevata automaticamente dal
nome host se non fornita)

port int No L'impostazione predefinita è 5432

custom_cr
edentials
_provider

Credentia
lProvider

No Provider di credenziali AWS personalizzate

profile string No Il nome del profilo IAM. Predefinito: predefini
to.

token_dur
ation_secs

int No Tempo di scadenza del token in secondi

Connettore Python 216

Amazon Aurora DSQL Guida per l’utente

Sono supportate anche tutte le opzioni di connessione standard delle librerie psycopg, psycopg2
e asyncpg sottostanti, ad eccezione dei parametri asyncpg krbsrvname e gsslib che non sono
supportati da DSQL.

Utilizzo del connettore Aurora DSQL per Python con pool di connessioni

Il connettore Aurora DSQL per Python funziona con il pool di connessioni integrato psycopg,
psycopg2 e asyncpg. Il connettore gestisce la generazione di token IAM durante la creazione della
connessione, consentendo ai pool di connessioni di funzionare normalmente.

psicocopia

Per psycopg, il connettore implementa una classe di connessione denominata DSQLConnection
che può essere passata direttamente a psycopg_pool. ConnectionPool costruttore. Per le operazioni
asincrone, esiste anche una versione asincrona della classe denominata Connection. DSQLAsync

 from psycopg_pool import ConnectionPool as PsycopgPool

 ...
 pool = PsycopgPool(
 "",
 connection_class=dsql.DSQLConnection,
 kwargs=conn_params,
 min_size=2,
 max_size=8,
 max_lifetime=3300
)

Nota: configurazione max_lifetime di Connection

Il parametro max_lifetime deve essere impostato su meno di 3600 secondi (un'ora), poiché questa
è la durata massima della connessione consentita dal database Aurora DSQL. L'impostazione di un
valore max_lifetime inferiore consente al pool di connessioni di gestire in modo proattivo il riciclo delle
connessioni, il che è più efficiente della gestione degli errori di timeout di connessione dal database.

psycopg2

Per psycopg2, il connettore fornisce una classe denominata DSQLThreaded ConnectionPool Aurora
che eredita da psycopg2.pool. ThreadedConnectionPool. La DSQLThreaded ConnectionPool
classe Aurora sovrascrive solo il metodo interno _connect. Il resto dell'implementazione è fornito da
psycopg2.pool. ThreadedConnectionPool immutato.

Connettore Python 217

Amazon Aurora DSQL Guida per l’utente

 import aurora_dsql_psycopg2 as dsql

 pool = dsql.AuroraDSQLThreadedConnectionPool(
 minconn=2,
 maxconn=8,
 **conn_params,
)

asincrono

Per asyncpg, il connettore fornisce una funzione create_pool che restituisce un'istanza di
Asyncpg.Pool.

 import asyncio
 import os

 import aurora_dsql_asyncpg as dsql

 pool_params = {
 'host': "your-cluster.dsql.us-east-1.on.aws",
 'user': "admin",
 "min_size": 2,
 "max_size": 5,
 }

 pool = await dsql.create_pool(**pool_params)

Autenticazione

Il connettore gestisce automaticamente l'autenticazione DSQL generando token utilizzando
il generatore di token client DSQL. Se la regione AWS non viene fornita, verrà analizzata
automaticamente a partire dal nome host fornito.

Per ulteriori informazioni sull'autenticazione in Aurora DSQL, consulta la guida per l'utente.

Amministratore e utenti regolari

• Gli utenti nominati utilizzano "admin" automaticamente i token di autenticazione
dell'amministratore

• Tutti gli altri utenti utilizzano token di autenticazione non amministrativi
• I token vengono generati dinamicamente per ogni connessione

Connettore Python 218

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html

Amazon Aurora DSQL Guida per l’utente

Esempi

Per un codice di esempio completo, fate riferimento agli esempi indicati nelle sezioni seguenti. Per
istruzioni su come eseguire gli esempi, fate riferimento ai file READMDE di esempio.

psicocopia

Esempi README

Description Esempi

Utilizzo del connettore
Aurora DSQL per Python
per connessioni di base

Esempio di connessione di base

Utilizzo del connettore
Aurora DSQL per Python
per connessioni asincrone
di base

Esempio di connessione asincrona di base

Utilizzo del connettore
Aurora DSQL per Python
con pool di connessioni

Esempio di connessione di base con pool di connessioni

Esempio di connessioni simultanee con pool di connessioni

Utilizzo del connettore
Aurora DSQL per Python
con pool di connessioni
asincrone

Esempio di connessione di base con pool di connessioni asincrone

psycopg2

Esempi README

Connettore Python 219

https://github.com/awslabs/aurora-dsql-python-connector/blob/main/examples/psycopg/README.md
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/psycopg/src/example.py
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/psycopg/src/example_async.py
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/psycopg/src/example_with_connection_pool.py
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/psycopg/src/example_with_connection_pool_concurrent.py
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/psycopg/src/example_with_connection_pool_async.py
https://github.com/awslabs/aurora-dsql-python-connector/blob/main/examples/psycopg2/README.md

Amazon Aurora DSQL Guida per l’utente

Description Esempi

Utilizzo del connettore
Aurora DSQL per Python
per connessioni di base

Esempio di connessione di base

Utilizzo del connettore
Aurora DSQL per Python
con pool di connessioni

Esempio di connessione di base con pool di connessioni

Esempio di connessioni simultanee con pool di connessioni

asyncpg

Esempi README

Description Esempi

Utilizzo del connettore
Aurora DSQL per Python
per connessioni di base

Esempio di connessione di base

Utilizzo del connettore
Aurora DSQL per Python
con pool di connessioni

Esempio di connessione di base con pool di connessioni

Esempio di connessioni simultanee con pool di connessioni

Connettori Aurora DSQL per Node.js

Aurora DSQL Connector per node-postgres e Aurora DSQL Connector per Postgres.js sono plugin
di autenticazione che estendono la funzionalità dei client node-postgres e Postgres.js per consentire
alle applicazioni di autenticarsi con Aurora DSQL utilizzando le credenziali IAM.

Connettori Node.js 220

https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/psycopg2/src/example.py
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/psycopg2/src/example_with_connection_pool.py
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/psycopg2/src/example_with_connection_pool_concurrent.py
https://github.com/awslabs/aurora-dsql-python-connector/blob/main/examples/asyncpg/README.md
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/asyncpg/src/example.py
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/asyncpg/src/example_with_connection_pool.py
https://github.com/awslabs/aurora-dsql-python-connector/tree/main/examples/asyncpg/src/example_with_connection_pool_concurrent.py

Amazon Aurora DSQL Guida per l’utente

Connettore Aurora DSQL per node-postgres

Il connettore Aurora DSQL per node-postgres è un connettore Node.js basato su node-postgres
che integra l'autenticazione IAM per connettere le applicazioni ai cluster DSQL di Amazon Aurora.
JavaScript/TypeScript

L'Aurora DSQL Connector è progettato come un plug-in di autenticazione che estende la funzionalità
del client e del pool di node-postgres per consentire alle applicazioni di autenticarsi con Amazon
Aurora DSQL utilizzando credenziali IAM.

Informazioni sul connettore

Amazon Aurora DSQL è un database distribuito nativo del cloud con compatibilità PostgreSQL.
Sebbene richieda l'autenticazione IAM e token temporizzati, i driver di database Node.js tradizionali
non dispongono di questo supporto integrato.

Il connettore Aurora DSQL per node-postgres colma questa lacuna implementando un middleware
di autenticazione che funziona perfettamente con node-postgres. Questo approccio consente agli
sviluppatori di mantenere il codice node-postgres esistente ottenendo al contempo un accesso sicuro
basato su IAM ai cluster Aurora DSQL attraverso la gestione automatizzata dei token.

Che cos’è l’autenticazione di Aurora DSQL?

In Aurora DSQL, l’autenticazione prevede:

• Autenticazione IAM: tutte le connessioni utilizzano l’autenticazione basata su IAM con token a
tempo limitato

• Generazione di token: i token di autenticazione vengono generati utilizzando credenziali AWS e
hanno una durata configurabile

Il connettore Aurora DSQL per node-postgres è progettato per comprendere questi requisiti e
generare automaticamente token di autenticazione IAM quando si stabiliscono connessioni.

Funzionalità

• Autenticazione IAM automatica: gestisce la generazione e l'aggiornamento dei token DSQL
• Basato su node-postgres: sfrutta il popolare client PostgreSQL per Node.js
• Integrazione perfetta: funziona con i modelli di connessione node-postgres esistenti
• Region Auto-Discovery: estrae la regione AWS dal nome host del cluster DSQL

Connettori Node.js 221

https://node-postgres.com/
https://node-postgres.com/

Amazon Aurora DSQL Guida per l’utente

• Full TypeScript Support - Fornisce una sicurezza completa
• AWS Credentials Support: supporta vari provider di credenziali AWS (predefiniti, basati su profili,

personalizzati)
• Compatibilità con il pool di connessioni: funziona perfettamente con il pool di connessioni integrato

Applicazione di esempio

Nell'esempio è inclusa un'applicazione di esempio che mostra come utilizzare Aurora DSQL
Connector per node-postgres. Per eseguire l'esempio incluso, fai riferimento all'esempio README.

Guida rapida all'avvio

Requisiti

• Node.js 20+
• Accesso a un cluster Aurora DSQL
• Configurazione delle autorizzazioni IAM appropriate per consentire all’applicazione di connettersi

ad Aurora DSQL.
• Credenziali AWS configurate (tramite CLI AWS, variabili di ambiente o ruoli IAM)

Installazione

npm install @aws/aurora-dsql-node-postgres-connector

Dipendenze tra pari

npm install @aws-sdk/credential-providers @aws-sdk/dsql-signer pg tsx
npm install --save-dev @types/pg

Utilizzo

Connessione client

import { AuroraDSQLClient } from "@aws/aurora-dsql-node-postgres-connector";

const client = new AuroraDSQLClient({
 host: "<CLUSTER_ENDPOINT>",
 user: "admin",

Connettori Node.js 222

https://github.com/awslabs/aurora-dsql-nodejs-connector/tree/main/packages/node-postgres/example
https://github.com/awslabs/aurora-dsql-nodejs-connector/blob/main/packages/node-postgres/example/README.md
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html

Amazon Aurora DSQL Guida per l’utente

});
await client.connect();
const result = await client.query("SELECT NOW()");
await client.end();

Connessione al pool

import { AuroraDSQLPool } from "@aws/aurora-dsql-node-postgres-connector";

const pool = new AuroraDSQLPool({
 host: "<CLUSTER_ENDPOINT>",
 user: "admin",
 max: 3,
 idleTimeoutMillis: 60000,
});

const result = await pool.query("SELECT NOW()");

Utilizzo avanzato

import { fromNodeProviderChain } from "@aws-sdk/credential-providers";
import { AuroraDSQLClient } from "@aws/aurora-dsql-node-postgres-connector";

const client = new AuroraDSQLClient({
 host: "example.dsql.us-east-1.on.aws",
 user: "admin",
 customCredentialsProvider: fromNodeProviderChain(), // Optionally provide custom
 credentials provider
});

await client.connect();
const result = await client.query("SELECT NOW()");
await client.end();

Opzioni di configurazione

Opzione Tipo Campo
obbligato
rio

Descrizione

host string Sì Nome host del cluster DSQL

Connettori Node.js 223

Amazon Aurora DSQL Guida per l’utente

Opzione Tipo Campo
obbligato
rio

Descrizione

username string Sì nome utente DSQL

database string No Nome del database

region string No Regione AWS (rilevata automatic
amente dal nome host se non
fornita)

port number No L'impostazione predefinita è 5432

customCre
dentialsP
rovider

AwsCredentialIdent
ity / AwsCredentialIdent
ityProvider

No Provider di credenziali AWS
personalizzate

profile string No Il nome del profilo IAM. L'imposta
zione predefinita è «default»

tokenDura
tionSecs

number No Tempo di scadenza del token in
secondi

Tutti gli altri parametri di Client/Pool sono supportati.

Autenticazione

Il connettore gestisce automaticamente l'autenticazione DSQL generando token utilizzando
il generatore di token client DSQL. Se la regione AWS non viene fornita, verrà analizzata
automaticamente a partire dal nome host fornito.

Per ulteriori informazioni sull'autenticazione in Aurora DSQL, consulta la guida per l'utente.

Amministratore e utenti regolari

• Gli utenti denominati «admin» utilizzano automaticamente i token di autenticazione
dell'amministratore

• Tutti gli altri utenti utilizzano token di autenticazione regolari
• I token vengono generati dinamicamente per ogni connessione

Connettori Node.js 224

https://node-postgres.com/apis/pool
https://node-postgres.com/apis/client
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html

Amazon Aurora DSQL Guida per l’utente

Connettore Aurora DSQL per Postgres.js

Il connettore Aurora DSQL per Postgres.js è un connettore Node.js basato su Postgres.js che integra
l'autenticazione IAM per connettere le applicazioni ai cluster DSQL di JavaScript Amazon Aurora.

Il connettore Aurora DSQL per Postgres.js è progettato come un plug-in di autenticazione che
estende la funzionalità del client Postgres.js per consentire alle applicazioni di autenticarsi con
Amazon Aurora DSQL utilizzando credenziali IAM. Il connettore non si connette direttamente al
database, ma fornisce un'autenticazione IAM senza interruzioni in aggiunta al driver Postgres.js
sottostante.

Informazioni sul connettore

Amazon Aurora DSQL è un servizio di database SQL distribuito che offre disponibilità e scalabilità
elevate per applicazioni compatibili con PostgreSQL. Aurora DSQL richiede l'autenticazione basata
su IAM con token a tempo limitato che i driver Node.js esistenti non supportano in modo nativo.

L'idea alla base del connettore Aurora DSQL per Postgres.js consiste nell'aggiungere un livello di
autenticazione al client Postgres.js che gestisce la generazione di token IAM, permettendo agli utenti
di connettersi ad Aurora DSQL senza modificare i flussi di lavoro Postgres.js esistenti.

Il connettore Aurora DSQL per Postgres.js funziona con la maggior parte delle versioni di Postgres.js.
Gli utenti forniscono la propria versione installando direttamente Postgres.js.

Che cos’è l’autenticazione di Aurora DSQL?

In Aurora DSQL, l’autenticazione prevede:

• Autenticazione IAM: tutte le connessioni utilizzano l’autenticazione basata su IAM con token a
tempo limitato

• Generazione di token: i token di autenticazione vengono generati utilizzando credenziali AWS e
hanno una durata configurabile

Il connettore Aurora DSQL per Postgres.js è progettato per comprendere questi requisiti e generare
automaticamente token di autenticazione IAM quando si stabiliscono connessioni.

Funzionalità

• Autenticazione IAM automatica: gestisce la generazione e l'aggiornamento dei token DSQL
• Basato su Postgres.js: sfrutta il veloce client PostgreSQL per Node.js
• Integrazione perfetta: funziona con i modelli di connessione Postgres.js esistenti

Connettori Node.js 225

https://github.com/porsager/postgres

Amazon Aurora DSQL Guida per l’utente

• Region Auto-Discovery: estrae la regione AWS dal nome host del cluster DSQL
• Full TypeScript Support - Fornisce una sicurezza completa
• AWS Credentials Support: supporta vari provider di credenziali AWS (predefiniti, basati su profili,

personalizzati)
• Compatibilità con il pool di connessioni: funziona perfettamente con il pool di connessioni integrato

di Postgres.js

Guida rapida di avvio

Requisiti

• Node.js 20+
• Accesso a un cluster Aurora DSQL
• Configurazione delle autorizzazioni IAM appropriate per consentire all’applicazione di connettersi

ad Aurora DSQL.
• Credenziali AWS configurate (tramite CLI AWS, variabili di ambiente o ruoli IAM)

Installazione

npm install @aws/aurora-dsql-postgresjs-connector
Postgres.js is a peer-dependency, so users must install it themselves
npm install postgres

Utilizzo di base

import { auroraDSQLPostgres } from '@aws/aurora-dsql-postgresjs-connector';

const sql = auroraDSQLPostgres({
 host: 'your-cluster.dsql.us-east-1.on.aws',
 username: 'admin',

});

// Execute queries
const users = await sql`SELECT * FROM users WHERE age > ${25}`;
console.log(users);

// Clean up
await sql.end();

Connettori Node.js 226

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html

Amazon Aurora DSQL Guida per l’utente

Utilizzo dell'ID del cluster anziché dell'host

const sql = auroraDSQLPostgres({
 host: 'your-cluster-id',
 region: 'us-east-1',
 username: 'admin',

});

Stringa di connessione

const sql = AuroraDSQLPostgres(
 'postgres://admin@your-cluster.dsql.us-east-1.on.aws'
);

const result = await sql`SELECT current_timestamp`;

Configurazione avanzata

import { fromNodeProviderChain } from '@aws-sdk/credential-providers';

const sql = AuroraDSQLPostgres({
 host: 'your-cluster.dsql.us-east-1.on.aws',
 database: 'postgres',
 username: 'admin',
 customCredentialsProvider: fromNodeProviderChain(), // Optionally provide custom
 credentials provider
 tokenDurationSecs: 3600, // Token expiration (seconds)

 // Standard Postgres.js options
 max: 20, // Connection pool size
 ssl: { rejectUnauthorized: false } // SSL configuration
});

Opzioni di configurazione

Opzione Tipo Campo
obbligato
rio

Descrizione

host string Sì Nome host o ID del cluster DSQL

Connettori Node.js 227

Amazon Aurora DSQL Guida per l’utente

Opzione Tipo Campo
obbligato
rio

Descrizione

database string? No Nome del database

username string? No Nome utente del database (utilizza admin
se non fornito)

region string? No Regione AWS (rilevata automaticamente
dal nome host se non fornita)

customCre
dentialsP
rovider

AwsCreden
tialIdent
ityProvider?

No Provider di credenziali AWS personali
zzate

tokenDura
tionSecs

number? No Tempo di scadenza del token in secondi

Sono supportate anche tutte le opzioni standard di Postgres.js.

Autenticazione

Il connettore gestisce automaticamente l'autenticazione DSQL generando token utilizzando
il generatore di token client DSQL. Se la regione AWS non viene fornita, verrà analizzata
automaticamente a partire dal nome host fornito.

Per ulteriori informazioni sull'autenticazione in Aurora DSQL, consulta la guida per l'utente.

Amministratore e utenti regolari

• Gli utenti denominati «admin» utilizzano automaticamente i token di autenticazione
dell'amministratore

• Tutti gli altri utenti utilizzano token di autenticazione regolari
• I token vengono generati dinamicamente per ogni connessione

Esempio di utilizzo

Un JavaScript esempio di utilizzo del connettore Aurora DSQL per Postgres.js è disponibile qui.

Connettori Node.js 228

https://github.com/porsager/postgres?tab=readme-ov-file#connection-details
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html
example

Amazon Aurora DSQL Guida per l’utente

Accesso ad Aurora DSQL con client compatibili con PostgreSQL

Aurora DSQL utilizza il protocollo wire PostgreSQL. Puoi connetterti a PostgreSQL utilizzando una
varietà di strumenti e client, AWS CloudShell come psql e. DBeaver DataGrip La tabella seguente
riassume il modo in cui Aurora DSQL mappa i parametri di connessione PostgreSQL comuni:

PostgreSQL Aurora DSQL Note

Ruolo (noto anche come
Utente o Gruppo)

Ruolo di database Aurora DSQL crea un ruolo denominato
admin. Quando si creano ruoli di database
personalizzati, è necessario utilizzare il ruolo
admin per associarli ai ruoli IAM per l’autenti
cazione durante la connessione al cluster.
Per maggiori informazioni, consulta Configura
zione dei ruoli di database personalizzati.

Host (noto anche come
hostname o hostspec)

Endpoint del
cluster

I cluster Aurora DSQL a Regione singola
forniscono un unico endpoint gestito e
reindirizzano automaticamente il traffico
in caso di indisponibilità all’interno della
Regione.

Porta N/A: utilizzare
l’impostazione
predefinita 5432

Questa è l’impostazione predefinita di
PostgreSQL.

Database (dbname) Utilizza postgres Aurora DSQL crea questo database alla
creazione del cluster.

Modalità SSL SSL è sempre
abilitato lato server

Aurora DSQL supporta la modalità SSL
require. Le connessioni senza SSL
vengono rifiutate da Aurora DSQL.

Password Token di autentica
zione

Aurora DSQL richiede token di autenticazione
temporanei anziché password di lunga durata.
Per ulteriori informazioni, consulta Generazio
ne di un token di autenticazione in Amazon
Aurora DSQL.

Accedi a Aurora SQL 229

https://www.postgresql.org/docs/current/protocol.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html

Amazon Aurora DSQL Guida per l’utente

Durante la connessione, Aurora DSQL richiede un token di autenticazione IAM firmato al posto di una
password tradizionale. Questi token temporanei vengono generati utilizzando la versione 4 di AWS
Signature e vengono utilizzati solo durante la creazione della connessione. Una volta connessa, la
sessione rimane attiva fino al termine o alla disconnessione del client.

Se si tenta di aprire una nuova sessione con un token scaduto, la richiesta di connessione fallisce e
deve essere generato un nuovo token. Per ulteriori informazioni, consulta Generazione di un token di
autenticazione in Amazon Aurora DSQL.

Accedi ad Aurora DSQL utilizzando client SQL

Aurora DSQL supporta più client compatibili con PostgreSQL per la connessione al cluster. Le sezioni
seguenti descrivono come connettersi utilizzando PostgreSQL AWS CloudShell con o la riga di
comando locale, oltre a strumenti basati su GUI come and. DBeaver JetBrains DataGrip Ogni client
richiede un token di autenticazione valido come descritto nella sezione precedente.

Argomenti

• AWS CloudShellDa utilizzare per accedere ad Aurora DSQL con il terminale interattivo PostgreSQL
(psql)

• Usa la CLI locale per accedere ad Aurora DSQL con il terminale interattivo PostgreSQL (psql)

• Utilizzare DBeaver per accedere ad Aurora DSQL

• Utilizzare JetBrains DataGrip per accedere ad Aurora DSQL

• risoluzione dei problemi

AWS CloudShellDa utilizzare per accedere ad Aurora DSQL con il terminale
interattivo PostgreSQL (psql)

Utilizzare la seguente procedura per accedere ad Aurora DSQL con il terminale interattivo
PostgreSQL da. AWS CloudShell Per ulteriori informazioni, consulta Cos'è. AWS CloudShell

Per connettersi utilizzando AWS CloudShell

1. Accedi alla console Aurora DSQL.

2. Scegli il cluster per il quale desideri aprire. CloudShell Se non è ancora stato creato un cluster,
segui i passaggi indicati in Passo 1: Creazione di cluster Aurora DSQL a Regione singola o
Creazione di un cluster multi-Regione.

3. Scegli Connetti con Query Editor, quindi scegli Connetti con CloudShell.

Client SQL 230

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_authentication-token.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html
https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

4. Scegli se vuoi connetterti come amministratore o con un ruolo di database personalizzato.

5. Scegli Avvia CloudShell e scegli Esegui nella finestra di CloudShell dialogo seguente.

Usa la CLI locale per accedere ad Aurora DSQL con il terminale interattivo
PostgreSQL (psql)

Usapsql, un front-end basato su terminale per PostgreSQL, per inserire in modo interattivo le query,
inviarle a PostgreSQL e visualizzare i risultati delle query.

Note

Per migliorare i tempi di risposta alle query, utilizzare il client PostgreSQL versione 17. Se usi
la CLI in un ambiente diverso, assicurati di configurare manualmente Python versione 3.8+ e
psql versione 14+.

Scarica il programma di installazione specifico per il tuo sistema operativo dalla pagina dei download
di PostgreSQL. Per ulteriori informazionipsql, vedere Applicazioni client PostgreSQL sul sito Web
PostgreSQL.

Se lo hai già AWS CLI installato, usa il seguente esempio per connetterti al tuo cluster.

Aurora DSQL requires a valid IAM token as the password when connecting.
Aurora DSQL provides tools for this and here we're using Python.
export PGPASSWORD=$(aws dsql generate-db-connect-admin-auth-token \
 --region us-east-1 \
 --expires-in 3600 \
 --hostname your_cluster_endpoint)

Aurora DSQL requires SSL and will reject your connection without it.
export PGSSLMODE=require

Connect with psql, which automatically uses the values set in PGPASSWORD and
 PGSSLMODE.
Quiet mode suppresses unnecessary warnings and chatty responses but still outputs
 errors.
psql --quiet \
 --username admin \
 --dbname postgres \

Accesso con la CLI locale 231

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-iam-role-connect
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/docs/current/app-psql.htm
https://www.postgresql.org/docs/current/app-psql.htm

Amazon Aurora DSQL Guida per l’utente

 --host your_cluster_endpoint

Utilizzare DBeaver per accedere ad Aurora DSQL

DBeaver è un client SQL universale che può essere utilizzato per gestire qualsiasi database dotato di
driver JDBC. È ampiamente utilizzato dagli sviluppatori e dagli amministratori di database grazie alle
sue solide capacità di visualizzazione, modifica e gestione dei dati. Utilizzando le opzioni DBeaver di
connettività cloud di Aurora, puoi connetterti DBeaver ad Aurora DSQL in modo nativo.

DBeaver I prodotti PRO (DBeaver Ultimate, DBeaver Team, CloudBeaver Enterprise e CloudBeaver
AWS) offrono l'integrazione nativa con Aurora DSQL a partire dalla versione 25.3 tramite un tipo di
connessione Aurora DSQL dedicato e tramite Cloud Explorer con un'esperienza di autenticazione
senza interruzioni.

Se utilizzi una DBeaver versione diversa, inclusa la DBeaver Community Edition, la versione
gratuita e open source, visita la pagina di download per le istruzioni di installazione. Usa la seguente
procedura per connetterti al tuo cluster.

Per configurare una nuova connessione Aurora DSQL in DBeaver

1. Scegli Nuova connessione al database.

2. Nella finestra Nuova connessione al database, scegli PostgreSQL.

3. Nella scheda Impostazioni di connessione/Principale, scegli Connect by: Host e inserisci le
seguenti informazioni:

• Host: utilizza l’endpoint del cluster.

Database: inserisci postgres

Autenticazione: seleziona Database Native

Nome utente: inserisci admin

Password: genera un token di autenticazione. Copia il token generato e usarlo come
password.

4. Ignora qualsiasi avviso e incolla il token di autenticazione nel campo Password. DBeaver

Accedi con DBeaver 232

https://dbeaver.com/dbeaver-ultimate/
https://dbeaver.com/dbeaver-team-edition/
https://dbeaver.com/cloudbeaver-enterprise/
https://aws.amazon.com/marketplace/pp/prodview-kijugxnqada5i
https://aws.amazon.com/marketplace/pp/prodview-kijugxnqada5i
https://dbeaver.io/download/
https://dbeaver.io/download/
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_authentication-token.html

Amazon Aurora DSQL Guida per l’utente

Note

È necessario impostare la modalità SSL nelle connessioni client. Aurora DSQL
supporta PGSSLMODE=require and PGSSLMODE=verify-full. Aurora DSQL
applica la comunicazione SSL lato server e rifiuta le connessioni non SSL. Per
l'verify-fullopzione è necessario installare i certificati SSL localmente. Per ulteriori
informazioni, consulta i certificati SSL/TLS.

5. È necessario essere connessi al cluster e iniziare a eseguire istruzioni SQL.

Important

Le funzionalità amministrative fornite dai DBeaver database PostgreSQL (come Session
Manager e Lock Manager) non si applicano ai database Aurora DSQL a causa della loro
architettura unica. Sebbene accessibili, queste schermate non forniscono informazioni
affidabili sullo stato o sullo stato del database.

Utilizzare JetBrains DataGrip per accedere ad Aurora DSQL

JetBrains DataGrip è un IDE multipiattaforma per lavorare con SQL e database, incluso PostgreSQL.
DataGrip include una robusta GUI con un editor SQL intelligente. Per scaricare DataGrip, vai alla
pagina di download sul JetBrainssito web.

Per configurare una nuova connessione Aurora DSQL in JetBrains DataGrip

1. Scegli Nuova origine dati e PostgreSQL.

2. Nella scheda Fonti dati/Generale, inserisci le seguenti informazioni:

• Host: utilizza l’endpoint del cluster.

Porta: Aurora DSQL utilizza l’impostazione predefinita di PostgreSQL 5432

Database: Aurora DSQL utilizza l’impostazione predefinita di PostgreSQL postgres

Autenticazione: seleziona User & Password .

Nome utente: inserisci admin.

Accedi con JetBrains DataGrip 233

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/configure-root-certificates.html
https://www.jetbrains.com/datagrip/download

Amazon Aurora DSQL Guida per l’utente

Password: genera un token e incollalo in questo campo.

URL: non modificare questo campo. Verrà compilato automaticamente in base agli altri
campi.

3. Password: forniscila generando un token di autenticazione. Copia l’output risultante dal
generatore di token e incollalo nel campo password.

Note

È necessario impostare la modalità SSL nelle connessioni client. Aurora DSQL
supporta PGSSLMODE=require and PGSSLMODE=verify-full. Aurora DSQL
applica la comunicazione SSL lato server e rifiuta le connessioni non SSL. Per
l'verify-fullopzione è necessario installare i certificati SSL localmente. Per ulteriori
informazioni, consulta i certificati SSL/TLS.

4. A questo punto è stabilita la connessione al cluster ed è possibile iniziare a eseguire le istruzioni
SQL:

Important

Alcune viste fornite dai DataGrip database PostgreSQL (come Sessions) non si applicano
ai database Aurora DSQL a causa della loro architettura unica. Sebbene accessibili, queste
schermate non forniscono informazioni affidabili sulle sessioni effettive connesse al database.

risoluzione dei problemi

Scadenza delle credenziali di autenticazione per i client SQL

Le sessioni stabilite rimangono autenticate per un massimo di 1 ora o fino alla disconnessione
esplicita o un timeout impostato lato client. Se è necessario stabilire nuove connessioni, è necessario
generare e fornire un nuovo token di autenticazione nel campo Password della connessione.
Il tentativo di aprire una nuova sessione (ad esempio, per elencare nuove tabelle o aprire una
nuova console SQL) impone un nuovo tentativo di autenticazione. Se il token di autenticazione
configurato nelle impostazioni della Connessione non è più valido, la nuova sessione fallisce e tutte
le sessioni aperte in precedenza vengono invalidate. Tienilo a mente quando scegli la durata del

risoluzione dei problemi 234

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_authentication-token.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/configure-root-certificates.html

Amazon Aurora DSQL Guida per l’utente

token di autenticazione IAM con l'expires-inopzione, che può essere impostata su 15 minuti per
impostazione predefinita e può essere impostata su un valore massimo di sette giorni.

Inoltre, consulta la sezione Risoluzione dei problemi della documentazione di Aurora DSQL.

Strumenti di connettività per i cluster Amazon Aurora DSQL

AWSfornisce vari strumenti per la connessione e l'utilizzo dei database Aurora DSQL. Questi
includono driver di database, librerie ORM e adattatori specializzati che facilitano agli sviluppatori la
creazione di applicazioni nel loro linguaggio di programmazione preferito.

Driver del database

La tabella seguente mostra i driver di database disponibili per la connessione diretta ad Aurora
DSQL.

Linguaggio di programmazione Driver Link al repository degli esempi

C++ libpq https://github.com/aws-sa
mples/aurora-dsql-samples/
tree/main/cpp/libpq

C# (.NET) Npgsql https://github.com/aws-sa
mples/aurora-dsql-samples/
tree/main/dotnet/npgsql

Go pgx https://github.com/aws-sa
mples/aurora-dsql-samples/
tree/main/go/pgx

Java pgJDBC https://github.com/aws-sa
mples/aurora-dsql-samples/
tree/main/java/pgjdbc

Java Connettore Aurora DSQL per
JDBC

https://github.com/awslabs/
aurora-dsql-jdbc-connector

JavaScript nodo postgres https://github.com/aws-samp
les/aurora-dsql-samples/-po

Strumenti di connettività per il database 235

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/troubleshooting.html
https://github.com/aws-samples/aurora-dsql-samples/tree/main/cpp/libpq
https://github.com/aws-samples/aurora-dsql-samples/tree/main/cpp/libpq
https://github.com/aws-samples/aurora-dsql-samples/tree/main/cpp/libpq
https://github.com/aws-samples/aurora-dsql-samples/tree/main/dotnet/npgsql
https://github.com/aws-samples/aurora-dsql-samples/tree/main/dotnet/npgsql
https://github.com/aws-samples/aurora-dsql-samples/tree/main/dotnet/npgsql
https://github.com/aws-samples/aurora-dsql-samples/tree/main/go/pgx
https://github.com/aws-samples/aurora-dsql-samples/tree/main/go/pgx
https://github.com/aws-samples/aurora-dsql-samples/tree/main/go/pgx
https://github.com/aws-samples/aurora-dsql-samples/tree/main/java/pgjdbc
https://github.com/aws-samples/aurora-dsql-samples/tree/main/java/pgjdbc
https://github.com/aws-samples/aurora-dsql-samples/tree/main/java/pgjdbc
https://github.com/awslabs/aurora-dsql-jdbc-connector
https://github.com/awslabs/aurora-dsql-jdbc-connector
https://github.com/aws-samples/aurora-dsql-samples/tree/main/javascript/node-postgres
https://github.com/aws-samples/aurora-dsql-samples/tree/main/javascript/node-postgres

Amazon Aurora DSQL Guida per l’utente

Linguaggio di programmazione Driver Link al repository degli esempi

stgres tree/main/javascript/
node

JavaScript Postgres.js https://github.com/aws-sa
mples/aurora-dsql-samples/
tree/main/javascript/postgres-
js

Python Psicocopia https://github.com/aws-sa
mples/aurora-dsql-samples/
tree/main/python/psycopg

Python Psycopg 2 https://github.com/aws-samp
les/aurora-dsql-samples/2
tree/main/python/psycopg

Ruby pg https://github.com/aws-sa
mples/aurora-dsql-samples/
tree/main/ruby/ruby-pg

Rust SQLx https://github.com/aws-sa
mples/aurora-dsql-samples/
tree/main/rust/sqlx

Librerie ORM (Object-Relational Mapping)

La tabella seguente mostra il codice di esempio per l’utilizzo di librerie ORM autonome con Aurora
DSQL.

Linguaggio di programmazione Libreria ORM Link al repository degli esempi

Java Ibernazione https://github.com/awslabs/
aurora-dsql-hibernate/tree/
main/examples/pet-app clinica

Librerie ORM 236

https://github.com/aws-samples/aurora-dsql-samples/tree/main/javascript/node-postgres
https://github.com/aws-samples/aurora-dsql-samples/tree/main/javascript/node-postgres
https://github.com/aws-samples/aurora-dsql-samples/tree/main/javascript/postgres-js
https://github.com/aws-samples/aurora-dsql-samples/tree/main/javascript/postgres-js
https://github.com/aws-samples/aurora-dsql-samples/tree/main/javascript/postgres-js
https://github.com/aws-samples/aurora-dsql-samples/tree/main/javascript/postgres-js
https://github.com/aws-samples/aurora-dsql-samples/tree/main/python/psycopg
https://github.com/aws-samples/aurora-dsql-samples/tree/main/python/psycopg
https://github.com/aws-samples/aurora-dsql-samples/tree/main/python/psycopg
https://github.com/aws-samples/aurora-dsql-samples/tree/main/python/psycopg2
https://github.com/aws-samples/aurora-dsql-samples/tree/main/python/psycopg2
https://github.com/aws-samples/aurora-dsql-samples/tree/main/python/psycopg2
https://github.com/aws-samples/aurora-dsql-samples/tree/main/ruby/ruby-pg
https://github.com/aws-samples/aurora-dsql-samples/tree/main/ruby/ruby-pg
https://github.com/aws-samples/aurora-dsql-samples/tree/main/ruby/ruby-pg
https://github.com/aws-samples/aurora-dsql-samples/tree/main/rust/sqlx
https://github.com/aws-samples/aurora-dsql-samples/tree/main/rust/sqlx
https://github.com/aws-samples/aurora-dsql-samples/tree/main/rust/sqlx
https://github.com/awslabs/aurora-dsql-hibernate/tree/main/examples/pet-clinic-app
https://github.com/awslabs/aurora-dsql-hibernate/tree/main/examples/pet-clinic-app
https://github.com/awslabs/aurora-dsql-hibernate/tree/main/examples/pet-clinic-app

Amazon Aurora DSQL Guida per l’utente

Linguaggio di programmazione Libreria ORM Link al repository degli esempi

Python SQLAlchemy https://github.com/awslabs/
aurora-dsql-sqlalchemy/tree/
main/examples/pet-app clinica

TypeScript Sequelizza https://github.com/aws-sa
mples/aurora-dsql-samples/
tree/main/typescript/sequelize

TypeScript Digitare ORM https://github.com/aws-samp
les/aurora-dsql-samples/-orm
tree/main/typescript/type

Adattatori e dialetti di Aurora DSQL

La tabella seguente mostra gli adattatori e i dialetti disponibili progettati specificamente per Aurora
DSQL.

Linguaggio di programmazione ORM/Framework Link al repository

Java Ibernazione https://github.com/awslabs/
aurora-dsql-hibernate/

Python Django https://github.com/awslabs/
aurora-dsql-django/

Python SQLAlchemy https://github.com/awslabs/
aurora-dsql-sqlalchemy/

AI generativa per Aurora DSQL

Questa sezione fornisce istruzioni dettagliate su come utilizzare gli strumenti di intelligenza artificiale
generativa con Aurora DSQL

Adattatori di Aurora DSQL 237

https://github.com/awslabs/aurora-dsql-sqlalchemy/tree/main/examples/pet-clinic-app
https://github.com/awslabs/aurora-dsql-sqlalchemy/tree/main/examples/pet-clinic-app
https://github.com/awslabs/aurora-dsql-sqlalchemy/tree/main/examples/pet-clinic-app
https://github.com/aws-samples/aurora-dsql-samples/tree/main/typescript/sequelize
https://github.com/aws-samples/aurora-dsql-samples/tree/main/typescript/sequelize
https://github.com/aws-samples/aurora-dsql-samples/tree/main/typescript/sequelize
https://github.com/aws-samples/aurora-dsql-samples/tree/main/typescript/type-orm
https://github.com/aws-samples/aurora-dsql-samples/tree/main/typescript/type-orm
https://github.com/aws-samples/aurora-dsql-samples/tree/main/typescript/type-orm
https://github.com/awslabs/aurora-dsql-hibernate/
https://github.com/awslabs/aurora-dsql-hibernate/
https://github.com/awslabs/aurora-dsql-django/
https://github.com/awslabs/aurora-dsql-django/
https://github.com/awslabs/aurora-dsql-sqlalchemy/
https://github.com/awslabs/aurora-dsql-sqlalchemy/

Amazon Aurora DSQL Guida per l’utente

Server MCP DSQL Aurora di AWS Labs

Un server MCP (Model Context Protocol) di AWS Labs per Aurora DSQL

Funzionalità

• Conversione di domande e comandi leggibili dall'uomo in query SQL strutturate compatibili con
Postgres ed esecuzione sul database Aurora DSQL configurato.

• Sola lettura per impostazione predefinita, transazioni abilitate con --allow-writes
• Riutilizzo della connessione tra le richieste per migliorare le prestazioni
• Accesso integrato alla documentazione, alla ricerca e ai consigli sulle best practice di Aurora DSQL

Strumenti disponibili

Operazioni del database

• readonly_query - Esegui query SQL di sola lettura sul tuo cluster DSQL
• transact - Esegue operazioni di scrittura in una transazione (richiede) --allow-writes
• get_schema - Recupera le informazioni sullo schema della tabella

Documentazione e raccomandazioni

• dsql_search_documentation - Cerca nella documentazione DSQL di Aurora
• Parametri: (obbligatorio), (opzionale) search_phrase limit

• dsql_read_documentation - Leggi pagine specifiche della documentazione DSQL
• Parametri: url (richiesto), (opzionale), start_index (opzionale) max_length

• dsql_recommend: ottieni consigli sulle migliori pratiche DSQL
• Parametri: (obbligatorio) url

Prerequisiti

1. Un account AWS con un cluster DSQL Aurora
2. Questo server MCP può essere eseguito solo localmente sullo stesso host del client LLM.
3. Configura le credenziali AWS con accesso ai servizi AWS

• È necessario un account AWS con un ruolo che includa queste autorizzazioni:
• dsql:DbConnectAdmin- Connect ai cluster DSQL come utente amministratore

Server MCP DSQL Aurora di AWS Labs 238

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/getting-started.html

Amazon Aurora DSQL Guida per l’utente

• dsql:DbConnect- Connect ai cluster DSQL con ruoli di database personalizzati (necessari
solo se si utilizzano utenti non amministratori)

• Configura le credenziali AWS con le nostre aws configure variabili di ambiente

Installazione

Per la maggior parte degli strumenti, dovrebbe essere sufficiente aggiornare la configurazione
seguendo le istruzioni di installazione predefinite.

Sono riportate istruzioni separate per Claude Code e Codex.

Installazione predefinita: aggiornamento del file di configurazione MCP pertinente

Uso di uv

1. Installa uv da Astral o dal README GitHub
2. Installa Python usando uv python install 3.10

Configurare il server MCP nella configurazione del client MCP (Finding the MCP Config File)

{
 "mcpServers": {
 "awslabs.aurora-dsql-mcp-server": {
 "command": "uvx",
 "args": [
 "awslabs.aurora-dsql-mcp-server@latest",
 "--cluster_endpoint",
 "[your dsql cluster endpoint, e.g. abcdefghijklmnopqrst234567.dsql.us-
east-1.on.aws]",
 "--region",
 "[your dsql cluster region, e.g. us-east-1]",
 "--database_user",
 "[your dsql username, e.g. admin]",
 "--profile",
 "default"
],
 "env": {
 "FASTMCP_LOG_LEVEL": "ERROR"
 },
 "disabled": false,
 "autoApprove": []

Server MCP DSQL Aurora di AWS Labs 239

https://docs.astral.sh/uv/getting-started/installation/
https://github.com/astral-sh/uv#installation

Amazon Aurora DSQL Guida per l’utente

 }
 }
}

Installazione di Windows

Per gli utenti Windows, il formato di configurazione del server MCP è leggermente diverso:

{
 "mcpServers": {
 "awslabs.aurora-dsql-mcp-server": {
 "disabled": false,
 "timeout": 60,
 "type": "stdio",
 "command": "uv",
 "args": [
 "tool",
 "run",
 "--from",
 "awslabs.aurora-dsql-mcp-server@latest",
 "awslabs.aurora-dsql-mcp-server.exe"
],
 "env": {
 "FASTMCP_LOG_LEVEL": "ERROR",
 "AWS_PROFILE": "your-aws-profile",
 "AWS_REGION": "us-east-1"
 }
 }
 }
}

Individuazione del file di configurazione del client MCP

Per alcuni degli strumenti di sviluppo Agentic più comuni, è possibile trovare le configurazioni dei
client MCP nei seguenti percorsi di file:

• Kiro:
• Config utente: ~/.kiro/settings/mcp.json
• Config dell'area di lavoro: /path/to/workspace/.kiro/settings/mcp.json

• Claude Code: fai riferimento a Claude Code Installation per una guida dettagliata alla
configurazione

Server MCP DSQL Aurora di AWS Labs 240

Amazon Aurora DSQL Guida per l’utente

• Config utente: in ~/.claude.json "mcpServers"
• Config del progetto: /path/to/project/.mcp.json
• Config locale: in ~/.claude.json "projects" -> "path/to/project" ->
"mcpServers"

• Cursore:
• Globale: ~/.cursor/mcp.json
• Progetto: /path/to/project/.cursor/mcp.json

• Codice: ~/.codex/config.toml
• Ogni server MCP è configurato con una [mcp_servers.<server-name>] tabella nel file di

configurazione. Consultate le istruzioni di installazione del Custom Codex
• Warp:

• Modifica dei file: ~/.warp/mcp_settings.json
• Application Editor: Settings > AI > Manage MCP Servers e incolla json

• CLI per sviluppatori di Amazon Q: ~/.aws/amazonq/mcp.json
• Cline: di solito un percorso VS Code annidato - ~/.vscode-server/path/to/
cline_mcp_settings.json

Codice Claude

Prerequisiti

Importante: la gestione del server MCP è disponibile solo tramite l'esperienza del terminale CLI di
Claude Code, non la modalità pannello nativa di VS Code.

Installa prima la CLI di Claude Code seguendo la procedura di installazione nativa consigliata da
Claude.

Scelta dell'ambito giusto

Claude Code offre 3 diversi ambiti: locale (predefinito), di progetto e utente e specifica quale ambito
scegliere in base alla sensibilità delle credenziali e alla necessità di condividere. Per maggiori
dettagli, consulta la documentazione di Claude Code sugli ambiti di installazione MCP.

1. I server con ambito locale rappresentano il livello di configurazione predefinito e sono memorizzati
nel ~/.claude.json percorso del progetto. Sono entrambi privati per te e accessibili solo
all'interno della directory corrente del progetto. Questa è l'impostazione predefinita per la scope
creazione di server MCP.

2. I server con ambito di progetto consentono la collaborazione in team pur rimanendo accessibili
solo in una directory di progetto. I server con ambito di progetto aggiungono un .mcp.json file

Server MCP DSQL Aurora di AWS Labs 241

https://code.claude.com/docs/en/setup#native-install-recommended
https://code.claude.com/docs/en/mcp#mcp-installation-scopes

Amazon Aurora DSQL Guida per l’utente

nella directory principale del progetto. Questo file è progettato per essere archiviato nel controllo
delle versioni, garantendo che tutti i membri del team abbiano accesso agli stessi strumenti e
servizi MCP. Quando aggiungi un server con ambito di progetto, Claude Code crea o aggiorna
automaticamente questo file con la struttura di configurazione appropriata.

3. I server con ambito utente vengono archiviati ~/.claude.json e forniscono accessibilità tra
progetti, rendendoli disponibili in tutti i progetti sul computer pur rimanendo privati per l'account
utente.

Utilizzo della CLI di Claude (consigliato)

L'utilizzo di una sessione claude CLI interattiva consente una migliore esperienza di risoluzione dei
problemi, quindi questo è il percorso consigliato.

claude mcp add amazon-aurora-dsql \
 --scope [one of local, project, or user] \
 --env FASTMCP_LOG_LEVEL="ERROR" \
 -- uvx "awslabs.aurora-dsql-mcp-server@latest" \
 --cluster_endpoint "[dsql-cluster-id].dsql.[region].on.aws" \
 --region "[dsql cluster region, eg. us-east-1]" \
 --database_user "[your-username]"

Risoluzione dei problemi: utilizzo di Claude Code con Bedrock su un altro account AWS

Se hai configurato Claude Code con un account o un profilo Bedrock AWS diverso dal profilo
necessario per connetterti al tuo cluster dsql, dovrai fornire argomenti di ambiente aggiuntivi:

 --env AWS_PROFILE="[dsql profile, eg. default]" \
 --env AWS_REGION="[dsql cluster region, eg. us-east-1]" \

Modifica diretta nel file di configurazione

Claude Code Richiede una denominazione alfanumerica, quindi ti consigliamo di assegnare un nome
al tuo server:. aurora-dsql-mcp-server

Ambito locale

Aggiornamento ~/.claude.json all'interno del campo specifico del progettomcpServers:

Server MCP DSQL Aurora di AWS Labs 242

Amazon Aurora DSQL Guida per l’utente

{
 "projects": {
 "/path/to/project": {
 "mcpServers": {}
 }
 }
}

Ambito del progetto

Aggiornamento sul /path/to/project/root/.mcp.json campo: mcpServers

{
 "mcpServers": {}
}

Ambito dell'utente

Aggiornamento ~/.claude.json all'interno del campo specifico del progetto: mcpServers

{
 "mcpServers": {}
}

Codex

Opzione 1: Codex CLI

Se hai installato la CLI Codex, puoi usare il comando codex mcp per configurare i tuoi server MCP.

codex mcp add amazon-aurora-dsql \
 --env FASTMCP_LOG_LEVEL="ERROR" \
 -- uvx "awslabs.aurora-dsql-mcp-server@latest" \
 --cluster_endpoint "[dsql-cluster-id].dsql.[region].on.aws" \
 --region "[dsql cluster region, eg. us-east-1]" \
 --database_user "[your-username]"

Server MCP DSQL Aurora di AWS Labs 243

Amazon Aurora DSQL Guida per l’utente

Opzione 2: config.toml

Per un controllo più preciso sulle opzioni del server MCP, puoi modificare manualmente il
file di configurazione. ~/.codex/config.toml Ogni server MCP è configurato con una
[mcp_servers.<server-name>] tabella nel file di configurazione.

[mcp_servers.amazon-aurora-dsql]
command = "uvx"
args = [
 "awslabs.aurora-dsql-mcp-server@latest",
 "--cluster_endpoint", "<DSQL_CLUSTER_ID>.dsql.<AWS_REGION>.on.aws",
 "--region", "<AWS_REGION>",
 "--database_user", "<DATABASE_USERNAME>"
]

[mcp_servers.amazon-aurora-dsql.env]
FASTMCP_LOG_LEVEL = "ERROR"

Verifica dell'installazione

Per Amazon Q Developer CLI, Kiro CLI, CLI/TUI, or Codex CLI/TUI Claude, /mcp esegui per vedere
lo stato del server MCP.

Per l'IDE Kiro, puoi anche accedere alla MCP SERVERS scheda del pannello Kiro che mostra tutti i
server MCP configurati e i relativi indicatori di stato della connessione.

Opzioni di configurazione del server

--allow-writes

Per impostazione predefinita, il server dsql mcp non consente operazioni di scrittura («modalità di
sola lettura»). Qualsiasi richiamo dello strumento transact avrà esito negativo in questa modalità. Per
utilizzare lo strumento di transazione, consenti le scritture passando il parametro. --allow-writes

Si consiglia di utilizzare l'accesso con privilegi minimi per la connessione a DSQL. Ad esempio, gli
utenti devono utilizzare un ruolo di sola lettura quando possibile. La modalità di sola lettura prevede
l'applicazione sul lato client del massimo impegno per rifiutare le mutazioni.

Server MCP DSQL Aurora di AWS Labs 244

Amazon Aurora DSQL Guida per l’utente

--cluster_endpoint

Questo è un parametro obbligatorio per specificare il cluster a cui connettersi. Questo dovrebbe
essere l'endpoint completo del cluster, ad esempio 01abc2ldefg3hijklmnopqurstu.dsql.us-
east-1.on.aws

--database_user

Questo è un parametro obbligatorio per specificare l'utente con cui connettersi. Ad esempio admin o
my_user. Tieni presente che le credenziali AWS che stai utilizzando devono avere l'autorizzazione
per accedere come tale utente. Per ulteriori informazioni sulla configurazione e l'utilizzo dei ruoli del
database in DSQL, consulta Using database roles with IAM roles.

--profile

Puoi specificare il profilo aws da utilizzare per le tue credenziali. Nota che questo non è supportato
per l'installazione dei docker.

È supportato anche l'utilizzo della variabile di AWS_PROFILE ambiente nella configurazione MCP:

"env": {
 "AWS_PROFILE": "your-aws-profile"
}

Se non viene fornito nessuno dei due, il server MCP utilizza per impostazione predefinita il profilo
«predefinito» nel file di configurazione AWS.

--region

Questo è un parametro obbligatorio per specificare la regione del database DSQL.

--knowledge-server

Parametro opzionale per specificare l'endpoint del server MCP remoto per gli strumenti di
conoscenza DSQL (ricerca della documentazione, lettura e consigli). Per impostazione predefinita, è
preconfigurato.

Esempio:

Server MCP DSQL Aurora di AWS Labs 245

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html

Amazon Aurora DSQL Guida per l’utente

--knowledge-server https://custom-knowledge-server.example.com

Nota: per motivi di sicurezza, utilizza solo endpoint Knowledge Server affidabili. Il server deve essere
un endpoint HTTPS.

--knowledge-timeout

Parametro opzionale per specificare il timeout in secondi per le richieste al knowledge server.

Impostazione predefinita: 30.0

Esempio:

--knowledge-timeout 60.0

Aumentate questo valore se si verificano dei timeout durante l'accesso alla documentazione su reti
lente.

Inizia a usare Aurora DSQL Query Editor
Con Aurora DSQL Query Editor, puoi connetterti in modo sicuro ai tuoi cluster Aurora DSQL ed
eseguire query SQL direttamente dalla console di gestione senza installare o configurare client
esterni. AWS Fornisce uno spazio di lavoro intuitivo con evidenziazione della sintassi integrata,
completamento automatico e assistenza intelligente del codice. È possibile esplorare rapidamente gli
oggetti dello schema, sviluppare ed eseguire query SQL e visualizzare i risultati, il tutto all'interno di
un'unica interfaccia.

Questo argomento illustra i passaggi per connettersi a un cluster, eseguire query, visualizzare i
risultati ed esplorare funzionalità avanzate come i piani di esecuzione.

Note

L'editor di query è disponibile in tutte le regioni in cui è supportato Aurora DSQL. Per ulteriori
informazioni, consulta AWSRegional Services.

Prerequisiti

Prima di iniziare, assicurati di soddisfare i seguenti requisiti:

Editor della query 246

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Amazon Aurora DSQL Guida per l’utente

• È disponibile almeno un cluster Aurora DSQL. Per ulteriori informazioni, consulta Passo 1:
Creazione di cluster Aurora DSQL a Regione singola.

• L'endpoint del cluster è accessibile pubblicamente. L'editor di query attualmente non supporta i
cluster con accesso pubblico bloccato da policy basate su risorse o cluster gestiti tramite endpoint
VPC. Per ulteriori informazioni, consultare Blocco dell'accesso pubblico con politiche basate sulle
risorse in Aurora DSQL e Gestione e connessione ai cluster SQL di Amazon Aurora tramite AWS
PrivateLink.

• Il tuo utente o ruolo IAM dispone delle autorizzazioni necessarie per accedere e connettersi al
cluster. Per ulteriori informazioni, consulta Utilizzo dei ruoli del database e dell’autenticazione IAM.

Lavorare con il Query Editor

Aprire l'editor di query

Per aprire l'editor di query

1. Apri la console Aurora DSQL.

2. Nel pannello di navigazione, scegliere Editor della query.

In alternativa, dalla pagina Cluster, seleziona il cluster su cui desideri interrogare e scegli Connect
with Query editor per avviare direttamente l'editor.

Note

Lo stato di lavoro e di connessione non vengono salvati. Se si esce dalla console Aurora
DSQL, si chiude la scheda del browser o si esce, le connessioni, il testo della query e i
risultati vengono persi.

Connessione a un cluster

Per connettersi a un cluster

1. Se non esiste alcuna connessione al cluster, l'editor visualizza Nessun cluster è stato connesso.
Scegli Connetti o seleziona + (Aggiungi) nel riquadro Cluster Explorer per connetterti a un cluster
esistente.

2. (Facoltativo) Connettiti a più cluster o allo stesso cluster utilizzando ruoli diversi.

Lavorare con il Query Editor 247

https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

Esplora gli oggetti del cluster

Cluster Explorer visualizza tutte le connessioni al cluster disponibili e consente di sfogliare oggetti
come database, schemi, tabelle e viste. Fornisce inoltre azioni comuni come Aggiorna, Crea tabella e
altre opzioni specifiche del contesto.

Esecuzione di query

Per eseguire una query

1. Nel riquadro della scheda dell'editor di query, inserisci l'istruzione SQL. Esempio:

SELECT * FROM public.orders LIMIT 10;

2. Verifica il contesto del cluster attivo visualizzato nella parte superiore destra della scheda di
interrogazione. Ciò indica la connessione al cluster associata alla scheda di interrogazione
corrente.

3. (Facoltativo) Utilizza il menu a discesa delle connessioni per esaminare tutte le connessioni
disponibili o passare a un cluster diverso. La modifica della connessione aggiorna il punto in cui
vengono eseguite le query in quella scheda.

4. Scegli Esegui per eseguire la query.

Note

Ogni query può restituire fino a 10.000 righe nel riquadro dei risultati. Per set di dati più
grandi, perfeziona la query con filtri o limiti.

Rivedi i risultati e i piani di esecuzione

Dopo l'esecuzione della query, esaminate l'output nel pannello Risultati nella parte inferiore
dell'editor. Per impostazione predefinita, a ogni esecuzione di query viene visualizzata la scheda
Risultati (tabella), che mostra l'output delle query in formato tabulare.

Per ottenere il piano di esecuzione delle query, esegui EXPLAIN ANALYZE o EXPLAIN ANALYZE
VERBOSE per ottenere ulteriori informazioni sulle prestazioni delle query. Per ulteriori informazioni,
consulta Leggere i piani di Aurora DSQL EXPLAIN.

Lavorare con il Query Editor 248

Amazon Aurora DSQL Guida per l’utente

Tip

Il EXPLAIN ANALYZE VERBOSE comando visualizza le stime sull'utilizzo della DPU, inclusi
i valori Compute, Read, Write e Total DPU, fornendo una visibilità immediata delle risorse
utilizzate dalle singole istruzioni SQL.

Editor di query: utilizzo JupyterLab con Aurora DSQL

Questa guida fornisce step-by-step istruzioni su come connettersi e interrogare Amazon Aurora
DSQL utilizzando Python. JupyterLab JupyterLab è un popolare ambiente informatico interattivo
che combina codice, testo e visualizzazioni in un unico documento. È ampiamente utilizzato per la
scienza dei dati e le applicazioni di ricerca.

Le istruzioni seguenti illustreranno le basi dell'utilizzo di Aurora DSQL sia nell'installazione locale che
nell'utilizzo di SageMaker Amazon AI, un servizio JupyterLab di machine learning completamente
gestito che fornisce un ambiente ospitato con un'interfaccia utente per i flussi di lavoro di dati.

Nozioni di base

Requisiti

• Un cluster Aurora DSQL
• Credenziali AWS configurate (solo installazione locale)
• Python versione 3.9 o successiva (solo installazione locale)

Utilizzo locale JupyterLab

Per iniziare JupyterLab, gli utenti devono prima installare l'applicazione usando il pip di Python:

pip install jupyterlab

JupyterLab può quindi essere aperto eseguendo. jupyter lab Questo aprirà l'
JupyterLabapplicazione su localhost:8888, accessibile in un browser. Assicurati di avere le
credenziali AWS configurate nel tuo ambiente locale prima di procedere.

Editor di query: utilizzo JupyterLab con Aurora DSQL 249

Amazon Aurora DSQL Guida per l’utente

Utilizzo di Amazon SageMaker AI

Nella console AWS, vai alla pagina della console Amazon SageMaker AI e quindi alla sezione
Notebook in Applicazioni e. IDEs Da lì puoi selezionare Crea un'istanza di notebook per iniziare a
creare un ambiente. SageMaker Seleziona un tipo di istanza e una piattaforma prima di fare clic su
Crea istanza notebook.

Consulta la documentazione sulla configurazione di Amazon SageMaker AI per ulteriori informazioni
sulle opzioni di configurazione e istanza.

Note

Avviso: l'utilizzo di Amazon SageMaker AI può comportare addebiti sul tuo account AWS.

Una volta che l' SageMaker istanza diventa attiva, puoi aprirla dalla sezione Notebook instances
con Apri JupyterLab. Prima di iniziare a utilizzare Aurora DSQL sul notebook, è necessario fornire
l'accesso al cluster DSQL nel ruolo IAM dell' SageMaker istanza. Il modo più semplice per farlo
è seguire il link al ruolo IAM nella pagina dell'istanza del notebook. Da lì puoi modificare le policy
allegate al tuo ruolo SageMaker IAM. Vedi Autenticazione e autorizzazione per ulteriori informazioni
sulla configurazione di una policy IAM per consentire l'accesso ad Aurora DSQL.

Connessione ad Aurora DSQL tramite JupyterLab

Dopo aver configurato un' JupyterLab istanza, i passaggi per connettersi ad Aurora DSQL sono gli
stessi a livello locale e in AI. SageMaker Crea un taccuino Python 3 vuoto, in cui puoi aggiungere
celle con codice Python.

In una cella Python, scarica il certificato root di Amazon dal trust store ufficiale:

import urllib.request
urllib.request.urlretrieve('https://www.amazontrust.com/repository/AmazonRootCA1.pem',
 'root.pem')

Per connetterti ad Aurora DSQL, installa prima il connettore Aurora DSQL per Python e il driver
Psycopg in una cella Python, quindi importalo:

pip install aurora_dsql_python_connector psycopg

Nozioni di base 250

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html
https://github.com/awslabs/aurora-dsql-python-connector
https://github.com/awslabs/aurora-dsql-python-connector

Amazon Aurora DSQL Guida per l’utente

import aurora_dsql_psycopg as dsql

Con il connettore importato, puoi quindi creare una configurazione DSQL e connetterti. Il connettore
Python Aurora DSQL gestirà automaticamente la creazione di un token di autenticazione su ogni
connessione.

config = {
 'host': "your-cluster.dsql.us-east-1.on.aws",
 'region': "us-east-1",
 'user': "admin"
 }

conn = dsql.connect(**config)

Dopo aver eseguito il codice, ora dovresti avere una connessione Psycopg ad Aurora DSQL. È
quindi possibile eseguire query utilizzando il cursore Psycopg e fornendo la query SQL. Consulta
la documentazione di Psycopg per ulteriori informazioni sull'uso di Psycopg con un database
compatibile con Postgres. Questa query risulterà in un elenco di tuple in. results_list

with conn:
 with conn.cursor() as cur:
 cur.execute("SELECT * FROM table")
 results_list = cur.fetchall()

È quindi possibile utilizzare framework Python come Pandas per analizzare o visualizzare i risultati
delle query, ad esempio:

pip install pandas

import pandas as pd

df = pd.DataFrame(tuples_list)
print(df)
print(f"Total records: {len(df)}")

Notebook di esempio

Un notebook di esempio che utilizza Aurora DSQL è disponibile nell'archivio degli esempi Aurora
DSQL.

Notebook di esempio 251

https://www.psycopg.org/psycopg3/docs/
https://pandas.pydata.org/
https://github.com/aws-samples/aurora-dsql-samples/tree/main/python/jupyter/sample.ipynb
https://github.com/aws-samples/aurora-dsql-samples/tree/main/python/jupyter/sample.ipynb

Amazon Aurora DSQL Guida per l’utente

Approfondimenti

Documentazione sulla configurazione di Amazon SageMaker AI

Connettore Aurora DSQL per Python

Documentazione Pandas

Approfondimenti 252

https://docs.aws.amazon.com/sagemaker/latest/dg/gs-setup-working-env.html
https://github.com/awslabs/aurora-dsql-python-connector
https://pandas.pydata.org/docs/user_guide/index.html

Amazon Aurora DSQL Guida per l’utente

Backup e ripristino per Amazon Aurora DSQL
Amazon Aurora DSQL permette di soddisfare i requisiti di conformità alle normative e di
continuità aziendale attraverso l’integrazione con AWS Backup, un servizio di protezione dei dati
completamente gestito che semplifica la centralizzazione e l’automazione dei backup nei servizi
AWS, nel cloud e on-premises. Il servizio semplifica la creazione, la gestione e il ripristino dei backup
per i cluster Aurora DSQL a Regione singola e multi-Regione.

Le caratteristiche principali comprendono:

• Gestione centralizzata dei backup tramite la Console di gestione AWS, l’SDK o la AWS CLI

• Backup completi del cluster

• Pianificazioni di backup automatizzate e policy di conservazione

• Funzionalità tra regioni e tra account

• Configurazione WORM (write-once, read-many) per tutti i backup archiviati

Per maggiori informazioni sulle funzionalità di AWS Backup Vault Lock e un elenco completo delle
funzionalità di AWS Backup disponibili per Aurora DSQL, consultare Vantaggi di Vault Lock e
disponibilità delle funzionalità di AWS Backup nella Guida per gli sviluppatori di AWS Backup.

Nozioni di base su AWS Backup

AWS Backup crea copie complete dei cluster Aurora DSQL. È possibile iniziare a utilizzare AWS
Backup per Aurora DSQL seguendo la procedura descritta in Guida introduttiva a AWS Backup:

1. Creazione di backup on-demand per una protezione immediata.

2. Definizione di piani di backup per backup automatizzati e pianificati.

3. Configurazione dei periodi di conservazione e della copia tra regioni.

4. Configurazione del monitoraggio e delle notifiche per le attività di backup.

Ripristino dei backup

Quando si ripristinano i cluster Aurora DSQL, AWS Backup crea sempre nuovi cluster per preservare
i dati di origine.

Nozioni di base su AWS Backup 253

https://docs.aws.amazon.com/aws-backup/latest/devguide/vault-lock.html#backup-vault-lock-benefits
https://docs.aws.amazon.com/aws-backup/latest/devguide/backup-feature-availability.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/getting-started.html

Amazon Aurora DSQL Guida per l’utente

Ripristino dei cluster basati su una Regione singola

Per ripristinare un cluster Aurora DSQL a Regione singola, utilizzare la console: https://
console.aws.amazon.com/backup o la CLI per selezionare il punto di ripristino (backup) che si
desidera ripristinare. Configurare le impostazioni del nuovo cluster che sarà creato dal backup. Per
istruzioni dettagliate, consultare Ripristino di un cluster Aurora DSQL a Regione singola.

Ripristino di cluster multi-Regione

Il ripristino di un cluster Aurora DSQL multi-Regione è supportato sia dalla console: https://
console.aws.amazon.com/backup che dalla AWS CLI. Per istruzioni dettagliate, consultare Ripristino
di un cluster Aurora DSQL multi-Regione.

Per eseguire il ripristino in un cluster Aurora DSQL multi-Regione, è possibile utilizzare un backup
eseguito in un’unica Regione AWS. Tuttavia, prima di iniziare il processo di ripristino, è necessario
assicurarsi che esista una copia identica del backup in tutte le Regioni AWS del cluster multi-
Regione. Se non si dispone ancora di tali copie, è prima necessario copiare il backup in un’altra
Regione AWS che supporti i cluster multi-Regione.

Per abilitare opzioni robuste di disaster recovery e soddisfare i requisiti di conformità, consigliamo
di creare copie di backup nelle Regioni AWS chiave. Per la visualizzazione delle Regioni AWS
disponibili per Aurora DSQL consultare the section called “Regione AWS disponibilità”.

Per istruzioni dettagliate su questi passaggi, consultare la documentazione sul ripristino di Amazon
Aurora DSQL.

Monitoraggio e conformità

AWS Backup offre una visibilità completa sulle operazioni di backup e ripristino con le seguenti
risorse.

• Una dashboard centralizzata per il monitoraggio dei processi di backup e ripristino

• Integrazione con CloudWatch e CloudTrail.

• AWS Backup Audit Manager per la rendicontazione e il controllo della conformità.

Consultare Registrazione dei log delle operazioni di Aurora DSQL utilizzando AWS CloudTrail per
ulteriori informazioni sulla registrazione dei record delle operazioni eseguite da un utente, un ruolo o
un Servizio AWS durante l’utilizzo di Aurora DSQL.

Ripristino dei cluster basati su una Regione singola 254

https://console.aws.amazon.com/backup
https://console.aws.amazon.com/backup
https://docs.aws.amazon.com/aws-backup/latest/devguide/restore-auroradsql.html#restore-auroradsql-singleregion
https://console.aws.amazon.com/backup
https://console.aws.amazon.com/backup
https://docs.aws.amazon.com/aws-backup/latest/devguide/restore-auroradsql.html#restore-auroradsql-multiregion
https://docs.aws.amazon.com/aws-backup/latest/devguide/restore-auroradsql.html#restore-auroradsql-multiregion
https://docs.aws.amazon.com/aws-backup/latest/devguide/restore-auroradsql.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/restore-auroradsql.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/aws-backup-audit-manager.html

Amazon Aurora DSQL Guida per l’utente

Risorse aggiuntive

Per maggiori informazioni sulle funzionalità di AWS Backup e sul suo utilizzo in combinazione con
Aurora DSQL, consultare le seguenti risorse:

• Policy gestite per AWS Backup

• Ripristino di Amazon Aurora DSQL

• Servizi supportati da Regione AWS

• Crittografia per i backup in AWS Backup

Utilizzando AWS Backup per Aurora DSQL, si implementa una strategia di backup robusta, conforme
e automatizzata che protegge le risorse critiche del database riducendo al minimo il sovraccarico
amministrativo. Indipendentemente dal fatto che si gestisca un singolo cluster o un’implementazione
complessa in più regioni, AWS Backup fornisce gli strumenti necessari per garantire che i dati
rimangano sicuri e recuperabili.

Risorse aggiuntive 255

https://docs.aws.amazon.com/aws-backup/latest/devguide/security-iam-awsmanpol.html#AWSBackupOperatorAccess
https://docs.aws.amazon.com/aws-backup/latest/devguide/restore-auroradsql.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/backup-feature-availability.html#supported-services-by-region
https://docs.aws.amazon.com/aws-backup/latest/devguide/encryption.html

Amazon Aurora DSQL Guida per l’utente

Monitoraggio e registrazione dei log per Aurora DSQL
Il monitoraggio e la registrazione dei log sono importanti per garantire l’affidabilità, la disponibilità
e le prestazioni delle risorse di Amazon Aurora DSQL. È necessario monitorare e raccogliere i dati
di log da tutte le componenti delle risorse di Aurora DSQL per semplificare il debug di eventuali
malfunzionamenti distribuiti.

• Amazon CloudWatch monitora AWS le tue risorse e le applicazioni su cui esegui AWS in
tempo reale. È possibile raccogliere e tenere traccia dei parametri, creare pannelli di controllo
personalizzati e impostare allarmi per inviare una notifica o intraprendere azioni quando un
parametro specificato raggiunge una determinata soglia. Ad esempio, puoi tenere CloudWatch
traccia dell'utilizzo della CPU o di altri parametri delle tue EC2 istanze Amazon e avviare
automaticamente nuove istanze quando necessario. Per ulteriori informazioni, consulta la Amazon
CloudWatch User Guide.

• AWS CloudTrailacquisisce le chiamate API e gli eventi correlati effettuati da o per conto tuo
Account AWS e invia i file di log a un bucket Amazon S3 da te specificato. Puoi identificare quali
utenti e account hanno chiamato AWS, l'indirizzo IP di origine da cui sono state effettuate le
chiamate e quando sono avvenute le chiamate. Per ulteriori informazioni, consulta la Guida per
l'utente AWS CloudTrail.

Monitoraggio di Aurora DSQL con Amazon CloudWatch

È possibile monitorare Aurora DSQL utilizzando CloudWatch, che raccoglie i dati non elaborati e
li elabora trasformandoli in parametri leggibili quasi in tempo reale. CloudWatch conserva queste
statistiche per 15 mesi, permettendo di ottenere una prospettiva migliore sulle prestazioni delle
applicazioni o dei servizi web. È possibile impostare allarmi che controllano soglie specifiche e inviare
notifiche o intraprendere azioni quando queste soglie vengono raggiunte. Esaminare le seguenti
metriche di utilizzo e osservabilità disponibili per Aurora DSQL.

Per maggiori informazioni, consultare la Guida per l’utente di Amazon CloudWatch.

Osservabilità e prestazioni

Questa tabella descrive le metriche di osservabilità per Aurora DSQL. Include metriche per il
monitoraggio delle transazioni di sola lettura e totali per fornire la caratterizzazione complessiva del
carico di lavoro. Sono incluse metriche utilizzabili come i timeout delle query e il tasso di conflitto

Monitoraggio con CloudWatch 256

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

Amazon Aurora DSQL Guida per l’utente

OCC per aiutare a identificare problemi di prestazioni e conflitti di concorrenza. Le metriche relative
alla sessione, sia attive che totali, offrono informazioni sul carico attuale del sistema.

Nome della metrica
CloudWatch

Parametro Unità Descrizione

ReadOnlyTransactio
ns

Read-only transacti
ons

none The number of read-
only transactions

TotalTransactions Total transactions none The total number of
transactions executed
on the system,
including read-only
 transactions.

QueryTimeouts Query timeouts none The number of
queries which have
timed out due to
hitting the maximum
transaction time

OccConflicts OCC conflicts none The number of
transactions aborted
due to key level OCC

CommitLatency Commit Latency milliseconds Time spent by commit
phase of query
execution (P50)

BytesWritten Bytes Written bytes Bytes written to
storage

BytesRead Bytes Read bytes Bytes read from
storage

ComputeTime QP compute time milliseconds QP wall clock time

ClusterStorageSize Cluster Storage Size bytes Cluster size

Osservabilità 257

Amazon Aurora DSQL Guida per l’utente

Parametri di utilizzo

Aurora DSQL misura tutte le attività basate sulle richieste, come l’elaborazione delle query, le
letture e le scritture, utilizzando un’unica unità di fatturazione normalizzata denominata Distributed
Processing Unit (DPU).

Nome della
metrica
CloudWatch

Parametro Dimensione:
ResourceId

Unità Descrizione

WriteDPU Write Units <cluster-id> DPU Approximates
the write active-
use component
of your Aurora
DSQL cluster
DPU usage.

MultiRegi
onWriteDPU

Multi-Region
Write Units

<cluster-id> DPU Applicable
for Multi-Reg
ion clusters:
Approximates
the multi-Reg
ion write active-
use component
of your Aurora
DSQL cluster
DPU usage.

ReadDPU Read Units <cluster-id> DPU Approximates
the read active-
use component
of your Aurora
DSQL cluster
DPU usage.

ComputeDPU Compute Units <cluster-id> DPU Approximates
the compute
active-use

Utilizzo 258

Amazon Aurora DSQL Guida per l’utente

Nome della
metrica
CloudWatch

Parametro Dimensione:
ResourceId

Unità Descrizione

component of
your Aurora
DSQL cluster
DPU usage.

TotalDPU Total Units <cluster-id> DPU Approximates
the total active-
use component
of your Aurora
DSQL cluster
DPU usage.

Registrazione dei log delle operazioni di Aurora DSQL utilizzando
AWS CloudTrail

Amazon Aurora DSQL è integrato con AWS CloudTrail, un servizio che fornisce un record delle azioni
intraprese da un utente, un ruolo o un Servizio AWS. In CloudTrail sono disponibili due tipi di eventi:
eventi di gestione ed eventi di dati. Gli eventi di gestione vengono emessi per controllare le modifiche
alla configurazione delle risorse AWS. Gli eventi di dati registrano l’utilizzo delle risorse di AWS,
tipicamente sul piano dati del servizio.

CloudTrail acquisisce tutte le chiamate API verso Aurora DSQL come eventi. Aurora DSQL registra
l’attività della console come eventi di gestione. Inoltre, acquisisce i tentativi di connessione autenticati
ai cluster come eventi di dati.

Le informazioni raccolte da CloudTrail consentono di determinare la richiesta effettuata ad Aurora
DSQL, l’indirizzo IP da cui è partita la richiesta, il momento in cui è stata eseguita, l’identità dell’utente
autore della richiesta e altri dettagli.

CloudTrail è attivo per impostazione predefinita nell’Account AWS quando questo viene creato e
l’utente dispone dell’accesso alla cronologia degli eventi di CloudTrail. La cronologia degli eventi
di CloudTrail fornisce una registrazione visualizzabile, ricercabile, scaricabile e immutabile degli
eventi di gestione verificatisi negli ultimi 90 giorni in una Regione AWS. Per maggiori informazioni,

Registrazione dei log con CloudTrail 259

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Amazon Aurora DSQL Guida per l’utente

consultare Lavorare con la cronologia degli eventi di CloudTrail nella Guida per l’utente di AWS
CloudTrail. CloudTrail non prevede costi per la registrazione della cronologia degli eventi.

Per creare una registrazione continua degli eventi nel proprio account AWS, inclusi gli eventi relativi
ad Aurora DSQL, creare un trail o un archivio di dati di eventi AWS CloudTrail Lake (una soluzione
centralizzata di archiviazione e analisi per gli eventi AWS CloudTrail). Per maggiori informazioni
sulla creazione di trail, consultare Lavorare con i trail di CloudTrail. Per maggiori informazioni
sulla configurazione e la gestione degli archivi di dati di eventi, consultare archivi di dati di eventi
CloudTrail Lake.

Eventi di gestione di Aurora DSQL in CloudTrail

Gli eventi di gestione di CloudTrail forniscono informazioni sulle operazioni di gestione eseguite sulle
risorse nell’account AWS. Queste operazioni sono definite anche operazioni del piano di controllo
(control-plane). Per impostazione predefinita, CloudTrail acquisisce gli eventi di gestione nella
cronologia degli eventi.

Amazon Aurora DSQL registra i log di tutte le operazioni sul piano di controllo (control-plane) come
eventi di gestione. Per un elenco delle operazioni sul piano di controllo (control-plane) di Amazon
Aurora DSQL che Aurora DSQL registra in CloudTrail, consulta la Guida di riferimento alle API di
Aurora DSQL.

Registrazione dei log del piano di controllo (control-plane)

Amazon Aurora DSQL registra i log delle seguenti operazioni sul piano di controllo (control-plane) di
Aurora DSQL su CloudTrail come eventi di gestione.

• CreateCluster

• DeleteCluster

• GetCluster

• GetVpcEndpointServiceName

• ListClusters

• ListTagsForResource

• TagResource

• UntagResource

• UpdateCluster

Eventi di gestione 260

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/query-event-data-store.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/query-event-data-store.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_api_reference.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/CHAP_api_reference.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_DeleteCluster.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_GetCluster.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_GetVpcEndpointServiceName.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_ListClusters.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_UpdateCluster.html

Amazon Aurora DSQL Guida per l’utente

Backup e ripristino dei log

Amazon Aurora DSQL registra i log delle seguenti operazioni di backup e ripristino di Aurora DSQL
su CloudTrail come eventi di gestione.

• StartBackupJob

• StopBackupJob

• GetBackupJob

• StartRestoreJob

• StopRestoreJob

• GetRestoreJob

Per maggiori informazioni sulla protezione dei cluster Aurora DSQL con AWS Backup, consultare
Backup e ripristino per Amazon Aurora DSQL.

Log di AWS KMS

Amazon Aurora DSQL registra i log delle seguenti operazioni di AWS KMS su CloudTrail come eventi
di gestione.

• GenerateDataKey

• Decrypt

Per maggiori informazioni su come i log di CloudTrail tengono traccia delle richieste inviate da Aurora
DSQL a AWS KMS per conto dell’utente, consultare Monitoraggio dell’interazione di Aurora DSQL
con AWS KMS.

Eventi di dati di Aurora DSQL in CloudTrail

Gli eventi di dati di CloudTrail forniscono tipicamente informazioni sulle operazioni eseguite su una
risorsa o al suo interno. Questi vengono utilizzati anche per acquisire le operazioni sul piano dati del
servizio. Gli eventi di dati sono spesso attività che interessano volumi elevati di dati. Per impostazione
predefinita, CloudTrail non registra gli eventi di dati. La cronologia degli eventi di CloudTrail non
registra gli eventi di dati.

Per maggiori informazioni su come registrare i log degli eventi di dati, consultare Registrazione di
eventi di dati con Console di gestione AWS e Registrazione di eventi di dati con AWS Command Line
Interface nella Guida per l’utente di AWS CloudTrail.

Eventi di dati 261

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI

Amazon Aurora DSQL Guida per l’utente

Per gli eventi di dati sono previsti costi aggiuntivi. Per maggiori informazioni sui prezzi di CloudTrail,
consultare Prezzi di AWS CloudTrail.

Per Aurora DSQL, CloudTrail acquisisce qualsiasi tentativo di connessione effettuato a un cluster
Aurora DSQL come evento di dati. La tabella seguente elenca i tipi di risorse di Aurora DSQL
per i quali è possibile registrare i log degli eventi di dati. La colonna Tipo di risorsa (console)
mostra il valore da scelto dall’elenco Tipo di risorsa nella console di CloudTrail. La colonna Valore
resources.type mostra il valore resources.type, da specificare quando si configurano selettori di
eventi avanzati utilizzando la AWS CLI o le API di CloudTrail. La colonna API sui dati registrate su
CloudTrail mostra le chiamate API registrate su CloudTrail per il tipo di risorsa.

Tipo di risorsa (console) Valore resources.type API sui dati registrate in
CloudTrail

Amazon Aurora DSQL AWS::DSQL::Cluster • DbConnect

• DbConnectAdmin

È possibile configurare selettori di eventi avanzati per filtrare i campi eventName e resources.ARN
per registrare solo i log degli eventi filtrati. Per maggiori informazioni su questi campi, consultare
AdvancedFieldSelector nella Guida di riferimento delle API di AWS CloudTrail.

L’esempio seguente mostra come utilizzare la AWS CLI per configurare dsql-data-events-
trail affinché riceva eventi di dati per Aurora DSQL.

aws cloudtrail put-event-selectors \
--region us-east-1 \
--trail-name dsql-data-events-trail \
--advanced-event-selectors '[{
"Name": "Log DSQL Data Events",
 "FieldSelectors": [
 { "Field": "eventCategory", "Equals": ["Data"] },
 { "Field": "resources.type", "Equals": ["AWS::DSQL::Cluster"] }]}]'

Eventi di dati 262

https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html

Amazon Aurora DSQL Guida per l’utente

Sicurezza in Amazon Aurora DSQL
La sicurezza del cloud AWS è la massima priorità. In qualità di AWS cliente, puoi beneficiare di data
center e architetture di rete progettati per soddisfare i requisiti delle organizzazioni più sensibili alla
sicurezza.

La sicurezza è una responsabilità condivisa tra te e te. AWS Il modello di responsabilità condivisa
descrive questo aspetto come sicurezza del cloud e sicurezza nel cloud:

• Sicurezza del cloud: AWS è responsabile della protezione dell'infrastruttura che gestisce AWS
i servizi inCloud AWS. AWSfornisce inoltre servizi che è possibile utilizzare in modo sicuro. I
revisori esterni testano e verificano regolarmente l'efficacia della nostra sicurezza nell'ambito
dei AWSProgrammi di AWS conformità dei Programmi di conformità dei di . Per informazioni sui
programmi di conformità che si applicano ad Amazon Aurora DSQL, consulta AWSServices in
Scope by Compliance Program by Compliance Program.

• Sicurezza nel cloud: la tua responsabilità è determinata dal AWS servizio che utilizzi. L’utente è
anche responsabile di altri fattori, tra cui la riservatezza dei dati, i requisiti della propria azienda e le
leggi e normative vigenti.

Questa documentazione consente di comprendere come applicare il modello di responsabilità
condivisa quando si usa Aurora DSQL. I seguenti argomenti illustrano come configurare Aurora
DSQL per soddisfare gli obiettivi di sicurezza e conformità. Scopri anche come utilizzare altri AWS
servizi che ti aiutano a monitorare e proteggere le tue risorse Aurora DSQL.

Argomenti

• AWSpolitiche gestite per Amazon Aurora DSQL

• Protezione dei dati in Amazon Aurora DSQL

• Crittografia dei dati per Amazon Aurora DSQL

• Gestione delle identità e degli accessi per Aurora DSQL

• Policy basate sulle risorse per Aurora DSQL

• Utilizzo dei ruoli collegati al servizio in Aurora DSQL

• Utilizzo di chiavi di condizione IAM con Amazon Aurora DSQL

• Risposta agli incidenti in Amazon Aurora DSQL

• Convalida della conformità per Amazon Aurora DSQL

263

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Aurora DSQL Guida per l’utente

• Resilienza in Amazon Aurora DSQL

• Sicurezza dell’infrastruttura in Amazon Aurora DSQL

• Analisi della configurazione e delle vulnerabilità in Amazon Aurora DSQL

• Prevenzione del confused deputy tra servizi

• Best practice di sicurezza di Aurora DSQL

AWSpolitiche gestite per Amazon Aurora DSQL

Una policy AWS gestita è una policy autonoma creata e amministrata da. AWS AWSle politiche
gestite sono progettate per fornire autorizzazioni per molti casi d'uso comuni, in modo da poter
iniziare ad assegnare autorizzazioni a utenti, gruppi e ruoli.

Tieni presente che le policy AWS gestite potrebbero non concedere le autorizzazioni con il privilegio
minimo per i tuoi casi d'uso specifici, poiché sono disponibili per tutti i clienti. AWS Si consiglia
pertanto di ridurre ulteriormente le autorizzazioni definendo policy gestite dal cliente specifiche per i
propri casi d’uso.

Non è possibile modificare le autorizzazioni definite nelle politiche gestite. AWS Se AWS aggiorna
le autorizzazioni definite in una politica AWS gestita, l'aggiornamento ha effetto su tutte le identità
principali (utenti, gruppi e ruoli) a cui è associata la politica. AWSè più probabile che aggiorni una
policy AWS gestita quando ne Servizio AWS viene lanciata una nuova o quando diventano disponibili
nuove operazioni API per i servizi esistenti.

Per ulteriori informazioni, consultare Policy gestite da AWS nella Guida per l’utente di IAM.

AWSpolitica gestita: AmazonAurora DSQLFull accesso

È possibile associare la policy AmazonAuroraDSQLFullAccess a utenti, gruppi e ruoli.

Questa policy concede autorizzazioni che forniscono l’accesso completo come amministratore ad
Aurora DSQL. Le entità principali con queste autorizzazioni possono:

• Creare, eliminare e aggiornare i cluster Aurora DSQL, inclusi i cluster multi-Regione

• Gestisci le politiche in linea del cluster (creazione, visualizzazione, aggiornamento ed eliminazione
delle politiche)

AWSpolitiche gestite 264

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Aurora DSQL Guida per l’utente

• Aggiungere e rimuover tag dai cluster

• Elencare i cluster e visualizzare le informazioni sui singoli cluster

• Visualizzare i tag associati ai cluster Aurora DSQL

• Collegarsi al database come qualsiasi utente, incluso l’amministratore

• Eseguire operazioni di backup e ripristino per i cluster Aurora DSQL, tra cui avvio, arresto e
monitoraggio dei processi di backup e ripristino

• Utilizza AWS KMS chiavi gestite dal cliente per la crittografia dei cluster

• Visualizza tutte le metriche del loro account CloudWatch

• Usa AWS Fault Injection Service (AWS FIS) per inserire errori nei cluster Aurora DSQL per i test di
tolleranza ai guasti

• Creare ruoli collegati al servizio per il servizio dsql.amazonaws.com, necessari per la creazione
dei cluster

Dettagli delle autorizzazioni

Questa policy include le seguenti autorizzazioni:

• dsql - Concede alle entità principali l’accesso completo ad Aurora DSQL.

• cloudwatch—concede l'autorizzazione a pubblicare punti dati metrici su Amazon. CloudWatch

• iam - Concede le autorizzazioni per creare un ruolo collegato al servizio.

• backup and restore - Concede le autorizzazioni per avviare, interrompere e monitorare i
processi di backup e ripristino per i cluster Aurora DSQL.

• kms - Concede le autorizzazioni necessarie per convalidare l’accesso alle chiavi gestite dal cliente
utilizzate per la crittografia dei cluster Aurora DSQL durante la creazione, l’aggiornamento o la
connessione ai cluster.

• fis—concede le autorizzazioni di utilizzo (AWS Fault Injection ServiceAWS FIS) per inserire errori
nei cluster Aurora DSQL per i test di tolleranza agli errori.

È possibile trovare la policy AmazonAuroraDSQLFullAccess nella console IAM e nella Guida di
riferimento alle policy gestite di AWS.

AWSpolitica gestita: AmazonAurora DSQLRead OnlyAccess

AmazonAuroraDSQLReadOnlyAccess 265

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLFullAccess.html

Amazon Aurora DSQL Guida per l’utente

È possibile associare la policy AmazonAuroraDSQLReadOnlyAccess a utenti, gruppi e ruoli.

Consente l’accesso in lettura ad Aurora DSQL. Le entità principali con queste autorizzazioni possono
elencare i cluster e visualizzare informazioni sui singoli cluster. Possono vedere i tag allegati ai
cluster Aurora DSQL e visualizzare le policy in linea del cluster. Possono recuperare e visualizzare
qualsiasi metrica del tuo account. CloudWatch

Dettagli delle autorizzazioni

Questa policy include le seguenti autorizzazioni:

• dsql - Concede autorizzazioni di sola lettura su tutte le risorse in Aurora DSQL.

• cloudwatch— concede l'autorizzazione a recuperare quantità batch di dati metrici ed eseguire
CloudWatch calcoli metrici sui dati recuperati

È possibile trovare la policy AmazonAuroraDSQLReadOnlyAccess nella console IAM e nella Guida
di riferimento alle policy gestite di AWS.

AWSpolitica gestita: AmazonAurora DSQLConsole FullAccess

È possibile associare la policy AmazonAuroraDSQLConsoleFullAccess a utenti, gruppi e ruoli.

Consente l’accesso amministrativo completo ad Amazon Aurora DSQL tramite la Console di gestione
AWS. Le entità principali con queste autorizzazioni possono:

• Creare, eliminare e aggiornare i cluster Aurora DSQL, inclusi i cluster multi-Regione, con la console

• Gestisci le politiche in linea del cluster tramite la console (creazione, visualizzazione,
aggiornamento ed eliminazione delle politiche)

• Elencare i cluster e visualizzare le informazioni sui singoli cluster

• Visualizzare i tag su qualsiasi risorsa dell’account

• Collegarsi al database come qualsiasi utente, incluso l’amministratore

• Eseguire operazioni di backup e ripristino per i cluster Aurora DSQL, tra cui avvio, arresto e
monitoraggio dei processi di backup e ripristino

• Utilizza AWS KMS chiavi gestite dal cliente per la crittografia dei cluster

• Avvia AWS CloudShell da Console di gestione AWS

AmazonAuroraDSQLConsoleFullAccess 266

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLReadOnlyAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLReadOnlyAccess.html

Amazon Aurora DSQL Guida per l’utente

• Visualizza tutte le metriche dal CloudWatch tuo account

• Usa AWS Fault Injection Service (AWS FIS) per inserire errori nei cluster Aurora DSQL per i test di
tolleranza ai guasti

• Creare ruoli collegati al servizio per il servizio dsql.amazonaws.com, necessari per la creazione
dei cluster

Puoi trovare la AmazonAuroraDSQLConsoleFullAccess policy sulla console IAM e
AmazonAuroraDSQLConsoleFullAccessnella Managed Policy Reference Guide. AWS

Dettagli delle autorizzazioni

Questa policy include le seguenti autorizzazioni:

• dsql - Concede autorizzazioni amministrative complete a tutte le risorse in Aurora DSQL tramite la
Console di gestione AWS.

• cloudwatch—concede l'autorizzazione a recuperare quantità in batch di dati metrici ed eseguire
CloudWatch calcoli metrici sui dati recuperati.

• tag—concede l'autorizzazione a restituire le chiavi e i valori dei tag attualmente in uso nell'account
specificato per la chiamata. Regione AWS

• backup and restore - Concede le autorizzazioni per avviare, interrompere e monitorare i
processi di backup e ripristino per i cluster Aurora DSQL.

• kms - Concede le autorizzazioni necessarie per convalidare l’accesso alle chiavi gestite dal cliente
utilizzate per la crittografia dei cluster Aurora DSQL durante la creazione, l’aggiornamento o la
connessione ai cluster.

• cloudshell—concede le autorizzazioni all'avvio AWS CloudShell per interagire con Aurora
DSQL.

• ec2 - Concede l’autorizzazione a visualizzare le informazioni sugli endpoint Amazon VPC
necessarie per le connessioni Aurora DSQL.

• fis—concede le autorizzazioni da utilizzare AWS FIS per inserire errori nei cluster Aurora DSQL
per il test della tolleranza agli errori.

• access-analyzer:ValidatePolicyconcede l'autorizzazione per il linter nell'editor delle
politiche, che fornisce feedback in tempo reale su errori, avvisi e problemi di sicurezza nella politica
corrente.

AmazonAuroraDSQLConsoleFullAccess 267

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLConsoleFullAccess.html

Amazon Aurora DSQL Guida per l’utente

• fis—concede le autorizzazioni di utilizzo (AWS Fault Injection ServiceAWS FIS) per inserire errori
nei cluster Aurora DSQL per i test di tolleranza agli errori.

È possibile trovare la policy AmazonAuroraDSQLConsoleFullAccess nella console IAM e nella
Guida di riferimento alle policy gestite di AWS.

AWSpolitica gestita: Aurora DSQLService RolePolicy

Non puoi collegare Aurora DSQLService RolePolicy alle tue entità IAM. Questa policy è allegata a un
ruolo collegato al servizio che consente ad Aurora DSQL di accedere alle risorse dell’account.

Puoi trovare la AuroraDSQLServiceRolePolicy policy sulla console IAM e Aurora DSQLService
RolePolicy nella AWS Managed Policy Reference Guide.

Aurora DSQL si aggiorna alle policy gestite AWS

Visualizza i dettagli sugli aggiornamenti delle politiche AWS gestite per Aurora DSQL da quando
questo servizio ha iniziato a tenere traccia di queste modifiche. Per gli avvisi automatici sulle
modifiche apportate a questa pagina, sottoscrivi il feed RSS nella pagina della cronologia dei
documenti di Aurora DSQL.

Modifica Descrizione Data

AmazonAuroraDSQLFu
llAccesso e aggiornamento
AmazonAurora DSQLConsole
FullAccess

È stato aggiunto il supporto
per l'integrazione AWS Fault
Injection Service (AWS
FIS) con Aurora DSQL. Ciò
consente di eseguire l’iniezio
ne di guasti in cluster Aurora
DSQL a Regione singola e
multi-Regione per testare
la tolleranza ai guasti delle
applicazioni. È possibile
creare modelli di esperimen
to nella AWS FIS console

19 agosto 2025

Aurora DSQLService RolePolicy 268

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonAuroraDSQLConsoleFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AuroraDSQLServiceRolePolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AuroraDSQLServiceRolePolicy.html

Amazon Aurora DSQL Guida per l’utente

Modifica Descrizione Data

per definire scenari di errore
e indirizzare cluster Aurora
DSQL specifici per i test.

Per ulteriori informazioni su
queste politiche, consulta
AmazonAurora DSQLFull
Access and. AmazonAur
oraDSQLConsoleFullAccess

AmazonAuroraDSQLFu
llAccesso AmazonAurora
DSQLRead OnlyAccess e
AmazonAurora DSQLConsole
FullAccess aggiornamento

È stato aggiunto il supporto
per le policy basate sulle
risorse (RBP) con nuove
autorizzazioni:, e. PutCluste
rPolicy GetCluste
rPolicy DeleteClu
sterPolicy Queste
autorizzazioni consentono
di gestire le policy in linea
collegate ai cluster Aurora
DSQL per un controllo
granulare degli accessi.

Per ulteriori informazioni,
vedere Access, e. AmazonAur
ora DSQLFull AmazonAur
oraDSQLReadOnlyAcc
essAmazonAuroraDSQLCo
nsoleFullAccess

15 ottobre 2025

Aggiornamenti delle policy 269

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLReadOnlyAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLReadOnlyAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLReadOnlyAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLReadOnlyAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess

Amazon Aurora DSQL Guida per l’utente

Modifica Descrizione Data

AmazonAuroraDSQLFu
llAggiornamento dell'accesso

Aggiunge la capacità di
eseguire operazioni di backup
e ripristino per i cluster Aurora
DSQL, tra cui avvio, arresto
e monitoraggio dei processi.
Aggiunge inoltre la possibilità
di utilizzare chiavi KMS gestite
dal cliente per la crittografia
dei cluster.

Per ulteriori informazi
oni, vedere AmazonAur
oraDSQLFullAccesso e
utilizzo dei ruoli collegati ai
servizi in Aurora DSQL.

21 maggio 2025

AmazonAuroraDSQLCo
nsoleFullAccess update

Aggiunge la capacità di
eseguire operazioni di backup
e ripristino per i cluster Aurora
DSQL tramite la AWS Console
Home. Ciò include l’avvio,
l’arresto e il monitoraggio dei
processi. Supporta anche
l’utilizzo di chiavi KMS gestite
dal cliente per la crittografia
dei cluster e l’avvio di AWS
CloudShell.

Per ulteriori informazi
oni, vedere AmazonAur
oraDSQLConsoleFullAccesse
Utilizzo dei ruoli collegati ai
servizi in Aurora DSQL.

21 maggio 2025

Aggiornamenti delle policy 270

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html

Amazon Aurora DSQL Guida per l’utente

Modifica Descrizione Data

AmazonAuroraDSQLFu
llAccedi all'aggiornamento

La politica aggiunge quattro
nuove autorizzazioni per
creare e gestire cluster di
database su più livelliRe
gioni AWS:PutMultiR
egionProp
erties , PutWitnes
sRegion AddPeerCl
uster , e. RemovePee
rCluster Queste autorizza
zioni includono controlli a
livello di risorsa e chiavi
di condizione in modo da
poter controllare quali cluster
possono essere modificati
dagli utenti.

La policy aggiunge anche
l’autorizzazione GetVpcEnd
pointServiceName per
consentire di connettersi ai
cluster Aurora DSQL tramite
AWS PrivateLink.

Per ulteriori informazioni,
vedere Per ulteriori informazi
oni, vedere AmazonAur
oraDSQLFullAccesso e
utilizzo dei ruoli collegati ai
servizi in Aurora DSQL.

13 maggio 2025

Aggiornamenti delle policy 271

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html

Amazon Aurora DSQL Guida per l’utente

Modifica Descrizione Data

AmazonAuroraDSQLRe
adOnlyAccess update

Include la possibilità di
determinare il nome corretto
del servizio endpoint VPC
durante la connessione ai
cluster Aurora DSQL tramite
AWS PrivateLink Aurora
DSQL crea endpoint unici
per cella, quindi questa API
aiuta a identificare l'endpoin
t corretto per il cluster ed
evitare errori di connessione.

Per ulteriori informazi
oni, vedere AmazonAur
oraDSQLReadOnlyAccesse
Utilizzo dei ruoli collegati ai
servizi in Aurora DSQL.

13 maggio 2025

Aggiornamenti delle policy 272

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLReadOnlyAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLReadOnlyAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html

Amazon Aurora DSQL Guida per l’utente

Modifica Descrizione Data

AmazonAuroraDSQLCo
nsoleFullAccess update

Aggiunge nuove autorizzazioni
ad Aurora DSQL per supportar
e la gestione di cluster multi-
Regione e la connessione
agli endpoint VPC. Le nuove
autorizzazioni includono:
PutMultiRegionProp
erties , PutWitnes
sRegion , AddPeerCl
uster , RemovePee
rCluster e GetVpcEnd
pointServiceName

Per ulteriori informazi
oni, vedere AmazonAur
oraDSQLConsoleFullAccesse
Utilizzo dei ruoli collegati ai
servizi in Aurora DSQL.

13 maggio 2025

AuroraDsqlServiceLinkedRole
Policy update

Aggiunge la possibilità di
pubblicare metriche nei
namespace AWS/Auror
aDSQL e AWS/Usage
CloudWatch della policy.
Ciò consente al servizio o
al ruolo associato di inviare
dati più completi sull'utilizzo e
sulle prestazioni nell'ambiente.
CloudWatch

Per ulteriori informazioni,
vedere AuroraDsqlServiceL
inkedRolePolicye Utilizzo
dei ruoli collegati ai servizi in
Aurora DSQL.

8 maggio 2025

Aggiornamenti delle policy 273

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AuroraDsqlServiceLinkedRolePolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AuroraDsqlServiceLinkedRolePolicy.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html

Amazon Aurora DSQL Guida per l’utente

Modifica Descrizione Data

Pagina creata Ha iniziato a tracciare le
policy AWS gestite relative ad
Amazon Aurora DSQL

3 dicembre 2024

Protezione dei dati in Amazon Aurora DSQL

Alla protezione dei dati si applica il modello di responsabilità condivisa. Come descritto in questo
modello, AWS è responsabile della protezione dell’infrastruttura globale che esegue tutto il Cloud
AWS. L’utente è responsabile del controllo dei contenuti ospitati su questa infrastruttura. Il cliente
è inoltre responsabile della configurazione della protezione e delle attività di gestione per i servizi
utilizzati. Per maggiori informazioni sulla privacy dei dati, consulta le Domande frequenti sulla privacy
dei dati. Per informazioni sulla protezione dei dati in Europa, consulta il post del blog relativo al
Modello di responsabilità condivisa e GDPR nel Blog sulla sicurezza.

Ai fini della protezione dei dati, ti consigliamo di proteggere le credenziali e configurare i singoli utenti
con o. AWS IAM Identity Center AWS Identity and Access Management In tal modo, a ogni utente
verranno assegnate solo le autorizzazioni necessarie per svolgere i suoi compiti. Suggeriamo, inoltre,
di proteggere i dati nei seguenti modi:

• Utilizza l’autenticazione a più fattori (MFA) con ogni account.

• SSL/TLS Da utilizzare per comunicare con le risorse. È richiesto TLS 1.2 ed è consigliato TLS 1.3.

• Configura l'API e la registrazione delle attività degli utenti conAWS CloudTrail. Per informazioni
sull’utilizzo dei trail per acquisire le attività, consulta Utilizzo dei percorsi CloudTrail nella Guida per
l’utente di CloudTrail.

• Utilizza le soluzioni di crittografia, insieme a tutti i controlli di sicurezza di default all’interno dei
Servizi AWS.

• Utilizza i servizi di sicurezza gestiti avanzati, come Amazon Macie, che aiutano a individuare e
proteggere i dati sensibili archiviati in Amazon S3.

Consigliamo di non inserire mai informazioni riservate o sensibili, ad esempio gli indirizzi e-mail
dei clienti, nei tag o nei campi di testo in formato libero, ad esempio nel campo Nome. Ciò include
quando lavori o utilizzi la console, l'API o AWSSDKs. AWS CLI I dati inseriti nei tag o nei campi
di testo in formato libero utilizzati per i nomi possono essere utilizzati per i la fatturazione o i log di

Protezione dei dati 274

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html

Amazon Aurora DSQL Guida per l’utente

diagnostica. Quando si fornisce un URL a un server esterno, suggeriamo vivamente di non includere
informazioni sulle credenziali nell’URL per convalidare la richiesta al server.

Crittografia dei dati

Amazon Aurora DSQL offre un’infrastruttura di storage estremamente durevole, concepita per
lo archiviazione di dati mission-critical e primari. I dati sono archiviati in modo ridondante su più
dispositivi, in più strutture di una Regione Aurora DSQL.

Crittografia dei dati in transito

Per impostazione predefinita, è configurata la crittografia in transito. Aurora DSQL utilizza TLS per
crittografare tutto il traffico tra il client SQL e Aurora DSQL.

Crittografia e firma dei dati in transito tra AWS CLI client SDK o API e endpoint Aurora DSQL:

• Aurora DSQL fornisce endpoint HTTPS per la crittografia dei dati in transito.

• Per proteggere l’integrità delle richieste API ad Aurora DSQL, le chiamate API devono essere
firmate dal chiamante. Le chiamate sono firmate da un certificato X.509 o dalla chiave di accesso
AWS segreta del cliente in base al processo di firma della versione 4 di firma (Sigv4). Per maggiori
informazioni, consulta Processo di firma Signature Version 4 nella Riferimenti generali di AWS.

• Usa AWS CLI o uno dei due per effettuare richieste AWS SDKs a. AWS Questi strumenti firmano
automaticamente le richieste con la chiave di accesso specificata al momento della configurazione.

Conformità a FIPS

Gli endpoint del piano dati Aurora DSQL (endpoint del cluster utilizzati per le connessioni al
database) utilizzano moduli crittografici convalidati FIPS 140-2 per impostazione predefinita. Non
sono necessari endpoint FIPS separati per le connessioni al cluster.

Per le operazioni sul piano di controllo, Aurora DSQL fornisce endpoint FIPS dedicati nelle regioni
supportate. Per ulteriori informazioni sugli endpoint FIPS del piano di controllo, vedere Endpoint e
quote Aurora DSQL in. Riferimenti generali di AWS

Per la crittografia a riposo, consulta Crittografia dei dati a riposo in Aurora DSQL.

Riservatezza del traffico inter-rete

Le connessioni sono protette sia tra Aurora DSQL e le applicazioni locali sia tra Aurora DSQL e altre
risorse all'interno delle stesse. AWS Regione AWS

Crittografia dei dati 275

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/dsql.html

Amazon Aurora DSQL Guida per l’utente

Sono disponibili due opzioni di connettività tra la rete privata e: AWS

• Una connessione AWS Site-to-Site VPN. Per maggiori informazioni, consulta Che cos’è AWS Site-
to-Site VPN?

• Una Direct Connect connessione. Per ulteriori informazioni, vedi Cos'èDirect Connect?

È possibile ottenere l’accesso ad Aurora DSQL tramite la rete utilizzando le operazioni API pubblicate
da AWS. I client devono supportare quanto segue:

• Transport Layer Security (TLS). È richiesto TLS 1.2 ed è consigliato TLS 1.3.

• Suite di cifratura con Perfect Forward Secrecy (PFS), ad esempio Ephemeral Diffie-Hellman (DHE)
o Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). La maggior parte dei sistemi moderni, come
Java 7 e versioni successive, supporta tali modalità.

Protezione dei dati nelle Regioni testimone

Quando si crea un cluster multi-Regione, una Regione testimone consente il ripristino automatico
degli errori partecipando alla replica sincrona delle transazioni crittografate. Se un cluster in peering
diventa non disponibile, la Regione testimone rimane disponibile per convalidare ed elaborare le
scritture sul database, garantendo l’assenza di perdita di disponibilità.

Le Regioni testimone proteggono e mantengono al sicuro i dati tramite queste funzionalità imposte
come requisito di progettazione:

• La Regione testimone riceve e archivia i registri dei log delle sole transazioni crittografate. Non
ospita, archivia o trasmette mai le chiavi di crittografia.

• La Regione testimone si concentra esclusivamente sulla registrazione delle transazioni di scrittura
e sulle funzioni di quorum. Per requisito di progettazione non è in grado di leggere i dati.

• La Regione testimone funziona senza endpoint di connessione al cluster o elaboratori di query. Ciò
impedisce l’accesso al database da parte degli utenti.

Per maggiori informazioni sulle Regioni testimoni, consulta Configurazione di cluster multi-Regione.

Configurazione dei SSL/TLS certificati per le connessioni Aurora DSQL

Aurora DSQL richiede che tutte le connessioni utilizzino la crittografia Transport Layer Security (TLS).
Per stabilire connessioni sicure, il sistema client deve affidarsi all’Amazon Root Certificate Authority

Protezione dei dati nelle Regioni testimone 276

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html

Amazon Aurora DSQL Guida per l’utente

(Amazon Root CA 1). Questo certificato è preinstallato su molti sistemi operativi. Questa sezione
fornisce istruzioni per verificare il certificato Amazon Root CA 1 preinstallato su vari sistemi operativi
e guida l’utente attraverso il processo di installazione manuale del certificato, qualora non fosse già
presente.

Si consiglia di utilizzare PostgreSQL versione 17.

Important

Per gli ambienti di produzione, si consiglia di utilizzare la modalità SSL verify-full per
garantire il massimo livello di sicurezza della connessione. Questa modalità verifica che il
certificato del server sia firmato da un’autorità di certificazione affidabile e che il nome host
del server corrisponda al certificato.

Verifica dei certificati preinstallati

Nella maggior parte dei sistemi operativi, Amazon Root CA 1 è già preinstallato. Per convalidarlo, è
possibile completare la procedura seguente.

Linux () RedHat/CentOS/Fedora

Esegui il comando seguente nel terminale:

trust list | grep "Amazon Root CA 1"

Se il certificato è installato, verrà visualizzato il seguente output:

label: Amazon Root CA 1

macOS

1. Apri Spotlight Search (Command + Spazio)

2. Cerca Keychain Access

3. Seleziona System Roots in System Keychains

4. Cerca Amazon Root CA 1 nell’elenco dei certificati

Certificati SSL/TLS 277

Amazon Aurora DSQL Guida per l’utente

Windows

Note

A causa di un problema noto con il client psql per Windows, l’utilizzo dei certificati root
di sistema (sslrootcert=system) può restituire il seguente errore: SSL error:
unregistered scheme. È possibile seguire Connessione da Windows come metodo
alternativo per connettersi al cluster tramite SSL.

Se Amazon Root CA 1 non è installato nel sistema operativo, procedi nel seguente modo.

Installazione dei certificati

Se il certificato Amazon Root CA 1 non è preinstallato sul sistema operativo, sarà necessario
installarlo manualmente per stabilire connessioni sicure al cluster Aurora DSQL.

Installazione del certificato su Linux

Attieniti alla seguente procedura per installare il certificato Amazon Root CA sui sistemi Linux.

1. Scarica il certificato root:

wget https://www.amazontrust.com/repository/AmazonRootCA1.pem

2. Aggiungi il certificato all’archivio di fiducia:

sudo cp ./AmazonRootCA1.pem /etc/pki/ca-trust/source/anchors/

3. Aggiorna il CA Trust Store:

sudo update-ca-trust

4. Verifica l’installazione:

trust list | grep "Amazon Root CA 1"

Certificati SSL/TLS 278

Amazon Aurora DSQL Guida per l’utente

Installazione del certificato su macOS

Questi passaggi di installazione dei certificati sono facoltativi. Installazione del certificato su Linux
funziona anche per macOS.

1. Scarica il certificato root:

wget https://www.amazontrust.com/repository/AmazonRootCA1.pem

2. Aggiungi il certificato al keychain di sistema:

sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.keychain
 AmazonRootCA1.pem

3. Verifica l’installazione:

security find-certificate -a -c "Amazon Root CA 1" -p /Library/Keychains/
System.keychain

Connessione con SSL/TLS verifica

Prima di configurare SSL/TLS i certificati per connessioni sicure al cluster Aurora DSQL, assicurati di
avere i seguenti prerequisiti.

• PostgreSQL versione 17 installata

• AWS CLIconfigurato con le credenziali appropriate

• Informazioni sugli endpoint del cluster Aurora DSQL

Connessione da Linux

1. Genera e imposta il token di autenticazione:

export PGPASSWORD=$(aws dsql generate-db-connect-admin-auth-token --region=your-
cluster-region --hostname your-cluster-endpoint)

2. Connettiti utilizzando certificati di sistema (se preinstallati):

PGSSLROOTCERT=system \
PGSSLMODE=verify-full \

Certificati SSL/TLS 279

Amazon Aurora DSQL Guida per l’utente

psql --dbname postgres \
--username admin \
--host your-cluster-endpoint

3. Oppure, connettiti utilizzando un certificato scaricato:

PGSSLROOTCERT=/full/path/to/root.pem \
PGSSLMODE=verify-full \
psql --dbname postgres \
--username admin \
--host your-cluster-endpoint

Note

Per maggiori informazioni sulle impostazioni PGSSLMODE, consulta sslmode nella
documentazione sulle Funzioni di controllo della connessione del database di PostgreSQL
17.

Connessione da macOS

1. Genera e imposta il token di autenticazione:

export PGPASSWORD=$(aws dsql generate-db-connect-admin-auth-token --region=your-
cluster-region --hostname your-cluster-endpoint)

2. Connettiti utilizzando certificati di sistema (se preinstallati):

PGSSLROOTCERT=system \
PGSSLMODE=verify-full \
psql --dbname postgres \
--username admin \
--host your-cluster-endpoint

3. Oppure, scarica il certificato root e salvalo con il nome root.pem (se il certificato non è
preinstallato)

PGSSLROOTCERT=/full/path/to/root.pem \
PGSSLMODE=verify-full \
psql —dbname postgres \

Certificati SSL/TLS 280

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE
https://www.postgresql.org/docs/current/libpq-connect.html

Amazon Aurora DSQL Guida per l’utente

--username admin \
--host your_cluster_endpoint

4. Connessione tramite psql:

PGSSLROOTCERT=/full/path/to/root.pem \
PGSSLMODE=verify-full \
psql —dbname postgres \
--username admin \
--host your_cluster_endpoint

Connessione da Windows

Utilizzo del prompt dei comandi

1. Genera il token di autenticazione:

aws dsql generate-db-connect-admin-auth-token ^
--region=your-cluster-region ^
--expires-in=3600 ^
--hostname=your-cluster-endpoint

2. Imposta la variabile di ambiente della password:

set "PGPASSWORD=token-from-above"

3. Imposta la configurazione SSL:

set PGSSLROOTCERT=C:\full\path\to\root.pem
set PGSSLMODE=verify-full

4. Connettiti al database:

"C:\Program Files\PostgreSQL\17\bin\psql.exe" --dbname postgres ^
--username admin ^
--host your-cluster-endpoint

Usando PowerShell

1. Genera e imposta il token di autenticazione:

Certificati SSL/TLS 281

Amazon Aurora DSQL Guida per l’utente

$env:PGPASSWORD = (aws dsql generate-db-connect-admin-auth-token --region=your-
cluster-region --expires-in=3600 --hostname=your-cluster-endpoint)

2. Imposta la configurazione SSL:

$env:PGSSLROOTCERT='C:\full\path\to\root.pem'
$env:PGSSLMODE='verify-full'

3. Connettiti al database:

 "C:\Program Files\PostgreSQL\17\bin\psql.exe" --dbname postgres `
--username admin `
--host your-cluster-endpoint

Risorse aggiuntive

• Documentazione di PostgreSQL SSL

• Servizi Amazon Trust

Crittografia dei dati per Amazon Aurora DSQL

Amazon Aurora DSQL crittografa tutti i dati a riposo degli utenti. Per una maggiore sicurezza, questa
crittografia utilizza AWS Key Management Service (AWS KMS). Questa funzionalità consente di
ridurre gli oneri operativi e la complessità associati alla protezione dei dati sensibili. La crittografia dei
dati a riposo permette di:

• Ridurre l’onere operativo legato alla protezione dei dati sensibili

• Creare applicazioni ad alto livello di sicurezza che rispettano rigorosi requisiti normativi e di
conformità per la crittografia

• Aggiungere un ulteriore livello di protezione dei dati proteggendo sempre i dati in un cluster
crittografato

• Rispettare le policy organizzative, le normative di settore o governative e i requisiti di conformità

La crittografia dei dati a risposo consente di creare applicazioni ad alto livello di sicurezza che
rispettano rigorosi requisiti normativi e di conformità per la crittografia. Le sezioni seguenti spiegano

Crittografia dei dati 282

https://www.postgresql.org/docs/current/libpq-ssl.html
https://www.amazontrust.com/repository/

Amazon Aurora DSQL Guida per l’utente

come configurare la crittografia per i database Aurora DSQL nuovi ed esistenti e gestire le chiavi di
crittografia.

Argomenti

• Tipi di chiave KMS per Aurora DSQL

• Crittografia dei dati a riposo in Aurora DSQL

• Utilizzo AWS KMS e chiavi dati con Aurora DSQL

• Autorizzazione all'uso del tuo AWS KMS key per Aurora DSQL

• Contesto di crittografia di Aurora DSQL

• Monitoraggio dell’interazione di Aurora DSQL con AWS KMS

• Creazione di un cluster Aurora DSQL crittografato

• Rimozione o aggiornamento di una chiave per il cluster Aurora DSQL

• Considerazioni sulla crittografia con Aurora DSQL

Tipi di chiave KMS per Aurora DSQL

Aurora DSQL si integra con la gestione delle chiavi di crittografia AWS KMS per i cluster. Per
maggiori informazioni sui tipi e gli stati delle chiavi, consulta Concetti di AWS Key Management
Service nella Guida per gli sviluppatori di AWS Key Management Service. Quando si crea un nuovo
cluster, è possibile selezionare tra i seguenti tipi di chiave KMS per crittografare il cluster:

Chiave di proprietà di AWS

Tipo di crittografia predefinito. Aurora DSQL possiede la chiave senza costi aggiuntivi per l’utente.
Amazon Aurora DSQL decrittografa in modo trasparente i dati del cluster quando si accede a un
cluster crittografato. Non è necessario modificare il codice o le applicazioni per utilizzare o gestire
i cluster crittografati e tutte le query SQL di Aurora funzionano con i dati crittografati.

Chiave gestita dal cliente

Tu crei, possiedi e gestisci la chiave del tuo. Account AWS Hai il pieno controllo sulla chiave KMS.
AWS KMSsi applicano costi.

La crittografia a riposo utilizzando il Chiave di proprietà di AWS è disponibile senza costi aggiuntivi.
Tuttavia, per le chiavi gestite dal cliente vengono AWS KMS addebitati dei costi. Per maggiori
informazioni, consulta la pagina Prezzi di AWS KMS.

Tipi di chiave KMS 283

https://docs.aws.amazon.com/kms/latest/developerguide/concepts-intro.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts-intro.html
https://aws.amazon.com/kms/pricing/

Amazon Aurora DSQL Guida per l’utente

È possibile passare da un tipo di chiave all’altro in qualsiasi momento. Per maggiori informazioni
sui tipi di chiave, consulta Chiavi gestite dal cliente e Chiavi di proprietà di AWS nella Guida per gli
sviluppatori di AWS Key Management Service.

Note

La crittografia Aurora DSQL at Rest è disponibile in tutte le regioni in AWS cui è disponibile
Aurora DSQL.

Crittografia dei dati a riposo in Aurora DSQL

Amazon Aurora DSQL utilizza Advanced Encryption Standard a 256 bit (AES-256) per crittografare
i dati a riposo. Questa crittografia aiuta a proteggere i dati dall'accesso non autorizzato allo
storage sottostante. AWS KMSgestisce le chiavi di crittografia per i cluster. È possibile utilizzare
l’impostazione predefinita Chiavi di proprietà di AWS o scegliere di utilizzare la propria Chiavi gestite
dal cliente AWS KMS. Per maggiori informazioni sulla specificazione e la gestione delle chiavi per
i cluster Aurora DSQL, consulta Creazione di un cluster Aurora DSQL crittografato e Rimozione o
aggiornamento di una chiave per il cluster Aurora DSQL.

Argomenti

• Chiavi di proprietà di AWS

• Chiavi gestite dal cliente

Chiavi di proprietà di AWS

Aurora DSQL crittografa tutti i cluster per impostazione predefinita con. Chiavi di proprietà di AWS
Queste chiavi possono essere utilizzate gratuitamente e ruotano ogni anno per proteggere le risorse
degli account. Non è necessario visualizzare, gestire, utilizzare o controllare queste chiavi, quindi
non è necessaria alcuna azione per la protezione dei dati. Per ulteriori informazioni in meritoChiavi
di proprietà di AWS, consulta la Guida per gli Chiavi di proprietà di AWSsviluppatori. AWS Key
Management Service

Chiavi gestite dal cliente

È possibile creare, possedere e gestire chiavi gestite dal cliente in Account AWS. L’utente mantiene il
pieno controllo su queste chiavi KMS, comprese le relative policy, il materiale di crittografia, i tag e gli

Crittografia dei dati a riposo 284

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

Amazon Aurora DSQL Guida per l’utente

alias. Per maggiori informazioni sulla gestione delle autorizzazioni, consulta Chiavi gestite dal cliente
nella Guida per gli sviluppatori di AWS Key Management Service.

Quando si specifica una chiave gestita dal cliente per la crittografia a livello di cluster, Aurora DSQL
crittografa il cluster e tutti i relativi dati regionali con quella chiave. Per prevenire la perdita di dati e
mantenere l’accesso al cluster, Aurora DSQL deve accedere alla chiave di crittografia. Se si disabilita
la chiave gestita dal cliente, se ne pianifica l’eliminazione o si impone una policy che limita l’accesso
al servizio, lo stato di crittografia del cluster diventa KMS_KEY_INACCESSIBLE. Quando Aurora
DSQL non è in grado di accedere alla chiave, gli utenti non possono connettersi al cluster, lo stato
di crittografia del cluster diventa KMS_KEY_INACCESSIBLE e il servizio perde l’accesso ai dati del
cluster.

Per i cluster multiregionali, i clienti possono configurare la chiave di AWS KMS crittografia di ciascuna
regione separatamente e ogni cluster regionale utilizza la propria chiave di crittografia a livello di
cluster. Se Aurora DSQL non è in grado di accedere alla chiave di crittografia per un peer in un
cluster multi-Regione, lo stato di quel peer diventa KMS_KEY_INACCESSIBLE e non è più disponibile
per le operazioni di lettura e scrittura. Gli altri peer continuano con la normale operatività.

Note

Se Aurora DSQL non è in grado di accedere alla chiave gestita dal cliente, lo stato di
crittografia del cluster diventa KMS_KEY_INACCESSIBLE. Dopo aver ripristinato l’accesso
alla chiave, il servizio rileverà automaticamente il ripristino entro 15 minuti. Per maggiori
informazioni, consulta la sezione Cluster in stato sospeso.
Per i cluster multi-Regione, se l’accesso alla chiave viene perso per un periodo prolungato,
il tempo di ripristino del cluster dipende dalla quantità di dati scritti mentre la chiave era
inaccessibile.

Utilizzo AWS KMS e chiavi dati con Aurora DSQL

La funzionalità di crittografia a riposo di Aurora DSQL utilizza una AWS KMS key e una gerarchia di
chiavi di dati per proteggere i dati del cluster.

Consigliamo di pianificare la strategia di crittografia prima di implementare il cluster in Aurora DSQL.
Se si archiviano dati sensibili o riservati in Aurora DSQL, prendere in considerazione l’inclusione della
crittografia lato client nel piano. In questo modo è possibile crittografare i dati il più vicino possibile
alla loro origine e garantirne la protezione per tutto il ciclo di vita.

Utilizzo di KMS e chiavi di dati 285

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Aurora DSQL Guida per l’utente

Argomenti

• Usare AWS KMS key s con Aurora DSQL

• Utilizzo delle chiavi del cluster con Aurora DSQL

• Caching della chiave del cluster

Usare AWS KMS key s con Aurora DSQL

La crittografia dei dati a riposo protegge il cluster Aurora DSQL con una AWS KMS key. Per
impostazione predefinita, Aurora DSQL utilizza una Chiave di proprietà di AWS chiave di crittografia
multi-tenant creata e gestita in un account del servizio Aurora DSQL. È però possibile crittografare
i cluster Aurora DSQL con una chiave gestita dal cliente nel proprio Account AWS. È possibile
selezionare una chiave KMS differente per ogni cluster, anche se fa parte di una configurazione multi-
Regione.

Quando si crea o si aggiorna il cluster si seleziona la chiave KMS relativa. È possibile modificare la
chiave KMS per un cluster in qualsiasi momento, nella console di Aurora DSQL oppure utilizzando
l’operazione UpdateCluster. Il processo di scambio di chiavi non richiede tempo di inattività e non
comporta alcun calo delle prestazioni del servizio.

Important

Aurora DSQL supporta solo chiavi KMS simmetriche. Non è possibile utilizzare una chiave
KMS asimmetrica per crittografare i cluster Aurora DSQL.

Una chiave gestita dal cliente fornisce i seguenti vantaggi.

• Il cliente crea e gestisce la chiave KMS, inclusa l’impostazione delle Policy delle chiavi e delle
Policy IAM per controllare l’accesso alla chiave KMS. È possibile abilitare e disabilitare la chiave
KMS, abilitare e disabilitare la rotazione automatica della chiave ed eliminare la chiave KMS
quando non è più in uso.

• È possibile utilizzare una chiave gestita dal cliente con materiale di chiave importato o una chiave
gestita dal cliente in un archivio delle chiavi personalizzate di cui il cliente è proprietario e gestore.

• È possibile controllare la crittografia e la decrittografia del cluster Aurora DSQL esaminando le
chiamate dell'API Aurora DSQL ai log. AWS KMS AWS CloudTrail

Utilizzo di KMS e chiavi di dati 286

Amazon Aurora DSQL Guida per l’utente

Tuttavia, Chiave di proprietà di AWS è gratuito e il suo utilizzo non influisce sulle quote di risorse o
richieste. AWS KMS Le chiavi gestite dal cliente sono soggette a un addebito per ogni chiamata API
e a tali chiavi KMS vengono applicate le quote di AWS KMS.

Utilizzo delle chiavi del cluster con Aurora DSQL

Aurora DSQL utilizza for the cluster AWS KMS key per generare e crittografare una chiave dati
univoca per il cluster, nota come chiave del cluster.

La chiave del cluster viene utilizzata come chiave di crittografia. Aurora DSQL utilizza questa chiave
del cluster per proteggere le chiavi di crittografia dei dati utilizzate per crittografare i dati del cluster.
Aurora DSQL genera una chiave di crittografia dei dati univoca per ogni struttura sottostante in un
cluster, ma più di un elemento della cluster potrebbe essere protetto dalla stessa chiave di crittografia
dei dati.

Per decrittografare la chiave del cluster, Aurora DSQL invia una richiesta a AWS KMS quando si
accede per la prima volta a un cluster crittografato. Per mantenere il cluster disponibile, Aurora DSQL
verifica periodicamente l’accesso del sistema di decrittazione alla chiave KMS, anche quando non si
accede attivamente al cluster.

Aurora DSQL archivia e utilizza la chiave del cluster e le chiavi di crittografia dei dati all'esterno di.
AWS KMS Protegge tutte le chiavi con la crittografia Advanced Encryption Standard (AES) e le chiavi
di crittografia a 256 bit. Quindi, archivia le chiavi crittografate con i dati crittografati, in modo che siano
disponibili per decrittografare i dati del cluster on demand.

Quando si modifica la chiave KMS per il cluster, Aurora DSQL crittografa nuovamente la chiave del
cluster esistente con la nuova chiave KMS.

Caching della chiave del cluster

Per evitare di chiamare AWS KMS per ogni operazione Aurora DSQL, Aurora DSQL memorizza nella
cache le chiavi del cluster in testo semplice per ogni chiamante in memoria. Se Aurora DSQL riceve
una richiesta per la chiave del cluster memorizzata nella cache dopo 15 minuti di inattività, invia una
nuova richiesta per AWS KMS decrittografare la chiave del cluster. Questa chiamata acquisirà tutte
le modifiche apportate alle politiche di accesso di AWS KMS key in AWS KMS o AWS Identity and
Access Management (IAM) dopo l'ultima richiesta di decrittografia della chiave del cluster.

Utilizzo di KMS e chiavi di dati 287

Amazon Aurora DSQL Guida per l’utente

Autorizzazione all'uso del tuo AWS KMS key per Aurora DSQL

Se si utilizza una chiave gestita dal cliente nel proprio account per proteggere il cluster Aurora DSQL,
è necessario che le policy su tale chiave forniscano ad Aurora DSQL l’autorizzazione per usarla per
conto dell’utente.

L’utente ha il pieno controllo sulle policy di una chiave gestita dal cliente. Aurora DSQL non necessita
di autorizzazioni aggiuntive per utilizzare l'impostazione predefinita per proteggere i Chiave di
proprietà di AWS cluster Aurora DSQL nel tuo. Account AWS

Policy della chiave per una chiave gestita dal cliente

Quando si seleziona una chiave gestita dal cliente per proteggere un cluster Aurora DSQL, Aurora
DSQL necessita dell'autorizzazione per utilizzarla per AWS KMS key conto del principale che effettua
la selezione. Tale principale, un utente o un ruolo, deve disporre delle autorizzazioni richieste da
Aurora DSQL. AWS KMS key È possibile fornire queste autorizzazioni in una policy della chiave o in
una policy IAM.

Le autorizzazioni minime richieste da Aurora DSQL per una chiave gestita dal cliente sono:

• kms:Encrypt

• kms:Decrypt

• kms:ReEncrypt*(per e) kms: ReEncryptFrom kms: ReEncryptTo

• kms:GenerateDataKey

• kms:DescribeKey

Ad esempio, la policy della chiave di esempio riportata di seguito fornisce solo le autorizzazioni
necessarie. La policy ha i seguenti effetti:

• Consente ad Aurora DSQL di utilizzare Aurora DSQL AWS KMS key nelle operazioni crittografiche,
ma solo quando agisce per conto dei responsabili dell'account che dispongono del permesso di
utilizzare Aurora DSQL. Se le entità principali specificate nell’istruzione della policy non dispongono
dell’autorizzazione per l’utilizzo di Aurora DSQL, la chiamata non riesce, anche quando proviene
dal servizio Aurora DSQL.

• La chiave di condizione kms:ViaService consente le autorizzazioni solo quando la richiesta
proviene da Aurora DSQL per conto delle entità principali elencate nell’istruzione della policy. Tali
entità principali non possono chiamare direttamente queste operazioni.

Autorizzazione all’uso della chiave KMS 288

Amazon Aurora DSQL Guida per l’utente

• Fornisce agli AWS KMS key amministratori (utenti che possono assumere il ruolo) l'accesso in sola
lettura a db-team AWS KMS key

Prima di utilizzare una politica chiave di esempio, sostituisci i principi di esempio con i principali
effettivi del tuo. Account AWS

{
 "Sid": "Enable dsql IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "Service": "dsql.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:Encrypt",
 "kms:ReEncryptFrom",
 "kms:ReEncryptTo"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:EncryptionContext:aws:dsql:ClusterId": "w4abucpbwuxx",
 "aws:SourceArn": "arn:aws:dsql:us-east-2:111122223333:cluster/w4abucpbwuxx"
 }
 }
},
{
 "Sid": "Enable dsql IAM User Describe Permissions",
 "Effect": "Allow",
 "Principal": {
 "Service": "dsql.amazonaws.com"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:dsql:us-east-2:111122223333:cluster/w4abucpbwuxx"
 }
 }
}

Autorizzazione all’uso della chiave KMS 289

Amazon Aurora DSQL Guida per l’utente

Contesto di crittografia di Aurora DSQL

Un contesto di crittografia è un set di coppie chiave-valore che contiene dati arbitrari non segreti.
Quando includi un contesto di crittografia in una richiesta di crittografia dei dati, associa AWS KMS
crittograficamente il contesto di crittografia ai dati crittografati. lo stesso contesto di crittografia sia
necessario per decrittografare i dati.

Aurora DSQL utilizza lo stesso contesto di crittografia in tutte le AWS KMS operazioni crittografiche.
Se si utilizza una chiave gestita dal cliente per proteggere il cluster Aurora DSQL, è possibile
utilizzare il contesto di crittografia per identificare l'utilizzo di tale chiave nei record e AWS KMS key
nei log di controllo. Viene inoltre visualizzato come testo in chiaro nei log, ad esempio quelli di AWS
CloudTrail.

Il contesto di crittografia può anche essere usato come una condizione per le autorizzazioni nelle
policy.

Nelle sue richieste aAWS KMS, Aurora DSQL utilizza un contesto di crittografia con una coppia
chiave-valore:

"encryptionContext": {
 "aws:dsql:ClusterId": "w4abucpbwuxx"
},

La coppia chiave-valore identifica il cluster che Aurora DSQL sta crittografando. La chiave è
aws:dsql:ClusterId. Il valore è l’identificativo del cluster.

Monitoraggio dell’interazione di Aurora DSQL con AWS KMS

Se utilizzi una chiave gestita dal cliente per proteggere i tuoi cluster Aurora DSQL, puoi utilizzare i
AWS CloudTrail log per tenere traccia delle richieste a cui Aurora DSQL invia per tuo conto. AWS
KMS

Espandi le seguenti sezioni per scoprire come Aurora DSQL utilizza le AWS KMS operazioni e.
GenerateDataKey Decrypt

Contesto di crittografia 290

Amazon Aurora DSQL Guida per l’utente

GenerateDataKey

Quando si abilita la crittografia dei dati a riposo su un cluster, Aurora DSQL crea una chiave del
cluster univoca. Invia una GenerateDataKey richiesta a AWS KMS che specifica il nome AWS KMS
key per il cluster.

L’evento che registra l’operazione GenerateDataKey è simile a quello del seguente evento di
esempio. L’utente è l’account di servizio di Aurora DSQL. I parametri includono l'Amazon Resource
Name (ARN) diAWS KMS key, un identificatore di chiave che richiede una chiave a 256 bit e il
contesto di crittografia che identifica il cluster.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "dsql.amazonaws.com"
 },
 "eventTime": "2025-05-16T18:41:24Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "dsql.amazonaws.com",
 "userAgent": "dsql.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "aws:dsql:ClusterId": "w4abucpbwuxx"
 },
 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-east-1:982127530226:key/8b60dd9f-2ff8-4b1f-8a9c-
bf570cbfdb5e"
 },
 "responseElements": null,
 "requestID": "2da2dc32-d3f4-4d6c-8a41-aff27cd9a733",
 "eventID": "426df0a6-ba56-3244-9337-438411f826f4",
 "readOnly": true,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:982127530226:key/8b60dd9f-2ff8-4b1f-8a9c-
bf570cbfdb5e"
 }
],

Monitoraggio AWS KMS 291

Amazon Aurora DSQL Guida per l’utente

 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "sharedEventID": "f88e0dd8-6057-4ce0-b77d-800448426d4e",
 "vpcEndpointId": "AWS Internal",
 "vpcEndpointAccountId": "vpce-1a2b3c4d5e6f1a2b3",
 "eventCategory": "Management"
}

Decrittografia

Quando si accede a un cluster Aurora DSQL crittografato, Aurora DSQL deve decrittografare la
chiave del cluster per poter decrittografare le chiavi sottostanti nella gerarchia. Quindi decrittografa i
dati nel cluster. Per decrittografare la chiave del cluster, Aurora DSQL invia una Decrypt richiesta a
AWS KMS che specifica il nome del cluster. AWS KMS key

L’evento che registra l’operazione Decrypt è simile a quello del seguente evento di esempio.
L'utente è il principale dell'utente Account AWS che accede al cluster. I parametri includono la chiave
del cluster crittografata (come blob di testo cifrato) e il contesto di crittografia che identifica il cluster.
AWS KMSricava l'ID di dal testo cifrato. AWS KMS key

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "dsql.amazonaws.com"
 },
 "eventTime": "2018-02-14T16:42:39Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "dsql.amazonaws.com",
 "userAgent": "dsql.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
east-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "encryptionContext": {
 "aws:dsql:ClusterId": "w4abucpbwuxx"
 },
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT"
 },

Monitoraggio AWS KMS 292

Amazon Aurora DSQL Guida per l’utente

 "responseElements": null,
 "requestID": "11cab293-11a6-11e8-8386-13160d3e5db5",
 "eventID": "b7d16574-e887-4b5b-a064-bf92f8ec9ad3",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
east-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "sharedEventID": "d99f2dc5-b576-45b6-aa1d-3a3822edbeeb",
 "vpcEndpointId": "AWS Internal",
 "vpcEndpointAccountId": "vpce-1a2b3c4d5e6f1a2b3",
 "eventCategory": "Management"
}

Creazione di un cluster Aurora DSQL crittografato

Tutti i cluster Aurora DSQL sono crittografati a riposo. Per impostazione predefinita, i cluster
utilizzano una chiave Chiave di proprietà di AWS gratuita oppure è possibile specificare una chiave
personalizzata. AWS KMS Segui questi passaggi per creare il tuo cluster crittografato da Console di
gestione AWS o da. AWS CLI

Console

Per creare un cluster crittografato in Console di gestione AWS

1. Accedi alla console di AWS gestione e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql/

2. Nel pannello di navigazione sul lato sinistro della console, scegli Cluster.

3. Scegli Crea cluster in alto a destra e seleziona Regione singola.

4. Nelle Impostazioni di crittografia del cluster, seleziona una delle seguenti opzioni.

• Accetta le impostazioni predefinite per crittografare con un file senza Chiave di proprietà di
AWS costi aggiuntivi.

Creazione di un cluster crittografato 293

https://console.aws.amazon.com/dsql/
https://console.aws.amazon.com/dsql/

Amazon Aurora DSQL Guida per l’utente

• Seleziona Personalizza le impostazioni di crittografia (avanzate) per specificare una
chiave KMS personalizzata. Quindi, cerca o inserisci l’ID o l’alias della tua chiave KMS.
In alternativa, scegli Crea una AWS KMS chiave per creare una nuova chiave nella AWS
KMS console.

5. Scegli Crea cluster.

Per confermare il tipo di crittografia per il cluster, vai alla pagina Cluster e seleziona l’ID del cluster
per visualizzarne i dettagli. Esamina la scheda Impostazioni cluster: l'impostazione della chiave
Cluster KMS mostra la chiave predefinita Aurora DSQL per i cluster che AWS utilizzano chiavi di
proprietà o l'ID della chiave per altri tipi di crittografia.

Note

Se scegli di possedere e gestire la tua chiave, assicurati che la policy della chiave KMS
sia impostata in modo appropriato. Per esempi e maggiori informazioni, consulta the
section called “Policy della chiave per una chiave gestita dal cliente”.

CLI

Per creare un cluster crittografato con l'impostazione predefinita Chiave di proprietà di AWS

• Utilizza il comando seguente per creare un cluster Aurora DSQL.

aws dsql create-cluster

Come illustrato nei seguenti dettagli di crittografia, lo stato di crittografia per il cluster è abilitato
per impostazione predefinita e il tipo di crittografia predefinito è la chiave di proprietà di AWS. Il
cluster è ora crittografato con la chiave predefinita di proprietà di AWS nell’account del servizio
Aurora DSQL.

"encryptionDetails": {
 "encryptionType" : "AWS_OWNED_KMS_KEY",
 "encryptionStatus" : "ENABLED"
}

Creazione di un cluster crittografato 294

Amazon Aurora DSQL Guida per l’utente

Come creare un cluster crittografato con la chiave gestita dal cliente

• Utilizza il comando seguente per creare un cluster Aurora DSQL, sostituendo l’ID della chiave
scritto in rosso con l’ID della chiave gestita da te in qualità di cliente.

aws dsql create-cluster \
--kms-encryption-key d41d8cd98f00b204e9800998ecf8427e

Come illustrato nei seguenti dettagli di crittografia, lo stato di crittografia per il cluster è abilitato
per impostazione predefinita e il tipo di crittografia è la chiave KMS gestita dal cliente. Il cluster è
ora crittografato con la chiave dell’utente.

"encryptionDetails": {
 "encryptionType" : "CUSTOMER_MANAGED_KMS_KEY",
 "kmsKeyArn" : "arn:aws:kms:us-east-1:111122223333:key/
d41d8cd98f00b204e9800998ecf8427e",
 "encryptionStatus" : "ENABLED"
}

Rimozione o aggiornamento di una chiave per il cluster Aurora DSQL

Puoi usare Console di gestione AWS o the AWS CLI per aggiornare o rimuovere le chiavi di
crittografia sui cluster esistenti in Amazon Aurora DSQL. Se rimuovi una chiave senza sostituirla,
Aurora DSQL utilizza l’impostazione predefinita Chiave di proprietà di AWS. Segui questi passaggi
per aggiornare le chiavi di crittografia di un cluster esistente dalla console Aurora DSQL o dalla AWS
CLI.

Console

Per aggiornare o rimuovere una chiave di crittografia in Console di gestione AWS

1. Accedi alla console di AWS gestione e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql/

2. Nel pannello di navigazione sul lato sinistro della console, scegli Cluster.

3. Nella visualizzazione a elenco, trova e seleziona la riga del cluster che desideri aggiornare.

4. Seleziona il menu Operazioni e quindi scegli Modifica.

Rimozione o aggiornamento di una chiave 295

https://console.aws.amazon.com/dsql/
https://console.aws.amazon.com/dsql/

Amazon Aurora DSQL Guida per l’utente

5. Nelle Impostazioni di crittografia del cluster, scegli una delle seguenti opzioni per modificare
le impostazioni di crittografia.

• Se desideri passare da una chiave personalizzata a unaChiave di proprietà di AWS,
deseleziona l'opzione Personalizza le impostazioni di crittografia (avanzate). Le
impostazioni predefinite applicheranno e crittograferanno il cluster Chiave di proprietà di
AWS gratuitamente.

• Se desideri passare da una chiave KMS personalizzata a un’altra o da una Chiave di
proprietà di AWS a una chiave KMS, seleziona l’opzione Personalizza le impostazioni di
crittografia (avanzate) se non è già selezionata. Quindi, cerca e seleziona l’ID o l’alias della
chiave che desideri utilizzare. In alternativa, scegli Crea una AWS KMS chiave per creare
una nuova chiave nella AWS KMS console.

6. Scegli Save (Salva).

CLI

Gli esempi seguenti mostrano come utilizzare AWS CLI per aggiornare un cluster crittografato.

Per aggiornare un cluster crittografato con quello predefinito Chiave di proprietà di AWS

aws dsql update-cluster \
--identifier aiabtx6icfp6d53snkhseduiqq \
--kms-encryption-key "AWS_OWNED_KMS_KEY"

Lo EncryptionStatus della descrizione del cluster è impostato su ENABLED ed
EncryptionType è AWS_OWNED_KMS_KEY.

"encryptionDetails": {
 "encryptionType" : "AWS_OWNED_KMS_KEY",
 "encryptionStatus" : "ENABLED"
}

Questo cluster è ora crittografato utilizzando l'impostazione predefinita Chiave di proprietà di AWS
nell'account del servizio Aurora DSQL.

Rimozione o aggiornamento di una chiave 296

Amazon Aurora DSQL Guida per l’utente

Come aggiornare un cluster crittografato con una chiave gestita dal cliente per Aurora DSQL

Aggiorna il cluster crittografato, come nell’esempio seguente:

aws dsql update-cluster \
--identifier aiabtx6icfp6d53snkhseduiqq \
--kms-encryption-key arn:aws:kms:us-east-1:123456789012:key/abcd1234-abcd-1234-a123-
ab1234a1b234

Lo EncryptionStatus della descrizione del cluster passa a UPDATING ed EncryptionType
è CUSTOMER_MANAGED_KMS_KEY. Dopo che Aurora DSQL avrà terminato la propagazione della
nuova chiave attraverso la piattaforma, lo stato di crittografia diventa ENABLED

"encryptionDetails": {
 "encryptionType" : "CUSTOMER_MANAGED_KMS_KEY",
 "kmsKeyArn" : "arn:aws:us-east-1:kms:key/abcd1234-abcd-1234-a123-ab1234a1b234",
 "encryptionStatus" : "ENABLED"
}

Note

Se scegli di possedere e gestire la tua chiave, assicurati che la policy della chiave KMS sia
impostata in modo appropriato. Per esempi e maggiori informazioni, consulta the section
called “Policy della chiave per una chiave gestita dal cliente”.

Considerazioni sulla crittografia con Aurora DSQL

• Aurora DSQL crittografa tutti i dati a riposo del cluster. Non è possibile disabilitare questa
crittografia o crittografare solo alcuni elementi in un cluster.

• AWS Backupcrittografa i backup e tutti i cluster ripristinati da questi backup. È possibile
crittografare i dati di backup AWS Backup utilizzando la chiave AWS proprietaria o una chiave
gestita dal cliente.

• Per Aurora DSQL sono stati abilitati i seguenti stati di protezione:

• Dati a riposo - Aurora DSQL crittografa tutti i dati statici su supporti di archiviazione persistenti

Considerazioni 297

Amazon Aurora DSQL Guida per l’utente

• Dati in transito - Aurora DSQL crittografa tutte le comunicazioni tramite Transport Layer Security
(TLS) per impostazione predefinita

• Quando passi a una chiave diversa, ti consigliamo di mantenere abilitata la chiave originale fino
al completamento della transizione. AWSnecessita della chiave originale per decrittografare
i dati prima di crittografare i dati con la nuova chiave. Il processo è completo quando il
encryptionStatus del cluster è ENABLED e viene visualizzata la kmsKeyArn della nuova chiave
gestita dal cliente.

• Quando si disabilita la chiave gestita dal cliente o si revoca l’accesso ad Aurora DSQL per l’utilizzo
della chiave, lo stato del cluster diventa IDLE.

• L'API SQL di Amazon Aurora Console di gestione AWS e Amazon Aurora utilizzano termini diversi
per i tipi di crittografia:

• AWSConsole: nella console, vedrai KMS quando usi una chiave gestita dal cliente e DEFAULT
quando usi un. Chiave di proprietà di AWS

• API - L’API di Amazon Aurora DSQL utilizza CUSTOMER_MANAGED_KMS_KEY per le chiavi gestite
dai clienti e AWS_OWNED_KMS_KEY per Chiavi di proprietà di AWS.

• Se non si specifica una chiave di crittografia durante la creazione del cluster, Aurora DSQL
crittografa automaticamente i dati utilizzando il. Chiave di proprietà di AWS

• Puoi passare da una Chiave di proprietà di AWS chiave gestita dal cliente a una chiave gestita dal
cliente in qualsiasi momento. Apporta questa modifica utilizzando Console di gestione AWSAWS
CLI, o l'API SQL di Amazon Aurora.

Gestione delle identità e degli accessi per Aurora DSQL

AWS Identity and Access Management(IAM) è uno strumento Servizio AWS che aiuta un
amministratore a controllare in modo sicuro l'accesso alle risorse. AWS Gli amministratori IAM
controllano chi può essere autenticato (chi ha effettuato l’accesso) e autorizzato (chi dispone delle
autorizzazioni) a utilizzare le risorse di Aurora DSQL. IAM è un software Servizio AWS che puoi
utilizzare senza costi aggiuntivi.

Argomenti

• Destinatari

• Autenticazione con identità

• Gestione dell’accesso tramite policy

• Funzionamento di Amazon Aurora DSQL con IAM

Gestione dell’identità e degli accessi 298

Amazon Aurora DSQL Guida per l’utente

• Esempi di policy basate sull’identità per Amazon Aurora DSQL

• Risoluzione dei problemi di identità e accesso in Amazon Aurora DSQL

Destinatari

Il modo in cui utilizzi AWS Identity and Access Management (IAM) varia in base al tuo ruolo:

• Utente del servizio: richiedi le autorizzazioni all’amministratore se non riesci ad accedere alle
funzionalità (consulta Risoluzione dei problemi di identità e accesso in Amazon Aurora DSQL)

• Amministratore del servizio: determina l’accesso degli utenti e invia le richieste di autorizzazione
(consulta Funzionamento di Amazon Aurora DSQL con IAM)

• Amministratore IAM: scrivi policy per gestire l’accesso (consulta Esempi di policy basate
sull’identità per Amazon Aurora DSQL)

Autenticazione con identità

L'autenticazione è il modo in cui accedi AWS utilizzando le tue credenziali di identità. Devi autenticarti
come utente IAM o assumendo un ruolo IAM. Utente root dell'account AWS

Puoi accedere come identità federata utilizzando credenziali provenienti da una fonte di identità come
AWS IAM Identity Center (IAM Identity Center), autenticazione Single Sign-On o credenziali. Google/
Facebook Per ulteriori informazioni sull’accesso, consulta Come accedere all’Account AWS nella
Guida per l’utente di Accedi ad AWS.

Per l'accesso programmatico, AWS fornisce un SDK e una CLI per firmare crittograficamente le
richieste. Per ulteriori informazioni, consulta AWS Signature Version 4 per le richieste API nella Guida
per l’utente di IAM.

Account AWSutente root

Quando si crea unAccount AWS, si inizia con un'identità di accesso denominata utente Account AWS
root che ha accesso completo a tutte Servizi AWS le risorse. Consigliamo vivamente di non utilizzare
l’utente root per le attività quotidiane. Per le attività che richiedono le credenziali dell’utente root,
consulta Attività che richiedono le credenziali dell’utente root nella Guida per l’utente IAM.

Destinatari 299

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Amazon Aurora DSQL Guida per l’utente

Identità federata

Come procedura ottimale, richiedi agli utenti umani di utilizzare la federazione con un provider di
identità per accedere Servizi AWS utilizzando credenziali temporanee.

Un'identità federata è un utente della directory aziendale, del provider di identità Web o Directory
Service che accede Servizi AWS utilizzando le credenziali di una fonte di identità. Le identità federate
assumono ruoli che forniscono credenziali temporanee.

Per la gestione centralizzata degli accessi, si consiglia di utilizzare AWS IAM Identity Center. Per
ulteriori informazioni, consulta Che cos’è il Centro identità IAM? nella Guida per l’utente di AWS IAM
Identity Center.

Utenti e gruppi IAM

Un utente IAM è una identità che dispone di autorizzazioni specifiche per una singola persona o
applicazione. Consigliamo di utilizzare credenziali temporanee invece di utenti IAM con credenziali
a lungo termine. Per ulteriori informazioni, consulta Richiedere agli utenti umani di utilizzare la
federazione con un provider di identità per accedere AWS utilizzando credenziali temporanee nella
Guida per l'utente IAM.

Un gruppo IAM specifica una raccolta di utenti IAM e semplifica la gestione delle autorizzazioni per
gestire gruppi di utenti di grandi dimensioni. Per ulteriori informazioni, consulta Casi d’uso per utenti
IAM nella Guida per l’utente di IAM.

Ruoli IAM

Un ruolo IAM è un’identità con autorizzazioni specifiche che fornisce credenziali temporanee. Puoi
assumere un ruolo passando da un ruolo utente a un ruolo IAM (console) o chiamando un'operazione
AWS CLI o AWS API. Per ulteriori informazioni, consulta Non riesco ad assumere un ruolonella
Guida per l’utente di IAM.

I ruoli IAM sono utili per l'accesso federato degli utenti, le autorizzazioni utente IAM temporanee,
l'accesso tra account, l'accesso tra servizi e le applicazioni in esecuzione su Amazon. EC2 Per
maggiori informazioni, consultare Accesso a risorse multi-account in IAM nella Guida per l’utente
IAM.

Gestione dell’accesso tramite policy

Puoi controllare l'accesso AWS creando policy e collegandole a identità o risorse. AWS Una policy
definisce le autorizzazioni quando è associata a un'identità o a una risorsa. AWSvaluta queste

Gestione dell’accesso tramite policy 300

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Aurora DSQL Guida per l’utente

politiche quando un preside effettua una richiesta. La maggior parte delle politiche viene archiviata
AWS come documenti JSON. Per maggiori informazioni sui documenti delle policy JSON, consulta
Panoramica delle policy JSON nella Guida per l’utente IAM.

Utilizzando le policy, gli amministratori specificano chi ha accesso a cosa definendo quale principale
può eseguire azioni su quali risorse e in quali condizioni.

Per impostazione predefinita, utenti e ruoli non dispongono di autorizzazioni. Un amministratore
IAM crea le policy IAM e le aggiunge ai ruoli, che gli utenti possono quindi assumere. Le policy IAM
definiscono le autorizzazioni indipendentemente dal metodo utilizzato per eseguirle.

Policy basate sull’identità

Le policy basate su identità sono documenti di policy di autorizzazione JSON che è possibile
collegare a un’identità (utente, gruppo o ruolo). Tali policy definiscono le operazioni autorizzate per
l’identità, nonché le risorse e le condizioni in cui possono essere eseguite. Per informazioni su come
creare una policy basata su identità, consultare Definizione di autorizzazioni personalizzate IAM con
policy gestite dal cliente nella Guida per l’utente IAM.

Le policy basate su identità possono essere policy in linea (incorporate direttamente in una singola
identità) o policy gestite (policy standalone collegate a più identità). Per informazioni su come
scegliere tra una policy gestita o una policy inline, consulta Scegliere tra policy gestite e policy in linea
nella Guida per l’utente di IAM.

Policy basate sulle risorse

Le policy basate su risorse sono documenti di policy JSON che è possibile collegare a una risorsa.
Gli esempi includono le policy di trust dei ruoli IAM e le policy dei bucket di Amazon S3. Nei servizi
che supportano policy basate sulle risorse, gli amministratori dei servizi possono utilizzarli per
controllare l’accesso a una risorsa specifica. In una policy basata sulle risorse è obbligatorio
specificare un’entità principale.

Le policy basate sulle risorse sono policy inline che si trovano in tale servizio. Non è possibile
utilizzare le policy AWS gestite di IAM in una policy basata sulle risorse.

Altri tipi di policy

AWSsupporta tipi di policy aggiuntivi che possono impostare le autorizzazioni massime concesse dai
tipi di policy più comuni:

Gestione dell’accesso tramite policy 301

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Aurora DSQL Guida per l’utente

• Limiti delle autorizzazioni: imposta il numero massimo di autorizzazioni che una policy basata su
identità ha la possibilità di concedere a un’entità IAM. Per ulteriori informazioni, consulta Limiti delle
autorizzazioni per le entità IAM nella Guida per l’utente di IAM.

• Politiche di controllo del servizio (SCPs): specificano le autorizzazioni massime per
un'organizzazione o un'unità organizzativa in. AWS Organizations Per ulteriori informazioni,
consultare Policy di controllo dei servizi nella Guida per l’utente di AWS Organizations.

• Politiche di controllo delle risorse (RCPs): imposta le autorizzazioni massime disponibili per le
risorse nei tuoi account. Per ulteriori informazioni, consulta Politiche di controllo delle risorse
(RCPs) nella Guida per l'AWS Organizationsutente.

• Policy di sessione: policy avanzate passate come parametro quando si crea una sessione
temporanea per un ruolo o un utente federato. Per maggiori informazioni, consultare Policy di
sessione nella Guida per l’utente IAM.

Più tipi di policy

Quando a una richiesta si applicano più tipi di policy, le autorizzazioni risultanti sono più complicate
da comprendere. Per scoprire come si AWS determina se consentire o meno una richiesta quando
sono coinvolti più tipi di policy, consulta Logica di valutazione delle policy nella IAM User Guide.

Funzionamento di Amazon Aurora DSQL con IAM

Prima di utilizzare IAM per gestire l’accesso ad Aurora DSQL è opportuno scoprire quali funzionalità
di IAM sono disponibili per l’uso con questo servizio.

Funzionalità IAM utilizzabili con Amazon Aurora DSQL

Funzionalità IAM Aurora DSQL supporta

Policy basate sull’identità Sì

Policy basate su risorse Sì

Operazioni di policy Sì

Risorse relative alle policy Sì

Chiavi di condizione delle policy Sì

Funzionamento di Amazon DSQL con IAM 302

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Aurora DSQL Guida per l’utente

Funzionalità IAM Aurora DSQL supporta

ACLs No

ABAC (tag nelle policy) Sì

Credenziali temporanee Sì

Autorizzazioni del principale Sì

Ruoli di servizio Sì

Ruoli collegati al servizio Sì

Per avere una visione di alto livello di come Aurora DSQL e AWS altri servizi funzionano con la
maggior parte delle funzionalità IAM, AWSconsulta i servizi che funzionano con IAM nella IAM User
Guide.

Policy basate sull’identità per Aurora DSQL

Supporta le policy basate sull’identità: sì

Le policy basate sull'identità sono documenti di policy di autorizzazione JSON che è possibile
allegare a un'identità (utente, gruppo di utenti o ruolo IAM). Tali policy definiscono le operazioni che
utenti e ruoli possono eseguire, su quali risorse e in quali condizioni. Per informazioni su come creare
una policy basata su identità, consulta Definizione di autorizzazioni personalizzate IAM con policy
gestite dal cliente nella Guida per l’utente di IAM.

Con le policy basate sull’identità di IAM, è possibile specificare quali operazioni e risorse sono
consentite o respinte, nonché le condizioni in base alle quali le operazioni sono consentite o respinte.
Per informazioni su tutti gli elementi utilizzabili in una policy JSON, consulta Guida di riferimento agli
elementi delle policy JSON IAM nella Guida per l’utente IAM.

Esempi di policy basate sull’identità per Aurora DSQL

Per visualizzare esempi di policy basate sull’identità di Aurora DSQL, consulta Esempi di policy
basate sull’identità per Amazon Aurora DSQL.

Funzionamento di Amazon DSQL con IAM 303

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon Aurora DSQL Guida per l’utente

Policy basate sulle risorse all’interno di Aurora DSQL

Supporta le policy basate sulle risorse: sì

Le policy basate su risorse sono documenti di policy JSON che è possibile collegare a una risorsa.
Esempi di policy basate sulle risorse sono le policy di attendibilità dei ruoli IAM e le policy di bucket
Amazon S3. Nei servizi che supportano policy basate sulle risorse, gli amministratori dei servizi
possono utilizzarli per controllare l’accesso a una risorsa specifica. Quando è collegata a una risorsa,
una policy definisce le operazioni che un principale può eseguire su tale risorsa e a quali condizioni.
In una policy basata sulle risorse è obbligatorio specificare un’entità principale. I principali possono
includere account, utenti, ruoli, utenti federati o servizi AWS. Le policy basate sulle risorse sono
policy inline che si trovano in tale servizio. Non è possibile utilizzare i criteri gestiti AWS da IAM in un
criterio basato sulle risorse.

Per informazioni su come creare e gestire policy basate sulle risorse per i cluster Aurora DSQL,
consulta Policy basate sulle risorse per Aurora DSQL.

Operazioni di policy per Aurora DSQL

Supporta le operazioni di policy: si

Gli amministratori possono utilizzare le policy JSON per specificare chi ha accesso a cosa. AWS In
altre parole, quale entità principale può eseguire operazioni su quali risorse e in quali condizioni.

L'elemento Action di una policy JSON descrive le operazioni che è possibile utilizzare per
consentire o negare l'accesso in una policy. Includere le operazioni in una policy per concedere le
autorizzazioni a eseguire l’operazione associata.

Per visualizzare un elenco di operazioni di Amazon Aurora DSQL, consulta Operazioni definite da
Amazon Aurora DSQL nella Guida di riferimento all’autorizzazione del servizio.

Le operazioni delle policy in Aurora DSQL utilizzano il seguente prefisso prima dell’operazione:

dsql

Per specificare più operazioni in una sola istruzione, occorre separarle con la virgola.

"Action": [
 "dsql:action1",

Funzionamento di Amazon DSQL con IAM 304

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/resource-based-policies.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/resource-based-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions

Amazon Aurora DSQL Guida per l’utente

 "dsql:action2"
]

Per visualizzare esempi di policy basate sull’identità di Aurora DSQL, consulta Esempi di policy
basate sull’identità per Amazon Aurora DSQL.

Risorse relative alle policy per Aurora DSQL

Supporta le risorse relative alle policy: sì

Gli amministratori possono utilizzare le policy AWS JSON per specificare chi ha accesso a cosa. In
altre parole, quale entità principale può eseguire operazioni su quali risorse e in quali condizioni.

L’elemento JSON Resource della policy specifica l’oggetto o gli oggetti ai quali si applica
l’operazione. Come best practice, specifica una risorsa utilizzando il suo nome della risorsa Amazon
(ARN). Per le azioni che non supportano le autorizzazioni a livello di risorsa, si utilizza un carattere
jolly (*) per indicare che l’istruzione si applica a tutte le risorse.

"Resource": "*"

Per visualizzare un elenco dei tipi di risorse Aurora DSQL e relativi ARNs, consulta Resources
Defined by Amazon Aurora DSQL nel Service Authorization Reference. Per informazioni sulle
operazioni con cui è possibile specificare l’ARN di ogni risorsa, consulta Operazioni definite da
Amazon Aurora DSQL.

Per visualizzare esempi di policy basate sull’identità di Aurora DSQL, consulta Esempi di policy
basate sull’identità per Amazon Aurora DSQL.

Chiavi di condizione delle policy per Aurora DSQL

Supporta le chiavi di condizione delle policy specifiche del servizio: sì

Gli amministratori possono utilizzare le policy AWS JSON per specificare chi ha accesso a cosa. In
altre parole, quale entità principale può eseguire operazioni su quali risorse e in quali condizioni.

L’elemento Condition specifica quando le istruzioni vengono eseguite in base a criteri definiti.
È possibile compilare espressioni condizionali che utilizzano operatori di condizione, ad esempio

Funzionamento di Amazon DSQL con IAM 305

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon Aurora DSQL Guida per l’utente

uguale a o minore di, per soddisfare la condizione nella policy con i valori nella richiesta. Per
visualizzare tutte le chiavi di condizione AWS globali, consulta le chiavi di contesto delle condizioni
AWS globali nella Guida per l'utente IAM.

Per un elenco delle chiavi di condizione di Aurora DSQL, consulta Chiavi di condizione per Amazon
Aurora DSQL in Guida di riferimento all’autorizzazione del servizio. Per sapere con quali azioni e
risorse è possibile utilizzare una chiave di condizione, consulta Operazioni definite da Amazon Aurora
DSQL.

Per visualizzare esempi di policy basate sull’identità di Aurora DSQL, consulta Esempi di policy
basate sull’identità per Amazon Aurora DSQL.

ACLs in Aurora SQL

Supporti ACLs: no

Le liste di controllo degli accessi (ACLs) controllano quali principali (membri dell'account, utenti o
ruoli) dispongono delle autorizzazioni per accedere a una risorsa. ACLs sono simili alle politiche
basate sulle risorse, sebbene non utilizzino il formato del documento di policy JSON.

ABAC con Aurora DSQL

Supporta ABAC (tag nelle policy): sì

Il controllo degli accessi basato su attributi (ABAC) è una strategia di autorizzazione che definisce le
autorizzazioni in base ad attributi chiamati tag. È possibile allegare tag a entità e AWS risorse IAM,
quindi progettare politiche ABAC per consentire operazioni quando il tag del principale corrisponde al
tag sulla risorsa.

Per controllare l’accesso basato su tag, fornire informazioni sui tag nell’elemento condizione di una
policy utilizzando le chiavi di condizione aws:ResourceTag/key-name, aws:RequestTag/key-
name o aws:TagKeys.

Se un servizio supporta tutte e tre le chiavi di condizione per ogni tipo di risorsa, il valore per il
servizio è Sì. Se un servizio supporta tutte e tre le chiavi di condizione solo per alcuni tipi di risorsa,
allora il valore sarà Parziale.

Per maggiori informazioni su ABAC, consulta Definizione delle autorizzazioni con autorizzazione
ABAC nella Guida per l’utente di IAM. Per visualizzare un tutorial con i passaggi per l’impostazione di

Funzionamento di Amazon DSQL con IAM 306

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonauroradsql.html#amazonauroradsql-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonauroradsql.html#amazonauroradsql-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonauroradsql.html#amazonauroradsql-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonauroradsql.html#amazonauroradsql-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html

Amazon Aurora DSQL Guida per l’utente

ABAC, consulta Utilizzo del controllo degli accessi basato su attributi (ABAC) nella Guida per l’utente
di IAM.

Utilizzo di credenziali temporanee con Aurora DSQL

Supporta le credenziali temporanee: sì

Le credenziali temporanee forniscono l'accesso a breve termine alle AWS risorse e vengono create
automaticamente quando si utilizza la federazione o si cambia ruolo. AWSconsiglia di generare
dinamicamente credenziali temporanee anziché utilizzare chiavi di accesso a lungo termine. Per
ulteriori informazioni, consulta Credenziali di sicurezza temporanee in IAM e Servizi AWS compatibili
con IAM nella Guida per l’utente IAM.

Autorizzazioni dell’entità principale tra servizi per Aurora DSQL

Supporta l’inoltro delle sessioni di accesso (FAS): sì

Le sessioni di accesso inoltrato (FAS) utilizzano le autorizzazioni del principale che chiama e,
in combinazione con la richiestaServizio AWS, Servizio AWS per effettuare richieste ai servizi
downstream. Per i dettagli delle policy relative alle richieste FAS, consultare Forward access
sessions.

Ruoli di servizio per Aurora DSQL

Supporta i ruoli di servizio: sì

Un ruolo di servizio è un ruolo IAM che un servizio assume per eseguire operazioni per tuo conto. Un
amministratore IAM può creare, modificare ed eliminare un ruolo di servizio dall’interno di IAM. Per
maggiori informazioni, consultare la sezione Creazione di un ruolo per delegare le autorizzazioni a un
Servizio AWS nella Guida per l’utente di IAM.

Warning

La modifica delle autorizzazioni per un ruolo di servizio potrebbe compromettere la
funzionalità di Aurora DSQL. Modifica i ruoli di servizio solo quando Aurora DSQL fornisce le
indicazioni per farlo.

Ruoli collegati ai servizi per Aurora DSQL

Supporta i ruoli collegati ai servizi: sì

Funzionamento di Amazon DSQL con IAM 307

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Aurora DSQL Guida per l’utente

Un ruolo collegato al servizio è un tipo di ruolo di servizio collegato a un. Servizio AWS Il servizio
può assumere il ruolo per eseguire un’operazione per tuo conto. I ruoli collegati al servizio vengono
visualizzati nel tuo account Account AWS e sono di proprietà del servizio. Un amministratore IAM può
visualizzare le autorizzazioni per i ruoli collegati al servizio, ma non modificarle.

Per maggiori informazioni su come creare e gestire i ruoli collegati al servizio per Aurora DSQL,
consulta Utilizzo dei ruoli collegati al servizio in Aurora DSQL.

Esempi di policy basate sull’identità per Amazon Aurora DSQL

Per impostazione predefinita, gli utenti e i ruoli non dispongono dell’autorizzazione per creare o
modificare risorse di Aurora DSQL. Per concedere agli utenti l’autorizzazione a eseguire azioni sulle
risorse di cui hanno bisogno, un amministratore IAM può creare policy IAM.

Per informazioni su come creare una policy basata su identità IAM utilizzando questi documenti di
policy JSON di esempio, consulta Creazione di policy IAM (console) nella Guida per l’utente di IAM.

Per informazioni dettagliate sulle azioni e sui tipi di risorse definiti da Aurora DSQL, incluso il formato
di ARNs per ogni tipo di risorsa, consulta Actions, Resources and Condition Keys for Amazon Aurora
DSQL nel Service Authorization Reference.

Argomenti

• Best practice per le policy

• Utilizzo della console di Aurora DSQL

• Consentire agli utenti di visualizzare le loro autorizzazioni

Best practice per le policy

Le policy basate sull’identità determinano se qualcuno può creare, accedere o eliminare risorse di
Aurora DSQL nell’account. Queste operazioni possono comportare costi aggiuntivi per l’Account
AWS. Quando si creano o modificano policy basate sull’identità, seguire queste linee guida e
raccomandazioni:

• Inizia con le politiche AWS gestite e passa alle autorizzazioni con privilegi minimi: per iniziare a
concedere autorizzazioni a utenti e carichi di lavoro, utilizza le politiche gestite che concedono
le autorizzazioni per molti casi d'uso comuni. AWS Sono disponibili nel tuo. Account AWS Ti
consigliamo di ridurre ulteriormente le autorizzazioni definendo politiche gestite dai AWS clienti

Esempi di policy basate sull’identità 308

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_your_service.html

Amazon Aurora DSQL Guida per l’utente

specifiche per i tuoi casi d'uso. Per maggiori informazioni, consulta Policy gestite da AWS o Policy
gestite da AWS per le funzioni dei processi nella Guida per l’utente di IAM.

• Applicazione delle autorizzazioni con privilegio minimo - Quando si impostano le autorizzazioni con
le policy IAM, concedere solo le autorizzazioni richieste per eseguire un’attività. È possibile farlo
definendo le azioni che possono essere intraprese su risorse specifiche in condizioni specifiche,
note anche come autorizzazioni con privilegio minimo. Per maggiori informazioni sull’utilizzo di IAM
per applicare le autorizzazioni, consulta Policy e autorizzazioni in IAM nella Guida per l’utente di
IAM.

• Condizioni d’uso nelle policy IAM per limitare ulteriormente l’accesso - Per limitare l’accesso
ad azioni e risorse è possibile aggiungere una condizione alle policy. Ad esempio, è possibile
scrivere una condizione di policy per specificare che tutte le richieste devono essere inviate
utilizzando SSL. Puoi anche utilizzare le condizioni per concedere l'accesso alle azioni del servizio
se vengono utilizzate tramite uno specificoServizio AWS, ad esempioCloudFormation. Per maggiori
informazioni, consultare la sezione Elementi delle policy JSON di IAM: condizione nella Guida per
l’utente di IAM.

• Utilizzo dello strumento di analisi degli accessi IAM per convalidare le policy IAM e garantire
autorizzazioni sicure e funzionali - Lo strumento di analisi degli accessi IAM convalida le policy
nuove ed esistenti in modo che aderiscano al linguaggio (JSON) della policy IAM e alle best
practice di IAM. Lo strumento di analisi degli accessi IAM offre oltre 100 controlli delle policy e
consigli utili per creare policy sicure e funzionali. Per maggiori informazioni, consultare Convalida
delle policy per il Sistema di analisi degli accessi IAM nella Guida per l’utente di IAM.

• Richiedi l'autenticazione a più fattori (MFA): se hai uno scenario che richiede utenti IAM o un utente
root nel Account AWS tuo, attiva l'MFA per una maggiore sicurezza. Per richiedere la MFA quando
vengono chiamate le operazioni API, aggiungere le condizioni MFA alle policy. Per maggiori
informazioni, consultare Protezione dell’accesso API con MFA nella Guida per l’utente di IAM.

Per maggiori informazioni sulle best practice in IAM, consulta Best practice di sicurezza in IAM nella
Guida per l’utente di IAM.

Utilizzo della console di Aurora DSQL

Per accedere alla console di Amazon Aurora DSQL, è necessario disporre di un set di autorizzazioni
minimo. Queste autorizzazioni devono consentire di elencare e visualizzare i dettagli sulle risorse
Aurora DSQL presenti nel tuo. Account AWS Se crei una policy basata sull’identità più restrittiva
rispetto alle autorizzazioni minime richieste, la console non funzionerà nel modo previsto per le entità
(utenti o ruoli) associate a tale policy.

Esempi di policy basate sull’identità 309

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Aurora DSQL Guida per l’utente

Non è necessario consentire autorizzazioni minime per la console per gli utenti che effettuano
chiamate solo verso o l'AWS CLIAPI. AWS Al contrario, è opportuno concedere l’accesso solo alle
operazioni che corrispondono all’operazione API che stanno cercando di eseguire.

Per garantire che utenti e ruoli possano ancora utilizzare la console Aurora DSQL,
collega anche Aurora DSQL AmazonAuroraDSQLConsoleFullAccess o
AmazonAuroraDSQLReadOnlyAccess AWS la policy gestita alle entità. Per maggiori informazioni,
consulta Aggiunta di autorizzazioni a un utente nella Guida per l’utente di IAM.

Consentire agli utenti di visualizzare le loro autorizzazioni

Questo esempio mostra in che modo è possibile creare una policy che consente agli utenti IAM di
visualizzare le policy inline e gestite che sono collegate alla relativa identità utente. Questa politica
include le autorizzazioni per completare questa azione sulla console o utilizzando l'API o a livello di
codice. AWS CLI AWS

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",

Esempi di policy basate sull’identità 310

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Aurora DSQL Guida per l’utente

 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Risoluzione dei problemi di identità e accesso in Amazon Aurora DSQL

Utilizzare le informazioni seguenti per diagnosticare e risolvere i problemi comuni che possono
verificarsi durante l’utilizzo di Aurora DSQL e IAM.

Argomenti

• Non si possiede l’autorizzazione a eseguire un’operazione in Aurora DSQL

• Non sono autorizzato a eseguire iam: PassRole

• Desidero consentire a persone esterne a me di accedere Account AWS alle mie risorse Aurora
DSQL

Non si possiede l’autorizzazione a eseguire un’operazione in Aurora DSQL

Se si riceve un errore che indica che non si dispone dell’autorizzazione per eseguire un’operazione,
le policy devono essere aggiornate in modo che sia consentito eseguire tale operazione.

L’errore di esempio seguente si verifica quando l’utente IAM mateojackson tenta di utilizzare la
console per visualizzare i dettagli relativi alla risorsa my-dsql-cluster ma non dispone delle
autorizzazioni GetCluster.

User: iam:::user/mateojackson is not authorized to perform: GetCluster on resource: my-
dsql-cluster

In questo caso, la policy per l’utente mateojackson deve essere aggiornata per consentire
l’accesso alla risorsa my-dsql-cluster utilizzando l’azione GetCluster.

Per ulteriore assistenza con l’accesso, contattare l’amministratore. L’amministratore è la persona che
ti ha fornito le credenziali di accesso.

risoluzione dei problemi 311

Amazon Aurora DSQL Guida per l’utente

Non sono autorizzato a eseguire iam: PassRole

Se si riceve un errore che indica che non si dispone dell’autorizzazione per eseguire l’operazione
iam:PassRole, le policy devono essere aggiornate in modo che sia consentito trasmettere un ruolo
ad Aurora DSQL.

Alcuni Servizi AWS consentono di passare un ruolo esistente a quel servizio invece di creare un
nuovo ruolo di servizio o un ruolo collegato al servizio. Per eseguire questa operazione, è necessario
disporre delle autorizzazioni per trasmettere il ruolo al servizio.

L’errore di esempio seguente si verifica quando un utente IAM denominato marymajor cerca di
utilizzare la console per eseguire un’operazione in Aurora DSQL. Tuttavia, l’azione richiede che
il servizio disponga delle autorizzazioni concesse da un ruolo di servizio. Mary non dispone delle
autorizzazioni per trasmettere il ruolo al servizio.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In questo caso, le policy di Mary devono essere aggiornate per poter eseguire l’operazione
iam:PassRole.

Se hai bisogno di aiuto, contatta il tuo AWS amministratore. L’amministratore è la persona che ti ha
fornito le credenziali di accesso.

Desidero consentire a persone esterne a me di accedere Account AWS alle mie
risorse Aurora DSQL

È possibile creare un ruolo con il quale utenti in altri account o persone esterne all’organizzazione
possono accedere alle tue risorse. È possibile specificare chi è attendibile per l’assunzione del ruolo.
Per i servizi che supportano politiche basate sulle risorse o liste di controllo degli accessi (ACLs), puoi
utilizzare tali politiche per concedere alle persone l'accesso alle tue risorse.

Per maggiori informazioni, consulta gli argomenti seguenti:

• Per capire se Aurora DSQL supporta queste funzionalità, consulta Funzionamento di Amazon
Aurora DSQL con IAM.

• Per scoprire come fornire l'accesso alle tue risorse attraverso Account AWS le risorse di tua
proprietà, consulta Fornire l'accesso a un utente IAM in un altro Account AWS di tua proprietà nella
IAM User Guide.

risoluzione dei problemi 312

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

Amazon Aurora DSQL Guida per l’utente

• Per scoprire come fornire l'accesso alle tue risorse a terze partiAccount AWS, consulta Fornire
l'accesso a soggetti Account AWS di proprietà di terze parti nella Guida per l'utente IAM.

• Per informazioni su come fornire l'accesso tramite la federazione delle identità, consulta Fornire
l'accesso a utenti autenticati esternamente (federazione delle identità) nella Guida per l'utente IAM.

• Per informazioni sulle differenze di utilizzo tra ruoli e policy basate su risorse per l’accesso multi-
account, consulta Accesso a risorse multi-account in IAM nella Guida per l’utente di IAM.

Policy basate sulle risorse per Aurora DSQL

Utilizza le policy basate sulle risorse per Aurora DSQL per limitare o concedere l'accesso ai cluster
tramite documenti di policy JSON che si allegano direttamente alle risorse del cluster. Queste policy
forniscono un controllo dettagliato su chi può accedere al cluster e in quali condizioni.

I cluster Aurora DSQL sono accessibili dalla rete Internet pubblica per impostazione predefinita,
con l'autenticazione IAM come controllo di sicurezza principale. Le politiche basate sulle risorse
consentono di aggiungere restrizioni di accesso, in particolare per bloccare l'accesso dalla rete
Internet pubblica.

Le politiche basate sulle risorse funzionano insieme alle politiche basate sull'identità IAM. AWSvaluta
entrambi i tipi di policy per determinare le autorizzazioni finali per qualsiasi richiesta di accesso al
cluster. Per impostazione predefinita, i cluster Aurora DSQL sono accessibili all'interno di un account.
Se un utente o un ruolo IAM dispone delle autorizzazioni Aurora DSQL, può accedere ai cluster
senza alcuna policy basata sulle risorse allegata.

Note

Le modifiche alle policy basate sulle risorse alla fine sono coerenti e in genere entrano in
vigore entro un minuto.

Per ulteriori informazioni sulle differenze tra le politiche basate sull'identità e le politiche basate sulle
risorse, consulta Politiche basate sull'identità e politiche basate sulle risorse nella Guida per l'utente
IAM.

Quando utilizzare le politiche basate sulle risorse

Le politiche basate sulle risorse sono particolarmente utili in questi scenari:

Policy basate sulle risorse 313

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

Amazon Aurora DSQL Guida per l’utente

• Controllo degli accessi basato sulla rete: limita l'accesso in base al VPC o all'indirizzo IP da
cui provengono le richieste o blocca completamente l'accesso pubblico a Internet. Usa chiavi
condizionali come aws:SourceVpc e aws:SourceIp per controllare l'accesso alla rete.

• Più team o applicazioni: concedi l'accesso allo stesso cluster a più team o applicazioni. Anziché
gestire le singole policy IAM per ogni principale, definisci le regole di accesso una sola volta nel
cluster.

• Accesso condizionale complesso: controlla l'accesso in base a più fattori come gli attributi di rete,
il contesto della richiesta e gli attributi utente. È possibile combinare più condizioni in un'unica
politica.

• Governance della sicurezza centralizzata: consenti ai proprietari dei cluster di controllare l'accesso
utilizzando una sintassi delle AWS policy familiare che si integra con le pratiche di sicurezza
esistenti.

Note

L'accesso tra account non è ancora supportato per le policy basate sulle risorse di Aurora
DSQL, ma sarà disponibile nelle versioni future.

Quando qualcuno tenta di connettersi al cluster Aurora DSQL, AWS valuta la policy basata sulle
risorse come parte del contesto di autorizzazione, insieme a qualsiasi policy IAM pertinente, per
determinare se la richiesta deve essere consentita o rifiutata.

Le politiche basate sulle risorse possono concedere l'accesso ai principali all'interno dello stesso
account del cluster. AWS Per i cluster multiregionali, ogni cluster regionale dispone di una propria
politica basata sulle risorse, che consente controlli di accesso specifici per regione quando
necessario.

Note

Le chiavi del contesto delle condizioni possono variare tra le regioni (come VPC IDs).

Argomenti

• Creazione di cluster con politiche basate sulle risorse

• Aggiungere e modificare politiche basate sulle risorse per i cluster

Quando usare 314

Amazon Aurora DSQL Guida per l’utente

• Visualizzazione delle politiche basate sulle risorse

• Rimozione delle politiche basate sulle risorse

• Esempi di politiche comuni basate sulle risorse

• Blocco dell'accesso pubblico con politiche basate sulle risorse in Aurora DSQL

• Operazioni dell'API Aurora DSQL e politiche basate sulle risorse

Creazione di cluster con politiche basate sulle risorse

È possibile allegare politiche basate sulle risorse durante la creazione di un nuovo cluster per
garantire che i controlli di accesso siano attivi sin dall'inizio. Ogni cluster può avere una singola policy
in linea collegata direttamente al cluster.

AWSConsole di gestione

Per aggiungere una policy basata sulle risorse durante la creazione del cluster

1. Accedi alla console di AWS gestione e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql/

2. Scegli Crea cluster.

3. Configura il nome del cluster, i tag e le impostazioni multiregionali in base alle esigenze.

4. Nella sezione Impostazioni del cluster, individua l'opzione di policy basata sulle risorse.

5. Attiva Aggiungi politica basata sulle risorse.

6. Inserisci il documento della policy nell'editor JSON. Ad esempio, per bloccare l'accesso pubblico
a Internet:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Resource": "*",
 "Action": [
 "dsql:DbConnect",
 "dsql:DbConnectAdmin"
],

Crea con le politiche 315

https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

 "Condition": {
 "Null": {
 "aws:SourceVpc": "true"
 }
 }
 }
]
}

7. Puoi utilizzare Edit statement o Add new statement per creare la tua politica.

8. Completa la configurazione rimanente del cluster e scegli Crea cluster.

AWSCLI

Usa il --policy parametro quando crei un cluster per allegare una policy in linea:

aws dsql create-cluster --policy '{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "Principal": {"AWS": "*"},
 "Resource": "*",
 "Action": ["dsql:DbConnect", "dsql:DbConnectAdmin"],
 "Condition": {
 "StringNotEquals": { "aws:SourceVpc": "vpc-123456" }
 }
 }]
}'

AWSSDKs

Python

import boto3
import json

client = boto3.client('dsql')

policy = {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",

Crea con le politiche 316

Amazon Aurora DSQL Guida per l’utente

 "Principal": {"AWS": "*"},
 "Resource": "*",
 "Action": ["dsql:DbConnect", "dsql:DbConnectAdmin"],
 "Condition": {
 "StringNotEquals": { "aws:SourceVpc": "vpc-123456" }
 }
 }]
}

response = client.create_cluster(
 policy=json.dumps(policy)
)

print(f"Cluster created: {response['identifier']}")

Java

import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.CreateClusterRequest;
import software.amazon.awssdk.services.dsql.model.CreateClusterResponse;

DsqlClient client = DsqlClient.create();

String policy = """
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "Principal": {"AWS": "*"},
 "Resource": "*",
 "Action": ["dsql:DbConnect", "dsql:DbConnectAdmin"],
 "Condition": {
 "StringNotEquals": { "aws:SourceVpc": "vpc-123456" }
 }
 }]
}
""";

CreateClusterRequest request = CreateClusterRequest.builder()
 .policy(policy)
 .build();

CreateClusterResponse response = client.createCluster(request);

Crea con le politiche 317

Amazon Aurora DSQL Guida per l’utente

System.out.println("Cluster created: " + response.identifier());

Aggiungere e modificare politiche basate sulle risorse per i cluster

AWSConsole di gestione

Per aggiungere una policy basata sulle risorse a un cluster esistente

1. Accedi alla console di AWS gestione e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql/

2. Scegli il tuo cluster dall'elenco dei cluster per aprire la pagina dei dettagli del cluster.

3. Scegli la scheda Autorizzazioni.

4. Nella sezione Politica basata sulle risorse, scegli Aggiungi politica.

5. Inserisci il tuo documento di policy nell'editor JSON. Puoi utilizzare Modifica dichiarazione o
Aggiungi nuova dichiarazione per creare la tua politica.

6. Scegli Aggiungi policy.

Per modificare una politica esistente basata sulle risorse

1. Accedi alla console di AWS gestione e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql/

2. Scegli il tuo cluster dall'elenco dei cluster per aprire la pagina dei dettagli del cluster.

3. Scegli la scheda Autorizzazioni.

4. Nella sezione Politica basata sulle risorse, scegli Modifica.

5. Modifica il documento di policy nell'editor JSON. Puoi utilizzare Modifica dichiarazione o Aggiungi
nuova dichiarazione per aggiornare la tua politica.

6. Scegli Save changes (Salva modifiche).

AWSCLI

Usa il put-cluster-policy comando per allegare una nuova politica o aggiornare una politica
esistente su un cluster:

aws dsql put-cluster-policy --identifier your_cluster_id --policy '{
 "Version": "2012-10-17",

Aggiungere e modificare le politiche 318

https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

 "Statement": [{
 "Effect": "Deny",
 "Principal": {"AWS": "*"},
 "Resource": "*",
 "Action": ["dsql:DbConnect", "dsql:DbConnectAdmin"],
 "Condition": {
 "Null": { "aws:SourceVpc": "true" }
 }
 }]
}'

AWSSDKs

Python

import boto3
import json

client = boto3.client('dsql')

policy = {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "Principal": {"AWS": "*"},
 "Resource": "*",
 "Action": ["dsql:DbConnect", "dsql:DbConnectAdmin"],
 "Condition": {
 "Null": {"aws:SourceVpc": "true"}
 }
 }]
}

response = client.put_cluster_policy(
 identifier='your_cluster_id',
 policy=json.dumps(policy)
)

Java

Aggiungere e modificare le politiche 319

Amazon Aurora DSQL Guida per l’utente

import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.PutClusterPolicyRequest;

DsqlClient client = DsqlClient.create();

String policy = """
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "Principal": {"AWS": "*"},
 "Resource": "*",
 "Action": ["dsql:DbConnect", "dsql:DbConnectAdmin"],
 "Condition": {
 "Null": {"aws:SourceVpc": "true"}
 }
 }]
}
""";

PutClusterPolicyRequest request = PutClusterPolicyRequest.builder()
 .identifier("your_cluster_id")
 .policy(policy)
 .build();

client.putClusterPolicy(request);

Visualizzazione delle politiche basate sulle risorse

È possibile visualizzare le politiche basate sulle risorse allegate ai cluster per comprendere gli attuali
controlli di accesso in vigore.

AWSConsole di gestione

Per visualizzare le politiche basate sulle risorse

1. Accedi alla console di AWS gestione e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql/

2. Scegli il tuo cluster dall'elenco dei cluster per aprire la pagina dei dettagli del cluster.

3. Scegli la scheda Autorizzazioni.

Visualizza la politica 320

https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

4. Visualizza la politica allegata nella sezione Politica basata sulle risorse.

AWSCLI

Usa il get-cluster-policy comando per visualizzare la politica basata sulle risorse di un cluster:

aws dsql get-cluster-policy --identifier your_cluster_id

AWSSDKs

Python

import boto3
import json

client = boto3.client('dsql')

response = client.get_cluster_policy(
 identifier='your_cluster_id'
)

Parse and pretty-print the policy
policy = json.loads(response['policy'])
print(json.dumps(policy, indent=2))

Java

import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.GetClusterPolicyRequest;
import software.amazon.awssdk.services.dsql.model.GetClusterPolicyResponse;

DsqlClient client = DsqlClient.create();

GetClusterPolicyRequest request = GetClusterPolicyRequest.builder()
 .identifier("your_cluster_id")
 .build();

GetClusterPolicyResponse response = client.getClusterPolicy(request);
System.out.println("Policy: " + response.policy());

Visualizza la politica 321

Amazon Aurora DSQL Guida per l’utente

Rimozione delle politiche basate sulle risorse

È possibile rimuovere le politiche basate sulle risorse dai cluster per modificare i controlli di accesso.

Important

Quando rimuovi tutte le policy basate sulle risorse da un cluster, l'accesso sarà controllato
interamente da policy basate sull'identità IAM.

AWSConsole di gestione

Per rimuovere una politica basata sulle risorse

1. Accedi alla console di AWS gestione e apri la console Aurora DSQL all'indirizzo. https://
console.aws.amazon.com/dsql/

2. Scegli il tuo cluster dall'elenco dei cluster per aprire la pagina dei dettagli del cluster.

3. Scegli la scheda Autorizzazioni.

4. Nella sezione Politica basata sulle risorse, scegli Elimina.

5. Nella finestra di dialogo di conferma, digita confirm per confermare l'eliminazione.

6. Scegli Elimina.

AWSCLI

Usa il delete-cluster-policy comando per rimuovere una policy da un cluster:

aws dsql delete-cluster-policy --identifier your_cluster_id

AWSSDKs

Python

import boto3

client = boto3.client('dsql')

Rimuovi politica 322

https://console.aws.amazon.com/dsql
https://console.aws.amazon.com/dsql

Amazon Aurora DSQL Guida per l’utente

response = client.delete_cluster_policy(
 identifier='your_cluster_id'
)

print("Policy deleted successfully")

Java

import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.DeleteClusterPolicyRequest;

DsqlClient client = DsqlClient.create();

DeleteClusterPolicyRequest request = DeleteClusterPolicyRequest.builder()
 .identifier("your_cluster_id")
 .build();

client.deleteClusterPolicy(request);
System.out.println("Policy deleted successfully");

Esempi di politiche comuni basate sulle risorse

Questi esempi mostrano modelli comuni per il controllo dell'accesso ai cluster Aurora DSQL. È
possibile combinare e modificare questi modelli per soddisfare i requisiti di accesso specifici.

Blocca l'accesso pubblico a Internet

Questa policy blocca le connessioni ai cluster Aurora DSQL dalla rete Internet pubblica (non VPC).
La policy non specifica da quale VPC i clienti possono connettersi, ma solo che devono connettersi
da un VPC. Per limitare l'accesso a un VPC specifico, utilizzalo aws:SourceVpc con l'operatore
delle StringEquals condizioni.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Resource": "*",

Esempi di policy 323

Amazon Aurora DSQL Guida per l’utente

 "Action": [
 "dsql:DbConnect",
 "dsql:DbConnectAdmin"
],
 "Condition": {
 "Null": {
 "aws:SourceVpc": "true"
 }
 }
 }
]
}

Note

Questo esempio serve solo aws:SourceVpc a verificare la presenza di connessioni VPC.
Le chiavi aws:VpcSourceIp e aws:SourceVpce condition forniscono una granularità
aggiuntiva ma non sono necessarie per il controllo di accesso di base basato solo su VPC.

Per fornire un'eccezione per ruoli specifici, utilizza invece questa politica:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyAccessFromOutsideVPC",
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Resource": "*",
 "Action": [
 "dsql:DbConnect",
 "dsql:DbConnectAdmin"
],
 "Condition": {
 "Null": {
 "aws:SourceVpc": "true"
 },
 "StringNotEquals": {
 "aws:PrincipalArn": [

Esempi di policy 324

Amazon Aurora DSQL Guida per l’utente

 "arn:aws:iam::123456789012:role/ExceptionRole",
 "arn:aws:iam::123456789012:role/AnotherExceptionRole"
]
 }
 }
 }
]
}

Limita l'accesso all'AWSorganizzazione

Questa politica limita l'accesso ai responsabili all'interno di un'AWSorganizzazione:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "dsql:DbConnect",
 "dsql:DbConnectAdmin"
],
 "Resource": "arn:aws:dsql:us-east-1:123456789012:cluster:mycluster",
 "Condition": {
 "StringNotEquals": {
 "aws:PrincipalOrgID": "o-exampleorgid"
 }
 }
 }
]
}

Limita l'accesso a una specifica unità organizzativa

Questa politica limita l'accesso ai responsabili all'interno di una specifica unità organizzativa (OU)
di un'AWSorganizzazione, fornendo un controllo più granulare rispetto all'accesso a livello di
organizzazione:

{

Esempi di policy 325

Amazon Aurora DSQL Guida per l’utente

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "dsql:DbConnect"
],
 "Resource": "arn:aws:dsql:us-east-1:123456789012:cluster:mycluster",
 "Condition": {
 "StringNotLike": {
 "aws:PrincipalOrgPaths": "o-exampleorgid/r-examplerootid/ou-exampleouid/*"
 }
 }
 }
]
}

Politiche di cluster multiregionali

Per i cluster multiregionali, ogni cluster regionale mantiene la propria politica in materia di risorse, che
consente controlli specifici per regione. Ecco un esempio con politiche diverse per regione:

politica us-east-1:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Resource": "*",
 "Action": [
 "dsql:DbConnect"
],
 "Condition": {
 "StringNotEquals": {
 "aws:SourceVpc": "vpc-east1-id"
 },

Esempi di policy 326

Amazon Aurora DSQL Guida per l’utente

 "Null": {
 "aws:SourceVpc": "true"
 }
 }
 }
]
}

politica us-east-2:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Resource": "*",
 "Action": [
 "dsql:DbConnect"
],
 "Condition": {
 "StringEquals": {
 "aws:SourceVpc": "vpc-east2-id"
 }
 }
 }
]
}

Note

Le chiavi del contesto delle condizioni possono variare tra Regioni AWS (come VPC IDs).

Blocco dell'accesso pubblico con politiche basate sulle risorse in Aurora
DSQL

Block Public Access (BPA) è una funzionalità che identifica e impedisce l'associazione di policy
basate sulle risorse che garantiscono l'accesso pubblico ai cluster Aurora DSQL tra i tuoi account.

Blocca l'accesso pubblico 327

Amazon Aurora DSQL Guida per l’utente

AWS Con BPA, puoi impedire l'accesso pubblico alle tue risorse Aurora DSQL. BPA esegue controlli
durante la creazione o la modifica di una policy basata sulle risorse e aiuta a migliorare il livello di
sicurezza con Aurora DSQL.

Il BPA utilizza il ragionamento automatico per analizzare l’accesso concesso dalla policy basata
su risorse e avvisa l’utente se tali autorizzazioni vengono rilevate al momento della gestione di una
policy basata su risorse. L’analisi verifica l’accesso a tutte le istruzioni della policy basata su risorse,
alle azioni e al set di chiavi di condizione utilizzate nelle policy.

Important

BPA aiuta a proteggere le risorse impedendo che l'accesso pubblico venga concesso tramite
le politiche basate sulle risorse direttamente collegate alle risorse Aurora DSQL, come i
cluster. Oltre ad attivare il BPA, controlla attentamente le seguenti policy per verificare che
non concedano l’accesso pubblico:

• Politiche basate sull'identità collegate ai principali associati (ad esempio, ruoli IAM) AWS

• Politiche basate sulle risorse collegate alle AWS risorse associate (ad esempio, AWS
chiavi Key Management Service (KMS))

È necessario assicurarsi che il principale non includa una voce * o che una delle chiavi di condizione
specificate limiti l’accesso dei principali alla risorsa. Se la policy basata sulle risorse concede
l'accesso pubblico al cluster su più accountAWS, Aurora DSQL impedirà all'utente di creare o
modificare la policy fino a quando le specifiche all'interno della policy non saranno corrette e
considerate non pubbliche.

È possibile rendere una policy non pubblica specificando uno o più principi all’interno del blocco del
Principal. Il seguente esempio di policy basata su risorse blocca l’accesso pubblico specificando
due principali.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "123456789012",
 "111122223333"
]
 },

Blocca l'accesso pubblico 328

https://aws.amazon.com/what-is/automated-reasoning/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Aurora DSQL Guida per l’utente

 "Action": "dsql:*",
 "Resource": "arn:aws:dsql:us-east-1:123456789012:cluster/cluster-id"
}

Inoltre, le policy che limitano l’accesso specificando determinate chiavi di condizione non sono
considerate pubbliche. Oltre alla valutazione del principale specificato nella policy basata su risorse,
vengono utilizzate le seguenti chiavi di condizione attendibili per completare la valutazione di una
policy basata su risorse per l’accesso non pubblico:

• aws:PrincipalAccount

• aws:PrincipalArn

• aws:PrincipalOrgID

• aws:PrincipalOrgPaths

• aws:SourceAccount

• aws:SourceArn

• aws:SourceVpc

• aws:SourceVpce

• aws:UserId

• aws:PrincipalServiceName

• aws:PrincipalServiceNamesList

• aws:PrincipalIsAWSService

• aws:Ec2InstanceSourceVpc

• aws:SourceOrgID

• aws:SourceOrgPaths

Inoltre, affinché una policy basata su risorse non sia pubblica, i valori del nome della risorsa Amazon
(ARN) e le chiavi di stringa non devono contenere caratteri jolly o variabili. Se la propria policy basata
su risorse utilizza la chiave aws:PrincipalIsAWSService, è necessario assicurarsi di aver
impostato il valore della chiave su true.

La policy seguente limita l’accesso all’utente Ben nell’account specificato. La condizione rende il
Principal vincolato e non lo considera pubblico.

{

Blocca l'accesso pubblico 329

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Aurora DSQL Guida per l’utente

 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "dsql:*",
 "Resource": "arn:aws:dsql:us-east-1:123456789012:cluster/cluster-id",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalArn": "arn:aws:iam::123456789012:user/Ben"
 }
 }
}

L’esempio seguente di una policy basata su risorse non pubblica limita sourceVPC a utilizzare
l’operatore StringEquals.

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "dsql:*",
 "Resource": "arn:aws:dsql:us-east-1:123456789012:cluster/cluster-id",
 "Condition": {
 "StringEquals": {
 "aws:SourceVpc": [
 "vpc-91237329"
]
 }
 }
 }
]
}

Operazioni dell'API Aurora DSQL e politiche basate sulle risorse

Le policy basate sulle risorse in Aurora DSQL controllano l'accesso a specifiche operazioni API. Le
seguenti sezioni elencano tutte le operazioni dell'API Aurora DSQL organizzate per categoria, con
un'indicazione di quali supportano le politiche basate sulle risorse.

Operazioni API 330

Amazon Aurora DSQL Guida per l’utente

La colonna Supporta RBP indica se l'operazione dell'API è soggetta alla valutazione delle politiche
basate sulle risorse quando una policy è collegata al cluster.

Etichetta APIs

Operazione API Description Supporta RBP

ListTagsForResource Elenca i tag per una risorsa Aurora DSQL Sì

TagResource Aggiunge tag a una risorsa Aurora DSQL Sì

UntagResource Rimuove i tag da una risorsa Aurora DSQL Sì

Gestione dei cluster APIs

Operazione API Description Supporta RBP

CreateCluster Crea un nuovo cluster No

DeleteCluster Elimina un cluster Sì

GetCluster Recupera informazioni su un cluster Sì

GetVpcEndpointServ
iceName

Recupera il nome del servizio endpoint VPC
per un cluster

Sì

ListClusters Elenca i cluster presenti nel tuo account No

UpdateCluster Aggiorna la configurazione di un cluster Sì

Proprietà multiregionale APIs

Operazione API Description Supporta RBP

AddPeerCluster Aggiunge un cluster peer a una configurazione
multiregionale

Sì

Operazioni API 331

https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_DeleteCluster.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_GetCluster.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_GetVpcEndpointServiceName.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_GetVpcEndpointServiceName.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_ListClusters.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_UpdateCluster.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_AddPeerCluster.html

Amazon Aurora DSQL Guida per l’utente

Operazione API Description Supporta RBP

PutMultiRegionProp
erties

Imposta proprietà multiregionali per un cluster Sì

PutWitnessRegion Imposta la regione di riferimento per un cluster
multiregionale

Sì

Politica basata sulle risorse APIs

Operazione API Description Supporta RBP

DeleteClusterPolicy Elimina la politica basata sulle risorse da un
cluster

Sì

GetClusterPolicy Recupera la politica basata sulle risorse per un
cluster

Sì

PutClusterPolicy Crea o aggiorna la politica basata sulle risorse
per un cluster

Sì

AWS Fault Injection ServiceAPIs

Operazione API Description Supporta RBP

InjectError Inietta errori per i test di iniezione in caso di
guasto

No

Backup e ripristino APIs

Operazione API Description Supporta RBP

GetBackupJob Recupera informazioni su un job di backup No

Operazioni API 332

https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_PutMultiRegionProperties.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_PutMultiRegionProperties.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_PutWitnessRegion.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_DeleteClusterPolicy.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_GetClusterPolicy.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_PutClusterPolicy.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_InjectError.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_GetBackupJob.html

Amazon Aurora DSQL Guida per l’utente

Operazione API Description Supporta RBP

GetRestoreJob Recupera informazioni su un processo di
ripristino

No

StartBackupJob Avvia un processo di backup per un cluster Sì

StartRestoreJob Avvia un processo di ripristino da un backup No

StopBackupJob Interrompe un processo di backup in esecuzion
e

No

StopRestoreJob Interrompe un processo di ripristino in
esecuzione

No

Utilizzo dei ruoli collegati al servizio in Aurora DSQL

Aurora DSQL utilizza ruoli collegati ai servizi AWS Identity and Access Management (IAM). Un ruolo
collegato al servizio è un tipo di ruolo IAM univoco collegato direttamente ad Aurora DSQL. I ruoli
collegati ai servizi sono predefiniti da Aurora DSQL e includono tutte le autorizzazioni richieste dal
servizio per chiamare Servizi AWS per conto del cluster Aurora DSQL.

I ruoli collegati al servizio semplificano la configurazione dei piani di dimensionamento perché
permettono di evitare l’aggiunta manuale delle autorizzazioni necessarie. Quando si crea un cluster,
Aurora DSQL crea automaticamente un ruolo collegato al servizio per conto dell’utente. È possibile
eliminare il ruolo collegato al servizio solo dopo aver eliminato tutti i cluster. Così facendo, le risorse
di Aurora DSQL restano protette, perché non è possibile rimuovere inavvertitamente le autorizzazioni
necessarie per l’accesso alle risorse.

Per informazioni sugli altri servizi che supportano i ruoli collegati al servizio, consulta Servizi AWS
che funzionano con IAM e cercare i servizi che riportano Sì nella colonna Ruolo associato ai servizi.
Scegliere Sì in corrispondenza di un link per visualizzare la documentazione relativa al ruolo collegato
al servizio per tale servizio.

I ruoli collegati al servizio sono disponibili in tutte le Regioni Aurora DSQL supportate.

Uso di ruoli collegati al servizio 333

https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_GetRestoreJob.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_StartBackupJob.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_StartRestoreJob.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_StopBackupJob.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_StopRestoreJob.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Aurora DSQL Guida per l’utente

Autorizzazioni del ruolo collegato al servizio per Aurora DSQL

Aurora DSQL utilizza il ruolo collegato al servizio denominato: consente ad
AWSServiceRoleForAuroraDsql Amazon Aurora DSQL di creare e gestire risorse per
tuo conto. AWS Questo ruolo collegato ai servizi è collegato alle seguenti policy gestite:
AuroraDsqlServiceLinkedRolePolicy.

Note

Per consentire a un’entità IAM (come un utente, un gruppo o un ruolo) di creare, modificare
o eliminare un ruolo collegato al servizio è necessario configurare le relative autorizzazioni.
Potrebbe essere visualizzato il messaggio di errore seguente: You don't have the
permissions to create an Amazon Aurora DSQL service-linked role.
Se viene visualizzato questo messaggio, assicurarsi che le autorizzazioni seguenti siano
abilitate:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Action": ["dsql:CreateCluster"],
 "Resource": [
 "arn:aws:dsql:us-east-1:*:cluster/*",
 "arn:aws:dsql:us-east-2:*:cluster/*"
],
 "Effect": "Allow"
 }
]
}

Per maggiori informazioni, consulta Autorizzazioni del ruolo collegato al servizio.

Autorizzazioni del ruolo collegato al servizio per Aurora DSQL 334

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AuroraDsqlServiceLinkedRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#service-linked-role-permissions.html

Amazon Aurora DSQL Guida per l’utente

Creare un ruolo collegato al servizio

Non è necessario creare manualmente un ruolo collegato ai DSQLService LinkedRolePolicy servizi
Aurora. Aurora DSQL crea il ruolo collegato al servizio per conto dell’utente. Se il ruolo DSQLService
LinkedRolePolicy collegato al servizio Aurora è stato eliminato dall'account, Aurora DSQL crea il
ruolo quando si crea un nuovo cluster Aurora DSQL.

Modifica di un ruolo collegato al servizio

Aurora DSQL non consente di modificare il ruolo collegato al servizio Aurora. DSQLService
LinkedRolePolicy Dopo aver creato un ruolo collegato al servizio, non è possibile modificarne il nome,
perché potrebbero farvi riferimento diverse entità. Tuttavia, puoi modificare la descrizione del ruolo
utilizzando la console IAM, la AWS Command Line Interface (AWS CLI) o l'API IAM.

Eliminazione di un ruolo collegato al servizio

Se non è più necessario utilizzare una funzionalità o un servizio che richiede un ruolo collegato
al servizio, consigliamo di eliminare il ruolo. In questo modo non sarà più presente un’entità non
utilizzata che non viene monitorata e gestita attivamente.

Prima di poter eliminare un ruolo legato a un servizio per un account, è necessario arrestare ed
eliminare qualsiasi cluster nell’account.

Puoi utilizzare la console IAMAWS CLI, l'o l'API IAM per eliminare un ruolo collegato al servizio. Per
maggiori informazioni, consulta Creazione di un ruolo collegato al servizio nella Guida per l’utente di
IAM.

Regioni supportate per i ruoli collegati al servizio di Aurora DSQL

Aurora DSQL supporta l’utilizzo di ruoli collegati al servizio in tutte le Regioni in cui il servizio è
disponibile. Per maggiori informazioni, consulta Regioni ed endpoint di AWS.

Utilizzo di chiavi di condizione IAM con Amazon Aurora DSQL

Quando si concedono le autorizzazioni in Aurora DSQL, è possibile specificare le condizioni che
determinano il modo in cui una policy di autorizzazione viene applicata. Di seguito sono illustrati
esempi di come è possibile utilizzare le chiavi di condizione nelle policy di autorizzazioni IAM di
Aurora DSQL.

Creare un ruolo collegato al servizio 335

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Aurora DSQL Guida per l’utente

Esempio 1: concedere l'autorizzazione per creare un cluster in uno specifico
Regione AWS

Le seguenti policy concedono l’autorizzazione a creare cluster nelle Regioni Stati Uniti orientali
(Virginia settentrionale) e Stati Uniti orientali (Ohio). Questa policy utilizza l’ARN della risorsa per
limitare le Regioni consentite, quindi Aurora DSQL può creare cluster solo se tale ARN è specificato
nella sezione Resource della policy.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Action": ["dsql:CreateCluster"],
 "Resource": [
 "arn:aws:dsql:us-east-1:*:cluster/*",
 "arn:aws:dsql:us-east-2:*:cluster/*"
],
 "Effect": "Allow"
 }
]
}

Esempio 2: concedere l'autorizzazione a creare un cluster multiregionale in
s specifici Regione AWS

Le seguenti policy concedono l’autorizzazione a creare cluster multi-Regione nelle Regioni Stati
Uniti orientali (Virginia settentrionale) e Stati Uniti orientali (Ohio). Questa policy utilizza l’ARN della
risorsa per limitare le Regioni consentite, quindi Aurora DSQL può creare cluster multi-Regione
solo se questo ARN è specificato nella sezione Resource della policy. Tenere presente che la
creazione di cluster multi-Regione richiede anche le autorizzazioni PutMultiRegionProperties,
PutWitnessRegion e AddPeerCluster in ciascuna Regione specificata.

JSON

{

Creare un cluster in una Regione specifica 336

Amazon Aurora DSQL Guida per l’utente

 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dsql:CreateCluster",
 "dsql:PutMultiRegionProperties",
 "dsql:PutWitnessRegion",
 "dsql:AddPeerCluster"
],
 "Resource": [
 "arn:aws:dsql:us-east-1:123456789012:cluster/*",
 "arn:aws:dsql:us-east-2:123456789012:cluster/*"
]
 }
]
}

Esempio 3: concessione dell’autorizzazione per creare un cluster multi-
Regione con una Regione testimone specifica

La seguente policy utilizza una chiave di condizione dsql:WitnessRegion di Aurora DSQL e
consente a un utente di creare cluster multi-Regione con una Regione testimone negli Stati Uniti
occidentali (Oregon). Se non si specifica la condizione dsql:WitnessRegion, è possibile utilizzare
qualsiasi Regione come Regione testimone.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dsql:CreateCluster",
 "dsql:PutMultiRegionProperties",
 "dsql:AddPeerCluster"
],
 "Resource": "arn:aws:dsql:*:123456789012:cluster/*"
 },

Creazione di un cluster multi-Regione con Regione di riferimento specifica 337

Amazon Aurora DSQL Guida per l’utente

 {
 "Effect": "Allow",
 "Action": [
 "dsql:PutWitnessRegion"
],
 "Resource": "arn:aws:dsql:*:123456789012:cluster/*",
 "Condition": {
 "StringEquals": {
 "dsql:WitnessRegion": [
 "us-west-2"
]
 }
 }
 }
]
}

Risposta agli incidenti in Amazon Aurora DSQL

Per AWS, la sicurezza ha la massima priorità. Come parte del modello di responsabilità condivisa
del AWS cloud, AWS gestisce un data center, una rete e un'architettura software che soddisfa i
requisiti delle organizzazioni più sensibili alla sicurezza. AWSè responsabile di qualsiasi risposta
agli incidenti relativi al servizio SQL di Amazon Aurora. Inoltre, come AWS cliente, condividi la
responsabilità di mantenere la sicurezza nel cloud. Ciò significa che puoi controllare la sicurezza che
scegli di implementare dagli AWS strumenti e dalle funzionalità a cui hai accesso. Inoltre, l’utente è
responsabile della risposta agli incidenti relativi alla sua parte del modello di responsabilità condivisa.

Stabilendo una linea di base di sicurezza che soddisfi gli obiettivi delle applicazioni eseguite nel
cloud, l’utente è in grado di rilevare deviazioni a cui è possibile rispondere. Per comprendere l’impatto
che la risposta agli incidenti e le tue scelte hanno sugli obiettivi aziendali, ti invitiamo a consulta le
seguenti risorse:

• AWSGuida alla risposta agli incidenti di sicurezza

• AWSLe migliori pratiche per la sicurezza, l'identità e la conformità

• White paper sulla prospettiva di sicurezza del AWS Cloud Adoption Framework (CAF)

Amazon GuardDuty è un servizio gestito di rilevamento delle minacce che monitora continuamente i
comportamenti dannosi o non autorizzati per aiutare i clienti a proteggere i carichi di lavoro Account

Risposta agli incidenti 338

https://docs.aws.amazon.com/whitepapers/latest/aws-security-incident-response-guide/aws-security-incident-response-guide.html
https://aws.amazon.com/architecture/security-identity-compliance/
https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-adoption-framework/security-perspective.html
https://aws.amazon.com/guardduty/

Amazon Aurora DSQL Guida per l’utente

AWS e identificare attività potenzialmente sospette prima che si trasformino in un incidente. Monitora
attività come chiamate API insolite o implementazioni potenzialmente non autorizzate, indicando
possibili compromissioni di account o risorse o ricognizioni da parte di malintenzionati. Ad esempio,
Amazon GuardDuty è in grado di rilevare attività sospette in Amazon Aurora APIs DSQL, come un
utente che accede da una nuova posizione e crea un nuovo cluster.

Convalida della conformità per Amazon Aurora DSQL

Per sapere se un Servizio AWS programma rientra nell'ambito di specifici programmi di conformità,
consulta Servizi AWS la sezione Scope by Compliance Program Servizi AWS e scegli il programma
di conformità che ti interessa. Per informazioni generali, consulta Programmi di AWSconformità
Programmi di di .

È possibile scaricare report di audit di terze parti utilizzandoAWS Artifact. Per ulteriori informazioni,
consulta Scaricamento dei report in AWS Artifact .

La vostra responsabilità di conformità durante l'utilizzo Servizi AWS è determinata dalla sensibilità
dei dati, dagli obiettivi di conformità dell'azienda e dalle leggi e dai regolamenti applicabili. Per
ulteriori informazioni sulla responsabilità di conformità durante l'utilizzoServizi AWS, consulta la
Documentazione AWS sulla sicurezza.

Resilienza in Amazon Aurora DSQL

L'infrastruttura AWS globale è costruita attorno a zone di disponibilità (Regioni AWSAZ). Regioni
AWSforniscono più zone di disponibilità fisicamente separate e isolate, collegate con reti a bassa
latenza, ad alto throughput e altamente ridondanti. Con le zone di disponibilità è possibile progettare
e gestire applicazioni e database che eseguono automaticamente il failover tra zone di disponibilità
senza interruzioni. Le zone di disponibilità sono più disponibili, tolleranti ai guasti e scalabili rispetto
alle infrastrutture a data center singolo o multiplo tradizionali. Aurora DSQL è progettato in modo
da poter sfruttare l'infrastruttura AWS regionale fornendo al contempo la massima disponibilità
del database. Per impostazione predefinita, i cluster a Regione singola in Aurora DSQL offrono
una disponibilità Multi-AZ, che offre tolleranza ai principali guasti dei componenti e alle interruzioni
dell’infrastruttura che potrebbero influire sull’accesso a una zona di disponibilità completa. I cluster
multi-Regione offrono tutti i vantaggi della resilienza Multi-AZ, pur garantendo una disponibilità
del database estremamente costante, anche nei casi in cui la Regione AWS dovesse risultare
inaccessibile ai client delle applicazioni.

Per ulteriori informazioni sulle Regioni AWS zone di disponibilità, consulta AWSGlobal Infrastructure.

Convalida della conformità 339

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/security/
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Aurora DSQL Guida per l’utente

Oltre all'infrastruttura AWS globale, Aurora DSQL offre diverse funzionalità per supportare le
esigenze di resilienza e backup dei dati.

Backup e ripristino

Aurora DSQL supporta il backup e il ripristino con. Console di backup AWS È possibile eseguire
un backup e un ripristino completi per i cluster a Regione singola e multi-Regione. Per maggiori
informazioni, consultare Backup e ripristino per Amazon Aurora DSQL.

Replica

In base alla progettazione, Aurora DSQL esegue il commit di tutte le transazioni di scrittura in un
registro delle transazioni distribuito e replica in modo sincrono tutti i dati di registro impegnati nelle
repliche di archiviazione degli utenti in tre repliche. AZs I cluster multi-Regione offrono funzionalità
complete di replica interregionale tra Regioni di lettura e scrittura.

Una Regione testimone designata supporta le scritture relative ai soli log delle transazioni e non
consuma spazio di archiviazione. Le Regioni testimone non dispongono di un endpoint. Ciò significa
che le Regioni testimone archiviano solo i registri delle transazioni crittografati, non richiedono alcuna
amministrazione o configurazione e non sono accessibili dagli utenti.

I log delle transazioni e l’archiviazione degli utenti di Aurora DSQL sono distribuiti con tutti i dati
presentati agli elaboratori delle query di Aurora DSQL come un unico volume logico. Aurora DSQL
divide, unisce e replica automaticamente i dati in base all’intervallo di chiavi primarie del database e
ai modelli di accesso. Aurora DSQL dimensiona automaticamente le repliche di lettura, sia verso l’alto
che verso il basso, in base alla frequenza di accesso in lettura.

Le repliche dell’archiviazione del cluster sono distribuite su un parco di sistemi di archiviazione multi-
tenant. Se un componente o un’AZ vengono danneggiati, Aurora DSQL reindirizza automaticamente
l’accesso ai componenti sopravvissuti e ripara in modo asincrono le repliche mancanti. Una volta
che Aurora DSQL corregge le repliche danneggiate, le aggiunge automaticamente al quorum di
archiviazione e le rende disponibili per il cluster.

Elevata disponibilità

Per impostazione predefinita, i cluster a Regione singola e multi-Regione in Aurora DSQL sono
attivi e non è necessario effettuare manualmente il provisioning, configurare o riconfigurare alcun
cluster. Aurora DSQL automatizza completamente il ripristino del cluster, eliminando la necessità

Backup e ripristino 340

Amazon Aurora DSQL Guida per l’utente

delle tradizionali operazioni di failover primario-secondario. La replica è sempre sincrona e viene
eseguita in più parti AZs, quindi non vi è alcun rischio di perdita dei dati dovuta al ritardo della replica
o al failover su un database secondario asincrono durante il ripristino in caso di errore.

I cluster a regione singola forniscono un endpoint ridondante Multi-AZ che abilita automaticamente
l'accesso simultaneo con una forte coerenza dei dati su tre. AZs Ciò significa che le repliche di
storage degli utenti su ognuna di queste tre applicazioni restituiscono AZs sempre lo stesso risultato
a uno o più lettori e sono sempre disponibili per ricevere scritture. Questa forte coerenza e resilienza
Multi-AZ sono disponibili in tutte le Regioni per i cluster multi-Regione di Aurora DSQL. Ciò significa
che i cluster multi-Regione forniscono due endpoint regionali fortemente coerenti, in modo che i client
possano leggere o scrivere indiscriminatamente in entrambe le Regioni senza ritardi di replica al
momento del commit.

Aurora DSQL offre una disponibilità del 99,99% per i cluster a Regione singola e del 99,999% per i
cluster multi-Regione.

Test di iniezione di guasti

Amazon Aurora DSQL si integra con AWS Fault Injection Service (AWS FIS), un servizio
completamente gestito per l'esecuzione di esperimenti di iniezione di errori controllati per migliorare la
resilienza di un'applicazione. UtilizzandoAWS FIS, puoi:

• Creare modelli di esperimenti che definiscono scenari di errore specifici

• Eseguire l’iniezione di guasti (elevati tassi di errore di connessione al cluster) per convalidare i
meccanismi di gestione e ripristino degli errori delle applicazioni

• Verifica il comportamento delle applicazioni in più regioni per convalidare lo spostamento del
traffico delle applicazioni tra un momento e l'altro Regioni AWS quando Regione AWS si verificano
alti tassi di errore di connessione

Ad esempio, in un cluster multi-Regione che copre gli Stati Uniti orientali (Virginia settentrionale) e
gli Stati Uniti orientali (Ohio), è possibile eseguire un esperimento negli Stati Uniti orientali (Ohio)
per verificare gli errori in tali aree mentre gli Stati Uniti orientali (Virginia settentrionale) continuano
le normali operazioni. Questo test controllato consente di identificare e risolvere potenziali problemi
prima che influiscano sui carichi di lavoro di produzione.

Per un elenco completo delle azioni AWS FIS supportate, consulta gli obiettivi delle azioni nella guida
per l'AWS FISutente.

Test di iniezione di guasti 341

https://docs.aws.amazon.com/fis/latest/userguide/action-sequence.html#action-targets

Amazon Aurora DSQL Guida per l’utente

Per informazioni sulle azioni DSQL di Amazon Aurora disponibili in, AWS FIS consulta il riferimento
alle azioni DSQL di Aurora nella Guida per l'utente. AWS FIS

Per iniziare a eseguire esperimenti di iniezione di guasti, consulta Pianificazione degli esperimenti di
AWS FIS nella Guida per l’utente di AWS FIS.

Sicurezza dell’infrastruttura in Amazon Aurora DSQL

In quanto servizio gestito, Amazon Aurora DSQL è protetto dalle procedure di sicurezza di rete AWS
globali descritte nelle Best Practices for Security, Identity and Compliance.

Si utilizzano chiamate API AWS pubblicate per accedere ad Aurora DSQL attraverso la rete. I client
devono supportare Transport Layer Security (TLS) 1.2 o versioni successive. I client devono, inoltre,
supportare le suite di cifratura con PFS (Perfect Forward Secrecy), ad esempio Ephemeral Diffie-
Hellman (DHE) o Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). La maggior parte dei sistemi
moderni, come Java 7 e versioni successive, supporta tali modalità.

Inoltre, le richieste devono essere firmate utilizzando un ID chiave di accesso e una chiave di
accesso segreta associata a un principale IAM. In alternativa è possibile utilizzare AWS Security
Token Service (AWS STS) per generare credenziali di sicurezza temporanee per sottoscrivere le
richieste.

Gestione e connessione ai cluster SQL di Amazon Aurora tramite AWS
PrivateLink

Con AWS PrivateLink Amazon Aurora DSQL, puoi effettuare il provisioning degli endpoint Amazon
VPC di interfaccia (endpoint di interfaccia) nel tuo Amazon Virtual Private Cloud. Questi endpoint
sono accessibili direttamente dalle applicazioni locali tramite Amazon VPC Direct Connect e/o
in un altro modo di peering Regione AWS tramite Amazon VPC. Utilizzando AWS PrivateLink e
interfacciando gli endpoint, puoi semplificare la connettività di rete privata dalle tue applicazioni ad
Aurora DSQL.

Le applicazioni all’interno di Amazon VPC possono accedere ad Aurora DSQL utilizzando gli endpoint
di interfaccia Amazon VPC senza richiedere indirizzi IP pubblici.

Gli endpoint dell'interfaccia sono rappresentati da una o più interfacce di rete elastiche (ENIs) a cui
vengono assegnati indirizzi IP privati dalle sottoreti del tuo Amazon VPC. Le richieste ad Aurora
DSQL tramite endpoint di interfaccia rimangono sulla rete. AWS Per maggiori informazioni su come

Sicurezza dell’infrastruttura 342

https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html#dsql-actions-reference
https://docs.aws.amazon.com/fis/latest/userguide/getting-started-planning.html
https://docs.aws.amazon.com/fis/latest/userguide/getting-started-planning.html
https://aws.amazon.com/architecture/security-identity-compliance
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Aurora DSQL Guida per l’utente

connettere il VPC Amazon alla rete on-premises, consulta la Guida per l’utente di Direct Connect e la
Guida per l’utente della VPN di AWS Site-to-Site VPN.

Per informazioni generali sugli endpoint di interfaccia, consulta Accedere a un AWS servizio
utilizzando un endpoint Amazon VPC con interfaccia nella AWS PrivateLinkGuida per l'utente.

Tipi di endpoint Amazon VPC per Aurora DSQL

Aurora DSQL richiede due diversi tipi di endpoint. AWS PrivateLink

1. Endpoint di gestione - Questo endpoint viene utilizzato per operazioni amministrative, come get,
create, update, delete e list sui cluster Aurora DSQL. Consulta Gestione dei cluster Aurora
DSQL utilizzando AWS PrivateLink.

2. Endpoint di connessione - Questo endpoint viene utilizzato per la connessione ai cluster Aurora
DSQL tramite client PostgreSQL. Per informazioni, consulta Connessione ai cluster Aurora DSQL
tramite AWS PrivateLink.

Considerazioni sull'utilizzo AWS PrivateLink per Aurora DSQL

Le considerazioni relative ad Amazon VPC valgono per AWS PrivateLink Aurora DSQL. Per ulteriori
informazioni, consulta Accedere a un AWS servizio utilizzando un endpoint e AWS PrivateLinkquote
VPC di interfaccia nella Guida. AWS PrivateLink

Gestione dei cluster Aurora DSQL utilizzando AWS PrivateLink

È possibile utilizzare AWS Command Line Interface o AWS Software Development Kit (SDKs) per
gestire i cluster Aurora DSQL tramite gli endpoint dell'interfaccia Aurora DSQL.

Creazione di un endpoint Amazon VPC

Per creare un endpoint di interfaccia Amazon VPC, consulta Creare un endpoint Amazon VPC nella
Guida. AWS PrivateLink

aws ec2 create-vpc-endpoint \
--region region \
--service-name com.amazonaws.region.dsql \
--vpc-id your-vpc-id \
--subnet-ids your-subnet-id \
--vpc-endpoint-type Interface \

Gestione dei cluster utilizzando AWS PrivateLink 343

https://docs.aws.amazon.com/directconnect/latest/UserGuide/
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-limits-endpoints.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

Amazon Aurora DSQL Guida per l’utente

--security-group-ids client-sg-id \

Per utilizzare il nome DNS regionale predefinito per le richieste API Aurora DSQL, non disabilitare
il DNS privato quando si crea l’endpoint dell’interfaccia Aurora DSQL. Quando il DNS privato è
abilitato, le richieste al servizio Aurora DSQL effettuate direttamente dal tuo Amazon VPC verranno
risolte automaticamente nell’indirizzo IP privato dell’endpoint Amazon VPC, anziché nel nome DNS
pubblico. Quando il DNS privato è abilitato, le richieste di Aurora DSQL effettuate direttamente dal tuo
Amazon VPC verranno risolte automaticamente nell’endpoint Amazon VPC.

Se il DNS privato non è abilitato, utilizzate i --endpoint-url parametri --region and con AWS
CLI i comandi per gestire i cluster Aurora DSQL tramite gli endpoint dell'interfaccia Aurora DSQL.

Recupero dell’elenco dei cluster tramite un URL di endpoint

Nell'esempio seguente, sostituisci il nome DNS Regione AWS us-east-1 e il nome DNS
dell'vpce-1a2b3c4d-5e6f.dsql.us-east-1.vpce.amazonaws.comID dell'endpoint Amazon
VPC con le tue informazioni.

aws dsql --region us-east-1 --endpoint-url https://vpce-1a2b3c4d-5e6f.dsql.us-
east-1.vpce.amazonaws.com list-clusters

Operazioni API

Fai riferimento alla Guida di riferimento delle API di Aurora DSQL per la documentazione sulla
gestione delle risorse in Aurora DSQL.

Gestione delle policy degli endpoint

Testando e configurando accuratamente le policy degli endpoint Amazon VPC, puoi contribuire a
garantire che il cluster Aurora DSQL sia sicuro, conforme e allineato ai requisiti di governance e
controllo degli accessi specifici della tua organizzazione.

Esempio: policy di accesso ad Aurora DSQL completa

Le seguenti policy garantiscono l’accesso completo a tutte le azioni e le risorse di Aurora DSQL
tramite l’endpoint Amazon VPC specificato.

aws ec2 modify-vpc-endpoint \
 --vpc-endpoint-id vpce-xxxxxxxxxxxxxxxxx \

Gestione dei cluster utilizzando AWS PrivateLink 344

Amazon Aurora DSQL Guida per l’utente

 --region region \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "dsql:*",
 "Resource": "*"
 }
]
 }'

Esempio: policy di accesso ad Aurora DSQL con restrizioni

La seguente policy consente solo queste operazioni su Aurora DSQL.

• CreateCluster

• GetCluster

• ListClusters

Tutte le altre operazioni Aurora DSQL vengono negate.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": [
 "dsql:CreateCluster",
 "dsql:GetCluster",
 "dsql:ListClusters"
],
 "Resource": "*"
 }
]
}

Gestione dei cluster utilizzando AWS PrivateLink 345

Amazon Aurora DSQL Guida per l’utente

Connessione ai cluster Aurora DSQL tramite AWS PrivateLink

Una volta che l'AWS PrivateLinkendpoint è configurato e attivo, puoi connetterti al tuo cluster Aurora
DSQL utilizzando un client PostgreSQL. Le istruzioni di connessione riportate di seguito descrivono i
passaggi per creare il nome host corretto per la connessione tramite l'endpoint. AWS PrivateLink

Impostazione di un endpoint di connessione AWS PrivateLink

Fase 1: recupero del nome del servizio del proprio cluster

Quando si crea un AWS PrivateLink endpoint per la connessione al cluster, è innanzitutto necessario
recuperare il nome del servizio specifico del cluster.

AWS CLI

aws dsql get-vpc-endpoint-service-name \
--region us-east-1 \
--identifier your-cluster-id

Risposta di esempio

{
 "serviceName": "com.amazonaws.us-east-1.dsql-fnh4"
}

Il nome del servizio include un identificatore, come dsql-fnh4 nell’esempio. Questo
identificatore è necessario anche per creare il nome host per la connessione al cluster.

AWS SDK for Python (Boto3)

import boto3

dsql_client = boto3.client('dsql', region_name='us-east-1')
response = dsql_client.get_vpc_endpoint_service_name(
 identifier='your-cluster-id'
)
service_name = response['serviceName']
print(f"Service Name: {service_name}")

AWS SDK for Java 2.x

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;

Gestione dei cluster utilizzando AWS PrivateLink 346

Amazon Aurora DSQL Guida per l’utente

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dsql.DsqlClient;
import software.amazon.awssdk.services.dsql.model.GetVpcEndpointServiceNameRequest;
import software.amazon.awssdk.services.dsql.model.GetVpcEndpointServiceNameResponse;

String region = "us-east-1";
String clusterId = "your-cluster-id";

DsqlClient dsqlClient = DsqlClient.builder()
 .region(Region.of(region))
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

GetVpcEndpointServiceNameResponse response = dsqlClient.getVpcEndpointServiceName(
 GetVpcEndpointServiceNameRequest.builder()
 .identifier(clusterId)
 .build()
);
String serviceName = response.serviceName();
System.out.println("Service Name: " + serviceName);

Fase 2: creazione dell’endpoint Amazon VPC

Utilizzando il nome del servizio ottenuto nel passaggio precedente, crea un endpoint Amazon VPC.

Important

Le istruzioni di connessione riportate di seguito funzionano solo per la connessione ai cluster
quando il DNS privato è abilitato. Non utilizzare il flag --no-private-dns-enabled
durante la creazione dell’endpoint, poiché ciò impedirà il corretto funzionamento delle
istruzioni di connessione riportate di seguito. Se di disabilita il DNS privato, sarà necessario
creare il proprio record DNS privato con wildcard che punti all’endpoint creato.

AWS CLI

aws ec2 create-vpc-endpoint \
 --region us-east-1 \
 --service-name service-name-for-your-cluster \
 --vpc-id your-vpc-id \

Gestione dei cluster utilizzando AWS PrivateLink 347

Amazon Aurora DSQL Guida per l’utente

 --subnet-ids subnet-id-1 subnet-id-2 \
 --vpc-endpoint-type Interface \
 --security-group-ids security-group-id

Risposta di esempio

{
 "VpcEndpoint": {
 "VpcEndpointId": "vpce-0123456789abcdef0",
 "VpcEndpointType": "Interface",
 "VpcId": "vpc-0123456789abcdef0",
 "ServiceName": "com.amazonaws.us-east-1.dsql-fnh4",
 "State": "pending",
 "RouteTableIds": [],
 "SubnetIds": [
 "subnet-0123456789abcdef0",
 "subnet-0123456789abcdef1"
],
 "Groups": [
 {
 "GroupId": "sg-0123456789abcdef0",
 "GroupName": "default"
 }
],
 "PrivateDnsEnabled": true,
 "RequesterManaged": false,
 "NetworkInterfaceIds": [
 "eni-0123456789abcdef0",
 "eni-0123456789abcdef1"
],
 "DnsEntries": [
 {
 "DnsName": "*.dsql-fnh4.us-east-1.vpce.amazonaws.com",
 "HostedZoneId": "Z7HUB22UULQXV"
 }
],
 "CreationTimestamp": "2025-01-01T00:00:00.000Z"
 }
}

SDK for Python

import boto3

Gestione dei cluster utilizzando AWS PrivateLink 348

Amazon Aurora DSQL Guida per l’utente

ec2_client = boto3.client('ec2', region_name='us-east-1')
response = ec2_client.create_vpc_endpoint(
 VpcEndpointType='Interface',
 VpcId='your-vpc-id',
 ServiceName='com.amazonaws.us-east-1.dsql-fnh4', # Use the service name from
 previous step
 SubnetIds=[
 'subnet-id-1',
 'subnet-id-2'
],
 SecurityGroupIds=[
 'security-group-id'
]
)

vpc_endpoint_id = response['VpcEndpoint']['VpcEndpointId']
print(f"VPC Endpoint created with ID: {vpc_endpoint_id}")

SDK for Java 2.x

Usa un URL endpoint per Aurora DSQL APIs

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.ec2.Ec2Client;
import software.amazon.awssdk.services.ec2.model.CreateVpcEndpointRequest;
import software.amazon.awssdk.services.ec2.model.CreateVpcEndpointResponse;
import software.amazon.awssdk.services.ec2.model.VpcEndpointType;

String region = "us-east-1";
String serviceName = "com.amazonaws.us-east-1.dsql-fnh4"; // Use the service name
 from previous step
String vpcId = "your-vpc-id";

Ec2Client ec2Client = Ec2Client.builder()
 .region(Region.of(region))
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

CreateVpcEndpointRequest request = CreateVpcEndpointRequest.builder()
 .vpcId(vpcId)
 .serviceName(serviceName)
 .vpcEndpointType(VpcEndpointType.INTERFACE)

Gestione dei cluster utilizzando AWS PrivateLink 349

Amazon Aurora DSQL Guida per l’utente

 .subnetIds("subnet-id-1", "subnet-id-2")
 .securityGroupIds("security-group-id")
 .build();

CreateVpcEndpointResponse response = ec2Client.createVpcEndpoint(request);
String vpcEndpointId = response.vpcEndpoint().vpcEndpointId();
System.out.println("VPC Endpoint created with ID: " + vpcEndpointId);

Configurazione aggiuntiva durante la connessione Direct Connect tramite peering Amazon VPC

Potrebbero essere necessarie alcune configurazioni aggiuntive per connettersi ai cluster Aurora
DSQL utilizzando un endpoint di AWS PrivateLink connessione da dispositivi locali tramite peering
Amazon VPC o. Direct Connect Questa configurazione non è necessaria se l'applicazione è in
esecuzione nello stesso Amazon VPC dell'endpoint. AWS PrivateLink Le voci DNS private create
sopra non verranno risolte correttamente al di fuori dell'Amazon VPC dell'endpoint, ma puoi creare i
tuoi record DNS privati che si risolvono nell'endpoint di connessione. AWS PrivateLink

Crea un record DNS CNAME privato che punti al nome di dominio completo dell'endpoint. AWS
PrivateLink Il nome di dominio del record DNS creato deve essere costruito con i seguenti
componenti:

1. L’identificatore del servizio dal nome del servizio. Ad esempio: dsql-fnh4

2. Il Regione AWS

Crea il record DNS CNAME con un nome di dominio nel seguente formato: *.service-
identifier.region.on.aws

Il formato del nome di dominio è importante per due motivi:

1. Il nome host utilizzato per connettersi ad Aurora DSQL deve corrispondere al certificato del server
di Aurora DSQL quando si utilizza la modalità SSL. verify-full Ciò garantisce il massimo
livello di sicurezza della connessione.

2. Aurora DSQL utilizza la parte relativa all'ID del cluster del nome host utilizzata per connettersi ad
Aurora DSQL per identificare il cluster di connessione.

Gestione dei cluster utilizzando AWS PrivateLink 350

Amazon Aurora DSQL Guida per l’utente

Se non è possibile creare record DNS privati, è comunque possibile connettersi ad Aurora DSQL.
Per informazioni, consulta Connessione a un cluster Aurora DSQL utilizzando un AWS PrivateLink
endpoint senza DNS privato.

Connessione a un cluster Aurora DSQL utilizzando un endpoint di connessione AWS PrivateLink

Una volta che l'AWS PrivateLinkendpoint è configurato e attivo (verifica che lo State
siaavailable), puoi connetterti al tuo cluster Aurora DSQL utilizzando un client PostgreSQL. Per
istruzioni sull'uso di AWS SDKs, puoi seguire le guide in Programmazione con Aurora DSQL. È
necessario modificare l’endpoint del cluster in modo che corrisponda al formato del nome host.

Costruzione del nome host

Il nome host per la connessione è AWS PrivateLink diverso dal nome host DNS pubblico. È
necessario costruirlo utilizzando i seguenti componenti.

1. Your-cluster-id

2. L’identificatore del servizio dal nome del servizio. Ad esempio: dsql-fnh4

3. Il. Regione AWS Ad esempio: us-east-1

Utilizzare il seguente formato: cluster-id.service-identifier.region.on.aws

Esempio: connessione tramite PostgreSQL

Set environment variables
export CLUSTERID=your-cluster-id
export REGION=us-east-1
export SERVICE_IDENTIFIER=dsql-fnh4 # This should match the identifier in your service
 name

Construct the hostname
export HOSTNAME="$CLUSTERID.$SERVICE_IDENTIFIER.$REGION.on.aws"

Generate authentication token
export PGPASSWORD=$(aws dsql --region $REGION generate-db-connect-admin-auth-token --
hostname $HOSTNAME)

Connect using psql
psql -d postgres -h $HOSTNAME -U admin

Gestione dei cluster utilizzando AWS PrivateLink 351

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/programming-with.html

Amazon Aurora DSQL Guida per l’utente

Connessione a un cluster Aurora DSQL utilizzando un AWS PrivateLink endpoint senza DNS privato

Le istruzioni di connessione riportate sopra si basano su record DNS privati. Se la tua applicazione
è in esecuzione nello stesso Amazon VPC dell'AWS PrivateLinkendpoint, i record DNS vengono
creati automaticamente. In alternativa, se ti connetti da dispositivi locali tramite peering Amazon
VPC oppureDirect Connect, puoi creare i tuoi record DNS privati. Tuttavia, la configurazione dei
record DNS non è sempre possibile a causa delle restrizioni di rete imposte dai team di sicurezza.
Se l'applicazione deve connettersi tramite Direct Connect o da un Amazon VPC peered e la
configurazione dei record DNS non è possibile, puoi comunque connetterti ad Aurora DSQL.

Aurora DSQL utilizza la parte relativa all'ID del cluster del nome host per identificare il cluster di
connessione, ma se la configurazione del record DNS non è possibile, Aurora DSQL supporta la
specificazione del cluster di destinazione utilizzando l'opzione di connessione. amzn-cluster-id
Con questa opzione, è possibile utilizzare il nome di dominio completo dell'AWS PrivateLinkendpoint
come nome host durante la connessione.

Important

Quando ci si connette con il nome di dominio o l'indirizzo IP completamente qualificato
dell'AWS PrivateLinkendpoint, la modalità SSL non è supportata. verify-full Per questo
motivo, è preferibile configurare un DNS privato.

Esempio: specificazione dell'opzione di connessione con l'ID del cluster utilizzando PostgreSQL

Set environment variables
export CLUSTERID=your-cluster-id
export REGION=us-east-1
export HOSTNAME=vpce-04037adb76c111221-d849uc2p.dsql-fnh4.us-east-1.vpce.amazonaws.com
 # This should match your endpoint's fully-qualified domain name

Construct the hostname used to generate the authentication token
export AUTH_HOSTNAME="$CLUSTERID.dsql.$REGION.on.aws"

Generate authentication token
export PGPASSWORD=$(aws dsql --region $REGION generate-db-connect-admin-auth-token --
hostname $AUTH_HOSTNAME)

Specify the amzn-cluster-id connection option
export PGOPTIONS="-c amzn-cluster-id=$CLUSTERID"

Gestione dei cluster utilizzando AWS PrivateLink 352

Amazon Aurora DSQL Guida per l’utente

Connect using psql
psql -d postgres -h $HOSTNAME -U admin

Risoluzione dei problemi relativi a AWS PrivateLink

Problemi e soluzioni comuni

La tabella seguente elenca i problemi e le soluzioni comuni relativi a AWS PrivateLink con Aurora
DSQL.

Problema Possibile causa Soluzione

Timeout di connessio
ne

Gruppo di sicurezza
non configurato
correttamente

Utilizza il sistema di analisi della reperibilità
Amazon VPC per assicurarti che la configura
zione della rete consenta il traffico sulla porta
5432.

Errore di risoluzione
del DNS

DNS privato non
abilitato

Verifica che l’endpoint Amazon VPC sia stato
creato con DNS privato abilitato.

Errori di autentica
zione

Credenziali errate o
token scaduto

Genera un nuovo token di autenticazione e
verificare il nome utente.

Il nome del servizio
non è stato trovato

ID del cluster non
corretto

Ricontrolla l'ID del cluster e Regione AWS
quando recuperi il nome del servizio.

Risorse correlate

Per maggiori informazioni, consulta le seguenti risorse:

• Guida per l’utente di Amazon Aurora DSQL

• Documentazione di AWS PrivateLink

• Accedi ai servizi tramite AWSAWS PrivateLink

Gestione dei cluster utilizzando AWS PrivateLink 353

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-dsql.html
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html

Amazon Aurora DSQL Guida per l’utente

Analisi della configurazione e delle vulnerabilità in Amazon Aurora
DSQL

AWSgestisce le attività di sicurezza di base come l'applicazione di patch al sistema operativo guest
(OS) e al database, la configurazione del firewall e il disaster recovery. Queste procedure sono state
riviste e certificate dalle terze parti appropriate. Per ulteriori dettagli, consulta le seguenti risorse :

• Modello di responsabilità condivisa

• Amazon Web Services: panoramica dei processi di sicurezza (whitepaper)

Prevenzione del confused deputy tra servizi

Il problema confused deputy è un problema di sicurezza in cui un’entità che non dispone
dell’autorizzazione per eseguire un’azione può costringere un’entità maggiormente privilegiata a
eseguire l’azione. Nel frattempoAWS, l'impersonificazione tra servizi può portare al confuso problema
del vicesceriffo. La rappresentazione tra servizi può verificarsi quando un servizio (il servizio
chiamante) effettua una chiamata a un altro servizio (il servizio chiamato). Il servizio chiamante può
essere manipolato per utilizzare le proprie autorizzazioni e agire sulle risorse di un altro cliente, a cui
normalmente non avrebbe accesso. Per evitare ciò, AWS fornisce strumenti per poterti a proteggere
i tuoi dati per tutti i servizi con entità di servizio a cui è stato concesso l’accesso alle risorse del tuo
account.

Consigliamo di utilizzare le chiavi di contesto delle condizioni globali aws:SourceArn e
aws:SourceAccount nelle policy delle risorse per limitare le autorizzazioni con cui Amazon Aurora
DSQL fornisce un altro servizio alla risorsa. Utilizzare aws:SourceArn se si desidera consentire
l’associazione di una sola risorsa all’accesso tra servizi. Utilizzare aws:SourceAccount se si
desidera consentire l’associazione di qualsiasi risorsa in tale account all’uso tra servizi.

Il modo più efficace per proteggersi dal problema “confused deputy” è quello di utilizzare la chiave
di contesto della condizione globale aws:SourceArn con l’ARN completo della risorsa. Se non si
conosce l’ARN completo della risorsa o si scelgono più risorse, utilizzare la chiave di contesto della
condizione globale aws:SourceArn con caratteri jolly (*) per le parti sconosciute dell’ARN. Ad
esempio, arn:aws:dsql:*:123456789012:*.

Se il valore aws:SourceArn non contiene l’ID account, ad esempio un ARN di un bucket Amazon
S3, è necessario utilizzare entrambe le chiavi di contesto delle condizioni globali per limitare le
autorizzazioni.

Analisi della configurazione e delle vulnerabilità 354

https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon Aurora DSQL Guida per l’utente

Il valore di aws:SourceArn deve essere ResourceDescription.

L’esempio seguente mostra il modo in cui puoi utilizzare le chiavi di contesto delle condizioni globali
aws:SourceArn e aws:SourceAccount in Aurora DSQL per prevenire il problema confused
deputy.

JSON

{
 "Version":"2012-10-17",
 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "backup.amazonaws.com"
 },
 "Action": "dsql:GetCluster",
 "Resource": [
 "arn:aws:dsql:*:123456789012:cluster/*"
],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:backup:*:123456789012:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

Best practice di sicurezza di Aurora DSQL

Aurora DSQL fornisce una serie di funzionalità di sicurezza da valutare durante lo sviluppo e
l’implementazione delle policy di sicurezza. Le seguenti best practice sono linee guida generali e non
rappresentano una soluzione di sicurezza completa. Poiché queste best practice potrebbero non
essere appropriate o sufficienti per l’ambiente, sono da considerare come considerazioni utili anziché
prescrizioni.

Argomenti

Best practice di sicurezza 355

Amazon Aurora DSQL Guida per l’utente

• Best practice relative alla sicurezza di rilevamento per Aurora DSQL

• Best practice relative alla sicurezza preventiva per Aurora DSQL

Best practice relative alla sicurezza di rilevamento per Aurora DSQL

Oltre ai seguenti modi per utilizzare in modo sicuro Aurora DSQL, consulta Sicurezza AWS Well-
Architected Tool in per scoprire come le tecnologie cloud migliorano la tua sicurezza.

CloudWatch Allarmi Amazon

Utilizzando Amazon CloudWatch alarms, controlli una singola metrica per un periodo di
tempo specificato. Se la metrica supera una determinata soglia, viene inviata una notifica a
un argomento o una policy di Amazon SNS. AWS Auto Scaling CloudWatch gli allarmi non
richiamano azioni perché si trovano in uno stato particolare. È necessario invece cambiare lo stato
e mantenerlo per un numero di periodi specificato.

Tagging delle risorse di Aurora DSQL per identificazione e automazione

Puoi assegnare metadati alle tue AWS risorse sotto forma di tag. Ogni tag è una semplice
etichetta composta da una chiave definita dal cliente e un valore facoltativo che può semplificare
la gestione, la ricerca e il filtro delle risorse.

Il tagging consente l’implementazione di gruppi controllati. Anche se non ci sono tipi di tag
inerenti, è possibile suddividere le risorse in base a scopo, proprietario, ambiente o altri criteri. Di
seguito vengono mostrati alcuni esempi:

• Sicurezza - Utilizzato per determinare requisiti quali la crittografia.

• Riservatezza - Un identificatore per il livello di riservatezza dei dati specifico supportato da una
risorsa.

• Ambiente - Utilizzato per differenziare tra infrastruttura di sviluppo, test e produzione.

Puoi assegnare metadati alle tue AWS risorse sotto forma di tag. Ogni tag è una semplice
etichetta composta da una chiave definita dal cliente e un valore facoltativo che può semplificare
la gestione, la ricerca e il filtro delle risorse.

Il tagging consente l’implementazione di gruppi controllati. Anche se non ci sono tipi di tag
inerenti, i tag consentono di suddividere le risorse in base a scopo, proprietario, ambiente o altri
criteri. Di seguito vengono mostrati alcuni esempi.

• Sicurezza - Utilizzato per determinare requisiti quali la crittografia.

Best practice relative alla sicurezza di rilevamento 356

https://docs.aws.amazon.com/wellarchitected/latest/framework/security.html

Amazon Aurora DSQL Guida per l’utente

• Riservatezza - Un identificatore per il livello di riservatezza dei dati specifico supportato da una
risorsa.

• Ambiente Utilizzato per differenziare tra infrastruttura di sviluppo, test e produzione.

Per ulteriori informazioni, consulta Best practice per l'AWSetichettatura delle risorse.

Best practice relative alla sicurezza preventiva per Aurora DSQL

Oltre ai seguenti modi per utilizzare in modo sicuro Aurora DSQL, consulta Sicurezza AWS Well-
Architected Tool in per scoprire come le tecnologie cloud migliorano la tua sicurezza.

Utilizza i ruoli IAM per autenticare l’accesso ad Aurora DSQL.

Gli utenti, le applicazioni e gli altri utenti Servizi AWS che accedono ad Aurora DSQL devono
includere AWS credenziali valide nell'API e nelle AWS richieste. AWS CLI Non è necessario
archiviare AWS le credenziali direttamente nell'applicazione o nelle istanze. EC2 Si tratta
di credenziali a lungo termine che non vengono ruotate automaticamente. L’eventuale
compromissione di queste credenziali ha un impatto significativo sul business. Un ruolo IAM ti
consente di ottenere chiavi di accesso temporanee da utilizzare per accedere a risorse Servizi
AWS e risorse.

Per ulteriori informazioni, consulta Autenticazione e autorizzazione per Aurora DSQL.

Utilizza le policy IAM per l’autorizzazione di base di Aurora DSQL.

Quando si concedono le autorizzazioni, si decide gli utenti che le riceveranno, quali API di
Aurora DSQL ottengono le autorizzazioni e le operazioni specifiche da consentire su tali risorse.
L’implementazione del privilegio minimo è fondamentale per ridurre i rischi di sicurezza e l’impatto
che può risultare da errori o intenzioni dannose.

Collega policy di autorizzazione ai ruoli IAM e concedi autorizzazioni per eseguire operazioni
su risorse Aurora DSQL. Sono disponibili anche limiti delle autorizzazioni per le entità IAM,
che consentono di impostare le autorizzazioni massime che una policy basata sull’identità può
concedere a un’entità IAM.

Analogamente alle best practice per gli utenti root Account AWS, non utilizzare il admin ruolo in
Aurora DSQL per eseguire operazioni quotidiane. Consigliamo invece di creare ruoli del database
personalizzati per gestire e connettersi al cluster. Per maggiori informazioni, consulta Accesso ad
Aurora DSQL e Informazioni sull’ autenticazione e l’autorizzazione per Aurora DSQL.

Best practice relative alla sicurezza preventiva 357

https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-best-practices.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/accessing.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/accessing.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/accessing.html

Amazon Aurora DSQL Guida per l’utente

Utilizzo di verify-full in ambienti di produzione.

Questa impostazione verifica che il certificato del server sia firmato da un’autorità di certificazione
affidabile e che il nome host del server corrisponda al certificato.

Aggiornamento del client PostgreSQL

Aggiorna regolarmente il tuo client PostgreSQL alla versione più recente per beneficiare dei
miglioramenti della sicurezza. Si consiglia di utilizzare PostgreSQL versione 17.

Best practice relative alla sicurezza preventiva 358

Amazon Aurora DSQL Guida per l’utente

Applicazione di tag alle risorse in Aurora DSQL

In AWS, i tag sono coppie chiave-valore definite dall’utente che vengono definite e associate a risorse
Aurora DSQL come i cluster. I tag sono opzionali. Se viene fornita una chiave, il valore è facoltativo.

È possibile utilizzare la Console di gestione AWS, la AWS CLI o gli SDK AWS per aggiungere,
elencare ed eliminare tag sui cluster Aurora DSQL. È possibile aggiungere tag durante e dopo la
creazione del cluster utilizzando la console AWS. Per etichettare un cluster dopo la creazione, la
AWS CLI usa l’operazione TagResource.

Applicazione di tag ai cluster con un nome

Aurora DSQL crea cluster con un identificatore unico a livello globale assegnato come nome della
risorsa Amazon (ARN). Se si desidera assegnare un nome intuitivo al cluster, raccomandiamo di
utilizzare un Tag.

Se si crea una console con la console di Aurora DSQL, Aurora DSQL crea automaticamente un tag.
Questo tag è costituito da una chiave Name e un valore generato automaticamente che rappresenta
il nome del cluster. Questo valore è configurabile, quindi è possibile assegnare al cluster un nome
più intuitivo. Se a un cluster è stato applicato un tag Name con un valore associato, è possibile
visualizzare il valore in tutta la console Aurora DSQL.

Requisiti per il tagging

I tag hanno i requisiti seguenti:

• Alle chiavi non può essere anteposto il prefisso aws:.

• Le chiavi devono essere univoche per un set di tag.

• Una chiave deve essere costituita da un numero di caratteri compreso tra 1 e 128.

• Un valore deve essere costituito da un numero di caratteri compreso tra 0 e 256.

• Non è necessario che i valori siano univoci per un set di tag.

• I caratteri consentiti per le chiavi e i valori sono lettere, cifre, spazi e uno qualsiasi dei simboli
seguenti: _ . : / = + - @.

• Per chiavi e valori viene fatta distinzione tra maiuscole e minuscole.

Tag nome 359

Amazon Aurora DSQL Guida per l’utente

Note di utilizzo dell’applicazione di tag

Quando si usano i tag in Aurora DSQL, tenere presenti le seguenti considerazioni.

• Quando si usano la AWS CLI o le operazioni API di Aurora DSQL, è necessario fornire il nome
della risorsa Amazon (ARN) della risorsa Aurora DSQL che si intende utilizzare. Per maggiori
informazioni, consultare Formato del nome della risorsa Amazon (ARN) per le risorse di Aurora
DSQL.

• Ogni risorsa dispone di un set di tag, ovvero una raccolta di uno o più tag ad essa assegnati.

• Ogni risorsa può avere fino a 50 tag per set di tag.

• Se si elimina una risorsa, vengono eliminati anche i tag associati.

• È possibile aggiungere tag alla creazione della risorsa, è possibile visualizzare e
modificare i tag utilizzando le seguenti operazioni API: TagResource, UntagResource e
ListTagsForResource.

• È possibile utilizzare i tag con le policy IAM. È possibili utilizzarli per gestire l’accesso ai cluster
Aurora DSQL e per controllare le operazioni che è possibile applicare alle specifiche risorse. Per
maggiori informazioni, consultare Controllo dell’accesso alle risorse di AWS utilizzando i tag.

• È possibile utilizzare i tag per diverse altre attività in tutto AWS. Per maggiori informazioni,
consultare Strategie comuni di applicazione di tag.

Note di utilizzo dell’applicazione di tag 360

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-arn-format
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html#authentication-authorization-arn-format
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/best-practices-and-strats.html#tag-strategies

Amazon Aurora DSQL Guida per l’utente

Considerazioni sull’utilizzo di Amazon Aurora DSQL
Quando si lavora con Amazon Aurora DSQL è opportuno prendere in considerazione i seguenti
comportamenti. Per maggiori informazioni sulla compatibilità e il supporto di PostgreSQL, consultare
Compatibilità delle funzionalità SQL in Aurora DSQL. Per quote e limiti, consultare Quote di cluster e
limiti del database in Amazon Aurora DSQL.

• Aurora DSQL non completa le transazioni COUNT(*) prima del timeout della transazione per
tabelle di grandi dimensioni. Per recuperare il conteggio delle righe della tabella dal catalogo di
sistema, consultare Utilizzo delle tabelle e dei comandi di sistema in Aurora DSQL.

• I driver che richiamano PG_PREPARED_STATEMENTS potrebbero fornire una visualizzazione
incoerente delle istruzioni preparate memorizzate nella cache per il cluster. Potrebbe essere
visualizzato un numero di istruzioni preparate per connessione superiore al previsto per lo
stesso cluster e lo stesso ruolo IAM. Aurora DSQL non conserva i nomi delle istruzioni preparati
dall’utente.

• In rari scenari di compromissione dei cluster multi-Regione, il ripristino della disponibilità del
commit delle transazioni potrebbe richiedere più tempo del previsto. In generale, le operazioni
automatizzate di ripristino dei cluster possono causare errori transitori nel controllo della
concorrenza o nella connessione. Nella maggior parte dei casi, gli effetti saranno visibili solo
per una percentuale del carico di lavoro. Quando si riscontrano tali errori transitori, riprova la
transazione o riconnettere il client.

• Alcuni client SQL, come Datagrip, effettuano chiamate estese ai metadati di sistema per compilare
le informazioni dello schema. Aurora DSQL non supporta tutte queste informazioni e restituisce
degli errori. Questo problema non influisce sulla funzionalità delle query SQL, ma potrebbe influire
sulla visualizzazione dello schema.

• Il ruolo di amministratore dispone di una serie di autorizzazioni relative alle attività di gestione del
database. Per impostazione predefinita, queste autorizzazioni non si estendono agli oggetti creati
da altri utenti. Il ruolo di amministratore non può concedere o revocare le autorizzazioni su questi
oggetti creati dall’utente ad altri utenti. L’utente amministratore può concedersi qualsiasi altro ruolo
per ottenere le autorizzazioni necessarie su questi oggetti.

361

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-systems-tables.html

Amazon Aurora DSQL Guida per l’utente

Quote di cluster e limiti del database in Amazon Aurora
DSQL

Le sezioni seguenti descrivono le quote del cluster e i limiti del database per Aurora DSQL.

Quote del cluster

Hai Account AWS le seguenti quote di cluster in Aurora DSQL. Per richiedere un aumento delle quote
di servizio per i cluster a regione singola e multiarea all'interno di uno specifico Regione AWS, utilizza
la pagina della console Service Quotas. Per altri aumenti delle quote, contatta. Supporto AWS

Description Limite
predefinito

Configurabile? Codice di errore di Aurora DSQL Messaggio di errore

Numero
massimo
di cluster a
regione singola
per Account
AWS

20 cluster Sì Codice di errore API ServiceQuotaExceededException : 402 You have reached the cluster
limit.

Numero
massimo
di cluster
multiregione
per Account
AWS

5 cluster Sì Codice di errore API ServiceQuotaExceededException : 402 You have reached the cluster
limit.

Spazio di
archiviazione
massimo per
cluster

Limite
predefinito di
10 TiB, fino
a 256 TiB
con aumento
del limite
approvato

Sì DISK_FULL(53100) Current cluster size exceeds
cluster size limit.

Quote del cluster 362

https://console.aws.amazon.com/servicequotas
https://console.aws.amazon.com/servicequotas
https://console.aws.amazon.com/servicequotas

Amazon Aurora DSQL Guida per l’utente

Description Limite
predefinito

Configurabile? Codice di errore di Aurora DSQL Messaggio di errore

Numero
massimo di
connessioni per
cluster

10.000
connessioni

Sì TOO_MANY_CONNECTIONS(53300) Unable to accept connection,
too many open connections.

Velocità
massima di
connessione
per cluster

100
connessioni
al secondo

No CONFIGURED_LIMIT_EXCEEDED(53400) Unable to accept connection,
rate exceeded.

Capacità di
espansione
massima delle
connessioni per
cluster

1.000
connessioni

No Nessun codice di errore Nessun messaggio di errore

Numero
massimo
di processi
di ripristino
simultanei

4 No Nessun codice di errore Nessun messaggio di errore

Frequenza di
ricarica della
connessione

100
connessioni
al secondo

No Nessun codice di errore Nessun messaggio di errore

Limiti del database in Aurora DSQL

La tabella seguente descrive i limiti del database in Aurora DSQL.

Limiti del database 363

Amazon Aurora DSQL Guida per l’utente

Description Limite
predefinito

Configurabile? Codice
di errore
di
Aurora
DSQL

Messaggio di errore

Dimension
e massima
combinata delle
colonne utilizzat
e in una chiave
primaria

1 KiB No 54000 ERROR: key size too large

Dimension
e massima
combinata delle
colonne in un
indice secondari
o

1 KiB No 54000 ERROR: key size too large

Dimensione
massima di
una riga in una
tabella

2 MiB No 54000 ERROR: maximum row size exceeded

Dimensione
massima di una
colonna che non
fa parte di un
indice

1 MiB No 54000 ERROR: maximum column size exceeded

Numero
massimo di
colonne in una
chiave primaria
o in un indice
secondario

8 No 54011 ERROR: more than 8 column keys in an index
are not supported

Limiti del database 364

Amazon Aurora DSQL Guida per l’utente

Description Limite
predefinito

Configurabile? Codice
di errore
di
Aurora
DSQL

Messaggio di errore

Numero
massimo di
colonne in una
tabella

255 No 54011 ERROR: tables can have at most 255 columns

Numero
massimo di
indici in una
tabella

24 No 54000 ERROR: more than 24 indexes per table are not
allowed

Dimensione
massima di tutti i
dati modificati in
una transazione
di scrittura

10 MiB No 54000 ERROR: transaction size limit 10mb exceeded
DETAIL: Current transaction size {sizemb}
10mb

Numero
massimo di
righe di tabelle
e indici che
possono essere
modificate in
un blocco di
transazione

3.000 righe
per transazio
ne. Consulta
Considera
zioni su Aurora
DSQL rispetto
alla compatibi
lità con
PostgreSQL.

No 54000 ERROR: transaction row limit exceeded

Limiti del database 365

Amazon Aurora DSQL Guida per l’utente

Description Limite
predefinito

Configurabile? Codice
di errore
di
Aurora
DSQL

Messaggio di errore

Quantità
massima di
memoria di base
utilizzabile da
un’operazione di
interrogazione

128 MiB per
transazione

No 53200 ERROR: query requires too much temp space,
out of memory.

Numero
massimo di
schemi definiti in
un database

10 No 54000 ERROR: more than 10 schemas not allowed

Numero
massimo di
tabelle in un
database

1.000 tabelle No 54000 ERROR: creating more than 1000 tables not
allowed

Numero
massimo di
database in un
cluster

1 No Nessun
codice
di errore

ERROR: unsupported statement

Tempo massimo
di una transazio
ne

5 minuti No 54000 ERROR: transaction age limit of 300s
exceeded

Durata massima
di una connessio
ne

60 minuti No Nessun
codice
di errore

Nessun messaggio di errore

Limiti del database 366

Amazon Aurora DSQL Guida per l’utente

Description Limite
predefinito

Configurabile? Codice
di errore
di
Aurora
DSQL

Messaggio di errore

Numero
massimo di viste
un database

5.000 No 54000 ERROR: creating more than 5000 views not
allowed

Dimensione
massima della
definizione di
una vista

2 MiB No 54000 ERROR: view definition too large

Per i limiti dei tipi di dati specifici di Aurora DSQL, consulta Tipi di dati supportati in Aurora DSQL.

Limiti del database 367

Amazon Aurora DSQL Guida per l’utente

Guida di riferimento alle API di Aurora DSQL
Oltre alla Console di gestione AWS e alla AWS Command Line Interface (AWS CLI), Aurora DSQL
fornisce anche un’interfaccia API. È possibile utilizzare le operazioni API per gestire le risorse in
Aurora DSQL.

Per un elenco alfabetico delle operazioni API, consultare Operazioni.

Per un elenco alfabetico dei tipi di dati, consulta la pagina Tipi di dati.

Per un elenco di parametri di query comuni, consulta la pagina Parametri Comuni.

Per le descrizioni dei codici di errore, consultare Errori comuni.

Per maggiori informazioni sulla AWS CLI, consultare la guida di riferimento della AWS Command
Line Interface per Aurora DSQL.

368

https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/API_Types.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/CommonParameters.html
https://docs.aws.amazon.com/aurora-dsql/latest/APIReference/CommonErrors.html

Amazon Aurora DSQL Guida per l’utente

Risoluzione dei problemi in Aurora DSQL

Note

Negli argomenti seguenti vengono forniti suggerimenti per la risoluzione dei problemi relativi
a errori e problemi che potrebbero verificarsi durante l’utilizzo di Aurora DSQL. Se riscontri un
problema non elencato qui di seguito, contatta il servizio di assistenza AWS

Argomenti

• Risoluzione dei problemi legati agli errori di connessione

• Risoluzione dei problemi legati agli errori di autenticazione

• Risoluzione dei problemi legati agli errori di autorizzazione

• Risoluzione degli errori SQL

• Risoluzione degli errori OCC

• Risoluzione dei problemi di connessione SSL/TLS

Risoluzione dei problemi legati agli errori di connessione

errore: codice di errore SSL non riconosciuto: 6 o impossibile accettare la connessione, sni non è
stato ricevuto

Potresti utilizzare una versione di psql precedente alla versione 14, che non supporta Server Name
Indication (SNI). Il supporto di SNI è necessario per la connessione ad Aurora DSQL.

È possibile verificare la versione del client con il comando psql --version.

errore: NetworkUnreachable

Un NetworkUnreachable errore durante i tentativi di connessione potrebbe indicare che il client
non supporta IPv6 le connessioni, anziché segnalare un vero problema di rete. Questo errore si
verifica in genere IPv4 solo sulle istanze a causa del modo in cui i client PostgreSQL gestiscono le
connessioni dual-stack. Quando un server supporta la modalità dual-stack, questi client risolvono
innanzitutto i nomi host in entrambi gli indirizzi. IPv4 IPv6 Tentano prima una IPv4 connessione, poi
provano IPv6 se la connessione iniziale fallisce. Se il tuo sistema non lo supporta IPv6, vedrai un
NetworkUnreachable errore generico invece di un chiaro messaggio «IPv6 non supportato».

Errori di connessione 369

https://www.postgresql.org/docs/release/14.0/

Amazon Aurora DSQL Guida per l’utente

Risoluzione dei problemi legati agli errori di autenticazione

Autenticazione IAM non riuscita per l’utente “...”

Quando si genera un token di autenticazione Aurora DSQL IAM, la durata massima che è possibile
impostare è di 1 settimana. Dopo una settimana, non è più possibile autenticarsi con quel token.

Inoltre, Aurora DSQL rifiuta la richiesta di connessione se il ruolo assunto è scaduto. Ad esempio,
se si prova a connettersi con un ruolo IAM temporaneo, Aurora DSQL rifiuterà la richiesta di
connessione anche se il token di autenticazione non è scaduto.

Per maggiori informazioni su come IAM funziona con Aurora DSQL, consulta Comprendere
l’autenticazione e l’autorizzazione per Aurora DSQL e AWS Identity and Access Management in
Aurora DSQL.

Si è verificato un errore (InvalidAccessKeyId) durante la chiamata dell' GetObjectoperazione: l'ID
della chiave di AWS accesso che hai fornito non esiste nei nostri archivi

IAM ha rifiutato la richiesta. Per informazioni, consulta Perché le richieste sono firmate.

Il ruolo IAM <ruolo> non esiste

Aurora DSQL non è riuscita a trovare il ruolo IAM. Per maggiori informazioni, consulta Ruoli IAM.

Il ruolo IAM deve assumere la forma di un ARN IAM

Per ulteriori informazioni, consulta IAM Identifiers - IAM ARNs.

Risoluzione dei problemi legati agli errori di autorizzazione

Ruolo <ruolo> non supportato

Aurora DSQL non supporta l’operazione GRANT. Consulta Sottoinsiemi di comandi PostgreSQL
supportati in Aurora DSQL.

Impossibile stabilire un rapporto di fiducia con il ruolo <ruolo>

Aurora DSQL non supporta l’operazione GRANT. Consulta Sottoinsiemi di comandi PostgreSQL
supportati in Aurora DSQL.

Il ruolo <ruolo> non esiste

Errori di autenticazione 370

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/authentication-authorization.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html#why-requests-are-signed
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-subsets.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-subsets.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-subsets.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-subsets.html

Amazon Aurora DSQL Guida per l’utente

Aurora DSQL non è riuscita a trovare l’utente del database specificato. Consulta Autorizzare i ruoli di
database personalizzati per la connessione a un cluster.

ERRORE: autorizzazione negata nella concessione della fiducia IAM con il ruolo <ruolo>

Per concedere l’accesso a un ruolo del database, bisogna essere connessi al cluster con il ruolo di
amministratore. Per maggiori informazioni, consulta Autorizzare i ruoli del database all’utilizzo di SQL
in un database.

ERRORE: il ruolo <ruolo> deve possedere l’attributo LOGIN

Tutti i ruoli del database creati devono possedere l’autorizzazione LOGIN.

Per risolvere questo errore, assicurarsi di aver creato il ruolo PostgreSQL con l’autorizzazione
LOGIN. Per maggiori informazioni, consulta CREATE ROLE e ALTER ROLE nella documentazione di
PostgreSQL.

ERRORE: il ruolo <ruolo> non può essere eliminato perché alcuni oggetti dipendono da esso

Aurora DSQL restituisce un errore se si elimina un ruolo di database con una relazione IAM finché
non si revoca la relazione utilizzando AWS IAM REVOKE. Per maggiori informazioni, consulta Revoca
dell’autorizzazione.

Risoluzione degli errori SQL

Errore: Non supportato

Aurora DSQL non supporta tutti i dialetti basati su PostgreSQL. Per informazioni su ciò che è
supportato, consulta Funzionalità PostgreSQL supportate in Aurora DSQL.

Errore: utilizzare invece CREATE INDEX ASYNC

Per creare un indice su una tabella con righe esistenti, è necessario utilizzare il comando CREATE
INDEX ASYNC. Per maggiori informazioni, consulta Creazione di indici in modo asincrono in Aurora
DSQL.

Risoluzione degli errori OCC

OC000 “ERRORE: la mutazione è in conflitto con un’altra transazione, riprovare se necessario”

Errori SQL 371

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html#using-database-and-iam-roles-custom-database-roles
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html#using-database-and-iam-roles-custom-database-roles
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html#using-database-and-iam-roles-custom-database-roles-sql
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/using-database-and-iam-roles.html#using-database-and-iam-roles-custom-database-roles-sql
https://www.postgresql.org/docs/current/sql-createrole.html
https://www.postgresql.org/docs/current/sql-alterrole.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-postgresql-compatibility-supported-sql-features.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-create-index-async.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-create-index-async.html

Amazon Aurora DSQL Guida per l’utente

Questa transazione ha tentato di modificare le stesse tuple di un'altra transazione simultanea.
Ciò indica una contesa sulle tuple modificate. Per ulteriori informazioni, consulta il controllo della
concorrenza in Aurora DSQL

OC001 “ERRORE: lo schema è stato aggiornato da un’altra transazione, riprovare se necessario”

La sessione PostgreSQL aveva una copia cache del catalogo dello schema. La copia memorizzata
nella cache era valida all’istante del caricamento. Chiamiamo l’istante T1 e la versione V1.

Un’altra transazione aggiorna il catalogo all’istante T2. Chiamiamo questa versione V2.

Quando la sessione originale tenta di leggere dalla memoria al momento T2, utilizza ancora la
versione del catalogo V1. Il livello di archiviazione di Aurora DSQL rifiuta la richiesta perché l’ultima
versione del catalogo in T2 è la V2.

Quando si riprovi all’istante T3 dalla sessione originale, Aurora DSQL aggiorna la cache del catalogo.
La transazione in T3 utilizza il catalogo V2. Aurora DSQL completa la transazione a condizione che
non siano state apportate altre modifiche al catalogo dall’istante T2.

Risoluzione dei problemi di connessione SSL/TLS

Errore SSL: verifica del certificato non riuscita

Questo errore indica che il client non è in grado di verificare il certificato del server. Verifica che:

1. Il certificato Amazon Root CA 1 sia installato correttamente. Consulta Configurazione dei SSL/TLS
certificati per le connessioni Aurora DSQL per le istruzioni su come convalidare e installare questo
certificato.

2. La variabile di ambiente PGSSLROOTCERT punti al file di certificato corretto.

3. Il file del certificato disponga delle autorizzazioni corrette.

Codice di errore SSL non riconosciuto: 6

Questo errore si verifica con i client PostgreSQL precedenti alla versione 14. Aggiornare il client
PostgreSQL alla versione 17 per risolvere questo problema.

Errore SSL: schema non registrato (Windows)

Si tratta di un problema noto del client Windows psql quando si utilizzano i certificati di sistema.
Utilizza il metodo del file di certificato scaricato descritto nelle istruzioni di Connessione da Windows.

Connessioni SSL/TLS 372

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-concurrency-control.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-concurrency-control.html

Amazon Aurora DSQL Guida per l’utente

Fornire feedback su Amazon Aurora DSQL
Se riscontri funzionalità fondamentali per la migrazione ma che attualmente non sono supportate in
Aurora DSQL, AWS fornisce diversi canali per il feedback:

Canali di feedback

Server Discord Aurora DSQL

Unisciti al server Discord Aurora DSQL per connetterti con il team e la community AWS. Condividi
le richieste di funzionalità, discuti le sfide della migrazione e ottieni feedback in tempo reale.

AWS Support

Se disponi di un piano AWS Support, crea un caso di supporto per discutere dei tuoi requisiti
specifici e delle tue esigenze temporali.

AWS re:POST

Usa AWS re:POST per porre domande e condividere feedback con la community e gli esperti
AWS.

Richieste di funzionalità efficaci

Quando richiedi funzionalità, fornisci:

• Descrizione del caso d'uso: spiega cosa stai cercando di ottenere e perché

• Soluzione attuale: descrivi tutte le alternative che hai provato

• Impatto sull'azienda: spiegate in che modo la funzionalità mancante influisce sulla tempistica della
migrazione o sulla funzionalità dell'applicazione

• Livello di priorità: indica se ciò sta bloccando la migrazione o rappresenterebbe un miglioramento
nice-to-have

Canali di feedback 373

https://discord.com/invite/nEF6ksFWru
https://repost.aws/

Amazon Aurora DSQL Guida per l’utente

Cronologia dei documenti per la Guida per l’utente di
Amazon Aurora DSQL
La tabella seguente descrive i rilasci della documentazione per Aurora DSQL.

Modifica Descrizione Data

Supporto di policy basato sulle
risorse per Amazon Aurora
DSQL

È stato aggiunto il supporto
di policy basate sulle risorse
(RBP) con nuove autorizza
zioni:,, e. PutCluste
rPolicy GetCluste
rPolicy DeleteClu
sterPolicy Queste
autorizzazioni consentono
di gestire le policy in linea
collegate ai cluster Aurora
DSQL per un controllo
granulare degli accessi.
Politiche gestite aggiornat
e AmazonAurora DSQLFull
Accesso e inclusione delle
funzionalità RBP. AmazonAur
ora DSQLRead OnlyAccess
AmazonAurora DSQLConso
le FullAccess Per ulteriori
informazioni, consulta le
politiche AWS gestite per
Amazon Aurora DSQL.

15 ottobre 2025

Wrapper JDBC per Aurora
DSQL

È stata aggiunta documenta
zione per il wrapper JDBC
per Aurora DSQL, un wrapper
PgJDBC che integra l’autenti
cazione IAM per la connessio
ne di applicazioni Java ai

2 settembre 2025

374

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html

Amazon Aurora DSQL Guida per l’utente

cluster Amazon Aurora DSQL.
Per maggiori informazioni,
consultare Utilizzo del wrapper
JDBC per Aurora DSQL.

AWS aggiornamenti delle
politiche gestite per l'integra
zione AWS FIS

AmazonAuroraDSQLCo
nsoleFull
Access Politiche AmazonAur
oraDSQLFullAccess
e politiche aggiornate per
supportare AWS Fault
Injection Service l'integra
zione con Aurora DSQL. Ciò
consente di inserire errori
in cluster Aurora DSQL a
Regione singola e multi-Reg
ione per testare la tolleranz
a ai guasti delle applicazioni.
Per maggiori informazioni su
queste politiche, consultare
Aggiornamenti delle policy
gestite di AWS.

19 agosto 2025

Disponibilità generale (GA) di
Amazon Aurora DSQL

Amazon Aurora DSQL è ora
disponibile a livello generale
con supporto aggiuntivo per
il CloudWatch monitorag
gio, funzionalità avanzate
di protezione dei dati e
integrazione. AWS Backup Per
ulteriori informazioni, consulta
Monitoraggio di Aurora DSQL
con, CloudWatch Backup e
ripristino per Amazon Aurora
DSQL e Crittografia dei dati
per Amazon Aurora DSQL.

27 maggio 2025

375

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_program-with-jdbc-wrapper.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/SECTION_program-with-jdbc-wrapper.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/cloudwatch-monitoring.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/cloudwatch-monitoring.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/backup-aurora-dsql.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/backup-aurora-dsql.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/backup-aurora-dsql.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/data-encryption.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/backup-aurora-dsql.html

Amazon Aurora DSQL Guida per l’utente

AmazonAuroraDSQLFu
llAccedi all'aggiornamento

Aggiunge la capacità di
eseguire operazioni di backup
e ripristino per i cluster Aurora
DSQL, tra cui avvio, arresto
e monitoraggio delle attività.
Aggiunge inoltre la possibili
tà di utilizzare chiavi KMS
gestite dal cliente per la
crittografia dei cluster. Per
ulteriori informazioni, vedere
AmazonAuroraDSQLFu
llAccesso e utilizzo dei ruoli
collegati ai servizi in Aurora
DSQL.

21 maggio 2025

AmazonAuroraDSQLCo
nsoleFullAccess update

Aggiunge la capacità di
eseguire operazioni di backup
e ripristino per i cluster
Aurora DSQL tramite la AWS
Console Home. Ciò include
l’avvio, l’arresto e il monitorag
gio delle attività. Supporta
anche l’utilizzo di chiavi
KMS gestite dal cliente per
la crittografia dei cluster e
l’avvio di AWS CloudShell. Per
ulteriori informazioni, vedere
AmazonAuroraDSQLCo
nsoleFullAccessUtilizzo dei
ruoli collegati ai servizi in
Aurora DSQL.

21 maggio 2025

376

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html

Amazon Aurora DSQL Guida per l’utente

AmazonAuroraDSQLRe
adOnlyAccess aggiornare

Include la possibilità di
determinare il nome corretto
del servizio endpoint VPC
durante la connessione ai
cluster Aurora DSQL tramite
AWS PrivateLink Aurora
DSQL crea endpoint unici
per cella, quindi questa API
aiuta a identificare l'endpoint
corretto per il cluster ed evitare
errori di connessione. Per
ulteriori informazioni, vedere
AmazonAuroraDSQLRe
adOnlyAccessUtilizzo dei ruoli
collegati ai servizi in Aurora
DSQL.

13 maggio 2025

377

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLReadOnlyAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLReadOnlyAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html

Amazon Aurora DSQL Guida per l’utente

AmazonAuroraDSQLFu
llAccedi all'aggiornamento

La politica aggiunge quattro
nuove autorizzazioni per
creare e gestire cluster
di database su più livelli
Regioni AWS:PutMultiR
egionProp
erties , PutWitnes
sRegion AddPeerCl
uster , e. RemovePee
rCluster Queste autorizza
zioni includono controlli a
livello di risorsa e chiavi
di condizione in modo
da poter controllare quali
cluster possono essere
modificati dagli utenti. La
policy aggiunge anche
l'GetVpcEndpointServ
iceName autorizzazione
per aiutarti a connetterti ai
tuoi cluster Aurora DSQL
tramite. AWS PrivateLink Per
ulteriori informazioni, vedere
AmazonAuroraDSQLCo
nsoleFullAccessUtilizzo dei
ruoli collegati ai servizi in
Aurora DSQL.

13 maggio 2025

378

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html

Amazon Aurora DSQL Guida per l’utente

AmazonAuroraDSQLCo
nsoleFullAccess update

Aggiunge nuove autorizzazioni
ad Aurora DSQL per supportar
e la gestione di cluster multi-
Regione e la connessione
agli endpoint VPC. Le nuove
autorizzazioni includono:
PutMultiRegionProp
erties , PutWitnes
sRegion , AddPeerCl
uster , RemovePee
rCluster e GetVpcEnd
pointServiceName .
Vedi AmazonAuroraDSQLCo
nsoleFullAccesse Utilizzo
dei ruoli collegati ai servizi in
Aurora DSQL.

13 maggio 2025

AuroraDsqlServiceLinkedRole
Policy update

Aggiunge la possibilità di
pubblicare metriche nei
namespace AWS/Auror
aDSQL e AWS/Usage
CloudWatch della policy.
Ciò consente al servizio o
al ruolo associato di inviare
dati più completi sull'util
izzo e sulle prestazioni
all'ambiente. CloudWatch Per
ulteriori informazioni, vedere
AuroraDsqlServiceLinkedRole
PolicyUtilizzo dei ruoli collegati
ai servizi in Aurora DSQL.

8 maggio 2025

379

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonAuroraDSQLConsoleFullAccess
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AuroraDsqlServiceLinkedRolePolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AuroraDsqlServiceLinkedRolePolicy.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/working-with-service-linked-roles.html

Amazon Aurora DSQL Guida per l’utente

AWS PrivateLink per Amazon
Aurora DSQL

Aurora DSQL ora supporta.
AWS PrivateLink Con AWS
PrivateLink, puoi semplificare
la connettività di rete privata
tra cloud privati virtuali (VPCs),
Aurora DSQL e i data center
locali utilizzando l'interfaccia
Amazon VPC, endpoint e
indirizzi IP privati. Per maggiori
informazioni, consultare
Gestione e connessione ai
cluster di Amazon Aurora
DSQL utilizzando AWS
PrivateLink.

8 maggio 2025

Versione iniziale Versione iniziale della Guida
per l’utente di Amazon Aurora
DSQL.

3 dicembre 2024

380

https://docs.aws.amazon.com/aurora-dsql/latest/userguide/privatelink-managing-clusters.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/privatelink-managing-clusters.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/privatelink-managing-clusters.html
https://docs.aws.amazon.com/aurora-dsql/latest/userguide/privatelink-managing-clusters.html

Amazon Aurora DSQL Guida per l’utente

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una
traduzione e la versione originale in Inglese, quest'ultima prevarrà.

ccclxxxi

	Amazon Aurora DSQL
	Table of Contents
	Che cos’è Amazon Aurora DSQL?
	Quando utilizzare Aurora DSQL
	Funzionalità principali di Aurora DSQL
	Disponibilità regionale per Aurora DSQL
	Disponibilità di cluster multi-Regione per Aurora DSQL
	Regioni degli Stati Uniti
	Regioni dell’Asia Pacifico
	Regioni europee
	Limitazioni importanti

	Prezzi di Aurora DSQL
	Fasi successive

	Nozioni di base su Aurora DSQL
	Prerequisiti
	Passo 1: Creazione di cluster Aurora DSQL a Regione singola
	Passo 2: Connessione al cluster Aurora DSQL
	Passo 3: Esecuzione di comandi SQL di esempio in Aurora DSQL
	Fase 4 (opzionale): Creare un cluster multiregionale
	Risoluzione dei problemi

	Autenticazione e autorizzazione per Aurora DSQL
	Gestione del cluster tramite IAM
	Connessione al cluster tramite IAM
	Interazione con il database utilizzando i ruoli del database PostgreSQL e i ruoli IAM
	Utilizzo delle azioni delle policy IAM con Aurora DSQL
	Utilizzo delle azioni delle policy IAM per connettersi ai cluster
	Utilizzo delle azioni delle policy IAM per gestire i cluster

	Revoca dell’autorizzazione tramite IAM e PostgreSQL
	Generazione di un token di autenticazione in Amazon Aurora DSQL
	Usa la AWS console per generare un token di autenticazione in Aurora DSQL
	AWS CloudShellDa utilizzare per generare un token di autenticazione in Aurora DSQL
	Usa il AWS CLI per generare un token di autenticazione in Aurora DSQL
	Usa il SDKs per generare un token in Aurora DSQL

	Utilizzo dei ruoli del database e dell’autenticazione IAM
	Ruoli IAM
	Utenti IAM
	Autorizzazione alla connessione al cluster per i ruoli del database
	Autorizzazione dei ruoli del database a utilizzare SQL nel database
	Visualizzazione delle mappature tra IAM e i ruoli del database
	Revoca dell’autorizzazione del database a un ruolo IAM

	Aurora DSQL e PostgreSQL
	Aspetti salienti della compatibilità con PostgreSQL
	Differenze chiave dell’architettura
	Compatibilità delle funzionalità SQL in Aurora DSQL
	Tipi di dati supportati in Aurora DSQL
	Tipi di dati numerici
	Tipi di dati dei caratteri
	Tipi di dati data e ora
	Tipi di dati vari
	Tipi di dati di runtime delle query

	SQL supportato per Aurora DSQL
	Comando SELECT
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	Data Control Language (DCL)
	Transaction Control Language (TCL)
	Comandi di utilità

	Sottoinsiemi di comandi SQL supportati in Aurora DSQL
	CREATE TABLE
	ALTER TABLE
	CREATE VIEW
	Sintassi supportata
	Description
	Parameters
	Note
	Viste aggiornabili
	Esempi
	Compatibilità

	ALTER VIEW
	Sintassi supportata
	Description
	Parameters
	Note
	Esempi
	Compatibilità

	DROP VIEW
	Sintassi supportata
	Description
	Parameters
	Esempi
	Compatibilità

	Migrazione da PostgreSQL ad Aurora SQL
	Compatibilità con framework e ORM
	Modelli di migrazione comuni
	Alternative operative DDL
	Modelli di progettazione dello schema

	Comprendere le differenze architettoniche
	Modello di database semplificato
	Modelli di applicazione moderni
	Semplificazioni operative

	Migrazione assistita dall'intelligenza artificiale
	Utilizzo di Kiro per l'assistenza alla migrazione
	Server MCP Aurora DSQL

	Considerazioni su Aurora DSQL rispetto alla compatibilità con PostgreSQL
	Hai bisogno di aiuto con la migrazione?

	Controllo della concorrenza in Aurora DSQL
	Conflitti tra transazioni
	Linee guida per l’ottimizzazione delle prestazioni delle transazioni

	DDL e transazioni distribuite in Aurora DSQL
	Chiavi primarie in Aurora DSQL
	Struttura e archiviazione dei dati
	Linee guida per la scelta di una chiave primaria

	Indici asincroni in Aurora SQL
	Sintassi
	Parameters
	Note per l’utilizzo
	Creazione di un indice: esempio
	Esecuzione di query sullo stato di creazione dell’indice: esempio
	Errori di creazione dell’indice univoco
	Rilevamento delle violazioni di unicità nelle tabelle primarie

	Tabelle e comandi di sistema in Aurora DSQL
	Tabelle di sistema
	Tabelle e viste importanti del catalogo di PostgreSQL
	Tabelle di catalogo supportate e non supportate
	Viste di sistema supportate e non supportate
	Le viste sys.jobs e sys.iam_pg_role_mappings

	Utili interrogazioni sui metadati di sistema
	Ottieni il numero stimato di righe per una tabella

	Il comando ANALYZE.

	Utilizzo dei piani Aurora DSQL EXPLAIN
	Piani EXPLAIN di PostgreSQL VS Aurora DSQL
	Elementi chiave dei piani Aurora DSQL EXPLAIN
	Filtri in Aurora DSQL
	Leggere i piani di Aurora DSQL EXPLAIN
	Esempio di scansione completa
	Esempio di scansione Index Only
	Esempio di Index Scan
	Best practice

	Comprensione DPUs in EXPLAIN ANAL
	Che cos'è una DPU?
	Utilizzo della DPU in EXPLAIN ANALYZE VERBOSE
	Esempio 1: SELECT Query
	Esempio 2: INSERT Query

	Utilizzo delle informazioni sulla DPU per l'ottimizzazione
	Interpretazione delle informazioni sulla DPU

	Gestione di cluster Aurora DSQL
	Configurazione di cluster a Regione singola
	Utilizzo degli SDK AWS
	Creazione di un cluster
	Recupero delle informazioni di un cluster
	Aggiornamento di un cluster
	Eliminazione di un cluster

	Utilizzo della CLI di AWS
	Creazione di un cluster
	Descrizione di un cluster
	Aggiornamento di un cluster
	Eliminazione di un cluster
	Elencazione dei cluster

	Configurazione di cluster multi-Regione
	Utilizzo degli SDK AWS
	Creazione di un cluster
	Recupero delle informazioni di un cluster
	Aggiornamento di un cluster
	Eliminazione di un cluster

	Utilizzo della CLI di AWS
	Connessione a un cluster multi-Regione
	Creazione di cluster multi-Regione
	Fase 1: creazione di un cluster negli Stati Uniti orientali (Virginia settentrionale)
	Fase 2: creazione di un secondo cluster negli Stati Uniti orientali (Ohio)
	Fase 3: peering dei cluster negli Stati Uniti orientali (Virginia settentrionale) con quello negli Stati Uniti orientali (Ohio)
	Fase 4: peering del cluster negli Stati Uniti orientali (Ohio) con quello negli Stati Uniti orientali (Virginia settentrionale)
	Visualizzazione delle proprietà del cluster multi-Regione
	Peering dei cluster durante la creazione

	Eliminazione di cluster multi-Regione
	Aggiornare ed eliminare il cluster negli Stati Uniti orientali (Virginia settentrionale)
	Aggiornare ed eliminare il cluster negli Stati Uniti orientali (Ohio)

	Configurazione dei cluster Aurora DSQL utilizzando AWS CloudFormation
	Creazione della configurazione iniziale del cluster
	Individuazione di identificatori di cluster
	Aggiornamento della configurazione di un cluster

	Ciclo di vita del cluster Aurora DSQL
	Definizione dello stato del cluster Aurora DSQL
	Utilizzo di cluster inattivi e inattivi
	Operazioni che richiedono lo stato attivo del cluster

	Visualizzazione dello stato del cluster Aurora DSQL
	Console
	AWS CLI

	Programmazione con Aurora DSQL
	Connettori per Aurora DSQL
	Connessione ai cluster Aurora DSQL con un connettore JDBC
	Informazioni sul connettore
	Che cos’è l’autenticazione di Aurora DSQL?
	Vantaggi del connettore Aurora DSQL per JDBC
	Utilizzo del connettore Aurora DSQL per JDBC con pool di connessioni

	Funzionalità principali
	Prerequisiti
	Utilizzo del connettore Aurora DSQL per JDBC
	Proprietà della configurazione
	Registrazione dei log
	Esempi

	Connettore Aurora DSQL per Python
	Informazioni sul connettore
	Che cos’è l’autenticazione di Aurora DSQL?
	Funzionalità

	Guida rapida di avvio
	Requisiti
	Installazione
	Installa psycopg o psycopg2 o asyncpg separatamente

	Utilizzo di base
	psicocopia
	psycopg2
	asyncpg
	Usando just host
	psicocopia
	psycopg2
	asyncpg

	Utilizzando solo l'ID del cluster
	psicocopia
	psycopg2
	asyncpg
	psicocopia
	psycopg2
	asyncpg

	Stringa di connessione
	psicocopia
	psycopg2
	asyncpg

	Configurazione avanzata
	psicocopia
	psycopg2
	asyncpg

	Opzioni di configurazione
	Utilizzo del connettore Aurora DSQL per Python con pool di connessioni
	psicocopia
	psycopg2
	asincrono

	Autenticazione
	Amministratore e utenti regolari

	Esempi
	psicocopia
	psycopg2
	asyncpg

	Connettori Aurora DSQL per Node.js
	Connettore Aurora DSQL per node-postgres
	Informazioni sul connettore
	Che cos’è l’autenticazione di Aurora DSQL?
	Funzionalità

	Applicazione di esempio
	Guida rapida all'avvio
	Requisiti

	Installazione
	Dipendenze tra pari
	Utilizzo
	Connessione client
	Connessione al pool
	Utilizzo avanzato

	Opzioni di configurazione
	Autenticazione
	Amministratore e utenti regolari

	Connettore Aurora DSQL per Postgres.js
	Informazioni sul connettore
	Che cos’è l’autenticazione di Aurora DSQL?
	Funzionalità

	Guida rapida di avvio
	Requisiti
	Installazione
	Utilizzo di base
	Utilizzo dell'ID del cluster anziché dell'host

	Stringa di connessione
	Configurazione avanzata

	Opzioni di configurazione
	Autenticazione
	Amministratore e utenti regolari

	Esempio di utilizzo

	Accesso ad Aurora DSQL con client compatibili con PostgreSQL
	Accedi ad Aurora DSQL utilizzando client SQL
	AWS CloudShellDa utilizzare per accedere ad Aurora DSQL con il terminale interattivo PostgreSQL (psql)
	Usa la CLI locale per accedere ad Aurora DSQL con il terminale interattivo PostgreSQL (psql)
	Utilizzare DBeaver per accedere ad Aurora DSQL
	Utilizzare JetBrains DataGrip per accedere ad Aurora DSQL
	risoluzione dei problemi

	Strumenti di connettività per i cluster Amazon Aurora DSQL
	Driver del database
	Librerie ORM (Object-Relational Mapping)
	Adattatori e dialetti di Aurora DSQL

	AI generativa per Aurora DSQL
	Server MCP DSQL Aurora di AWS Labs
	Funzionalità
	Strumenti disponibili
	Operazioni del database
	Documentazione e raccomandazioni

	Prerequisiti
	Installazione
	Installazione predefinita: aggiornamento del file di configurazione MCP pertinente
	Uso di uv
	Installazione di Windows
	Individuazione del file di configurazione del client MCP

	Codice Claude
	Prerequisiti
	Scelta dell'ambito giusto
	Utilizzo della CLI di Claude (consigliato)
	Risoluzione dei problemi: utilizzo di Claude Code con Bedrock su un altro account AWS

	Modifica diretta nel file di configurazione
	Ambito locale
	Ambito del progetto
	Ambito dell'utente

	Codex
	Opzione 1: Codex CLI
	Opzione 2: config.toml

	Verifica dell'installazione

	Opzioni di configurazione del server
	--allow-writes
	--cluster_endpoint
	--database_user
	--profile
	--region
	--knowledge-server
	--knowledge-timeout

	Inizia a usare Aurora DSQL Query Editor
	Prerequisiti
	Lavorare con il Query Editor
	Aprire l'editor di query
	Connessione a un cluster
	Esplora gli oggetti del cluster
	Esecuzione di query
	Rivedi i risultati e i piani di esecuzione

	Editor di query: utilizzo JupyterLab con Aurora DSQL
	Nozioni di base
	Requisiti
	Utilizzo locale JupyterLab
	Utilizzo di Amazon SageMaker AI
	Connessione ad Aurora DSQL tramite JupyterLab

	Notebook di esempio
	Approfondimenti

	Backup e ripristino per Amazon Aurora DSQL
	Nozioni di base su AWS Backup
	Ripristino dei backup
	Ripristino dei cluster basati su una Regione singola
	Ripristino di cluster multi-Regione

	Monitoraggio e conformità
	Risorse aggiuntive

	Monitoraggio e registrazione dei log per Aurora DSQL
	Monitoraggio di Aurora DSQL con Amazon CloudWatch
	Osservabilità e prestazioni
	Parametri di utilizzo

	Registrazione dei log delle operazioni di Aurora DSQL utilizzando AWS CloudTrail
	Eventi di gestione di Aurora DSQL in CloudTrail
	Eventi di dati di Aurora DSQL in CloudTrail

	Sicurezza in Amazon Aurora DSQL
	AWSpolitiche gestite per Amazon Aurora DSQL
	AWSpolitica gestita: AmazonAurora DSQLFull accesso
	AWSpolitica gestita: AmazonAurora DSQLRead OnlyAccess
	AWSpolitica gestita: AmazonAurora DSQLConsole FullAccess
	AWSpolitica gestita: Aurora DSQLService RolePolicy
	Aurora DSQL si aggiorna alle policy gestite AWS

	Protezione dei dati in Amazon Aurora DSQL
	Crittografia dei dati
	Crittografia dei dati in transito
	Conformità a FIPS

	Riservatezza del traffico inter-rete

	Protezione dei dati nelle Regioni testimone
	Configurazione dei SSL/TLS certificati per le connessioni Aurora DSQL
	
	Verifica dei certificati preinstallati
	Linux () RedHat/CentOS/Fedora
	macOS
	Windows

	Installazione dei certificati
	Installazione del certificato su Linux
	Installazione del certificato su macOS

	Connessione con SSL/TLS verifica
	Connessione da Linux
	Connessione da macOS
	Connessione da Windows
	Utilizzo del prompt dei comandi
	Usando PowerShell

	Risorse aggiuntive

	Crittografia dei dati per Amazon Aurora DSQL
	Tipi di chiave KMS per Aurora DSQL
	Crittografia dei dati a riposo in Aurora DSQL
	Chiavi di proprietà di AWS
	Chiavi gestite dal cliente

	Utilizzo AWS KMS e chiavi dati con Aurora DSQL
	Usare AWS KMS key s con Aurora DSQL
	Utilizzo delle chiavi del cluster con Aurora DSQL
	Caching della chiave del cluster

	Autorizzazione all'uso del tuo AWS KMS key per Aurora DSQL
	Policy della chiave per una chiave gestita dal cliente

	Contesto di crittografia di Aurora DSQL
	Monitoraggio dell’interazione di Aurora DSQL con AWS KMS
	GenerateDataKey
	Decrittografia

	Creazione di un cluster Aurora DSQL crittografato
	Rimozione o aggiornamento di una chiave per il cluster Aurora DSQL
	Considerazioni sulla crittografia con Aurora DSQL

	Gestione delle identità e degli accessi per Aurora DSQL
	Destinatari
	Autenticazione con identità
	Account AWSutente root
	Identità federata
	Utenti e gruppi IAM
	Ruoli IAM

	Gestione dell’accesso tramite policy
	Policy basate sull’identità
	Policy basate sulle risorse
	Altri tipi di policy
	Più tipi di policy

	Funzionamento di Amazon Aurora DSQL con IAM
	Policy basate sull’identità per Aurora DSQL
	Esempi di policy basate sull’identità per Aurora DSQL

	Policy basate sulle risorse all’interno di Aurora DSQL
	Operazioni di policy per Aurora DSQL
	Risorse relative alle policy per Aurora DSQL
	Chiavi di condizione delle policy per Aurora DSQL
	ACLs in Aurora SQL
	ABAC con Aurora DSQL
	Utilizzo di credenziali temporanee con Aurora DSQL
	Autorizzazioni dell’entità principale tra servizi per Aurora DSQL
	Ruoli di servizio per Aurora DSQL
	Ruoli collegati ai servizi per Aurora DSQL

	Esempi di policy basate sull’identità per Amazon Aurora DSQL
	Best practice per le policy
	Utilizzo della console di Aurora DSQL
	Consentire agli utenti di visualizzare le loro autorizzazioni

	Risoluzione dei problemi di identità e accesso in Amazon Aurora DSQL
	Non si possiede l’autorizzazione a eseguire un’operazione in Aurora DSQL
	Non sono autorizzato a eseguire iam: PassRole
	Desidero consentire a persone esterne a me di accedere Account AWS alle mie risorse Aurora DSQL

	Policy basate sulle risorse per Aurora DSQL
	Quando utilizzare le politiche basate sulle risorse
	Creazione di cluster con politiche basate sulle risorse
	AWSConsole di gestione
	AWSCLI
	AWSSDKs

	Aggiungere e modificare politiche basate sulle risorse per i cluster
	AWSConsole di gestione
	AWSCLI
	AWSSDKs

	Visualizzazione delle politiche basate sulle risorse
	AWSConsole di gestione
	AWSCLI
	AWSSDKs

	Rimozione delle politiche basate sulle risorse
	AWSConsole di gestione
	AWSCLI
	AWSSDKs

	Esempi di politiche comuni basate sulle risorse
	Blocca l'accesso pubblico a Internet
	Limita l'accesso all'AWSorganizzazione
	Limita l'accesso a una specifica unità organizzativa
	Politiche di cluster multiregionali

	Blocco dell'accesso pubblico con politiche basate sulle risorse in Aurora DSQL
	Operazioni dell'API Aurora DSQL e politiche basate sulle risorse
	Etichetta APIs
	Gestione dei cluster APIs
	Proprietà multiregionale APIs
	Politica basata sulle risorse APIs
	AWS Fault Injection ServiceAPIs
	Backup e ripristino APIs

	Utilizzo dei ruoli collegati al servizio in Aurora DSQL
	Autorizzazioni del ruolo collegato al servizio per Aurora DSQL
	Creare un ruolo collegato al servizio
	Modifica di un ruolo collegato al servizio
	Eliminazione di un ruolo collegato al servizio
	Regioni supportate per i ruoli collegati al servizio di Aurora DSQL

	Utilizzo di chiavi di condizione IAM con Amazon Aurora DSQL
	Esempio 1: concedere l'autorizzazione per creare un cluster in uno specifico Regione AWS
	Esempio 2: concedere l'autorizzazione a creare un cluster multiregionale in s specifici Regione AWS
	Esempio 3: concessione dell’autorizzazione per creare un cluster multi-Regione con una Regione testimone specifica

	Risposta agli incidenti in Amazon Aurora DSQL
	Convalida della conformità per Amazon Aurora DSQL
	Resilienza in Amazon Aurora DSQL
	Backup e ripristino
	Replica
	Elevata disponibilità
	Test di iniezione di guasti

	Sicurezza dell’infrastruttura in Amazon Aurora DSQL
	Gestione e connessione ai cluster SQL di Amazon Aurora tramite AWS PrivateLink
	Tipi di endpoint Amazon VPC per Aurora DSQL
	Considerazioni sull'utilizzo AWS PrivateLink per Aurora DSQL
	Gestione dei cluster Aurora DSQL utilizzando AWS PrivateLink
	Creazione di un endpoint Amazon VPC
	Recupero dell’elenco dei cluster tramite un URL di endpoint
	Operazioni API
	Gestione delle policy degli endpoint

	Connessione ai cluster Aurora DSQL tramite AWS PrivateLink
	Impostazione di un endpoint di connessione AWS PrivateLink
	
	
	Connessione a un cluster Aurora DSQL utilizzando un endpoint di connessione AWS PrivateLink
	Costruzione del nome host
	Connessione a un cluster Aurora DSQL utilizzando un AWS PrivateLink endpoint senza DNS privato

	Risoluzione dei problemi relativi a AWS PrivateLink
	Problemi e soluzioni comuni

	Risorse correlate

	Analisi della configurazione e delle vulnerabilità in Amazon Aurora DSQL
	Prevenzione del confused deputy tra servizi
	Best practice di sicurezza di Aurora DSQL
	Best practice relative alla sicurezza di rilevamento per Aurora DSQL
	Best practice relative alla sicurezza preventiva per Aurora DSQL

	Applicazione di tag alle risorse in Aurora DSQL
	Applicazione di tag ai cluster con un nome
	Requisiti per il tagging
	Note di utilizzo dell’applicazione di tag

	Considerazioni sull’utilizzo di Amazon Aurora DSQL
	Quote di cluster e limiti del database in Amazon Aurora DSQL
	Quote del cluster
	Limiti del database in Aurora DSQL

	Guida di riferimento alle API di Aurora DSQL
	Risoluzione dei problemi in Aurora DSQL
	Risoluzione dei problemi legati agli errori di connessione
	Risoluzione dei problemi legati agli errori di autenticazione
	Risoluzione dei problemi legati agli errori di autorizzazione
	Risoluzione degli errori SQL
	Risoluzione degli errori OCC
	Risoluzione dei problemi di connessione SSL/TLS

	Fornire feedback su Amazon Aurora DSQL
	Canali di feedback
	Richieste di funzionalità efficaci

	Cronologia dei documenti per la Guida per l’utente di Amazon Aurora DSQL
	

