
Neptune Analytics User Guide

Neptune Analytics

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Neptune Analytics Neptune Analytics User Guide

Neptune Analytics: Neptune Analytics User Guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Neptune Analytics Neptune Analytics User Guide

Table of Contents

What is Neptune Analytics? .. 1
Features .. 1
Neptune Analytics vs. Neptune Database ... 2

Latest updates .. 3
Getting started .. 13

Create an empty Neptune graph .. 13
Create a Neptune graph from existing sources ... 19
Connecting to a graph .. 21

AWS PrivateLink .. 22
Connecting from the same VPC .. 27
Connecting from a different VPC .. 27
Accessing the graph ... 29
Best practices ... 39

Using notebooks .. 41
Sample notebooks ... 42
Create a notebook with CloudFormation .. 42
Create a notebook on the console ... 44

Create an IAM role ... 44
Local hosting ... 45

Create a graph ... 46
Loading data .. 48

Data formats ... 49
Using CSV data .. 49
Using Parquet data ... 51
Using RDF data .. 53

Batch load .. 58
Request .. 58
Response ... 60

Bulk import .. 61
Create a graph from Amazon S3, a Neptune cluster, or a snapshot .. 62
Bulk import data into an existing Neptune Analytics graph ... 76
Checking the details and progress of an import task ... 79
Canceling an import task .. 80
Troubleshooting .. 81

iii

Neptune Analytics Neptune Analytics User Guide

neptune.read() ... 85
Query examples using Parquet .. 86
Supported Parquet column types ... 87
Sample Parquet output ... 88
Query examples using CSV ... 90
Property column headers .. 92
Supported CSV column types .. 92
Sample CSV output .. 94

Exporting data ... 97
SDK/CLI commands ... 97
Permission setup .. 97
start-export-task ... 97

Syntax .. 98
Inputs ... 98
Output ... 99

get-export-task ... 99
Syntax .. 100
Inputs .. 100
Output ... 100

list-export-task ... 101
Syntax .. 101
Inputs .. 101
Output ... 102

cancel-export-task ... 102
Syntax .. 102
Inputs .. 103
Output ... 103

Structure of exported files .. 104
CSV ... 104
Parquet .. 104

Specifying a filter .. 105
Filter syntax ... 106
Sample filters .. 107

Graph snapshots .. 113
Creating a snapshot .. 113
Listing snapshots ... 115

iv

Neptune Analytics Neptune Analytics User Guide

Restoring a snapshot .. 116
Deleting snapshots .. 118

Managing your graphs .. 120
Modifying ... 120
Maintaining .. 121
Deleting .. 121
Stopping ... 122
Starting .. 123
Tagging ... 124
Working with ARNs ... 126

Monitoring ... 128
Neptune Analytics information in CloudTrail .. 128

Monitoring Neptune Analytics using AWS CloudTrail ... 129
Control plane events ... 129
Data plane events .. 130

Understanding log file entries .. 131
Monitoring your graphs .. 138

Viewing CloudWatch data .. 138
Neptune CloudWatch metrics .. 140

Security .. 142
Data protection .. 143
Identity and access management ... 143

Audience ... 144
Authenticating with identities ... 144
Managing access using policies ... 146
Working with IAM ... 147
Identity-based policy examples ... 152
Troubleshooting .. 155

Compliance validation .. 157
Resilience ... 157
Infrastructure Security .. 158
Cross-service confused deputy prevention ... 158
Service-linked roles ... 159

For Graphs .. 159
Creating an SLR .. 162
Editing an SLR ... 162

v

Neptune Analytics Neptune Analytics User Guide

Deleting an SLR .. 162
Import/export permissions .. 163

Create and configure IAM role and AWS KMS key .. 163
Queries ... 167

Query APIs ... 167
ExecuteQuery ... 168
ListQueries .. 173
GetQuery .. 175
CancelQuery ... 176
GraphSummary ... 178
IAM role mappings ... 183

Query plan cache ... 184
Mitigation for query plan cache issue .. 187

Query explain ... 188
Inputs .. 188
Outputs ... 189
Examples ... 194

Statistics ... 196
Exceptions .. 197
Data model .. 198

Vertices ... 198
OpenCypher specification compliance .. 202

Vertex and edge IDs .. 202
IRIs and language-tagged literals ... 203
OpenCypher reduce() function .. 203

Isolation levels .. 205
Algorithms .. 207

Path-finding algorithms ... 211
BFS algorithms .. 211
SSSP algorithms .. 231
Egonet algorithms .. 282

Centrality algorithms .. 298
.degree ... 300
.degree.mutate .. 305
.degreeDistribution .. 308
.pageRank .. 311

vi

Neptune Analytics Neptune Analytics User Guide

.pageRank.mutate ... 321

.closenessCentrality .. 325

.closenessCentrality.mutate ... 331
Similarity algorithms ... 335

.neighbors.common ... 336

.neighbors.total ... 340

.jaccardSimilarity ... 344

.overlapSimilarity ... 348
Community detection ... 353

.wcc .. 355

.wcc.mutate ... 360

.labelPropagation ... 363

.labelPropagation.mutate .. 369

.scc .. 373

.scc.mutate ... 377

.louvain ... 380

.louvain.mutate .. 387
Misc. graph procedures ... 390

Property graph information ... 391
Property graph schema ... 393

Vector similarity .. 400
Vector indexing .. 404

Vector index transaction support .. 404
Loading vectors ... 404
Loading errors ... 406
Vector algorithms ... 406

VSS algorithms ... 407
.vectors.distance (deprecated) ... 410
.vectors.distance.byNode .. 415
.vectors.distanceByEmbedding (deprecated) ... 420
.vectors.distance.byEmbedding .. 425
.vectors.get ... 429
.vectors.topKByEmbedding (deprecated) .. 449
.vectors.topK.byEmbedding .. 454
.vectors.topKByNode (deprecated) .. 461
.vectors.topK.byNode .. 466

vii

Neptune Analytics Neptune Analytics User Guide

.vectors.upsert .. 471

.vectors.remove .. 491
Best practices ... 493

openCypher query best practices ... 493
Use the SET clause to remove multiple properties at once ... 493
Use parameterized queries ... 494
Use flattened maps instead of nested maps in UNWIND clause .. 495
Place more restrictive nodes on the left side in Variable-Length Path (VLP) expressions 496
Avoid redundant node label checks by using granular relationship names 497
Specify edge labels where possible .. 498
Avoid using the WITH clause when possible .. 499
Place restrictive filters as early in the query as possible .. 499
Explicitly check whether properties exist .. 500
Do not use named path (unless it is required) ... 500
Avoid COLLECT(DISTINCT()) .. 501
Prefer the properties function over individual property lookup when retrieving all
property values ... 502
Perform static computations outside of the query ... 502
Batch inputs using UNWIND instead of individual statements ... 503
Prefer using custom IDs for node ... 504
Avoid doing ~id computations in the query ... 505

Tools and utilities .. 506
Nodestream ... 506

Limits .. 508
Regions ... 508
Quotas .. 508
Node counting limit .. 508
No parameterized algorithm calls .. 509
Size limits on properties, labels and strings .. 509
Labelless vertices with only embeddings are not supported ... 509

API reference ... 510

viii

Neptune Analytics Neptune Analytics User Guide

What is Neptune Analytics?

Neptune Analytics is a memory-optimized graph database engine for analytics. With Neptune
Analytics, you can get insights and find trends by processing large amounts of graph data in
seconds. To analyze graph data quickly and easily, Neptune Analytics stores large graph datasets in
memory. It supports a library of optimized graph analytic algorithms, low-latency graph queries,
and vector search capabilities within graph traversals.

Neptune Analytics is an ideal choice for investigatory, exploratory, or data-science workloads that
require fast iteration for data, analytical and algorithmic processing, or vector search on graph
data. It complements Amazon Neptune Database, a popular managed graph database. To perform
intensive analysis, you can load the data from a Neptune Database graph or snapshot into Neptune
Analytics. You can also load graph data that's stored in Amazon S3.

You can get started by creating a new Neptune Analytics graph and loading data into it in a
number of ways.

Topics

• Neptune Analytics Features

• When to use Neptune Analytics and when to use Neptune Database

Neptune Analytics Features

Neptune Analytics operates in a managed environment that can load data extremely fast into
memory and run graph algorithms natively. With Neptune Analytics, you can perform in-database
analytics on large graphs.

This functionality lets you perform business intelligence and custom analytical queries, and
use pre-built graph algorithms with the openCypher language. For example, with Neptune
Analytics you can ingest text from cybersecurity reports to analyze relationships within security
environments and calculate vulnerability mitigations using graph algorithms or openCypher
queries.

Neptune Analytics offers a graph as a service experience by managing graphs instead of
infrastructure, so you can focus on queries and workflows to solve problems. It automatically
provisions the compute resources necessary to run analytics workloads based on the size of the
graph.

Features 1

https://docs.aws.eu/neptune/latest/userguide/intro.html

Neptune Analytics Neptune Analytics User Guide

You can load graph data into Neptune Analytics from Amazon S3 or from a Neptune Database
endpoint. You can then run graph analytics queries using pre-built or custom graph queries.

When to use Neptune Analytics and when to use Neptune
Database

Amazon Neptune makes it easy to work with graph data in the AWS Cloud. Amazon Neptune
includes both Neptune Database and Neptune Analytics.

Neptune Database is a serverless graph database designed for optimal scalability and availability. It
provides a solution for graph database workloads that need to scale to 100,000 queries per second,
Multi-AZ high availability, and multi-Region deployments. You can use Neptune Database for social
networking, fraud alerting, and Customer 360 applications.

Neptune Analytics is an analytics database engine that can quickly analyze large amounts of
graph data in memory to get insights and find trends. Neptune Analytics is a solution for quickly
analyzing existing graph databases or graph datasets stored in a data lake. It uses popular graph
analytic algorithms and low-latency analytic queries.

You can use Neptune Analytics to analyze and query graphs in data science workflows that build
targeted content recommendations, assist with fraud investigations, and detect network threats.

By providing a simple API for loading, querying, and analyzing graph data, Neptune Analytics also
removes the overhead of building and managing complex data-analytics pipelines.

Neptune Analytics makes it easy to apply powerful algorithms both to the data in your Neptune
Database and to graph data that's stored externally. Because Neptune Analytics can load a large
dataset very quickly into memory, it becomes possible to analyze graphs with tens of billions
of relationships and to process thousands of analytic queries per second using popular graph
analytics algorithms.

Neptune Analytics vs. Neptune Database 2

https://docs.aws.eu/neptune/latest/userguide/intro.html

Neptune Analytics Neptune Analytics User Guide

Changes and updates to Neptune Analytics

The following table lists important releases relating to Neptune Analytics.

Change Description Date

Performance Improvement Improved vectors.t
opK.byEmbedding
algorithm performance

December 22, 2025

Issue fix Fixed an issue where queries
returned an Operation
terminated (internal
error) in some cases.

December 22, 2025

Performance Improvement Reduced the memory
requirement for all Neptune
Analytics graphs. With this
release, graph analytics may
be performed in smaller
capacity units (m-NCUs).

November 10, 2025

Performance Improvement Improvements to the running
time of queries using distinct
aggregation. Improvements
to the memory use of many
queries, particularly those
using “CALL” and “DISTINCT”.

November 10, 2025

Graph algorithm updates Added degreeDis
tribution algorithm
. Added support for
multiple vertex label
filtering for .degree,
.degree.mutate ,
.louvain, and .louvain.
mutate algorithms. Added

November 10, 2025

3

Neptune Analytics Neptune Analytics User Guide

vectors.distance.b
yNode , vectors.d
istance.byEmbeddin
g , vectors.topK.byNod
e , algorithms. Deprecate
d vectors.distance ,
vectors.distanceby
Embedding , vectors.t
opKbyNode , vectors.t
opKbyEmbedding
algorithms.

Data operations bug fix Fixed bug causing engine
crash for some queries using
“OPTIONAL MATCH” or
“DISTINCT”.

November 10, 2025

Neptune Analytics is now
available in two new regions

Neptune Analytics available in
the ca-central-1 Canada
(Central) and ap-southe
ast-2 Asia Pacific (Sydney)
regions.

October 10, 2025

Neptune Analytics available in
Asia Pacific (Mumbai) region

Neptune Analytics is now
available in the ap-south-
1 Asia Pacific (Mumbai)
region.

September 26, 2025

Start/Stop API Neptune Analytics now
offers Start graph API and
Stop graph API. For more
information see Managing
your Neptune Analytics graph.

August 25, 2025

4

https://docs.aws.eu//neptune-analytics/latest/userguide/managing.html
https://docs.aws.eu//neptune-analytics/latest/userguide/managing.html

Neptune Analytics Neptune Analytics User Guide

Query update Resolved an issue where using
a WITH clause that contained
an asterisk (*) and aliasing
expressions caused incorrect
query parsing in OpenCypher.

April 28, 2025

Graph algorithm updates Neptune Analytics now
offers the Louvain algorithm.
Additionally, the personali
zation parameter has
been added to the pageRank
algorithm.

April 28, 2025

Graph algorithm bug fix Resolved an issue in pg_info
where labelless vertices were
being counted incorrectly.

April 28, 2025

Data operations bug fix Resolved an issue in the
bulk loader that caused
failOnError to behave
incorrectly when parsing
embeddings.

April 28, 2025

Data operations bug fix The error messages in bulk
load are now more user
friendly.

April 28, 2025

Data operations bug fix Neptune Analytics is now
reporting an error message
if the csv lines are too long
to load. Example error
message: [ETL] Could not
form a complete line for
parsing. Please check if you
are loading lines longer than
65535.

April 28, 2025

5

Neptune Analytics Neptune Analytics User Guide

Data operations bug fix An issue was resolved that
caused the database to be
shut down when users tried
to access files in Amazon S3
without the proper permissio
ns.

April 28, 2025

Query REDUCE function Added support for the
OpenCypher REDUCE
function, allowing a list of
values to be combined using a
user-defined expression.

February 26, 2025

Improved memory
management in Closeness
Centrality algorithm

In the Closeness Centralit
y algorithm, a memory/pe
rformance tradeoff has been
added to enable execution on
smaller instances.

February 26, 2025

Fixed incorrect results while
setting Map properties from a
nested map

An issue has been resolved
where incorrect results
occurred when setting map
properties from nested
maps in Amazon Neptune
(e.g. WITH {struct:
{prop: "val"}} as row
MATCH (n:label) SET n
+=row.struct RETURN
n). This fix ensures that map
properties are correctly
assigned and retrieved
, providing accurate and
reliable data handling when
working with complex nested
structures in graph queries.

February 26, 2025

6

Neptune Analytics Neptune Analytics User Guide

Vertex lookup Improved vertex lookup
performance and memory
footprint.

November 15, 2024

Snapshot creation issue Fixed an issue that prevented
statistics from being included
in graph snapshots. Graphs
created by restoring such
a snapshot will not initially
have statistics available, and
may experience degraded
query performance.

November 15, 2024

Query plan cache update Disabled query plan cache
by default for parameterized
mutation queries to avoid
potential InternalFailureExc
eption.

November 15, 2024

Query improvement - Internal
failure

Fixed an issue where using
COLLECT(DISTINCT())
returned an InternalFailureExc
eption in some cases.

November 15, 2024

Query improvement - Internal
failure

Fixed InternalFailureExc
eption when user uses a value
of unsupported type with
aggregation functions (ie
sum(<string>)).

November 15, 2024

7

Neptune Analytics Neptune Analytics User Guide

Query improvement - ID
match

Correct ~id match behavior.
Invalid ~id values like null or
non-string types lead to zero
match for MATCH (ie. MATCH
(n {`~id`: null})) or
type error thrown for MERGE/
CREATE (ie. CREATE (n
{`~id`: null})).

November 15, 2024

Query improvement Fixed an issue where some
limit queries only return
partial results during
execution.

November 15, 2024

Property support over mixed
type entities

Support for property/
properties over ambiguous
/mixed type entities. This
avoids the error for queries
failing with "Property access/
properties over ambiguous
type not supported in this
release".

November 15, 2024

Performance improvement Improved performance for
queries that use numeric
algorithm output for result
ordering.

November 15, 2024

8

Neptune Analytics Neptune Analytics User Guide

Performance improvement Improved performance for
queries which use large static
lists or maps. Certain queries
related to vector upsert or
search algorithms, where a
static list of float values is
passed as an embedding, have
seen significant performan
ce enhancements. A sample
vector.upsert query can be
seen here.

November 15, 2024

CALL subquery support Added Support for CALL
subquery, allowing execution
of operations within a
defined scope. A CALL
subquery is executed once
for each incoming row and
the variables returned in a
subquery are available to the
outer scope of the enclosing
query. Variables from outer
scope can be imported into
a CALL subquery using an
importing WITH clause.

November 15, 2024

Algorithm parameter
handling fix

Fixed an issue where passing
concurrency=0 to algorithms
returned an error.

November 15, 2024

9

https://docs.aws.eu//neptune-analytics/latest/userguide/vectors-upsert.html#vectors-upsert-query-example

Neptune Analytics Neptune Analytics User Guide

Byte handling Previously, when data was
loaded using the Byte data
type it was erroneously stored
as an unsigned byte, this has
been updated to store the
data a signed byte. Previousl
y loaded data and queries will
not be impacted.

July 29, 2024

Updated float serialization Float serialization changed to
use a lesser number of digits
for higher precision. This will
change the float values that
are returned from the server.

June 20, 2024

UNWIND performance
improvement

Improved the UNWIND
operations (e.g. transform
a list of values within a
property into individual
vertices or edges) to help
prevent out of memory
(OOM) situations.

June 20, 2024

Query plan cache update Fixed an issue in query plan
cache when skip or limit is
used in an inner WITH clause
and parameterized. This
fix ensures that parameter
values for SKIP and LIMIT
are now properly handled,
providing accurate results
for every execution. If you
disabled the query plan
cache, you can now remove
the query hint QUERY:PLA
NCACHE "disabled"
when submitting a query.

June 20, 2024

10

Neptune Analytics Neptune Analytics User Guide

Increased efficiency when
handling special characters

Fixed an issue with handling
of node and relationship
labels, node identifiers, and
property names containin
g the “Ā” character (Latin
uppercase letter A with
Macron, unicode code point U
+0100).

June 20, 2024

Datetime formats Extended support for
datetime formats.

June 20, 2024

Condition key - neptune-g
raph:PublicConnectivity

neptune-graph:PublicConnect
ivity filters access by the value
of the public connectivity
parameter provided in the
request or its default value,
if unspecified. All access to
graphs is IAM authenticated.

April 29, 2024

StartImportTask available Neptune Analytics now
allows you to efficiently
import large datasets into
an already provisioned
graph database using the
StartImportTask API.
This API facilitates the direct
loading of data from an
Amazon S3 bucket into an
empty Neptune Analytics
graph. This is designed for
loading data into existing
empty clusters.

March 30, 2024

Neptune Analytics available in
Europe (London) region

Neptune Analytics is now
available in the eu-west-2
Europe (London) region.

March 14, 2024

11

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonneptuneanalytics.html#amazonneptuneanalytics-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonneptuneanalytics.html#amazonneptuneanalytics-policy-keys

Neptune Analytics Neptune Analytics User Guide

Column delimiter ; is now
supported in values

When a column delimiter
presents in the values, e.g.
for 'two;words' , two
values {'two','words'} will
be inserted. However, if the
column delimiter is escaped
by a backslash '\', the value
will be inserted as a whole
with the escape character
removed, e.g. 'one\;word'
will be inserted as 'one;word'.

February 27, 2024

Graph provisioning time
reduced to five minutes or
less

Neptune Analytics graphs are
now provisioned and ready
to be used in five minutes or
less.

February 19, 2024

Query improvements - Data
Plane SDK

The Neptune Analytics data
API provides support for
data operations including
query execution, query status
checking, query cancellation,
and graph summarizing via
the HTTPS endpoint, the AWS
CLI, and the SDK.

February 2, 2024

Initial release Initial release of Neptune
Analytics.

November 29, 2023

12

Neptune Analytics Neptune Analytics User Guide

Getting started

To get started using Neptune Analytics, you need to create a graph using the AWS console, the
AWS CLI, or CloudFormation. You can load data into a graph from another Neptune database,
Neptune database cluster snapshot, or from files located in Amazon S3.

Topics

• Create an empty Neptune graph

• Create a Neptune graph from existing sources

• Connecting to a graph

Create an empty Neptune graph

Neptune allows you to create and manage graph databases. This step-by-step guide outlines the
process of creating an empty Neptune graph using the AWS management console, the AWS CLI,
and CloudFormation. The guide covers the necessary configurations, such as setting the graph
name, size, replica configuration, and network connectivity options.

AWS console

1. Sign in to the AWS Management Console, and open the Amazon Neptune console at https://
eusc-de-east-1.console.amazonaws-eusc.eu/neptune/.

2. In the upper right corner of the console, choose the AWS region in which you want to create
the graph.

3. In the navigation pane, choose Graphs in the Analytics section.

4. Choose the Create graph button.

5. In settings, input the graph name, size, and replica configuration.

6. In the data source section, choose the empty graph option.

Note

Additional charges equivalent to the m-NCUs selected for the graph apply for each
replica.

Create an empty Neptune graph 13

https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/
https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/

Neptune Analytics Neptune Analytics User Guide

7. You can connect to a Neptune graph from a public endpoint or a private endpoint. Select
your network configuration accordingly.

Create an empty Neptune graph 14

Neptune Analytics Neptune Analytics User Guide

Note

If you're creating a private graph endpoint, the following permissions are required:

• ec2:CreateVpcEndpoint

• ec2:DescribeAvailabilityZones

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:DescribeVpcAttribute

• ec2:DescribeVpcEndpoints

• ec2:DescribeVpcs

• ec2:ModifyVpcEndpoint

• route53:AssociateVPCWithHostedZone
For more information about required permissions, see Actions defined by Neptune
Analytics.

Create an empty Neptune graph 15

https://docs.aws.eu//service-authorization/latest/reference/list_amazonneptuneanalytics.html#amazonneptuneanalytics-actions-as-permissions
https://docs.aws.eu//service-authorization/latest/reference/list_amazonneptuneanalytics.html#amazonneptuneanalytics-actions-as-permissions

Neptune Analytics Neptune Analytics User Guide

8. Additionally, you can select vector search configuration for the graph. For more information
on vector search configuration, see Vector indexing.

Create an empty Neptune graph 16

Neptune Analytics Neptune Analytics User Guide

9. Choose Create graph.

AWS CLI

Create a Neptune graph using the AWS CLI.

Create a public graph endpoint:

aws neptune-graph create-graph --graph-name 'test-neptune-graph' \
--region us-east-1 --provisioned-memory 128 --public-connectivity \
--replica-count 0 --vector-search '{"dimension": 384}'

Create a private graph endpoint:

aws neptune-graph create-private-graph-endpoint —vpc-id vpc-0a9b7a5b15 \
--subnet-ids subnet-06a4b41a6221b subnet-0840a4b327ab77 subnet-0353627ab123 \
--vpc-security-group-ids sg-0ab7abab56ab \
--graph-identifier g-146a51b7a151ba —region us-east-1

Check the status of graph creation:

aws neptune-graph get-graph --graph-identifier <graph-id>

List all graphs in the default region:

aws neptune-graph list-graphs

CloudFormation

Instead of using the console to create your Neptune graph, you can use CloudFormation to
provision AWS resources by treating infrastructure as code. To help you organize your AWS
resources into smaller and more manageable units, you can use the CloudFormation nested
stack functionality. For more information, see Creating a stack on the AWS CloudFormation
console and working with nested stacks.

CloudFormation is free, but the resources that CloudFormation creates are live. You incur the
standard usage fees for these resources until you terminate them. The total charges will be
minimal. For information about how you might minimize any charges, see AWS free tier.

Create an empty Neptune graph 17

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/neptune-graph/create-graph.html
https://docs.aws.eu//AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.eu//AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html
https://docs.aws.eu//AWSCloudFormation/latest/UserGuide/using-cfn-nested-stacks.html
http://aws.amazon.com/free/

Neptune Analytics Neptune Analytics User Guide

To create your resources using the CloudFormation console, complete the following steps:

1. Create the CloudFormation template.

2. Configure your resources using CloudFormation.

The following sample template will create a Neptune graph with a public endpoint.

AWSTemplateFormatVersion: 2010-09-09
Description: NeptuneGraph Graph Create Demo using CloudFormation
Resources:
 NeptuneGraph:
 Type: AWS::NeptuneGraph::Graph
 DeletionPolicy: Delete
 Properties:
 DeletionProtection: false
 GraphName: neptune-graph-demo
 ProvisionedMemory: 128
 ReplicaCount: 1
 PublicConnectivity: true
 Tags:
 - Key: stage
 Value: test

The following sample template will create a Neptune graph with a private endpoint.

AWSTemplateFormatVersion: 2010-09-09
Description: NeptuneGraph Graph Create Demo using CloudFormation
Resources:
 NeptuneGraph:
 Type: AWS::NeptuneGraph::Graph
 DeletionPolicy: Delete
 Properties:
 DeletionProtection: false
 GraphName: neptune-graph-demo
 ProvisionedMemory: 128
 ReplicaCount: 1
 PublicConnectivity: false
 Tags:
 - Key: stage
 Value: test
 NeptuneGraphPrivateEndpoint:
 Type: AWS::NeptuneGraph::PrivateGraphEndpoint

Create an empty Neptune graph 18

Neptune Analytics Neptune Analytics User Guide

 DeletionPolicy: Delete
 Properties:
 GraphIdentifier: NeptuneGraph
 VpcId: myVpc

Important

You can't change the graph name, VPC, subnet ids and vector search configuration.
After starting the graph creation, the graph has a status of Creating until the graph is
ready to use. When the status of the graph changes to Available, you can connect to the
DB cluster at that time. Depending on the configuration, it can take up to 20 minutes
before the new graph is available.

Create a Neptune graph from existing sources

You can load data into a Neptune graph from another Neptune database, Neptune database cluster
snapshot, or from Amazon S3 files. Select the data sources and an IAM role for the data import
accordingly. For more information about loading data, see Create a graph from Amazon S3, a
Neptune cluster, or a snapshot.

Create a Neptune graph from existing sources 19

Neptune Analytics Neptune Analytics User Guide

AWS console

Create a Neptune graph from existing sources 20

Neptune Analytics Neptune Analytics User Guide

AWS CLI

The following example creates a graph and loads data from Amazon S3.

aws neptune-graph create-graph-using-import-task \
--graph-name "neptune-graph-from-s3-source" \
--region "us-east-1" \
--format "CSV" \
--role-arn "arn:aws:iam::1234567890124:role/GraphExecutionRole" \
--source "s3://neptune-demo-test-us-east-1/test-data-csv/" \
--public-connectivity \
--min-provisioned-memory 256 \
--max-provisioned-memory 256

Connecting to a graph

In Neptune Analytics, you can provision your graph to be accessed publicly over the internet or
have a private endpoint to access the graph within a VPC. If your graph is not configured for public
connectivity, then you must create a private endpoint for your Neptune Analytics graph that allows
access to the graph only from within the same Amazon Virtual Private Cloud (VPC) and availability
zones associated with the subnet associated with the graph’s private endpoint (You must ensure
the subnets belong to all the availability zones in the VPC). This means that applications using
Neptune Analytics must be deployed in the same VPC; or For applications which are deployed in
different VPC but uses techniques like VPC peering, AWS Site-to-Site VPN connections, or AWS
Direct Connect connections might face issues with DNS resolution to connect to private graph
endpoint.

If your graph is configured for public connectivity, you can connect to your graph from multiple
VPCs and from the internet. This allows you to access a Neptune Analytics graph without also
setting up additional supporting AWS services. The simplicity of setting up public connectivity-
enabled graphs makes it useful for initial exploration of the service.

Graphs are created with public connectivity disabled by default. However, this can be configured
by enabling public connectivity at graph creation or by updating the graph configuration post-
creation.

Connecting to a graph 21

https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraph.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_UpdateGraph.html

Neptune Analytics Neptune Analytics User Guide

Note

All Neptune Analytics graphs are configured to use AWS Identity and Access Management
(IAM) for authentication and authorization. This means that all requests to the graph
should be signed using AWS Signature Version 4 (SIGV4). If you are using the AWS CLI
or SDK to connect, then the signing of the requests is handled by the client library. The
library requires the user to provide the credentials to sign using one of the known methods.
You can also make HTTP requests to the APIs by using AWSCurl, which provides a curl like
interface to make HTTP requests and supports SIGV4. For Neptune Analytics specific IAM
documentation please refer to the Neptune Analytics user guide Security IAM section.

Topics

• AWS PrivateLink for Neptune Analytics

• Connecting to a private endpoint from within the same VPC

• Connecting to a private endpoint from a different VPC (including cross-account)

• Accessing the graph

• Best practices

AWS PrivateLink for Neptune Analytics

With AWS PrivateLink for Neptune Analytics, you can provision interface Amazon VPC endpoints
(interface endpoints) in your virtual private cloud (Amazon VPC). These endpoints are directly
accessible from applications that are on premises over VPN and AWS Direct Connect, or in a
different AWS region over Amazon VPC peering. Using AWS PrivateLink and interface endpoints,
you can simplify private network connectivity from your applications to Neptune Analytics.

Applications in your VPC do not need public IP addresses to communicate with Neptune Analytics
interface VPC endpoints for Neptune Analytics operations. Interface endpoints are represented
by one or more elastic network interfaces (ENIs) that are assigned private IP addresses from
subnets in your Amazon VPC. Requests to Neptune Analytics over interface endpoints stay on the
Amazon network. You can also access interface endpoints in your Amazon VPC from on-premises
applications through AWS Direct Connect or AWS Virtual Private Network (Site-to-Site VPN). For
more information about how to connect your Amazon VPC with your on-premises network, see the
AWS Direct Connect user guide and the AWS Site-to-Site VPN user guide.

AWS PrivateLink 22

https://aws.amazon.com/iam/
https://docs.aws.eu//AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://github.com/okigan/awscurl
https://docs.aws.eu//neptune-analytics/latest/userguide/security-iam.html#security_iam_authentication
https://docs.aws.eu//vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.eu//directconnect/latest/UserGuide/Welcome.html
https://docs.aws.eu//vpn/latest/s2svpn/VPC_VPN.html

Neptune Analytics Neptune Analytics User Guide

For general information about interface endpoints, see Interface Amazon VPC endpoints (AWS
PrivateLink) in the AWS PrivateLink guide.

Creating an Amazon VPC endpoint

To create an Amazon VPC interface endpoint, see Create an Amazon VPC endpoint in the AWS
PrivateLink Guide.

Topics

• Types of interface endpoint services for Neptune Analytics

• Considerations when using AWS PrivateLink for Neptune Analytics

• Accessing Neptune Analytics interface endpoints

• Accessing Neptune Analytics graph from Neptune Analytics interface endpoints

• Creating an Amazon VPC endpoint policy for Neptune Analytics data plane

Types of interface endpoint services for Neptune Analytics

Neptune Analytics supports two services via interface VPC endpoints on AWS PrivateLink:
neptune-graph for accessing Neptune Analytics control plane API operations like CreateGraph,
DeleteGraph etc. and neptune-graph-data for accessing Neptune Analytics data plane API
operations like GetQuery, ListQueries, ExecuteQuery etc. For more information about
Neptune Analytics API operations see Neptune Analytics APIs.

Considerations when using AWS PrivateLink for Neptune Analytics

Amazon VPC considerations apply to AWS PrivateLink for Neptune Analytics. For more information,
see Interface endpoint considerations and AWS PrivateLink quotas in the AWS PrivateLink guide.
Additionally, the following restrictions apply:

1. The AWS PrivateLink for Neptune Analytics control plane i.e. neptune-graph service does not
support VPC endpoint policies. However, AWS PrivateLink for Neptune Analytics data plane i.e.
neptune-graph-data service supports VPC endpoint policies.

2. The AWS PrivateLink for Neptune Analytics supports Federal Information Processing Standard
(FIPS) endpoints in US East (N. Virginia), US East (Ohio), and US West (Oregon) for control
plane API operations under the service name neptune-graph-fips. FIPS endpoints are not
supported in any AWS region for AWS PrivateLink for data plane API operations.

AWS PrivateLink 23

https://docs.aws.eu//vpc/latest/privatelink/vpce-interface.html
https://docs.aws.eu//vpc/latest/privatelink/vpce-interface.html
https://docs.aws.eu//vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.eu//neptune-analytics/latest/apiref/Welcome.html
https://docs.aws.eu//vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.aws.eu//vpc/latest/privatelink/vpc-limits-endpoints.html
https://docs.aws.eu//vpc/latest/privatelink/vpc-endpoints-access.html
https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/compliance/fips/

Neptune Analytics Neptune Analytics User Guide

3. Transport Layer Security (TLS) 1.1 is not supported.

4. Private and Hybrid Domain Name System (DNS) services are not supported.

Accessing Neptune Analytics interface endpoints

When you create an interface endpoint for Neptune Analytics, AWS PrivateLink generates two
types of endpoint-specific, Neptune Analytics DNS names: Regional and zonal.

• A Regional DNS name includes a unique Amazon VPC endpoint ID, a service identifier,
the AWS Region, and vpce.amazonaws.com in its name. For example, for Amazon
VPC endpoint ID vpce-1a2b3c4d, the DNS name generated might be similar to
vpce-1a2b3c4d-5e6f.neptune-graph.us-east-1.vpce.amazonaws.com.

• A Zonal DNS name includes the Availability Zone - for example, vpce-1a2b3c4d-5e6f-us-
east-1a.neptune-graph.us-east-1.vpce.amazonaws.com. You might use this option if
your architecture isolates availability zones. For example, you could use it for fault containment
or to reduce regional data transfer costs.

Accessing Neptune Analytics graph from Neptune Analytics interface endpoints

You can use the AWS CLI or AWS SDKs to access Neptune Analytics graph API operations through
Neptune Analytics interface endpoints.

AWS CLI examples

To access Neptune Analytics API operations through Neptune Analytics interface endpoints in AWS
CLI commands, use the --region parameter.

Example: Create a VPC endpoint

aws ec2 create-vpc-endpoint \
--region us-east-1 \
--service-name neptune-graph-service-name (for control APIs)/ neptune-graph-data-
service-name (for data APIs) \
--vpc-id client-vpc-id \
--subnet-ids client-subnet-id \
--vpc-endpoint-type Interface \
--security-group-ids client-sg-id

Example: Modify a VPC endpoint

AWS PrivateLink 24

Neptune Analytics Neptune Analytics User Guide

Neptune Analytics VPC endpoint service uses private hosted zone to route requests to your
Neptune Analytics graph. Ensure that you have enabled private dns on your VPC interface
endpoint.

aws ec2 modify-vpc-endpoint \
--region us-east-1 \
--vpc-endpoint-id client-vpc-endpoint-id \
--private-dns-enabled

Note

Ensure that the private dns is always enabled on your VPC interface endpoint otherwise
you might see errors in routing requests to your Neptune Analytics graph.

Example: List graphs using the region parameter

aws neptune-graph list-graphs --region us-east-1

Example: Execute a query using the region parameter

aws neptune-graph execute-query \
--graph-identifier g-0123456789 \
--region us-east-1 \
--query-string "MATCH (n) RETURN n LIMIT 1" \
--language open_cypher \
out.txt

AWS SDK examples

To access Neptune Analytics API operations through Neptune Analytics interface endpoints when
using the AWS SDKs, update your SDKs to the latest version. Then, configure your clients to use the
AWS region for accessing a Neptune Analytics API operation through Neptune Analytics interface
endpoints.

SDK for Python (Boto3)

In this example, you will use an endpoint URL to access a Neptune Analytics graph.

neptune_graph_client = session.client(

AWS PrivateLink 25

Neptune Analytics Neptune Analytics User Guide

service_name='neptune-graph',
region_name='us-east-1'
)

SDK for Java 2.x

In this example, you will use an endpoint URL to access a Neptune Analytics graph.

//client build with endpoint config
final NeptuneGraphClient NeptuneGraphClient.builder()
 .region(software.amazon.awssdk.regions.Region.US_EAST_1)
 .credentialsProvider(credentialsProvider)
 .build();

Creating an Amazon VPC endpoint policy for Neptune Analytics data plane

Note

AWS PrivateLink for Neptune Analytics does not support VPC endpoint policies for the
control plane service neptune-graph. VPC endpoint policies are only supported for the
Neptune Analytics data plane service neptune-graph-data.

You can attach an endpoint policy to your Amazon VPC endpoint that controls access to a Neptune
Analytics graph. The policy specifies the following information:

• The AWS Identity and Access Management (IAM) principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

Restricting access to a specific Neptune Analytics graph from an Amazon VPC endpoint.

You can create an endpoint policy that restricts access to only specific Neptune Analytics graphs.
This type of policy is useful if you have other AWS services in your Amazon VPC that use graphs.
The following policy only provides access to the GetGraphSummary action/API from the VPC
endpoint.

AWS PrivateLink 26

Neptune Analytics Neptune Analytics User Guide

Connecting to a private endpoint from within the same VPC

For graphs using private endpoints, you can connect to your graph from any resource that has
access to the private VPC, such as AWS Lambda, an Amazon SageMaker AI notebook instance,
an Amazon EC2 instance, etc. The instance must be in the same VPC and subnet as the private
endpoint for your graph. Ensure that the security group attached to the VPC endpoint of your
private graph's endpoint allows ingress on port 443, and optionally port 8182.

For details on how to use notebooks and how to create one capable of connecting to the private
endpoint of your graph, see the Neptune Analytics user guide section on notebooks, making sure
to supply the necessary VPC and subnet identifier when setting up your network options. If the
VPC CIDR is 172.17.0.0/16, notebooks will have some difficult connecting the graph endpoints.

You can also create an Amazon EC2 instance to connect to the private endpoint of your graph. You
will need to select the correct VPC and availability zone to match your graph’s private endpoint.
When prompted for a security group to associate with the instance, create or choose one that has
inbound TCP rules allowing ingress traffic over ports 22 (for SSH), and egress traffic over port 443
if custom egress rules are needed. For the detailed prerequisites and steps to create and connect to
an Amazon EC2 instance, see the Amazon EC2 user guide.

Note

For troubleshooting connectivity issues refer to the reachability analyzer guide. You can get
destination VPC endpointId by using the GetPrivateGraphEndpoint API.

Connecting to a private endpoint from a different VPC (including cross-
account)

In some cases, you may be required to connect to your graph from a different VPC without
enabling public connectivity. For example, applications that segregate AWS services using different
VPCs or different accounts. In this case, connectivity can be achieved through the use of private
graph endpoints and Amazon Route 53 private hosted zones. The steps in the following procedure
refer to a client in VPC B, wanting to access a Neptune Analytics graph in VPC A.

1. Establish network connectivity between VPC A and VPC B

You can use any method that allows traffic to move between VPCs. For example, VPC peering
or AWS Transit Gateway. In addition to establishing the network connection, make sure your

Connecting from the same VPC 27

https://docs.aws.eu//neptune-analytics/latest/userguide/notebooks.html
https://docs.aws.eu//AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.eu//vpc/latest/reachability/what-is-reachability-analyzer.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_GetPrivateGraphEndpoint.html
https://docs.aws.eu//vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.eu//vpc/latest/tgw/tgw-getting-started.html

Neptune Analytics Neptune Analytics User Guide

security groups and network ACLs allow traffic between the two VPCs. You can verify network
connectivity with the reachability analyzer.

2. Create a private graph endpoint in VPC A

If you haven’t already, create a private graph endpoint in VPC A. This can be done through the
console or the CreatePrivateGraphEndpoint API. Once created, collect the DNS name for the
VPC endpoint that was deployed.

1. Find the VPC endpoint ID from the value of vpcEndpointId when calling the
ListPrivateGraphEndpoints API.

2. From the console or using the DescribeVpcEndpoints API, collect the DNS name of the
VPC endpoint. This should have the format of vpce-<alphanumeric>.vpce-svc-
<alphanumeric>.<region>.vpce.amazonaws.com.

3. Use Amazon Route 53 to create a private hosted zone for VPC B.

1. From the Route 53 console, choose Create hosted zone.

2. Set the domain name of the private hosted zone to the graph endpoint of the
Neptune Analytics graph. The graph endpoint should have the format of g-
<alphanumeric>.<region>.neptune-graph.amazonaws.com.

3. Set the Type to Private hosted zone.

4. Associate VPC B with the hosted zone.

5. Choose Create hosted zone.

Add a record to route traffic destined for the graph endpoint to the VPC endpoint directly.

1. When the hosted zone is created, choose Create record.

2. From the creation wizard, choose Simple routing for the routing policy.

3. Choose Define simple record. Set the Record type to A, which routes traffic to an IPv4
address and some AWS resources. Set Value/Route traffic to to the DNS hostname of the
VPC endpoint from Step 2. This should have the format of vpce-<alphanumeric>.vpce-
svc-<alphanumeric>.<region>.vpce.amazonaws.com.

To use private hosted zones, enableDnsHostnames and enableDnsSupport should be set
to true for both VPCs. Depending on your networking configuration, other considerations

Connecting from a different VPC 28

https://docs.aws.eu//vpc/latest/reachability/what-is-reachability-analyzer.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreatePrivateGraphEndpoint.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_ListPrivateGraphEndpoints.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_ListPrivateGraphEndpoints.html
https://docs.aws.eu//AWSEC2/latest/APIReference/API_DescribeVpcEndpoints.html
https://docs.aws.eu//Route53/latest/DeveloperGuide/hosted-zone-private-creating.html

Neptune Analytics Neptune Analytics User Guide

may apply when using private hosted zones. See Route 53 private hosted zone considerations
documentation to validate your setup.

4. Establish cross-account IAM permissions (only required for cross-account access)

In addition to the network connectivity established in prior steps, if the client in VPC B is
in a different account (Account B), they will also need appropriate credentials to access the
Neptune Analytics graph in VPC A (in Account A). You can use cross-account IAM roles to give
permissions to the client.

1. Create the IAM role and policy that the client in Account B will be using (IAM role B).

2. Create an IAM role and policy in Account A that grants the desired permissions to the
Neptune Analytics graph (IAM role A). Make sure that there are also permissions for IAM role
B to assume this role.

3. Add permissions to IAM role B to assume the IAM role A.

4. When making a cross-account call to the Neptune Analytics graph, use the AWS Security
Token Service AssumeRole API to have IAM role B assume IAM role A. Use the returned
credentials when making requests to the Neptune Analytics graph, e.g. via AWS SDK,
awscurl, etc.

Accessing the graph

Once you’ve created a graph and set up the prerequisites for connecting to that graph, you can
proceed with accessing your graph to load and query data. This section contains an explanation of
ways you can communicate with your graph along with some example queries. For details on how
to load data, see the loading data section in the Neptune Analytics user guide.

Using a notebook

You can access to your Neptune Analytics graph through a Neptune workbench, which provides
visualization tools on top of Neptune Analytics which can help with interpreting query results. For
more information on how to set up and use a graph notebook, see the notebooks section in the
Neptune Analytics user guide.

Example

The cell magic below submits an openCypher query that returns a single node.

%%oc

Accessing the graph 29

https://docs.aws.eu//Route53/latest/DeveloperGuide/hosted-zone-private-considerations.html
https://docs.aws.eu//IAM/latest/UserGuide/access_policies-cross-account-resource-access.html#access_policies-cross-account-using-roles
https://docs.aws.eu/neptune-analytics/latest/userguide/loading-data.html
https://docs.aws.eu//neptune-analytics/latest/userguide/notebooks.html

Neptune Analytics Neptune Analytics User Guide

MATCH (n) RETURN n LIMIT 1

Using the AWS SDK

With the AWS SDK, you can access your graph using a programming language of your choice, which
provides clean integration between Neptune Analytics and your applications. With the Neptune
Analytics SDK (service name Neptune graph), you can perform data operations like querying
and summarization in addition to control plane operations such as graph creation, deletion, and
modification. For a list of the supported programming languages and directions for setting up the
SDK in each language, see the AWS developer tools documentation.

Direct links to the API reference documentation for the Neptune Analytics service in each SDK
language can be found below:

Programming language Neptune graph API reference

C++ https://sdk.amazonaws.com/cpp/api/
LATEST/aws-cpp-sdk-neptune-graph/html/an
notated.html

Go https://pkg.go.dev/github.com/aws/aws-sdk-
go-v2/service/neptunegraph

Java https://sdk.amazonaws.com/java/api/latest/
software/amazon/awssdk/services/neptune
graph/package-summary.html

JavaScript https://docs.aws.amazon.com/AWSJav
aScriptSDK/v3/latest/Package/-aws-sdk-cli
ent-neptune-graph/

Kotlin https://sdk.amazonaws.com/kotlin/api/late
st/neptunegraph/index.html

.NET https://docs.aws.amazon.com/sdkfornet/
v3/apidocs/items/NeptuneGraph/NNeptu
neGraph.html

Accessing the graph 30

https://aws.amazon.com/developer/tools/
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-neptune-graph/html/annotated.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-neptune-graph/html/annotated.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-neptune-graph/html/annotated.html
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/neptunegraph
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/neptunegraph
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/neptunegraph/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/neptunegraph/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/neptunegraph/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-neptune-graph/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-neptune-graph/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-neptune-graph/
https://sdk.amazonaws.com/kotlin/api/latest/neptunegraph/index.html
https://sdk.amazonaws.com/kotlin/api/latest/neptunegraph/index.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/NeptuneGraph/NNeptuneGraph.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/NeptuneGraph/NNeptuneGraph.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/NeptuneGraph/NNeptuneGraph.html

Neptune Analytics Neptune Analytics User Guide

Programming language Neptune graph API reference

PHP https://docs.aws.amazon.com/aws-sdk-php/
v3/api/namespace-Aws.NeptuneGraph.html

Python https://boto3.amazonaws.com/v1/do
cumentation/api/latest/reference/services/
neptune-graph.html

CLI https://docs.aws.amazon.com/cli/latest/re
ference/neptune-graph/

Ruby https://docs.aws.amazon.com/sdk-for-ruby/v
3/api/Aws/NeptuneGraph.html

Rust https://crates.io/crates/aws-sdk-neptunegr
aph

Swift https://sdk.amazonaws.com/swift/api/
awsneptunegraph/0.37.0/documentation/a
wsneptunegraph

Examples

The following examples outline how to interact with an Amazon Neptune graph database using
different programming languages and tools. It covers the steps to set up an SDK client, execute
an OpenCypher query, and print the results, for Python as well as other languages. Additionally, it
demonstrates how to use the AWS Command Line Interface (CLI) and the AWSCURL tool to submit
queries directly to the Neptune graph endpoint.

Python

The code sample below uses the Python SDK to submit a query that returns a single node and
prints the result.

1. Follow the installation instructions to install Boto3. If you are using a SageMaker AI hosted
Jupyter notebook, Boto3 will be pre-installed, but you may need to update it.

2. Configure your Boto3 credentials by following the configuring credentials guide.

Accessing the graph 31

https://docs.aws.amazon.com/aws-sdk-php/v3/api/namespace-Aws.NeptuneGraph.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/namespace-Aws.NeptuneGraph.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/neptune-graph.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/neptune-graph.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/neptune-graph.html
https://docs.aws.amazon.com/cli/latest/reference/neptune-graph/
https://docs.aws.amazon.com/cli/latest/reference/neptune-graph/
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/NeptuneGraph.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/NeptuneGraph.html
https://crates.io/crates/aws-sdk-neptunegraph
https://crates.io/crates/aws-sdk-neptunegraph
https://sdk.amazonaws.com/swift/api/awsneptunegraph/0.37.0/documentation/awsneptunegraph
https://sdk.amazonaws.com/swift/api/awsneptunegraph/0.37.0/documentation/awsneptunegraph
https://sdk.amazonaws.com/swift/api/awsneptunegraph/0.37.0/documentation/awsneptunegraph
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#configuring-credentials

Neptune Analytics Neptune Analytics User Guide

3. Create a file named queryExample.py.

4. In that file, paste the following code. It will set up a Neptune graph client, execute an
openCypher query request, and print the result. Replace the graph identifier and query string
as needed.

import boto3

// Set up the Neptune Graph client.
client = boto3.client('neptune-graph')

// Execute a query.
response = client.execute_query(
 graphIdentifier='g-0123456789',
 queryString='MATCH (n) RETURN n LIMIT 1',
 language='OPEN_CYPHER'
)

// Print the response.
print(response['payload'].read().decode('utf-8'))

5. Run the sample code by entering python queryExample.py.

Go

The code sample below uses the Go SDK to submit a query that returns a single node and prints
the result.

1. Follow the installation instructions to install Go and the AWS SDK for Go.

2. Create a file named queryExample.go.

3. In that file, paste the following code. It will set up a Neptune graph client, execute an
openCypher query request, and print the result. Replace the graph identifier and query string
as needed.

package main

import (
 "context"
 "log"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"

Accessing the graph 32

https://aws.github.io/aws-sdk-go-v2/docs/getting-started/

Neptune Analytics Neptune Analytics User Guide

 "github.com/aws/aws-sdk-go-v2/service/neptunegraph"
 "io"
)

func main() {
 // Load the Shared AWS Configuration (~/.aws/config)
 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 log.Fatal(err)
 }

 // Create an Amazon Neptune Analytics service client
 client := neptunegraph.NewFromConfig(cfg)

 // Execute a query
 output, err := client.ExecuteQuery(context.TODO(),
 &neptunegraph.ExecuteQueryInput{
 GraphIdentifier: aws.String("g-0123456789"),
 Language: "OPEN_CYPHER",
 QueryString: aws.String("MATCH (n) RETURN n LIMIT 1"),
 })
 if err != nil {
 log.Fatal(err)
 }

 // Print the results
 bytes, err := io.ReadAll(output.Payload)
 log.Println(string(bytes))
}

4. Run the sample code by entering go run queryExample.go.

Node.js

The Node.js code sample below uses the JavaScript SDK to submit a query that returns a single
node and prints the result.

1. Follow the installation instructions to install Node.js and set up your package structure.
For this example, install the Neptune graph client package instead of the Amazon S3 client
package: npm install @aws-sdk/client-neptune-graph.

2. Create a file in that directory structure named queryExample.js.

Accessing the graph 33

https://docs.aws.eu//sdk-for-javascript/v3/developer-guide/getting-started-nodejs.html

Neptune Analytics Neptune Analytics User Guide

3. In that file, paste the following code. It will set up a Neptune graph client, execute an
openCypher query request, and print the result. Replace the graph identifier and query string
as needed.

import { NeptuneGraphClient, ExecuteQueryCommand } from "@aws-sdk/client-neptune-
graph";

// Set up the client.
const neptuneGraphClient = new NeptuneGraphClient({});

// Send the query request.
const output = await neptuneGraphClient.send(
 new ExecuteQueryCommand({
 graphIdentifier: "g-0123456789",
 language: "OPEN_CYPHER",
 queryString: "MATCH (n) RETURN n LIMIT 1"
 })
);

// Print the result.
console.log(await output.payload.transformToString('utf-8'));

4. Run the sample code by entering node queryExample.js.

Java

The tutorial below sets up a project that uses the Java SDK to submit a query that returns a
single node and prints the result.

1. To get started with the Java SDK, follow the installation instructions to install Java and set
up a build tool that supports Maven central. This example will use Apache Maven.

2. Follow the steps to create a project using Maven based on the quickstart template. When
executing these steps, please make the following modifications:

Note

When generating the project from the template, specify a version of the Java SDK
that includes the Neptune graph service APIs. For this example, use 2.25.7 as your
archetype version.

Accessing the graph 34

https://docs.aws.eu//sdk-for-java/latest/developer-guide/setup.html#setup-envtools
https://maven.apache.org/
https://docs.aws.eu//sdk-for-java/latest/developer-guide/get-started.html#get-started-projectsetup

Neptune Analytics Neptune Analytics User Guide

mvn archetype:generate \
 -DarchetypeGroupId=software.amazon.awssdk \
 -DarchetypeArtifactId=archetype-app-quickstart \
 -DarchetypeVersion=2.25.7

Running the command above will present you with several prompts. When asked to provide a
'service' (i.e., the service whose client and APIs you plan to use for this tutorial), please enter
neptunegraph as the service name. An updated table of prompts and values can be found
below:

Prompt Value to enter

Define value for property 'service': neptunegraph

Define value for property 'httpClient': apache-client

Define value for property 'nativeImage': false

Define value for property 'credentialProvide
r':

identity-center

Define value for property 'groupId': org.example

Define value for property 'artifactId': getstarted

Define value for property 'version' 1.0-
SNAPSHOT:

<Enter>

Define value for property 'package'
org.example:

<Enter>

3. After generating the project structure, you should see three Maven-generated classes
defined in the getstarted/src/main/java/org/example/ directory: App.java,
DependencyFactory.java, and Handler.java. For details on each of these classes, see
step 3 in the SDK for Java guide. Since this example uses the neptunegraph service, the
Maven-generated code in the DependencyFactor and Handler classes will be using a different
client than the code samples provided there. Refer to the Neptune graph-specific equivalents
of the auto-generated classes below:

Accessing the graph 35

https://docs.aws.eu//sdk-for-java/latest/developer-guide/get-started.html#get-started-code

Neptune Analytics Neptune Analytics User Guide

a. Maven-generated App.java - this file is the same regardless of the service used.

package org.example;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class App {
 private static final Logger logger = LoggerFactory.getLogger(App.class);

 public static void main(String... args) {
 logger.info("Application starts");

 Handler handler = new Handler();
 handler.sendRequest();

 logger.info("Application ends");
 }
}

b. Maven-generated DependencyFactory.java - This file uses the client class
NeptuneGraphClient because neptunegraph was chosen as the service during the
project setup.

package org.example;

import software.amazon.awssdk.http.apache.ApacheHttpClient;
import software.amazon.awssdk.services.neptunegraph.NeptuneGraphClient;

/**
 * The module containing all dependencies required by the {@link Handler}.
 */
public class DependencyFactory {

 private DependencyFactory() {}

 /**
 * @return an instance of NeptuneGraphClient
 */
 public static NeptuneGraphClient neptuneGraphClient() {
 return NeptuneGraphClient.builder()
 .httpClientBuilder(ApacheHttpClient.builder())
 .build();
 }

Accessing the graph 36

Neptune Analytics Neptune Analytics User Guide

}

c. Maven-generated Handler.java - This file uses the client class NeptuneGraphClient
because neptunegraph was chosen as the service during the project setup.

package org.example;

import software.amazon.awssdk.services.neptunegraph.NeptuneGraphClient;

public class Handler {
 private final NeptuneGraphClient neptuneGraphClient;

 public Handler() {
 neptuneGraphClient = DependencyFactory.neptuneGraphClient();
 }

 public void sendRequest() {
 // TODO: invoking the api calls using neptuneGraphClient.
 }
}

4. Make changes to the Maven-generated handler class to fill in the missing logic in
sendRequest to use the NeptuneGraphClient to execute a query, then print the result.
Copy the completed code below, which replaces the TODO with code and adds the necessary
imports. Replace the graph identifier and query string as needed.

package org.example;

import software.amazon.awssdk.core.ResponseInputStream;
import software.amazon.awssdk.services.neptunegraph.NeptuneGraphClient;
import software.amazon.awssdk.services.neptunegraph.model.ExecuteQueryRequest;
import software.amazon.awssdk.services.neptunegraph.model.ExecuteQueryResponse;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class Handler {
 private final NeptuneGraphClient neptuneGraphClient;

 public Handler() {

Accessing the graph 37

Neptune Analytics Neptune Analytics User Guide

 neptuneGraphClient = DependencyFactory.neptuneGraphClient();
 }

 public void sendRequest() {
 String graphIdentifier = "g-0123456789";
 String queryString = "MATCH (n) RETURN n LIMIT 1";

 ExecuteQueryRequest request = ExecuteQueryRequest.builder()
 .graphIdentifier(graphIdentifier)
 .queryString(queryString)
 .build();

 System.out.println("Executing query: " + queryString);

 ResponseInputStream<ExecuteQueryResponse> response =
 neptuneGraphClient.executeQuery(request);
 BufferedReader reader = new BufferedReader(new
 InputStreamReader(response));

 try {
 System.out.println("Printing query result:");
 String line;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 } catch (IOException e) {
 System.out.println("Error occurred while printing result.");
 }
 }
}

5. Navigate to your project directory getStarted.

6. Build your project: mvn clean package

7. Run the application: mvn exec:java -Dexec.mainClass="org.example.App".

Using the AWS CLI

You can connect to your graph using the AWS command-line interface. Specify the neptune-graph
service name to use Neptune Analytics APIs. For information on AWS CLI installation and usage, see
the AWS CLI documentation. To set up credentials, refer to the AWS CLI user guide.

The example command below uses the AWS CLI to submit a query that returns a single node.

Accessing the graph 38

https://aws.amazon.com/cli/

Neptune Analytics Neptune Analytics User Guide

aws neptune-graph execute-query \
--graph-identifier g-0123456789 \
--region us-east-2 \
--query-string "MATCH (n) RETURN n LIMIT 1" \
--language open_cypher \
out.txt

Using AWSCURL

You can connect to your graph using the awscurl command-line tool. This allows you to directly
make requests using HTTPS against a graph endpoint. You can find the correct endpoint to use in
the AWS console (under the “Connectivity & Security” section of a Neptune Analytics graph page)
and in the response of any GetGraph API request. To set up credentials, refer to the AWS CLI user
guide.

For awscurl installation and setup instructions, see AWSCURL github repository.

The following command uses awscurl to submit a query that returns a single node.

awscurl -X POST "https://g-0123456789.us-east-2.neptune-graph.amazonaws.com/queries" \
-H "Content-Type: application/x-www-form-urlencoded" \
--region us-east-2 \
--service neptune-graph \
-d "query=MATCH (n) RETURN n LIMIT 1"

Best practices

Ensure the streams have been consumed and closed to be able to re-use client connections in the
SDK. See the SDK for Java developer guide for more information.

CLI and SDK

Using the default settings, any CLI or SDK request will timeout in 60 seconds and attempt
a retry. For the cases where you are running queries that can take longer than 60 seconds,
it is recommended to set the CLI/SDK timeout to 0 (no timeout), or a much larger value to
avoid unnecesssary retries. It is also recommended to set MAX_ATTEMPTS for CLI/SDK to 1 for
execute_query to avoid any retries by the CLI/SDK. For the Boto client, set the read_timeout
to None, and the total_max_attempts to 1.

import boto3

Best practices 39

https://github.com/okigan/awscurl
https://docs.aws.eu//sdk-for-java/latest/developer-guide/best-practices.html#bestpractice2

Neptune Analytics Neptune Analytics User Guide

from botocore.config import Config
n = boto3.client('neptune-graph',
 config=(Config(retries={"total_max_attempts": 1, "mode": "standard"},
 read_timeout=None)))

For the CLI, set the --cli-read-timeout parameter to 0 for no timeout, and set the
environment variable AWS_MAX_ATTEMPTS to 1 to prevent retries.

export AWS_MAX_ATTEMPTS=1
aws neptune-graph execute-query \
--graph-identifier <graph-id> \
--region <region> \
--query-string "MATCH (p:Person)-[r:KNOWS]->(p1) RETURN *;" \
--cli-read-timeout 0
--language open_cypher /tmp/out.txt

Best practices 40

Neptune Analytics Neptune Analytics User Guide

Using notebooks with Neptune Analytics

The Neptune managed open-source graph-notebook project provides a plethora of Jupyter
extensions and sample notebooks that make it easy to interact with and learn to use a Neptune
Analytics graph.

These graph notebooks support a suite of intuitive Jupyter line- and cell-magic commands. The
magic commands abstract away much of the initial setup typically required for using Neptune
Analytics, and take care of SigV4 signing of requests. They can create graph connections, load data,
run openCypher queries, and interact with various Neptune Analytics APIs.

You can find a list of the full set of Neptune graph-notebook magics and their options in the
Neptune Userguide. However, only the following magics are compatible with Neptune Analytics
graphs:

• %seed (adds sample data to a graph).

• %load (uses the neptune-load() openCypher integration to let you batch-load data).

• %status or %get_graph (gets status information about the graph).

• %%opencypher or %%oc (issues an openCypher query).

• %opencypher_status, or %oc_status (retrieves query status for, or cancels, an openCypher
query).

• %%graph_notebook_config (displays a JSON object containing the configuration that the
notebook is using).

• %graph_notebook_host (sets the line input as the notebook's host).

• %graph_notebook_version (returns the Neptune workbench notebook release number).

• %graph_notebook_service (sets the line input as the Neptune service name to use).

• %%graph_notebook_vis_options (lets you set visualization options for the notebook).

• %summary (retrieves graph summary information).

• %graph_reset (empties the data from a graph).

You can use a Neptune graph notebook to generate an interactive visualization of the results
returned from an openCypher query, and use options to customize the appearance of the
visualized graph (see Graph visualization in the Neptune workbench).

41

https://github.com/aws/graph-notebook
Jupyter
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-seed
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-load
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-status
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-get-graph
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-cell-magics-opencypher
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-opencypher-status
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-cell-magics-graph-notebook-config
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-graph-notebook-host
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-graph-notebook-version
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-graph-notebook-service
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-cell-magics-graph-notebook-vis-options
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-summary
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-reset-graph
https://docs.aws.eu/neptune/latest/userguide/notebooks-visualization.html

Neptune Analytics Neptune Analytics User Guide

Take advantage of all the sample notebooks

A wide variety of sample Jupyter notebooks are available in the Neptune graph-notebook project.
Some of these are purpose-built for learning how to get the most of a Neptune Analytics graph
and its powerful built-in algorithms in the context of common real-world applications.

After installing the graph-notebook project either locally or on SageMaker AI, you should be able
to find sample notebooks under the notebook directory, ../Neptune/02-Neptune-Analytics.

Creating a new Neptune Analytics notebook using a
CloudFormation template

Amazon SageMaker AI Notebook instances provide a fully managed Jupyter environment for
running graph notebooks that are connected to a Neptune Analytics graph. SageMaker AI
Notebooks run natively on Amazon Linux 2, and support use of the Jupyter Classic Notebook or
JupyterLab 3 interface on the same instance.

You can use one of the following CloudFormation templates to set up a new Neptune Analytics
notebook to use with your Neptune Analytics graph:

To use an CloudFormation stack to create a new Neptune Analytics notebook

1. Choose one of the Launch Stack buttons in the following table to launch the CloudFormation
stack on the CloudFormation console.

Region View View in Designer Launch

US East (N. Virginia) View View in Designer

US East (Ohio) View View in Designer

US West (Oregon) View View in Designer

Europe (Ireland) View View in Designer

Sample notebooks 42

https://github.com/aws/graph-notebook
https://docs.aws.eu/sagemaker/latest/dg/nbi.html
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=us-east-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=us-east-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=us-east-2&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=us-east-2#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=us-west-2&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=us-west-2#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=eu-west-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=eu-west-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json

Neptune Analytics Neptune Analytics User Guide

Region View View in Designer Launch

Europe (Frankfurt) View View in Designer

Asia Pacific (Tokyo) View View in Designer

Asia Pacific
(Singapore)

View View in Designer

Asia Pacific (Sydney) View View in Designer

Asia Pacific
(Mumbai)

View View in Designer

Canada (Central) View View in Designer

2. On the Select Template page, choose Next.

3. In the Stack Details page, under GraphEndpoint, enter the public or private endpoint of your
Neptune Analytics graph.

4. Under Notebook Name enter a name for the new notebook that is unique for your account
and region in SageMaker AI.

5. On the Options page, choose Next.

6. If you're using a private endpoint for your Neptune Analytics graph, enter the following under
Network Options:

a. Under GraphVPC enter the ID of a VPC associated with the private graph endpoint.

b. Under GraphSubnetId enter the ID of any subnet associated with your private graph
endpoint.

c. Under GraphSecurityGroup enter the ID of a security group associated with the VPC. This
is optional; if not provided, a new security group is automatically created for this purpose.

7. Click through the rest of the stack creation steps, leaving everything as default, and submit for
creation.

Create a notebook with CloudFormation 43

https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=eu-central-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=eu-central-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=ap-northeast-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=ap-northeast-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=ap-southeast-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=ap-southeast-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=ap-southeast-2&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=ap-southeast-2#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=ap-south-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=ap-south-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/designer/home?region=region-ca-central-1&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json
https://eusc-de-east-1.console.amazonaws-eusc.eu/cloudformation/home?region=region-ca-central-1#/stacks/new?stackName=NeptuneQuickStart&templateURL=https://aws-neptune-customer-samples.s3.amazonaws.com/v2/cloudformation-templates/neptune-analytics-sagemaker-notebook-stack.json

Neptune Analytics Neptune Analytics User Guide

In around 5 minutes, you should see the new Neptune Analytics notebook appear in the SageMaker
AI and Neptune consoles.

Creating a new Neptune Analytics notebook using the AWS
Management Console

You can create a new notebook for Neptune Analytics by following the instructions mentioned in
Using the Neptune workbench to host Neptune notebooks with a few changes:

• While selecting the Neptune service, please choose Analytics.

• The console can create an AWS AWS Identity and Access Management role for your notebooks, or
you can create one yourself by following Create an IAM role for a Neptune Analytics notebook.

Create an IAM role for a Neptune Analytics notebook

To create an IAM role for a Neptune Analytics notebook

1. Sign in to the AWS Management Console and open the IAM console at https://eusc-de-
east-1.console.amazonaws-eusc.eu/iam/.

2. In the navigation pane, expand Access management, then choose Roles.

3. Select Create role.

4. Under Trusted entity type, select Custom trust policy and copy in the following trust policy:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Create a notebook on the console 44

https://docs.aws.eu//neptune/latest/userguide/graph-notebooks.html#graph-notebooks-workbench
https://docs.aws.eu//neptune/latest/userguide/graph-notebooks.html#graph-notebooks-workbench
https://docs.aws.eu//neptune-analytics/latest/userguide/create-notebook-console.html#create-notebook-iam-role
https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/
https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/

Neptune Analytics Neptune Analytics User Guide

5. Choose Next, and then Next again.

6. Enter a name and description for the role, and select Create role.

7. Go back to the Roles page, search for the name of the role you just created, and open it.

8. On the Permissions tab Under Permissions policies, select Add permissions and choose
Create inline policy.

9. In the Policy editor, switch to the JSON option, and copy in the following policy:

10. Choose Next.

11. Give a name to the inline policy.

12. Select Create policy. Make note of the name of the policy you just created.

Hosting a Neptune Analytics graph-notebook on your local
machine

It is also possible to install and run a Neptune Analytics graph notebook on your local machine. You
can find instructions in the GitHub graph-notebook repository:

• Prerequisites

• Jupyter Classic Notebook or https://github.com/aws/graph-notebook/#jupyterlab-3x
installation

• Connecting to Neptune

When setting up for Neptune Analytics:

• When setting the connection using %%graph_notebook_config, make sure to set the
neptune_service field to the value neptune-graph.

• If you're connecting to a private graph endpoint, you need to enable access to the VPC where the
Neptune Analytics instance resides. The easiest way to set this is up is using an SSH tunnel to a
proxy EC2 instance in the VPC. For more information, see Connecting graph notebook locally to
Amazon Neptune in GitHub.

• If you're using a public graph endpoint, no additional connectivity setup is required.

Local hosting 45

https://github.com/aws/graph-notebook
https://github.com/aws/graph-notebook/#prerequisites
https://github.com/aws/graph-notebook/#installation
https://github.com/aws/graph-notebook/#jupyterlab-3x
https://github.com/aws/graph-notebook/#amazon-neptune
https://docs.aws.eu/neptune/latest/userguide/notebooks-magics.html#notebooks-cell-magics-graph-notebook-config
https://github.com/aws/graph-notebook/blob/main/additional-databases/neptune/README.md#connecting-graph-notebook-locally-to-amazon-neptune-first-time-setup
https://github.com/aws/graph-notebook/blob/main/additional-databases/neptune/README.md#connecting-graph-notebook-locally-to-amazon-neptune-first-time-setup

Neptune Analytics Neptune Analytics User Guide

Creating a new Neptune Analytics graph using the AWS
Management Console

You can use the Neptune console to create a new Neptune Analytics graph.

Note

If you are working with a large dataset (on the order of 50 GiB or larger) that you intend to
load at the same time the new graph is created, be sure to create an IAM role that grants
permissions to load the dataset from the location where it resides.

To use the Neptune console to create a graph

1. Sign in to the AWS Management Console, and open the Amazon Neptune console at https://
eusc-de-east-1.console.amazonaws-eusc.eu/neptune/.

2. In the navigation pane, select Graphs under Analytics.

3. Select Create graph.

4. Enter a name for the new graph.

5. The next steps depend on whether you are creating an empty graph or one preloaded with
data.

• If you choose Create empty graph, choose the number of memory-optimized Neptune
Capacity Units (m-NCUs) to allocate to the new Neptune Analytics graph, between 128
and 1024. Each m-NCU has around one GiB of memory capacity and corresponding
compute and networking.

• If you choose Create Graph from existing source, Neptune Analytics will bulk-load
data for you when the graph is created. Choose this option if you want to import a large
dataset, on the order of 50 GiB or larger. See Bulk import for details.

a. Set values for the minimum and maximum m-NCUs, or just leave them at their
default values (128 m-NCUs). The units are memory-optimized Neptune Capacity
Units (m-NCUs), each of which is roughly equivalent to 1 GiB of memory and
corresponding compute and networking. Neptune Analytics evaluates the data that
you want to load and estimates the resources needed to handle it, within the range of
m-NCUs that you specify.

46

https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/
https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/

Neptune Analytics Neptune Analytics User Guide

b. Under Load role ARN, select an IAM role that you have created to provide the
necessary permissions for the data import. See Create an IAM role with permissions to
export from Neptune to Neptune Analytics for instructions about how to create the
role.

c. The next steps depend on what source you're loading data from:

• If you choose Create empty graph, choose the number of memory-optimized
Neptune Capacity Units (m-NCUs) to allocate to the new Neptune Analytics
graph, between 16 and 4096. Each m-NCU has around one GiB of memory
capacity and corresponding compute and networking.

• If you choose Neptune cluster snapshot as the type of source, select one of your
manual DB snapshots that you want to load from under Neptune DB snapshot.

• If you choose S3 as the type of source, enter the URL of the Amazon S3 location
where the data file(s) to be loaded are located, under Resource URI. The path to
the folder location must end in a slash rather than specify to a particular file.

6. Under Availability settings, choose how many failover replicas you want to create for the new
graph. The default is one, but if you select Use custom number of replicas you can choose from
zero to two failover replicas.

Important

Additional charges equivalent to the m-NCUs selected for the graph apply for each
replica.

7. Under Network and security, check Allow from public to create a public endpoint for your
new Neptune Analytics graph to make it accessible over the internet. If you want to use your
own KMS key to encrypt your data, check Customize encryption settings a specify a KMS key
of your choosing.

8. Under Vector search settings, if you want to set up a vector index for the graph, choose Use
vector dimension and then specify the number of dimensions for the vectors in the index.

9. Under Advanced settings, you can make it easier to delete your new graph by selecting Turn
off deletion protection. Deletion protection is turned on by default.

10. Finally, under Tags, you can associate tags with your new Neptune Analytics graph.

11. When everything is configured as you want it to be, choose Create Graph.

47

Neptune Analytics Neptune Analytics User Guide

Loading data into a Neptune Analytics graph

Neptune Analytics provides several options for loading data into a graph, supporting both RDF
(Resource Description Framework) and LPG (Labeled Property Graph) models.

• Bulk import – Designed to handle large scale data ingestion and is the fastest way to load
large volumes of data. Bulk import runs a task to load data from files in Amazon S3. This option
must be done on an empty graph, either at creation time using the CreateGraphUsingImportTask
action, or on an existing graph using the StartImportTask action.

• Batch load – Designed to handle incremental data ingestion to existing graphs using files in
Amazon S3. This can be used to add more data or update single cardinality property values in
existing graph data. The volume of data that can be ingested in a single request is lower than
what bulk import can support.

• openCypher queries – Add more data through queries, if data is not available from files in
Amazon S3 or the data volume is small. This is also a more generic approach for conditional
inserts based on data already in the graph, and updating contents of the graph.

Warning

Be cautious while loading a file of edges. If the same edge file is loaded twice, duplicate
edges will be inserted into the graph which can lead to unintended results.
Also, while using the SDK/CLI command execute-query to run neptune.load(), it is
recommended to increase the timeout window and disable the retries for the SDK/CLI.
For more information about increasing the timeout and disabling retries, see ExecuteQuery.

Topics

• Data format for loading from Amazon S3 into Neptune Analytics

• Batch load

• Bulk import data into a graph

• neptune.read()

48

https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraphUsingImportTask.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_StartImportTask.html

Neptune Analytics Neptune Analytics User Guide

Data format for loading from Amazon S3 into Neptune
Analytics

Neptune Analytics, just like Neptune Database, supports four formats for loading data:

• RDF (ntriples), which is a line-based format for triples. See Using RDF data for more information
on how this data is handled.

• csv and opencypher, which are csv-based formats with schema restrictions. A csv file must
contain a header row and the column values. The remainder of the files are interpreted based on
the corresponding header column. The header could contain predefined system column names
and user-defined column names annotated with predefined datatypes and cardinality.

• Parquet, which is an open source, column-oriented data file format designed for efficient data
storage and retrieval. It provides high performance compression and encoding schemes to
handle complex data in bulk. The data for each column in a Parquet file is stored together.

It's possible to combine CSV, RDF and Parquet data in the same graph, for example by first loading
CSV data and enriching it with RDF data.

Using CSV data

Neptune Analytics, like Neptune Database, supports two csv formats for loading graph data: csv
and opencypher. Both are csv-based formats with a specified schema. A csv file must contain
a header row and the column values. The remainder of the files are interpreted based on the
corresponding header column. The header could contain predefined system column names and
user-defined column names, annotated with predefined datatypes and cardinality.

Differences with Neptune csv (opencypher) format

Edge files:

• The ~id (:ID) column in edge (relationship) files in CSV (opencypher) format are not
supported. They are ignored if provided in any of the edge (relationship) files.

Vertex files:

• Only explicitly provided labels are associated with the vertices. If the label provided is empty, the
vertex would be added without a label. If a row contains just the vertex id without any labels or

Data formats 49

https://docs.aws.eu//neptune/latest/userguide/bulk-load-tutorial-format.html
https://docs.aws.eu//neptune/latest/userguide/bulk-load-tutorial-format-rdf.html
https://docs.aws.eu//neptune/latest/userguide/bulk-load-tutorial-format-gremlin.html
https://docs.aws.eu//neptune/latest/userguide/bulk-load-tutorial-format-opencypher.html
https://docs.aws.eu//neptune-analytics/latest/userguide/using-Parquet-data.html
https://docs.aws.eu//neptune/latest/userguide/bulk-load-tutorial-format.html
https://docs.aws.eu//neptune/latest/userguide/bulk-load-tutorial-format-gremlin.html
https://docs.aws.eu//neptune/latest/userguide/bulk-load-tutorial-format-opencypher.html

Neptune Analytics Neptune Analytics User Guide

properties then the row is ignored, and no vertex is added. For more information about vertices,
see vertices.

• A new column type Vector is supported for associating embeddings with vertices. Since
Neptune Analytics only supports one index type at this moment, the property name for
embeddings is currently fixed to Embeddings. If the element type of the embeddings are
not floating point (FP32), they will be typecasted to FP32. The embeddings in the csv files
are optional when the vector index is enabled. This means that not every node needs to be
associated with an embedding. If you want to set up a vector index for the graph, choose use
vector dimension and then specify the number of dimensions for the vectors in the index.
Note that the dimension must match the dimension of the embeddings in the vertex files. For
more details of loading embeddings, refer to vector-index.

Edge or vertex files:

• Unlike Neptune Database, a vertex identifier could appear just in edge files. Neptune Analytics
allows loading just the edge data from files in Amazon S3, and running an algorithm over the
data without needing to provide any additional vertex information. The edges are created
between vertices with the given identifiers, and the vertices have no labels or properties unless
any are provided in the vertex files. For more information on vertices and what they are, see
vertices.

• Date column type is supported. The following date formats are supported: yyyy-MM-dd, yyyy-
MM-dd[+|-]hhmm. To include time along with date, use the Datetime column type instead.

• The datetime values can either be provided in the XSD format or one of the following formats:

• yyyy-MM-dd

• yyyy-MM-ddTHH:mm

• yyyy-MM-ddTHH:mm:ss

• yyyy-MM-ddTHH:mm:ssZ

• yyyy-MM-ddTHH:mm:ss.SSSZ

• yyyy-MM-ddTHH:mm:ss[+|-]hhmm

• yyyy-MM-ddTHH:mm:ss.SSS[+|-]hhmm

• Float and double values in scientific notation are currently not supported. Also, Infinity, INF,
-Infinity, -INF, and NaN (Not-a-number) values are supported.

• Gzip files are not supported.

Using CSV data 50

https://docs.aws.eu//neptune-analytics/latest/userguide/vector-index.html
https://www.w3.org/TR/xmlschema-2/

Neptune Analytics Neptune Analytics User Guide

• The maximum length of the strings supported is smaller, and limited to 1,048,062 bytes. The
limit would be lower for strings with unicode characters since some unicode characters are
represented using multiple bytes.

• Multi-line string values are not supported. Imports behavior is undefined if the dataset contains
multi-line string values.

• Quoted string values must not have a leading space between the delimiter and quotes. For
example, if a line is abc, “def” then that is interpreted as a line with two fields, with string
values of abc and “def”. “def" is a non-quoted string field and quotes are stored as-is in the
value, with a size of 6 characters. If the line is abc,“def” then it is interpreted as a line with two
fields with string values abc and def.

• A column type Any is supported in the user columns. An Any type is a type “syntactic sugar” for
all of the other types we support. It is extremely useful if a user column has multiple types in it.
The payload of an Any type value is a list of json strings as follows: "{""value"": ""10"",
""type"": ""Int""};{""value"": ""1.0"", ""type"": ""Float""}" , which has a
value field and a type field in each individual json string. The column header of an Any type is
propertyname:Any. The cardinality value of an Any column is set, meaning that the column
can accept multiple values.

• Neptune Analytics supports the following types in an Any type: Bool (or Boolean), Byte,
Short, Int, Long, UnsignedByte, UnsignedShort, UnsignedInt, UnsignedLong, Float,
Double, Date, dateTime, and String.

• Vector type is not supported in Any type.

• Nested Any type is not supported. For example, "{""value"": "{""value"": ""10"",
""type"": ""Int""}", ""type"": ""Any""}".

Using Parquet data

Neptune Analytics supports importing data using the Parquet format. A Parquet file must contain
a header row and the column values. The remainder of the files are interpreted based on the
corresponding header column. The header should contain predefined system column names and/or
user-defined column names. Aside from the header row and column values, a Parquet file also has
metadata which is stored in-line with the Parquet file, and is used in the reading and decoding of
said data.

Using Parquet data 51

Neptune Analytics Neptune Analytics User Guide

Note

Compression for Parquet format is not supported at this time.

System column headers

The required and allowed system column headers are different for vertex files and edge files. Each
system column can appear only once in a header. All labels are case sensitive.

Note

The ~id column in edge (relationship) files in Parquet format are not supported. They
are ignored if provided in any of the edge (relationship) files.

Vertex headers

• ~id - Required. An id for the vertex.

• ~label - Optional. A label for the vertex, multiple label values are supported, separated by
semicolons (;).

Edge headers

• ~from - Required. The vertex id of the from vertex.

• ~to - Required. The vertex id of the to vertex.

• ~label - Optional. A label for the edge. Edges can only have a single label.

Property column headers

Unlike the property column headers of the CSV format, the property column headers of the
Parquet format only need to have the property names, there is no need to have the type names nor
the cardinality.

There are however, some special column types in the Parquet format that requires annotation
in the metadata, including Any type, Date type, and dateTime type. For more details of Any
type, Date type, and dateTime type, please refer to using CSV data. The following object is

Using Parquet data 52

https://docs.aws.eu//neptune-analytics/latest/userguide/using-CSV-data.html

Neptune Analytics Neptune Analytics User Guide

an example of the metadata that has Any type column, Date type column and dateTime type
column annotated:

"metadata": {
 "anyTypeColumns": ["UserCol1"],
 "dateTypeColumns": ["UserCol2"],
 "dateTimeTypeColumns": ["UserCol3"]
}

Note

Space, comma, carriage return and newline characters are not allowed in the column
headers, so property names cannot include these characters.

Using RDF data

Neptune Analytics supports importing RDF data using the n-triples format. The handling of RDF
values is described below, including how RDF data is interpreted as LPG concepts and can be
queried using openCypher.

Handling of RDF values

The handling of RDF specific values, that don‘t have a direct equivalent in LPG, is described here.

IRIs

Values of type IRI, like <http://example.com/Alice> , are stored as such. IRIs and Strings are
distinct data types.

Calling openCypher function TOSTRING() on an IRI returns a string containing the IRI wrapped
inside <>. For example, if x is the IRI <http://example.com/Alice>, then TOSTRING(x)
returns "<http://example.com/Alice>". When serializing openCypher query results in json
format, IRI values are included as strings in this same format.

Language-tagged literals

Values like "Hallo"@de are treated as follows:

• When used as input for openCypher string functions, like trim(), a language-tagged string is
treated as a simple string; so trim("Hallo"@de) is equivalent to trim("Hallo").

Using RDF data 53

Neptune Analytics Neptune Analytics User Guide

• When used in comparison operations, like x = y or x <> y or x < y or ORDER BY, a language-
tagged literal is “greater than” (and thus “not equal to”) the corresponding simple string:
"Hallo" < "Hallo"@de.

Calling a function, such as TOSTRING() on a language-tagged literal, returns that literal as a string
without language tag. For example, if x is the value "Hallo"@de, then TOSTRING(x) returns
"Hallo". When serializing openCypher query results in JSON format, language-tagged literals are
also serialized as strings without an associated language tag.

Blank nodes

Blank nodes in n-triples data files are replaced with globally unique IRIs at import time.

Loading RDF datasets that contains blank nodes is supported; but those blank nodes are
represented as IRIs in the graph. When loading ntriples files the parameter blankNodeHandling
needs to be specified, with the value convertToIri.

The generated IRI for a blank node has the format: <http://aws.amazon.com/neptune/
vocab/v01/BNode/scope#id>

In these IRIs, scope is a unique identifier for the blank node scope, and id is the blank node
identifier in the file. For example for a blank node _:b123 the generated IRI could be <http://
aws.amazon.com/neptune/vocab/v01/BNode/737c0b5386448f78#b123>.

The blank node scope (e.g. 737c0b5386448f78) is generated by Neptune Analytics and designates
one file within one load operation. This means that when two different ntriples files reference the
same blank node identifier, like _:b123, there will be two IRIs generated, namely one for each file.
All references to _:b123 within the first file will end up as references to the first IRI, like <http://
aws.amazon.com/neptune/vocab/v01/BNode/1001#b123>, and all references within the
second file will end up referring to another IRI, like <http://aws.amazon.com/neptune/
vocab/v01/BNode/1002#b123>.

Referencing IRIs in queries

There are two ways to reference an IRI in an openCypher query:

• Wrap the full IRI inside < and > . Depending on where in the query this IRI is referenced, the IRI is
then provided as a String, such as "<http://example.com/Alice>" (when the IRI is the value
of property ~id), or in backticks such as `<http://example.com/Alice>` (when the IRI is a
label, or property key).

Using RDF data 54

Neptune Analytics Neptune Analytics User Guide

CREATE (:`<http://xmlns.com/foaf/0.1/Person>` {`~id`: "<http://example.com/Alice>"})

• Define a PREFIX at the start of the query, and inside the query reference an IRI using
prefix::suffix. For example, after PREFIX ex: <http://example.com/> the reference
ex::Alice also references the full IRI <http://example.com/Alice>.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX ex: <http://example.com/>
CREATE (: foaf::Person {`~id`: ex::Alice})

Additional query examples below show the use of both full IRIs and the prefix syntax.

Mapping RDF triples to LPG concepts

There are three rules that define how RDF triples correspond to LPG concepts:

Case RDF triple # LPG concept

Case #1 { <iri> rdf:type <iri> } # vertex with id + label
Case #2 { <iri> <iri> "literal"} # vertex property
Case #3 { <iri> <iri> <iri> } # edge with label

Case #1: Vertex with id and label

A triple like:

<http://example.com/Alice> rdf:type <http://xmlns.com/foaf/0.1/Person>

is equivalent to creating the vertex in openCypher like:

CREATE (:`<http://xmlns.com/foaf/0.1/Person>` {`~id`: "<http://example.com/Alice>"})

In this example, the vertex label <http://xmlns.com/foaf/0.1/Person> is interpreted and
stored as an IRI.

Using RDF data 55

Neptune Analytics Neptune Analytics User Guide

Note

The back quote syntax `` is part of openCypher which allows inserting characters that
normally cannot be used in labels. Using this mechanism, it’s possible to include complete
IRIs in a query.

Using PREFIX, the same CREATE query could look like:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX ex: <http://example.com/>
CREATE (: foaf::Person {`~id`: ex::Alice})

To match the newly created vertex based on its id:

MATCH (v {`~id`: "<http://example.com/Alice>"}) RETURN v

or equivalently:

PREFIX ex: <http://example.com/>
MATCH (v {`~id`: ex::Alice}) RETURN v

To find vertices with that RDF Class/LPG Label:

MATCH (v:`<http://xmlns.com/foaf/0.1/Person>`) RETURN v

or equivalently:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
MATCH (v : foaf::Person) RETURN v

Case #2: Vertex property

A triple like:

<http://example.com/Alice> <http://xmlns.com/foaf/0.1/name> "Alice Smith"

is equivalent to defining with openCypher node with a given ~id and property, where both the ~id
and the property key are IRIs:

Using RDF data 56

Neptune Analytics Neptune Analytics User Guide

CREATE ({`~id`: "<http://example.com/Alice>",
 `<http://xmlns.com/foaf/0.1/name>`: "Alice Smith" })

or equivalently:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX ex: <http://example.com/>
CREATE ({`~id`: ex::Alice, foaf::name: "Alice Smith" })

To match the vertex with that property:

MATCH (v {`<http://xmlns.com/foaf/0.1/name>`: "Alice Smith"}) RETURN v

or equivalently:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
MATCH (v { foaf::name : "Alice Smith"}) RETURN v

Case #3: Edge

A triple like:

<http://example.com/Alice> <http://example.com/knows> <http://example.com/Bob>

is equivalent to defining with OpenCypher an edge like this, where the edge label and vertices ids
are all IRIs:

CREATE ({`~id`: "<http://example.com/Alice>"})
 -[:`<http://example.com/knows>`]->({`~id`: "<http://example.com/Bob>"})

or equivalently:

PREFIX ex: <http://example.com/>
CREATE ({`~id`: ex::Alice })-[: ex::knows]->({`~id`: ex::Bob })

To match the edges with that label:

MATCH (v)-[:`<http://example.com/knows>`]->(w) RETURN v, w

Using RDF data 57

Neptune Analytics Neptune Analytics User Guide

or equivalently:

PREFIX ex: <http://example.com/>
MATCH (v)-[: ex::knows]->(w) RETURN v, w

Query Examples

Matching language-tagged literals

If this triple was loaded from a dataset:

<http://example.com/German> <http://example.com/greeting> "Hallo"@de

then it will not be matched by this query:

MATCH (n) WHERE n.`<http://example.com/greeting>` = "Hallo"

because the language-tagged literal "Hallo"@de and the string “Hallo” are not equal. For more
information, see Language-tagged literals. The query can use TOSTRING() in order to find the
match:

MATCH (n) WHERE TOSTRING(n.`<http://example.com/greeting>`) = "Hallo"

Batch load

Neptune Analytics supports a CALL procedure neptune.load to load data from Amazon S3, to
insert new vertices, edges, and properties, or to update single cardinality vertex property values.
It executes as a mutation query and does atomic writes. It uses the IAM credentials of the caller
to access the data in Amazon S3. See Create your IAM role for Amazon S3 access to set up the
permissions.

Request syntax

The signature of the CALL procedure is shown below:

CALL neptune.load(
 {
 source: "string",

Batch load 58

Neptune Analytics Neptune Analytics User Guide

 region: "us-east-1",
 format: "csv",
 failOnError: true,
 concurrency: 1
 }
)

• source (required) – An Amazon S3 URI prefix. All object names with matching prefixes are loaded.
See Neptune Database loader reference for Amazon S3 URI prefix examples. The IAM user who
signs the openCypher request must have permissions to list and download these objects, and
must be authorized for WriteDataViaQuery and DeleteDataViaQuery actions. See IAM role
mapping for more IAM authentication related details.

• region (required) – The AWS region where the Amazon S3 bucket is hosted. Currently, cross-
region loads are not supported.

• format (required) – The data format of the Amazon S3 data to be loaded, valid options are csv,
opencypher, ntriples or parquet. For more information, see Data format for loading from
Amazon S3 into Neptune Analytics.

• ParquetType (required if the format is parquet) - The data type of the Parquet format, with the
only valid option being columnar. For more information, see Using Parquet data.

• blankNodeHanding(must be provided when format is ntriples) - The method to handle blank
nodes in the dataset. Currently, only convertToIri is supported, meaning blank nodes are
converted to unique IRIs at load time. For more information, see Handling RDF values.

• failOnError (optional) default: true – If set to true (the default), the load process halts
whenever there is an error parsing or inserting data. If set to false, the load process continues
and commits whatever data was successfully inserted.

The edge or relationship data should be loaded with failOnError set to true, to avoid
duplication of partially committed edges or relationships in subsequent loads.

• concurrency (optional) default: 1 – This value controls the number of threads used to run the load
process, up to the maximum available.

Note

Unlike bulk import, there is no need to pass the role-arn for batch load since the IAM
credentials of the signer of the openCypher query are used to download data from Amazon
S3. The signer must have permissions to download data from Amazon S3 with the trust

Request 59

https://docs.aws.eu//neptune/latest/userguide/load-api-reference-load.html#load-api-reference-load-parameters
https://docs.aws.eu//neptune-analytics/latest/userguide/query-APIs-IAM-role-mappings.html
https://docs.aws.eu//neptune-analytics/latest/userguide/query-APIs-IAM-role-mappings.html
https://docs.aws.eu//neptune-analytics/latest/userguide/using-rdf-data.html#rdf-handling

Neptune Analytics Neptune Analytics User Guide

relationship set up to assume the role, so that Neptune Analytics can assume the role to
load the data into the graph from files in Amazon S3.

Response syntax

A sample response is shown below.

{
 "results": [
 {
 "totalRecords": 108070,
 "totalDuplicates": 46521,
 "totalTimeSpentMillis": 558,
 "numThreads": 16,
 "insertErrors": 0,
 "throughputRecordsPerSec": 193673,
 "loadId": "13a60c3b-754d-c49b-4c23-06b9dd5b346b"
 }
]
}

• totalRecords: The number of graph elements - vertex labels, edges, and properties -
attempted for insertion.

• totalDuplicates: The count of duplicate graph elements - vertex labels or properties -
encountered. These elements may have pre-existed before the load request or were duplicates
within the input CSV files. Each edge is treated as new, so edges are excluded from this count.

• totalTimeSpentMillis: The total time taken for downloading, parsing, and inserting data
from CSV files, excluding the request queue time.

• numThreads: The number of threads utilized for downloading and inserting data. This correlates
with the provided concurrency parameter input, reflecting any caps applied.

• insertErrors: Errors faced during insertions, including parsing errors and Amazon S3 access
issues. Error details are available in the CloudWatch logs. Refer to the Troubleshooting section
of this document to understand troubleshooting insertErrors. Concurrent modification errors
may also cause insert errors in batch loads attempting to modify a vertex property value being
concurrently changed by another request.

• throughputRecordsPerSec: The total throughput in records per second.

Response 60

Neptune Analytics Neptune Analytics User Guide

• loadId: The loadId for searching errors and load summary. All batch information is published to
CloudWatch logs under /aws/neptune/import-task-logs/<graph-id>/<load-id>.

Note

Around 2.5Gb of Amazon S3 files can be loaded in a single request on 128 m-NCU. Larger
sized datasets could run into out of memory errors. To workaround that, the Amazon
S3 files can be split across multiple serial batch load requests. The source argument takes
a prefix, so files can be partitioned across requests by including prefixes of file names.
The limit scales linearly based on m-NCUs, so for example 5Gb of Amazon S3 files can be
loaded in a single request on 256 m-NCU. Also, if the dataset contains larger string values
for example, then larger volumes of data can also be ingested in a single request, since they
would generate fewer number of graph elements per byte of dataset. It is recommended to
run tests with your data to determine the exact details for this process.

Important

Duplicate edges get created if the same edge file content is loaded more than once. This
could happen if, for example:

1. The same Amazon S3 source or file is accidentally included for load in more than one
request that succeeded.

2. The edge data is first loaded with failOnError set to false and runs into partial errors,
and the errors are fixed and the entire dataset is reloaded. All of the edges that were
successfully inserted on the first request would get duplicated after the second request.

Bulk import data into a graph

The task system in Neptune Analytics provides a powerful and flexible way to bulk import data
into your graph. The import task is specifically designed to handle large-scale data ingestion from
various data formats.

To initiate a bulk data import, you would first create an import task by specifying the data source,
the target graph, and any necessary configuration options. This can be done through the AWS
console or programmatically via the API.

Bulk import 61

https://docs.aws.eu//neptune-analytics/latest/userguide/loading-data-formats.html

Neptune Analytics Neptune Analytics User Guide

Throughout the import process, you can monitor the progress of the import task through the user
interface or via API calls. Progress reports, and any potential errors or warnings will be accessible in
your CloudWatch account, allowing for close monitoring and troubleshooting if needed.

Importing of data through Import Task is supported in two ways:

• During graph creation: Create a graph from Amazon S3, a Neptune cluster, or a snapshot

• On an existing empty graph: Bulk import data into an existing Neptune Analytics graph

Create a graph from Amazon S3, a Neptune cluster, or a snapshot

You can create a Neptune Analytics graph directly from Amazon S3 or from Neptune using the
CreateGraphUsingImportTask API. This is recommended for importing large graphs from files in
Amazon S3 (>50GB of data), importing from existing Neptune clusters, or importing from existing
Neptune snapshots. This API automatically analyzes the data, provisions a new graph based on the
analysis, and imports data as one atomic operation using maximum available resources.

Note

The graph is made available for querying only after the data loading is completed
successfully.

If errors are encountered during the import process, Neptune Analytics will automatically roll back
the provisioned resources, and perform the cleanup. No manual cleanup actions are needed. Error
details are available in the CloudWatch logs. See troubleshooting for more details.

Topics

• Creating a Neptune Analytics graph from Amazon S3

• Creating a Neptune Analytics graph from Neptune cluster or snapshot

Creating a Neptune Analytics graph from Amazon S3

Neptune Analytics supports bulk importing of CSV, ntriples, and Parquet data directly from
Amazon S3 into a Neptune Analytics graph using the CreateGraphUsingImportTask API.
The data formats supported are listed in Data format for loading from Amazon S3 into Neptune
Analytics. It is recommended that you try the batch load process with a subset of your data first

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 62

https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraphUsingImportTask.html

Neptune Analytics Neptune Analytics User Guide

to validate that it is correctly formatted. Once you have validated that your data files are fully
compatible with Neptune Analytics, you can prepare your full dataset and perform the bulk import
using the steps below.

A quick summary of steps needed to import a graph from Amazon S3:

• Copy the data files to an Amazon S3 bucket: Copy the data files to an Amazon Simple Storage
Service bucket in the same region where you want the Neptune Analytics graph to be created.
See Data format for loading from Amazon S3 into Neptune Analytics for the details of the
format when loading data from Amazon S3 into Neptune Analytics.

• Create your IAM role for Amazon S3 access: Create an IAM role with read and list access to
the bucket and a trust relationship that allows Neptune Analytics graphs to use your IAM role for
importing.

• Use the CreateGraphUsingImportTask API to import from Amazon S3: Create a graph using
the CreateGraphUsingImportTask API. This will generate a taskId for the operation.

• Use the GetImportTask API to get the details of the import task. The response will indicate the
status of the task (ie. INITIALIZING, ANALYZING_DATA, IMPORTING etc.).

• Once the task has completed successfully, you will see a COMPLETED status for the import task
and also the graphId for the newly created graph.

• Use the GetGraphs API to fetch all the details about your new graph, including the ARN,
endpoint, etc.

Note

If you're creating a private graph endpoint, the following permissions are required:

• ec2:CreateVpcEndpoint

• ec2:DescribeAvailabilityZones

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:DescribeVpcAttribute

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 63

Neptune Analytics Neptune Analytics User Guide

• ec2:DescribeVpcEndpoints

• ec2:DescribeVpcs

• ec2:ModifyVpcEndpoint

• route53:AssociateVPCWithHostedZone

For more information about required permissions, see Actions defined by Neptune
Analytics.

Copy the data files to an Amazon S3 bucket

The Amazon S3 bucket must be in the same AWS region as the cluster that loads the data. You can
use the following AWS CLI command to copy the files to the bucket.

aws s3 cp data-file-name s3://bucket-name/object-key-name

Note

In Amazon S3, an object key name is the entire path of a file, including the file name.
In the command

aws s3 cp datafile.txt s3://examplebucket/mydirectory/datafile.txt

the object key name is mydirectory/datafile.txt

You can also use the AWS management console to upload files to the Amazon S3 bucket. Open the
Amazon S3 console, and choose a bucket. In the upper-left corner, choose Upload to upload files.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 64

https://docs.aws.eu//service-authorization/latest/reference/list_amazonneptuneanalytics.html#amazonneptuneanalytics-actions-as-permissions
https://docs.aws.eu//service-authorization/latest/reference/list_amazonneptuneanalytics.html#amazonneptuneanalytics-actions-as-permissions
https://console.aws.amazon.com/s3/

Neptune Analytics Neptune Analytics User Guide

Create your IAM role for Amazon S3 access

Create an IAM role with permissions to read and list the contents of your bucket. Add a trust
relationship that allows Neptune Analytics to assume this role for doing the import task. You could
do this using the AWS console, or through the CLI/SDK.

1. Open the IAM console at https://console.aws.amazon.com/iam/. Choose Roles, and then choose
Create Role.

2. Provide a role name.

3. Choose Amazon S3 as the AWS service.

4. In the permissions section, choose AmazonS3ReadOnlyAccess.

Note

This policy grants s3:Get* and s3:List* permissions to all buckets. Later steps restrict
access to the role using the trust policy. The loader only requires s3:Get* and s3:List*
permissions to the bucket you are loading from, so you can also restrict these
permissions by the Amazon S3 resource. If your Amazon S3 bucket is encrypted, you
need to add kms:Decrypt permissions as well. kms:Decrypt permission is needed for
the exported data from Neptune Database

5. On the Trust Relationships tab, choose Edit trust relationship, and paste the following trust
policy. Choose Save to save the trust relationship.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "neptune-graph.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 }

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 65

https://console.aws.amazon.com/iam/

Neptune Analytics Neptune Analytics User Guide

Your IAM role is now ready for import.

Use the CreateGraphUsingImportTask API to import from Amazon S3

You can perform this operation from the Neptune console as well as from AWS CLI/SDK. For more
information on different parameters, see https://docs.aws.eu//neptune-analytics/latest/apiref/
API_CreateGraphUsingImportTask.html

Via CLI/SDK

aws neptune-graph create-graph-using-import-task \
 --graph-name <name> \
 --format <format> \
 --source <s3 path> \
 --role-arn <role arn> \
 [--blank-node-handling "convertToIri"--] \
 [--fail-on-error | --no-fail-on-error] \
 [--deletion-protection | --no-deletion-protection]
 [--public-connectivity | --no-public-connectivity]
 [--min-provisioned-memory]
 [--max-provisioned-memory]
 [--vector-search-configuration]

• Different Minimum and Maximum Provisioned Memory: When the --min-provisioned-
memory and --max-provisioned-memory values are specified differently, the graph is created
with the maximum provisioned memory specified by --max-provisioned-memory.

• Single Provisioned Memory Value: When only one of --min-provisioned-memory or --
max-provisioned-memory is provided, the graph is created with the specified memory value.

• No Provisioned Memory Values: If neither --min-provisioned-memory nor --max-
provisioned-memory is provided, the graph is created with a default provisioned memory of
128 m-NCU (memory optimized Neptune Compute Units).

Example 1: Create a graph from Amazon S3, with no min/max provisioned memory.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \
 --format CSV

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 66

https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraphUsingImportTask.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraphUsingImportTask.html

Neptune Analytics Neptune Analytics User Guide

Example 2: Create a graph from Amazon S3, with min & max provisioned memory. A graph with m-
NCU of 1024 is created.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \
 --format CSV
 --min-provisioned-memory 128 \
 --max-provisioned-memory 1024

Example 3: Create a graph from Amazon S3, and not fail on parsing errors.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \
 --format CSV
 --no-fail-on-error

Example 4: Create a graph from Amazon S3, with 2 replicas.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \
 --format CSV
 --replica-count 2

Example 5: Create a graph from Amazon S3 with vector search index.

Note

The dimension must match the dimension of the embeddings in the vertex files.

aws neptune-graph create-graph-using-import-task \
 --graph-name 'graph-1' \
 --source "s3://bucket-name/gremlin-format-dataset/" \
 --role-arn "arn:aws:iam::<account-id>:role/<role-name>" \

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 67

Neptune Analytics Neptune Analytics User Guide

 --format CSV
 --replica-count 2 \
 --vector-search-configuration "{\"dimension\":768}"

Via Neptune console

1. Start the Create Graph wizard and choose Create graph from existing source.

2. Choose type of source as Amazon S3, minimum and maximum provisioned memory, Amazon S3
path, and load role ARN.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 68

Neptune Analytics Neptune Analytics User Guide

3. Choose the Network Settings and Replica counts.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 69

Neptune Analytics Neptune Analytics User Guide

4. Create graph.

Creating a Neptune Analytics graph from Neptune cluster or snapshot

Neptune Analytics provides an easy way to bulk import data from an existing
Neptune Database cluster or snapshot into a new Neptune Analytics graph, using the
CreateGraphUsingImportTask API. Data from your source cluster or snapshot is bulk exported
into an Amazon S3 bucket that you configure, analyzed to find the right memory configuration,
and bulk imported into a new Neptune Analytics graph. You can check the progress of your bulk
import at any time using the GetImportTask API as well.

A few things to consider while using this feature:

• You can only import from Neptune Database clusters and snapshots running on a version newer
than or equal to 1.3.0.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 70

Neptune Analytics Neptune Analytics User Guide

• Import from an existing Neptune Database cluster only supports the ingest of property graph
data. RDF data within a Neptune Database cluster cannot be ingested using an import task. If
looking to ingest RDF data into Neptune Analytics, this data needs to be manually exported from
the Neptune Database cluster to an Amazon S3 bucket before it can be ingested using an import
task with an Amazon S3 bucket source.

• The exported data from your source Neptune Database cluster or snapshot will reside
in your buckets only, and will be encrypted using a KMS key that you provide. The
exported data is not directly consumable in any other way into Neptune outside of the
CreateGraphUsingImportTask API. The exported data is not used after the lifetime of the
request, and can be deleted by the user.

• You need to provide permissions to perform the export task on the Neptune Database cluster or
snapshot, write to your Amazon S3 bucket, and use your KMS key while writing data.

• If your source is a Neptune Database cluster, a clone is taken from it and used for export. The
original Neptune Database cluster will not be impacted. The cloned cluster is internally managed
by the service and is deleted upon completion.

• If your source is a Neptune snapshot, a restored DBCluster is created from it, and used for export.
The restored cluster is internally managed by the service and is deleted upon completion.

• This process is not recommended for small sized graphs. The export process is async, and works
best for medium/large sized graphs with a size greater than 25GB. For smaller graphs, a better
alternative is to use the Neptune export feature to generate CSV data directly from your source,
upload that to Amazon S3 and then use the Batch load API instead.

A quick summary of steps to import from a Neptune cluster or a Neptune snapshot:

1. Obtain the ARN of your Neptune cluster or snapshot: This can be done from the AWS console or
using the Neptune CLI.

2. Create an IAM role with permissions to export from Neptune to Neptune Analytics: Create an
IAM role that has permissions to perform an export of your Neptune graph, write to Amazon S3
and use your KMS key for writing data in Amazon S3.

3. Use the CreateGraphUsingImportTask API with source = NEPTUNE, and provide the ARN
of your source, Amazon S3 path to export the data, KMS key to use for exporting data and
additional arguments for your Neptune Analytics graph. This should return a task-id.

4. Use GetImportTask API to get the details of your task.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 71

https://docs.aws.eu//neptune/latest/userguide/neptune-export.html

Neptune Analytics Neptune Analytics User Guide

Obtain the ARN of your Neptune cluster or snapshot

The following instructions demonstrate how to obtain the Amazon Resource Name (ARN) for an
existing Amazon Neptune database cluster or snapshot using the AWS Command Line Interface
(CLI). The ARN is a unique identifier for an AWS resource, such as a Neptune cluster or snapshot,
and is commonly used when interacting with AWS services programmatically or through the AWS
management console.

Via the CLI:

Obtaining the ARN of an existing DB Cluster
 aws neptune describe-db-clusters \
 --db-cluster-identifier *<name> \
 --query 'DBClusters[0].DBClusterArn'

 # Obtaining the ARN of an existing DB Cluster Snapshot
 aws neptune describe-db-cluster-snapshots \
 --db-cluster-snapshot-identifier <snapshot name> \
 --query 'DBClusterSnapshots[0].DBClusterSnapshotArn'

Via the AWS console. The ARN can be found on the cluster details page.

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 72

Neptune Analytics Neptune Analytics User Guide

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 73

Neptune Analytics Neptune Analytics User Guide

Create an IAM role with permissions to export from Neptune to Neptune Analytics

1. Open the IAM console at https://console.aws.amazon.com/iam/. Choose Roles, and then choose
Create Role.

2. Provide a role name.

3. Choose Amazon S3 as the AWS service.

4. In the permissions section, choose:

• AmazonS3FullAccess

• NeptuneFullAccess

• AmazonRDSFullAccess

5. Also create a custom policy with at least the following permissions for the AWS KMS key used:

• kms:ListGrants

• kms:CreateGrant

• kms:RevokeGrant

• kms:DescribeKey

• kms:GenerateDataKey

• kms:Encrypt

• kms:ReEncrypt*

• kms:Decrypt

Note

Make sure there are no resource-level Deny policies attached to your AWS KMS key. If
there are, explicitly allow the AWS KMS permissions for the Export role.

6. On the Trust Relationships tab, choose Edit trust relationship, and paste the following trust
policy. Choose Save to save the trust relationship.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 74

https://console.aws.amazon.com/iam/

Neptune Analytics Neptune Analytics User Guide

 "Service": [
 "export.rds.amazonaws.com",
 "neptune-graph.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
 }

Your IAM role is now ready for import.

Via CLI/SDK

For importing data via Neptune , the API expects additional import-options as defined here
NeptuneImportOptions .

Example 1: Create a graph from a Neptune cluster.

aws neptune-graph create-graph-using-import-task \
 --graph-name <graph-name>
 --source arn:aws:rds:<region>:123456789101:cluster:neptune-cluster \
 --min-provisioned-memory 1024 \
 --max-provisioned-memory 1024 \
 --role-arn <role-arn> \
 --import-options '{"neptune": {
 "s3ExportKmsKeyId":"arn:aws:kms:<region>:<account>:key/<key>",
 "s3ExportPath": :"<s3 path for exported data>"
 }}'

Example 2: Create a graph from a Neptune cluster with the default vertex preserved.

aws neptune-graph create-graph-using-import-task \
 --graph-name <graph-name>
 --source arn:aws:rds:<region>:123456789101:cluster:neptune-cluster \
 --min-provisioned-memory 1024 \
 --max-provisioned-memory 1024 \
 --role-arn <role-arn> \
 --import-options '{"neptune": {
 "s3ExportKmsKeyId":"arn:aws:kms:<region>:<account>:key/<key>",
 "s3ExportPath": :"<s3 path for exported data>",
 "preserveDefaultVertexLabels" : true

Create a graph from Amazon S3, a Neptune cluster, or a snapshot 75

https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_NeptuneImportOptions.html
https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_NeptuneImportOptions.html

Neptune Analytics Neptune Analytics User Guide

 }}'

Example 3: Create a graph from Neptune cluster with the default edge Id preserved

aws neptune-graph create-graph-using-import-task \
 --graph-name <graph-name>
 --source arn:aws:rds:<region>:123456789101:cluster:neptune-cluster \
 --min-provisioned-memory 1024 \
 --max-provisioned-memory 1024 \
 --role-arn <role-arn> \
 --import-options '{"neptune": {
 "s3ExportKmsKeyId":"arn:aws:kms:<region>:<account>:key/<key>",
 "s3ExportPath": :"<s3 path for exported data>",
 "preserveEdgeIds" : true
 }}'

Bulk import data into an existing Neptune Analytics graph

Neptune Analytics now allows you to efficiently import large datasets into an already provisioned
graph database using the StartImportTask API. This API facilitates the direct loading of data
from an Amazon S3 bucket into an empty Neptune Analytics graph. This is designed for loading
data into existing empty clusters.

Two common use cases for using this feature:

1. Bulk importing data multiple times without provisioning a new graph for each dataset. This
helps during the development phase of a project where datasets are being converted into
Neptune Analytics compatible load formats.

2. Use cases where graph provisioning privileges need to be separated from data operation
privileges. For example, scenarios where graph provisioning needs to be done by only by the
infrastructure team, and data loading and querying is done by the data engineering team.

For use cases where you want to create a new graph loaded with data, use the
CreateGraphUsingImportTask API instead.

For incrementally loading data from Amazon S3 you can use the loader integration with the
openCypher CALL clause. For more information see Batch load.

Prerequisites

Bulk import data into an existing Neptune Analytics graph 76

Neptune Analytics Neptune Analytics User Guide

• An empty Amazon Neptune Analytics graph.

• Data stored in an Amazon Amazon S3 bucket in the same region as the graph.

• An IAM role with permissions to access the Amazon S3 bucket. For more information, see Create
your IAM role for Amazon S3 access.

Important considerations

• Data integrity: The StartImportTask API is designed to work with graphs that are empty. If
your graph contains data, you can first reset the graph using the reset-graph API. If the Import
task finds that the graph is not empty the operation will fail. This operation will delete all data
from the graph, so ensure you have backups if necessary. You can use the create-graph-snapshot
API to create snapshot of your existing graph.

• Atomic Operation: The data import is atomic, meaning it either completes fully or does not
apply at all. If the import fails we would reset the state back to an empty graph.

• Format Support: Loading data supports the same data format as supported by create-graph-
using-import-task and neptune.load() This API doesn’t support importing data from
Neptune .

• Queries: Queries will stop working while the import is in progress. You will get a Cannot
execute any query until bulk import is complete error until the import finishes.

Steps for bulk importing data

1. Resetting the graph (if necessary):

If your graph is not empty, reset it using the following command:

aws neptune-graph reset-graph --graph-identifier <graph-id>

Note

This command will completely remove all existing data from your graph. It is
recommended that you take a graph snapshot before performing this action.

2. Start the import task:

To load data into your Neptune graph, use the start-import-task command as follows:

Bulk import data into an existing Neptune Analytics graph 77

https://docs.aws.eu//neptune-analytics/latest/apiref/API_ResetGraph.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraphSnapshot.html

Neptune Analytics Neptune Analytics User Guide

aws neptune-graph start-import-task \
--graph-identifier <graph-id> \
--source <s3-path-to-data> \
--format <data-format> \
--role-arn <IAM-role-ARN> \
[--fail-on-error | --no-fail-on-error]

• graph-identifier: The unique identifier of your Neptune graph.

• source: An Amazon S3 URI prefix. All object names with matching prefixes are loaded. See
Neptune loader request parameters for Amazon S3 URI prefix examples.

• format: The data format of the Amazon S3 data to be loaded, either csv, openCypher, or
ntriples. For more information, see Data formats.

• role-arn: The ARN of the IAM role that Neptune Analytics can assume to access your
Amazon S3 data.

• (--no-)fail-on-error: (Optional) Stops the import process early if an error occurs. By
default, the system attempts to stop at the first error.

Troubleshooting bulk import

The following troubleshooting guidance is for common errors encountered during bulk import of
data into an Amazon Neptune graph database. It covers three main issues: the Amazon S3 bucket
and the graph being in different regions, the IAM role used not having the correct permissions, and
the bulk load files in a public Amazon S3 bucket not being made public for reading.

Common errors

1. The Amazon S3 bucket and your graph are in different regions.

Verify that your graph and the Amazon S3 bucket are in the same region. Neptune Analytics only
supports loading data in the same region.

export GRAPH_ID="<graphId>" // Replace with your graph identifier
export S3_BUCKET_NAME="<bucketName>" // Replace with your S3 bucket which
 contains your graph data files.

Make sure your graph and S3 bucket are in the same region
aws neptune-graph get-graph --graph-identifier $GRAPH_ID

Bulk import data into an existing Neptune Analytics graph 78

Neptune Analytics Neptune Analytics User Guide

aws s3api get-bucket-location --bucket $S3_BUCKET_NAME

2. The IAM role used does not have the correct permissions.

Verify that you have created the IAM role correctly with read permission to Amazon S3 - see
Create your IAM role for Amazon S3 access.

export GRAPH_EXEC_ROLE="GraphExecutionRole"
aws iam list-attached-role-policies --role-name $GRAPH_EXEC_ROLE
Output should contain "PolicyName": "AmazonS3*Access".

3. The AssumeRole permission is not granted to Neptune Analytics through the
AssumeRolePolicy.

Verify that you have attached the policy that allows Neptune Analytics to assume the IAM role
to access the Amazon S3 bucket. See Create your IAM role for Amazon S3 access.

export GRAPH_EXEC_ROLE="GraphExecutionRole" // Replace with your IAM role.

#Check to make sure Neptune Analytics can assume this role to read from the
 specificed S3 bucket.
aws iam get-role --role-name $GRAPH_EXEC_ROLE --query 'Role.AssumeRolePolicyDocument'
 --output text
Output should contain - SERVICE neptune-graph.amazonaws.com

4. The bulk load files are in a public Amazon S3 bucket, but the files themselves are not made
public for reading.

When adding bulk load files to a public Amazon S3 bucket, ensure that each file's access control
list (ACL) is set to allow public reads. For example, to set this through the AWS CLI:

 aws s3 cp <FileSourceLocation> <FileTargetLocation> --acl public-read

This setting can also be done through the Amazon S3 console or the AWS SDKs. For more
details, refer to the documentation for Configuring ACLs.

Checking the details and progress of an import task

You can use the GetImportTask API to track the progress and the status of your import task.

Checking the details and progress of an import task 79

https://docs.aws.eu//neptune-analytics/latest/userguide/bulk-import-create-from-s3.html#create-iam-role-for-s3-access
https://docs.aws.eu//neptune-analytics/latest/userguide/bulk-import-create-from-s3.html#create-iam-role-for-s3-access
https://docs.aws.eu//neptune-analytics/latest/userguide/bulk-import-create-from-s3.html#create-iam-role-for-s3-access
https://docs.aws.eu//AmazonS3/latest/userguide/managing-acls.html
https://docs.aws.amazon.com/neptune-analytics/latest/apiref/API_GetImportTask.html

Neptune Analytics Neptune Analytics User Guide

aws neptune-graph get-import-task --task-id <task-id>

An Import task can be in the following state:

• INITIALIZING: The task is preparing for import, including provisioning a graph when using the
CreateGraphUsingImportTask API.

• ANALYZING_DATA: The task is taking an initial pass through the dataset to determine the
optimal configuration for the graph.

• IMPORTING: The data is being loaded into the graph.

• EXPORTING: Data is being exported from the Neptune cluster or snapshot. This is only
applicable when performing an import task with a source of Neptune and through the
CreateGraphUsingImportTask API.

• ROLLING_BACK: The import task encountered an error. Refer to the troubleshooting section to
investigate the errors. The import task will be rolled back and eventually marked as FAILED.

• SUCCEEDED: Graph creation and data loading have succeeded. Use the get-graph API to view
details of the final graph.

• REPROVISIONING: A temporary state while the graph is being reconfigured during the import
task.

• FAILED: Graph creation or data loading has failed. Refer to the troubleshooting section to
understand the reason for the failure.

• CANCELLING: The user has cancelled the import task, and cancellation is in progress.

• CANCELLED: The import task has been cancelled, and all resources have been released.

Additionally, import task can be used to track the progress of the load, error count and graph
summary.

Canceling an import task

You can cancel a running import task by using the CancelImportTask API.

aws neptune-graph cancel-import-task \
--task-id <task-id>

The import task will will be canceled and all changes rolled back. The state of the import task will
switch to CANCELING after cancel-import-task API is called and eventually the state will be

Canceling an import task 80

https://docs.aws.eu//neptune-analytics/latest/apiref/API_CancelImportTask.html

Neptune Analytics Neptune Analytics User Guide

CANCELED when rollback finishes. You can check the current state of your import task using the
GetImportTask API.

aws neptune-graph get-import-task \
--task-id <task-id>

Troubleshooting

For both bulk load and batch load, all the errors and summary of the load is sent to the
CloudWatch log group in your account. To view the logs go to CloudWatch, click log groups from
the left column, then search for and click /aws/neptune/import-task-logs/.

1. Batch Load: The logs for each load is saved under /aws/neptune/import-task-logs/
<graph-id>/<load-id> CloudWatch log stream.

2. Bulk Load using Import Task: The logs are saved under /aws/neptune/import-task-logs/
<graph-id>/<task-id> CloudWatch log stream.

• S3_ACCESS_DENIED: The server does not have permissions to list or download the given file. Fix
the permissions and retry. See Create your IAM role for Amazon S3 access for help setting up the
Amazon S3 permissions.

• LARGE_STRING_ERROR: One or more strings exceeded the limit on the size of strings. This data
cannot be inserted as is. Update the strings exceeding the limit and retry.

• PARSING_ERROR: Error parsing the given value(s). Correct the value(s) and retry. More
information on different parsing errors is provided in this section.

• OUT_OF_MEMORY: No more data can be loaded in the current m-NCU. If encountered during
import task, set a higher m-NCU and retry. If encountered during batch load, scale the number of
m-NCU and retry the batch load.

• PARTITION_FULL_ERROR: No more data can be loaded in the internal server configuration. If
encountered during import task, the import workflow would change the server configuration
and retry. If encountered during batch load, reach out to the AWS service team to unblock
loading of new data.

Common parsing errors and solutions

Troubleshooting 81

https://docs.aws.eu//neptune-analytics/latest/userguide/bulk-import-checking-details.html

Neptune Analytics Neptune Analytics User Guide

Error template Solution

Invalid data type encountered for header
val:badtype when parsing line [:ID,firs
tName:String,val:badtype,:L
ABEL] .

Incorrect Datatype provided. Check the
documentation for supported data types. See
Data formats for more information.

Multi-valued columns are not supported
firstName:String[] when parsing
line [:ID,firstName:String[],val
:String,:LABEL] .

The opencypher format does not support
multivalued user defined properties. Try using
the csv format to insert multivalued vertex
properties, or remove multivalued properties.

Bad header for a file in 'OPEN_CYPHER '
format, could not determine node or relations
hip file, found system columns from 'csv'
format when parsing line [~id,firs
tName:String,val:int,:LABEL] .

Both the opencypher and csv format
expect certain header columns to be present.
Make sure you have entered them correctly.

Check the Data formats documentation for
required fields by format.

Bad header for a file in 'OPEN_CYPHER '
format, could not determine node or relations
hip file.

The header of the files does not have the
required system columns. Check the Data
formats for required fields by format.

Relationship file in 'OPEN_CYPHER ' format
should contain both :START_ID and
:END_ID columns when parsing line
[:START_ID,firstName:String] .

The header of the edge files does not have all
the required system columns. Check the Data
formats for required fields by format.

Invalid data type. Found system columns from
'OPEN_CYPHER ' format :ID when parsing
line [:ID,firstName:String,val:I
nt,~label] .

The opencypher and csv formats have
different system column names, and they
begin with : and ~ respectively. User defined
properties cannot begin with those reserved
prefixes in the respective formats. Confirm
the format name and system column names,
or update user defined properties to not use
reserved prefixes.

Troubleshooting 82

Neptune Analytics Neptune Analytics User Guide

Error template Solution

Named column name is not present for header
field :BLAH when parsing line [:ID,:BLA
H,firstName:String] .

The opencypher and csv formats have
different system column names, and they
begin with : and ~ respectively. User defined
properties cannot begin with those reserved
prefixes in the respective formats. Confirm
the format name and system column names,
or update user defined properties to not use
reserved prefixes.

System column other than ID cannot be
stored as a property: <columnHeader>.

The opencypher and csv formats have
different system column names, and they
begin with : and ~ respectively. User defined
properties cannot begin with those reserved
prefixes in the respective formats. Confirm
the format name and system column names,
or update user defined properties to not use
reserved prefixes.

Duplicate user column firstName when
parsing line [:ID,:LABEL, firstName
:String, firstName:String] .

The file contains duplicate user defined
property column names in the header. Remove
all of the duplicate columns.

Duplicate system column :ID found when
parsing line [:ID,:ID,firstName
:String,:LABEL] .

The file contains duplicate system column
names in the header. Remove all of the
duplicate columns.

Invalid column name provided for loading
embeddings: [abcd] for filename: someFilen
ame. Embedding column name must be
the same as their corresponding vector
index name when parsing line [:ID,firs
tName:String,abcd:Vector,:L
ABEL] in [filename] .

An incorrect name is used for the vector
embeddings.

Troubleshooting 83

Neptune Analytics Neptune Analytics User Guide

Error template Solution

"date" type is curretly not supported.
"datetime" may be an alternative type.

Use datetime as the field type as date type
suppoorted yet in Neptune Analytics.

Headers must be non-empty. Headers need to be non empty. If the file has
an empty line in the beginning, remove the
empty line.

Failure encounted while parsing the csv file. Likely reason is the number of columns in the
row doesn't match the number of columns
provided in the header. If you dont have a
value for a column, provide an empty value.

For example: 123,vertex,,, .

Could not process value of type:http://
www.w3.org/2001/XMLSchema#int

 for value: a when parsing line [v1,v1968
3,con,a] in [file].

There is a mismatch between the type of the
value provided for that column in the row
and the type specified in the header. In this
specific case the column header is annotated
with integer type but a is not parseable as an
integer.

Could not load vector embedding: [a,bc].
Check the dimensionality for this vector.

The size of the vector does not match the
dimension defined in the vector search
configuration for the graph.

Could not load vector embedding: [a,NaN].
Check the value for this vector.

Float and double values in scientific notation
are currently not supported. Also Infinity,
-Infinity , INF, -INF, and NaN are not
recognized.

Troubleshooting 84

Neptune Analytics Neptune Analytics User Guide

Error template Solution

Could not process value of type: date for
value: "2024-11-22T21:40:40Z".

The values in columns of type 'date' must
not contain time. For instance, "2024-11-
22T21:40:40Z" is not a valid value for the
'date' column since it contains the time
component '21:40:40Z'. Change the column
type to 'dateTime' or remove the time from
the column values.

Please check if you are loading lines longer
than 65536.

The CSV format does not support lines longer
than 65536 characters. Check if some lines are
unexpectedly longer than 65536 characters,
and fix those. Also check for properties with
long string values and consider excluding
those. For files with vector embeddings, if
vector embeddings are too long then consider
shortening the precision of floating point
values. Alternatively, try the Parquet format to
ingest data with long lines.

neptune.read()

Neptune supports a CALL procedure neptune.read to read data from Amazon S3 and then run
an openCypher query (read, insert, update) using the data. The procedure yields each row in the
file as a declared result variable row. It uses the IAM credentials of the caller to access the data in
Amazon S3. See Create your IAM role for Amazon S3 access to set up the permissions. The AWS
region of the Amazon S3 bucket must be in the same region where Neptune Analytics instance is
located. Currently, cross-region reads are not supported.

Syntax

CALL neptune.read(
 {
 source: "string",
 format: "parquet/csv",
 concurrency: 10
 }

neptune.read() 85

https://docs.aws.eu//neptune-analytics/latest/userguide/bulk-import-create-from-s3.html#create-iam-role-for-s3-access

Neptune Analytics Neptune Analytics User Guide

)
YIELD row
...

Inputs

• source (required) - Amazon S3 URI to a single object. Amazon S3 prefix to multiple objects is not
supported.

• format (required) - parquet and csv are supported.

• More details on the supported Parquet format can be found in Supported Parquet column
types.

• For more information on the supported csv format, see Gremlin load data format.

• concurrency (optional) - Type: 0 or greater integer. Default: 0. Specifies the number of threads
to be used for reading the file. If the value is 0, the maximum number of threads allowed by the
resource will be used. For Parquet, it is recommended to be set to a number of row groups.

Outputs

The neptune.read returns:

• row - type:Map

• Each row in the file, where the keys are the columns and the values are the data found in each
column.

• You can access each column's data like a property access (row.col).

Query examples using Parquet

The following example query returns the number of rows in a given Parquet file:

CALL neptune.read(
 {
 source: "<s3 path>",
 format: "parquet"
 }
)
YIELD row
RETURN count(row)

Query examples using Parquet 86

https://docs.aws.eu//neptune/latest/userguide/bulk-load-tutorial-format-gremlin.html

Neptune Analytics Neptune Analytics User Guide

You can run the query example using the execute-query operation in the AWS CLI by executing
the following code:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.read({source: "<s3 path>",
 format: "parquet"}) YIELD row RETURN count(row)' \
 --language open_cypher \
 /tmp/out.txt

A query can be flexible in what it does with rows read from a Parquet file. For example, the
following query creates a node with a field being set to data found in the Parquet file:

CALL neptune.read(
 {
 source: "<s3 path>",
 format: "parquet"
 }
)
YIELD row
CREATE (n {someField: row.someCol})
RETURN n

Warning

It is not considered good practice to use a large results-producing clause like MATCH(n)
prior to a CALL clause. This would lead to a long-running query, due to cross product
between incoming solutions from prior clauses and the rows read by neptune.read. It’s
recommended to start the query with CALL neptune.read.

Supported Parquet column types

Parquet data types:

• NULL

• BOOLEAN

• FLOAT

• DOUBLE

Supported Parquet column types 87

Neptune Analytics Neptune Analytics User Guide

• STRING

• SIGNED INTEGER: UINT8, UINT16, UINT32, UINT64

• MAP: Only supports one-level. Does not support nested.

• LIST: Only supports one-level. Does not support nested.

Neptune -specific:

• A column type Any is supported in the user columns. An Any type is a type “syntactic sugar” for
all of the other types we support. It is extremely useful if a user column has multiple types in it.
The payload of an Any type value is a list of json strings as follows: "{""value"": ""10"",
""type"": ""Int""};{""value"": ""1.0"", ""type"": ""Float""}" , which has a
value field and a type field in each individual json string. The column header of an Any type is
propertyname:Any. The cardinality value of an Any column is set, meaning that the column
can accept multiple values.

• Neptune Analytics supports the following types in an Any type: Bool (or Boolean), Byte,
Short, Int, Long, UnsignedByte, UnsignedShort, UnsignedInt, UnsignedLong, Float,
Double, Date, dateTime, and String.

• Vector type is not supported in Any type.

• Nested Any type is not supported. For example, "{""value"": "{""value"": ""10"",
""type"": ""Int""}", ""type"": ""Any""}".

Sample Parquet output

Given a Parquet file like this:

<s3 path>

Parquet Type:
 int8 int16 int32 int64 float double
 string
+--------+---------+-------------+----------------------+------------+------------
+----------+
| Byte | Short | Int | Long | Float | Double |
 String |
|--------+---------+-------------+----------------------+------------+------------
+----------|

Sample Parquet output 88

Neptune Analytics Neptune Analytics User Guide

| -128 | -32768 | -2147483648 | -9223372036854775808 | 1.23456 | 1.23457 |
 first |
| 127 | 32767 | 2147483647 | 9223372036854775807 | nan | nan |
 second |
| 0 | 0 | 0 | 0 | -inf | -inf |
 third |
| 0 | 0 | 0 | 0 | inf | inf |
 fourth |
+--------+---------+-------------+----------------------+------------+------------
+----------+

Here is an example of the output returned by neptune.read using the following query:

aws neptune-graph execute-query \
--graph-identifier ${graphIdentifier} \
--query-string "CALL neptune.read({source: '<s3 path>', format: 'parquet'}) YIELD row
 RETURN row" \
--language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt

{
 "results": [{
 "row": {
 "Float": 1.23456,
 "Byte": -128,
 "Int": -2147483648,
 "Long": -9223372036854775808,
 "String": "first",
 "Short": -32768,
 "Double": 1.2345678899999999
 }
 }, {
 "row": {
 "Float": "NaN",
 "Byte": 127,
 "Int": 2147483647,
 "Long": 9223372036854775807,
 "String": "second",
 "Short": 32767,
 "Double": "NaN"

Sample Parquet output 89

Neptune Analytics Neptune Analytics User Guide

 }
 }, {
 "row": {
 "Float": "-INF",
 "Byte": 0,
 "Int": 0,
 "Long": 0,
 "String": "third",
 "Short": 0,
 "Double": "-INF"
 }
 }, {
 "row": {
 "Float": "INF",
 "Byte": 0,
 "Int": 0,
 "Long": 0,
 "String": "fourth",
 "Short": 0,
 "Double": "INF"
 }
 }]
}%

Currently, there is no way to set a node or edge label to a data field coming from a Parquet file. It is
recommended that you partition the queries into multiple queries, one for each label/Type.

CALL neptune.read({source: '<s3 path>', format: 'parquet'})
 YIELD row
WHERE row.`~label` = 'airport'
CREATE (n:airport)

CALL neptune.read({source: '<s3 path>', format: 'parquet'})
YIELD row
WHERE row.`~label` = 'country'
CREATE (n:country)

Query examples using CSV

In this example, the query returns the number of rows in a given CSV file:

CALL neptune.read(

Query examples using CSV 90

Neptune Analytics Neptune Analytics User Guide

 {
 source: "<s3 path>",
 format: "csv"
 }
)
YIELD row
RETURN count(row)

You can run the query using the execute-query operation in the AWS CLI:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.read({source: "<s3 path>",
 format: "csv"}) YIELD row RETURN count(row)' \
 --language open_cypher \
 /tmp/out.txt

A query can be flexible in what it does with rows read from a Parquet file. For instance, the
following query creates a node with a field set to data from a CSV file:

CALL neptune.read(
 {
 source: "<s3 path>",
 format: "csv"
 }
)
YIELD row
CREATE (n {someField: row.someCol})
RETURN n

Warning

It is not considered good practice use a large results-producing clause like MATCH(n)
prior to a CALL clause. This would lead to a long-running query due to cross product
between incoming solutions from prior clauses and the rows read by neptune.read. It is
recommended to start the query with CALL neptune.read.

Query examples using CSV 91

Neptune Analytics Neptune Analytics User Guide

Property column headers

You can specify a column (:) for a property by using the following syntax. The type names are not
case sensitive. If a colon appears within a property name, it must be escaped by preceding it with a
backslash: \:.

propertyname:type

Note

• Space, comma, carriage return and newline characters are not allowed in the column
headers, so property names cannot include these characters.

You can specify a column for an array type by adding [] to the type:

propertyname:type[]

• Edge properties can only have a single value and will cause an error if an array type is
specified or a second value is specified. The following example shows the column header
for a property named age of type Int.

age:Int

Every row in the file would be required to have an integer in that position or be left
empty. Arrays of strings are allowed, but strings in an array cannot include the semicolon
(;) character unless it is escaped using a backslash (\;).

Supported CSV column types

• Bool (or Boolean) - Allowed values: true, false. Indicates a Boolean field. Any value other than
true will be treated as false.

• FLOAT - Range: 32-bit IEEE 754 floating point including Infinity, INF, -Infinity, -INF and NaN (not-
a-number).

• DOUBLE - Range: 64-bit IEEE 754 floating point including Infinity, INF, -Infinity, -INF and NaN
(not-a-number).

• STRING -

Property column headers 92

Neptune Analytics Neptune Analytics User Guide

• Quotation marks are optional. Commas, newline, and carriage return characters are
automatically escaped if they are included in a string surrounded by double quotation marks
("). Example: "Hello, World".

• To include quotation marks in a quoted string, you can escape the quotation mark by using
two in a row: Example: "Hello ""World""".

• Arrays of strings are allowed, but strings in an array cannot include the semicolon (;) character
unless it is escaped using a backslash (\;).

• If you want to surround strings in an array with quotation marks, you must surround the whole
array with one set of quotation marks. Example: "String one; String 2; String 3".

• Datetime - The datetime values can be provided in either the XSD format, or one of the following
formats:

• yyyy-MM-dd

• yyyy-MM-ddTHH:mm

• yyyy-MM-ddTHH:mm:ss

• yyyy-MM-ddTHH:mm:ssZ

• yyyy-MM-ddTHH:mm:ss.SSSZ

• yyyy-MM-ddTHH:mm:ss[+|-]hhmm

• yyyy-MM-ddTHH:mm:ss.SSS[+|-]hhmm

• SIGNED INTEGER -

• Byte: -128 to 127

• Short: -32768 to 32767

• Int: -2^31 to 2^31-1

• Long: -2^63 to 2^63-1

Neptune -specific:

• A column type Any is supported in the user columns. An Any type is a type “syntactic sugar” for
all of the other types we support. It is extremely useful if a user column has multiple types in it.
The payload of an Any type value is a list of json strings as follows: "{""value"": ""10"",
""type"": ""Int""};{""value"": ""1.0"", ""type"": ""Float""}" , which has a
value field and a type field in each individual json string. The column header of an Any type is
propertyname:Any. The cardinality value of an Any column is set, meaning that the column
can accept multiple values.

Supported CSV column types 93

Neptune Analytics Neptune Analytics User Guide

• Neptune Analytics supports the following types in an Any type: Bool (or Boolean), Byte,
Short, Int, Long, UnsignedByte, UnsignedShort, UnsignedInt, UnsignedLong, Float,
Double, Date, dateTime, and String.

• Vector type is not supported in Any type.

• Nested Any type is not supported. For example, "{""value"": "{""value"": ""10"",
""type"": ""Int""}", ""type"": ""Any""}".

Sample CSV output

Given the following CSV file:

<s3 path>
colA:byte,colB:short,colC:int,colD:long,colE:float,colF:double,colG:string
-128,-32768,-2147483648,-9223372036854775808,1.23456,1.23457,first
127,32767,2147483647,9223372036854775807,nan,nan,second
0,0,0,0,-inf,-inf,third
0,0,0,0,inf,inf,fourth

This example shows the output returned by neptune.read using the following query:

aws neptune-graph execute-query \
--graph-identifier ${graphIdentifier} \
--query-string "CALL neptune.read({source: '<s3 path>', format: 'csv'}) YIELD row
 RETURN row" \
--language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [{
 "row": {
 "colD": -9223372036854775808,
 "colC": -2147483648,
 "colE": 1.23456,
 "colB": -32768,
 "colF": 1.2345699999999999,
 "colG": "first",
 "colA": -128
 }

Sample CSV output 94

Neptune Analytics Neptune Analytics User Guide

 }, {
 "row": {
 "colD": 9223372036854775807,
 "colC": 2147483647,
 "colE": "NaN",
 "colB": 32767,
 "colF": "NaN",
 "colG": "second",
 "colA": 127
 }
 }, {
 "row": {
 "colD": 0,
 "colC": 0,
 "colE": "-INF",
 "colB": 0,
 "colF": "-INF",
 "colG": "third",
 "colA": 0
 }
 }, {
 "row": {
 "colD": 0,
 "colC": 0,
 "colE": "INF",
 "colB": 0,
 "colF": "INF",
 "colG": "fourth",
 "colA": 0
 }
 }]
}%

Currently, there is no way to set a node or edge label to a data field coming from a csv file. It is
recommended that you partition the queries into multiple queries, one for each label/type.

CALL neptune.read({source: '<s3 path>', format: 'csv'})
 YIELD row
WHERE row.`~label` = 'airport'
CREATE (n:airport)

CALL neptune.read({source: '<s3 path>', format: 'csv'})
YIELD row

Sample CSV output 95

Neptune Analytics Neptune Analytics User Guide

WHERE row.`~label` = 'country'
CREATE (n:country)

Sample CSV output 96

Neptune Analytics Neptune Analytics User Guide

Exporting data from a Neptune Analytics graph

Neptune Analytics provides export functionality to allow you to export your graph into columnar
structured .csv and .parquet files that are compatible with the bulk import and batch load
functionality. This functionality facilitates workflows such as performing analytics on a Neptune
Analytics graph, exporting the result for external processing and transformation, and importing
the results into Neptune Database, Neptune Analytics, or other software for further analysis.
Additionally, the export functionality allows you to specify a filter defining labels and properties of
vertices and edges to include in your export, or simply to export your entire graph. Using Neptune
Analytics export with the import and export features of Neptune Database also facilitates a round-
tripping usecase from Neptune Database, allowing you to create a temporary Neptune Analytics
graph from your Neptune Database, run advanced analytics, and export the results back into
Neptune Database.

Relevant SDK/CLI commands

• start-export-task - This command starts an export task on an existing graph in Neptune
Analytics. It allows you to export your graph into columnar structured .csv and .parquet files.

• get-export-task - This command queries the status of an export task that was started using
the start-export-task command.

• list-export-tasks - This command lists all of the export tasks that have been ran on a
specified Neptune Analytics graph.

Permission setup

See Import/export permissions to learn more about setting up the required permissions for
exporting data from a Neptune Analytics graph.

start-export-task

This command starts an export task on a graph in Neptune Analytics. It allows you to export your
graph into columnar structured .csv and .parquet files. Calling export on a graph will generate a
unique taskId that you can use to track the progress of your export. When an export is triggered,
a clone of your graph is created to process the export request, allowing your graph to continue
servicing queries and analytics with no performance impact.

SDK/CLI commands 97

https://docs.aws.eu//neptune-analytics/latest/userguide/bulk-import.html
https://docs.aws.eu//neptune-analytics/latest/userguide/batch-load.html

Neptune Analytics Neptune Analytics User Guide

start-export-task syntax

aws neptune-graph start-export-task \
 --graph-identifier <GRAPH_ID> \
 --region <region> \
 --role-arn <arn> \
 --format <format> \
 [--parquet-type <parquet-type>] \
 --kms-key-identifier <kms-key> \
 --destination <s3-url> \
 [--export-filter <filter-json>] #See filtering section for details.

start-export-task inputs

• --graph-identifier <GRAPH_ID> - The unique identifier of the Neptune Analytics graph to
export.

• --region <region> - The AWS region where the Neptune Analytics graph is located.

• --role-arn <arn> - The ARN of an IAM role that grants Neptune Analytics the necessary
permissions to access the Amazon S3 bucket for the export.

• --format <format> - The output format for the exported data, either CSV or PARQUET.

• --kms-key-identifier <kms-key> - The AWS KMS key to use for server-side encryption of
the exported data in Amazon S3. For more information see Create and configure IAM role and
AWS KMS key.

• --destination <s3-url> - The Amazon S3 location where the exported data will be written.
The provided role-arn must have permission to write to this location. Exported data will be
written to this folder in a sub-directory given by the export taskId. See start-export-task output
for more information.

• --export-filter <filter-json> - A JSON object that specifies which vertices and edges
to include in the export, based on their labels and properties. This field is optional, and if not
provided, a value of ‘{}' is used, corresponding to an export of the whole property graph. For
more detail on the export filter JSON object, see Specifying a filter for expanded syntax and
examples.

Syntax 98

Neptune Analytics Neptune Analytics User Guide

start-export-task output

The response from the start-export-task is a JSON string. The taskId is the most significant
value in the return, as this can be used to identify the export process when calling get-export-task
or list-export-task, as well as identifying the export process in CloudWatch logs. Other values in the
return can be used to keep track of which expert parameters were invoked for a given taskId.

{
 "graphId": "$GRAPH_ID", // The identifier of the graph being exported.
 "roleArn": "$arn", // The ARN of the IAM role being used to give
 // export the required permissions.
 "taskId": "$taskId", // A unique id corresponding to the requested export.
 "status": "INITIALIZING", // The status of the export.
 // One of INITIALIZING,
 // EXPORTING,
 // SUCCEEDED,
 // FAILED,
 // CANCELLING,
 // CANCELLED
 "format": "PARQUET", // The requested format of the export.
 // One of CSV or PARQUET.
 "destination": "$s3-uri", // The Amazon S3 location where the exported
 // data will be written.
 "kmsKeyIdentifier": "$kms_key", // The AWS KMS key to use for server-side
 // encryption of the exported data in Amazon S3.
 "parquetType": "COLUMNAR" // If a Parquet export was requested,
 // gives the Parquet type.
}

get-export-task

This command queries the status of an export task that was started using the start-export-
task command. This gives information such as the current state of the export, the approximate
progress of the export, how long the export has been running etc.

Note

When exporting a graph in which the vertices have no vertex labels or vertex properties,
the numVerticesWritten is expected to be 0 in the response of get-export-task.

Output 99

Neptune Analytics Neptune Analytics User Guide

get-export-task syntax

aws neptune-graph get-export-task \
--task-identifier <taskId> \
--region <region>

get-export-task inputs

• --task-identifier <taskId> - The unique identifier of the export task for which you want
to retrieve the status.

• --region <region> - The AWS region where the Neptune Analytics graph is located.

get-export-task output

{
 // The unique identifier of the Neptune Analytics graph that was exported
 "graphId": "$GRAPH_ID",

 // The ARN of the IAM role that was used to grant Neptune Analytics the necessary
 permissions to access the Amazon S3 bucket for the export
 "roleArn": "$arn",

 // The unique identifier of the export task
 "taskId": "$taskId",

 // The current status of the export task,
 // which is one of INITIALIZING, EXPORTING, SUCCEEDED, FAILED, CANCELLING,
 CANCELLED
 "status": "SUCCEEDED",

 // The output format of the exported data, which is "PARQUET"/"CSV".
 "format": "PARQUET",

 // The Amazon S3 location where the exported data was written
 "destination": "$s3-url",

 // The AWS KMS key used for server-side encryption of the exported data in Amazon
 S3
 "kmsKeyIdentifier": "$kms_key",

Syntax 100

Neptune Analytics Neptune Analytics User Guide

 // The type of Parquet file generated, which is "COLUMNAR".
 "parquetType": "COLUMNAR",

 // If provided, the exportFilter being used with the export task.
 "exportFilter": "$export_json"

 // Details of export progress.
 "exportTaskDetails": {
 // The time when the export began
 "startTime": "2024-10-07T17:14:03.502000-04:00",

 // The amount of time that has been spent executing the export request.
 "timeElapsedSeconds": 360,

 // The percentage of relevant data in the database that has been scanned for
 export.
 "progressPercentage": 100,

 // The number of total vertices which are included in the exported files.
 "numVerticesWritten": 30090921,

 // The number of total edges which are included in the exported files.
 "numEdgesWritten": 177654205
}

list-export-task

Since you may have many graphs in your account, and the export functionality includes the ability
to specify filters and different filetypes, you may execute multiple exports against your graph over
time. The list-export-tasks CLI gives returns all Neptune Analytics exports that have been
triggered in your account.

list-export-task syntax

aws neptune-graph list-export-tasks
 --region <REGION>

list-export-task inputs

• --region <region> - The AWS region where the Neptune Analytics graph is located.

list-export-task 101

Neptune Analytics Neptune Analytics User Guide

list-export-task output

{
 // The unique identifier of the Neptune Analytics graph that was exported
 "graphId": "$GRAPH_ID",

 // The ARN of the IAM role that was used to grant Neptune Analytics the necessary
 permissions to access the Amazon S3 bucket for the export
 "roleArn": "$arn",

 // The unique identifier of the export task
 "taskId": "$taskId",

 // The current status of the export task,
 // which is one of "SUCCEEDED"/"FAILED" etc.
 "status": "SUCCEEDED",

 // The output format of the exported data, which is "PARQUET"/"CSV".
 "format": "PARQUET",

 // The Amazon S3 location where the exported data was written
 "destination": "$s3-url",

 // The AWS KMS key used for server-side encryption of the exported data in S3
 "kmsKeyIdentifier": "$kms_key",

 // The type of Parquet file generated, which is "COLUMNAR".
 "parquetType": "COLUMNAR",

 // If there is an error, a reason will be provided.
 "statusReason": "$failureReason"
}

cancel-export-task

The cancel-export-task command allows you to cancel an ongoing export task that was
started using the start-export-task command.

cancel-export-task syntax

aws neptune-graph cancel-export-task \

Output 102

Neptune Analytics Neptune Analytics User Guide

 --task-identifier <taskId> \
 --region <region>

cancel-export-task inputs

• --task-identifier <taskId> - The unique identifier of the export task you want to cancel.

• --region <region> - The AWS region where the Neptune Analytics graph is located.

cancel-export-task output

{
 // The unique identifier of the Neptune Analytics graph that was exported
 "graphId": "$GRAPH_ID",

 // The ARN of the IAM role that was used to grant Neptune Analytics the necessary
 permissions to access the Amazon S3 bucket for the export
 "roleArn": "$arn",

 // The unique identifier of the export task
 "taskId": "$taskId",

 // The current status of the export task,
 // which is one of "SUCCEEDED"/"FAILED" etc.
 "status": "SUCCEEDED",

 // The output format of the exported data, which is "PARQUET"/"CSV".
 "format": "PARQUET",

 // The Amazon S3 location where the exported data was written
 "destination": "$s3-url",

 // The AWS KMS key used for server-side encryption of the exported data in Amazon
 S3
 "kmsKeyIdentifier": "$kms_key",

 // The type of Parquet file generated, which is "COLUMNAR".
 "parquetType": "COLUMNAR",

 // If there is an error, a reason will be provided.
 "statusReason"
}

Inputs 103

Neptune Analytics Neptune Analytics User Guide

Structure of exported files

CSV

When the export format is CSV, the generated vertex and edge files will be consistent with the
Gremlin CSV format used by the loader (for more information, see Using CSV data). The CSV files
generated will, with one exception, be separated by label to provide a label-driven schema design.
This allows for the efficient export of only the properties that exist or are specified for a particular
vertex or edge label. Typically, multiple files will be created for each label (this allows for increased
export speed by writing in parallel using multiple threads), and each set of files sharing a label will
have the same schema and header.

The exception to this label-based separation occurs if you specify to export all labels together
in the provided filter. In this case, the label column will indicate the potentially different labels
for each vertex and edge (when a vertex or edge has multiple labels, they will both be specified,
separated by semi-colons ‘;’), and all files for vertices and/or edges will share the same schema.
It is important to note that vertices and edges will always be output to separate file sets.

Parquet

Exported Parquet files have a columnar structure similar to CSV files, though an explicit header
column is not required. Unlike CSV files, property columns of fixed types will, where possible, be
represented as named typed columns rather than with strings. For instance, if a property column
contains floating point numeric values, such a column might be a explicitly represented with 32-
bit float values rather than the string representation of the value. This allows for less space to
be used to store these values. Like with CSV data, the Parquet files exported are structured to be
compatible with the Neptune Analytics loader. For more information on the columnar Parquet
format used by Neptune Analytics, please see the corresponding documentation for the loader. For
more information, see Using CSV data.

As listed in the loader, metadata is used to indicate some special circumstances, such as special
types and multiple types being present for a given property. In addition, the exported parquet files
(due to standard restrictions in permitted column names in parquet data) may indicate in metadata
if a column corresponding to a property has been necessarily renamed (for example, if the property
name has a character disallowed by the parquet standard), such as in the following:

"metadata": {
 "anyTypeColumns": [
 "col2"

Structure of exported files 104

https://docs.aws.eu//neptune-analytics/latest/userguide/export-filter-samples.html#export-filter-samples-2
https://docs.aws.eu//neptune-analytics/latest/userguide/export-filter-samples.html#export-filter-samples-2
https://docs.aws.eu//neptune-analytics/latest/userguide/export-filter-samples.html#export-filter-samples-2
https://docs.aws.eu//neptune-analytics/latest/userguide/using-Parquet-data.html#using-Parquet-data-property-column-headers

Neptune Analytics Neptune Analytics User Guide

],
 "invalidVertexPropertyNames": {
 "http://www.company.com/id": "col2",
 "http://www.w3.org/2000/01/rdf-schema#label": "col3"
 },
 "renamedVertexProperties": {
 "http://www.company.com/id": "col2",
 "http://www.w3.org/2000/01/rdf-schema#label": "col3"
 }
 }

Specifying a filter

The vertexFilter is used to specify filters on a per-label basis for vertices. This allows you to
control which vertex labels and properties are included in the export.

• vertexFilter - This is the top-level field for specifying vertex filters.

• If the vertexFilter is not provided at all, then all vertex properties for all vertex labels will
be exported. If the vertexFilter is provided but is an empty object, then no vertices will be
exported.

• Each key in the vertexFilter object corresponds to a vertex label that you want to describe a
filter for. For example, "Person" or "Organization".

• For each vertex label key, the value is an object with a "properties" field.

• The "properties" field allows you to specify which properties of that vertex label should be
included in the export. Each property is defined by a key-value pair, where the key is the desired
output property name (e.g. "name"), and the value is an object with the following fields:

• outputType: Specifies the data type to use for the property in the exported data (e.g.
"String", "Int", "Float"). For a full-list of supported types and the corresponding type names
that can be used in filtering, see Using CSV data. If a type is not provided, the export process
will determine the type. If a given property is present as multiple types (e.g. one vertex has
"height" stored as a double, and another edge has it stored as a string), the type will be of
Any type. Otherwise, it will be the type of the property as present in vertices.

• sourcePropertyName: The name of the property as it exists in the original graph data. If not
provided, it is assumed that the key matches the desired sourcePropertyName.

• multiValueHandling: Specifies how to handle properties that have multiple values. Can
be either "TO_LIST" to export all values as a list, or "PICK_FIRST" to export the first value
encountered. If not specified, the default value is "PICK_FIRST".

Specifying a filter 105

Neptune Analytics Neptune Analytics User Guide

edgeFilter is used to specify filters on a per-label basis for edges. This allows you to control
which edge labels and properties are included in the export.

• edgeFilter - This is the top-level field for specifying edge filters.

• If the edgeFilter is not provided at all, then all edge properties for all edge labels will be
exported. If the edgeFilter is provided but is an empty object, then no edges will be exported.

• Each key in the edgeFilter object corresponds to a edge label that you want to describe a filter
for. For example, "knows" or "friendOf".

• For each edge label key, the value is an object with a "properties" field.

• The "properties" field allows you to specify which properties of that edge label should be
included in the export. Each property is defined by a key-value pair, where the key is the desired
output property name (e.g. "weight"), and the value is an object with the following fields:

• outputType: Specifies the data type to use for the property in the exported data (e.g.
"String", "Int", "Float"). For a full-list of supported types and the corresponding type names
that can be used in filtering, see here. If a type is not provided, the export process will
determine the type. If a given property is present as multiple types (e.g. one edge has
"weight" stored as a double, and another edge has it stored as a string), the type will be of
Any type. Otherwise, it will be the type of the property as present in edges.

• sourcePropertyName: The name of the property as it exists in the original graph data. If not
provided, it is assumed that the key matches the desired sourcePropertyName.

• multiValueHandling: Specifies how to handle properties that have multiple values. Can
be either "TO_LIST" to export all values as a list, or "PICK_FIRST" to export the first value
encountered. If not specified, the default value is "PICK_FIRST".

Filter syntax

The filter is specified as a JSON object, as follows:

{
 "vertexFilter": {"string": {
 "properties": {"string": {
 "outputType": "string",
 "sourcePropertyName": "string",
 "multiValueHandling": "TO_LIST"|"PICK_FIRST"
 }
 ...}
 }

Filter syntax 106

Neptune Analytics Neptune Analytics User Guide

 ...},
 "edgeFilter": {"string": {
 "properties": {"string": {
 "outputType": "string",
 "sourcePropertyName": "string",
 "multiValueHandling": "TO_LIST"|"PICK_FIRST"
 }
 ...}
 }
 ...}
}

Sample filters

Sample filter: Specifying vertex and edge properties for export

{
 "vertexFilter": {
 "Professor": {
 "properties": {
 "name": {
 "outputType": "String"
 },
 "val": {
 "outputType": "Int"
 }
 }
 }
 },
 "edgeFilter": {
 "knows": {
 "properties": {
 "weight": {
 "outputType": "Float"
 }
 }
 }
 }
}

Vertex files:

• Only vertices with the "Professor" label will be exported.

Sample filters 107

Neptune Analytics Neptune Analytics User Guide

• For each "Professor" vertex, the exported data will have the following columns:

• ~id - The unique identifier of the vertex.

• ~label - The label of the vertex, which will be "Professor".

• name - The "name" property of the vertex, exported as a String type.

• val - The "val" property of the vertex, exported as an Integer type.

"~id" "~label" "name:String" "val:Int"

"p5" "Professor" "Professor 5" 11

"p2" "Professor" "Professor 2" 2

"p1" "Professor" "Professor 1" 1

Edge files:

• Only edges with the "knows" label will be exported.

• For each "knows" edge, the exported data will have the following columns:

• ~from - The unique identifier of the source vertex of the edge.

• ~to - The unique identifier of the target vertex of the edge.

• ~label - The label of the edge, which will be "knows".

• weight - The "weight" property of the edge, exported as a Float type.

"~from" "~to" "~label" "weight:Float"

"p1" "p5" "reports" 1

"p1" "p2" "knows" 0.5

"p2" "s2_2" "knows" 0.6

Sample filter: Exporting vertices and edges to a single schema

{

Sample filters 108

Neptune Analytics Neptune Analytics User Guide

"vertexFilter": {
 "_VERTEX_ALL_LABELS_": {
 "properties": {
 "name": {
 "outputType": "String"
 },
 "val": {
 "outputType": "Int"
 }
 }
 }
 },
 "edgeFilter": {
 "_EDGE_ALL_LABELS_": {
 "properties": {
 "weight": {
 "outputType": "Float"
 }
 }
 }
 }
}

This filter will export the “name” and “val” vertex properties for all vertices (regardless of label)
into vertex files with a unified schema. A Parquet export have columns ~id, ~label, val, and
name, with val as an Integer type column, and name a String column. For CSV exports, the last
two columns will have their types appended to be val:Int, and name:String. Unlike the case
where a specific label is specified, the label column here will vary based on the labels of the
vertices. Similarly, this filter will export the “weight” property as a Float column for all edges
regardless of the edge label.

"~id" "~label" "name:String" "val:Int"

"p5" "Professor" "Professor 5" 11

"p2" "Professor" "Professor 2" 2

"p1" "Professor" "Professor 1" 1

Sample filters 109

https://docs.aws.eu//neptune-analytics/latest/userguide/export-filter-samples.html#export-filter-samples-1

Neptune Analytics Neptune Analytics User Guide

"~from" "~to" "~label" "weight:Float"

"p1" "p5" "reports" 1

"p1" "p2" "knows" 0.5

"p2" "s2_2" "knows" 0.6

Sample filter: Exporting all vertices but no edges

{
"edgeFilter": {}
}

This exports all vertices because there are no vertexFilters, and exports no edges because the
edgeFilter is provided, but empty.

Sample filter: Exporting all properties of specific labels

{
 "vertexFilter": {
 "Professor": {},
 "Student": {}
 }
}

This filter will export all properties of vertices with the label “Professor” or “Student”
into files with schemas defined by the “Professor” and "Student” vertex property sets,
respectively, along with all edges.

"~id" "~label" "Income:Int" "name:String"

"p5" "Professor" 80000 "Professor 5"

"p2" "Professor" 90000 "Professor 2"

"p1" "Professor" 75000 "Professor 1"

Sample filters 110

Neptune Analytics Neptune Analytics User Guide

"~id" "~label" "GraduationYear:Int" "name:String"

"s1" "Student" 2021 "Bob"

"s2" "Student" 2024 "Sam"

"s3" "Student" 2008 "Jose"

Sample filter: Exporting edge topology without properties

{
 "edgeFilter": {
 "_EDGE_ALL_LABELS_": {
 "properties": {}
 }
 }
}

By specifying properties as an empty object, only the ~from, ~to, and ~label columns will be
exported for all edges.

"~from" "~to" "~label"

"p1" "p5" "reports"

"p1" "p2" "knows"

"p2" "s2_2" "knows"

Run a mutation algorithm then export the results

Run the following query:

CALL neptune.algo.pageRank.mutate(
 {
 writeProperty:"P_RANK",
 dampingFactor: 0.85,
 numOfIterations: 1,

Sample filters 111

Neptune Analytics Neptune Analytics User Guide

 edgeLabels: ["route"]
 }
)

Followed by an export with a filter:

{
 "vertexFilter": {
 "Airport": {
 "properties": {
 "P_RANK": {
 "outputType": "Float"
 }
 }
 }
 }
}

The result would be:

"~id" "~label" "P_RANK:Float"

"SYD" "Airport" 0.005

"JFK" "Airport" 0.008

"LGA" "Airport" 0.002

Sample filters 112

Neptune Analytics Neptune Analytics User Guide

Graph snapshots

Neptune Analytics provides you the ability to create a named snapshot of your analytics graph,
and also the ability to restore from existing graph snapshots. A graph snapshot is a compacted
deep copy of your entire graph. Snapshots are created asynchronously, and do not affect the
performance of your running graph. You can restore a snapshot into a new graph at any time.

Topics

• Creating a graph snapshot

• Listing existing graph snapshots

• Restoring from a graph snapshot

• Deleting a graph snapshot

Creating a graph snapshot

Creating a graph snapshot is a crucial step in managing and maintaining your data within the
Neptune graph database. This process allows you to capture a point-in-time snapshot of your
graph, which can be useful for various purposes such as backup, restoration, or analysis. The
provided instructions outline the steps to create a graph snapshot using either the AWS Command
Line Interface (CLI) or the AWS SDK, as well as the Neptune console. By following these steps, you
can easily identify the graph you want to snapshot, provide a unique name for the snapshot, and
initiate the creation process.

CLI/SDK

Find the id of your graph

aws neptune-graph list-graphs

This command will give you a list of your graphs. Find the graph id of the graph you want to
take a snapshot of and write it down.

Create a graph snapshot

aws neptune-graph create-graph-snapshot \

Creating a snapshot 113

Neptune Analytics Neptune Analytics User Guide

--graph-identifier <GRAPH_ID> \
--snapshot-name <SNAPSHOT_NAME>

Parameters:

1. graph-identifier - The graph id you want to take the snapshot from.

2. snapshot-name - The name you want to use for your graph snapshot.

Neptune Console

1. Select the graph you want to take a snapshot of in Analytics, Graphs.

2. Choose Actions, and choose Create snapshot.

3. Give the snapshot a name and choose Create Analytics Snapshot.

Creating a snapshot 114

Neptune Analytics Neptune Analytics User Guide

Listing existing graph snapshots

The following information outlines the various methods and commands for managing graph
snapshots in the Amazon Neptune database service. It covers the steps to list all existing graph
snapshots, as well as how to retrieve details of a specific snapshot. The information also explains
the different status states that a graph snapshot can have, such as "CREATING," "AVAILABLE,"
"FAILED," and "DELETING."

CLI/SDK

List all graph snapshots

aws neptune-graph list-graph-snapshots

Look up a single graph snapshot

aws neptune-graph get-graph-snapshot \
--snapshot-id <SNAPSHOT_ID>

Status:

Listing snapshots 115

Neptune Analytics Neptune Analytics User Guide

• CREATING: The snapshot is currently being created.

• AVAILABLE: The snapshot is available and can be restored from.

• FAILED: The snapshot failed to create.

• DELETING: The snapshot is currently being deleted.

Neptune Console

You can view your snapshots by expanding Analytics and choosing Snapshots.

Restoring from a graph snapshot

When you create a snapshot of a graph, Neptune Analytics creates a storage volume snapshot
of the graph, backing up all of its data. You can later create a new Neptune Analytics graph by
restoring from this snapshot. When you restore the graph, you provide the name of the graph
snapshot to restore from, and then provide a name for the new graph that is created by the
restore.

CLI/SDK

Restore an analytics graph from a snapshot

aws neptune-graph restore-graph-from-snapshot \
--graph-name <NEW_GRAPH_NAME> \
--snapshot-id <SNAPSHOT_ID>

Parameters:

1. graph-name - The name of the new Neptune Analytics graph that will be created from the
snapshot.

Restoring a snapshot 116

Neptune Analytics Neptune Analytics User Guide

2. snapshot-id - The snapshot identifier you want to restore from.

Optional parameters:

1. min-provisioned-memory - The minimum provisioned memory to use for the new graph.
Default: 64.

2. max-provisioned-memory - The maximum provisioned memory to use for the new graph.
Default: 1024, or the approved upper limit for your account. Neptune Analytics will analyze
the data to find the best memory configuration between min-provisioned-memory and max-
provisioned-memory to create the graph.

3. public-access, no-public-access - Whether connectivity over public networks
(internet) is enabled or not. Default: no-public-access.

4. replica-count - The number of replicas to provision on the new graph after import.
Default: 0, Min: 0, Max:2.

Neptune Console

1. Find the snapshot you want to restore by expanding Analytics and choosing Snapshots.

2. Select the snapshot and choose Restore snapshot.

3. Give the graph a unique name, and choose provisioned m-NCU.

4. Update availibility, network, and advanced settings if necessary, and choose the Restore
snapshot button.

Restoring a snapshot 117

Neptune Analytics Neptune Analytics User Guide

5. You can review the status of your restored graph by expanding Analytics and choosing
Graphs.

Deleting a graph snapshot

Deleting a graph snapshot is an important task in managing and maintaining your Neptune graph
database. The AWS Neptune Console and Command Line Interface (CLI) or Software Development
Kit (SDK) provide the necessary tools to accomplish this.

Deleting snapshots 118

Neptune Analytics Neptune Analytics User Guide

CLI/SDK

Delete a snapshot

aws neptune-graph delete-graph-snapshot \
--snapshot-id <SNAPSHOT_ID>

Neptune Console

1. Expand Analytics and choose Snapshots.

2. Select the snapshot you want to delete, and choose the Delete button.

3. Type "confirm" in the text box to confirm you want to delete the snapshot, then choose the
Delete button.

Deleting snapshots 119

Neptune Analytics Neptune Analytics User Guide

Managing your Neptune Analytics graphs

Neptune Analytics graphs involve multiple instances that are connected in a replication topology.
Managing graphs often involves deploying changes to multiple servers and making sure that
all Neptune Analytics graph replicas are keeping up with the primary graph. Neptune Analytics
automatically performs continuous backups, and does not require extensive planning or downtime
for performing backups.

Topics

• Modifying a Neptune Analytics graph

• Maintaining a Neptune Analytics graph

• Deleting a Neptune Analytics graph

• Stopping a Neptune Analytics graph

• Starting a Neptune Analytics graph

• Tagging Neptune Analytics graph resources

• Working with ARNs in Neptune Analytics graph

Modifying a Neptune Analytics graph

You can change the settings of a Neptune Analytics graph to accomplish tasks such as changing
public connectivity or its provisioned-memory.

It is recommended that you test any changes using a test graph before modifying any production
graphs, so that you are able to fully understand the impact of each change.

Memory scaling

Neptune Analytics is a memory-optimized graph database engine for analytics, which stores data
in-memory to enable optimal performance for algorithmic and analytical workflows. A Neptune
Analytics graph can have the instance size upscaled or downscale the database to a smaller or
larger memory size by updating the graph to higher m-NCU. The minimum size of the mNCU
chosen must be capable of storing all the data in the graph, smaller mNCU values than that
required by the graph will result in ValidationException errors.

Modifying 120

Neptune Analytics Neptune Analytics User Guide

Maintaining a Neptune Analytics graph

Periodically, Neptune Analytics performs maintenance on Neptune resources. Maintenance most
often involves updates to the following resources in your graph:

• Underlying hardware

• Underlying operating system (OS)

• Graph engine version

Neptune Analytics doesn't have a maintenance window for the graphs. It automatically performs
maintenance operations which require the Neptune service to take your graph offline for a short
time, normally on the order of 10s of seconds. Maintenance items require a resource to be offline
during the maintenance period, however Neptune Analytics will make a best effort attempt to
provide request queuing during this time. Required patching is automatically scheduled for patches
related to security, instance reliability, engine upgrades, and other items as required. Such patching
occurs infrequently, typically one to two times every month but may occur as needed. There are no
actions required from you for this to take place.

Deleting a Neptune Analytics graph

You can delete a Neptune Analytics graph when you no longer need it. Before deleting the graph,
you can save a snapshot of your data. You can then restore that snapshot at a later date to create
a new graph containing the same data. For more information about creating snapshots, see Graph
snapshots.

Neptune Analytics doesn't provide a single-step method to delete a graph and its snapshot. Also,
the graph cannot be deleted if delete-protection is enabled. This design choice is intended to
prevent you from accidentally losing data or taking your application offline. Neptune Analytics
graph applications are typically mission critical and require high availability.

Deleting a Neptune Analytics graph

AWS Console

Choose the graph you want to delete, then choose Delete graph from the drop-down Actions
menu. You can choose the following options to preserve the data from the graph in case it is
needed later.

Maintaining 121

Neptune Analytics Neptune Analytics User Guide

• Create a final snapshot of the graph. The default setting is to create a final snapshot.

If you graph has private graph endpoints configured then you need to delete all of the private
graph endpoints first. To delete the private graph endpoints:

In the navigation pane, choose graphs, and then choose the graph that you want to delete.
On the graph page, go to the graph private endpoints section and choose the private graph
endpoint you want to delete. Select the delete button and enter "confirm" in the text box.

CLI/API

You can call the delete-graph CLI command, or the DeleteGraph API operation. You can choose
the following options to preserve the data from the graph in case it is needed later.

• Create a final snapshot of the graph

• Retain automated backups

aws neptune-graph delete-graph --graph-id g-sample

If your graph has private graph endpoints configured, you will need to delete the private graph
endpoints first.

aws neptune-graph delete-private-graph-endpoint --graph-identifier g-sample --vpc-id
 your-vpc-id

Stopping a Neptune Analytics graph

You can temporarily stop a Neptune Analytics graph when it's not actively in use to reduce costs.
When you stop a graph, Neptune Analytics removes the underlying compute infrastructure while
preserving all graph data, configurations, and identifiers.

While stopped, you're charged only 10% of the normal rate instead of the full compute costs. This
can result in significant cost savings for graphs that are used intermittently, such as development
environments or analytics workloads with discrete processing periods.

Neptune Analytics only allows you to stop a graph that is in the AVAILABLE state. This design
choice helps ensure data consistency and prevents conflicts with other ongoing operations.

Stopping 122

https://docs.aws.eu//cli/latest/reference/neptune-graph/delete-graph.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_DeleteGraph.html
https://aws.eu//neptune/pricing/

Neptune Analytics Neptune Analytics User Guide

AWS Console

Choose the graph you want to stop, then choose Stop graph from the drop-down Actions
menu. The graph must be in AVAILABLE state to be stopped.

The graph status will change from AVAILABLE to STOPPING, and finally to STOPPED when the
operation has completed.

CLI/API

You can call the stop-graph CLI command, or the StopGraph API operation. The graph must
be in the AVAILABLE state to be stopped.

aws neptune-graph stop-graph --graph-identifier g-sample

The graph status will change from AVAILABLE to STOPPING, and finally to STOPPED when the
operation has completed.

Starting a Neptune Analytics graph

You can start a Neptune Analytics graph that has been stopped to resume normal operations. The
started graph automatically deploys with the latest engine version, ensuring you benefit from the
newest capabilities and security updates.

All graph data, configurations, and identifiers are preserved during the start operation. The graph
endpoint remains the same, so your applications can reconnect without configuration changes.

AWS Console

Choose the graph you want to start, then choose Start graph from the drop-down Actions
menu. The graph must be in STOPPED state to be started.

The graph status will change from STOPPED to STARTING, and finally to AVAILABLE when the
operation has completed.

CLI/API

You can call the start-graph CLI command, or the StartGraph API operation. The graph must
be in the STOPPED state to be started.

aws neptune-graph start-graph --graph-identifier g-sample

Starting 123

https://docs.aws.eu//neptune-analytics/latest/apiref/API_StopGraph.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_StartGraph.html

Neptune Analytics Neptune Analytics User Guide

The graph status will change from STOPPED to STARTING, and finally to AVAILABLE when the
operation has completed.

Tagging Neptune Analytics graph resources

You can use Neptune Analytics graph tags to add metadata to your graph. You can use the tags
to add your own notations about graph and graph snapshots. Doing so can help you to document
your Neptune Analytics graph resources.

You can also use these tags with IAM policies. You can use them to manage access to Neptune
Analytics graph resources and to control what actions can be applied to the Neptune Analytics
graph resources. You can also use these tags to track costs by grouping expenses for similarly
tagged resources. You can tag the following Neptune Analytics graph resources:

• Neptune Analytics graph

• Neptune Analytics graph snapshots

A Neptune Analytics graph tag is a name-value pair that you define and associate with a Neptune
Analytics graph resource. The name is referred to as the key. Supplying a value for the key is
optional. You can use tags to assign arbitrary information to a Neptune Analytics graph resource.
You can use a tag key to define a category, and the tag value might be an item in that category.
For example, you might define a tag key of "env" and a tag value of "preprod". In this case, these
indicate that the Neptune Analytics graph resource is assigned to the preprod environment. It
is recommended that you use a consistent set of tag keys to make it easier to track metadata
associated with Neptune Analytics graph resources.

Additionally, you can use conditions in your IAM policies to control access to AWS resources based
on the tags used on that resource. You can do this by using the global aws:ResourceTag/tag-
key condition key. For more information, see Controlling access to AWS resources in the AWS
Identity and Access Management user guide.

You can use the AWS management console, the AWS CLI, or the Neptune graph API to add, list,
and delete tags on Neptune Analytics graph resources. When using the CLI or API, make sure to
provide the Amazon Resource Name (ARN) for the Neptune Analytics graph to work with. For more
information about constructing an ARN, see Working with ARNs in Neptune Analytics graph.

Tagging 124

https://docs.aws.eu//IAM/latest/UserGuide/access_tags.html#access_tags_control-resources

Neptune Analytics Neptune Analytics User Guide

Note

Tags are cached for authorization purposes. Because of this, additions and updates to tags
on Neptune Analytics resources can take several minutes before they are available.

Using tags to produce detailed billing reports

You can also use tags to track costs by grouping expenses for similarly tagged resources. Use tags
to organize your AWS bill to reflect your own cost structure. To do this, sign up to get your AWS
account bill with tag key values included. Then, to see the cost of combined resources, organize
your billing information according to resources with the same tag key values. For example, you can
tag several resources with a specific application name, and then organize your billing information
to see the total cost of that application across several services. For more information, see Using
Cost Allocation Tags in the AWS Billing user guide.

Adding, listing, and removing tags

The process to tag a Neptune Analytics graph resource is similar for all resources. The following
procedure shows how to tag a Neptune Analytics graph

AWS Console

To add a tag to a Neptune Analytics graph

1. Sign in to the AWS Management Console, and open the Amazon Neptune console at https://
eusc-de-east-1.console.amazonaws-eusc.eu/neptune/.

2. In the navigation pane, choose Graphs.

3. Choose the name of the graph that you want to tag. This will show the graph details.

4. In the details section, scroll down to the Tags section.

5. Choose Manage tags. The Manage tags window appears.

6. Enter a value for Tag key and value.

7. To add additional tags, choose the Add another tag button and enter values for its Tag key
and value. Repeat this step as many times as necessary.

8. Choose the Save button to save the changes.

To delete a tag from a DB instance

Tagging 125

https://docs.aws.eu//awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.eu//awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/
https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/

Neptune Analytics Neptune Analytics User Guide

1. Sign in to the AWS Management Console, and open the Amazon Neptune console at https://
eusc-de-east-1.console.amazonaws-eusc.eu/neptune/.

2. In the navigation pane, choose Graphs.

3. Choose the name of the graph that you want to tag. This will show the graph details.

4. In the details section, scroll down to the Tags section.

5. Choose Manage tags. The Manage tags window appears.

6. Choose the Remove button for the tag you want to delete.

7. Choose the Save button to save your changes.

AWS CLI

You can add, list or remove tags for a graph using the AWS CLI.

• To add one or more tags to a Neptune Analytics graph resource, use the AWS CLI command
tag-resource.

To list the tags on a Neptune Analytics graph resource, use the AWS CLI command list-
tags-for-resource.

To remove one or more tags from a Neptune Analytics graph resource, use the AWS CLI
command untag-resource.

To learn more about how to construct the required ARN, see Working with ARNs in Neptune
Analytics graph.

Working with ARNs in Neptune Analytics graph

You can get the ARN of a Neptune Analytics graph resource by using the AWS Management
Console or the AWS CLI.

Console:

1. For Graphs: Go to your graph page in the Neptune console and look for the “Resource ARN”
field.

2. For graph snapshots: Go to your graph page in the Neptune console and look for the "Snapshot
ARN" field.

Working with ARNs 126

https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/
https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/

Neptune Analytics Neptune Analytics User Guide

AWS CLI

To get an ARN from the AWS CLI for a particular Neptune Analytics graph resource, you use the
get command for that resource. The following table shows each AWS CLI command, and the ARN
property used with the command to get an ARN.

Resource AWS CLI command ARN property

Graph get-graph arn

GraphSnapshot get-graph-snapshot arn

As an example, running the following command:

aws neptune-graph get-graph --graph-id g-vgebxfyat7 --query "arn"

would return "arn:aws:neptune-graph:us-east-1:123456789012:graph/g-
vgebxfyat7".

Working with ARNs 127

https://docs.aws.eu//cli/latest/reference/neptune-graph/get-graph.html
https://docs.aws.eu//cli/latest/reference/neptune-graph/get-graph-snapshot.html

Neptune Analytics Neptune Analytics User Guide

Monitoring Neptune Analytics

To ensure robust monitoring and analysis of Neptune Analytics usage, it is integrated with AWS
CloudTrail, a service that records all API calls made to the Neptune Analytics service. By capturing
these API calls, CloudTrail provides a detailed audit trail that can be used to understand who
is accessing the service, what actions they are taking, and from where they are making those
requests. This data can then be further analyzed using tools like Amazon CloudWatch and Amazon
Athena to identify trends, anomalies, and other insights about the usage of Neptune Analytics
within an organization.

Topics

• Neptune Analytics information in CloudTrail

• Understanding Neptune Analytics log file entries

• Monitoring your graphs

Neptune Analytics information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in Neptune Analytics, that activity is recorded in a CloudTrail event along with other
AWS service events in the Event history section. You can view, search, and download recent events
in your AWS account. For more information, see Viewing events with CloudTrail event history.

For an ongoing record of events in your AWS account, including events for Neptune Analytics,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3. By default, when
you create a trail in the console, the trail applies to all AWS regions. The trail logs events from
all regions in the AWS partition and delivers the log files to the Amazon S3 that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

Neptune Analytics information in CloudTrail 128

https://docs.aws.eu//awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.eu//awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.eu//awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.eu//awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.eu//awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.eu//awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.eu//awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Neptune Analytics Neptune Analytics User Guide

Logging Neptune Analytics API calls using AWS CloudTrail

Neptune Analytics is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Neptune Analytics. CloudTrail captures all API calls
for Neptune Analytics as events. The calls captured include calls from the Neptune Analytics
console and code calls to the Neptune Analytics API operations. If you create a trail, you can enable
continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for Neptune
Analytics. If you don't configure a trail, you can still view the most recent management events in
the CloudTrail console in the Event history section. Using the information collected by CloudTrail,
you can determine the request that was made to Neptune Analytics, the IP address from which the
request was made, who made the request, when it was made, and additional details.

For robust monitoring and alerting, you can also integrate CloudTrail events with Amazon
CloudWatch logs. To enhance your analysis of Neptune Analytics service activity and identify
changes in activities for an AWS account, you can query AWS CloudTrail logs using Amazon Athena.
For example, you can use queries to identify trends and further isolate activity by attributes such as
source IP address or user.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail
user guide.

Control plane events in CloudTrail

The following control plane API actions are logged by default as events in CloudTrail:

• CreateGraph

• ListGraphs

• GetGraph

• UpdateGraph

• ResetGraph

• DeleteGraph

• CreateGraphUsingImportTask

• ListImportTasks

• GetImportTask

• CancelImportTask

• CreatePrivateGraphEndpoint

Monitoring Neptune Analytics using AWS CloudTrail 129

https://docs.aws.eu//AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.eu//AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.eu//athena/latest/ug/cloudtrail-logs.html
https://docs.aws.eu//awscloudtrail/latest/userguide/
https://docs.aws.eu//awscloudtrail/latest/userguide/
https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraph.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_ListGraphs.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_GetGraph.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_UpdateGraph.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_ResetGraph.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_DeleteGraph.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraphUsingImportTask.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_ListImportTasks.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_GetImportTask.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_CancelImportTask.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreatePrivateGraphEndpoint.html

Neptune Analytics Neptune Analytics User Guide

• ListPrivateGraphEndpoints

• GetPrivateGraphEndpoint

• DeletePrivateGraphEndpoint

• CreateGraphSnapshot

• ListGraphSnapshots

• GetGraphSnapshot

• RestoreGraphFromSnapshot

• DeleteGraphSnapshot

• TagResource

• ListTagsForResource

• UntagResource

Data plane events in CloudTrail

To enable logging of the following API actions in CloudTrail, you'll need to enable logging of
data plane API activity in CloudTrail. See Logging data events for more information. By default,
CloudTrail doesn't log data events.

Note

Additional charges apply for data events. For more information, see AWS CloudTrail pricing.

Data plane events can be filtered by resource type for granular control over which Neptune
Analytics API calls you want to selectively log and pay for in CloudTrail. For example, by specifying
AWS::NeptuneGraph::Graph as a resource type, you can log only calls to the Neptune Analytics
APIs. You can add an additional filter to exclude some events if you don't want them to be logged.
For more information, see AdvancedFieldSelectors in the AWS CloudTrail API reference.

Neptune Analytics logs the following data plane API actions as data events:

• GetGraphSummary

• ExecuteQuery

• GetQuery

• ListQueries

Data plane events 130

https://docs.aws.eu//neptune-analytics/latest/apiref/API_ListPrivateGraphEndpoints.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_GetPrivateGraphEndpoint.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_DeletePrivateGraphEndpoint.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraphSnapshot.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_ListGraphSnapshots.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_GetGraphSnapshot.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_RestoreGraphFromSnapshot.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_DeleteGraphSnapshot.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_TagResource.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_ListTagsForResource.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_UntagResource.html
https://docs.aws.eu//awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://aws.eu//cloudtrail/pricing/
https://docs.aws.eu//awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html
https://docs.aws.eu//awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html
https://docs.aws.eu//awscloudtrail/latest/APIReference/
https://docs.aws.eu//neptune-analytics/latest/apiref/API_GetGraphSummary.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_ExecuteQuery.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_GetQuery.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_ListQueries.html

Neptune Analytics Neptune Analytics User Guide

• CancelQuery

Understanding Neptune Analytics log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and other information. CloudTrail log files aren't an ordered stack
trace of the public API calls, so they don't appear in any specific order.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

The following examples demonstrate CloudTrail logs of these event types:

• CreateGraph

{
"eventVersion": "1.08",
"userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/admin-role",
 "accountId": "111122223333",
 "userName": "bob"
 },
 "webIdFederationData": {},

Understanding log file entries 131

https://docs.aws.eu//neptune-analytics/latest/apiref/API_CancelQuery.html
https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraph.html

Neptune Analytics Neptune Analytics User Guide

 "attributes": {
 "creationDate": "2023-11-22T13:45:16Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "AWS Internal"
},
"eventTime": "2023-11-22T13:53:45Z",
"eventSource": "neptune-graph.amazonaws.com",
"eventName": "CreateGraph",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.0.2.0",
"userAgent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0 botocore/1.10.63",
"requestParameters": {
 "graphName": "bobgraph",
 "provisionedMemory": 128,
 "clientToken": "bobtoken",
 "deletionProtection": false
},
"responseElements": {
 "graph": {
 "allowFromPublic": false,
 "arn": "arn:aws:neptune-graph:us-east-1:111122223333:graph/g-b52example",
 "createTime": 1700661225.003,
 "deletionProtection": false,
 "endpoint": "g-b52example.neptune-graph-gamma.us-east-1.amazonaws.com",
 "id": "g-b52example",
 "kmsKeyIdentifier": "AWS_OWNED_KEY",
 "name": "bobgraph",
 "provisionedMemory": 128,
 "replicaCount": 0,
 "status": "CREATING"
 }
},
"requestID": "4997ab5c-822d-4823-9c10-EXAMPLE",
"eventID": "58fc2480-7407-47f9-bc14-EXAMPLE",
"readOnly": false,
"eventType": "AwsApiCall",
"managementEvent": true,
"recipientAccountId": "111122223333",
"eventCategory": "Management"
}

• CreateGraph (Access Denied)

Understanding log file entries 132

https://docs.aws.eu//neptune-analytics/latest/apiref/API_CreateGraph.html

Neptune Analytics Neptune Analytics User Guide

{
"eventVersion": "1.08",
"userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2023-11-22T13:36:22Z",
 "mfaAuthenticated": "false"
 }
 }
},
"eventTime": "2023-11-22T13:36:22Z",
"eventSource": "neptune-graph.amazonaws.com",
"eventName": "CreateGraph",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.0.2.0",
"userAgent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0 botocore/1.10.63",
"errorCode": "AccessDenied",
"requestParameters": {
 "graphName": "bobgraph",
 "replicaCount": 0,
 "clientToken": "2040f466-220d-49e5-a45c-EXAMPLE",
 "allowFromPublic": false,
 "provisionedMemory": 128,
 "deletionProtection": false
},
"responseElements": {
 "Message": "User: arn:aws:sts::444455556666:assumed-role/bobrole/bobsession is
 not authorized to perform: neptune-graph:CreateGraph on resource: arn:aws:neptune-
graph:us-east-1:444455556666:graph/*"
},

Understanding log file entries 133

Neptune Analytics Neptune Analytics User Guide

"requestID": "89f04d5b-14d1-4c3a-b44d-EXAMPLE",
"eventID": "373c5468-99ac-4fed-9def-EXAMPLE",
"readOnly": false,
"eventType": "AwsApiCall",
"managementEvent": true,
"recipientAccountId": "111122223333",
"eventCategory": "Management"

• ListGraphs

{
"eventVersion": "1.08",
"userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/admin-role",
 "accountId": "111122223333",
 "userName": "bob"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2023-11-22T13:34:55Z",
 "mfaAuthenticated": "false"
 }
 }
},
"eventTime": "2023-11-22T13:42:56Z",
"eventSource": "neptune-graph.amazonaws.com",
"eventName": "ListGraphs",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.0.2.0",
"userAgent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0 botocore/1.10.63",
"requestParameters": null,
"responseElements": null,
"requestID": "fb7e8333-61a3-4bcd-a6d5-EXAMPLE",
"eventID": "85002909-acf5-499f-a814-EXAMPLE",
"readOnly": true,

Understanding log file entries 134

https://docs.aws.eu//neptune-analytics/latest/apiref/API_ListGraphs.html

Neptune Analytics Neptune Analytics User Guide

"eventType": "AwsApiCall",
"managementEvent": true,
"recipientAccountId": "111122223333",
"eventCategory": "Management"
}

• GetGraphSummary

{
"eventVersion": "1.09",
"userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/admin-role",
 "accountId": "111122223333",
 "userName": "bob"
 },
 "attributes": {
 "creationDate": "2023-11-22T13:34:55Z",
 "mfaAuthenticated": "false"
 }
 }
},
"eventTime": "2023-11-22T13:42:56Z",
"eventSource": "neptune-graph.amazonaws.com",
"eventName": "GetGraphSummary",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.0.2.0",
"userAgent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0 botocore/1.10.63",
"requestParameters": {
 "requestType": "GET",
 "requestParameters": {},
 "requestPayload": "/summary",
 "requestContentType": "application/json",
 "requestHeaders": {
 "content-length": "0",
 "Accept": "application/xml",
 "x-amz-date": "20231122T133455Z",

Understanding log file entries 135

https://docs.aws.eu//neptune-analytics/latest/apiref/API_GetGraphSummary.html

Neptune Analytics Neptune Analytics User Guide

 "User-Agent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0 botocore/1.10.63",
 "Connection": "keep-alive",
 "X-Forwarded-For": "192.0.2.0",
 "Host": "localhost:8080",
 "Accept-Encoding": "gzip, deflate",
 "Content-Type": "application/json"
 },
 "authorizedIamActions": []
},
"responseElements": null,
"requestID": "fb7e8333-61a3-4bcd-a6d5-EXAMPLE",
"eventID": "85002909-acf5-499f-a814-EXAMPLE",
"readOnly": true,
"resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::NeptuneGraph::Graph",
 "ARN": "arn:aws:neptune-graph:us-east-1:111122223333:graph/g-dbiexample"
 }
],
"eventType": "AwsApiCall",
"managementEvent": false,
"recipientAccountId": "111122223333",
"sharedEventID": "ce9ee550-df43-45a8-9445-EXAMPLE",
"eventCategory": "Data"
}

• ExecuteQuery

{
"eventVersion": "1.09",
"userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/admin-role",
 "accountId": "111122223333",
 "userName": "bob"
 },

Understanding log file entries 136

https://docs.aws.eu//neptune-analytics/latest/apiref/API_ExecuteQuery.html

Neptune Analytics Neptune Analytics User Guide

 "attributes": {
 "creationDate": "2023-11-22T14:04:45Z",
 "mfaAuthenticated": "false"
 }
 }
},
"eventTime": "2023-11-22T14:04:41Z",
"eventSource": "neptune-graph.amazonaws.com",
"eventName": "ExecuteQuery",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.0.2.0",
"userAgent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0 botocore/1.10.63",
"requestParameters": {
 "requestType": "POST",
 "requestPayload": "[Redacted]",
 "requestContentType": "application/x-www-form-urlencoded",
 "requestHeaders": {
 "X-Amz-Date": "20231122T140445Z",
 "x-triton-proxy-request-id": "9dece4eb-7018-429f-970f-EXAMPLE",
 "Connection": "Keep-Alive",
 "User-Agent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0 botocore/1.10.63",
 "X-Forwarded-For": "192.0.2.0",
 "content-type": "application/x-www-form-urlencoded",
 "Host": "g-dbiexample.neptune-graph-gamma.us-east-1.amazonaws.com",
 "Accept-Encoding": "gzip,deflate",
 "Content-Length": "40"
 },
 "authorizedIamActions": []
},
"responseElements": {
 "responseTime": "2023-11-22T14:04:45.348Z",
 "responseCode": 200,
 "responseHeaders": {},
 "responseSize": "0",
 "responseContent": ""
},
"requestID": "37001a17-7d4e-4c34-9f3b-EXAMPLE",
"eventID": "5a6323fe-9ea2-4efe-81f0-EXAMPLE",
"readOnly": false,
"resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::NeptuneGraph::Graph",
 "ARN": "arn:aws:neptune-graph:us-east-1:111122223333:graph/g-dbiexample"

Understanding log file entries 137

Neptune Analytics Neptune Analytics User Guide

 }
],
"eventType": "AwsApiCall",
"managementEvent": false,
"recipientAccountId": "111122223333",
"eventCategory": "Data"
}

Monitoring your graphs

Amazon Neptune and Amazon CloudWatch are integrated so that you can gather and analyze
performance metrics. You can monitor these metrics using the CloudWatch console, the AWS
Command Line Interface (AWS CLI), or the CloudWatch API.

CloudWatch also lets you set alarms so that you can be notified if a metric value breaches a
threshold that you specify. You can even set up CloudWatch events to take corrective action if a
breach occurs. For more information about using CloudWatch and alarms, see the CloudWatch
documentation.

Viewing CloudWatch data

AWS console

To view CloudWatch data for a Neptune Analytics graph from the AWS console:

1. Sign in to the AWS management console and open the CloudWatch console.

2. In the navigation pane, choose Metrics.

3. In the All Metrics pane, choose Neptune , and then choose Neptune Analytics.

4. In the upper pane, scroll down to view the full list of metrics for your graph. The available
Neptune Analytics metric options appear in the Viewing list.

To select or deselect an individual metric, in the results pane, select the check box next to the
resource name and metric. Graphs showing the metrics for the selected items appear at the
bottom of the console. To learn more about CloudWatch graphs, see Graph metrics in the
Amazon CloudWatch user guide.

AWS CLI

To view CloudWatch data for a Neptune cluster using the AWS CLI:

Monitoring your graphs 138

https://docs.aws.eu//cloudwatch/
https://docs.aws.eu//cloudwatch/
https://eusc-de-east-1.console.amazonaws-eusc.eu//cloudwatch/
https://docs.aws.eu//AmazonCloudWatch/latest/DeveloperGuide/graph_metrics.html

Neptune Analytics Neptune Analytics User Guide

1. Install the AWS CLI. For information on installing the CLI, see the AWS Command Line
Interface user guide.

2. Use the AWS CLI to fetch information. The relevant CloudWatch parameters for Neptune are
listed in Neptune CloudWatch metrics.

The following example retrieves the GraphSizeBytes CloudWatch metric for the example
graph g-d3iivkv6i6.

aws cloudwatch get-metric-statistics \
 ##(Mon,Aug19)##
 --namespace AWS/Neptune --metric-name GraphSizeBytes \
 --dimensions Name="GraphIdentifier",Value=g-d3iivkv6i6 \
 --start-time 2024-08-17T00:00:00Z --end-time 2024-08-18T00:00:00Z \
 --period 60 --statistics=Average --region=us-east-1

API

CloudWatch also supports a query action so that you can request information
programmatically. For more information, see the CloudWatch Query API documentation and
Amazon CloudWatch API Reference. When a CloudWatch action requires a parameter that
is specific to Neptune monitoring, such as MetricName, use the values listed in Neptune
CloudWatch Metrics. The following example shows a low-level CloudWatch request, using the
following parameters:

1. Statistics.member.1 = Average

2. Dimensions.member.1 = "GraphIdentifier"=g-d3iivkv6i6

3. Namespace = AWS/Neptune

4. StartTime = 2024-08-17T00:00:00Z

5. EndTime = 2024-08-17T00:00:00Z

6. Period = 60

7. MetricName = GraphSizeBytes

aws cloudwatch get-metric-statistics \
 ##(Mon,Aug19)##
 --namespace AWS/Neptune --metric-name GraphSizeBytes \
 --dimensions Name="GraphIdentifier",Value=g-d3iivkv6i6 \

Viewing CloudWatch data 139

https://docs.aws.eu//cli/latest/userguide/
https://docs.aws.eu//cli/latest/userguide/
https://docs.aws.eu//neptune/latest/userguide/cw-metrics.html
https://docs.aws.eu//AmazonCloudWatch/latest/DeveloperGuide/Using_Query_API.html
https://docs.aws.eu//AmazonCloudWatch/latest/APIReference/
https://docs.aws.eu//neptune/latest/userguide/cw-metrics.html
https://docs.aws.eu//neptune/latest/userguide/cw-metrics.html

Neptune Analytics Neptune Analytics User Guide

 --start-time 2024-08-17T00:00:00Z --end-time 2024-08-18T00:00:00Z \
 --period 60 --statistics=Average --region=us-east-1

Neptune CloudWatch metrics

The following table lists the CloudWatch metrics that Neptune Analytics supports:

Name Description

NumOpenCypherRequestsPerSec Number of Open Cypher requests/sec made to
the server.

NumOpenCypherClientErrorsPerSec Number of Open Cypher requests/sec
resulting into client side failures(4xx).

NumOpenCypherServerErrorsPerSec Number of OpenCypher requests/sec resulting
into internal failures(5xx).

NumQueuedRequestsPerSec Number of requests/sec accepted by the
server and pending execution. A non zero
metric value indicates the graph is running
queries at full capacity and a scale up is
needed to avoid a throughput drop.

NumThrottledRequestsPerSec Number of requests/sec throttled by the
server.

GraphSizeBytes Aggregated storage volume used for graph
indexes, dictionary and vector index(es).

CPUUtilization System CPU usage by percentage. A continuou
s period of high(close to 100) CPU Utilization
metric is not alone indicative of an issue, but
validates a potential need to scale up if other
metrics are also exhibiting stress.

NumEdges Number of edges in the graph.

Neptune CloudWatch metrics 140

Neptune Analytics Neptune Analytics User Guide

Name Description

NumEdgeProperties Number of properties across all edges in the
graph.

NumVertexProperties Number of properties across all vertices
in the graph. Note that Neptune Analytics
models LPG labels as vertex properties, so this
includes the LPG labels.

NumVectors Number of vectors present in the Vector
Search Index.

GraphStorageUsagePercent Percentage storage quota usage of the graph
at the current configured m-NCU. This metric
can be used to resize your graph as you add
or remove data. If this metric reaches close to
100 and the graph expects addition of more
data, the queries will run out of memory. It is
recommended to scale up your graph in such
cases. More information on optimally resizing
your graph is available in this blog entry .

Neptune CloudWatch metrics 141

https://aws.amazon.com/blogs/database/introducing-smaller-capacity-units-for-amazon-neptune-analytics-up-to-75-cheaper-to-get-started-with-graph-analytics-workloads/

Neptune Analytics Neptune Analytics User Guide

Security in Neptune Analytics

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The describes this as security of the cloud
and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the .

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Neptune Analytics. The following topics show you how to configure Neptune Analytics to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Neptune Analytics resources.

Topics

• Data protection in Neptune Analytics

• Identity and access management for Neptune Analytics

• Compliance validation for Neptune Analytics

• Resilience in Neptune Analytics

• Infrastructure Security in Neptune Analytics

• Cross-service confused deputy prevention

• Using service-linked roles (SLRs) in Neptune Analytics

• Import/export permissions

142

Neptune Analytics Neptune Analytics User Guide

Data protection in Neptune Analytics

The AWS applies to data protection in Neptune Analytics. As described in this model, AWS is
responsible for protecting the global infrastructure that runs all of the AWS Cloud. You are
responsible for maintaining control over your content that is hosted on this infrastructure. You are
also responsible for the security configuration and management tasks for the AWS services that
you use. For more information about data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Neptune Analytics or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Identity and access management for Neptune Analytics

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)

Data protection 143

https://aws.amazon.com/compliance/data-privacy-faq/
https://docs.aws.eu/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

Neptune Analytics Neptune Analytics User Guide

and authorized (have permissions) to use Neptune Analytics resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Neptune Analytics works with IAM

• Identity-based policy examples for Neptune Analytics

• Troubleshooting Neptune Analytics identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs based on your role:

• Service user - request permissions from your administrator if you cannot access features (see
Troubleshooting Neptune Analytics identity and access)

• Service administrator - determine user access and submit permission requests (see How
Neptune Analytics works with IAM)

• IAM administrator - write policies to manage access (see Identity-based policy examples for
Neptune Analytics)

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated as the AWS account root user, an IAM user, or by assuming an IAM role.

You can sign in as a federated identity using credentials from an identity source like AWS
IAM Identity Center (IAM Identity Center), single sign-on authentication, or Google/Facebook
credentials. For more information about signing in, see How to sign in to your AWS account in the
AWS Sign-In User Guide.

For programmatic access, AWS provides an SDK and CLI to cryptographically sign requests. For
more information, see AWS Signature Version 4 for API requests in the IAM User Guide.

Audience 144

https://docs.aws.eu/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_sigv.html

Neptune Analytics Neptune Analytics User Guide

AWS account root user

When you create an AWS account, you begin with one sign-in identity called the AWS account root
user that has complete access to all AWS services and resources. We strongly recommend that you
don't use the root user for everyday tasks. For tasks that require root user credentials, see Tasks
that require root user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users to use federation with an identity provider to access AWS
services using temporary credentials.

A federated identity is a user from your enterprise directory, web identity provider, or Directory
Service that accesses AWS services using credentials from an identity source. Federated identities
assume roles that provide temporary credentials.

For centralized access management, we recommend AWS IAM Identity Center. For more
information, see What is IAM Identity Center? in the AWS IAM Identity Center User Guide.

IAM users and groups

An IAM user is an identity with specific permissions for a single person or application. We
recommend using temporary credentials instead of IAM users with long-term credentials. For more
information, see Require human users to use federation with an identity provider to access AWS
using temporary credentials in the IAM User Guide.

An IAM group specifies a collection of IAM users and makes permissions easier to manage for large
sets of users. For more information, see Use cases for IAM users in the IAM User Guide.

IAM roles

An IAM role is an identity with specific permissions that provides temporary credentials. You can
assume a role by switching from a user to an IAM role (console) or by calling an AWS CLI or AWS
API operation. For more information, see Methods to assume a role in the IAM User Guide.

IAM roles are useful for federated user access, temporary IAM user permissions, cross-account
access, cross-service access, and applications running on Amazon EC2. For more information, see
Cross account resource access in IAM in the IAM User Guide.

Authenticating with identities 145

https://docs.aws.eu/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.eu/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.eu/singlesignon/latest/userguide/what-is.html
https://docs.aws.eu/IAM/latest/UserGuide/id_users.html
https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.eu/IAM/latest/UserGuide/id_groups.html
https://docs.aws.eu/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Neptune Analytics Neptune Analytics User Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy defines permissions when associated with an identity or resource. AWS evaluates these
policies when a principal makes a request. Most policies are stored in AWS as JSON documents. For
more information about JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Using policies, administrators specify who has access to what by defining which principal can
perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. An IAM administrator creates IAM policies and
adds them to roles, which users can then assume. IAM policies define permissions regardless of the
method used to perform the operation.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you attach to an identity (user,
group, or role). These policies control what actions identities can perform, on which resources, and
under what conditions. To learn how to create an identity-based policy, see Define custom IAM
permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be inline policies (embedded directly into a single identity) or managed
policies (standalone policies attached to multiple identities). To learn how to choose between
managed and inline policies, see Choose between managed policies and inline policies in the IAM
User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples
include IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. You
must specify a principal in a resource-based policy.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Other policy types

AWS supports additional policy types that can set the maximum permissions granted by more
common policy types:

Managing access using policies 146

https://docs.aws.eu/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_principal.html

Neptune Analytics Neptune Analytics User Guide

• Permissions boundaries – Set the maximum permissions that an identity-based policy can grant
to an IAM entity. For more information, see Permissions boundaries for IAM entities in the IAM
User Guide.

• Service control policies (SCPs) – Specify the maximum permissions for an organization or
organizational unit in AWS Organizations. For more information, see Service control policies in
the AWS Organizations User Guide.

• Resource control policies (RCPs) – Set the maximum available permissions for resources in your
accounts. For more information, see Resource control policies (RCPs) in the AWS Organizations
User Guide.

• Session policies – Advanced policies passed as a parameter when creating a temporary session
for a role or federated user. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Neptune Analytics works with IAM

Before you use IAM to manage access to Neptune Analytics, learn what IAM features are available
to use with Neptune Analytics.

IAM features you can use with Neptune Analytics

IAM feature Neptune Analytics support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

Working with IAM 147

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.eu/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.eu/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Neptune Analytics Neptune Analytics User Guide

IAM feature Neptune Analytics support

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how Neptune Analytics and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Neptune Analytics

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. To learn about all of the elements
that you can use in a JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

Identity-based policy examples for Neptune Analytics

To view examples of Neptune Analytics identity-based policies, see Identity-based policy examples
for Neptune Analytics.

Resource-based policies within Neptune Analytics

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that

Working with IAM 148

https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements.html

Neptune Analytics Neptune Analytics User Guide

support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. For more information, see Cross account
resource access in IAM in the IAM User Guide.

Policy actions for Neptune Analytics

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Include actions in a policy to grant permissions to perform the associated
operation.

To see a list of Neptune Analytics actions, see Actions Defined by Neptune Analytics in the Service
Authorization Reference.

Policy actions in Neptune Analytics use the following prefix before the action:

neptune-graph

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "neptune-graph:action1",
 "neptune-graph:action2"
]

To view examples of Neptune Analytics identity-based policies, see Identity-based policy examples
for Neptune Analytics.

Working with IAM 149

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.eu//service-authorization/latest/reference/list_amazonneptuneanalytics.html

Neptune Analytics Neptune Analytics User Guide

Policy resources for Neptune Analytics

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. As
a best practice, specify a resource using its Amazon Resource Name (ARN). For actions that don't
support resource-level permissions, use a wildcard (*) to indicate that the statement applies to all
resources.

"Resource": "*"

To see a list of Neptune Analytics resource types and their ARNs, see Resources Defined by Neptune
Analytics in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions Defined by Neptune Analytics .

To view examples of Neptune Analytics identity-based policies, see Identity-based policy examples
for Neptune Analytics.

Policy condition keys for Neptune Analytics

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element specifies when statements execute based on defined criteria. You can
create conditional expressions that use condition operators, such as equals or less than, to match
the condition in the policy with values in the request. To see all AWS global condition keys, see
AWS global condition context keys in the IAM User Guide.

To see a list of Neptune Analytics condition keys, see Condition Keys for Neptune Analytics in the
Service Authorization Reference. To learn with which actions and resources you can use a condition
key, see Actions Defined by Neptune Analytics .

To view examples of Neptune Analytics identity-based policies, see Identity-based policy examples
for Neptune Analytics.

Working with IAM 150

https://docs.aws.eu/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.eu/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.eu/IAM/latest/UserGuide/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.eu//service-authorization/latest/reference/list_amazonneptuneanalytics.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.eu/IAM/latest/UserGuide/list_your_service.html#your_service-policy-keys
https://docs.aws.eu//service-authorization/latest/reference/list_amazonneptuneanalytics.html

Neptune Analytics Neptune Analytics User Guide

ACLs in Neptune Analytics

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Neptune Analytics

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes called tags. You can attach tags to IAM entities and AWS resources, then design ABAC
policies to allow operations when the principal's tag matches the tag on the resource.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using temporary credentials with Neptune Analytics

Supports temporary credentials: Yes

Temporary credentials provide short-term access to AWS resources and are automatically created
when you use federation or switch roles. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM and AWS services that work with IAM in the IAM User Guide.

Cross-service principal permissions for Neptune Analytics

Supports forward access sessions (FAS): Yes

Working with IAM 151

https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.eu/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.eu/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.eu/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.eu/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Neptune Analytics Neptune Analytics User Guide

Forward access sessions (FAS) use the permissions of the principal calling an AWS service,
combined with the requesting AWS service to make requests to downstream services. For policy
details when making FAS requests, see Forward access sessions.

Service roles for Neptune Analytics

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Neptune Analytics functionality.
Edit service roles only when Neptune Analytics provides guidance to do so.

Service-linked roles for Neptune Analytics

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing Neptune Analytics service-linked roles, see Using service-
linked roles (SLRs) in Neptune Analytics.

For details about creating or managing service-linked roles for other services, see AWS services that
work with IAM. Find a service in the table that includes a Yes in the Service-linked role column.
Choose the Yes link to view the service-linked role documentation for that service.

Identity-based policy examples for Neptune Analytics

By default, users and roles don't have permission to create or modify Neptune Analytics
resources. To grant users permission to perform actions on the resources that they need, an IAM
administrator can create IAM policies.

Identity-based policy examples 152

https://docs.aws.eu/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Neptune Analytics Neptune Analytics User Guide

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by Neptune Analytics, including the format of
the ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Neptune
Analytics in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Neptune Analytics console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Neptune Analytics
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as CloudFormation. For more
information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies

Identity-based policy examples 153

https://docs.aws.eu/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.eu/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.eu/IAM/latest/UserGuide/list_your_service.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_elements_condition.html

Neptune Analytics Neptune Analytics User Guide

adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Neptune Analytics console

To access the Neptune Analytics console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Neptune Analytics resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the Neptune Analytics console, also attach the
Neptune Analytics ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity-based policy examples 154

https://docs.aws.eu/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.eu/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.eu/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.eu/IAM/latest/UserGuide/best-practices.html
https://docs.aws.eu/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Neptune Analytics Neptune Analytics User Guide

 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting Neptune Analytics identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Neptune Analytics and IAM.

Topics

• I am not authorized to perform an action in Neptune Analytics

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Neptune Analytics resources

Troubleshooting 155

Neptune Analytics Neptune Analytics User Guide

I am not authorized to perform an action in Neptune Analytics

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
neptune-graph:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 neptune-graph:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the neptune-graph:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Neptune Analytics.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Neptune Analytics. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting 156

Neptune Analytics Neptune Analytics User Guide

I want to allow people outside of my AWS account to access my Neptune Analytics
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Neptune Analytics supports these features, see How Neptune Analytics works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for Neptune Analytics

To learn whether an AWS service is within the scope of specific compliance programs, see and
choose the compliance program that you are interested in. For general information, see .

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. For more
information about your compliance responsibility when using AWS services, see AWS Security
Documentation.

Resilience in Neptune Analytics

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones

Compliance validation 157

https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.eu/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.eu/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.eu/security/
https://docs.aws.eu/security/

Neptune Analytics Neptune Analytics User Guide

without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Neptune Analytics offers several features to help
support your data resiliency and backup needs.

Infrastructure Security in Neptune Analytics

As a managed service, Neptune Analytics is protected by the AWS global network security
procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access Neptune Analytics through the network. Clients must
support Transport Layer Security (TLS) 1.2 or later. Clients must also support cipher suites with
perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or ECDHE (Elliptic Curve
Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that ServiceNameLongEntity gives another service
to the resource. Use aws:SourceArn if you want only one resource to be associated with the
cross-service access. Use aws:SourceAccount if you want to allow any resource in that account to
be associated with the cross-service use.

Infrastructure Security 158

https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.eu/STS/latest/APIReference/Welcome.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.eu/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Neptune Analytics Neptune Analytics User Guide

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:servicename:*:123456789012:*.

If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN,
you must use both global condition context keys to limit permissions.

The value of aws:SourceArn must be ResourceDescription.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in ServiceNameEntity to prevent the confused deputy problem.

Using service-linked roles (SLRs) in Neptune Analytics

Neptune Analytics graphs use AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to Neptune Analytics graphs.
Service-linked roles are predefined by Neptune Analytics graphs and include all the permissions
that the service requires to call other AWS services on your behalf.

A service-linked role makes using Neptune Analytics graphs easier because you don't have to add
the necessary permissions manually. Neptune Analytics defines the permissions in its service-
linked roles, and unless defined otherwise, only Neptune Analytics graphs can assume its roles.
The defined permissions include the trust policy and the permissions policy, and that permissions
policy cannot be attached to any other IAM entity. You can delete the roles only after first deleting
their related resources. This protects your Neptune Analytics graph resources because you can't
inadvertently remove the permissions to access the resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that are marked with Yes in the Service-Linked Role column.
Choose a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Neptune Analytics Graphs

Neptune Analytics graphs uses the service-linked role named
AWSServiceRoleForNeptuneGraph to allow them to call AWS services on behalf of your DB
clusters.

Service-linked roles 159

https://docs.aws.eu/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.eu/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Neptune Analytics Neptune Analytics User Guide

This service-linked role has an IAM managed permissions policy attached to it named
AWSServiceRoleForNeptuneGraphPolicy that grants it permissions to operate in your account. See
AWS managed policies for Amazon Neptune. This policy provides read-only access to all Amazon
Neptune Analytics resources along with read-only permissions for dependent services, as follows:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "GraphMetrics",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": [
 "AWS/Neptune",
 "AWS/Usage"
]
 }
 }
 },
 {
 "Sid": "GraphLogGroup",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/neptune/*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 },
 {

For Graphs 160

https://docs.aws.eu/neptune/latest/userguide/aws-service-role-for-neptune-graph-policy.html
https://docs.aws.eu/neptune/latest/userguide/security-iam-access-managed-policies.html

Neptune Analytics Neptune Analytics User Guide

 "Sid": "GraphLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:log-group:/aws/neptune/*:log-stream:*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceAccount": "${aws:PrincipalAccount}"
 }
 }
 }
]
}

Note

To allow an IAM entity such as a user, group, or role to be able to create, edit, or delete a
service-linked role, you must set the appropriate permissions, like this:

{
 "Action": "iam:CreateServiceLinkedRole",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:role/aws-service-role/neptune-graph.amazonaws.com/
AWSServiceRoleForNeptuneGraph",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":"neptune-graph.amazonaws.com"
 }
}

If those permissions have not been set, or have not yet propagated, you may receive the
following error message when you try to create a service-linked role:

Unable to create the resource. Verify that you have permission
to create service linked role. Otherwise wait and try again later.

For Graphs 161

Neptune Analytics Neptune Analytics User Guide

For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for Neptune Analytics

You don't have to create a service-linked role manually for Neptune Analytics. When you create a
graph, Neptune Analytics automatically creates the service-linked role for you.

Editing a service-linked role for Neptune Analytics

Neptune Analytics doesn't allow you to edit the AWSServiceRoleForNeptuneGraph service-
linked role. After you create a service-linked role, you cannot change the name of the role because
various entities might reference it. However, you can edi t the description of the role using IAM. For
more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role

If you no longer need to use a feature or service that requires a service-linked role, it's best to
delete that role so you don't have an unused entity that is not actively monitored or maintained.

However, before you can delete the service-linked role, you must first confirm that the role has no
active sessions, and remove any resources that it uses.

To check whether a service-linked role has an active session in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://eusc-de-
east-1.console.amazonaws-eusc.eu/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the
check box) of the AWSServiceRoleForNeptuneGraph role.

3. On the Summary page for the chosen role, choose the Access Advisor tab.

Note

If you are unsure whether Neptune Analytics is using the
AWSServiceRoleForNeptuneGraph role, you can try to delete the role. If the service is
using the role, then the deletion fails and you can view the AWS Regions where the role is

Creating an SLR 162

https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.eu/IAM/latest/UserGuide/
https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.eu/IAM/latest/UserGuide/
https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/
https://eusc-de-east-1.console.amazonaws-eusc.eu/iam/

Neptune Analytics Neptune Analytics User Guide

being used. If the role is being used, then you must wait for the session to end before you
can delete the role. You cannot revoke the session for a service-linked role.

To delete your clusters so that you can delete AWSServiceRoleForNeptuneGraph

1. Open the Neptune console at https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/.

2. In the navigation pane, choose Graphs.

3. Choose a cluster that you want to delete.

4. For Actions, choose Delete.

5. If you are prompted to Create final Snapshot?, choose Yes or No. If you choose Yes enter the
name of your final snapshot for Final snapshot name.

6. Choose Delete.

You can use the IAM console, the IAM CLI, or the IAM API to delete the
AWSServiceRoleForNeptuneGraph service-linked role. For more information, see Deleting a
service-linked role in the IAM User Guide.

Import/export permissions

Neptune Analytics Export writes data into customer-owned Amazon S3 buckets. To do that, you
to provide an IAM role and AWS KMS policy to securely and successfully export data to the desired
Amazon S3 destination. These two arguments are passed in via the following parameters in the
StartExportTask API.

• --destination - The target Amazon S3 destination that Neptune Analytics will export data
into.

• --role-arn will be assumed by the Neptune Analytics service, to upload data to your Amazon
S3 bucket. The request will fail if this argument is missing.

• --kms-key-identifier is required to encrypt your data into your Amazon S3 bucket. The
request will fail if the argument is missing.

Create and configure IAM role and AWS KMS key

1. Go to the AWS IAM service console.

Import/export permissions 163

https://eusc-de-east-1.console.amazonaws-eusc.eu/neptune/
https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.eu/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.eu/IAM/latest/UserGuide/

Neptune Analytics Neptune Analytics User Guide

2. Create an inline policy, it should have at least the following permissions:

• kms:Decrypt: To list and read the Amazon S3 objects when exporting data. The Neptune
Analytics service requires this information to avoid duplicates during exports.

• kms:GenerateDataKey: To encrypt the Amazon S3 objects when writing to the Amazon S3
location.

• kms:DescribeKey: To validate if the customer-provided IAM role has permissions to access
the AWS KMS key.

• s3:PutObject: To put objects into the Amazon S3 location.

• s3:GetObject: To get Amazon S3 objects for deduplication checks.

• s3:ListBucket: To list Amazon S3 objects for deduplication checks.

3. Create an IAM role (choose custom trust policy), configure it's trust policy so that Neptune
Analytics is able to assume this role:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "neptune-graph.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Use the policy created in step 2.

4. Go to the AWS KMS console page.

Create and configure IAM role and AWS KMS key 164

Neptune Analytics Neptune Analytics User Guide

5. Create a new AWS KMS key policy, add following key policy. The following policy can be
optional, if the key policy already grants root account the following actions. Root account ARN
is like "AWS": "arn:aws:iam::[YOUR_ACCOUNT]:root".

JSON

{
 "Version":"2012-10-17",
 "Id": "key-consolepolicy-3",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "# Use the Above IAM Role"
]
 },
 "Action": [
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "# Use the Above IAM Role"
]
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "kms:EncryptionContextKeys": [
 "aws:neptune-graph:graphId",
 "aws:neptune-graph:graphExportId"
]
 }

Create and configure IAM role and AWS KMS key 165

Neptune Analytics Neptune Analytics User Guide

 },
 "Resource": "*"
 }
]
}

6. Go to the Amazon S3 bucket and choose the Properties page.

7. Navigate to the Default encryption section and choose Edit.

8. Input the AWS KMS key created in step 5, and choose Save.

Create and configure IAM role and AWS KMS key 166

Neptune Analytics Neptune Analytics User Guide

Querying Neptune Analytics

Neptune Analytics currently supports only the openCypher query language to access a graph.
openCypher is a declarative query language for property graphs that was originally developed by
Neo4j, then open-sourced in 2015, and contributed to the openCypher project under an Apache 2
open-source license. Its syntax is documented in the openCypher spec.

Topics

• Query APIs

• Query plan cache

• Query explain

• Statistics

• Exceptions

• Neptune Analytics openCypher data model

• Neptune Analytics OpenCypher specification compliance

• Transaction isolation levels in Neptune Analytics

Query APIs

The Neptune Analytics data API provides support for data operations including query execution,
query status checking, query cancellation, and graph summarizing via the HTTPS endpoint, the
AWS CLI, and the SDK.

Topics

• ExecuteQuery

• ListQueries

• GetQuery

• CancelQuery

• GraphSummary

• IAM role mappings

Query APIs 167

https://opencypher.org/
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

Neptune Analytics Neptune Analytics User Guide

ExecuteQuery

ExecuteQuery runs queries against a Neptune Analytics graph. Supported language: openCypher.

ExecuteQuery inputs

• graph-identifier (required)

Type: String

The identifier representing a graph.

• region (required)

Type: String

The region where the graph is present.

• query-string (required)

Type: String

Default: none

A string representing a query.

• language (required)

Type: Enum

Default: none

The query language the query is written in. Currently, only OPEN_CYPHER is supported.

• parameters (optional)

Type: Map

A map from String to String where the key is the parameter name and the value is the
parameter value.

• plan-cache (optional)

Type: Enum
ExecuteQuery 168

Neptune Analytics Neptune Analytics User Guide

Query plan cache is a feature that saves the query plan and reuses it on successive executions
of the same query, reducing query latency. Query plan cache works for both read-only and
mutation queries. The plan cache is an LRU cache with a five minute TTL and a capacity of 1000.
It supports the following values:

• AUTO: The engine will automatically decide to cache the query plan. If the query is
parameterized and the runtime is shorter than 100ms, the query plan is automatically cached.

• ENABLED: The query plan is cached regardless of the query runtime. The plan cache uses the
query string as the key, this means that if a query is slightly different (i.e. different constants),
it will not be able to reuse the plan cache of similar queries.

• DISABLED: The query plan cache is not used.

For more information on the query plan cache, see Query plan cache.

• explain-mode (optional)

Type: Enum

The explain mode parameters allow getting a query explain instead of the actual query results.
A query explain can be used to gather insights about the query execution such as planning
decisions, time spent on each operator, number of records flowing etc. If this parameter is not
set the query is executed normally and the result is returned. The acceptable values for query
explain are:

• STATIC: Returns a query explain without executing the query. This can give an estimate on
what the query plan looks like without actually executing the query. The static query plan
may differ from the actual query plan. Actual queries may make planning decisions based on
runtime statistics, which may not be considered when fetching a static query plan. A static
query plan is useful when it is necessary to observe a plan for a query that either does not
complete or runs for too long.

• DETAILS: Returns a detailed query plan that shows what the running query did. This includes
information such as operators runtime, number of records flowing through the plan, runtime
planning decisions and more. If a query does not succeed in NONE mode, it will not succeed in
DETAILS mode either. In this instance, you would want to use STATIC mode.

For more information on query explain and its output, see Query explain.

• query-timeout-milliseconds (optional)

Type: Enum

ExecuteQuery 169

Neptune Analytics Neptune Analytics User Guide

If specified, provides an upper bound to the query run time. This parameter will override the
graph default timeout (30 minutes). Neptune Analytics graph have a maximum query runtime of
60 minutes. If the specified timeout is greater than the maximum query runtime, the query will
only run for the maximum query runtime.

• Using the default settings, any CLI or SDK request will timeout in 60 seconds and attempt a
retry. For the cases where you are running queries that can take longer than 60 seconds, it is
recommended to set the CLI/SDK timeout to 0 (no timeout), or a much larger value to avoid
unnecesssary retries.

It is also recommended to set MAX_ATTEMPTS for CLI/SDK to 1 for execute_query to avoid
any retries by CLI/SDK.

For the Boto client, set the read_timeout to None, and the total_max_attempts to 1.

import boto3
from botocore.config import Config
n = boto3.client('neptune-graph',
 config=(Config(retries={"total_max_attempts": 1, "mode":
 "standard"}, read_timeout=None)))

For the CLI, set the --cli-read-timeout parameter to 0 for no timeout, and set the
environment variable AWS_MAX_ATTEMPTS to 1 to prevent retries.

export AWS_MAX_ATTEMPTS=1

aws neptune-graph execute-query \
--graph-identifier <graph-id> \
--region <region> \
--query-string "MATCH (p:Person)-[r:KNOWS]->(p1) RETURN *;" \
--cli-read-timeout 0
--language open_cypher /tmp/out.txt

ExecuteQuery examples

AWS CLI

Sample query

ExecuteQuery 170

Neptune Analytics Neptune Analytics User Guide

aws neptune-graph execute-query \
--graph-identifier <graph-id> \
--region <region> \
--query-string "MATCH (p:Person)-[r:KNOWS]->(p1) RETURN *;" \
--language open_cypher \
/tmp/out.txt

Sample query that prints directly to the console.
aws neptune-graph execute-query \
--graph-identifier <graph-id> \
--region <region> \
--query-string "MATCH (p:Person)-[r:KNOWS]->(p1) RETURN *;" \
--language open_cypher \
/dev/stdout

parameters supported
query-string [REQUIRED] : String
language [REQUIRED] : open_cypher
explain-mode [OPTIONAL] : static | details
query-timeout-milliseconds [OPTIONAL] : Integer
plan-cache [OPTIONAL] : enabled | disabled | auto
parameters [OPTIONAL] : Map

AWSCURL

Sample query
awscurl -X POST "https://<graph-id>.<endpoint>/queries" \
-H "Content-Type: application/x-www-form-urlencoded" \
--region <region> \
--service neptune-graph \
-d "query=MATCH (p:Person)-[r:KNOWS]->(p1) RETURN *;"

ExecuteQuery output

{
 "results": [{
 "p": {
 "~id": "fa1ef9b0-fa32-4b37-8051-78f2bf0e0d63",
 "~entityType": "node",
 "~labels": ["Person"],
 "~properties": {
 "name": "Simone"

ExecuteQuery 171

Neptune Analytics Neptune Analytics User Guide

 }
 },
 "p1": {
 "~id": "edaded10-b22b-4818-a22e-ddebfcf37acb",
 "~entityType": "node",
 "~labels": ["Person"],
 "~properties": {
 "name": "Mirro"
 }
 },
 "r": {
 "~id": "neptune_reserved_1_1154145192329347075",
 "~entityType": "relationship",
 "~start": "fa1ef9b0-fa32-4b37-8051-78f2bf0e0d63",
 "~end": "edaded10-b22b-4818-a22e-ddebfcf37acb",
 "~type": "KNOWS",
 "~properties": {}
 }
 }]
}

Parameterized queries

Neptune Analytics supports parameterized openCypher queries. This allows you to use the same
query structure multiple times with different arguments. Since the query structure doesn't change,
Neptune Analytics tries to cache the plan for these parameterized queries that run in less than 100
milliseconds.

The following is an example of using a parameterized query with the Neptune openCypher HTTPS
endpoint. The query is:

MATCH (n {name: $name, age: $age})
RETURN n

The parameters are definied as follows:

parameters={"name": "john", "age": 20}

AWS CLI

Sample query

ExecuteQuery 172

Neptune Analytics Neptune Analytics User Guide

aws neptune-graph execute-query \
--graph-identifier <graph-id> \
--region <region> \
--query-string "MATCH (n {name: \$name, age: \$age}) RETURN n" \
--parameters "{\"name\": \"john\", \"age\": 20}"
--language open_cypher /tmp/out.txt

AWSCURL

Sample query
awscurl -X POST "https://[graph-id].<endpoint>/queries" \
-H "Content-Type: application/x-www-form-urlencoded" \
--region <region> \
--service neptune-graph \
-d "query=MATCH (n {name: \$name, age: \$age}) RETURN n;¶meters={\"name\":
 \"john\", \"age\": 20}"

ListQueries

ListQueries API fetches the list of running/waiting/cancelling queries on the graph.

ListQueries syntax

aws neptune-graph list-queries \
 --graph-identifier <graph-id> \
 --region <region> \
 --max-results <result_count>
 --state [all | running | waiting | cancelling]

ListQueries inputs

• graph-identifier (required)

Type: String

Identifier representing your graph.

• region (required)

Type: String

Region where the graph is present.

ListQueries 173

Neptune Analytics Neptune Analytics User Guide

• max-results (required)

Type: Integer

The maximum number of results to be fetched by the API.

• state (optional)

Type: String

Supported values: all | running | waiting | cancelling

If state parameter is not specified, the API fetches all types.

ListQueries outputs

Sample Response
{
 "queries": [
 {
 "id": "130ab841-8b4b-46c3-afbe-af00274c7fd9",
 "queryString": "MATCH p=(n)-[*]-(m) RETURN p;",
 "waited": 0,
 "elapsed": 1686,
 "state": "RUNNING"
 }
]
}

The output contains a list of query objects, each containing:

• id: String - representing the unique identifier of the query.

• queryString: String - The actual query text. The queryString may be truncated if the actual
query string is too long.

• waited: Integer - The time in milliseconds for which the query has waited in the waiting queue
before being picked up by a worker thread.

• elapsed: Integer - The time in milliseconds representing the running time of the query.

• state: Current state of the query (running | waiting | cancelling).

The default list order is queries that are running, followed by waiting and cancelling.

ListQueries 174

Neptune Analytics Neptune Analytics User Guide

ListQueries Examples

AWS CLI

aws neptune-graph list-queries \
 --graph-identifier <graph-id> \
 --region us-east-1 \
 --max-results 200
 --state waiting

AWSCURL

awscurl -X GET "https://<graph-id>.<endpoint>/queries?state=WAITING&maxResults=200"
 \
 -H "Content-Type: application/x-www-form-urlencoded" \
 --region us-east-1 \
 --service neptune-graph

GetQuery

The GetQuery API can be used to get the status of a specific query request.

GetQuery inputs

• graph-identifier (required)

Type: String

The identifier representing a graph.

• region (required)

Type: String

The region where the graph is present.

• query-id (required)

Type: String

The id of the query request for which you want to get information.

GetQuery 175

Neptune Analytics Neptune Analytics User Guide

GetQuery outputs

• id: The same id used in this request.

• queryString: Non-truncated query string associated to this query-id.

• waited: Time in milliseconds this query request had to wait to be executed.

• elapsed: Time in milliseconds the query spent while in execution.

• state: Current state of the query - running | waiting | cancelling.

{
 "id" : "d6873456-40a7-44d7-be5c-46b4acfdc171",
 "queryString" : "UNWIND range(1,100000) AS i MATCH (n) RETURN i, n",
 "waited" : 1,
 "elapsed" : 8645,
 "state" : "RUNNING"
}

GetQuery examples

AWS CLI

aws neptune-graph get-query \
 --graph-identifier <graph-id> \
 --region <region> \
 --query-id <query-id>

AWSCURL

awscurl -X GET "https://<graph-id>.<endpoint>/queries/<query-id>" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 --region us-east-1 \
 --service neptune-graph

CancelQuery

CancelQuery cancels a specific query request.

CancelQuery 176

Neptune Analytics Neptune Analytics User Guide

CancelQuery inputs

• graph-identifier (required)

Type: String

The identifier representing a graph.

• region (required)

Type: String

The region where the graph is present.

• query-id (required)

Type: String

The id of the query request for which you want to cancel.

CancelQuery outputs

CancelQuery does not have any output.

CancelQuery examples

AWS CLI

aws neptune-graph cancel-query \
 --graph-identifier <graph-id> \
 --region <region> \
 --query-id <query-id>

AWSCURL

awscurl -X DELETE "https://<graph-id>.<endpoint>/queries/<query-id>" --region us-
east-1 --service neptune-graph

CancelQuery 177

Neptune Analytics Neptune Analytics User Guide

GraphSummary

You can use the GetGraphSummary API to quickly gain a high-level understanding of your graph
data, size and content. In a graph application, this API can be used to improve the search results by
providing discovered node or edge labels as part of the search.

The GetGraphSummary API retrieves a read-only list of node and edge labels and property
keys, along with counts of nodes, edges, and properties. The API also accepts an optional
parameter named mode, which can take one of two values, namely basic (the default) and
detailed. The detailed graph summary response contains two additional fields, nodeStructures and
edgeStructures.

GetGraphSummary inputs

GetGraphSummary accepts two inputs:

• graph-identifier (required) - The unique identifier of the graph.

• mode (optional) - Can be basic or detailed.

GetGraphSummary outputs

The response contains the following fields:

• version - The version of this graph summary response.

• lastStatisticsComputationTime - The timestamp, in ISO 8601 format, of the time at
which Neptune Analytics last computed statistics.

• graphSummary

• numNodes - The number of nodes in the graph.

• numEdges - The number of edges in the graph.

• numNodeLabels - The number of distinct node labels in the graph.

• numEdgeLabels - The number of disctinct edge labels in the graph.

• nodeLabels - List of distinct node labels in the graph.

• edgeLabels - List of distinct edge labels in the graph.

• numNodeProperties - The number of distinct node properties in the graph.

• numEdgeProperites - The number of distinct edge properties in the graph.
GraphSummary 178

Neptune Analytics Neptune Analytics User Guide

• nodeProperties - List of distinct node properties in the graph along with the count of nodes
where each property is used.

• edgeProperties - List of distinct edge properties in the graph along with the count of edges
where each property is used.

• totalNodePropertyValues - Total number of usages of all node properties.

• totalEdgePropertyValues - Total number of usages of all edge properties.

• nodeStructures (only present for mode=detailed) - Contains a list of node structures, each
containing the following fields:

• count - Number of nodes that have this specific structure.

• nodeProperties - List of node properties present in this specific structure.

• distinctOutgoingEdgeLabels - List of distinct outgoing edge labels present in this
specific structure.

• edgeStructures (only present for mode=detailed) - Contains a list of edge structures each
containing the following fields:

• count - Number of edges that have this specific structure.

• edgeProperties - List of edge properties present in this specific structure.

GetGraphSummary examples

AWS CLI

Sample query
aws neptune-graph get-graph-summary \
--graph-identifier <graph-id> \
--region <region>
--mode detailed

parmeters supported
mode [Optional] : basic | detailed

AWSCURL

Sample query
awscurl "https://<graph-id>.<endpoint>/summary" \
--region <region> \
--service neptune-graph

GraphSummary 179

Neptune Analytics Neptune Analytics User Guide

Sample output payload:

this is the graph summary with "mode=detailed"
{
 "version": "v1",
 "lastStatisticsComputationTime": "2024-01-25T19:50:42+00:00",
 "graphSummary": {
 "numNodes": 3749,
 "numEdges": 57645,
 "numNodeLabels": 4,
 "numEdgeLabels": 2,
 "nodeLabels": [
 "continent",
 "country",
 "version",
 "airport"
],
 "edgeLabels": [
 "contains",
 "route"
],
 "numNodeProperties": 14,
 "numEdgeProperties": 1,
 "nodeProperties": [
 {
 "code": 3749
 },
 {
 "desc": 3749
 },
 {
 "type": 3749
 },
 {
 "city": 3504
 },
 {
 "country": 3504
 },
 {
 "elev": 3504
 },
 {
 "icao": 3504

GraphSummary 180

Neptune Analytics Neptune Analytics User Guide

 },
 {
 "lat": 3504
 },
 {
 "lon": 3504
 },
 {
 "longest": 3504
 },
 {
 "region": 3504
 },
 {
 "runways": 3504
 },
 {
 "author": 1
 },
 {
 "date": 1
 }
],
 "edgeProperties": [
 {
 "dist": 50637
 }
],
 "totalNodePropertyValues": 42785,
 "totalEdgePropertyValues": 50637,
 "nodeStructures": [// will not be present with mode=basic
 {
 "count": 3475,
 "nodeProperties": [
 "city",
 "code",
 "country",
 "desc",
 "elev",
 "icao",
 "lat",
 "lon",
 "longest",
 "region",

GraphSummary 181

Neptune Analytics Neptune Analytics User Guide

 "runways",
 "type"
],
 "distinctOutgoingEdgeLabels": [
 "route"
]
 },
 {
 "count": 238,
 "nodeProperties": [
 "code",
 "desc",
 "type"
],
 "distinctOutgoingEdgeLabels": [
 "contains"
]
 },
 {
 "count": 29,
 "nodeProperties": [
 "city",
 "code",
 "country",
 "desc",
 "elev",
 "icao",
 "lat",
 "lon",
 "longest",
 "region",
 "runways",
 "type"
],
 "distinctOutgoingEdgeLabels": []
 },
 {
 "count": 6,
 "nodeProperties": [
 "code",
 "desc",
 "type"
],
 "distinctOutgoingEdgeLabels": []

GraphSummary 182

Neptune Analytics Neptune Analytics User Guide

 },
 {
 "count": 1,
 "nodeProperties": [
 "author",
 "code",
 "date",
 "desc",
 "type"
],
 "distinctOutgoingEdgeLabels": []
 }
],
 "edgeStructures": [//will not be present with mode=basic
 {
 "count": 50637,
 "edgeProperties": [
 "dist"
]
 }
]
 }
}

IAM role mappings

When you're calling Neptune Analytics API methods on a cluster, you require an IAM policy
attached to the user or role making the calls that provides permissions for the actions you want
to make. You set those permissions in the policy using corresponding IAM actions. You can also
restrict the actions that can be taken using IAM condition keys.

Most IAM actions have the same name as the API methods that they correspond to, but some
methods in the data API have different names, because some are shared by more than one method.
The table below lists data methods and their corresponding IAM actions.

Data API operation name IAM correspondences

ListQueries Action: ListQueries

GetQuery Action: GetQueryStatus

IAM role mappings 183

https://docs.aws.eu//neptune/latest/userguide/iam-data-condition-keys.html

Neptune Analytics Neptune Analytics User Guide

Data API operation name IAM correspondences

Cancel Query Action: CancelQuery

GetGraphSummary Action: GetGraphSummary

ExecuteQuery Action: ReadDataViaQuery

Action: WriteDataViaQuery

Action: DeleteDataViaQuery

For more information, see Actions, resources and condition keys for Neptune Analytics.

Query plan cache

When a query is submitted to Neptune , the query string is parsed and translated into a query
plan, which then gets optimized and executed by the engine. Often, the applications are backed
by common query patterns that are instantiated with different values, and query plan cache would
be optimal to reduce latency of those common query patterns. The query plan cache does this by
storing a parameterized version of frequently used query plans (at most 1000 at any point), which
gets reused and instantiated properly based on new parameter values provided, if any.

Why use the query plan cache?

Reusing the query plan can reduce the latency, as the later executions skip parsing and
optimization steps.

Where can it be used?

Query plan cache can be used for all type of queries. By default, it automatically caches plan for
low-latency parameterized queries, whose execution time is less than 100ms.

How to force enable/disable the query plan cache?

For read-only queries, query plan cache is enabled by default for low-latency queries. A plan is
cached only when latency is lower than the threshold of 100ms. This behavior can be overridden
on a per-query basis by HTTP parameter. HTTP parameter --plan-cache can take enabled or
disabled as a value.

Query plan cache 184

https://docs.aws.eu//service-authorization/latest/reference/list_amazonneptuneanalytics.html

Neptune Analytics Neptune Analytics User Guide

Forcing plan to be cached or reused
% aws neptune-graph execute-query \
 --graph-identifier <graph-id> \
 --query-string "MATCH (n) RETURN n LIMIT 1"
 --region <region> \
 --plan-cache "enabled"
 --language open_cypher /tmp/out.txt

% aws neptune-graph execute-query \
 --graph-identifier <graph-id> \
 --query-string "RETURN \$arg"
 --region <region> \
 --plan-cache "enabled" \
 --parameters "{\"arg\": 123}"
 --language open_cypher /tmp/out.txt

How to check if a plan is cached?

To check if a plan is cached, use explain. For read-only queries, if the query was submitted and
the plan was cached, explain would show explain details relevant to the query plan cache.

% aws neptune-graph execute-query \
 --graph-identifier <graph-id> \
 --query-string "MATCH (n) RETURN n LIMIT 1"
 --region <region> \
 --plan-cache "enabled" \
 --explain-mode "static" \
 --language open_cypher /tmp/out.txt

Query: <QUERY STRING>
Plan cached by request: <REQUEST ID OF FIRST TIME EXECUTION>
Plan cached at: <TIMESTAMP OF FIRST TIME EXECUTION>
Parameters: <PARAMETERS IF QUERY IS PARAMETERIZED QUERY>
Plan cache hits: <NUMBER OF CACHE HITS FOR CACHED PLAN>
First query evaluation time: <LATENCY OF FIRST TIME EXECUTION>

The query has been executed based on a cached query plan. Detailed explain with operator
runtime statistics can be obtained by running the query with plan cache disabled (using HTTP
parameter planCache=disabled).

Query plan cache 185

Neptune Analytics Neptune Analytics User Guide

Note

For a mutation query, explain is not yet supported.

Eviction

A query plan is evicted by cache TTL or maximum number of cached query plans reached. When
the query plan is hit, the TTL is refreshed. The defaults are:

• The maximum number of plans cached per instance is 1000.

• TTL: 300_000 milliseconds or 5 minutes. Note that cache hit refreshes the TTL back to 5 min.

Conditions when a query plan is not cached

The following list demonstrates conditions for when a query plan would not be cached.

• If submitted with query-specific parameter --plan-cache "disabled".

• If a cache is wanted, you can rerun the query without --plan-cache "disabled".

• If the query evaluation time is larger than latency threshold, it’s not cached since it’s a long-
running query and is considered to not benefit from query plan cache.

• If the query contains pattern that does not return any results.

• i.e. MATCH (n:nonexistentLabel) return n when there are zero nodes with specified
label.

• i.e. MATCH (n {name: $param}) return n with parameters={"param": "abcde"}
when there are zero nodes with name=abcde.

• If the query parameter is composite type (list, map).

aws neptune-graph execute-query \
 --graph-identifier <graph-id> \
 --query-string "RETURN \$arg"
 --region <region> \
 --plan-cache "enabled" \
 --parameters "{\"arg\": [1, 2, 3]}"
 --language open_cypher /tmp/out.txt

 aws neptune-graph execute-query \
 --graph-identifier <graph-id> \

Query plan cache 186

Neptune Analytics Neptune Analytics User Guide

 --query-string "RETURN \$arg"
 --region <region> \
 --plan-cache "enabled" \
 --parameters "{\"arg\": {\"a\": 1}}"
 --language open_cypher /tmp/out.txt

• If the query parameter is a string that has not been part of data load or data insertion.

• If CREATE (n {name: "X"}), is done to insert “X”.

• RETURN “X” is cached, while RETURN “Y” isn’t, as “Y” has not been inserted and does not
exist in the database.

Mitigation for query plan cache issue

We have detected an issue in query plan cache when skip or limit is used in an inner WITH
clause and are parameterized. For example:

MATCH (n:Person)
WHERE n.age > $age
WITH n skip $skip LIMIT $limit
RETURN n.name, n.age

parameters={"age": 21, "skip": 2, "limit": 3}

In this case, the parameter values for skip and limit from the first plan will be applied to
subsequent queries, too, leading to unexpected results.

Mitigation

To prevent this issue, add the HTTP parameter planCache=disabled or SDK parameter -\-
planCache "disabled" when submitting a query that includes a parameterized skip and/
or limit sub-clause. Alternatively, you can hard-code the values into the query, or add a random
comment to create a new plan for each request.

Option 1: Using request parameter

Curl example

curl -k https://<endpoint>:8182/opencypher -d 'query=MATCH (n:Person) WHERE n.age >
 $age WITH n skip $skip LIMIT $limit RETURN n.name, n.age' -d 'parameters={"age": 21,
 "skip": 2, "limit": 3}' -d planCache=disabled

Mitigation for query plan cache issue 187

Neptune Analytics Neptune Analytics User Guide

SDK example

aws neptune-graph execute-query \
 -\-graph-identifier <graph-id> \
 -\-query-string "MATCH (n:Person) WHERE n.age > $age WITH n skip $skip LIMIT $limit
 RETURN n.name, n.age"
 -\-region <region> \
 -\-plan-cache "disabled" \
 -\-language open_cypher

Option 2: Using hard-coded values for skip and limit

MATCH (n:Person)
WHERE n.age > $age
WITH n skip 2 LIMIT 3
RETURN n.name, n.age

parameters={"age": 21}

Option 3: Using a random comment

MATCH (n:Person)
WHERE n.age > $age
WITH n skip $skip LIMIT $limit
RETURN n.name, n.age // 411357f6-00d2-4f03-92ce-060d8e037c0b

parameters={"age": 21, "skip": 2, "limit": 3}

Query explain

The openCypher explain feature is a feature that helps users to understand how the query is
executed. Usually this is used in the context of query performance analysis.

Explain inputs

To invoke explain, you can pass the explain-mode parameter to an ExecuteQuery request
specifying the desired explain mode (i.e., level of detail), where this explain mode value can be one
of the following:

• static - In static mode, explain doesn't run the query, but instead prints only the static
structure of the query plan.

Query explain 188

Neptune Analytics Neptune Analytics User Guide

• details - In details mode, explain runs the query, and includes dynamic aspects of the query
plan. These may include the number of intermediate bindings flowing through the operators,
the ratio of incoming bindings to outgoing bindings, and the total time taken by each operator.
Additional details, such as the actual openCypher query string and the estimated range count for
the pattern underlying a join operator, are also shown.

The following code examples provide the explain-mode when using either the AWS CLI or
AWSCURL.

AWS CLI

aws neptune-graph execute-query \
--region <region> \
--graph-identifier <graph-id> \
--query-string <query-string> \
--explain-mode <explain-mode> \
--language open_cypher /tmp/out.txt

AWSCURL

awscurl -X POST "https://<graph-id>.<endpoint>/queries" \
-H "Content-Type: application/x-www-form-urlencoded" \
--region <region> \
--service neptune-graph \
-d "query=<query>&explain=<mode>"

Explain outputs

DFE operators in openCypher explain output

To use the information that the openCypher explain feature provides, you need to understand
some details about how the DFE query engine works (DFE being the engine that Neptune uses to
process openCypher queries).

The DFE engine translates every query into a pipeline of operators. Starting from the first operator,
intermediate solutions flow from one operator to the next through this operator pipeline. Each
row in the explain table represents a result, up to the point of evaluation. The operators that can
appear in a DFE query plan are as follows:

Outputs 189

Neptune Analytics Neptune Analytics User Guide

• DFEApply – Executes the function specified by functor in the arguments section, on the value
stored in the specified variable

• DFEAlgoWriteProperty – Explain operator for the property-writing portion of mutate algorithm
invocations.

• DFEBFSAlgo – Explain operator for invocations of the Breadth First Search algorithm, which
searches for nodes from a starting vertex (or starting vertices, also called multi-source BFS) in a
graph in breadth-first order.

• DFEBindRelation – Binds together variables with the specified names.

• DFEChunkLocalSubQuery – This is a non-blocking operation that acts as a wrapper around
subqueries being performed.

• DFEClosenessCentralityAlgo – Explain operator for invocations of the Closeness Centrality
algorithm, which computes a metric that can be used as a positive measure of how close a given
node is to all other nodes or how central it is in the graph.

• DFECommonNeighborsAlgo – Explain operator for invocations of the Common Neighbors
algorithm, which counts the number of common neighbors of two input nodes.

• DFECreateConstant – Extends the given input relation with new columns containing constant
values.

• DFEDegreeAlgo – Explain operator for invocations of the Degree algorithm, which calculates the
number of edges that are incident to a vertex.

• DFEDistinctColumn – Returns the distinct subset of the input values based on the variable
specified.

• DFEDistinctRelation – Returns the distinct subset of the input solutions based on the variable
specified.

• DFEDrain – Appears at the end of a subquery to act as a termination step for that subquery. The
number of solutions is recorded as Units In. Units Out is always zero.

• DFEForwardValue – Copies all input chunks directly as output chunks to be passed to its
downstream operator.

• DFEGroupByHashIndex – This is a blocking operation that organizes the rows of a relation
according to a set of variables, outputting a single group identifier column that is one-to-one
with the rows of the input relation. Groups here are defined by the join variables used to build
the hash index (See DFEHashIndexBuild for where this hash index might be built.)

• DFEHashIndexBuild – Builds a hash index over a set of variables as a side-effect. This hash index
is typically reused in later operations. (See DFEHashIndexJoin for where this hash index might be
used.)

Outputs 190

Neptune Analytics Neptune Analytics User Guide

• DFEHashIndexJoin – Performs a join over the incoming solutions against a previously built hash
index. (See DFEHashIndexBuild for where this hash index might be built.)

• DFEJaccardSimilarityAlgo – Explain operator for invocations of the Jaccard similarity algorithm,
which measures the similarity between two sets of nodes.

• DFEJoinExists – Takes a left and right hand input relation, and retains values from the left
relation that have a corresponding value in the right relation as defined by the given join
variables.

• DFELabelPropagationAlgo – Explain operator for invocations of the Label Propagation algorithm,
which is used for community detection.

• DFELoopSubQuery – This is a non-blocking operation that acts as a wrapper for a subquery,
allowing it to be run repeatedly for use in loops.

• DFEMergeChunks – This is a blocking operation that combines chunks from its upstream
operator into a single chunk of solutions to pass to its downstream operator (inverse of
DFESplitChunks).

• DFEMinus – Takes a left and right hand input relation, and retains values from the left relation
that do not have a corresponding value in the right relation as defined by the given join
variables. If there is no overlap in join variables across both relations, then this operator simply
returns the left hand input relation as is.

• DFENotExists – Takes a left and right hand input relation, and retains values from the left
relation that do not have a corresponding value in the right relation as defined by the given join
variables. If there is no overlap in join variables, then this operator will return an empty relation.

• DFEOptionalJoin – Performs the optional join A OPTIONAL B ≡ (A JOIN B) UNION (A MINUS_NE
B). This is a blocking operation.

• DFEOverlapSimilarityAlgo – Explain operator for invocations of the Overlap Similarity algorithm,
which measures the overlap between the neighbors of two nodes.

• DFEPageRankAlgo – Explain operator for invocations of the Page Rank algorithm, which
calculates a score for a given node based on the number, quality, and importance of the edges
pointing to that node.

• DFEPipelineJoin – Joins the input against the tuple pattern defined by the pattern argument.

• DFEPipelineRangeCount – Counts the number of solutions matching a given pattern, and returns
a single solution containing the count value.

• DFEPipelineScan – Scans the database for the given pattern argument, with or without a given
filter on column(s).

• DFEProject – Takes multiple input columns and projects only the desired columns.

Outputs 191

Neptune Analytics Neptune Analytics User Guide

• DFEReduce – Performs the specified aggregation function on specified variables.

• DFERelationalJoin – Joins the input of the previous operator based on the specified pattern keys
using a merge join. This is a blocking operation.

• DFERouteChunks – Takes input chunks from its singular incoming edge and routes those chunks
along its multiple outgoing edges.

• DFESCCAlgo – Explain operator for invocations of the Strongly Connected Components
algorithm, which calculates the maximally connected subgraphs of a directed graph where every
node is reachable from every other node.

• DFESelectRows – This operator selectively takes rows from its left input relation solutions to
forward to its downstream operator. The rows selected based on the row identifiers supplied in
the operator’s right input relation.

• DFESerialize – Serializes a query’s final results into a JSON string serialization, mapping each
input solution to the appropriate variable name. For node and edge results, these results are
serialized into a map of entity properties and metadata.

• DFESort – Takes an input relation and produces a sorted relation based on the provided sort key.

• DFESplitByGroup – Splits each single input chunk from one incoming edge into smaller output
chunks corresponding to row groups identified by row ids from the corresponding input chunk
from the other incoming edge.

• DFESplitChunks – Splits each single input chunk into smaller output chunks (inverse of
DFEMergeChunks).

• DFESSSPAlgo – Explain operator for invocations of the single source shortest path (SSSP)
algorithms (Delta-stepping and Bellman-ford).

• DFEStreamingHashIndexBuild – Streaming version of DFEHashIndexBuild.

• DFEStreamingGroupByHashIndex – Streaming version of DFEGroupByHashIndex.

• DFESubquery – This operator appears at the beginning of all plans and encapsulates the portions
of the plan that are run on the DFE engine, which is the entire plan for openCypher.

• DFESymmetricHashJoin – Joins the input of the previous operator based on the specified pattern
keys using a hash join. This is a non-blocking operation.

• DFESync – This operator is a synchronization operator supporting non-blocking plans. It takes
solutions from two incoming edges and forwards these solutions to the appropriate downstream
edges. For synchronization purposes, the inputs along one of these edges may be buffered
internally.

• DFETee – This is a branching operator that sends the same set of solutions to multiple operators.

Outputs 192

Neptune Analytics Neptune Analytics User Guide

• DFETermResolution – Performs a localize or globalize operation on its inputs, resulting in
columns of either localized or globalized identifiers respectively.

• DFETopKSSSPAlgo – Explain operator for invocations of the TopK hop-limited single source
(weighted) shortest path algorithm algorithm, which finds the single-source weighted shortest
paths from a source node to its neighbors out to the distance specified by maxDepth.

• DFETotalNeighborsAlgo – Explain operator for invocations of the Total Neighbors algorithm,
which counts the total number of unique neighbors of two input vertices.

• DFEUnfold – Unfolds lists of values from an input column into the output column as individual
elements.

• DFEUnion – Takes two or more input relations and produces a union of those relations using the
desired output schema.

• DFEVSSAlgo – Explain operator for invocations of the Vector similarity search algorithms, which
find similar vectors based on the distance to each other.

• DFEWCCAlgo – Explain operator for invocations of the Weakly Connected Components
algorithm, which finds the weakly-connected components in a directed graph.

• SolutionInjection – Appears before everything else in the explain output, with a value of one in
the Units Out column. However, it serves a no-op, and doesn't actually inject any solutions into
the DFE engine.

• TermResolution – Appears at the end of plans and translates of objects from the Neptune engine
into openCypher objects.

Columns in openCypher explain output

The query plan information generated as openCypher explain output contains tables with one
operator per row. The table has the following columns:

• ID – The numeric ID of this operator in the plan.

• Out #1 (and Out #2) – The ID(s) of operator(s) that are downstream from this operator. There can
be at most two downstream operators.

• Name – The name of this operator.

• Arguments – Any relevant details for the operator. This includes things like input schema, output
schema, pattern (for PipelineScan and PipelineJoin), and so on.

Outputs 193

Neptune Analytics Neptune Analytics User Guide

• Mode – A label describing fundamental operator behavior. This column is mostly blank (-). One
exception is TermResolution, where mode can be id2value_opencypher, indicating a
resolution from ID to openCypher value.

• Units In – The number of solutions passed as input to this operator. Operators without upstream
operators, such as DFEPipelineScan, SolutionInjections, and a DFESubquery with no
static value injected, would have zero value.

• Units Out – The number of solutions produced as output of this operator. DFEDrain is a special
case, where the number of solutions being drained is recorded in Units In and Units Out is
always zero.

• Ratio – The ratio of Units Out to Units In.

• Time (ms) – The CPU time consumed by this operator, in milliseconds.

Note

Depending on the level of detail selected via the explain mode parameter, some of these
columns may not appear in the output.

Explain examples

The following is a basic example of openCypher explain output. The query is a single-node
lookup in the air routes dataset for a node with the airport code ATL that invokes explain using
the details mode:

sample query
aws neptune-graph execute-query \
--region <region> \
--graph-identifier <graph-id> \
--query-string "MATCH (n {code: 'ATL'}) RETURN n" \
--explain-mode details \
--language open_cypher /tmp/out.txt

output
Query:
MATCH (n {code: 'ATL'}) RETURN n

###

Examples 194

Neptune Analytics Neptune Analytics User Guide

ID # Out #1 # Out #2 # Name # Arguments # Mode # Units In #
 Units Out # Ratio # Time (ms) #
###
0 # 1 # - # SolutionInjection # solutions=[{}] # - # 0 #
 1 # 0.00 # 0 #
###
1 # - # - # DFESubquery # subQuery=subQuery1 # - # 0 #
 0 # 0.00 # 8.00 #
###
Summed execution time # # # #
 # # 8.00 #
###

subQuery1
##
ID # Out #1 # Out #2 # Name # Arguments
 # Mode # Units In # Units Out # Ratio # Time (ms) #
##
0 # 1 # - # DFEPipelineScan (DFX) # pattern=project ?n ?n_code2 (?
n,code,?n_code2) [VERTEX_PROPERTY] # - # 0 # 1 # 0.00 # 0.03 #
inlineFilters=[(?n_code2 IN
 ["ATL"^^xsd:string])] # # # # #
 #
patternEstimate=1
 # # # # # #
##
1 # 2 # - # DFEProject (DFX) # columns=[?n]
 # - # 1 # 1 # 1.00 # 0.03 #
##
2 # 3 # - # DFESerialize (DFX) # columnsToSerialize=[?n]
 # - # 1 # 0 # 0.00 # 0.08 #
##
3 # - # - # DFEDrain (DFX) # -
 # - # 0 # 0 # 0.00 # 0 #
##
Summed execution time #
 # # # # # 0.15 #
##

At the top-level, SolutionInjection appears before everything else, with 1 unit out. Note that
it doesn't actually inject any solutions. You can see that the next operator, DFESubquery, has 0
units in.

Examples 195

Neptune Analytics Neptune Analytics User Guide

After SolutionInjection at the top-level is the DFESubquery operator. DFESubquery
encapsulates the parts of the query execution plan that are pushed to the DFE engine (for
openCypher queries, the entire query plan is executed by the DFE). All the operators in the query
plan are nested inside subQuery1 that is referenced by DFESubquery.

All the operators that are pushed down to the DFE engine have names that start with a DFE prefix.
As mentioned above, the whole openCypher query plan is executed by the DFE, so as a result, all of
the operators start with DFE.

Inside subQuery1, there can be zero (as in this case) or more DFEChunkLocalSubQuery
or DFELoopSubQuery operators that encapsulate a part of the pushed execution plan that
is executed in a memory-bounded mechanism. A DFEChunkLocalSubQuery contains one
SolutionInjection that is used as an input to the subquery. To find the table for that subquery
in the output, search for the subQuery=graph URI specified in the Arguments column for the
DFEChunkLocalSubQuery or DFELoopSubQuery operator.

In subQuery1, DFEPipelineScan with ID 0 scans the database for a specified pattern.
The pattern scans for vertices ?n with property code saved as a variable ?n_code2. The
inlineFilters argument shows the filtering for the code property equaling ATL.

Next, the DFEProject operator propagates forward only the ?n variable we’re interested in.
Finally, the DFESerialize operator performs result serialization, transforming the input solutions
into a readable format.

Statistics

Neptune Analytics uses similar statistics for planning query execution as in Neptune Database.
Computing these statistics is performed as an integrated part of the Neptune Analytics storage
system. There are a number of differences between the features and usage of statistics between
Neptune Analytics and Neptune Database:

1. Initial statistics generation is performed as part of either the initial import task or an initial
data load occurring before any query-driven updates. Subsequently, statistics re-computation is
triggered automatically based on the amount of update operations performed by the database.

2. Like with Neptune Database, Neptune Analytics has a size limit for statistics data, beyond which
statistics will be disabled. The number of predicate statistics, may not exceed one million (the
same as Neptune Database). There is no hard limit on the number of characteristic sets present

Statistics 196

https://docs.aws.eu//neptune/latest/userguide/neptune-dfe-statistics.html

Neptune Analytics Neptune Analytics User Guide

in the underlying data. However, beyond 10,000 characteristic sets, the system will begin to
merge statistics data in order to limit the overall size of data being managed.

3. Statistics generation is fully managed by the storage system. There are no APIs to disable or re-
compute statistics.

4. There are no CloudWatch metrics relating to statistics generation.

Exceptions

The following table lists query-side exceptions that could be encountered while using a query.

Neptune Analytics
error code

HTTP status Retriable Description

Validation Exception 400 No Something is wrong
with the required
information - Eg. a
malformed query.

AccessDeniedExcept
ion

403 No User is not authorize
d to perform the
requested operation.

ResourceNotFoundEx
ception

404 No Requested resource is
not available.

ThrottlingException 429 Yes The server has
received too many
concurrent requests.

InternalServerErro
rException

500 Yes The server failed to
process the request
for an unknown
reason.

UnprocessableExcep
tion

422 No Request cannot be
processed due to

Exceptions 197

Neptune Analytics Neptune Analytics User Guide

Neptune Analytics
error code

HTTP status Retriable Description

known reasons - Eg.
The query timed out.

ConflictException 409 Yes Concurrently running
queries attempted
to modify resources
or data records
concurrently and the
conflict could not be
resolved automatic
ally. Please retry with
an exponential back-
off strategy.

Neptune Analytics openCypher data model

For details on the openCypher data model, please refer to the Neptune Database documentation.
There are some differences in modeling of vertices without labels. Neptune Database adds vertices
with a default label if one is not explicitly provided. All but the last label of a vertex can be deleted.

What is a vertex?

As well as loading both vertices and edges, unlike Neptune Database, Neptune Analytics also
allows loading just edges and is still able to run algorithms and queries from that starting point.
This is useful if your main interest is, for example, loading a file of edge data from a CSV file and
running an algorithm over the data without needing to provide any additional vertex information.
This has some implications on how vertices are managed. For the Neptune Analytics query
engine, a vertex implicitly exists if it either has an explicit label, a property, or an edge. Likewise, a
vertex gets implicitly deleted if all its labels, properties, and edges get removed. Unlike Neptune
Database, Neptune Analytics stores a label for a vertex only if one is explicitly provided by the user,
and all labels of a vertex can be deleted.

This affects some common openCypher queries. An attempt to create a vertex that has neither a
label nor properties or edges has no effect. That is, queries such as CREATE (n) or CREATE (n

Data model 198

https://docs.aws.eu//neptune/latest/userguide/access-graph-opencypher-data-model.html

Neptune Analytics Neptune Analytics User Guide

{`~id`: "xyz"}) do not add any vertices to the graph. CREATE (n {key:value}), where key
is different from `~id`, creates a vertex with the property key, and CREATE (n)-[knows]->(m)
creates two vertices with the one shared edge.

CREATE (n {key:value}), where key is different from `~id`, creates a vertex with the
property key, and a subsequent MATCH (n) will discover that vertex. A query such as MATCH
(n {key:value}) REMOVE n.key will remove the only property for the (edge- and label-
less) vertex, which implicitly deletes the vertex. A subsequent MATCH (n) query will not return
that vertex. Likewise, CREATE (n:Label) adds a vertex with the label Label (and no other
properties or edges). Now, MATCH (n) REMOVE n:Label deletes the only label of the vertex,
which implicitly deletes the vertex.

Similarly, CREATE (n)-[knows]->(m) creates two nodes and one edge. MATCH (n) will discover
those two vertices. Now, MATCH (n)-[r:knows]->(m) DELETE r will delete that edge, and
implicitly deletes the two vertices. Those two vertices are no longer returned when running a
MATCH (n) query.

Merge on empty vertices, MERGE (n) or MERGE (n {`~id`: "xyz"}), are not permitted
and will throw an exception. MERGE (n {key:value}) creates a vertex with property key if a
matching vertex does not exist.

The following table illustrates the differences between Neptune Database and Neptune Analytics.

Query (run on empty graph) Neptune Database Neptune Analytics

CREATE (n) Adds a vertex with label
"vertex" to the graph.

Each repeat request adds a
new vertex to the graph.

No change to the graph,
query returns without
exception.

Repeat requests similarly
do not change the graph,
and query returns without
exception.

CREATE (n {`~id`:
"xyz"})

Adds a vertex with id "xyz"
and label "vertex" to the
graph.

No change to the graph,
query returns without
exception.

Vertices 199

Neptune Analytics Neptune Analytics User Guide

Query (run on empty graph) Neptune Database Neptune Analytics

Repeat request fails with
exception.

Repeat requests similarly
do not change the graph,
and query returns without
exception.

CREATE (n {key:valu
e})

Adds a vertex with label
"vertex" and property "key" to
the graph.

Adds a vertex with property
"key" to the graph. This vertex
has no label.

CREATE (n {key:valu
e})

MATCH (n {key:value})
REMOVE n.key

The REMOVE query removes
the "key" property on the
vertex. The graph contains a
vertex with label "vertex" but
no property.

MATCH (n) returns the
vertex.

The remove query removes
the property on the vertex,
and as a side effect the vertex
gets deleted from the graph.

MATCH (n) does not return
the vertex.

CREATE (n:Label
{`~id`: "xyz",
key:value})

MATCH (n {`~id`:
"xyz"}) REMOVE n:Label

The REMOVE query errors
out, the last label on a vertex
cannot be deleted.

The REMOVE query removes
the label. The graph contains
a graph with id "xyz" and
property "key".

CREATE (n)-[:knows]-
>(m)

Adds two vertices with label
"vertex" and an edge with
label "knows" to the graph.

MATCH (n) returns both
those vertices.

Adds an edge between two
new vertices to the graph.

MATCH (n) returns both
those vertices.

Vertices 200

Neptune Analytics Neptune Analytics User Guide

Query (run on empty graph) Neptune Database Neptune Analytics

CREATE (n)-[:knows]-
>(m)

MATCH (n)-[r:knows]-
>(n) DELETE r

Deletes the edge. The graph
contains two isolated vertices.

MATCH (n) returns both
those vertices.

Deletes the edge, and as a
side effect the two vertices
also get deleted from the
graph. The graph is now
empty.

MATCH (n) does not return
the two vertices.

MERGE (n) Adds a vertex with label
"vertex" if graph is empty.

Matches all vertices in a non-
empty graph.

Throws an exception.

MERGE (n {`~id`:
"xyz"})

Adds a vertex with label
"vertex" and id "xyz" if one
does not exist in the graph.

Matches vertex with id "xyz".

Throws an exception.

MERGE (n {key:value}) Adds a vertex with label
"vertex" and property "key"
to the graph, if such a vertex
does not already exists.

Adds a vertex with property
"key" to the graph, if such a
vertex does not already exist.
This vertex has no label.

MERGE (n)-[knows]-
>(m)

Adds two vertices with label
"vertex" and an edge with
label "knows" to the graph,
if an edge with label knows
does not exist.

MATCH (n) returns both
those vertices.

Adds an edge between two
new vertices to the graph, if
an edge with label "knows"
does not exist. The two
vertices have no label.

MATCH (n) returns both
those vertices.

Vertices 201

Neptune Analytics Neptune Analytics User Guide

Note

A workaround to implicit deletion of a vertex when all of its labels, properties, and edges
get removed is to assign immutable labels to all vertices. This way, the deletion of all
properties, edges, or mutable labels of a vertex will not lead to an implicit deletion. A
vertex would not get deleted until explicitly deleted.
Likewise a workaround to no-op vertex create queries is to always create a vertex with a
label or a property. To combine it with the previous point, always create a vertex with an
immutable label. Extending this to bulk or batch loads, include all vertices in some vertex
files and assign a property or an immutable label to all vertices.

Neptune Analytics OpenCypher specification compliance

Refer to the Neptune Database documentation found here for openCypher specification
compliance, with the exception that Neptune Analytics does not support custom edge IDs.

Amazon Neptune also supports several features beyond the scope of the OpenCypher specification.
Refer to OpenCypher extensions in Amazon Neptune for details.

Vertex and edge IDs

Custom IDs for vertices

Neptune Analytics supports both querying and creating vertices with custom IDs. See openCypher
custom IDs for more details.

Custom IDs for edges

Neptune Analytics does not support edge creation with custom edge IDs. Custom IDs are not
permitted in CREATE or MERGE clauses. Edges are assigned IDs by Neptune , using a reserved
prefix neptune_reserved_. Edges can be queried by the server assigned ids, just as in Neptune
Database.

Supported
MATCH (n)-[r:knows {`~id`: 'neptune_reserved_1_123456789'}]->(m)
RETURN r

Unsupported

OpenCypher specification compliance 202

https://docs.aws.eu//neptune/latest/userguide/feature-opencypher-compliance.html
https://docs.aws.eu//neptune/latest/userguide/access-graph-opencypher-extensions.html
https://docs.aws.eu/neptune/latest/userguide/feature-opencypher-compliance.html#opencypher-compliance-custom-ids
https://docs.aws.eu/neptune/latest/userguide/feature-opencypher-compliance.html#opencypher-compliance-custom-ids
https://docs.aws.eu/neptune/latest/userguide/feature-opencypher-compliance.html#opencypher-compliance-custom-ids
https://docs.aws.eu/neptune/latest/userguide/feature-opencypher-compliance.html#opencypher-compliance-custom-ids

Neptune Analytics Neptune Analytics User Guide

CREATE (n:Person {name: 'John'})-[:knows {`~id`: 'john-knows->jim'}]->(m:Person {name:
 'Jim'})

Unsupported
MERGE (n)-[r:knows {`~id`: 'neptune_reserved_1_123456789'}]->(m)
RETURN r

Server assigned IDs are recycled. After an edge is deleted, a new edge created could get assigned
the same ID.

Note

The edges could get assigned new IDs if the graph gets restructured and the older IDs
would then become invalid. If the edges are reassigned IDs, older IDs would match no
other edges. It is not recommended to store these IDs externally for long-term querying
purposes.

IRIs and language-tagged literals

Neptune Analytics supports values hat are of type IRI or languag-tagged literal. See Handling RDF
values for more information.

OpenCypher reduce() function

Reduce sequentially processes each list element by combining it with a running total or
‘accumulator.’ Starting from an initial value, it updates the accumulator after each operation and
uses that updated value in the next iteration. Once all elements have been processed, it returns the
final accumulated result.

A typical reduce() structure

reduce(accumulator = initial , variable IN list | expression)

Type specifications:

• initial: starting value for the accumulator - (LONG | FLOAT | STRING | LIST OF (STRING, LONG,
FLOAT)).

• list: the input list - LIST OF T where T matches the initial type.

• variable : represents each element in the input list.

IRIs and language-tagged literals 203

https://docs.aws.eu//neptune-analytics/latest/userguide/using-rdf-data.html#rdf-handling
https://docs.aws.eu//neptune-analytics/latest/userguide/using-rdf-data.html#rdf-handling

Neptune Analytics Neptune Analytics User Guide

• expression : Only supports the + operator.

• return : The return will be the same type as the initial type.

Restrictions:

The reduce() expression currently only supports addition or concatenation (string or list). Both
are represented by the + operator. The expression should be a binary expression specified as
accumulator + any variable.

Examples

The following examples show the different supported input types:

Long Addition:
RETURN reduce(sum = 0, n IN [1, 2, 3] | sum + n)
{
 "results": [{
 "reduce(sum = 0, n IN [1, 2, 3] | sum + n)": 6
 }]
}

String Concatenation:
RETURN reduce(str = "", x IN ["A", "B", "C"] | str + x)
{
 "results": [{
 "reduce(str = "", x IN ["A", "B", "C"] | str + x)": "ABC"
 }]
}

List Combination:
RETURN reduce(lst = [], x IN [1, 2, 3] | lst + x)
{
 "results": [{
 "reduce(lst = [], x IN [1, 2, 3] | lst + x)": [1, 2, 3]
 }]
}

Float Addition:
RETURN reduce(total = 0.0, x IN [1.5, 2.5, 3.5] | total + x)
{

OpenCypher reduce() function 204

Neptune Analytics Neptune Analytics User Guide

 "results": [{
 "reduce(total = 0.0, x IN [1.5, 2.5, 3.5] | total + x)": 7.5
 }]
}

Transaction isolation levels in Neptune Analytics

Neptune Analytics has some differences with isolation level supported by Neptune Database.

Read-only query isolation in Neptune Analytics: Neptune Analytics evaluates read-only queries
under snapshot isolation, just like Neptune Database.

Mutation query isolation in Neptune Analytics: Reads for mutation queries are normally executed
under snapshot isolation, unlike Neptune Database. This is less stricter isolation than Neptune
Database as the conditions in the query for proceeding to a write satisfied in a snapshot could have
changed concurrently before the query commits.

For some specific steps, such as node/relationship deletion or conditional creation of new data
using the MERGE step, reads also look at the concurrent writes, to avoid inconsistencies. Below are
some examples where concurrent execution of queries one and two always lead to a consistent
state. At most, one vertex gets created in example #1. The age is set to 10 or 11 in example #2,
not both. And in example #3, either the vertex is fully deleted or the age is set to 11 without any
deletion or removal of other properties.

EXAMPLE 1
Query 1: MERGE (m:Person {ssn: '123456789'})
Query 2: MERGE (n:Person {ssn: '123456789'})

EXAMPLE 2
Query 1: MATCH (n {ssn : '123456789'}) SET n.age=10
Query 2: MATCH (n {ssn : '123456789'}) SET n.age=11

EXAMPLE 3
Query 1: MATCH (n {ssn : '123456789'}) DETACH DELETE n
Query 2: MATCH (n {ssn : '123456789'}) SET n.age = 11

Conflict detection: Different from Neptune Database, conflicts are evaluated more precisely over
individual graph elements (properties or edges) rather than over a range of data. Queries one and

Isolation levels 205

https://docs.aws.eu//neptune/latest/userguide/transactions-neptune.html

Neptune Analytics Neptune Analytics User Guide

two in example #4 would not conflict when run concurrently because they search and merge on
different property values ('lname1' and 'lname2'). However, queries one and two in example #5
merge on different property-value sets, but they could still confict when run concurrently because
they share a property-value (firstName: 'fname').

EXAMPLE 4
Query 1: MERGE (n {lastName: 'lname1'})
Query 2: MERGE (n {lastName: 'lname2'})

EXAMPLE 5
Query 1: MERGE (n {firstName: 'fname', lastName: 'lname1'})
Query 2: MERGE (n {firstName: 'fname', lastName: 'lname2'})

Isolation levels 206

Neptune Analytics Neptune Analytics User Guide

Neptune Analytics algorithms

Graph algorithms are powerful tools for gaining insights into data. Neptune Analytics provides
a set of optimized in-database implementations of common graph algorithms that are exposed
as openCypher procedures. These algorithms analyze inherent aspects of the underlying graph
structure, such as connectedness (path finding), relative importance (centrality), and community
membership (community detection).

Neptune Analytics natively supports over 25 optimized graph algorithms and variants in the 5
most popular categories that help customers extract insights from their graphs, which are listed in
the following table.

Category Action Algorithms Common Uses

Pathfinding Find the existence,
quality, or availabil
ity of a path between
nodes.

• Breadth-First
Search

• Single-Source
Shortest Path

• Top-K Source
Shortest Path

• Source-Target
Shortest Path

• EgoNet

• Logistics optimizat
ion

• Social network
recommendations

• Route optimization

Centrality Determines the
absolute or relative
importance of a node
in the graph.

• Degree

• PageRank

• Closeness Centralit
y

• Degree Distribution

• Fraud ring/Coll
usion detection

• Social network
influencer identific
ation

• Supply chain risk
analysis

Similarity Compare the similarit
ies between different
graph structures.

• Common
Neighbors

• Total Neighbors

• Biological structura
l analysis

• Social network
cluster comparison

207

Neptune Analytics Neptune Analytics User Guide

Category Action Algorithms Common Uses

• Jaccard Similarity

• Overlap Similarity

• Link prediction

Clustering and
Community
Detection

Identify meaningfu
l groups or clusters
within graph
structures.

• Weakly Connected
Components (WCC)

• Strongly
Connected
Components (SCC)

• Label Propagation

• Louvain

• Social network
clusters

• Fraud ring identific
ation

• Householding

• Biological interacti
on

Vector Similarity
Search

Identify approxima
te nearest neighbor
(ANN) nodes by
comparing vector
embeddings using
the Hierarchical
Navigable Small
World (HNSW)
algorithm.

• Distance

• Top-K

• RAG applications

• Knowledge graph
backed chat bots

• Approximate
nearest neighbors

Many of these algorithms require interacting with most or all the nodes and edges in a graph,
often in an iterative fashion. As a result, they are too computationally expensive to process using
normal analytic technologies. Neptune Analytics has built highly optimized implementations that
allow them to run over graphs of any size.

Algorithms in Neptune Analytics are integrated naturally into openCypher through the CALL
clause, as illustrated below. This lets you combine algorithms naturally with openCypher clauses,
functions, and semantics to build very complex queries. For example, you could look for the top 10
most important airports in the US-AK region like this:

MATCH (n:airport {region: 'US-AK'})
CALL neptune.algo.pageRank(n, {edgeLabels: ['route'], numOfIterations: 10})
YIELD rank
RETURN n.code, rank

208

Neptune Analytics Neptune Analytics User Guide

ORDER BY rank DESC LIMIT 10

You can run algorithms in the SDKs using the ExecuteOpenCypherQuery operation or in boto3
and the AWS CLI using the execute-query command. If you don't want to use the SDK or CLI, you
can use you can use awscurl to sign your Neptune Analytics requests using signed using Signature
Version 4 (Sig4). For example, you can run a simple breadth-first search like this:

awscurl -X POST -H "Content-Type: application/x-www-form-urlencoded" \
 https://(graphIdentifier).(region).neptune-graph.amazonaws.com/opencypher \
 --service neptune-graph \
 --region (region) \
 -d "query=CALL neptune.algo.bfs([\"101\", \"102\"], {edgeLabels: [\"route\"]})"

You could run the same query using the AWS CLI like this:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.algo.bfs(["101", "102"], {edgeLabels: ["route"]})' \
 --language open_cypher \
 /tmp/out.txt

Algorithms having signatures with different kinds of input in Neptune Analytics are exposed as
separate algorithms. Unless otherwise indicated, the examples here are using the Air Routes
dataset.

Neptune Analytics currently supports five main categories of algorithm:

• Path finding algorithms – These find the existence, quality, or availability of a path or paths
between two or more nodes in the graph. A path in this sense is a set of nodes and connecting
edges.

By efficiently determining the optimal route between two nodes, path-finding algorithms enable
you to model real-world systems like roads or social networks as interconnected nodes and
edges. Finding the shortest paths between various points is crucial in applications like route
planning for GPS systems, logistics optimization, and even in solving complex problems in fields
like biology or engineering.

• Centrality algorithms – These are used to determine the absolute or relative importance or
influence of a node or nodes in the graph.

209

https://docs.aws.eu/neptune/latest/userguide/iam-auth-connect-command-line.html#iam-auth-connect-awscurl
https://docs.aws.eu/general/latest/gr/signing-aws-api-requests.html
https://docs.aws.eu/general/latest/gr/signing-aws-api-requests.html
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/
s3://neptune-benchmark-artifacts-us-west-2/data/CP/air-routes/

Neptune Analytics Neptune Analytics User Guide

By identifying the most influential or important nodes within a network, centrality algorithms
can provide insights about key players or critical points of interaction. This is valuable in social
network analysis, where it helps pinpoint influential individuals, and in transportation networks,
where it aids in identifying crucial hubs for efficient routing and resource allocation.

• Similarity algorithms – Graph similarity algorithms allow you to compare and analyze the
similarities and dissimilarities between different graph structures, which can provide insight
into relationships, patterns, and commonalities across diverse datasets. This is invaluable in
various fields, such as biology, for comparing molecular structures, such as social networks, for
identifying similar communities, and such as recommendation systems, for suggesting similar
items based on user preferences.

• Clustering or community-detection algorithms – Community-detection algorithms can identify
meaningful groups or clusters of nodes in a network, revealing hidden patterns and structures
that can provide insights into the organization and dynamics of complex systems. This is valuable
in social network analysis, and in biology, for identifying functional modules in protein-protein
interaction networks, and more generally for understanding information flow and influence
propagation in many different domains.

• Vector Similarity Search – Vector similarity algorithms work by using vector based
representations of data, a.k.a. embeddings, to answer questions about the data's context
and its similarity and connection to other data. This is valuable in applications such as
Retrieval Augmented Generation (RAG) applications, knowledge graph backed chatbots, and
recommendation engines.

210

Neptune Analytics Neptune Analytics User Guide

Path-finding algorithms in Neptune Analytics

Path-finding algorithms are a category of graph algorithms that focus on finding a path, a
connected set of nodes and edges, between two or more sets of nodes within a graph. They are
often used to find available or optimized paths based on the existence, quantity, or quality of the
paths and the values of properties along those paths.

By efficiently determining the best route between two nodes, path-finding algorithms enable you
to model real-world systems like roads or social networks as interconnected nodes and edges.
Finding the shortest paths between various points is crucial in applications like route planning for
GPS systems, logistics optimization, and even in solving complex problems in fields like biology or
engineering.

Breadth-first search (BFS) path finding algorithms

Breadth-first search (BFS) path-finding algorithms search for nodes in breadth-first order, starting
from a single vertex. They can also, in the multi-source case, start from more than one vertex.

They can systematically explore and evaluates all neighboring nodes from a starting point before
moving on to the neighbors of those nodes, which ensures that the algorithm searches the
shallowest levels of the graph first.

Breadth-first-search is used in computer networking to find the shortest path between two devices,
and in social networks to understand how information spreads through connections, and in games
to explore possible moves and strategies.

Time complexity – The time complexity of breadth-first search algorithms is O(|V|+|E|),
where |V| is the number of vertices in the graph and |E| is the number of edges in the graph.

A breadth-first algorithm can be invoked as a standalone operation whose inputs are explicitly
defined, or as a query-algorithm integration which takes as its input the output of an immediately
preceding MATCH clause.

Neptune Analytics supports these BFS algorithms:

• .bfs – This standard breadth-first search algorithm starts from the source vertex of the graph
and returns a column of visited vertices.

• .bfs.parents – This variant of BFS starts from a source vertex or vertices and finds the
parent of each vertex during the search. It returns a key column of the vertices and a value
column of the parents of the key vertices.

Path-finding algorithms 211

Neptune Analytics Neptune Analytics User Guide

• .bfs.levels – This variant of BFS starts from a source vertex or vertices and finds the levels
of each vertex during the search. It returns a key column of the vertices and a value column of
integers that are the level values of the key vertices.

Note that the level of a source vertex is 0.

BFS algorithms 212

Neptune Analytics Neptune Analytics User Guide

Standard breadth-first search (BFS) algorithm

Standard breadth-first search (BFS) is an algorithm for finding nodes from a starting node or nodes
in a graph in breadth-first order.

It returns the source node or nodes that it started from, and all of the nodes visited by each search.

Note

Because every source node passed in leads to its own execution of the algorithm, your
queries should limit the number of source nodes as much as possible.

.bfs syntax

CALL neptune.algo.bfs(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 maxDepth: maximum number of hops to traverse from a source node (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.bfs inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The source-node list contains the node or nodes used as the starting locations for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

BFS algorithms 213

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only nodes matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• maxDepth (optional) – type: positive integer or 0 or -1; default: -1.

The maximum number of hops to traverse from a source node. If set at -1 then there's no
maximum depth limit. If set to 0, only the nodes in the source node list are returned.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.bfs outputs

The .bfs algorithm returns:

• source – type: Node[].

The source nodes.

• node – type: Node[].

The nodes that the algorithm traversed from each source node.

BFS algorithms 214

Neptune Analytics Neptune Analytics User Guide

.bfs query examples

This is a standalone example, where the query provides an explicit source node list.

CALL neptune.algo.bfs(
 ["101", "102"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport",
 maxDepth: 11,
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD node

You can run that query using the execute-query operation in the AWS CLI like this:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.algo.bfs(["101", "102"],
 {edgeLabels: ["route"], vertexLabel: "airport", maxDepth: 11,
 traversalDirection: "both", concurrency: 2})' \
 --language open_cypher \
 /tmp/out.txt

A query like this one would return an empty result because the source list is empty:

CALL neptune.algo.bfs([], {edgeLabels: ["route"]})

By default, both the source nodes ("source" output) and the visited nodes ("node" output) are
returned. You can use YIELD to specify which of those outputs you would like to see. For example,
to see only the "node" outputs:

CALL neptune.algo.bfs(["101"], {edgeLabels: ["route"]}) YIELD node

The examples below are query integration examples, where .bfs follows a MATCH clause and uses
the output of the MATCH clause as its source node list:

MATCH (n) WITH n LIMIT 5
CALL neptune.algo.bfs(n, {edgeLabels: ["route"]})

BFS algorithms 215

Neptune Analytics Neptune Analytics User Guide

YIELD node
RETURN node

The MATCH clause can also explitly specify a starting node list using the id() function, like this:

MATCH (n) where id(n)="101"
CALL neptune.algo.bfs(n, {edgeLabels: ["route"]})
YIELD node
RETURN node

Also:

MATCH (n) where id(n) IN ["101", "102"]
CALL neptune.algo.bfs(n, {edgeLabels: ["route"]})
YIELD node
RETURN COUNT(node)

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .bfs output

Here is an example of the output returned by .bfs when run against the sample air-routes dataset
[nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.bfs(['101'], {maxDepth: 1}) yield source, node
 return source, node limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [{
 "source": {

BFS algorithms 216

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.681099891662599,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.74700164794901,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "1483",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 39.490000000000002,
 "elev": 4557,
 "longest": 9186,
 "city": "Ordos",
 "type": "airport",
 "region": "CN-15",
 "desc": "Ordos Ejin Horo Airport",
 "code": "DSN",
 "lon": 109.861388889,
 "country": "CN",
 "icao": "ZBDS",
 "runways": 1
 }
 }
 }, {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.681099891662599,

BFS algorithms 217

Neptune Analytics Neptune Analytics User Guide

 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.74700164794901,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "103",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.972599029541001,
 "elev": 622,
 "longest": 12139,
 "city": "Moscow",
 "type": "airport",
 "region": "RU-MOS",
 "desc": "Moscow, Sheremetyevo International Airport",
 "code": "SVO",
 "lon": 37.414600372314503,
 "country": "RU",
 "icao": "UUEE",
 "runways": 2
 }
 }
 }]
}

BFS algorithms 218

Neptune Analytics Neptune Analytics User Guide

Parents breadth-first search (BFS) algorithm

The parents variant of breadth-first search is an algorithm for finding nodes from a starting node
or vertices in breadth-first order and then performing a breadth-first search for the parent of each
node.

It returns a key column of vertices, and a value column of the vertices that are the parents of the
key vertices. The parent of a source node is itself.

Note

Because every source node passed in initiates its own execution of the algorithm, your
queries should limit the number of source nodes as much as possible.

.bfs.parents syntax

CALL neptune.algo.bfs.parents(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 maxDepth: maximum number of hops to traverse from a source node (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node and/or parent)
RETURN the outputs to return

.bfs.parents inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The source-node list contains the node or nodes used as the starting locations for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

BFS algorithms 219

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only vertices matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• maxDepth (optional) – type: positive inteeger or 0 or -1; default: -1.

The maximum number of hops to traverse from a source node. If set at -1 then there's no
maximum depth limit. If set to 0, only the vertices in the source node list are returned.

• traversalDirection (optional) – type: string; default: outbound.

The direction of edge to follow. Must be one of: inbound, outbound, or both.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.bfs.parents outputs

The .bfs.parents algorithm returns:

• source – type: Node[].

The source nodes.

• node – type: Node[].

The vertices that the algorithm traversed from each source node.

• parent – type: Node[].

The parents of those traversed nodes.BFS algorithms 220

Neptune Analytics Neptune Analytics User Guide

.bfs.parents query examples

Thus is a standalone examples, where the source node list is explicitly provided in the query:

CALL neptune.algo.bfs.parents(
 ["105", "113"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport",
 maxDepth: 2,
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD node, parent

A query like this one would return an empty result because the source list is empty:

CALL neptune.algo.bfs.parents([], {edgeLabels: ["route"]})

This is a query integration example, where .bfs.parents follows a MATCH clause that provides
the source node list for .bfs.parents:

Match (n) with n LIMIT 5
CALL neptune.algo.bfs.parents(n, {edgeLabels: ["route"]})
YIELD node
RETURN n, node

This query is an example of aliasing the algorithm output:

MATCH (n {code: "AUS"})
CALL neptune.algo.bfs.parents(n, { edgeLabels: ["route"], maxDepth: 2})
YIELD node AS ReachedNode
RETURN ReachedNode

This query searches for routes to BFS from BKK, returning the starting node (BKK), 5 visited
vertices, and their parents:

MATCH (n) where n.code CONTAINS "BKK"
CALL neptune.algo.bfs.parents(n, {edgeLabels: ["route"]})
YIELD node, parent

BFS algorithms 221

Neptune Analytics Neptune Analytics User Guide

RETURN n, node, parent
LIMIT 5

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .bfs.parents output

Here is an example of the output returned by .bfs.parents when run against the sample air-routes
dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.bfs.parents(['101'], {maxDepth: 1})
 YIELD source, node, parent
 RETURN source, node, parent
 LIMIT 2"
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",

BFS algorithms 222

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "1483",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 39.49,
 "elev": 4557,
 "longest": 9186,
 "city": "Ordos",
 "type": "airport",
 "region": "CN-15",
 "desc": "Ordos Ejin Horo Airport",
 "code": "DSN",
 "lon": 109.861388889,
 "country": "CN",
 "icao": "ZBDS",
 "runways": 1
 }
 },
 "parent": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 }

BFS algorithms 223

Neptune Analytics Neptune Analytics User Guide

 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "103",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.972599029541,
 "elev": 622,
 "longest": 12139,
 "city": "Moscow",
 "type": "airport",
 "region": "RU-MOS",
 "desc": "Moscow, Sheremetyevo International Airport",
 "code": "SVO",
 "lon": 37.4146003723145,
 "country": "RU",
 "icao": "UUEE",
 "runways": 2
 }
 },
 "parent": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],

BFS algorithms 224

Neptune Analytics Neptune Analytics User Guide

 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 }
 }
]
}

BFS algorithms 225

Neptune Analytics Neptune Analytics User Guide

Levels breadth-first search (BFS) algorithm

The levels variant of breadth-first search is an algorithm for searching nodes from a starting
node or nodes in breadth-first order. From there it performs a breadth-first search and records the
hop level from the starting node of each node that it finds.

It returns a key column of nodes, and a value column containing the level values of those key
nodes.

The level of a source node is 0. Note that because every source node passed into breadth-first
search levels initiates its own execution of the algorithm, your queries should filter to a subset of
the graph before executing BFS levels whenever possible.

.bfs.levels syntax

CALL neptune.algo.bfs.levels(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 maxDepth: maximum number of hops to traverse from a source node (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.bfs.levels inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The source-node list contains the node or nodes used as the starting locations for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

BFS algorithms 226

Neptune Analytics Neptune Analytics User Guide

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

If you provide a node label to filter on then only nodes matching that label will be traversed.
This does not, however, filter out any nodes in the source node list.

• maxDepth (optional) – type: positive integer or 0 or -1; default: -1.

The maximum number of hops to traverse from a source node. If set at -1 then there's no
maximum depth limit. If set to 0, only the nodes in the source node list are returned.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.bfs.levels outputs

The .bfs.levels algorithm returns:

• source – type: Node[].

The source nodes.

• node – type: Node[].

The nodes that the algorithm traversed from each source node.

• level – type: integer[].

The hop levels of those traversed nodes.

BFS algorithms 227

Neptune Analytics Neptune Analytics User Guide

.bfs.levels standalone query examples

The examples below are standalone examples, where the query provides an explicit source node
list.

A query like this one would return an empty result because the source list is empty:

CALL neptune.algo.bfs.levels(
 ["101", "102"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport",
 maxDepth: 6,
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD node

You can run the algorithm using the execute-query operation in the AWS CLI like this:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.algo.bfs.levels(["101", "102"], {edgeLabels:
 ["route"]})' \
 --language open_cypher \
 /tmp/out.txt

By default, all the outputs are generated. You can use YIELD to specify which of those outputs to
generate. For example, to generate only the "node" and level outputs:

CALL neptune.algo.bfs.levels(["101"], {edgeLabels: ["route"]}) YIELD node, level

.bfs.levels query integration examples

The examples below are query integration examples, where .bfs.levels follows a MATCH clause
and uses the output of the MATCH clause as its source node list:

MATCH (n) WITH n LIMIT 5
CALL neptune.algo.bfs.levels(n, {edgeLabels: ["route"]})
YIELD node, level

BFS algorithms 228

Neptune Analytics Neptune Analytics User Guide

RETURN n, node, level

This query illustrates various ways to constrain the input and output:

MATCH (n) where id(n)="101"
CALL neptune.algo.bfs.levels(n, { edgeLabel: "route", maxDepth: 2})
YIELD node, level WHERE node.city CONTAINS "New"
RETURN n.city, node.city, level

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .bfs.levels output

Here is an example of the output returned by .bfs.levels when run against the sample air-routes
dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.bfs.levels(['101'], {maxDepth: 1}) yield source,
 node, level return source, node, level limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,

BFS algorithms 229

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "1483",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 39.49,
 "elev": 4557,
 "longest": 9186,
 "city": "Ordos",
 "type": "airport",
 "region": "CN-15",
 "desc": "Ordos Ejin Horo Airport",
 "code": "DSN",
 "lon": 109.861388889,
 "country": "CN",
 "icao": "ZBDS",
 "runways": 1
 }
 },
 "level": 1
 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",

BFS algorithms 230

Neptune Analytics Neptune Analytics User Guide

 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "lon": 100.747001647949,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "103",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.972599029541,
 "elev": 622,
 "longest": 12139,
 "city": "Moscow",
 "type": "airport",
 "region": "RU-MOS",
 "desc": "Moscow, Sheremetyevo International Airport",
 "code": "SVO",
 "lon": 37.4146003723145,
 "country": "RU",
 "icao": "UUEE",
 "runways": 2
 }
 },
 "level": 1
 }
]
}

Single-source shortest-path algorithms

A single-source-shortest-path algorithm finds the shortest paths (or the distance of the shortest
paths) between a given vertex and all reachable vertices in the graph (including itself).

By determining the most efficient routes from a single starting node to all other nodes in the
graph, single-source-shortest-path can be used calculate the shortest distances or lowest cost
required to reach each destination. This is applicable in GPS systems to find the fastest routes
between a starting point and differeent destinations, and in logistics to optimize delivery routes,
and in transportation planning for efficient navigation through road networks.

SSSP algorithms 231

Neptune Analytics Neptune Analytics User Guide

Neptune Analytics supports the following single-source-shortest-path (SSSP) algorithms:

• .sssp.bellmanFord – Computes the shortest path distances from a source vertex to all
other vertices in the graph using the Bellman-Ford algorithm. Positive edge weights must be
provided using the edgeWeightProperty, and the traversal direction must not be set to both.

• .sssp.bellmanFord.parents – Identifies the parent vertices along the shortest paths from
the source vertex to all other vertices in the graph using the Bellman-Ford algorithm. Positive
edge weights must be provided using the edgeWeightProperty, and the traversal direction
must not be set to both.

• .sssp.bellmanFord.path – Finds the shortest path between a given source vertex and a
target vertex in the graph using the Bellman-Ford algorithm. To compute all shortest paths from
a given source vertex, the regular SSSP algorithm can be used. Positive edge weights must be
provided using the edgeWeightProperty, and the traversal direction must not be set to both.

• .sssp.deltaStepping – Computes the shortest path distances from a source vertex to
all other vertices in the graph using a delta-stepping algorithm. Positive edge weights must be
provided using the edgeWeightProperty, and the traversal direction must not be set to both.

• .sssp.deltaStepping.parents – Identifies the parent vertices along the shortest paths
from the source vertex to all other vertices in the graph using a delta-stepping algorithm.
Positive edge weights must be provided using the edgeWeightProperty, and the traversal
direction must not be set to both.

• .sssp.deltaStepping.path – Finds the shortest path between a given source vertex and
a target vertex in the graph using the delta-stepping algorithm. To compute all shortest paths
from a given source vertex, the regular SSSP algorithm can be used. Positive edge weights must
be provided using the edgeWeightProperty, and the traversal direction must not be set to
both.

• .topksssp – The TopK hop-limited single source shortest path algorithm finds the single-
source weighted shortest paths starting from a source vertex to all its maxDepth neighbors. The
distance or cost from the source vertex to each target vertex is accumulated on the edge weights
of the path. The topK distances of the paths are sorted in descending or ascending order.

The algorithm can be run unweighted as well as weighted. When you run it unweighted, it's
equivalent to .bfs.levels.

SSSP algorithms 232

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Parallel_single-source_shortest_path_algorithm#Delta_stepping_algorithm

Neptune Analytics Neptune Analytics User Guide

Bellman-Ford single source shortest path (SSSP) algorithm

The .sssp.bellmanFord algorithm computes the shortest path distances from a single source
vertex to all other vertices in the graph using the Bellman-Ford algorithm.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.bellmanFord syntax

CALL neptune.algo.sssp.bellmanFord(
 [source-node list (required)],
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.bellmanFord inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; default: none.

SSSP algorithms 233

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

Neptune Analytics Neptune Analytics User Guide

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "outbound".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the .sssp.bellmanFord algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.

• distance – The distance between the source node and the found node.

.sssp.bellmanFord query examples

This is a standalone query, where a source node (or nodes) is explicitly provided:

SSSP algorithms 234

Neptune Analytics Neptune Analytics User Guide

CALL neptune.algo.sssp.bellmanFord(
 ["101"],
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where .sssp.bellmanFord follows a MATCH clause and uses
the output of the MATCH clause as its source node list:

MATCH (source:airport {code: 'ANC'})
CALL neptune.algo.sssp.bellmanFord(
 source,
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD node, parent, distance
RETURN source, node, parent, distance

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .sssp.bellmanFord output

Here is an example of the output returned by .sssp.bellmanFord when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \

SSSP algorithms 235

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.sssp.bellmanFord(['101'],
 {edgeWeightProperty: 'dist', edgeWeightType: 'int'})
 yield source, node, distance
 return source, node, distance
 limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2709",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,
 "longest": 8711,
 "city": "Nadym",

SSSP algorithms 236

Neptune Analytics Neptune Analytics User Guide

 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "prscore": 0.00016044313088059425,
 "degree": 18,
 "lon": 72.6988983154297,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "USMM",
 "runways": 1
 }
 },
 "distance": 3812
 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2667",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 56.8567008972168,

SSSP algorithms 237

Neptune Analytics Neptune Analytics User Guide

 "elev": 2188,
 "longest": 6562,
 "city": "Ust-Kut",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Ust-Kut Airport",
 "code": "UKX",
 "prscore": 0.000058275499999999997,
 "degree": 4,
 "lon": 105.730003356934,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UITT",
 "runways": 1
 }
 },
 "distance": 2993
 }
]
}

SSSP algorithms 238

Neptune Analytics Neptune Analytics User Guide

Bellman-Ford single source shortest path (SSSP) parents algorithm

The .sssp.bellmanFord.parents algorithm uses the Bellman-Ford algorithm to find the
parent nodes along with the shortest path distances from the source node to all other nodes in the
graph.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.bellmanFord.parents syntax

CALL neptune.algo.sssp.bellmanFord.parents(
 [source-node list (required)],
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.bellmanFord.parents inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

SSSP algorithms 239

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; example: "distnce"; default: none.

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "outbound".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the .sssp.bellmanFord.parents algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.

• distance – The distance between the source node and the found node.

• parent – The parent of the found node. Note that the parent of the source vertex is itself.

SSSP algorithms 240

Neptune Analytics Neptune Analytics User Guide

.sssp.bellmanFord.parents query examples

This is a standalone query, where a source node (or nodes) is explicitly provided:

CALL neptune.algo.sssp.bellmanFord.parents(
 ["101"],
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where where .sssp.bellmanFord.parents follows a
MATCH clause and uses the output of the MATCH clause as its source node list:

MATCH (source:airport {code: 'ANC'})
CALL neptune.algo.sssp.bellmanFord.parents(
 source,
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD node, parent, distance
RETURN source, node, parent, distance

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

SSSP algorithms 241

Neptune Analytics Neptune Analytics User Guide

Sample .sssp.bellmanFord.parents output

Here is an example of the output returned by .sssp.bellmanFord.parents when run against the
sample air-routes dataset [nodes], and sample air-routes dataset [edges], when using the
following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.sssp.bellmanFord.parents(['101'],
 {edgeWeightProperty: 'dist', edgeWeightType: 'int'})
 yield source, node, parent
 return source, node, parent
 limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {

SSSP algorithms 242

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "~id": "2709",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,
 "longest": 8711,
 "city": "Nadym",
 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "prscore": 0.00016044313088059425,
 "degree": 18,
 "lon": 72.6988983154297,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "USMM",
 "runways": 1
 }
 },
 "parent": {
 "~id": "810",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.0125999450684,
 "elev": 365,
 "longest": 11818,
 "city": "Novosibirsk",
 "type": "airport",
 "region": "RU-NVS",
 "desc": "Tolmachevo Airport",
 "code": "OVB",
 "prscore": 0.0012910010991618038,
 "degree": 162,
 "lon": 82.6507034301758,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UNNT",
 "runways": 2
 }
 }
 },

SSSP algorithms 243

Neptune Analytics Neptune Analytics User Guide

 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2667",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 56.8567008972168,
 "elev": 2188,
 "longest": 6562,
 "city": "Ust-Kut",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Ust-Kut Airport",
 "code": "UKX",
 "prscore": 0.000058275499999999997,
 "degree": 4,
 "lon": 105.730003356934,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UITT",
 "runways": 1
 }

SSSP algorithms 244

Neptune Analytics Neptune Analytics User Guide

 },
 "parent": {
 "~id": "1038",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 52.2680015563965,
 "elev": 1675,
 "longest": 10384,
 "city": "Irkutsk",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Irkutsk Airport",
 "code": "IKT",
 "prscore": 0.0008466026629321277,
 "degree": 84,
 "lon": 104.388999938965,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UIII",
 "runways": 1
 }
 }
 }
]
}

SSSP algorithms 245

Neptune Analytics Neptune Analytics User Guide

Bellman-Ford single source single target shortest path algorithm

The .sssp.bellmanFord.path algorithm uses the Bellman-Ford algorithm to find the shortest
path along with the shortest path distances from a source node to a target node in the graph. If
there are multiple shortest paths between the source node and the target node, only one will be
returned. The algorithm can run only weighted, with edgeWeightProperty provided.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field.

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.bellmanFord.path syntax

CALL neptune.algo.sssp.bellmanFord.path(
 [source node(s) (required)], [target node(s) (required)]
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.bellmanFord.path inputs

• source node(s) (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source node(s) is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source node(s) for the algorithm.

• target node(s) (required) – type: Node[] or NodeId[]; default: none.

SSSP algorithms 246

Neptune Analytics Neptune Analytics User Guide

The node or nodes to use as the ending location(s) for the algorithm.

• Each source-target node pair produces an output of the algorithm.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the target node(s) for the algorithm.

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; default: none.

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "outbound".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the .sssp.bellmanFord.path algorithm

For every pair of source and target nodes, the algorithm returns:

SSSP algorithms 247

Neptune Analytics Neptune Analytics User Guide

• source – The source vertex.

• target – The target vertex.

• distance – The total shortest path distance from source to target.

• vertexPath – A list of vertices in the path in visit order (including the source and the target).

• allDistances – A list of cumulative distances to the vertices in the traversal path (including the
source and the target).

• path – An openCypher path object representing the shortest path between the source and
the target. (A list of vertices from the source vertex to the target vertex, interleaved with the
corresponding edges, representing the shortest path. Sequence of vertex id (source), edge id,
vertex id, edge id, ..., vertex id (target)).

• Starts and ends with a vertex, and has edges in between each vertex.

• Includes the source and the target vertices.

.sssp.bellmanFord.path query examples

This is a standalone query, where a source node and target node are explicitly provided:

CALL neptune.algo.sssp.bellmanFord.path(
 "9", "37",
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where .sssp.bellmanFord.path follows a MATCH clause
and uses the output of the MATCH clause as its source node(s) and target node(s):

MATCH (source:airport {code: 'FLL'})
MATCH (target:airport {code: 'HNL'})
CALL neptune.algo.sssp.bellmanFord.path(
 source, target,
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 vertexLabel: "airport",

SSSP algorithms 248

Neptune Analytics Neptune Analytics User Guide

 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD distance, vertexPath, allDistances, path
RETURN source, target, distance, vertexPath, allDistances, path

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes are returned; and that
every source-target node pair produces an output, which can result in a very large query
output if a large number of nodes are returned. Use LIMIT or put conditions on the MATCH
clause to restrict its output appropriately.

Sample .sssp.bellmanFord.path output

Here is an example of the output returned by .sssp.bellmanFord.path when run against the sample
air-routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n:airport {code: 'FLL'})
 MATCH (m:airport {code: 'HNL'})
 CALL neptune.algo.sssp.bellmanFord.path(n, m, {
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 edgeLabels: ["route"],
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 })
 YIELD source, target, distance, vertexPath, allDistances, path
 RETURN source, target, distance, vertexPath, allDistances, path" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{

SSSP algorithms 249

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "results": [{
 "source": {
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-FL",
 "runways": 2,
 "country": "US",
 "city": "Fort Lauderdale",
 "type": "airport",
 "icao": "KFLL",
 "lon": -80.152702331542997,
 "code": "FLL",
 "lat": 26.0725994110107,
 "longest": 9000,
 "elev": 64,
 "desc": "Fort Lauderdale/Hollywood International Airport"
 }
 },
 "target": {
 "~id": "37",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-HI",
 "runways": 4,
 "country": "US",
 "city": "Honolulu",
 "type": "airport",
 "icao": "PHNL",
 "lon": -157.92199707031199,
 "code": "HNL",
 "lat": 21.318700790405298,
 "longest": 12312,
 "elev": 13,
 "desc": "Honolulu International Airport"
 }
 },
 "distance": 4854,
 "vertexPath": [{
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],

SSSP algorithms 250

Neptune Analytics Neptune Analytics User Guide

 "~properties": {
 "region": "US-FL",
 "runways": 2,
 "country": "US",
 "city": "Fort Lauderdale",
 "type": "airport",
 "icao": "KFLL",
 "lon": -80.152702331542997,
 "code": "FLL",
 "lat": 26.0725994110107,
 "longest": 9000,
 "elev": 64,
 "desc": "Fort Lauderdale/Hollywood International Airport"
 }
 }, {
 "~id": "11",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-TX",
 "runways": 5,
 "country": "US",
 "city": "Houston",
 "type": "airport",
 "icao": "KIAH",
 "lon": -95.341400146484403,
 "code": "IAH",
 "lat": 29.984399795532202,
 "longest": 12001,
 "elev": 96,
 "desc": "George Bush Intercontinental"
 }
 }, {
 "~id": "37",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-HI",
 "runways": 4,
 "country": "US",
 "city": "Honolulu",
 "type": "airport",
 "icao": "PHNL",
 "lon": -157.92199707031199,

SSSP algorithms 251

Neptune Analytics Neptune Analytics User Guide

 "code": "HNL",
 "lat": 21.318700790405298,
 "longest": 12312,
 "elev": 13,
 "desc": "Honolulu International Airport"
 }
 }],
 "allDistances": [0, 964, 4854],
 "path": [{
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-FL",
 "runways": 2,
 "country": "US",
 "city": "Fort Lauderdale",
 "type": "airport",
 "icao": "KFLL",
 "lon": -80.152702331542997,
 "code": "FLL",
 "lat": 26.0725994110107,
 "longest": 9000,
 "elev": 64,
 "desc": "Fort Lauderdale/Hollywood International Airport"
 }
 }, {
 "~id": "neptune_reserved_1_1152921504607567884",
 "~entityType": "relationship",
 "~start": "9",
 "~end": "11",
 "~type": "route",
 "~properties": {
 "dist": 964
 }
 }, {
 "~id": "11",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-TX",
 "runways": 5,
 "country": "US",
 "city": "Houston",

SSSP algorithms 252

Neptune Analytics Neptune Analytics User Guide

 "type": "airport",
 "icao": "KIAH",
 "lon": -95.341400146484403,
 "code": "IAH",
 "lat": 29.984399795532202,
 "longest": 12001,
 "elev": 96,
 "desc": "George Bush Intercontinental"
 }
 }, {
 "~id": "neptune_reserved_1_1152921508902600717",
 "~entityType": "relationship",
 "~start": "11",
 "~end": "37",
 "~type": "route",
 "~properties": {
 "dist": 3890
 }
 }, {
 "~id": "37",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-HI",
 "runways": 4,
 "country": "US",
 "city": "Honolulu",
 "type": "airport",
 "icao": "PHNL",
 "lon": -157.92199707031199,
 "code": "HNL",
 "lat": 21.318700790405298,
 "longest": 12312,
 "elev": 13,
 "desc": "Honolulu International Airport"
 }
 }]
 }]
}

SSSP algorithms 253

Neptune Analytics Neptune Analytics User Guide

Delta-stepping single source shortest path (SSSP) algorithm

The .sssp.deltaStepping algorithm computes the shortest path distances from a single source
vertex to all other vertices in the graph using a delta-stepping algorithm.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.deltaStepping syntax

CALL neptune.algo.sssp.deltaStepping(
 [source-node list (required)],
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required)
 delta: the stepping delta (optional)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.deltaStepping inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; default: none.

SSSP algorithms 254

https://en.wikipedia.org/wiki/Parallel_single-source_shortest_path_algorithm#Delta_stepping_algorithm

Neptune Analytics Neptune Analytics User Guide

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• delta (optional) – type: float; example: 3.0; default: 2.0.

The delta stepping value.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "outbound".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the sssp.deltaStepping algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.

• distance – The distance between the source node and the found node.

SSSP algorithms 255

Neptune Analytics Neptune Analytics User Guide

.sssp.deltaStepping query examples

This is a standalone query, where a source node (or nodes) is explicitly provided:

CALL neptune.algo.sssp.deltaStepping(
 ["101"],
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where where .sssp.deltaStepping follows a MATCH clause
and uses the output of the MATCH clause as its source node list:

MATCH (source:airport {code: 'ANC'})
CALL neptune.algo.sssp.deltaStepping(
 source,
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD node, parent, distance
RETURN source, node, parent, distance

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

SSSP algorithms 256

Neptune Analytics Neptune Analytics User Guide

Sample .sssp.deltaStepping output

Here is an example of the output returned by .sssp.deltaStepping when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.sssp.deltaStepping(['101'],
 {edgeWeightProperty: 'dist', edgeWeightType: 'int'})
 yield source, node, distance
 return source, node, distance
 limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2709",
 "~entityType": "node",

SSSP algorithms 257

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,
 "longest": 8711,
 "city": "Nadym",
 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "prscore": 0.00016044313088059425,
 "degree": 18,
 "lon": 72.6988983154297,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "USMM",
 "runways": 1
 }
 },
 "distance": 3812
 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },

SSSP algorithms 258

Neptune Analytics Neptune Analytics User Guide

 "node": {
 "~id": "2667",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 56.8567008972168,
 "elev": 2188,
 "longest": 6562,
 "city": "Ust-Kut",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Ust-Kut Airport",
 "code": "UKX",
 "prscore": 0.000058275499999999997,
 "degree": 4,
 "lon": 105.730003356934,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UITT",
 "runways": 1
 }
 },
 "distance": 2993
 }
]
}

SSSP algorithms 259

Neptune Analytics Neptune Analytics User Guide

Delta-stepping single source shortest path (SSSP) parents algorithm

The .sssp.deltaStepping.parents algorithm computes the shortest path distances from a
single source vertex to all other vertices in the graph using a delta-stepping algorithm.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.deltaStepping.parents syntax

CALL neptune.algo.sssp.deltaStepping.parents(
 [source-node list (required)],
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required)
 delta: the stepping delta (optional)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.deltaStepping.parents inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; default: none.

SSSP algorithms 260

https://en.wikipedia.org/wiki/Parallel_single-source_shortest_path_algorithm#Delta_stepping_algorithm

Neptune Analytics Neptune Analytics User Guide

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• delta (optional) – type: float; example: 3.0; default: 2.0.

The delta stepping value.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "outbound".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the sssp.deltaStepping.parents algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.

• distance – The distance between the source node and the found node.

• parent – The parent of the found node. Note that the parent of the source vertex is itself.

SSSP algorithms 261

Neptune Analytics Neptune Analytics User Guide

.sssp.deltaStepping.parents query examples

This is a standalone query, where a source node (or nodes) is explicitly provided:

CALL neptune.algo.sssp.deltaStepping.parents(
 ["101"],
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where where .sssp.deltaStepping.parents follows a
MATCH clause and uses the output of the MATCH clause as its source node list:

MATCH (source:airport {code: 'ANC'})
CALL neptune.algo.sssp.deltaStepping.parents(
 source,
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD node, parent, distance
RETURN source, node, parent, distance

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

SSSP algorithms 262

Neptune Analytics Neptune Analytics User Guide

Sample .sssp.deltaStepping.parents output

Here is an example of the output returned by .sssp.deltaStepping.parents when run against
the sample air-routes dataset [nodes], and sample air-routes dataset [edges], when using the
following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.sssp.deltaStepping.parents(['101'],
 {edgeWeightProperty: 'dist', edgeWeightType: 'int'})
 yield source, node, distance
 return source, node, distance
 limit 2" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {

SSSP algorithms 263

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "~id": "2709",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,
 "longest": 8711,
 "city": "Nadym",
 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "prscore": 0.00016044313088059425,
 "degree": 18,
 "lon": 72.6988983154297,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "USMM",
 "runways": 1
 }
 },
 "parent": {
 "~id": "810",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 55.0125999450684,
 "elev": 365,
 "longest": 11818,
 "city": "Novosibirsk",
 "type": "airport",
 "region": "RU-NVS",
 "desc": "Tolmachevo Airport",
 "code": "OVB",
 "prscore": 0.0012910010991618038,
 "degree": 162,
 "lon": 82.6507034301758,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UNNT",
 "runways": 2
 }
 }
 },

SSSP algorithms 264

Neptune Analytics Neptune Analytics User Guide

 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "2667",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 56.8567008972168,
 "elev": 2188,
 "longest": 6562,
 "city": "Ust-Kut",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Ust-Kut Airport",
 "code": "UKX",
 "prscore": 0.000058275499999999997,
 "degree": 4,
 "lon": 105.730003356934,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UITT",
 "runways": 1
 }

SSSP algorithms 265

Neptune Analytics Neptune Analytics User Guide

 },
 "parent": {
 "~id": "1038",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 52.2680015563965,
 "elev": 1675,
 "longest": 10384,
 "city": "Irkutsk",
 "type": "airport",
 "region": "RU-IRK",
 "desc": "Irkutsk Airport",
 "code": "IKT",
 "prscore": 0.0008466026629321277,
 "degree": 84,
 "lon": 104.388999938965,
 "wccid": 2357352929951779,
 "country": "RU",
 "icao": "UIII",
 "runways": 1
 }
 }
 }
]
}

SSSP algorithms 266

Neptune Analytics Neptune Analytics User Guide

DeltaStepping single source single target shortest path algorithm

The .sssp.deltaStepping.path algorithm uses the deltaStepping algorithm to find the
shortest path along with the shortest path distances from a source node to a target node in the
graph. If there are multiple shortest paths between the source node and the target node, only one
will be returned. The algorithm can run only weighted, with edgeWeightProperty provided.

Neptune Analytics implements the algorithm such that:

• Positive edge weights must be provided using the edgeWeightProperty field.

• Negative edge weights are not supported.

• The traversal direction cannot be set to both.

.sssp.deltaStepping.path syntax

CALL neptune.algo.sssp.deltaStepping.path(
 [source node(s) (required)], [target node(s) (required)]
 {
 edgeWeightProperty: edge weight predicate for traversal (required)
 edgeWeightType: numeric type of the edge weight property (required),
 delta: the stepping delta (optional)
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD the outputs to generate (source and/or node)
RETURN the outputs to return

.sssp.deltaStepping.path inputs

• source node(s) (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source node(s) is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source node(s) for the algorithm.

SSSP algorithms 267

Neptune Analytics Neptune Analytics User Guide

• target node(s) (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the ending location(s) for the algorithm.

• Each source-target node pair produces an output of the algorithm.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the target node(s) for the algorithm.

• a configuration object that contains:

• edgeWeightProperty (required) – type: string; default: none.

The edge weight predicate for traversal.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty.

• delta (optional) – type: float; example: 3.0; default: 2.0

The delta stepping value.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; example: "airport"; default: no node filtering.

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound" or "outbound".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

SSSP algorithms 268

Neptune Analytics Neptune Analytics User Guide

Outputs for the .sssp.deltaStepping.path algorithm

For every pair of source and target nodes, the algorithm returns:

• source – The source vertex.

• target – The target vertex.

• distance – The total shortest path distance from source to target.

• vertexPath – A list of vertices in the path in visit order (including the source and the target).

• allDistances – A list of cumulative distances to the vertices in the traversal path (including the
source and the target).

• path – An openCypher path object representing the shortest path between the source and
the target. (A list of vertices from the source vertex to the target vertex, interleaved with the
corresponding edges, representing the shortest path. Sequence of vertex id (source), edge id,
vertex id, edge id, ..., vertex id (target)).

• Starts and ends with a vertex, and has edges in between each vertex.

• Includes the source and the target vertices.

.sssp.deltaStepping.path query examples

This is a standalone query, where a source node and target node are explicitly provided:

CALL neptune.algo.sssp.deltaStepping.path(
 "9", "37",
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 delta: 2.0
 }
)

This is a query integration example, where .sssp.deltaStepping.path follows a MATCH clause
and uses the output of the MATCH clause as its source node(s) and target node(s):

MATCH (source:airport {code: 'FLL'})
MATCH (target:airport {code: 'HNL'})
CALL neptune.algo.sssp.deltaStepping.path(
 source, target,

SSSP algorithms 269

Neptune Analytics Neptune Analytics User Guide

 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 delta: 2.0,
 edgeWeightType: "int",
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1
 }
)
YIELD distance, vertexPath, allDistances, path
RETURN source, target, distance, vertexPath, allDistances, path

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes are returned; and that
every source-target node pair produces an output, which can result in a very large query
output if a large number of nodes are returned. Use LIMIT or put conditions on the MATCH
clause to restrict its output appropriately.

Sample .sssp.deltaStepping.path output

Here is an example of the output returned by .sssp.deltaStepping.path when run against the
sample air-routes dataset [nodes], and sample air-routes dataset [edges], when using the
following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n:airport {code: 'FLL'})
 MATCH (m:airport {code: 'HNL'})
 CALL neptune.algo.sssp.deltaStepping.path(n, m, {
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 delta: 2.0,
 edgeLabels: ["route"],
 vertexLabel: "airport",
 traversalDirection: "outbound",
 concurrency: 1

SSSP algorithms 270

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 })
 YIELD source, target, distance, vertexPath, allDistances, path
 RETURN source, target, distance, vertexPath, allDistances, path" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [{
 "source": {
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-FL",
 "runways": 2,
 "country": "US",
 "city": "Fort Lauderdale",
 "type": "airport",
 "icao": "KFLL",
 "lon": -80.152702331542997,
 "code": "FLL",
 "lat": 26.0725994110107,
 "longest": 9000,
 "elev": 64,
 "desc": "Fort Lauderdale/Hollywood International Airport"
 }
 },
 "target": {
 "~id": "37",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-HI",
 "runways": 4,
 "country": "US",
 "city": "Honolulu",
 "type": "airport",
 "icao": "PHNL",
 "lon": -157.92199707031199,
 "code": "HNL",
 "lat": 21.318700790405298,
 "longest": 12312,
 "elev": 13,

SSSP algorithms 271

Neptune Analytics Neptune Analytics User Guide

 "desc": "Honolulu International Airport"
 }
 },
 "distance": 4854,
 "vertexPath": [{
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-FL",
 "runways": 2,
 "country": "US",
 "city": "Fort Lauderdale",
 "type": "airport",
 "icao": "KFLL",
 "lon": -80.152702331542997,
 "code": "FLL",
 "lat": 26.0725994110107,
 "longest": 9000,
 "elev": 64,
 "desc": "Fort Lauderdale/Hollywood International Airport"
 }
 }, {
 "~id": "11",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-TX",
 "runways": 5,
 "country": "US",
 "city": "Houston",
 "type": "airport",
 "icao": "KIAH",
 "lon": -95.341400146484403,
 "code": "IAH",
 "lat": 29.984399795532202,
 "longest": 12001,
 "elev": 96,
 "desc": "George Bush Intercontinental"
 }
 }, {
 "~id": "37",
 "~entityType": "node",
 "~labels": ["airport"],

SSSP algorithms 272

Neptune Analytics Neptune Analytics User Guide

 "~properties": {
 "region": "US-HI",
 "runways": 4,
 "country": "US",
 "city": "Honolulu",
 "type": "airport",
 "icao": "PHNL",
 "lon": -157.92199707031199,
 "code": "HNL",
 "lat": 21.318700790405298,
 "longest": 12312,
 "elev": 13,
 "desc": "Honolulu International Airport"
 }
 }],
 "allDistances": [0, 964, 4854],
 "path": [{
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-FL",
 "runways": 2,
 "country": "US",
 "city": "Fort Lauderdale",
 "type": "airport",
 "icao": "KFLL",
 "lon": -80.152702331542997,
 "code": "FLL",
 "lat": 26.0725994110107,
 "longest": 9000,
 "elev": 64,
 "desc": "Fort Lauderdale/Hollywood International Airport"
 }
 }, {
 "~id": "neptune_reserved_1_1152921504607567884",
 "~entityType": "relationship",
 "~start": "9",
 "~end": "11",
 "~type": "route",
 "~properties": {
 "dist": 964
 }
 }, {

SSSP algorithms 273

Neptune Analytics Neptune Analytics User Guide

 "~id": "11",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-TX",
 "runways": 5,
 "country": "US",
 "city": "Houston",
 "type": "airport",
 "icao": "KIAH",
 "lon": -95.341400146484403,
 "code": "IAH",
 "lat": 29.984399795532202,
 "longest": 12001,
 "elev": 96,
 "desc": "George Bush Intercontinental"
 }
 }, {
 "~id": "neptune_reserved_1_1152921508902600717",
 "~entityType": "relationship",
 "~start": "11",
 "~end": "37",
 "~type": "route",
 "~properties": {
 "dist": 3890
 }
 }, {
 "~id": "37",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-HI",
 "runways": 4,
 "country": "US",
 "city": "Honolulu",
 "type": "airport",
 "icao": "PHNL",
 "lon": -157.92199707031199,
 "code": "HNL",
 "lat": 21.318700790405298,
 "longest": 12312,
 "elev": 13,
 "desc": "Honolulu International Airport"
 }

SSSP algorithms 274

Neptune Analytics Neptune Analytics User Guide

 }]
 }]
}

SSSP algorithms 275

Neptune Analytics Neptune Analytics User Guide

TopK hop-limited single source (weighted) shortest path algorithm

The .topkssspalgorithm finds the single-source weighted shortest paths from a source node to
its neighbors out to the distance specified by maxDepth. It accumulates the path lengths using the
edge weights along the paths and then returns a sorted list of the shortest paths.

.topksssp syntax

CALL neptune.algo.topksssp(
 [source-node list (required)],
 {
 hopCount: maximum hops on the shortest path (required),
 perHopLimits: [a list of the maximum number of nodes to carry forward at each hop
 (required)],
 edgeLabels: [list of edge labels for filtering (optional)],
 edgeWeightProperty: a numeric edge property to weight the traversal (optional),
 edgeWeightType: numeric type of the specified edgeWeightProperty (optional),
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional, default: outbound),
 costFunction: determines whether the topK distances are in ascending or descending
 order (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD source, node, distance
RETURN source, node, distance

Inputs for the topksssp algorithm

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

• a configuration object that contains:

• hopCount (required) – type: positive integer; default: none.

SSSP algorithms 276

Neptune Analytics Neptune Analytics User Guide

Restricts the number of hops on a shortest path, which restricts the number of iterations of
the SSSP algorithm to be used.

• perHopLimits (required) – type: a list of integers; valid values: positive integers, or -1
meaning unlimited; default: none.

Each integer represents the maximum number of candidate vertices to carry to the next hop.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• edgeWeightProperty (optional) – type: string; default: none.

The edge weight predicate to for traversal. If no property is specified then the algorithm runs
unweighted. If multiple properties exist on an edge having the specified name, then one of
them is selected at random for the weight value.

• edgeWeightType (optional) – type: string; valid values: "int", "long", "float",
"double".

The numeric data type of the values in the property specified by edgeWeightProperty. If
the edgeWeightProperty is not present, edgeWeightType is ignored and the algorithm
runs unweighted. If an edge contains a property specified by edgeWeightProperty that has
a numeric type different from what is specified in edgeWeightType, the property value is
typecast to the type specified by edgeWeightType.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• costFunction (optional) – type: string; valid values: "min", "max"; default: "min".

Specifies the ordering of the topK distances returned. A "min" value indicates that the topK
distances between the source and target vertices should be returned in descending order,
whereas a "max" value indicates that they should be returned in ascending order.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

SSSP algorithms 277

Neptune Analytics Neptune Analytics User Guide

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the topksssp algorithm

For every node that can be reached from the specified source list, the algorithm returns:

• source – The source node.

• node – A node found traversing from the source.

• distance – The distance between the source node and the found node.

.topksssp query examples

This ia a standalone query, where the source node list is explicitly provided in the query:

CALL neptune.algo.topksssp(
 ["101"],
 {
 edgeLabels: ["route"],
 hopCount: 3,
 perHopLimits: [10, 100, 1000],
 edgeWeightProperty: "dist",
 edgeWeightType: "int"
 }
)

This is a query integration example, where .topksssp follows a MATCH clause and uses the output
of the MATCH clause as its source node list:

MATCH (n) WHERE id(n) IN ["108","109"]
CALL neptune.algo.topksssp(
 n,
 {
 edgeLabels: ["route"],
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 hopCount: 5,
 perHopLimits: [5,10,15,20,25]

SSSP algorithms 278

Neptune Analytics Neptune Analytics User Guide

 }
)
YIELD distance
RETURN n, collect(distance) AS distances'

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .topksssp output

Here is an example of the output returned by .topksssp when run against the sample air-routes
dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier}
 --query-string "CALL neptune.algo.topksssp(['101'], {hopCount: 2, perHopLimits: [3,
 5]})
 YIELD source, node, distance
 RETURN source, node, distance limit 2" \
 --language open_cypher
 /tmp/out.txt

 cat /tmp/out.txt
 {
 "results": [
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,
 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",

SSSP algorithms 279

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "170",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.8860015869,
 "elev": 294,
 "longest": 8622,
 "city": "Naples",
 "type": "airport",
 "region": "IT-72",
 "desc": "Naples International Airport",
 "code": "NAP",
 "prscore": 0.001119577675126493,
 "degree": 222,
 "lon": 14.2908000946,
 "wccid": 2357352929951779,
 "country": "IT",
 "icao": "LIRN",
 "runways": 1
 }
 },
 "distance": 2.0
 },
 {
 "source": {
 "~id": "101",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 13.6810998916626,
 "elev": 5,
 "longest": 13123,

SSSP algorithms 280

Neptune Analytics Neptune Analytics User Guide

 "city": "Bangkok",
 "type": "airport",
 "region": "TH-10",
 "desc": "Suvarnabhumi Bangkok International Airport",
 "code": "BKK",
 "prscore": 0.002498496090993285,
 "degree": 308,
 "lon": 100.747001647949,
 "wccid": 2357352929951779,
 "country": "TH",
 "icao": "VTBS",
 "runways": 2
 }
 },
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "longest": 14511,
 "city": "New York",
 "type": "airport",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "code": "JFK",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "lon": -73.77890015,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KJFK",
 "runways": 4
 }
 },
 "distance": 2.0
 }
]
}

SSSP algorithms 281

Neptune Analytics Neptune Analytics User Guide

Egonet algorithms

This EgoNet algorithm finds the (filtered) EgoNet of a vertex to its hopCount-neighbors. An
EgoNet, also known as the egocentric network, is a subgraph of a social network that encapsulates
the connections of a single individual, known as the ego, and all the people they are socially
connected to, known as alters. EgoNet can be used for further analysis in social networks.

Neptune Analytics supports the following EgoNet algorithms:

• .egonet – The EgoNet algorithm finds the (filtered) EgoNet of a vertex to its hopCount-
neighbors. An EgoNet, also known as the egocentric network, is a subgraph of a social network
that encapsulates the connections of a single individual, known as the ego, and all the people
they are socially connected to, known as alters.

• .egonet.edgeList – This algorithm has a different output schema than egonet.

Egonet algorithms 282

Neptune Analytics Neptune Analytics User Guide

.egonet

This EgoNet algorithm finds the (filtered) EgoNet of a vertex to its hopCount-neighbors. An
EgoNet, also known as the egocentric network, is a subgraph of a social network that encapsulates
the connections of a single individual, known as the ego, and all the people they are socially
connected to, known as alters.

For each hop, the algorithm gets the topK (K is specified per hop by the user via
perHopMaxNeighbor) neighbors those have the highest/lowest (based on the costFunction)
edge weights, and these neighbors become the source vertices for the next hop. The algorithm
assumes the graph is an edge weighted graph.

.egonet syntax

CALL neptune.algo.egonet(
 [source/ego-node list (required)],
 {
 hopCount: fixed hops of traversal (required),
 perHopMaxNeighbor: [list of the max number of top neighor vertices at each hop
 (required)],
 perHopEdgeWeightProperty: [list of edge weight predicates at each hop (required)],
 edgeWeightType: numeric type of the specified edgeWeightProperty (required),
 edgeLabels: [list of edge labels for filtering (optional)],
 perHopVertexLabel: [list of node labels for filtering at each hop(optional)],
 perHopTraversalDirection: [list of traversal directions at each hop (optional,
 default: outbound)],
 costFunction: determines whether the edges having the maximum weights or the
 minimum weight will be included in the EgoNet (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD egoNode, nodeList, edgeList
RETURN egoNode, nodeList, edgeList

Inputs for the .egonet algorithm

• a source/ego node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

Egonet algorithms 283

Neptune Analytics Neptune Analytics User Guide

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

• a configuration object that contains:

• hopCount (required) – type: positive integer; valid values: 1, 2 or 3; other values will be
rejected. default: none.

Restricts the number of hops during traversal.

• perHopMaxNeighbor (required) – type: a list of integers; valid values: positive integers, or
-1 meaning unlimited; default: none.

Each integer represents the maximum number of candidate vertices to carry to the next hop. It
should have the same size as the value of hopCount.

• perHopEdgeWeightProperty (required) – type: a list of strings; default: none.

The edge weight predicate for traversal at each hop. If multiple properties exist on an edge
having the specified name, then one of them is selected at random for the weight value. It
should have the same size as the value of hopCount.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float", "double";
default: none.

The numeric data type of the values in the property specified by
perHopEdgeWeightProperty. If an edge contains a property specified by
perHopEdgeWeightProperty that has a numeric type different from what is specified in
edgeWeightType, the property value is typecast to the type specified by edgeWeightType.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• perHopVertexLabel (optional) – type: a list of vertex label strings; default: none.

A list of node labels for node filtering at each hop. At each hop, if a node label is provided,
vertices matching the label are the only vertices that are included, including vertices in the
input list. It should have the same size as the value of hopCount.

• perHopTraversalDirection (optional) – type: a list of strings; valid values:
"inbound","outbound", or "both"; default: outbound.

Egonet algorithms 284

Neptune Analytics Neptune Analytics User Guide

The direction of edge to follow at each hop. It should have the same size as the value of
hopCount.

• costFunction (optional) – type: string; valid values: "min", "max"; default: "max".

This determines whether the edges having the maximum weights or the minimum weight will
be included in the EgoNet adhering the perHopMaxNeigbor limits. A min value indicates that
the edge with minimum weights will be included in the EgoNet, whereas a max value indicates
that the edge with maximum weights will be included in the EgoNet.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the .egonet algorithm

The .egonet algorithm returns:

• egoNode – The ego vertex for the egonet.

• nodeList – A list of traversed vertices from the ego vertex.

• edgeList – A list of traversed edges from the ego vertex.

.egonet query examples

This ia a standalone query, where the source node list is explicitly provided in the query:

CALL neptune.algo.egonet(["101"], {
hopCount: 2,
perHopMaxNeighbor: [-1,-1],
edgeLabels: ["route"],
perHopEdgeWeightProperty: ["dist", "dist"],
edgeWeightType: "int",
perHopVertexLabel: ["airport", "airport"],
perHopTraversalDirection: ["outbound", "outbound"],
costFunction: "max",
concurrency: 1

Egonet algorithms 285

Neptune Analytics Neptune Analytics User Guide

})
YIELD egoNode, nodeList, edgeList
RETURN egoNode, nodeList, edgeList

This is a query integration example, where .egonet follows a MATCH clause and uses the output of
the MATCH clause as its source node list:

MATCH (n:airport {code: 'ANC'})
CALL neptune.algo.egonet(n, {
hopCount: 2,
perHopMaxNeighbor: [-1,-1],
edgeLabels: ["route"],
perHopEdgeWeightProperty: ["dist", "dist"],
edgeWeightType: "int",
perHopVertexLabel: ["airport", "airport"],
perHopTraversalDirection: ["outbound", "outbound"],
costFunction: "max",
concurrency: 1
})
YIELD nodeList, edgeList
RETURN n, nodeList, edgeList

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .egonet output

Here is an example of the output returned by .egonet when run against the sample air-routes
dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier}
 --query-string "CALL neptune.algo.egonet(["1"], \
 {perHopEdgeWeightProperty: ["dist"], \
 edgeWeightType: "int", \
 hopCount: 1, \

Egonet algorithms 286

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 perHopMaxNeighbor: [3], \
 perHopTraversalDirection: ["both"]}) \
 yield egoNode, edgeList, nodeList \
 return egoNode, edgeList, nodeList" \
 --language open_cypher
 /tmp/out.txt

 cat /tmp/out.txt
{
 "results": [{
 "egoNode": {
 "~id": "1",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-GA",
 "runways": 5,
 "country": "US",
 "city": "Atlanta",
 "type": "airport",
 "icao": "KATL",
 "lon": -84.4281005859375,
 "code": "ATL",
 "lat": 33.6366996765137,
 "longest": 12390,
 "elev": 1026,
 "desc": "Hartsfield - Jackson Atlanta International Airport"
 }
},
 "edgeList": [{
 "~id": "neptune_reserved_1_1152921770894950415",
 "~entityType": "relationship",
 "~start": "67",
 "~end": "1",
 "~type": "route",
 "~properties": {
 "dist": 7640
 }
 }, {
 "~id": "neptune_reserved_1_1152922020003053583",
 "~entityType": "relationship",
 "~start": "126",
 "~end": "1",
 "~type": "route",

Egonet algorithms 287

Neptune Analytics Neptune Analytics User Guide

 "~properties": {
 "dist": 8434
 }
 }, {
 "~id": "neptune_reserved_1_1152921521787699214",
 "~entityType": "relationship",
 "~start": "1",
 "~end": "58",
 "~type": "route",
 "~properties": {
 "dist": 7581
 }
 }],
 "nodeList": [{
 "~id": "126",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "ZA-GT",
 "runways": 2,
 "country": "ZA",
 "city": "Johannesburg",
 "type": "airport",
 "icao": "FAJS",
 "lon": 28.2460002899,
 "code": "JNB",
 "lat": -26.139200210599999,
 "longest": 14495,
 "elev": 5558,
 "desc": "Johannesburg, OR Tambo International Airport"
 }
 }, {
 "~id": "67",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "CN-31",
 "runways": 2,
 "country": "CN",
 "city": "Shanghai",
 "type": "airport",
 "icao": "ZSPD",
 "lon": 121.80500030517599,
 "code": "PVG",

Egonet algorithms 288

Neptune Analytics Neptune Analytics User Guide

 "lat": 31.1434001922607,
 "longest": 13123,
 "elev": 13,
 "desc": "Shanghai - Pudong International Airport"
 }
 }, {
 "~id": "58",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "AE-DU",
 "runways": 2,
 "country": "AE",
 "city": "Dubai",
 "type": "airport",
 "icao": "OMDB",
 "lon": 55.364398956300001,
 "code": "DXB",
 "lat": 25.2527999878,
 "longest": 13124,
 "elev": 62,
 "desc": "Dubai International Airport"
 }
 }, {
 "~id": "1",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-GA",
 "runways": 5,
 "country": "US",
 "city": "Atlanta",
 "type": "airport",
 "icao": "KATL",
 "lon": -84.4281005859375,
 "code": "ATL",
 "lat": 33.6366996765137,
 "longest": 12390,
 "elev": 1026,
 "desc": "Hartsfield - Jackson Atlanta International Airport"
 }
 }]
 }]

Egonet algorithms 289

Neptune Analytics Neptune Analytics User Guide

}

Egonet algorithms 290

Neptune Analytics Neptune Analytics User Guide

.egonet.edgeList

This EgoNet EdgeList algorithm is the same as the standard EgoNet algorithm, except that this
variant has a different output schema, which returns the EgoNet in an edge list form.

.egonet.edgeList syntax

CALL neptune.algo.egonet.edgeList(
 [source/ego-node list (required)],
 {
 hopCount: fixed hops of traversal (required),
 perHopMaxNeighbor: [list of the max number of top neighor vertices at each hop
 (required)],
 perHopEdgeWeightProperty: [list of edge weight predicates at each hop (required)],
 edgeWeightType: numeric type of the specified edgeWeightProperty (required),
 edgeLabels: [list of edge labels for filtering (optional)],
 perHopVertexLabel: [list of node labels for filtering at each hop(optional)],
 perHopTraversalDirection: [list of traversal directions at each hop (optional,
 default: outbound)],
 costFunction: determines whether the edges having the maximum weights or the
 minimum weight will be included in the EgoNet (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD egoNode, source, target, weight
RETURN egoNode, source, target, weight

Inputs for the .egonet.edgeList algorithm

• a source/ego node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting location(s) for the algorithm.

• Each starting node triggers its own execution of the algorithm.

• If the source-node list is empty then the query result is also empty.

• If the algorithm is called following a MATCH clause (this is known as query-algorithm
integration), the output of the MATCH clause is used as the source-node list for the algorithm.

• a configuration object that contains:

• hopCount (required) – type: positive integer; valid values: 1, 2 or 3; other values will be
rejected. default: none.

Egonet algorithms 291

Neptune Analytics Neptune Analytics User Guide

Restricts the number of hops during traversal.

• perHopMaxNeighbor (required) – type: a list of integers; valid values: positive integers, or
-1 meaning unlimited; default: none.

Each integer represents the maximum number of candidate vertices to carry to the next hop. It
should have the same size as the value of hopCount.

• perHopEdgeWeightProperty (required) – type: a list of strings; default: none.

The edge weight predicate for traversal at each hop. If multiple properties exist on an edge
having the specified name, then one of them is selected at random for the weight value. It
should have the same size as the value of hopCount.

• edgeWeightType (required) – type: string; valid values: "int", "long", "float", "double";
default: none.

The numeric data type of the values in the property specified by
perHopEdgeWeightProperty. If an edge contains a property specified by
perHopEdgeWeightProperty that has a numeric type different from what is specified in
edgeWeightType, the property value is typecast to the type specified by edgeWeightType.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• perHopVertexLabel (optional) – type: a list of vertex label strings; default: none.

A list of node labels for node filtering at each hop. At each hop, if a node label is provided,
vertices matching the label are the only vertices that are included, including vertices in the
input list. It should have the same size as the value of hopCount.

• perHopTraversalDirection (optional) – type: a list of strings; valid values:
"inbound","outbound", or "both"; default: outbound.

The direction of edge to follow at each hop. It should have the same size as the value of
hopCount.

• costFunction (optional) – type: string; valid values: "min", "max"; default: "max".

This determines whether the edges having the maximum weights or the minimum weight will
be included in the EgoNet adhering the perHopMaxNeigbor limits. A min value indicates that

Egonet algorithms 292

Neptune Analytics Neptune Analytics User Guide

the edge with minimum weights will be included in the EgoNet, whereas a max value indicates
that the edge with maximum weights will be included in the EgoNet.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the .egonet.edgeList algorithm

The .egonet.edgeList algorithm returns:

• egoNode – The ego vertex of the egonet.

• source – The source vertex of an edge in the weighted edge list.

• target – The source vertex of an edge in the weighted edge list.

• weight – The edge weight of the source-target edge in the weighted edge list.

.egonet.edgeList query examples

This ia a standalone query, where the source node list is explicitly provided in the query:

CALL neptune.algo.egonet.edgeList(["101"], {
hopCount: 2,
perHopMaxNeighbor: [-1,-1],
edgeLabels: ["route"],
perHopEdgeWeightProperty: ["dist", "dist"],
edgeWeightType: "int",
perHopVertexLabel: ["airport", "airport"],
perHopTraversalDirection: ["outbound", "outbound"],
costFunction: "max",
concurrency: 1
})
YIELD egoNode, source, target, weight
RETURN egoNode, source, target, weight

This is a query integration example, where .egonet.edgeList follows a MATCH clause and uses
the output of the MATCH clause as its source node list:

Egonet algorithms 293

Neptune Analytics Neptune Analytics User Guide

MATCH (n:airport {code: 'ANC'})
CALL neptune.algo.egonet.edgeList(n, {
hopCount: 2,
perHopMaxNeighbor: [-1,-1],
edgeLabels: ["route"],
perHopEdgeWeightProperty: ["dist", "dist"],
edgeWeightType: "int",
perHopVertexLabel: ["airport", "airport"],
perHopTraversalDirection: ["outbound", "outbound"],
costFunction: "max",
concurrency: 1
})
YIELD source, target, weight
RETURN n, source, target, weight

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .egonet.edgeList output

Here is an example of the output returned by .egonet.edgeList when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier}
 --query-string "CALL neptune.algo.egonet(["1"], \
 {perHopEdgeWeightProperty: ["dist", "dist"], \
 edgeWeightType: "int", \
 hopCount: 2, \
 perHopMaxNeighbor: [30, 30], \
 perHopTraversalDirection: ["both", "both"]}) \
 YIELD egoNode, source, target, weight \
 RETURN egoNode, source, target, weight limit 2" \
 --language open_cypher
 /tmp/out.txt

Egonet algorithms 294

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 cat /tmp/out.txt
{
 "results": [{
 "egoNode": {
 "~id": "1",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-GA",
 "runways": 5,
 "country": "US",
 "city": "Atlanta",
 "type": "airport",
 "icao": "KATL",
 "lon": -84.4281005859375,
 "code": "ATL",
 "lat": 33.6366996765137,
 "longest": 12390,
 "elev": 1026,
 "desc": "Hartsfield - Jackson Atlanta International Airport"
 }
 },
 "source": {
 "~id": "1",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-GA",
 "runways": 5,
 "country": "US",
 "city": "Atlanta",
 "type": "airport",
 "icao": "KATL",
 "lon": -84.4281005859375,
 "code": "ATL",
 "lat": 33.6366996765137,
 "longest": 12390,
 "elev": 1026,
 "desc": "Hartsfield - Jackson Atlanta International Airport"
 }
 },
 "target": {
 "~id": "27",
 "~entityType": "node",

Egonet algorithms 295

Neptune Analytics Neptune Analytics User Guide

 "~labels": ["airport"],
 "~properties": {
 "region": "US-CA",
 "runways": 3,
 "country": "US",
 "city": "Long Beach",
 "type": "airport",
 "icao": "KLGB",
 "lon": -118.15200040000001,
 "code": "LGB",
 "lat": 33.817699429999998,
 "longest": 10003,
 "elev": 60,
 "desc": "Long Beach Airport"
 }
 },
 "weight": 2460
 }, {
 "egoNode": {
 "~id": "1",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-GA",
 "runways": 5,
 "country": "US",
 "city": "Atlanta",
 "type": "airport",
 "icao": "KATL",
 "lon": -84.4281005859375,
 "code": "ATL",
 "lat": 33.6366996765137,
 "longest": 12390,
 "elev": 1026,
 "desc": "Hartsfield - Jackson Atlanta International Airport"
 }
 },
 "source": {
 "~id": "134",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "PE-LIM",
 "runways": 1,

Egonet algorithms 296

Neptune Analytics Neptune Analytics User Guide

 "country": "PE",
 "city": "Lima",
 "type": "airport",
 "icao": "SPIM",
 "lon": -77.1143035889,
 "code": "LIM",
 "lat": -12.021900176999999,
 "longest": 11506,
 "elev": 113,
 "desc": "Lima, Jorge Chavez International Airport"
 }
 },
 "target": {
 "~id": "1",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-GA",
 "runways": 5,
 "country": "US",
 "city": "Atlanta",
 "type": "airport",
 "icao": "KATL",
 "lon": -84.4281005859375,
 "code": "ATL",
 "lat": 33.6366996765137,
 "longest": 12390,
 "elev": 1026,
 "desc": "Hartsfield - Jackson Atlanta International Airport"
 }
 },
 "weight": 3189
 }]
}

Egonet algorithms 297

Neptune Analytics Neptune Analytics User Guide

Centrality algorithms in Neptune Analytics

Centrality algorithms utilize the topology of a network to determine the relative importance or
influence of a specific node within the graph. By measuring the relative importance of a node or
edge within a network, centrality values can indicate which elements in a graph play a critical role
in that network.

By identifying the most influential or important nodes within a network, centrality algorithms can
provide insights about key players or critical points of interaction. This is valuable in social network
analysis, where it helps pinpoint influential individuals, and in transportation networks, where it
aids in identifying crucial hubs for efficient routing and resource allocation.

Different types of centrality algorithms use different techniques to measure the importance of a
node. Understanding how an algorithm calculates centrality is important to understanding the
meaning of its outputs.

In addition to returning centrality data to the client, Neptune Analytics provides mutate variations
of the centrality algorithms which store the calculated centrality values as vertex properties in the
graph.

Neptune Analytics supports three centrality algorithms along with their mutate variants:

• degree – This measures a nodes's centrality by the number of edges connected to it, and can
therefore be used to find the most connected nodes in a network.

• degree.mutate – The degree centrality mutate algorithm measures the number of incident
edges of each vertex it traverses and writes that calculated degree value as a property of the
vertex.

• degreeDistribution – The Degree Distribution algorithm is a tool for analyzing and
visualizing the structural characteristics of a graph. It calculates the frequency distribution of
vertex degrees across the entire network and provides basic statistics of the distribution.

• pageRank – This is an iterative algorithm that measures a nodes's centrality by the number
and quality of incident edges and adjacent vertices. The centrality of a node connected to a few
important nodes may therefore be higher than that of a node connected to many less important
nodes. The output of this algorithm is a value that indicates the importance of a given node
relative to the other nodes in the graph.

• pageRank.mutate – This algorithm stores the calculated PageRank of a given node as a
property of the node.

Centrality algorithms 298

Neptune Analytics Neptune Analytics User Guide

• closenessCentrality – This algorithm computes the closeness centrality (CC) metric of
nodes in a graph. The closeness centrality metric of a vertex is a positive measure of how close it
is to all other vertices, or how central it is in the graph. Because it indicates how quickly all other
nodes in a network can be reached from a given node, it can be used in transportation networks
to identify key hub locations, and in disease-spread modeling to pinpoint central locations for
targeted intervention efforts.

• closenessCentrality.mutate – This algorithm computes the closeness centrality (CC)
metric of vertices in a graph and writes them as a property of each vertex.

Centrality algorithms 299

Neptune Analytics Neptune Analytics User Guide

Degree centrality algorithm

The .degree centrality algorithm counts the number of incident edges at each node that it
traverses. This measure of how connected the node is can in turn indicate the node's importance
and level of influence in the network.

The .degree algorithm is used in social networks to identify popular individuals with many
connections, in transportation networks to locate central hubs with numerous roads leading to and
from them, and in web analysis to find influential web pages with many incoming links.

The time complexity of .degree is O(|E|), where |E| is the number of edges in the graph. The
space complexity is O(|V|), where |V| is the number of vertices in the graph.

.degree syntax

CALL neptune.algo.degree(
 [node list (required)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabels: [a list of vertex labels for filtering (optional)],
 vertexLabel: [a node label for filtering (optional) [deprecated]],
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD node, degree
RETURN node, degree

Inputs for the .degree algorithm

• a node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes for which to return the edge count (degree). If an empty list is provided, the
query result is also empty.

If the algorithm is called following a MATCH clause (query integration), the result returned by the
MATCH clause is taken as the node list.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

.degree 300

Neptune Analytics Neptune Analytics User Guide

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabels (optional) – type: a list of vertex label strings; default: none.

Node labels for node filtering. To filter on one or more vertex labels, provide a list of node
labels. Vertices matching any label in the vertexLabels list are the only vertices that are
processed for degree computation. If no vertexLabels field is provided then all vertices are
processed for degree computation.

• vertexLabel (optional) – type: string; default: none.

[deprecated]

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.degree outputs

• node – A list of the requested nodes. If vertexLabels or vertexLabel is present, only the
requested nodes that match in vertexLabels or vertexLabel value are included.

• degree – A list of corresponding degree values for the nodes with respect to edges with a label
specified in edgeLabels.

If the input vertex list is empty, the output is empty.

Query examples for .degree

This is a standalone example, where the source node list is explicitly specified in the query:

CALL neptune.algo.degree(["101"], {edgeLabels: ["route"]})

.degree 301

Neptune Analytics Neptune Analytics User Guide

This is a more complicated standalone query submitted using the AWS CLI:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.algo.degree(
 ["101", "102", "103"],
 {
 edgeLabels: ["route"],
 vertexLabel: ["airport"],
 traversalDirection: "inbound",
 concurrency: 2
 }
)
 YIELD node, degree
 RETURN node, degree' \
 --language open_cypher \
 /tmp/out.txt

This is a query integration example with frontier injection, where .degree follows a MATCH clause
and finds the degree value for all vertices returned by MATCH(n:airport):

MATCH(n:airport)
CALL neptune.algo.degree(n, {edgeLabels: ["route"]})
YIELD degree
RETURN n, degree'

This is an example of multiple .degree invocations chained together, where the output of one
invocation serves as the input of another:

CALL neptune.algo.degree(
 ["108"],
 {
 edgeLabels: ["route"],
 vertexLabel: ["airport"]
 }
)
YIELD node
CALL neptune.algo.degree(
 node,
 {
 edgeLabels: ["route"],
 vertexLabel: ["airport"]

.degree 302

Neptune Analytics Neptune Analytics User Guide

 }
)
YIELD node AS node2 WITH id(node2) AS id
RETURN id

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .degree output

Here is an example of the output returned by .degree when run against the sample air-routes
dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'MATCH (n)
 CALL neptune.algo.degree(n)
 YIELD node, degree
 RETURN node, degree
 LIMIT 2' \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.94449997,
 "elev": 313,
 "longest": 11500,
 "city": "Washington D.C.",
 "type": "airport",

.degree 303

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "code": "IAD",
 "prscore": 0.002264724113047123,
 "lon": -77.45580292,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KIAD",
 "runways": 4
 }
 },
 "degree": 312
 },
 {
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "longest": 14511,
 "city": "New York",
 "type": "airport",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "code": "JFK",
 "prscore": 0.002885053399950266,
 "lon": -73.77890015,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KJFK",
 "runways": 4
 }
 },
 "degree": 403
 }
]
}

.degree 304

Neptune Analytics Neptune Analytics User Guide

Degree mutate centrality algorithm

The .degree.mutate centrality algorithm counts the number of incident edges of every node in
the graph. This measure of how connected the node is can in turn indicate the node's importance
and level of influence in the network. The .degree.mutate algorithm then stores each node's
calculated degree value as a property of the node.

The algorithm returns a single success flag (true or false), which indicates whether the writes
succeeded or failed.

.degree.mutate syntax

CALL neptune.algo.degree.mutate(
 {
 writeProperty: A name for the new node property where the degree values will be
 written,
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabels: " [a list of vertex labels for filtering (optional)]",
 vertexLabel: "a node label for filtering (optional) [deprecated]",
 traversalDirection: traversal direction (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD success
RETURN success

.degree.mutate inputs

a configuration object that contains:

• writeProperty (required) – type: string; default: none.

A name for the new node property that will contain the computed degree values.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

• vertexLabels (optional) – type: a list of vertex label strings; default: none.

.degree.mutate 305

Neptune Analytics Neptune Analytics User Guide

Node labels for node filtering. To filter on one or more vertex labels, provide a list of node labels.
Vertices matching any label in the vertexLabels list are the only vertices that are processed
for degree computation. If no vertexLabels field is provided then all vertices are processed for
degree computation.

• vertexLabel (optional) – type: string; default: none.

[deprecated] A node label for node filtering. Note that it is deprecated. If vertexLabels is
provided, vertexLabel is ignored.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Output of the .degree.mutate algorithm

The computed degree values are written to a new vertex property using the property name
specified by the writeProperty input parameter.

A single Boolean success value (true or false) is returned, which indicates whether or not the
writes succeeded.

.degree.mutate query examples

The example below is a standalone example, where the source vertex list is explicitly provided in
the query.

This query writes the degree values of all nodes in the graph to a new vertex property called
DEGREE:

CALL neptune.algo.degree.mutate({writeProperty: "DEGREE", edgeLabels: ["route]})

.degree.mutate 306

Neptune Analytics Neptune Analytics User Guide

After using the mutate algorithm, the newly written properties can then be accessed in subsequent
queries. For example, after the mutate algorithm call above, you could use the following query to
retrieve the .degree property of specific nodes:

MATCH (n) WHERE id(n) IN ["101", "102", "103"]
RETURN n.DEGREE'

Sample output from .degree.mutate

Here is an example of the output returned by .degree.mutate when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.degree.mutate({writeProperty: 'degree'}) YIELD
 success RETURN success" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 { "success": true }
]
}

.degree.mutate 307

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

.degreeDistribution centrality algorithm

The .degreeDistribution algorithm is a tool for analyzing and visualizing the structural
characteristics of a graph. It calculates the frequency distribution of vertex degrees across the
entire network and provides basic statistics of the distribution.

.degreeDistribution provides insight into the topology and connectivity patterns of the
network, such as identifying the hubs (i.e., super nodes or high-degree nodes) and distinguishing
different network types (e.g., tree vs. scale-free), which can help making informed decisions on
selecting appropriate algorithms for analysis.

The %degreeDistribution magic command in the notebook provides an interactive
visualization of the output, please see the notebook magics documentation for details.

.degreeDistribution syntax

CALL neptune.algo.degreeDistribution(
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabels: "a list of vertex labels for filtering (optional)",
 binWidth: a positive integer that specifies the size of each bin in the degree
 distribution (optional, default: 1),
 traversalDirection: the direction of edge used for degree computation (optional,
 default: "both",
 concurrency: number of threads to use (optional)
 }
)
YIELD output
RETURN output

Inputs for the .degreeDistribution algorithm

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabels (optional) – type: a list of vertex label strings; default: no vertex
filtering.

.degreeDistribution 308

https://docs.aws.eu//neptune/latest/userguide/notebooks-magics.html#notebooks-line-magics-degree-distribution

Neptune Analytics Neptune Analytics User Guide

To filter on one or more vertex labels, provide a list of the ones to filter on. If no vertexLabels
field is provided then all vertex labels are considered for degree computation.

• binWidth (optional) – type: integer; default: 1.

To specify the size of each bin in the degree distribution, provide an integer value.

• traversalDirection (optional) – type: string; default: "both".

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Sample .degreeDistribution output

Here is an example of the output returned by .degreeDistribution when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 \
 --region ${region}
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.degreeDistribution({binWidth: 50, vertexLabels:
 ['airport', 'country'], edgeLabels: ['route'], traversalDirection: 'inbound'}) YIELD
 output RETURN output" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [{
 "output": {
 "statistics": {
 "maxDeg": 307,
 "mean": 13.511229946524065,
 "minDeg": 0,
 "p50": 3,

.degreeDistribution 309

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "p75": 9,
 "p90": 36,
 "p95": 67,
 "p99": 173,
 "p999": 284
 },
 "distribution": [[0, 268], [50, 3204], [100, 162], [150, 54], [200, 29], [250,
 16], [300, 5], [350, 2]]
 }
 }]
}

Query examples for .degreeDistribution

This is a standalone example, where the in-degree distribution is computed for the graph with
specified vertex labels and edge label, and the mean degree is returned.

CALL neptune.algo.degreeDistribution({
 vertexLabels: ['airport', 'country'],
 edgeLabels: ['route'],
 traversalDirection: 'inbound',
})
YIELD output
WITH output.statistics.mean as meanDegree
RETURN meanDegree

.degreeDistribution 310

Neptune Analytics Neptune Analytics User Guide

PageRank centrality algorithm

PageRank is an algorithm originally developed by Larry Page and Sergey Brin, co-founders of
Google. It was originally developed to rank web pages in search engine results. The PageRank score
for a given node is calculated based on the number and quality of the edges pointing to that node,
as well as the importance of the nodes that are connected to it. The PageRank algorithm assigns a
higher score to nodes that are linked to other high-scoring nodes, and a lower score to nodes that
are linked to low-scoring nodes.

The output of PageRank can be visualized as a ranking metric for the importance of a node within
a given graph, with the most important nodes having the highest score, and the least important
node having the lowest score. PageRank is used in search engines to rank web pages based on their
importance and influence, in citation networks to identify highly cited scientific papers, and in
recommendation systems to suggest popular and relevant content to users.

The space complexity is O(|V|), where |V| is the number of vertices in the graph.

Personalized PageRank

Personalized PageRank is a variation of the original PageRank algorithm. It is generally used to
measure the importance of vertices in a graph. It tailors the ranking process to individual users or
specific topics. Compared to PageRank, the result of personalized pagerank is a more customized
ranking of web pages or nodes in a graph, reflecting individual interests or specific areas of focus.
This approach is particularly useful in recommendation systems, personalized search results, and
analyzing large-scale networks with diverse content for a specific focus.

Example scenario: Online retail platform

Imagine an online retail platform where each product is a node, and customer purchases (or views)
between products are edges.

Regular PageRank

• Objective: Rank products based on their general popularity across all customers.

• Result: Products that are frequently purchased or viewed by many customers will receive higher
PageRank scores. This helps identify the most popular products across the entire platform.

Personalized PageRank

• Objective: Rank products based on their relevance to a specific customer's shopping behavior.

.pageRank 311

Neptune Analytics Neptune Analytics User Guide

• Inputs:

• Source Nodes: A list of products that the customer has previously purchased or shown interest
in.

• Source Weights: Optional weights indicating the relative importance of each source product
(e.g., higher weight for recently purchased items).

• Result: Products that are not only popular but also closely related to the customer's specific
shopping behavior will receive higher scores. This helps the platform recommend new products
that are more likely to interest the customer.

Example scenario: Organizational network security

Imagine a network of computers within an organization where each computer is a node, and
communication paths (like data transfers or network connections) between computers are edges.

Regular PageRank

• Objective: Rank computers based on their general importance within the organizational network.

• Result: Computers that have a high number of connections to other computers will receive
higher PageRank scores. This helps identify critical nodes in the network that, if compromised,
could have a significant impact on the entire network.

Personalized PageRank

• Objective: Rank computers based on their relevance to a specific security concern or department
within the organization.

• Inputs:

• Source Nodes: A list of computers that are known to handle sensitive data or are critical to a
specific department (e.g., HR, Finance).

• Source Weights: Optional weights indicating the relative importance of each source computer
(e.g., higher weight for computers handling more sensitive data).

• Result: Computers that are not only well-connected but also closely related to the specific
security concern or department will receive higher scores. This helps the cybersecurity team
prioritize monitoring and protection efforts on the most critical nodes.

.pageRank 312

Neptune Analytics Neptune Analytics User Guide

Example scenario: Insurance policyholder network

Imagine a network of policyholders where each policyholder is a node, and the relationships (like
shared claims, referrals, or common risk factors) between policyholders are edges.

Regular PageRank

• Objective: Rank policyholders based on their general importance within the insurance network.

• Result: Policyholders who have a high number of connections to other policyholders (e.g.,
through shared claims or referrals) will receive higher PageRank scores. This helps identify
influential policyholders who may have a significant impact on the network.

Personalized PageRank

• Objective: Rank policyholders based on their relevance to a specific risk profile or insurance
product.

• Inputs:

• Source Nodes: A list of policyholders that fit a specific risk profile or are relevant to a particular
insurance product (e.g., high-risk drivers for auto insurance).

• Source Weights: Optional weights indicating the relative importance of each source
policyholder (e.g., higher weight for policyholders with more recent claims).

• Result: Policyholders who are not only well-connected but also closely related to the specific risk
profile or insurance product will receive higher scores. This helps the insurance company tailor its
risk assessment and underwriting processes more effectively.

The additional inputs to the algorithm are a list of vertices to be personalized on (`sourceNodes`)
and optionally the weight distribution among those vertices (`sourceWeights`). If given, the
weights are normalized before pagerank computation.

Note

Neptune Analytics allows up 8192 vertices in the personalization vector, sourceNodes.

.pageRank syntax

CALL neptune.algo.pageRank(

.pageRank 313

Neptune Analytics Neptune Analytics User Guide

 [node list (required)],
 {
 numOfIterations: a small positive integer like 20 (optional),
 dampingFactor: a positive float less than or equal to 1.0, like 0.85 (optional)
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: number of threads to use (optional),
 traversalDirection: the direction of edge to follow (optional),
 tolerance: a floating point number between 0.0 and 1.0 (inclusive)(optional),
 edgeWeightProperty: the weight property to consider for weighted pageRank
 computation (optional),
 edgeWeightType: The type of values associated with the edgeWeightProperty argument
 (optional),
 sourceNodes: [A list of node IDs to personalize on (optional)],
 sourceWeights: [A list of non-negative weights for the sourceNodes (optional)]
 }
)
YIELD node, rank
RETURN node, rank

.pageRank inputs

• a node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes for which to return the page rank values. If an empty list is provided, the
query result will also be empty.

If the algorithm is called following a MATCH clause (query integration), the result returned by the
MATCH clause is taken as the node list.

• a configuration object that contains:

• numOfIterations (optional) – type: a positive integer greater than zero; default: 20.

The number of iterations to perform to reach convergence. A number between 10 and 20 is
recommended.

• dampingFactor (optional) – type: a positive floating-point number less than or equal to 1.0;
 default: 0.85.

A positive floating-point damping factor between 0.0 and 1.0 that expresses the probability, at
any step, that the node will continue.

.pageRank 314

Neptune Analytics Neptune Analytics User Guide

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A vertex label for vertex filtering. If a vertex label is provided, vertices matching the label are
the only vertices that are included, including vertices in the input list.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "outbound" or "inbound".

• tolerance (optional) – a floating point number between 0.0 and 1.0 (inclusive). When the
average difference in the pageRank values of two iterations drops below tolerance, the
algorithm stops, regardless of whether the numOfIterations is reached. Default value is
0.000001 (1e-6).

• Note that this tolerance computation is equivalent to L1 error or sum of Mean Absolute
Difference (MAE)s.

• The stopping condition is l1_error_sum < tolerance * numNodes, equivalent to
l1_error_sum/numNodes < tolerance.

• edgeWeightProperty (optional) – type: string default: none.

The weight property to consider for weighted pageRank computation.

• edgeWeightType (optional) - required if edgeWeightProperty is present – type: string;
default: none.

The type of values associated with the edgeWeightProperty argument, specified as a string.
valid values: "int", "long", "float", "double".

• If the edgeWeightProperty is not given, the algorithm runs unweighted no matter if the
edgeWeightType is given or not..pageRank 315

Neptune Analytics Neptune Analytics User Guide

• Note that if multiple properties exist on the edge with the name specified by
edgeWeightProperty, one of those property values will be sampled at random.

• sourceNodes (optional) - required if running personalized PageReank – type: list; default:
none.

A personalization vertex list ["101", ...]

• Can include 1 to 8192 vertices.

• If a vertexLabel is provided, nodes that do not have the given vertexLabel are ignored.

• sourceWeights (optional) – type: list; default: none.

A personalization weight list. The weight distribution among the personalized vertices.

• If not provided, the default behavior is uniform distribution among the vertices given in
sourceNodes.

• There must be at least one non-zero weight in the list.

• The length of the sourceWeights list must match the sourceNodes list.

• The mapping of personalization vertex and weight lists are one to one. The first value in the
weight list corresponds to the weight of first vertex in the vertex list, second value is for the
second vertex, etc.

• The weights can be one of int, long, float, or double types.

Outputs for the .pageRank algorithm

• node – A key column of the input nodes.

• rank – A key column of the corresponding page-rank scores for those nodes.

If the input nodes list is empty, the output is empty.

Query examples for .pageRank

This is a standalone example, where the input vertex list is explicitly specified in the query.

CALL neptune.algo.pageRank(
 ["101"],
 {
 numOfIterations: 1,
 dampingFactor: 0.85,

.pageRank 316

Neptune Analytics Neptune Analytics User Guide

 edgeLabels: ["route"]
 }
)

This is a query integration examples, where .pageRank follows a MATCH clause and uses frontier
injection to take the output of the MATCH clause as its list of input nodes:

MATCH (n)
CALL neptune.algo.pageRank(
 n,
 {
 dampingFactor: 0.85,
 numOfIterations: 1,
 edgeLabels: ["route"]
 }
)
YIELD rank
RETURN n, rank

This query is an example of constraining the results of .pageRank based on the PageRank values,
and returning them in ascending order:

MATCH (n)
CALL neptune.algo.pageRank(
 n,
 {
 numOfIterations: 10,
 dampingFactor: 0.85,
 tolerance: 0.0001,
 vertexLabel: "airport",
 edgeLabels: ["route"]
 }
)
YIELD rank WHERE rank > 0.004
RETURN n, rank ORDER BY rank

Query examples for Personalized .pageRank

Personalized PageRank applies the same integration and constraints. Here are some examples that
pass personalization-specific configurations.

.pageRank 317

Neptune Analytics Neptune Analytics User Guide

This is a query integration example, where .pageRank follows a MATCH clause and uses frontier
injection to take the output of the MATCH clause as its input list. We use nodes “101” and “102” as
personalization nodes with "1" and "1.5" weights as weights respectively:

MATCH (n)
CALL neptune.algo.pageRank(n, {
 tolerance: 0.001,
 edgeLabels:["route”],
 sourceNodes:["101", "102"],
 sourceWeights:[1, 1.5]
})
YIELD node, rank
RETURN node, rank

This is an example of where only source nodes is provided. The weights of ”101” and ”102” will be
"1" and "1" (same, uniform) respectively.

MATCH (n)
CALL neptune.algo.pageRank(n, {
 tolerance: 0.001,
 edgeLabels:["route”],
 sourceNodes:["101", "102"],
})
YIELD node, rank
RETURN node, rank

This is an example where the weights are given as integral numbers. Note that this would yield the
same result as the first example in which the weights were ("1" and "1.5"):

MATCH(n)
CALL neptune.algo.pageRank(n, {
 tolerance: 0.001,
 edgeLabels:["route”],
 sourceNodes:["101", "102"],
 sourceWeights:[2, 3]
})
YIELD node, rank
RETURN node, rank

.pageRank 318

Neptune Analytics Neptune Analytics User Guide

Sample .pageRank output

Here is an example of the output returned by .pageRank when run against the sample air-routes
dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.pageRank(n) YIELD node, rank RETURN node, rank
 LIMIT" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "2709",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 65.4809036254883,
 "elev": 49,
 "longest": 8711,
 "city": "Nadym",
 "type": "airport",
 "region": "RU-YAN",
 "desc": "Nadym Airport",
 "code": "NYM",
 "lon": 72.6988983154297,
 "country": "RU",
 "icao": "USMM",
 "runways": 1
 }
 },
 "rank": 0.00016044313088059425
 },
 {
 "node": {
 "~id": "3747",
 "~entityType": "node",
 "~labels": ["continent"],
 "~properties": {

.pageRank 319

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "code": "AN",
 "type": "continent",
 "desc": "Antarctica"
 }
 },
 "rank": 0.0000404242
 }
]
}

.pageRank 320

Neptune Analytics Neptune Analytics User Guide

PageRank mutate centrality algorithm

The ranking metric computed by .pageRank.mutate can indicate the importance of a node
within a given graph, with the most important nodes having the highest score, and the least
important node having the lowest score. PageRank is used in search engines to rank web pages
based on their importance and influence, in citation networks to identify highly cited scientific
papers, and in recommendation systems to suggest popular and relevant content to users.

The mutate variant of the PageRank algorithm performs the PageRank calculation over the entire
graph unless the configuration parameters establish a filter, and each traversed node's calculated
PageRank value is stored on that node as a property.

pageRank.mutate inputs

Inputs for the pageRank.mutate algorithm are passed in a configuration object parameter that
contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

• writeProperty (required) – type: string; default: none.

A name for the new vertex property that will contain the computed PageRank values. If a
property of that name already exists, it is overwritten.

• vertexLabel (optional) – type: string; default: none.

A vertex label for vertex filtering. If a vertex label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "outbound" or "inbound".

• numOfIterations (optional) – type: a positive integer greater than zero; default: 20.

The number of iterations to perform to reach convergence. A number between 10 and 20 is
recommended.

• dampingFactor (optional) – type: a positive floating-point number less than or equal to 1.0;
default: 0.85.

.pageRank.mutate 321

Neptune Analytics Neptune Analytics User Guide

A positive floating-point damping factor between 0.0 and 1.0 that expresses the probability, at
any step, that the node will continue.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

• tolerance (optional) – a floating point number between 0.0 and 1.0 (inclusive). When the
average difference in the pageRank values of two iterations drops below tolerance, the
algorithm stops, regardless of whether the numOfIterations is reached. Default value is
0.000001 (1e-6).

• Note that this tolerance computation is equivalent to L1 error or sum of Mean Absolute
Difference (MAE)s.

• The stopping condition is l1_error_sum < tolerance * numNodes, equivalent to
l1_error_sum/numNodes < tolerance.

• edgeWeightProperty (optional) – type: string default: none.

The weight property to consider for weighted pageRank computation.

• edgeWeightType (optional) - required if edgeWeightProperty is present – type: string;
default: none.

The type of values associated with the edgeWeightProperty argument, specified as a string. valid
values: "int", "long", "float", "double".

• If the edgeWeightProperty is not given, the algorithm runs unweighted no matter if the
edgeWeightType is given or not.

• Note that if multiple properties exist on the edge with the name specified by
edgeWeightProperty, one of those property values will be sampled at random.

• sourceNodes (optional) - required if running personalized PageReank – type: list; default:
none.

A personalization vertex list ["101", ...]

• Can include 1 to 8192 vertices.

• If a vertexLabel is provided, nodes that do not have the given vertexLabel are ignored.

.pageRank.mutate 322

Neptune Analytics Neptune Analytics User Guide

• sourceWeights (optional) – type: list; default: none.

A personalization weight list. The weight distribution among the personalized vertices.

• If not provided, the default behavior is uniform distribution among the vertices given in
sourceNodes.

• There must be at least one non-zero weight in the list.

• The length of the sourceWeights list must match the sourceNodes list.

• The mapping of personalization vertex and weight lists are one to one. The first value in the
weight list corresponds to the weight of first vertex in the vertex list, second value is for the
second vertex, etc.

• The weights can be one of int, long, float, or double types.

Outputs for the pageRank.mutate algorithm

The computed PageRank values are written to a new vertex property on each node using the
property name specified by the writeProperty input parameter.

A single Boolean success value (true or false) is returned, which indicates whether or not the
writes succeeded.

Query example for pageRank.mutate

The example below computes the PageRank score of every vertex in the graph, and writes that
score to a new vertex property named P_RANK:

CALL neptune.algo.pageRank.mutate(
 {
 writeProperty:"P_RANK",
 dampingFactor: 0.85,
 numOfIterations: 1,
 edgeLabels: ["route"]
 }
)

This query illustrates how you could then access the PageRank values in the P_RANK vertex
property. It counts how many nodes have a P_RANK property value greater than the "SEA" node's
P_RANK property value:

MATCH (n) WHERE n.code = "SEA" WITH n.P_RANK AS lowerBound

.pageRank.mutate 323

Neptune Analytics Neptune Analytics User Guide

MATCH (m) WHERE m.P_RANK > lowerBound
RETURN count(m)

Query examples for Personalized pageRank.mutate

Personalized PagerRank applies the same integration and constraints. Here are some examples that
pass personalization-specific configurations.

The example below computes the Personalized PageRank score of every vertex in the graph, and
writes that score to a new vertex property named "PRS_RANK":

CALL neptune.algo.pageRank.mutate(
 {
 writeProperty:"PRS_RANK",
 sourceNodes:[”101”, “103”, “105”],
 sourceWeights:[5, 3, 2],
 dampingFactor: 0.85,
 numOfIterations: 1,
 edgeLabels: ["route"]
 }
)

Sample .pageRank.mutate output

Here is an example of the output returned by .pageRank.mutate when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.pageRank.mutate({writeProperty: 'prscore'}) YIELD
 success RETURN success" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 { "success": true }
]
}

.pageRank.mutate 324

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

Closeness centrality algorithm

The closeness centrality algorithm computes a Closeness Centrality (CC) metric for specified nodes
in a graph. The CC metric of a node can be used as a positive measure of how close it is to all other
nodes or how central it is in the graph.

The CC metric can be interpreted to show how quickly all other nodes in a network can be reached
from a given node, and how important it is as a central hub for rapid information flow. It can be
used in transportation networks to identify key hub locations, and in disease-spread modeling to
pinpoint central points for targeted intervention efforts.

The closeness centrality (CC) score of a node is calculated based on the sum of its distances to all
other nodes. The CC score itself is the inverse of that number; in other words, one divided by that
sum. In practice, the calculation is commonly normalized to use the average length of the shortest
paths rather than the actual sum of their lengths.

.closenessCentrality syntax

CALL neptune.algo.closenessCentrality(
 [node list (required)],
 {
 numSources: the number of BFS sources to use for computing the CC (required)
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional),
 normalize: Boolean, set to false to prevent normalization (optional)
 concurrency: number of threads to use (optional)
 }
)
YIELD node, score
RETURN node, score

Inputs for the .closenessCentrality algorithm

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting locations for the algorithm. Each node in the list
triggers an execution of the algorithm. If an empty list is provided, the query result is also empty.

If the algorithm is called following a MATCH clause (query algo integration), the source query list
is the result returned by the MATCH clause.

.closenessCentrality 325

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• numSources (required) – type: unsigned long; default: none.

The number of BFS sources for computing approximate Closeness Centrality (CC). To compute
exact closeness centrality, set numSources to a number larger than number of nodes, such as
maxInt.

Because of the computational complexity of the algorithm for large graphs, it's generally best
to specify a number in the order of thousands to ten thousands, such as 8,192.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• normalize (optional) – type: Boolean; default: true.

You can use this field to turn off normalization, which is on by default. Without normalization,
only centrality scores of nodes within the same component can be meaningfully compared.
Normalized scores can be compared across different connected components.

The CC is normalizd using the Wasserman-Faust normalization formula for unconnected
graphs. If there are n vertices reachable from vertex u (including vertex u itself), the
Wasserman-Faust normalized closeness centrality score of vertex u is calculated as follows:

(n-1)^2 / (|V| - 1) * sum(distance from u to these n vertices)

Without normalization, the centrality score of vertex u is calculated as:

(|V| - 1) / sum(distance from u to all other vertices in the graph)

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are included, including nodes in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

• concurrency (optional) – type: 0 or 1; default: 0..closenessCentrality 326

Neptune Analytics Neptune Analytics User Guide

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the .closenessCentrality algorithm

• node – A key column of the input nodes.

• score – A key column of the corresponding closeness-centrality (CC) scores for those nodes.

If the input node list is empty, the output is empty.

.closenessCentrality query examples

This is a standalone example, where the source node list is explicitly provided in the query:

CALL neptune.algo.closenessCentrality(
 ["101"],
 {
 numSources: 10,
 edgeLabels: ["route"],
 vertexLabel: "airport",
 traversalDirection: "outbound",
 normalize: true,
 concurrency: 1
 }
)
YIELD node, score
RETURN node, score

This is a query integration example, where .closenessCentrality.mutate follows a MATCH
clause and uses the output of the MATCH clause as its list of source nodes:

Match (n)
CALL neptune.algo.closenessCentrality(
 n,
 {
 numSources: 10,

.closenessCentrality 327

Neptune Analytics Neptune Analytics User Guide

 edgeLabels: ["route"],
 vertexLabel: "airport",
 traversalDirection: "outbound",
 normalize: true,
 concurrency: 1
 }
)
YIELD score
RETURN n, score

This is a query integration examples that returns the nodes with the 10 highest CC scores:

CALL neptune.algo.closenessCentrality(
 n,
 {
 edgeLabels: ["route"],
 numSources: 10
 }
)
YIELD score
RETURN n, score
ORDER BY score DESC
LIMIT 10"

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .closenessCentrality output

Here is an example of the output returned by .closenessCentrality when run against the sample
air-routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.closenessCentrality(n, {numSources: 10}) YIELD
 node, score RETURN node, score limit 2" \

.closenessCentrality 328

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.94449997,
 "elev": 313,
 "longest": 11500,
 "city": "Washington D.C.",
 "type": "airport",
 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "code": "IAD",
 "prscore": 0.002264724113047123,
 "degree": 312,
 "lon": -77.45580292,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KIAD",
 "runways": 4
 }
 },
 "score": 0.20877772569656373
 },
 {
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "longest": 14511,
 "city": "New York",
 "type": "airport",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",

.closenessCentrality 329

Neptune Analytics Neptune Analytics User Guide

 "code": "JFK",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "lon": -73.77890015,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KJFK",
 "runways": 4
 }
 },
 "score": 0.2199712097644806
 }
]
}

.closenessCentrality 330

Neptune Analytics Neptune Analytics User Guide

Closeness centrality mutatealgorithm

The closeness centrality mutate algorithm computes a Closeness Centrality (CC) metric for
specified nodes in a graph. The CC metric of a node can be used as a positive measure of how close
it is to all other nodes or how central it is in the graph.

The CC metric can be interpreted to show how quickly all other nodes in a network can be reached
from a given node, and how important it is as a central hub for rapid information flow. It can be
used in transportation networks to identify key hub locations, and in disease-spread modeling to
pinpoint central points for targeted intervention efforts.

The closeness centrality (CC) score of a node is calculated based on the sum of its distances to all
other vertices. The CC score itself is the inverse of that number; in other words, one divided by that
sum. In practice, the calculation is commonly normalized to use the average length of the shortest
paths rather than the actual sum of their lengths.

.closenessCentrality.mutate syntax

CALL neptune.algo.closenessCentrality.mutate(
 [node list (required)],
 {
 numSources: the number of BFS sources to use for computing the CC (required)
 writeProperty: name of the node property to write the CC score to (required)
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: "a node label for filtering (optional)",
 traversalDirection: traversal direction (optional),
 normalize: Boolean, set to false to prevent normalization (optional)
 concurrency: number of threads to use (optional)
 }
)
YIELD success
RETURN success

.closenessCentrality.mutate inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting locations for the algorithm. Each node in the list
triggers an execution of the algorithm. If an empty list is provided, the query result is also empty.

.closenessCentrality.mutate 331

Neptune Analytics Neptune Analytics User Guide

If the algorithm is called following a MATCH clause (query algo integration), the source node list
is the result returned by the MATCH clause.

• a configuration object that contains:

• numSources (required) – type: uint64_t; default: none.

The number of BFS sources for computing approximate Closeness Centrality (CC). To compute
exact closeness centrality, set numSources to a number larger than number of vertices, such
as maxInt.

Because of the computational complexity of the algorithm for large graphs, it's generally best
to specify a number in the order of thousands to ten thousands, such as 8,192.

• writeProperty (required) – type: string; default: none.

A name for the new node property that will contain the computed CC score of each node.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• normalize (optional) – type: Boolean; default: true.

You can use this field to turn off normalization, which is on by default. Without normalization,
only centrality scores of nodes within the same component can be meaningfully compared.
Normalized scores can be compared across different connected components.

The CC is normalizd using the Wasserman-Faust normalization formula for unconnected
graphs. If there are n vertices reachable from vertex u (including vertex u itself), the
Wasserman-Faust normalized closeness centrality score of vertex u is calculated as follows:

(n-1)^2 / (|V| - 1) * sum(distance from u to these n vertices)

Without normalization, the centrality score of vertex u is calculated as:

(|V| - 1) / sum(distance from u to all other vertices in the graph)

• vertexLabel (optional) – type: string; default: none.

.closenessCentrality.mutate 332

Neptune Analytics Neptune Analytics User Guide

A node label for node filtering. If a node label is provided, vertices matching the label are the
only vertices that are included, including vertices in the input list.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.closenessCentrality.mutate outputs

The closeness centrality score of each source node in the input list is written as a new node
property using the property name specified in writeProperty.

If the algorithm is invoked as a standalone query, there is no other output.

If the algorithm is invoked following a MATCH clause that provides its source node list (query
integration), the algorithm outputs a key column of the source vertices from the MATCH clause
and a value column of Booleans (true or false) that indicate whether the CC value was successfully
written to the node in question.

Query examples for .closenessCentrality.mutate

This example computes closeness centrality scores and writes them as a new node property called
ccScore:

CALL neptune.algo.closenessCentrality.mutate(
 {
 numSources: 10,
 writeProperty: "ccScore",
 edgeLabels: ["route"],
 vertexLabel: "airport",
 traversalDirection: "outbound",
 normalize: true,
 concurrency: 1

.closenessCentrality.mutate 333

Neptune Analytics Neptune Analytics User Guide

 }
)

Then you can query the ccScore property in a subsequent query:

MATCH (n) RETURN id(n), n.ccScore limit 5

Sample .closenessCentrality.mutate output

Here is an example of the output returned by .closenessCentrality.mutate when run against
the sample air-routes dataset [nodes], and sample air-routes dataset [edges], when using the
following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.closenessCentrality.mutate(
 {
 writeProperty: 'ccscore',
 numSources: 10
 }
)
 YIELD success
 RETURN success"
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "success": true
 }
]
}

.closenessCentrality.mutate 334

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

Similarity algorithms in Neptune Analytics

Graph similarity algorithms allow you to compare and analyze the similarities and dissimilarities
between different graph structures, which can provide insight into relationships, patterns, and
commonalities across diverse datasets. This is invaluable in various fields, such as biology, for
comparing molecular structures, such as social networks, for identifying similar communities, and
such as recommendation systems, for suggesting similar items based on user preferences.

Neptune Analytics supports the following similarity algorithms:

• neighbors.common – This algorithm counts the number of common neighbors of two input
vertices, which is the intersection of the neighborhoods of those vertices.

By counting how many neighboring nodes are shared by two nodes, it provides a measure of
their potential interaction or similarity within the network. It's used in social network analysis
to identify individuals with mutual connections, in citation networks to find influential papers
referenced by multiple sources, and in transportation networks to locate critical hubs with many
direct connections to other nodes.

• neighbors.total – This algorithm counts the number of total unique neighbors among two
input vertices, which is the union of the neighborhoods of those vertices.

• jaccardSimilarity – This algorithm measures the similarity between two sets by dividing
the size of their intersection by the size of their union.

By measuring the proportion of shared neighbors relative to the total number of unique
neighbors, it provides a metric for understanding the degree of overlap or commonality between
different parts of a network. Jaccard similarity is applied in recommendation systems to suggest
products or content to users based on their shared preferences and in biology to compare
genetic sequences for identifying similarities in DNA fragments.

• overlapSimilarity – This algorithm measures the overlap between the neighbors of two
vertices.

It quantifies the similarity between nodes by calculating the ratio of common neighbors they
share to the total number of neighbors they collectively have, providing a measure of their
closeness or similarity within the network. Overlap similarity is applied in social network analysis
to identify communities of individuals with shared interests or interactions, and in biological
networks to detect common functionalities among proteins in molecular pathways.

Similarity algorithms 335

Neptune Analytics Neptune Analytics User Guide

Common neighbors algorithm

Common neighbors is an algorithm that counts the number of common neighbors of two input
nodes, which is the intersection of their neighborhoods. This provides a measure of their potential
interaction or similarity within the network. The common neighbors algorithm is used in social
network analysis to identify individuals with mutual connections, in citation networks to find
influential papers referenced by multiple sources, and in transportation networks to locate critical
hubs with many direct connections to other nodes.

.neighbors.common syntax

CALL neptune.algo.neighbors.common(
 [first node(s)],
 [second node(s)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional)
 }
)
YIELD common
RETURN firstNodes, secondNodes, common

.neighbors.common inputs

• first node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes of which to find the common neighbors with the corresponding second
node(s).

• second node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes of which to find the common neighbors with the corresponding first node(s).

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

.neighbors.common 336

Neptune Analytics Neptune Analytics User Guide

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are considered neighbors. This does not filter the nodes in the first or second
node lists.

• traversalDirection (optional) – type: string; default: outbound.

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

.neighbors.common outputs

common: A row for each node in the first node list and corresponding node in the second node list,
and the number of neighboring nodes they have in common.

If either input node list is empty, the output is empty.

.neighbors.common query examples

This example specifies only two nodes:

MATCH (sydairport:airport {code: 'SYD'})
MATCH (jfkairport:airport {code: 'JFK'})
CALL neptune.algo.neighbors.common(sydairport, jfkairport, { edgeLabels: ['route'] })
YIELD common
RETURN sydairport, jfkairport, common

This example specifies multiple nodes. It returns a row for each combination of a US airport and a
UK airport, and the number of destinations we could reach from both of those two airports:

MATCH (usairports:airport {country: 'US'})
MATCH (ukairports:airport {country: 'UK'})
CALL neptune.algo.neighbors.common(usairports, ukairports, {edgeLabels: ['route']})
YIELD common
RETURN usairports, ukairports, common

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which

.neighbors.common 337

Neptune Analytics Neptune Analytics User Guide

can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .neighbors.common output

Here is an example of the output returned by .neighbors.common when run against the sample
air-routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (sydairport:airport {code: 'SYD'})
 MATCH (jfkairport:airport {code: 'JFK'})
 CALL neptune.algo.neighbors.common(sydairport, jfkairport,
 {edgeLabels: ['route']})
 YIELD common
 RETURN sydairport, jfkairport, common" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "sydairport": {
 "~id": "55",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": -33.9460983276367,
 "elev": 21,
 "type": "airport",
 "code": "SYD",
 "lon": 151.177001953125,
 "runways": 3,
 "longest": 12999,
 "communityId": 2357352929951971,
 "city": "Sydney",
 "region": "AU-NSW",
 "desc": "Sydney Kingsford Smith",
 "prscore": 0.0028037719894200565,
 "degree": 206,
 "wccid": 2357352929951779,

.neighbors.common 338

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "ccscore": 0.19631840288639069,
 "country": "AU",
 "icao": "YSSY"
 }
 },
 "jfkairport": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "type": "airport",
 "code": "JFK",
 "lon": -73.77890015,
 "runways": 4,
 "longest": 14511,
 "communityId": 2357352929951971,
 "city": "New York",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "wccid": 2357352929951779,
 "ccscore": 0.2199712097644806,
 "country": "US",
 "icao": "KJFK"
 }
 },
 "common": 24
 }
]
}

.neighbors.common 339

Neptune Analytics Neptune Analytics User Guide

Total neighbors algorithm

Total neighbors is an algoithm that counts the total number of unique neighbors of two input
vertices, which is the union of the neighborhoods of those vertices.

.neighbors.total syntax

CALL neptune.algo.neighbors.total(
 [first node(s)],
 [second node(s)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional)
 }
)
YIELD total
RETURN firstNodes, secondNodes, total

Inputs for the .neighbors.total algorithm

• first node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes of which to find the common neighbors with the corresponding second
nodes.

• second node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes of which to find the common neighbors with the corresponding first nodes.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are considered neighbors. This does not filter the nodes in the first or second
node lists.

.neighbors.total 340

Neptune Analytics Neptune Analytics User Guide

• traversalDirection (optional) – type: string; default: outbound.

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

.neighbors.total outputs

total: A row for each node in the first node list and corresponding node in the second node list, and
the total number of neighboring nodes they have.

If either input node list is empty, the output is empty.

.neighbors.total query examples

This example returns a row for each combination of a US airport and a UK airport, and the total
number of destinations we could reach if we could fly out of either of the two airports.

MATCH (usairports:airport {country: 'US'})
MATCH (ukairports:airport {country: 'UK'})
CALL neptune.algo.neighbors.total(usairports, ukairports, {edgeLabels: ['route']})
YIELD total
RETURN usairports, ukairports, total"

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .neighbors.total output

Here is an example of the output returned by .neighbors.total when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (sydairport:airport {code: 'SYD'})
 MATCH (jfkairport:airport {code: 'JFK'})

.neighbors.total 341

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 CALL neptune.algo.neighbors.total(sydairport, jfkairport,
 {edgeLabels: ['route']})
 YIELD total
 RETURN sydairport, jfkairport, total"
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "sydairport": {
 "~id": "55",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": -33.9460983276367,
 "elev": 21,
 "type": "airport",
 "code": "SYD",
 "lon": 151.177001953125,
 "runways": 3,
 "longest": 12999,
 "communityId": 2357352929951971,
 "city": "Sydney",
 "region": "AU-NSW",
 "desc": "Sydney Kingsford Smith",
 "prscore": 0.0028037719894200565,
 "degree": 206,
 "wccid": 2357352929951779,
 "ccscore": 0.19631840288639069,
 "country": "AU",
 "icao": "YSSY"
 }
 },
 "jfkairport": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "type": "airport",
 "code": "JFK",

.neighbors.total 342

Neptune Analytics Neptune Analytics User Guide

 "lon": -73.77890015,
 "runways": 4,
 "longest": 14511,
 "communityId": 2357352929951971,
 "city": "New York",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "wccid": 2357352929951779,
 "ccscore": 0.2199712097644806,
 "country": "US",
 "icao": "KJFK"
 }
 },
 "total": 279
 }
]
}

.neighbors.total 343

Neptune Analytics Neptune Analytics User Guide

Jaccard similarity algorithm

The Jaccard similarity algorithm measures the similarity between two sets. It is calculated by
dividing the size of the intersection of the two sets by the size of their union.

By measuring the proportion of shared neighbors relative to the total number of unique neighbors,
this algorithm provides a metric for the degree of overlap or commonality between different parts
of a network. It can be useful in recommendation systems to suggest products or content to users
based on their shared preferences and in biology to compare genetic sequences for identifying
similarities in DNA fragments.

.jaccardSimilarity syntax

CALL neptune.algo.jaccardSimilarity(
 [first node(s)],
 [second node(s)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional)
 }
)
YIELD score
RETURN firstNodes, secondNodes, score

.jaccardSimilarity inputs

• first node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes for which to find the Jaccard similarity score with respect to the
corresponding second node(s).

• second node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes for which to find the Jaccard similarity score with respect to the
corresponding first node(s).

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

.jaccardSimilarity 344

Neptune Analytics Neptune Analytics User Guide

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are considered neighbors. This does not filter the nodes in the first or second
node lists.

• traversalDirection (optional) – type: string; default: outbound.

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

Outputs for the .jaccardSimilarity algorithm

score: A row for each node in the first node list and corresponding node in the second node list,
and the Jaccard similarity score for the two.

If either input node list is empty, the output is empty.

.jaccardSimilarity query examples

The example below is a query integration examples, where the node list inputs for
.jaccardSimilarity come from a preceding MATCH clause:

MATCH (n1:Person {name: "Alice"}), (n2:Person {name: "Bob"})
CALL neptune.algo.jaccardSimilarity(n1, n2, {edgeLabels: ['knows']})
YIELD score
RETURN n1, n2, score

Another example:

MATCH (n {code: "AUS"})
MATCH (m {code: "FLL"})
CALL neptune.algo.jaccardSimilarity(
 n,
 m,
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }

.jaccardSimilarity 345

Neptune Analytics Neptune Analytics User Guide

)
YIELD score
RETURN n, m, score

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .jaccardSimilarity output

Here is an example of the output returned by .jaccardSimilarity when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {code: 'AUS'})
 MATCH (m {code: "FLL"})
 CALL neptune.algo.jaccardSimilarity(n, m,
 {edgeLabels: [\"route\"], vertexLabel: \"airport\"})
 YIELD score
 RETURN n, m, score"
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "n": {
 "~id": "3",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 30.1944999694824,
 "elev": 542,
 "type": "airport",
 "code": "AUS",
 "lon": -97.6698989868164,

.jaccardSimilarity 346

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "runways": 2,
 "longest": 12250,
 "communityId": 2357352929951971,
 "city": "Austin",
 "region": "US-TX",
 "desc": "Austin Bergstrom International Airport",
 "prscore": 0.0012390684569254518,
 "degree": 188,
 "wccid": 2357352929951779,
 "ccscore": 0.1833982616662979,
 "country": "US",
 "icao": "KAUS"
 }
 },
 "m": {
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 26.0725994110107,
 "elev": 64,
 "type": "airport",
 "code": "FLL",
 "lon": -80.152702331543,
 "runways": 2,
 "longest": 9000,
 "communityId": 2357352929951971,
 "city": "Fort Lauderdale",
 "region": "US-FL",
 "desc": "Fort Lauderdale/Hollywood International Airport",
 "prscore": 0.0024497462436556818,
 "degree": 316,
 "wccid": 2357352929951779,
 "ccscore": 0.19741515815258027,
 "country": "US",
 "icao": "KFLL"
 }
 },
 "score": 0.2953367829322815
 }
]
}

.jaccardSimilarity 347

Neptune Analytics Neptune Analytics User Guide

Overlap similarity algorithm

Overlap Similarity is an algorithm that measures the overlap between the neighbors of two nodes.
It does this by dividing the intersection of the two neighborhoods by the neighbor with minimum
degree.

By calculating the ratio of common neighbors shared by two nodes to the total number of
neighbors they collectively have, it provides a measure of their closeness or similarity within
the network. Overlap similarity is applied in social network analysis to identify communities of
individuals with shared interests or interactions, and in biological networks to detect common
functionalities among proteins in molecular pathways.

.overlapSimilarity syntax

CALL neptune.algo.overlapSimilarity(
 [first node(s)],
 [second node(s)],
 {
 edgeLabels: [a list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 traversalDirection: traversal direction (optional)
 }
)
YIELD score
RETURN firstNodes, secondNodes, score

.overlapSimilarity inputs

• first node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes for which to find the overlap similarity score with respect to the
corresponding second node(s).

• second node(s) (required) – type: Node[] or NodeId[]; default: none.

One or more nodes for which to find the overlap similarity score with respect to the
corresponding first node(s).

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

.overlapSimilarity 348

Neptune Analytics Neptune Analytics User Guide

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are considered neighbors. This does not filter the nodes in the first or second
node lists.

• traversalDirection (optional) – type: string; default: outbound.

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

.overlapSimilarity outputs

score: A row for each node in the first node list and corresponding node in the second node list,
and the overlap similarity score for the two.

If either input node list is empty, the output is empty.

.overlapSimilarity query examples

This is a query integration examples, where .overlapSimilarity takes its input node lists from
the output of a MATCH clause:

MATCH (n1:Person {name: "Alice"}), (n2:Person {name: "Bob"})
CALL neptune.algo.overlapSimilarity(n1, n2, {edgeLabel: 'knows'})
YIELD score
RETURN n1, n2, score

Another example:

MATCH (n {code: "AUS"})
MATCH (m {code: "FLL"})
CALL neptune.algo.overlapSimilarity(
 n,
 m,
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }
)

.overlapSimilarity 349

Neptune Analytics Neptune Analytics User Guide

YIELD score
RETURN n, m, score'

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .overlapSimilarity output

Here is an example of the output returned by .overlapSimilarity when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'MATCH (n {code: "AUS"})
 MATCH (m {code: "FLL"})
 CALL neptune.algo.overlapSimilarity(
 n,
 m,
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }
)
 YIELD score
 RETURN n, m, score' \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "n": {
 "~id": "3",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {

.overlapSimilarity 350

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "lat": 30.1944999694824,
 "elev": 542,
 "type": "airport",
 "code": "AUS",
 "lon": -97.6698989868164,
 "runways": 2,
 "longest": 12250,
 "communityId": 2357352929951971,
 "city": "Austin",
 "region": "US-TX",
 "desc": "Austin Bergstrom International Airport",
 "prscore": 0.0012390684569254518,
 "degree": 188,
 "wccid": 2357352929951779,
 "ccscore": 0.1833982616662979,
 "country": "US",
 "icao": "KAUS"
 }
 },
 "m": {
 "~id": "9",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 26.0725994110107,
 "elev": 64,
 "type": "airport",
 "code": "FLL",
 "lon": -80.152702331543,
 "runways": 2,
 "longest": 9000,
 "communityId": 2357352929951971,
 "city": "Fort Lauderdale",
 "region": "US-FL",
 "desc": "Fort Lauderdale/Hollywood International Airport",
 "prscore": 0.0024497462436556818,
 "degree": 316,
 "wccid": 2357352929951779,
 "ccscore": 0.19741515815258027,
 "country": "US",
 "icao": "KFLL"
 }
 },
 "score": 0.6129032373428345

.overlapSimilarity 351

Neptune Analytics Neptune Analytics User Guide

 }
]
}

.overlapSimilarity 352

Neptune Analytics Neptune Analytics User Guide

Clustering and community detection algorithms in Neptune
Analytics

Clustering algorithms evaluate how nodes are clustered in communities, in closely-knit sets, or in
highly or loosely interconnected groups.

These algorithms can identify meaningful groups or clusters of nodes in a network, revealing
hidden patterns and structures that can provide insights into the organization and dynamics
of complex systems. This is valuable in social network analysis and in biology, for identifying
functional modules in protein-protein interaction networks, and more generally for understanding
information flow and influence propagation in many different domains.

Neptune Analytics supports these community detection algorithms:

• wcc – The Weakly Connected Components (WCC) algorithm finds weakly-connected
components in a directed graph. A weakly-connected component is a group of nodes where
every node in the group is reachable from every other node in the group if edge direction is
ignored.

Identifying weakly-conected components helps in understanding the overall connectivity and
structure of the graph. Weakly-connected components can be used in transportation networks
to identify disconnected regions that may require improved connectivity, and in social networks
to find isolated groups of users with limited interactions, and in webpage analysis to pinpoint
sections with low accessibility.

• wcc.mutate – This algorithm stores the calculated component value of each given node as a
property of the node.

• labelPropagation – Label Propagation Algorithm (LPA) is an algorithm for community
detection that is also used in semi-supervised machine learning for data classification.

• labelPropagation.mutate – Label Propagation Algorithm (LPA) is an algorithm tha
assigns labels to nodes based on the consensus of their neighboring nodes, making it useful for
identifying groups. Label propagation can be applied in social networks to find groups, and in
identity management to identify households, and in recommendation systems to group similar
products for personalized suggestions. It can also be used in semi-supervised machine learning
for data classification.

• scc – The Strongly Connected Components (SCC) algorithm identifies maximally connected
subgraphs of a directed graph, where every node is reachable from every other node. This can
provide insights into the tightly interconnected portions of a graph and highlight key structures

Community detection 353

Neptune Analytics Neptune Analytics User Guide

within it. Strongly connected components are valuable in computer programming for detecting
loops or cycles in code, in social networks to find tightly connected groups of users who interact
frequently, and in web crawling to identify clusters of interlinked pages for efficient indexing.

• scc.mutate – This algorithm finds the maximally connected subgraphs of a directed graph
and writes their component IDs as a new property of each subgraph node.

• louvain – The Louvain algorithm is a hierarchical community detection method that
identifies groups of densely connected nodes within networks. It works by optimizing modularity
- a measure comparing internal community connection density against random networks with
the same degree distribution. Through iterative local optimization and network aggregation,
it efficiently detects community structures in large networks. The algorithm can run in both
weighted and unweighted modes; when an edge weight property is specified, it operates in
weighted mode. Louvain is valuable in social networks for identifying user communities, in
biological networks to discover functional modules or protein complexes, and in financial
networks to detect market segments or potential fraud rings.

• louvain.mutate – This Louvain variant stores the calculated community ID of each node as a
property of the node, enabling persistent community assignments for applications like customer
segmentation, network infrastructure optimization, and research community identification.

Community detection 354

Neptune Analytics Neptune Analytics User Guide

Weakly connected components algorithm

The Weakly Connected Components (WCC) algorithm finds the weakly-connected components
in a directed graph. A weakly-connected component is a group of nodes in which every node is
reachable from every other node when edge directions are ignored. Weakly connected components
are the maximal connected subgraphs of an undirected graph.

Identifying weakly-conected components helps in understanding the overall connectivity and
structure of the graph. Weakly-connected components can be used in transportation networks to
identify disconnected regions that may require improved connectivity, and in social networks to
find isolated groups of users with limited interactions, and in webpage analysis to pinpoint sections
with low accessibility.

The time complexity of the WCC algorithm is O(|E|logD), where |E| is the number of edges in
the graph, and D is the diameter (the length of the longest path from one node to any other node)
of the graph.

The memory used by the WCC algorithm is approximately |V| * 20 bytes.

.wcc syntax

CALL neptune.algo.wcc(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD node, component
RETURN node, component

.wcc inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting locations for the algorithm. Each node in the list
triggers an execution of the algorithm. If an empty list is provided, the query result is also empty.

If the algorithm is called following a MATCH clause (query algo integration), the source query list
is the result returned by the MATCH clause.

.wcc 355

Neptune Analytics Neptune Analytics User Guide

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, only nodes matching the label are
considered. This includes the nodes in the source node lists.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.wcc outputs

For each source node:

• node – The source node.

• component – The component ID associated with the source node.

If the input node list is empty, the output is empty.

.wcc query examples

This is a standalone example, where the source node list is explicitly provided in the query:

CALL neptune.algo.wcc(
 ["101"],
 {
 edgeLabels: ["route"],
 vertexLabel: "airport",
 concurrency: 2
 }
)

.wcc 356

Neptune Analytics Neptune Analytics User Guide

YIELD node, component
RETURN node, component

This is a query integration examples, where .wcc follows a MATCH clause and uses the output of
the MATCH clause as its source node list:

MATCH (n) WHERE n.region = 'US-WA'
CALL neptune.algo.wcc(
 n,
 {
 edgeLabels: ["route"],
 vertexLabel: "airport"
 }
)
YIELD component
RETURN n, component

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .wcc output

Here is an example of the output returned by .wcc when run against the sample air-routes dataset
[nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n)
 CALL neptune.algo.wcc(n)
 YIELD node, component
 RETURN node, component
 LIMIT 2"
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt

.wcc 357

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

{
 "results": [
 {
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.94449997,
 "elev": 313,
 "longest": 11500,
 "city": "Washington D.C.",
 "type": "airport",
 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "code": "IAD",
 "prscore": 0.002264724113047123,
 "lon": -77.45580292,
 "wccid": 2357352929951779,
 "country": "US",
 "icao": "KIAD",
 "runways": 4
 }
 },
 "component": 2357352929951779
 },
 {
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "longest": 14511,
 "city": "New York",
 "type": "airport",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "code": "JFK",
 "prscore": 0.002885053399950266,
 "lon": -73.77890015,
 "wccid": 2357352929951779,
 "country": "US",

.wcc 358

Neptune Analytics Neptune Analytics User Guide

 "icao": "KJFK",
 "runways": 4
 }
 },
 "component": 2357352929951779
 }
]
}

.wcc 359

Neptune Analytics Neptune Analytics User Guide

Weakly connected components mutate algorithm

The mutate variant of the weakly connected components (WCC) algorithm performs the weakly
connected components calculation over the entire graph unless the configuration parameters
establish a filter, and each traversed node's calculated WCC value is stored as a property on the
node.

.wcc.mutate syntax

CALL neptune.algo.wcc.mutate(
 {
 writeProperty: the name for the node property to which to write component IDs
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD success
RETURN success

.wcc.mutate inputs

Inputs for .wcc.mutate are passed in a configuration object that contains:

• writeProperty (required) – type: string; default: none.

A name for the new node property where the component IDs will be written.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

The node label to filter on for traversing. Only nodes matching this label will be traversed. For
example: "airport".

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

.wcc.mutate 360

Neptune Analytics Neptune Analytics User Guide

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.wcc.mutate outputs

success: The computed component IDs are written as a new property on each node using the
property name specified by writeProperty, and a single success flag (true or false) is
returned to indicate whether or not the writes succeeded.

.wcc.mutate query examples

This query writes the calculated component ID of each vertex in the graph to a new property of the
vertex named CCID:

CALL neptune.algo.wcc.mutate(
 {
 writeProperty: "CCID",
 edgeLabels: ["route"],
 vertexLabel: "airport",
 concurrency: 2
 }
)

After the mutate algorithm call above, the following query can retrieve the CCID property of a
specific node:

MATCH (n: airport {code: "SEA"})
RETURN n.CCID

Sample .wcc.mutate output

Here is an example of the output returned by .wcc.mutate when run against the sample air-routes
dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.wcc.mutate({writeProperty: 'wccid'}) YIELD success
 RETURN success"

.wcc.mutate 361

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "success": true
 }]
}

.wcc.mutate 362

Neptune Analytics Neptune Analytics User Guide

Label propagation algorithm (LPA)

Label Propagation Algorithm (LPA) is an algorithm for community detection that is also used in
semi-supervised machine learning for data classification.

A community structure is loosely defined as a tightly knit group of entities in social networks. LPA
can be enhanced by providing a set of seed nodes, the quality of which can dramatically influence
the solution quality of the found communities. If the seeds are well-selected, the quality of the
solution can be good, but if not, the quality of the solution can be very bad.

See Xu T. Liu et al, Direction-optimizing label propagation and its application to community
detection, and Xu T. Liu et al, Direction-optimizing Label Propagation Framework for Structure
Detection in Graphs: Design, Implementation, and Experimental Analysis, and the Neo4j Label
Propagation API.

The time complexity of the algorithm is O(k|E|), where |E| is the number of edges in the graph,
and k is the number of iterations for the algorithm to converge. Its space complexity is O(|V|),
where |V| is the number of nodes in the graph.

.labelPropagation syntax

CALL neptune.algo.labelPropagation(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 vertexWeightProperty: a numeric node property used to weight the community ID
 (optional),
 vertexWeightType: numeric type of the specified vertexWeightProperty (optional),
 edgeWeightProperty: a numeric edge property used to weight the community ID
 (optional),
 edgeWeightType: numeric type of the specified edgeWeightProperty (optional),
 maxIterations: the maximum number of iterations to run (optional, default: 10),
 traversalDirection: traversal direction (optional, default: outbound),
 concurrency: number of threads to use (optional)
 }
)
Yield node, community
Return node, community

.labelPropagation 363

https://doi.org/10.1145/3387902.3392634
https://doi.org/10.1145/3387902.3392634
https://doi.org/10.1145/3564593
https://doi.org/10.1145/3564593
https://neo4j.com/docs/graph-data-science/current/algorithms/label-propagation/
https://neo4j.com/docs/graph-data-science/current/algorithms/label-propagation/

Neptune Analytics Neptune Analytics User Guide

.labelPropagation inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes to use as the starting locations for the algorithm. Each node in the list
triggers an execution of the algorithm. If an empty list is provided, the query result is also empty.

If the algorithm is called following a MATCH clause (query algo integration), the source query list
is the result returned by the MATCH clause.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the
only nodes that are included in the calculation, including nodes in the input list.

• vertexWeightProperty (optional) – type: string; default: none.

The node weight used in Label Propagation. When vertexWeightProperty is not specified,
each node's communityId is treated equally, as if the node weight were 1.0. When the
vertexWeightProperty is specified without an edgeWeightProperty, the weight of
the communityId for each node is the value of the node weight property. When both
vertexWeightProperty and edgeWeightProperty are specified, the weight of the
communityId is the product of the node property value and edge property value.

Note that if multiple properties exist on the node with the name specified by
vertexWeightProperty, one of those property values will be sampled at random.

• vertexWeightType (required if vertexWeightProperty is present) – type: string; valid
values: "int", "long", "float", "double"; default: empty.

The type of the numeric values in the node property specified by vertexWeightProperty.

If vertexWeightProperty is not provided, vertexWeightType is ignored. If a node
contains a numeric property with the name specified by vertexWeightProperty but
its value is a different numeric type than is specified by vertexWeightType, the value is

.labelPropagation 364

Neptune Analytics Neptune Analytics User Guide

typecast to the type specified by vertexWeightType. If both vertexWeightType and
edgeWeightType are given, the type specified by edgeWeightType is used for both node
and edge properties.

• edgeWeightProperty (optional) – type: string; default: none.

The numeric edge property used as a weight in Label Propagation. When
vertexWeightProperty is not specified, the default edge weight is 1.0, so each edge
is treated equally. When only edgeWeightProperty is provided, the weight of the
communityId is the value of that edge property. When both vertexWeightProperty and
edgeWeightProperty are present, the weight of a communityId is the product of the edge
property value and the node property value.

Note that if multiple properties exist on the edge with the name specified by
edgeWeightProperty, one of those property values will be sampled at random.

• edgeWeightType (required if edgeWeightProperty is present) – type: string; valid
values: "int", "long", "float", "double"; default: none.

The type of the numeric values in the edge property specified by edgeWeightProperty.

If edgeWeightProperty is not provided, edgeWeightType is ignored. If a node contains
a numeric property with the name specified by edgeWeightProperty but its value is a
different numeric type than is specified by edgeWeightType, the value is typecast to the type
specified by edgeWeightType. If both vertexWeightType and edgeWeightType are given,
the type specified by edgeWeightType is used for both node and edge properties.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

• maxIterations (optional) – type: integer; default: 10.

The maximum number of iterations to run.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.labelPropagation 365

Neptune Analytics Neptune Analytics User Guide

.labelPropagation outputs

• node – A key column of the input nodes.

• community – A key column of the corresponding communityId values for those nodes. All
the nodes with the same communityId are in the same weakly-connected component.

If the input node list is empty, the output is empty.

.labelPropagation query examples

This is a standalone example, where the source node list is explicitly provided in the query. It runs
the algorithm over the whole graph, but only queries the component ID of one node:

CALL neptune.algo.labelPropagation(
 ["101"],
 {
 edgeLabels: ["route"],
 maxIterations: 10,
 vertexLabel: "airport",
 vertexWeightProperty: "runways",
 vertexWeightType: "int",
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD node, community
RETURN node, community

This is a query integration example, where .labelPropagation uses the output of a preceding
MATCH clause as its source node list:

Match (n)
CALL neptune.algo.labelPropagation(
 n,
 {
 edgeLabels: ["route"],
 maxIterations: 10,
 vertexLabel: "airport",
 vertexWeightProperty: "runways",

.labelPropagation 366

Neptune Analytics Neptune Analytics User Guide

 vertexWeightType: "int",
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 traversalDirection: "both",
 concurrency: 2
 }
)
YIELD community
RETURN n, community

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .labelPropagation output

Here is an example of the output returned by .labelPropagation when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

"results": [{
 "node": {
 "~id": "8",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-TX",
 "runways": 7,
 "country": "US",
 "city": "Dallas",
 "type": "airport",
 "icao": "KDFW",
 "lon": -97.038002014160199,
 "code": "DFW",
 "lat": 32.896800994872997,
 "longest": 13401,
 "elev": 607,
 "desc": "Dallas/Fort Worth International Airport"
 }

.labelPropagation 367

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 },
 "community": 2357352929952311
 }, {
 "node": {
 "~id": "24",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "region": "US-CA",
 "runways": 3,
 "country": "US",
 "city": "San Jose",
 "type": "airport",
 "icao": "KSJC",
 "lon": -121.929000854492,
 "code": "SJC",
 "lat": 37.362598419189503,
 "longest": 11000,
 "elev": 62,
 "desc": "Norman Y. Mineta San Jose International Airport"
 }
 },
 "community": 2357352929952311
 }]

.labelPropagation 368

Neptune Analytics Neptune Analytics User Guide

Label propagation mutate algorithm

Label Propagation Algorithm (LPA) is an algorithm for community detection that is also used in
semi-supervised machine learning for data classification.

The .labelPropagation.mutate variant of the algorithm writes the derived community
component ID of each node in the source list to a new property of that node.

.labelPropagation.mutate syntax

CALL neptune.algo.labelPropagation.mutate(
 {
 writeProperty: the name for the node property to which to write component IDs
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 vertexWeightProperty: a numeric node property used to weight the community ID
 (optional),
 vertexWeightType: numeric type of the specified vertexWeightProperty (optional),
 edgeWeightProperty: a numeric edge property used to weight the community ID
 (optional),
 edgeWeightType: numeric type of the specified edgeWeightProperty (optional),
 maxIterations: the maximum number of iterations to run (optional, default: 10),
 traversalDirection: traversal direction (optional, default: outbound),
 concurrency: number of threads to use (optional)
 }
)

.labelPropagation.mutate inputs

Inputs for .labelPropagation.mutate are passed in a configuration object that contains:

• writeProperty (required) – type: string; default: none.

A name for the new node property that will contain the computed community component ID of
the node.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

.labelPropagation.mutate 369

Neptune Analytics Neptune Analytics User Guide

• vertexLabel (optional) – type: string; default: none.

A node label for node filtering. If a node label is provided, nodes matching the label are the only
nodes that are included in the calculation, including nodes in the input list.

• vertexWeightProperty (optional) – type: string; default: none.

The node weight used in Label Propagation. When vertexWeightProperty is not specified,
each node's communityId is treated equally, as if the node weight were 1.0. When the
vertexWeightProperty is specified without an edgeWeightProperty, the weight of
the communityId for each node is the value of the node weight property. When both
vertexWeightProperty and edgeWeightProperty are specified, the weight of the
communityId is the product of the node property value and edge property value.

Note that if multiple properties exist on the node with the name specified by
vertexWeightProperty, one of those property values will be sampled at random.

• vertexWeightType (required if vertexWeightProperty is present) – type: string; valid
values: "int", "long", "float", "double"; default: empty.

The type of the numeric values in the node property specified by vertexWeightProperty.

If vertexWeightProperty is not provided, vertexWeightType is ignored. If a node contains
a numeric property with the name specified by vertexWeightProperty but its value is a
different numeric type than is specified by vertexWeightType, the value is typecast to the type
specified by vertexWeightType. If both vertexWeightType and edgeWeightType are given,
the type specified by edgeWeightType is used for both node and edge properties.

• edgeWeightProperty (optional) – type: string; default: none.

The numeric edge property used as a weight in Label Propagation. When
vertexWeightProperty is not specified, the default edge weight is 1.0, so each edge is treated
equally. When only edgeWeightProperty is provided, the weight of the communityId is the
value of that edge property. When both vertexWeightProperty and edgeWeightProperty
are present, the weight of a communityId is the product of the edge property value and the
node property value.

Note that if multiple properties exist on the edge with the name specified by
edgeWeightProperty, one of those property values will be sampled at random.

• edgeWeightType (required if edgeWeightProperty is present) – type: string; valid values:
"int", "long", "float", "double"; default: none.

.labelPropagation.mutate 370

Neptune Analytics Neptune Analytics User Guide

The type of the numeric values in the edge property specified by edgeWeightProperty.

If edgeWeightProperty is not provided, edgeWeightType is ignored. If a node contains a
numeric property with the name specified by edgeWeightProperty but its value is a different
numeric type than is specified by edgeWeightType, the value is typecast to the type specified
by edgeWeightType. If both vertexWeightType and edgeWeightType are given, the type
specified by edgeWeightType is used for both node and edge properties.

• traversalDirection (optional) – type: string; default: "outbound".

The direction of edge to follow. Must be one of: "inbound", "outbound", or "both".

• maxIterations (optional) – type: integer; default: 10.

The maximum number of iterations to run.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the .labelPropagation.mutate algorithm

The community component IDs are written as a new node property of each source node using the
property name specified by writeProperty.

If the algorithm is invoked as a standalone query, there is no other output.

If the algorithm is invoked immediately after a MATCH clause that supplies its source node list, the
algorithm outputs a key column of the source nodes from the MATCH clause and a value column of
success flags (true or false) to indicate whether or not the write to the new node property of that
node succeeded.

.labelPropagation.mutate query example

CALL neptune.algo.labelPropagation.mutate(
 {
 writeProperty: "COMM_ID",

.labelPropagation.mutate 371

Neptune Analytics Neptune Analytics User Guide

 edgeLabels: ["route"],
 maxIterations: 10,
 vertexLabel: "airport",
 vertexWeightProperty: "runways",
 vertexWeightType: "int",
 edgeWeightProperty: "dist",
 edgeWeightType: "int",
 traversalDirection: "both",
 concurrency: 2
 }
)

Sample .labelPropagation.mutate output

Here is an example of the output returned by .labelPropagation.mutate when run against the
sample air-routes dataset [nodes], and sample air-routes dataset [edges], when using the
following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.labelPropagation.mutate({writeProperty:
 'communityId'}) YIELD success RETURN success" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "success": true
 }
]
}

.labelPropagation.mutate 372

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

Strongly connected components algorithm

Strongly connected components (SCC) are the maximally connected subgraphs of a directed graph
where every node is reachable from every other node (in other words, there exists a path between
every node in the subgraph).

Neptune Analytics implements this algorithm using a modified multi-step approach (see BFS and
Coloring-based Parallel Algorithms for Strongly Connected Components and Related Problems, by
George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri, IPDPS 2014).

The time complexity of the .scc algorithm in the worst case is O(|V|+|E|*D), where |V| is the
number of nodes in the graph, |E| is the number of edges in the graph, and D is the diameter,
defined as the length of the longest path from one node to another in the graph.

The space complexity is O(|V|), where |V| is the number of vertices in the graph.

.scc syntax

CALL neptune.algo.scc(
 [source-node list (required)],
 {
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD node, component
RETURN node, component

.scc inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

• a configuration object that contains:

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

.scc 373

https://www.cs.rpi.edu/~slotag/pub/SCC-IPDPS14.pdf
https://www.cs.rpi.edu/~slotag/pub/SCC-IPDPS14.pdf

Neptune Analytics Neptune Analytics User Guide

A node label to filter on.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.scc outputs

For each source node:

• node – The source node.

• component – The component ID associated with the source node.

If the input node list is empty, the output is empty.

.scc query examples

This openCypher query has an empty input list, and so will have no output:

Match (n)
CALL neptune.algo.scc(n, {edgeLabels: ["route", "contains"]})
YIELD component
RETURN n, component

This is a query integration example, where .scc follows a MATCH clause that generates its input
node list:

Match (n)
CALL neptune.algo.scc(n, {})
Yield component
Return n, component

.scc 374

Neptune Analytics Neptune Analytics User Guide

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.

Sample .scc output

Here is an example of the output returned by .scc when run against the sample air-routes dataset
[nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.scc({writeProperty: 'sccid'}) YIELD success RETURN
 success" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.94449997,
 "elev": 313,
 "type": "airport",
 "code": "IAD",
 "lon": -77.45580292,
 "runways": 4,
 "longest": 11500,
 "communityId": 2357352929951971,
 "city": "Washington D.C.",
 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "prscore": 0.002264724113047123,
 "degree": 312,

.scc 375

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "wccid": 2357352929951779,
 "ccscore": 0.20877772569656373,
 "country": "US",
 "icao": "KIAD"
 }
 },
 "component": 2357352929966149
 },
 {
 "node": {
 "~id": "12",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 40.63980103,
 "elev": 12,
 "type": "airport",
 "code": "JFK",
 "lon": -73.77890015,
 "runways": 4,
 "longest": 14511,
 "communityId": 2357352929951971,
 "city": "New York",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "prscore": 0.002885053399950266,
 "degree": 403,
 "wccid": 2357352929951779,
 "ccscore": 0.2199712097644806,
 "country": "US",
 "icao": "KJFK"
 }
 },
 "component": 2357352929966149
 }
]
}

.scc 376

Neptune Analytics Neptune Analytics User Guide

Strongly connected components mutate algorithm

Strongly connected components (SCC) are the maximally connected subgraphs of a directed graph,
where every node is reachable from every other node (in other words, there exists a path between
every node in the subgraph).

The time complexity of the .scc-mutate algorithm in the worst case is O(|V|+|E|*D), where
|V| is the number of nodes in the graph, |E| is the number of edges in the graph, and D is the
diameter, the length of the longest path from one node to another in the graph.

The space complexity is O(|V|), where |V| is the number of vertices in the graph.

.scc.mutate syntax

CALL neptune.algo.scc.mutate(
 {
 writeProperty: the name for the node property to which to write component IDs
 edgeLabels: [list of edge labels for filtering (optional)],
 vertexLabel: a node label for filtering (optional),
 concurrency: number of threads to use (optional)
 }
)
YIELD success
RETURN success

Inputs for the .scc.mutate algorithm

Inputs for .scc.mutate are passed in a configuration object that contains:

• writeProperty (required) – type: string; default: none.

A name for the new node property where the component IDs will be written.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field is
provided then all edge labels are processed during traversal.

• vertexLabel (optional) – type: string; default: none.

The node label to filter on for traversing. Only nodes matching this label will be traversed. For
example: "airport".

.scc.mutate 377

Neptune Analytics Neptune Analytics User Guide

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the .scc.mutate algorithm

The computed strongly connected component IDs are written as a new node property using the
specified property name. A single success flag (true or false) is returned to indicate whether the
computation and writes succeeded or failed.

.scc.mutate query example

CALL neptune.algo.scc.mutate(
 {
 writeProperty: "SCOMM_ID",
 edgeLabels: ["route", ..],
 vertexLabel: "airport",
 concurrency: 2
 }
)

Sample .scc.mutate output

Here is an example of the output returned by .scc.mutate when run against the sample air-routes
dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.scc.mutate({writeProperty: 'sccid'}) YIELD success
 RETURN success" \
 --language open_cypher \
 /tmp/out.txt

cat /tmp/out.txt
{
 "results": [
 {

.scc.mutate 378

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "success": true
 }
]
}

.scc.mutate 379

Neptune Analytics Neptune Analytics User Guide

Louvain algorithm

The Louvain algorithm is a hierarchical clustering method for detecting community structures
within networks. A community is defined as a subset of nodes with dense internal connections
relative to sparse external connections. The algorithm iteratively optimizes modularity, which
mathematically measures the strength of network division into communities by comparing the
density of connections within communities to what would be expected in a random network with
the same degree distribution.

Through a two-phase process of local optimization and network aggregation, the algorithm
identifies hierarchical community structures that maximize this modularity measure. This method
is particularly valuable in network science for decomposing complex networks into their natural
organizational units, with applications ranging from social network analysis to biological systems.

The algorithm can run in unweighted or weighted mode based on the graph and user inputs. When
an edge weight property is specified, the algorithm runs in weighted mode.

Here are several real-world applications of the Louvain algorithm for community detection:

• Fraud detection in financial transactions

• Cybersecurity threat analysis

• Identifying influencer communities on social networks

• Planning network coverage areas

• Protein-protein interaction networks

The Louvain algorithm is particularly useful in these cases because it:

• Handles large-scale networks efficiently

• Provides good quality results

• Works well with weighted networks

• Is computationally fast

• Can detect hierarchical community structures

Note

• There can only be one Louvain algorithm call running at a time.

.louvain 380

Neptune Analytics Neptune Analytics User Guide

• Louvain is expected to run a long time, hence please set the query timeout to be large
number to avoid query timeout. See query-timeout-milliseconds for more information
on setting upper bounds on query run time.

.louvain syntax

CALL neptune.algo.louvain(
 [node list (required)],
 {
 vertexLabels: [list of vertex labels for filtering (optional)],
 edgeLabels: [list of edge labels for filtering (optional)],
 edgeWeightProperty: a numeric edge property to use as weight (optional),
 edgeWeightType: numeric type of the specified edgeWeightProperty (optional),
 maxLevels: maximum number of levels to optimize at (optional, default: 10),
 maxIterations: maximum number of iterations per level (optional, default: 10),
 levelTolerance: minimum modularity change to continue to next level (optional,
 default: 0.01),
 iterationTolerance: minimum modularity change to continue to next iteration
 (optional, default: 0.0001),
 concurrency: number of threads to use (optional)
 }
)
YIELD node, community
RETURN node, community

.louvain inputs

• a node list (required) – type: Node[] or NodeId[]; default: none.

The node or nodes for which the algorithm will return the computed community ids. If the
algorithm is called following a MATCH clause (query algo integration), the node query list is the
result returned by the MATCH clause.

• a configuration object that contains:

• vertexLabels (optional) – type: a list of vertex label strings; example
["airport", ...]; default: no vertex filtering.

Node labels for node filtering. To filter on one or more vertex labels, provide a list of node
labels. Vertices matching any label in the vertexLabels list are the only vertices that are passed

.louvain 381

https://docs.aws.eu//neptune-analytics/latest/userguide/query-APIs-execute-query.html#query-APIs-execute-query-input

Neptune Analytics Neptune Analytics User Guide

to the algorithm computation. If no vertexLabels field is provided then all vertices are passed
to the Louvain algorithm.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• edgeWeightProperty (optional) – type: string; default: none.

A string indicating the name of the edge weight property used as weight in Louvain. When the
edgeWeightProperty is not specified, each edge is treated equally, i.e., the default value of the
edge weight is 1.

Note that if multiple properties exist on the edge with the specified name, one of these values
will be sampled at random.

• edgeWeightType (required if edgeWeightProperty is present) – type: string; valid
values: "int", "long", "float", "double"; default: none.

The type of the numeric values in the edge property specified by edgeWeightProperty. If the
edgeWeightProperty is not given, the edgeWeightType is ignored even if it is specified. If
an edge contains a property given by edgeWeightProperty, and its type is numeric but not
matching the specified edgeWeightType, it will be typecast to the specified type.

• maxLevels (optional) – type: integer; default: 10.

The maximum number of levels of granularity at which the algorithm optimizes the
modularity.

• maxIterations (optional) – type: integer; default: 10.

The maximum number of iterations to run at each level.

• levelTolerance (optional) – type: float; default: .01.

The minimum change in modularity required to continue to the next level.

• iterationTolerance (optional) – type: float; default: .0001.

The minimum change in modularity required to continue to the next iteration.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm..louvain 382

Neptune Analytics Neptune Analytics User Guide

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.louvain outputs

For each source node:

• node – A column of the input nodes.

• community – A column of the corresponding communityId values for those nodes. All the
nodes with the same communityId are in the same community.

If the input node list is empty, the output is also empty.

.louvain query examples

Unweighted example:

CALL neptune.algo.louvain(
 ["101"],
 {
 vertexLabels: ["airport"],
 edgeLabels: ["route"],
 maxLevels: 3,
 maxIterations: 10
 }
)
YIELD node, community
RETURN node, community

Weighted example:

Sample use case: you may want to identify natural communities of stops where there is high intra-
connectivity — essentially, clusters of stops that are strongly interconnected based on passenger
traffic

CALL neptune.algo.louvain(
 ["101"],

.louvain 383

Neptune Analytics Neptune Analytics User Guide

 {
 vertexLabels: ["airport"],
 edgeLabels: ["route"],
 maxLevels: 3,
 maxIterations: 10,
 edgeWeightProperty: "weight",
 edgeWeightType: "int"
 }
)
YIELD node, community
RETURN node, community

This is a query integration example, where .louvain uses the output of a preceding MATCH clause
as its node list:

Match (n)
CALL neptune.algo.louvain(
 n,
 {
 vertexLabels: ["airport"],
 edgeLabels: ["route"],
 maxLevels: 1,
 maxIterations: 10,
 edgeWeightProperty: "weight",
 edgeWeightType: "int"
 }
)
YIELD community
RETURN n, community

Warning

It is not good practice to use MATCH(n) without restriction in query integrations. Keep in
mind that every node returned by the MATCH(n) clause invokes the algorithm once, which
can result in a very long-running query if a large number of nodes is returned. Use LIMIT or
put conditions on the MATCH clause to restrict its output appropriately.
The Louvain algorithm requires exclusive processing. Neptune will process only one Louvain
algorithm execution at a time. Any subsequent algorithm requests submitted before the
completion of an active process will result in an error response.

.louvain 384

Neptune Analytics Neptune Analytics User Guide

Sample .louvain output

Here is an example of the output returned by .louvain when run against the sample air-routes
dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'query=Match (n) \
 CALL neptune.algo.louvain(n) \
 YIELD node, community \
 return node, community \
 limit 2' \
 --language open_cypher \
 /tmp/out.txt
cat /tmp/out.txt
{
"results": [{
 "node": {
 "~id": "10",
 "~entityType": "node",
 "~labels": ["airport"],
 "~properties": {
 "lat": 38.944499970000003,
 "elev": 313,
 "type": "airport",
 "code": "IAD",
 "lon": -77.455802919999996,
 "runways": 4,
 "longest": 11500,
 "communityId": 2357352929951971,
 "city": "Washington D.C.",
 "region": "US-VA",
 "desc": "Washington Dulles International Airport",
 "degree": 312,
 "country": "US",
 "icao": "KIAD"
 }
 },
 "community": 2357352929951971
 }, {
 "node": {
 "~id": "12",
 "~entityType": "node",

.louvain 385

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

 "~labels": ["airport"],
 "~properties": {
 "lat": 40.639801030000001,
 "elev": 12,
 "type": "airport",
 "code": "JFK",
 "lon": -73.778900149999998,
 "runways": 4,
 "longest": 14511,
 "communityId": 2357352929951971,
 "city": "New York",
 "region": "US-NY",
 "desc": "New York John F. Kennedy International Airport",
 "degree": 403,
 "country": "US",
 "icao": "KJFK"
 }
 },
 "community": 2357352929951971
 }]

.louvain 386

Neptune Analytics Neptune Analytics User Guide

Louvain mutate algorithm

The Louvain algorithm is a hierarchical clustering method for detecting community structures
within networks.

.louvain.mutate is a variant of the Louvain algorithm that writes the derived community
component ID of each node in the node list to a new property of that node.

Note

• There can only be one Louvain algorithm call running at a time.

• Louvain is expected to run a long time, hence please set the query timeout to be large
number to avoid query timeout. See query-timeout-milliseconds for more information
on setting upper bounds on query run time.

.louvain.mutate syntax

CALL neptune.algo.louvain.mutate(
 {
 writeProperty: property name to store community IDs (require),
 vertexLabels: [list of vertex labels for filtering (optional)],
 edgeLabels: [list of edge labels for filtering (optional)],
 edgeWeightProperty: a numeric edge property to use as weight (optional),
 edgeWeightType: numeric type of the specified edgeWeightProperty (optional),
 maxLevels: maximum number of levels to optimize at (optional, default: 10),
 maxIterations: maximum number of iterations per level (optional, default: 10),
 levelTolerance: minimum modularity change to continue to next level (optional,
 default: 0.01),
 iterationTolerance: minimum modularity change to continue to next iteration
 (optional, default: 0.0001),
 concurrency: number of threads to use (optional)
 }
)
YIELD success
RETURN success

Inputs for the .louvain.mutate algorithm

Inputs for .louvain.mutate are passed in a configuration object that contains:

.louvain.mutate 387

https://docs.aws.eu//neptune-analytics/latest/userguide/query-APIs-execute-query.html#query-APIs-execute-query-input

Neptune Analytics Neptune Analytics User Guide

• writeProperty (required) – type: string; default: none.

A name for the new node property that will contain the computed community ID of the nodes.

• a configuration object that contains:

• vertexLabels (optional) – type: a list of vertex label strings; example
["airport", ...]; default: no vertex filtering.

Node labels for node filtering. To filter on one or more vertex labels, provide a list of node
labels. Vertices matching any label in the vertexLabels list are the only vertices that are passed
to the algorithm computation. If no vertexLabels field is provided then all vertices are passed
to the Louvain algorithm.

• edgeLabels (optional) – type: a list of edge label strings; example: ["route", ...];
default: no edge filtering.

To filter on one more edge labels, provide a list of the ones to filter on. If no edgeLabels field
is provided then all edge labels are processed during traversal.

• edgeWeightProperty (optional) – type: string; default: none.

A string indicating the name of the edge weight property used as weight in Louvain. When the
edgeWeightProperty is not specified, each edge is treated equally, i.e., the default value of the
edge weight is 1.

Note that if multiple properties exist on the edge with the specified name, one of these values
will be sampled at random.

• edgeWeightType (required if edgeWeightProperty is present) – type: string; valid
values: "int", "long", "float", "double"; default: none.

The type of the numeric values in the edge property specified by edgeWeightProperty. If the
edgeWeightProperty is not given, the edgeWeightType is ignored even if it is specified. If
an edge contains a property given by edgeWeightProperty, and its type is numeric but not
matching the specified edgeWeightType, it will be typecast to the specified type.

• maxLevels (optional) – type: integer; default: 10.

The maximum number of levels of granularity at which the algorithm optimizes the
modularity.

• maxIterations (optional) – type: integer; default: 10.

.louvain.mutate 388

Neptune Analytics Neptune Analytics User Guide

The maximum number of iterations to run at each level.

• levelTolerance (optional) – type: float; default: .01.

The minimum change in modularity required to continue to the next level.

• iterationTolerance (optional) – type: float; default: .0001.

The minimum change in modularity required to continue to the next iteration.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

Outputs for the .louvain.mutate algorithm

The community IDs are written as a new node property using the property name specified
by writeProperty. A single success flag (true or false) is returned to indicate whether the
computation and writes succeeded or failed.

.louvain.mutate query example

This is a standalone example, where the node list is explicitly provided in the query. It runs the
algorithm over the whole graph, but only queries the community ID of one node:

Unweighted:

CALL neptune.algo.louvain.mutate(
 {
 writeProperty: "louvainCommId",
 vertexLabels: ["airport"],
 edgeLabels: ["route"],
 maxLevels: 3,
 maxIterations: 10
 }
)
YIELD success
RETURN success

.louvain.mutate 389

Neptune Analytics Neptune Analytics User Guide

Weighted:

CALL neptune.algo.louvain.mutate(
 {
 writeProperty: "louvainCommId",
 vertexLabels: ["airport"],
 edgeLabels: ["route"],
 maxLevels: 3,
 maxIterations: 10,
 edgeWeightProperty: "weight",
 edgeWeightType: "int"
 }
)
YIELD success
RETURN success

Sample .louvain.mutate output

Here is an example of the output returned by .louvain.mutate when run against the sample air-
routes dataset [nodes], and sample air-routes dataset [edges], when using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'query=CALL neptune.algo.louvain.mutate({writeProperty:
 'communityId'}) \
 YIELD success RETURN success' \
 --language open_cypher \
 /tmp/out.txt
cat /tmp/out.txt
{
 "results": [
 {
 "success": true
 }
]
}

Misc. graph procedures

The miscellaneous graph procedures can be ran on your graphs to give you insight into your graphs
and their metrics.

Misc. graph procedures 390

https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-nodes.csv
https://github.com/krlawrence/graph/blob/main/sample-data/air-routes-latest-edges.csv

Neptune Analytics Neptune Analytics User Guide

Property Graph Information (graph.pg_info) summarizes some of the basic metrics of the graph,
such as the number of vertices, the number of edges, the number of edge properties, the number
of vertex properties, the number of edge labels, and the number of vertex labels.

The neptune.graph.pg_schema() procedure provides a comprehensive overview of the
graph structure. It extracts and summarizes the current schema of a Neptune Analytics graph,
i.e., customers can observe the property names and types that appear on vertices and edges
of particular labels within the graph. The procedure is designed for use cases such as: schema
visualization, integration with third-party applications, and inclusion in open-source tools.

Topics

• Property graph information

• Property graph schema

Property graph information

Property Graph Information (graph.pg_info) summarizes some of the basic metrics of the graph,
such as the number of vertices, the number of edges, the number of edge properties, the number
of vertex properties, the number of edge labels, and the number of vertex labels.

Inputs for graph.pg_info

There are no inputs for graph.pg_info.

Outputs for graph.pg_info

There are two columns in the output relation: the first column is the metric name and the second
column is the count.

metric: the metrics that graph.pg_info will return, which include:

• numVertices: the number of vertices in the graph.

• numEdges: the number of edges in the graph.

• numVertexProperties: the number of node properties in the graph.

• numEdgeProperties: the number of edge properties in the graph.

• numVertexLabels: the number of unique vertex labels in the graph.

• numEdgeLabels: the number of unique edge labels in the graph.

Property graph information 391

Neptune Analytics Neptune Analytics User Guide

count

• count: the value of the above metrics.

graph.pg_info query example

Syntax
CALL neptune.graph.pg_info()
YIELD metric, count
RETURN metric, count

graph.pg_info query integration

sample query integration
CALL neptune.graph.pg_info()
YIELD metric, count
WHERE metric = 'numVertices'
RETURN count

Sample graph.pg_info output

sample output of graph.pg_info
aws neptune-graph execute-query \

 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.graph.pg_info()
 YIELD metric, count
 RETURN metric, count " \
 --language open_cypher \
 /tmp/out.txt
cat /tmp/out.txt
{
 "results": [{
 "metric": "numVertices",
 "count": 3748
 }, {
 "metric": "numEdges",
 "count": 57538
 }, {
 "metric": "numVertexProperties",
 "count": 42773

Property graph information 392

Neptune Analytics Neptune Analytics User Guide

 }, {
 "metric": "numEdgeProperties",
 "count": 50532
 }, {
 "metric": "numVertexLabels",
 "count": 4
 }, {
 "metric": "numEdgeLabels",
 "count": 2
 }]
}

Property graph schema

The neptune.graph.pg_schema() procedure provides a comprehensive overview of the
graph structure. It extracts and summarizes the current schema of a Neptune Analytics graph,
i.e., customers can observe the property names and types that appear on vertices and edges
of particular labels within the graph. The procedure is designed for use cases such as: schema
visualization, integration with third-party applications, and inclusion in open-source tools.

Benefits:

• Node and edge label enumeration: The procedure identifies and lists all unique labels for nodes
and edges present in the graph (nodeLabels and edgeLabels, respectively).

• Property and data type analysis: For each node and edge label, it catalogs associated
properties and their corresponding data types (nodeLabelDetails and edgeLabelDetails,
respectively). This information is crucial for understanding the attributes of different graph
elements.

• Topological relationship mapping: The procedure generates a set of triples in the format
(nodeLabel)-[edgeLabel]->(nodeLabel), effectively summarizing the graph's topology and
the relationships between different node types (labelTriples).

• Consistency across tools: By providing a standardized schema representation, the procedure
ensures consistency across various third-party and open-source tools that interact with the graph
database.

• Integration-friendly output: The schema information is formatted in a way that facilitates easy
integration with AI tools, visualization software, and reporting systems.

Property graph schema 393

Neptune Analytics Neptune Analytics User Guide

This procedure provides a unified method of complete and up-to-date information extraction to
support a wide range of applications from AI-driven query generation to data visualization and
reporting.

Inputs for neptune.graph.pg_schema()

There are no inputs for neptune.graph.pg_schema().

Outputs for neptune.graph.pg_schema()

There is a single column in the output containing a map schema containing the following key
components in the schema map:

• nodeLabels: A list of all unique labels assigned to nodes/vertices in the graph.

• edgeLabels: A list of all unique labels assigned to relationships/edges in the graph.

• nodeLabelDetails: For each node label, all properties associated with that node containing
an enumeration of each property and the various data types it can manifest as across different
nodes with the same label.

• label - The node label or labels.

• properties - An array of the superset of properties for the node:

• <key:> name - The property name.

• <value:> A key-value dictionary (map) - Stores data types that are available for
the property.

• <key:> "datatypes" ,

• <value:> array[string]

• e.g.,

"contains": {
 "properties": {
 "weight": {
 "datatypes": ["Int"]
 }
 }
}

• edgeLabelDetails: For each edge label, all properties associated with edges that have that
label containing an enumeration of each property and the various data types it can manifest as
across different edges with the same label.

Property graph schema 394

Neptune Analytics Neptune Analytics User Guide

• label - The edge label.

• properties - A key-value dictionary (map) of properties for the edge label:

• <key:> name - The property name

• <value:> A key-value dictionary (map) - Stores data types that are available for the
property.

• <key:> "datatypes" ,

• <value:> array[string]

• labelTriples: A set of nodeLabel-edgeLabel->nodeLabel combinations that represent
the connections between different types of nodes in the graph. These triples summarize the
graph's topology by showing how different node types are related through various edge types.
Each entry is a key-value dictionary, holding the following:

• ~type - The edge label.

• ~from - The node label of the head node of the node-edge->node.

• ~to - The node label of the tail node of the node-edge->node.

neptune.graph.pg_schema() query example

Syntax
CALL neptune.graph.pg_schema()
YIELD schema
RETURN schema

neptune.graph.pg_schema() query integration

sample query integration.
Calls pg_schema,
Then acquires node labels,
Then sorts them alphabetically,
Then counts number of vertices with each label and returns it

CALL neptune.graph.pg_schema()
YIELD schema
WITH schema.nodeLabels as nl
UNWIND collSort(nl) as label
MATCH (n)
WHERE label in labels(n)
RETURN label, COUNT(n) as count

Property graph schema 395

Neptune Analytics Neptune Analytics User Guide

output

{
 "results": [{
 "label": "airport",
 "count": 27
 }, {
 "label": "country",
 "count": 3
 }, {
 "label": "version",
 "count": 3
 }]
}%

Sample neptune.graph.pg_schema() output

% aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string 'CALL neptune.graph.pg_schema()
 YIELD schema
 RETURN schema' \
 --language open_cypher \
 /tmp/out.txt
{
 "results": [{
 "schema": {
 "edgeLabelDetails": {
 "route": {
 "properties": {
 "weight": {
 "datatypes": ["Int"]
 },
 "dist": {
 "datatypes": ["Int"]
 }
 }
 },
 "contains": {
 "properties": {
 "weight": {
 "datatypes": ["Int"]

Property graph schema 396

Neptune Analytics Neptune Analytics User Guide

 }
 }
 }
 },
 "edgeLabels": ["route", "contains"],
 "nodeLabels": ["version", "airport", "continent", "country"],
 "labelTriples": [{
 "~type": "route",
 "~from": "airport",
 "~to": "airport"
 }, {
 "~type": "contains",
 "~from": "country",
 "~to": "airport"
 }, {
 "~type": "contains",
 "~from": "continent",
 "~to": "airport"
 }],
 "nodeLabelDetails": {
 "continent": {
 "properties": {
 "type": {
 "datatypes": ["String"]
 },
 "code": {
 "datatypes": ["String"]
 },
 "desc": {
 "datatypes": ["String"]
 }
 }
 },
 "airport": {
 "properties": {
 "type": {
 "datatypes": ["String"]
 },
 "city": {
 "datatypes": ["String"]
 },
 "icao": {
 "datatypes": ["String"]
 },

Property graph schema 397

Neptune Analytics Neptune Analytics User Guide

 "code": {
 "datatypes": ["String"]
 },
 "country": {
 "datatypes": ["String"]
 },
 "lat": {
 "datatypes": ["Double"]
 },
 "longest": {
 "datatypes": ["Int"]
 },
 "runways": {
 "datatypes": ["Int"]
 },
 "desc": {
 "datatypes": ["String"]
 },
 "lon": {
 "datatypes": ["Double"]
 },
 "region": {
 "datatypes": ["String"]
 },
 "elev": {
 "datatypes": ["Int"]
 }
 }
 },
 "country": {
 "properties": {
 "type": {
 "datatypes": ["String"]
 },
 "code": {
 "datatypes": ["String"]
 },
 "desc": {
 "datatypes": ["String"]
 }
 }
 },
 "version": {
 "properties": {

Property graph schema 398

Neptune Analytics Neptune Analytics User Guide

 "date": {
 "datatypes": ["String"]
 },
 "desc": {
 "datatypes": ["String"]
 },
 "author": {
 "datatypes": ["String"]
 },
 "type": {
 "datatypes": ["String"]
 },
 "code": {
 "datatypes": ["String"]
 }
 }
 }
 }
 }
 }]
}

Property graph schema 399

Neptune Analytics Neptune Analytics User Guide

Working with vector similarity in Neptune Analytics

You can answer complex questions about your data by transforming data shapes into embeddings
(that is, vectors). Using a vector search index lets you answer questions about the your data's
context and its similarity and connection to other data.

For example, a support agent could translate a question that they receive into a vector and use
it to search the support knowledge base for articles that are similar to the words in the question
(implicit similarity). For the most applicable articles, they could then collect metadata about the
author, previous cases, runbooks, and so on so as to provide additional context when answering the
question (explicit data).

Vector similarity search in Neptune Analytics makes it easy for you to build machine learning (ML)
augmented search experiences and generative artificial intelligence (GenAI) applications. It also
gives you an overall lower total cost of ownership and simpler management overhead because
you no longer need to manage separate data stores, build pipelines, or worry about keep the data
stores in sync. You can use vector similarity search in Neptune Analytics to augment your LLMs by
integrating graph queries for domain-specific context with the results from low-latency, nearest-
neighbor similarity search on embeddings imported from LLMs hosted in Amazon Bedrock, Graph
Neural Networks (GNNs) in GraphStorm, or other sources.

As an example, Bioinformatics researchers who are interested in re-purposing existing blood
pressure drugs for other treatable diseases, want to use vector similarity search over in-house
knowledge graphs to find patterns in protein interaction networks.

For another example, a large online book retailer may need to use known pirated material to
quickly identify similar media in conjunction with a knowledge graph to identify patterns of
deceptive listing behaviours and find malicious sellers.

In both cases, vector search over a knowledge graph increases accuracy and speed when building
the solution. It reduces the operational overhead and complexity using the tools available today.

You can create a vector index for your graph to try out this feature. Neptune Analytics supports
associating embeddings generated from LLMs with the nodes of your graphs.

Contents

• Vector indexing in Neptune Analytics

• Vector index transaction support

400

Neptune Analytics Neptune Analytics User Guide

• Loading vectors into a Neptune Analytics graph vector index

• Load the vectors from graph data files Amazon S3

• Using the vectors.upsert algorithm to load vectors for your graph

• Common errors you may encounter when loading embeddings

• Vector-search algorithms in Neptune Analytics

• Vector-similarity search (VSS) algorithms in Neptune Analytics

• The .vectors.distance algorithm (deprecated)

• .vectors.distance syntax

• .vectors.distance inputs

• .vectors.distance outputs

• .vectors.distance query examples

• Sample .vectors.distance output

• The .vectors.distance.byNode algorithm

• .vectors.distance.byNode syntax

• .vectors.distance.byNode inputs

• .vectors.distance.byNode outputs

• .vectors.distance.byNode query examples

• Sample .vectors.distance.byNode output

• The .vectors.distanceByEmbedding algorithm (deprecated)

• .vectors.distanceByEmbedding syntax

• .vectors.distanceByEmbedding inputs

• .vectors.distanceByEmbedding outputs

• .vectors.distanceByEmbedding query examples

• Sample .vectors.distanceByEmbedding output

• The .vectors.distance.byEmbedding algorithm

• .vectors.distance.byEmbedding syntax

• .vectors.distance.byEmbedding inputs

• .vectors.distance.byEmbedding outputs

• .vectors.distance.byEmbedding query examples

• Sample .vectors.distance.byEmbedding output
401

Neptune Analytics Neptune Analytics User Guide

• The .vectors.get algorithm

• .vectors.get syntax

• .vectors.get input

• .vectors.get outputs

• .vectors.get query example

• Sample .vectors.get output

• .vectors.topKByEmbedding algorithm (deprecated)

• .vectors.topKByEmbedding syntax

• .vectors.topKByEmbedding input

• .vectors.topKByEmbedding outputs

• .vectors.topKByEmbedding query example

• Sample .vectors.topKByEmbedding output

• .vectors.topK.byEmbedding algorithm

• .vectors.topK.byEmbedding syntax

• .vectors.topK.byEmbedding input

• .vectors.topK.byEmbedding outputs

• .vectors.topK.byEmbedding query example

• Sample .vectors.topKByEmbedding output

• .vectors.topKByNode algorithm (deprecated)

• .vectors.topKByNode syntax

• .vectors.topKByNode input

• .vectors.topKByNode outputs

• .vectors.topKByNode query example

• Sample .vectors.topKByNode output

• .vectors.topK.byNode algorithm

• .vectors.topK.byNode syntax

• .vectors.topK.byNode input

• .vectors.topK.byNode outputs

• .vectors.topK.byNode query example

• Sample .vectors.topK.byNode output
402

Neptune Analytics Neptune Analytics User Guide

• .vectors.upsert algorithm

• .vectors.upsert syntax

• .vectors.upsert input

• .vectors.upsert outputs

• .vectors.upsert query examples

• Sample .vectors.upsert output

• .vectors.remove algorithm

• .vectors.remove syntax

• .vectors.remove input

• .vectors.remove outputs

• .vectors.remove query examples

• Sample .vectors.remove output

403

Neptune Analytics Neptune Analytics User Guide

Vector indexing in Neptune Analytics

You can only create a vector search index for a Neptune Analytics graph at the time the graph
is created. Neptune Analytics lets you create only one vector index for a graph, with a fixed
dimension between 1 and 65,535 inclusive.

When you create a Neptune Analytics graph in the console, you specify the index dimension under
Vector search settings near the end of the process.

Vector index transaction support

When using Neptune Analytics with a vector search index, it is important to understand that any
updates performed on the vector index are not ACID compliant - specifically, any updates to the
vector index are not atomic in nature. Atomicity in a database defines that when updates are
performed, either all or none of them succeed. There are situations with the vector index where
updating the embeddings may succeed, even when the remainder of the transaction fails:

• When one or more concurrent queries are executed against different vertices, then atomicity is
guaranteed.

• When one or more concurrent queries are executed against the same vertex, then there is no
serializable guarantee of the resulting stored data.

• If one or more queries, including neptune.load() updates, fail to complete then the resulting
index may contain partial updates.

To minimize the potential for this issue to occur, it is recommended that you either run a single
query on a single vertex at a time, or if you are running concurrent queries, that the set of vertices
being updated are distinct.

Loading vectors into a Neptune Analytics graph vector index

Note that the nodes in your graph must have at least one user property or label in order to
associate them with embeddings. Also, Neptune Analytics does not support the special positive
and negative infinity (INF, -INF) and not-a-number (NaN) floating-point values.

Neptune Analytics supports optional embeddings in the CSV file when the vector index is enabled.
This means that not every node needs to be associated with an embedding.

Neptune Analytics does not currently support loading vectors from Neptune Database or a
snapshot.

Vector indexing 404

Neptune Analytics Neptune Analytics User Guide

There are two ways you can load vectors associated with nodes in your graph:

Load the vectors from graph data files Amazon S3

When you're loading graph data from files in Amazon S3 using the console or the
neptune.load{} openCypher integration, you can add a column to your CSV data with an
embedding:vector header. This column should contain a list of integer or floating-point values
separated by semicolons (;) that forms a vector of the required dimension and is the embedding
for the node in question.

For example, associating a 4-dimensional vector with nodes in your graph in the openCypher CSV
format would look like this:

:ID, name:String, embedding:Vector, :LABEL
v1,"ABC",0.1;0.5;0.8;-1.32,person
v2,"DEF",8.1;-0.2;0.432;-1.02,person
v3,"GHI",12323343;24324;2433554;-4343434,person
v4,"JKL",121.12213;3223.212;265;-1.32,person

In the Gremlin CSV format, the same thing would look like this:

~id, name, embedding:vector, ~label
v1,"ABC",0.1;0.5;0.8;-1.32,person
v2,"DEF",8.1;-0.2;0.432;-1.02,person
v3,"GHI",12323343;24324;2433554;-4343434,person
v4,"JKL",121.12213;3223.212;265;-1.32,person

Using the vectors.upsert algorithm to load vectors for your graph

You can also use the vectors.upsert algorithm to insert or update embeddings in a Neptune
Analytics graph that has a vector search index. For example, in openCypher you can call the
algorithm like this:

CALL neptune.algo.vectors.upsert(
 "person933",
 [0.1, 0.2, 0.3, ..]
)
YIELD node, embedding, success
RETURN node, embedding, success

Another example is:

Loading vectors 405

Neptune Analytics Neptune Analytics User Guide

UNWIND [
 {id: "933", embedding: [1,2,3,4]},
 {id: "934", embedding: [-1,-2,-3,-4]}
] as entry
MATCH (n:person) WHERE id(n)=entry.id WITH n, entry.embedding as embedding
CALL neptune.algo.vectors.upsert(n, embedding)
YIELD success
RETURN n, embedding, success

Common errors you may encounter when loading embeddings

• If the embeddings you are trying to load have a different dimension than is expected by the
vector index, the load fails with parsing exception and a message like the following:

An error occurred (ParsingException) when calling the
 ExecuteOpenCypherQuery operation: Could not load vector embedding: (the
 embedding in question). Please check the dimensionality for this vector
 when parsing line [(line number)] in [(file
 name)]

• If the embeddings in a file are not properly formatted, Neptune Analytics reports a Parsing
Exception before starting the load. For example, if the column header for the embedding column
is not embedding:vector, Neptune Analytics would report an error like this:

An error occurred (ParsingException) when calling the
 ExecuteOpenCypherQuery operation: Invalid data type encountered for header
 embedding:Vectttor when parsing line
 [~id, name:string, embedding:Vectttor, ~label] in [(file name)]

• If embeddings are present in a file to be loaded but no vector index is present, Neptune Analytics
simply ignores the embeddings and loads the graph data without them.

Vector-search algorithms in Neptune Analytics

Neptune Analytics supports a variety of vector-search algorithms that are listed in the VSS
algorithms section.

Loading errors 406

Neptune Analytics Neptune Analytics User Guide

Vector-similarity search (VSS) algorithms in Neptune Analytics

Vector simlarity search algorithms identify similar vectors based on the vector distance between
them.

Neptune Analytics supports the following vector-similarity search algorithms:

Note

The following special floating-point values are not supported in Neptune Analytics vector-
similarity search algorithms:

• INF (infinity)

• -INF (negative infinity)

• NaN (not-a-number)

Contents

• The .vectors.distance algorithm (deprecated)

• .vectors.distance syntax

• .vectors.distance inputs

• .vectors.distance outputs

• .vectors.distance query examples

• Sample .vectors.distance output

• The .vectors.distance.byNode algorithm

• .vectors.distance.byNode syntax

• .vectors.distance.byNode inputs

• .vectors.distance.byNode outputs

• .vectors.distance.byNode query examples

• Sample .vectors.distance.byNode output

• The .vectors.distanceByEmbedding algorithm (deprecated)

• .vectors.distanceByEmbedding syntax

• .vectors.distanceByEmbedding inputs

• .vectors.distanceByEmbedding outputs

VSS algorithms 407

Neptune Analytics Neptune Analytics User Guide

• .vectors.distanceByEmbedding query examples

• Sample .vectors.distanceByEmbedding output

• The .vectors.distance.byEmbedding algorithm

• .vectors.distance.byEmbedding syntax

• .vectors.distance.byEmbedding inputs

• .vectors.distance.byEmbedding outputs

• .vectors.distance.byEmbedding query examples

• Sample .vectors.distance.byEmbedding output

• The .vectors.get algorithm

• .vectors.get syntax

• .vectors.get input

• .vectors.get outputs

• .vectors.get query example

• Sample .vectors.get output

• .vectors.topKByEmbedding algorithm (deprecated)

• .vectors.topKByEmbedding syntax

• .vectors.topKByEmbedding input

• .vectors.topKByEmbedding outputs

• .vectors.topKByEmbedding query example

• Sample .vectors.topKByEmbedding output

• .vectors.topK.byEmbedding algorithm

• .vectors.topK.byEmbedding syntax

• .vectors.topK.byEmbedding input

• .vectors.topK.byEmbedding outputs

• .vectors.topK.byEmbedding query example

• Sample .vectors.topKByEmbedding output

• .vectors.topKByNode algorithm (deprecated)

• .vectors.topKByNode syntax

• .vectors.topKByNode input

• .vectors.topKByNode outputs
VSS algorithms 408

Neptune Analytics Neptune Analytics User Guide

• .vectors.topKByNode query example

• Sample .vectors.topKByNode output

• .vectors.topK.byNode algorithm

• .vectors.topK.byNode syntax

• .vectors.topK.byNode input

• .vectors.topK.byNode outputs

• .vectors.topK.byNode query example

• Sample .vectors.topK.byNode output

• .vectors.upsert algorithm

• .vectors.upsert syntax

• .vectors.upsert input

• .vectors.upsert outputs

• .vectors.upsert query examples

• Sample .vectors.upsert output

• .vectors.remove algorithm

• .vectors.remove syntax

• .vectors.remove input

• .vectors.remove outputs

• .vectors.remove query examples

• Sample .vectors.remove output

VSS algorithms 409

Neptune Analytics Neptune Analytics User Guide

The .vectors.distance algorithm (deprecated)

The .vectors.distance algorithm computes the distance between two nodes based on their
embeddings. The default distance is the squared L2 norm.

.vectors.distance syntax

MATCH(n {`~id`: "the ID of the source node(s)"})
MATCH(m {`~id`: "the ID of the target node(s)"})
CALL neptune.algo.vectors.distance(n, m,
 {
 metric: The distance computation metric (optional)
 }
)
YIELD distance
RETURN n, m, distance

.vectors.distance inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The result of a MATCH statement from which you want to get the source for the distance
computations.

• target node list (required) – type: Node[] or NodeId[]; default: none.

The result of a MATCH statement from which you want to get the targets of the distance
computations.

• metric (optional) – type: string default: L2Squared.

The distance metric to use for distance computation.

• Must be one of [L2Squared, L2, CosineSimilarity, CosineDistance, DotProduct].

• Case-insensitive.

• The descriptions for the metrics, where x and y are vectors, x_i and y_i are the components of x
and y vectors, θ is the angle between the x and y vectors, ||x|| denotes the magnitude (length,
l2-norm, norm2) of vector x, ∑ denotes summation:

• L2-Squared: Squared Euclidean distance between two vectors:

.vectors.distance (deprecated) 410

Neptune Analytics Neptune Analytics User Guide

For more information on L2-Squared, see https://en.wikipedia.org/wiki/
Euclidean_distance#Squared_Euclidean_distance.

• L2: Euclidean distance (L2 norm) between two vectors:

For more information on L2, see https://en.wikipedia.org/wiki/Euclidean_distance.

• Dot Product: Inner dot product of two vectors:

For more information on Dot Product, see https://en.wikipedia.org/wiki/Dot_product.

• Cosine Similarity: Measures the cosine of the angle between two vectors (higher value
means more similar):

Range: [-1, 1]

For more information on Cosine Similarity, see https://en.wikipedia.org/wiki/
Cosine_similarity.

• Cosine Distance: Opposite of cosine similarity (lower value means more similar):

.vectors.distance (deprecated) 411

https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity

Neptune Analytics Neptune Analytics User Guide

Range: [0, 2]

For more information on Cosine Distance, see https://en.wikipedia.org/wiki/
Cosine_similarity#Cosine_distance.

Warning

Be careful to limit MATCH(n) and MATCH(m) so that they don't return a large
number of nodes. Keep in mind that every pair of n and m in the join result invokes
.vectors.distance once. Too many inputs can therefore result in very long runtimes.
Use LIMIT or put conditions on the MATCH clause to restrict its output appropriately.

.vectors.distance outputs

For every pair of source node and target node:

• source – The source node.

• target – The target node.

• distance – The distance between source and target nodes.

.vectors.distance query examples

MATCH (n {`~id`: "106"})
MATCH (m {`~id`: "110" })
CALL neptune.algo.vectors.distance(n, m)
YIELD distance
RETURN n, m, distance

MATCH (n {`~id`: "106"})
MATCH (m {`~id`: "110"})
CALL neptune.algo.vectors.distance(n, m, {metric: "CosineSimilarity"})

.vectors.distance (deprecated) 412

https://en.wikipedia.org/wiki/Cosine_similarity#Cosine_distance
https://en.wikipedia.org/wiki/Cosine_similarity#Cosine_distance

Neptune Analytics Neptune Analytics User Guide

YIELD distance
RETURN n, m, distance

Sample .vectors.distance output

Here is an example of the output returned by .vectors.distance when run against a sample
Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n{`~id`: '0'})
 MATCH (m{`~id`: '1'})
 CALL neptune.algo.vectors.distance(n, m)
 YIELD distance
 RETURN n, m, distance" \
 --language open_cypher \
 /tmp/out.txt

{
 "results": [
 {
 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "m": {
 "~id": "1",

.vectors.distance (deprecated) 413

Neptune Analytics Neptune Analytics User Guide

 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 1,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "A time in the 24-hour clock is written in the form hours:minutes
 (for example\\, 01:23)\\, or hours:minutes:seconds (01:23:45). Numbers under 10 have
 a zero in front (called a leading zero); e.g. 09:07. Under the 24-hour clock system\\,
 the day begins at midnight\\, 00:00\\, and the last minute of the day begins at 23:59
 and ends at 24:00\\, which is identical to 00:00 of the following day. 12:00 can only
 be mid-day. Midnight is called 24:00 and is used to mean the end of the day and 00:00
 is used to mean the beginning of the day. For example\\, you would say \"Tuesday at
 24:00\" and \"Wednesday at 00:00\" to mean exactly the same time."
 }
 },
 "distance": 27.762847900390626
 }
]
}

.vectors.distance (deprecated) 414

Neptune Analytics Neptune Analytics User Guide

The .vectors.distance.byNode algorithm

The .vectors.distance.byNode algorithm computes the distance between two nodes based
on their embeddings. The default distance is the squared L2 norm.

.vectors.distance.byNode syntax

MATCH(n {`~id`: "the ID of the source node(s)"})
MATCH(m {`~id`: "the ID of the target node(s)"})
CALL neptune.algo.vectors.distance.byNode(n, m,
 {
 metric: The distance computation metric (optional)
 }
)
YIELD distance
RETURN n, m, distance

.vectors.distance.byNode inputs

• a source node list (required) – type: Node[] or NodeId[]; default: none.

The result of a MATCH statement from which you want to get the source for the distance
computations.

• target node list (required) – type: Node[] or NodeId[]; default: none.

The result of a MATCH statement from which you want to get the targets of the distance
computations.

• metric (optional) – type: string default: L2Squared.

The distance metric to use for distance computation.

• Must be one of [L2Squared, L2, CosineSimilarity, CosineDistance, DotProduct].

• Case-insensitive.

• The descriptions for the metrics, where x and y are vectors, x_i and y_i are the components of x
and y vectors, θ is the angle between the x and y vectors, ||x|| denotes the magnitude (length,
l2-norm, norm2) of vector x, ∑ denotes summation:

• L2-Squared: Squared Euclidean distance between two vectors:

.vectors.distance.byNode 415

Neptune Analytics Neptune Analytics User Guide

For more information on L2-Squared, see https://en.wikipedia.org/wiki/
Euclidean_distance#Squared_Euclidean_distance.

• L2: Euclidean distance (L2 norm) between two vectors:

For more information on L2, see https://en.wikipedia.org/wiki/Euclidean_distance.

• Dot Product: Inner dot product of two vectors:

For more information on Dot Product, see https://en.wikipedia.org/wiki/Dot_product.

• Cosine Similarity: Measures the cosine of the angle between two vectors (higher value
means more similar):

Range: [-1, 1]

For more information on Cosine Similarity, see https://en.wikipedia.org/wiki/
Cosine_similarity.

• Cosine Distance: Opposite of cosine similarity (lower value means more similar):

.vectors.distance.byNode 416

https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity

Neptune Analytics Neptune Analytics User Guide

Range: [0, 2]

For more information on Cosine Distance, see https://en.wikipedia.org/wiki/
Cosine_similarity#Cosine_distance.

Warning

Be careful to limit MATCH(n) and MATCH(m) so that they don't return a large
number of nodes. Keep in mind that every pair of n and m in the join result invokes
.vectors.distance.byNode once. Too many inputs can therefore result in very
long runtimes. Use LIMIT or put conditions on the MATCH clause to restrict its output
appropriately.

.vectors.distance.byNode outputs

For every pair of source node and target node:

• source – The source node.

• target – The target node.

• distance – The distance between source and target nodes.

.vectors.distance.byNode query examples

MATCH (n {`~id`: "106"})
MATCH (m {`~id`: "110" })
CALL neptune.algo.vectors.distance.byNode(n, m)
YIELD distance
RETURN n, m, distance

MATCH (n {`~id`: "106"})
MATCH (m {`~id`: "110"})

.vectors.distance.byNode 417

https://en.wikipedia.org/wiki/Cosine_similarity#Cosine_distance
https://en.wikipedia.org/wiki/Cosine_similarity#Cosine_distance

Neptune Analytics Neptune Analytics User Guide

CALL neptune.algo.vectors.distance.byNode(n, m, {metric: "CosineSimilarity"})
YIELD distance
RETURN n, m, distance

Sample .vectors.distance.byNode output

Here is an example of the output returned by .vectors.distance.byNode when run against a
sample Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n{`~id`: '0'})
 MATCH (m{`~id`: '1'})
 CALL neptune.algo.vectors.distance.byNode(n, m)
 YIELD distance
 RETURN n, m, distance" \
 --language open_cypher \
 /tmp/out.txt

{
 "results": [
 {
 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "m": {

.vectors.distance.byNode 418

Neptune Analytics Neptune Analytics User Guide

 "~id": "1",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 1,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "A time in the 24-hour clock is written in the form hours:minutes
 (for example\\, 01:23)\\, or hours:minutes:seconds (01:23:45). Numbers under 10 have
 a zero in front (called a leading zero); e.g. 09:07. Under the 24-hour clock system\\,
 the day begins at midnight\\, 00:00\\, and the last minute of the day begins at 23:59
 and ends at 24:00\\, which is identical to 00:00 of the following day. 12:00 can only
 be mid-day. Midnight is called 24:00 and is used to mean the end of the day and 00:00
 is used to mean the beginning of the day. For example\\, you would say \"Tuesday at
 24:00\" and \"Wednesday at 00:00\" to mean exactly the same time."
 }
 },
 "distance": 27.762847900390626
 }
]
}

.vectors.distance.byNode 419

Neptune Analytics Neptune Analytics User Guide

The .vectors.distanceByEmbedding algorithm (deprecated)

The .vectors.distanceByEmbedding algorithm computes the distance between an embedding
vector and the embedding of an input node. The default distance is the squared L2 norm of the
input (source) embedding vector and the embedding vector of the (target) input node.

.vectors.distanceByEmbedding syntax

WITH [*an embedding*] as embedding
MATCH(n {`~id`: "the ID of the target node(s)"})
CALL neptune.algo.vectors.distanceByEmbedding(embedding, n,
 {
 metric: The distance computation metric (optional)
 }
)
YIELD distance
RETURN embedding, n, distance

.vectors.distanceByEmbedding inputs

• a source embedding list (required) – type: float[] or double[];.

The mebedding vector from which you want to use as the source for the distance computations.

• a target node list (required) – type: Node[] or NodeId[]; default: none.

The result of a MATCH statement from which you want to source distance computations.

• metric (optional) – type: string default: L2Squared.

The distance metric to use for distance computation.

• Must be one of [L2Squared, L2, CosineSimilarity, CosineDistance, DotProduct].

• Case-insensitive.

• The descriptions for the metrics, where x and y are vectors, x_i and y_i are the components of x
and y vectors, θ is the angle between the x and y vectors, ||x|| denotes the magnitude (length,
l2-norm, norm2) of vector x, ∑ denotes summation:

• L2-Squared: Squared Euclidean distance between two vectors:

.vectors.distanceByEmbedding (deprecated) 420

Neptune Analytics Neptune Analytics User Guide

For more information on L2-Squared, see https://en.wikipedia.org/wiki/
Euclidean_distance#Squared_Euclidean_distance.

• L2: Euclidean distance (L2 norm) between two vectors:

For more information on L2, see https://en.wikipedia.org/wiki/Euclidean_distance.

• Dot Product: Inner dot product of two vectors:

For more information on Dot Product, see https://en.wikipedia.org/wiki/Dot_product.

• Cosine Similarity: Measures the cosine of the angle between two vectors (higher value
means more similar):

Range: [-1, 1]

For more information on Cosine Similarity, see https://en.wikipedia.org/wiki/
Cosine_similarity.

• Cosine Distance: Opposite of cosine similarity (lower value means more similar):

.vectors.distanceByEmbedding (deprecated) 421

https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity

Neptune Analytics Neptune Analytics User Guide

Range: [0, 2]

For more information on Cosine Distance, see https://en.wikipedia.org/wiki/
Cosine_similarity#Cosine_distance.

.vectors.distanceByEmbedding outputs

For every pair of source node and target node:

• embedding – The input source embedding vector.

• target – The target node.

• distance – The distance between the source embedding and the target node.

.vectors.distanceByEmbedding query examples

WITH [1.1, 1.2, 1.3, 1.4] as embedding
MATCH (n)
WHERE id(n)="v1"
CALL neptune.algo.vectors.distanceByEmbedding(embedding, n)
YIELD distance
RETURN embedding, n, distance

WITH [1.1, 1.2, 1.3, 1.4] as embedding
MATCH (n)
WHERE id(n)="v1"
CALL neptune.algo.vectors.distanceByEmbedding(embedding, n, {metric:
 "CosineSimilarity" })
YIELD distance
return embedding, n, distance

UNWIND [{id: "933", embedding: [1,2,3,4]},
 {id: "934", embedding: [-1,-2,-3,-4]}] as entry
MATCH (n:person) WHERE id(n)=entry.id WITH n, entry.embedding as embedding

.vectors.distanceByEmbedding (deprecated) 422

https://en.wikipedia.org/wiki/Cosine_similarity#Cosine_distance
https://en.wikipedia.org/wiki/Cosine_similarity#Cosine_distance

Neptune Analytics Neptune Analytics User Guide

CALL neptune.algo.vectors.distanceByEmbedding(embedding, n)
YIELD distance
RETURN embedding, n, distance

Sample .vectors.distanceByEmbedding output

Here is an example of the output returned by .vectors.distanceByEmbedding when run
against a sample Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "***embedding part***
 MATCH (n{`~id`: '1'})
 CALL neptune.algo.vectors.distanceByEmbedding(embedding, n)
 YIELD distance
 RETURN embedding, n, distance" \
 --language open_cypher \
 /tmp/out.txt

{
 "results": [
 {
 "embedding": [***embedding***],
 "n": {
 "~id": "1",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 1,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "A time in the 24-hour clock is written in the form hours:minutes
 (for example\\, 01:23)\\, or hours:minutes:seconds (01:23:45). Numbers under 10 have
 a zero in front (called a leading zero); e.g. 09:07. Under the 24-hour clock system\\,
 the day begins at midnight\\, 00:00\\, and the last minute of the day begins at 23:59
 and ends at 24:00\\, which is identical to 00:00 of the following day. 12:00 can only
 be mid-day. Midnight is called 24:00 and is used to mean the end of the day and 00:00
 is used to mean the beginning of the day. For example\\, you would say \"Tuesday at
 24:00\" and \"Wednesday at 00:00\" to mean exactly the same time."
 }

.vectors.distanceByEmbedding (deprecated) 423

Neptune Analytics Neptune Analytics User Guide

 },
 "distance": 27.762847900390626
 }
]
}

.vectors.distanceByEmbedding (deprecated) 424

Neptune Analytics Neptune Analytics User Guide

The .vectors.distance.byEmbedding algorithm

The .vectors.distance.byEmbedding algorithm computes the distance between an
embedding vector and the embedding of an input node. The default distance is the squared L2
norm of the input embedding vector and the embedding vector of the input node.

.vectors.distance.byEmbedding syntax

MATCH(n {`~id`: "the ID of the input node(s)"})
CALL neptune.algo.vectors.distance.byEmbedding(n,
 {
 metric: The distance computation metric (optional),
 embedding: [*an embedding*] (required)
 }
)
YIELD distance
RETURN n, distance

.vectors.distance.byEmbedding inputs

• an input node list (required) – type: node[] or NodeId[]; default: none.

The result of a `MATCH` statement from which you want get the input nodes of the distance
computations.

• embedding (required) – type: float[] or double[];.

The input embedding vector from which you want to use for the distance computations. The
dimension of the embedding must match the declared dimension of the associated vector index.

The embedding may or may not exist in the database. If not, it can be any vector of the same
dimension as is declared in the associated vector index.

• metric (optional) – type: string default: L2Squared.

The distance metric to use for distance computation.

• Must be one of [L2Squared, L2, CosineSimilarity, CosineDistance, DotProduct].

• Case-insensitive.

• The descriptions for the metrics, where x and y are vectors, x_i and y_i are the components of x
and y vectors, θ is the angle between the x and y vectors, ||x|| denotes the magnitude (length,
l2-norm, norm2) of vector x, ∑ denotes summation:

.vectors.distance.byEmbedding 425

Neptune Analytics Neptune Analytics User Guide

• L2-Squared: Squared Euclidean distance between two vectors:

For more information on L2-Squared, see https://en.wikipedia.org/wiki/
Euclidean_distance#Squared_Euclidean_distance.

• L2: Euclidean distance (L2 norm) between two vectors:

For more information on L2, see https://en.wikipedia.org/wiki/Euclidean_distance.

• Dot Product: Inner dot product of two vectors:

For more information on Dot Product, see https://en.wikipedia.org/wiki/Dot_product.

• Cosine Similarity: Measures the cosine of the angle between two vectors (higher value
means more similar):

Range: [-1, 1]

For more information on Cosine Similarity, see https://en.wikipedia.org/wiki/
Cosine_similarity.

• Cosine Distance: Opposite of cosine similarity (lower value means more similar):

.vectors.distance.byEmbedding 426

https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity

Neptune Analytics Neptune Analytics User Guide

Range: [0, 2]

For more information on Cosine Distance, see https://en.wikipedia.org/wiki/
Cosine_similarity#Cosine_distance.

.vectors.distance.byEmbedding outputs

For every target node:

• target – The target node.

• distance – The distance between the source embedding and the embedding of the target
node.

.vectors.distance.byEmbedding query examples

MATCH (n)
WHERE id(n)="v1"
CALL neptune.algo.vectors.distance.byEmbedding(n, {embedding: [1.1, 1.2, 1.3, 1.4],
 metric: "L2Squared"})
YIELD distance
RETURN n, distance

MATCH (n:person) WHERE id(n)=entry.id WITH n
CALL neptune.algo.vectors.distance.byEmbedding(n, {embedding: [1,2,3,4], metric:
 "CosineSimilarity"})
YIELD distance
RETURN n, distance

Sample .vectors.distance.byEmbedding output

Here is an example of the output returned by .vectors.distance.byEmbedding when run
against a sample Wikipedia dataset using the following query:

.vectors.distance.byEmbedding 427

https://en.wikipedia.org/wiki/Cosine_similarity#Cosine_distance
https://en.wikipedia.org/wiki/Cosine_similarity#Cosine_distance

Neptune Analytics Neptune Analytics User Guide

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n{`~id`: '1'})
 CALL neptune.algo.vectors.distance.byEmbedding(n, {embedding:
 [*an embedding*]})
 YIELD distance
 RETURN n, distance" \
 --language open_cypher \
 /tmp/out.txt

{
 "results": [
 {
 "n": {
 "~id": "1",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 1,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "A time in the 24-hour clock is written in the form hours:minutes
 (for example\\, 01:23)\\, or hours:minutes:seconds (01:23:45). Numbers under 10 have
 a zero in front (called a leading zero); e.g. 09:07. Under the 24-hour clock system\\,
 the day begins at midnight\\, 00:00\\, and the last minute of the day begins at 23:59
 and ends at 24:00\\, which is identical to 00:00 of the following day. 12:00 can only
 be mid-day. Midnight is called 24:00 and is used to mean the end of the day and 00:00
 is used to mean the beginning of the day. For example\\, you would say \"Tuesday at
 24:00\" and \"Wednesday at 00:00\" to mean exactly the same time."
 }
 },
 "distance": 27.762847900390626
 }
]
}

.vectors.distance.byEmbedding 428

Neptune Analytics Neptune Analytics User Guide

The .vectors.get algorithm

The .vectors.get algorithm retrieves the embedding for a node.

.vectors.get syntax

MATCH(n {`~id`: "the ID of the node"})
CALL neptune.algo.vectors.get(n)
YIELD embedding
RETURN n, embedding

.vectors.get input

• a source node or nodes (required) – type: Node[] or NodeId[]; default: none.

The result of a MATCH statement that produces the node(s) for which you want to retrieve the
embedding.

Warning

Be careful to limit MATCH(n) so that it doesn't return a large number of nodes. Keep in
mind that every source node in the n result invokes .vectors.get once. Too many inputs
can therefore result in very long runtimes. Use LIMIT or put conditions on the MATCH
clause to restrict its output appropriately.

.vectors.get outputs

For each source node provided:

• node – The source node.

• embedding – The embedding of that source node.

.vectors.get query example

MATCH (n {`~id`: "0"})
CALL neptune.algo.vectors.get(n)
YIELD embedding

.vectors.get 429

Neptune Analytics Neptune Analytics User Guide

RETURN n, embedding

Sample .vectors.get output

Here is an example of the output returned by .vectors.get when run against the sample
Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {`~id`: '0'})
 CALL neptune.algo.vectors.get(n)
 YIELD embedding
 RETURN n, embedding" \
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {
 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "embedding": [
 0.07711287587881088,
 0.3197174072265625,
 -0.2051590085029602,
 0.6302579045295715,

.vectors.get 430

Neptune Analytics Neptune Analytics User Guide

 0.032093219459056857,
 0.200703963637352,
 0.16665680706501008,
 -0.31295087933540347,
 0.17575109004974366,
 0.5308129191398621,
 -0.37528499960899355,
 0.3338659405708313,
 -0.046272162348032,
 0.07841536402702332,
 -0.3490406274795532,
 0.27182886004447939,
 0.3073517680168152,
 -0.08306130766868592,
 0.5035958886146545,
 0.254621684551239,
 -0.40407684445381167,
 0.28878292441368105,
 -0.22588828206062318,
 -0.13185778260231019,
 -0.21559733152389527,
 0.4900434613227844,
 0.03866531699895859,
 0.507415771484375,
 -0.3067346513271332,
 0.10740984976291657,
 0.08998646587133408,
 -0.2652775049209595,
 -0.28492602705955508,
 0.33600345253944399,
 -0.27227747440338137,
 0.3691731095314026,
 -0.2815995514392853,
 0.0856710895895958,
 -0.13187488913536073,
 0.4753035008907318,
 -0.2241700142621994,
 0.20263174176216126,
 0.4390721619129181,
 0.06424559652805329,
 0.2463042289018631,
 -0.39631763100624087,
 0.2971232533454895,
 0.2415716052055359,

.vectors.get 431

Neptune Analytics Neptune Analytics User Guide

 -0.02803819440305233,
 0.32105034589767458,
 -0.02222033031284809,
 -0.008510420098900795,
 -0.00032598740654066205,
 0.031057516112923623,
 -0.5332233309745789,
 0.45022767782211306,
 -0.6829474568367004,
 1.3313145637512208,
 0.19445496797561646,
 -0.15697629749774934,
 -0.09996363520622254,
 -0.2786232829093933,
 -0.09833164513111115,
 -0.17644722759723664,
 0.11717787384986878,
 0.2820119559764862,
 0.029635537415742875,
 0.5247654914855957,
 0.5323811173439026,
 -0.06254086643457413,
 -0.05274389684200287,
 0.3877565860748291,
 0.43260684609413149,
 0.5207982063293457,
 -0.27160540223121645,
 -0.06000519543886185,
 -0.032806672155857089,
 -0.3594319522380829,
 0.4218965470790863,
 -0.3766363263130188,
 0.44727250933647158,
 -0.04586323723196983,
 0.06902860850095749,
 0.3030509352684021,
 0.18945887684822083,
 0.21681705117225648,
 -0.014492596499621868,
 -0.38649576902389529,
 -0.1129651814699173,
 0.050081491470336917,
 -0.01697717048227787,
 0.1415158063173294,

.vectors.get 432

Neptune Analytics Neptune Analytics User Guide

 -0.3284287750720978,
 -0.02309800498187542,
 -0.2051207274198532,
 -0.017861712723970414,
 -0.07372242212295532,
 -0.12263767421245575,
 0.21828559041023255,
 -0.36898064613342287,
 0.3558262288570404,
 -0.16924124956130982,
 -0.31757786870002749,
 0.5452765226364136,
 0.24666202068328858,
 -0.08289600908756256,
 -0.14674079418182374,
 -0.18049933016300202,
 0.3646247982978821,
 0.42489132285118105,
 0.0909421369433403,
 -0.1764664500951767,
 0.22471413016319276,
 0.049531541764736179,
 -0.022898104041814805,
 0.08607156574726105,
 0.14532636106014253,
 -0.205774188041687,
 -0.3457978069782257,
 -1.2771626710891724,
 0.2826114892959595,
 0.2066900134086609,
 -0.3884444832801819,
 -0.3564482629299164,
 -0.25118574500083926,
 -0.728326141834259,
 0.5217206478118897,
 -0.43305152654647829,
 0.3510914444923401,
 0.5106240510940552,
 -0.11594267934560776,
 0.43993058800697329,
 0.25412991642951968,
 0.4275965392589569,
 0.1463870108127594,
 0.3510439395904541,

.vectors.get 433

Neptune Analytics Neptune Analytics User Guide

 0.1619710624217987,
 0.11160195618867874,
 -0.22760489583015443,
 -0.23652249574661256,
 0.05374380201101303,
 0.7251803278923035,
 -0.13991153240203858,
 0.9363659024238586,
 -0.05858418717980385,
 0.5233941674232483,
 0.12388131022453308,
 0.6248424649238586,
 -0.11751417070627213,
 0.09689709544181824,
 0.7467237710952759,
 0.2247271090745926,
 -0.6747357845306397,
 -0.16039365530014039,
 -0.41555172204971316,
 -0.04566565155982971,
 0.21260707080364228,
 0.2549103796482086,
 0.24795542657375337,
 0.5625612735748291,
 0.8036459684371948,
 0.15800043940544129,
 0.04797195643186569,
 -0.15839435160160066,
 -0.06506697088479996,
 -0.2577322721481323,
 0.3262946903705597,
 0.5458049178123474,
 0.616370439529419,
 -0.35092639923095705,
 0.048758912831544879,
 0.11522434651851654,
 0.04175107553601265,
 -0.12269306182861328,
 0.1227836161851883,
 0.4020257890224457,
 0.07093577086925507,
 -0.1880340874195099,
 0.5334663391113281,
 0.46888044476509097,

.vectors.get 434

Neptune Analytics Neptune Analytics User Guide

 0.18104688823223115,
 0.30756646394729617,
 0.29316428303718569,
 -0.10604366660118103,
 0.44999250769615176,
 0.18227706849575044,
 0.5962150692939758,
 0.38278165459632876,
 -0.40461188554763796,
 0.17775404453277589,
 -0.16349074244499207,
 0.06950787454843521,
 0.7547341585159302,
 -0.4842711389064789,
 0.4062837064266205,
 0.09000574052333832,
 0.03859427571296692,
 0.24143263697624207,
 -0.3383118510246277,
 0.3363209366798401,
 0.10778547078371048,
 0.3429640233516693,
 -0.20395530760288239,
 0.011477324180305004,
 0.6145590543746948,
 -0.5488739609718323,
 -0.26194247603416445,
 -0.09723474085330963,
 -0.19020821154117585,
 -0.18068274855613709,
 0.1601778119802475,
 0.038950759917497638,
 0.6372026205062866,
 -0.12897184491157533,
 0.10720998793840409,
 0.13482464849948884,
 -0.07540713250637055,
 -0.0881727784872055,
 0.5626690983772278,
 -0.31975486874580386,
 -0.029084375128149987,
 0.43618619441986086,
 0.32975345849990847,
 -0.4053913652896881,

.vectors.get 435

Neptune Analytics Neptune Analytics User Guide

 0.15788795053958894,
 -0.3212168216705322,
 -0.20272433757781983,
 -0.8973743319511414,
 0.060059018433094028,
 -0.014103145338594914,
 -0.3387225568294525,
 -0.49839726090431216,
 -0.011007139459252358,
 -0.16101065278053285,
 -0.20850643515586854,
 0.4891682267189026,
 0.33551496267318728,
 -0.23595896363258363,
 -0.4257577359676361,
 -0.48884832859039309,
 0.48760101199150088,
 0.34031161665916445,
 0.1722799688577652,
 -0.35575979948043826,
 0.629051923751831,
 -0.8014369010925293,
 0.575096607208252,
 0.421142578125,
 -0.2668846547603607,
 -0.046029768884181979,
 0.2791147530078888,
 -0.22112232446670533,
 0.02008579671382904,
 0.22087614238262177,
 -0.17961964011192323,
 0.4235396981239319,
 0.295818567276001,
 -0.18260923027992249,
 0.3227207660675049,
 0.11412205547094345,
 0.04591478034853935,
 0.5127033591270447,
 0.428005576133728,
 0.20718106627464295,
 0.18405631184577943,
 -0.22416146099567414,
 0.4277373254299164,
 0.5384698510169983,

.vectors.get 436

Neptune Analytics Neptune Analytics User Guide

 0.04109276458621025,
 0.5105301141738892,
 0.473961740732193,
 -0.6853302717208862,
 -0.16557902097702027,
 -0.12704522907733918,
 0.0026600745040923359,
 0.5272349715232849,
 0.12121742218732834,
 0.427141010761261,
 -0.3047095239162445,
 0.5948843359947205,
 0.335798442363739,
 0.35749775171279909,
 -0.18497343361377717,
 0.26501506567001345,
 0.1564970314502716,
 0.4210122525691986,
 -0.1915784478187561,
 0.057152874767780307,
 -0.28498271107673647,
 0.04969947412610054,
 0.7697478532791138,
 0.5546697974205017,
 0.0958070456981659,
 -0.3533228933811188,
 0.4784282147884369,
 0.624963104724884,
 0.2151053100824356,
 0.17361000180244447,
 0.22527147829532624,
 -0.12481484562158585,
 0.4212929904460907,
 -0.2926572859287262,
 0.2562543749809265,
 0.38751208782196047,
 0.1340814083814621,
 0.0680900365114212,
 0.2952287793159485,
 0.12217980623245239,
 -0.2869758605957031,
 0.15682946145534516,
 -0.022066200152039529,
 -0.09002991020679474,

.vectors.get 437

Neptune Analytics Neptune Analytics User Guide

 -0.2826828360557556,
 0.84619140625,
 0.7544476985931397,
 0.5953861474990845,
 0.6517565250396729,
 -0.07932830601930618,
 0.22802823781967164,
 -0.135965958237648,
 -0.8263510465621948,
 -0.6325801610946655,
 -0.5928561091423035,
 0.4108763635158539,
 0.0964483916759491,
 -0.5045000910758972,
 -0.06772734969854355,
 -0.79107666015625,
 0.060380879789590839,
 0.015578197315335274,
 0.32540079951286318,
 -0.044692762196063998,
 -0.17132098972797395,
 -0.19123415648937226,
 0.17911623418331147,
 0.3269428014755249,
 -0.22874118387699128,
 0.4686919152736664,
 -0.15749554336071015,
 -0.25185921788215639,
 -0.21561351418495179,
 -0.10132477432489395,
 -0.057977184653282168,
 0.09759098291397095,
 0.16202516853809358,
 0.01888692006468773,
 0.1724688857793808,
 -0.3449697196483612,
 0.4449881315231323,
 0.10185430943965912,
 -0.2976726293563843,
 0.06075461208820343,
 0.21909406781196595,
 -0.07409229874610901,
 0.6881160140037537,
 0.17447273433208466,

.vectors.get 438

Neptune Analytics Neptune Analytics User Guide

 -0.048471711575984958,
 0.5318611264228821,
 0.30954766273498537,
 -0.24350836873054505,
 0.14386573433876038,
 -0.10827953368425369,
 0.08575868606567383,
 0.14200334250926972,
 0.5095603466033936,
 -0.025056177750229837,
 0.24901045858860017,
 -0.23696841299533845,
 -0.03630203381180763,
 0.45206722617149355,
 0.5019969344139099,
 -0.21705971658229829,
 -0.08452687412500382,
 -0.10376924276351929,
 -0.3200875520706177,
 -0.2048267275094986,
 -0.2703971266746521,
 0.2925371825695038,
 0.3755778670310974,
 0.2522588074207306,
 0.22964833676815034,
 0.7995960116386414,
 0.12206973880529404,
 0.2896155118942261,
 0.04163726791739464,
 -0.12602514028549195,
 0.004978220444172621,
 0.3399927020072937,
 0.09124521911144257,
 -0.5452605485916138,
 0.2247130423784256,
 0.23503662645816804,
 0.06750215590000153,
 -0.2884872257709503,
 -0.2791622579097748,
 -0.1780446618795395,
 -0.44350507855415347,
 -0.1840016394853592,
 0.8970789909362793,
 -0.3687478303909302,

.vectors.get 439

Neptune Analytics Neptune Analytics User Guide

 0.36603569984436037,
 0.23560358583927155,
 0.020292289555072786,
 0.2446030080318451,
 4.3314642906188969,
 0.194863960146904,
 -0.10218192636966706,
 0.5695234537124634,
 0.016988292336463929,
 -0.15768325328826905,
 0.050476688891649249,
 0.09948820620775223,
 -0.06554386019706726,
 0.22301962971687318,
 -0.05468735471367836,
 0.29051196575164797,
 0.12100572139024735,
 0.4127441644668579,
 0.1667146235704422,
 0.0587792843580246,
 -0.09758614003658295,
 -0.20510408282279969,
 -0.21746976673603059,
 0.43335747718811037,
 -0.32159093022346499,
 0.6942153573036194,
 0.6173154711723328,
 0.3104712665081024,
 0.5751503109931946,
 0.4174514412879944,
 -0.2948107421398163,
 0.3532458245754242,
 0.4869029223918915,
 0.3115881681442261,
 0.28135108947753909,
 0.38450825214385989,
 0.016915690153837205,
 -0.11598393321037293,
 -0.32250434160232546,
 -0.06988134980201721,
 0.22417351603507996,
 -0.35582518577575686,
 0.2677224576473236,
 0.008019124157726765,

.vectors.get 440

Neptune Analytics Neptune Analytics User Guide

 -0.19177919626235963,
 0.5731900334358215,
 -0.03540642186999321,
 0.43302130699157717,
 0.1796148121356964,
 -0.005056577268987894,
 0.37953320145606997,
 0.13488957285881043,
 0.7240068912506104,
 -0.3088097870349884,
 0.5610846281051636,
 -0.29582735896110537,
 -0.20909856259822846,
 -0.2881403863430023,
 0.10329002141952515,
 0.49255961179733279,
 0.14558906853199006,
 0.41020694375038149,
 0.04002099484205246,
 -0.24476903676986695,
 -0.389543354511261,
 0.3901459574699402,
 0.6170359253883362,
 0.18917717039585114,
 -0.41235554218292239,
 -0.19313344359397889,
 -0.10294703394174576,
 0.5560699105262756,
 0.5773581266403198,
 -0.17282086610794068,
 0.28679269552230837,
 0.34322652220726015,
 -0.07227988541126251,
 -0.5244243741035461,
 -0.26529040932655337,
 -0.11131077259778977,
 -0.19524210691452027,
 0.4082769453525543,
 -0.009217939339578152,
 -0.1462743580341339,
 0.7264918684959412,
 -0.09149657934904099,
 -0.3374916911125183,
 -0.05742226541042328,

.vectors.get 441

Neptune Analytics Neptune Analytics User Guide

 -0.3913151025772095,
 0.7185215950012207,
 -0.3785516619682312,
 -0.00010882654169108719,
 0.6655824780464172,
 0.4194306433200836,
 0.3726831376552582,
 -0.014721312560141087,
 0.5345744490623474,
 0.33022087812423708,
 -0.06344814598560333,
 -0.1560882031917572,
 0.22698232531547547,
 -3.8697707653045656,
 0.06812435388565064,
 -0.4368731677532196,
 -0.07041455805301666,
 -0.015291529707610608,
 -0.41140303015708926,
 0.31612321734428408,
 0.2914712429046631,
 -0.3867192566394806,
 -0.026363473385572435,
 -0.08788029104471207,
 -0.10701339691877365,
 -0.2673511505126953,
 0.27538666129112246,
 -0.3661351501941681,
 0.5879861116409302,
 0.06352981925010681,
 0.15547777712345124,
 0.0863194614648819,
 -0.021183960139751436,
 0.428565114736557,
 0.04859453812241554,
 0.35721391439437868,
 -0.3864029347896576,
 -0.20986808836460114,
 0.15433000028133393,
 0.25567296147346499,
 0.25359275937080386,
 -0.4783596396446228,
 -0.010366495698690415,
 0.4777776598930359,

.vectors.get 442

Neptune Analytics Neptune Analytics User Guide

 -0.029405448585748674,
 0.3631121814250946,
 -0.18738743662834168,
 0.2193489819765091,
 0.7861229777336121,
 -0.01961355283856392,
 0.16653983294963838,
 -0.4193624258041382,
 0.3085209131240845,
 -0.03517897054553032,
 -0.035910699516534808,
 0.37241387367248537,
 -0.13769084215164185,
 -0.08015040308237076,
 0.4384872615337372,
 -0.12396809458732605,
 0.15661391615867616,
 -0.3919837176799774,
 -0.6586825251579285,
 0.5687432885169983,
 0.0396936871111393,
 -0.09660491347312927,
 0.05788198113441467,
 0.48911261558532717,
 0.5213083028793335,
 0.3355415165424347,
 -0.006735790055245161,
 -0.11381038278341294,
 0.09182903915643692,
 -0.11055094748735428,
 -0.28275448083877566,
 0.24975340068340302,
 0.11746659129858017,
 -0.42452141642570498,
 -0.2323901206254959,
 -0.38694220781326296,
 0.015501483343541623,
 0.6440262198448181,
 -0.3121536672115326,
 -0.08778296411037445,
 -0.14549347758293153,
 0.01749151013791561,
 -0.5398207902908325,
 0.4124368131160736,

.vectors.get 443

Neptune Analytics Neptune Analytics User Guide

 0.5154116749763489,
 -0.34769660234451296,
 0.5662841796875,
 0.4989481270313263,
 0.06761053949594498,
 0.014184223487973214,
 0.601079523563385,
 -0.3859538435935974,
 0.3446619212627411,
 2.190366744995117,
 0.4051366150379181,
 2.288928508758545,
 0.5293960571289063,
 -0.3505767583847046,
 0.5397417545318604,
 -0.6520821452140808,
 0.4239364266395569,
 0.2618080675601959,
 0.20174439251422883,
 0.030146604403853418,
 0.0610184520483017,
 0.062213074415922168,
 -0.11276254057884217,
 -0.1301877349615097,
 -0.19404706358909608,
 0.5268515348434448,
 -0.7370991706848145,
 0.028712594881653787,
 -0.4024544954299927,
 0.18225152790546418,
 0.7267741560935974,
 -0.2734072208404541,
 0.1759040206670761,
 -0.2950340211391449,
 0.14166314899921418,
 0.6515365242958069,
 -0.29643580317497256,
 -0.06734377890825272,
 0.09662584215402603,
 -0.010966300964355469,
 -0.3204823136329651,
 0.6417866349220276,
 -0.051218003034591678,
 -0.008819818496704102,

.vectors.get 444

Neptune Analytics Neptune Analytics User Guide

 0.5098630785942078,
 -0.21459998190402986,
 4.437846660614014,
 -0.24779054522514344,
 0.018799694254994394,
 -0.01747281290590763,
 -0.0487254373729229,
 0.6121163964271545,
 0.4686623811721802,
 -0.22926479578018189,
 -0.03692511469125748,
 -0.4286654591560364,
 0.46073317527770998,
 0.16875289380550385,
 -0.014255600981414318,
 -0.07684683054685593,
 0.12223237752914429,
 -0.30599895119667055,
 0.39215049147605898,
 0.22453786432743073,
 0.5624862313270569,
 -0.011985340155661106,
 0.05180392041802406,
 0.030400553718209268,
 0.08391892164945603,
 0.10214067250490189,
 -0.4449590742588043,
 0.2225639522075653,
 0.3862999975681305,
 0.24732927978038789,
 -0.05571140721440315,
 -0.021564822643995286,
 0.28468334674835207,
 5.213898658752441,
 0.13289497792720796,
 -0.1400047093629837,
 -0.39865049719810488,
 0.12139834463596344,
 0.45539018511772158,
 -0.1865275651216507,
 -0.08270177245140076,
 -0.38520801067352297,
 0.08869948983192444,
 -0.05266271159052849,

.vectors.get 445

Neptune Analytics Neptune Analytics User Guide

 0.14364486932754517,
 -0.2860695719718933,
 0.4430652856826782,
 0.7777798771858215,
 0.21114271879196168,
 -0.358752578496933,
 -0.3664247989654541,
 0.6665846109390259,
 -0.40493687987327578,
 0.1747705042362213,
 -0.06670021265745163,
 0.20972059667110444,
 -0.19101694226264954,
 0.23892535269260407,
 -0.08149895817041397,
 0.018510373309254648,
 0.8112999796867371,
 0.07871513813734055,
 0.09570053964853287,
 0.5030911564826965,
 0.21463628113269807,
 -0.31457462906837466,
 0.3051794767379761,
 -0.39506298303604128,
 0.06605447828769684,
 0.6144300699234009,
 -0.4566810429096222,
 0.3146623373031616,
 0.1887989640235901,
 0.9544244408607483,
 0.5103438496589661,
 -0.4859951138496399,
 -0.32647767663002016,
 -0.07584235072135925,
 0.21474787592887879,
 -0.1920636147260666,
 -0.4472030997276306,
 0.08618132770061493,
 -0.17384092509746552,
 -0.20969024300575257,
 -0.1831870973110199,
 0.8782939314842224,
 -0.15720084309577943,
 0.37347128987312319,

.vectors.get 446

Neptune Analytics Neptune Analytics User Guide

 0.5088165998458862,
 0.29395583271980288,
 -0.3580363988876343,
 -0.17590023577213288,
 -0.508141279220581,
 0.4661521315574646,
 0.142064169049263,
 -0.05615571141242981,
 0.592810869216919,
 0.37807324528694155,
 -0.14052101969718934,
 -0.19951890408992768,
 -0.12800109386444093,
 0.748070478439331,
 0.13753947615623475,
 -0.08446942269802094,
 0.3747580945491791,
 -0.12847286462783814,
 -0.13892321288585664,
 0.08525972813367844,
 0.12516680359840394,
 0.5701874494552612,
 -0.24708901345729829,
 0.0679594948887825,
 0.10870008915662766,
 0.20561885833740235,
 -0.7872452139854431,
 0.07303950190544129,
 0.35694700479507449,
 0.245212584733963,
 0.3299793303012848,
 -0.010669616051018238,
 -0.12047348916530609,
 0.3540535271167755,
 0.32180890440940859,
 0.3066200911998749,
 0.021576205268502237,
 0.17679384350776673,
 -0.23050960898399354,
 0.1292697787284851,
 0.022921407595276834,
 0.5460971593856812,
 0.3612038493156433,
 0.1963733434677124,

.vectors.get 447

Neptune Analytics Neptune Analytics User Guide

 0.4622957706451416,
 0.16855642199516297,
 0.2564740478992462,
 -0.27637141942977908,
 -0.16345584392547608,
 0.08119463175535202,
 0.07851938903331757,
 -0.5181471109390259,
 -0.5290305614471436,
 0.5271350741386414,
 0.3391841650009155,
 0.501441240310669,
 0.740936279296875,
 -0.26713573932647707,
 0.030347898602485658,
 0.05174243822693825
]
 }
]
}

.vectors.get 448

Neptune Analytics Neptune Analytics User Guide

.vectors.topKByEmbedding algorithm (deprecated)

The .vectors.topKByEmbedding algorithm finds the topK nearest neighbors of an embedding
based on the distance of their vector embeddings.

.vectors.topKByEmbedding syntax

CALL neptune.algo.vectors.topKByEmbedding(
 [an embedding (required)],
 {
 topK: the number of result nodes to return (optional, default: 10),
 concurrency: the number of cores to use to run the algorithm (optional)
 }
)
YIELD embedding, node, score
RETURN embedding, node, score

.vectors.topKByEmbedding input

• an embedding (required) type: a list of floating-point values.

The source input embedding to use to compute the distance to the embeddings of the candidate
target nodes. The dimension of the embedding must match the declared dimension of the
associated vector index.

The embedding may or may not exist in the database. If not, it can be any vector of the same
dimension as is declared in the associated vector index.

• topK (optional) type: a positive integer; default: 10.

The number of result nodes to return.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.vectors.topKByEmbedding (deprecated) 449

Neptune Analytics Neptune Analytics User Guide

.vectors.topKByEmbedding outputs

For each node returned:

• embedding – The input embedding.

• node – A node whose embedding is at one of the topK nearest distances from the input
embedding.

• score – The distance between the input embedding and the embedding of this node.

.vectors.topKByEmbedding query example

You can provide the embedding explicitly in the query, although embeddings tend to be very large:

CALL neptune.algo.vectors.topKByEmbedding(
 [0.1, 0.2, 0.3, ...],
 {
 topK: 7,
 concurrency: 1
 }
)
YIELD embedding, node, score
RETURN embedding, node, score

Most often, you will by generating embeddings to pass to the algorithm. For example:

MATCH (n:airport {code: 'ANC'})
CALL neptune.algo.vectors.get(n) YIELD embedding AS vector WITH vector
CALL neptune.algo.vectors.topKByEmbedding(
 vector,
 {
 topK: 10,
 concurrency: 1
 }
)
YIELD node, score
RETURN vector, node, score

.vectors.topKByEmbedding (deprecated) 450

Neptune Analytics Neptune Analytics User Guide

Warning

In queries like the one above, be careful to limit MATCH(n) so that it doesn't return a
large number of nodes. Keep in mind that every node in n invokes a separate run of both
.vectors.get and .vectors.topKByEmbedding. Too many inputs can therefore result
in very long runtimes. Use LIMIT or put conditions on the MATCH clause to restrict its
output appropriately.

Sample .vectors.topKByEmbedding output

Here is an example of the output returned by .vectors.topKByEmbedding when run against the
sample Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {`~id`: '0'})
 CALL neptune.algo.vectors.get(n) YIELD embedding AS vector
 CALL neptune.algo.vectors.topKByEmbedding(vector, { topK: 3 })
 YIELD node, score
 RETURN node, score"
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called

.vectors.topKByEmbedding (deprecated) 451

Neptune Analytics Neptune Analytics User Guide

 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "score": 0.0
 },
 {
 "node": {
 "~id": "2",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 2,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "However\\, the US military prefers not to say 24:00 - they do not
 like to have two names for the same thing\\, so they always say \"23:59\"\\, which is
 one minute before midnight."
 }
 },
 "score": 24.000200271606447
 },
 {
 "node": {
 "~id": "3",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 3,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "24-hour clock time is used in computers\\, military\\, public safety
\\, and transport. In many Asian\\, European and Latin American countries people use it
 to write the time. Many European people use it in speaking."
 }
 },
 "score": 25.013729095458986
 }

.vectors.topKByEmbedding (deprecated) 452

Neptune Analytics Neptune Analytics User Guide

]
}

.vectors.topKByEmbedding (deprecated) 453

Neptune Analytics Neptune Analytics User Guide

.vectors.topK.byEmbedding algorithm

The .vectors.topKByEmbedding algorithm finds the topK nearest neighbors of an embedding
based on the distance of their vector embeddings.

.vectors.topK.byEmbedding syntax

CALL neptune.algo.vectors.topK.byEmbedding(
 {
 embedding: [*an embedding*] (required),
 topK: the number of result nodes to return (optional, default: 10),
 vertexFilter: a json structure that encodes vertex label or property filters
 (optional, default: empty),
 concurrency: the number of cores to use to run the algorithm (optional,
 default: 0)
 }
)
YIELD node, score
RETURN node, score

.vectors.topK.byEmbedding input

• embedding (required) type: float[] or double[].

The input embedding to use to compute the distance to the embeddings of the candidate target
nodes. The dimension of the embedding must match the declared dimension of the associated
vector index.

The embedding may or may not exist in the database. If not, it can be any vector of the same
dimension as is declared in the associated vector index. Note that the input embedding must be
static, aka, the input embedding can't be the output of another query.

• topK (optional) type: a positive integer; default: 10.

The number of result nodes to return.

• vertexFilter (optional) type: a json string default: empty.

The vertexFilter is a json structure encoding filters to use on the vertex labels and properties
during computation. In it, there are two operation types: a joiner operation and a single
operation. A joiner operation includes andAll and orAll , which is an array of joiner and/or single
operations. A single operation includes the rest of the filters. A vertex filter can be used for

.vectors.topK.byEmbedding 454

Neptune Analytics Neptune Analytics User Guide

either vertex labels or vertex properties or a combination of both. Among the single operations,
only equals and notEquals support vertex label filtering. The details of all the operations are as
follows:

• andAll: Nodes are returned if their properties fulfill all the filter conditions inside this list. It is
an array of joiner and/or single operations. It must contain minimum two items.

Example: {andAll: [{equals:{property: “~label”, value: “Airport”}}, {greaterThan:{property:
“runways”, value: 3}}]} → the Airport vertices that have more than 3 runways.

• orAll: Nodes are returned if their properties fulfill all the filter conditions inside this list. It is an
array of joiner and/or single operations. It must contain minimum two items.

Example: {orAll: [{equals:{property: “dist”, value: 10}}, {notEquals:{property: “runways”, value:
“2”}}]} → the vertices whose dist is equals to 10 or whose runways is not equal to 2.

• equals: Nodes are returned if they contain a property whose name matches the property and
whose value matches the value, or they have the vertex label whose label name matches the
value.

The property must be a string. It can either be a vertex property name or ~label.

The value can be boolean, numeric or string if the property is a vertex property. The value can
only be string if the property is ~label.

Example for vertex property: {equals:{property: “dist”, value: 10}}

Example for vertex label: {equals:{property: “~label”, value: “Person”}}

• notEquals: Nodes are returned if they contain a property whose name matches the property
and whose value doesn’t match the value , or they have the vertex label whose label name
doesn’t match the value.

The property must be a string. It can either be a vertex property name or ~label.

The value can be boolean, numeric or string if the property is a vertex property. The value can
only be string if the property is ~label.

Example for vertex property: {notEquals:{property: “dist”, value: 10}}

Example for vertex label: {notEquals:{property: “~label”, value: “Person”}}

• greaterThan: Nodes are returned if they contain a property whose name matches the property
and whose value is greater than the value. The value must be numeric..vectors.topK.byEmbedding 455

Neptune Analytics Neptune Analytics User Guide

Example: {greaterThan:{property: “dist”, value: 10}}

• greaterThanOrEquals: Nodes are returned if they contain a property whose name matches the
property and whose value is greater than or equal to the value. The value must be numeric.

• lessThan: Nodes are returned if they contain a property whose name matches the property and
whose value is less than the value. The value must be numeric.

Example: {lessThan:{property: “dist”, value: 10}}

• lessThanOrEquals: Nodes are returned if they contain a property whose name matches the
property and whose value is less than or equal to the value. The value must be numeric.

Example: {lessThanOrEquals:{property: “dist”, value: 10}}

• in: Nodes are returned if they contain a property whose name matches the property and
whose value is in the specified value list, or they have the vertex label whose label name
matches the values in the value list.

The property must be a string. It can either be a vertex property name or ~label.

The value list can be a mix list of booleans, numbers or strings if the property is a vertex
property. The value can only be a list of strings if the property is ~label.

Example for vertex property: {in:{property: “country”, value: [“US”, “UK”]}}

Example for vertex label: {in:{property: “~label”, value: [“US”, “UK”]}}

• notIn: Nodes are returned if they contain a property whose name matches the property and
whose value is not in the specified value list, or they have the vertex label whose label name
does not match the values in the value list.

The property must be a string. It can either be a vertex property name or ~label.

The value list can be a mix list of booleans, numbers or strings if the property is a vertex
property. The value can only be a list of strings if the property is ~label.

Example for vertex property: {in:{property: “country”, value: [“US”, “UK”]}}

Example for vertex label: {in:{property: “~label”, value: [“US”, “UK”]}}

• startsWith: Nodes are returned if they contain a property whose name matches the property
and whose value starts with the value. The value must be a string.

.vectors.topK.byEmbedding 456

Neptune Analytics Neptune Analytics User Guide

Example: {startsWith:{property: “country”, value “U”}}

• stringContains: Nodes are returned if they contain a property whose name matches the
property and whose value is one of the following:

A string that contains the value as a substring. The following example would return data
sources with an animal property that contains the substring at (for example cat).

Example: {stringContains: { property: "animal", value: "at" }}

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.vectors.topK.byEmbedding outputs

For each node returned:

• node – A node whose embedding is at one of the topK nearest distances from the input
embedding.

• score – The distance between the input embedding and the embedding of this node.

.vectors.topK.byEmbedding query example

CALL neptune.algo.vectors.topK.byEmbedding(
 {
 embedding: [0.1, 0.2, 0.3, ...],
 topK: 3,
 concurrency: 1
 }
)
YIELD node, score
RETURN node, score

.vectors.topK.byEmbedding 457

Neptune Analytics Neptune Analytics User Guide

Warning

Using `MATCH (n)` or `WITH` as the prefix of `CALL
neptune.algo.vectors.topK.byEmbedding` is forbidden. MATCH(n) can return a
large number of nodes. Keep in mind that every node in (n) invokes a separate run
of .vectors.topK.byEmbedding. Too many inputs can therefore result in very long runtimes
and many outputs.

Sample .vectors.topKByEmbedding output

Here is an example of the output returned by .vectors.topK.byEmbedding when run against the
sample Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "CALL neptune.algo.vectors.topK.byEmbedding({ embedding: [*an
 embedding*], topK: 3 })
 YIELD node, score
 RETURN node, score"
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called

.vectors.topK.byEmbedding 458

Neptune Analytics Neptune Analytics User Guide

 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "score": 0.0
 },
 {
 "node": {
 "~id": "2",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 2,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "However\\, the US military prefers not to say 24:00 - they do not
 like to have two names for the same thing\\, so they always say \"23:59\"\\, which is
 one minute before midnight."
 }
 },
 "score": 24.000200271606447
 },
 {
 "node": {
 "~id": "3",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 3,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "24-hour clock time is used in computers\\, military\\, public safety
\\, and transport. In many Asian\\, European and Latin American countries people use it
 to write the time. Many European people use it in speaking."
 }
 },
 "score": 25.013729095458986
 }

.vectors.topK.byEmbedding 459

Neptune Analytics Neptune Analytics User Guide

]
}

.vectors.topK.byEmbedding 460

Neptune Analytics Neptune Analytics User Guide

.vectors.topKByNode algorithm (deprecated)

The .vectors.topKByNode algorithm finds the topK nearest neighbors of a node based on the
distance of their vector embeddings from the node.

.vectors.topKByNode syntax

CALL neptune.algo.vectors.topKByNode(
 [a list of one or more nodes (required)],
 {
 topK: the number of result nodes to return (optional, default: 10),
 concurrency: the number of cores to use to run the algorithm (optional)
 }
)
YIELD node, score
RETURN node, score

.vectors.topKByNode input

• a list of one or more source nodes (required) – type: Node[] or NodeId[].

If the source-node list is empty then the query result is also empty.

• topK (optional) type: a positive integer; default: 10.

The number of result nodes to return.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.vectors.topKByNode outputs

For each source node:

• source – The source node.

• node – A node whose embedding is at one of the topK nearest distances from the source
node's embedding.

.vectors.topKByNode (deprecated) 461

Neptune Analytics Neptune Analytics User Guide

• score – The distance between the source node's embedding and the embedding of the close
node.

.vectors.topKByNode query example

MATCH (n:airport {code: 'ANC'})
CALL neptune.algo.vectors.topKByNode(
 n,
 {
 topK: 10,
 concurrency: 1
 }
)
YIELD node, score
RETURN n, node, score

Warning

In queries like the one above, be careful to limit MATCH(n) so that it doesn't return a
large number of nodes. Keep in mind that every node in n invokes a separate run of
.vectors.topKByNode. Too many inputs can therefore result in very long runtimes. Use
LIMIT or put conditions on the MATCH clause to restrict its output appropriately.

Sample .vectors.topKByNode output

Here is an example of the output returned by .vectors.topKByNode when run against the
sample Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {`~id`: '0'})
 CALL neptune.algo.vectors.topKByNode(n, {topK: 3})
 YIELD node, score
 RETURN n, node, score" \
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {

.vectors.topKByNode (deprecated) 462

Neptune Analytics Neptune Analytics User Guide

 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "node": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "score": 0.0
 },
 {
 "n": {

.vectors.topKByNode (deprecated) 463

Neptune Analytics Neptune Analytics User Guide

 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "node": {
 "~id": "2",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 2,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "However\\, the US military prefers not to say 24:00 - they do not
 like to have two names for the same thing\\, so they always say \"23:59\"\\, which is
 one minute before midnight."
 }
 },
 "score": 24.000200271606447
 },
 {
 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",

.vectors.topKByNode (deprecated) 464

Neptune Analytics Neptune Analytics User Guide

 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "node": {
 "~id": "3",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 3,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "24-hour clock time is used in computers\\, military\\, public safety
\\, and transport. In many Asian\\, European and Latin American countries people use it
 to write the time. Many European people use it in speaking."
 }
 },
 "score": 25.013729095458986
 }
]
}

.vectors.topKByNode (deprecated) 465

Neptune Analytics Neptune Analytics User Guide

.vectors.topK.byNode algorithm

The .vectors.topK.byNode algorithm finds the topK nearest neighbors of a node based on the
distance of their vector embeddings from the node.

.vectors.topK.byNode syntax

CALL neptune.algo.vectors.topK.byNode(
 [a list of one or more nodes (required)],
 {
 topK: the number of result nodes to return (optional, default: 10),
 concurrency: the number of cores to use to run the algorithm (optional)
 }
)
YIELD node, score
RETURN node, score

.vectors.topK.byNode input

• a list of one or more source nodes (required) – type: Node[] or NodeId[].

If the source-node list is empty then the query result is also empty.

• topK (optional) type: a positive integer; default: 10.

The number of result nodes to return.

• concurrency (optional) – type: 0 or 1; default: 0.

Controls the number of concurrent threads used to run the algorithm.

If set to 0, uses all available threads to complete execution of the individual algorithm
invocation. If set to 1, uses a single thread. This can be useful when requiring the invocation of
many algorithms concurrently.

.vectors.topK.byNode outputs

For each source node:

• source – The source node.

• node – A node whose embedding is at one of the topK nearest distances from the source
node's embedding.

.vectors.topK.byNode 466

Neptune Analytics Neptune Analytics User Guide

• score – The distance between the source node's embedding and the embedding of the close
node.

.vectors.topK.byNode query example

MATCH (n:airport {code: 'ANC'})
CALL neptune.algo.vectors.topK.byNode(
 n,
 {
 topK: 10,
 concurrency: 1
 }
)
YIELD node, score
RETURN n, node, score

Warning

In queries like the one above, be careful to limit MATCH(n) so that it doesn't return a
large number of nodes. Keep in mind that every node in n invokes a separate run of
.vectors.topK.byNode. Too many inputs can therefore result in very long runtimes. Use
LIMIT or put conditions on the MATCH clause to restrict its output appropriately.

Sample .vectors.topK.byNode output

Here is an example of the output returned by .vectors.topK.byNode when run against the
sample Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {`~id`: '0'})
 CALL neptune.algo.vectors.topK.byNode(n, {topK: 3})
 YIELD node, score
 RETURN n, node, score" \
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {

.vectors.topK.byNode 467

Neptune Analytics Neptune Analytics User Guide

 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "node": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "score": 0.0
 },
 {
 "n": {

.vectors.topK.byNode 468

Neptune Analytics Neptune Analytics User Guide

 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "node": {
 "~id": "2",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 2,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "However\\, the US military prefers not to say 24:00 - they do not
 like to have two names for the same thing\\, so they always say \"23:59\"\\, which is
 one minute before midnight."
 }
 },
 "score": 24.000200271606447
 },
 {
 "n": {
 "~id": "0",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",

.vectors.topK.byNode 469

Neptune Analytics Neptune Analytics User Guide

 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 0,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "The 24-hour clock is a way of telling the time in which the day
 runs from midnight to midnight and is divided into 24 hours\\, numbered from 0 to
 23. It does not use a.m. or p.m. This system is also referred to (only in the US and
 the English speaking parts of Canada) as military time or (only in the United Kingdom
 and now very rarely) as continental time. In some parts of the world\\, it is called
 railway time. Also\\, the international standard notation of time (ISO 8601) is based
 on this format."
 }
 },
 "node": {
 "~id": "3",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 3,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "24-hour clock time is used in computers\\, military\\, public safety
\\, and transport. In many Asian\\, European and Latin American countries people use it
 to write the time. Many European people use it in speaking."
 }
 },
 "score": 25.013729095458986
 }
]
}

.vectors.topK.byNode 470

Neptune Analytics Neptune Analytics User Guide

.vectors.upsert algorithm

The .vectors.upsert algorithm is used to add a new embedding or update an existing one for a
node.

.vectors.upsert syntax

CALL neptune.algo.vectors.upsert(
 "a target node (required)",
 [the embedding to upsert for the target node (required)]
)
YIELD node, embedding, success
RETURN node, embedding, success

.vectors.upsert input

• a target node (required) – type: Node or NodeId.

The node for which you want to upsert an embedding.

• an embedding (required) – type: a list of floating-point values.

The embedding that you want to upsert for the target node.

If the node has an existing embedding, this must match the dimension of the existing one or an
exception is thrown.

.vectors.upsert outputs

If the target node already has an existing embedding then .vectors.upsert replaces it with the
one supplied. Otherwise .vectors.upsert adds the supplied embedding for the target node.

• node – The target node.

• embedding – The embedding that was supplied to be upserted.

• success – A Boolean value: true indicates that the upsert succeded, and false that it failed.

.vectors.upsert query examples

CALL neptune.algo.vectors.upsert(
 "person933",

.vectors.upsert 471

Neptune Analytics Neptune Analytics User Guide

 [0.1, 0.2, 0.3, ..]
)
YIELD node, embedding, success
RETURN node, embedding, success

UNWIND [
 {id: "933", embedding: [1,2,3,4]},
 {id: "934", embedding: [-1,-2,-3,-4]}
] as entry
MATCH (n:person) WHERE id(n)=entry.id WITH n, entry.embedding as embedding
CALL neptune.algo.vectors.upsert(n, embedding)
YIELD success
RETURN n, embedding, success

Sample .vectors.upsert output

Here is an example of the output returned by .vectors.upsert when run against the sample
Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n{\`~id\`:\"0\"})
 CALL neptune.algo.vectors.get(n)
 YIELD embedding AS vector
 MATCH (m{`~id`: '1'})
 CALL neptune.algo.vectors.upsert(m, vector)
 YIELD node, embedding, success
 RETURN node, embedding, success"
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "1",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 1,

.vectors.upsert 472

Neptune Analytics Neptune Analytics User Guide

 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "A time in the 24-hour clock is written in the form hours:minutes
 (for example\\, 01:23)\\, or hours:minutes:seconds (01:23:45). Numbers under 10 have
 a zero in front (called a leading zero); e.g. 09:07. Under the 24-hour clock system\\,
 the day begins at midnight\\, 00:00\\, and the last minute of the day begins at 23:59
 and ends at 24:00\\, which is identical to 00:00 of the following day. 12:00 can only
 be mid-day. Midnight is called 24:00 and is used to mean the end of the day and 00:00
 is used to mean the beginning of the day. For example\\, you would say \"Tuesday at
 24:00\" and \"Wednesday at 00:00\" to mean exactly the same time."
 }
 },
 "embedding": [
 0.07711287587881088,
 0.3197174072265625,
 -0.2051590085029602,
 0.6302579045295715,
 0.032093219459056857,
 0.200703963637352,
 0.16665680706501008,
 -0.31295087933540347,
 0.17575109004974366,
 0.5308129191398621,
 -0.37528499960899355,
 0.3338659405708313,
 -0.046272162348032,
 0.07841536402702332,
 -0.3490406274795532,
 0.27182886004447939,
 0.3073517680168152,
 -0.08306130766868592,
 0.5035958886146545,
 0.254621684551239,
 -0.40407684445381167,
 0.28878292441368105,
 -0.22588828206062318,
 -0.13185778260231019,
 -0.21559733152389527,
 0.4900434613227844,
 0.03866531699895859,
 0.507415771484375,
 -0.3067346513271332,
 0.10740984976291657,
 0.08998646587133408,

.vectors.upsert 473

Neptune Analytics Neptune Analytics User Guide

 -0.2652775049209595,
 -0.28492602705955508,
 0.33600345253944399,
 -0.27227747440338137,
 0.3691731095314026,
 -0.2815995514392853,
 0.0856710895895958,
 -0.13187488913536073,
 0.4753035008907318,
 -0.2241700142621994,
 0.20263174176216126,
 0.4390721619129181,
 0.06424559652805329,
 0.2463042289018631,
 -0.39631763100624087,
 0.2971232533454895,
 0.2415716052055359,
 -0.02803819440305233,
 0.32105034589767458,
 -0.02222033031284809,
 -0.008510420098900795,
 -0.00032598740654066205,
 0.031057516112923623,
 -0.5332233309745789,
 0.45022767782211306,
 -0.6829474568367004,
 1.3313145637512208,
 0.19445496797561646,
 -0.15697629749774934,
 -0.09996363520622254,
 -0.2786232829093933,
 -0.09833164513111115,
 -0.17644722759723664,
 0.11717787384986878,
 0.2820119559764862,
 0.029635537415742875,
 0.5247654914855957,
 0.5323811173439026,
 -0.06254086643457413,
 -0.05274389684200287,
 0.3877565860748291,
 0.43260684609413149,
 0.5207982063293457,
 -0.27160540223121645,

.vectors.upsert 474

Neptune Analytics Neptune Analytics User Guide

 -0.06000519543886185,
 -0.032806672155857089,
 -0.3594319522380829,
 0.4218965470790863,
 -0.3766363263130188,
 0.44727250933647158,
 -0.04586323723196983,
 0.06902860850095749,
 0.3030509352684021,
 0.18945887684822083,
 0.21681705117225648,
 -0.014492596499621868,
 -0.38649576902389529,
 -0.1129651814699173,
 0.050081491470336917,
 -0.01697717048227787,
 0.1415158063173294,
 -0.3284287750720978,
 -0.02309800498187542,
 -0.2051207274198532,
 -0.017861712723970414,
 -0.07372242212295532,
 -0.12263767421245575,
 0.21828559041023255,
 -0.36898064613342287,
 0.3558262288570404,
 -0.16924124956130982,
 -0.31757786870002749,
 0.5452765226364136,
 0.24666202068328858,
 -0.08289600908756256,
 -0.14674079418182374,
 -0.18049933016300202,
 0.3646247982978821,
 0.42489132285118105,
 0.0909421369433403,
 -0.1764664500951767,
 0.22471413016319276,
 0.049531541764736179,
 -0.022898104041814805,
 0.08607156574726105,
 0.14532636106014253,
 -0.205774188041687,
 -0.3457978069782257,

.vectors.upsert 475

Neptune Analytics Neptune Analytics User Guide

 -1.2771626710891724,
 0.2826114892959595,
 0.2066900134086609,
 -0.3884444832801819,
 -0.3564482629299164,
 -0.25118574500083926,
 -0.728326141834259,
 0.5217206478118897,
 -0.43305152654647829,
 0.3510914444923401,
 0.5106240510940552,
 -0.11594267934560776,
 0.43993058800697329,
 0.25412991642951968,
 0.4275965392589569,
 0.1463870108127594,
 0.3510439395904541,
 0.1619710624217987,
 0.11160195618867874,
 -0.22760489583015443,
 -0.23652249574661256,
 0.05374380201101303,
 0.7251803278923035,
 -0.13991153240203858,
 0.9363659024238586,
 -0.05858418717980385,
 0.5233941674232483,
 0.12388131022453308,
 0.6248424649238586,
 -0.11751417070627213,
 0.09689709544181824,
 0.7467237710952759,
 0.2247271090745926,
 -0.6747357845306397,
 -0.16039365530014039,
 -0.41555172204971316,
 -0.04566565155982971,
 0.21260707080364228,
 0.2549103796482086,
 0.24795542657375337,
 0.5625612735748291,
 0.8036459684371948,
 0.15800043940544129,
 0.04797195643186569,

.vectors.upsert 476

Neptune Analytics Neptune Analytics User Guide

 -0.15839435160160066,
 -0.06506697088479996,
 -0.2577322721481323,
 0.3262946903705597,
 0.5458049178123474,
 0.616370439529419,
 -0.35092639923095705,
 0.048758912831544879,
 0.11522434651851654,
 0.04175107553601265,
 -0.12269306182861328,
 0.1227836161851883,
 0.4020257890224457,
 0.07093577086925507,
 -0.1880340874195099,
 0.5334663391113281,
 0.46888044476509097,
 0.18104688823223115,
 0.30756646394729617,
 0.29316428303718569,
 -0.10604366660118103,
 0.44999250769615176,
 0.18227706849575044,
 0.5962150692939758,
 0.38278165459632876,
 -0.40461188554763796,
 0.17775404453277589,
 -0.16349074244499207,
 0.06950787454843521,
 0.7547341585159302,
 -0.4842711389064789,
 0.4062837064266205,
 0.09000574052333832,
 0.03859427571296692,
 0.24143263697624207,
 -0.3383118510246277,
 0.3363209366798401,
 0.10778547078371048,
 0.3429640233516693,
 -0.20395530760288239,
 0.011477324180305004,
 0.6145590543746948,
 -0.5488739609718323,
 -0.26194247603416445,

.vectors.upsert 477

Neptune Analytics Neptune Analytics User Guide

 -0.09723474085330963,
 -0.19020821154117585,
 -0.18068274855613709,
 0.1601778119802475,
 0.038950759917497638,
 0.6372026205062866,
 -0.12897184491157533,
 0.10720998793840409,
 0.13482464849948884,
 -0.07540713250637055,
 -0.0881727784872055,
 0.5626690983772278,
 -0.31975486874580386,
 -0.029084375128149987,
 0.43618619441986086,
 0.32975345849990847,
 -0.4053913652896881,
 0.15788795053958894,
 -0.3212168216705322,
 -0.20272433757781983,
 -0.8973743319511414,
 0.060059018433094028,
 -0.014103145338594914,
 -0.3387225568294525,
 -0.49839726090431216,
 -0.011007139459252358,
 -0.16101065278053285,
 -0.20850643515586854,
 0.4891682267189026,
 0.33551496267318728,
 -0.23595896363258363,
 -0.4257577359676361,
 -0.48884832859039309,
 0.48760101199150088,
 0.34031161665916445,
 0.1722799688577652,
 -0.35575979948043826,
 0.629051923751831,
 -0.8014369010925293,
 0.575096607208252,
 0.421142578125,
 -0.2668846547603607,
 -0.046029768884181979,
 0.2791147530078888,

.vectors.upsert 478

Neptune Analytics Neptune Analytics User Guide

 -0.22112232446670533,
 0.02008579671382904,
 0.22087614238262177,
 -0.17961964011192323,
 0.4235396981239319,
 0.295818567276001,
 -0.18260923027992249,
 0.3227207660675049,
 0.11412205547094345,
 0.04591478034853935,
 0.5127033591270447,
 0.428005576133728,
 0.20718106627464295,
 0.18405631184577943,
 -0.22416146099567414,
 0.4277373254299164,
 0.5384698510169983,
 0.04109276458621025,
 0.5105301141738892,
 0.473961740732193,
 -0.6853302717208862,
 -0.16557902097702027,
 -0.12704522907733918,
 0.0026600745040923359,
 0.5272349715232849,
 0.12121742218732834,
 0.427141010761261,
 -0.3047095239162445,
 0.5948843359947205,
 0.335798442363739,
 0.35749775171279909,
 -0.18497343361377717,
 0.26501506567001345,
 0.1564970314502716,
 0.4210122525691986,
 -0.1915784478187561,
 0.057152874767780307,
 -0.28498271107673647,
 0.04969947412610054,
 0.7697478532791138,
 0.5546697974205017,
 0.0958070456981659,
 -0.3533228933811188,
 0.4784282147884369,

.vectors.upsert 479

Neptune Analytics Neptune Analytics User Guide

 0.624963104724884,
 0.2151053100824356,
 0.17361000180244447,
 0.22527147829532624,
 -0.12481484562158585,
 0.4212929904460907,
 -0.2926572859287262,
 0.2562543749809265,
 0.38751208782196047,
 0.1340814083814621,
 0.0680900365114212,
 0.2952287793159485,
 0.12217980623245239,
 -0.2869758605957031,
 0.15682946145534516,
 -0.022066200152039529,
 -0.09002991020679474,
 -0.2826828360557556,
 0.84619140625,
 0.7544476985931397,
 0.5953861474990845,
 0.6517565250396729,
 -0.07932830601930618,
 0.22802823781967164,
 -0.135965958237648,
 -0.8263510465621948,
 -0.6325801610946655,
 -0.5928561091423035,
 0.4108763635158539,
 0.0964483916759491,
 -0.5045000910758972,
 -0.06772734969854355,
 -0.79107666015625,
 0.060380879789590839,
 0.015578197315335274,
 0.32540079951286318,
 -0.044692762196063998,
 -0.17132098972797395,
 -0.19123415648937226,
 0.17911623418331147,
 0.3269428014755249,
 -0.22874118387699128,
 0.4686919152736664,
 -0.15749554336071015,

.vectors.upsert 480

Neptune Analytics Neptune Analytics User Guide

 -0.25185921788215639,
 -0.21561351418495179,
 -0.10132477432489395,
 -0.057977184653282168,
 0.09759098291397095,
 0.16202516853809358,
 0.01888692006468773,
 0.1724688857793808,
 -0.3449697196483612,
 0.4449881315231323,
 0.10185430943965912,
 -0.2976726293563843,
 0.06075461208820343,
 0.21909406781196595,
 -0.07409229874610901,
 0.6881160140037537,
 0.17447273433208466,
 -0.048471711575984958,
 0.5318611264228821,
 0.30954766273498537,
 -0.24350836873054505,
 0.14386573433876038,
 -0.10827953368425369,
 0.08575868606567383,
 0.14200334250926972,
 0.5095603466033936,
 -0.025056177750229837,
 0.24901045858860017,
 -0.23696841299533845,
 -0.03630203381180763,
 0.45206722617149355,
 0.5019969344139099,
 -0.21705971658229829,
 -0.08452687412500382,
 -0.10376924276351929,
 -0.3200875520706177,
 -0.2048267275094986,
 -0.2703971266746521,
 0.2925371825695038,
 0.3755778670310974,
 0.2522588074207306,
 0.22964833676815034,
 0.7995960116386414,
 0.12206973880529404,

.vectors.upsert 481

Neptune Analytics Neptune Analytics User Guide

 0.2896155118942261,
 0.04163726791739464,
 -0.12602514028549195,
 0.004978220444172621,
 0.3399927020072937,
 0.09124521911144257,
 -0.5452605485916138,
 0.2247130423784256,
 0.23503662645816804,
 0.06750215590000153,
 -0.2884872257709503,
 -0.2791622579097748,
 -0.1780446618795395,
 -0.44350507855415347,
 -0.1840016394853592,
 0.8970789909362793,
 -0.3687478303909302,
 0.36603569984436037,
 0.23560358583927155,
 0.020292289555072786,
 0.2446030080318451,
 4.3314642906188969,
 0.194863960146904,
 -0.10218192636966706,
 0.5695234537124634,
 0.016988292336463929,
 -0.15768325328826905,
 0.050476688891649249,
 0.09948820620775223,
 -0.06554386019706726,
 0.22301962971687318,
 -0.05468735471367836,
 0.29051196575164797,
 0.12100572139024735,
 0.4127441644668579,
 0.1667146235704422,
 0.0587792843580246,
 -0.09758614003658295,
 -0.20510408282279969,
 -0.21746976673603059,
 0.43335747718811037,
 -0.32159093022346499,
 0.6942153573036194,
 0.6173154711723328,

.vectors.upsert 482

Neptune Analytics Neptune Analytics User Guide

 0.3104712665081024,
 0.5751503109931946,
 0.4174514412879944,
 -0.2948107421398163,
 0.3532458245754242,
 0.4869029223918915,
 0.3115881681442261,
 0.28135108947753909,
 0.38450825214385989,
 0.016915690153837205,
 -0.11598393321037293,
 -0.32250434160232546,
 -0.06988134980201721,
 0.22417351603507996,
 -0.35582518577575686,
 0.2677224576473236,
 0.008019124157726765,
 -0.19177919626235963,
 0.5731900334358215,
 -0.03540642186999321,
 0.43302130699157717,
 0.1796148121356964,
 -0.005056577268987894,
 0.37953320145606997,
 0.13488957285881043,
 0.7240068912506104,
 -0.3088097870349884,
 0.5610846281051636,
 -0.29582735896110537,
 -0.20909856259822846,
 -0.2881403863430023,
 0.10329002141952515,
 0.49255961179733279,
 0.14558906853199006,
 0.41020694375038149,
 0.04002099484205246,
 -0.24476903676986695,
 -0.389543354511261,
 0.3901459574699402,
 0.6170359253883362,
 0.18917717039585114,
 -0.41235554218292239,
 -0.19313344359397889,
 -0.10294703394174576,

.vectors.upsert 483

Neptune Analytics Neptune Analytics User Guide

 0.5560699105262756,
 0.5773581266403198,
 -0.17282086610794068,
 0.28679269552230837,
 0.34322652220726015,
 -0.07227988541126251,
 -0.5244243741035461,
 -0.26529040932655337,
 -0.11131077259778977,
 -0.19524210691452027,
 0.4082769453525543,
 -0.009217939339578152,
 -0.1462743580341339,
 0.7264918684959412,
 -0.09149657934904099,
 -0.3374916911125183,
 -0.05742226541042328,
 -0.3913151025772095,
 0.7185215950012207,
 -0.3785516619682312,
 -0.00010882654169108719,
 0.6655824780464172,
 0.4194306433200836,
 0.3726831376552582,
 -0.014721312560141087,
 0.5345744490623474,
 0.33022087812423708,
 -0.06344814598560333,
 -0.1560882031917572,
 0.22698232531547547,
 -3.8697707653045656,
 0.06812435388565064,
 -0.4368731677532196,
 -0.07041455805301666,
 -0.015291529707610608,
 -0.41140303015708926,
 0.31612321734428408,
 0.2914712429046631,
 -0.3867192566394806,
 -0.026363473385572435,
 -0.08788029104471207,
 -0.10701339691877365,
 -0.2673511505126953,
 0.27538666129112246,

.vectors.upsert 484

Neptune Analytics Neptune Analytics User Guide

 -0.3661351501941681,
 0.5879861116409302,
 0.06352981925010681,
 0.15547777712345124,
 0.0863194614648819,
 -0.021183960139751436,
 0.428565114736557,
 0.04859453812241554,
 0.35721391439437868,
 -0.3864029347896576,
 -0.20986808836460114,
 0.15433000028133393,
 0.25567296147346499,
 0.25359275937080386,
 -0.4783596396446228,
 -0.010366495698690415,
 0.4777776598930359,
 -0.029405448585748674,
 0.3631121814250946,
 -0.18738743662834168,
 0.2193489819765091,
 0.7861229777336121,
 -0.01961355283856392,
 0.16653983294963838,
 -0.4193624258041382,
 0.3085209131240845,
 -0.03517897054553032,
 -0.035910699516534808,
 0.37241387367248537,
 -0.13769084215164185,
 -0.08015040308237076,
 0.4384872615337372,
 -0.12396809458732605,
 0.15661391615867616,
 -0.3919837176799774,
 -0.6586825251579285,
 0.5687432885169983,
 0.0396936871111393,
 -0.09660491347312927,
 0.05788198113441467,
 0.48911261558532717,
 0.5213083028793335,
 0.3355415165424347,
 -0.006735790055245161,

.vectors.upsert 485

Neptune Analytics Neptune Analytics User Guide

 -0.11381038278341294,
 0.09182903915643692,
 -0.11055094748735428,
 -0.28275448083877566,
 0.24975340068340302,
 0.11746659129858017,
 -0.42452141642570498,
 -0.2323901206254959,
 -0.38694220781326296,
 0.015501483343541623,
 0.6440262198448181,
 -0.3121536672115326,
 -0.08778296411037445,
 -0.14549347758293153,
 0.01749151013791561,
 -0.5398207902908325,
 0.4124368131160736,
 0.5154116749763489,
 -0.34769660234451296,
 0.5662841796875,
 0.4989481270313263,
 0.06761053949594498,
 0.014184223487973214,
 0.601079523563385,
 -0.3859538435935974,
 0.3446619212627411,
 2.190366744995117,
 0.4051366150379181,
 2.288928508758545,
 0.5293960571289063,
 -0.3505767583847046,
 0.5397417545318604,
 -0.6520821452140808,
 0.4239364266395569,
 0.2618080675601959,
 0.20174439251422883,
 0.030146604403853418,
 0.0610184520483017,
 0.062213074415922168,
 -0.11276254057884217,
 -0.1301877349615097,
 -0.19404706358909608,
 0.5268515348434448,
 -0.7370991706848145,

.vectors.upsert 486

Neptune Analytics Neptune Analytics User Guide

 0.028712594881653787,
 -0.4024544954299927,
 0.18225152790546418,
 0.7267741560935974,
 -0.2734072208404541,
 0.1759040206670761,
 -0.2950340211391449,
 0.14166314899921418,
 0.6515365242958069,
 -0.29643580317497256,
 -0.06734377890825272,
 0.09662584215402603,
 -0.010966300964355469,
 -0.3204823136329651,
 0.6417866349220276,
 -0.051218003034591678,
 -0.008819818496704102,
 0.5098630785942078,
 -0.21459998190402986,
 4.437846660614014,
 -0.24779054522514344,
 0.018799694254994394,
 -0.01747281290590763,
 -0.0487254373729229,
 0.6121163964271545,
 0.4686623811721802,
 -0.22926479578018189,
 -0.03692511469125748,
 -0.4286654591560364,
 0.46073317527770998,
 0.16875289380550385,
 -0.014255600981414318,
 -0.07684683054685593,
 0.12223237752914429,
 -0.30599895119667055,
 0.39215049147605898,
 0.22453786432743073,
 0.5624862313270569,
 -0.011985340155661106,
 0.05180392041802406,
 0.030400553718209268,
 0.08391892164945603,
 0.10214067250490189,
 -0.4449590742588043,

.vectors.upsert 487

Neptune Analytics Neptune Analytics User Guide

 0.2225639522075653,
 0.3862999975681305,
 0.24732927978038789,
 -0.05571140721440315,
 -0.021564822643995286,
 0.28468334674835207,
 5.213898658752441,
 0.13289497792720796,
 -0.1400047093629837,
 -0.39865049719810488,
 0.12139834463596344,
 0.45539018511772158,
 -0.1865275651216507,
 -0.08270177245140076,
 -0.38520801067352297,
 0.08869948983192444,
 -0.05266271159052849,
 0.14364486932754517,
 -0.2860695719718933,
 0.4430652856826782,
 0.7777798771858215,
 0.21114271879196168,
 -0.358752578496933,
 -0.3664247989654541,
 0.6665846109390259,
 -0.40493687987327578,
 0.1747705042362213,
 -0.06670021265745163,
 0.20972059667110444,
 -0.19101694226264954,
 0.23892535269260407,
 -0.08149895817041397,
 0.018510373309254648,
 0.8112999796867371,
 0.07871513813734055,
 0.09570053964853287,
 0.5030911564826965,
 0.21463628113269807,
 -0.31457462906837466,
 0.3051794767379761,
 -0.39506298303604128,
 0.06605447828769684,
 0.6144300699234009,
 -0.4566810429096222,

.vectors.upsert 488

Neptune Analytics Neptune Analytics User Guide

 0.3146623373031616,
 0.1887989640235901,
 0.9544244408607483,
 0.5103438496589661,
 -0.4859951138496399,
 -0.32647767663002016,
 -0.07584235072135925,
 0.21474787592887879,
 -0.1920636147260666,
 -0.4472030997276306,
 0.08618132770061493,
 -0.17384092509746552,
 -0.20969024300575257,
 -0.1831870973110199,
 0.8782939314842224,
 -0.15720084309577943,
 0.37347128987312319,
 0.5088165998458862,
 0.29395583271980288,
 -0.3580363988876343,
 -0.17590023577213288,
 -0.508141279220581,
 0.4661521315574646,
 0.142064169049263,
 -0.05615571141242981,
 0.592810869216919,
 0.37807324528694155,
 -0.14052101969718934,
 -0.19951890408992768,
 -0.12800109386444093,
 0.748070478439331,
 0.13753947615623475,
 -0.08446942269802094,
 0.3747580945491791,
 -0.12847286462783814,
 -0.13892321288585664,
 0.08525972813367844,
 0.12516680359840394,
 0.5701874494552612,
 -0.24708901345729829,
 0.0679594948887825,
 0.10870008915662766,
 0.20561885833740235,
 -0.7872452139854431,

.vectors.upsert 489

Neptune Analytics Neptune Analytics User Guide

 0.07303950190544129,
 0.35694700479507449,
 0.245212584733963,
 0.3299793303012848,
 -0.010669616051018238,
 -0.12047348916530609,
 0.3540535271167755,
 0.32180890440940859,
 0.3066200911998749,
 0.021576205268502237,
 0.17679384350776673,
 -0.23050960898399354,
 0.1292697787284851,
 0.022921407595276834,
 0.5460971593856812,
 0.3612038493156433,
 0.1963733434677124,
 0.4622957706451416,
 0.16855642199516297,
 0.2564740478992462,
 -0.27637141942977908,
 -0.16345584392547608,
 0.08119463175535202,
 0.07851938903331757,
 -0.5181471109390259,
 -0.5290305614471436,
 0.5271350741386414,
 0.3391841650009155,
 0.501441240310669,
 0.740936279296875,
 -0.26713573932647707,
 0.030347898602485658,
 0.05174243822693825
],
 "success": true
 }
]
}

.vectors.upsert 490

Neptune Analytics Neptune Analytics User Guide

.vectors.remove algorithm

The .vectors.remove algorithm is used to remove the embedding from a node.

.vectors.remove syntax

CALL neptune.algo.vectors.remove(
 [a list of one or more nodes]
)
YIELD node, success
RETURN node, success

.vectors.remove input

• a target node list (required) – type: Node[] or NodeId[].

The node(s) from which you want to remove the embedding. If an empty list is supplied, the
result will be empty.

.vectors.remove outputs

The following outputs are returned for each target node, and if the node has an embedding, the
embedding is removed:

• node – The target node.

• success – A Boolean value: true indicates that the removal succeded for the node, and false
indicates that it failed.

.vectors.remove query examples

CALL neptune.algo.vectors.remove(["person933"])
YIELD node, success
RETURN node, success

MATCH (n: Student)
CALL neptune.algo.vectors.remove(n)
YIELD status
RETURN n, success

.vectors.remove 491

Neptune Analytics Neptune Analytics User Guide

Sample .vectors.remove output

Here is an example of the output returned by .vectors.remove when run against the sample
Wikipedia dataset using the following query:

aws neptune-graph execute-query \
 --graph-identifier ${graphIdentifier} \
 --query-string "MATCH (n {`~id`: '1'})
 CALL neptune.algo.vectors.remove(n)
 YIELD node, success
 RETURN node, success" \
 --language open_cypher \
 /tmp/out.txt
{
 "results": [
 {
 "node": {
 "~id": "1",
 "~entityType": "node",
 "~labels": [],
 "~properties": {
 "title": "24-hour clock",
 "views": 2450.62548828125,
 "wiki_id": 9985,
 "paragraph_id": 1,
 "url": "https://simple.wikipedia.org/wiki?curid=9985",
 "langs": 30,
 "text": "A time in the 24-hour clock is written in the form hours:minutes
 (for example\\, 01:23)\\, or hours:minutes:seconds (01:23:45). Numbers under 10 have
 a zero in front (called a leading zero); e.g. 09:07. Under the 24-hour clock system\\,
 the day begins at midnight\\, 00:00\\, and the last minute of the day begins at 23:59
 and ends at 24:00\\, which is identical to 00:00 of the following day. 12:00 can only
 be mid-day. Midnight is called 24:00 and is used to mean the end of the day and 00:00
 is used to mean the beginning of the day. For example\\, you would say \"Tuesday at
 24:00\" and \"Wednesday at 00:00\" to mean exactly the same time."
 }
 },
 "success": true
 }
]
}

.vectors.remove 492

Neptune Analytics Neptune Analytics User Guide

Best practices

The following are some general recommendations for working with Neptune Analytics. Use this
information as a reference to quickly find recommendations for maximizing performance while
using Neptune Analytics.

Contents

• openCypher query best practices

• Use the SET clause to remove multiple properties at once

• Use parameterized queries

• Use flattened maps instead of nested maps in UNWIND clause

• Place more restrictive nodes on the left side in Variable-Length Path (VLP) expressions

• Avoid redundant node label checks by using granular relationship names

• Specify edge labels where possible

• Avoid using the WITH clause when possible

• Place restrictive filters as early in the query as possible

• Explicitly check whether properties exist

• Do not use named path (unless it is required)

• Avoid COLLECT(DISTINCT())

• Prefer the properties function over individual property lookup when retrieving all property
values

• Perform static computations outside of the query

• Batch inputs using UNWIND instead of individual statements

• Prefer using custom IDs for node

• Avoid doing ~id computations in the query

openCypher query best practices

Use the SET clause to remove multiple properties at once

When using the openCypher language, REMOVE is used to remove properties from an entity. In
Neptune Analytics, each property being removed requires a separate operation, adding query openCypher query best practices 493

Neptune Analytics Neptune Analytics User Guide

latency. You can instead use SET with a map to set all property values to null, which in Neptune
Analytics is equivalent to removing properties. Neptune Analytics will have increased performance
when multiple properties on a single entity are required to be removed.

Use:

WITH {prop1: null, prop2: null, prop3: null} as propertiesToRemove
MATCH (n)
SET n += propertiesToRemove

Instead of:

MATCH (n)
REMOVE n.prop1, n.prop2, n.prop3

Use parameterized queries

It is recommended to always use parameterized queries when querying using openCypher. The
query engine can leverage repeated parameterized queries for features like query plan cache,
where repeated invocation of the same parameterized structure with different parameters can
leverage the cached plans. The query plan generated for parameterized queries is cached and
reused only when it completes within 100ms and the parameter types are either NUMBER,
BOOLEAN or STRING.

Use:

MATCH (n:foo) WHERE id(n) = $id RETURN n

With parameters:

parameters={"id": "first"}
parameters={"id": "second"}
parameters={"id": "third"}

Instead of:

MATCH (n:foo) WHERE id(n) = "first" RETURN n
MATCH (n:foo) WHERE id(n) = "second" RETURN n
MATCH (n:foo) WHERE id(n) = "third" RETURN n

Use parameterized queries 494

Neptune Analytics Neptune Analytics User Guide

You can determine if the query is using a cached plan by observing the plan cache hits: value
in the output of the openCypher explain endpoint.

Use flattened maps instead of nested maps in UNWIND clause

Deep nested structure can restrict the ability of the query engine to generate an optimal query
plan. To partially alleviate this issue, the following defined patterns will create optimal plans for
the following scenarios:

• Scenario 1: UNWIND with a list of cypher literals, which includes NUMBER, STRING and
BOOLEAN.

• Scenario 2: UNWIND with a list of flattened maps, which includes only cypher literals (NUMBER,
STRING, BOOLEAN) as values.

When writing a query containing UNWIND clause, use the above recommendation to improve
performance.

Scenario 1 example:

UNWIND $ids as x
MATCH(t:ticket {`~id`: x})

With parameters:

parameters={
 "ids": [1, 2, 3]
}

An example for Scenario 2 is to generate a list of nodes to CREATE or MERGE. Instead of issuing
multiple statements, use the following pattern to define the properties as a set of flattened maps:

UNWIND $props as p
CREATE(t:ticket {title: p.title, severity:p.severity})

With parameters:

parameters={
 "props": [

Use flattened maps instead of nested maps in UNWIND clause 495

https://docs.aws.eu//neptune-analytics/latest/userguide/query-explain.html

Neptune Analytics Neptune Analytics User Guide

 {"title": "food poisoning", "severity": "2"},
 {"title": "Simone is in office", "severity": "3"}
]
}

Instead of nested node objects like:

UNWIND $nodes as n
CREATE(t:ticket n.properties)

With parameters:

parameters={
 "nodes": [
 {"id": "ticket1", "properties": {"title": "food poisoning", "severity": "2"}},
 {"id": "ticket2", "properties": {"title": "Simone is in office", "severity": "3"}}
]
}

Place more restrictive nodes on the left side in Variable-Length Path
(VLP) expressions

In Variable-Length Path (VLP) queries, the query engine optimizes the evaluation by choosing
to start the traversal on the left or right side of the expression. The decision is based on the
cardinality of the patterns on the left and right side. Cardinality is the number of nodes matching
the specified pattern.

• If the right pattern has a cardinality of one, then the right side will be the starting point.

• If the left and the right side have cardinality of one, the expansion is checked on both sides and
starts on the side with the smaller expansion. Expansion is the number of outgoing or incoming
edges for the node on the left and the node on the right side of the VLP expression. This part of
the optimization is only used if the VLP relationship is unidirectional and the relationship type is
provided.

• Otherwise, the left side will be the starting point.

For a chain of VLP expressions, this optimization can only be applied to the first expression. The
other VLPs are evaluated starting with the left side. As an example, let the cardinality of (a), (b) be
one, and the cardinality of (c) be greater than one.

Place more restrictive nodes on the left side in Variable-Length Path (VLP) expressions 496

Neptune Analytics Neptune Analytics User Guide

• (a)-[*1..]->(c): Evaluation starts with (a).

• (c)-[*1..]->(a): Evaluation starts with (a).

• (a)-[*1..]-(c): Evaluation starts with (a).

• (c)-[*1..]-(a): Evaluation starts with (a).

Now let the incoming edges of (a) be two, and the outgoing edges of (a) be three, the incoming
edges of (b) be four, and the outgoing edges of (b) be five.

• (a)-[*1..]->(b): Evaluation starts with (a) as the outgoing edges of (a) are less than the
incoming edges of (b).

• (a)<-[*1..]-(b): Evaluation starts with (a) as the incoming edges of (a) are less than the
outgoing edges of (b).

As a general rule, place the more restrictive pattern on the left side of a VLP expression.

Avoid redundant node label checks by using granular relationship
names

When optimizing for performance, using relationship labels that are exclusive to node patterns
allows the removal of label filtering on nodes. Consider a graph model where the relationship
likes is only used to define a relationship between two person nodes. We could write the
following query to find this pattern:

MATCH (n:person)-[:likes]->(m:person)
RETURN n, m

The person label check on n and m is redundant, as we defined the relationship to only appear
when both are of the type person. To optimize on performance, we can write the query as follows:

MATCH (n)-[:likes]->(m)
RETURN n, m

This pattern can also apply when properties are exclusive to a single node label. Assume that only
person nodes have the property email, therefore verifying the node label matches person is
redundant. Writing this query as:

Avoid redundant node label checks by using granular relationship names 497

Neptune Analytics Neptune Analytics User Guide

MATCH (n:person)
WHERE n.email = 'xxx@gmail.com'
RETURN n

Is less efficient than writing this query as:

MATCH (n)
WHERE n.email = 'xxx@gmail.com'
RETURN n

You should only adopt this pattern when performance is important and you have checks in your
modeling process to ensure these edge labels are not reused for patterns involving other node
labels. If you later introduce an email property on another node label such as company, then the
results will differ between these two versions of the query.

Specify edge labels where possible

It is recommended to provide an edge label where possible when specifying an edge in a pattern.
Consider the following example query, which is used to link all of the people living in a city with all
of the people who visited that city.

MATCH (person)-->(city {country: "US"})-->(anotherPerson)
RETURN person, anotherPerson

If your graph model links people to nodes other than just cities using multiple edge labels, by
not specifying the end label, Neptune will need to evaluate additional paths that will later be
discarded. In the above query, as an edge label was not given, the engine does more work first and
then filters out values to obtain the correct result. A better version of above query might be:

MATCH (person)-[:livesIn]->(city {country: "US"})-[:visitedBy]->(anotherPerson)
RETURN person, anotherPerson

This not only helps in evaluation, but enables the query planner to create better plans. You could
even combine this best practice with redundant node label checks to remove the city label check
and write the query as:

MATCH (person)-[:livesIn]->({country: "US"})-[:visitedBy]->(anotherPerson)

Specify edge labels where possible 498

Neptune Analytics Neptune Analytics User Guide

RETURN person, anotherPerson

Avoid using the WITH clause when possible

The WITH clause in openCypher acts as a boundary where everything before it executes, and then
the resulting values are passed to the remaining portions of the query. The WITH clause is needed
when you require interim aggregation or want to limit the number of results, but aside from that
you should try to avoid using the WITH clause. The general guidance is to remove these simple
WITH clauses (without aggregation, order by or limit) to enable the query planner to work on the
entire query to create a globally optimal plan. As an example, assume you wrote a query to return
all people living in India:

MATCH (person)-[:lives_in]->(city)
WITH person, city
MATCH (city)-[:part_of]->(country {name: 'India'})
RETURN collect(person) AS result

In the above version, the WITH clause restricts the placement of the pattern (city)-
[:part_of]->(country {name: 'India'}) (which is more restrictive) before (person)-
[:lives_in]->(city). This makes the plan sub-optimal. An optimization on this query would
be to remove the WITH clause and let the planner compute the best plan.

MATCH (person)-[:lives_in]->(city)
MATCH (city)-[:part_of]->(country {name: 'India'})
RETURN collect(person) AS result

Place restrictive filters as early in the query as possible

In all scenarios, early placement of filters in the query helps in reducing the intermediate solutions
a query plan must consider. This means less memory and fewer compute resources are needed to
execute the query.

The following example helps you understand these impacts. Suppose you write a query to return
all of the people who live in India. One version of the query could be:

MATCH (n)-[:lives_in]->(city)-[:part_of]->(country)
WITH country, collect(n.firstName + " " + n.lastName) AS result
WHERE country.name = 'India'

Avoid using the WITH clause when possible 499

Neptune Analytics Neptune Analytics User Guide

RETURN result

The above version of the query is not the most optimal way to achieve this use case. The filter
country.name = 'India' appears later in the query pattern. It will first collect all persons and
where they live, and group them by country, then filter for only the group for country.name =
India. The optimal way to query for only people living in India and then perform the collect
aggregation.

MATCH (n)-[:lives_in]->(city)-[:part_of]->(country)
WHERE country.name = 'India'
RETURN collect(n.firstName + " " + n.lastName) AS result

A general rule is to place a filter as soon as possible after the variable is introduced.

Explicitly check whether properties exist

Based on openCypher semantics, when a property is accessed it is equivalent to an optional join
and must retain all rows even if the property does not exist. If you know based on your graph
schema that a particular property will always exist for that entity, explicitly checking that property
for existence allows the query engine to create optimal plans and improve performance.

Consider a graph model where nodes of type person always have a property name. Instead of
doing this:

MATCH (n:person)
RETURN n.name

Explicitly verify the property existence in the query with an IS NOT NULL check:

MATCH (n:person)
WHERE n.name IS NOT NULL
RETURN n.name

Do not use named path (unless it is required)

Named path in a query always comes at an additional cost, which can add penalties in terms of
higher latency and memory usage. Consider the following query:

MATCH p = (n)-[:commentedOn]->(m)

Explicitly check whether properties exist 500

Neptune Analytics Neptune Analytics User Guide

WITH p, m, n, n.score + m.score as total
WHERE total > 100
MATCH (m)-[:commentedON]->(o)
WITH p, m, n, distinct(o) as o1
RETURN p, m.name, n.name, o1.name

In the above query, assuming we only want to know the properties of the nodes, the use of path
“p” is unnecessary. By specifying the named path as a variable, the aggregation operation using
DISTINCT will get expensive both in terms of time and memory usage. A more optimized version of
above query could be:

MATCH (n)-[:commentedOn]->(m)
WITH m, n, n.score + m.score as total
WHERE total > 100
MATCH (m)-[:commentedON]->(o)
WITH m, n, distinct(o) as o1
RETURN m.name, n.name, o1.name

Avoid COLLECT(DISTINCT())

COLLECT(DISTINCT()) is used whenever a list is to be formed containing distinct values. COLLECT
is an aggregation function, and grouping is done based on additional keys being projected in the
same statement. When distinct is used, the input is split in multiple chunks where each chunk
denotes one group for reduction. Performance will be impacted as the number of groups increases.
In Neptune Analytics, it is much more efficient to perform DISTINCT before actually collecting/
forming the list. This allows grouping to be done directly on the grouping keys for the whole
chunk.

Consider the following query:

MATCH (n:Person)-[:commented_on]->(p:Post)
WITH n, collect(distinct(p.post_id)) as post_list
RETURN n, post_list

A more optimal way of writing this query is:

MATCH (n:Person)-[:commented_on]->(p:Post)
WITH DISTINCT n, p.post_id as postId
WITH n, collect(postId) as post_list
RETURN n, post_list

Avoid COLLECT(DISTINCT()) 501

Neptune Analytics Neptune Analytics User Guide

Prefer the properties function over individual property lookup when
retrieving all property values

The properties() function is used to return a map containing all properties for an entity, and is
much more efficient than returning properties individually.

Assuming your Person nodes contain 5 properties, firstName, lastName, age, dept, and
company, the following query would be preferred:

MATCH (n:Person)
WHERE n.dept = 'AWS'
RETURN properties(n) as personDetails

Rather than using:

MATCH (n:Person)
WHERE n.dept = 'AWS'
RETURN n.firstName, n.lastName, n.age, n.dept, n.company

=== OR ===

MATCH (n:Person)
WHERE n.dept = 'AWS'
RETURN {firstName: n.firstName, lastName: n.lastName, age: n.age,
department: n.dept, company: n.company} as personDetails

Perform static computations outside of the query

It is recommended to resolve static computations (simple mathematical/string operations) on the
client-side. Consider this example where you want to find all people one year older or less than the
author:

MATCH (m:Message)-[:HAS_CREATOR]->(p:person)
WHERE p.age <= ($age + 1)
RETURN m

Here, $age is injected into the query via parameters, and is then added to a fixed value. This value
is then compared with p.age. Instead, a better approach would be doing the addition on the
client-side and passing the calculated value as a parameter $ageplusone. This helps the query

Prefer the properties function over individual property lookup when retrieving all property values 502

Neptune Analytics Neptune Analytics User Guide

engine to create optimized plans, and avoids static computation for each incoming row. Following
these guidelines, a more efficient verson of the query would be:

MATCH (m:Message)-[:HAS_CREATOR]->(p:person)
WHERE p.age <= $ageplusone
RETURN m

Batch inputs using UNWIND instead of individual statements

Whenever the same query needs to be executed for different inputs, instead of executing one
query per input, it would be much more performant to run a query for a batch of inputs.

If you want to merge on a set of nodes, one option is to run a merge query per input:

MERGE (n:Person {`~id`: $id})
SET n.name = $name, n.age = $age, n.employer = $employer

With parameters:

params = {id: '1', name: 'john', age: 25, employer: 'Amazon'}

The above query needs to be executed for every input. While this approach works, it may require
many queries to be executed for a large set of input. In this scenario, batching may help reduce the
number of queries executed on the server, as well as improve the overall throughput.

Use the following pattern:

UNWIND $persons as person
MERGE (n:Person {`~id`: person.id})
SET n += person

With parameters:

params = {persons: [{id: '1', name: 'john', age: 25, employer: 'Amazon'},
{id: '2', name: 'jack', age: 28, employer: 'Amazon'},
{id: '3', name: 'alice', age: 24, employer: 'Amazon'}...]}

Experimentation with different batch sizes is recommended to determine what works best for your
workload.

Batch inputs using UNWIND instead of individual statements 503

Neptune Analytics Neptune Analytics User Guide

Prefer using custom IDs for node

Neptune Analytics allows users to explicitly assign IDs on nodes. The ID must be globally unique in
the dataset and deterministic to be useful. A deterministic ID can be used as a lookup or a filtering
mechanism just like properties; however, using an ID is much more optimized from query execution
perspective than using properties. There are several benefits to using custom IDs -

• Properties can be null for an existing entity, but the ID must exist. This allows the query engine
to use an optimized join during execution.

• When concurrent mutation queries are executed, the chances of concurrent modification
exceptions (CMEs) are reduced significantly when IDs are used to access nodes because fewer
locks are taking on IDs than properties due to their enforced uniqueness.

• Using IDs avoids the chance of creating duplicate data as Neptune enforces uniqueness on IDs,
unlike properties.

The following query example uses a custom ID:

Note

The property ~id is used to specify the ID, whereas id is just stored as any other property.

CREATE (n:Person {`~id`: '1', name: 'alice'})

Without using a custom ID:

CREATE (n:Person {id: '1', name: 'alice'})

If using the latter mechanism, there is no uniqueness enforcement and you could later execute the
query:

CREATE (n:Person {id: '1', name: 'john'})

This creates a second node with id=1 named john. In this scenario, you would now have two
nodes with id=1, each having a different name - (alice and john).

Prefer using custom IDs for node 504

https://docs.aws.eu//neptune/latest/userguide/transactions-exceptions.html
https://docs.aws.eu//neptune/latest/userguide/transactions-exceptions.html

Neptune Analytics Neptune Analytics User Guide

Avoid doing ~id computations in the query

When using custom IDs in the queries, always perform static computations outside the queries and
provide these values in the parameters. When static values are provided, the engine is better able
to optimize lookups and avoid scanning and filtering these values.

If you want to create edges between nodes that are existing in the database, one option could be:

UNWIND $sections as section
MATCH (s:Section {`~id`: 'Sec-' + section.id})
MERGE (s)-[:IS_PART_OF]->(g:Group {`~id`: 'g1'})

With parameters:

parameters={sections: [{id: '1'}, {id: '2'}]}

In the query above, the id of the section is being computed in the query. Since the computation is
dynamic, the engine cannot statically inline ids and ends up scanning all section nodes. The engine
then performs post-filtering for required nodes. This can be costly if there are many section nodes
in the database.

A better way to achieve this is to have Sec- prepended in the ids being passed into the database:

UNWIND $sections as section
MATCH (s:Section {`~id`: section.id})
MERGE (s)-[:IS_PART_OF]->(g:Group {`~id`: 'g1'})

With parameters:

parameters={sections: [{id: 'Sec-1'}, {id: 'Sec-2'}]}

Avoid doing ~id computations in the query 505

Neptune Analytics Neptune Analytics User Guide

Neptune Analytics tools and utilities

Neptune Analytics provides tools and utilities that can simplify and automate your work with a
graph. Among these are the following:

Neptune Analytics tools

• Nodestream – Nodestream is a framework for dealing with semantically modeling data as a
graph. It is designed to be flexible and extensible, allowing you to define how data is collected
and modeled as a graph. It uses a pipeline-based approach to define how data is collected and
processed, and it provides a way to define how the graph should be updated when the schema
changes.

Nodestream

Nodestream is a framework for dealing with semantically modeling data as a graph. It is designed
to be flexible and extensible, allowing you to define how data is collected and modeled as a graph.
It uses a pipeline-based approach to define how data is collected and processed, and it provides
a way to define how the graph should be updated when the schema changes. All of this is done
using a simple, human-readable configuration file in yaml format. To accomplish this, Nodestream
uses a number of core concepts, including pipelines, extractors, transformers, filters, interpreters,
interpretations, and migrations.

Beginning with Nodestream 0.12, Amazon Neptune is supported for both Neptune Database and
Neptune Analytics.

Please view the Nodestream documentation for details on how to configure and use Nodestream
with Neptune : Nodestream support for Amazon Neptune.

Nodestream with Neptune currently supports standard ETL pipelines as well as time to live (TTL)
pipelines. ETL pipelines enable bulk data ingestion into Neptune from a much broader range of
data sources and formats than have previously been possible in Neptune including:

• Software Bill of Materials

• Files including CSV, JSON, JSONL, Parquet, txt and yaml

• Kafka

• Athena

Nodestream 506

https://nodestream-proj.github.io/docs/docs/intro/
https://nodestream-proj.github.io/docs/blog/2024/04/05/nodestream-0-12/
https://nodestream-proj.github.io/docs/docs/databases/neptune/
https://nodestream-proj.github.io/docs/docs/databases/neptune/
https://nodestream-proj.github.io/docs/docs/databases/neptune/
https://nodestream-proj.github.io/docs/docs/official-plugins/sbom/
https://nodestream-proj.github.io/docs/docs/reference/extractors/
https://nodestream-proj.github.io/docs/docs/reference/extractors/#streamextractor
https://nodestream-proj.github.io/docs/docs/reference/extractors/#athenaextractor

Neptune Analytics Neptune Analytics User Guide

• REST APIs

Nodestream fully supports IAM authentication when connecting to Amazon Neptune, as long as
credentials are properly configured. See the boto3 credentials guide for more information on
correctly configuring credentials.

Nodestream's TTL mechanism also enables new capabilities not previously available in Neptune .
By annotating ingested graph elements with timestamps, Nodestream can create pipelines which
automatically expire and remove data that has passed a configured lifespan.

Nodestream 507

https://nodestream-proj.github.io/docs/docs/reference/extractors/#simpleapiextractor
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#configuring-credentials
https://nodestream-proj.github.io/docs/docs/tutorials-intermediate/removing-data/

Neptune Analytics Neptune Analytics User Guide

Limits for Neptune Analytics

Regions

Neptune Analytics is available in the following AWS Regions:

• US East (N. Virginia): us-east-1

• US East (Ohio): us-east-2

• US West (Oregon): us-west-2

• Asia Pacific (Singapore): ap-southeast-1

• Asia Pacific (Sydney): ap-southeast-2

• Asia Pacific (Tokyo): ap-northeast-1

• Asia Pacific (Mumbai): ap-south-1

• Europe (Ireland): eu-west-1

• Europe (London): eu-west-2

• Europe (Frankfurt): eu-central-1

• Canada (Central): ca-central-1

Quotas

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is Region-specific. You can request increases for some quotas, and
other quotas cannot be increased.

To view the quotas for Neptune Analytics, open the Service Quotas console. In the navigation pane,
choose AWS services and select Neptune Analytics.

To request a quota increase, see Requesting a Quota Increase in the Service Quotas User Guide. If
the quota is not yet available in Service Quotas, use the limit increase form.

Vertex enumeration is not memory bounded

The following quotas and limits apply to Neptune Analytics:

Regions 508

https://eusc-de-east-1.console.amazonaws-eusc.eu/servicequotas/home
https://docs.aws.eu/servicequotas/latest/userguide/request-quota-increase.html
https://eusc-de-east-1.console.amazonaws-eusc.eu/support/home#/case/create?issueType=service-limit-increase

Neptune Analytics Neptune Analytics User Guide

The current implementation of vertex enumeration and counting is not memory bounded. As a
consequence, queries such as MATCH (n) RETURN count(n) will require a significant amount of
memory and, depending on the chosen capacity and dataset shape, may run into out-of-memory
exceptions.

Where possible, we recommend replacing such queries with queries that operate on a per-
label basis. For instance, a query such as MATCH (n : Person) RETURN count(n) will be
significantly more efficient, both in terms of memory consumption and memory utilization.

Parameterized openCypher queries not supported for
algorithms

Neptune Analytics supports parameterized openCypher queries with the limitation that parameters
are not allowed inside algorithms.

For instance, a query such as CALL neptune.algo.degree($id) where $id is passed in as a
parameter is currently not supported.

Size limits on properties, labels and strings

The maximum length of the strings supported is 1,048,062 bytes. The limit would be lower for
strings with unicode characters since some unicode characters are represented using multiple
bytes.

Labelless vertices with only embeddings are not supported

Neptune Analytics supports labelless vertices, which are vertices without vertex labels. The
labelless vertices may or may not have vertex properties. However, there is a limitation that
labelless vertices with only vector embeddings are not supported. They must either have a vertex
label or a vertex property.

No parameterized algorithm calls 509

https://docs.aws.eu/neptune/latest/userguide/opencypher-parameterized-queries.html

Neptune Analytics Neptune Analytics User Guide

API reference

The Neptune Analytics API reference is available for more information.

510

https://docs.aws.eu//neptune-analytics/latest/apiref/Welcome.html

	Neptune Analytics
	Table of Contents
	What is Neptune Analytics?
	Neptune Analytics Features
	When to use Neptune Analytics and when to use Neptune Database

	Changes and updates to Neptune Analytics
	Getting started
	Create an empty Neptune graph
	Create a Neptune graph from existing sources
	Connecting to a graph
	AWS PrivateLink for Neptune Analytics
	Creating an Amazon VPC endpoint
	Types of interface endpoint services for Neptune Analytics
	Considerations when using AWS PrivateLink for Neptune Analytics
	Accessing Neptune Analytics interface endpoints
	Accessing Neptune Analytics graph from Neptune Analytics interface endpoints
	AWS CLI examples
	AWS SDK examples

	Creating an Amazon VPC endpoint policy for Neptune Analytics data plane

	Connecting to a private endpoint from within the same VPC
	Connecting to a private endpoint from a different VPC (including cross-account)
	Accessing the graph
	Using a notebook
	Using the AWS SDK
	Examples
	Using the AWS CLI
	Using AWSCURL

	Best practices

	Using notebooks with Neptune Analytics
	Take advantage of all the sample notebooks
	Creating a new Neptune Analytics notebook using a CloudFormation template
	Creating a new Neptune Analytics notebook using the AWS Management Console
	Create an IAM role for a Neptune Analytics notebook

	Hosting a Neptune Analytics graph-notebook on your local machine

	Creating a new Neptune Analytics graph using the AWS Management Console
	Loading data into a Neptune Analytics graph
	Data format for loading from Amazon S3 into Neptune Analytics
	Using CSV data
	Using Parquet data
	System column headers
	Property column headers

	Using RDF data
	Handling of RDF values
	IRIs
	Language-tagged literals
	Blank nodes

	Referencing IRIs in queries
	Mapping RDF triples to LPG concepts
	Query Examples

	Batch load
	Request syntax
	Response syntax

	Bulk import data into a graph
	Create a graph from Amazon S3, a Neptune cluster, or a snapshot
	Creating a Neptune Analytics graph from Amazon S3
	Copy the data files to an Amazon S3 bucket
	Create your IAM role for Amazon S3 access
	Use the CreateGraphUsingImportTask API to import from Amazon S3

	Creating a Neptune Analytics graph from Neptune cluster or snapshot
	Obtain the ARN of your Neptune cluster or snapshot
	Create an IAM role with permissions to export from Neptune to Neptune Analytics

	Bulk import data into an existing Neptune Analytics graph
	Troubleshooting bulk import

	Checking the details and progress of an import task
	Canceling an import task
	Troubleshooting

	neptune.read()
	Query examples using Parquet
	Supported Parquet column types
	Sample Parquet output
	Query examples using CSV
	Property column headers
	Supported CSV column types
	Sample CSV output

	Exporting data from a Neptune Analytics graph
	Relevant SDK/CLI commands
	Permission setup
	start-export-task
	start-export-task syntax
	start-export-task inputs
	start-export-task output

	get-export-task
	get-export-task syntax
	get-export-task inputs
	get-export-task output

	list-export-task
	list-export-task syntax
	list-export-task inputs
	list-export-task output

	cancel-export-task
	cancel-export-task syntax
	cancel-export-task inputs
	cancel-export-task output

	Structure of exported files
	CSV
	Parquet

	Specifying a filter
	Filter syntax
	Sample filters
	Sample filter: Specifying vertex and edge properties for export
	Sample filter: Exporting vertices and edges to a single schema
	Sample filter: Exporting all vertices but no edges
	Sample filter: Exporting all properties of specific labels
	Sample filter: Exporting edge topology without properties
	Run a mutation algorithm then export the results

	Graph snapshots
	Creating a graph snapshot
	Listing existing graph snapshots
	Restoring from a graph snapshot
	Deleting a graph snapshot

	Managing your Neptune Analytics graphs
	Modifying a Neptune Analytics graph
	Maintaining a Neptune Analytics graph
	Deleting a Neptune Analytics graph
	Stopping a Neptune Analytics graph
	Starting a Neptune Analytics graph
	Tagging Neptune Analytics graph resources
	Working with ARNs in Neptune Analytics graph

	Monitoring Neptune Analytics
	Neptune Analytics information in CloudTrail
	Logging Neptune Analytics API calls using AWS CloudTrail
	Control plane events in CloudTrail
	Data plane events in CloudTrail

	Understanding Neptune Analytics log file entries
	Monitoring your graphs
	Viewing CloudWatch data
	Neptune CloudWatch metrics

	Security in Neptune Analytics
	Data protection in Neptune Analytics
	Identity and access management for Neptune Analytics
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Other policy types
	Multiple policy types

	How Neptune Analytics works with IAM
	Identity-based policies for Neptune Analytics
	Identity-based policy examples for Neptune Analytics

	Resource-based policies within Neptune Analytics
	Policy actions for Neptune Analytics
	Policy resources for Neptune Analytics
	Policy condition keys for Neptune Analytics
	ACLs in Neptune Analytics
	ABAC with Neptune Analytics
	Using temporary credentials with Neptune Analytics
	Cross-service principal permissions for Neptune Analytics
	Service roles for Neptune Analytics
	Service-linked roles for Neptune Analytics

	Identity-based policy examples for Neptune Analytics
	Policy best practices
	Using the Neptune Analytics console
	Allow users to view their own permissions

	Troubleshooting Neptune Analytics identity and access
	I am not authorized to perform an action in Neptune Analytics
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Neptune Analytics resources

	Compliance validation for Neptune Analytics
	Resilience in Neptune Analytics
	Infrastructure Security in Neptune Analytics
	Cross-service confused deputy prevention
	Using service-linked roles (SLRs) in Neptune Analytics
	Service-linked role permissions for Neptune Analytics Graphs
	Creating a service-linked role for Neptune Analytics
	Editing a service-linked role for Neptune Analytics
	Deleting a service-linked role

	Import/export permissions
	Create and configure IAM role and AWS KMS key

	Querying Neptune Analytics
	Query APIs
	ExecuteQuery
	ExecuteQuery inputs
	ExecuteQuery examples
	ExecuteQuery output
	Parameterized queries

	ListQueries
	ListQueries syntax
	ListQueries inputs
	ListQueries outputs
	ListQueries Examples

	GetQuery
	GetQuery inputs
	GetQuery outputs
	GetQuery examples

	CancelQuery
	CancelQuery inputs
	CancelQuery outputs
	CancelQuery examples

	GraphSummary
	GetGraphSummary inputs
	GetGraphSummary outputs
	GetGraphSummary examples

	IAM role mappings

	Query plan cache
	Mitigation for query plan cache issue

	Query explain
	Explain inputs
	Explain outputs
	Explain examples

	Statistics
	Exceptions
	Neptune Analytics openCypher data model
	What is a vertex?

	Neptune Analytics OpenCypher specification compliance
	Vertex and edge IDs
	IRIs and language-tagged literals
	OpenCypher reduce() function

	Transaction isolation levels in Neptune Analytics

	Neptune Analytics algorithms
	Path-finding algorithms in Neptune Analytics
	Breadth-first search (BFS) path finding algorithms
	Standard breadth-first search (BFS) algorithm
	.bfs syntax
	.bfs inputs
	.bfs outputs
	.bfs query examples
	Sample .bfs output

	Parents breadth-first search (BFS) algorithm
	.bfs.parents syntax
	.bfs.parents inputs
	.bfs.parents outputs
	.bfs.parents query examples
	Sample .bfs.parents output

	Levels breadth-first search (BFS) algorithm
	.bfs.levels syntax
	.bfs.levels inputs
	.bfs.levels outputs
	.bfs.levels standalone query examples
	.bfs.levels query integration examples
	Sample .bfs.levels output

	Single-source shortest-path algorithms
	Bellman-Ford single source shortest path (SSSP) algorithm
	.sssp.bellmanFord syntax
	.sssp.bellmanFord inputs
	Outputs for the .sssp.bellmanFord algorithm
	.sssp.bellmanFord query examples
	Sample .sssp.bellmanFord output

	Bellman-Ford single source shortest path (SSSP) parents algorithm
	.sssp.bellmanFord.parents syntax
	.sssp.bellmanFord.parents inputs
	Outputs for the .sssp.bellmanFord.parents algorithm
	.sssp.bellmanFord.parents query examples
	Sample .sssp.bellmanFord.parents output

	Bellman-Ford single source single target shortest path algorithm
	.sssp.bellmanFord.path syntax
	.sssp.bellmanFord.path inputs
	Outputs for the .sssp.bellmanFord.path algorithm
	.sssp.bellmanFord.path query examples
	Sample .sssp.bellmanFord.path output

	Delta-stepping single source shortest path (SSSP) algorithm
	.sssp.deltaStepping syntax
	.sssp.deltaStepping inputs
	Outputs for the sssp.deltaStepping algorithm
	.sssp.deltaStepping query examples
	Sample .sssp.deltaStepping output

	Delta-stepping single source shortest path (SSSP) parents algorithm
	.sssp.deltaStepping.parents syntax
	.sssp.deltaStepping.parents inputs
	Outputs for the sssp.deltaStepping.parents algorithm
	.sssp.deltaStepping.parents query examples
	Sample .sssp.deltaStepping.parents output

	DeltaStepping single source single target shortest path algorithm
	.sssp.deltaStepping.path syntax
	.sssp.deltaStepping.path inputs
	Outputs for the .sssp.deltaStepping.path algorithm
	.sssp.deltaStepping.path query examples
	Sample .sssp.deltaStepping.path output

	TopK hop-limited single source (weighted) shortest path algorithm
	.topksssp syntax
	Inputs for the topksssp algorithm
	Outputs for the topksssp algorithm
	.topksssp query examples
	Sample .topksssp output

	Egonet algorithms
	.egonet
	.egonet syntax
	Inputs for the .egonet algorithm
	Outputs for the .egonet algorithm
	.egonet query examples
	Sample .egonet output

	.egonet.edgeList
	.egonet.edgeList syntax
	Inputs for the .egonet.edgeList algorithm
	Outputs for the .egonet.edgeList algorithm
	.egonet.edgeList query examples
	Sample .egonet.edgeList output

	Centrality algorithms in Neptune Analytics
	Degree centrality algorithm
	.degree syntax
	Inputs for the .degree algorithm
	.degree outputs
	Query examples for .degree
	Sample .degree output

	Degree mutate centrality algorithm
	.degree.mutate syntax
	.degree.mutate inputs
	Output of the .degree.mutate algorithm
	.degree.mutate query examples
	Sample output from .degree.mutate

	.degreeDistribution centrality algorithm
	.degreeDistribution syntax
	Inputs for the .degreeDistribution algorithm
	Sample .degreeDistribution output
	Query examples for .degreeDistribution

	PageRank centrality algorithm
	Personalized PageRank
	Example scenario: Online retail platform
	Example scenario: Organizational network security
	Example scenario: Insurance policyholder network

	.pageRank syntax
	.pageRank inputs
	Outputs for the .pageRank algorithm
	Query examples for .pageRank
	Query examples for Personalized .pageRank
	Sample .pageRank output

	PageRank mutate centrality algorithm
	pageRank.mutate inputs
	Outputs for the pageRank.mutate algorithm
	Query example for pageRank.mutate
	Query examples for Personalized pageRank.mutate
	Sample .pageRank.mutate output

	Closeness centrality algorithm
	.closenessCentrality syntax
	Inputs for the .closenessCentrality algorithm
	Outputs for the .closenessCentrality algorithm
	.closenessCentrality query examples
	Sample .closenessCentrality output

	Closeness centrality mutatealgorithm
	.closenessCentrality.mutate syntax
	.closenessCentrality.mutate inputs
	.closenessCentrality.mutate outputs
	Query examples for .closenessCentrality.mutate
	Sample .closenessCentrality.mutate output

	Similarity algorithms in Neptune Analytics
	Common neighbors algorithm
	.neighbors.common syntax
	.neighbors.common inputs
	.neighbors.common outputs
	.neighbors.common query examples
	Sample .neighbors.common output

	Total neighbors algorithm
	.neighbors.total syntax
	Inputs for the .neighbors.total algorithm
	.neighbors.total outputs
	.neighbors.total query examples
	Sample .neighbors.total output

	Jaccard similarity algorithm
	.jaccardSimilarity syntax
	.jaccardSimilarity inputs
	Outputs for the .jaccardSimilarity algorithm
	.jaccardSimilarity query examples
	Sample .jaccardSimilarity output

	Overlap similarity algorithm
	.overlapSimilarity syntax
	.overlapSimilarity inputs
	.overlapSimilarity outputs
	.overlapSimilarity query examples
	Sample .overlapSimilarity output

	Clustering and community detection algorithms in Neptune Analytics
	Weakly connected components algorithm
	.wcc syntax
	.wcc inputs
	.wcc outputs
	.wcc query examples
	Sample .wcc output

	Weakly connected components mutate algorithm
	.wcc.mutate syntax
	.wcc.mutate inputs
	.wcc.mutate outputs
	.wcc.mutate query examples
	Sample .wcc.mutate output

	Label propagation algorithm (LPA)
	.labelPropagation syntax
	.labelPropagation inputs
	.labelPropagation outputs
	.labelPropagation query examples
	Sample .labelPropagation output

	Label propagation mutate algorithm
	.labelPropagation.mutate syntax
	.labelPropagation.mutate inputs
	Outputs for the .labelPropagation.mutate algorithm
	.labelPropagation.mutate query example
	Sample .labelPropagation.mutate output

	Strongly connected components algorithm
	.scc syntax
	.scc inputs
	.scc outputs
	.scc query examples
	Sample .scc output

	Strongly connected components mutate algorithm
	.scc.mutate syntax
	Inputs for the .scc.mutate algorithm
	Outputs for the .scc.mutate algorithm
	.scc.mutate query example
	Sample .scc.mutate output

	Louvain algorithm
	.louvain syntax
	.louvain inputs
	.louvain outputs
	.louvain query examples
	Sample .louvain output

	Louvain mutate algorithm
	.louvain.mutate syntax
	Inputs for the .louvain.mutate algorithm
	Outputs for the .louvain.mutate algorithm
	.louvain.mutate query example
	Sample .louvain.mutate output

	Misc. graph procedures
	Property graph information
	Inputs for graph.pg_info
	Outputs for graph.pg_info
	graph.pg_info query example
	graph.pg_info query integration
	Sample graph.pg_info output

	Property graph schema
	Inputs for neptune.graph.pg_schema()
	Outputs for neptune.graph.pg_schema()
	neptune.graph.pg_schema() query example
	neptune.graph.pg_schema() query integration
	Sample neptune.graph.pg_schema() output

	Working with vector similarity in Neptune Analytics
	Vector indexing in Neptune Analytics
	Vector index transaction support
	Loading vectors into a Neptune Analytics graph vector index
	Load the vectors from graph data files Amazon S3
	Using the vectors.upsert algorithm to load vectors for your graph

	Common errors you may encounter when loading embeddings
	Vector-search algorithms in Neptune Analytics

	Vector-similarity search (VSS) algorithms in Neptune Analytics
	The .vectors.distance algorithm (deprecated)
	.vectors.distance syntax
	.vectors.distance inputs
	.vectors.distance outputs
	.vectors.distance query examples
	Sample .vectors.distance output

	The .vectors.distance.byNode algorithm
	.vectors.distance.byNode syntax
	.vectors.distance.byNode inputs
	.vectors.distance.byNode outputs
	.vectors.distance.byNode query examples
	Sample .vectors.distance.byNode output

	The .vectors.distanceByEmbedding algorithm (deprecated)
	.vectors.distanceByEmbedding syntax
	.vectors.distanceByEmbedding inputs
	.vectors.distanceByEmbedding outputs
	.vectors.distanceByEmbedding query examples
	Sample .vectors.distanceByEmbedding output

	The .vectors.distance.byEmbedding algorithm
	.vectors.distance.byEmbedding syntax
	.vectors.distance.byEmbedding inputs
	.vectors.distance.byEmbedding outputs
	.vectors.distance.byEmbedding query examples
	Sample .vectors.distance.byEmbedding output

	The .vectors.get algorithm
	.vectors.get syntax
	.vectors.get input
	.vectors.get outputs
	.vectors.get query example
	Sample .vectors.get output

	.vectors.topKByEmbedding algorithm (deprecated)
	.vectors.topKByEmbedding syntax
	.vectors.topKByEmbedding input
	.vectors.topKByEmbedding outputs
	.vectors.topKByEmbedding query example
	Sample .vectors.topKByEmbedding output

	.vectors.topK.byEmbedding algorithm
	.vectors.topK.byEmbedding syntax
	.vectors.topK.byEmbedding input
	.vectors.topK.byEmbedding outputs
	.vectors.topK.byEmbedding query example
	Sample .vectors.topKByEmbedding output

	.vectors.topKByNode algorithm (deprecated)
	.vectors.topKByNode syntax
	.vectors.topKByNode input
	.vectors.topKByNode outputs
	.vectors.topKByNode query example
	Sample .vectors.topKByNode output

	.vectors.topK.byNode algorithm
	.vectors.topK.byNode syntax
	.vectors.topK.byNode input
	.vectors.topK.byNode outputs
	.vectors.topK.byNode query example
	Sample .vectors.topK.byNode output

	.vectors.upsert algorithm
	.vectors.upsert syntax
	.vectors.upsert input
	.vectors.upsert outputs
	.vectors.upsert query examples
	Sample .vectors.upsert output

	.vectors.remove algorithm
	.vectors.remove syntax
	.vectors.remove input
	.vectors.remove outputs
	.vectors.remove query examples
	Sample .vectors.remove output

	Best practices
	openCypher query best practices
	Use the SET clause to remove multiple properties at once
	Use parameterized queries
	Use flattened maps instead of nested maps in UNWIND clause
	Place more restrictive nodes on the left side in Variable-Length Path (VLP) expressions
	Avoid redundant node label checks by using granular relationship names
	Specify edge labels where possible
	Avoid using the WITH clause when possible
	Place restrictive filters as early in the query as possible
	Explicitly check whether properties exist
	Do not use named path (unless it is required)
	Avoid COLLECT(DISTINCT())
	Prefer the properties function over individual property lookup when retrieving all property values
	Perform static computations outside of the query
	Batch inputs using UNWIND instead of individual statements
	Prefer using custom IDs for node
	Avoid doing ~id computations in the query

	Neptune Analytics tools and utilities
	Nodestream

	Limits for Neptune Analytics
	Regions
	Quotas
	Vertex enumeration is not memory bounded
	Parameterized openCypher queries not supported for algorithms
	Size limits on properties, labels and strings
	Labelless vertices with only embeddings are not supported

	API reference

